Produits chimiques pour le traitement de l'eau / Produits de traitement de surface des métaux / Produits chimiques pour l'extraction minière

ACIDE 2-ÉTHYL HEXANOÏQUE

DESCRIPTION:
L'acide 2-éthylhexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthylhexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque est une huile visqueuse incolore.

Numéro CAS : 149-57-5
Numéro CE : 205-743-6
Formule moléculaire : C8H16O2

L'acide 2-éthylhexanoïque est un liquide incolore à point d'ébullition élevé ayant une légère odeur.
Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés comme siccatifs pour les peintures, encres, vernis et émaux inodores.
Le cobalt et le manganèse sont les siccatifs les plus importants.

L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.
Le 2-éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthylhexanoïque (EHXA, 2-EHA) est un acide carboxylique aliphatique important sur le plan industriel.
Le 2-éthylhexanoïque est largement utilisé comme stabilisant et agent de préservation du bois.

Le 2-éthylhexanoïque brûle bien qu'il faille un certain effort pour s'enflammer.
Le 2-éthylhexanoïque est légèrement soluble dans l'eau.
Le 2-éthylhexanoïque est corrosif pour les métaux et les tissus.

Le 2-éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est un acide gras à chaîne ramifiée.
L'acide 2-éthylhexanoïque est un produit naturel trouvé dans Vitis vinifera et Artemisia arborescens avec des données disponibles.

L'acide 2-éthylhexanoïque (2-EHA) est l'un des produits phares du groupe Perstorp qui dispose de la plus grande capacité de production au monde.
L'acide 2-éthylhexanoïque est un liquide incolore avec un groupe carboxylique basé sur une chaîne carbonée C8.

L'acide 2-éthylhexanoïque est largement utilisé dans les esters pour les plastifiants de films PVB et les lubrifiants synthétiques, dans la production de savons métalliques pour les siccatifs à peinture, dans les liquides de refroidissement automobiles et les stabilisants pour PVC.
D'autres domaines d'application incluent les agents de préservation du bois, les catalyseurs pour le polyuréthane et les produits pharmaceutiques.

Le composé organique liquide a une légère odeur, est très corrosif pour les métaux et les tissus, et combustible, mais difficile à enflammer.
L'acide 2-éthylhexoïque est utilisé dans la fabrication d'adhésifs et de produits d'étanchéité, d'inhibiteurs de corrosion et d'agents antitartre, d'intermédiaires, de lubrifiants et d'additifs pour lubrifiants, d'additifs pour peintures et revêtements et de régulateurs de processus.

L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d'étain est utilisé dans la fabrication de poly(acide lactique-co-glycolique).
L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.

L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation du colorant.
De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des auxiliaires de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour le moussage du polyuréthane.

PRODUCTION D'ACIDE 2-ÉTHYLHEXANOÏQUE :
L'acide 2-éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyrald��hyde.
La condensation aldol de l'aldéhyde donne le 2-éthylhexénal, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

Éthylhexanoates métalliques :
L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont une stoechiométrie sous forme d'acétates métalliques. Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'"agents de séchage d'huile".
Ils sont très solubles dans les solvants non polaires.

Ces complexes métalliques sont souvent décrits comme des sels.
Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.
Leurs structures s'apparentent aux acétates correspondants.

EXEMPLES D'ETHYLHEXANOATES MÉTALLIQUES :
Bis(2-éthylhexanoate d'hydroxylaluminium), utilisé comme épaississant
Étain (II) éthylhexanoate (CAS # 301-10-0), un catalyseur pour le polylactide et le poly (acide lactique-co-glycolique).
Éthylhexanoate de cobalt (II) (CAS # 136-52-7), un siccatif pour les résines alkydes
Éthylhexanoate de nickel(II) (CAS# 4454-16-4)


APPLICATIONS DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
L'acide 2-éthylhexanoïque est utilisé comme liquide de refroidissement dans l'automobile
L'acide 2-éthylhexanoïque est utilisé comme lubrifiant synthétique
L'acide 2-éthylhexanoïque est utilisé comme agent mouillant

L'acide 2-éthyl hexanoïque est utilisé comme co-solvant
L'acide 2-éthylhexanoïque est utilisé comme séchage des peintures
L'acide 2-éthylhexanoïque est utilisé comme agent antimousse dans les pesticides

L'acide 2-éthylhexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles qui peuvent se dissoudre dans des solvants organiques non ioniques.
L'acide 2-éthylhexanoïque est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une légère odeur.

L'acide 2-éthyl hexanoïque est une huile visqueuse et incolore avec une classe carboxylique trouvée sur une chaîne carbonée C8 et n'est pas miscible dans l'eau.
L'acide 2-éthylhexanoïque peut être utilisé comme substitut de l'acide naphténique dans certaines applications.
Industriellement, l'acide 2-éthylhexanoïque est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d'autres termes, l'acide 2-éthylhexanoïque peut être fabriqué plus efficacement que l'acide naphténique.

L'acide 2-éthyl hexanoïque produit des composés métalliques qui subissent une stoechiométrie sous forme d'acétates métalliques.
Dans la plupart des cas, les dérivés de l'acide 2-éthyl hexanoïque sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et les polymérisations (comme agents de séchage d'huile).
En tant qu'intermédiaire chimique polyvalent, l'acide 2-2-éthyl hexanoïque a de multiples applications, notamment les suivantes.

Automobile:
L'acide 2-éthylhexanoïque est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide 2-éthylhexanoïque sert également de conservateur du bois et fabrique des additifs pour lubrifiants ainsi que des lubrifiants synthétiques.
L'acide 2-éthylhexanoïque est également utilisé dans la production de stabilisants thermiques en PVC, de plastifiants de film PVB, de savons métalliques pour les siccatifs à peinture et d'autres produits chimiques.

Lubrifiants :
L'acide 2-éthylhexanoïque est couramment utilisé dans les esters des plastifiants de films de butyral de polyvinyle (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques d'acide 2-éthylhexanoïque sont utilisés pour préparer des additifs de lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.

Revêtements :
L'acide 2-éthylhexanoïque est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide 2-éthylhexanoïque produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
Ce monomère est idéal pour la cuisson des émaux et des revêtements à 2 composants.
L'acide 2-éthylhexanoïque peut également être utilisé dans d'autres applications, y compris le catalyseur pour le polyuréthane, les agents de préservation du bois et les produits pharmaceutiques.

Produits de beauté:
Les produits chimiques contenus dans l'acide 2-éthylhexanoïque auraient une utilisation cosmétique pour produire des émollients et des revitalisants pour la peau.
L'acide 2-éthylhexanoïque est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage tels que les fonds de teint, les correcteurs et les produits de soins capillaires.

Plastiques :
L'acide 2-éthylhexanoïque est également utilisé dans la fabrication de stabilisants de chlorure de polyvinyle (PVC) et de plastifiants de butyral de polyvinyle (PVB) sous forme de sels métalliques.
L'acide 2-éthylhexanoïque réagit avec des composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.

L'acide 2-éthylhexanoïque est un composé organique liquide incolore à jaune clair.
L'acide 2-éthylhexanoïque est largement utilisé dans la préparation de dérivés métalliques solubles dans les solvants organiques non polaires.
L'acide carboxylique hautement toxique et combustible est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.

UTILISATIONS DE L'ACIDE 2-ÉTHYLHEXANOÏQUE :
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique et pour la fabrication de résines utilisées pour la cuisson des émaux, des lubrifiants, des détergents, des aides à la flottation et des inhibiteurs de corrosion ; également utilisé comme catalyseur pour le moussage de polyuréthane, pour l'extraction par solvant et pour la granulation de colorant

L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d'étain est utilisé dans la fabrication de poly(acide lactique-co-glycolique).
L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.

L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation du colorant.
De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des auxiliaires de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour le moussage du polyuréthane.

PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
Formule chimique C8H16O2
Masse molaire 144,214 g•mol−1
Aspect Liquide incolore
Densité 903 mg mL−1
Point de fusion -59,00 °C ; -74,20 °F ; 214.15 K
Point d'ébullition 228,1 °C ; 442,5 °F ; 501.2 K
journal P 2,579
Pression de vapeur <1 Pa (à 25 °C)
Acidité (pKa) 4.819
Basicité (pKb) 9.178
Indice de réfraction (nD) 1.425
Thermochimie:
Enthalpie de formation standard (ΔfH ⦵ 298) −635,1 kJ mol−1
Enthalpie de combustion standard (ΔcH ⦵ 298) -4,8013–4,7979 MJ mol−1
Poids moléculaire 144,21 g/mol
XLogP3 2.6
Nombre de donneurs d'obligations hydrogène 1
Nombre d'accepteurs de liaison hydrogène 2
Nombre de liaisons rotatives 5
Masse exacte 144,115029749 g/mol
Masse monoisotopique 144,115029749 g/mol
Surface polaire topologique 37,3 Å ²
Nombre d'atomes lourds 10
Charge formelle 0
Complexité 99,4
Nombre d'atomes isotopiques 0
Nombre de stéréocentres atomiques définis 0
Nombre de stéréocentres d'atomes non définis 1
Nombre de stéréocentres de liaison définis 0
Nombre de stéréocentres de liaison indéfinis 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui
Numéro CAS 149-57-5
Numéro d'index CE 607-230-00-6
Numéro CE 205-743-6
Formule de Hill C₈H₁₆O₂
Masse molaire 144,21 g/mol
Code SH 2915 90 70
Point d'ébullition 226 - 229 °C (1013 hPa)
Densité 0,91 g/cm3 (20 °C)
Limite d'explosivité 0,9 - 6,7 %(V)
Point d'éclair 114 °C
Température d'inflammation 310 °C
Point de fusion -59 °C
Valeur pH 3 (1,4 g/l, H₂O, 20 °C)
Pression de vapeur <0,01 hPa (20 °C)
Solubilité 1,4 g/l
Dosage (GC, surface%) ≥ 99,0 % (a/a)
Densité (d 20 °C/ 4 °C) 0,905 - 0,907
L'identité (IR) réussit le test
Solubilité dans l'eau 2,07 g/L
logP 2.61
logP 2.8
logS -1.8
pKa (acide le plus fort) 5,14
Charge physiologique -1
Nombre d'accepteurs d'hydrogène 2
Nombre de donneurs d'hydrogène 1
Surface polaire 37,3 Ų
Nombre de liaisons rotatives 5
Réfractivité 40,25 m³•mol⁻¹
Polarisabilité 16,99 ų
Nombre de sonneries 0
Biodisponibilité Oui
Règle de cinq Oui
Filtre fantôme Non
Règle de Veber Oui
Règle de type MDDR Non
Apparence Liquide clair
Couleur APHA : 15 max.
Densité 20/4°C : 0.905 - 0.910
Pureté % en poids : 99,0 min.
Teneur en eau % en poids : 0,10 max.
Indice d'acide KOHmg/g : 385 min.
Point de fusion -59°C
Densité 0,91
pH 3
Point d'ébullition 226°C à 229°C
Point d'éclair 114°C (237°F)
Indice de réfraction 1.425
Quantité 100 mL
Beilstein 1750468
Informations sur la solubilité Miscible avec l'eau.
Poids de la formule 144,21


SYNONYMES D'ACIDE 2-ÉTHYLHEXANOÏQUE :
Acide 2-éthylhexanoïque
Sinesto B
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide .alpha.-éthylcaproïque
Acide .alpha.-éthylhexanoïque
01MU2J7VVZ
125804-07-1
149-57-5
18FEB650-7573-4EA0-B0CD-9D8BED766547
2 ACIDE ÉTHYL-HEXANOÏQUE
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
ACIDE 2-ÉTHYL HEXOÏQUE, AR
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
ACIDE 2-ÉTHYLHEXANOÏQUE
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Acide 2-éthylhexanoïque, >=99%
Acide 2-éthylhexanoïque, 99 %
Acide 2-éthylhexanoïque, étalon analytique
Acide 2-éthylhexanoïque, inhalable
Acide 2-éthylhexanoïque, étalon secondaire pharmaceutique ; Matériau de référence certifié
Acide 2-éthylhexanoïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
27648-EP2298767A1
27648-EP2314587A1
Acide 3-heptanecarboxylique
54213-EP2272832A1
54213-EP2292592A1
54213-EP2295438A1
54213-EP2308510A1
54213-EP2308562A2
54213-EP2374787A1
61788-37-2
AI3-01371
AKOS009031416
acide alpha-éthyl caproïque
Acide alpha-éthylcaproïque
Acide alpha-éthylhexanoïque
AT29893
Azilsartan K Medoxomil Impureté-7 (impuretés 2-EHA)
BRN 1750468
Acide butyléthylacétique
C8H16O2.1/2Cu
CAS-149-57-5
CCRIS 3348
CHEBI:89058
CHEMBL1162485
CS-CY-00011
CS-W016381
DTXCID805293
DTXSID9025293
E0120
CE 205-743-6
EHO (code CHRIS)
EINECS 205-743-6
EINECS 262-971-9
EN300-20410
Acide éthylhexanoïque
Acide éthylhexanoïque, 2-
Acide éthylhexanoïque, 2-; (acide butyléthylacétique)
Acide éthylhexanoïque
Acide éthylhexoïque
F0001-0703
FT-0612273
FT-0654390
Acide hexanoïque, 2-éthyl-, ester tridécylique
Acide hexanoïque, 2-éthyl-
Acide hexanoïque, 2-éthyl-, (-)-
Acide hexanoïque, 2-éthyl-, sel de cuivre(2++)
Acide hexanoïque, 2-éthyl-, ester tridécylique
HMS2267F21
HSDB 5649
Kyselina 2-éthylkapronova
Kyselina 2-éthylkapronova [Tchèque]
Kyselina heptan-3-karboxylova
Kyselina heptan-3-karboxylova [Tchèque]
LMFA01020087
LS-869
MFCD00002675
MLS002415695
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
NSC 8881
NSC-8881
NSC8881
Q209384
SB44987
SB44994
SCHEMBL25800
SMR001252268
STR05759
Tox21_201406
Tox21_300108
UNII-01MU2J7VVZ
W-109079
WLN : QVY4 & 2
Z104478072

ACIDE 2-ÉTHYL HEXANOÏQUE
L'acide 2-éthylhexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles qui peuvent se dissoudre dans des solvants organiques non ioniques.
L'acide 2-éthylhexanoïque est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une légère odeur.


Numéro CAS : 149-57-5
72377-05-0 Énantiomère S
56006-48-5 Énantiomère R
Numéro CE : 205-743-6
Numéro MDL : MFCD00002675
Formule moléculaire : C8H16O2 / CH3(CH2)3CH(C2H5)COOH


L'acide 2-éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthylhexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthylhexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.


L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque brûlera bien qu'il faille un certain effort pour s'enflammer.


L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthylhexanoïque est un acide gras à chaîne ramifiée.


L'acide 2-éthylhexanoïque est un produit naturel trouvé dans Vitis vinifera et Artemisia arborescens avec des données disponibles.
L'acide 2-éthylhexanoïque est un liquide incolore à point d'ébullition élevé ayant une légère odeur.
L'acide 2-éthylhexanoïque est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


La formule moléculaire de l'acide 2-éthylhexanoïque est C8H16O2 ou CH3(CH2)3CH(C2H5)COOH.
L'acide 2-éthylhexanoïque a une légère odeur, est très corrosif pour les métaux et les tissus, et combustible, mais difficile à enflammer.
L'acide 2-éthylhexanoïque est une huile visqueuse et incolore avec une classe carboxylique trouvée sur une chaîne carbonée C8 et n'est pas miscible dans l'eau.


Industriellement, l'acide 2-éthylhexanoïque est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d'autres termes, l'acide 2-éthylhexanoïque peut être fabriqué plus efficacement que l'acide naphténique.
L'acide 2-éthyl hexanoïque produit des composés métalliques qui subissent une stoechiométrie sous la forme d'acétates métalliques.


L'acide 2-éthylhexanoïque (2-EHA) est un intermédiaire chimique d'acide monocarboxylique polyvalent.
L'acide 2-éthylhexanoïque, également appelé 2-éthylhexanoate ou acide alpha-éthylcaproïque, appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.


Ce sont des acides gras à queue aliphatique qui contiennent entre 4 et 12 atomes de carbone.
L'acide 2-éthyl hexanoïque est une molécule très hydrophobe, pratiquement insoluble dans l'eau et relativement neutre.
L'acide 2-éthyl hexanoïque appartient à la famille des acides carboxyliques.


Le groupe carboxyle (-COOH) est responsable de ses propriétés faiblement acides, qui peuvent facilement chélater la plupart des ions métalliques.
Cette faible capacité de liaison assure une participation efficace des ions métalliques dans une réaction ; la chaîne ramifiée de l'acide permet de greffer l'Acide 2-Ethyl Hexanoïque à l'extrémité, ou avec la chaîne ramifiée du polymère, ce qui permet de modifier le matériau polymère.


Un indice d'acide plus élevé et une viscosité plus faible conviennent à la synthèse d'acide 2-éthylhexanoïque à haute teneur en métal, ce qui améliore la sélectivité de l'ajout de la quantité dans un système de réaction.
L'acide 2-éthylhexanoïque a une miscibilité élevée avec les solvants organiques et, par conséquent, le choix d'un co-solvant approprié ou l'ajout d'une petite quantité de tensioactif peut le disperser dans pratiquement n'importe quel solvant, étendant sa polyvalence dans une large gamme d'applications.


L'acide 2-éthylhexanoïque est un liquide incolore à point d'ébullition élevé ayant une légère odeur.
L'acide 2-éthylhexanoïque, également connu sous le nom de 2-éthylhexanoate ou sinesto b, appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras à queue aliphatique qui contiennent entre 4 et 12 atomes de carbone.
Sur la base d'une revue de la littérature, un petit nombre d'articles ont été publiés sur l'acide 2-éthylhexanoïque.



UTILISATIONS et APPLICATIONS de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
L'acide 2-éthylhexanoïque peut être utilisé comme substitut de l'acide naphténique dans certaines applications.
Dans la plupart des cas, les dérivés de l'acide 2-éthylhexanoïque sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et les polymérisations (comme agents de séchage d'huile).


En tant qu'intermédiaire chimique polyvalent, l'acide 2-éthylhexanoïque a de multiples applications, notamment les suivantes.
L'acide 2-éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est un acide carboxylique polyvalent couramment utilisé dans diverses applications industrielles.


Lorsqu'il réagit avec certains métaux, l'acide 2-éthylhexanoïque forme des sels qui sont largement utilisés comme additifs dans les formulations de peinture et de plastifiant, ainsi que dans la production de siccatifs pour peinture et laque et de stabilisants pour PVC.
Les esters de l'acide 2-éthyl hexanoïque, notamment ceux obtenus par les glycols, les triglycols et les polyéthylèneglycols, sont connus pour leurs propriétés lubrifiantes.


Ce sont d'excellents plastifiants pour le PVC, la nitrocellulose, le caoutchouc chloré et le polypropylène.
Ces propriétés font de l'acide 2-éthylhexanoïque un choix populaire dans la production de divers produits chimiques et matériaux dans l'industrie.
Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés comme siccatifs pour les peintures, encres, vernis et émaux inodores.


Le cobalt et le manganèse sont les siccatifs les plus importants.
Intermédiaire du catalyseur de revêtement, l'acide 2-éthylhexanoïque composé de divers métaux pour former un sel métallique d'isooctanoate.
L'acide 2-éthylhexanoïque est utilisé comme catalyseur pour la résine polyester insaturée, modificateur de résine alkyde, production de peroxyde comme catalyseur pour la réaction de polymérisation, ainsi que stabilisant pour graisse lubrifiante et PVC.


Dans le domaine des auxiliaires chimiques, l'acide 2-éthylhexanoïque est utilisé comme lubrifiant métallique, agent auxiliaire d'huile.
L'acide 2-éthylhexanoïque peut également être utilisé comme épaississant, matière première pour l'ampicilline et la carbénicilline.
L'acide 2-éthylhexanoïque est utilisé dans les études biologiques comme extraction de précurseur d'arôme de différents cépages et son effet sur l'arôme du vin pendant la fermentation alcoolique.


L'acide 2-éthylhexanoïque est utilisé par les travailleurs professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide 2-éthylhexanoïque est utilisé dans les produits suivants : produits antigel, produits chimiques de laboratoire et fluides de travail des métaux.
L'acide 2-éthylhexanoïque est utilisé dans les domaines suivants : recherche scientifique et développement.


D'autres rejets dans l'environnement de l'acide 2-éthylhexanoïque sont susceptibles de se produire à partir de : l'utilisation en intérieur comme auxiliaire technologique, l'utilisation en intérieur dans des systèmes fermés avec un rejet minimal (par exemple, les liquides de refroidissement dans les réfrigérateurs, les radiateurs électriques à base d'huile) et l'utilisation en extérieur dans des systèmes fermés. avec un dégagement minimal (par exemple les liquides hydrauliques dans les suspensions automobiles, les lubrifiants dans l'huile moteur et les liquides de freinage).


L'acide 2-éthyl hexanoïque est utilisé dans les produits suivants : produits de revêtement.
Le rejet dans l'environnement d'acide 2-éthylhexanoïque peut se produire lors d'une utilisation industrielle : formulation de mélanges.
L'acide 2-éthylhexanoïque est utilisé dans les produits suivants : produits de revêtement, produits chimiques de laboratoire, lubrifiants et graisses et fluides de travail des métaux.


L'acide 2-éthylhexanoïque a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).
Le rejet dans l'environnement d'acide 2-éthylhexanoïque peut se produire à la suite d'une utilisation industrielle : dans les auxiliaires de fabrication sur les sites industriels, en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et de substances dans des systèmes fermés avec un rejet minimal.


Le rejet dans l'environnement de l'acide 2-éthylhexanoïque peut provenir de l'utilisation industrielle : fabrication de la substance.
L'acide 2-éthylhexanoïque est un composé organique liquide incolore à jaune clair.
L'acide 2-éthylhexanoïque est largement utilisé dans la préparation de dérivés métalliques solubles dans les solvants organiques non polaires.


L'acide carboxylique hautement toxique et combustible est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est utilisé dans la fabrication d'adhésifs et de produits d'étanchéité, d'inhibiteurs de corrosion et d'agents antitartre, d'intermédiaires, de lubrifiants et d'additifs pour lubrifiants, d'additifs pour peintures et revêtements et de régulateurs de processus.


L'acide 2-éthylhexanoïque est généralement utilisé pour produire des dérivés métalliques qui sont dissous dans des solvants organiques non polaires.
L'acide 2-éthylhexanoïque est un intermédiaire chimique utilisé dans les esters pour les plastifiants de film polyvinylbutyral et les lubrifiants synthétiques, dans les sels métalliques pour les sécheurs de peinture et dans les liquides de refroidissement automobiles.


L'acide 2-éthylhexanoïque est un intermédiaire chimique utilisé comme composé, par exemple dans la production de lubrifiants synthétiques ainsi que d'additifs pour l'huile.
L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d'étain est utilisé dans la fabrication de poly(acide lactique-co-glycolique).


L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation du colorant.
De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.


En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour le moussage du polyuréthane.
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique et pour la fabrication de résines utilisées pour la cuisson des émaux, des lubrifiants, des détergents, des aides à la flottation et des inhibiteurs de corrosion ; également utilisé comme catalyseur pour le moussage de polyuréthane, pour l'extraction par solvant et pour la granulation de colorant.


Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés comme siccatifs pour les peintures, encres, vernis et émaux inodores.
Le cobalt et le manganèse sont les siccatifs les plus importants.
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique pour de nombreux produits.


L'acide 2-éthylhexanoïque est utilisé dans les résines alkydes.
L'acide 2-éthyl hexanoïque est utilisé au milieu des années 1980 comme agent de préservation du bois pour remplacer les chlorophénols.
L'acide 2-éthylhexanoïque est utilisé pour fabriquer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.


L'acide 2-éthylhexanoïque est également utilisé comme co-solvant et antimousse dans les pesticides, comme ingrédient actif dans la préservation du bois, dans les séchoirs à peinture, comme stabilisants thermiques pour le PVC et comme catalyseur pour la mousse de polyuréthane, l'extraction par solvant et la teinture. granulation.
L'acide 2-éthylhexanoïque ne se trouve dans aucun produit pesticide homologué aux États-Unis.


L'acide 2-éthylhexanoïque est un acide carboxylique avec une chaîne carbonée en C8.
L'acide 2-éthylhexanoïque est la principale matière première dans la synthèse de l'ester d'alcool polyvinylique, qui est utilisé dans la production de plastifiants polyvinyl butyral (PVB) et de lubrifiants synthétiques.


Le sel de carboxylate de l'acide 2-éthylhexanoïque est utilisé comme matière première dans la fabrication d'agents de séchage de peinture et de stabilisants en chlorure de polyvinyle (PVC).
En cosmétique, l'acide 2-éthyl hexanoïque est utilisé pour fabriquer des émollients.
D'autres applications de l'acide 2-éthylhexanoïque comprennent son rôle d'inhibiteurs de corrosion dans les liquides de refroidissement automobiles, de catalyseurs dans la production de polymères et de matière première dans la synthèse d'acides chloriques et d'aromatiques.


L'acide 2-éthylhexanoïque est couramment utilisé dans la préparation de dérivés métalliques (sels métalliques) et agit comme catalyseur dans les réactions de polymérisation.
Par exemple, l'étain d'acide 2-éthylhexanoïque est utilisé dans la fabrication d'acide polylactique.
L'acide 2-éthylhexanoïque est largement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.


L'acide 2-éthylhexanoïque est également fréquemment utilisé dans l'extraction par solvant, la granulation de colorant et dans la préparation de plastifiants, de lubrifiants, de détergents, d'aides à la flottation, d'inhibiteurs de corrosion et de résines alkydes.
Ces dérivés lipophiles contenant des métaux sont utilisés comme catalyseurs dans les polymérisations.


En dehors de ces utilisations, l'acide 2-éthylhexanoïque sert de catalyseur dans la production de mousse de polyuréthane.
L'acide 2-éthylhexanoïque est utilisé dans les savons métalliques, les plastifiants, les lubrifiants, les tensioactifs, les résines alkydes, les chlorures d'acides gras, les cosmétiques, les inhibiteurs de corrosion.
L'acide 2-éthyl hexanoïque est un acide utilisé pour préparer des dérivés métalliques


-Automobile:
L'acide 2-éthylhexanoïque est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide 2-éthylhexanoïque sert également de conservateur du bois et fabrique des additifs pour lubrifiants ainsi que des lubrifiants synthétiques.
L'acide 2-éthylhexanoïque est également utilisé dans la production de stabilisants thermiques en PVC, de plastifiants de film PVB, de savons métalliques pour les siccatifs à peinture et d'autres produits chimiques.


-Applications de l'acide 2-éthylhexanoïque :
* FEO automatique
* Intermédiaire en cosmétique et soins personnels
*Peintures et revêtements
* Produits chimiques pharmaceutiques


- Lubrifiants :
L'acide 2-éthylhexanoïque est couramment utilisé dans les esters des plastifiants de films de butyral de polyvinyle (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés pour préparer des additifs synthétiques pour lubrifiants utilisés dans diverses applications de lubrifiants industriels.


-Revêtements :
L'acide 2-éthylhexanoïque est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide 2-éthylhexanoïque produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
L'acide 2-éthyl hexanoïque est idéal pour la cuisson des émaux et des revêtements à 2 composants.
L'acide 2-éthylhexanoïque peut également être utilisé dans d'autres applications, y compris le catalyseur pour le polyuréthane, les agents de préservation du bois et les produits pharmaceutiques.


-Automobile:
L'acide 2-éthylhexanoïque est utilisé dans la production d'inhibiteurs de corrosion pour les liquides de refroidissement automobiles.
- Lubrifiants :
L'acide 2-éthylhexanoïque est une matière première majeure pour les polyolesters utilisés dans les lubrifiants synthétiques.


-Soins personnels :
En cosmétique, l'acide 2-éthyl hexanoïque est utilisé pour produire des émollients.
-Autres utilisations de l'acide 2-éthylhexanoïque :
La production de plastifiants polyvinylbutyral (PVB) et de stabilisants polychlorure de vinyle (PVC) sous forme de sels métalliques.
D'autres applications de l'acide 2-éthyl hexanoïque comprennent le catalyseur pour la production de polymères, la matière première pour le chlorure d'acide et les parfums.


-Produits de beauté:
Les produits chimiques contenus dans l'acide 2-éthylhexanoïque auraient un usage cosmétique pour produire des émollients et des revitalisants pour la peau.
L'acide 2-éthylhexanoïque est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme les fonds de teint, les correcteurs et les produits de soins capillaires.


-Revêtements :
L'acide 2-éthyl hexanoïque est utilisé dans la synthèse des résines alkydes et offre une meilleure résistance au jaunissement que les acides gras standard.
L'acide 2-éthyl hexanoïque est particulièrement adapté à la cuisson des émaux et des revêtements à deux composants.
L'acide 2-éthylhexanoïque est également utilisé comme matière première pour les siccatifs à base de métal.


-Plastiques :
L'acide 2-éthylhexanoïque est également utilisé dans la fabrication de stabilisants en chlorure de polyvinyle (PVC) et de plastifiants en butyral de polyvinyle (PVB) sous forme de sels métalliques.
L'acide 2-éthylhexanoïque réagit avec des composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.



PRODUCTION D'ACIDE 2-ÉTHYL HEXANOÏQUE :
L'acide 2-éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldol de l'aldéhyde donne le 2-éthylhexénal, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.



ACIDE 2-ÉTHYL-HEXANOÏQUE :
L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont une stoechiométrie sous forme d'acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'"agents de séchage d'huile".
Ils sont très solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.
Leurs structures s'apparentent aux acétates correspondants.



EXEMPLES D'ACIDE 2-ÉTHYL HEXANOÏQUE
Bis(2-éthylhexanoate d'hydroxylaluminium), utilisé comme épaississant
Étain (II) éthylhexanoate (CAS # 301-10-0), un catalyseur pour le polylactide et le poly (acide lactique-co-glycolique).
Éthylhexanoate de cobalt (II) (CAS # 136-52-7), un siccatif pour les résines alkydes
Éthylhexanoate de nickel(II) (CAS# 4454-16-4)



PARENTS ALTERNATIFS DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
*Acides gras ramifiés
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
* Acide gras à chaîne moyenne
*Acide gras ramifié
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé d'acide carboxylique
*Composé oxygéné organique
*Oxyde organique
* Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé acyclique aliphatique



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
Formule chimique : C8H16O2
Masse molaire : 144,214 g•mol−1
Aspect : Liquide incolore
Densité : 903 mg mL−1
Point de fusion : -59,00 °C ; -74,20 °F ; 214.15 K
Point d'ébullition : 228,1 °C ; 442,5 °F ; 501.2 K
log P : 2,579
Pression de vapeur : <1 Pa (à 25 °C)
Acidité (pKa): 4.819
Basicité (pKb): 9.178
Indice de réfraction (nD) : 1,425
Enthalpie de formation standard (ΔfH ⦵ 298) : −635,1 kJ mol−1
Enthalpie de combustion standard (ΔcH ⦵ 298) : -4,8013–4,7979 MJ mol−1
Aspect : liquide clair incolore (est)
Dosage : 99,00 à 100,00

Liste Codex des produits chimiques alimentaires : non
Gravité spécifique : 0,89300 à 0,91300 à 25,00 °C.
Livres par gallon - (est). : 7,431 à 7,597
Indice de réfraction : 1,42000 à 1,42600 à 20,00 °C.
Point de fusion : -59,00 °C. @ 760,00 mmHg
Point d'ébullition : 220,00 à 223,00 °C. @ 760,00 mmHg
Pression de vapeur : 0,030000 mmHg à 20,00 °C.
Densité de vapeur : 4,98 (Air = 1)
Point d'éclair : 244,00 °F. TCC ( 117,78 °C. )
logP (dont/se): 2.640
Soluble dans : alcool, eau, 2000 mg/L @ 20 °C (exp)
Insoluble dans l'eau
Poids moléculaire : 144,21 g/mol
XLogP3 : 2,6
Nombre de donneurs d'obligations hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 5
Masse exacte : 144,115029749 g/mol
Masse monoisotopique : 144,115029749 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 10
Charge formelle : 0
Complexité : 99,4
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

Solubilité dans l'eau : 2,07 g/L
log P : 2,61
logP : 2,8
logs : -1,8
pKa (acide le plus fort) : 5,14
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre d'obligations rotatives : 5
Réfractivité : 40,25 m³•mol⁻¹
Polarisabilité : 16,99 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de Cinq : Oui
Filtre fantôme : Non
Règle de Veber : Oui

Règle de type MDDR : Non
État physique : clair, liquide
Couleur : incolore
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/intervalle de fusion : -59 °C
Point initial d'ébullition et intervalle d'ébullition : 228 °C - lit.
Inflammabilité (solide, gaz): Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité :
Limite supérieure d'explosivité: 6,7 %(V)
Limite inférieure d'explosivité : 0,9 %(V)
Point d'éclair : 114 °C - coupelle fermée
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 3 à 1,4 g/l à 20 °C

Viscosité
Viscosité, cinématique : Aucune donnée disponible
Viscosité, dynamique : Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible
Coefficient de partage : n-octanol/eau : log Pow : 2,7 à 25 °C
Pression de vapeur 13 hPa à 115 °C : < 0,01 hPa à 20 °C
Densité : 0,903 g/cm3 à 25 °C - lit.
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés comburantes : Aucune donnée disponible
Autres informations de sécurité :
Densité de vapeur relative : 4,98 - (Air = 1.0)



MESURES DE PREMIERS SOINS de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Description des mesures de premiers secours :
*Conseils généraux :
Montrez cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau à l'eau/se doucher.
Consultez un médecin.
*En cas de contact avec les yeux
Après contact visuel :
Rincer abondamment à l'eau.
Faites appel à un ophtalmologiste.
Retirer les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication de toute attention médicale immédiate et traitement spécial nécessaire :
Pas de données disponibles



MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériel de confinement et de nettoyage :
Couvrir les drains.
Recueillir, lier et pomper les déversements.
Respecter les éventuelles restrictions matérielles.
Reprendre avec un matériau absorbant les liquides et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
*Moyens d'extinction inappropriés :
Pour cette substance/ce mélange, aucune limitation des agents extincteurs n'est donnée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou les eaux souterraines
système.



CONTRÔLE DE L'EXPOSITION/PROTECTION PERSONNELLE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Coordonnées complètes :
Matériel: Viton
Épaisseur de couche minimale : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,4 mm
Temps de percée : 240 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Conserver sous clé ou dans une zone accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante) .
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide .alpha.-éthylcaproïque
Acide .alpha.-éthylhexanoïque
01MU2J7VVZ
125804-07-1
149-57-5
18FEB650-7573-4EA0-B0CD-9D8BED766547
2 ACIDE ÉTHYL-HEXANOÏQUE
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
ACIDE 2-ÉTHYL HEXOÏQUE, AR
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
ACIDE 2-ÉTHYLHEXANOÏQUE
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Acide 2-éthylhexanoïque, >=99%
Acide 2-éthylhexanoïque, 99 %
Acide 2-éthylhexanoïque, étalon analytique
Acide 2-éthylhexanoïque, inhalable
Acide 2-éthylhexanoïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
27648-EP2298767A1
27648-EP2314587A1
Acide 3-heptanecarboxylique
54213-EP2272832A1
54213-EP2292592A1
54213-EP2295438A1
54213-EP2308510A1
54213-EP2308562A2
54213-EP2374787A1
61788-37-2
AI3-01371
AKOS009031416
acide alpha-éthyl caproïque
Acide alpha-éthylcaproïque
Acide alpha-éthylhexanoïque
AT29893
BRN 1750468
Acide butyléthylacétique
C8H16O2.1/2Cu
CAS-149-57-5
CCRIS 3348
CHEBI:89058
CHEMBL1162485
CS-CY-00011
CS-W016381
DTXCID805293
DTXSID9025293
E0120
CE 205-743-6
EHO (code CHRIS)
EINECS 205-743-6
EINECS 262-971-9
EN300-20410
Acide éthylhexanoïque
Acide éthylhexanoïque, 2-
Acide éthylhexanoïque, 2-
(acide butyléthylacétique)
Acide éthylhexanoïque
Acide éthylhexoïque
F0001-0703
FT-0612273
FT-0654390
Acide hexanoïque, 2-éthyl-, ester tridécylique
Acide hexanoïque, 2-éthyl-
Acide hexanoïque, 2-éthyl-, (-)-
Acide hexanoïque, 2-éthyl-, sel de cuivre(2++)
Acide hexanoïque, 2-éthyl-, ester tridécylique
HMS2267F21
HSDB 5649
LMFA01020087
LS-869
MFCD00002675
MLS002415695
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
NSC 8881
NSC-8881
NSC8881
Q209384
SB44987
SB44994
SCHEMBL25800
SMR001252268
STR05759
Tox21_201406
Tox21_300108
UNII-01MU2J7VVZ
W-109079
WLN : QVY4 & 2
Z104478072
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
Acide butyléthylacétique
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Kyselina 2-éthylkapronova
Kyselina heptan-3-karboxylova
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcapronique
NSC 8881
Acide 2-éthylcaproïque
149-57-5
Acide hexanoïque, 2-éthyl-
Acide éthylhexoïque
Acide éthylhexanoïque
Sinesto B
Acide 2-éthylcaproïque
Acide hexanoïque
Acide éthylhexanoïque
2-Ethylhexanoate
Sinesto b
ACIDE (+/-)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide alpha-éthylcaproïque
Acide alpha-éthylhexanoïque
Acide butyléthylacétique
a-Caproate d'éthyle
Acide a-éthyl caproïque
Caproate d'alpha-éthyle
Α-caproate d'éthyle
Acide Α-éthyl caproïque
Acide 2-éthylhexanoïque
Acide (±)-2-éthylhexanoïque
Acide éthylhexanoïque
Acide octylique
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
Acide α-éthyl-caproïque
Acide (±)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide butyléthylacétique
Acide éthylhexanoïque
NSC 8881
⍺ -acide éthylcaproïque
⍺ -acide éthylhexanoïque
Acide 2-bubylbutanoïque
acide butyléthylacétique
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcaproïque
acide éthylhexanoïque
acide éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide éthylhexanoïque
Acide éthylhexanoïque
Acide éthylhexoïque
Acide hexanoïque, 2-éthyl-
Acide alpha-éthylcaproïque
ACIDE (+/-)-2-éthylhexanoïque
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide (±)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque


ACIDE 2-ÉTHYL HEXANOÏQUE
L'acide 2-éthylhexanoïque se trouve dans les fruits.
L'acide 2-éthylhexanoïque se trouve dans le raisin L'acide 2-éthylhexanoïque appartient à la famille des acides gras ramifiés.
Ce sont des acides gras à chaîne ramifiée.


Numéro CAS : 149-57-5
72377-05-0 Énantiomère S
56006-48-5 Énantiomère R
Numéro CE : 205-743-6
Numéro MDL : MFCD00002675
Formule linéaire : CH3(CH2)3CH(C2H5)CO2H
Formule chimique : C8H16O2


L'acide 2-éthylhexanoïque est un acide gras à chaîne ramifiée.
L'acide 2-éthylhexanoïque est un produit naturel trouvé dans Vitis vinifera et Artemisia arborescens avec des données disponibles.
L'acide 2-éthylhexanoïque se trouve dans les fruits.


L'acide 2-éthylhexanoïque se trouve dans le raisin L'acide 2-éthylhexanoïque appartient à la famille des acides gras ramifiés.
Ce sont des acides gras à chaîne ramifiée.
L'acide 2-éthylhexanoïque est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide 2-éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthylhexanoïque brûlera bien qu'il faille un certain effort pour s'enflammer.
L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.


L'acide 2-éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthylhexanoïque est un acide carboxylique polyvalent couramment utilisé dans diverses applications industrielles.
Lorsqu'il réagit avec certains métaux, l'acide 2-éthylhexanoïque forme des sels qui sont largement utilisés comme additifs dans les formulations de peinture et de plastifiant, ainsi que dans la production de siccatifs pour peinture et laque et de stabilisants pour PVC.


Les esters de l'acide 2-éthyl hexanoïque, notamment ceux obtenus par les glycols, les triglycols et les polyéthylèneglycols, sont connus pour leurs propriétés lubrifiantes.
Ce sont d'excellents plastifiants pour le PVC, la nitrocellulose, le caoutchouc chloré et le polypropylène.


Ces propriétés font de l'acide 2-éthylhexanoïque un choix populaire dans la production de divers produits chimiques et matériaux dans l'industrie.
L'acide 2-éthylhexanoïque se trouve dans les fruits.
L'acide 2-éthylhexanoïque se trouve dans le raisin L'acide 2-éthylhexanoïque appartient à la famille des acides gras ramifiés.


Ce sont des acides gras à chaîne ramifiée.
L'acide 2-éthylhexanoïque est un liquide incolore à point d'ébullition élevé ayant une légère odeur.
Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés comme siccatifs pour les peintures, encres, vernis et émaux inodores.
Le cobalt et le manganèse sont les siccatifs les plus importants.


L'acide 2-éthylhexanoïque est un intermédiaire chimique d'acide monocarboxylique polyvalent.
L'acide 2-éthylhexanoïque, également connu sous le nom de 2-EHA, est un produit chimique industriel.
L'acide 2-éthylhexanoïque est un acide carboxylique aliphatique important sur le plan industriel.


L'acide 2-éthyl hexanoïque est l'un des produits phares du groupe Perstorp qui possède la plus grande capacité de production au monde.
L'acide 2-éthylhexanoïque est un liquide incolore avec un groupe carboxylique basé sur une chaîne carbonée C8.
L'acide 2-éthylhexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.


L'acide 2-éthylhexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.



UTILISATIONS et APPLICATIONS de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
L'acide 2-éthylhexanoïque est utilisé pour fabriquer des lubrifiants, des détergents et du chlorure de polyvinyle (PVC).
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire pour le savon métallique, le plastifiant, le détergent, la résine alkyde, le chlorure d'acide et les cosmétiques.
L'acide 2-éthylhexanoïque est largement utilisé comme stabilisant et agent de préservation du bois.


L'acide 2-éthyl hexanoïque a diverses applications industrielles, telles que le liquide de refroidissement dans les lubrifiants synthétiques automobiles, l'agent mouillant, le co-solvant, le séchage des peintures, l'agent anti-mousse dans les pesticides.
L'acide 2-éthylhexanoïque est utilisé dans la production d'inhibiteurs de corrosion pour les liquides de refroidissement automobiles.


Lubrifiants : L'acide 2-éthylhexanoïque est une matière première majeure pour les polyolesters utilisés dans les lubrifiants synthétiques.
Soins personnels : Dans les cosmétiques, l'acide 2-éthyl hexanoïque est utilisé pour produire des émollients.
L'acide 2-éthylhexanoïque est utilisé dans la production de plastifiants polyvinylbutyral (PVB) et de stabilisants polychlorure de vinyle (PVC) sous forme de sels métalliques.


L'acide 2-éthylhexanoïque peut être utilisé comme intermédiaire pour les siccatifs de peinture et de revêtement, comme modificateur de résine alkyde, comme catalyseur pour la production de peroxydes et comme stabilisant pour les esters d'huile lubrifiante et le PVC, etc., et a une large gamme des applications du marché.
L'acide 2-éthylhexanoïque est largement utilisé dans les esters pour les plastifiants de films PVB et les lubrifiants synthétiques, dans la production de savons métalliques pour les siccatifs à peinture, dans les liquides de refroidissement automobiles et les stabilisants pour PVC.


Les autres domaines d'application de l'acide 2-éthylhexanoïque comprennent les agents de préservation du bois, les catalyseurs pour le polyuréthane et les produits pharmaceutiques.
L'acide 2-éthylhexanoïque est utilisé pour la synthèse.
L'acide 2-éthylhexanoïque est utilisé pour les OEM automobiles, les intermédiaires cosmétiques et de soins personnels, les peintures et revêtements, les produits chimiques pharmaceutiques et la description du produit.


Les autres applications de l'acide 2-éthyl hexanoïque comprennent les catalyseurs pour la production de polymères, les matières premières pour le chlorure d'acide et les parfums.
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique et pour la fabrication de résines utilisées pour la cuisson des émaux, des lubrifiants, des détergents, des aides à la flottation et des inhibiteurs de corrosion ; également utilisé comme catalyseur pour le moussage de polyuréthane, pour l'extraction par solvant et pour la granulation de colorant.


L'acide 2-éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est utilisé par les travailleurs professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide 2-éthylhexanoïque est utilisé dans les produits suivants : produits antigel, produits chimiques de laboratoire et fluides de travail des métaux.


L'acide 2-éthylhexanoïque est utilisé dans les domaines suivants : recherche scientifique et développement.
D'autres rejets dans l'environnement de l'acide 2-éthylhexanoïque sont susceptibles de se produire à partir de : l'utilisation en intérieur comme auxiliaire technologique, l'utilisation en intérieur dans des systèmes fermés avec un rejet minimal (par exemple, les liquides de refroidissement dans les réfrigérateurs, les radiateurs électriques à base d'huile) et l'utilisation en extérieur dans des systèmes fermés. avec un dégagement minimal (par exemple les liquides hydrauliques dans les suspensions automobiles, les lubrifiants dans l'huile moteur et les liquides de freinage).


L'acide 2-éthyl hexanoïque est utilisé dans les produits suivants : produits de revêtement.
Le rejet dans l'environnement d'acide 2-éthylhexanoïque peut se produire lors d'une utilisation industrielle : formulation de mélanges.
L'acide 2-éthylhexanoïque est utilisé dans les produits suivants : produits de revêtement, produits chimiques de laboratoire, lubrifiants et graisses et fluides de travail des métaux.


L'acide 2-éthylhexanoïque a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).
Le rejet dans l'environnement d'acide 2-éthylhexanoïque peut se produire à la suite d'une utilisation industrielle : dans les auxiliaires de fabrication sur les sites industriels, en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et de substances dans des systèmes fermés avec un rejet minimal.
Le rejet dans l'environnement de l'acide 2-éthylhexanoïque peut provenir de l'utilisation industrielle : fabrication de la substance.


-Revêtements :
L'acide 2-éthyl hexanoïque est utilisé dans la synthèse des résines alkydes et offre une meilleure résistance au jaunissement que les acides gras standard.
L'acide 2-éthyl hexanoïque est particulièrement adapté à la cuisson des émaux et des revêtements à deux composants.
L'acide 2-éthylhexanoïque est également utilisé comme matière première pour les siccatifs à base de métal.



COMMENT UTILISE-T-ON L'ACIDE 2-ÉTHYL-HEXANOÏQUE ?
Une utilisation majeure de l'acide 2-éthylhexanoïque est dans la préparation de sels métalliques et de savons utilisés comme agents de séchage dans la peinture et les encres, et comme stabilisants thermiques dans le chlorure de polyvinyle (PVC).
L'acide 2-éthylhexanoïque est également utilisé dans la fabrication de résines utilisées dans les pare-brise d'automobiles et les revêtements de sol en vinyle.



PARENTS ALTERNATIFS DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
*Acides gras ramifiés
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE 2-ÉTHYL HEXANOÏQUE :
* Acide gras à chaîne moyenne
*Acide gras ramifié
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé d'acide carboxylique
*Composé oxygéné organique
*Oxyde organique
* Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé acyclique aliphatique



TYPE DE COMPOSE D'ACIDE 2-ETHYL HEXANOIQUE
* Toxine alimentaire
*Métabolite
*Composé naturel
*Composé organique
* Toxine végétale



PRODUCTION D'ACIDE 2-ÉTHYL HEXANOÏQUE :
L'acide 2-éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldol de l'aldéhyde donne le 2-éthylhexénal, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.



ÉTHYLHEXANOATES MÉTALLIQUES :
L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont une stoechiométrie sous forme d'acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'"agents de séchage d'huile".

Ils sont très solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.

Leurs structures s'apparentent aux acétates correspondants.
Exemples d'éthylhexanoates métalliques :
Bis(2-éthylhexanoate d'hydroxylaluminium), utilisé comme épaississant

Étain (II) éthylhexanoate (CAS # 301-10-0), un catalyseur pour le polylactide et le poly (acide lactique-co-glycolique).[4]
Éthylhexanoate de cobalt (II) (CAS # 136-52-7), un siccatif pour les résines alkydes
Éthylhexanoate de nickel(II) (CAS# 4454-16-4)



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
Formule chimique : C8H16O2
Masse molaire : 144,214 g•mol−1
Aspect : Liquide incolore
Densité : 903 mg mL−1
Point de fusion : -59,00 °C ; -74,20 °F ; 214.15 K
Point d'ébullition : 228,1 °C ; 442,5 °F ; 501.2 K
log P : 2,579
Pression de vapeur : <1 Pa (à 25 °C)
Acidité (pKa): 4.819
Basicité (pKb): 9.178
Indice de réfraction (nD) : 1,425
Enthalpie de formation standard (ΔfH ⦵ 298) : −635,1 kJ mol−1
Enthalpie de combustion standard (ΔcH ⦵ 298) : -4,8013–4,7979 MJ mol−1
Aspect : liquide clair incolore (est)
Dosage : 99,00 à 100,00
Liste Codex des produits chimiques alimentaires : non
Gravité spécifique : 0,89300 à 0,91300 à 25,00 °C.
Livres par gallon - (est). : 7,431 à 7,597
Indice de réfraction : 1,42000 à 1,42600 à 20,00 °C.
Point de fusion : -59,00 °C. @ 760,00 mmHg
Point d'ébullition : 220,00 à 223,00 °C. @ 760,00 mmHg
Pression de vapeur : 0,030000 mmHg à 20,00 °C.
Densité de vapeur : 4,98 (Air = 1)
Point d'éclair : 244,00 °F. TCC ( 117,78 °C. )
logP (dont/se): 2.640
Soluble dans : alcool, eau, 2000 mg/L @ 20 °C (exp)
Insoluble dans l'eau
Poids moléculaire : 144,21 g/mol
XLogP3 : 2,6
Nombre de donneurs d'obligations hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 5
Masse exacte : 144,115029749 g/mol
Masse monoisotopique : 144,115029749 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 10
Charge formelle : 0
Complexité : 99,4
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui
Solubilité dans l'eau : 2,07 g/L
log P : 2,61
logP : 2,8
logs : -1,8
pKa (acide le plus fort) : 5,14
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre d'obligations rotatives : 5
Réfractivité : 40,25 m³•mol⁻¹
Polarisabilité : 16,99 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de Cinq : Oui
Filtre fantôme : Non
Règle de Veber : Oui

Règle de type MDDR : Non
État physique : clair, liquide
Couleur : incolore
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/intervalle de fusion : -59 °C
Point initial d'ébullition et intervalle d'ébullition : 228 °C - lit.
Inflammabilité (solide, gaz): Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité :
Limite supérieure d'explosivité: 6,7 %(V)
Limite inférieure d'explosivité : 0,9 %(V)
Point d'éclair : 114 °C - coupelle fermée
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 3 à 1,4 g/l à 20 °C
Viscosité
Viscosité, cinématique : Aucune donnée disponible
Viscosité, dynamique : Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible
Coefficient de partage : n-octanol/eau : log Pow : 2,7 à 25 °C
Pression de vapeur 13 hPa à 115 °C : < 0,01 hPa à 20 °C
Densité : 0,903 g/cm3 à 25 °C - lit.
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés comburantes : Aucune donnée disponible
Autres informations de sécurité :
Densité de vapeur relative : 4,98 - (Air = 1.0)



MESURES DE PREMIERS SOINS de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Description des mesures de premiers secours :
*Conseils généraux :
Montrez cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau à l'eau/se doucher.
Consultez un médecin.
*En cas de contact avec les yeux
Après contact visuel :
Rincer abondamment à l'eau.
Faites appel à un ophtalmologiste.
Retirer les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication de toute attention médicale immédiate et traitement spécial nécessaire :
Pas de données disponibles



MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériel de confinement et de nettoyage :
Couvrir les drains.
Recueillir, lier et pomper les déversements.
Respecter les éventuelles restrictions matérielles.
Reprendre avec un matériau absorbant les liquides et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
*Moyens d'extinction inappropriés :
Pour cette substance/ce mélange, aucune limitation des agents extincteurs n'est donnée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION PERSONNELLE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Coordonnées complètes :
Matériel: Viton
Épaisseur de couche minimale : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,4 mm
Temps de percée : 240 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Conserver sous clé ou dans une zone accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE 2-ÉTHYL HEXANOÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante) .
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
Acide 2-éthylcaproïque
ACIDE 2-ÉTHYLHEXANOÏQUE
149-57-5
Acide 2-éthylcaproïque
Acide hexanoïque, 2-éthyl-
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 3-heptanecarboxylique
Acide éthylhexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthylhexanoïque
Acide alpha-éthylcaproïque
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide .alpha.-éthylcaproïque
Acide .alpha.-éthylhexanoïque
01MU2J7VVZ
125804-07-1
149-57-5
18FEB650-7573-4EA0-B0CD-9D8BED766547
2 ACIDE ÉTHYL-HEXANOÏQUE
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
ACIDE 2-ÉTHYL HEXOÏQUE, AR
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
ACIDE 2-ÉTHYLHEXANOÏQUE
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Acide 2-éthylhexanoïque, >=99%
Acide 2-éthylhexanoïque, 99 %
Acide 2-éthylhexanoïque, étalon analytique
Acide 2-éthylhexanoïque, inhalable
Acide 2-éthylhexanoïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
27648-EP2298767A1
27648-EP2314587A1
Acide 3-heptanecarboxylique
54213-EP2272832A1
54213-EP2292592A1
54213-EP2295438A1
54213-EP2308510A1
54213-EP2308562A2
54213-EP2374787A1
61788-37-2
AI3-01371
AKOS009031416
acide alpha-éthyl caproïque
Acide alpha-éthylcaproïque
Acide alpha-éthylhexanoïque
AT29893
BRN 1750468
Acide butyléthylacétique
C8H16O2.1/2Cu
CAS-149-57-5
CCRIS 3348
CHEBI:89058
CHEMBL1162485
CS-CY-00011
CS-W016381
DTXCID805293
DTXSID9025293
E0120
CE 205-743-6
EHO (code CHRIS)
EINECS 205-743-6
EINECS 262-971-9
EN300-20410
Acide éthylhexanoïque
Acide éthylhexanoïque, 2-
Acide éthylhexanoïque, 2-
(acide butyléthylacétique)
Acide éthylhexanoïque
Acide éthylhexoïque
F0001-0703
FT-0612273
FT-0654390
Acide hexanoïque, 2-éthyl-, ester tridécylique
Acide hexanoïque, 2-éthyl-
Acide hexanoïque, 2-éthyl-, (-)-
Acide hexanoïque, 2-éthyl-, sel de cuivre(2++)
Acide hexanoïque, 2-éthyl-, ester tridécylique
HMS2267F21
HSDB 5649
LMFA01020087
LS-869
MFCD00002675
MLS002415695
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
NSC 8881
NSC-8881
NSC8881
Q209384
SB44987
SB44994
SCHEMBL25800
SMR001252268
STR05759
Tox21_201406
Tox21_300108
UNII-01MU2J7VVZ
W-109079
WLN : QVY4 & 2
Z104478072
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
Acide butyléthylacétique
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Kyselina 2-éthylkapronova
Kyselina heptan-3-karboxylova
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcapronique
NSC 8881
Acide 2-éthylcaproïque
149-57-5
Acide hexanoïque, 2-éthyl-
Acide éthylhexoïque
Acide éthylhexanoïque
Sinesto B
Acide 2-éthylcaproïque
Acide hexanoïque
Acide éthylhexanoïque
2-Ethylhexanoate
Sinesto b
ACIDE (+/-)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide alpha-éthylcaproïque
Acide alpha-éthylhexanoïque
Acide butyléthylacétique
a-Caproate d'éthyle
Acide a-éthyl caproïque
Caproate d'alpha-éthyle
Α-caproate d'éthyle
Acide Α-éthyl caproïque
Acide 2-éthylhexanoïque
Acide (±)-2-éthylhexanoïque
Acide éthylhexanoïque
Acide octylique
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
Acide α-éthyl-caproïque
Acide (±)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide butyléthylacétique
Acide éthylhexanoïque
NSC 8881
⍺ -acide éthylcaproïque
⍺ -acide éthylhexanoïque
Acide 2-bubylbutanoïque
acide butyléthylacétique
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcaproïque
acide éthylhexanoïque
acide éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide éthylhexanoïque
Acide éthylhexanoïque
Acide éthylhexoïque
Acide hexanoïque, 2-éthyl-
Acide alpha-éthylcaproïque
ACIDE (+/-)-2-éthylhexanoïque
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide (±)-2-éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
2-Ethylhexansaeure
Acide 2-éthyl-hexanoïque
125804-07-1
Acide éthylhexanoïque, 2-
2 ACIDE ÉTHYL-HEXANOÏQUE
CCRIS 3348
HSDB 5649
acide alpha-éthyl caproïque
NSC 8881
Kyselina 2-éthylkapronova
EINECS 205-743-6
Acide .alpha.-éthylcaproïque
Acide 2-éthyl-1-hexanoïque
UNII-01MU2J7VVZ
BRN 1750468
01MU2J7VVZ
Kyselina heptan-3-karboxylova
AI3-01371
ACIDE 2-ÉTHYL HEXOÏQUE, AR
61788-37-2
DTXSID9025293
CHEBI:89058
Acide hexanoïque, 2-éthyl-, (-)-
NSC-8881
EINECS 262-971-9
Acide 2-éthylhexanoïque
CE 205-743-6
DTXCID805293
Acide 2-éthylhexanoïque, >=99%
C8H16O2.1/2Cu
Acide 2-éthylhexanoïque, étalon analytique
CAS-149-57-5
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide hexanoïque, 2-éthyl-, sel de cuivre(2++)
MFCD00002675
Acide 2-éthylcapronique
Acide 2-éthyl-hexonique
Acide alpha-éthylhexanoïque
EHO (code CHRIS)
Acide .alpha.-éthylhexanoïque
SCHEMBL25800
Acide 2-éthylhexanoïque, 99 %
MLS002415695
Acide 2-éthylhexanoïque, inhalable
CHEMBL1162485
WLN : QVY4 & 2
NSC8881
HMS2267F21
CS-CY-00011
STR05759
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Tox21_201406
Tox21_300108
LMFA01020087
LS-869
AKOS009031416
AT29893
CS-W016381
SB44987
SB44994
Acide hexanoïque, 2-éthyl-, ester tridécylique
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
SMR001252268
Acide hexanoïque, 2-éthyl-, ester tridécylique
E0120
FT-0612273
FT-0654390
EN300-20410
Q209384
Acide éthylhexanoïque, 2-
(acide butyléthylacétique)
W-109079
Azilsartan K Medoxomil Impureté-7 (impuretés 2-EHA)
F0001-0703
Z104478072
18FEB650-7573-4EA0-B0CD-9D8BED766547
Acide 2-éthylhexanoïque, étalon secondaire pharmaceutique
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
Acide butyléthylacétique
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Kyselina 2-éthylkapronova
Kyselina heptan-3-karboxylova
Acide 2-éthyl-1-hexanoïque
Acide 2-éthylcapronique
NSC 8881
Acide 2-éthylcaproïque; 149-57-5
Acide hexanoïque, 2-éthyl-
Acide éthylhexoïque
Acide éthylhexanoïque
Sinesto B
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide 2-butylbutanoïque
Acide 2-éthylhexanoïque
Acide 2-éthyl-1-hexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl-hexonique
Acide 2-éthylcaproïque
Acide 2-éthylcapronique
2-Ethylhexanoate
Acide 2-éthylhexoïque
Acide α-éthylcaproïque
Acide α-éthylhexanoïque
2 Acide éthylhexanoïque
Acide 2-butylbutanoïque
Acide 2-éthylcaproïque
2-Ethylhexansaeure
Acide 2-éthylhexoïque
Acide 3-heptanecarboxylique
Acide butyléthylacétique
Acide éthylhexanoïque, 2-
Acide éthylhexoïque
Acide hexanoïque, 2-éthyl-
Acide hexanoïque, 2-éthyl-, ester tridécylique
Acide iso-octanoïque
2-EHA
2-EHA
2 EH acide
Acide 2-éthylhexanoïque
Acide octanoïque


ACIDE 2-ÉTHYL-1-HEXANOÏQUE
L'acide 2-éthyl-1-hexanoïque, de formule chimique C8H16O2 et de numéro d'enregistrement CAS 149-57-5, est un composé largement utilisé dans diverses applications industrielles.
Également connu sous le nom d’acide 2-éthyl-1-hexanoïque, est un liquide incolore à jaune clair avec une légère odeur.



Numéro CAS : 149-57-5
72377-05-0 Énantiomère S
56006-48-5 Énantiomère R
Numéro CE : 205-743-6
Numéro MDL : MFCD00002675
Formule moléculaire : C8H16O2 / CH3(CH2)3CH(C2H5)COOH
Formule chimique : C8H16O2



SYNONYMES :
Acide ⍺ -éthylcaproïque, acide ⍺ -éthylhexanoïque, acide 2-bubylbutanoïque, acide butyléthylacétique, acide 2-éthyl-1-hexanoïque, acide 2-éthylcaproïque, acide éthylhexanoïque, acide hexanoïque, 2-éthyl-, acide α -éthylcaproïque, α - Acide éthylhexanoïque, acide butyléthylacétique, acide éthylhexanoïque, acide éthylhexoïque, acide 2-butylbutanoïque, acide 2-éthylcaproïque, acide 2-éthylhexanoïque, acide 2-éthylhexoïque, acide 3-heptanecarboxylique, Kyselina 2-éthylkapronova, Kyselina heptan-3-karboxylova, 2 -Acide éthyl-1-hexanoïque, acide 2-éthylcapronique, acide hexonique, 2-éthyl-, acide éthylhexoïque, ACIDE (+/-)-2-éthylhexanoïque, (+/-)-2-ACIDE ÉTHYLHEXANOÏQUE, (±)- Acide 2-éthylhexanoïque, acide 2-butylbutanoïque, acide 2-éthylhexanoïque, acide 2-éthyl-1-hexanoïque, acide 2-éthyl-hexoïque, acide 2-éthyl-hexoïque, acide 2-éthyl-hexonique, acide 2-éthylcaproïque , Acide 2-éthylcapronique, 2-éthylhexanoate, acide 2-éthylhexoïque, ACIDE 2-ÉTHYLHEXANOÏQUE, 149-57-5, Acide 2-éthylcaproïque, Acide hexanoïque, 2-éthyl-, Acide éthylhexanoïque, Acide éthylhexoïque, Acide 2-éthylhexoïque, Acide butyléthylacétique, acide 2-butylbutanoïque, acide 3-heptanecarboxylique, acide éthylhexanoïque, acide 2-éthyl-hexoïque, acide 2-éthylhexanoïque, acide alpha-éthylcaproïque, acide 2-éthyl-hexanoïque, acide éthylhexanoïque, 2-, alpha -acide éthylcaproïque, acide .alpha.-éthylcaproïque, acide 2-éthyl-1-hexanoïque, 61788-37-2, 01MU2J7VVZ, 2-EHA, ACIDE 2-ÉTHYLHEXOÏQUE, AR, DTXSID9025293, CHEBI:89058, NSC-8881 , MFCD00002675, acide 2-éthylhexanoïque, 2- éthylhexanoïque, DTXCID805293, acide 2-éthylhexanoïque, >=99 %, acide 2-éthylhexanoïque, étalon analytique, CAS-149-57-5, ACIDE 2-ÉTHYLHEXANOÏQUE, CCRIS 3348, HSDB 5649, NSC 8881, Kyselina 2-éthylkapronova, EINECS 205-743-6, ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE, UNII-01MU2J7VVZ, acide α-éthylcaproïque, acide α-éthylhexanoïque, acide butyléthylacétique, acide éthylhexanoïque, acide éthylhexoïque, 2 -Acide butylbutanoïque, acide 2-éthylcaproïque, acide 2-éthylhexanoïque, acide 2-éthylhexoïque, acide 3-heptanecarboxylique, Kyselina 2-éthylkapronova, Kyselina heptan-3-karboxylova, acide 2-éthyl-1-hexanoïque, acide 2-éthylcapronique, NSC 8881, 2-éthylhexanoate de 2-éthylhexyle, ÉTHYLHEXYL ÉTHYLHEXANOATE, 2-éthylhexyl-2-éthylhexanoate, acide 2-éthylhexanoïque, ester de 2-éthylhexyle, Dragoxate EH, acide hexanoïque, 2-éthyl-, 2-éthylhexyle ester, DRAGOXAT EH, Acide hexanoïque, 2-éthyl-, acide caproïque, α-éthyl-, acide 2-éthylhexanoïque, acide butyléthylacétique, acide α-éthylcaproïque, acide 2-éthylhexoïque, acide 3-heptanecarboxylique, acide 2-éthylcaproïque, acide éthylhexanoïque, α-éthylhexanoïque acide, acide 2-butylbutanoïque, acide 2-éthyl-1-hexanoïque, acide (±)-2-éthylhexanoïque, NSC 8881, acide octylique, 83829-68-9, 202054-39-5 Acide hexanoïque, 2-éthyl-, Acide éthylhexanoïque, ACIDE 2-ÉTHYLCAPROÏQUE, 2-éthylhexanoïque, acide 2-éthyl-1-hexanoïque, acide éthylhexoïque, ACIDE CAPRYLIQUE (SG), ACIDE 2-ÉTHYLCAPRONIQUE, (RS)-2-éthylhexanoïque, acide 2-éthylhexanoïque, BRN 1750468 , Kyselina heptan-3-karboxylova, AI3-01371, acide hexanoïque, 2-éthyl-, (-)-, EINECS 262-971-9, acide 2-éthylcapronique, acide 2-éthyl-hexonique, acide alpha-éthylhexanoïque, . Acide alpha.-éthylhexanoïque, EC 205-743-6, SCHEMBL25800, acide 2-éthylhexanoïque, 99 %, MLS002415695, CHEMBL1162485, WLN : QVY4 & 2, NSC8881, HMS2267F21, STR05759, ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB], Tox21_201406, Tox21_300108 , LMFA01020087, AKOS009031416, AT29893, CS-W016381, SB44987, SB44994, acide hexanoïque, 2-éthyl-, ester tridécylique, NCGC00091324-01, NCGC00091324-02, NCGC00091324-03, 3985-01, NCGC00258957-01, SMR001252268, E0120, FT-0612273, FT-0654390, NS00010660, EN300-20410, Q209384, W-109079, F0001-0703, Z104478072, 18FEB650-7573-4EA0-B0CD-9D8BED766547, acide noique, étalon secondaire pharmaceutique ; Matériel de référence certifié,



L'acide 2-éthyl-1-hexanoïque brûlera bien que l'acide 2-éthylhexanoïque puisse nécessiter un certain effort pour s'enflammer.
L'acide 2-éthyl-1-hexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.


L'acide 2-éthyl-1-hexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthyl-1-hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.


L'acide 2-éthyl-1-hexanoïque est une huile visqueuse incolore.
L'acide 2-éthyl-1-hexanoïque est fourni sous forme de mélange racémique.
D'autres applications de l'acide 2-éthyl-1-hexanoïque comprennent le catalyseur pour la production de polymères, la matière première pour le chlorure d'acide et les parfums.


L'acide 2-éthyl-1-hexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles pouvant se dissoudre dans des solvants organiques non ioniques.
L'acide 2-éthyl-1-hexanoïque est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une odeur douce.


L'acide 2-éthyl-1-hexanoïque est une huile visqueuse et incolore avec une classe carboxylique présente sur une chaîne carbonée C8 et n'est pas miscible dans l'eau.
Industriellement, l'acide 2-éthyl-1-hexanoïque est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d’autres termes, l’acide 2-éthyl-1-hexanoïque peut être fabriqué plus efficacement que l’acide naphténique.


L'acide 2-éthyl-1-hexanoïque produit des composés métalliques qui subissent une stœchiométrie sous forme d'acétates métalliques.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthyl-1-hexanoïque brûle, même si cela peut nécessiter un certain effort pour s'enflammer.


L'acide 2-éthyl-1-hexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.


L'acide 2-éthyl-1-hexanoïque brûlera bien que l'acide 2-éthylhexanoïque puisse nécessiter un certain effort pour s'enflammer.
L'acide 2-éthyl-1-hexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.


L'acide 2-éthyl-1-hexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthyl-1-hexanoïque, de formule chimique C8H16O2 et de numéro d'enregistrement CAS 149-57-5, est un composé largement utilisé dans diverses applications industrielles.
Également connu sous le nom d’acide 2-éthyl-1-hexanoïque, est un liquide incolore à jaune clair avec une légère odeur.


L'acide 2-éthyl-1-hexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthyl-1-hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthyl-1-hexanoïque est une huile visqueuse incolore.


L'acide 2-éthyl-1-hexanoïque est fourni sous forme de mélange racémique.
L'acide 2-éthyl-1-hexanoïque se trouve dans le raisin.
L'acide 2-éthyl-1-hexanoïque appartient à la famille des acides gras ramifiés.


Ce sont des acides gras contenant une chaîne ramifiée.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthyl-1-hexanoïque brûle, même si cela peut nécessiter un certain effort pour s'enflammer.


L'acide 2-éthyl-1-hexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthyl-1-hexanoïque est un acide gras à chaîne ramifiée.


L'acide 2-éthyl-1-hexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
Cet acide carboxylique, l'acide 2-éthyl-1-hexanoïque, est largement utilisé pour préparer des dérivés métalliques solubles dans les solvants organiques non polaires.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.


L'acide 2-éthyl-1-hexanoïque brûle, même si cela peut nécessiter un certain effort pour s'enflammer. Il est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthyl-1-hexanoïque est un acide gras à chaîne ramifiée.


L'acide 2-éthyl-1-hexanoïque est un produit naturel présent dans Vitis vinifera et Artemisia arborescens pour lequel des données sont disponibles.
L'acide 2-éthyl-1-hexanoïque se trouve dans les fruits.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.


L'acide 2-éthyl-1-hexanoïque, également connu sous le nom de 2-éthylhexanoate ou acide alpha-éthylcaproïque, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide 2-éthyl-1-hexanoïque est une molécule très hydrophobe, pratiquement insoluble dans l'eau et relativement neutre.
L'acide 2-éthyl-1-hexanoïque, également connu sous le nom de 2-éthylhexanoate ou sinesto b, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


Sur la base d'une revue de la littérature, un petit nombre d'articles ont été publiés sur l'acide 2-éthyl-1-hexanoïque.
L'acide 2-éthyl-1-hexanoïque se trouve dans les fruits.
L'acide 2-éthyl-1-hexanoïque se trouve dans le raisin.


L'acide 2-éthyl-1-hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthyl-1-hexanoïque est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide 2-éthyl-1-hexanoïque est un liquide incolore à haut point d'ébullition et ayant une légère odeur.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore.
L'acide 2-éthyl-1-hexanoïque est un acide gras à chaîne ramifiée.


L'acide 2-éthyl-1-hexanoïque, également connu sous le nom d'acide 2-éthylhexanoïque ou 2-EHA, est un produit chimique industriel.
L'acide 2-éthyl-1-hexanoïque appartient à la famille des acides gras ramifiés.
Ce sont des acides gras contenant une chaîne ramifiée.



UTILISATIONS et APPLICATIONS de l’ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
Automobile, l'acide 2-éthyl-1-hexanoïque est utilisé dans la production d'inhibiteurs de corrosion pour les liquides de refroidissement automobiles.
Utilisation de lubrifiants à base d'acide 2-éthyl-1-hexanoïque : le 2-EHA est une matière première majeure pour les polyolesters utilisés dans les lubrifiants synthétiques.
Soins personnelsDans les cosmétiques, l'acide 2-éthyl-1-hexanoïque est utilisé pour produire des émollients.


L'acide 2-éthyl-1-hexanoïque est également impliqué dans l'extraction par solvant et la granulation du colorant.
En outre, l'acide 2-éthyl-1-hexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.
De plus, l’acide 2-éthyl-1-hexanoïque sert de catalyseur pour le moussage du polyuréthane.


L'acide 2-éthyl-1-hexanoïque est utilisé comme réactif dans l'estérification, l'alcynylation décarboxylative et la préparation d'alkylcoumarines via des réactions de couplage décarboxylatives.
L'acide 2-éthyl-1-hexanoïque est utilisé dans la production de plastifiants polyvinylbutyral (PVB) et de stabilisants en polychlorure de vinyle (PVC) sous forme de sels métalliques.


D'autres applications de l'acide 2-éthyl-1-hexanoïque comprennent le catalyseur pour la production de polymères, la matière première pour le chlorure d'acide et les parfums.
L'acide 2-éthyl-1-hexanoïque est utilisé dans la production d'inhibiteurs de corrosion pour les liquides de refroidissement automobiles.
Utilisations des lubrifiants de l'acide 2-éthyl-1-hexanoïque : L'acide 2-éthyl-1-hexanoïque est une matière première majeure pour les polyolesters utilisés dans les lubrifiants synthétiques.


L'acide 2-éthyl-1-hexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.
Utilisations de l'acide 2-éthyl-1-hexanoïque dans les soins personnels : En cosmétique, l'acide 2-éthyl-1-hexanoïque est utilisé pour produire des émollients.


L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthyl-1-hexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d’étain est utilisé dans la fabrication de l’acide poly(lactique-co-glycolique).


D'autres rejets dans l'environnement d'acide 2-éthyl-1-hexanoïque sont susceptibles de se produire à partir de : l'utilisation en intérieur comme auxiliaire technologique, l'utilisation en intérieur dans des systèmes fermés avec un rejet minimal (par exemple, liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile) et l'utilisation en extérieur. dans des systèmes fermés avec un rejet minimal (par exemple, liquides hydrauliques dans les suspensions automobiles, lubrifiants dans l'huile moteur et liquides de freinage).


L'acide 2-éthyl-1-hexanoïque est utilisé dans les produits suivants : produits de revêtement.
L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthyl-1-hexanoïque est utilisé dans les domaines suivants : recherche et développement scientifique.


Le rejet dans l'environnement de l'acide 2-éthyl-1-hexanoïque peut survenir lors d'une utilisation industrielle : formulation de mélanges.
L'acide 2-éthyl-1-hexanoïque est utilisé dans les produits suivants : produits de revêtement, produits chimiques de laboratoire, lubrifiants et graisses et fluides de travail des métaux.
L'acide 2-éthyl-1-hexanoïque a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).


Le rejet dans l'environnement de l'acide 2-éthyl-1-hexanoïque peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et de substances dans des systèmes fermés avec un rejet minimal. .
Le rejet dans l'environnement de l'acide 2-éthyl-1-hexanoïque peut survenir lors d'une utilisation industrielle : fabrication de la substance.


L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthyl-1-hexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide 2-éthyl-1-hexanoïque brûle, même si cela peut nécessiter un certain effort pour s'enflammer.


L'acide 2-éthyl-1-hexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthyl-1-hexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.


L'acide 2-éthyl-1-hexanoïque est utilisé dans le milieu organocatalytique pour la préparation de diverses 3,4-dihydropyrimidin-2(1H)-ones/thiones par réaction de Biginelli.
L'acide P2-éthyl-1-hexanoïque est utilisé comme siccatif pour peintures et vernis (sels métalliques).
Les éthylhexoates de métaux légers sont utilisés pour convertir certaines huiles minérales en graisses.


Les esters de l'acide 2-éthyl-1-hexanoïque sont utilisés comme plastifiants.
L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthyl-1-hexanoïque est utilisé par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.


L'acide 2-éthyl-1-hexanoïque est utilisé dans les produits suivants : produits antigel, produits chimiques de laboratoire et fluides pour le travail des métaux.
L'acide 2-éthyl-1-hexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthyl-1-hexanoïque est utilisé pour l'automobile


Intermédiaire de cosmétiques et de soins personnels, peintures et revêtements et produits chimiques pharmaceutiques.
L'acide 2-éthyl-1-hexanoïque est utilisé dans la production de plastifiants polyvinylbutyral (PVB) et de stabilisants en chlorure de polyvinyle (PVC) sous forme de sels métalliques.
L'acide 2-éthyl-1-hexanoïque est principalement utilisé comme précurseur dans la production d'esters pour arômes et parfums artificiels.


L'acide 2-éthyl-1-hexanoïque sert de plastifiant dans la fabrication du PVC et d'autres polymères, améliorant leur flexibilité et leur durabilité.
De plus, l'acide 2-éthyl-1-hexanoïque trouve une application comme inhibiteur de corrosion dans les fluides de travail des métaux et comme catalyseur dans les réactions de polymérisation.
Sa nature polyvalente et sa compatibilité avec de nombreux matériaux font de l'acide 2-éthyl-1-hexanoïque un ingrédient précieux dans de nombreuses formulations dans des secteurs tels que les cosmétiques, les peintures et les lubrifiants.


L'acide 2-éthyl-1-hexanoïque peut être utilisé comme substitut à l'acide naphténique dans certaines applications.
Dans la plupart des cas, les dérivés de l'acide 2-éthyl-1-hexanoïque sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et de polymérisation (comme agents de séchage d'huile).


En tant qu'intermédiaire chimique polyvalent, l'acide 2-éthyl-1-hexanoïque a de multiples applications, dont les suivantes.
L'acide 2-éthyl-1-hexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.
L'acide 2-éthyl-1-hexanoïque est utilisé comme intermédiaire pour le savon métallique, le plastifiant, le détergent, la résine alkyde, le chlorure d'acide et les cosmétiques.


-Revêtements utilisant de l'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est utilisé dans la synthèse des résines alkydes et offre une meilleure résistance au jaunissement que les acides gras standards.
L'acide 2-éthyl-1-hexanoïque est particulièrement adapté à la cuisson des émaux et des revêtements à deux composants.
L'acide 2-éthyl-1-hexanoïque est également utilisé comme matière première pour les siccatifs de peinture à base de métal.


-Utilisations automobiles de l'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide 2-éthyl-1-hexanoïque sert également de produit de préservation du bois et fabrique des additifs lubrifiants ainsi que des lubrifiants synthétiques.
L'acide 2-éthyl-1-hexanoïque est également utilisé dans la production de stabilisants thermiques pour PVC, de plastifiants pour films PVB, de savons métalliques pour siccatifs de peinture et d'autres produits chimiques.


-Utilisations de revêtements d'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est utilisé dans la synthèse des résines alkydes et offre une meilleure résistance au jaunissement que les acides gras standards.
L'acide 2-éthyl-1-hexanoïque est particulièrement adapté à la cuisson des émaux et des revêtements à deux composants.
L'acide 2-éthyl-1-hexanoïque est également utilisé comme matière première pour les siccatifs de peinture à base de métal.


-Utilisation de lubrifiants à base d'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est couramment utilisé dans les esters des plastifiants en film de polyvinylbutyral (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques de l'acide 2-éthyl-1-hexanoïque sont utilisés pour préparer des additifs pour lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.


-Revêtements utilisant de l'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide 2-éthyl-1-hexanoïque produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
L'acide 2-éthyl-1-hexanoïque est idéal pour la cuisson des émaux et des revêtements à 2 composants.
L'acide 2-éthyl-1-hexanoïque peut également être utilisé dans d'autres applications, notamment comme catalyseur pour le polyuréthane, les produits de préservation du bois et les produits pharmaceutiques.


-Utilisation plastiques de l'acide 2-éthyl-1-hexanoïque :
L'acide 2-éthyl-1-hexanoïque est également utilisé dans la fabrication de stabilisants en polychlorure de vinyle (PVC) et de plastifiants en polyvinylbutyral (PVB) sous forme de sels métalliques.
L'acide 2-éthyl-1-hexanoïque réagit avec des composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.


-Utilisation cosmétique de l'acide 2-éthyl-1-hexanoïque :
Les produits chimiques contenus dans l’acide 2-éthyl-1-hexanoïque auraient un usage cosmétique dans la production d’émollients et d’après-shampooings.
L'acide 2-éthyl-1-hexanoïque est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme le fond de teint, le correcteur et les produits de soins capillaires.



PRODUCTION D'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
L'acide 2-éthyl-1-hexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldolique de l'aldéhyde donne du 2-éthylhexénal, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.



ÉTHYLHEXANOATES MÉTALLIQUES DE L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
L'acide 2-éthyl-1-hexanoïque forme des composés avec des cations métalliques qui ont une stœchiométrie sous forme d'acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'« agents de séchage d'huile ».

Ils sont hautement solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.

Leurs structures s'apparentent aux acétates correspondants.
Exemples d'éthylhexanoates métalliques
Bis (2-éthylhexanoate) d'hydroxyle et d'aluminium, utilisé comme épaississant

Éthylhexanoate d'étain (II) (CAS# 301-10-0), un catalyseur pour le polylactide et l'acide poly(lactique-co-glycolique).
Éthylhexanoate de cobalt (II) (CAS# 136-52-7), un siccatif pour les résines alkydes. Éthylhexanoate de nickel (II) (CAS# 4454-16-4).



PARENTS ALTERNATIFS DE L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
*Acides gras ramifiés
*Acides gras à chaîne ramifiée.
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
*Acide gras à chaîne moyenne
*Acide gras ramifié
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



PRÉPARATION DE L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
Dans un flacon tricol sec de 1L, Ajouter l'aldéhyde isooctyle (80g, 0,62mol) Et le solvant acide 2-éthyl-1-hexanoïque (240g, 1,66mol), le ligand L8 (5,24mg, 0,007mmol), le carbonate de césium (18,24 mg, 0,056 mmol), 160 mg d'acétate de potassium, placé dans un bain-marie, mécaniquement sous atmosphère d'azote. Agiter, après que la température ait atteint 30°C, le débit d'air a été démarré à un débit de 11,9 g/h, et la température de réaction a été maintenue à 30-35°C par ajout d'eau de refroidissement au bain-marie.

Après 6 heures de réaction, la conversion de l'isooctyle aldéhyde a été calculée à 99,6 %.
La sélectivité de l'acide 2-éthyl-1-hexanoïque était de 99,5 % et le rendement était de 99,10 %.



COMMENT L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE EST-IL UTILISÉ ?
L'acide 2-éthyl-1-hexanoïque est principalement utilisé dans la préparation de sels métalliques et de savons utilisés comme agents de séchage dans les peintures et les encres, et comme stabilisants thermiques dans le chlorure de polyvinyle (PVC).
L'acide 2-éthyl-1-hexanoïque est également utilisé dans la fabrication de résines utilisées dans les pare-brise d'automobiles et les revêtements de sol en vinyle.
L'acide 2-éthyl-1-hexanoïque n'est pas fabriqué au Canada, mais il est importé au Canada.



PRODUCTION D'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
L'acide 2-éthyl-1-hexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldolique de l'aldéhyde donne du 2-éthylhexénal, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

Éthylhexanoates métalliques :
L'acide 2-éthyl-1-hexanoïque forme des composés avec des cations métalliques qui ont une stœchiométrie sous forme d'acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.

Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'« agents de séchage d'huile ».
Ils sont hautement solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.

Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.
Leurs structures s'apparentent aux acétates correspondants.

Exemples d'éthylhexanoates métalliques :
Bis (2-éthylhexanoate) d'hydroxyle et d'aluminium, utilisé comme épaississant
Éthylhexanoate d'étain (II) (CAS# 301-10-0), un catalyseur pour le polylactide et le poly(acide lactique-co-glycolique).

Éthylhexanoate de cobalt (II) (CAS# 136-52-7), un siccatif pour les résines alkydes
Éthylhexanoate de nickel (II) (CAS# 4454-16-4)



PROFIL DE RÉACTIVITÉ DE L'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
L'acide 2-éthyl-1-hexanoïque est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.

Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques contenant six atomes de carbone ou moins sont librement ou modérément solubles dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l’eau.

L'acide carboxylique soluble se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.
Le pH des solutions d'acides carboxyliques est donc inférieur à 7,0.
De nombreux acides carboxyliques insolubles réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.

Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide 2-éthyl-1-hexanoïque pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides. Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.

Des gaz et de la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.
Les acides carboxyliques, notamment en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais néanmoins de la chaleur.
Comme d’autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants puissants et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.

Une grande variété de produits est possible.
Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme les autres acides, ils catalysent souvent (augmentent la vitesse) des réactions chimiques.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
Formule chimique : C8H16O2
Masse molaire : 144,214 g/mol
Aspect : Liquide incolore
Densité : 903 mg/mL
Point de fusion : -59,00 °C ; -74,20 °F ; 214,15 Ko
Point d'ébullition : 228,1 °C ; 442,5 °F ; 501,2 Ko
log P : 2,579
Pression de vapeur : <1 Pa (à 25 °C)
Acidité (pKa) : 4,819
Basicité (pKb) : 9,178
Indice de réfraction (nD) : 1,425
Enthalpie standard de formation (ΔfH ⦵ 298) : -635,1 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : -4,8013–4,7979 MJ/mol
Point d'éclair : 260 °F

Densité spécifique : 0,903
Limite inférieure d'explosivité (LIE) : 1,04 % à 275 °F
Limite supérieure d'explosivité (UEL) : 8,64 % à 370,4 °F
Solubilité dans l'eau : 2,07 g/L
logP : 2,61
logP : 2,8
logS : -1,8
pKa (acide le plus fort) : 5,14
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre de liaisons rotatives : 5
Réfractivité : 40,25 m³•mol⁻¹
Polarisabilité : 16,99 ų

Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Non
Règle de Veber : Oui
Règle de type MDDR : non
Formule chimique : C8H16O2
Nom IUPAC : acide 2-éthylhexanoïque
Identifiant InChI : InChI=1S/C8H16O2/c1-3-5-6-7(4-2)8(9)10/h7H,3-6H2,1-2H3,(H,9,10)
Clé InChI : OBETXYAYXDNJHR-UHFFFAOYSA-N
SOURIRES isomères : CCCCC(CC)C(O)=O
Poids moléculaire moyen : 144,2114
Poids moléculaire monoisotopique : 144,115029756

Aspect : liquide clair incolore (est)
Dosage : 99,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Densité spécifique : 0,89300 à 0,91300 à 25,00 °C.
Livres par gallon - (est) : 7,431 à 7,597
Indice de réfraction : 1,42000 à 1,42600 à 20,00 °C.
Point de fusion : -59,00 °C. @ 760,00 mmHg
Point d'ébullition : 220,00 à 223,00 °C. @ 760,00 mmHg
Pression de vapeur : 0,030000 mmHg à 20,00 °C.
Densité de vapeur : 4,98 (Air = 1)
Point d'éclair : 244,00 °F. TCC ( 117,78 °C. )
logP (dont) : 2,640
Soluble dans l'alcool et l'eau, 2000 mg/L à 20 °C (exp)
Insoluble dans l'eau

Formule chimique : C8H16O2
Masse molaire : 144,214 g•mol−1
Aspect : Liquide incolore
Densité : 903 mg mL−1
Point de fusion : −59,00 °C ; −74,20 °F ; 214,15 Ko
Point d'ébullition : 228,1 °C ; 442,5 °F ; 501,2 Ko
log P : 2,579
Pression de vapeur : <1 Pa (à 25 °C)
Acidité (pKa) : 4,819
Basicité (pKb) : 9,178
Indice de réfraction (nD) : 1,425
Enthalpie standard de formation (ΔfH ⦵ 298) : −635,1 kJ mol−1
Enthalpie standard de combustion (ΔcH ⦵ 298) : -4,8013–4,7979 MJ mol−1
Aspect : liquide clair incolore (est)
Dosage : 99,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Densité spécifique : 0,89300 à 0,91300 à 25,00 °C.
Livres par gallon - (est). : 7,431 à 7,597

Indice de réfraction : 1,42000 à 1,42600 à 20,00 °C.
Point de fusion : -59,00 °C. @ 760,00 mmHg
Point d'ébullition : 220,00 à 223,00 °C. @ 760,00 mmHg
Pression de vapeur : 0,030000 mmHg à 20,00 °C.
Densité de vapeur : 4,98 (Air = 1)
Point d'éclair : 244,00 °F. TCC ( 117,78 °C. )
logP (dont) : 2,640
Soluble dans : alcool, eau, 2000 mg/L à 20 °C (exp)
Insoluble dans l'eau
Poids moléculaire : 144,21 g/mol
XLogP3 : 2,6
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 5
Masse exacte : 144,115029749 g/mol
Masse monoisotopique : 144,115029749 g/mol
Surface polaire topologique : 37,3 Å ²

Nombre d'atomes lourds : 10
Frais formels : 0
Complexité : 99,4
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Solubilité dans l'eau : 2,07 g/L
logP : 2,61
logP : 2,8
logS : -1,8
pKa (acide le plus fort) : 5,14
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2

Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre de liaisons rotatives : 5
Réfractivité : 40,25 m³•mol⁻¹
Polarisabilité : 16,99 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Non
Règle de Veber : Oui
Règle de type MDDR : non
État physique : clair, liquide
Couleur : incolore
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : -59 °C

Point d'ébullition initial et plage d'ébullition : 228 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d’inflammabilité ou d’explosivité :
Limite d'explosivité supérieure : 6,7 %(V)
Limite d'explosivité inférieure : 0,9 %(V)
Point d'éclair : 114 °C - coupelle fermée
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 3 à 1,4 g/l à 20 °C
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible
Coefficient de partage : n-octanol/eau : log Pow : 2,7 à 25 °C
Pression de vapeur 13 hPa à 115 °C: < 0,01 hPa à 20 °C

Densité : 0,903 g/cm3 à 25 °C - lit.
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés comburantes : Aucune donnée disponible
Autres informations de sécurité :
Densité de vapeur relative : 4,98 - (Air = 1,0)
Formule chimique : C8H16O2
Masse molaire : 144,214 g•mol−1
Aspect : Liquide incolore
Densité : 903 mg mL−1
Point de fusion : −59,00 °C ; −74,20 °F ; 214,15 Ko
Point d'ébullition : 228,1 °C ; 442,5 °F ; 501,2 Ko

log P : 2,579
Pression de vapeur : <1 Pa (à 25 °C)
Acidité (pKa) : 4,819
Basicité (pKb) : 9,178
Indice de réfraction (nD) 1,425
Point de fusion : -59 °C
Point d'ébullition : 228 °C(lit.)
Densité : 0,906
densité de vapeur : 4,98 (vs air)
Pression de vapeur : <0,01 mm Hg (20 °C)
indice de réfraction : n20/D 1,425 (lit.)
Point d'éclair : 230 °F
Température de stockage : Conserver en dessous de +30°C.
solubilité : 1,4g/l
forme : Liquide

pka: pK1:4,895 (25°C)
couleur: Clair
PH : 3 (1,4 g/l, H2O, 20 ℃ )
Odeur : Légère odeur
Plage de pH : 3 à 1,4 g/l à 20 °C
Viscosité : 7,73 cps
limite d'explosivité : 1,04 %, 135 °F
Solubilité dans l'eau : 2 g/L (20 ºC)
Numéro de référence : 1750468
Limites d'exposition ACGIH : TWA 5 mg/m3
Stabilité : Stable.
Incompatible avec les agents oxydants forts, les agents réducteurs, les bases.
InChIKey : OBETXYAYXDNJHR-UHFFFAOYSA-N
LogP : 2,7 à 25 ℃
Référence de la base de données CAS : 149-57-5 (référence de la base de données CAS)
Scores alimentaires de l'EWG : 2

FDA UNII : 01MU2J7VVZ
Référence chimique NIST : Acide hexanoïque, 2-éthyl-(149-57-5)
Système d'enregistrement des substances de l'EPA : Acide 2-éthylhexanoïque (149-57-5)
Poids moléculaire : 293,40
Nombre de donateurs de liaisons hydrogène : 4
Nombre d'accepteurs de liaison hydrogène : 6
Nombre de liaisons rotatives : 11
Masse exacte : 293,22022309
Masse monoisotopique : 293,22022309
Surface polaire topologique : 101
Nombre d'atomes lourds : 20
Complexité : 155
Nombre de stéréocentres atomiques non définis : 1
Nombre d'unités liées de manière covalente : 2
Le composé est canonisé : oui



PREMIERS SECOURS de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Consultez un médecin.
*En cas de contact visuel
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Informations complémentaires :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou les eaux souterraines
système.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériel: Viton
Épaisseur minimale de la couche : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,4 mm
Temps de passage : 240 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Conserver sous clé ou dans un endroit accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE 2-ÉTHYL-1-HEXANOÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles


ACIDE 2-ÉTHYLHEXANOÏQUE
L'acide 2-éthyl hexanoïque est un liquide incolore à jaune clair avec une odeur douce.
L'acide 2-éthylhexanoïque brûlera bien que l'acide 2-éthylhexanoïque puisse prendre un certain effort pour s'enflammer.
L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.

Numéro CAS : 149-57-5
Formule moléculaire : C8H16O2
Poids moléculaire : 144,21
Numéro EINECS : 205-743-6

Acide 2-éthylhexanoïque, 149-57-5, Acide 2-éthylcaproïque, Acide hexanoïque, Acide 2-éthylhexanoïque, Acide éthylhexanoïque, Acide éthylhexoïque, Acide 2-éthylhexoïque, Acide butyléthylacétique, Acide 2-butylbutanoïque, Acide 3-heptanecarboxylique, Acide éthylhexanoïque, Acide 2-éthyl-hexoïque, Acide 2-éthylhexanoïque, Acide alpha-éthyl-hexanoïque, Acide éthyl-hexanoïque, Acide éthyl-hexanoïque, Acide 2-éthyl-1-hexanoïque, 61788-37-2, 01MU2J7VVZ, 2-EHA, ACIDE 2-ÉTHYL HEXOÏQUE, AR, DTXSID9025293, CHEBI :89058, NSC-8881, MFCD00002675, 2-éthylhexanoïque, 2-éthylhexansaeure, DTXCID805293, Acide 2-éthylhexanoïque, >=99%, Acide 2-éthylhexanoïque, étalon analytique, CAS-149-57-5, 2 ACIDE HEXANOÏQUE ÉTHYLIQUE, CCRIS 3348, HSDB 5649, Kyselina 2-éthylkapronova [tchèque], NSC 8881, Kyselina 2-éthylkapronova, EINECS 205-743-6, (+/-)-2-Acide hexanoïque éthylique, UNII-01MU2J7VVZ, Kyselina heptan-3-karboxylova [tchèque], BRN 1750468, Kyselina heptan-3-karboxylova, AI3-01371, Acide hexanoïque, 2-éthyl-, (-)-, EINECS 262-971-9, Acide 2-éthylcapronique, Acide 2-éthyl-hexonique, Acide alpha-éthylhexanoïque, Acide .alpha.-éthylhexanoïque, EC 205-743-6, SCHEMBL25800, Acide 2-éthylhexanoïque, 99%, MLS002415695, CHEMBL1162485, WLN : QVY4 & 2, NSC8881, HMS2267F21, STR05759, Acide 2-éthylhexanoïque [HSDB], Tox21_201406, Tox21_300108, LMFA01020087, AKOS009031416, AT29893, CS-W016381, SB44987, SB44994, Acide hexanoïque, 2-éthyl-, ester tridécylique, NCGC00091324-01, NCGC00091324-02, NCGC00091324-03, NCGC00253985-01, NCGC00258957-01, SMR001252268, E0120, FT-0612273, FT-0654390, EN300-20410, Q209384, W-109079, F0001-0703, Z104478072, 18FEB650-7573-4EA0-B0CD-9D8BED766547, Acide 2-éthylhexanoïque, étalon secondaire pharmaceutique ; Matériau de référence certifié

L'acide 2-éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthylhexanoïque est utilisé pour fabriquer des sécheurs de peinture et des plastifiants.
L'acide 2-éthylhexanoïque est le composé organique de formule CH3 (CH2) 3CH (C2H5) CO2H.

L'acide 2-éthyl hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.

L'acide 2-éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation de l'aldéhyde par l'aldol donne de l'acide 2-éthylhexanoïque, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont la stœchiométrie comme acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'« agents de séchage de l'huile ».

Ils sont très solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Il ne s'agit cependant pas de complexes de coordination ioniques mais neutres en charge.

Leurs structures s'apparentent aux acétates correspondants.
L'acide 2-éthylhexanoïque est un composé organique liquide incolore à jaune clair.
L'acide 2-éthylhexanoïque est largement utilisé dans la préparation de dérivés métalliques solubles dans les solvants organiques non polaires.

L'acide carboxylique hautement toxique et combustible est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est un liquide incolore et transparent avec une légère odeur.
L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.

L'acide 2-éthylhexanoïque peut être produit industriellement à partir de propylène qui peut être produit de manière renouvelable.
L'acide 2-éthylhexanoïque, également connu sous le nom d'acide 2-éthylhexanoïque ou 2-EHA, est un acide carboxylique de formule moléculaire C8H16O2.
L'acide 2-éthylhexanoïque est un acide organique à huit atomes de carbone à chaîne ramifiée avec un groupe carboxyle (COOH) à une extrémité.

La structure chimique de l'acide 2-éthyl hexanoïque est dérivée de l'acide hexanoïque en ajoutant un groupe éthyle (C2H5) au deuxième atome de carbone de la chaîne.
L'acide 2-éthylhexanoïque (EHXA, 2-EHA) est un acide carboxylique aliphatique important pour l'industrie.
L'acide 2-éthylhexanoïque est largement utilisé comme stabilisant et agent de préservation du bois.

L'acide 2-éthylhexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles qui peuvent se dissoudre dans des solvants organiques non ioniques.
L'acide 2-éthyl hexanoïque est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une odeur douce.
L'acide 2-éthylhexanoïque est une huile visqueuse et incolore avec une classe carboxylique que l'on trouve sur une chaîne carbonée C8 et qui est non miscible dans l'eau.

L'acide 2-éthylhexanoïque peut être utilisé comme substitut de l'acide naphténique dans certaines applications.
Industriellement, l'acide 2-éthylhexanoïque est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d'autres termes, l'acide 2-éthylhexanoïque peut être fabriqué plus efficacement que l'acide naphténique.

L'acide 2-éthylhexanoïque produit des composés métalliques qui subissent une stœchiométrie sous forme d'acétates métalliques.
Dans la plupart des cas, les dérivés de l'acide 2-éthylhexanoïque sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et de polymérisation (en tant qu'agents de séchage de l'huile).

En tant qu'intermédiaire chimique polyvalent, l'acide 2-éthylhexanoïque a de multiples applications, notamment les suivantes.
L'acide 2-éthylhexanoïque est le composé organique de formule CH3 (CH2) 3CH (C2H5) CO2H.
L'acide 2-éthyl hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.

L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque est un liquide incolore, à point d'ébullition élevé, ayant une odeur douce.

Les sels métalliques de l'acide 2-éthylhexanoïque Eastman™ sont utilisés comme séchoirs pour les peintures, les encres, les vernis et les émaux inodores.
Le cobalt et le manganèse sont les séchoirs les plus importants.
L'acide 2-éthylhexanoïque, également connu sous le nom de 2-éthylhexanoate ou acide alpha-éthylcaproïque, appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.

Ce sont des acides gras avec une queue aliphatique qui contient entre 4 et 12 atomes de carbone.
L'acide 2-éthyl hexanoïque est une molécule très hydrophobe, pratiquement insoluble dans l'eau, et relativement neutre.
L'acide 2-éthylhexanoïque est un composé potentiellement toxique.

L'acide 2-éthylhexanoïque est largement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.
Ces dérivés lipophiles contenant des métaux sont utilisés comme catalyseurs dans les polymérisations.
L'acide 2-éthylhexanoïque est le composé organique de formule CH3 (CH2) 3CH (C2H5) CO2H.

L'acide 2-éthyl hexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque est fourni sous forme de mélange racémique.

L'acide 2-éthylhexanoïque est largement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.
Ces dérivés lipophiles contenant des métaux sont utilisés comme catalyseurs dans les polymérisations.
L'acide 2-éthylhexanoïque, également connu sous le nom d'acide 2-EHA ou 2-éthylcaproïque, est un acide gras saturé de formule chimique C8H16O2.

L'acide 2-éthyl hexanoïque est un liquide incolore à l'odeur caractéristique.
L'acide 2-éthylhexanoïque est largement utilisé dans diverses industries, y compris la production de plastifiants, de lubrifiants et de revêtements.
L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.

L'acide 2-éthylhexanoïque est utilisé dans la fabrication de l'acide poly(lactique-co-glycolique).
L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation des colorants.

De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour la mousse de polyuréthane.
L'acide 2-éthylhexanoïque est un acide carboxylique aliphatique important pour l'industrie.

L'acide 2-éthylhexanoïque est largement utilisé comme stabilisant et agent de préservation du bois.
L'acide 2-éthylhexanoïque a diverses applications industrielles, telles que :liquide de refroidissement dans l'automobilelubrifiant synthétiqueagent mouillant co-solvantséchage des peinturesagent antimousse dans les pesticides
L'acide 2-éthylhexanoïque, également connu sous le nom de 2-éthylhexanoate ou sinesto b, appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.

Ce sont des acides gras avec une queue aliphatique qui contient entre 4 et 12 atomes de carbone.
Sur la base d'une revue de la littérature, un petit nombre d'articles ont été publiés sur l'acide 2-éthylhexanoïque.
L'acide 2-éthylhexanoïque, également connu sous le nom de 2-éthylhexanoate ou a-éthyl caproate, appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.

Ce sont des acides gras avec une queue aliphatique qui contient entre 4 et 12 atomes de carbone.
L'acide 2-éthylhexanoïque est une molécule très hydrophobe, pratiquement insoluble (dans l'eau), et relativement neutre.
L'acide 2-éthylhexanoïque est un composé potentiellement toxique.

L'acide 2-éthylhexanoïque (2-EHA) est l'un des produits phares du groupe Perstorp qui dispose de la plus grande capacité de production au monde.
L'acide 2-éthylhexanoïque est un liquide incolore avec un groupe carboxylique basé sur une chaîne carbonée C8.
L'acide 2-éthylhexanoïque est largement utilisé dans les esters pour les plastifiants de film PVB et les lubrifiants synthétiques, dans la production de savons métalliques pour les sécheurs de peinture, dans les liquides de refroidissement automobiles et les stabilisateurs en PVC.

D'autres domaines d'application incluent les produits de préservation du bois, les catalyseurs pour le polyuréthane et les produits pharmaceutiques.
L'acide 2-éthylhexanoïque est utilisé par les professionnels (utilisations répandues), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide 2-éthylhexanoïque (EHXA, 2-EHA) est un acide carboxylique aliphatique important pour l'industrie.

L'acide 2-éthylhexanoïque est largement utilisé comme stabilisant et agent de préservation du bois.
L'acide 2-éthyl hexanoïque est un liquide incolore à jaune clair avec une odeur douce.
L'acide 2-éthylhexanoïque brûlera, bien qu'il faille un certain effort pour s'enflammer.

L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.
L'acide 2-éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide 2-éthylhexanoïque est utilisé pour fabriquer des sécheurs de peinture et des plastifiants.

L'acide 2-éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation de l'aldéhyde par l'aldol donne de l'acide 2-éthylhexanoïque, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont la stœchiométrie comme acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'agents de séchage d'huile.

L'acide 2-éthyl hexanoïque est un acide carboxylique principalement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.
Les produits non classés fournis par Spectrum sont indicatifs d'une qualité adaptée à un usage industriel général ou à des fins de recherche et ne conviennent généralement pas à la consommation humaine ou à un usage thérapeutique.
L'acide 2-éthylhexanoïque peut être utilisé comme intermédiaire pour les sécheurs de peinture et de revêtement, comme modificateur de résine alkyde, comme catalyseur pour la production de peroxydes et comme stabilisant pour les esters d'huile lubrifiante et le PVC, etc., et a une large gamme d'applications sur le marché.

L'acide 2-éthylhexanoïque est un composé chiral synthétisé par la synthèse asymétrique de l'acide (R)-2-hydroxyacétique.
Les énantiomères de l'acide 2-éthylhexanoïque sont séparés par une colonne d'injection, qui peut être utilisée pour déterminer la pureté énantiomérique des mélanges racémiques.
L'acide 2-éthylhexanoïque est également un substrat naturel pour les enzymes humaines et il a été démontré qu'il a une activité stéréosélective dans les essais.

Les enzymes qui métabolisent l'acide 2-éthylhexanoïque comprennent l'acide carboxylique synthase, qui le convertit en acide crotonique, et l'acyl coenzyme A déshydrogénase, qui le convertit en 3-méthylcrotonyl-CoA.
La stéréosélectivité de ces enzymes a été étudiée à l'aide de techniques cristallographiques.
L'acide 2-éthylhexanoïque est également un inhibiteur régiosélectif de l'aminot aminot à chaîne ramifiée

L'acide 2-éthylhexanoïque est le composé organique de formule CH3 (CH2) 3CH (C2H5) CO2H.
Cet acide carboxylique est largement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.
L'acide 2-éthylhexanoïque est un mélange synthétique d'isomères d'acides carboxyliques tertiaires avec dix atomes de carbone.

Il peut être utilisé pour remplacer l'acide 2-éthylhexanoïque et la plupart de ses sels, qui ont été reclassés en catégorie reprotoxique 1B par le Comité d'évaluation des risques de l'ECHA, à compter de novembre 2023.
L'acide 2-éthylhexanoïque, également connu sous le nom d'acide 2-EH, est une substance liquide incolore à légèrement jaune avec une odeur légèrement sucrée.
L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau et il est inflammable, mais ne s'enflamme pas.

L'acide 2-éthylhexanoïque est considéré comme corrosif pour la plupart des métaux.
L'acide 2-éthylhexanoïque est le plus souvent utilisé dans l'industrie de la peinture et des revêtements ainsi que dans la fabrication de divers plastifiants.
L'acide 2-éthylhexanoïque est largement utilisé dans la production de sécheurs de peinture et de plastifiants.

L'acide 2-éthylhexanoïque est le plus souvent utilisé dans les esters pour les plastifiants de film PVB et dans les lubrifiants synthétiques.
D'autres applications courantes sont dans les liquides de refroidissement automobiles en tant qu'inhibiteur de corrosion, dans les stabilisateurs en PVC et dans la production de savons métalliques pour les sécheurs de peinture.
L'acide 2-éthylhexanoïque est également un catalyseur courant dans les produits pharmaceutiques et pour le polyuréthane.

L'acide 2-éthylhexanoïque se trouve souvent comme ingrédient dans les produits de préservation du bois.
L'acide 2-éthylhexanoïque est souvent utilisé comme intermédiaire chimique dans la production de divers produits chimiques et matériaux.
L'acide 2-éthylhexanoïque a des applications dans la synthèse d'esters, de plastifiants et de dérivés métalliques.

L'acide 2-éthylhexanoïque est couramment utilisé comme matière première dans la production de carboxylates métalliques, qui sont utilisés comme catalyseurs dans divers processus chimiques.
De plus, l'acide 2-éthylhexanoïque est utilisé comme composant dans la formulation de certains revêtements, adhésifs et produits d'étanchéité.
L'acide 2-éthylhexanoïque est une propriété unique qui le rend adapté à une utilisation dans ces applications, contribuant à des propriétés telles que l'adhérence et la flexibilité.

L'acide 2-éthylhexanoïque peut être synthétisé par diverses méthodes, notamment l'oxydation du 2-éthylhexanol ou l'estérification du 2-éthylhexanol avec de l'acide acétique, suivie d'une hydrolyse.
L'acide 2-éthylhexanoïque est couramment utilisé dans la production de plastifiants, qui sont des additifs qui améliorent la flexibilité et la durabilité des plastiques.
L'acide 2-éthylhexanoïque sert de précurseur dans la préparation des carboxylates métalliques, qui sont utilisés comme catalyseurs dans des réactions telles que la production de polyuréthanes.

L'acide 2-éthylhexanoïque est utilisé dans la formulation de revêtements, de résines et d'encres, contribuant ainsi aux performances et aux propriétés d'application de ces matériaux.
L'acide 2-éthylhexanoïque agit comme un intermédiaire polyvalent dans la synthèse de divers produits chimiques.
L'acide 2-éthylhexanoïque est un produit chimique industriel précieux avec des applications dans divers domaines tels que la production d'adhésifs, de produits d'étanchéité, de lubrifiants et de certains produits pharmaceutiques.

Comme tout produit chimique, des précautions de sécurité appropriées doivent être prises lors de la manipulation de l'acide 2-éthylhexanoïque.
Il est important de suivre les directives de sécurité recommandées, d'utiliser un équipement de protection individuelle approprié et de stocker le composé conformément aux règles de sécurité.

Point de fusion : -59 °C
Point d'ébullition : 228 °C (lit.)
Densité : 0.906
Densité de vapeur : 4,98 (par rapport à l'air)
pression de vapeur : <0,01 mm Hg ( 20 °C)
indice de réfraction : n20/D 1,425 (lit.)
Point d'éclair : 230 °F
Température de stockage : Conserver à une température inférieure à +30°C.
Solubilité : 1,4 g/l
forme : Liquide
pka : pK1 :4.895 (25°C)
couleur : Clair
PH : 3 (1,4 g/l, H2O, 20°C)
Odeur : Odeur légère
Plage de pH : 3 à 1,4 g/l à 20 °C
Viscosité : 7,73 cps
limite d'explosivité : 1,04 %, 135 °F
Solubilité dans l'eau : 2 g/L (20 ºC)
BRN : 1750468
Limites d'exposition ACGIH : TROIS 5 mg/m3
Stabilité : Stable. Combustible. Incompatible avec les agents oxydants forts, les agents réducteurs, les bases.
InChIKey : OBETXYAYXDNJHR-UHFFFAOYSA-N
LogP : 2,7 à 25°C

L'acide 2-éthylhexanoïque est connu pour former des complexes métalliques stables.
Les sels métalliques et les complexes de l'acide 2-éthylhexanoïque trouvent des applications dans diverses industries, telles que la production de stabilisateurs thermiques pour le PVC (polychlorure de vinyle).
L'acide 2-éthylhexanoïque est utilisé dans la production de matériaux polymères.

Par exemple, l'acide 2-éthylhexanoïque peut être impliqué dans la synthèse de polymères par des processus tels que les réactions de polycondensation.
Certains carboxylates métalliques dérivés de l'acide 2-éthylhexanoïque peuvent agir comme catalyseurs dans diverses réactions chimiques, y compris les réactions d'estérification et de transestérification.
L'acide 2-éthylhexanoïque est parfois utilisé comme additif dans les lubrifiants pour améliorer leurs performances.

L'acide 2-éthylhexanoïque peut contribuer à améliorer les propriétés lubrifiantes et la stabilité thermique des huiles.
L'acide 2-éthylhexanoïque a une odeur caractéristique et quelque peu désagréable.
Cette propriété peut être pertinente dans les applications où l'odeur peut être un facteur à prendre en compte, comme dans la formulation de produits de consommation.

Comme pour tout produit chimique, des normes et des directives réglementaires peuvent s'appliquer à la production, à la manipulation et à l'utilisation de l'acide 2-éthylhexanoïque.
Les utilisateurs doivent connaître et respecter les réglementations en vigueur en matière de sécurité et d'environnement.
Les recherches en cours explorent de nouvelles applications et de nouveaux procédés impliquant l'acide 2-éthylhexanoïque.

Les chercheurs peuvent étudier les propriétés de l'acide 2-éthylhexanoïque pour des avancées potentielles dans la science des matériaux, la catalyse ou d'autres domaines.
L'acide 2-éthylhexanoïque, Europe est un liquide incolore, à haut point d'ébullition ayant une odeur douce.
Les sels métalliques de l'acide 2-éthyl hexanoïque sont utilisés comme séchoirs pour les peintures, les encres, les vernis et les émaux inodores. Le cobalt et le manganèse sont les séchoirs les plus importants.

L'acide 2-éthylhexanoïque est un liquide clair avec une odeur douce. Composé organique, ce produit chimique est un acide carboxylique aliphatique utilisé à la fois dans les produits industriels et de consommation.
Dans les produits de consommation, l'acide 2-éthylhexanoïque se trouve dans les dégivreurs, les produits d'entretien automobile, les peintures, les graisses et les lubrifiants, pour n'en nommer que quelques-uns.
Sur le plan industriel, ce produit chimique a des applications dans les stabilisants, les conservateurs, les liquides de refroidissement, les agents mouillants, les pesticides et les lubrifiants.

L'acide 2-éthyl hexanoïque est un intermédiaire chimique utilisé comme composé, par exemple dans la production de lubrifiants synthétiques ainsi que d'additifs pour huile.
BASF exploite une usine de production d'acide 2-éthylhexanoïque sur son site de Verbund à Ludwigshafen, en Allemagne.
Le premier du genre dans la région de l'ASEAN et devrait être mis en service au quatrième trimestre 2016, avec une capacité annuelle totale de 30 000 tonnes métriques.

Le terme « intégration en amont » explique les avantages du concept Verbund de BASF.
En reliant une plante à une autre, les produits et sous-produits d'une plante pourraient servir de précurseur dans d'autres plantes.
L'acide 2-éthylhexanoïque est un acide carboxylique.

Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, à la fois organiques (par exemple, les amines) et inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent de l'évolution de quantités importantes de chaleur.

La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques avec six atomes de carbone ou moins sont librement ou modérément solubles dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l'eau.
L'acide carboxylique soluble se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.

De nombreux acides 2-éthylhexanoïques insolubles réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.
Les acides 2-éthylhexanoïque en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent également en principe pour les acides 2-éthylhexanoïques solides, mais sont lentes si l'acide solide reste sec.

Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d'eau de l'air et se dissoudre suffisamment dans l'acide 2-éthylhexanoïque pour corroder ou dissoudre les pièces et les récipients en fer, en acier et en aluminium.
Les acides 2-éthylhexanoïque, comme les autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.

Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Les gaz et la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec les composés diazoïques, les dithiocarbamates, les isocyanates, les mercaptans, les nitrures et les sulfures.
Les acides 2-éthylhexanoïque, en particulier en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et les bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais toujours de la chaleur.
Comme d'autres composés organiques, les acides 2-éthylhexanoïques peuvent être oxydés par des agents oxydants forts et réduits par des agents réducteurs forts.
Ces réactions génèrent de la chaleur. Une grande variété de produits est possible.

Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; Comme d'autres acides, ils catalysent souvent (augmentent la vitesse) des réactions chimiques.
L'acide 2-éthylhexanoïque peut subir diverses réactions chimiques pour former des dérivés.
Par exemple, l'acide 2-éthylhexanoïque peut être estérifié pour produire des esters qui sont utilisés comme plastifiants dans la fabrication de plastiques flexibles.

Lorsqu'il est utilisé dans la synthèse de polymères, l'acide 2-éthylhexanoïque peut influencer les propriétés des matériaux résultants.
L'incorporation de l'acide 2-éthylhexanoïque peut affecter des facteurs tels que la flexibilité, l'adhérence et la stabilité thermique du produit final.
En raison de sa capacité à améliorer les propriétés d'adhérence, l'acide 2-éthylhexanoïque est parfois incorporé dans les formulations adhésives.

L'acide 2-éthylhexanoïque contribue à la capacité de l'adhésif à adhérer à diverses surfaces.
Des techniques analytiques, telles que la chromatographie en phase gazeuse, la spectrométrie de masse et la résonance magnétique nucléaire (RMN), sont souvent utilisées pour identifier et quantifier l'acide 2-éthylhexanoïque dans différents échantillons.
Bien que l'acide 2-éthylhexanoïque ne soit pas connu pour sa toxicité extrême, des précautions appropriées doivent être prises lors de sa manipulation.

Comme pour tout produit chimique, son impact sur les systèmes biologiques et l'environnement doit être pris en compte dans les applications industrielles.
La production et la demande du marché pour l'acide 2-éthylhexanoïque peuvent varier selon les régions et les industries.
L'acide 2-éthyl hexanoïque est produit à l'échelle commerciale et est un produit chimique important dans le secteur de la fabrication.

Les recherches en cours pourraient se concentrer sur l'optimisation de la synthèse de l'acide 2-éthylhexanoïque, l'exploration de nouvelles applications ou le développement de méthodes de production plus respectueuses de l'environnement.
La compatibilité chimique de l'acide 2-éthylhexanoïque avec d'autres composés est une considération importante dans diverses applications, telles que la formulation de mélanges complexes tels que les revêtements, les encres et les adhésifs.

Utilise:
L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d'étain est utilisé dans la fabrication de poly(acide lactique-co-glycolique).
L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.

L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour la mousse de polyuréthane.

En tant que réactif dans l'estérification, l'alkynylation décarboxylative et la préparation de coumarines alkylées via des réactions de couplage décarboxylatives.
Dans le milieu organocatalytique pour la préparation de divers acides 2-éthylhexanoïques par réaction de Biginelli.
Les acides 2-éthylhexanoïque des métaux légers sont utilisés pour convertir certaines huiles minérales en graisses.

L'acide 2-éthylhexanoïque est utilisé comme plastifiant.
L'acide 2-éthylhexanoïque est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide 2-éthylhexanoïque sert également de produits de préservation du bois et fabrique des additifs lubrifiants ainsi que des lubrifiants synthétiques.

L'acide 2-éthylhexanoïque est également utilisé dans la production de stabilisateurs thermiques en PVC, de plastifiants à film PVB, de savons métalliques pour les séchoirs à peinture et d'autres produits chimiques.
L'acide 2-éthylhexanoïque est couramment utilisé dans les esters dans les plastifiants de film polyvinylbutyral (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques de l'acide 2-éthylhexanoïque sont utilisés pour préparer des additifs lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.

L'acide 2-éthylhexanoïque est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide 2-éthylhexanoïque produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
Ce monomère est idéal pour le sertissage d'émaux et de revêtements à 2 composants.

L'acide 2-éthylhexanoïque peut également être utilisé dans d'autres applications, notamment le catalyseur pour le polyuréthane, les produits de préservation du bois et les produits pharmaceutiques.
L'acide 2-éthylhexanoïque est parfois utilisé dans la formulation d'encres, en particulier dans la production d'encres d'imprimerie.
L'acide 2-éthylhexanoïque est un produit dont les propriétés contribuent à l'adhérence et à l'imprimabilité de l'encre sur diverses surfaces.

L'acide 2-éthylhexanoïque peut être impliqué dans la production de certains détergents, où ses propriétés tensioactives peuvent être avantageuses pour améliorer les performances de nettoyage.
Dans l'industrie textile, l'acide 2-éthylhexanoïque peut être utilisé comme agent auxiliaire dans des processus tels que la teinture ou la finition pour obtenir des propriétés textiles spécifiques.
L'acide 2-éthylhexanoïque est utilisé comme agent de flottation dans le traitement des minéraux, aidant à séparer les minéraux des minerais pendant le processus de flottation.

Certains dérivés de l'acide 2-éthylhexanoïque peuvent trouver des applications dans la formulation d'herbicides et de pesticides en agriculture.
Dans l'industrie de la construction, l'acide 2-éthylhexanoïque peut être utilisé dans la formulation de certains matériaux de construction, y compris les produits d'étanchéité et les calfeutrages.
L'acide 2-éthylhexanoïque peut être trouvé dans certains produits de nettoyage, contribuant à leur formulation pour une élimination efficace de la saleté, de la graisse ou d'autres contaminants.

Certains dérivés de qualité alimentaire de l'acide 2-éthylhexanoïque peuvent être utilisés dans la production de matériaux en contact avec les aliments, tels que les revêtements pour les matériaux d'emballage.
Dans l'industrie cosmétique, l'acide 2-éthylhexanoïque ou ses dérivés peuvent être utilisés dans la formulation de produits cosmétiques et de soins personnels tels que des lotions, des crèmes et des produits de soins capillaires.
Dans la production de panneaux solaires, l'acide 2-éthylhexanoïque peut être utilisé dans certains processus liés à la fabrication de cellules photovoltaïques.

L'acide 2-éthylhexanoïque peut être utilisé dans l'industrie pétrolière et gazière en tant que composant de certains produits chimiques pour champs pétrolifères utilisés pour le forage, la production ou les procédés de récupération assistée du pétrole.
Dans la recherche biomédicale, l'acide 2-éthylhexanoïque ou ses dérivés peuvent être explorés pour des applications potentielles, telles que les systèmes d'administration de médicaments ou les biomatériaux.
Les produits chimiques contenus dans l'acide 2-éthylhexanoïque auraient un usage cosmétique pour produire des émollients et des revitalisants pour la peau.

L'acide 2-éthylhexanoïque est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme le fond de teint, le correcteur et les produits de soins capillaires.
L'acide 2-éthylhexanoïque est également utilisé dans la fabrication de stabilisateurs de polychlorure de vinyle (PVC) et de plastifiants de polybutyral de vinyle (PVB) sous forme de sels métalliques.
L'acide 2-éthylhexanoïque réagit avec les composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.

Bisley International est le principal fournisseur de matières premières chimiques aux États-Unis et dans le monde entier depuis plus d'un demi-siècle.
L'acide 2-éthylhexanoïque contient des sels métalliques qui servent d'inhibiteurs de corrosion dans les liquides de refroidissement.
L'acide 2-éthyl hexanoïque est également utilisé pour fabriquer de l'ester de polyol qui agit comme lubrifiant pour les appareils frigorifiques.

Dans l'industrie du caoutchouc, l'acide 2-éthylhexanoïque est parfois utilisé comme aide à la vulcanisation.
L'acide 2-éthylhexanoïque peut contribuer à la réticulation des polymères de caoutchouc, améliorant ainsi la résistance et l'élasticité des produits en caoutchouc.
L'acide 2-éthylhexanoïque est utilisé comme additif dans certaines formulations de peinture pour améliorer des caractéristiques telles que les propriétés d'écoulement, le temps de séchage et l'adhérence aux surfaces.

L'acide 2-éthylhexanoïque est utilisé comme additif dans les formulations de carburant pour améliorer les propriétés de combustion et réduire les dépôts dans le moteur.
L'acide 2-éthylhexanoïque trouve une application dans l'industrie textile, où il peut être utilisé dans le traitement des fibres et des tissus, contribuant à certaines propriétés souhaitables.
En raison de ses propriétés lubrifiantes, l'acide 2-éthylhexanoïque peut être incorporé dans les fluides de travail des métaux pour améliorer leurs performances dans les opérations de coupe, de meulage et d'usinage.

Dans l'industrie pharmaceutique, l'acide 2-éthylhexanoïque peut servir d'intermédiaire dans la synthèse de certains composés pharmaceutiques.
L'acide 2-éthylhexanoïque peut être impliqué dans la production de tensioactifs, qui sont des composés qui abaissent la tension superficielle entre deux phases (par exemple entre un liquide et un solide).
En laboratoire, les chercheurs peuvent utiliser l'acide 2-éthylhexanoïque comme élément constitutif dans le développement de nouveaux matériaux, catalyseurs ou procédés.

Certains dérivés de l'acide 2-éthyl hexanoïque peuvent trouver une application dans l'industrie des arômes et des parfums.
Dans les procédés de galvanoplastie, l'acide 2-éthylhexanoïque peut être utilisé dans la formulation de certaines solutions d'électrolytes.
L'acide 2-éthylhexanoïque peut être utilisé : comme réactif dans l'estérification, l'alkynylation décarboxylative et la préparation de coumarines alkylées via des réactions de couplage décarboxylatives.

Dans le milieu organocatalytique pour la préparation de diverses 3,4-dihydropyrimidine-2(1H)-ones/thiones par réaction de Biginelli.
L'acide 2-éthylhexanoïque est un acide carboxylique polyvalent couramment utilisé dans une variété d'applications industrielles.
Lorsqu'il réagit avec certains métaux, il forme des sels qui sont largement utilisés comme additifs dans les formulations de peintures et de plastifiants, ainsi que dans la production de séchoirs de peinture et de laque et de stabilisateurs en PVC.

Les esters de l'acide 2-éthylhexanoïque, en particulier ceux obtenus par les glycols, les triglycols et les polyéthylèneglycols, sont connus pour leurs propriétés lubrifiantes.
Ce sont d'excellents plastifiants pour le PVC, la nitrocellulose, le caoutchouc chloré et le polypropylène.
Ces propriétés font de l'acide 2-éthylhexanoïque un choix populaire dans la production de divers produits chimiques et matériaux dans l'industrie.

L'acide 2-éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, l'acide 2-éthylhexanoïque est utilisé dans la fabrication de l'acide poly(lactique-co-glycolique).
L'acide 2-éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.

L'acide 2-éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide 2-éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, l'acide 2-éthylhexanoïque sert de catalyseur pour la mousse de polyuréthane.

L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique et pour la fabrication de résines utilisées pour la cuisson des émaux, des lubrifiants, des détergents, des adjuvants de flottation et des inhibiteurs de corrosion ; Également utilisé comme catalyseur pour le moussage du polyuréthane, pour l'extraction par solvant et pour la granulation des colorants.
L'acide 2-éthylhexanoïque est utilisé comme intermédiaire chimique pour de nombreux produits ; Environ 400 travailleurs de l'industrie manufacturière américaine sont potentiellement exposés. Utilisé dans les résines alkydes ; Utilisé au milieu des années 1980 comme agent de préservation du bois pour remplacer les chlorophénols ; [ACGIH] Utilisé pour fabriquer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes ; Également utilisé comme co-solvant et antimousse dans les pesticides, comme ingrédient actif dans le préservatif du bois Sinesto B (non utilisé aux États-Unis), dans les sécheurs de peinture, les stabilisateurs thermiques pour le PVC et comme catalyseur pour le moussage du polyuréthane, l'extraction par solvant et la granulation des colorants ; [HSDB] On ne le trouve dans aucun pesticide homologué aux États-Unis.

L'acide 2-éthylhexanoïque est utilisé comme matière première pour produire de l'huile d'ester de polyol, qui est principalement utilisée comme lubrifiant synthétique dans les systèmes de réfrigération.
L'acide 2-éthylhexanoïque et ses sels métalliques sont utilisés pour produire une variété de fluides fonctionnels, notamment des catalyseurs de production de polymères, des plastifiants dans la production de PVC, des inhibiteurs de corrosion dans les liquides de refroidissement, des stabilisants, des produits de préservation du bois et pour produire des additifs lubrifiants.
Le sel de zinc de l'acide 2-éthylhexanoïque est utilisé comme inhibiteur de corrosion dans les lubrifiants et le piégeur de sulfure d'hydrogène.

L'une des principales utilisations de l'acide 2-éthylhexanoïque est la production de plastifiants.
Les plastifiants sont des additifs qui augmentent la flexibilité et la durabilité des plastiques.
Les esters dérivés de l'acide 2-éthylhexanoïque, tels que le phtalate de dioctyle (DOP) et l'adipate de dioctyle (DOA), sont couramment utilisés dans la production de produits flexibles en PVC (polychlorure de vinyle), notamment les câbles, les revêtements de sol et le cuir synthétique.

L'acide 2-éthylhexanoïque est utilisé dans la synthèse de carboxylates métalliques, qui servent de catalyseurs dans divers processus chimiques.
Ces catalyseurs trouvent des applications dans la production de polyuréthanes, de revêtements et d'autres réactions de polymérisation.
L'acide 2-éthylhexanoïque est utilisé dans la formulation de revêtements, de résines et d'encres.

Les propriétés du produit chimique contribuent à l'adhérence, à la durabilité et à la flexibilité des revêtements, ce qui le rend précieux dans l'industrie de la peinture et des revêtements.
En raison de ses propriétés adhésives, l'acide 2-éthylhexanoïque est utilisé dans la formulation d'adhésifs et de produits d'étanchéité.
L'acide 2-éthylhexanoïque aide à améliorer les caractéristiques de liaison de ces produits.

Dans l'industrie des lubrifiants, l'acide 2-éthylhexanoïque est parfois utilisé comme additif pour améliorer les propriétés lubrifiantes et la stabilité thermique des huiles.
L'acide 2-éthylhexanoïque est impliqué dans la synthèse de divers polymères.
Le produit chimique peut être utilisé comme monomère ou réactif dans les réactions de polycondensation, contribuant à la formation de matériaux polymères aux propriétés spécifiques.

L'acide 2-éthylhexanoïque est utilisé dans l'extraction de certains métaux des minerais.
L'acide 2-éthylhexanoïque est capable de former des complexes métalliques stables et est utilisé dans les processus liés à l'extraction et à la purification des métaux.
Les carboxylates métalliques dérivés de l'acide 2-éthylhexanoïque agissent comme catalyseurs dans les réactions chimiques, facilitant des processus tels que l'estérification et la transestérification.

Danger pour la santé :
Nocif en cas d'ingestion, d'inhalation ou d'absorption par la peau.
Le matériau est extrêmement destructeur pour les tissus des muqueuses et des voies respiratoires supérieures, les yeux et la peau.

L'inhalation peut être mortelle en raison de spasmes, d'une inflammation et d'un œdème du larynx, des bronches, d'une pneumopathie chimique et d'un œdème pulmonaire.
Les symptômes de l'exposition peuvent inclure une sensation de brûlure, une toux, une respiration sifflante, une laryngite, un essoufflement, des maux de tête, des nausées et des vomissements.

Profil d'innocuité :
Modérément toxique par ingestion et contact avec la peau.
Un tératogène expérimental.
Un irritant cutané et oculaire sévère.

Combustible lorsqu'il est exposé à la chaleur ou aux flammes.
Lorsqu'il est chauffé jusqu'à la décomposition, il émet des fumées âcres et irritantes.
L'acide 2-éthylhexanoïque peut être irritant pour la peau, les yeux et le système respiratoire.

Le contact direct avec la peau ou les yeux peut provoquer une irritation et l'inhalation de vapeurs ou de brumes peut irriter les voies respiratoires.
L'ingestion d'acide 2-éthylhexanoïque peut provoquer une irritation du tube digestif.
L'ingestion n'est pas une voie d'exposition courante dans les milieux industriels, mais l'ingestion accidentelle doit être évitée.

Une exposition prolongée ou répétée à l'acide 2-éthylhexanoïque peut entraîner une sensibilisation chez certaines personnes, entraînant des réactions allergiques lors d'une exposition ultérieure.
Il existe un risque potentiel d'aspiration en cas d'ingestion de la substance.
L'aspiration dans les poumons pendant l'ingestion peut entraîner une pneumonie chimique, qui peut être grave.

L'élimination ou le rejet inadéquat de l'acide 2-éthylhexanoïque dans l'environnement peut avoir des effets néfastes.
L'acide 2-éthylhexanoïque peut être nocif pour la vie aquatique et peut contribuer à la pollution s'il n'est pas manipulé et éliminé de manière responsable.

ACIDE 2-ÉTHYLHEXANOÏQUE (2-EHA)
L'acide 2-éthylhexanoïque (2-EHA) est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une odeur légère.
L'acide 2-éthylhexanoïque (2-EHA) est un liquide incolore à jaune clair avec une odeur douce.
L'acide 2-éthylhexanoïque est légèrement soluble dans l'eau.

Numéro CAS: 149-57-5
Formule moléculaire: C8H16O2
Poids moléculaire: 144.21
No EINECS : 205-743-6

L'acide 2-éthylhexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles qui peuvent se dissoudre dans les solvants organiques non ioniques.
L'acide 2-éthylhexanoïque (2-EHA) brûle bien que l'acide 2-éthylhexanoïque puisse nécessiter un certain effort pour s'enflammer.
L'acide 2-éthylhexanoïque est corrosif pour les métaux et les tissus.

L'acide 2-éthylhexanoïque (2-EHA) est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque est un acide carboxylique.
L'acide 2-éthylhexanoïque (2-EHA) est un liquide clair à l'odeur douce.

L'acide 2-éthylhexanoïque est un composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
Un composé organique, l'acide 2-éthylhexanoïque (2-EHA) est un acide carboxylique aliphatique utilisé dans les produits industriels et de consommation.
C'est un acide carboxylique qui est largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.

L'acide 2-éthylhexanoïque est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque (2-EHA) est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque forme des composés avec des cations métalliques qui ont une stœchiométrie sous forme d'acétates métalliques.

Ces complexes d'acide 2-éthylhexanoïque (2-EHA) sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'agents de séchage de l'huile.
Ils sont très solubles dans les solvants non polaires.

L'acide 2-éthylhexanoïque est un acide carboxylique polyvalent qui est couramment utilisé dans une variété d'applications industrielles.
Lorsqu'il réagit avec certains métaux, il forme des sels qui sont largement utilisés comme additifs dans les formulations de peinture et de plastifiant, ainsi que dans la production de séchoirs à peinture et à laque et de stabilisants en PVC.

Les esters de l'acide 2-éthylhexanoïque, en particulier ceux obtenus par les glycols, les triglycols et les polyéthylèneglycols, sont connus pour leurs propriétés lubrifiantes.
Ce sont d'excellents plastifiants pour le PVC, la nitrocellulose, le caoutchouc chloré et le polypropylène.
Ces propriétés font de l'acide 2-éthylhexanoïque un choix populaire dans la production de divers produits chimiques et matériaux dans l'industrie.

L'acide 2-éthylhexanoïque (2-EHA) est une huile visqueuse et incolore avec une classe carboxylique trouvée sur une chaîne carbonée C8 et est non miscible dans l'eau.
L'acide 2-éthylhexanoïque (2-EHA) peut être utilisé comme substitut de l'acide naphténique dans certaines applications.
Industriellement, l'acide 2-éthylhexanoïque (2-EHA) est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.

En d'autres termes, l'acide 2-éthylhexanoïque (2-EHA) peut être fabriqué plus efficacement que l'acide naphténique.
L'acide 2-éthylhexanoïque (2-EHA) produit des composés métalliques qui subissent une stœchiométrie sous forme d'acétates métalliques.
Dans la plupart des cas, les dérivés de l'acide 2-éthylhexanoïque (2-EHA) sont utilisés dans des applications chimiques industrielles et organiques.

Les complexes d'acide 2-éthylhexanoïque (2-EHA) servent également de catalyseurs dans les réactions d'oxydation et les polymérisations (comme agents de séchage de l'huile).
En tant qu'intermédiaire chimique polyvalent, l'acide 2-éthylhexanoïque (2-EHA) a de multiples applications, notamment les suivantes.

Point de fusion : -59 °C
Point d'ébullition : 228 °C (lit.)
Densité: 0.906
Densité de vapeur: 4.98 (vs air)
pression de vapeur: <0,01 mm Hg (20 °C)
indice de réfraction: n20 / D 1.425 (lit.)
Point d'éclair: 230 ° F
température de stockage : Conserver à une température inférieure à +30 °C.
Solubilité: 1.4g / L
forme: Liquide
pka: pK1:4.895 (25°C)
couleur:Clair
PH : 3 (1,4 g/l, H2O, 20°C)
Odeur : Légère odeur
Plage de PH:3 à 1,4 g/l à 20 °C
Viscosité: 7.73 cps
limite d'explosivité : 1,04 %, 135 °F
Solubilité dans l'eau : 2 g/L (20 ºC)
BRN : 1750468
Limites d'exposition ACGIH : TWA 5 mg/m3
LogP: 2.7 à 25°C

L'acide 2-éthylhexanoïque (EHXA, 2-EHA) est un acide carboxylique aliphatique important sur le plan industriel.
La présence de la structure ramifiée dans l'acide 2-éthylhexanoïque (2-EHA) peut influencer les propriétés des produits qu'elle est utilisée pour créer, offrant des avantages spécifiques en termes de viscosité, de volatilité et d'autres facteurs.

L'acide 2-éthylhexanoïque (2-EHA) est considéré comme nocif s'il est ingéré, inhalé ou s'il entre en contact avec la peau et les yeux.
Comme pour tout produit chimique, des mesures de sécurité appropriées doivent être suivies lors de la manipulation et du travail avec de l'acide 2-éthylhexanoïque (2-EHA).
L'acide 2-éthylhexanoïque (2-EHA) est réglementé par divers organismes de santé et de sécurité en raison de ses dangers potentiels.

L'acide 2-éthylhexanoïque (2-EHA) est important de suivre les réglementations et directives pertinentes lors de l'utilisation de ce composé.
L'acide 2-éthylhexanoïque (2-EHA) peut être synthétisé par réaction du n butyraldéhyde avec l'isobutène en présence d'acides ou de catalyseurs acides.

L'acide 2-éthylhexanoïque (2-EHA), également connu sous le nom d'acide 2-éthylcaproïque, est un acide carboxylique de formule chimique C8H16O2.
C'est un composé organique couramment utilisé dans diverses applications industrielles, en particulier dans la production de produits chimiques, de polymères et de revêtements.

Dans la production de revêtements et de résines, les matériaux à base d'acide 2-éthylhexanoïque (2-EHA) contribuent à la formulation de produits aux propriétés diverses.
Les résines alkydes, par exemple, sont largement utilisées dans l'industrie de la peinture et des revêtements en raison de leur capacité à offrir une excellente adhérence, brillance et durabilité.

L'utilisation de l'acide 2-éthylhexanoïque (2-EHA) dans les revêtements contribue également à créer des formulations avec un bon débit, nivellement et filmogène
L'acide 2-éthylhexanoïque (2-EHA) est un acide carboxylique saturé à chaîne hydrocarbonée ramifiée.
La partie « 2-éthyle » de son nom indique la présence d'un groupe éthyle (CH3CH2) sur le deuxième atome de carbone de la chaîne hydrocarbonée.

Production
L'acide 2-éthylhexanoïque (2-EHA) est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldol de l'aldéhyde donne du 2-éthylhexénal qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

Utilise
L'acide 2-éthylhexanoïque (2-EHA) est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, l'acide 2-éthylhexanoïque (2-EHA) est utilisé dans la fabrication de l'acide poly(lactique-co-glycolique).
Il est également utilisé comme stabilisant pour les chlorures de polyvinyle.

L'acide 2-éthylhexanoïque (2-EHA) est également impliqué dans l'extraction par solvant et la granulation des colorants.
En outre, il est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des auxiliaires de flottation, des inhibiteurs de corrosion et des résines alkydes.
En plus de cela, il sert de catalyseur pour le moussage de polyuréthane.

L'acide 2-éthylhexanoïque (2-EHA) est utilisé dans les produits suivants : produits de revêtement, produits chimiques de laboratoire, lubrifiants et graisses et fluides de travail des métaux.
L'acide 2-éthylhexanoïque (2-EHA) a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).

L'une des principales applications de l'acide 2-éthylhexanoïque (2-EHA) est comme précurseur dans la production de plastifiants.
Les plastifiants sont des additifs utilisés dans l'industrie des plastiques pour améliorer la flexibilité, la durabilité et les caractéristiques de traitement des polymères.
L'acide 2-éthylhexanoïque (2-EHA) est couramment utilisé pour synthétiser des esters qui fonctionnent comme plastifiants dans diverses formulations de polymères.

L'acide 2-éthylhexanoïque (2-EHA) est utilisé comme élément constitutif dans la production de revêtements, de peintures et de résines.
Il peut être polymérisé pour créer des liants et des résines qui sont utilisés dans les revêtements architecturaux, les revêtements industriels et d'autres applications.

L'acide 2-éthylhexanoïque (2-EHA) peut réagir avec divers métaux pour former des sels métalliques, qui sont utilisés comme catalyseurs dans différentes réactions chimiques.
En outre, les esters de l'acide 2-éthylhexanoïque (2-EHA) ont des applications dans diverses industries, telles que la production de lubrifiants et de cosmétiques.

Dans certains cas, les dérivés de l'acide 2-éthylhexanoïque (2-EHA) sont utilisés comme intermédiaires dans la synthèse de composés pharmaceutiques.
L'acide 2-éthylhexanoïque (2-EHA) est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide 2-éthylhexanoïque (2-EHA) sert également de conservateur du bois et fabrique des additifs lubrifiants ainsi que des lubrifiants synthétiques.

L'acide 2-éthylhexanoïque (2-EHA) est également utilisé dans la production de stabilisants thermiques en PVC, de plastifiants de film PVB, de savons métalliques pour séchoirs à peinture et d'autres produits chimiques.
L'acide 2-éthylhexanoïque (2-EHA) est un précurseur essentiel pour la production de plastifiants sans phtalates.

Les esters dérivés de l'acide 2-éthylhexanoïque (2-EHA) sont utilisés pour rendre les matières plastiques plus flexibles, résilientes et adaptées à diverses applications telles que les produits en PVC, les pièces automobiles et les matériaux de construction.
L'acide 2-éthylhexanoïque (2-EHA) est utilisé pour créer des résines alkydes et des revêtements qui trouvent des applications dans les peintures, les vernis, les encres et les adhésifs.
Ces revêtements offrent une protection durable et des finitions brillantes pour les surfaces.

L'acide 2-éthylhexanoïque (2-EHA) peut être converti en sels métalliques, tels que les sels de cobalt et de manganèse, qui sont utilisés comme catalyseurs dans diverses réactions chimiques, y compris les procédés de polymérisation et d'oxydation.
L'acide 2-éthylhexanoïque (2-EHA) est utilisé comme additif dans les lubrifiants pour améliorer les performances en réduisant la friction, en améliorant la résistance à l'usure et en assurant la stabilité thermique.

Les dérivés de l'acide 2-éthylhexanoïque (2-EHA) sont utilisés dans les produits de soins personnels comme les cosmétiques, les soins de la peau et les articles de soins capillaires comme émollients, émulsifiants et agents de conditionnement.
L'acide 2-éthylhexanoïque (2-EHA) est couramment utilisé dans les esters des plastifiants de film polyvinylbutyral (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques de l'acide 2-éthylhexanoïque (2-EHA) sont utilisés pour préparer des additifs de lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.

L'acide 2-éthylhexanoïque (2-EHA) est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
Il produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
Ce monomère est idéal pour les émaux stoving et les revêtements à 2 composants.
L'acide 2-éthylhexanoïque (2-EHA) peut également être utilisé dans d'autres applications, y compris le catalyseur pour le polyuréthane, les produits de préservation du bois et les produits pharmaceutiques.

L'acide 2-éthylhexanoïque (2-EHA) aurait une utilisation cosmétique pour produire des émollients et des revitalisants pour la peau.
Il est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme les produits de fond de teint, de correcteur et de soins capillaires.

L'acide 2-éthylhexanoïque (2-EHA) est également utilisé dans la fabrication de stabilisants au chlorure de polyvinyle (PVC) et de plastifiants polyvinylbutyral (PVB) sous forme de sels métalliques.
Il réagit avec des composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sel métalliques.

L'acide 2-éthylhexanoïque (2-EHA) peut être utilisé: Comme réactif dans l'estérification, l'alcynylation décarboxylative et la préparation de coumarines d'alkyle via des réactions de couplage décarboxylatives.
Dans le milieu organocatalytique pour la préparation de diverses 3,4 dihydropyrimidine-2(1H)-ones/thiones par réaction de Biginelli.

L'acide 2-éthylhexanoïque (2-EHA) est largement utilisé comme stabilisant et agent de préservation du bois.
L'acide 2-éthylhexanoïque (2-EHA) a diverses applications industrielles, telles que:liquide de refroidissement dans l'automobileagent mouillant lubrifiant synthétique co-solvantséchage des peinturesagent antimousse dans les pesticides

Danger pour la santé
Acide 2-éthylhexanoïque (2-EHA), nocif en cas d'ingestion, d'inhalation ou d'absorption cutanée.
Le matériau est extrêmement destructeur pour les tissus des muqueuses et des voies respiratoires supérieures, des yeux et de la peau.
Acide 2-éthylhexanoïque (2-EHA), les symptômes d'exposition peuvent inclure une sensation de brûlure, de la toux, une respiration sifflante, une laryngite, un essoufflement, des maux de tête, des nausées et des vomissements.

L'acide 2-éthylhexanoïque (2-EHA) a des applications industrielles, il est important de noter qu'il est considéré comme toxique, en particulier sous forme concentrée.
Des procédures appropriées de manipulation, d'entreposage et d'élimination sont essentielles pour assurer la sécurité des travailleurs et prévenir la contamination de l'environnement.

Impact sur l’environnement:
L'acide 2-éthylhexanoïque (2-EHA) peut varier en fonction de l'application spécifique et des réglementations locales.
Il est important de suivre les bonnes pratiques d'élimination des déchets afin de minimiser les effets néfastes potentiels.

Considérations réglementaires
L'acide 2-éthylhexanoïque (2-EHA) est réglementé par des organismes de santé et de sécurité tels que l'Occupational Safety and Health Administration (OSHA) aux États-Unis.
L'acide 2-éthylhexanoïque (2-EHA) est important de respecter les directives réglementaires et les précautions de sécurité lors de l'utilisation de ce composé.

Synonymes
ACIDE 2-ÉTHYLHEXANOÏQUE
149-57-5
Acide 2-éthylcaproïque
Acide 2-éthylhexanoïque
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 3-heptanécarboxylique
Acide éthylhexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthylhexanoïque
acide alpha-éthylcaproïque
2-Éthylhexansaeure
Acide 2-éthyl-hexanoïque
125804-07-1
Acide éthylhexanoïque, 2-
ACIDE 2 ÉTHYLHEXANOÏQUE
CCRIS 3348
HSDB 5649
acide alpha-éthyl caproïque
Kyselina 2-ethylkapronova [Tchèque]
NSC 8881
Kyselina 2-éthylkapronova
EINECS 205-743-6
Acide alpha.-éthylcaproïque
Acide éthyl-1-hexanoïque
UNII-01MU2J7VVZ
Kyselina heptan-3-karboxylova [tchèque]
BRN 1750468
01MU2J7VVZ
Kyselina heptan-3-karboxylova
(IA3-01371)
ACIDE 2-ÉTHYLHEXOÏQUE,AR
61788-37-2
DTXSID9025293
CHEBI:89058
2-éthyl-2-éthylhexanoïque
NSC-8881
EINECS 262-971-9
Acide 2-éthylhexanoïque
CE 205-743-6
DTXCID805293
Acide éthylhexanoïque 2->=99 %
C8H16O2.1/2Cu
Acide 2-éthylhexanoïque, étalon analytique
CAS-149-57-5
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide 2-éthylhexanoïque, sel de cuivre(2++)
MFCD00002675
Acide 2-éthylcapronique
Acide 2-éthyl-hexonique
acide alpha-éthylhexanoïque
AHM (code CHRIS)
Acide alpha.-éthylhexanoïque
SCHEMBL25800
Acide 2-éthylhexanoïque, 99%
MLS002415695
Acide 2-éthylhexanoïque inhalable
CHEMBL1162485
WLN: QVY4 & 2
NSC8881
HMS2267F21
CS-CY-00011
STR05759
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Tox21_201406
Tox21_300108
LMFA01020087
LS-869
AKOS009031416
AT29893
CS-W016381
SB44987
SB44994
Hexanoic (2-éthyl-éthylétate) de tridécyle
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
CNGC00258957-01
SMR001252268
2-éthyl- , ester de tridécyl
E0120
FT-0612273
FT-0654390
EN300-20410
N° Q209384
Acide éthylhexanoïque, 2-; (Acide éthylacétique butyle)
W-109079
Azilsartan K Medoxomil Impureté-7 (Impuretés 2-EHA)
F0001-0703
Z104478072
18FEB650-7573-4EA0-B0CD-9D8BED766547
acide 2-éthylhexanoïque, étalon pharmaceutique secondaire; Matériau de référence certifié
ACIDE 2-ÉTHYLHEXANOÏQUE (ACIDE 2-ÉTHYLHEXANOÏQUE)
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore à jaune clair avec une odeur douce.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est corrosif pour les métaux et les tissus.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour fabriquer des sécheurs de peinture et des plastifiants.

Numéro CAS : 149-57-5
Formule moléculaire : C8H16O2
Poids moléculaire : 144,21
Numéro EINECS : 205-743-6

Acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) , 149-57-5, acide 2-éthylcaproïque, acide hexanoïque, acide 2-éthylhexanoïque, acide éthylhexanoïque, acide éthylhexoïque, acide 2-éthylhexoïque, acide butyléthylacétique, acide 2-butylbutanoïque, acide 3-heptanecarboxylique, acide éthylhexanoïque, acide 2-éthyl-hexoïque, acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), acide alpha-éthylcaproïque, acide 2-éthyl-hexanoïque, acide éthyl hexanoïque, acide 2-, alpha-éthyl caproïque, Acide 2-éthyl-1-hexanoïque, 61788-37-2, 01MU2J7VVZ, 2-EHA, ACIDE 2-ÉTHYL HEXOÏQUE, AR, DTXSID9025293, CHEBI :89058, NSC-8881, MFCD00002675, 2-éthylhexanoïque, 2-éthylhexansaeure, DTXCID805293, 2-éthylhexanoïque (acide 2-éthylhexanoïque) , >=99%, acide 2-éthylhexanoïque (acide 2-éthyl hexanoïque) , étalon analytique, CAS-149-57-5, 2 ACIDE ÉTHYLHEXANOÏQUE, CCRIS 3348, HSDB 5649, Kyselina 2-éthylkapronova [tchèque], NSC 8881, Kyselina 2-éthylkapronova, EINECS 205-743-6, Acide (+/-)-2-éthylhexanoïque (acide 2-éthylhexanoïque) , UNII-01MU2J7VVZ, Kyselina heptan-3-karboxylova [tchèque], BRN 1750468, Kyselina heptan-3-karboxylova, AI3-01371, Acide hexanoïque, 2-éthyl-, (-)-, EINECS 262-971-9, Acide 2-éthylcapronique, Acide 2-éthyl-hexonique, Acide alpha-éthylhexanoïque, .acide alpha.-éthylhexanoïque, EC 205-743-6, SCHEMBL25800, acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), 99%, MLS002415695, CHEMBL1162485, WLN : QVY4 & 2, NSC8881, HMS2267F21, STR05759, Acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) [HSDB], Tox21_201406, Tox21_300108, LMFA01020087, AKOS009031416, AT29893, CS-W016381, SB44987, SB44994, acide hexanoïque, 2-éthyl-, ester tridécylique, NCGC00091324-01, NCGC00091324-02, NCGC00091324-03, NCGC00253985-01, NCGC00258957-01, SMR001252268, E0120, FT-0612273, FT-0654390, EN300-20410, Q209384, W-109079, F0001-0703, Z104478072, 18FEB650-7573-4EA0-B0CD-9D8BED766547, Acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) , Secondaire pharmaceutique Standard; Matériau de référence certifié.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une molécule très hydrophobe, pratiquement insoluble dans l'eau, et relativement neutre.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un composé potentiellement toxique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé pour préparer des dérivés métalliques solubles dans les solvants organiques non polaires.

Ces dérivés lipophiles contenant des métaux sont utilisés comme catalyseurs dans les polymérisations.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé pour préparer des dérivés métalliques solubles dans les solvants organiques non polaires.

Ces dérivés lipophiles contenant des métaux sont utilisés comme catalyseurs dans les polymérisations.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également connu sous le nom d'acide 2-EHA ou 2-éthylcaproïque, est un acide gras saturé de formule chimique C8H16O2.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore à l'odeur caractéristique.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans diverses industries, y compris la production de plastifiants, de lubrifiants et de revêtements.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la fabrication de l'acide poly(lactique-co-glycolique).

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.

En plus de cela, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sert de catalyseur pour la mousse de polyuréthane.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique aliphatique important pour l'industrie.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé comme stabilisant et agent de préservation du bois.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) a diverses applications industrielles, telles que :liquide de refroidissement dans les automobileslubrifiant synthétiqueagent mouillant co-solvantséchage des peinturesagent antimousse dans les pesticides
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également connu sous le nom de 2-éthylhexanoate ou sinesto b, appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une huile visqueuse incolore.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est fourni sous forme de mélange racémique.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldol de l'aldéhyde donne de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) forme des composés avec des cations métalliques qui ont une stœchiométrie comme acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'« agents de séchage de l'huile ».

Ils sont très solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Il ne s'agit cependant pas de complexes de coordination ioniques mais neutres en charge.

Leurs structures s'apparentent aux acétates correspondants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un composé organique liquide incolore à jaune clair.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans la préparation de dérivés métalliques solubles dans les solvants organiques non polaires.
L'acide carboxylique hautement toxique et combustible est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore et transparent avec une légère odeur.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est légèrement soluble dans l'eau.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être produit industriellement à partir de propylène qui peut être produit de manière renouvelable.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une molécule très hydrophobe, pratiquement insoluble (dans l'eau), et relativement neutre.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un composé potentiellement toxique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) (2-EHA) est l'un des produits phares du groupe Perstorp qui dispose de la plus grande capacité de production au monde.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore avec un groupe carboxylique basé sur une chaîne carbonée C8.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans les esters pour les plastifiants de film PVB et les lubrifiants synthétiques, dans la production de savons métalliques pour les séchoirs à peinture, dans les liquides de refroidissement automobiles et les stabilisateurs en PVC.
D'autres domaines d'application incluent les produits de préservation du bois, les catalyseurs pour le polyuréthane et les produits pharmaceutiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé par les professionnels (utilisations répandues), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) (EHXA, 2-EHA) est un acide carboxylique aliphatique important pour l'industrie.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé comme stabilisant et agent de préservation du bois.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore à jaune clair avec une odeur douce.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) brûlera, bien qu'il faille un certain effort pour s'enflammer.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est légèrement soluble dans l'eau.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est corrosif pour les métaux et les tissus.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour fabriquer des sécheurs de peinture et des plastifiants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldol de l'aldéhyde donne de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), qui est hydrogéné en 2-éthylhexanal.

L'oxydation de cet aldéhyde donne l'acide carboxylique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) forme des composés avec des cations métalliques qui ont une stœchiométrie comme acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.

Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'agents de séchage d'huile.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique principalement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.
Les produits non classés fournis par Spectrum sont indicatifs d'une qualité adaptée à un usage industriel général ou à des fins de recherche et ne conviennent généralement pas à la consommation humaine ou à un usage thérapeutique.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé comme intermédiaire pour les sécheurs de peinture et de revêtement, comme modificateur de résine alkyde, comme catalyseur pour la production de peroxydes et comme stabilisant pour les esters d'huile lubrifiante et le PVC, etc., et a une large gamme d'applications sur le marché.
L'acide 2-éthylhexanoïque (acide 2-éthyl hexanoïque) est un composé chiral synthétisé par la synthèse asymétrique de l'acide (R)-2-hydroxyacétique.
Les énantiomères de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sont séparés par une colonne d'injection, qui peut être utilisée pour déterminer la pureté énantiomérique des mélanges racémiques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également un substrat naturel pour les enzymes humaines et il a été démontré qu'il a une activité stéréosélective dans les essais.
Les enzymes qui métabolisent l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) comprennent l'acide carboxylique synthase, qui le convertit en acide crotonique, et l'acyl coenzyme A déshydrogénase, qui le convertit en 3-méthylcrotonyl-CoA.
La stéréosélectivité de ces enzymes a été étudiée à l'aide de techniques cristallographiques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également un inhibiteur régiosélectif de l'aminot aminot à chaîne ramifiée
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
Cet acide carboxylique est largement utilisé pour préparer des dérivés métalliques solubles dans des solvants organiques non polaires.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un mélange synthétique d'isomères d'acides carboxyliques tertiaires avec dix atomes de carbone.
Il peut être utilisé pour remplacer l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) et la plupart de ses sels, qui ont été reclassés en catégorie reprotoxique 1B par le Comité d'évaluation des risques de l'ECHA, à compter de novembre 2023.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également connu sous le nom d'acide 2-EH, est une substance liquide incolore à légèrement jaune avec une odeur légèrement sucrée.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est légèrement soluble dans l'eau et il est inflammable, mais ne s'enflamme pas d'auto-inflammation.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est considéré comme corrosif pour la plupart des métaux.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le plus souvent utilisé dans l'industrie de la peinture et des revêtements ainsi que dans la fabrication de divers plastifiants.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans la production de sécheurs de peinture et de plastifiants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le plus souvent utilisé dans les esters pour les plastifiants de film PVB et dans les lubrifiants synthétiques.
D'autres applications courantes sont dans les liquides de refroidissement automobiles en tant qu'inhibiteur de corrosion, dans les stabilisateurs en PVC et dans la production de savons métalliques pour les sécheurs de peinture.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également un catalyseur courant dans les produits pharmaceutiques et pour le polyuréthane.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) se trouve souvent comme ingrédient dans les produits de préservation du bois.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est souvent utilisé comme intermédiaire chimique dans la production de divers produits chimiques et matériaux.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) a des applications dans la synthèse d'esters, de plastifiants et de dérivés métalliques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est couramment utilisé comme matière première dans la production de carboxylates métalliques, qui sont utilisés comme catalyseurs dans divers processus chimiques.
De plus, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme composant dans la formulation de certains revêtements, adhésifs et produits d'étanchéité.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une propriété unique qui le rend adapté à une utilisation dans ces applications, contribuant à des propriétés telles que l'adhérence et la flexibilité.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être synthétisé par diverses méthodes, notamment l'oxydation du 2-éthylhexanol ou l'estérification du 2-éthylhexanol avec de l'acide acétique, suivie de l'hydrolyse.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est couramment utilisé dans la production de plastifiants, qui sont des additifs qui améliorent la flexibilité et la durabilité des plastiques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sert de précurseur dans la préparation des carboxylates métalliques, qui sont utilisés comme catalyseurs dans des réactions telles que la production de polyuréthanes.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la formulation de revêtements, de résines et d'encres, contribuant ainsi aux performances et aux propriétés d'application de ces matériaux.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) agit comme un intermédiaire polyvalent dans la synthèse de divers produits chimiques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un produit chimique industriel précieux avec des applications dans divers domaines tels que la production d'adhésifs, de produits d'étanchéité, de lubrifiants et de certains produits pharmaceutiques.
Comme tout produit chimique, des précautions de sécurité appropriées doivent être prises lors de la manipulation de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque).
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est important pour suivre les directives de sécurité recommandées, utiliser un équipement de protection individuelle approprié et stocker le composé conformément aux règles de sécurité.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également connu sous le nom d'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) ou 2-EHA, est un acide carboxylique de formule moléculaire C8H16O2.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide organique à huit atomes de carbone à chaîne ramifiée avec un groupe carboxyle (COOH) à une extrémité.
La structure chimique de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est dérivée de l'acide hexanoïque en ajoutant un groupe éthyle (C2H5) au deuxième atome de carbone de la chaîne.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) (EHXA, 2-EHA) est un acide carboxylique aliphatique important pour l'industrie.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé comme stabilisant et agent de préservation du bois.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles qui peuvent se dissoudre dans des solvants organiques non ioniques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une odeur douce.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une huile visqueuse et incolore avec une classe carboxylique que l'on trouve sur une chaîne carbonée C8 et qui est non miscible dans l'eau.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé comme substitut de l'acide naphténique dans certaines applications.

Industriellement, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d'autres termes, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être fabriqué plus efficacement que l'acide naphténique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) produit des composés métalliques qui subissent une stœchiométrie sous forme d'acétates métalliques.

Dans la plupart des cas, les dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et de polymérisation (en tant qu'agents de séchage de l'huile).
En tant qu'intermédiaire chimique polyvalent, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) a de multiples applications, notamment les suivantes.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est une huile visqueuse incolore.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide incolore, à point d'ébullition élevé, ayant une odeur douce.
Les sels métalliques de l'acide 2-éthylhexanoïque Eastman™ (acide 2-éthylhexanoïque) sont utilisés comme séchoirs pour les peintures, les encres, les vernis et les émaux inodores.

Le cobalt et le manganèse sont les séchoirs les plus importants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), également connu sous le nom de 2-éthylhexanoate ou acide alpha-éthylcaproïque, appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) brûlera bien que l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) puisse prendre un certain effort pour s'enflammer.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est légèrement soluble dans l'eau.

Point de fusion : -59 °C
Point d'ébullition : 228 °C (lit.)
Densité : 0.906
Densité de vapeur : 4,98 (par rapport à l'air)
pression de vapeur : <0,01 mm Hg ( 20 °C)
indice de réfraction : n20/D 1,425 (lit.)
Point d'éclair : 230 °F
Température de stockage : Conserver à une température inférieure à +30°C.
Solubilité : 1,4 g/l
forme : Liquide
pka : pK1 :4.895 (25°C)
couleur : Clair
PH : 3 (1,4 g/l, H2O, 20°C)
Odeur : Odeur légère
Plage de pH : 3 à 1,4 g/l à 20 °C
Viscosité : 7,73 cps
limite d'explosivité : 1,04 %, 135 °F
Solubilité dans l'eau : 2 g/L (20 ºC)
BRN : 1750468
Limites d'exposition ACGIH : TWA 5 mg/m3
Stabilité : Stable. Combustible. Incompatible avec les agents oxydants forts, les agents réducteurs, les bases.
InChIKey : OBETXYAYXDNJHR-UHFFFAOYSA-N
LogP : 2,7 à 25°C

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut subir diverses réactions chimiques pour former des dérivés.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) contribue à la capacité de l'adhésif à adhérer à diverses surfaces.
Des techniques analytiques, telles que la chromatographie en phase gazeuse, la spectrométrie de masse et la résonance magnétique nucléaire (RMN), sont souvent utilisées pour identifier et quantifier l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) dans différents échantillons.

Bien que l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) ne soit pas connu pour sa toxicité extrême, des précautions appropriées doivent être prises lors de sa manipulation.
Par exemple, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être estérifié pour produire des esters qui sont utilisés comme plastifiants dans la fabrication de plastiques souples.
Lorsqu'il est utilisé dans la synthèse de polymères, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut influencer les propriétés des matériaux résultants.

L'incorporation de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut affecter des facteurs tels que la flexibilité, l'adhérence et la stabilité thermique du produit final.
En raison de sa capacité à améliorer les propriétés d'adhérence, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est parfois incorporé dans les formulations adhésives.
Comme pour tout produit chimique, son impact sur les systèmes biologiques et l'environnement doit être pris en compte dans les applications industrielles.

La production et la demande du marché pour l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peuvent varier selon les régions et les industries.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est produit à l'échelle commerciale et est un produit chimique important dans le secteur de la fabrication.
Les recherches en cours peuvent se concentrer sur l'optimisation de la synthèse de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), l'exploration de nouvelles applications ou le développement de méthodes de production plus respectueuses de l'environnement.

La compatibilité chimique de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) avec d'autres composés est une considération importante dans diverses applications, telles que la formulation de mélanges complexes tels que les revêtements, les encres et les adhésifs.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est connu pour former des complexes métalliques stables.

Les sels métalliques et les complexes de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) trouvent des applications dans diverses industries, telles que la production de stabilisateurs thermiques pour le PVC (polychlorure de vinyle).
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la production de matériaux polymères.
Par exemple, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être impliqué dans la synthèse des polymères par des processus tels que les réactions de polycondensation.

Certains carboxylates métalliques dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peuvent agir comme catalyseurs dans diverses réactions chimiques, y compris les réactions d'estérification et de transestérification.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est parfois utilisé comme additif dans les lubrifiants pour améliorer leurs performances.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut contribuer à améliorer les propriétés lubrifiantes et la stabilité thermique des huiles.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) a une odeur caractéristique quelque peu désagréable.
Cette propriété peut être pertinente dans les applications où l'odeur peut être un facteur à prendre en compte, comme dans la formulation de produits de consommation.
Comme pour tout produit chimique, des normes et des directives réglementaires peuvent s'appliquer à la production, à la manipulation et à l'utilisation de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque).

Les utilisateurs doivent connaître et respecter les réglementations en vigueur en matière de sécurité et d'environnement.
Des recherches en cours explorent de nouvelles applications et de nouveaux procédés impliquant l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque).
Les chercheurs peuvent étudier les propriétés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) pour des avancées potentielles en science des matériaux, en catalyse ou dans d'autres domaines.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), Europe est un liquide incolore, à haut point d'ébullition ayant une odeur douce.
Les sels métalliques de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sont utilisés comme séchoirs pour les peintures, les encres, les vernis et les émaux inodores. Le cobalt et le manganèse sont les séchoirs les plus importants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un liquide clair avec une odeur légère. Composé organique, ce produit chimique est un acide carboxylique aliphatique utilisé à la fois dans les produits industriels et de consommation.

Dans les produits de consommation, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) se trouve dans les dégivreurs, les produits d'entretien automobile, les peintures, les graisses et les lubrifiants, pour n'en nommer que quelques-uns.
Sur le plan industriel, ce produit chimique a des applications dans les stabilisants, les conservateurs, les liquides de refroidissement, les agents mouillants, les pesticides et les lubrifiants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un intermédiaire chimique utilisé comme composé, par exemple dans la production de lubrifiants synthétiques ainsi que d'additifs pour huile.

BASF exploite une usine de production d'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sur son site de Verbund à Ludwigshafen, en Allemagne.
Le premier du genre dans la région de l'ASEAN et devrait être mis en service au quatrième trimestre 2016, avec une capacité annuelle totale de 30 000 tonnes métriques.
Le terme « intégration en amont » explique les avantages du concept Verbund de BASF.

En reliant une plante à une autre, les produits et sous-produits d'une plante pourraient servir de précurseur dans d'autres plantes.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.

Ils réagissent ainsi avec toutes les bases, à la fois organiques (par exemple, les amines) et inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent de l'évolution de quantités importantes de chaleur.
La neutralisation entre un acide et une base produit de l'eau et un sel.

Les acides carboxyliques avec six atomes de carbone ou moins sont librement ou modérément solubles dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l'eau.
L'acide carboxylique soluble se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.
De nombreux acides 2-éthylhexanoïques insolubles (acide 2-éthylhexanoïque) réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent en principe pour l'acide 2-éthylhexanoïque solide (acide 2-éthylhexanoïque) s, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d'eau de l'air et se dissoudre suffisamment dans l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) pour corroder ou dissoudre les pièces et les récipients en fer, en acier et en aluminium.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), comme les autres acides, réagit avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.

Les gaz et la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec les composés diazoïques, les dithiocarbamates, les isocyanates, les mercaptans, les nitrures et les sulfures.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), en particulier en solution aqueuse, réagit également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et les bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais toujours de la chaleur.
Comme d'autres composés organiques, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être oxydé par des agents oxydants forts et réduit par des agents réducteurs puissants.

Utilisations de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) :
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide carboxylique polyvalent couramment utilisé dans une variété d'applications industrielles.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) et ses sels métalliques sont utilisés pour produire une variété de fluides fonctionnels, notamment des catalyseurs de production de polymères, des plastifiants dans la production de PVC, des inhibiteurs de corrosion dans les liquides de refroidissement, des stabilisants, des produits de préservation du bois et pour produire des additifs lubrifiants.
Le sel de zinc de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme inhibiteur de corrosion dans les lubrifiants et le piégeur de sulfure d'hydrogène.

L'une des principales utilisations de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est la production de plastifiants.
Les plastifiants sont des additifs qui augmentent la flexibilité et la durabilité des plastiques.
Les esters dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), tels que le phtalate de dioctyle (DOP) et l'adipate de dioctyle (DOA), sont couramment utilisés dans la production de produits en PVC flexible (chlorure de polyvinyle), y compris les câbles, les revêtements de sol et le cuir synthétique.

Lorsqu'il réagit avec certains métaux, il forme des sels qui sont largement utilisés comme additifs dans les formulations de peintures et de plastifiants, ainsi que dans la production de séchoirs de peinture et de laque et de stabilisateurs en PVC.
Les esters de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque), en particulier ceux obtenus par les glycols, les triglycols et les polyéthylèneglycols, sont connus pour leurs propriétés lubrifiantes.
Ce sont d'excellents plastifiants pour le PVC, la nitrocellulose, le caoutchouc chloré et le polypropylène.

Ces propriétés font de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) un choix populaire dans la production de divers produits chimiques et matériaux dans l'industrie.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la fabrication de l'acide poly(lactique-co-glycolique).

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.

En plus de cela, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sert de catalyseur pour la mousse de polyuréthane.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme intermédiaire chimique et pour la fabrication de résines utilisées pour la cuisson des émaux, des lubrifiants, des détergents, des adjuvants de flottation et des inhibiteurs de corrosion ; Également utilisé comme catalyseur pour le moussage du polyuréthane, pour l'extraction par solvant et pour la granulation des colorants.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme intermédiaire chimique pour de nombreux produits ; Environ 400 travailleurs de l'industrie manufacturière américaine sont potentiellement exposés. Utilisé dans les résines alkydes ; Utilisé au milieu des années 1980 comme agent de préservation du bois pour remplacer les chlorophénols ; [ACGIH] Utilisé pour fabriquer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes ; Également utilisé comme co-solvant et antimousse dans les pesticides, comme ingrédient actif dans le préservatif du bois Sinesto B (non utilisé aux États-Unis), dans les sécheurs de peinture, les stabilisateurs thermiques pour le PVC et comme catalyseur pour le moussage du polyuréthane, l'extraction par solvant et la granulation des colorants ; [HSDB] On ne le trouve dans aucun pesticide homologué aux États-Unis.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme matière première pour produire de l'huile d'ester de polyol, qui est principalement utilisée comme lubrifiant synthétique dans les systèmes de réfrigération.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la synthèse de carboxylates métalliques, qui servent de catalyseurs dans divers processus chimiques.
Ces catalyseurs trouvent des applications dans la production de polyuréthanes, de revêtements et d'autres réactions de polymérisation.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la formulation de revêtements, de résines et d'encres.

Les propriétés du produit chimique contribuent à l'adhérence, à la durabilité et à la flexibilité des revêtements, ce qui le rend précieux dans l'industrie de la peinture et des revêtements.
En raison de ses propriétés adhésives, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la formulation d'adhésifs et de produits d'étanchéité.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) aide à améliorer les caractéristiques de liaison de ces produits.
Dans l'industrie des lubrifiants, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est parfois utilisé comme additif pour améliorer les propriétés lubrifiantes et la stabilité thermique des huiles.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est impliqué dans la synthèse de divers polymères.

Le produit chimique peut être utilisé comme monomère ou réactif dans les réactions de polycondensation, contribuant à la formation de matériaux polymères aux propriétés spécifiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans l'extraction de certains métaux des minerais.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est capable de former des complexes métalliques stables et est utilisé dans les processus liés à l'extraction et à la purification des métaux.

Les carboxylates métalliques dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) agissent comme catalyseurs dans les réactions chimiques, facilitant des processus tels que l'estérification et la transestérification.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, le 2-éthylhexanoate d'étain est utilisé dans la fabrication de poly(acide lactique-co-glycolique).

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des adjuvants de flottation, des inhibiteurs de corrosion et des résines alkydes.

En plus de cela, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sert de catalyseur pour la mousse de polyuréthane.
En tant que réactif dans l'estérification, l'alkynylation décarboxylative et la préparation de coumarines alkylées via des réactions de couplage décarboxylatives.
Dans le milieu organocatalytique pour la préparation de divers acides 2-éthylhexanoïques (acide 2-éthylhexanoïque) par réaction de Biginelli.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) des métaux légers est utilisé pour convertir certaines huiles minérales en graisses.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un ester utilisé comme plastifiant.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sert également de produits de préservation du bois et fabrique des additifs lubrifiants ainsi que des lubrifiants synthétiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé dans la production de stabilisateurs thermiques en PVC, de plastifiants en film PVB, de savons métalliques pour les séchoirs à peinture et d'autres produits chimiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est couramment utilisé dans les esters dans les plastifiants de film polyvinylbutyral (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.

Les sels métalliques de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) sont utilisés pour préparer des additifs lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.

Ce monomère est idéal pour le sertissage d'émaux et de revêtements à 2 composants.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut également être utilisé dans d'autres applications, notamment comme catalyseur pour le polyuréthane, les produits de préservation du bois et les produits pharmaceutiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est parfois utilisé dans la formulation des encres, en particulier dans la production d'encres d'imprimerie.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est un acide qui contribue à l'adhérence et à l'imprimabilité de l'encre sur diverses surfaces.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être impliqué dans la production de certains détergents, où ses propriétés tensioactives peuvent être avantageuses pour améliorer les performances de nettoyage.
Dans l'industrie textile, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé comme agent auxiliaire dans des processus tels que la teinture ou la finition pour obtenir des propriétés textiles spécifiques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme agent de flottation dans le traitement des minéraux, aidant à séparer les minéraux des minerais pendant le processus de flottation.
Certains dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peuvent trouver des applications dans la formulation d'herbicides et de pesticides en agriculture.
Dans l'industrie de la construction, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé dans la formulation de certains matériaux de construction, y compris les scellants et les calfeutrants.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être trouvé dans certains produits de nettoyage, contribuant à leur formulation pour une élimination efficace de la saleté, de la graisse ou d'autres contaminants.
Certains dérivés de qualité alimentaire de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peuvent être utilisés dans la production de matériaux en contact avec les aliments, tels que les revêtements pour les matériaux d'emballage.
Dans l'industrie cosmétique, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) ou ses dérivés peuvent être utilisés dans la formulation de produits cosmétiques et de soins personnels tels que des lotions, des crèmes et des produits de soins capillaires.

Dans la production de panneaux solaires, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé dans certains processus liés à la fabrication de cellules photovoltaïques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé dans l'industrie pétrolière et gazière en tant que composant de certains produits chimiques pour champs pétrolifères utilisés pour le forage, la production ou les procédés de récupération assistée du pétrole.
Dans la recherche biomédicale, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) ou ses dérivés peuvent être explorés pour des applications potentielles, telles que les systèmes d'administration de médicaments ou les biomatériaux.

Les produits chimiques contenus dans l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) auraient un usage cosmétique pour produire des émollients et des revitalisants pour la peau.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme le fond de teint, le correcteur et les produits de soins capillaires.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé dans la fabrication de stabilisants en polychlorure de vinyle (PVC) et de plastifiants en polybutyral de vinyle (PVB) sous forme de sels métalliques.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) réagit avec les composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.
Bisley International est le principal fournisseur de matières premières chimiques aux États-Unis et dans le monde entier depuis plus d'un demi-siècle.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) contient des sels métalliques qui servent d'inhibiteurs de corrosion dans les liquides de refroidissement.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est également utilisé pour fabriquer de l'ester de polyol qui agit comme lubrifiant pour les appareils frigorifiques.
Dans l'industrie du caoutchouc, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est parfois utilisé comme aide à la vulcanisation.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut contribuer à la réticulation des polymères de caoutchouc, améliorant ainsi la résistance et l'élasticité des produits en caoutchouc.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme additif dans certaines formulations de peinture pour améliorer des caractéristiques telles que les propriétés d'écoulement, le temps de séchage et l'adhérence aux surfaces.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) est utilisé comme additif dans les formulations de carburant pour améliorer les propriétés de combustion et réduire les dépôts dans le moteur.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) trouve une application dans l'industrie textile, où il peut être utilisé dans le traitement des fibres et des tissus, contribuant à certaines propriétés souhaitables.

En raison de ses propriétés lubrifiantes, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être incorporé dans les fluides de travail des métaux pour améliorer leurs performances dans les opérations de coupe, de meulage et d'usinage.
Dans l'industrie pharmaceutique, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut servir d'intermédiaire dans la synthèse de certains composés pharmaceutiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être impliqué dans la production de tensioactifs, qui sont des composés qui abaissent la tension superficielle entre deux phases (par exemple entre un liquide et un solide).

En laboratoire, les chercheurs peuvent utiliser l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) comme élément constitutif dans le développement de nouveaux matériaux, catalyseurs ou procédés.
Certains dérivés de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peuvent trouver une application dans l'industrie des arômes et des parfums.

Dans les procédés de galvanoplastie, l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé dans la formulation de certaines solutions électrolytiques.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être utilisé : comme réactif dans l'estérification, l'alkynylation décarboxylative et la préparation de coumarines alkylées via des réactions de couplage décarboxylatif.

Profil d'innocuité de l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) :
Modérément toxique par ingestion et contact avec la peau.
Le contact direct avec la peau ou les yeux peut provoquer une irritation et l'inhalation de vapeurs ou de brumes peut irriter les voies respiratoires.
L'ingestion d'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut provoquer une irritation du tube digestif.

L'ingestion n'est pas une voie d'exposition courante dans les milieux industriels, mais l'ingestion accidentelle doit être évitée.
Un tératogène expérimental.
Un irritant cutané et oculaire sévère.

Combustible lorsqu'il est exposé à la chaleur ou aux flammes.
Lorsqu'il est chauffé jusqu'à la décomposition, il émet des fumées âcres et irritantes.

L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être irritant pour la peau, les yeux et le système respiratoire.
Une exposition prolongée ou répétée à l'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut entraîner une sensibilisation chez certaines personnes, entraînant des réactions allergiques lors d'une exposition ultérieure.
Il existe un risque potentiel d'aspiration en cas d'ingestion de la substance.

L'aspiration dans les poumons pendant l'ingestion peut entraîner une pneumonie chimique, qui peut être grave.
L'élimination ou le rejet inapproprié d'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) dans l'environnement peut avoir des effets néfastes.
L'acide 2-éthylhexanoïque (acide 2-éthylhexanoïque) peut être nocif pour la vie aquatique et peut contribuer à la pollution s'il n'est pas manipulé et éliminé de manière responsable.


ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA)
L'acide 2-hydroxyphosphonoacétique (HPAA) est un liquide incolore à jaune clair avec une odeur rappelant l'acide acétique.
L'acide 2-hydroxyphosphonoacétique (HPAA) est soluble dans l'eau et les solvants organiques.


Numéro CAS : 23783-26-8
Numéro CE : 405-710-8
Formule moléculaire : C2H5O6P



acide alpha.-hydroxyphosphonoacétique, SCHEMBL560738, acide 2-hydroxyphosphonoacétique, acide 2-hydroxyphosphonoacétique, acide 2-(hydroperoxy(hydroxy)phosphoryl)acétique, acide hydroxyphosphono-acétique, acide 2-hydroxyphosphonoacétique, HPA, HPAA, hydroxyphosphono -aceticaci, ACIDE 2-HYDROXY PHOSPHONOACETIC, acide acétique, hydroxyphosphono-, acide 2-hydroxyphosphonoacétique (HPA), HYDROXYPHOSPHONEACETICACID, HPA, HPAA, acide hydroxyphosphono-acétique, HPAA, HPA, acide acétique, 2-hydroxy-2-phosphono- , Acide glycolique, phosphono-, acide acétique, hydroxyphosphono-, acide 2-hydroxy-2-phosphonoacétique, acide 2-hydroxyphosphonoacétique, acide α-hydroxyphosphonoacétique, acide phosphonoglycolique, acide hydroxyphosphonoacétique, Belcor 575, acide phosphonohydroxyacétique, acide 2-hydroxyphosphonocarboxylique, HPPA (inhibiteur de tartre), 115469-15-3, 153733-51-8, HPA, HPAA, hpaa, hexylphosphonate, acide hexylphosphonique, LABOTEST-BB LT00408920, ACIDE N-HEXYLPHOSPHONIQUE, hydroxyphosphono-acétique, HYDROXYPHOSPHONEACETICACID, Acide hydroxyphosphono-acétique, 2 -Acide hydroxyphosphonoacétique, ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE, Acide acétique, hydroxyphosphono-, Acide 2-hydroxyphosphonoacétique, Acide 2-hydroxyphosphonocarboxylique, Acide 2-hydroxyphosphonoacétique (HPA), Structure de l'acide 2-hydroxyphosphonoacétique, HPAA, HPA, Acide acétique, Hydroxyphosphono, Acide Glycolique, Phosphono, Alpha-, acide hydroxyphosphonoacétique, Acide 2-Hydroxyphosphonoacétique, Acide Phosphonogylcolique, Acide Hydroxyphosphono-acétique, ACIDE N-HEXYLPHOSPHONIQUE, LABOTEST-BB LT00408920, hpaa, Acide n-Hexylphosphonique, Acide 2-Hydroxyphosphonocarboxylique, 2-Hydroxy Acide phosphonoacétique, acide 2-hydroxyphosphonoacétique, acide hexylphosphonique, hexylphosphonate, acide hydroxyphosphono-acétique, acide 2-hydroxy-2-phosphonoacétique, HPA, HPAA, acide 2-hydroxyphosphonoacétique HPAA, HPA, acide 2-hydroxyphosphonocarboxylique, hydroxyphosphono-acétique acide, ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE, Acide hydroxyphosphono-acétique, HPA, ACIDE N-HEXYLPHOSPHONIQUE, LABOTEST-BB LT00408920, hpaa, acide n-hexylphosphonique, min.97%, acide 2-hydroxyphosphonocarboxylique, acide 2-hydroxyphosphonoacétique, 2-hydroxy Acide acétique phosphonique, acide 2-hydroxyphosphonocarboxylique, acide hydroxyphosphono-acétique, acide 2-HYDROXY PHOSPHONOACETIC, HPAA, HPA, acide 2-hydroxyphosphonoacétique, acide 2-hydroxyphosphonocarboxylique, acide hydroxyphosphono-acétique, acide 2-hydroxy-2-phosphono-acétique , acide 2-hydroxy-2-phosphonoacétique, acide 2-hydroxy-2-phosphono-éthanoïque, acide acétique, hydroxyphosphono-, acide alpha.-hydroxyphosphonoacétique, acide alpha.-hydroxyphosphonoacétique, acide 2-hydroxy-2-phosphono-acétique , acide 2-hydroxy-2-phosphonoacétique, acide 2-hydroxy-2-phosphono-éthanoïque, acide acétique, acide hydroxyphosphono-, alpha.-hydroxylphosphonoacétique,



L'acide 2-hydroxyphosphonoacétique (HPAA) est un cristal blanc avec une teneur en phosphore de 19,8 % et un point de fusion de 165 à 167,5 °C.
La valeur du pH d'une solution aqueuse à 1 % d'acide 2-hydroxyphosphonoacétique (HPAA) est de 1, qui peut être miscible à l'eau dans n'importe quelle proportion.
L'acide 2-hydroxyphosphonoacétique (HPAA) est un composé organophosphoré soluble dans l'eau.


L'acide 2-hydroxyphosphonoacétique (HPAA) a des applications dans diverses industries telles que le traitement de l'eau, les détergents et les auxiliaires textiles.
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.


L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.
La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.


L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.


La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.
Les inhibiteurs de corrosion organiques dont l'acide 2-hydroxyphosphonoacétique (HPAA) se combine avec un polymère de faible poids moléculaire ont d'excellentes performances.


Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.


L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.
La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.
Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.


L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr à utiliser, sans toxicité, sans pollution.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc. Sa capacité d'inhibition de la corrosion est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.


Lorsqu'il est construit avec des polymères de faible poids moléculaire, son effet d'inhibition de la corrosion est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.


L'acide 2-hydroxyphosphonoacétique (HPAA) est un liquide acide jaune pâle, chélatant facilement avec les ions di- et trivalents tels que Fe2-, Mg2-, Ca2-, Ba2-, etc.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.
La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.


Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, difficile à hydrolyser et difficile à endommager par un acide ou un alcali, sûr et fiable à utiliser, non toxique et sans pollution.


L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, difficile à hydrolyser et difficile à endommager par un acide ou un alcali, sûr et fiable à utiliser, non toxique et sans pollution.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc, avec une forte inhibition, l'HPAA a de meilleures performances d'inhibition que HEDP, EDTMP.


L'acide 2-hydroxyphosphonoacétique (HPAA) est disponible en quantité de 1 g et doit être conservé dans un endroit frais et sec, à l'écart des sources de chaleur ou des matériaux incompatibles.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut provoquer une irritation des yeux et une sensibilisation cutanée ; ainsi, un équipement de protection individuelle approprié doit être porté lors de sa manipulation.


L'impact environnemental de l'acide 2-hydroxyphosphonoacétique (HPAA) est faible, mais son élimination doit respecter les réglementations locales pour éviter la contamination des plans d'eau ou du sol.
L'acide 2-hydroxyphosphonoacétique (HPAA) est un inhibiteur de corrosion organique pour l'acier doux dans les programmes de traitement de l'eau de refroidissement.


L'acide 2-hydroxyphosphonoacétique (HPAA) a une faible volatilité et un point d'ébullition élevé.
L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé dans la production de produits pharmaceutiques, de produits agrochimiques et de colorants.


L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.


La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, n'est pas facilement hydrolysé et n'est pas facilement détruit par l'acide et les alcalis.


L'acide 2-hydroxyphosphonoacétique (HPAA) est sûr et fiable à utiliser, non toxique et sans pollution.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc et a un fort effet d'inhibition de la corrosion.
Les performances d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) sont supérieures à celles de l'HEDP et de l'EDTMP.


L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.


La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMPA.Na5.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr d'utilisation, aucune toxicité, aucune pollution.


L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc. Sa capacité d'inhibition de la corrosion est 5 à 8 fois meilleure que celle du HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est un composé chimique très efficace et fiable doté de nombreuses propriét��s bénéfiques.


L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, ce qui signifie qu'il n'est pas facilement décomposé par les acides ou les bases, ce qui le rend sans danger pour l'usage humain, sans toxicité ni polluants.
De plus, l'acide 2-hydroxyphosphonoacétique (HPAA) possède une solubilité supérieure du zinc et des capacités anticorrosion cinq à huit fois supérieures à celles du HEDP et de l'EDTMP.


Lorsqu'il est combiné avec des polymères de faible poids moléculaire, l'effet inhibiteur de corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) peut être considérablement amélioré.
Tout cela fait de l’acide 2-hydroxyphosphonoacétique (HPAA) un choix idéal pour les applications industrielles nécessitant une sécurité et une efficacité accrues.



UTILISATIONS et APPLICATIONS de l’ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé comme inhibiteur de corrosion.
L'acide 2-hydroxyphosphonoacétique (HPAA) a d'excellentes performances d'inhibition de la corrosion, en particulier dans les eaux de faible dureté, de faible alcalinité et d'eau fortement corrosive, il présente un effet d'inhibition de la corrosion extrêmement fort.


L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne chélation avec les ions divalents.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut être utilisé comme stabilisateur d'ions métalliques pour stabiliser efficacement le plasma Fe2+, Fe3+, Mn2+, Al3+ dans l'eau afin de réduire la corrosion et le tartre ; L'HPAA peut réduire considérablement les dépôts de carbonate de calcium et de silice.


Bonnes performances d'inhibition du tartre, mais l'acide 2-hydroxyphosphonoacétique (HPAA) a des performances d'inhibition du tartre légèrement pires pour le tartre du sulfate de calcium.
Afin d'éviter la décomposition de l'acide 2-hydroxyphosphonoacétique (HPAA) par le bactéricide oxydant, un agent protecteur peut être utilisé, mais il est moins affecté par le chlore résiduel (0,5-1,0 mg/L) dans le système d'eau de refroidissement des systèmes intermittents. chloration.


L'utilisation combinée de l'acide 2-hydroxyphosphonoacétique (HPAA) et du sel de zinc a un effet synergique évident d'inhibition de la corrosion.
La concentration recommandée d'acide 2-hydroxyphosphonoacétique (HPAA) est généralement de 5 à 30 mg/L.
L'équipement de dosage doit être résistant à la corrosion acide.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion des cathodes métalliques.
L'acide 2-hydroxyphosphonoacétique (HPAA) est largement utilisé dans l'inhibition de la corrosion et du tartre des systèmes d'eau de refroidissement en circulation dans les secteurs de l'acier, de la pétrochimie, de l'énergie, de la médecine et d'autres industries.


L'acide 2-hydroxyphosphonoacétique (HPAA) peut être utilisé comme inhibiteur de corrosion pour la qualité de l'eau de faible dureté et facilement corrodable dans le sud de la Chine.
Acide 2-hydroxyphosphonoacétique (HPAA) L'effet de composition avec le sel de zinc est meilleur.
Les inhibiteurs organiques de corrosion et de tartre composés de polymères de faible poids moléculaire ont d'excellentes performances.


L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé comme inhibiteur de corrosion et comme agent antitartre.
L’acide 2-hydroxyphosphonoacétique (HPAA) est un produit de traitement de l’eau utilisé.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans le système d'eau de remplissage des champs pétrolifères dans les industries de l'acier et du fer, de la pétrochimie, des centrales électriques et de la médecine.


Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.
En tant qu'inhibiteur de corrosion, l'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé dans les systèmes d'eau de refroidissement/d'eau industrielle des champs pétrolifères, des usines pétrochimiques et des centrales électriques.


L'acide 2-hydroxyphosphonoacétique (HPAA) est également utilisé pour le traitement des surfaces métalliques de l'acier.
L'acide 2-hydroxyphosphonoacétique (HPAA) est considéré comme un inhibiteur de corrosion de l'acier doux et est principalement utilisé dans l'industrie du traitement de l'eau.
L'acide 2-hydroxyphosphonoacétique (HPAA) présente des performances supérieures dans toutes les formulations organiques par rapport aux phosphonates couramment utilisés.


Dans certaines formulations, l'acide 2-hydroxyphosphonoacétique (HPAA) peut remplacer le molybdate ou ses dérivés.
L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé dans les systèmes d'eau de refroidissement/traitement de l'eau industrielle.
L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé pour le traitement de surface des métaux comme inhibiteur de corrosion pour l'acier.


L'acide 2-hydroxyphosphonoacétique (HPAA) est un inhibiteur de corrosion acceptable pour l'environnement pour l'acier au carbone dans les systèmes d'eau de refroidissement.
L'acide 2-hydroxyphosphonoacétique (HPAA) offre une meilleure protection contre la corrosion de l'acier au carbone lorsqu'il est utilisé en conjonction avec du zinc ou d'autres phosphonates.
L'acide 2-hydroxyphosphonoacétique (HPAA) réduit l'encrassement du fer, améliorant ainsi l'efficacité du transfert de chaleur et réduisant les coûts de maintenance du système.


L'acide 2-hydroxyphosphonoacétique (HPAA) est biodégradable et particulièrement adapté aux applications où le rejet de molybdate est régulé OU où tout traitement organique de l'eau de refroidissement est souhaité.
L’acide 2-hydroxyphosphonoacétique (HPAA) devrait être sensible aux attaques halogènes.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.
Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de tartre dans le traitement de l'eau et les pipelines.
L'acide 2-hydroxyphosphonoacétique (HPAA) possède la meilleure capacité d'inhibition de la corrosion parmi les phosphonates, adapté à l'eau hautement corrosive ;
L'acide 2-hydroxyphosphonoacétique (HPAA) est compatible avec le sel de zinc ;


L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité thermique, la résistance aux températures élevées est de 200 °C.
L'acide 2-hydroxyphosphonoacétique (HPAA) contient moins de phosphore et a un impact moindre sur l'environnement.
Les inhibiteurs de corrosion organiques dont l'acide 2-hydroxyphosphonoacétique (HPAA) se combine avec un polymère de faible poids moléculaire ont d'excellentes performances.


Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique pour les métaux, mais il est également largement utilisé pour réaliser une inhibition de la corrosion et une inhibition du tartre dans les systèmes d'eau de refroidissement en circulation des industries de l'acier, de la pétrochimie, de l'énergie électrique, de la pharmacie et d'autres industries.


L'acide 2-hydroxyphosphonoacétique (HPAA) est particulièrement adapté aux eaux de faible dureté et de qualité d'eau facilement corrosive.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de tartre dans le traitement de l'eau,
L'acide 2-hydroxyphosphonoacétique (HPAA) possède la meilleure capacité d'inhibition de la corrosion parmi les phosphonates, adapté aux eaux hautement corrosives.


L'acide 2-hydroxyphosphonoacétique (HPAA) est compatible avec le sel de zinc ; il a une bonne stabilité thermique, la résistance aux températures élevées est de 200 degrés.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.


Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est largement utilisé dans les industries de l'acier, de la pétrochimie, de l'énergie électrique, pharmaceutique et autres pour l'inhibition du tartre des systèmes d'eau de refroidissement en circulation, l'inhibition de la corrosion, adapté à la qualité de l'eau de faible dureté dans le sud de la Chine.


L'acide 2-hydroxyphosphonoacétique (HPAA) peut être largement utilisé dans l'acier, la pétrochimie et l'énergie électrique. L'inhibition du tartre et de la corrosion des systèmes d'eau de refroidissement en circulation en médecine et dans d'autres industries est généralement composée de sel de zinc pour former un inhibiteur de corrosion.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau froide en circulation dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales, adapté à une faible dureté et à une qualité d'eau facilement corrosive.


Lorsque l’acide 2-hydroxyphosphonoacétique (HPAA) est combiné avec du sel de zinc, l’effet est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique pour les métaux et est largement utilisé dans les systèmes d'eau de refroidissement en circulation dans les secteurs du fer et de l'acier, de la pétrochimie, de l'énergie électrique, de la médecine et d'autres industries.


L'acide 2-hydroxyphosphonoacétique (HPAA) peut être utilisé comme inhibiteur de corrosion pour une eau de faible dureté et facile à corroder dans le sud de la Chine, et a un meilleur effet composé avec le sel de zinc.
L'acide 2-hydroxyphosphonoacétique (HPAA) est largement utilisé dans l'inhibition du tartre et de la corrosion des systèmes d'eau de refroidissement en circulation dans les industries de l'acier, de la pétrochimie, de l'énergie électrique, de la médecine et d'autres industries, et convient à la qualité de l'eau de faible dureté dans le sud de la Chine.


L'acide 2-hydroxyphosphonoacétique (HPAA) peut être largement utilisé dans les industries de l'acier, de la pétrochimie, de l'énergie électrique, de la médecine et d'autres industries.
L'inhibition du tartre et de la corrosion du système d'eau de refroidissement en circulation est généralement composée de sel de zinc pour former un inhibiteur de corrosion, qui convient à la qualité de l'eau de faible dureté dans le sud de la Chine et a un effet d'inhibition du tartre.


L'acide 2-hydroxyphosphonoacétique (HPAA) est utilisé comme inhibiteur de corrosion.
L'acide 2-hydroxyphosphonoacétique (HPAA) a d'excellentes performances d'inhibition de la corrosion, en particulier pour les eaux à faible dureté, faible alcalinité et fortement corrosives, montrant une forte inhibition de la corrosion.


L'acide 2-hydroxyphosphonoacétique (HPAA) a un bon effet chélateur avec les ions divalents, qui peut être utilisé comme stabilisateur d'ions métalliques pour stabiliser efficacement le plasma Fe2, Fe3, Mn2 et Al3 dans l'eau et réduire la corrosion et le tartre.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut réduire considérablement les dépôts de carbonate de calcium et de dioxyde de silicium et a de bonnes performances d'inhibition du tartre, mais les performances d'inhibition du tartre de l'acide 2-hydroxyphosphonoacétique (HPAA) sur le tartre du sulfate de calcium sont légèrement médiocres.


Afin d'éviter la décomposition de l'acide 2-hydroxyphosphonoacétique (HPAA) par le bactéricide oxydant, l'agent protecteur peut être utilisé, mais le chlore résiduel (0,5 ~ 1-0 mg/L) est moins affecté dans l'eau de refroidissement par chloration intermittente. système.
La combinaison d'acide 2-hydroxyphosphonoacétique (HPAA) et de sel de zinc a un effet synergique évident d'inhibition de la corrosion.


La concentration recommandée d’acide 2-hydroxyphosphonoacétique (HPAA) est généralement de 5 à 30 mg/L.
Une résistance à la corrosion acide doit être fournie pour chaque médicament.
L'acide 2-hydroxyphosphonoacétique (HPAA) est couramment utilisé comme agent chélateur pour les ions métalliques et comme dispersant pour le carbonate de calcium et d'autres incrustations minérales.


L'acide 2-hydroxyphosphonoacétique (HPAA) est un composé polyvalent et fiable, ce qui le rend idéal pour les inhibiteurs de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères.
L'acide 2-hydroxyphosphonoacétique (HPAA) a été couramment utilisé dans des industries telles que l'acier et le fer, la pétrochimie, les centrales électriques et les domaines médicaux avec une efficacité supérieure.


Lorsqu'il est combiné avec du sel de zinc, l'effet de protection contre la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) peut être considérablement amélioré, ce qui en fait une option encore plus attrayante pour ces zones.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de réinjection des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.


Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique pour les métaux.
L'acide 2-hydroxyphosphonoacétique (HPAA) est largement utilisé pour la corrosion et l'inhibition du tartre dans les systèmes d'eau de refroidissement en circulation dans les industries sidérurgiques, pétrochimiques, électriques, pharmaceutiques et autres.


L'acide 2-hydroxyphosphonoacétique (HPAA) peut être utilisé comme inhibiteur de corrosion pour les eaux de faible dureté et facilement corrosives dans le sud de la Chine.
L'inhibiteur organique de corrosion et de tartre composé d'acide 2-hydroxyphosphonoacétique (HPAA) et de polymère de faible poids moléculaire présente d'excellentes performances.
Et l'effet sera encore meilleur lorsqu'il sera combiné avec du sel de zinc.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.
Lorsqu'il est construit avec du sel de zinc, l'effet est encore meilleur.


L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique dans les systèmes d'eau de remplissage des champs pétrolifères dans des domaines tels que l'acier et le fer, la pétrochimie, les centrales électriques et les industries médicales.
L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique pour les métaux.



PROPRIÉTÉS DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr à utiliser, non toxique et sans pollution.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc. Son efficacité d'inhibition de la corrosion est 5 à 8 fois supérieure à celle du HEDP et de l'EDTMP.
Lorsqu'il est construit avec des polymères de faible poids moléculaire, l'effet d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est encore meilleur.



PRÉPARATION DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) peut être obtenu par réaction entre l'acide glyoxylique et le trichlorure de phosphore : C2H2O3+PCl3+3H2O→C2H5O6P+3HCl.



CARACTÉRISTIQUES DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) est un puissant inhibiteur de corrosion de l'acier doux pour les formulations d'eau de refroidissement entièrement organiques.
L'acide 2-hydroxyphosphonoacétique (HPAA) réduit l'encrassement du fer, ce qui améliore l'efficacité du transfert de chaleur.

La bonne biodégradabilité de l’acide 2-hydroxyphosphonoacétique (HPAA) le rend approprié dans les zones où le taux de rejet de molybdène est régulé à des niveaux très bas.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut être facilement surveillé par un kit de test d'organophosphonate standard.



PROPRIÉTÉS DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L’acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable.
L'acide 2-hydroxyphosphonoacétique (HPAA) est difficile à hydrolyser et à détruire par un acide ou un alcali.
Ainsi, le produit chimique de traitement de l’eau à l’acide 2-hydroxyphosphonoacétique (HPAA) est sûr à utiliser.

L’acide 2-hydroxyphosphonoacétique (HPAA) n’a également aucune toxicité ni pollution.
L’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.
La capacité d'inhibition de la corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est 5 à 8 fois meilleure que celle de l'HEDP et de l'EDTMP.

Lorsqu’il est construit avec des polymères de faible poids moléculaire, son effet inhibiteur de corrosion est encore meilleur.
L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, difficile à hydrolyser et difficile à endommager par un acide ou un alcali, sûr et fiable à utiliser, non toxique et sans pollution.

L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, difficile à hydrolyser et difficile à endommager par un acide ou un alcali, sûr et fiable à utiliser, non toxique et sans pollution.
L'acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc, avec une forte inhibition, l'acide 2-hydroxyphosphonoacétique a de meilleures performances d'inhibition que HEDP, EDTMP.

L'acide 2-hydroxyphosphonoacétique (HPAA) est principalement utilisé comme inhibiteur de corrosion cathodique pour les métaux, mais il est également largement utilisé pour réaliser une inhibition de la corrosion et une inhibition du tartre dans les systèmes d'eau de refroidissement en circulation des industries de l'acier, de la pétrochimie, de l'énergie électrique, de la pharmacie et d'autres industries.
L'acide 2-hydroxyphosphonoacétique (HPAA) est particulièrement adapté aux eaux de faible dureté et de qualité d'eau facilement corrosive.



PROPRIÉTÉS DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) est présent dans les [HPAA]2- et [HPAA]3- dans l'eau à pH 7-9.
L'acide 2-hydroxyphosphonoacétique (HPAA) forme un film protecteur sur la surface métallique avec un chélate formé de Ca2+ et de Zn2+.
Le produit de solubilité de l'acide 2-hydroxyphosphonoacétique (HPAA) est le ZnHPAA.

L'acide 2-hydroxyphosphonoacétique (HPAA) présente une bonne compatibilité et synergie avec certains stabilisants d'eau couramment utilisés.
Par exemple, lorsque l'acide 2-hydroxyphosphonoacétique (HPAA) est combiné avec du Zn2+, il suffit d'en ajouter 5 à 10 mg/L, Zn2+ 1 à 2 mg/L peut fournir une bonne inhibition de la corrosion dans différents systèmes d'eau.

De plus, la teneur en phosphore de l'inhibiteur de corrosion de l'acide 2-hydroxyphosphonoacétique (HPAA) est inférieure à celle des stabilisants d'eau au phosphore organique conventionnels et répond aux exigences d'une « faible teneur en phosphore » respectueuse de l'environnement.
Dans le même temps, sa stabilité thermique est bonne et l'acide 2-hydroxyphosphonoacétique (HPAA) peut être mesuré par calorimètre différentiel à balayage jusqu'à 160°C.

Même à une température élevée de 200 °C, le taux de décomposition n'est que de 8 %, de sorte que l'acide 2-hydroxyphosphonoacétique (HPAA) répond pleinement aux exigences des équipements d'échange thermique dans les secteurs de l'acier, de la pétrochimie, de l'énergie électrique, de la médecine et d'autres industries.
Les produits à base d'acide 2-hydroxyphosphonoacétique (HPAA) ont une faible toxicité par rapport à l'inhibition traditionnelle du tartre.
Les inhibiteurs de corrosion sont plus acceptables pour la protection de l'environnement.

Conclusion
En résumé, l'acide 2-hydroxyphosphonoacétique (HPAA) est un inhibiteur de corrosion cathodique largement utilisé dans les métaux ferreux dans le traitement de l'eau et est particulièrement adapté à la qualité de l'eau de faible dureté et aux échangeurs de chaleur à haute température.



PROPRIÉTÉS DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) a une bonne stabilité chimique, n'est pas facile à hydrolyser, n'est pas facile à endommager par l'acide et les alcalis, est sûr et fiable à utiliser, est non toxique et sans pollution, peut améliorer la solubilité. de zinc, a un fort effet d'inhibition de la corrosion et ses performances d'inhibition de la corrosion sont 5 à 8 fois supérieures à celles de HEDP et EDTMP.
L'inhibiteur organique de corrosion et de tartre composé de polymères de faible poids moléculaire présente d'excellentes performances.



MÉTHODES DE PRÉPARATION DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L’acide 2-hydroxyphosphonoacétique (HPAA) est un bon inhibiteur de tartre.
L'apparence de l'acide 2-hydroxyphosphonoacétique (HPAA) est un liquide brun foncé avec une formule moléculaire de C2H5O6P et une masse moléculaire relative de 156,03.
La méthode de préparation de l’acide 2-hydroxyphosphonoacétique (HPAA) comprend généralement les trois méthodes suivantes.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
*Première méthode :
16,3 parties (0,11 mol/L) d'une solution aqueuse à 50 % d'acide dihydroxyacétique (acide glyoxylique hydraté) et 8,2 parties (0,1 mol/L) d'acide phosphoreux ont été chauffées à 98°C-100°C pendant 24 heures sous agitation.
24,5 parties d'une solution aqueuse à 60 % de HPAA.
150 parties de cette solution ont été soumises à une distillation sous pression réduite (2kPa) pour obtenir 104 parties d'un liquide huileux visqueux brun.


*Méthode 2 :
À partir du phosphite de diméthyle et du glyoxylate de butyle, sous catalyse du méthylate de sodium, selon le rapport de la quantité de 1 : (0,95-1), réagir à 25°C-120°C pendant plusieurs heures.
Le phosphinylhydroxyacétate peut être utilisé pour préparer l'HPAA de trois manières différentes.

Une voie plus simple consiste à effectuer une réaction de saponification de l'hydroxyacétate de diméthoxyphosphinyl avec de l'acide chlorhydrique dans les conditions suivantes : Le rapport entre la quantité d'hydroxyacétate de diméthoxyphosphinyl et d'acétate de butyle par rapport à l'acide chlorhydrique est de 1 : (8-15), température 90°. C-110°C, temps de réaction 10-20 heures.


*Troisième méthode :
Le sel disodique du phosphonoformaldéhyde est formé par synthèse d'acide diméthoxyméthanephosphonique et d'une solution d'hydroxyde de sodium à 80°C-90°C pendant 1 à 3 heures.

Ensuite, l'acide 2-hydroxyphosphonoacétique (HPAA) réagit avec l'acide cyanhydrique à 25°C-30°C pendant 0,25 à 3 heures pour former un sel disodique de phosphonohydroxyacétonitrile.
L'hydrolyse avec l'acide chlorhydrique donne l'acide 2-hydroxyphosphonoacétique (HPAA).



PROPRIÉTÉS DE L'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
L'acide 2-hydroxyphosphonoacétique (HPAA) est chimiquement stable, difficile à hydrolyser, difficile à détruire par un acide ou un alcali, sûr à utiliser et n'a aucune toxicité ni pollution.
De plus, l’acide 2-hydroxyphosphonoacétique (HPAA) peut améliorer la solubilité du zinc.

L'acide 2-hydroxyphosphonoacétique (HPAA) est plus performant que les phosphonates couramment utilisés comme le HEDP et l'EDTMP (5 à 8 fois mieux).
Parfois, l’acide 2-hydroxyphosphonoacétique (HPAA) peut même remplacer le molybdate et ses dérivés.
La bonne efficacité à faibles concentrations permet l’acide 2-hydroxyphosphonoacétique (HPAA), généralement utilisé au niveau PPM.

L'acide 2-hydroxyphosphonoacétique (HPAA) est soluble dans l'eau et peut augmenter la solubilité du Zn.
L'effet de l'acide 2-hydroxyphosphonoacétique (HPAA) peut être encore amélioré lorsqu'il est construit avec des sels de Zn ou un polymère.
La solution d'acide phosphorique réagit avec le glyoxylique à 100 ~ 110 ℃ pendant 4 ~ 10 heures.

Et puis entrez de l’eau pour préparer une solution aqueuse d’acide 2-hydroxyphosphonoacétique (HPAA).
Cette réaction peut être avancée d’une étape et commence à partir de l’hydrolyse du PCl3.
Certaines études de recherche utilisent l'irradiation par micro-ondes pour remplacer le chauffage afin de réduire la consommation d'énergie et le temps de réaction.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
Poids moléculaire : 172,03100
Masse exacte : 156,03
Code HS : 2931900090
PSA : 134,10000
XLogP3 : -1.50130
Apparence : Liquide brun foncé
Densité : 2,131 g/cm3
Point de fusion : 108-110ºC
Point d'ébullition : 557,7ºC à 760 mmHg
Point d'éclair : 291,1 ºC
Indice de réfraction : 1,569
Pression de vapeur : 0,000278 mmHg à 25°C
Poids moléculaire : 156,03
XLogP3 : -2,6
Nombre de donateurs de liaisons hydrogène : 4
Nombre d'accepteurs de liaison hydrogène : 6

Nombre de liaisons rotatives : 2
Masse exacte : 155,98237487
Masse monoisotopique : 155,98237487
Superficie polaire topologique : 115
Nombre d'atomes lourds : 9
Complexité : 156
Nombre de stéréocentres atomiques non définis : 1
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Aspect : Liquide
Couleur : Marron foncé
Gravité spécifique : à 25 °C 1,32-1,42
Solution pH (1%) : < 2
Contenu actif : env. 50%

Solubilité : Miscible dans l'eau
Aspect : Liquide d’ombre foncée
% de contenu solide : 50,0 min
Acide phosphonique total (en PO43-) % : 25,0 min
Acide phosphorique (en PO43- )% : 1,5 max
Densité (20 ℃ ) g/cm3 : 1,30 min
pH (solution d'eau à 1 %) : 3,0 maximum
Poids moléculaire : 156,03 g/mol
XLogP3-AA : -2
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 6
Nombre de liaisons rotatives : 3
Masse exacte : 155,98237487 g/mol
Masse monoisotopique : 155,98237487 g/mol
Surface polaire topologique : 104 Å ²
Nombre d'atomes lourds : 9
Frais formels : 0
Complexité : 151

Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Aspect : Liquide d’ombre foncée
% de contenu solide : 50,0 min
Acide phosphonique total (en PO43-) % : 25,0 min
Acide phosphorique (en PO43- )% : 1,5 max
Densité (20 ℃ ) g/cm3 : 1,30 min
pH (solution d'eau à 1 %) : 3,0 maximum
Aspect : Liquide d’ombre foncée
% de contenu solide : 50,0 min
Acide phosphoreux (en PO33-)% : 4,0 max

Densité (20 ℃ )g/cm3 : 1,30 min
pH (solution à 1 %) : 1,0-3,0
État physique : Non disponible.
Formule moléculaire : C2H5O7P
Poids moléculaire : 172,029
Odeur : Non disponible.
pH : Non disponible.
Plage de points d'ébullition : Non disponible.
Point de congélation/fusion : Non disponible.
Point d'éclair : Non disponible.
Taux d'évaporation : Non disponible.
Inflammabilité (solide, gaz) : Veuillez consulter la section 2.
Limites d'explosivité : Non disponible.
Pression de vapeur : Non disponible.
Densité de vapeur : Non disponible.
Solubilité : Non disponible.
Densité relative : Non disponible.

Indice de réfraction : Non disponible.
Volatilité : Non disponible.
Température d'auto-inflammation : Non disponible.
Température de décomposition : Non disponible.
Coefficient de partage : Non disponible.
Aspect : Liquide d’ombre foncée
Contenu solide : % 50,0 min
Acide phosphonique total (en PO43-) % : 25,0 min
Acide phosphorique (en PO43- )% : 1,5 max
Densité (20 ℃ ) g/cm3 : 1,30 min
pH (solution d'eau à 1 %) : 3,0 maximum
CAS : 23783-26-8
4721-24-8
EINECS : 405-710-8
InChI : InChI=1/C6H15O3P/c1-2-3-4-5-6-10(7,8)9/h2-6H2,1H3,(H2,7,8,9)/p-2

Formule moléculaire : C2H5O6P
Masse molaire : 156,03
Densité : 1,37 (50 % aq.)
Point de Boling : 557,7 ± 60,0 °C (prévu)
Point d'éclair : 135°C
Pression de vapeur : 0,000278 mmHg à 25°C
pKa : 2,05 ± 0,10 (prédit)
Conditions de stockage : -20°C
Proprietes physiques et chimiques:
Densité : 1,37 (50 % aq.)
Aspect : Liquide d’ombre foncée
% de contenu solide : 50,0 min
Acide phosphonique total (en PO43-) % : 25,0 min
Acide phosphorique (en PO43- )% : 1,5 max
Densité (20 ℃ ) g/cm3 : 1,30 min
pH (solution d'eau à 1 %) : 3,0 maximum



PREMIERS SECOURS de l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
-Informations générales:
Retirer immédiatement tout vêtement contaminé par le produit.
*Inhalation:
Transporter la personne à l'air frais.
Obtenez une aide médicale.
*Contact avec la peau:
Rincer immédiatement la peau à l'eau courante pendant au moins 15 minutes tout en retirant les vêtements et les chaussures contaminés.
Laver les vêtements avant de les réutiliser.
Obtenez immédiatement une aide médicale.
*Lentilles de contact:
Rincer immédiatement les yeux ouverts à l'eau courante pendant au moins 15 minutes.
Obtenez immédiatement une aide médicale.
*Ingestion:
Rincer la bouche avec de l'eau.
Obtenez immédiatement une aide médicale.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Aucune autre information disponible.



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
-Précautions individuelles, équipements de protection et procédures d'urgence :
Portez un équipement de protection et éloignez le personnel non protégé.
Assurer une ventilation adéquate.
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
-Précautions environnementales:
Ne laissez pas le produit pénétrer dans les égouts, dans d’autres cours d’eau ou dans le sol.
-Méthodes et matériels de confinement et de nettoyage :
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Aspirer, balayer ou absorber avec un matériau inerte et placer dans un récipient d'élimination approprié.
Consultez les réglementations locales pour l'élimination.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
- Moyens d'extinction appropriés :
Utilisez de l'eau pulvérisée, de la poudre chimique sèche, du dioxyde de carbone ou de la mousse chimique.
-Conseils aux pompiers :
Comme pour tout incendie, porter un appareil respiratoire autonome à pression approuvé par le NIOSH ou équivalent et un équipement de protection complet.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
-Contrôles techniques appropriés :
Se laver les mains avant les pauses et immédiatement après avoir manipulé le produit.
Les installations stockant ou utilisant ce matériau doivent être équipées d’une fontaine oculaire.
-Protection personnelle:
*Yeux:
lunettes de sécurité ou lunettes avec protection latérale.
Un écran facial peut être approprié dans certains lieux de travail.
*Mains:
Porter des gants
*Peau et corps :
Vêtements de protection
Portez au minimum une blouse de laboratoire et des chaussures fermées.



MANIPULATION et STOCKAGE de l’ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
-Précautions à prendre pour une manipulation sans danger:
Se laver soigneusement les mains après manipulation.
Porter des vêtements de protection appropriés, des gants et une protection des yeux/du visage.
Gardez le récipient bien fermé.
Ouvrir et manipuler le récipient avec précaution.
Ne pas manger, boire ou fumer pendant la manipulation.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver dans un récipient bien fermé lorsqu'il n'est pas utilisé.
Conserver dans un endroit frais, sec et bien ventilé, à l'écart des substances incompatibles.



STABILITÉ et RÉACTIVITÉ de l'ACIDE 2-HYDROXY PHOSPHONOACÉTIQUE (HPAA) :
-Réactivité:
Pas disponible.
-Stabilité chimique:
Stable aux températures et pressions recommandées.
-Possibilité de réactions dangereuses:
Pas disponible.


ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE)
L'acide 2-hydroxybenzoïque (acide salicyclique) est un inhibiteur anti-inflammatoire de l'activité cyclooxygénase.
L'acide 2-hydroxybenzoïque (acide salicyclique), également connu sous le nom d'acide 2-hydroxybenzoïque, est un composé chimique très polyvalent largement utilisé dans diverses industries telles que les produits pharmaceutiques, les cosmétiques et l'agriculture.


Numéro CAS : 69-72-7
Numéro CE : 200-712-3
Numéro MDL : MFCD00002439
Nom chimique : 2 – Acide hydroxybenzoïque
Formule linéaire : 2-(HO)C6H4CO2H
Formule moléculaire : C7H6O3



Acide benzoïque, acide 2-hydroxy-, o-hydroxybenzoïque, acide phénol-2-carboxylique, Psoriacid-S-Stift, Retarder W, Rutranex, collodion d'acide salicylique, Salonil, acide 2-hydroxybenzoïque, Acido salicilico, Keralyt, Kyselina 2- hydroxybenzoova, Kyselina salicylova, acide orthohydroxybenzoïque, Duoplant, Freezone, Ionil, Saligel, composé W, acide 2-hydroxybenzènecarboxylique, 2-carboxyphénol, o-carboxyphénol, dissolvants avancés de callosités pour soulager la douleur, dissolvants avancés de cors pour soulager la douleur, éliminez les verrues, Dr Scholl's Callus Removers, Dr. Scholl's Corn Removers, Dr. Scholl's Wart Remover Kit, Duofil Wart Remover, Ionil plus, Savon à l'acide salicylique, Stri-Dex, Acide benzoïque, o-hydroxy-, NSC 180, Trans-Ver-Sal, Domerine, Duofilm, Fostex, Pernox, Savon à l'acide salicylique et au soufre, Sebucare, Sebulex, composant de la barre et de la crème médicamenteuses Fostex, composant de Keralyt, Retarder SAX, composant du spray de premiers secours Solarcaine, composant de Tinver, 7681-06-3, 8052-31-1, Acide salicyclique, Domerine (Sel/Mélange), Duofilm (Sel/Mélange), Fostex (Sel/Mélange), Pernox (Sel/Mélange), Acide salicylique et savon au soufre (Sel/Mélange), Sebucare ( Sel/Mélange), Sebulex (Sel/Mélange), composant de la barre et de la crème médicamenteuse Fostex (Sel/Mélange), composant de Keralyt (Sel/Mélange), Retarder SAX (Sel/Mélange), composant du spray de premiers secours Solarcaine (Sel /Mélange), composant de Tinver (sel/mélange), acide 2-hydroxybenzoïque, acide 2-hydroxybenzoïque [pour la recherche biochimique], acide acétylsalicylique EP impureté C (Lamivudine EP impureté C, mésalazine (mésalamine) EP impureté H, acide salicylique) , Acide salicylique, 2-carboxyphénol, acide 2-hydroxybenzoïque, acide o-hydroxybenzoïque, acide salicylique, salicylique, acide, salicylique, acide 2 hydroxybenzoïque, Acido Salicilico, Sa - acide salicylique, acide O-hydroxybenzoïque, acide O hydroxybenzoïque, Aci salicylique , Acide, 2-Hydroxybenzoïque, Acidum Salicylicum, O-Carboxyphénol, Préparation d'acide salicylique, Acide, O- Hydroxybenzoïque, Kyselina Salicylova, Préparation salicylique, Acide, Ortho-Hydroxybenzoïque, Acido O-Idrossibenzoico, Kyselina 2-Hydroxybenzoova, Caswell No. 731 , Acide benzoïque, 2-hydroxy- (10), 2-carboxyphénol, 2-hydroxybenzènecarboxylate, acide 2-hydroxybenzènecarboxylique, 2-hydroxybenzoate, acide 2-hydroxybenzoïque, acide benzoïque, 2-hydroxy-, acide benzoïque, o-hydroxy-, o-carboxyphénol, o-hydroxybenzoate, acide o-hydroxybenzoïque, acide orthohydroxybenzoïque, phénol-2-carboxylate, acide phénol-2-carboxylique, Psoriacid-S-Stift, acide salicyclique, salicylate, acide salicylique, Saligel, Salonil, Trans-Ver -Sal, acide 2-hydroxybenzoïque, acide, 2-hydroxybenzoïque, acide salicylique, acide, O-hydroxybenzoïque, acide ortho-hydroxybenzoïque, acide O-hydroxybenzoïque, acide ortho-hydroxybenzoïque, acide ortho-hydroxybenzoïque, anti-callosités avancées pour soulager la douleur, douleur avancée dissolvants de maïs de secours, dissolvant de verrues Clear away, composé W, dissolvants de callosités du Dr Scholl, dissolvant de verrues Duofil, Duoplant, Freezone, Ionil, Ionil plus, K 537, K 557, Retarder W, Rutranex, collodion d'acide salicylique, savon à l'acide salicylique, Stri-dex, SA,



L'acide 2-hydroxybenzoïque (acide salicyclique) est un composé polyvalent dont les applications sont répandues, notamment dans les domaines des soins de la peau, de la médecine et de l'industrie chimique.
Connu pour son utilisation dans le traitement de diverses affections cutanées, l'acide 2-hydroxybenzoïque (acide salicyclique) est devenu un ingrédient de base dans les produits de soins de la peau et de soins personnels.


Grâce à ses attributs remarquables, l’acide 2-Hydroxybenzoïque (Acide Salicyclique) est devenu un ingrédient essentiel dans de nombreux produits.
L'acide 2-hydroxybenzoïque (acide salicylique) appartient à la classe de composés organiques appelés acides salicyliques.
Ce sont des acides benzoïques ortho-hydroxylés.


L'acide 2-hydroxybenzoïque (acide salicyclique), également connu sous le nom d'acide 2-hydroxybenzoïque, est un composé chimique très polyvalent largement utilisé dans diverses industries telles que les produits pharmaceutiques, les cosmétiques et l'agriculture.
L'acide 2-hydroxybenzoïque (acide salicyclique), également connu sous le nom de 2-carboxyphénol ou 2-hydroxybenzoate, appartient à la classe de composés organiques connus sous le nom d'acide 2-hydroxybenzoïque (acide salicyclique).


Ce sont des acides benzoïques ortho-hydroxylés.
L'acide 2-hydroxybenzoïque (acide salicyclique) existe dans toutes les espèces vivantes, allant des bactéries aux plantes en passant par les humains.
Sur la base d'une revue de la littérature, un nombre important d'articles ont été publiés sur l'acide 2-hydroxybenzoïque (acide salicyclique).


L'acide 2-hydroxybenzoïque (acide salicyclique) est un extrait naturel de l'écorce de saule, bien connu comme agent anti-inflammatoire et antinociceptif et un proche parent structurel de l'acide acétylsalicylique (aspirine).
L'acide 2-hydroxybenzoïque (acide salicyclique) est une hormone végétale omniprésente dotée de nombreuses fonctions régulatrices impliquées dans les mécanismes locaux de résistance aux maladies et dans la résistance systémique acquise.


Les effets antiinflammatoires et antinociceptifs produits par l'acide 2-hydroxybenzoïque (acide salicyclique) et ses dérivés chez les animaux sont dus à l'inhibition de l'activité enzymatique COX-1 et COX-2 (cyclooxygénase) et à la suppression de la biosynthèse des prostaglandines.
L'acide 2-hydroxybenzoïque (acide salicyclique) présente également un intérêt en tant que matière première pour la synthèse organique de suppresseurs de COX plus élaborés et d'autres structures chimiques.


L'acide 2-hydroxybenzoïque (acide salicyclique) est un composé organique présent dans les plantes.
L'acide 2-hydroxybenzoïque (acide salicyclique) peut être fabriqué à partir du 2-hydroxybenzoate de méthyle qui est obtenu sous forme d'huile de gaulthérie par distillation des feuilles de Gaultheria procunbers.


L’huile de gaulthérie est composée à 98 % de 2-hydroxybenzoate de méthyle.
Cette huile peut être hydrolysée par ébullition avec de la soude aqueuse pendant environ 30 minutes.
La réaction produit du 2-hydroxybenzoate de sodium, qui peut être converti en acide 2-hydroxybenzoïque (acide salicyclique) en ajoutant de l'acide chlorhydrique.


L’huile de gaulthérie (2-hydroxybenzoate de méthyle) et l’acide 2-hydroxybenzoïque (acide salicyclique)) sont largement utilisés comme produits pharmaceutiques.
La fabrication d'aspirine à partir d'acide 2-hydroxybenzoïque (acide salicyclique) revêt une importance majeure.
Industriellement, l'acide 2-hydroxybenzoïque (acide salicyclique) est fabriqué à haute température et pression à partir du sel de phénol sodique et du dioxyde de carbone, avec une production mondiale annuelle d'environ 50 000 tonnes.


L'hydrolyse alcaline des esters est à la base de la saponification (fabrication du savon) à partir d'huiles naturelles et de la crémation de l'eau – une alternative moins nocive pour l'environnement que la crémation par la chaleur.
L'acide 2-hydroxybenzoïque (acide salicyclique) est un solide blanc isolé pour la première fois de l'écorce des saules (Salix spp.), d'où il tire son nom.


L'acide 2-hydroxybenzoïque (acide salicyclique) est également présent sous forme d'acide libre ou de ses esters dans de nombreuses espèces végétales.
Dans un premier processus de biosynthèse (1966), des chercheurs de Kerr-McGee Oil Industries (qui fait maintenant partie d'Andarko Petroleum) ont préparé de l'acide 2-hydroxybenzoïque (acide salicyclique) via la dégradation microbienne du naphtalène.


L'acide 2-hydroxybenzoïque (acide salicyclique) est désormais biosynthétisé commercialement à partir de la phénylalanine.
L'acide acétylsalicylique (aspirine), un promédicament de l'acide 2-hydroxybenzoïque (acide salicyclique), est fabriqué par un processus entièrement différent.
Curieusement, l’acide 2-hydroxybenzoïque (acide salicyclique) est également un métabolite de l’aspirine.


En 2015, JL Dangl, SL Lebeis et leurs collègues de l'Université de Caroline du Nord à Chapel Hill ont découvert que l'acide 2-hydroxybenzoïque natif (acide salicyclique) joue un rôle dans la détermination des microbes présents dans le microbiome racinaire d'Arabidopsis thaliana, une mauvaise herbe qui pousse en Europe et en Asie.
L'acide 2-hydroxybenzoïque (acide salicyclique) est de l'acide monohydroxybenzoïque lipophile.


Acide 2-hydroxybenzoïque (acide salicyclique), un type d'acide phénolique et un acide bêta-hydroxy (BHA).
L'acide bêta-hydroxy se trouve comme un composé naturel dans les plantes.
Cet acide organique cristallin incolore, l'acide 2-hydroxybenzoïque (acide salicyclique), est largement utilisé en synthèse organique.


L'acide 2-hydroxybenzoïque (acide salicyclique) est dérivé du métabolisme de la salicine.
L'acide 2-hydroxybenzoïque (acide salicyclique) est un acide carboxylique organique cristallin et possède des propriétés kératolytiques, bactériostatiques et fongicides.
L'acide 2-hydroxybenzoïque (acide salicyclique) peut être utilisé comme antiseptique et comme conservateur alimentaire lorsqu'il est consommé en petites quantités.


L'acide 2-hydroxybenzoïque (acide salicyclique) est doté d'un groupe carboxyle, à savoir COOH.
L'acide 2-hydroxybenzoïque (acide salicyclique) est inodore et incolore.
L'acide 2-hydroxybenzoïque (acide salicyclique) est probablement connu pour son utilisation comme ingrédient important dans les produits topiques anti-acnéiques.


Les sels et esters de l'acide 2-hydroxybenzoïque (acide salicyclique) sont des salicylates.
L'acide 2-hydroxybenzoïque (acide salicyclique) figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.
L'acide 2-hydroxybenzoïque (acide salicyclique) est le médicament le plus sûr et le plus efficace nécessaire à un système de santé.



UTILISATIONS et APPLICATIONS de l’ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) est particulièrement utilisé dans l'industrie pharmaceutique.
L'utilisation la plus courante de l'acide 2-hydroxybenzoïque (acide salicylique) est la préparation d'un analgésique, l'aspirine, qui est un dérivé acétylé de l'acide salicylique.


Un autre analgésique formé à partir de l’acide 2-hydroxybenzoïque (acide salicylique) est le salicylate de méthyle, un produit estérifié de l’acide salicylique.
Ces deux analgésiques sont utilisés pour traiter les maux de tête et autres courbatures.
Régulation de la croissance des plantes : en tant que régulateur de la croissance des plantes, l'acide 2-hydroxybenzoïque (acide salicyclique) favorise la formation des fruits, améliore le rendement des cultures et améliore la résistance des plantes aux maladies.


L'acide 2-hydroxybenzoïque (acide salicyclique) présente un niveau de pureté élevé, garantissant son efficacité et sa fiabilité dans diverses applications.
Approbation des tests de culture de cellules végétales : grâce à des tests intensifs, l'acide 2-hydroxybenzoïque (acide salicyclique) a été approuvé comme étant sûr et adapté aux applications de culture de cellules végétales, répondant à des normes de qualité strictes.


L'importance de l'acide 2-hydroxybenzoïque (acide salicyclique) s'étend à plusieurs industries, depuis son rôle de premier plan dans les soins de la peau et la médecine jusqu'à ses applications dans les secteurs chimique et agricole.
Les diverses propriétés et applications de l'acide 2-hydroxybenzoïque (acide salicyclique) soulignent sa polyvalence et sa pertinence continue dans divers domaines scientifiques et industriels.


Dans le domaine des soins de la peau, l'acide 2-hydroxybenzoïque (acide salicyclique) est utilisé pour ses propriétés kératolytiques, ce qui signifie qu'il aide à exfolier et à éliminer les cellules mortes de la peau.
Cela fait de l’acide 2-hydroxybenzoïque (acide salicyclique) un ingrédient efficace dans les produits conçus pour le traitement et la prévention de l’acné, car il peut désobstruer les pores et réduire l’apparition d’imperfections.


En médecine, l'acide 2-hydroxybenzoïque (acide salicyclique) est le précurseur de l'acide acétylsalicylique, communément appelé aspirine.
L'aspirine est largement utilisée pour ses propriétés analgésiques (soulageant la douleur), anti-inflammatoires et antipyrétiques (réduisant la fièvre).
La découverte de ces effets thérapeutiques a positionné l’acide 2-hydroxybenzoïque (acide salicyclique) comme composé fondamental dans le développement de divers produits pharmaceutiques.


Au-delà des soins de la peau et de la médecine, l'acide 2-hydroxybenzoïque (acide salicyclique) a des applications dans l'industrie chimique.
L'acide 2-hydroxybenzoïque (acide salicyclique) sert d'intermédiaire clé dans la synthèse de divers composés organiques, notamment les parfums, les colorants et les produits chimiques pour le caoutchouc.


La polyvalence de l’acide 2-hydroxybenzoïque (acide salicyclique) dans les processus chimiques met en évidence son importance en tant qu’élément de base pour la production d’une gamme de produits industriels.
En agriculture, l'acide 2-hydroxybenzoïque (acide salicyclique) et ses dérivés sont explorés pour leurs utilisations potentielles dans la régulation de la croissance des plantes et la réponse au stress.


La recherche continue de découvrir comment l'acide 2-hydroxybenzoïque (acide salicyclique) peut contribuer à améliorer le rendement et la résilience des cultures.
L'acide 2-hydroxybenzoïque (acide salicyclique) est un composé organique de formule HOC6H4COOH.
Solide incolore au goût amer, l'acide 2-hydroxybenzoïque (acide salicyclique) est un précurseur et un métabolite de l'aspirine (acide acétylsalicylique).


Le nom vient du latin salix pour saule, dont il a été initialement identifié et dérivé.
L'acide 2-hydroxybenzoïque (acide salicyclique) est un ingrédient de certains produits anti-acnéiques.
Les sels et esters de l’acide salicylique sont appelés salicylates.


L'acide 2-hydroxybenzoïque (acide salicyclique) est utilisé dans le traitement des verrues.
Le mécanisme par lequel les professionnels traitent l’infection par les verrues est similaire à son action kératolytique.
Premièrement, l’acide 2-hydroxybenzoïque (acide salicyclique) déshydrate les cellules de la peau affectées par les verrues et entraîne ainsi progressivement son élimination du corps.


L'acide 2-hydroxybenzoïque (acide salicyclique) active également la réaction immunitaire du corps contre l'infection virale par les verrues en déclenchant une légère réaction inflammatoire.
L'acide 2-hydroxybenzoïque (acide salicyclique) est l'un des composants majeurs des shampooings antipelliculaires.


L'acide 2-hydroxybenzoïque (acide salicyclique) aide également à éliminer les cellules mortes et squameuses de votre cuir chevelu.
L'acide 2-hydroxybenzoïque (acide salicyclique) est également utilisé comme effet antiseptique léger connu sous le nom d'agent bactériostatique.
L'acide 2-hydroxybenzoïque (acide salicyclique) ne tue pas les bactéries existantes et n'est donc pas un agent antibactérien, mais empêche la croissance des bactéries partout où il est appliqué.


L'acide 2-hydroxybenzoïque (acide salicyclique) est utilisé comme conservateur alimentaire, bactéricide et antiseptique.
L'acide 2-hydroxybenzoïque (acide salicyclique) est utilisé dans la production d'autres produits pharmaceutiques, notamment l'acide 4-aminosalicylique, le sandulpiride et le landétimide (via le salethamide).


L'acide 2-hydroxybenzoïque (acide salicyclique) est depuis longtemps une matière première clé pour la fabrication de l'acide acétylsalicylique (aspirine).
L'aspirine (acide acétylsalicylique ou ASA) est préparée par estérification du groupe hydroxyle phénolique de l'acide 2-hydroxybenzoïque (acide salicyclique) avec le groupe acétyle de l'anhydride acétique ou du chlorure d'acétyle.


L'AAS est la norme à laquelle tous les autres anti-inflammatoires non stéroïdiens (AINS) sont comparés.
En médecine vétérinaire, ce groupe de médicaments est principalement utilisé pour le traitement des troubles musculo-squelettiques inflammatoires.
Le sous-salicylate de bismuth, un sel de bismuth et d'acide 2-hydroxybenzoïque (acide salicyclique), « exerce une action anti-inflammatoire (due à l'acide salicylique) et agit également comme un antiacide et un antibiotique doux ».


L'acide 2-hydroxybenzoïque (acide salicyclique) est l'ingrédient actif des produits pour soulager l'estomac tels que le Pepto-Bismol et certaines formulations de Kaopectate.
D'autres dérivés comprennent le salicylate de méthyle utilisé comme liniment pour apaiser les douleurs articulaires et musculaires et le salicylate de choline utilisé par voie topique pour soulager la douleur des aphtes.


L'acide aminosalicylique est utilisé pour induire la rémission de la colite ulcéreuse et a été utilisé comme agent antituberculeux souvent administré en association avec l'isoniazide.
L'acide 2-hydroxybenzoïque (acide salicyclique), lorsqu'il est appliqué sur la surface de la peau, agit en provoquant une desquamation plus rapide des cellules de l'épiderme, empêchant ainsi les pores de se boucher et laissant place à la croissance de nouvelles cellules.


L'acide 2-hydroxybenzoïque (acide salicyclique) inhibe l'oxydation de l'uridine-5-diphosphoglucose (UDPG) de manière compétitive avec le NADH et de manière non compétitive avec l'UDPG.
L'acide 2-hydroxybenzoïque (acide salicyclique) inhibe également de manière compétitive le transfert du groupe glucuronyle de l'acide uridine-5-phosphoglucuronique vers l'accepteur phénolique.


L'action retardatrice de la cicatrisation des salicylates est probablement due principalement à son action inhibitrice sur la synthèse des mucopolysaccharides.
L'acide 2-hydroxybenzoïque (acide salicyclique) et ses esters sont utilisés comme conservateurs alimentaires, dans les produits de soins de la peau et autres cosmétiques, ainsi que dans les médicaments topiques.
L'acide 2-hydroxybenzoïque (acide salicyclique) est un acide utilisé pour traiter l'acné, le psoriasis, les callosités, les cors, la kératose pilaire et les verrues.


L'acide 2-hydroxybenzoïque (acide salicyclique) est un composé obtenu à partir de l'écorce des feuilles de saule blanc et de gaulthérie, et également préparé synthétiquement.
L'acide 2-hydroxybenzoïque (acide salicyclique) a des actions bactériostatiques, fongicides et kératolytiques.
Les sels de l'acide 2-hydroxybenzoïque (acide salicyclique), les salicylates, sont utilisés comme analgésiques.


-Pharmacodynamique :
L'acide 2-hydroxybenzoïque (acide salicyclique) traite l'acné en provoquant une desquamation plus rapide des cellules de la peau, empêchant ainsi les pores de se boucher.
Cet effet sur les cellules de la peau fait également de l'acide 2-hydroxybenzoïque (acide salicyclique) un ingrédient actif dans plusieurs shampooings destinés à traiter les pellicules.
L'utilisation d'une solution pure d'acide 2-hydroxybenzoïque (acide salicyclique) peut provoquer une hyperpigmentation sur la peau non prétraitée pour les peaux plus foncées.
(phototypes Fitzpatrick IV, V, VI), ainsi qu'à l'absence d'utilisation d'un écran solaire à large spectre.

Le sous-salicylate en combinaison avec le bismuth forme le populaire soulagement de l'estomac connu communément sous le nom de Pepto-Bismol.
Lorsqu'ils sont combinés, les deux ingrédients clés aident à contrôler la diarrhée, les nausées, les brûlures d'estomac et même les gaz.
L'acide 2-hydroxybenzoïque (acide salicyclique) est également très légèrement antibiotique.


-Propriétés exfoliantes :
L'acide 2-hydroxybenzoïque (acide salicyclique) est largement reconnu pour ses excellentes capacités exfoliantes.
L'acide 2-hydroxybenzoïque (acide salicyclique) élimine efficacement les cellules mortes de la peau, débouche les pores et améliore le teint de la peau.


-Effets anti-inflammatoires :
Grâce à ses propriétés anti-inflammatoires, l'acide 2-hydroxybenzoïque (acide salicyclique) est une solution parfaite pour l'acné et d'autres affections cutanées.
L'acide 2-hydroxybenzoïque (acide salicyclique) réduit les rougeurs, les gonflements et les irritations associés à ces affections.


-Activité antifongique :
L'acide 2-hydroxybenzoïque (acide salicyclique) possède de puissants attributs antifongiques, ce qui le rend très efficace dans le traitement de maladies telles que les pellicules et d'autres infections fongiques.
L'acide 2-hydroxybenzoïque (acide salicyclique) contrôle la croissance fongique et atténue les symptômes associés.


-Industrie pharmaceutique:
L'acide 2-hydroxybenzoïque (acide salicyclique) est largement utilisé dans l'industrie pharmaceutique pour les médicaments topiques, y compris les applications de soins de la peau telles que les traitements contre l'acné, les produits pour éliminer les verrues et les callosités.
L'acide 2-hydroxybenzoïque (acide salicyclique) est également utilisé dans les médicaments oraux pour soulager la douleur et la fièvre.


-Industrie cosmétique :
L'acide 2-hydroxybenzoïque (acide salicyclique) est un composant clé de nombreux produits cosmétiques, en particulier ceux destinés aux soins de la peau.
L'acide 2-hydroxybenzoïque (acide salicyclique) se trouve couramment dans les nettoyants, les toniques, les sérums et les traitements localisés, améliorant la texture de la peau, désobstruant les pores et réduisant les imperfections.


-Industrie agricole :
L'acide 2-hydroxybenzoïque (acide salicyclique) est très bénéfique en agriculture.
L'acide 2-hydroxybenzoïque (acide salicyclique) favorise la croissance des plantes, améliore le rendement des cultures et protège les plantes des maladies.
L'acide 2-hydroxybenzoïque (acide salicyclique) peut être appliqué directement sur les plantes ou utilisé dans le traitement des semences.


-Médecine:
L'acide 2-hydroxybenzoïque (acide salicyclique) en tant que médicament est couramment utilisé pour éliminer la couche externe de la peau.
En tant que tel, l’acide 2-hydroxybenzoïque (acide salicyclique) est utilisé pour traiter les verrues, le psoriasis, l’acné vulgaire, la teigne, les pellicules et l’ichtyose.
Semblable à d'autres acides hydroxylés, l'acide 2-hydroxybenzoïque (acide salicyclique) est un ingrédient de nombreux produits de soin de la peau pour le traitement de la dermatite séborrhéique, de l'acné, du psoriasis, des callosités, des cors, de la kératose pilaire, de l'acanthose nigricans, de l'ichtyose et des verrues.



MÉTHODES DE PRÉPARATION DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Il existe deux méthodes les plus couramment utilisées pour la préparation de l’acide 2-hydroxybenzoïque (acide salicyclique) :
Du phénol :
Lorsque le phénol réagit avec l’hydroxyde de sodium, il forme du phénoxe de sodium.
Le phénoxyde de sodium subit ensuite une distillation et une déshydratation.

Ce processus est suivi d'une réaction de carboxylation avec le dioxyde de carbone, qui aboutit à la formation de salicylate de sodium, c'est-à-dire un sel d'acide 2-hydroxybenzoïque (acide salicyclique).
Ce sel a ensuite réagi avec un acide ou un ion hydronium ou toute espèce désignant un proton pour obtenir l'acide 2-hydroxybenzoïque (acide salicyclique).

Du salicylate de méthyle :
Le salicylate de méthyle également connu sous le nom d’huile de gaulthérie est communément appelé analgésique dans l’industrie pharmaceutique.
Il est utilisé pour la préparation de l'acide 2-hydroxybenzoïque (acide salicyclique).

Dans cette réaction, le salicylate de méthyle réagit avec l'hydroxyde de sodium (NaOH) pour conduire à la formation d'un sel de sodium intermédiaire de l'acide 2-hydroxybenzoïque (acide salicyclique).
Cet acide est appelé salicylate disodique qui, après réaction avec l'acide sulfurique, conduit à la formation d'acide 2-hydroxybenzoïque (acide salicyclique).



PARENTS ALTERNATIFS DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
*Acides benzoïques
*Dérivés benzoyle
*1-hydroxy-4-benzénoïdes non substitués
*1-hydroxy-2-benzénoïdes non substitués
*Acides vinylologues
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Composés organooxygénés
*Oxydes organiques
*Dérivés d'hydrocarbures



SUBSTITUANTS DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
*Acide salicylique
*Acide benzoique
*Benzoyle
*1-hydroxy-4-benzénoïde non substitué
*1-hydroxy-2-benzénoïde non substitué
*Phénol
*Acide vinylologue
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Composé homomonocyclique aromatique



PROPRIÉTÉS PHYSIQUES DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) est un cristal incolore, inodore et en forme d'aiguille à température ambiante.
Le goût de l’acide 2-hydroxybenzoïque (acide salicyclique) est âcre.
Le point d'ébullition et le point de fusion de l'acide 2-hydroxybenzoïque (acide salicyclique) sont respectivement de 211 °C et 315 °C.

La molécule d’acide 2-hydroxybenzoïque (acide salicyclique) possède deux donneurs de liaison hydrogène et trois accepteurs de liaison hydrogène.
Le point d’éclair de l’acide 2-hydroxybenzoïque (acide salicyclique) est de 157 °C.
En raison de sa nature lipophile, la solubilité de l'acide 2-hydroxybenzoïque (acide salicyclique) dans l'eau est très faible, soit 1,8 g/L à 25 °C.

L'acide 2-hydroxybenzoïque (acide salicyclique) est soluble dans les solvants organiques comme le tétrachlorure de carbone, le benzène, le propanol, l'éthanol et l'acétone.
La densité de l'acide 2-hydroxybenzoïque (acide salicyclique) est de 1,44 à 20 °C.
La pression de vapeur de l'acide 2-hydroxybenzoïque (acide salicyclique) est de 8,2 × 105 mmHg à 25 °C.
L'acide 2-hydroxybenzoïque (acide salicyclique) a tendance �� se décolorer lorsqu'il est exposé à la lumière directe du soleil en raison de sa dégradation photochimique.

Lors de la dégradation, l'acide 2-hydroxybenzoïque (acide salicyclique) émet des fumées irritantes et une fumée âcre.
La chaleur de combustion de l'acide 2-hydroxybenzoïque (acide salicyclique) est de 3,026 mj/mole à 25 °C.
Le pH d'une solution saturée d'acide 2-hydroxybenzoïque (acide salicyclique) est de 2,4.
La valeur pka de l'acide 2-hydroxybenzoïque (acide salicyclique), c'est-à-dire la constante de dissociation est de 2,97.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
*Formation d'aspirine :
Dans l'industrie pharmaceutique, la réaction la plus importante associée à l'utilisation de l'acide 2-hydroxybenzoïque (acide salicyclique) est la production d'aspirine, c'est-à-dire d'acide acétylsalicylique.

L’acide 2-hydroxybenzoïque (acide salicyclique) est l’un des analgésiques et anticoagulants les plus couramment utilisés.
Dans cette réaction, l’acide 2-hydroxybenzoïque (acide salicyclique) réagit avec l’anhydride acétique.
Cela conduit à l'acétylation du groupe hydroxyle présent dans l'acide 2-hydroxybenzoïque (acide salicyclique), entraînant ainsi la production d'acide acétylsalicylique, c'est-à-dire d'aspirine.

L'acide acétique est fabriqué comme sous-produit de cette réaction.
Ceci est également présent comme l’une des impuretés lors de la production à grande échelle d’aspirine.
Ces impuretés doivent être éliminées du mélange de produits résultant par plusieurs processus de raffinage.

*Réaction d'estérification :
L’acide 2-hydroxybenzoïque (acide salicyclique) étant un acide organique, il subit une réaction avec des groupes alcooliques organiques pour produire une nouvelle classe chimique organique semblable à l’ester.

Lorsque l'acide 2-hydroxybenzoïque (acide salicyclique) réagit avec le méthanol dans un milieu acide, de préférence l'acide sulfurique, en présence de chaleur, une réaction de déshydratation se produit avec perte de l'ion eau −OH−.
Cet ion est perdu du groupe fonctionnel acide carboxylique présent dans la molécule d'acide 2-hydroxybenzoïque (acide salicyclique) et l'ion H+ est perdu lors de la déprotonation de la molécule de méthanol, entraînant la formation de salicylate de méthyle (un ester).



MÉCANISME D'ACTION DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) module l'activité enzymatique de la COX-1 pour diminuer la formation de prostaglandines pro-inflammatoires.
Le salicylate peut inhiber de manière compétitive la formation de prostaglandines. Les actions antirhumatismales (anti-inflammatoires non stéroïdiens) du salicylate résultent de ses mécanismes analgésiques et anti-inflammatoires.



STRUCTURE DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
La formule développée de l’acide 2-hydroxybenzoïque (acide salicyclique) est C6H4(OH)COOH.
La formule chimique peut également s’écrire C7H6O3 sous forme condensée.
Le nom IUPAC de l’acide 2-hydroxybenzoïque (acide salicyclique) est l’acide 2-hydroxybenzoïque.

L'acide 2-hydroxybenzoïque (acide salicyclique) possède un groupe hydroxyle, c'est-à-dire un groupe -OH attaché en position ortho par rapport à l'acide carboxylique.
Ce groupe COOH est présent sur le cycle benzénique.
Le poids moléculaire ou masse molaire de l'acide 2-hydroxybenzoïque (acide salicyclique) est 138,12 g/mol.

Tous les atomes de carbone présents dans le cycle benzénique de l’acide 2-hydroxybenzoïque (acide salicyclique) sont hybridés sp2.
L'acide 2-hydroxybenzoïque (acide salicyclique) forme une liaison hydrogène intramoléculaire.

Dans une solution aqueuse, l'acide 2-hydroxybenzoïque (acide salicyclique) se dissocie et perd un proton de l'acide carboxylique.
L'ion carboxylate résultant, c'est-à-dire -COO−, subit une interaction intermoléculaire avec l'atome d'hydrogène du groupe hydroxyle, c'est-à-dire -OH.
L'acide 2-hydroxybenzoïque (acide salicyclique) conduit à la formation d'une liaison hydrogène intramoléculaire.



MÉCANISME D'ACTION DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) inhibe directement et de manière irréversible la COX-1 et la COX-2 afin de diminuer la conversion de l'acide arachidonique en précurseurs des prostaglandines et des thromboxanes.
L'utilisation du salicylate dans les maladies rhumatismales est due à son activité analgésique et anti-inflammatoire.

L'acide 2-hydroxybenzoïque (acide salicyclique) est un ingrédient clé de nombreux produits de soins de la peau pour le traitement de l'acné, du psoriasis, des callosités, des cors, de la kératose pilaire et des verrues.
L'acide 2-hydroxybenzoïque (acide salicyclique) permet aux cellules de l'épiderme de se détacher plus facilement.

En raison de son effet sur les cellules de la peau, l'acide 2-hydroxybenzoïque (acide salicyclique) est utilisé dans plusieurs shampooings utilisés pour traiter les pellicules.
L'acide 2-hydroxybenzoïque (acide salicyclique) est également utilisé comme ingrédient actif dans les gels qui éliminent les verrues (verrues plantaires).
L'acide 2-hydroxybenzoïque (acide salicyclique) inhibe de manière compétitive l'oxydation de l'uridine-5-diphosphoglucose (UDPG) avec le nicotinamide adénosine dinucléotide (NAD) et de manière non compétitive avec l'UDPG.

L'acide 2-hydroxybenzoïque (acide salicyclique) inhibe également de manière compétitive le transfert du groupe glucuronyle de l'acide uridine-5-phosphoglucuronique (UDPGA) vers un accepteur phénolique.
L'inhibition de la synthèse des mucopolysaccharides est probablement responsable du ralentissement de la cicatrisation des plaies avec les salicylates.



PRODUCTION ET RÉACTIONS CHIMIQUES DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Biosynthèse
L'acide 2-hydroxybenzoïque (acide salicyclique) est biosynthétisé à partir de l'acide aminé phénylalanine.
Chez Arabidopsis thaliana, l'acide 2-hydroxybenzoïque (acide salicyclique) peut être synthétisé via une voie indépendante de la phénylalanine.



SYNTHÈSE CHIMIQUE DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Les vendeurs commerciaux préparent le salicylate de sodium en traitant le phénolate de sodium (le sel de sodium du phénol) avec du dioxyde de carbone à haute pression (100 atm) et haute température (115 °C) – une méthode connue sous le nom de réaction de Kolbe-Schmitt. L'acidification du produit avec de l'acide sulfurique donne l'acide 2-hydroxybenzoïque (acide salicyclique) :

À l'échelle du laboratoire, l'acide 2-hydroxybenzoïque (acide salicyclique) peut également être préparé par hydrolyse de l'aspirine (acide acétylsalicylique) ou du salicylate de méthyle (huile de gaulthérie) avec un acide ou une base forte ; ces réactions inversent les synthèses commerciales de ces produits chimiques.



RÉACTIONS DE L'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Lors du chauffage, l'acide 2-hydroxybenzoïque (acide salicyclique) se transforme en salicylate de phényle :
2HOC6H4CO2H → C6H5O2C6H4OH + CO2 + H2O

Un chauffage supplémentaire donne de la xanthone.
L'acide 2-hydroxybenzoïque (acide salicyclique) en tant que base conjuguée est un agent chélateur, avec une affinité pour le fer (III).
L'acide 2-hydroxybenzoïque (acide salicyclique) se dégrade lentement en phénol et en dioxyde de carbone à 200-230 °C :
C6H4OH(CO2H) → C6H5OH + CO2



SOURCES ALIMENTAIRES D'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) est présent dans les plantes sous forme d'acide salicylique libre et de ses esters carboxylés et glycosides phénoliques.
Plusieurs études suggèrent que les humains métabolisent l'acide 2-hydroxybenzoïque (acide salicyclique) en quantités mesurables à partir de ces plantes.
Les boissons et aliments riches en salicylates comprennent la bière, le café, le thé, de nombreux fruits et légumes, la patate douce, les noix et l'huile d'olive.

La viande, la volaille, le poisson, les œufs, les produits laitiers, le sucre, le pain et les céréales ont une faible teneur en salicylate.
Certaines personnes sensibles aux salicylates alimentaires peuvent présenter des symptômes de réaction allergique, tels que de l'asthme bronchique, de la rhinite, des troubles gastro-intestinaux ou de la diarrhée. Elles devront donc peut-être adopter un régime pauvre en salicylates.



HORMONE VÉGÉTALE, ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
L'acide 2-hydroxybenzoïque (acide salicyclique) est une phytohormone phénolique que l'on trouve dans les plantes et qui joue un rôle dans la croissance et le développement des plantes, la photosynthèse, la transpiration ainsi que l'absorption et le transport des ions.
L'acide 2-hydroxybenzoïque (acide salicyclique) est impliqué dans la signalisation endogène, médiateur de la défense des plantes contre les agents pathogènes.

L'acide 2-hydroxybenzoïque (acide salicyclique) joue un rôle dans la résistance aux agents pathogènes (c'est-à-dire la résistance systémique acquise) en induisant la production de protéines liées à la pathogenèse et d'autres métabolites défensifs.
Le rôle de signalisation de défense de l'acide 2-hydroxybenzoïque (acide salicyclique) est clairement démontré par des expériences qui le suppriment : Delaney et al. 1994, Gaffney et coll. 1993, Lawton et coll. 1995, et Vernooij et al. 1994 utilisent chacun Nicotiana tabacum ou Arabidopsis exprimant nahG, pour la salicylate hydroxylase.

L'inoculation d'agents pathogènes n'a pas produit les niveaux habituellement élevés d'acide 2-hydroxybenzoïque (acide salicyclique), le SAR n'a pas été produit et aucun gène PR n'a été exprimé dans les feuilles systémiques.
En effet, les sujets étaient plus sensibles aux agents pathogènes virulents – et même normalement avirulents –.

De manière exogène, l'acide 2-hydroxybenzoïque (acide salicylique) peut faciliter le développement des plantes en améliorant la germination des graines, la floraison des bourgeons et la maturation des fruits, bien qu'une concentration trop élevée d'acide salicylique puisse réguler négativement ces processus de développement.
L'ester méthylique volatil de l'acide 2-hydroxybenzoïque (acide salicyclique), le salicylate de méthyle, peut également se diffuser dans l'air, facilitant la communication plante-plante.

Le salicylate de méthyle est absorbé par les stomates de la plante voisine, où il peut induire une réponse immunitaire après avoir été reconverti en acide 2-hydroxybenzoïque (acide salicyclique).



TRANSDUCTION DU SIGNAL, ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Un certain nombre de protéines qui interagissent avec l'AS dans les plantes ont été identifiées, en particulier les protéines de liaison à l'acide 2-hydroxybenzoïque (acide salicyclique) (SABP) et les gènes NPR (non-expresseurs de gènes liés à la pathogenèse), qui sont des récepteurs putatifs.



HISTOIRE DE L’ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Le saule est utilisé depuis longtemps à des fins médicinales.
Dioscoride, dont les écrits ont eu une grande influence pendant plus de 1 500 ans, a utilisé « l'Itea » (qui était peut-être une espèce de saule) comme traitement des « occlusions intestinales douloureuses », comme moyen de contraception, pour « ceux qui crachent du sang », pour éliminer les callosités. et les cors et, à l'extérieur, comme « compresse chaude contre la goutte ».

William Turner, en 1597, répéta cela, disant que l'écorce de saule, « étant réduite en cendres et trempée dans du vinaigre, enlève les cors et autres tumeurs similaires des pieds et des orteils ».
Certains de ces remèdes peuvent décrire l'action de l'acide 2-hydroxybenzoïque (acide salicyclique), qui peut être dérivé de la salicine présente dans le saule.

L’acide 2-hydroxybenzoïque (acide salicyclique) est cependant un mythe moderne selon lequel Hippocrate utilisait le saule comme analgésique.
Hippocrate, Galien, Pline l'Ancien et d'autres savaient que les décoctions contenant du salicylate pouvaient soulager la douleur et réduire la fièvre.
L'acide 2-hydroxybenzoïque (acide salicyclique) a été utilisé en Europe et en Chine pour traiter ces affections.
Ce remède est mentionné dans des textes de l’Égypte ancienne, de Sumer et de l’Assyrie.

Les Cherokee et d'autres Amérindiens utilisent une infusion d'écorce contre la fièvre et à d'autres fins médicinales.
En 2014, des archéologues ont identifié des traces d'acide 2-hydroxybenzoïque (acide salicyclique) sur des fragments de poterie du VIIe siècle trouvés dans le centre-est du Colorado.
Le révérend Edward Stone, un vicaire de Chipping Norton, dans l'Oxfordshire, en Angleterre, rapporta en 1763 que l'écorce du saule était efficace pour réduire la fièvre.

Un extrait d'écorce de saule, appelé salicine, d'après le nom latin du saule blanc (Salix alba), a été isolé et nommé par le chimiste allemand Johann Andreas Buchner en 1828.
Une plus grande quantité de cette substance a été isolée en 1829 par Henri Leroux, un pharmacien français.
Raffaele Piria, un chimiste italien, a réussi à convertir la substance en sucre et en un deuxième composant qui, lors de l'oxydation, devient l'acide 2-hydroxybenzoïque (acide salicyclique).

L'acide 2-hydroxybenzoïque (acide salicyclique) a également été isolé de la reine des prés (Filipendula ulmaria, anciennement classée comme Spiraea ulmaria) par des chercheurs allemands en 1839.
Leur extrait provoquait des problèmes digestifs tels qu’une irritation gastrique, des saignements, de la diarrhée et même la mort lorsqu’il était consommé à fortes doses.

En 1874, le médecin écossais Thomas MacLagan expérimenta la salicine comme traitement des rhumatismes aigus, avec un succès considérable, comme il le rapporta dans The Lancet en 1876.
Pendant ce temps, des scientifiques allemands ont essayé le salicylate de sodium avec moins de succès et des effets secondaires plus graves.

En 1979, les salicylates se sont révélés impliqués dans les défenses induites du tabac contre le virus de la mosaïque du tabac.
En 1987, l’acide 2-hydroxybenzoïque (acide salicyclique) a été identifié comme le signal recherché depuis longtemps qui amène les plantes thermogéniques, telles que le lys vaudou, Sauromatum guttatum, à produire de la chaleur.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
Formule : C7H6O3
Poids moléculaire : 138,12 g/mol
N ° CAS. : 69-72-7
Numéro CE. : 200-712-3
État physique : poudrecristallin
Couleur blanche
Odeur : inodore
Point de fusion/point de congélation :
Point/plage de fusion : 158 - 160 °C
Point d'ébullition initial et intervalle d'ébullition : 211 °C à 27 hPa
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d’inflammabilité ou d’explosivité :
Limite d'explosivité inférieure : 1,1 %(V)
Point d'éclair 157 °C - coupelle fermée
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 2,4 à 20 °C

Numéro CAS : 69-72-7
Poids moyen : 138,1207
Monoisotopique : 138.031694058
Clé InChI : YGSDEFSMJLZEOE-UHFFFAOYSA-N
InChI : InChI=1S/C7H6O3/c8-6-4-2-1-3-5(6)7(9)10/h1-4,8H,(H,9,10)
Nom IUPAC : acide 2-hydroxybenzoïque
Nom traditionnel IUPAC : salicylique
Formule chimique : C7H6O3
SOURIRES : OC(=O)C1=CC=CC=C1O
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible
Coefficient de partage : n-octanol/eau :
log Pow: 2,25 à 25 °C - Aucune bioaccumulation n'est attendue.
Pression de vapeur : 1 hPa à 114 °C
Densité : 1,44 g/cm3 à 20 °C

Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Nom chimique : 2 – Acide hydroxybenzoïque
Formule moléculaire : C7H6O3
Poids moléculaire : 138,1
Description : Poudre cristalline blanche / incolore / cristaux aciculaires
Solubilité : Solubilité (pourcentage en poids) :
tétrachlorure de carbone 0,262 (25 °C) ;
benzène 0,775 (25 °C) ; propanol 27,36 (21 °C) ;
éthanol absolu 34,87 (21 °C) ; acétone 396 (23 °C)
Aspect : poudre blanche
Stockage : Conserver à RT.

EINECS : 200-712-3
Codes de danger : Xn
Code SH : 2918211000
Journal P : 1,09040
MDL : MFCD00002439
pH : pH de la solution saturée : 2,4
PSA : 57,53
Norme de qualité : norme d'entreprise
Indice de réfraction : 1,565
Déclarations de risques : R22 ; R36/37/38 ; R41
N° CAS : 69-72-7
CAS : 69-72-7
FM : C7H6O3
MW : 138,12
EINECS : 200-712-3
Fichier Mol : 69-72-7.mol
Acide salicylique : propriétés chimiques

Point de fusion : 158-161 °C(lit.)
Point d'ébullition : 211 °C(lit.)
densité : 1,44
densité de vapeur : 4,8 (vs air)
pression de vapeur : 1 mm Hg ( 114 °C)
indice de réfraction : 1 565
FEMA : 3985 | ACIDE 2-HYDROXYBENZOÏQUE
Fp : 157 °C
température de stockage : 2-8°C
solubilité : éthanol : 1 M à 20 °C, clair, incolore
pka : 2,98 (à 25 ℃ )
Fer : 2 ppm (max.) IP
Poids moléculaire : 138,12 g/mol
XLogP3 : 2,3
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 3
Nombre de liaisons rotatives : 1
Masse exacte : 138,031694049 g/mol

Masse monoisotopique : 138,031694049 g/mol
Surface polaire topologique : 57,5 Å ²
Nombre d'atomes lourds : 10
Frais formels : 0
Complexité : 133
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
forme : Solide
couleur : Blanc à blanc cassé
Plage de pH : non 0 uorescence (2,5) à bleu foncé 0 uorescence (4,0)
Odeur : à 100,00 %. légère noisette phénolique
PH : 3,21 (solution 1 mM) ; 2,57 (solution 10 mM) ; 2,02 (solution 100 mM) ;
Type d'odeur : noisette

Solubilité dans l'eau : 1,8 g/L (20 ºC)
Sensible : sensible à la lumière
λmax : 210 nm, 234 nm, 303 nm
Merck : 148 332
Numéro JECFA : 958
Sublimation : 70 ºC
Numéro de référence : 774890
Stabilité : Stable.
InChIKey : YGSDEFSMJLZEOE-UHFFFAOYSA-N
LogP : 2,01
Référence de la base de données CAS : 69-72-7 (référence de la base de données CAS)
Référence chimique NIST : Acide benzoïque, 2-hydroxy-(69-72-7)
Système d'enregistrement des substances de l'EPA : Acide salicylique (69-72-7)
Nom IUPAC : acide 2-hydroxybenzoïque
Poids moléculaire : 138,12
Formule moléculaire : C7H6O3
SOURIRES canoniques : C1=CC=C(C(=C1)C(=O)O)O

InChI : InChI=1S/C7H6O3/c8-6-4-2-1-3-5(6)7(9)10/h1-4,8H,(H,9,10)
InChIKey : YGSDEFSMJLZEOE-UHFFFAOYSA-N
Point d'ébullition : 211 ℃ (20 mmHg)
Point de fusion : 154-156 ℃
Point d'éclair : 157 ºC
Pureté : > 98 %
Densité : 1,44 g/cm3
RTECS : VO0525000
Déclarations de sécurité : S26-S37/39
Stabilité : Stable.
Densité de vapeur : 4,8
Pression de vapeur : 1 mm Hg ( 114 °C)
Odeur : Presque inodore.
Plage de fusion : 158,5°C à 161,0°C.
Apparence de la solution/
Clarté et couleur de la solution : réussit le test selon BP/IP
Métaux lourds : 20 ppm (max)
Cendres sulfatées/résidus d'inflammation : 0,1 % p/p (IP/BPLimit) / 0,05 % p/p (limite USP)

Chlorure : 125 ppm (max.) IP/100 ppm (max.) BP
Sulfate : 0,02 % (max.) IP/140 ppm USP
Substance associée : Conforme au test BP.
Perte de séchage : 0,5 % (max.) BP
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Numéro CAS : 69-72-7
Numéro CE : 200-712-3
Formule de Hill : C₇H₆O₃
Formule chimique : HOC₆H₄COOH
Masse molaire : 138,12 g/mol
Code SH : 2918 21 10
Point d'ébullition : 211 °C (1013 hPa)
Densité : 1,44 g/cm3 (20 °C)
Point d'éclair : 157 °C
Température d'inflammation : 500 °C

Point de fusion : 158 - 160 °C
Valeur pH : 2,4 (H₂O, 20 °C) (solution saturée)
Pression de vapeur : 1 hPa (114 °C)
Densité apparente : 400 - 500 kg/m3
Solubilité : 2 g/l
Formule chimique : C7H6O3
Masse molaire : 138,122 g/mol
Aspect : Cristaux incolores à blancs
température de stockage : 2-8°C
solubilité : éthanol : 1 M à 20 °C, clair, incolore
pka : 2,98 (à 25 ℃ )
forme : Solide
couleur : Blanc à blanc cassé
Plage de pH : non 0 uorescence (2,5) à bleu foncé 0 uorescence (4,0)
Odeur : à 100,00 %. légère noisette phénolique
PH : 3,21 (solution 1 mM) ; 2,57 (solution 10 mM) ; 2,02 (solution 100 mM) ;

Type d'odeur : noisette
Solubilité dans l'eau : 1,8 g/L (20 ºC)
Sensible : sensible à la lumière
λmax : 210 nm, 234 nm, 303 nm
Merck : 148 332
Numéro JECFA : 958
Sublimation : 70 ºC
Numéro de référence : 774890
Stabilité : Stable. S
les substances à éviter comprennent les agents oxydants, les bases fortes, l'iode et le fluor.
Sensible à la lumière.
Odeur : Inodore
Densité : 1,443 g/cm3 (20 °C)
Point de fusion : 158,6 °C (317,5 °F ; 431,8 K)
Point d'ébullition : 211 °C (412 °F ; 484 K) à 20 mmHg
Conditions de sublimation : Sublime à 76 °C

Solubilité dans l'eau:
1,24 g/L (0 °C)
2,48 g/L (25 °C)
4,14 g/L (40 °C)
17,41 g/L (75 °C)
77,79 g/L (100 °C)
Solubilité : Soluble dans l'éther, CCl4, le benzène, le propanol,
acétone, éthanol, essence de térébenthine, toluène
Solubilité dans le benzène :
0,46 g/100 g (11,7 °C)
0,775 g/100 g (25 °C)
0,991 g/100 g (30,5 °C)
2,38 g/100 g (49,4 °C)
4,4 g/100 g (64,2 °C)
InChIKey : YGSDEFSMJLZEOE-UHFFFAOYSA-N

LogP : 2,01
Référence de la base de données CAS : 69-72-7 (référence de la base de données CAS)
Référence chimique NIST : Acide benzoïque, 2-hydroxy-(69-72-7)
Système d'enregistrement des substances de l'EPA : Acide salicylique (69-72-7)
IUPAC : SALICYLACIDE
Numéro CAS : 69-72-7
Poids moléculaire : 138,122
Formule : C7H6O3
SOURIRES : OC(=O)C1=C(O)C=CC=C1
Nom IUPAC préféré : ACIDE 2-HYDROXYBENZOÏQUE
InChIKey : InChIKey=YGSDEFSMJLZEOE-UHFFFAOYSA-N
Point de fusion : 158°C
Couleur blanche
PH : 3,6
Point d'ébullition : 211°C
Poids de la formule : 138,12 g/mol
Pression de vapeur : 0,3 mbar 95

Forme physique : Solide
Thermochimie:
Enthalpie standard de formation (ΔfH ⦵ 298) : −589,9 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : -3,025 MJ/mol
CAS : 69-72-7
FM : C7H6O3
MW : 138,12
EINECS : 200-712-3
Fichier Mol : 69-72-7.mol
Propriétés chimiques de l'acide salicylique
Point de fusion : 158-161 °C(lit.)
Point d'ébullition : 211 °C(lit.)
densité : 1,44
densité de vapeur : 4,8 (vs air)
pression de vapeur : 1 mm Hg ( 114 °C)
indice de réfraction : 1 565
FEMA : 3985 | ACIDE 2-HYDROXYBENZOÏQUE
Fp : 157 °C

Solubilité dans le chloroforme :
2,22 g/100 ml (25 °C)
2,31 g/100 ml (30,5 °C)
Solubilité dans le méthanol :
40,67 g/100 g (−3 °C)
62,48 g/100 g (21 °C)
Solubilité dans l'huile d'olive : 2,43 g/100 g (23 °C)
Solubilité dans l'acétone : 39,6 g/100 g (23 °C)
log P : 2,26
Pression de vapeur : 10,93 mPa
Acidité (pKa) :
2,97 (25 °C)
13,82 (20 °C)
UV-vis (λmax) : 210 nm, 234 nm, 303 nm (4 mg/dL dans l'éthanol)
Susceptibilité magnétique (χ) : −72,23•10−6 cm3/mol
Indice de réfraction (nD) : 1,565 (20 °C)
Moment dipolaire : 2,65 D
InChI : InChI=1S/C7H6O3/c8-6-4-2-1-3-5(6)7(9)10/h1-4,8H,(H,9,10)
Nom IUPAC : acide 2-hydroxybenzoïque

Nom traditionnel IUPAC : salicylique
Formule chimique : C7H6O3
SOURIRES : OC(=O)C1=CC=CC=C1O
Aspect : poudre blanche (est)
Dosage : 99,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point de fusion : 158,00 à 161,00 °C. @ 760,00 mmHg
Point d'ébullition : 211,00 °C. @ 20,00 mmHg
Point d'ébullition : 336,00 à 337,00 °C. @ 760,00 mmHg
Pression de vapeur : 1,000000 mmHg à 114,00 °C.
Densité de vapeur : 4,8 (Air = 1)
Point d'éclair : > 212,00 °F. TCC ( > 100,00 °C. )
logP (dont) : 2,260
Soluble dans : alcool
eau, 3 808 mg/L à 25 °C (est)
eau, 2 240 mg/L à 25 °C (exp)

Numéro CAS : 69-72-7
Numéro CE : 200-712-3
Formule de Hill : C₇H₆O₃
Formule chimique : HOC₆H₄COOH
Masse molaire : 138,12 g/mol
Code SH : 2918 21 10
Point d'ébullition : 211 °C (1013 hPa)
Densité : 1,44 g/cm3 (20 °C)
Point d'éclair : 157 °C
Température d'inflammation : 500 °C
Point de fusion : 158 - 160 °C
Valeur pH : 2,4 (H₂O, 20 °C) (solution saturée)
Pression de vapeur : 1 hPa (114 °C)
Densité apparente : 400 - 500 kg/m3
Solubilité : 2 g/l
Numéro CAS : 69-72-7
Poids moyen : 138,1207
Monoisotopique : 138.031694058
Clé InChI : YGSDEFSMJLZEOE-UHFFFAOYSA-N



PREMIERS SECOURS de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Consultez un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.
Ranger à température ambiante.
Sensible à la lumière



STABILITÉ et RÉACTIVITÉ de l'ACIDE 2-HYDROXYBENZOÏQUE (ACIDE SALICYCLIQUE) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles

ACIDE 2-HYDROXYBUTANEDIOIQUE

L'acide 2-hydroxybutanedioïque, également connu sous le nom d'acide tartronique ou d'acide hydroxymalonique, est un composé organique simple de formule chimique C4H6O5.
L'acide 2-hydroxybutanedioïque est un acide dicarboxylique, ce qui signifie qu'il contient deux groupes fonctionnels acide carboxylique (-COOH) dans sa structure.
L'acide 2-hydroxybutanedioïque tire son nom de sa structure chimique, qui consiste en une chaîne à quatre carbones avec deux groupes hydroxyle (-OH) et deux groupes carboxyle (-COOH).

Numéro CAS : 87-69-4
Numéro CE : 201-778-2



APPLICATIONS


L'acide 2-hydroxybutanedioïque est un composé organique fascinant caractérisé par sa structure chimique distinctive.
La formule chimique de l'acide 2-hydroxybutanedioïque, C4H6O5, illustre une molécule avec quatre atomes de carbone, deux groupes carboxyle (-COOH) et deux groupes hydroxyle (-OH).
L'acide 2-hydroxybutanedioïque est classé comme acide dicarboxylique en raison de la présence de deux groupes carboxyle dans sa structure moléculaire.
Généralement, l’acide 2-hydroxybutanedioïque existe sous la forme de granules cristallins blancs ou d’une fine poudre, dépourvue de toute odeur perceptible.

Le nom « acide 2-hydroxybutanedioïque » reflète sa relation avec l'acide tartrique, un autre acide organique bien connu avec une structure comparable.
L’une des caractéristiques distinctives de l’acide 2-hydroxybutanedioïque est sa solubilité dans l’eau et il se dissout facilement dans les solvants polaires grâce à ses groupes fonctionnels hydroxyle et carboxyle.

Bien qu'il contienne des groupes carboxyle, l'acide 2-hydroxybutanedioïque est considéré comme un acide organique faible avec une acidité relativement douce par rapport aux acides minéraux forts.
L'acide 2-hydroxybutanedioïque trouve des applications dans divers processus chimiques et biochimiques, bien qu'il ne soit pas aussi omniprésent que certains autres acides organiques.
Dans la nature, l’acide 2-hydroxybutanedioïque peut être trouvé dans certaines plantes et se forme comme sous-produit dans certaines réactions biologiques.

L'acide 2-hydroxybutanedioïque est chimiquement relativement simple, ce qui en fait un objet d'intérêt dans des efforts de recherche chimique spécifiques.
Ses groupes hydroxyle et carboxyle confèrent à l’acide 2-hydroxybutanedioïque la capacité de participer à des réactions chimiques à la fois en tant qu’acide et en tant qu’alcool.

Les capacités de liaison hydrogène proviennent des groupes hydroxyle de l’acide 2-hydroxybutanedioïque et de son interaction avec d’autres molécules .
Le poids moléculaire de l'acide 2-hydroxybutanedioïque est d'environ 134,09 grammes/mol.
Bien qu’utilisé avec parcimonie, l’acide 2-hydroxybutanedioïque a des applications limitées dans les domaines des industries alimentaires et pharmaceutiques, principalement dans des contextes de recherche et développement.
Dans les applications culinaires et les produits de consommation courants, l’acide 2-hydroxybutanedioïque n’est pas un ingrédient bien connu ou largement utilisé.

Son rôle dans le goût et l’arôme est négligeable, car on ne le rencontre généralement pas dans les aliments ou les boissons de tous les jours.
Dans la terminologie chimique, l'acide 2-hydroxybutanedioïque est souvent appelé acide 2-hydroxybutanedioïque pour souligner sa structure chimique.
L'acide 2-hydroxybutanedioïque peut contribuer à l'acidité d'une solution à base d'eau une fois dissous, bien que dans une mesure limitée.
Sa solubilité dans l’eau le rend facilement incorporable dans diverses solutions de laboratoire et configurations expérimentales.

Bien que moins réputé que certains autres acides organiques, l’acide 2-hydroxybutanedioïque a sa place dans la recherche chimique et les travaux de laboratoire.
Sa structure relativement simple en fait un composé modèle précieux pour étudier des réactions et des processus chimiques spécifiques.
En raison de sa légère acidité, l’acide 2-hydroxybutanedioïque est moins réactif et corrosif que les acides minéraux puissants.

Les chimistes et les chercheurs peuvent rencontrer de l'acide 2-hydroxybutanedioïque dans diverses réactions chimiques, en particulier celles impliquant des acides organiques.
Dans les recherches scientifiques et en chimie organique, l'acide 2-hydroxybutanedioïque joue un rôle spécifique grâce à sa structure et ses propriétés chimiques uniques.
Dans l’ensemble, l’acide 2-hydroxybutanedioïque se présente comme un composé intrigant, offrant des perspectives et une utilité dans diverses activités scientifiques.

L'acide 2-hydroxybutanedioïque est couramment utilisé dans l'industrie alimentaire et des boissons comme régulateur d'acidité et exhausteur de goût.
Il trouve une application dans le contrôle du pH dans la transformation des aliments, aidant à maintenir les niveaux d'acidité souhaités dans des produits tels que les légumes en conserve et les boissons gazeuses.

Les produits cosmétiques incorporent souvent de l'acide 2-hydroxybutanedioïque pour ses propriétés exfoliantes et régénératrices de la peau.
En synthèse chimique, l'acide 2-hydroxybutanedioïque sert de réactif polyvalent et de matière première pour la préparation de divers composés.

Les laboratoires de biotechnologie utilisent l'acide 2-hydroxybutanedioïque dans les analyses enzymatiques et la recherche biochimique en raison de sa légère acidité.
Les produits de nettoyage peuvent contenir de l'acide 2-hydroxybutanedioïque comme agent chélateur pour éliminer les dépôts minéraux.
L'acide 2-hydroxybutanedioïque est efficace pour nettoyer et détartrer les métaux, y compris pour éliminer la rouille des surfaces en fer et en acier.

En photographie, l'acide 2-hydroxybutanedioïque joue un rôle dans le développement de solutions utilisées pour le traitement des films noir et blanc.
Certains produits dentaires contiennent de l'acide 2-hydroxybutanedioïque pour ses propriétés légèrement acides dans les traitements dentaires.
Dans les formulations pharmaceutiques, l’acide 2-hydroxybutanedioïque est parfois utilisé à des fins médicinales spécifiques.

La chimie analytique repose sur l'acide 2-hydroxybutanedioïque comme réactif dans divers tests et analyses chimiques.
Les laboratoires utilisent fréquemment l'acide 2-hydroxybutanedioïque dans la recherche et les expériences chimiques en raison de sa disponibilité et de sa compatibilité.
L'acide 2-hydroxybutanedioïque peut être utilisé dans le traitement de l'eau en tant que produit chimique pour l'ajustement du pH et l'élimination des métaux.
Les produits d’entretien ménager l’utilisent pour éliminer les taches de rouille sur diverses surfaces.

La production d'engrais peut faire appel à l'acide 2-hydroxybutanedioïque comme composant de certaines formulations.
Les solutions tampons dans les laboratoires de biochimie et de biologie moléculaire reposent sur l’acide 2-hydroxybutanedioïque comme composant clé.
Dans les milieux éducatifs, l'acide 2-hydroxybutanedioïque est utilisé pour des démonstrations de chimie, illustrant les réactions acide-base et les titrages.
Les chercheurs utilisent l’acide 2-hydroxybutanedioïque dans des recherches et des études chimiques dans divers domaines.

Les processus de galvanoplastie peuvent l'utiliser pour préparer des surfaces métalliques au placage.
L'industrie textile utilise l'acide 2-hydroxybutanedioïque pour les processus de teinture et de finition.
La recherche pharmaceutique implique souvent l’acide 2-hydroxybutanedioïque comme réactif dans le développement de médicaments.

Dans l’industrie du papier et de la pâte à papier, il aide à contrôler les niveaux de pH pendant le traitement.
Les applications agricoles peuvent inclure l'acide 2-hydroxybutanedioïque dans les traitements du sol et les produits chimiques agricoles.
Les industries métallurgiques l'utilisent pour éliminer le tartre et la rouille des surfaces métalliques.

Les laboratoires de chimie utilisent l'acide 2-hydroxybutanedioïque à des fins éducatives, démontrant divers principes chimiques.
L'acide 2-hydroxybutanedioïque est utilisé dans l'industrie alimentaire pour ajuster et améliorer l'acidité de divers produits alimentaires, tels que les confitures et les gelées.
Dans l'industrie des boissons, l'acide 2-hydroxybutanedioïque est utilisé pour contrôler l'acidité et l'acidité des jus de fruits, des boissons gazeuses et des boissons pour sportifs.

Certaines formulations pharmaceutiques utilisent l'acide 2-hydroxybutanedioïque comme agent d'ajustement du pH pour maintenir la stabilité et l'efficacité des médicaments.
L'acide 2-hydroxybutanedioïque est couramment utilisé dans la production de comprimés et de poudres effervescents, contribuant à leur pétillement lorsqu'ils sont dissous dans l'eau.
Dans l'industrie vinicole, l'acide 2-hydroxybutanedioïque se trouve naturellement dans les raisins et est important pour le processus de fermentation.

L'acide 2-hydroxybutanedioïque est un élément clé dans la fabrication de la levure chimique, où il agit comme agent levant pour faire lever les produits de boulangerie.
Lors du nettoyage et du détartrage des appareils électroménagers comme les cafetières et les lave-vaisselle, il permet d'éliminer les dépôts minéraux.
L'industrie du textile et de la teinture s'appuie sur l'acide 2-hydroxybutanedioïque pour la fixation des colorants et la solidité des couleurs des tissus.
Certains produits de soins personnels, notamment les shampoings et les revitalisants, en contiennent pour ses propriétés adoucissantes.

Dans le domaine de la chimie analytique, l'acide 2-hydroxybutanedioïque est utilisé comme titrant dans les titrages acide-base pour déterminer la concentration d'autres substances.
L'acide 2-hydroxybutanedioïque joue un rôle dans la préparation de réactifs et de solutions de laboratoire utilisés dans diverses expériences scientifiques.
Les installations de traitement de l’eau utilisent de l’acide 2-hydroxybutanedioïque pour empêcher l’accumulation de tartre et la corrosion dans les tuyaux et les équipements.
L'industrie automobile utilise l'acide 2-hydroxybutanedioïque dans les formulations de liquides de refroidissement pour inhiber la rouille et la corrosion des moteurs de voiture.

Les opérations de travail des métaux l'utilisent souvent pour décaper et détartrer les métaux avant un traitement ultérieur.
L'acide 2-hydroxybutanedioïque est impliqué dans la production de détergents et d'agents de nettoyage, aidant à éliminer les taches d'eau dure.
L'acide 2-hydroxybutanedioïque est un composant de certaines solutions antigel utilisées dans les radiateurs pour prévenir le gel et la corrosion.
Les horticulteurs peuvent l'utiliser dans les traitements du sol pour ajuster les niveaux de pH afin d'optimiser la croissance des plantes.

Dans l’industrie pharmaceutique, il peut être utilisé comme agent stabilisant dans certaines formulations médicamenteuses.
Les adoucisseurs d'eau à usage résidentiel et industriel utilisent de l'acide 2-hydroxybutanedioïque pour éliminer les ions de dureté comme le calcium et le magnésium.


Certaines industries acide 2-hydroxybutanedioïque utilisé dans :

Industrie alimentaire et des boissons :
L'acide 2-hydroxybutanedioïque est utilisé comme régulateur d'acidité et exhausteur de goût dans l'industrie alimentaire et des boissons.

Contrôle du pH :
L'acide 2-hydroxybutanedioïque sert d'agent tampon dans la transformation des aliments pour maintenir ou ajuster les niveaux de pH dans des produits comme les légumes en conserve et les boissons gazeuses.

Produits cosmétiques:
Dans les cosmétiques et les produits de soin de la peau, l’acide 2-hydroxybutanedioïque peut être utilisé pour ses propriétés exfoliantes et régénératrices de la peau.

Synthèse chimique :
L'acide 2-hydroxybutanedioïque trouve des applications en synthèse chimique comme matière première ou réactif dans la préparation de divers composés.

Biotechnologie:
En biotechnologie, l'acide 2-hydroxybutanedioïque est utilisé dans les analyses enzymatiques et la recherche biochimique en raison de sa légère acidité.

Produits de nettoyage:
L'acide 2-hydroxybutanedioïque peut être utilisé dans les produits de nettoyage comme agent chélateur pour lier et éliminer les dépôts minéraux.

Nettoyage des métaux :
Il est utilisé pour nettoyer et détartrer les métaux, par exemple pour éliminer la rouille des surfaces en fer et en acier.

La photographie:
En photographie, l'acide 2-hydroxybutanedioïque est utilisé dans le développement de solutions pour le traitement des films noir et blanc.

Dentisterie:
Certains produits dentaires utilisent l’acide 2-hydroxybutanedioïque pour ses propriétés légèrement acides dans les traitements dentaires.

Médecine:
L'acide 2-hydroxybutanedioïque est parfois utilisé dans des formulations pharmaceutiques à des fins médicinales spécifiques.

Analyse chimique:
En chimie analytique, l'acide 2-hydroxybutanedioïque peut servir de réactif dans divers tests et analyses chimiques.

Recherche en laboratoire :
L'acide 2-hydroxybutanedioïque est utilisé en laboratoire pour sa disponibilité et sa compatibilité avec de nombreuses réactions chimiques.

Traitement de l'eau:
L'acide 2-hydroxybutanedioïque peut être utilisé comme produit chimique de traitement de l'eau pour l'ajustement du pH et l'élimination des métaux.

Nettoyer les taches de rouille :
L'acide 2-hydroxybutanedioïque est utilisé dans les produits d'entretien ménager pour éliminer les taches de rouille sur diverses surfaces.

Fabrication d'engrais :
Dans la production d’engrais, il peut être utilisé comme composant dans certaines formulations.

Solutions tampons :
L'acide 2-hydroxybutanedioïque est un composant clé des solutions tampons utilisées dans les laboratoires de biochimie et de biologie moléculaire.

Éducation chimique :
L'acide 2-hydroxybutanedioïque est utilisé dans des contextes éducatifs pour démontrer les réactions acido-basiques et les titrages.

Recherche chimique :
Les chercheurs utilisent l’acide 2-hydroxybutanedioïque dans des recherches et des études chimiques.

Galvanoplastie :
Dans les processus de galvanoplastie, il peut être utilisé pour préparer des surfaces métalliques au placage.

Industrie textile:
L'acide 2-hydroxybutanedioïque est utilisé dans l'industrie textile pour les procédés de teinture et de finition.

Recherche pharmaceutique :
Les chercheurs pharmaceutiques peuvent utiliser l’acide 2-hydroxybutanedioïque comme réactif dans le développement de nouveaux médicaments.

Industrie du papier et de la pâte à papier :
L'acide 2-hydroxybutanedioïque peut être utilisé pour contrôler les niveaux de pH dans le traitement du papier et de la pâte à papier.

Agriculture:
En agriculture, il peut être utilisé dans le traitement des sols et comme composant de produits chimiques agricoles.

Travail des métaux :
Dans le travail des métaux, il peut être utilisé pour éliminer le tartre et la rouille des surfaces métalliques.

Démonstrations en laboratoire :
L'acide 2-hydroxybutanedioïque est utilisé à des fins éducatives dans des expériences en laboratoire de chimie pour illustrer les principes chimiques.



DESCRIPTION


L'acide 2-hydroxybutanedioïque, également connu sous le nom d'acide tartronique ou d'acide hydroxymalonique, est un composé organique simple de formule chimique C4H6O5.
L'acide 2-hydroxybutanedioïque est un acide dicarboxylique, ce qui signifie qu'il contient deux groupes fonctionnels acide carboxylique (-COOH) dans sa structure.
L'acide 2-hydroxybutanedioïque tire son nom de sa structure chimique, qui consiste en une chaîne à quatre carbones avec deux groupes hydroxyle (-OH) et deux groupes carboxyle (-COOH).



PROPRIÉTÉS


Propriétés chimiques:

Formule chimique : C4H6O5
Masse molaire : environ 134,09 grammes/mol
Structure chimique : Il contient une chaîne à quatre carbones avec deux groupes carboxyle (-COOH) et deux groupes hydroxyle (-OH).
Groupes fonctionnels : Il possède deux groupes carboxyle et deux groupes hydroxyle, ce qui en fait un acide dicarboxylique.
Solubilité : Il est soluble dans l’eau et les solvants polaires grâce à ses groupes fonctionnels hydroxyle et carboxyle.
Acidité : C'est un acide organique faible en raison des groupes carboxyle mais il a une acidité relativement douce par rapport aux acides minéraux forts.
Point de fusion : environ 150-155°C (302-311°F)
Point d'ébullition : se décompose avant l'ébullition.


Propriétés physiques:

État physique : On le trouve généralement sous forme de solide cristallin blanc.
Odeur : Généralement inodore.
Goût : Insipide.
Densité : La densité d'une solution aqueuse saturée à 20°C est d'environ 1,53 g/cm³.
pH : En solution, il peut contribuer à l’acidité, abaissant le pH.
Liaison hydrogène : Il peut former des liaisons hydrogène avec d’autres molécules en raison de ses groupes hydroxyle.
Structure cristalline : Les cristaux d’acide 2-hydroxybutanedioïque peuvent présenter différentes formes cristallines, notamment monocliniques et orthorhombiques.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle:
Lors de la manipulation de l'acide 2-hydroxybutanedioïque, portez un équipement de protection individuelle (EPI) approprié, notamment des gants de laboratoire, des lunettes de sécurité et une blouse de laboratoire pour éviter tout contact avec la peau et les yeux.

Ventilation:
Utilisez des hottes chimiques ou travaillez dans des zones bien ventilées pour minimiser l'exposition aux poussières et aux vapeurs en suspension dans l'air. Évitez d'inhaler la substance.

Évitez tout contact avec la peau et les yeux :
En cas de contact accidentel avec la peau ou les yeux, rincer immédiatement et abondamment à l'eau et consulter un médecin si l'irritation persiste.

Éviter l'ingestion :
Ne pas ingérer d’acide 2-hydroxybutanedioïque. Lavez-vous soigneusement les mains après avoir manipulé le composé et avant de manger, de boire ou d'aller aux toilettes.

Déversements et fuites :
En cas de déversement, nettoyer rapidement le matériau déversé en utilisant les mesures appropriées de contrôle des déversements. Porter un équipement de protection et utiliser des matériaux absorbants pour contenir et absorber la substance.

Compatibilité chimique :
Soyez conscient de la compatibilité chimique de l'acide 2-hydroxybutanedioïque avec d'autres substances et équipements pour éviter des réactions ou des dommages involontaires.


Stockage:

Emplacement de stockage:
Conservez l'acide 2-hydroxybutanedioïque dans un endroit frais, sec et bien ventilé, à l'abri de la lumière directe du soleil, des sources de chaleur et des matériaux incompatibles.

Température:
Maintenez les températures de stockage dans la plage spécifiée, qui est généralement égale ou inférieure à la température ambiante. Vérifiez les recommandations du fabricant pour connaître les conditions précises de stockage.

Récipient:
Conservez la substance dans un récipient hermétiquement fermé, tel qu'un récipient en verre ou en plastique résistant aux produits chimiques, pour éviter la contamination et l'absorption d'humidité.

Étiquetage :
Étiquetez clairement les conteneurs de stockage avec le nom, la formule chimique, les informations sur les dangers et les précautions de manipulation appropriées pour une identification facile.

Séparation:
Conservez l’acide 2-hydroxybutanedioïque à l’écart des matières incompatibles, notamment les bases fortes, les acides forts et les agents oxydants.

Précautions contre l'incendie :
Bien qu'il ne présente pas de risque d'incendie spécifique, rangez-le à l'écart des flammes nues et des sources potentielles d'inflammation.

Contrôle d'accès:
Restreindre l'accès aux zones de stockage et garantir que seul le personnel autorisé et correctement formé manipule la substance.



SYNONYMES


Acide tartronique
Acide hydroxymalonique
Acide 2-hydroxybutanedioïque
Acide hydroxyéthanedicarboxylique
Acide dihydroxybutanedioïque
Acide 2-hydroxysuccinique
Acide α-hydroxybutanedioïque
Acide hydroxybutanedioïque
Hydroxybutanedioate
Hydroxysuccinate
Acide alpha-hydroxysuccinique
Acide malique, hydroxy-
Hydroxybutanedioate
Acide malique, 2-hydroxy-
2-hydroxybutanedioate
Acide 2-hydroxybutanedioïque
Acide dihydroxysuccinique
Acide alpha-hydroxymalonique
Tartronate
2-Hydroxysuccinate
Acide 2-hydroxymalonique
Acide hydroxyéthylsuccinique
Acide malonique, 2-hydroxy-
Acide 2-hydroxymalique
Acide hydroxysuccinique
2-hydroxybutanedioate
acide alpha-hydroxyéthanedicarboxylique
Acide 2-hydroxyéthanedicarboxylique
Acide 2-hydroxysuccinique
Acide hydroxymalique
Acide malonique, 2-hydroxy-, (S)-
Acide L-tartronique
Acide 2-hydroxymalonique
Acide (S)-2-hydroxybutanedioïque
Acide L-malique
Hydroxysuccinate
Acide L-hydroxymalonique
Acide L-2-hydroxybutanedioïque
Hydroxybutanedioate
Acide hydroxymalonique
Acide L-2-hydroxymalonique
(S)-Acide malique, hydroxy-
(S)-Acide malique, 2-hydroxy-
Acide (S)-hydroxybutanedioïque
Acide hydroxyéthylsuccinique
Acide hydroxysuccinique (S)-
Acide hydroxyéthanedioïque
Acide (S)-2-hydroxysuccinique
Acide (S)-2-hydroxymalonique
Acide (S)-2-hydroxyéthanedicarboxylique
Acide malique hydroxy-
Hydroxysuccinate
Acide hydroxyéthanedicarboxylique
Acide L-alpha-hydroxymalonique
Acide L-2-hydroxyéthanedicarboxylique
(S)-2-hydroxybutanedioate
Acide 2-hydroxybutanedioïque, (S)-
Acide L-2-hydroxybutanedioïque
Acide (S)-2-hydroxyéthanedicarboxylique
Acide L-malique, hydroxy-
Acide hydroxybutanedioïque, (S)-
Acide L-2-hydroxysuccinique
Acide 2-hydroxybutanedioïque, (S)-
(S)-Acide malique, 2-hydroxy-
Acide L-(+)-Tartronique
Acide malonique, 2-hydroxy-, (R)-
Acide (S)-hydroxyéthanedioïque
Acide 2-hydroxyéthanedioïque, (S)-
Acide (R)-2-hydroxybutanedioïque
Acide malique, 2-hydroxy-, (S)-
Acide (S)-2-hydroxybutanedioïque, sel monosodique
Acide (S)-2-hydroxysuccinique, sel monosodique
Acide 2-hydroxybutanedioïque, sel monosodique
Acide (S)-2-hydroxyéthanedicarboxylique, sel monosodique
Acide (S)-hydroxymalonique, sel monosodique
ACIDE 2-HYDROXYÉTHANOÏQUE
L'acide 2-hydroxyéthanoïque est un type d'acide alpha-hydroxy (AHA) couramment utilisé dans les produits de soin de la peau et les traitements cosmétiques.
L'acide 2-hydroxyéthanoïque est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
L'acide 2-hydroxyéthanoïque est un cristal déliquescent présent naturellement en tant que composant de la canne à sucre.

Numéro CAS : 79-14-1
Numéro CE : 201-180-5
Formule moléculaire : C2H4O3
Poids moléculaire : 76,05

acide glycolique, acide 2-glycolique, acide glycolique, 79-14-1, acide glycolique, acide hydroxyéthanoïque, acide acétique, hydroxy-, glycolate, polyglycolide, Caswell n° 470, Kyselina glykolova, acide alpha-glycolique, Kyselina hydroxyoctova, 2 -Acide hydroxyéthanoïque, HOCH2COOH, EPA Pesticide Chemical Code 000101, HSDB 5227, NSC 166, Kyselina glykolova [tchèque], AI3-15362, Kyselina hydroxyoctova [tchèque], C2H4O3, Glycocide, GlyPure, BRN 1209322, NSC-166, acide acétique, 2-hydroxy-, EINECS 201-180-5, UNII-0WT12SX38S, MFCD00004312, GlyPure 70, 0WT12SX38S, CCRIS 9474, DTXSID0025363, CHEBI:17497, acide glycolique-13C2, acide .alpha.-glycolique, GLYCOLLATE, DTXCID10 5363, NSC166, EC 201-180-5, 4-03-00-00571 (référence du manuel Beilstein), ACIDE GLYCOLIC-2,2-D2, GOA, acide glycolique (MART.), acide glycolique [MART.], C2H3O3-, acide glycolique, Glycolate Standard : C2H3O3- @ 1000 microg/mL dans H2O, Hydroxyéthanoate, a-Hydroxyacétate, acide hydroxy-acétique, acide 2-Hydroxyacétique, alpha-Hydroxyacétate, acide a-glycolique, acide 2-hydroxyacétique, acide 2-hydroxy-acétique, Acide 2-hydroxyléthanoïque, HO-CH2-COOH, Solution d'acide glycolique, bmse000245, WLN : QV1Q, Acide glycolique [MI], Acide glycolique (7CI,8CI), Acide glycolique [INCI], Acide glycolique [VANDF], Acide glycolique , pa, 98 %, Acide acétique, hydroxy- (9CI), CHEMBL252557, Acide glycolique [WHO-DD], Acide glycolique, Cristal, Réactif, Acide glycolique [HSDB], BCP28762, Acide glycolique, >=97,0 % (T) , STR00936, Tox21_301298, s6272, STL197955, AKOS000118921, acide glycolique, ReagentPlus(R), 99 %, CS-W016683, DB03085, HY-W015967, SB83760, CAS-79-14-1, code pesticide USEPA/OPP : 0001. 01, NCGC00160612-01, NCGC00160612-02, NCGC00257533-01, FT-0612572, FT-0669047, G0110, G0196, Acide glycolique 100 microg/mL dans acétonitrile, EN300-19242, Acide glycolique, qualité spéciale SAJ, >=98,0%, C 00160 , C03547, D78078, acide glycolique, qualité réactif Vetec(TM), 98 %, acide glycolique ; ACIDE HYDROXYÉTHANOÏQUE, Acide glycolique, BioXtra, >=98,0 % (titrage), Q409373, J-509661, F2191-0224, Acide glycolique ; Acide hydroxyéthanoïque ; Acide glycolique, Z104473274, 287EB351-FF9F-4A67-B4B9-D626406C9B13, Acide glycolique, matériau de référence certifié, TraceCERT(R), InChI=1/C2H4O3/c3-1-2(4)5/h3H,1H2,(H, 4,5, acide glycolique, anhydre, fluide, Redi-Dri(TM), ReagentPlus(R), 99 %, acide glycolique, étalon secondaire pharmaceutique ; matériau de référence certifié, O7Z

L'acide 2-hydroxyéthanoïque est dérivé de la canne à sucre et appartient à une famille d'acides naturels connus pour leurs propriétés exfoliantes et régénératrices de la peau.
L'acide 2-hydroxyéthanoïque est le plus petit acide alpha-hydroxy (AHA).
L'acide 2-hydroxyéthanoïque est principalement complété par divers produits de soins de la peau pour améliorer l'apparence et la texture de la peau.

L'acide 2-hydroxyéthanoïque peut également réduire les rides, les cicatrices d'acné et l'hyperpigmentation. Dans l'industrie textile, l'acide 2-hydroxyéthanoïque peut être utilisé comme agent de teinture et de bronzage.
L'acide 2-hydroxyéthanoïque, CH20HCOOH, est composé de folioles déliquescentes incolores qui se décomposent à environ 78°C (172 OF).

L'acide 2-hydroxyéthanoïque est également connu sous le nom d'acide glycolique et son nom IUPAC est acide hydroxyéthanoïque.
L'acide 2-hydroxyéthanoïque est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé.

L'acide 2-hydroxyéthanoïque est un acide alpha-hydroxy qui possède des propriétés antibactériennes, antioxydantes, kératolytiques et anti-inflammatoires.
L'acide 2-hydroxyéthanoïque est soluble dans l'eau, l'alcool et l'éther.

L'acide 2-hydroxyéthanoïque est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
L'acide 2-hydroxyéthanoïque est utilisé dans divers produits de soins de la peau.

L'acide 2-hydroxyéthanoïque est répandu dans la nature.
Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester de l'acide 2-hydroxyéthanoïque.

L'acide 2-hydroxyéthanoïque est utilisé dans la teinture, le tannage, l'électropolissage et dans les produits alimentaires.
L'acide 2-hydroxyéthanoïque est fonctionnellement lié à l'acide acétique et est légèrement plus fort que lui.

Les sels ou esters de l’acide 2-hydroxyéthanoïque sont appelés glycolates.
L'acide 2-hydroxyéthanoïque est répandu dans la nature et peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.

L'acide 2-hydroxyéthanoïque est produit en oxydant le glycol avec de l'acide nitrique dilué.
L'acide 2-hydroxyéthanoïque est utilisé dans divers produits de soins de la peau.

L'acide 2-hydroxyéthanoïque est utilisé dans le traitement et la teinture des textiles et du cuir.
L'acide 2-hydroxyéthanoïque est également utilisé pour nettoyer, polir et souder les métaux.

L'acide 2-hydroxyéthanoïque est un solide cristallin incolore, inodore et hygroscopique de formule chimique C2H4O3.
L'acide 2-hydroxyéthanoïque est répandu dans la nature.

Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester de l'acide 2-hydroxyéthanoïque.
L'acide 2-hydroxyéthanoïque, ou acide 2-hydroxyéthanoïque, est un acide faible.
L'acide 2-hydroxyéthanoïque est vendu dans le commerce sous forme de solution à 70 %.

L'acide 2-hydroxyéthanoïque est largement utilisé dans l'industrie des soins de la peau et des cosmétiques en raison de sa capacité à exfolier la peau, à favoriser le renouvellement des cellules cutanées et à améliorer la texture et l'apparence globales de la peau.
L'acide 2-hydroxyéthanoïque, également connu sous le nom de 2-hydroxyacétate ou glycolate, appartient à la classe de composés organiques appelés acides alpha-hydroxy et dérivés.

Ce sont des composés organiques contenant un acide carboxylique substitué par un groupe hydroxyle sur le carbone adjacent.
Cela pourrait faire de l’acide 2-hydroxyéthanoïque un biomarqueur potentiel pour la consommation de ces aliments.
Une fois appliqué, l’acide 2-hydroxyéthanoïque réagit avec la couche supérieure de l’épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.

L'acide 2-hydroxyéthanoïque est un composé potentiellement toxique.
L'acide 2-hydroxyéthanoïque, chez l'homme, s'est avéré associé à plusieurs maladies telles que la résection transurétrale de la prostate et l'atrésie des voies biliaires ; L'acide 2-hydroxyéthanoïque a également été associé à plusieurs troubles métaboliques innés, notamment l'acidémie glutarique de type 2, l'acidurie 2-hydroxyéthanoïque et l'acidurie d-2-hydroxyglutarique.

Les acides 2-hydroxyéthanoïque et oxalique, ainsi que l’excès d’acide lactique, sont responsables de l’acidose métabolique du trou anionique.
L'acide 2-hydroxyéthanoïque existe dans toutes les espèces vivantes, des bactéries aux humains.
Chez l'homme, l'acide 2-hydroxyéthanoïque est impliqué dans la voie métabolique de la rosiglitazone.

En dehors du corps humain, l'acide 2-hydroxyéthanoïque a été détecté, mais non quantifié, dans plusieurs aliments différents, tels que le levain, la sauge ananas, le céleri-rave, le clou de girofle et le feijoa.
L'acide 2-hydroxyéthanoïque est un composé basique extrêmement faible (essentiellement neutre) (à base de pKa de l'acide 2-hydroxyéthanoïque).
L'acide 2-hydroxyéthanoïque agit en brisant les liaisons entre les cellules mortes de la peau à la surface de la peau, leur permettant ainsi de se détacher plus facilement.

Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte du proton de l'acide 2-hydroxyéthanoïque.
L'acide 2-hydroxyéthanoïque résout les problèmes de peau en exfoliant les cellules mortes de la peau qui s'accumulent à la surface de l'épiderme et contribuent à donner une peau terne, décolorée et inégale.
L'acide 2-hydroxyéthanoïque peut rendre la peau plus sensible au soleil, utilisez donc toujours un écran solaire et des vêtements de protection avant de sortir.

Les plantes produisent de l'acide 2-hydroxyéthanoïque lors de la photorespiration.
L'acide 2-hydroxyéthanoïque est recyclé par conversion en glycine dans les peroxysomes et en acide tartronique semi-aldéhyde dans les chloroplastes.
Les effets secondaires courants de l’acide 2-hydroxyéthanoïque comprennent la peau sèche, l’érythème (rougeur cutanée), la sensation de brûlure, les démangeaisons, l’irritation cutanée et les éruptions cutanées.

L'acide 2-hydroxyéthanoïque est le plus petit acide alpha-hydroxy (AHA).
Ce solide cristallin incolore, inodore et hygroscopique est hautement soluble dans l'eau.
En raison de son excellente capacité à pénétrer dans la peau, l’acide 2-hydroxyéthanoïque est souvent utilisé dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique.

L'acide 2-hydroxyéthanoïque peut réduire les rides, les cicatrices d'acné et l'hyperpigmentation et améliorer de nombreuses autres affections cutanées, notamment la kératose actinique, l'hyperkératose et la kératose séborrhéique.
Des doses aiguës d'acide 2-hydroxyéthanoïque sur la peau ou les yeux entraînent des effets locaux typiques d'un acide fort (par exemple irritation cutanée et oculaire).
Le glycolate est une néphrotoxine s'il est consommé par voie orale.

Une néphrotoxine est un composé qui endommage les reins et les tissus rénaux.
La toxicité rénale de l'acide 2-hydroxyéthanoïque est due à son métabolisme en acide oxalique.

Les acides 2-hydroxyéthanoïque et oxalique, ainsi que l’excès d’acide lactique, sont responsables de l’acidose métabolique du trou anionique.
L'acide oxalique précipite facilement avec le calcium pour former des cristaux d'oxalate de calcium insolubles.

Une fois appliqué, l’acide 2-hydroxyéthanoïque réagit avec la couche supérieure de l’épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.
Cela permet à la peau externe de se dissoudre, révélant la peau sous-jacente.

On pense que l’acide 2-hydroxyéthanoïque est dû à la réduction des concentrations d’ions calcium dans l’épiderme et à l’élimination des ions calcium des adhérences cellulaires, conduisant à une desquamation.
Les lésions du tissu rénal sont causées par un dépôt généralisé de cristaux d'oxalate et par les effets toxiques de l'acide 2-hydroxyéthanoïque.

L'acide 2-hydroxyéthanoïque présente une certaine toxicité par inhalation et peut provoquer des lésions respiratoires, thymiques et hépatiques s'il est présent à des niveaux très élevés sur de longues périodes.
L'acide 2-hydroxyéthanoïque est utilisé dans l'industrie textile comme agent de teinture et de bronzage dans la transformation des aliments comme agent aromatisant et comme conservateur, et dans l'industrie pharmaceutique comme agent de soin de la peau.

L'acide 2-hydroxyéthanoïque est également utilisé dans les adhésifs et les plastiques.
L'acide 2-hydroxyéthanoïque est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour encres et peintures afin d'améliorer les propriétés d'écoulement et de conférer du brillant.

L'acide 2-hydroxyéthanoïque est utilisé dans les produits de traitement de surface qui augmentent le coefficient de friction des revêtements de sol carrelés.
L'acide 2-hydroxyéthanoïque est un inhibiteur connu de la tyrosinase.

Cela peut supprimer la formation de mélanine et entraîner un éclaircissement de la couleur de la peau.
Ce processus peut aider à résoudre divers problèmes de peau, notamment l’acné, les rides et ridules, l’hyperpigmentation et le teint irrégulier.

L’acide 2-hydroxyéthanoïque est l’ingrédient actif du liquide nettoyant ménager.

Les peelings de qualité médicale peuvent avoir un pH aussi bas que 0,6 (suffisamment fort pour kératolyser complètement l'épiderme), tandis que l'acidité des peelings maison peut être aussi basse que 2,5.
Le processus convertit le glycolate en glycérate sans utiliser la voie conventionnelle BASS6 et PLGG1.

L'acide 2-hydroxyéthanoïque agit en accélérant le renouvellement cellulaire. L'acide 2-hydroxyéthanoïque aide à dissoudre les liaisons qui maintiennent les cellules de la peau ensemble, permettant aux cellules mortes de la peau de se détacher plus rapidement qu'elles ne le feraient d'elles-mêmes.
L'acide 2-hydroxyéthanoïque stimule également votre peau pour créer plus de collagène.

Le collagène est la protéine qui donne à la peau sa fermeté, sa rondeur et son élasticité.
L’acide 2-hydroxyéthanoïque est un traitement incroyablement populaire en raison des nombreux avantages que l’acide 2-hydroxyéthanoïque présente pour la peau.

L'acide 2-hydroxyéthanoïque possède des propriétés efficaces de renouvellement de la peau, c'est pourquoi l'acide 2-hydroxyéthanoïque est souvent utilisé dans les produits anti-âge.
L'acide 2-hydroxyéthanoïque peut aider à lisser les rides fines et à améliorer le tonus et la texture de la peau.

L'acide 2-hydroxyéthanoïque est un acide alpha-hydroxy (AHA) hydrosoluble dérivé de la canne à sucre.
L'acide 2-hydroxyéthanoïque est l'un des acides alphahydroxy les plus connus et les plus utilisés dans l'industrie des soins de la peau.

L'acide 2-hydroxyéthanoïque repulpe la peau et aide à augmenter les niveaux d'hydratation.
L'acide 2-hydroxyéthanoïque offre une solubilité bien plus grande que les fluorures de silice ou l'acide hydrofluosilicique.

Les systèmes d'énergie électrochimique permettent des concentrations d'acide en solution plus élevées que l'acide citrique pour une plus grande efficacité neutralisante tout en évitant les problèmes de salage ou de décoloration par la rouille.
L'acide 2-hydroxyéthanoïque atteint un pH final de 5 à 6 plus rapidement que les fluorures de silice, en particulier à des températures de lavage plus basses.

Une solubilité élevée signifie une moindre possibilité d'endommagement du tissu, même s'il est repassé mouillé.
L'acide 2-hydroxyéthanoïque remplit de nombreux rôles dans un large éventail d'industries, grâce à sa faible odeur et sa faible toxicité, sa biodégradabilité, sa composition sans phosphate et sa capacité à chélater les sels métalliques.

Un glycolate ou glycolate est un sel ou un ester de l'acide 2-hydroxyéthanoïque.
(C6H5C(=O)OCH2COOH), qu'ils ont appelé « acide benzo2-hydroxyéthanoïque » (Benzoglycolsäure ; également acide benzoyl 2-hydroxyéthanoïque).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide 2-hydroxyéthanoïque.

Le liquide d'acide 2-hydroxyéthanoïque ne s'agglutine pas lors du stockage et se mesure facilement à partir d'un équipement de distribution automatique.
Une fois appliqué, l’acide 2-hydroxyéthanoïque réagit avec la couche supérieure de l’épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.

Cela permet à la couche cornée d’être exfoliée, exposant ainsi les cellules vivantes de la peau.
L'acide 2-hydroxyéthanoïque est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions comprenant : l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.

Les autres acides alpha-hydroxy comprennent l'acide lactique, l'acide malique, l'acide tartrique et l'acide citrique.
L'acide 2-hydroxyéthanoïque possède les molécules les plus petites de tous les acides alpha-hydroxy. En raison de ces très petites molécules, l'acide 2-hydroxyéthanoïque peut facilement pénétrer dans la peau.

Cela permet à l’acide 2-hydroxyéthanoïque d’exfolier la peau plus efficacement que les autres AHA.
L'acide 2-hydroxyéthanoïque est utilisé comme monomère dans la préparation de l'acide poly2-hydroxyéthanoïque et d'autres copolymères biocompatibles (par exemple PLGA).

Sur le plan commercial, les dérivés importants comprennent les esters méthyliques et éthyliques qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.
L'ester butylique (point d'ébullition 178-186 °C) est un composant de certains vernis, ce qui est souhaitable car l'acide 2-hydroxyéthanoïque est non volatil et possède de bonnes propriétés de dissolution.

De nombreuses plantes produisent de l’acide 2-hydroxyéthanoïque lors de la photorespiration.
Le rôle des acides 2-hydroxyéthanoïques consomme des quantités importantes d’énergie.

L'acide 2-hydroxyéthanoïque pénètre efficacement dans la peau en raison de sa petite taille moléculaire, aidant à éliminer les cellules mortes et les débris de la surface.
Cela peut conduire à un teint plus lisse et plus lumineux.
L'utilisation de l'acide 2-hydroxyéthanoïque dans les produits de soin de la peau est associée à plusieurs avantages, notamment la réduction de l'apparence des rides et ridules, l'amélioration de la texture de la peau, la minimisation de l'apparence des pores et l'atténuation de l'hyperpigmentation et des cicatrices d'acné.

La concentration d'acide 2-hydroxyéthanoïque dans ces produits peut varier, des concentrations plus élevées étant généralement disponibles dans les traitements professionnels.
Bien que l’acide 2-hydroxyéthanoïque puisse bénéficier à de nombreux types de peau, l’acide 2-hydroxyéthanoïque peut ne pas convenir à tout le monde, en particulier aux peaux très sensibles ou réactives.
En 2017, des chercheurs ont annoncé un procédé utilisant une nouvelle protéine pour réduire la consommation/perte d’énergie et empêcher les plantes de libérer de l’ammoniac nocif.

La protection solaire aide à prévenir les coups de soleil et d’autres dommages cutanés.
L'acide 2-hydroxyéthanoïque peut être trouvé dans une gamme de produits de soins de la peau, notamment des nettoyants, des toniques, des sérums et des crèmes.

L'acide 2-hydroxyéthanoïque peut être isolé de sources naturelles, telles que la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide 2-hydroxyéthanoïque peut être utilisé dans le cadre d'un régime de traitement de l'acné.

L'acide 2-hydroxyéthanoïque aide à désobstruer les pores, à réduire la formation de comédons (points noirs et blancs) et à favoriser l'élimination des cellules mortes de la peau qui peuvent contribuer à l'acné.
Les dermatologues utilisent souvent l'acide 2-hydroxyéthanoïque dans les peelings chimiques, qui sont des procédures cosmétiques conçues pour améliorer l'apparence de la peau.

L'acide 2-hydroxyéthanoïque est un composé organique simple avec un groupe hydroxyle (-OH) et un groupe acide carboxylique (-COOH) sur les atomes de carbone adjacents dans sa structure chimique.
L'acide 2-hydroxyéthanoïque est connu pour ses propriétés exfoliantes.

L'acide 2-hydroxyéthanoïque est un acide alpha-hydroxy (AHA).
Le mot acide peut faire peur, mais l’acide 2-hydroxyéthanoïque est généralement présent en concentrations plus faibles pour un usage domestique.

L'acide 2-hydroxyéthanoïque agit comme un exfoliant pour retourner les cellules mortes de la peau et révéler de nouvelles cellules cutanées.
L'acide 2-hydroxyéthanoïque est également l'un des plus petits AHA, ce qui signifie que l'acide 2-hydroxyéthanoïque peut pénétrer profondément pour donner les meilleurs résultats.

Applications de l’acide 2-hydroxyéthanoïque :
L'acide 2-hydroxyéthanoïque est utilisé dans l'industrie textile comme agent de teinture et de tannage.

Synthèse organique :
L'acide 2-hydroxyéthanoïque est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions comprenant : l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide 2-hydroxyéthanoïque est utilisé comme monomère dans la préparation de l'acide poly2-hydroxyéthanoïque et d'autres copolymères biocompatibles.

Sur le plan commercial, les dérivés importants comprennent les esters méthyliques et éthyliques qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.
L'ester butylique est un composant de certains vernis, ce qui est souhaitable car l'acide 2-hydroxyéthanoïque est non volatil et possède de bonnes propriétés de dissolution.

Occurrence:
Les plantes produisent de l'acide 2-hydroxyéthanoïque lors de la photorespiration.
L'acide 2-hydroxyéthanoïque est recyclé par conversion en glycine dans les peroxysomes et en acide tartronique semi-aldéhyde dans les chloroplastes.

La photorespiration étant une réaction secondaire inutile à la photosynthèse, de nombreux efforts ont été consacrés à la suppression de sa formation.
Un processus convertit le glycolate en glycérate sans utiliser la voie conventionnelle BASS6 et PLGG1 ; voir voie du glycérate.

Utilisations de l’acide 2-hydroxyéthanoïque :
L'acide 2-hydroxyéthanoïque agit en dissolvant le ciment cellulaire interne responsable d'une kératinisation anormale, facilitant ainsi l'élimination des cellules mortes de la peau.
L'acide 2-hydroxyéthanoïque est également l'AHA qui, selon les scientifiques et les formulateurs, possède un plus grand potentiel de pénétration, en grande partie en raison de son poids moléculaire plus faible.

L'acide 2-hydroxyéthanoïque est légèrement irritant pour la peau et les muqueuses si la formulation contient une concentration élevée d'acide 2-hydroxyéthanoïque et/ou un pH faible.
L'acide 2-hydroxyéthanoïque s'avère bénéfique pour les peaux à tendance acnéique, car l'acide 2-hydroxyéthanoïque aide à garder les pores dégagés de l'excès de kératinocytes.

L'acide 2-hydroxyéthanoïque est naturellement présent dans la canne à sucre, mais les versions synthétiques sont le plus souvent utilisées dans les formulations cosmétiques.

L'acide 2-hydroxyéthanoïque est utilisé comme monomère dans la préparation de l'acide poly2-hydroxyéthanoïque et d'autres copolymères biocompatibles (par exemple PLGA).
L'acide 2-hydroxyéthanoïque améliore également l'hydratation de la peau en améliorant l'absorption de l'humidité et en augmentant la capacité de la peau à retenir l'eau.
L'acide 2-hydroxyéthanoïque est également utilisé pour atténuer les signes de taches de vieillesse, ainsi que la kératose actinique.

Cependant, l'acide 2-hydroxyéthanoïque est le plus couramment utilisé dans les cosmétiques anti-âge en raison de ses capacités hydratantes et normalisantes pour la peau, conduisant à une réduction de l'apparence des rides et des ridules.
Sur le plan commercial, les dérivés importants comprennent les esters méthyliques et éthyliques qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.

L'acide 2-hydroxyéthanoïque peut être utilisé avec des acides chlorhydrique ou sulfamique pour empêcher la précipitation du fer lors des opérations de nettoyage ou des inondations d'eau.

Quel que soit le type de peau G, l’utilisation d’acide 2-hydroxyéthanoïque est associée à une peau plus douce, plus lisse, plus saine et d’apparence plus jeune.
Cela se produit dans le ciment cellulaire grâce à une activation de l'acide 2-hydroxyéthanoïque et de l'acide hyaluronique contenu dans la peau.

L'acide 2-hydroxyéthanoïque élimine également efficacement les dépôts nocifs tout en minimisant les dommages dus à la corrosion sur les systèmes en acier ou en cuivre.
L'acide 2-hydroxyéthanoïque réagit plus lentement et pénètre ainsi plus profondément dans les formations avant de réagir pleinement.

Cette caractéristique conduit à une augmentation des trous de vers, car l'acide 2-hydroxyéthanoïque dissout la quantité équivalente de carbonate de calcium (CaCO₃) sous forme d'acide chlorhydrique sans la corrosion qui en résulte.
L’une des principales utilisations de l’acide 2-hydroxyéthanoïque dans les soins de la peau est comme exfoliant.

L'acide 2-hydroxyéthanoïque aide à éliminer les cellules mortes de la surface de la peau, ce qui donne un teint plus lisse et plus éclatant.
L'acide 2-hydroxyéthanoïque est utilisé pour traiter l'acné en déboucheant les pores, en réduisant la formation de comédons (points noirs et blancs) et en favorisant l'élimination des cellules mortes de la peau qui peuvent contribuer à l'acné.

En plus des produits en vente libre, les dermatologues et les professionnels des soins de la peau utilisent souvent l'acide 2-hydroxyéthanoïque sous des formes plus concentrées pour les traitements en cabinet comme les peelings chimiques et la microdermabrasion.
Ces traitements peuvent fournir des résultats plus immédiats et spectaculaires mais nécessitent une surveillance professionnelle.

L'acide hyaluronique est connu pour retenir une quantité impressionnante d'humidité et cette capacité est renforcée par l'acide 2-hydroxyéthanoïque.
En conséquence, la capacité de la peau à augmenter sa teneur en humidité est augmentée.

L'acide 2-hydroxyéthanoïque est l'alpha-hydroxyacide (AHA) le plus simple.

L'acide 2-hydroxyéthanoïque est utilisé dans l'industrie textile comme agent de teinture et de tannage.

Dans la transformation des textiles, du cuir et des métaux ; dans le contrôle du pH et partout où un acide organique bon marché est nécessaire, par exemple dans la fabrication d'adhésifs, dans l'avivage du cuivre, le nettoyage par décontamination, la teinture, la galvanoplastie, le décapage, le nettoyage et le broyage chimique des métaux.
L'acide 2-hydroxyéthanoïque est utilisé comme intermédiaire dans la synthèse organique et dans plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.

L'acide 2-hydroxyéthanoïque est utilisé comme monomère dans la préparation de l'acide poly(lactique-co-2-hydroxyéthanoïque) (PLGA).
L'acide 2-hydroxyéthanoïque réagit avec l'acide lactique pour former du PLGA par copolymérisation par ouverture de cycle.

L'acide 2-hydroxyéthanoïque est couramment utilisé dans les produits anti-âge pour stimuler la production de collagène, ce qui peut améliorer l'élasticité de la peau et réduire l'apparence des rides et ridules.
L'acide 2-hydroxyéthanoïque peut aider à atténuer les taches brunes, les taches solaires et l'hyperpigmentation post-inflammatoire en favorisant un teint uniforme.

L'acide 2-hydroxyéthanoïque peut améliorer la texture de la peau, la rendant plus lisse et plus jeune.
L'acide 2-hydroxyéthanoïque peut minimiser l'apparence des pores dilatés.

L'acide 2-hydroxyéthanoïque est utilisé dans les peelings chimiques, aussi bien à domicile que dans les cabinets de dermatologues ou les cliniques de soins de la peau.
Les peelings chimiques à l’acide 2-hydroxyéthanoïque peuvent être adaptés pour répondre à divers problèmes de peau, notamment les rides, le teint irrégulier et les cicatrices d’acné.

L'acide poly2-hydroxyéthanoïque (PGA) est préparé à partir du monomère acide 2-hydroxyéthanoïque par polycondensation ou polymérisation par ouverture de cycle.
L'acide 2-hydroxyéthanoïque est largement utilisé dans les produits de soins de la peau comme exfoliant et kératolytique.

L'acide 2-hydroxyéthanoïque est utilisé dans l'industrie textile comme agent de teinture et de tannage.
Ces peelings impliquent l’application d’une concentration plus élevée d’acide 2-hydroxyéthanoïque sur la peau, suivie d’une exfoliation et d’un rajeunissement de la peau.

Bien que l'acide 2-hydroxyéthanoïque soit généralement associé aux soins de la peau du visage, l'acide 2-hydroxyéthanoïque peut également être utilisé sur d'autres parties du corps pour traiter des problèmes tels que la kératose pilaire, la peau rugueuse des coudes et des genoux et l'acné corporelle.
L'acide 2-hydroxyéthanoïque peut être utilisé pour ajuster le niveau de pH de l'acide 2-hydroxyéthanoïque.

Cela peut aider à optimiser l’efficacité d’autres ingrédients actifs.
L'acide 2-hydroxyéthanoïque peut également agir comme humectant, ce qui signifie que l'acide 2-hydroxyéthanoïque peut attirer et retenir l'humidité de la peau, ce qui est bénéfique pour les personnes ayant la peau sèche ou déshydratée.

Cependant, il est essentiel d'utiliser des crèmes hydratantes en complément des produits à base d'acide 2-hydroxyéthanoïque pour éviter une sécheresse excessive.
Dans les applications industrielles et domestiques, l'acide 2-hydroxyéthanoïque est parfois utilisé pour éliminer les taches et les dépôts de tartre, tels que ceux causés par l'eau dure, la rouille ou l'accumulation de minéraux.

Lorsque vous utilisez des produits contenant de l'acide 2-hydroxyéthanoïque dans votre routine de soins de la peau, veillez à ne pas les mélanger avec d'autres ingrédients actifs, en particulier des acides forts comme l'acide salicylique ou la vitamine C.
La combinaison de certains ingrédients actifs peut entraîner une irritation de la peau ou réduire l'efficacité, il est donc conseillé de consulter un professionnel des soins de la peau pour obtenir des conseils.

En médecine, l'acide 2-hydroxyéthanoïque a été utilisé dans les produits de soin des plaies pour favoriser la guérison des coupures, abrasions et incisions chirurgicales mineures.
L'acide 2-hydroxyéthanoïque peut être utilisé pour gérer la kératose pilaire, une affection cutanée courante caractérisée par de petites bosses rugueuses sur la peau, souvent trouvées sur les bras et les cuisses.

Certains produits en vente libre contenant de l'acide 2-hydroxyéthanoïque sont utilisés pour adoucir et aider à éliminer les callosités et les cors des pieds.
Certains produits de soins capillaires peuvent contenir de l'acide 2-hydroxyéthanoïque pour aider à exfolier le cuir chevelu, éliminer l'accumulation de produit et améliorer la texture des cheveux.

L'acide 2-hydroxyéthanoïque peut aider à réparer la peau endommagée par le soleil en favorisant la desquamation des cellules cutanées endommagées et en stimulant la production d'une peau plus saine et d'apparence plus jeune.
L'acide 2-hydroxyéthanoïque est souvent utilisé dans les produits conçus pour les peaux endommagées par le soleil ou vieillissantes.
L'acide 2-hydroxyéthanoïque peut être utilisé pour prévenir et traiter les poils incarnés, en particulier dans les zones sujettes aux coups de rasoir et aux irritations, comme la zone de la barbe chez les hommes.

L'acide 2-hydroxyéthanoïque est parfois combiné avec d'autres ingrédients de soin de la peau comme l'acide salicylique, l'acide hyaluronique et le rétinol pour créer des produits de soin plus complets qui répondent à de multiples problèmes, tels que l'acné, le vieillissement et l'hydratation.
L'acide 2-hydroxyéthanoïque est utilisé dans le traitement des textiles, du cuir et des métaux.

L'acide 2-hydroxyéthanoïque est utilisé comme intermédiaire dans la synthèse organique et dans plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide 2-hydroxyéthanoïque (acide 2-hydroxyéthanoïque) réduit la cohésion des corénocytes et l'épaississement de la couche cornée où une accumulation excessive de cellules mortes de la peau peut être associée à de nombreux problèmes cutanés courants, tels que l'acné, la peau sèche et très sèche et les rides.

L'acide 2-hydroxyéthanoïque peut également être utilisé comme agent aromatisant dans la transformation des aliments et comme agent de soin de la peau dans l'industrie pharmaceutique.
L'acide 2-hydroxyéthanoïque peut également être ajouté aux polymères en émulsion, aux solvants et aux additifs d'encre pour améliorer les propriétés d'écoulement et conférer du brillant.
De plus, l’acide 2-hydroxyéthanoïque est un intermédiaire utile pour la synthèse organique, notamment l’oxydative-réduction, l’estérification et la polymérisation à longue chaîne.

Préparation de l'acide 2-hydroxyéthanoïque :
L'acide 2-hydroxyéthanoïque peut être synthétisé de différentes manières.
Les approches prédominantes utilisent une réaction catalysée du formaldéhyde avec du gaz de synthèse (carbonylation du formaldéhyde), pour un acide 2-hydroxyéthanoïque peu coûteux.

L'acide 2-hydroxyéthanoïque est également préparé par la réaction de l'acide chloroacétique avec de l'hydroxyde de sodium suivie d'une réacidification.

D'autres méthodes, peu utilisées, comprennent l'hydrogénation de l'acide oxalique et l'hydrolyse de la cyanhydrine dérivée du formaldéhyde.
Certains des acides 2-hydroxyéthanoïques actuels ne contiennent pas d'acide formique.
L'acide 2-hydroxyéthanoïque peut être isolé de sources naturelles, telles que la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.

L'acide 2-hydroxyéthanoïque peut également être préparé à l'aide d'un processus biochimique enzymatique pouvant nécessiter moins d'énergie.

Propriétés typiques de l'acide 2-hydroxyéthanoïque :
L'acide 2-hydroxyéthanoïque est légèrement plus fort que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques, formant des complexes de coordination.

Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.
Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte du proton de l'acide 2-hydroxyéthanoïque.

Histoire de l’acide 2-hydroxyéthanoïque :
Le nom « acide 2-hydroxyéthanoïque » a été inventé en 1848 par le chimiste français Auguste Laurent (1807-1853).
Il a proposé que l'acide aminé glycine, alors appelé glycocolle, pourrait être l'amine d'un acide hypothétique, qu'il a appelé « acide 2-hydroxyéthanoïque » (acide glycolique).

L'acide 2-hydroxyéthanoïque a été préparé pour la première fois en 1851 par le chimiste allemand Adolph Strecker (1822-1871) et le chimiste russe Nikolai Nikolaevich Sokolov (1826-1877).
Ils ont produit de l'acide 2-hydroxyéthanoïque en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote pour former un ester d'acide benzoïque et d'acide 2-hydroxyéthanoïque (C6H5C(=O)OCH2COOH), qu'ils ont appelé « acide benzo2-hydroxyéthanoïque » (Benzoglycolsäure ; également acide benzoyl 2-hydroxyéthanoïque).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide 2-hydroxyéthanoïque (Glykolsäure).

Profil de sécurité de l'acide 2-hydroxyéthanoïque :
L'acide 2-hydroxyéthanoïque peut provoquer une irritation cutanée, en particulier chez les personnes à la peau sensible.
Cela peut se manifester par des rougeurs, des brûlures, des démangeaisons ou des picotements.
L'acide 2-hydroxyéthanoïque est essentiel pour effectuer un test cutané avant d'utiliser des produits à base d'acide 2-hydroxyéthanoïque.

L'acide 2-hydroxyéthanoïque peut rendre la peau plus sensible aux rayons ultraviolets (UV) du soleil.
Cette sensibilité accrue peut entraîner un risque plus élevé de coups de soleil et de lésions cutanées.
L'acide 2-hydroxyéthanoïque est essentiel pour utiliser un écran solaire et des vêtements de protection lors de l'utilisation de produits à base d'acide 2-hydroxyéthanoïque et éviter une exposition excessive au soleil.

En tant qu'exfoliant, l'acide 2-hydroxyéthanoïque peut provoquer sécheresse et desquamation, surtout lorsqu'il est utilisé à des concentrations élevées ou trop fréquemment.
Cela peut être géré en utilisant des crèmes hydratantes et en réduisant la fréquence d’application de l’acide 2-hydroxyéthanoïque.

Bien que cela soit rare, certaines personnes peuvent être allergiques ou hypersensibles à l'acide 2-hydroxyéthanoïque, entraînant des réactions cutanées plus graves.
Dans les cas où des concentrations élevées d’acide 2-hydroxyéthanoïque sont utilisées sans surveillance appropriée ou de manière inappropriée, des brûlures chimiques peuvent survenir.
Ceci est plus fréquent dans les traitements professionnels comme les peelings chimiques et ne doit être administré que par des professionnels qualifiés.

Mesures de premiers secours de l'acide 2-hydroxyéthanoïque :

Conseils généraux :
Les secouristes doivent se protéger.
Montrer la fiche de données de sécurité de l'acide 2-hydroxyéthanoïque au médecin traitant.

En cas d'inhalation :

Après inhalation :
Appelez immédiatement un médecin.

Si la respiration s'arrête :
Appliquer immédiatement la respiration artificielle, si nécessaire également de l'oxygène.

En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.

En cas de contact visuel :

Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.

En cas d'ingestion:

Après avoir avalé :
Faire boire de l'eau à la victime (deux verres maximum), éviter de vomir (risque de perforation).
Appelez immédiatement un médecin. N'essayez pas de neutraliser.

Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles

Mesures de lutte contre l'incendie de l'acide 2-hydroxyéthanoïque :

Moyens d'extinction appropriés :
Eau Mousse Dioxyde de carbone (CO2) Poudre sèche

Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.

Dangers particuliers résultant de la substance ou du mélange :
Oxydes de carbone
Combustible.

Les vapeurs sont plus lourdes que l'air et peuvent se propager sur le sol.
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Possibilité de dégagement de gaz ou de vapeurs de combustion dangereux en cas d'incendie.

Conseils aux pompiers :
Restez dans la zone dangereuse uniquement avec un appareil respiratoire autonome.
Éviter tout contact avec la peau en gardant une distance de sécurité ou en portant des vêtements de protection appropriés.

Informations complémentaires :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.

Mesures en cas de rejet accidentel d'acide 2-hydroxyéthanoïque :

Précautions individuelles, équipement de protection et procédures d'urgence :

Conseils aux non-secouristes :
Eviter l'inhalation de poussières.
Évitez tout contact avec la substance.

Assurer une ventilation adéquate.
Évacuer la zone dangereuse, respecter les procédures d'urgence, consulter un expert.

Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.

Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.

Respecter les éventuelles restrictions matérielles.
Prendre à sec.

Éliminer correctement.
Nettoyer la zone touchée.
Eviter la génération de poussières.

Manipulation et stockage de l’acide 2-hydroxyéthanoïque :

Précautions à prendre pour une manipulation sans danger:

Conseils pour une manipulation en toute sécurité :
Travaillez sous une capuche.
Ne pas inhaler la substance/le mélange.

Mesures d'hygiène:
Changez immédiatement les vêtements contaminés.
Appliquer une protection cutanée préventive.
Se laver les mains et le visage après avoir travaillé avec la substance.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Hermétiquement fermé.
Sec.

Classe de stockage :
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Stabilité et réactivité:

Réactivité de l'acide 2-hydroxyéthanoïque :
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Une gamme d'env. 15 Kelvin en dessous du point d'éclair doivent être considérés comme critiques.

Ce qui suit s'applique en général aux substances et mélanges organiques inflammables :
En cas de distribution fine correspondante, on peut généralement supposer un potentiel d'explosion de poussière en cas de tourbillonnement.

Stabilité chimique:
L'acide 2-hydroxyéthanoïque est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Possibilité de réactions dangereuses:

Réactions violentes possibles avec :
Agents oxydants
Les agents réducteurs

Conditions à éviter :
Fort chauffage.

Matériaux incompatibles :
Dégage de l'hydrogène par réaction avec les métaux.

Identifiants de l'acide 2-hydroxyéthanoïque :
Numéro CAS : 79-14-1
ChEBI : CHEBI :17497
ChEMBL : ChEMBL252557
ChemSpider : 737
Banque de médicaments : DB03085
Carte d'information ECHA : 100.001.073
Numéro CE : 201-180-5
KEGG : C00160
Numéro client PubChem : 757
Numéro RTECS : MC5250000
UNII : 0WT12SX38S
Tableau de bord CompTox (EPA) : DTXSID0025363
InChI : InChI=1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)
Clé : chèque AEMRFAOFKBGASW-UHFFFAOYSA-N
InChI=1/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)
Clé: AEMRFAOFKBGASW-UHFFFAOYAR
SOURIRES : OC(=O)CO

Synonyme(s) : Acide hydroxyacétique
Formule linéaire : HOCH2COOH
Numéro CAS : 79-14-1
Poids moléculaire : 76,05
Beilstein: 1209322
Numéro CE : 201-180-5
Numéro MDL : MFCD00004312
eCl@ss : 39021303
ID de substance PubChem : 24847624
NACRES : NA.21

Propriétés de l'acide 2-hydroxyéthanoïque :
Formule chimique : C2H4O3
Masse molaire : 76,05 g/mol
Aspect : Poudre blanche ou cristaux incolores
Densité : 1,49 g/cm3
Point de fusion : 75 °C (167 °F ; 348 K)
Point d'ébullition : se décompose
Solubilité dans l'eau : solution à 70 %
Solubilité dans d'autres solvants : Alcools, acétone, acide acétique et acétate d'éthyle
log P : −1,05
Acidité (pKa) : 3,83

Niveau de qualité : 200
gamme de produits : ReagentPlus®
Dosage : 99 %
forme : solide
mp : 75-80 °C (lit.)
solubilité : H2O : 50 mg/mL, clair, incolore
Chaîne SMILES : OCC(O)=O
InChI : 1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)
Clé InChI : AEMRFAOFKBGASW-UHFFFAOYSA-N

Point de fusion : 75-80 °C (lit.)
Point d'ébullition : 112 °C
Densité : 1,25 g/mL à 25 °C
pression de vapeur : 10,8 hPa (80 °C)
indice de réfraction : n20/D 1,424
Point d'éclair : 112°C
Température de stockage : Conserver en dessous de +30°C.
solubilité : H2O : 0,1 g/mL, clair
pka : 3,83 (à 25 ℃)
formulaire : Solution
couleur : Blanc à blanc cassé
PH : 2 (50 g/l, H2O, 20 ℃)
Odeur : à 100,00 %. inodore, beurré très doux
Type d'odeur : beurrée
Viscosité : 6,149 mm2/s
Solubilité dans l'eau : SOLUBLE
Sensible : Hygroscopique
Merck : 14 4498
Numéro de référence : 1209322
Stabilité : Stable. Incompatible avec les bases, les agents oxydants et les agents réducteurs.
InChIKey : AEMRFAOFKBGASW-UHFFFAOYSA-N
LogP : -1,07 à 20 ℃
Additifs indirects utilisés dans les substances en contact avec les aliments : acide 2-hydroxyéthanoïque
FDA 21 CFR : 175.105

Spécifications de l’acide 2-hydroxyéthanoïque :
Couleur selon solution colorimétrique de référence Ph.Eur. : liquide incolore
Dosage (acidimétrique) : 69,0 - 74,0 %
Densité (d 20 °C/ 4 °C) : 1,260 - 1,280
Métaux lourds (en Pb) : ≤ 3 ppm
Indice de réfraction (n 20°/D) : 1,410 - 1,415
Valeur pH : 0,0 - 1,0

Composés apparentés de l’acide 2-hydroxyéthanoïque :
Glycolaldéhyde
Acide acétique
Glycérol

Acides α-hydroxy associés :
Acide lactique

Noms de l’acide 2-hydroxyéthanoïque :

Nom IUPAC préféré :
Acide hydroxyacétique

Autres noms:
Acide hydroacétique
Acide glycolique
ACIDE 2-HYDROXYPROPANOÏQUE
L'acide 2-hydroxypropanoïque est un acide organique utilisé dans la production de bière ainsi que dans les industries cosmétique, pharmaceutique, alimentaire et chimique.
L'acide 2-hydroxypropanoïque est couramment utilisé comme conservateur et antioxydant.
L'acide 2-hydroxypropanoïque est également utilisé comme additif pour carburant, intermédiaire chimique, régulateur d'acidité et désinfectant.

Numéro CAS : 50-21-5
Numéro CE : 200-018-0
Formule moléculaire : C3H6O3
Masse molaire : 90,078 g·mol−1

acide lactique, acide 2-hydroxypropanoïque, acide DL-lactique, 50-21-5, acide 2-hydroxypropionique, acide du lait, lactate, Tonsillosan, acide lactique racémique, acide lactique ordinaire, acide éthylidènelactique, Lactovagan, Acidum lacticum, 26100-51 -6, Milchsaeure, Acide lactique, dl-, Kyselina mlecna, Lacticum acidum, DL-Milchsaeure, Acide lactique USP, (+/-)-Acide lactique, Acide propanoïque, 2-hydroxy-, Aéthylidenmilchsaeure, 598-82-3, Acide 1-hydroxyéthanecarboxylique, acide alpha-hydroxypropionique, acide lactique (naturel), (RS)-2-hydroxypropionsaeure, FEMA n° 2611, Milchsaure, Kyselina 2-hydroxypropanova, Lurex, acide propionique, 2-hydroxy-, Purac FCC 80, Purac FCC 88, Cheongin samrakhan, numéro FEMA 2611, CCRIS 2951, HSDB 800, Cheongin Haewoohwan, Cheongin Haejanghwan, SY-83, acide 2-hydroxypropionique, acide (+-)-2-hydroxypropanoïque, Biolac, NSC 367919, acide lactique, technologie qualité, acide propanoïque, hydroxy-, Chem-Cast, acide alpha-hydroxypropanoïque, AI3-03130, HIPURE 88, acide DL-lactique, EINECS 200-018-0, EINECS 209-954-4, EPA Pesticide Chemical Code 128929, Lactique acide, tamponné, NSC-367919, UNII-3B8D35Y7S4, acide 2-hydroxy-2-méthylacétique, BRN 5238667, INS NO.270, DTXSID7023192, acide (+/-)-2-hydroxypropanoïque, CHEBI:78320, INS-270, 3B8D35Y7S4, E 270, MFCD00004520, ACIDE LACTIQUE (+-), acide .alpha.-hydroxypropanoïque, acide .alpha.-hydroxypropionique, DTXCID003192, E-270, EC 200-018-0, NCGC00090972-01, 2-hydroxy-propionique acide, acide (R)-2-hydroxy-propionique ; HD-Lac-OH, C01432, Milchsaure [allemand], acide lactique [JAN], Kyselina mlecna [tchèque], acide D(-)-lactique, CAS-50- 21-5, acide 2 hydroxypropanoïque, acide 2 hydroxypropionique, Kyselina 2-hydroxypropanova [tchèque], acide lactique [USP: JAN], lactasol, 1-hydroxyéthane 1, acide carboxylique, acido lactico, DL-Milchsaure, (2RS) -2 -Acide hydroxypropanoïque, acide L-lactique, lactate (TN), 4b5w, acide propanoïque, (+-), acide DL-lactique, racémique, ACIDE LACTIQUE (II), (.+/-.)-Acide lactique, acide lactique (7CI,8CI), Acide lactique (JP17/USP), Acide lactique, 85 %, FCC, Acide lactique, Racemic, USP, NCIOpen2_000884, (+-)-ACIDE LACTIQUE, ACIDE DL-LACTIQUE [MI], ACIDE LACTIQUE [ WHO-IP], acide (RS)-2-hydroxypropanoïque, ACIDE LACTIQUE, DL-(II), LACTICUM ACIDUM [HPUS], acide 1-hydroxyéthane carboxylique, 33X04XA5AT, acide DL-lactique (90 %), CHEMBL1200559, acide lactique , naturel, >=85 %, BDBM23233, acide L-lactique ou acide dl-lactique, acide lactique, 85 pour cent, FCC, ACIDE LACTIQUE, DL-[II], acide DL-lactique, ~90 % (T), DL -Acide lactique, AR, >=88 %, acide DL-lactique, LR, >=88 %, ACIDE DL-LACTIQUE [WHO-DD], ACIDE LACTIQUE (MONOGRAPHIE EP), acide lactique, solution à 10 %, HY-B2227 , ACIDE LACTIQUE (MONOGRAPHIE USP), acide propanoïque, 2-hydroxy- (9CI), Tox21_111049, Tox21_202455, Tox21_303616, BBL027466, NSC367919, STL282744, AKOS000118855, AKOS017278364, Tox21_11 1049_1, ACIDUM LACTICUM [WHO-IP LATINE], AM87208, DB04398, SB44647, SB44652, acide propanoïque, 2-hydroxy-,(.+/-.)-, acide 2-hydroxypropionique, acide DL-lactique, NCGC00090972-02, NCGC00090972-03, NCGC00257515-01, NCGC00260004-01, 26811-96 -1, acide lactique, 85 %, réactif, ACS, CS-0021601, FT-0624390, FT-0625477, FT-0627927, FT-0696525, FT-0774042, L0226, EN300-19542, acide lactique, conforme aux tests USP. spécifications, D00111, F71201, A877374, acide DL-lactique, première qualité SAJ, 85,0-92,0 %, Q161249, acide DL-lactique, qualité spéciale JIS, 85,0-92,0 %, F2191-0200, Z104474158, BC10F553-5D5D-4388- BB74-378ED4E24908, acide lactique, étalon de référence de la Pharmacopée des États-Unis (USP), acide lactique, étalon secondaire pharmaceutique ; Matériau de référence certifié, acide DL-lactique 90 %, synthétique, répond aux spécifications analytiques de la Ph. Eur., 152-36-3

L'acide 2-hydroxypropanoïque a été découvert en 1780 par le chimiste suédois Carl Wilhelm Scheele, qui a isolé l'acide 2-hydroxypropanoïque du lait aigre sous forme de sirop brun impur et a donné à l'acide 2-hydroxypropanoïque un nom basé sur ses origines : « Mjölksyra ».
Le scientifique français Frémy a produit de l'acide 2-hydroxypropanoïque par fermentation, ce qui a donné lieu à une production industrielle en 1881.

L'acide 2-hydroxypropanoïque est produit par la fermentation du sucre et de l'eau ou par un procédé chimique et est généralement vendu dans le commerce sous forme liquide.
L'acide 2-hydroxypropanoïque racémique pur et anhydre est un solide cristallin blanc avec un point de fusion bas.

L'acide 2-hydroxypropanoïque a deux formes optiques, L(+) et D(-).
L'acide L(+)-2-hydroxypropanoïque est l'isomère biologique car l'acide 2-hydroxypropanoïque est naturellement présent dans le corps humain.

L'acide 2-hydroxypropanoïque peut être produit naturellement ou synthétiquement.
L'acide 2-hydroxypropanoïque commercial est produit naturellement par fermentation de glucides tels que le glucose, le saccharose ou le lactose.

Avec l'ajout de chaux ou de craie, les matières premières sont fermentées dans un fermenteur et du lactate de calcium brut est formé.
Le gypse est séparé du lactate de calcium brut, ce qui donne l'acide 2-hydroxypropanoïque brut.
L'acide 2-hydroxypropanoïque brut est purifié et concentré et l'acide L(+) 2-hydroxypropanoïque est le résultat.

L'acide 2-hydroxypropanoïque est un acide organique utilisé dans la production de bière ainsi que dans les industries cosmétique, pharmaceutique, alimentaire et chimique.
L'acide 2-hydroxypropanoïque est couramment utilisé comme conservateur et antioxydant.
L'acide 2-hydroxypropanoïque est également utilisé comme additif pour carburant, intermédiaire chimique, régulateur d'acidité et désinfectant.

Une utilisation spécifique de l'acide 2-hydroxypropanoïque est dans les solutions IV, où l'acide 2-hydroxypropanoïque est un électrolyte pour aider à reconstituer les fluides corporels.
L'acide 2-hydroxypropanoïque est également utilisé dans les solutions de dialyse, ce qui entraîne une incidence moindre d'effets secondaires par rapport à l'acétate de sodium qui peut également être utilisé.

L'acide 2-hydroxypropanoïque se présente sous la forme d'énantiomères R (D-) et S (L+) qui peuvent être fabriqués individuellement pour une pureté optique presque parfaite.
Cela signifie que l’acide 2-hydroxypropanoïque est idéal pour la production d’autres produits nécessitant une stéréochimie spécifique.

L'acide 2-hydroxypropanoïque est fréquemment utilisé dans l'industrie cosmétique en raison de son effet favorisant la production de collagène, aidant à raffermir la peau contre les rides et le relâchement.
L'acide 2-hydroxypropanoïque peut également provoquer une micro-desquamation, ce qui peut aider à réduire diverses cicatrices et taches de vieillesse.

L'acide 2-hydroxypropanoïque est une excellente solution pour les personnes ayant la peau sensible ou sèche pour laquelle les exfoliants ne fonctionnent pas.
L'acide 2-hydroxypropanoïque est utilisé comme conservateur alimentaire, agent de salaison et agent aromatisant.

L'acide 2-hydroxypropanoïque est un ingrédient des aliments transformés et est utilisé comme décontaminant lors de la transformation de la viande.
L'acide 2-hydroxypropanoïque est produit commercialement par fermentation de glucides tels que le glucose, le saccharose ou le lactose, ou par synthèse chimique.

L'acide 2-hydroxypropanoïque, également appelé « acide du lait », est un acide organique de formule chimique suivante : CH3CH(OH)CO2H.
Le nom officiel donné par l'Union internationale de chimie pure et appliquée (UICPA) est Acide lactique.

L'acide 2-hydroxypropanoïque peut être produit naturellement, mais l'importance de l'acide 2-hydroxypropanoïque est corrélée aux productions synthétiques.
L'acide 2-hydroxypropanoïque pur est un liquide incolore et hydroscopique ; L'acide 2-hydroxypropanoïque peut être défini comme un acide faible en raison de la dissociation partielle de l'acide 2-hydroxypropanoïque dans l'eau et de la constante de dissociation acide corrélée (Ka = 1,38 · 10−4).

L'acide 2-hydroxypropanoïque est un composé chiral avec une chaîne carbonée composée d'un atome central (chiral) et de deux atomes de carbone terminaux.
Un groupe hydroxyle est attaché à l'atome de carbone chiral tandis que l'un des atomes de carbone terminaux fait partie du groupe carboxylique et l'autre atome fait partie du groupe méthyle.

Par conséquent, il existe deux formes isomères optiquement actives de l'acide 2-hydroxypropanoïque : la forme L (+), également appelée acide (S) -2-hydroxypropanoïque, et la forme D (−), ou acide (R) -2-hydroxypropanoïque.
L'acide L(+)-2-hydroxypropanoïque est l'isomère biologique.

Mécanisme antibactérien de l'acide 2-hydroxypropanoïque sur les propriétés physiologiques et morphologiques de Salmonella Enteritidis, Escherichia coli et Listeria monocytogenes :
Les agents pathogènes pourraient être complètement inactivés après une exposition à l’acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a entraîné une fuite importante de protéines de trois agents pathogènes.

Les bandes de protéines bactériennes des cellules traitées à l'acide 2-hydroxypropanoïque se sont atténuées ou ont disparu.
Les tailles moyennes Z des agents pathogènes ont été réduites après le traitement à l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a provoqué des cellules effondrées, voire brisées, avec des creux et des interstices évidents.

L'acide 2-hydroxypropanoïque est largement utilisé pour inhiber la croissance d'agents pathogènes microbiens importants, mais le mécanisme antibactérien de l'acide 2-hydroxypropanoïque n'est pas encore entièrement compris.
L'objectif de cette étude était d'étudier le mécanisme antibactérien de l'acide 2-hydroxypropanoïque sur Salmonella Enteritidis, Escherichia coli et Listeria monocytogenes par mesure de taille, TEM et analyse SDS-PAGE.

Les résultats ont indiqué que 0,5 % d’acide 2-hydroxypropanoïque pourrait complètement inhiber la croissance des cellules de Salmonella Enteritidis, E. coli et L. monocytogenes.
Pendant ce temps, l’acide 2-hydroxypropanoïque a entraîné une fuite de protéines des cellules de Salmonella, E. coli et Listeria, et la quantité de fuite après 6 heures d’exposition atteignait respectivement 11,36, 11,76 et 16,29 μg/mL.

Cinquante souches de Staphylococcus aureus, de streptocoques bêta-hémolytiques, d'espèces Proteus, d'Esch coli et de Pseudomonas aeruginosa ont été soumises à 2 %, 1 % et 0,1 % d'acide 2-hydroxypropanoïque dans de l'eau peptoriée.
La concentration minimale inhibitrice d'acide 2-hydroxypropanoïque pour toutes les souches de chacun de ces organismes était de 0,1 % ou 1 %.

En fonction de la concentration en acides 2-hydroxypropanoïque, l'acide 2-hydroxypropanoïque ajouté à l'eau peptonée abaisse le pH à 2,5-4, ce qui en lui-même a un certain effet inhibiteur sur les micro-organismes.
L'acide 2-hydroxypropanoïque conserve cependant son effet inhibiteur même si le Ph de l'eau peptonée est ramené à 7,3.

L'acide 2-hydroxypropanoïque est un agent non toxique et non sensibilisant car l'acide 2-hydroxypropanoïque est un métabolite normal de l'organisme.
Ainsi, l’acide 2-hydroxypropanoïque peut être utilisé comme agent antibactérien sûr et efficace pour une application locale.

L'acide 2-hydroxypropanoïque est un intermédiaire normal dans la fermentation (oxydation, métabolisme) du sucre.
L'acide 2-hydroxypropanoïque est une forme concentrée utilisée en interne pour prévenir la fermentation gastro-intestinale.
L'acide 2-hydroxypropanoïque est converti en glucose via la gluconéogenèse dans le foie et libéré dans la circulation.

L'acide 2-hydroxypropanoïque est un acide organique présent naturellement dans le corps humain et dans les aliments fermentés.
L'acide 2-hydroxypropanoïque est utilisé dans une large gamme d'aliments, de boissons, de soins personnels, de soins de santé, de nettoyants, d'aliments pour animaux et de produits chimiques comme régulateur d'acidité doux avec des propriétés améliorant la saveur et antibactériennes.

La production commerciale d’acide 2-hydroxypropanoïque se fait généralement par fermentation.
Parce que la forme L(+) est préférée pour une meilleure métabolisation de l'acide 2-hydroxypropanoïque, Jungbunzlauer a choisi de produire de l'acide L(+)-2-hydroxypropanoïque pur par fermentation traditionnelle de glucides naturels.

L'acide L(+)-2-hydroxypropanoïque est un liquide sirupeux, incolore à jaunâtre, presque inodore, avec un goût acide doux.
L'acide 2-hydroxypropanoïque est disponible dans le commerce sous forme de solutions aqueuses de diverses concentrations.

Ces solutions sont stables dans des conditions normales de stockage.
L'acide 2-hydroxypropanoïque n'est pas toxique pour les humains et l'environnement, mais les solutions concentrées d'acide 2-hydroxypropanoïque peuvent provoquer une irritation cutanée et des lésions oculaires.
L'acide 2-hydroxypropanoïque est facilement biodégradable.

En raison de l'hygroscopique élevée de l'acide 2-hydroxypropanoïque, des solutions aqueuses concentrées d'acide 2-hydroxypropanoïque sont généralement utilisées - des liquides sirupeux, incolores et inodores.
L'oxydation de l'acide 2-hydroxypropanoïque s'accompagne généralement d'une décomposition.

Sous l'action de HNO 3 ou O 2 de l'air en présence de Cu ou Fe, il se forme HCOOH, CH 3 COOH, (COOH) 2 , CH 3 CHO, CO 2 et de l'acide pyruvique.
La réduction de l'acide 2-hydroxypropanoïque HI conduit à l'acide propionique, et la réduction en présence de Re-mobile conduit au propylène glycol.

L'acide 2-hydroxypropanoïque se déshydrate en acide acrylique lorsqu'il est chauffé avec HBr, forme de l'acide 2-bromopropionique lorsque le sel de Ca réagit avec PCl 5 ou SOCl 2 -chlorure de 2-chloropropionyle.
En présence d'acides minéraux, l'auto-estérification de l'acide 2-hydroxypropanoïque se produit avec formation de lactone, ainsi que de polyesters linéaires.

Lorsque l'acide 2-hydroxypropanoïque interagit avec des alcools, des hydroxyacides RCH 2 CH (OH) COOH se forment et lorsque les sels de l'acide 2-hydroxypropanoïque réagissent avec des esters d'alcool.
Les sels et esters de l’acide 2-hydroxypropanoïque sont appelés lactates.

L'acide 2-hydroxypropanoïque est formé à la suite de la fermentation de l'acide 2-hydroxypropanoïque (avec du lait aigre, de la choucroute, des légumes marinés, du fromage affiné, des aliments ensilés); L'acide D-2-hydroxypropanoïque se trouve dans les tissus des animaux, des plantes ainsi que dans les micro-organismes.
Dans l'industrie, l'acide 2-hydroxypropanoïque est obtenu par hydrolyse de l'acide 2-chloropropionique et des sels de l'acide 2-hydroxypropanoïque (100°C) ou du lactonitrile CH 3 CH (OH) CN (100°C, H 2 SO 4 ), suivi du formation d'esters dont l'isolement et l'hydrolyse conduisent à une qualité élevée.
D'autres méthodes de production d'acide 2-hydroxypropanoïque sont connues : l'oxydation du propylène avec des oxydes d'azote (15-20°C) suivie d'un traitement par H 2 SO 4 , l'interaction de CH 3 CHO avec CO (200°C, 20 MPa) .

L'acide 2-hydroxypropanoïque est utilisé dans l'industrie alimentaire, dans la teinture par mordant, dans la production de cuir, dans les ateliers de fermentation comme agent bactéricide, pour la production de médicaments et de plastifiants.
Les lactates d'éthyle et de butyle sont utilisés comme solvants pour les éthers de cellulose, les huiles siccatives, les huiles végétales ; lactate de butyle - ainsi qu'un solvant pour certains polymères synthétiques.

L'acide 2-hydroxypropanoïque est un acide organique.
L'acide 2-hydroxypropanoïque a une formule moléculaire CH3CH(OH)COOH.

L'acide 2-hydroxypropanoïque est blanc à l'état solide et l'acide 2-hydroxypropanoïque est miscible à l'eau.
À l’état dissous, l’acide 2-hydroxypropanoïque forme une solution incolore.

La production comprend à la fois la synthèse artificielle et les sources naturelles.
L'acide 2-hydroxypropanoïque est un acide alpha-hydroxy (AHA) en raison de la présence d'un groupe hydroxyle adjacent au groupe carboxyle.

L'acide 2-hydroxypropanoïque est utilisé comme intermédiaire de synthèse dans de nombreuses industries de synthèse organique et dans diverses industries biochimiques.
La base conjuguée de l’acide 2-hydroxypropanoïque est appelée lactate.

En solution, l'acide 2-hydroxypropanoïque peut s'ioniser, produisant l'ion lactate CH3CH(OH)CO−2.
Comparé à l'acide acétique, le pKa des acides 2-hydroxypropanoïques est inférieur de 1 unité, ce qui signifie que l'acide 2-hydroxypropanoïque est dix fois plus acide que l'acide acétique.
Cette acidité plus élevée est la conséquence de la liaison hydrogène intramoléculaire entre le groupe α-hydroxyle et le groupe carboxylate.

L'acide 2-hydroxypropanoïque est chiral et composé de deux énantiomères.
L’un est connu sous le nom d’acide l-(+)-2-hydroxypropanoïque ou acide (S)-2-hydroxypropanoïque et l’autre, image miroir de l’acide 2-hydroxypropanoïque, est l’acide d-(−)-2-hydroxypropanoïque ou (R)- Acide 2-hydroxypropanoïque.

Un mélange des deux en quantités égales est appelé acide dl-2-hydroxypropanoïque, ou acide 2-hydroxypropanoïque racémique.
L'acide 2-hydroxypropanoïque est hygroscopique.

L'acide dl-2-hydroxypropanoïque est miscible à l'eau et à l'éthanol au-dessus du point de fusion de l'acide 2-hydroxypropanoïque, qui est d'environ 16, 17 ou 18 °C.
L'acide d-2-hydroxypropanoïque et l'acide l-2-hydroxypropanoïque ont un point de fusion plus élevé.

L'acide 2-hydroxypropanoïque produit par la fermentation du lait est souvent racémique, bien que certaines espèces de bactéries produisent uniquement de l'acide (R)-2-hydroxypropanoïque.
D'autre part, l'acide 2-hydroxypropanoïque produit par la respiration anaérobie dans les muscles des animaux a la configuration (S) et est parfois appelé acide « sarcolactique », du grec « sarx » pour chair.

Chez les animaux, le L-lactate est constamment produit à partir du pyruvate via l'enzyme lactate déshydrogénase (LDH) lors d'un processus de fermentation au cours du métabolisme et de l'exercice normaux.
La concentration de l'acide 2-hydroxypropanoïque n'augmente pas jusqu'à ce que le taux de production de lactate dépasse le taux d'élimination du lactate, qui est régi par un certain nombre de facteurs, notamment les transporteurs monocarboxylates, la concentration et l'isoforme de la LDH et la capacité oxydative des tissus.

La concentration de lactate sanguin est généralement de 1 à 2 mM au repos, mais peut atteindre plus de 20 mM lors d'un effort intense et jusqu'à 25 mM par la suite.
En plus d'autres rôles biologiques, l'acide l-2-hydroxypropanoïque est le principal agoniste endogène du récepteur de l'acide hydroxycarboxylique 1 (HCA1), qui est un récepteur couplé aux protéines G couplé à Gi/o (GPCR).

Dans l'industrie, la fermentation de l'acide 2-hydroxypropanoïque est réalisée par des bactéries de l'acide 2-hydroxypropanoïque, qui convertissent les glucides simples tels que le glucose, le saccharose ou le galactose en acide 2-hydroxypropanoïque.
Ces bactéries peuvent également se développer dans la bouche ; l'acide qu'ils produisent est responsable de la carie dentaire appelée carie.

En médecine, le lactate est l'un des principaux composants de la solution lactée de Ringer et de la solution de Hartmann.
Ces liquides intraveineux sont constitués de cations sodium et potassium ainsi que d'anions lactate et chlorure en solution avec de l'eau distillée, généralement à des concentrations isotoniques avec le sang humain.
L'acide 2-hydroxypropanoïque est le plus souvent utilisé pour la réanimation liquidienne après une perte de sang due à un traumatisme, une intervention chirurgicale ou des brûlures.

L'acide 2-hydroxypropanoïque est un acide hydroxycarboxylique CH3CH(OH)COOH avec deux stéréoisomères (D(-) et L(+)) et l'acide 2-hydroxypropanoïque a plusieurs applications dans les industries alimentaires, chimiques, pharmaceutiques et de soins de santé.
L'acide 2-hydroxypropanoïque est principalement utilisé pour des applications alimentaires et pharmaceutiques, préférentiellement l'isomère L(+), puisque l'acide 2-hydroxypropanoïque est le seul isomère de l'acide 2-hydroxypropanoïque produit dans le corps humain.

Environ 20 à 30 % de la production d'acide 2-Hydroxypropanoïque est utilisée pour obtenir des biopolymères (acide poly2-Hydroxypropanoïque).
D’autres utilisations de l’acide 2-hydroxypropanoïque incluent les fibres et les solvants verts.

L'acide 2-hydroxypropanoïque est entièrement disponible dans le commerce et est en grande partie (90 %) produit par des bactéries par fermentation anaérobie des sucres.
L'acide 2-hydroxypropanoïque peut également être produit commercialement par synthèse chimique.

La voie de production chimique donne un mélange racémique optiquement inactif (avec la même quantité d'isomères L et D), tandis que la voie de fermentation anaérobie donne majoritairement l'un des deux stéréoisomères, selon le micro-organisme choisi.
L’option biotechnologique est largement disponible grâce à l’origine renouvelable de l’acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque peut être produit par fermentation de sucres issus de différentes biomasses, telles que : les cultures d'amidon, les cultures sucrières, les matières lignocellulosiques et également à partir de lactosérum (un résidu de la production de fromage).

La majeure partie de la production mondiale repose sur la fermentation homoplastique de sucres (issus de cultures d'amidon ou de sucre) où l'acide 2-hydroxypropanoïque est produit comme seul produit.
Les systèmes de production conventionnels nécessitent l'ajout d'hydroxyde de calcium pour contrôler le pH de fermentation.

Cette procédure aboutit à du lactate de calcium comme produit final.
Plusieurs étapes sont nécessaires pour finalement obtenir et purifier l'acide 2-hydroxypropanoïque : filtration, acidification, adsorption de carbone, évaporation, estérification, hydrolyse et distillation.

Le procédé conventionnel est associé à des coûts élevés (en raison de la procédure de purification complexe) et à de mauvaises performances environnementales en raison de la production de grandes quantités d'effluents chimiques (par exemple le sulfate de calcium).
De nouvelles technologies de séparation sont en cours de développement, comme l'électrodialyse bipolaire, avec des résultats prometteurs.

L'acide 2-hydroxypropanoïque, l'ingrédient naturel le plus fondamental de l'industrie laitière
Dans les produits laitiers, l’acide 2-hydroxypropanoïque est l’un des ingrédients les plus courants.

L’objectif des acides 2-hydroxypropanoïques est généralement de régulateur d’acide et d’arôme.
Le goût légèrement aigre observé dans les yaourts, fromages et autres produits laitiers est généralement le résultat d'une fermentation à partir de l'acide 2-hydroxypropanoïque.

La saveur caractéristique du pain au levain résulte également de l’acide 2-hydroxypropanoïque pendant le processus de cuisson.
Avec l’ajout de ce supplément polyvalent, le produit peut être facilement acidifié pour atteindre les niveaux de pH appropriés, tout en laissant les arômes naturels intacts.

L'acide 2-hydroxypropanoïque, DL- est l'isomère racémique de l'acide 2-hydroxypropanoïque, l'isoforme biologiquement active chez l'homme.
L'acide 2-hydroxypropanoïque ou lactate est produit pendant la fermentation à partir du pyruvate par la lactate déshydrogénase.
Cette réaction, en plus de produire de l'acide 2-hydroxypropanoïque, produit également du nicotinamide adénine dinucléotide (NAD) qui est ensuite utilisé dans la glycolyse pour produire de l'adénosine triphosphate (ATP) comme source d'énergie.

L’acide 2-hydroxypropanoïque se présente sous la forme d’un liquide sirupeux incolore à jaune, inodore.
Corrosif pour les métaux et les tissus.
Utilisé pour fabriquer des produits laitiers cultivés, comme conservateur alimentaire et pour fabriquer des produits chimiques.

Un intermédiaire normal dans la fermentation (oxydation, métabolisme) du sucre.
La forme concentrée est utilisée en interne pour prévenir la fermentation gastro-intestinale.

Le lactate de sodium est le sel de sodium de l'acide 2-hydroxypropanoïque et a un léger goût salin.
L'acide 2-hydroxypropanoïque est produit par fermentation d'une source de sucre, telle que le maïs ou la betterave, puis par neutralisation de l'acide 2-hydroxypropanoïque résultant pour créer un composé de formule NaC3H5O3.
L'acide 2-hydroxypropanoïque était l'un des ingrédients actifs de Phexxi, un agent contraceptif non hormonal approuvé par la FDA en mai 2020.

L'acide 2-hydroxypropanoïque (chimiquement, acide alpha ou 2-hydroxypropionique) joue un rôle dans les processus métaboliques de l'organisme ; dans le sang rouge et dans les tissus musculaires squelettiques en tant que produit du métabolisme du glucose et du glycogène.
L'acide 2-hydroxypropanoïque est un « acide alpha-hydroxy : qui possède un groupe hydroxyle sur l'atome de carbone à côté du groupe acide.

Si le groupe hydroxy se trouve sur le deuxième carbone à côté du groupe acide, l’acide 2-hydroxypropanoïque est appelé acide bêta-hydroxy.
L'acide 2-hydroxypropanoïque est converti in vivo en acide pyruvique (un acide alpha-céto) qui apparaît comme produit intermédiaire dans le métabolisme des glucides et des protéines dans l'organisme.

L'acide 2-hydroxypropanoïque se présente sous la forme de deux isomères optiques puisque l'atome de carbone central est lié à quatre groupes différents ; une forme dextro et une forme lévo (ou un mélange racémique inactif des deux) ; seule la forme lévo participe au métabolisme animal. L'acide 2-hydroxypropanoïque est présent dans le lait aigre et les produits laitiers tels que le fromage, le yaourt et les vins koumiss, libanais.
L’acide 2-hydroxypropanoïque provoque la carie dentaire puisque les bactéries de l’acide 2-hydroxypropanoïque opèrent dans la bouche.

Bien que l'acide 2-hydroxypropanoïque puisse être préparé par synthèse chimique, la production d'acide 2-hydroxypropanoïque par fermentation du glucose et d'autres substances sucrées en présence d'alcalis tels que la chaux ou le carbonate de calcium est une méthode moins coûteuse.
La molécule de glucose à six carbones est décomposée en deux molécules de composés à trois carbones (acide 2-hydroxypropanoïque), au cours de cette condition anaérobie.

L'acide 2-hydroxypropanoïque synthétique est utilisé commercialement dans le tannage du cuir et la teinture de la laine ; comme agent aromatisant et conservateur dans la transformation des aliments et les boissons gazeuses ; et comme matière première dans la fabrication de plastiques, de solvants, d'encres et de laques ; comme catalyseur dans de nombreux processus chimiques.
L'acide 2-hydroxypropanoïque est disponible sous forme de solutions aqueuses de diverses concentrations, généralement de 22 à 85 pour cent (l'acide 2-hydroxypropanoïque pur est une substance cristalline incolore.)

Bien que l'acide 2-hydroxypropanoïque soit généralement associé au lait et aux produits laitiers, l'acide 2-hydroxypropanoïque peut également être trouvé dans de nombreux autres produits alimentaires fermentés, notamment les confiseries, les confitures, les desserts glacés et les légumes marinés.
Les bactéries de l'acide 2-hydroxypropanoïque (LAB) sont un groupe hétérogène de bactéries qui jouent un rôle important dans divers processus de fermentation.

Ils fermentent les glucides alimentaires et produisent de l’acide 2-hydroxypropanoïque comme principal produit de fermentation.
De plus, la dégradation des protéines et des lipides et la production de divers alcools, aldéhydes, acides, esters et composés soufrés contribuent au développement d'arômes spécifiques dans différents produits alimentaires fermentés.

La principale application du LAB concerne les cultures starter, avec une énorme variété de produits laitiers fermentés (c'est-à-dire fromage, yaourt, laits fermentés), de viande, de poisson, de fruits, de légumes et de produits céréaliers.
En outre, ils contribuent à la saveur, à la texture et à la valeur nutritionnelle des aliments fermentés et sont donc utilisés comme cultures complémentaires.

L'accélération de la maturation des fromages, l'amélioration de la texture du yaourt avec la production d'exo polysaccharides et le contrôle des fermentations secondaires dans l'élaboration du vin en sont quelques exemples.
La production de bactériocines et de composés antifongiques a conduit à l'application de cultures bioprotectrices dans certains aliments.
De plus, les propriétés bénéfiques pour la santé bien documentées de certains LAB ont conduit à l'ajout de souches sélectionnées, en combinaison avec des bifidobactéries, comme cultures probiotiques ayant diverses applications dans l'industrie alimentaire.

L'acide 2-hydroxypropanoïque est un acide organique généré par la fermentation microbienne.
Plusieurs études ont testé une concentration de 2 % d'acide 2-hydroxypropanoïque comme désinfectant, soit seul, soit en combinaison avec un agent tensioactif.

Les désinfectants à base d’acide 2-hydroxypropanoïque interfèrent avec la perméabilité des membranes cellulaires et les fonctions cellulaires telles que le transport des nutriments.
Ces désinfectants sont très prometteurs et des recherches sont en cours concernant leurs utilisations.

Par exemple, dans une étude récente, dix désinfectants disponibles dans le commerce ont été testés pour leur efficacité contre Listeria monocytogenes sur des planches à découper en polyéthylène haute densité.
De tous les produits testés, qui comprenaient des QAC et de l'hypochlorite de sodium, un désinfectant à base de lactique était le plus efficace contre les cellules du biofilm.

L’acide 2-hydroxypropanoïque est utilisé depuis les années 1990 comme produit chimique fin (production de 60 000 à 80 000 tonnes par an−1).
Une part importante (25 000 tonnes an−1) est utilisée comme additif dans l'industrie agroalimentaire.

La deuxième application principale est celle d’élément de base pour les polymères, solvants et plastifiants verts.
L'acide 2-hydroxypropanoïque est produit chimiquement par hydrocyanation suivie de l'hydrolyse de la cyanhydrine.

Les principaux inconvénients sont la manipulation du cyanure d'hydrogène (HCN), la production de (NH4)2SO4 (1 éq) et les étapes de purification complexes pour obtenir de l'acide 2-hydroxypropanoïque de qualité alimentaire car l'acide racémique est obtenu.
Pour surmonter ces difficultés, la fermentation anaérobie des glucides à l'aide de Lactobacillus delbrueckii est une bonne alternative car seul l'acide (S)-2-Hydroxypropanoïque est obtenu en une seule étape.
La fermentation est réalisée à 50 °C pendant 2 à 8 jours avec un rendement de 85 à 95 % et la concentration du produit est de 100 gl−1.

Les bactéries de l’acide 2-hydroxypropanoïque (LAB) jouent un rôle important dans les applications alimentaires, agricoles et cliniques.
La description générale des bactéries incluses dans le groupe est celle des cocci ou bâtonnets à Gram positif, non sporulants et non respirants, qui produisent de l'acide 2-hydroxypropanoïque comme produit final principal lors de la fermentation des glucides.

L'accord commun est qu'il existe un groupe central composé de quatre genres ; Lactobacilles, Leuconostoc, Pediococcus et Streptococcus.
Des révisions taxonomiques récentes ont proposé plusieurs nouveaux genres et le groupe restant comprend désormais les suivants : Aerococcus, Alloiococcus, Carnobacterium, Dolosigranulum, Enterococcus, Globicatella, Lactococcus, Oenococcus, Tetragenococcus, Vagococcus et Weissella.

Leur importance est principalement associée à leur activité métabolique sûre lors de leur croissance dans des aliments utilisant le sucre disponible pour la production d'acides organiques et d'autres métabolites.
Leur présence fréquente dans les aliments ainsi que leurs utilisations à long terme contribuent à leur acceptation naturelle comme GRAS (généralement reconnu comme sûr) pour la consommation humaine.

Les trois principales voies impliquées dans la fabrication et le développement de l'arôme des produits alimentaires fermentés sont les suivantes :
1) glycolyse (fermentation des sucres)
2) la lipolyse (dégradation des graisses) et
3) protéolyse (dégradation des protéines)

Le lactate est le principal produit généré par le métabolisme des glucides et une fraction du pyruvate intermédiaire peut alternativement être convertie en diacétyle, acétoïne, acétaldéhyde ou acide acétique (dont certains peuvent être importants pour les arômes typiques du yaourt).
La contribution du LAB à la lipolyse est relativement faible, mais la protéolyse est la voie biochimique clé pour le développement de la saveur dans les aliments fermentés.

La dégradation de ces composants peut être ensuite convertie en divers alcools, aldéhydes, acides, esters et composés soufrés pour le développement d'un arôme spécifique dans les produits alimentaires fermentés.
La génétique du LAB a été revue et des séquences complètes du génome d'un grand nombre de LAB ont été publiées depuis 2001, date à laquelle le premier génome du LAB a été séquencé et publié.

Acide 2-hydroxypropanoïque Cultures complémentaires :
Les cultures secondaires, ou cultures complémentaires ou adjuvants, sont définies comme toute culture délibérément ajoutée à un moment donné de la fabrication d'aliments fermentés, mais dont le rôle principal n'est pas la production d'acide.
Des cultures complémentaires sont utilisées dans la fabrication du fromage pour équilibrer une partie de la biodiversité supprimée par la pasteurisation, l'amélioration de l'hygiène et l'ajout de cultures starter à souche définie.
Il s'agit principalement de LAB non starter qui ont un impact significatif sur l'arôme et accélèrent le processus de maturation.

Les polysaccharides extracellulaires (EPS) sont produits par diverses bactéries et sont présents sous forme de polysaccharides capsulaires liés à la surface cellulaire ou libérés dans le milieu de croissance.
Ces polymères jouent un rôle majeur dans la production de yaourts, de fromages, de crèmes fermentées et de desserts à base de lait où ils contribuent à la texture, à la sensation en bouche, à la perception gustative et à la stabilité des produits finaux.

De plus, l'acide 2-hydroxypropanoïque a été suggéré que ces EPS ou les laits fermentés contenant ces EPS sont actifs en tant que prébiotiques, hypocholestérolémiants et immunomodulateurs.
Souches productrices d'EPS de Streptococcus thermophilus et Lactobacillus delbreuckii ssp. Il a été démontré que bulgaricus améliore la texture et la viscosité du yaourt et réduit la synérèse.
Pour la production de vin, LAB est impliqué dans la fermentation malolactique, c'est-à-dire une fermentation secondaire, qui implique la conversion du L-malate en L-lactate et CO2 via la malate décarboxylase, également connue sous le nom d'enzyme malolactique, entraînant une réduction de l'acidité du vin, assurant une stabilisation microbiologique et des modifications de l'arôme du vin.

Des activités antifongiques de LAB ont été rapportées.
En outre; Les souches LAB ont également la capacité de réduire les mycotoxines fongiques, soit en produisant des métabolites anti-mycotoxinogènes, soit en les absorbant.
Pour que les LAB soient utilisées comme cultures starter bioprotectrices, elles doivent posséder une gamme de caractéristiques physiques et biochimiques et, plus important encore, la capacité d'atteindre une croissance et une production suffisante de métabolites antimicrobiens, qui doivent être démontrées dans l'environnement alimentaire spécifique.

Culture probiotique :
Les LAB sont considérées comme un groupe majeur de bactéries probiotiques ; le probiotique a été défini par Fuller comme « un complément alimentaire microbien vivant qui affecte de manière bénéfique l'animal hôte en améliorant l'équilibre microbien intestinal de l'acide 2-hydroxypropanoïque ».
Salminen et coll. ont proposé que les probiotiques soient des préparations de cellules microbiennes ou des composants de cellules microbiennes qui ont un effet bénéfique sur la santé et le bien-être de l'hôte.

Les cultures commerciales utilisées dans les applications alimentaires comprennent principalement des souches de Lactobacillus spp., Bifidobacterium spp. et Propionibacterium spp. Lactobacillus acidophilus, Lactobacillus casei, Lb. reuteri, Lactobacillus rhamnosus et Lb. plantarum sont les LAB les plus utilisés dans les aliments fonctionnels contenant des probiotiques.
Le fromage Fresco argentin, le Cheddar et le Gouda sont quelques exemples d'applications du probiotique LAB, en combinaison avec les bifidobactéries, dans les fromages.

Apparemment, ces effets sont spécifiques à l’espèce et à la souche, et le grand défi réside dans l’utilisation de cultures probiotiques composées de plusieurs espèces.
De plus, les LAB, qui font partie du microbiote intestinal, fermentent divers substrats tels que les amines biogènes et les composés allergènes en acides gras à chaîne courte et autres acides et gaz organiques.

Ces dernières années, les génomes de plusieurs espèces de probiotiques ont été séquencés, ouvrant ainsi la voie à l'application des technologies « omiques » à l'étude des activités probiotiques.
De plus, bien que des probiotiques recombinants aient été construits, l’application industrielle de bactéries génétiquement modifiées est toujours entravée par des problèmes juridiques et par une opinion publique plutôt négative dans le secteur alimentaire.

Conclusion:
Les LAB sont les micro-organismes les plus couramment utilisés pour la fermentation et la conservation des aliments.
Leur importance est principalement associée à leur activité métabolique sûre lors de leur croissance dans des aliments utilisant le sucre disponible pour la production d'acides organiques et d'autres métabolites.

Les progrès en génétique, biologie moléculaire, physiologie et biochimie des LAB ont fourni de nouvelles connaissances et applications pour ces bactéries.
Des cultures bactériennes présentant des traits spécifiques ont été développées au cours des 17 dernières années, depuis la découverte de la séquence complète du génome de Lc. lactis ssp. lactis IL1403 et une variété de cultures commerciales de démarrage, fonctionnelles, bioprotectrices et probiotiques présentant des propriétés souhaitables ont été commercialisées.

Cependant, le grand défi pour l’industrie alimentaire est de produire des cultures de souches multiples ayant de multiples fonctions pour des produits spécifiques provenant de régions spécifiques du monde.
L'acide 2-hydroxypropanoïque constitue également un défi pour produire des aliments dont les caractéristiques sensorielles et la valeur nutritionnelle sont similaires aux produits traditionnels, même avec des propriétés particulières bénéfiques pour la santé, dans le cadre d'un processus standardisé, sûr et contrôlé.

Acide 2-hydroxypropanoïque et lactate :
L'acide 2-hydroxypropanoïque est un acide faible, ce qui signifie que l'acide 2-hydroxypropanoïque ne se dissocie que partiellement dans l'eau.
L'acide 2-hydroxypropanoïque se dissocie dans l'eau, donnant naissance à des ions lactate et H+.

Il s'agit d'une réaction réversible et l'équilibre est représenté ci-dessous.
CH3CH(OH)CO2H H+ + CH3CH(OH)CO2-Ka= 1,38 x 10-4

En fonction du pH environnemental, les acides faibles tels que l'acide 2-hydroxypropanoïque sont présents soit sous forme d'acide sous forme non dissociée d'acide 2-hydroxypropanoïque à faible pH, soit sous forme de sel ionique à un pH plus élevé.
Le pH auquel 50 % de l’acide est dissocié est appelé pKa, qui pour l’acide 2-hydroxypropanoïque est de 3,86.

Dans des circonstances physiologiques, le pH est généralement supérieur au pKa, de sorte que la majorité de l'acide 2-hydroxypropanoïque présent dans l'organisme sera dissociée et présente sous forme de lactate.
Sous la forme non dissociée (unionisée), les substrats sont capables de traverser les membranes lipidiques, contrairement à la forme dissociée (ionisée) qui ne le peut pas.

L'acide 2-hydroxypropanoïque (acide 2-hydroxypropionique) est l'un des produits chimiques à grande échelle produits par fermentation.
Les matières premières couramment utilisées sont des glucides obtenus à partir de différentes sources comme l’amidon de maïs, la canne à sucre ou l’amidon de tapioca – en fonction de la disponibilité locale.

Les glucides sont hydrolysés en monosaccharides puis fermentés en l'absence d'oxygène par des micro-organismes en acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque est l'élément constitutif de l'acide poly2-hydroxypropanoïque, mais l'acide 2-hydroxypropanoïque est également utilisé dans une grande variété d'applications alimentaires et cosmétiques.
L'acide 2-hydroxypropanoïque d'origine biologique est optiquement actif et la production d'acide l-(+)- ou d-(–)-2-hydroxypropanoïque peut être dirigée avec des micro-organismes issus de la bio-ingénierie.

L’acide 2-hydroxypropanoïque (acide 2-hydroxypropionique) fait partie des produits chimiques produits en grande quantité par voie microbienne, avec un volume de production mondial annuel de l’ordre de 370 000 tonnes.
La fermentation de l'acide 2-hydroxypropanoïque fait partie des fermentations industrielles les plus anciennes, avec une production industrielle par fermentation commençant dans les années 1880.

Soixante-quinze pour cent de la production mondiale actuelle d'acide 2-hydroxypropanoïque se produit dans les installations de fermentation de Galactic, PURAC Corporation, Cargill Incorporated, Archer Daniels Midland Company et des coentreprises dérivées de ces sociétés.
Historiquement, l'acide 2-hydroxypropanoïque a été principalement utilisé dans les aliments pour l'acidulation et la conservation, et l'acide 2-hydroxypropanoïque a obtenu le statut GRAS (généralement reconnu comme sûr) par la FDA.
L'acide 2-hydroxypropanoïque trouve également des utilisations dans le tannage du cuir, les cosmétiques, les applications pharmaceutiques, ainsi que diverses autres niches.

La production mondiale d'acide 2-hydroxypropanoïque a été multipliée par 10 au cours de la dernière décennie en raison, en grande partie, de la demande accrue de produits verts dérivés de l'acide 2-hydroxypropanoïque, notamment le lactate d'éthyle et l'acide poly2-hydroxypropanoïque (PLA).
Le lactate d'éthyle peut être utilisé dans une variété de solvants verts, et bien que la faible toxicité humaine de l'acide 2-hydroxypropanoïque par rapport aux alternatives aux hydrocarbures soit attrayante, le prix est cité comme la principale raison de l'utilisation limitée du marché de l'acide 2-hydroxypropanoïque.

Le PLA est un polymère considéré comme une alternative verte aux plastiques dérivés du pétrole en raison de la biodégradabilité de l'acide 2-hydroxypropanoïque et de la réduction de son empreinte carbone.
Les produits PLA sont sur le marché dans une large gamme d'applications, notamment l'emballage, les fibres et les mousses.
Le principal producteur mondial de PLA est NatureWorks LLC, actuellement détenue à 100 % par Cargill Incorporated.

Le principal coût de la production de PLA et de lactate d’éthyle est le coût de la matière première, à savoir l’acide 2-hydroxypropanoïque.
Les paramètres clés qui déterminent le coût de l’acide 2-hydroxypropanoïque sont le taux, le titre et le rendement, tant dans les opérations de fermentation que dans les unités de récupération de produits en aval.

De plus, la production d’acide 2-hydroxypropanoïque représente une grande partie de l’apport énergétique et des émissions de gaz à effet de serre (GES) des produits dérivés de l’acide 2-hydroxypropanoïque.
Ces coûts carbone peuvent être très préoccupants pour la commercialisation et la viabilité d’un produit vert.

Comme indiqué précédemment, la production d’acide 2-hydroxypropanoïque se produit depuis plus de 100 ans, avec seulement de modestes changements dans les conditions ou les organismes hôtes.
L'acide 2-hydroxypropanoïque est produit par fermentation, traditionnellement réalisée par des bactéries appartenant aux genres Lactobacillus, Lactococcus, Streptococcus, Bacillus et Enterococcus.

Pour les applications récentes de l’acide 2-hydroxypropanoïque en tant qu’intermédiaire chimique vert, par exemple pour le PLA, le coût de production via le procédé traditionnel est trop élevé.
En conséquence, une souche de production d'acide 2-hydroxypropanoïque industriel doit répondre aux critères suivants : production de > 100 gl−1 d'acide 2-hydroxypropanoïque à des rendements proches de la théorie (0,9 g d'acide 2-hydroxypropanoïque par gramme de dextrose), pureté chirale élevée. d'acide 2-hydroxypropanoïque produit (> 99 %) avec des taux, des supports et des coûts de récupération capables d'atteindre les objectifs de coûts ci-dessus.
La réduction de ce coût de production offre le potentiel d’élargir le marché de l’acide 2-hydroxypropanoïque et des dérivés verts de l’acide 2-hydroxypropanoïque.

Les principaux coûts associés à la fermentation sont les nutriments et les sucres nécessaires à la croissance cellulaire et à la production d'acide 2-hydroxypropanoïque, ainsi que le processus de récupération et de purification en aval.
En plus d'une source de sucre, les fermentations lactiques bactériennes traditionnelles nécessitent généralement une source d'azote organique (telle qu'un extrait de levure ou une liqueur de maïs) ainsi qu'une supplémentation en vitamines B.

De plus, ces fermentations nécessitent que le pH soit maintenu entre 5 et 7, bien au-dessus du pKa de l'acide 2-hydroxypropanoïque.
Le maintien du pH dans cette plage nécessite la neutralisation de l'acide 2-hydroxypropanoïque pendant la fermentation, suivie d'étapes coûteuses en aval ou d'une acidulation pour régénérer l'acide 2-hydroxypropanoïque libre.
Cela augmente considérablement le coût de la fermentation.

En 2008, Cargill a mis en œuvre une technologie de fermentation inédite impliquant une levure génétiquement modifiée capable de produire de l'acide 2-hydroxypropanoïque à des taux, des titres et des rendements industriellement pertinents à des valeurs de pH ≤ 3,0, ce qui est bien inférieur au pKa de 2-. Acide hydroxypropanoïque.
Le processus de fermentation à faible pH entraîne une amélioration de la qualité des produits et du traitement en aval, une réduction de l'utilisation de produits chimiques et des coûts des nutriments, ainsi qu'une réduction de 35 % des émissions de GES associées à la production d'acide 2-hydroxypropanoïque par fermentation.

De plus, le risque de perte de produit dû aux attaques de bactériophages et à la contamination microbienne pouvant survenir dans le processus bactérien traditionnel est éliminé ou considérablement réduit grâce au processus de levure à faible pH.
Cette robustesse accrue du processus contribue à la réduction du coût global de production de l’acide 2-hydroxypropanoïque et a par la suite contribué à développer le marché de l’acide 2-hydroxypropanoïque et des dérivés de l’acide 2-hydroxypropanoïque.

Les progrès futurs dans le processus de levure à faible pH devraient réduire encore davantage le coût de production de l’acide 2-hydroxypropanoïque en réduisant le coût de la source de carbone fermentée en acide 2-hydroxypropanoïque.
Pour y parvenir, les levures à faible pH doivent être développées davantage pour fermenter efficacement des sources de carbone à faible coût afin de libérer l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque a été estimé par analyse du cycle de vie que grâce à l'utilisation de matières premières cellulosiques dérivées de la biomasse et à l'utilisation de l'énergie éolienne pour produire de l'acide 2-hydroxypropanoïque et du PLA, les émissions globales de GES pourraient être calculées comme un résultat net négatif.

Applications de l’acide 2-hydroxypropanoïque :

Applications pharmaceutiques et cosmétiques :
L'acide 2-hydroxypropanoïque est également utilisé dans la technologie pharmaceutique pour produire des lactates hydrosolubles à partir d'ingrédients actifs autrement insolubles.
L'acide 2-hydroxypropanoïque trouve également une utilisation dans les préparations topiques et les cosmétiques pour ajuster l'acidité et pour les propriétés désinfectantes et kératolytiques de l'acide 2-hydroxypropanoïque.

Nourriture:
L'acide 2-hydroxypropanoïque se trouve principalement dans les produits laitiers fermentés, tels que le koumiss, le laban, le yaourt, le kéfir et certains fromages cottage.
La caséine du lait fermenté est coagulée (caillée) par l'acide 2-hydroxypropanoïque.
L'acide 2-hydroxypropanoïque est également responsable de la saveur aigre du pain au levain.

Dans les listes d'informations nutritionnelles, l'acide 2-hydroxypropanoïque peut être inclus sous le terme « glucides » (ou « glucides par différence »), car cela inclut souvent tout autre chose que l'eau, les protéines, les graisses, les cendres et l'éthanol.
Si tel est le cas, l'énergie alimentaire calculée peut utiliser la norme de 4 kilocalories (17 kJ) par gramme, souvent utilisée pour tous les glucides.

Mais dans certains cas, l’acide 2-hydroxypropanoïque est ignoré dans le calcul.
La densité énergétique de l'acide 2-hydroxypropanoïque est de 362 kilocalories (1 510 kJ) pour 100 g.

Certaines bières (bière aigre) contiennent volontairement de l'acide 2-hydroxypropanoïque, l'un de ces types étant les lambics belges.
Le plus souvent, celle-ci est produite naturellement par diverses souches de bactéries.

Ces bactéries fermentent les sucres en acides, contrairement aux levures qui fermentent les sucres en éthanol.
Après refroidissement du moût, la levure et les bactéries peuvent « tomber » dans les fermenteurs ouverts.

Les brasseurs de styles de bière plus courants veilleraient à ce qu’aucune bactérie de ce type ne puisse pénétrer dans le fermenteur.
Parmi les autres styles de bière aigre, citons la Berliner weisse, la Flandre rouge et la Wild Ale américaine.

En vinification, un processus bactérien, naturel ou contrôlé, est souvent utilisé pour convertir l'acide malique naturellement présent en acide 2-hydroxypropanoïque, pour réduire le piquant et pour d'autres raisons liées à la saveur.
Cette fermentation malolactique est réalisée par des bactéries acides 2-Hydroxypropanoïque.
Bien qu'on ne le trouve normalement pas en quantités significatives dans les fruits, l'acide 2-hydroxypropanoïque est le principal acide organique du fruit de l'akebia, représentant 2,12 % du jus.

En tant qu'additif alimentaire, l'acide 2-hydroxypropanoïque est approuvé pour une utilisation dans l'UE, aux États-Unis, en Australie et en Nouvelle-Zélande ; L'acide 2-hydroxypropanoïque est répertorié sous le numéro SIN 270 de l'acide 2-hydroxypropanoïque ou sous le numéro E E270.
L'acide 2-hydroxypropanoïque est utilisé comme conservateur alimentaire, agent de salaison et agent aromatisant.

L'acide 2-hydroxypropanoïque est un ingrédient des aliments transformés et est utilisé comme décontaminant lors de la transformation de la viande.
L'acide 2-hydroxypropanoïque est produit commercialement par fermentation de glucides tels que le glucose, le saccharose ou le lactose, ou par synthèse chimique.
Les sources de glucides comprennent le maïs, les betteraves et le sucre de canne.

Falsification:
L'acide 2-hydroxypropanoïque a toujours été utilisé pour faciliter l'effacement des encres des papiers officiels devant être modifiés lors de la contrefaçon.

Produits de nettoyage:
L'acide 2-hydroxypropanoïque est utilisé dans certains nettoyants liquides comme agent détartrant pour éliminer les dépôts d'eau dure tels que le carbonate de calcium, formant ainsi le lactate, le lactate de calcium.
En raison de l'acidité élevée de l'acide 2-hydroxypropanoïque, ces dépôts sont éliminés très rapidement, en particulier lorsqu'on utilise de l'eau bouillante, comme dans les bouilloires.
L'acide 2-hydroxypropanoïque gagne également en popularité dans les détergents à vaisselle antibactériens et les savons pour les mains remplaçant le Triclosan.

Utilisations de l’acide 2-hydroxypropanoïque :
L'acide 2-hydroxypropanoïque est utilisé comme solvant et acidulant dans la production d'aliments, de médicaments et de colorants.
L'acide 2-hydroxypropanoïque est également utilisé comme mordant dans l'impression d'articles en laine, comme flux de soudure, comme agent épilant et comme catalyseur pour les résines phénoliques.
L'acide 2-hydroxypropanoïque est également utilisé dans le tannage du cuir, l'acidification des puits de pétrole et comme régulateur de croissance des plantes.

L’utilisation de l’acide 2-hydroxypropanoïque qui connaît la croissance la plus rapide est l’utilisation de l’acide 2-hydroxypropanoïque comme monomère pour la production d’acide poly2-hydroxypropanoïque ou de polylactide (PLA).
Les applications du PLA incluent les conteneurs pour les industries alimentaires et des boissons, les films et conteneurs rigides pour l'emballage et les articles de service (tasses, assiettes, ustensiles).
Le polymère PLA peut également être transformé en fibres et utilisé dans les vêtements, les fibres (oreillers, couettes), les tapis et les applications non tissées telles que les lingettes.

L'acide 2-hydroxypropanoïque est utilisé dans le placage de métaux, les cosmétiques et l'industrie du textile et du cuir.

L'acide 2-hydroxypropanoïque est utilisé dans les bains de teinture, comme mordant dans l'impression d'articles en laine, comme solvant pour les colorants insolubles dans l'eau (induline soluble dans l'alcool, nigrosine, bleu spiritueux).
L'acide 2-hydroxypropanoïque est utilisé pour réduire les chromates dans la laine mordante.

L'acide 2-hydroxypropanoïque est utilisé dans la fabrication de fromages et de confiseries.
L'acide 2-hydroxypropanoïque est utilisé dans les préparations lactées pour bébés ; acidulant dans les boissons; pour aciduler les moûts en brasserie.

L’acide 2-hydroxypropanoïque est utilisé dans la préparation des injections de lactate de sodium.
L'acide 2-hydroxypropanoïque est utilisé dans les ingrédients des cosmétiques.

L’acide 2-hydroxypropanoïque est utilisé dans les gelées spermatocides.
L'acide 2-hydroxypropanoïque est utilisé pour éliminer Clostridium butyricum dans la fabrication de levure ; épiler, repulper et décalcifier les peaux.

L'acide 2-hydroxypropanoïque est utilisé comme solvant pour le formiate de cellulose.
L'acide 2-hydroxypropanoïque est utilisé dans le flux pour la soudure tendre.

L'acide 2-hydroxypropanoïque est utilisé dans la fabrication de lactates utilisés dans les produits alimentaires, en médecine et comme solvants.
L'acide 2-hydroxypropanoïque est utilisé comme plastifiant et catalyseur dans le moulage de résines phénolaldéhyde.

Acide 2-hydroxypropanoïque dans les aliments :
L'acide 2-hydroxypropanoïque est naturellement présent dans de nombreux aliments.
L'acide 2-hydroxypropanoïque est formé par fermentation naturelle dans des produits tels que le fromage, le yaourt, la sauce soja, le levain, les produits carnés et les légumes marinés.

L'acide 2-hydroxypropanoïque est également utilisé dans une large gamme d'applications alimentaires telles que les produits de boulangerie, les boissons, les produits carnés, la confiserie, les produits laitiers, les salades, les vinaigrettes, les plats cuisinés, etc.
L'acide 2-hydroxypropanoïque présent dans les produits alimentaires sert généralement soit de régulateur de pH, soit de conservateur.
L'acide 2-hydroxypropanoïque est également utilisé comme agent aromatisant.

Viande, volaille et poisson :
L'acide 2-hydroxypropanoïque peut être utilisé dans la viande, la volaille et le poisson sous forme de lactate de sodium ou de potassium pour prolonger la durée de conservation, contrôler les bactéries pathogènes (améliorer la sécurité alimentaire), rehausser et protéger la saveur de la viande, améliorer la capacité de rétention d'eau et réduire le sodium.

Breuvages:
En raison de son goût doux, l'acide 2-hydroxypropanoïque est utilisé comme régulateur d'acidité dans les boissons telles que les boissons gazeuses et les jus de fruits.

Légumes marinés :
L'acide 2-hydroxypropanoïque est efficace pour prévenir la détérioration des olives, cornichons, oignons perlés et autres légumes conservés en saumure.

Salades et vinaigrettes :
L'acide 2-hydroxypropanoïque peut également être utilisé comme conservateur dans les salades et les vinaigrettes, ce qui donne des produits au goût plus doux tout en maintenant la stabilité et la sécurité microbiennes.

Confiserie:
La formulation de bonbons durs, de gommes aux fruits et d'autres produits de confiserie avec de l'acide 2-hydroxypropanoïque entraîne un goût acide doux, une qualité améliorée, un caractère collant réduit et une durée de conservation plus longue.

Laitier:
La présence naturelle d'acide 2-hydroxypropanoïque dans les produits laitiers, combinée à l'arôme laitier et à la bonne action antimicrobienne de l'acide 2-hydroxypropanoïque, fait de l'acide 2-hydroxypropanoïque un excellent agent d'acidification pour de nombreux produits laitiers.

Produits de boulangerie :
L'acide 2-hydroxypropanoïque est un acide naturel du levain, qui donne au pain une saveur caractéristique de l'acide 2-hydroxypropanoïque, et donc l'acide 2-hydroxypropanoïque peut être utilisé pour l'acidification directe dans la production de levain.

Saveurs salées :
L'acide 2-hydroxypropanoïque est utilisé pour rehausser une large gamme de saveurs salées.
L'acide 2-hydroxypropanoïque, présent naturellement dans la viande et les produits laitiers, fait de l'acide 2-hydroxypropanoïque un moyen attrayant d'améliorer les saveurs salées.

Pharmaceutique:
Les principales fonctions pour les applications pharmaceutiques sont : la régulation du pH, la séquestration des métaux, l'intermédiaire chiral et en tant que constituant naturel du corps dans les produits pharmaceutiques.

Biomatériaux :
L'acide 2-hydroxypropanoïque est un composant précieux dans les biomatériaux tels que les vis résorbables, les sutures et les dispositifs médicaux.

Détergents :
L'acide 2-hydroxypropanoïque est bien connu pour ses propriétés détartrantes et est largement utilisé dans les produits de nettoyage ménagers.
De plus, l’acide 2-hydroxypropanoïque est utilisé comme agent antibactérien naturel dans les produits désinfectants.

Technique:
L'acide 2-hydroxypropanoïque est utilisé dans une grande variété de procédés industriels où l'acidité est requise et où les propriétés de l'acide 2-hydroxypropanoïque offrent des avantages spécifiques.
Citons par exemple la fabrication de produits en cuir et textiles et de disques informatiques, ainsi que le revêtement automobile.

L'alimentation animale:
L'acide 2-hydroxypropanoïque est un additif couramment utilisé dans l'alimentation animale.
L'acide 2-hydroxypropanoïque a des propriétés bénéfiques pour la santé, améliorant ainsi les performances des animaux de ferme.

L’acide 2-hydroxypropanoïque peut être utilisé comme additif dans les aliments et/ou l’eau potable.
Acide 2-hydroxypropanoïque dans les plastiques biodégradables

L’acide 2-hydroxypropanoïque est le principal élément constitutif de l’acide poly 2-hydroxypropanoïque (PLA).
Le PLA est un polymère biosourcé et biodégradable qui peut être utilisé pour produire des plastiques renouvelables et compostables.

Utilisations industrielles :
Produits chimiques agricoles (non pesticides)
Intermédiaire
Inconnu ou raisonnablement vérifiable
Agents de placage et agents de traitement de surface
Régulateurs de processus
Auxiliaires technologiques, non répertoriés ailleurs

Utilisations par les consommateurs :
Produits chimiques agricoles (non pesticides)
Intermédiaire
Conservateur
Auxiliaires technologiques, non répertoriés ailleurs

Processus industriels avec risque d’exposition :
Production et raffinage du pétrole
Soudure
Agriculture (pesticides)
Tannage et traitement du cuir
Habillage et teinture de la fourrure
Textiles (impression, teinture ou finition)

Biologie de l'acide 2-hydroxypropanoïque :
L'acide l-2-hydroxypropanoïque est le principal agoniste endogène du récepteur 1 de l'acide hydroxycarboxylique (HCA1), un récepteur couplé aux protéines G couplé à Gi/o (GPCR).

Exercice et lactation :
Lors d'exercices de puissance tels que le sprint, lorsque le taux de demande d'énergie est élevé, le glucose est décomposé et oxydé en pyruvate, et le lactate est alors produit à partir du pyruvate plus rapidement que le corps ne peut le traiter, provoquant une augmentation des concentrations de lactate.
La production de lactate est bénéfique pour la régénération du NAD+ (le pyruvate est réduit en lactate tandis que le NADH est oxydé en NAD+), qui est utilisé dans l'oxydation du glycéraldéhyde 3-phosphate lors de la production de pyruvate à partir du glucose, ce qui garantit le maintien et la production d'énergie. l'exercice peut continuer.
Lors d’un exercice intense, la chaîne respiratoire ne peut pas suivre la quantité d’ions hydrogène qui s’unissent pour former le NADH et ne peut pas régénérer le NAD+ assez rapidement.

Le lactate obtenu peut être utilisé de deux manières :
Oxydation en pyruvate par des cellules musculaires, cardiaques et cérébrales bien oxygénées
Le pyruvate est ensuite directement utilisé pour alimenter le cycle de Krebs

Conversion en glucose via la gluconéogenèse dans le foie et remise en circulation ; voir le cycle de Cori
Si les concentrations de glucose dans le sang sont élevées, le glucose peut être utilisé pour reconstituer les réserves de glycogène du foie.

Cependant, le lactate se forme continuellement, même au repos et lors d'un exercice modéré.
Certaines causes en sont le métabolisme des globules rouges dépourvus de mitochondries et les limitations résultant de l'activité enzymatique qui se produit dans les fibres musculaires ayant une capacité glycolytique élevée.

En 2004, Robergs et coll. a soutenu que l'acidose 2-hydroxypropanoïque pendant l'exercice est une « construction » ou un mythe, soulignant qu'une partie du H+ provient de l'hydrolyse de l'ATP (ATP4− + H2O → ADP3− + HPO2− 4 + H+), et que la réduction du pyruvate en lactate ( pyruvate− + NADH + H+ → lactate− + NAD+) consomme en réalité du H+.
Lindinger et coll. ont rétorqué qu'ils avaient ignoré les facteurs responsables de l'augmentation de [H+].

Après tout, la production de lactate− à partir d’une molécule neutre doit augmenter [H+] pour maintenir l’électroneutralité.
L'idée de l'article de Robergs, cependant, était que le lactate− est produit à partir du pyruvate−, qui a la même charge.

L'acide 2-hydroxypropanoïque est une production de pyruvate à partir de glucose neutre qui génère du H+ :
C6H12O6 + 2 NAD+ + 2 ADP3− + 2 HPO2−4 → 2 CH3COCO−2 + 2 H+ + 2 NADH + 2 ATP4− + 2 H2O

La production ultérieure de lactate− absorbe ces protons :
2 CH3COCO−2 + 2 H+ + 2 NADH → 2 CH3CH(OH)CO−2 + 2 NAD+

Dans l'ensemble:
C6H12O6 + 2 NAD+ + 2 ADP3− + 2 HPO2−4 → 2 CH3COCO−2 + 2 H+ + 2 NADH + 2 ATP4− + 2 H2O→ 2 CH3CH(OH)CO−2 + 2 NAD+ + 2 ATP4− + 2 H2O
Bien que la réaction glucose → 2 lactate− + 2 H+ libère deux H+ vus sur l'acide 2-hydroxypropanoïque lui-même, les H+ sont absorbés dans la production d'ATP.

En revanche, l'acidité absorbée est libérée lors de l'hydrolyse ultérieure de l'ATP : ATP4− + H2O → ADP3− + HPO2−4 + H+.
Ainsi, une fois l’utilisation de l’ATP incluse, la réaction globale est C6H12O6 → 2 CH3COCO−2 + 2 H+.
La génération de CO2 lors de la respiration provoque également une augmentation de [H+].

Métabolisme de l'acide 2-hydroxypropanoïque :
Bien que le glucose soit généralement considéré comme la principale source d'énergie des tissus vivants, certaines indications suggèrent que l'acide 2-hydroxypropanoïque est du lactate, et non du glucose, qui est préférentiellement métabolisé par les neurones du cerveau de plusieurs espèces de mammifères (les plus notables étant les souris). , rats et humains).
Selon l’hypothèse de la navette lactate, les cellules gliales sont responsables de la transformation du glucose en lactate et de l’apport de lactate aux neurones.
En raison de cette activité métabolique locale des cellules gliales, la composition du liquide extracellulaire entourant immédiatement les neurones diffère fortement de celle du sang ou du liquide céphalo-rachidien, étant beaucoup plus riche en lactate, comme cela a été constaté dans les études de microdialyse.

Certaines preuves suggèrent que le lactate est important aux premiers stades du développement pour le métabolisme cérébral chez les sujets prénatals et postnatals précoces, le lactate à ces stades ayant des concentrations plus élevées dans les liquides corporels et étant utilisé par le cerveau de préférence par rapport au glucose.
L'acide 2-hydroxypropanoïque a également émis l'hypothèse que le lactate pourrait exercer une forte action sur les réseaux GABAergiques dans le cerveau en développement, les rendant plus inhibiteurs que l'acide 2-hydroxypropanoïque ne l'avait supposé auparavant, agissant soit par un meilleur soutien des métabolites, soit par des modifications des niveaux de pH intracellulaire de base. , ou les deux.

Des études sur des tranches de cerveau de souris montrent que le β-hydroxybutyrate, le lactate et le pyruvate agissent comme substrats énergétiques oxydatifs, provoquant une augmentation de la phase d'oxydation du NAD(P)H, que le glucose était insuffisant comme vecteur d'énergie lors d'une activité synaptique intense et, enfin. , que le lactate peut être un substrat énergétique efficace capable de maintenir et d'améliorer le métabolisme énergétique aérobie cérébral in vitro.
L'étude "fournit de nouvelles données sur les transitoires de fluorescence biphasique du NAD(P)H, une réponse physiologique importante à l'activation neuronale qui a été reproduite dans de nombreuses études et qui proviendrait principalement de changements de concentration induits par l'activité dans les pools cellulaires de NADH".

Le lactate peut également constituer une source d’énergie importante pour d’autres organes, notamment le cœur et le foie.
Pendant l'activité physique, jusqu'à 60 % du taux de renouvellement énergétique du muscle cardiaque provient de l'oxydation du lactate.

Prise de sang :
Des analyses de sang pour le lactate sont effectuées pour déterminer l’état de l’homéostasie acido-basique dans le corps.
Le prélèvement sanguin à cet effet est souvent artériel (même si l'acide 2-hydroxypropanoïque est plus difficile que la ponction veineuse), car les taux de lactate diffèrent considérablement entre artériel et veineux, et le niveau artériel est plus représentatif à cet effet.

Précurseur de polymère :
Deux molécules d'acide 2-hydroxypropanoïque peuvent être déshydratées en lactone lactide.
En présence de catalyseurs, le lactide polymérise en polylactide atactique ou syndiotactique (PLA), qui sont des polyesters biodégradables.
Le PLA est un exemple de plastique qui n’est pas issu de la pétrochimie.

Production d'acide 2-hydroxypropanoïque :
L'acide 2-hydroxypropanoïque est produit industriellement par fermentation bactérienne de glucides ou par synthèse chimique à partir d'acétaldéhyde.
En 2009, l'acide 2-hydroxypropanoïque était produit principalement (70 à 90 %) par fermentation.

La production d'acide 2-hydroxypropanoïque racémique constitué d'un mélange 1:1 de stéréoisomères d et l, ou de mélanges contenant jusqu'à 99,9 % d'acide l-2-hydroxypropanoïque, est possible par fermentation microbienne.
La production à l’échelle industrielle d’acide d-2-hydroxypropanoïque par fermentation est possible, mais beaucoup plus difficile.

Comme matière première pour la production industrielle d’acide 2-hydroxypropanoïque, presque toutes les sources de glucides contenant des sucres en C5 et C6 peuvent être utilisées.
Le saccharose pur, le glucose provenant de l'amidon, le sucre brut et le jus de betterave sont fréquemment utilisés.
Les bactéries productrices d'acide 2-hydroxypropanoïque peuvent être divisées en deux classes : les bactéries homofermentaires comme Lactobacillus casei et Lactococcus lactis, produisant deux moles de lactate à partir d'une mole de glucose, et les espèces hétérofermentaires produisant une mole de lactate à partir d'une mole de glucose ainsi que du carbone. dioxyde et acide acétique/éthanol.

L'acide 2-hydroxypropanoïque a été le premier acide organique produit avec des microbes, réalisé en 1880.
Au XXIe siècle, les procédés de synthèse pour la production d'acide 2-hydroxypropanoïque (par exemple à partir du lactonitrile) sont compétitifs aux mêmes coûts que les procédés biologiques ; La production d’acide 2-hydroxypropanoïque est répartie à peu près également entre les deux procédés.
L'approvisionnement majeur en acide 2-hydroxypropanoïque en Europe est produit par fermentation à l'aide de souches de L. bulgaricus lorsque le lactosérum est utilisé comme substrat, et d'autres lactobacilles lorsque différents substrats sont utilisés.

Selon la Food and Drug Administrating (FDA) des États-Unis, l'acide 2-hydroxypropanoïque est un additif généralement reconnu comme sûr (GRAS) pour des utilisations diverses ou générales.
L'acide 2-hydroxypropanoïque était l'un des premiers acides organiques utilisés dans les aliments.

L'acide 2-hydroxypropanoïque est utilisé par l'industrie alimentaire de plusieurs manières :
L'acide 2-hydroxypropanoïque est utilisé dans l'emballage des olives espagnoles, où l'acide 2-hydroxypropanoïque inhibe la détérioration et la poursuite de la fermentation.

L'acide 2-hydroxypropanoïque aide à la stabilisation de la poudre d'œufs séchés.
L'acide 2-hydroxypropanoïque améliore le goût de certains cornichons lorsqu'il est ajouté au vinaigre.

L'acide 2-hydroxypropanoïque est utilisé pour acidifier le jus de raisin (moût) lors de la vinification.
Dans les confiseries glacées, l'acide 2-hydroxypropanoïque confère un goût acidulé et laiteux et ne masque pas les autres arômes naturels.

L'acide 2-hydroxypropanoïque est également utilisé dans la production des émulsifiants lactylates de stéaroyle de calcium et de sodium, qui fonctionnent comme conditionneurs de pâte.
Les sels de sodium et de potassium de l'acide 2-hydroxypropanoïque ont des propriétés antimicrobiennes significatives, notamment dans les produits carnés contre la production de toxines par Clostridium botulinum et contre Listeria monocytogenes dans le poulet, le bœuf et le saumon fumé.

L'acide 2-hydroxypropanoïque est présent dans de nombreux aliments à la fois naturellement et en tant que produit de fermentation in situ, comme dans la choucroute, le yaourt et de nombreux autres aliments fermentés.
L'acide 2-hydroxypropanoïque est également un intermédiaire métabolique principal dans la plupart des organismes vivants.

Les lactates de sodium et de potassium sont produits commercialement par neutralisation de l'acide 2-hydroxypropanoïque naturel ou synthétique (FDA 184.1768, 1639).
L'acide 2-hydroxypropanoïque à utiliser comme additif alimentaire peut être obtenu soit par fermentation de glucides, soit par une procédure chimique impliquant la formation de lactonitrile à partir d'acétaldéhyde et de cyanure d'hydrogène et une hydrolyse ultérieure (FDA 184.1061).

Les procédures microbiologiques et chimiques pour obtenir l'acide 2-hydroxypropanoïque sont très compétitives, avec des coûts de production similaires.
Une méthode de biosynthèse couramment utilisée commence par le glucose et produit du pyruvate, qui peut être converti en isomères l (+) et d (−) à l'aide d'une lactate déshydrogénase stéréospécifique ; cependant, seule la forme l(+) est produite commercialement.

Le mélange racémique est toujours obtenu par synthèse chimique.
L'acide 2-hydroxypropanoïque synthétique est exempt des contaminants normalement présents dans le produit obtenu par fermentation, et l'acide 2-hydroxypropanoïque est donc complètement incolore et probablement plus stable.

L'acide 2-hydroxypropanoïque et ses sels sont hautement hygroscopiques et sont donc généralement manipulés dans des solutions concentrées (60 à 80 % en poids) plutôt que sous forme solide.
Ces solutions sont incolores et inodores et ont un léger goût salin

Production chimique :
L'acide 2-hydroxypropanoïque racémique est synthétisé industriellement en faisant réagir de l'acétaldéhyde avec du cyanure d'hydrogène et en hydrolysant le lactonitrile résultant.
Lorsque l'hydrolyse est effectuée par l'acide chlorhydrique, du chlorure d'ammonium se forme comme sous-produit ; la société japonaise Musashino est l'un des derniers grands fabricants d'acide 2-hydroxypropanoïque par cette voie.
La synthèse d'acides 2-hydroxypropanoïques racémiques et énantiopurs est également possible à partir d'autres matières premières (acétate de vinyle, glycérol, etc.) par application de procédures catalytiques.

Informations générales sur la fabrication de l'acide 2-hydroxypropanoïque :

Secteurs de transformation de l'industrie :
Agriculture, foresterie, pêche et chasse
Toutes les autres fabrications de produits chimiques organiques de base
Fabrication de tous les autres produits et préparations chimiques
Fabrication d'aliments, de boissons et de produits du tabac
Activités de forage, d’extraction et de soutien du pétrole et du gaz
Fabrication de peintures et de revêtements
Fabrication de pesticides, d'engrais et d'autres produits chimiques agricoles
Fabrication de matières plastiques et de résines
Fabrication de produits en plastique

Histoire de l’acide 2-hydroxypropanoïque :
Le chimiste suédois Carl Wilhelm Scheele fut le premier à isoler l'acide 2-hydroxypropanoïque en 1780 à partir du lait aigre.
Le nom reflète la forme lacto-combinante dérivée du mot latin lac, qui signifie lait.

En 1808, Jöns Jacob Berzelius découvrit que l'acide 2-hydroxypropanoïque (en fait le L-lactate) était également produit dans les muscles lors d'un effort.
La structure des acides 2-hydroxypropanoïques a été établie par Johannes Wislicenus en 1873.

En 1856, le rôle des Lactobacilles dans la synthèse de l'acide 2-hydroxypropanoïque est découvert par Louis Pasteur.
Cette voie a été utilisée commercialement par la pharmacie allemande Boehringer Ingelheim en 1895.
En 2006, la production mondiale d'acide 2-hydroxypropanoïque a atteint 275 000 tonnes avec une croissance annuelle moyenne de 10 %.

Identifiants de l'acide 2-hydroxypropanoïque :
Numero CAS:
50-21-5
79-33-4 (l)
10326-41-7(d)

3DMet : B01180
Référence Beilstein : 1720251
ChEBI : CHEBI :422
ChEMBL : ChEMBL330546
ChemSpider : 96860
Carte Info ECHA : 100.000.017
Numéro CE : 200-018-0
Numéro E : E270 (conservateurs)
Référence Gmelin : 362717
IUPHAR/BPS : 2932
KEGG : C00186
Numéro client PubChem : 612
Numéro RTECS : OD2800000

UNII :
3B8D35Y7S4
F9S9FFU82N (g)
3Q6M5SET7W (d)

Numéro ONU : 3265
Tableau de bord CompTox (EPA) : DTXSID7023192
InChI : InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/t2-/m0/s1
Clé : JVTAAEKCZFNVCJ-REOHCLBHSA-N
SOURIRES : CC(O)C(=O)O

Propriétés de l'acide 2-hydroxypropanoïque :
Formule chimique : C3H6O3
Masse molaire : 90,078 g·mol−1
Point de fusion : 18 °C (64 °F ; 291 K)
Point d'ébullition : 122 °C (252 °F ; 395 K) à 15 mmHg
Solubilité dans l'eau : Miscible
Acidité (pKa) : 3,86, 15,1

Point d'ébullition : 122 °C (20 hPa)
Densité : 1,21 g/cm3 (20 °C)
Point de fusion : 18 °C
Valeur pH : 2,8 (10 g/l, H₂O, 20 °C)
Pression de vapeur : 0,1 hPa (25 °C)

Poids moléculaire : 90,08 g/mol
XLogP3 : -0,7
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 3
Nombre de liaisons rotatives : 1
Masse exacte : 90,031694049 g/mol
Masse monoisotopique : 90,031694049 g/mol
Surface polaire topologique : 57,5 Ų
Nombre d'atomes lourds : 6
Complexité : 59,1
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Spécifications de l’acide 2-hydroxypropanoïque :
Dosage (alcalimétrique) : 88,0 - 92,0 %
Dosage (pureté stéréochimique de l'acide (S)-lactique) : ≥ 95,0 %
Identité (spectre IR) : réussit le test
Identité (pH) : réussit le test
Identité (densité) : réussit le test
Identité (Lactat) : réussit le test
Identité (test) : réussit le test
Aspect : liquide clair et huileux, de couleur pas plus intense que la solution de référence Y₆
Substances insolubles dans l'éther : réussit le test
Acides citrique, oxalique et phosphorique : réussit le test
Densité (d 20/20) : 1,20 - 1,21
Chlorure (Cl) : ≤ 0,2 %
Sulfate (SO₄) : ≤ 200 ppm
As (Arsenic) : ≤ 3 ppm
Ca (Calcium) : ≤ 200 ppm
Fe (Fer) : ≤ 10 ppm
Hg (Mercure) : ≤ 1 ppm
Pb (plomb) : ≤ 2 ppm
Éthanol : ≤ 5000 ppm
Acide acétique : ≤ 5000 ppm
Méthanol : ≤ 50 ppm
Autres solvants résiduels (ICH Q3C) : exclus par procédé de fabrication
Sucres et autres substances réductrices : réussit le test
Cendres sulfatées (600 °C) : ≤ 0,10 %
Nombre total de microbes aérobies (TAMC) : ≤ 10²
Nombre total combiné levures/moisissures (TYMC) : ≤ 10²
Endotoxines bactériennes : ≤ 5 UI/g

Thermochimie de l'acide 2-hydroxypropanoïque :
Enthalpie standard de combustion (ΔcH⦵298) : 1361,9 kJ/mol, 325,5 kcal/mol, 15,1 kJ/g, 3,61 kcal/g

Pharmacologie de l'acide 2-hydroxypropanoïque :
Code ATC : G01AD01 (OMS) QP53AG02 (OMS)

Composés apparentés de l’acide 2-hydroxypropanoïque :
1-Propanol
2-Propanol
Propionaldéhyde
Acroléine
Lactate de sodium
Lactate d'éthyle

Autres anions :
Lactate
Acides carboxyliques associés :
Acide acétique
Acide glycolique
L'acide propionique
Acide 3-hydroxypropanoïque
Acide malonique
Acide butyrique
Acide hydroxybutyrique

Quelques exemples de lactates (sels ou esters de l'acide lactique) sont :
Lactate d'ammonium (NH4C3H5O3, CAS RN : 515-98-0) : liquide sirupeux clair à jaune utilisé dans la galvanoplastie, dans la finition du cuir et comme humectant pour les aliments, les produits pharmaceutiques et les cosmétiques.
Lactate de butyle (CH3CHOHCOOC4H9, CAS RN : 138-22-7) : un liquide clair : non toxique, miscible avec de nombreux solvants ; utilisé comme solvant pour les vernis, les laques, les résines et les gommes, utilisé dans la fabrication de peintures, d'encres, de liquides de nettoyage à sec, d'arômes et comme intermédiaire chimique.
Lactate de calcium pentahydraté [Ca(C3H5O3)2·5H2O, CAS RN : 814-80-2] : cristaux blancs; soluble dans l'eau; utilisé comme source de calcium; administré par voie orale dans le traitement d'une carence en calcium; comme coagulant sanguin.
Lactate d'éthyle (CH3CHOHCOOC2H5, CAS RN : 97-64-3) : liquide clair avec une légère odeur ; point d'ébullition 154 °C ; miscible avec les alcools, les cétones, les esters et les hydrocarbures ainsi qu'avec l'eau ; utilisé dans les préparations pharmaceutiques, additif alimentaire, comme arôme (description de l'odeur : beurre doux, noix de coco, fruité, laitier crémeux, caramel au beurre) et comme solvant pour les composés cellulosiques tels que la nitrocellulose, l'acétate de cellulose et les éthers de cellulose.
Lactate de magnésium trihydraté [Mg(C3H5O3)2·3H2O, CAS RN : 18917-93-6 ] : cristaux blancs au goût amer ; soluble dans l'eau, légèrement soluble dans l'alcool ; utilisé en médecine et comme reconstituant d’électrolytes.
Lactate de manganèse trihydraté [Mn(C3H5O3)2·3H2O] : cristaux rouge pâle ; insoluble dans l'eau et l'alcool; utilisé en médecine.
Lactate mercurique [Hg(C3H5O3)2] : poudre blanche toxique qui se décompose lorsqu'elle est chauffée ; soluble dans l'eau; utilisé en médecine.
Lactate de méthyle (CH3CHCHCOOCH3) : liquide clair avec une légère odeur ; point d'ébullition 145°C ; miscible avec les alcools, les cétones, les esters et les hydrocarbures ainsi qu'avec l'eau ; utilisé dans les préparations pharmaceutiques, les additifs alimentaires, comme arôme et comme solvant pour les composés cellulosiques tels que la nitrocellulose, l'acétate de cellulose et les éthers de cellulose.
Lactate de sodium (CH3CHOHCOONa, CAS RN : 72-17-3) liquide sirupeux hygroscopique clair à jaune ; soluble dans l'eau; point de fusion 17 °C ; utilisé en médecine, comme antigel, agent hygroscopique et comme inhibiteur de corrosion.
Lactate de zinc (Zn(C3H5O3)2·2H2O, CAS RN : 16039-53-5) : cristaux blancs ; utilisé comme additif dans le dentifrice et les aliments ; préparation de médicaments.

Noms de l’acide 2-hydroxypropanoïque :

Nom IUPAC préféré :
Acide 2-hydroxypropanoïque

Autres noms:
Acide lactique
Acide du lait
ACIDE 3-MERCAPTOPROPIONIQUE (3-MPA)
L'acide 3-mercaptopropionique (3-MPA) est utilisé comme monocouche auto-assemblée (SAM) avec un thiol et des groupes carboxyliques.
L'acide 3-mercaptopropionique (3-MPA) possède des chaînes carbonées courtes et est principalement utilisé comme agent de coiffage sur diverses nanoparticules.
Acide 3-mercaptopropionique (3-MPA) qui est de l'acide propanoïque portant un groupe sulfanyle en position 3.

CAS : 107-96-0
FM : C3H6O2S
MW : 106,14
EINECS : 203-537-0

L'acide 3-mercaptopropionique (3-MPA) est un composé organosoufré de formule HSCH2CH2CO2H.
L'acide 3-mercaptopropionique (3-MPA) est une molécule bifonctionnelle contenant à la fois des groupes acide carboxylique et thiol.
L'acide 3-mercaptopropionique (3-MPA) est une huile incolore.
L'acide 3-mercaptopropionique (3-MPA) est dérivé de l'ajout de sulfure d'hydrogène à l'acide acrylique.
L'acide 3-mercaptopropionique (3-MPA) est un acide mercaptopropanoïque qui est de l'acide propanoïque portant un groupe sulfanyle en position 3.
L'acide 3-mercaptopropionique (3-MPA) joue un rôle de métabolite d'algues.
L'acide 3-mercaptopropionique (3-MPA) est un acide conjugué d'un 3-mercaptopropionate.

Propriétés chimiques de l'acide 3-mercaptopropionique (3-MPA)
Point de fusion : 15-18 °C (lit.)
Point d'ébullition : 110-111 °C/15 mmHg (lit.)
Densité : 1,218 g/mL à 25 °C (lit.)
Pression de vapeur : 0,04 mm Hg ( 20 °C)
Indice de réfraction : n20/D 1,492 (lit.)
FEMA : 4587 | ACIDE 3-MERCAPTOPROPIONIQUE
Fp : 201 °F
Température de stockage : Conserver en dessous de +30°C.
Solubilité : chloroforme (légèrement), acétate d'éthyle (légèrement), méthanol (légèrement)
pka: pK1:;pK2:10,84(SH) (25°C)
Forme : poudre cristalline, cristaux et/ou morceaux
Couleur blanche
Gravité spécifique : 1,218
PH : 2 (120 g/l, H2O, 20 ℃)
Odeur : rôtie sulfureuse
Type d'odeur : sulfureuse
Limite explosive : 1,60 % (V)
Solubilité dans l'eau : soluble
Sensible : sensible à l'air et hygroscopique
Numéro JECFA : 1936
Numéro de référence : 773807
Stabilité : sensible à l'air, hygroscopique
InChIKey: DKIDEFUBRARXTE-UHFFFAOYSA-N
LogP : -2,3 à 22℃
Référence de la base de données CAS : 107-96-0 (référence de la base de données CAS)
Référence chimique NIST : Acide 3-mercaptopropionique (3-MPA) (107-96-0)
Système d'enregistrement des substances de l'EPA : Acide 3-mercaptopropionique (3-MPA) (107-96-0)

Les usages
Un composé adapté à l'analyse des acides aminés au moyen de l'OPA.
L'acide 3-mercaptopropionique (3-MPA) est largement utilisé dans les industries alimentaires et des boissons comme agent aromatisant.
L'acide 3-mercaptopropionique (3-MPA) est utilisé dans la production de stabilisants du PVC, qui sont utilisés comme agents de transfert de chaîne dans les polymérisations.
L'acide 3-mercaptopropionique (3-MPA) peut être utilisé comme stabilisant de couleur primaire ou secondaire en combinaison avec un antioxydant phénolique pour les polymères.
L'acide 3-mercaptopropionique (3-MPA) agit comme un équivalent d'ion sulfure et est utilisé dans la préparation du sulfure de diaryle à partir d'iodure d'aryle.

Réactions
L'acide 3-mercaptopropionique (3-MPA) est un inhibiteur compétitif de la glutamate décarboxylase et agit donc comme un convulsivant.
L'acide 3-mercaptopropionique (3-MPA) a une puissance plus élevée et un début d'action plus rapide que l'allylglycine.
L'acide 3-mercaptopropionique (3-MPA) est utilisé pour préparer des nanoparticules d'or hydrophiles, exploitant l'affinité de l'or pour les ligands soufrés.

Synonymes
ACIDE 3-MERCAPTOPROPIONIQUE
107-96-0
Acide 3-mercaptopropanoïque
Acide 3-sulfanylpropanoïque
Acide 3-thiopropionique
Acide 3-thiopropanoïque
acide bêta-mercaptopropionique
Acide mercaptopropionique
Acide propanoïque, 3-mercapto-
3MPA
Acide 2-mercaptoéthanecarboxylique
acide bêta-thiopropionique
Acide hydracrylique, 3-thio-
Acide propionique, 3-mercapto-
Acide thiohydracrylique
acide bêta-mercaptopropanoïque
CNS 437
Acide .beta.-thiopropionique
UNII-B03TJ3QU9M
Acide .beta.-mercaptopropionique
C3H6O2S
Acide propionique, 3-mercpato-
Acide 3-thiolpropanoïque
Acide 3-thiohydracrylique
Acide 3-mercaptopropionique
HSDB 5381
EINECS203-537-0
Acide 3-mercapto-propionique
Acide mercaptopropionique, 3-
BRN0773807
B03TJ3QU9M
Acide .beta.-mercaptopropanoïque
AI3-26090
CHEMBL358697
DTXSID8026775
CHEBI:44111
NSC-437
CE 203-537-0
4-03-00-00726 (référence du manuel Beilstein)
bêta-mercaptopropionate
3 Acide mercaptopropionique
MFCD00004897
3-mercaptopropionsyre
BMPA
DEAMINO CYSTÉINE
ss - Acide thiopropionique
acide bêtamercaptopropionique
Acide 3-mercaptopropionique
Acide 3-mercapto-propanoïque
Acide propionique, mercapto-
ss - Acide mercaptopropanoïque
ss - Acide mercaptopropionique
Acide 3-sulfanylpropanoïque #
SCHEMBL7289
USAF E-5
Acide 3-mercaptopropanoïque, 9CI
DTXCID106775
NSC437
Acide 3-mercaptopropionique, 98 %
FEMA NON. 4587
Acide 3-mercaptopropionique, >=99 %
AMY27767
BCP16636
STR01222
Tox21_200194
BDBM50121953
ACIDE MERCAPTOPROPIONIQUE [INCI]
STL281859
Acide thiopropionique ; Acide 3-thiopropanoïque ; acide bêta-mercaptopropionique
AKOS000121541
AC-4722
AT21041
SB66313
ACIDE 3-MERCAPTOPROPIONIQUE [HSDB]
acide propionique, ester 3-mercapto-méthylique
NCGC00248556-01
NCGC00257748-01
BP-21405
CAS-107-96-0
LS-124729
LS-124730
FT-0615955
FT-0658630
M0061
Acide 3-mercaptopropionique, >=99,0 % (HPLC)
EN300-19579
Chlorhydrate de 3-diméthylamino-2-méthylpropylchlorure
A801785
J-512742
Q11751618
F2191-0215
Z104474322
InChI=1/C3H6O2S/c4-3(5)1-2-6/h6H,1-2H2,(H,4,5
68307-97-1
ACIDE 3-THIOPROPIONIQUE
L'acide 3-thiopropionique contient à la fois des groupes acide carboxylique et thiol.
L'acide 3-thiopropionique est une huile incolore dérivée de l'ajout de sulfure d'hydrogène à l'acide acrylique.
Acide 3-thiopropionique qui est de l'acide propanoïque portant un groupe sulfanyle en position 3.

CAS : 107-96-0
FM : C3H6O2S
MW : 106,14
EINECS : 203-537-0

L'acide 3-thiopropionique est un composé organique.
L'acide 3-thiopropionique existe sous la forme d'un liquide incolore qui démontre une solubilité dans l'eau et dans les solvants organiques.
En tant qu'acide carboxylique contenant du soufre et dérivé de l'acide propionique, l'acide 3-mercaptopropionique sert de précurseur crucial pour la synthèse de divers composés organiques, ce qui rend l'acide 3-thiopropionique inestimable dans les applications scientifiques et industrielles.
Dans la recherche scientifique, ce composé est largement utilisé comme réactif dans la synthèse organique et dans la production de protéines et d'autres biomolécules.
L'acide 3-thiopropionique fonctionne également comme agent chélateur, capable de lier les ions métalliques dans les solutions aqueuses, et joue un rôle essentiel en tant qu'agent stabilisant dans la production de polymères.

Propriétés chimiques de l'acide 3-thiopropionique
Point de fusion : 15-18 °C (lit.)
Point d'ébullition : 110-111 °C/15 mmHg (lit.)
Densité : 1,218 g/mL à 25 °C (lit.)
Pression de vapeur : 0,04 mm Hg ( 20 °C)
Indice de réfraction : n20/D 1,492 (lit.)
FEMA : 4587 | ACIDE 3-MERCAPTOPROPIONIQUE
Fp : 201 °F
Température de stockage : Conserver en dessous de +30°C.
Solubilité : chloroforme (légèrement), acétate d'éthyle (légèrement), méthanol (légèrement)
Pka : pK1 :;pK2 : 10,84(SH) (25 °C)
Forme : poudre cristalline, cristaux et/ou morceaux
Couleur blanche
Gravité spécifique : 1,218
PH : 2 (120 g/l, H2O, 20 ℃)
Odeur : rôtie sulfureuse
Type d'odeur : sulfureuse
Limite explosive : 1,60 % (V)
Solubilité dans l'eau : soluble
Sensible : sensible à l'air et hygroscopique
Numéro JECFA : 1936
Numéro de référence : 773807
Stabilité : sensible à l'air, hygroscopique
InChIKey: DKIDEFUBRARXTE-UHFFFAOYSA-N
LogP : -2,3 à 22℃
Référence de la base de données CAS : 107-96-0 (référence de la base de données CAS)
Référence chimique NIST : Acide 3-thiopropionique (107-96-0)
Système d'enregistrement des substances de l'EPA : Acide 3-thiopropionique (107-96-0)

Synonymes
ACIDE 3-MERCAPTOPROPIONIQUE
107-96-0
Acide 3-mercaptopropanoïque
Acide 3-sulfanylpropanoïque
Acide 3-thiopropionique
Acide 3-thiopropanoïque
acide bêta-mercaptopropionique
Acide mercaptopropionique
Acide propanoïque, 3-mercapto-
3MPA
Acide 2-mercaptoéthanecarboxylique
acide bêta-thiopropionique
Acide hydracrylique, 3-thio-
Acide propionique, 3-mercapto-
Acide thiohydracrylique
acide bêta-mercaptopropanoïque
CNS 437
Acide .beta.-thiopropionique
UNII-B03TJ3QU9M
Acide .beta.-mercaptopropionique
C3H6O2S
Acide propionique, 3-mercpato-
Acide 3-thiolpropanoïque
Acide 3-thiohydracrylique
Acide 3-mercaptopropionique
HSDB 5381
EINECS203-537-0
Acide 3-mercapto-propionique
Acide mercaptopropionique, 3-
BRN0773807
B03TJ3QU9M
Acide .beta.-mercaptopropanoïque
AI3-26090
CHEMBL358697
DTXSID8026775
CHEBI:44111
NSC-437
CE 203-537-0
4-03-00-00726 (référence du manuel Beilstein)
bêta-mercaptopropionate
3 Acide mercaptopropionique
MFCD00004897
3-mercaptopropionsyre
BMPA
DEAMINO CYSTÉINE
ss - Acide thiopropionique
acide bêtamercaptopropionique
Acide 3-mercaptopropionique
Acide 3-mercapto-propanoïque
Acide propionique, mercapto-
ss - Acide mercaptopropanoïque
ss - Acide mercaptopropionique
Acide 3-sulfanylpropanoïque #
SCHEMBL7289
USAF E-5
Acide 3-mercaptopropanoïque, 9CI
DTXCID106775
NSC437
Acide 3-mercaptopropionique, 98 %
FEMA NON. 4587
Acide 3-mercaptopropionique, >=99 %
AMY27767
BCP16636
STR01222
Tox21_200194
BDBM50121953
ACIDE MERCAPTOPROPIONIQUE [INCI]
STL281859
Acide thiopropionique ; Acide 3-thiopropanoïque ; acide bêta-mercaptopropionique
AKOS000121541
AC-4722
AT21041
SB66313
ACIDE 3-MERCAPTOPROPIONIQUE [HSDB]
acide propionique, ester 3-mercapto-méthylique
NCGC00248556-01
NCGC00257748-01
BP-21405
CAS-107-96-0
LS-124729
LS-124730
FT-0615955
FT-0658630
M0061
Acide 3-mercaptopropionique, >=99,0 % (HPLC)
EN300-19579
Chlorhydrate de 3-diméthylamino-2-méthylpropylchlorure
A801785
J-512742
Q11751618
F2191-0215
Z104474322
InChI=1/C3H6O2S/c4-3(5)1-2-6/h6H,1-2H2,(H,4,5
68307-97-1
ACIDE ACÉTIQUE
L'acide acétique est un acide organique aliphatique.
L'acide acétique est un liquide hygroscopique et corrosif avec une odeur de vinaigre.
L'acide acétique peut être synthétisé en oxydant l'acétaldéhyde en présence de sels de manganèse ou de cobalt.

Numéro CAS : 64-19-7
Numéro CE : 200-580-7
Formule chimique : CH3COOH
Masse molaire : 60,05 g/mol

L'acide acétique est utilisé pour synthétiser l'anhydride acétique, l'acétate de cellulose et les esters acétiques.
L'impact de l'acide acétique sur la dégradation du papier historique a été analysé.

L'acide acétique est un liquide organique clair et incolore avec une odeur piquante semblable au vinaigre domestique.
L'acide acétique est utilisé comme matière première et solvant dans la production d'autres produits chimiques, dans la production de pétrole et de gaz et dans les industries alimentaires et pharmaceutiques.

L'acide acétique est un produit chimique en vrac important qui est actuellement produit par carbonylation du méthanol à l'aide de CO d'origine fossile.
La synthèse de l'acide acétique à partir du CO2 renouvelable et bon marché est d'une grande importance, mais les voies de l'état de l'art rencontrent des difficultés, en particulier dans la sélectivité et l'activité de la réaction.

L'acide acétique, CH3COOH, est un acide organique corrosif ayant une odeur piquante, un goût brûlant et des propriétés cloquantes pernicieuses.
L'acide acétique se trouve dans l'eau de mer, les saumures des champs pétrolifères, la pluie et à l'état de traces dans de nombreux liquides végétaux et animaux, et a une place dans les processus organiques comparable à l'acide sulfurique dans les industries chimiques minérales.

L'acide acétique est au cœur de toutes les voies énergétiques biologiques. La fermentation des jus de fruits et de légumes donne des solutions d'acide acétique de 2 à 12 %, généralement appelées vinaigre.
Les utilisations comprennent la fabrication d'acétate de vinyle et d'anhydride acétique. L'acétate de vinyle est utilisé pour fabriquer des résines d'émulsion de latex pour les peintures et les adhésifs.

L'anhydride acétique est utilisé dans la fabrication de fibres d'acétate de cellulose et de plastiques cellulosiques.
Environ la moitié de la production mondiale provient de la carbonylation du méthanol et environ un tiers de l'oxydation de l'acétaldéhyde.

L'acide acétique glacial est dangereux, mais la dose toxique précise de l'acide acétique n'est pas connue pour l'homme.
Le vinaigre, en revanche, qui est de l'acide acétique dilué, est utilisé dans les aliments et les boissons depuis l'Antiquité.

L'acide acétique est un composé organique de formule CH3COOH.
L'acide acétique est un acide carboxylique constitué d'un groupe méthyle qui est attaché à un groupe fonctionnel carboxyle.

Le nom systématique IUPAC de l'acide acétique est l'acide éthanoïque et la formule chimique de l'acide acétique peut également être écrite comme C2H4O2.
Le vinaigre est une solution d'acide acétique dans l'eau et contient entre 5% et 20% d'acide éthanoïque en volume.
L'odeur piquante et le goût amer sont caractéristiques de l'acide acétique présent dans l'acide acétique.

Une solution non diluée d'acide acétique est communément appelée acide acétique glacial.
L'acide acétique forme des cristaux qui ressemblent à de la glace à des températures inférieures à 16,6 °C.

L'acide acétique a une large gamme d'applications en tant que solvant polaire protique.
Dans le domaine de la chimie analytique, l'acide acétique glacial est largement utilisé pour doser les substances faiblement alcalines.

L'acide acétique, systématiquement nommé acide éthanoïque, est un composé organique de formule chimique CH3COOH.
L'acide acétique est un liquide incolore qui, lorsqu'il n'est pas dilué, est également appelé acide acétique glacial.
L'acide acétique a un goût aigre distinctif et une odeur purgative.

Outre la production d'acide acétique comme vinaigre domestique, l'acide acétique est principalement utilisé comme précurseur de l'acétate de polyvinyle et de l'acétate de cellulose.
Bien que l'acide acétique soit classé comme un acide faible, l'acide acétique concentré est corrosif et peut attaquer la peau.

L'acide acétique est également connu sous le nom d'acide éthanoïque, d'acide éthylique, d'acide de vinaigre et d'acide méthane carboxylique; L'acide acétique a la formule chimique CH3COOH.
L'acide acétique est un sous-produit de la fermentation et donne au vinaigre l'odeur caractéristique de l'acide acétique.

Le vinaigre est composé d'environ 4 à 6 % d'acide acétique dans l'eau.
Des solutions plus concentrées peuvent être trouvées en laboratoire, et l'acide acétique pur ne contenant que des traces d'eau est connu sous le nom d'acide acétique glacial.

L'acide acétique est le 33e produit chimique produit en plus grand volume aux États-Unis.
L'acide acétique est utilisé dans la fabrication d'anhydride acétique, d'acétate de cellulose, d'acétate de vinyle monomère, d'esters acétiques, d'acide chloracétique, de plastiques, de colorants, d'insecticides, de produits chimiques photographiques et de caoutchouc.

D'autres utilisations commerciales comprennent la fabrication de vitamines, d'antibiotiques, d'hormones et de produits chimiques organiques, ainsi que comme additif alimentaire.
Les concentrations typiques d'acide acétique présent naturellement dans les aliments sont de 700 à 1 200 milligrammes/kilogramme (mg/kg) dans les vins, jusqu'à 860 mg/kg dans les fromages vieillis et 2,8 mg/kg dans le jus d'orange frais.

Acide acétique (CH3COOH), également appelé acide éthanoïque, le plus important des acides carboxyliques.
Une solution diluée (environ 5 % en volume) d'acide acétique produit par fermentation et oxydation d'hydrates de carbone naturels est appelée vinaigre ; un sel, un ester ou un acyl de l'acide acétique est appelé acétate.
Industriellement, l'acide acétique est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de matières plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques. Biologiquement, l'acide acétique est un intermédiaire métabolique important et l'acide acétique est naturellement présent dans les fluides corporels et dans les jus de plantes.

L'acide acétique a été préparé à l'échelle industrielle par oxydation à l'air de l'acétaldéhyde, par oxydation de l'éthanol (alcool éthylique) et par oxydation du butane et du butène.
Aujourd'hui, l'acide acétique est fabriqué selon un procédé développé par la société chimique Monsanto dans les années 1960 ; il s'agit d'une carbonylation catalysée au rhodium-iode du méthanol (alcool méthylique).

L'acide acétique est un acide carboxylique synthétique aux propriétés antibactériennes et antifongiques.
Bien que le mécanisme d'action de l'acide acétique ne soit pas entièrement connu, l'acide acétique non dissocié peut améliorer la solubilité des lipides, permettant une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.
L'acide acétique, en tant qu'acide faible, peut inhiber le métabolisme des glucides, entraînant la mort ultérieure de l'organisme.

L'acide acétique est l'un des acides carboxyliques les plus simples.
L'acide acétique est un réactif chimique important et un produit chimique industriel utilisé dans la production de bouteilles de boissons gazeuses en plastique, de films photographiques; et l'acétate de polyvinyle pour la colle à bois, ainsi que de nombreuses fibres et tissus synthétiques.

L'acide acétique peut être très corrosif, selon la concentration.
L'acide acétique est un ingrédient de la cigarette.

Dans les ménages, l'acide acétique dilué est souvent utilisé comme agent de nettoyage.
Dans l'industrie alimentaire, l'acide acétique est utilisé comme régulateur d'acidité.

Le groupe acétyle, dérivé de l'acide acétique, est fondamental pour la biochimie de pratiquement toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique est au cœur du métabolisme des glucides et des graisses.

Cependant, la concentration d'acide acétique libre dans les cellules est maintenue à un niveau bas pour ne pas perturber le contrôle du pH du contenu cellulaire.
L'acide acétique est produit et excrété par certaines bactéries, notamment le genre Acetobacter et Clostridium acetobutylicum.

Ces bactéries se trouvent universellement dans les denrées alimentaires, l'eau et le sol, et l'acide acétique est produit naturellement lorsque les fruits et certains autres aliments se gâtent.
L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où l'acide acétique semble servir d'agent antibactérien doux.

L'acide acétique est un simple acide monocarboxylique contenant deux carbones.
L'acide acétique a un rôle de solvant protique, de régulateur d'acidité alimentaire, de conservateur alimentaire antimicrobien et de métabolite de Daphnia magna.
L'acide acétique est un acide conjugué d'un acétate.

L'acide acétique, systématiquement nommé acide éthanoïque /ˌɛθənoʊɪk/, est un liquide acide, incolore et un composé organique de formule chimique CH3COOH (également écrit CH3CO2H, C2H4O2 ou HC2H3O2).
Le vinaigre contient au moins 4% d'acide acétique en volume, ce qui fait de l'acide acétique le principal composant du vinaigre en dehors de l'eau et d'autres oligo-éléments.

L'acide acétique est le deuxième acide carboxylique le plus simple (après l'acide formique).
L'acide acétique est un réactif chimique important et un produit chimique industriel, utilisé principalement dans la production d'acétate de cellulose pour les films photographiques, d'acétate de polyvinyle pour la colle à bois et de fibres et tissus synthétiques.

Dans les ménages, l'acide acétique dilué est souvent utilisé dans les détartrants.
Dans l'industrie alimentaire, l'acide acétique est contrôlé par le code d'additif alimentaire E260 en tant que régulateur d'acidité et en tant que condiment.

En biochimie, le groupe acétyle, dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique est au cœur du métabolisme des glucides et des graisses.

La demande mondiale en acide acétique est d'environ 6,5 millions de tonnes métriques par an (t/a), dont environ 1,5 t/a est satisfaite par le recyclage ; le reste est fabriqué à partir de méthanol.
Le vinaigre est principalement de l'acide acétique dilué, souvent produit par fermentation et oxydation ultérieure de l'éthanol.

Avantages de l'acide acétique :
L'une des façons les plus courantes dont les consommateurs peuvent entrer en contact avec l'acide acétique est sous la forme de vinaigre domestique, qui est naturellement fabriqué à partir de sources fermentescibles telles que le vin, les pommes de terre, les pommes, les raisins, les baies et les céréales.
Le vinaigre est une solution claire contenant généralement environ 5 % d'acide acétique et 95 % d'eau.

Le vinaigre est utilisé comme ingrédient alimentaire et peut également être un ingrédient dans les produits de soins personnels, les nettoyants ménagers, les shampooings pour animaux de compagnie et de nombreux autres produits pour la maison :

La préparation des aliments:
Le vinaigre est un ingrédient alimentaire courant, souvent utilisé comme saumure dans les liquides de marinage, les vinaigrettes, les marinades et autres vinaigrettes.
Le vinaigre peut également être utilisé dans la préparation des aliments pour aider à contrôler la contamination par Salmonella dans les produits de viande et de volaille.

Nettoyage:
Le vinaigre peut être utilisé dans toute la maison comme nettoyant pour vitres, pour nettoyer les cafetières automatiques et la vaisselle, comme agent de rinçage pour les lave-vaisselle et pour nettoyer le carrelage et le coulis de la salle de bain.
Le vinaigre peut également être utilisé pour nettoyer les outils et équipements liés à l'alimentation, car l'acide acétique ne laisse généralement pas de résidu nocif et nécessite moins de rinçage.

Jardinage:
À des concentrations de 10 à 20 %, l'acide acétique peut être utilisé comme désherbant dans les jardins et les pelouses.
Lorsqu'il est utilisé comme herbicide, l'acide acétique peut tuer les mauvaises herbes qui ont émergé du sol, mais n'affecte pas les racines de la mauvaise herbe, de sorte qu'elles peuvent repousser.

Applications de l'acide acétique :

L'acide acétique (AcOH) peut être utilisé comme :
Un solvant de réaction dans de nombreuses réactions organiques telles que la bromation, l'hydrolyse, la solvolyse, les réductions et les hydrogénations.
Réactif dans la protonolyse des composés organométalliques.

Agent d'acétylation pour l'acétylation de composés aromatiques riches en électrons.
Catalyseur pour synthétiser des di(indolyl)méthanes par la réaction de condensation d'indole et d'aldéhydes aromatiques.
L'invention concerne un système de solvants pour préparer un dérivé de 3,4-dihydropyrimidine-2(1H)-one via la réaction de Biginelli d'aldéhydes aromatiques, de composés 1,3-dicarbonyle et d'urée en présence d'un catalyseur à base d'acide borique.

L'acide acétique peut également être utilisé dans les cas suivants :
Le système catalytique acétate de manganèse(III)/AcOH est utilisé dans la conversion des alcènes en lactones.
Les sels de fer/AcOH sont utilisés pour oxyder le 2-méthylnaphtalène en 2-méthyl-1-naphtol en présence de H2O2.

Lorsque l'acide acétique est à une concentration de 99,5%, l'acide acétique est appelé acide acétique glacial.
L'acide acétique glacial a une variété d'utilisations, y compris comme matière première et solvant dans la production d'autres produits chimiques.

Les applications industrielles de l'acide acétique glacial comprennent :

Acétate de vinyle, fibres de cellulose et plastiques :
L'acide acétique est utilisé pour fabriquer de nombreux produits chimiques, notamment l'acétate de vinyle, l'anhydride acétique et les esters d'acétate.
L'acétate de vinyle est utilisé pour fabriquer de l'acétate de polyvinyle, un polymère utilisé dans les peintures, les adhésifs, les plastiques et les finitions textiles.

L'anhydride acétique est utilisé dans la fabrication de fibres d'acétate de cellulose et de plastiques utilisés pour les films photographiques, les vêtements et les revêtements.
L'acide acétique est également utilisé dans la réaction chimique pour produire de l'acide téréphtalique purifié (PTA), qui est utilisé pour fabriquer la résine plastique PET utilisée dans les fibres synthétiques, les contenants alimentaires, les bouteilles de boissons et les films plastiques.

Solvants :
L'acide acétique est un solvant hydrophile, similaire à l'éthanol.
L'acide acétique dissout les composés tels que les huiles, le soufre et l'iode et se mélange à l'eau, au chloroforme et à l'hexane.

Acidification du pétrole et du gaz :
L'acide acétique peut aider à réduire la corrosion des métaux et l'accumulation de tartre dans les applications de puits de pétrole et de gaz.
L'acide acétique est également utilisé dans la stimulation des puits de pétrole pour améliorer le débit et augmenter la production de pétrole et de gaz.
Produits pharmaceutiques et vitamines : L'industrie pharmaceutique utilise l'acide acétique dans la fabrication de vitamines, d'antibiotiques, d'hormones et d'autres produits.

Préparation des aliments:
L'acide acétique est couramment utilisé comme produit de nettoyage et de désinfection dans les usines de transformation des aliments.

Autres utilisations:
Les sels d'acide acétique et divers caoutchoucs et produits chimiques photographiques sont fabriqués à partir d'acide acétique.
L'acide acétique et son sel de sodium sont couramment utilisés comme conservateurs alimentaires.

Autres applications:
Adhésifs/mastics-B&C
Intermédiaires agricoles
Vêtements
Enduits architecturaux
Revêtements de protection automobile
Matériaux de construction
Encres d'impression commerciales
Produits chimiques de construction
Intérieurs décoratifs
Engrais
Ingrédients alimentaires
Conservateurs alimentaires
Formulateurs
Entretien des surfaces dures
Nettoyants industriels
Nettoyeurs institutionnels
Intermédiaires
Traitement du pétrole ou du gaz
Autres produits chimiques alimentaires
Autre-transport
Composants d'emballage sans contact alimentaire
Peintures & revêtements
Produits chimiques pharmaceutiques
Additifs de procédé
Raffinage
Produits chimiques de spécialité
Materiel de départ
Traitement de l'eau industrielle

Utilisations de l'acide acétique :
L'acide acétique est un réactif chimique pour la production de composés chimiques.
La plus grande utilisation unique de l'acide acétique est dans la production de monomère d'acétate de vinyle, suivie de près par la production d'anhydride acétique et d'ester.
Le volume d'acide acétique utilisé dans le vinaigre est relativement faible.

L'acide acétique est utilisé pour fabriquer de l'anhydride acétique et d'autres produits chimiques organiques utilisés dans les industries du plastique, de la pharmacie, des colorants, des insecticides, du textile, du caoutchouc et de la photographie.
L'acide acétique est utilisé en photographie (bain d'arrêt).

L'acide acétique est utilisé comme agent de gravure humide dans la fabrication de semi-conducteurs à des concentrations standard de 36 % ou 99,5 %.
L'acide acétique est utilisé dans les étapes de battage et de tannage de la production de cuir.

L'acide acétique est utilisé dans les synthèses organiques.
Utilisation autorisée comme ingrédient inerte dans les produits pesticides non alimentaires.

Le vinaigre est un liquide composé principalement d'acide acétique (CH3COOH) et d'eau.
L'acide acétique est produit par la fermentation de l'éthanol par des bactéries acétiques.

L'acide acétique est utilisé comme réactif de laboratoire dans les analyses chimiques et biochimiques, dans les tests sur le terrain des fumées de plomb, la détermination du chlorure de vinyle, l'acide urique dans l'urine, les vapeurs d'aniline et la séparation des gaz.
L'acide acétique est utilisé dans diverses applications pour les composés d'attaque pour la gravure.

L'acide acétique est un agent de détartrage lors du tannage du cuir, un solvant pour les composés organiques et un acidifiant pour puits de pétrole.
L'acide acétique est utilisé dans l'industrie chimique comme agent acidifiant et neutralisant.

L'acide acétique est utilisé dans les industries de la conserve comme additif ou aromatisant pour les cornichons, le poisson, la viande, les bonbons et les glaçures utilisés dans les industries du textile et de la teinture comme catalyseurs de teinture, de finition textile, de post-traitement de teinture et de production de fibres de nylon et d'acrylique.
L'acide acétique est un constituant des bains de fixation photographiques, des durcisseurs, des solutions hypotests et des ciments pour microfilms.

L'acide acétique donne au vinaigre son goût aigre et son odeur piquante.
L'acide acétique est un réactif chimique important et un produit chimique industriel, utilisé dans les industries du plastique, de la pharmacie, des colorants, des insecticides, du textile, du caoutchouc et de la photographie.

L'acide acétique sans eau (acide acétique glacial) est utilisé dans la production de certains parfums.
L'acide acétique est utilisé pour traiter les infections du conduit auditif.

Utilisations grand public :
Produits chimiques agricoles (non pesticides)
Catalyseur
Agent de nettoyage
Colorant
Agent de fixation (mordant)
Intermédiaire
Intermédiaires
Produits chimiques de laboratoire
Monomères
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Produits chimiques photosensibles
Plastifiants
Auxiliaires technologiques, non répertoriés ailleurs
Adoucissant et conditionneur
Solvant

Utilisations industrielles :
Produits chimiques agricoles (non pesticides)
Catalyseur
Régulateur de réaction chimique
Agent de nettoyage
Un inhibiteur de corrosion
Antimousse
Colorant
Agent de gravure
Agents de finition
Fluides fonctionnels (systèmes ouverts)
Intermédiaire
Intermédiaires
Produits chimiques de laboratoire
Lubrifiants et additifs pour lubrifiants
Agent lubrifiant
Agents oxydants/réducteurs
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Régulateurs de processus
Auxiliaires technologiques non spécifiés ailleurs
Auxiliaires technologiques, non répertoriés ailleurs
Auxiliaires technologiques, spécifiques à la production pétrolière
Améliorateur de solubilité
Solvant
Solvants (qui font partie de la formulation ou du mélange du produit)
Agents de surface
Régulateur de pH

Procédés industriels à risque d'exposition :
Fabrication de semi-conducteurs
Textiles (fabrication de fibres et de tissus)
Tannage et traitement du cuir
Traitement photographique
Textiles (impression, teinture ou finition)
Brûler des polymères naturels
Brûler des polymères synthétiques

Activités à risque d'exposition :
Sculpter les plastiques
Arts textiles
Fumer des cigarettes
Application de patines métalliques
Brûler de la biomasse pour cuisiner et se chauffer

Acétate de vinyle monomère :
L'utilisation principale de l'acide acétique est la production d'acétate de vinyle monomère (VAM).
En 2008, on estimait que cette application consommait un tiers de la production mondiale d'acide acétique.
La réaction consiste en de l'éthylène et de l'acide acétique avec de l'oxygène sur un catalyseur au palladium, conduite en phase gazeuse.

2 H3C−COOH + 2 C2H4 + O2 → 2 H3C−CO−O−CH=CH2 + 2 H2O

L'acétate de vinyle peut être polymérisé en acétate de polyvinyle ou en d'autres polymères, qui sont des composants des peintures et des adhésifs.

Production d'esters :
Les principaux esters de l'acide acétique sont couramment utilisés comme solvants pour les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.

Ils sont généralement produits par réaction catalysée à partir d'acide acétique et de l'alcool correspondant :
H3COO−H + HO−R → CH3COO−R + H2O, R = groupe alkyle général

Par exemple, l'acide acétique et l'éthanol donnent de l'acétate d'éthyle et de l'eau.
CH3COO−H + HO−CH2CH3 → CH3COO−CH2CH3 + H2O

Cependant, la plupart des esters d'acétate sont produits à partir d'acétaldéhyde en utilisant la réaction de Tishchenko.
De plus, les acétates d'éther sont utilisés comme solvants pour la nitrocellulose, les laques acryliques, les décapants de vernis et les teintures à bois.

Premièrement, les monoéthers de glycol sont produits à partir d'oxyde d'éthylène ou d'oxyde de propylène avec de l'alcool, qui sont ensuite estérifiés avec de l'acide acétique.
Les trois principaux produits sont l'acétate d'éther monoéthylique d'éthylène glycol (EEA), l'acétate d'éther monobutylique d'éthylène glycol (EBA) et l'acétate d'éther monométhylique de propylène glycol (PMA, plus communément appelé PGMEA dans les processus de fabrication de semi-conducteurs, où l'acide acétique est utilisé comme un résist solvant).

Cette application consomme environ 15 à 20 % de l'acide acétique mondial.
Les acétates d'éther, par exemple l'EEE, se sont avérés nocifs pour la reproduction humaine.

Anhydride acétique:
Le produit de la condensation de deux molécules d'acide acétique est l'anhydride acétique.
La production mondiale d'anhydride acétique est une application majeure et utilise environ 25 à 30 % de la production mondiale d'acide acétique.
Le processus principal implique la déshydratation de l'acide acétique pour donner du cétène à 700–750 ° C.

Le cétène est ensuite mis à réagir avec l'acide acétique pour obtenir l'anhydride :
CH3CO2H → CH2=C=O + H2O
CH3CO2H + CH2=C=O → (CH3CO)2O

L'anhydride acétique est un agent d'acétylation.
En tant que tel, l'application principale de l'acide acétique concerne l'acétate de cellulose, un textile synthétique également utilisé pour les films photographiques.
L'anhydride acétique est également un réactif pour la production d'héroïne et d'autres composés.

Utiliser comme solvant :
En tant que solvant protique polaire, l'acide acétique est fréquemment utilisé pour la recristallisation afin de purifier les composés organiques.
L'acide acétique est utilisé comme solvant dans la production d'acide téréphtalique (TPA), la matière première du polyéthylène téréphtalate (PET).
En 2006, environ 20 % de l'acide acétique était utilisé pour la production de TPA.

L'acide acétique est souvent utilisé comme solvant pour les réactions impliquant des carbocations, telles que l'alkylation de Friedel-Crafts.
Par exemple, une étape de la fabrication commerciale du camphre synthétique implique un réarrangement de Wagner-Meerwein du camphène en acétate d'isobornyle.
Ici, l'acide acétique agit à la fois comme solvant et comme nucléophile pour piéger le carbocation réarrangé.

L'acide acétique glacial est utilisé en chimie analytique pour l'estimation de substances faiblement alcalines telles que les amides organiques.
L'acide acétique glacial est une base beaucoup plus faible que l'eau, de sorte que l'amide se comporte comme une base forte dans ce milieu.
L'acide acétique peut alors être titré à l'aide d'une solution dans l'acide acétique glacial d'un acide très fort, tel que l'acide perchlorique.

Utilisation médicale :
L'injection d'acide acétique dans une tumeur est utilisée pour traiter le cancer depuis les années 1800.

L'acide acétique est utilisé dans le cadre du dépistage du cancer du col de l'utérus dans de nombreuses régions du monde en développement.
L'acide est appliqué sur le col de l'utérus et si une zone blanche apparaît après environ une minute, le test est positif.

L'acide acétique est un antiseptique efficace lorsqu'il est utilisé sous forme de solution à 1%, avec un large spectre d'activité contre les streptocoques, les staphylocoques, les pseudomonas, les entérocoques et autres.
L'acide acétique peut être utilisé pour traiter les infections cutanées causées par des souches de pseudomonas résistantes aux antibiotiques typiques.

Bien que l'acide acétique dilué soit utilisé en iontophorèse, aucune preuve de haute qualité ne soutient ce traitement pour la maladie de la coiffe des rotateurs.

En tant que traitement de l'otite externe, l'acide acétique figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.

Nourriture:
L'acide acétique contient 349 kcal (1 460 kJ) pour 100 g.
Le vinaigre ne contient généralement pas moins de 4% d'acide acétique en masse.

Les limites légales sur la teneur en acide acétique varient selon la juridiction.
Le vinaigre est utilisé directement comme condiment et dans le marinage des légumes et autres aliments.

Le vinaigre de table a tendance à être plus dilué (4% à 8% d'acide acétique), tandis que le marinage alimentaire commercial utilise des solutions plus concentrées.
La proportion d'acide acétique utilisée dans le monde sous forme de vinaigre n'est pas aussi importante que les utilisations commerciales, mais c'est de loin l'application la plus ancienne et la plus connue.

Propriétés de l'acide acétique :

Acidité:
Le centre hydrogène du groupe carboxyle (-COOH) dans les acides carboxyliques tels que l'acide acétique peut se séparer de la molécule par ionisation :
CH3COOH ⇌ CH3CO−2 + H+

Du fait de cette libération du proton (H+), l'acide acétique a un caractère acide.
L'acide acétique est un acide monoprotique faible.

En solution aqueuse, l'acide acétique a une valeur de pKa de 4,76.
La base conjuguée de l'acide acétique est l'acétate (CH3COO−).

Une solution de 1,0 M (environ la concentration du vinaigre domestique) a un pH de 2,4, ce qui indique que seulement 0,4 % des molécules d'acide acétique sont dissociées.
Cependant, en solution très diluée (< 10−6 M), l'acide acétique est > 90 % dissocié.

Structure:
Dans l'acide acétique solide, les molécules forment des chaînes, les molécules individuelles étant interconnectées par des liaisons hydrogène.
Dans la vapeur à 120 ° C (248 ° F), des dimères peuvent être détectés.

Les dimères se produisent également en phase liquide dans des solutions diluées dans des solvants sans liaison hydrogène, et dans une certaine mesure dans l'acide acétique pur, mais sont perturbés par les solvants à liaison hydrogène.
L'enthalpie de dissociation du dimère est estimée à 65,0–66,0 kJ/mol, et l'entropie de dissociation à 154–157 J mol−1 K−1.
D'autres acides carboxyliques s'engagent dans des interactions de liaison hydrogène intermoléculaires similaires.

Propriétés du solvant :
L'acide acétique liquide est un solvant protique hydrophile (polaire), similaire à l'éthanol et à l'eau.
Avec une permittivité statique relative (constante diélectrique) de 6,2, l'acide acétique dissout non seulement les composés polaires tels que les sels inorganiques et les sucres, mais également les composés non polaires tels que les huiles ainsi que les solutés polaires.

L'acide acétique est miscible avec les solvants polaires et non polaires tels que l'eau, le chloroforme et l'hexane.
Avec les alcanes supérieurs (à commencer par l'octane), l'acide acétique n'est pas miscible dans toutes les compositions, et la solubilité de l'acide acétique dans les alcanes diminue avec les n-alcanes plus longs.
Les propriétés de solvant et de miscibilité de l'acide acétique font de l'acide acétique un produit chimique industriel utile, par exemple, comme solvant dans la production de téréphtalate de diméthyle.

Biochimie:
Aux pH physiologiques, l'acide acétique est généralement entièrement ionisé en acétate.

Le groupe acétyle, formellement dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique est au cœur du métabolisme des glucides et des graisses.

Contrairement aux acides carboxyliques à chaîne plus longue (les acides gras), l'acide acétique n'est pas présent dans les triglycérides naturels.
Cependant, la triacétine triglycéride artificielle (triacétate de glycérine) est un additif alimentaire courant et se trouve dans les cosmétiques et les médicaments topiques.

L'acide acétique est produit et excrété par les bactéries acétiques, notamment le genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries se trouvent universellement dans les denrées alimentaires, l'eau et le sol, et l'acide acétique est produit naturellement lorsque les fruits et autres aliments se gâtent.
L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où l'acide acétique semble servir d'agent antibactérien doux.

Nomenclature de l'acide acétique :
Le nom trivial "acide acétique" est le nom IUPAC le plus couramment utilisé et préféré.
Le nom systématique "acide éthanoïque", un nom IUPAC valide, est construit selon la nomenclature substitutive.
Le nom "acide acétique" dérive du mot latin pour vinaigre, "acetum", qui est lié au mot "acide" lui-même.

"Acide acétique glacial" est un nom pour l'acide acétique sans eau (anhydre).
Semblable au nom allemand "Eisessig" ("vinaigre de glace"), le nom vient des cristaux ressemblant à de la glace qui se forment légèrement en dessous de la température ambiante à 16,6 ° C (61,9 ° F) (la présence de 0,1% d'eau abaisse la fonte des acides acétiques pointe de 0,2 °C).

Un symbole courant pour l'acide acétique est AcOH, où Ac est le symbole du pseudo-élément représentant le groupe acétyle CH3−C(=O)−.
La base conjuguée, l'acétate (CH3COO−), est donc représentée par AcO−. (Le symbole Ac pour le groupe fonctionnel acétyle ne doit pas être confondu avec le symbole Ac pour l'élément actinium ; le contexte évite la confusion parmi les chimistes organiques).

Pour mieux refléter la structure de l'acide acétique, l'acide acétique est souvent écrit CH3-C(O)OH, CH3-C(=O)OH, CH3COOH et CH3CO2H.
Dans le contexte des réactions acide-base, l'abréviation HAc est parfois utilisée, où Ac dans ce cas est un symbole pour l'acétate (plutôt que l'acétyle).

L'acétate est l'ion résultant de la perte de H+ de l'acide acétique.
Le nom "acétate" peut également désigner un sel contenant cet anion, ou un ester de l'acide acétique.

Production d'acide acétique :
L'acide acétique est produit industriellement à la fois par synthèse et par fermentation bactérienne.
Environ 75% de l'acide acétique destiné à être utilisé dans l'industrie chimique est fabriqué par la carbonylation du méthanol, expliquée ci-dessous.

La voie biologique ne représente qu'environ 10% de la production mondiale, mais l'acide acétique reste important pour la production de vinaigre car de nombreuses lois sur la pureté des aliments exigent que le vinaigre utilisé dans les aliments soit d'origine biologique.
D'autres procédés sont l'isomérisation du formiate de méthyle, la conversion du gaz de synthèse en acide acétique et l'oxydation en phase gazeuse de l'éthylène et de l'éthanol.

L'acide acétique peut être purifié par congélation fractionnée à l'aide d'un bain de glace.
L'eau et les autres impuretés resteront liquides tandis que l'acide acétique précipitera.

Entre 2003 et 2005, la production mondiale totale d'acide acétique vierge était estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié était produite aux États-Unis.
La production européenne était d'environ 1 Mt/a et en baisse, tandis que la production japonaise était de 0,7 Mt/a.

1,5 Mt supplémentaires sont recyclées chaque année, portant le marché mondial total à 6,5 Mt/a.
Depuis lors, la production mondiale a augmenté à 10,7 Mt/a (en 2010), et plus loin ; cependant, un ralentissement de cette augmentation de la production est prévu.

Les deux plus grands producteurs d'acide acétique vierge sont Celanese et BP Chemicals.
Parmi les autres grands producteurs figurent Millennium Chemicals, Sterling Chemicals, Samsung, Eastman et Svensk Etanolkemi [sv].

Carbonylation du méthanol :
La plupart de l'acide acétique est produit par carbonylation du méthanol.
Dans ce processus, le méthanol et le monoxyde de carbone réagissent pour produire de l'acide acétique selon l'équation.

Le processus implique l'iodométhane comme intermédiaire et se déroule en trois étapes.
Un catalyseur, le métal carbonyle, est nécessaire pour la carbonylation (étape 2).

1- CH3OH + HI → CH3I + H2O
2- CH3I + CO → CH3COI
3- CH3COI + H2O → CH3COOH + HI

Deux procédés apparentés existent pour la carbonylation du méthanol : le procédé Monsanto catalysé au rhodium et le procédé Cativa catalysé à l'iridium.
Ce dernier procédé est plus écologique et plus efficace et a largement supplanté le premier procédé, souvent dans les mêmes usines de production.
Des quantités catalytiques d'eau sont utilisées dans les deux procédés, mais le procédé Cativa en nécessite moins, de sorte que la réaction de conversion eau-gaz est supprimée et que moins de sous-produits sont formés.

En modifiant les conditions du procédé, l'anhydride acétique peut également être produit sur la même usine en utilisant les catalyseurs au rhodium.

Oxydation de l'acétaldéhyde :
Avant la commercialisation du procédé Monsanto, la plupart de l'acide acétique était produit par oxydation de l'acétaldéhyde.
Cela reste la deuxième méthode de fabrication la plus importante, bien que l'acide acétique ne soit généralement pas compétitif avec la carbonylation du méthanol.

L'acétaldéhyde peut être produit par hydratation de l'acétylène.
C'était la technologie dominante au début des années 1900.

Les composants du naphta léger sont facilement oxydés par l'oxygène ou même l'air pour donner des peroxydes, qui se décomposent pour produire de l'acide acétique selon l'équation chimique, illustrée avec le butane :
2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O

De telles oxydations nécessitent un catalyseur métallique, tel que les sels de naphténate de manganèse, de cobalt et de chrome.

La réaction typique est conduite à des températures et des pressions conçues pour être aussi chaudes que possible tout en gardant le butane liquide.
Les conditions de réaction typiques sont de 150 ° C (302 ° F) et 55 atm.

Des sous-produits peuvent également se former, notamment de la butanone, de l'acétate d'éthyle, de l'acide formique et de l'acide propionique.
Ces sous-produits ont également une valeur commerciale et les conditions de réaction peuvent être modifiées pour en produire davantage si nécessaire.
Cependant, la séparation de l'acide acétique de ces sous-produits augmente le coût du procédé.

Dans des conditions similaires et en utilisant des catalyseurs similaires à ceux utilisés pour l'oxydation du butane, l'oxygène de l'air pour produire de l'acide acétique peut oxyder l'acétaldéhyde.

2 CH3CHO + O2 → 2 CH3CO2H

En utilisant des catalyseurs modernes, cette réaction peut avoir un rendement en acide acétique supérieur à 95 %.
Les principaux sous-produits sont l'acétate d'éthyle, l'acide formique et le formaldéhyde, qui ont tous des points d'ébullition inférieurs à l'acide acétique et sont facilement séparés par distillation.

Oxydation d'éthylène :
L'acétaldéhyde peut être préparé à partir d'éthylène via le procédé Wacker, puis oxydé comme ci-dessus.

Plus récemment, la société chimique Showa Denko, qui a ouvert une usine d'oxydation de l'éthylène à Ōita, au Japon, en 1997, a commercialisé une conversion en une seule étape moins chère de l'éthylène en acide acétique.
Le procédé est catalysé par un catalyseur métallique au palladium supporté sur un hétéropolyacide tel que l'acide silicotungstique.

Un procédé similaire utilise le même catalyseur métallique sur l'acide silicotungstique et la silice :
C2H4 + O2 → CH3CO2H

On pense que l'acide acétique est compétitif avec la carbonylation du méthanol pour les petites usines (100–250 kt/a), selon le prix local de l'éthylène.
L'approche sera basée sur l'utilisation d'une nouvelle technologie d'oxydation photocatalytique sélective pour l'oxydation sélective de l'éthylène et de l'éthane en acide acétique.
Contrairement aux catalyseurs d'oxydation traditionnels, le processus d'oxydation sélective utilisera la lumière UV pour produire de l'acide acétique à température et pression ambiantes.

Fermentation Oxydative :
Pendant la majeure partie de l'histoire humaine, les bactéries acétiques du genre Acetobacter ont fabriqué de l'acide acétique, sous forme de vinaigre.
Avec suffisamment d'oxygène, ces bactéries peuvent produire du vinaigre à partir de divers aliments alcoolisés.
Les aliments couramment utilisés comprennent le cidre de pomme, le vin et les céréales fermentées, le malt, le riz ou les purées de pommes de terre.

La réaction chimique globale facilitée par ces bactéries est :
C2H5OH + O2 → CH3COOH + H2O

Une solution diluée d'alcool inoculée avec Acetobacter et conservée dans un endroit chaud et aéré deviendra du vinaigre en quelques mois.
Les méthodes industrielles de vinaigrerie accélèrent ce processus en améliorant l'apport d'oxygène aux bactéries.

Les premiers lots de vinaigre produits par fermentation faisaient probablement suite à des erreurs de vinification.
Si le moût est fermenté à une température trop élevée, l'acétobactérie submergera la levure naturellement présente sur les raisins.

Au fur et à mesure que la demande de vinaigre à des fins culinaires, médicales et sanitaires augmentait, les vignerons ont rapidement appris à utiliser d'autres matières organiques pour produire du vinaigre pendant les chauds mois d'été avant que les raisins ne soient mûrs et prêts à être transformés en vin.
Cette méthode était cependant lente et pas toujours couronnée de succès, car les vignerons ne comprenaient pas le processus.

L'un des premiers procédés commerciaux modernes fut la "méthode rapide" ou "méthode allemande", pratiquée pour la première fois en Allemagne en 1823.
Dans ce processus, la fermentation a lieu dans une tour garnie de copeaux de bois ou de charbon de bois.

L'alimentation contenant de l'alcool est ruisselée vers le haut de la tour et de l'air frais est fourni par le bas par convection naturelle ou forcée.
L'amélioration de l'alimentation en air dans ce processus a réduit le temps de préparation du vinaigre de plusieurs mois à plusieurs semaines.

De nos jours, la plupart du vinaigre est fabriqué en cuve de culture submergée, décrite pour la première fois en 1949 par Otto Hromatka et Heinrich Ebner.
Dans cette méthode, l'alcool est fermenté en vinaigre dans un réservoir agité en continu, et l'oxygène est fourni en faisant barboter de l'air dans la solution.
En utilisant des applications modernes de cette méthode, le vinaigre d'acide acétique à 15% peut être préparé en seulement 24 heures en traitement par lots, même 20% en traitement par lots alimentés de 60 heures.

Fermentation anaérobie :
Les espèces de bactéries anaérobies, y compris les membres du genre Clostridium ou Acetobacterium, peuvent convertir les sucres en acide acétique directement sans créer d'éthanol comme intermédiaire.

La réaction chimique globale menée par ces bactéries peut être représentée par :
C6H12O6 → 3 CH3COOH

Ces bactéries acétogènes produisent de l'acide acétique à partir de composés monocarbonés, dont le méthanol, le monoxyde de carbone ou un mélange de dioxyde de carbone et d'hydrogène :
2 CO2 + 4 H2 → CH3COOH + 2 H2O

Cette capacité de Clostridium à métaboliser directement les sucres, ou à produire de l'acide acétique à partir d'intrants moins coûteux, suggère que ces bactéries pourraient produire de l'acide acétique plus efficacement que les oxydants d'éthanol comme Acetobacter.
Cependant, les bactéries Clostridium sont moins tolérantes aux acides qu'Acetobacter.

Même les souches de Clostridium les plus tolérantes aux acides peuvent produire du vinaigre à des concentrations de seulement quelques pour cent, par rapport aux souches d'Acetobacter qui peuvent produire du vinaigre à des concentrations allant jusqu'à 20 %.
À l'heure actuelle, l'acide acétique reste plus rentable pour produire du vinaigre à l'aide d'Acetobacter, plutôt que d'utiliser Clostridium et de concentrer l'acide acétique.
De ce fait, bien que les bactéries acétogènes soient connues depuis 1940, leur utilisation industrielle se limite à quelques applications de niche.

Informations générales sur la fabrication de l'acide acétique :

Secteurs de transformation de l'industrie :
Agriculture, foresterie, pêche et chasse
Fabrication de tous les autres produits chimiques inorganiques de base
Fabrication de tous les autres produits chimiques organiques de base
Fabrication de tous les autres produits et préparations chimiques
Fabrication de produits informatiques et électroniques
Fabrication d'explosifs
Fabrication de produits métalliques fabriqués
Fabrication d'aliments, de boissons et de produits du tabac
Fabrication de produits minéraux non métalliques (comprend la fabrication d'argile, de verre, de ciment, de béton, de chaux, de gypse et d'autres produits minéraux non métalliques)
Non connu ou raisonnablement vérifiable
Activités de forage, d'extraction et de soutien pétroliers et gaziers
Autre (nécessite des informations supplémentaires)
Fabrication de papier
Fabrication de pesticides, d'engrais et d'autres produits chimiques agricoles
Fabrication pétrochimique
Fabrication d'huiles et de graisses lubrifiantes pétrolières
Raffineries de pétrole
Fabrication de produits pharmaceutiques et de médicaments
Fabrication de films photographiques, de papier, de plaques et de produits chimiques
Fabrication de matières plastiques et de résines
Fabrication de produits en plastique
Prestations de service
Fabrication de savons, de produits de nettoyage et de produits de toilette
Fabrication de colorants et de pigments synthétiques
Fabrication de textiles, de vêtements et de cuir
Fabrication de matériel de transport
Commerce de gros et de détail

Réactions de l'acide acétique :

Chimie organique:
L'acide acétique subit les réactions chimiques typiques d'un acide carboxylique.
Lors du traitement avec une base standard, l'acide acétique se transforme en acétate de métal et en eau.

Avec des bases fortes (par exemple, des réactifs organolithiens), l'acide acétique peut être doublement déprotoné pour donner LiCH2COOLi.
La réduction de l'acide acétique donne de l'éthanol.

Le groupe OH est le principal site de réaction, comme illustré par la conversion de l'acide acétique en chlorure d'acétyle.
D'autres dérivés de substitution comprennent l'anhydride acétique ; cet anhydride est produit par perte d'eau à partir de deux molécules d'acide acétique.
Des esters d'acide acétique peuvent également être formés par estérification Fischer, et des amides peuvent être formés.

Lorsqu'il est chauffé au-dessus de 440 ° C (824 ° F), l'acide acétique se décompose pour produire du dioxyde de carbone et du méthane, ou pour produire du cétène et de l'eau :
CH3COOH → CH4 + CO2
CH3COOH → CH2=C=O + H2O

Réactions avec des composés inorganiques :
L'acide acétique est légèrement corrosif pour les métaux, notamment le fer, le magnésium et le zinc, formant de l'hydrogène gazeux et des sels appelés acétates :
Mg + 2 CH3COOH → (CH3COO)2Mg + H2

Étant donné que l'aluminium forme un film d'oxyde d'aluminium passivant et résistant aux acides, des réservoirs en aluminium sont utilisés pour transporter l'acide acétique.

Les acétates métalliques peuvent également être préparés à partir d'acide acétique et d'une base appropriée, comme dans la réaction populaire « bicarbonate de soude + vinaigre » dégageant de l'acétate de sodium :
NaHCO3 + CH3COOH → CH3COONa + CO2 + H2O

Une réaction colorée pour les sels d'acide acétique est une solution de chlorure de fer (III), qui se traduit par une couleur rouge foncé qui disparaît après acidification.
Un test plus sensible utilise du nitrate de lanthane avec de l'iode et de l'ammoniac pour donner une solution bleue.
Lorsqu'ils sont chauffés avec du trioxyde d'arsenic, les acétates forment de l'oxyde de cacodyle, qui peut être détecté par des vapeurs malodorantes d'acide acétique.

Autres dérivés :
Les sels organiques ou inorganiques sont produits à partir de l'acide acétique. Quelques dérivés commercialement significatifs :
Acétate de sodium, utilisé dans l'industrie textile et comme conservateur alimentaire (E262).

Acétate de cuivre(II), utilisé comme pigment et fongicide.
Acétate d'aluminium et acétate de fer (II) - utilisés comme mordants pour les colorants.
Acétate de palladium (II), utilisé comme catalyseur pour les réactions de couplage organique telles que la réaction de Heck.

Les acides acétiques halogénés sont produits à partir d'acide acétique. Quelques dérivés commercialement significatifs :
Acide chloroacétique (acide monochloroacétique, MCA), acide dichloroacétique (considéré comme un sous-produit) et acide trichloroacétique.

Le MCA est utilisé dans la fabrication de colorant indigo.
Acide bromoacétique, qui est estérifié pour produire le réactif bromoacétate d'éthyle.

L'acide trifluoroacétique, qui est un réactif courant en synthèse organique.
Les quantités d'acide acétique utilisées dans ces autres applications représentent ensemble 5 à 10% supplémentaires de l'utilisation d'acide acétique dans le monde.

Histoire de l'acide acétique :
Le vinaigre était connu au début de la civilisation comme le résultat naturel de l'exposition de la bière et du vin à l'air, car les bactéries productrices d'acide acétique sont présentes dans le monde entier.
L'utilisation de l'acide acétique en alchimie s'étend jusqu'au IIIe siècle av. J.-C., lorsque le philosophe grec Théophraste décrivait comment le vinaigre agissait sur les métaux pour produire des pigments utiles dans l'art, notamment la céruse (carbonate de plomb) et le vert-de-gris, un mélange vert de sels de cuivre dont le cuivre. (II) acétate.

Les anciens Romains faisaient bouillir du vin aigre pour produire un sirop très sucré appelé sapa.
Le sapa qui était produit dans des pots en plomb était riche en acétate de plomb, une substance sucrée aussi appelée sucre de plomb ou sucre de Saturne, qui contribuait au saturnisme dans l'aristocratie romaine.

Au XVIe siècle, l'alchimiste allemand Andreas Libavius a décrit la production d'acétone à partir de la distillation sèche de l'acétate de plomb, la décarboxylation cétonique.
La présence d'eau dans le vinaigre a un effet si profond sur les propriétés de l'acide acétique que pendant des siècles, les chimistes ont cru que l'acide acétique glacial et l'acide présent dans le vinaigre étaient deux substances différentes.
Le chimiste français Pierre Adet a prouvé qu'ils étaient identiques.

En 1845, le chimiste allemand Hermann Kolbe a synthétisé pour la première fois l'acide acétique à partir de composés inorganiques.
Cette séquence de réaction consistait en une chloration du disulfure de carbone en tétrachlorure de carbone, suivie d'une pyrolyse en tétrachloroéthylène et d'une chloration aqueuse en acide trichloroacétique, et conclue par une réduction électrolytique en acide acétique.

En 1910, la plupart de l'acide acétique glacial était obtenu à partir de la liqueur pyroligneuse, un produit de la distillation du bois.
L'acide acétique a été isolé par traitement avec du lait de chaux, et l'acétate de calcium résultant a ensuite été acidifié avec de l'acide sulfurique pour récupérer l'acide acétique.
A cette époque, l'Allemagne produisait 10 000 tonnes d'acide acétique glacial, dont environ 30 % servaient à la fabrication de teinture indigo.

Étant donné que le méthanol et le monoxyde de carbone sont des matières premières de base, la carbonylation du méthanol est depuis longtemps apparue comme des précurseurs attrayants de l'acide acétique.
Henri Dreyfus de British Celanese a développé une usine pilote de carbonylation du méthanol dès 1925.

Cependant, un manque de matériaux pratiques pouvant contenir le mélange réactionnel corrosif aux hautes pressions nécessaires (200 atm ou plus) a découragé la commercialisation de ces voies.
En 1968, un catalyseur à base de rhodium (cis-[Rh(CO)2I2]-) a été découvert qui pouvait fonctionner efficacement à basse pression avec presque aucun sous-produit.

La société chimique américaine Monsanto Company a construit la première usine utilisant ce catalyseur en 1970, et la carbonylation du méthanol catalysée au rhodium est devenue la méthode dominante de production d'acide acétique (voir le procédé Monsanto ).
A la fin des années 1990, la société chimique BP Chemicals a commercialisé le catalyseur Cativa ([Ir(CO)2I2]−), promu par l'iridium pour une plus grande efficacité.
Ce procédé Cativa catalysé à l'iridium est plus écologique et plus efficace et a largement supplanté le procédé Monsanto, souvent dans les mêmes usines de production.

Milieu interstellaire :
L'acide acétique interstellaire a été découvert en 1996 par une équipe dirigée par David Mehringer en utilisant l'ancien réseau de l'Association Berkeley-Illinois-Maryland à l'observatoire radio de Hat Creek et l'ancien réseau millimétrique situé à l'observatoire radio d'Owens Valley.
L'acide acétique a été détecté pour la première fois dans le nuage moléculaire Sagittarius B2 North (également connu sous le nom de source Sgr B2 Large Molecule Heimat).
L'acide acétique a la particularité d'être la première molécule découverte dans le milieu interstellaire en utilisant uniquement des interféromètres radio ; dans toutes les découvertes moléculaires ISM précédentes faites dans les régimes de longueur d'onde millimétrique et centimétrique, les radiotélescopes à parabole unique étaient au moins en partie responsables des détections.

Informations sur le métabolite humain de l'acide acétique :

Emplacements des tissus :
Rein
Foie

Emplacements cellulaires :
Cytoplasme
Extracellulaire
Appareil de Golgi
Mitochondries

Manipulation et stockage de l'acide acétique :

Intervention en cas de déversement sans incendie :
ÉLIMINER toutes les sources d'ignition (interdiction de fumer, fusées éclairantes, étincelles ou flammes) de la zone immédiate.
Tous les équipements utilisés lors de la manipulation du produit doivent être mis à la terre.

Ne pas toucher ou marcher sur le produit déversé.
Arrêtez la fuite si vous pouvez faire de l'acide acétique sans risque.

Empêcher l'entrée dans les cours d'eau, les égouts, les sous-sols ou les zones confinées.
Une mousse anti-vapeur peut être utilisée pour réduire les vapeurs.

Absorber avec de la terre, du sable ou un autre matériau non combustible.
Pour l'hydrazine, absorber avec du sable SEC ou un absorbant inerte (vermiculite ou tampons absorbants).
Utilisez des outils propres et anti-étincelles pour recueillir le matériau absorbé.

GRAND DÉVERSEMENT :
Endiguer loin devant le déversement liquide pour une élimination ultérieure.
L'eau pulvérisée peut réduire les vapeurs, mais n'empêche pas l'inflammation dans les espaces clos.

ÉLIMINER toutes les sources d'ignition (interdiction de fumer, fusées éclairantes, étincelles ou flammes) de la zone immédiate.
Ne pas toucher les contenants endommagés ou le produit déversé à moins de porter des vêtements de protection appropriés.

Arrêtez la fuite si vous pouvez faire de l'acide acétique sans risque.
Empêcher l'entrée dans les cours d'eau, les égouts, les sous-sols ou les zones confinées.

Absorber ou recouvrir de terre sèche, de sable ou d'un autre matériau non combustible et transférer dans des conteneurs.
NE PAS VERSER D'EAU À L'INTÉRIEUR DES RÉCIPIENTS.

Agents neutralisants pour acides et caustiques :
Diluer avec de l'eau, rincer avec une solution diluée de bicarbonate de sodium ou de chaux.

Stockage sécurisé :
Séparer des aliments et des produits alimentaires, des oxydants forts, des acides forts et des bases fortes.
Conserver uniquement dans le contenant d'origine.

Conserver dans une pièce bien aérée.
Entreposer dans une zone sans drain ni accès aux égouts.

Conditions de stockage:
Conserver dans un endroit sec et bien aéré.
Séparer des matières oxydantes et des substances alcalines.

Séparer des denrées alimentaires et des aliments pour animaux.
Conserver dans une pièce bien aérée.

Les quantités supérieures à 1 litre doivent être stockées dans des conteneurs métalliques hermétiquement fermés dans des zones séparées des oxydants.

Effets sur la santé et sécurité de l'acide acétique :
L'acide acétique concentré est corrosif pour la peau.
Ces brûlures ou cloques peuvent n'apparaître que plusieurs heures après l'exposition.

Une exposition prolongée par inhalation (huit heures) à des vapeurs d'acide acétique à 10 ppm peut produire une certaine irritation des yeux, du nez et de la gorge; à 100 ppm, une irritation pulmonaire marquée et des lésions possibles aux poumons, aux yeux et à la peau peuvent en résulter.
Des concentrations de vapeur de 1 000 ppm provoquent une irritation marquée des yeux, du nez et des voies respiratoires supérieures et ne peuvent être tolérées.
Ces prédictions étaient basées sur des expérimentations animales et une exposition industrielle.

Chez 12 travailleurs exposés pendant deux ans ou plus à une concentration moyenne d'acide acétique dans l'air de 51 ppm (estimée), des symptômes d'irritation conjonctive, d'irritation des voies respiratoires supérieures et de dermatite hyperkératosique ont été observés.
L'exposition à 50 ppm ou plus est intolérable pour la plupart des personnes et entraîne un larmoiement intense et une irritation des yeux, du nez et de la gorge, avec un œdème pharyngé et une bronchite chronique.

Les humains non acclimatés subissent une irritation oculaire et nasale extrême à des concentrations supérieures à 25 ppm, et une conjonctivite à des concentrations inférieures à 10 ppm a été signalée.
Dans une étude portant sur cinq travailleurs exposés pendant 7 à 12 ans à des concentrations maximales de 80 à 200 ppm, les principaux résultats étaient le noircissement et l'hyperkératose de la peau des mains, la conjonctivite (mais pas de lésions cornéennes), la bronchite et la pharyngite, et l'érosion des dents exposées (incisives et canines).

Les dangers des solutions d'acide acétique dépendent de la concentration.

L'acide acétique concentré ne peut s'enflammer qu'avec difficulté à température et pression standard, mais devient un risque d'inflammabilité à des températures supérieures à 39 ° C (102 ° F) et peut former des mélanges explosifs avec l'air à des températures plus élevées (limites explosives: 5,4–16 %).

Mesures de premiers soins de l'acide acétique :

YEUX:
Vérifiez d'abord si la victime a des lentilles de contact et retirez-les si elles sont présentes.
Rincer les yeux de la victime avec de l'eau ou une solution saline normale pendant 20 à 30 minutes tout en appelant simultanément un hôpital ou un centre antipoison.

Ne mettez pas de pommades, d'huiles ou de médicaments dans les yeux de la victime sans instructions spécifiques d'un médecin.
Transportez IMMÉDIATEMENT la victime après avoir rincé les yeux à l'hôpital même si aucun symptôme (comme une rougeur ou une irritation) ne se développe.

PEAU:
Rincer IMMÉDIATEMENT la peau affectée avec de l'eau tout en enlevant et en isolant tous les vêtements contaminés.
Lavez soigneusement toutes les zones de peau affectées avec du savon et de l'eau.

Appeler IMMÉDIATEMENT un hôpital ou un centre antipoison même si aucun symptôme (comme une rougeur ou une irritation) ne se développe.
Transporter IMMÉDIATEMENT la victime à l'hôpital pour y être soignée après avoir lavé les zones touchées.

INHALATION:
Quitter IMMÉDIATEMENT la zone contaminée ; prendre de grandes bouffées d'air frais.
Si des symptômes (tels qu'une respiration sifflante, une toux, un essoufflement ou une sensation de brûlure dans la bouche, la gorge ou la poitrine) se développent, appelez un médecin et soyez prêt à transporter la victime à l'hôpital.

Fournir une protection respiratoire appropriée aux sauveteurs entrant dans une atmosphère inconnue.
Dans la mesure du possible, un appareil respiratoire autonome (ARA) doit être utilisé.
S'il n'est pas disponible, utilisez un niveau de protection supérieur ou égal à celui conseillé sous Vêtements de protection.

INGESTION:
NE PAS FAIRE VOMIR.
Les produits chimiques corrosifs détruisent les membranes de la bouche, de la gorge et de l'œsophage et, en outre, présentent un risque élevé d'être aspirés dans les poumons de la victime lors de vomissements, ce qui augmente les problèmes médicaux.

Si la victime est consciente et ne convulse pas, lui faire boire 1 ou 2 verres d'eau pour diluer le produit chimique et appeler IMMÉDIATEMENT un hôpital ou un centre antipoison.
Transporter IMMÉDIATEMENT la victime à l'hôpital.

Si la victime convulse ou est inconsciente, ne rien faire avaler, s'assurer que les voies respiratoires de la victime sont dégagées et allonger la victime sur le côté, la tête plus basse que le corps.
NE PAS FAIRE VOMIR.
Transporter IMMÉDIATEMENT la victime à l'hôpital.

Lutte contre l'incendie
Certains de ces matériaux peuvent réagir violemment avec l'eau.

PETIT FEU:
Poudre chimique sèche, CO2, eau pulvérisée ou mousse résistant à l'alcool.

GRAND INCENDIE :
Eau pulvérisée, brouillard ou mousse anti-alcool.
Si l'acide acétique peut être utilisé en toute sécurité, éloignez les récipients non endommagés de la zone autour du feu.

Endiguer les eaux de ruissellement du contrôle des incendies pour une élimination ultérieure.
Ne versez pas d'eau à l'intérieur des récipients.

INCENDIE IMPLIQUANT DES RÉSERVOIRS OU DES CHARGES DE VOITURE/REMORQUE :
Combattez le feu à une distance maximale ou utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance.

Refroidir les conteneurs avec de grandes quantités d'eau jusqu'à ce que le feu soit éteint.
Retirer immédiatement en cas de bruit montant provenant des dispositifs de sécurité de ventilation ou de décoloration du réservoir.

Restez TOUJOURS à l'écart des réservoirs engloutis par le feu.
Pour un incendie massif, utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance.
Si cela est impossible, retirez-vous de la zone et laissez le feu brûler.

Identifiants de l'acide acétique :
Numéro CAS : 64-19-7
3DMet : B00009
Abréviations : AcOH
Référence Beilstein : 506007
ChEBI:CHEBI:15366
ChEMBL : ChEMBL539
ChemSpider : 171
DrugBank : DB03166
InfoCard ECHA : 100.000.528
Numéro CE : 200-580-7
Numéro E : E260 (conservateurs)
Référence Gmelin : 1380
IUPHAR/BPS : 1058
KEGG :
C00033
D00010
MeSH : Acétique + acide
PubChem CID : 176
Numéro RTECS : AF1225000
UNII : Q40Q9N063P
Numéro ONU : 2789
Tableau de bord CompTox (EPA) : DTXSID5024394
InChI : InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
Clé : QTBSBXVTEAMEQO-UHFFFAOYSA-N
SOURIRES : CC(O)=O

Synonyme(s) : Acide acétique glacial
Formule linéaire : CH3CO2H
Numéro CAS : 64-19-7
Poids moléculaire : 60,05
Belstein : 506007
Numéro CE : 200-580-7
Numéro MDL : MFCD00036152
ID de la substance PubChem : 329770889
NACRES : NA.21

Numéro CAS : 64-19-7
Numéro d'index CE : 607-002-00-6
Numéro CE : 200-580-7
Grade : ACS
Formule Hill : C₂H₄O₂
Formule chimique : CH₃COOH
Masse molaire : 60,05 g/mol
Code SH : 2915 21 00

Propriétés de l'acide acétique :
Densité de vapeur : 2,07 (vs air)
Niveau de qualité : 200
Dosage : ≥ 99 %
Forme : liquide
Température d'auto-inflammation : 800 °F
expl. lim. :
16 %, 92 °F
4 %, 59 °F

Indice de réfraction : n20/D 1,371 (lit.)
pH : 2,5 (20 °C, 50 g/L)
point d'ébullition : 117-118 °C (lit.)
point de fusion : 16,2 °C (lit.)

Solubilité:
Alcool : miscible (lit.)
Disulfure de carbone : insoluble (lit.)
Glycérol : miscible (lit.)
Eau : miscible (lit.)

Densité : 1,049 g/mL à 25 °C (lit.)
Température de stockage : température ambiante
Chaîne SOURIRE : CC(O)=O
InChI : 1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
Clé InChI : QTBSBXVTEAMEQO-UHFFFAOYSA-N

Point d'ébullition : 116 - 118 °C (1013 hPa)
Densité : 1,04 g/cm3 (25 °C)
Limite d'explosivité : 4 - 19,9 %(V)
Point d'éclair : 40 °C
Température d'inflammation : 485 °C
Point de fusion : 16,64 °C
Valeur pH : 2,5 (50 g/l, H₂O, 20 °C)
Pression de vapeur : 20,79 hPa (25 °C)
Viscosité cinématique : 1,17 mm2/s (20 °C)
Solubilité : 602,9 g/l soluble

CAS : 64-19-7
Formule moléculaire : C2H4O2
Poids moléculaire (g/mol) : 60,052
InChI Key : QTBSBXVTEAMEQO-UHFFFAOYSA-NAfficher moins
PubChem CID : 176
ChEBI:CHEBI:15366
Nom IUPAC : acide acétique
SOURIRES : CC(=O)O

Formule chimique : CH3COOH
Masse molaire : 60,052 g·mol−1
Aspect : Liquide incolore
Odeur : fortement vinaigrée
Densité : 1,049 g/cm3 (liquide) ; 1,27 g/cm3 (solide)
Point de fusion : 16 à 17 °C ; 61 à 62 °F ; 289 à 290K
Point d'ébullition : 118 à 119 °C ; 244 à 246 °F ; 391 à 392 Ko
Solubilité dans l'eau : Miscible
log P : -0,28[4]
Pression de vapeur : 11,6 mmHg (20 °C)[5]
Acidité (pKa): 4.756
Base conjuguée : Acétate
Susceptibilité magnétique (χ) : -31,54·10−6 cm3/mol
Indice de réfraction (nD) : 1,371 (VD = 18,19)
Viscosité : 1,22 mPa.s
Moment dipolaire : 1,74 D

Poids moléculaire : 60,05
XLogP3-AA : -0,2
Nombre de donneurs d'obligations hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 0
Masse exacte : 60.021129366
Masse monoisotopique : 60,021129366
Surface polaire topologique : 37,3 Ų
Nombre d'atomes lourds : 4
Complexité : 31
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

Spécifications de l'acide acétique :
Dosage (acidimétrique) : ≥ 99,7 %
Couleur : ≤ 10 Haze
Base titrable : ≤ 0,0004 meq/g
Anhydride acétique : ≤ 100 ppm
Chlorure (Cl): ≤ 1 ppm
Métaux lourds (comme Pb): ≤ 0,5 ppm
Sulfate (SO₄) : ≤ 1 ppm
Fe (fer) : ≤ 0,2 ppm
Substances réduisant le bichromate de potassium : test réussi
Substances réduisant le permanganate de potassium : test réussi
Résidu d'évaporation : ≤ 10 ppm
Test de dilution : réussit le test

Formule linéaire : CH3CO2H
Information sur la solubilité : Solubilité dans l'eau : complètement soluble.
Poids de la formule : 60,05
Pourcentage de pureté : 80 % (vol.)
Quantité : 5L
Point d'éclair : >60°C
Nom chimique ou matière : Acide acétique

Thermochimie de l'acide acétique :
Capacité calorifique (C) : 123,1 JK−1 mol−1
Entropie molaire standard (S⦵298) : 158,0 JK−1 mol−1
Enthalpie de formation standard (ΔfH⦵298) : -483,88–483,16 kJ/mol
Enthalpie de combustion standard (ΔcH⦵298) : -875,50–874,82 kJ/mol

Pharmacologie de l'acide acétique :
Code ATC : G01AD02 (OMS) S02AA10 (OMS)

Composés apparentés de l'acide acétique :
Acétaldéhyde
Acétamide
Anhydride acétique
Acide chloroacétique
Chlorure d'acétyle
Acide glycolique
Acétate d'éthyle
Acétate de potassium
L'acétate de sodium
Acide thioacétique

Acides carboxyliques apparentés :
Acide formique
L'acide propionique

Noms de l'acide acétique :

Nom IUPAC préféré :
Acide acétique

Nom IUPAC systématique :
Acide éthanoique

Autres noms:
Vinaigre (une fois dilué)
Acétate d'hydrogène
Acide méthanecarboxylique
Acide éthylique

Synonymes d'acide acétique :
acide acétique
acide éthanoique
64-19-7
L'acide acétique glacial
Acide éthylique
Acide de vinaigre
Acide acétique, glacial
Acide acétique glacial
Acide méthanecarboxylique
Acétasol
Essigsaeure
Acide acétique
Vinaigre
Aci-jel
Azijnzuur
Acétique acide
Acide acétique
Kysélina octova
Octowy kwas
Acide pyroligneux
HOAc
Azijnzuur [néerlandais]
Monomère d'acide éthanoïque
alcool acétylique
Essigsaeure [Allemand]
acide éthoïque
Caswell n° 003
Tridésilon otique
Octowy kwas [Polonais]
Otique Domeboro
Acide acétique (naturel)
Acide acétique [Français]
Acido acétique [Italien]
FEMA n° 2006
Kyselina octova [Tchèque]
AcOH
acide acétique-
éthanoate
UN2789
UN2790
MeCOOH
Code chimique des pesticides EPA 044001
NSC 132953
BRN 0506007
Acide acétique, dilué
Acide acétique [JAN]
AI3-02394
CH3COOH
Acidum aceticum glaciale
CH3-COOH
CH3CO2H
10. Acide méthanecarboxylique
CHEMBL539
NSC-132953
NSC-406306
SIN N° 260
E-260
CHEBI:15366
INS-260
Q40Q9N063P
Éthanoat
Fusil à pompe
MFCD00036152
Acide acétique, d'une concentration de plus de 10 %, en poids, d'acide acétique
NSC-111201
NSC-112209
NSC-115870
NSC-127175
68475-71-8
C2:0
Orlex
Vosol
WLN : QV1
Acide acétique, >=99.7%
Numéro FEMA 2006
Acide acétique, réactif ACS, >=99,7 %
ACY
HSDB 40
CCRIS 5952
63459-47-2
acide méthane carboxylique
EINECS 200-580-7
Acide acétique 0,25 % dans un récipient en plastique
Éthylate
acide acétique
acide acétique
Acide acétique
Acétate glacial
cid acétique
acide actique
UNII-Q40Q9N063P
acide acétique
Vinaigre distillé
Méthanecarboxylate
Acide acétique, glacial [USP:JAN]
Nat. Acide acétique
Acétasol (TN)
Acide acétique, glacial
Acide Acétique Naturel
Vinaigre (sel/mélange)
MeCO2H
Acide acétique non dilué
77671-22-8
Identification de l'ocytocine
Acide 3,3'-(1,4-phénylène)dipropiolique
HOOCCH3
Acide acétique (récupéré)
546-67-8
Acide acétique Qualité LC/MS
E 260
ACIDE ACÉTIQUE [II]
ACIDE ACÉTIQUE [MI]
Acide acétique, réactif ACS
Acide acétique-[13C,d3]
bmse000191
bmse000817
bmse000857
Otic Domeboro (Sel/Mélange)
EC 200-580-7
Acide acétique (JP17/NF)
ACIDE ACÉTIQUE [FHFI]
ACIDE ACÉTIQUE [INCI]
Acide acétique [pour LC-MS]
ACIDE ACÉTIQUE [VANDF]
NCIOpen2_000659
NCIOpen2_000682
ACIDE ACÉTIQUE [MART.]
Acide acétique, glacial (USP)
4-02-00-00094 (Référence du manuel Beilstein)
Acide acétique glacial (JP17)
UN 2790 (sel/mélange)
ACIDE ACÉTIQUE [OMS-DD]
ACIDE ACÉTIQUE [WHO-IP]
ACETICUM ACIDUM [HPUS]
N° SIN 260
GTPL1058
Qualité HPLC glaciale à l'acide acétique
Acide acétique, étalon analytique
Acide acétique, grade Glacial USP
DTXSID5024394
Acide acétique, pur., >=80%
Acide acétique, 99,8 %, anhydre
Acide acétique, AR, >=99,8 %
Acide acétique, LR, >=99,5 %
Acide acétique, réactif glacial ACS
Acide acétique, extra pur, 99,8 %
Acide acétique, 99,5-100,0 %
Acide acétique, glacial, réactif ACS
STR00276
ZINC5224164
Acide acétique, pur., 99-100%
Tox21_301453
Acide acétique, glacial, >=99,85 %
BDBM50074329
LMFA01010002
NSC132953
NSC406306
STL264240
Acide acétique, Environmental Grade Plus
Acide acétique, pour HPLC, >=99.8%
AKOS000268789
ACIDUM ACETICUM [WHO-IP LATIN]
DB03166
ONU 2789
Acide acétique, >=99.5%, FCC, FG
Acide acétique, naturel, >=99,5 %, FG
Acide acétique, ReagentPlus(R), >=99%
CAS-64-19-7
Acide acétique, USP, 99,5-100,5 %
NCGC00255303-01
Acide acétique 1000 microg/mL dans du méthanol
Acide acétique, SAJ premier grade, >=99.0%
DB-085748
Acide acétique 1000 microg/mL dans l'acétonitrile
Acide acétique, >=99,99 % de métaux traces
Acide acétique, qualité spéciale JIS, >=99,7 %
Acide acétique, purifié par double distillation
FT-0621735
FT-0621743
FT-0621764
FT-0661109
FT-0661110
Acide acétique, spectroscopique HPLC UV, 99,9 %
EN300-18074
Acide acétique, qualité réactif Vetec(TM), >=99%
Bifido Selective Supplement B, pour la microbiologie
C00033
D00010
ORLEX HC COMPOSANT ACIDE ACÉTIQUE, GLACIAL
Q47512
VOSOL HC COMPOSANT ACIDE ACÉTIQUE, GLACIAL
Acide acétique, glacial, qualité électronique, 99,7 %
TRIDESILON COMPOSANT ACIDE ACÉTIQUE, GLACIAL
A834671
ACETASOL HC COMPOSANT ACIDE ACÉTIQUE GLACIAL
Acide acétique, >=99,7 %, qualité super spéciale SAJ
ACIDE ACÉTIQUE, COMPOSANT GLACIAL DU BOROFAIR
ACIDE ACÉTIQUE, COMPOSANT GLACIAL DE L'ORLEX HC
ACIDE ACÉTIQUE, COMPOSANT GLACIAL DU VOSOL HC
SR-01000944354
ACIDE ACÉTIQUE, COMPOSANT GLACIAL DU TRIDESILON
SR-01000944354-1
ACIDE ACÉTIQUE, COMPOSANT GLACIAL DE L'ACTASOL HC
Acide acétique glacial, conforme aux spécifications de test USP
Acide acétique, >=99,7 %, adapté à l'analyse des acides aminés
Acide acétique, >=99,7%, pour titrage en milieu non aqueux
Acide acétique, pour la luminescence, BioUltra, >=99.5% (GC)
Acide acétique, pa, réactif ACS, reag. ISO, réag. Ph.Eur., 99,8%
Acide acétique, qualité semi-conducteur MOS PURANAL(TM) (Honeywell 17926)
Acide acétique glacial, étalon de référence de la pharmacopée des États-Unis (USP)
Acide acétique, pur. pa, réactif ACS, reag. ISO, réag. Ph.Eur., >=99.8%
Acide acétique glacial, étalon secondaire pharmaceutique ; Matériau de référence certifié
158461-04-2
Acide acétique, puriss., conforme aux spécifications analytiques de Ph. Eur., BP, USP, FCC, 99,8-100,5 %
200-580-7 [EINECS]
64-19-7 [RN]
Acide acétique [ACD/Index Name] [ACD/IUPAC Name] [Wiki]
Acide, Acétique
Acide acétique [Français] [ACD/IUPAC Name]
Acido acétique [Italien]
AcOH [Formule]
ättiksyra [suédois]
azido azetikoa [basque]
azijnzuur [néerlandais]
Essigsäure [Allemand] [Nom ACD/IUPAC]
Acide éthanoique
etikkahappo [finnois]
L'acide acétique glacial
HOAc [Formule]
kwas octowy [polonais]
Kyselina octova [Tchèque]
MFCD00036152 [numéro MDL]
MFCD00198163 [numéro MDL]
QV1 [WLN]
Acide (2H3)acétique (2H)
10. Acide méthanecarboxylique
109945-04-2 [RN]
1112-02-3 [RN]
120416-14-0 [RN]
147416-04-4 [RN]
149748-09-4 [RN]
159037-04-4 [RN]
1794892-02-6 [RN]
2-Mercapto-5-chlor-benzoxazol-7-sulfonsure, Kaliumsalz
3913-68-6 [RN]
42204-14-8 [RN]
498-63-5 [RN]
55511-07-4 [RN]
88-32-4 [RN]
AA
Acide acétique (glacial) manquant
Acide acétique 1 mol/L
Acide acétique, glacialmissing
Acide acétique, GlenDry, anhydre
Acide acétique-C,C,C-d3
Acide acétique-d4
Acide acétique manquant
Acide acétique-2,2,2-d3
acétol
C2:0
Essigsaeure
Acide éthylique
Acétique glaciaire
hydron [Wiki]
MeCO2H [Formule]
MeCOOH [Formule]
Acide méthanecarboxylique
Acide méthanecarboxylique, acide acétique
acide méthylcarboxylique
MFCD00036287 [numéro MDL]
manquant
Acide pyroacétique
STR00276
Vinaigre
ACIDE ACÉTIQUE
L'acide acétique est un acide organique disponible en différentes concentrations standard.
L'acide acétique pur est connu sous le nom d'acide acétique glacial car il gèle à des températures modérées (16,6 °C).


Numéro CAS : 64-19-7
Numéro CE : 200-580-7
Numéro E : E260 (conservateurs)
Formule moléculaire : C2H4O2 / CH3COOH



SYNONYMES :
Acide acétique, Acide éthanoïque, Vinaigre (une fois dilué), Acétate d'hydrogène, Acide méthanecarboxylique, Acide éthylique, Acide éthanoïque, Acide éthylique, Acide acétique glacial, Acide méthanecarboxylique, Acide vinaigre, CH3COOH, Acétasol, Acide acétique, Acido acetico, Azijnzuur, Essigsaeure , Octowy kwas, Acide acétique glacial, Kyselina octova, UN 2789, Aci-jel, Shotgun, Monomère d'acide éthanoïque, NSC 132953, Acide éthanoïque, vinaigre, acide éthylique, acide vinaigre, acide méthanecarboxylique, fluide d'extraction TCLP 2, fusil de chasse, glacial acide acétique, acide éthanoïque glacial, acide éthanoïque, acide éthylique, acide acétique glacial, acide méthanecarboxylique, acide vinaigre, CH3COOH, acétasol, acide acétique, Acido acetico, Azijnzuur, Essigsaeure, Octowy kwas, acide acétique glacial, Kyselina octova, UN 2789 , Aci-jel, Shotgun, monomère d'acide éthanoïque, NSC 132953, BDBM50074329, FA 2:0, LMFA01010002, NSC132953, NSC406306, acide acétique pour HPLC >=99,8 %, AKOS000268789, ACIDUM ACETICUM [WHO-IP LATIN], 166, ONU 2789, Acide acétique >=99,5 % FCC FG, Acide acétique naturel >=99,5 % FG, Acide acétique ReagentPlus(R) >=99 %, CAS-64-19-7, Code pesticide USEPA/OPP : 044001, Acide acétique USP 99,5-100,5 %, NCGC00255303-01, acide acétique 1 000 microg/mL dans du méthanol, acide acétique SAJ de première qualité >=99,0 %, acide acétique 1 000 microg/mL dans de l'acétonitrile, acide acétique >=99,99 % sur base de métaux traces, acide acétique JIS qualité spéciale >=99,7 %, acide acétique purifié par double distillation, NS00002089, acide acétique UV HPLC spectroscopique 99,9 %, EN300-18074, acide acétique Vetec(TM) de qualité réactif >=99 %, supplément sélectif Bifido B pour la microbiologie, C00033 , D00010, COMPOSANT ORLEX HC ACIDE ACETIQUE GLACIAL, Q47512, VOSOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique glacial de qualité électronique 99,7%, COMPOSANT TRIDESILON ACIDE ACETIQUE GLACIAL, A834671, ACETASOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique >=99,7% SAJ super qualité spéciale, COMPOSANT GLACIAIRE ACÉTIQUE DE BOROFAIR, COMPOSANT GLACIAIRE ACÉTIQUE D'ORLEX HC, COMPOSANT GLACIAIRE ACÉTIQUE DE VOSOL HC, SR-01000944354, COMPOSANT GLACIAIRE ACÉTIQUE DE TRIDESILON, SR-01000944354-1, COMPOSANT GLACIAIRE ACÉTIQUE DE ACETASOL HC , L'acide acétique glacial répond aux spécifications de test USP, InChI=1/C2H4O2/c1-2(3)4/h1H3(H,3,4), Acide acétique >=99,7 % adapté à l'analyse des acides aminés, Acide acétique >=99,7 % pour titrage en milieu non aqueux, Acide acétique pour luminescence BioUltra >=99,5% GC, Acide acétique pa ACS réactif reag. Réponse ISO. Ph.Eur. 99,8 %, acide acétique de qualité semi-conducteur MOS PURANAL(TM) Honeywell 17926, acide acétique glacial Pharmacopée des États-Unis, étalon de référence USP, acide acétique puriss. pa Réactif ACS reag. Réponse ISO. Ph.Eur. >=99,8 %, matériau de référence certifié pour l'acide acétique glacial, étalon secondaire pharmaceutique, puriss d'acide acétique. répond aux spécifications analytiques de la Ph. Eur. BP USP FCC 99,8-100,5 %, acide acétique, acétate glacial, acide acétique, acide actique, UNII-Q40Q9N063P, acide acétique, vinaigre distillé, méthanecarboxylate, acide acétique glacial [USP:JAN], acétasol (TN), acide acétique glacial pour LC-MS, vinaigre (sel/mélange), HOOCCH3, 546-67-8, acide acétique qualité LC/MS, ACIDE ACETIQUE [II], ACIDE ACETIQUE [MI], réactif ACS acide acétique, bmse000191, bmse000817, bmse000857 , Otic Domeboro (sel/mélange), EC 200-580-7, acide acétique (JP17/NF), ACIDE ACETIQUE [FHFI], ACIDE ACETIQUE [INCI], acide acétique [pour LC-MS], ACIDE ACETIQUE [VANDF] , NCIOpen2_000659, NCIOpen2_000682, Acide acétique glacial (USP), 4-02-00-00094 (Référence du manuel Beilstein), 77671-22-8, Acide acétique glacial (JP17), UN 2790 (Sel/Mélange), ACIDE ACÉTIQUE [OMS -DD], ACIDE ACETIQUE [WHO-IP], ACETICUM ACIDUM [HPUS], GTPL1058, acide acétique de qualité HPLC glacial, étalon analytique d'acide acétique, acide acétique de qualité USP glacial, acide acétique puriss. >=80 %, Acide acétique 99,8 % anhydre, Acide acétique AR >=99,8 %, Acide acétique LR >=99,5 %, Acide acétique extra pur 99,8 %, Acide acétique 99,5-100,0 %, Acide acétique Réactif ACS glacial, STR00276, Acétique pureté acide. 99-100%, Tox21_301453, Acide acétique glacial >=99,85%, acide acétique, acide éthanoïque, 64-19-7, Acide éthylique, Acide vinaigre, Acide acétique glacial, Acide acétique glacial, Acide acétique glacial, Acide méthanecarboxylique, Acétasol, Essigsaeure, Acide acétique, Acide pyroligneux, Vinaigre, Azijnzuur, Aceticum acidum, Acido acetico, Octowy kwas, Aci-jel, HOAc, acide éthoïque, Kyselina octova, Acide orthoacétique, AcOH, Monomère d'acide éthanoïque, Acétique, Caswell No. 003, Otique Tridesilon, MeCOOH, acide acétique-17O2, Otic Domeboro, Acidum aceticum glaciale, Acidum aceticum, CH3-COOH, acide acétique-, CH3CO2H, UN2789, UN2790, EPA Pesticide Chemical Code 044001, NSC 132953, NSC-132953, NSC-406306, BRN 0506007, Acide acétique dilué, SIN NO.260, Acide acétique [JAN], DTXSID5024394, MeCO2H, CHEBI:15366, AI3-02394, CH3COOH, INS-260, Q40Q9N063P, E-260, 10.Acide méthanecarboxylique, CHEMBL539, NSC -111201, NSC-112209, NSC-115870, NSC-127175, acide acétique-2-13C,d4, SIN n° 260, DTXCID304394, E 260, acide acétique-13C2 (8CI,9CI), éthanoat, fusil de chasse, MFCD00036152, Acide acétique d'une concentration de plus de 10 pour cent en poids d'acide acétique, 285977-76-6, 68475-71-8, C2:0, alcool acétylique, Orlex, Vosol, ACIDE ACETIC-1-13C-2-D3 -1 H (D), WLN : QV1, ACIDE ACETIQUE (MART.), ACIDE ACETIQUE [MART.], Acide acétique >=99,7%, 57745-60-5, 63459-47-2, numéro FEMA 2006, ACETIC- ACIDE 13C2-2-D3, 97 ATOM % 13C, 97 ATOM % D, réactif acide acétique ACS >=99,7 %, ACY, HSDB 40, CCRIS 5952, 79562-15-5, acide méthane carboxylique, EINECS 200-580-7 , Acide acétique 0,25% dans un récipient en plastique, Essigsaure, Ethylate, acide acétique



L'acide acétique est un composé organique de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).
L'acide acétique est un liquide incolore qui, lorsqu'il n'est pas dilué, est également appelé « acide acétique glacial ».
L'acide acétique est le composant principal du vinaigre (outre l'eau ; le vinaigre contient environ 8 % d'acide acétique en volume) et a un goût aigre distinctif et une odeur piquante.


L'acide acétique de qualité alimentaire est l'un des acides carboxyliques les plus simples.
L'acide acétique est un réactif chimique important et un produit chimique industriel, principalement utilisé dans la production d'acétate de cellulose pour les films photographiques et d'acétate de polyvinyle pour la colle à bois, ainsi que de fibres et de tissus synthétiques.


L'acide acétique, également connu sous le nom d'acide éthanoïque, est un composé liquide et organique incolore.
De formule chimique CH₃COOH, l'acide acétique est un réactif chimique pour la production de produits chimiques.
L'acide acétique a un numéro CAS de 64-19-7.


L'acide acétique, CH3COOH, également connu sous le nom d'acide éthanoïque, est un acide organique qui a une odeur âcre.
L'acide acétique est un acide faible, dans le sens où il n'est que partiellement dissocié dans une solution aqueuse.
L'acide acétique est hygroscopique (absorbe l'humidité de l'air) et gèle à 16,5 °C pour former un solide cristallin incolore.


L'acide acétique est l'un des acides carboxyliques les plus simples et constitue un produit chimique industriel très important.
L'acide acétique est produit par des méthodes biologiques et synthétiques dans l'industrie.
Le sel et l'ester de l'acide acétique sont appelés acétate.


L'acide acétique est complètement soluble dans l'eau.
L'acide acétique est un réactif chimique pour la production de produits chimiques.
L’utilisation unique la plus courante de l’acide acétique concerne la production de monomère d’acétate de vinyle ainsi que la production d’anhydride et d’esters acétiques.


La quantité d'acide acétique dans le vinaigre est relativement faible.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un simple acide carboxylique qui forme généralement un liquide à température ambiante.
L'acide acétique est le plus largement utilisé dans le vinaigre de table en raison de ses propriétés de conservation et est le produit chimique responsable de l'odeur caractéristique du vinaigre.


L'acide acétique a également un large éventail d'applications dans l'industrie chimique et est utilisé dans la synthèse des esters et de l'acétate de vinyle. En laboratoire, l’acide acétique est un solvant couramment utilisé.
L'acide acétique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 1 000 000 tonnes par an.


L'acide acétique est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.
L'acide acétique est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.


Bien qu'il s'agisse généralement du moyen le moins coûteux d'acheter de l'acide acétique, nous constatons que des qualités plus diluées telles que 90 % sont plus demandées pour éliminer la plupart des problèmes de solidification.
L'acide acétique peut sembler devoir se trouver dans un laboratoire de chimie ou une expo-sciences plutôt que dans le garde-manger de votre cuisine.


Cependant, l’acide acétique est en fait le principal composé présent dans le vinaigre et est responsable à la fois de sa saveur et de son acidité uniques.
Non seulement cela, mais l’acide acétique contribue également à de nombreux bienfaits du vinaigre de cidre de pomme pour la santé en raison de ses puissantes propriétés médicinales.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un composé chimique présent dans de nombreux produits différents.


L'acide acétique est peut-être le composant principal du vinaigre, outre l'eau, le plus connu, et on pense qu'il fournit des ingrédients comme le vinaigre de cidre de pomme avec bon nombre de leurs propriétés bénéfiques pour la santé.
Chimiquement parlant, la formule de l’acide acétique est C2H4O2, qui peut également s’écrire CH3COOH ou CH3CO2H.


En raison de la présence d’un atome de carbone dans la structure de l’acide acétique, celui-ci est considéré comme un composé organique.
La densité de l'acide acétique est d'environ 1,05 grammes/cm³ ; Par rapport à d'autres composés comme l'acide nitrique, l'acide sulfurique ou l'acide formique, la densité de l'acide acétique est un peu inférieure.


À l’inverse, le point de fusion de l’acide acétique est nettement plus élevé que celui de nombreux autres acides, et la masse molaire de l’acide acétique et le point d’ébullition de l’acide acétique ont tendance à se situer à peu près au milieu.
L'acide acétique, également connu sous le nom d'acide méthane carboxylique et d'acide éthanoïque, est essentiellement un liquide clair et incolore, qui a une odeur forte et piquante.


Étant donné que l’acide acétique a un atome de carbone dans sa formule chimique, il s’agit d’un composé organique et sa formule chimique est CH3COOH.
Il est intéressant de noter que le mot « acétique » est dérivé d'un mot latin appelé « acetum » qui signifie « vinaigre ».
Le vinaigre est la forme diluée de l’acide acétique et constitue la substance chimique la plus courante chez l’homme.


L'acide acétique est un composant principal du vinaigre et lui confère également son odeur caractéristique.
L'acide acétique (CH3COOH), également appelé acide éthanoïque, est le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal de l'acide acétique est appelé acétate.


Ensuite, lorsque l’acide acétique ou l’acide éthanoïque n’est pas dilué, on l’appelle acide acétique glacial.
L'acide acétique est un acide faible mais lorsqu'il est sous forme concentrée, cet acide est corrosif et peut causer des dommages à la peau.
L'acide acétique se présente sous la forme d'un liquide clair et incolore avec une forte odeur de vinaigre.


Le point d’éclair de l’acide acétique est de 104 °F.
La densité de l'acide acétique est de 8,8 lb/gal.
L'acide acétique est corrosif pour les métaux et les tissus.


L'acide acétique, solution, à plus de 10 % mais pas à plus de 80 % d'acide, se présente sous la forme d'une solution aqueuse incolore.
L'acide acétique sent le vinaigre.
L'acide acétique est corrosif pour les métaux et les tissus.


L'acide acétique, solution, à plus de 80 % d'acide, est une solution aqueuse claire et incolore avec une odeur âcre.
L'acide acétique est constitué de cristaux humides légèrement roses avec une odeur de vinaigre.
L'acide acétique est un acide monocarboxylique simple contenant deux carbones.


L'acide acétique joue le rôle de solvant protique, de régulateur d'acidité alimentaire, de conservateur alimentaire antimicrobien et de métabolite de Daphnia magna.
L'acide acétique est un acide conjugué d'un acétate.
L'acide acétique est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.


L'acide acétique est un métabolite présent ou produit par Escherichia coli.
L'acide acétique est un produit naturel présent dans Camellia sinensis, Microchloropsis et d'autres organismes pour lesquels des données sont disponibles.
L'acide acétique est un acide carboxylique synthétique doté de propriétés antibactériennes et antifongiques.


Bien que son mécanisme d'action ne soit pas entièrement connu, l'acide acétique non dissocié peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.
L'acide acétique est l'un des acides carboxyliques les plus simples.


L'acide acétique est un réactif chimique important et un produit chimique industriel utilisé dans la production de bouteilles de boissons gazeuses en plastique, de films photographiques ; et acétate de polyvinyle pour la colle à bois, ainsi que de nombreuses fibres et tissus synthétiques.
L'acide acétique peut être très corrosif, selon la concentration.


L'acide acétique est un ingrédient de la cigarette.
Le groupe acétyle, dérivé de l'acide acétique, est fondamental pour la biochimie de pratiquement toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, il joue un rôle central dans le métabolisme des glucides et des graisses.


Cependant, la concentration d’acide acétique libre dans les cellules est maintenue à un faible niveau pour éviter de perturber le contrôle du pH du contenu cellulaire.
L'acide acétique est produit et excrété par certaines bactéries, notamment du genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries sont présentes universellement dans les aliments, l’eau et le sol, et l’acide acétique est produit naturellement lorsque les fruits et certains autres aliments se gâtent.


L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.
L'acide acétique /əˈsiːtɪk/, systématiquement nommé acide éthanoïque /ˌɛθəˈnoʊɪk/, est un liquide et un composé organique acide et incolore de formule chimique CH3COOH (également écrit CH3CO2H, C2H4O2 ou HC2H3O2).


Le vinaigre contient au moins 4 % d'acide acétique en volume, ce qui fait de l'acide acétique le composant principal du vinaigre, outre l'eau.
L’acide acétique a été utilisé comme composant du vinaigre tout au long de l’histoire, depuis au moins le troisième siècle avant JC.
L'acide acétique est le deuxième acide carboxylique le plus simple (après l'acide formique).


L'acide acétique est un réactif chimique important et un produit chimique industriel dans divers domaines, utilisé principalement dans la production d'acétate de cellulose pour les films photographiques, d'acétate de polyvinyle pour la colle à bois et de fibres et tissus synthétiques.
L'acide acétique est un composé organique très important dans la vie quotidienne des humains.


Les propriétés solvantes souhaitables de l’acide acétique, ainsi que sa capacité à former des mélanges miscibles avec des composés polaires et non polaires, en font un solvant industriel très important.
L'acide acétique est également connu sous le nom d'acide éthanoïque, d'acide éthylique, d'acide vinaigre et d'acide méthane carboxylique.


L'acide acétique est un sous-produit de la fermentation et donne au vinaigre son odeur caractéristique.
Le vinaigre contient environ 4 à 6 % d’acide acétique dans l’eau.
Des solutions plus concentrées peuvent être trouvées en laboratoire, et l'acide acétique pur ne contenant que des traces d'eau est connu sous le nom d'acide acétique glacial.


Les solutions diluées comme le vinaigre peuvent entrer en contact avec la peau sans danger, mais des solutions plus concentrées brûleront la peau.
L'acide acétique glacial peut provoquer des brûlures cutanées et des lésions oculaires permanentes, et corroder le métal.
L'acide acétique est un composé organique de formule CH3COOH.


L'acide acétique est un acide carboxylique constitué d'un groupe méthyle attaché à un groupe fonctionnel carboxyle.
Le nom systématique IUPAC de l’acide acétique est acide éthanoïque et sa formule chimique peut également s’écrire C2H4O2.
Le vinaigre est une solution d'acide acétique dans l'eau et contient entre 5 % et 20 % d'acide éthanoïque en volume.


L'odeur piquante et le goût aigre sont caractéristiques de l'acide acétique qu'il contient.
Une solution non diluée d’acide acétique est communément appelée acide acétique glacial.
L'acide acétique forme des cristaux qui ressemblent à de la glace à des températures inférieures à 16,6 °C.


Acide acétique (CH3COOH), le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal de l'acide acétique est appelé acétate.


Industriellement, l'acide acétique est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l’acide acétique est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
L'acide acétique a été préparé à l'échelle industrielle par oxydation à l'air de l'acétaldéhyde, par oxydation de l'éthanol (alcool éthylique) et par oxydation du butane et du butène.


Aujourd'hui, l'acide acétique est fabriqué selon un procédé développé par l'entreprise chimique Monsanto dans les années 1960 ; il s'agit d'une carbonylation catalysée par le rhodium-iode du méthanol (alcool méthylique).
L'acide acétique pur, souvent appelé acide acétique glacial, est un liquide corrosif et incolore (point d'ébullition 117,9 °C [244,2 °F] ; point de fusion 16,6 °C [61,9 °F]) complètement miscible à l'eau.


L'acide acétique est un liquide organique clair, incolore avec une odeur âcre semblable à celle du vinaigre domestique.
L'acide acétique ou acide acétique glacial, également connu sous le nom d'acide éthanoïque, est un composé organique de formule chimique CH3COOH.
L'acide acétique glacial pur (acide acétique anhydre) est un liquide hygroscopique incolore avec une forte odeur âcre.


Le point de congélation est de 16,6°C et l'acide acétique se transforme en cristaux incolores après solidification.
L'acide acétique est un acide monobasique organique et peut être miscible à l'eau dans n'importe quelle proportion.
L'acide acétique est particulièrement corrosif pour les métaux.


L'acide acétique est largement présent dans la nature, notamment dans le métabolisme de fermentation et les produits de putréfaction de diverses bactéries acétiques glaciales.
L'acide acétique est également le principal composant du vinaigre.
De plus, l’acide acétique glacial joue toujours un rôle important dans de nombreuses réactions chimiques.


Par exemple, l'acide acétique peut subir des réactions de déplacement avec des métaux tels que le fer, le zinc et le cuivre pour générer des acétates métalliques et de l'hydrogène.
De plus, l'acide acétique peut réagir avec les alcalis, les oxydes alcalins, les sels et certains oxydes métalliques.
L'acide acétique est une substance chimique organique, c'est un liquide incolore avec une odeur très particulière.


L'une de ses utilisations les plus courantes est la composition du vinaigre, bien que l'acide acétique soit également utilisé dans les cosmétiques et les produits pharmaceutiques, dans les industries alimentaire, textile et chimique.
Au niveau industriel, l'acide acétique est produit par carbonylation du méthanol et est utilisé comme matière première pour la production de différents composés.


L'acide acétique peut également être obtenu dans l'industrie alimentaire par le processus de fermentation acétique de l'éthanol, ou plus communément, par fermentation alcoolique et par distillation du bois.
L'acide acétique pur ou acide acétique glacial, également connu sous le nom de CH3COOH, est un liquide qui peut être nocif pour notre santé en raison de ses propriétés irritantes et corrosives et peut provoquer de graves irritations de la peau, des yeux et du tube digestif.


Cependant, grâce à sa combinaison avec différentes substances, l'acide acétique permet d'obtenir des produits du quotidien qui peuvent être familiers à tout le monde, comme le vinaigre.
Le vinaigre est une substance hygroscopique, c'est-à-dire qu'il peut absorber l'humidité de son environnement.


Ainsi, lorsqu’il est mélangé à de l’eau, son volume diminue de manière très significative.
D'autre part, lorsque l'acide acétique à 100 % est exposé à de basses températures, la surface, également connue sous le nom d'essence acétique, cristallise et forme des cristaux semblables à de la glace au sommet.


En raison de la structure chimique de l’acide acétique, son point d’ébullition est très élevé.
De plus, il convient de noter que l’acide acétique, étant un acide carboxylique, a la capacité de se dissocier, mais seulement légèrement, car il s’agit d’un acide faible [FC1] .
De plus, grâce à cette capacité à se dissocier, l’acide acétique conduit efficacement l’électricité.


L'acide acétique est un composé organique de formule chimique CH3COOH.
L'acide acétique est un acide monobasique organique et constitue le principal composant du vinaigre.
L'acide acétique anhydre pur (acide acétique glacial) est un liquide incolore et hygroscopique avec un point de congélation de 16,6 ℃ (62 ℉ ).


Après solidification, l'acide acétique devient un cristal incolore.
L'acide acétique ou acide éthanoïque est un composé organique liquide incolore de formule moléculaire CH3COOH.
Lorsque l’acide acétique est dissous dans l’eau, on l’appelle acide acétique glacial.


Le vinaigre ne contient pas moins de 4 pour cent d’acide acétique en volume, à l’exception de l’eau, ce qui permet à l’acide acétique d’être l’ingrédient principal du vinaigre.
L'acide acétique est produit principalement comme précurseur de l'acétate de polyvinyle et de l'acétate de cellulose, en plus du vinaigre domestique.
L'acide acétique est un acide faible puisque la solution ne se dissocie que légèrement.


Mais l'acide acétique concentré est corrosif et peut endommager la chair.
Le deuxième acide carboxylique le plus simple est l’acide acétique (après l’acide formique).
L'acide acétique est constitué d'un groupe méthyle auquel un groupe carboxyle est lié.


L'acide acétique est un composé organique liquide incolore avec une odeur caractéristique âcre.
L'acide acétique est un acide présent naturellement.
L'acide acétique peut également être produit synthétiquement soit par de l'acétylène, soit en utilisant du méthanol.


L'acide acétique est considéré comme un conservateur naturel pour les produits alimentaires.
L'acide acétique est utilisé depuis des centaines d'années comme conservateur (vinaigre, français pour « vin aigre »).
Si pendant la fermentation du raisin ou d'autres fruits, de l'oxygène pénètre dans le récipient, les bactéries convertissent l'éthanol présent en acide acétique, ce qui rend le vin aigre.


L'acide acétique peut être produit synthétiquement par carbonylation du méthanol, oxydation de l'acétaldéhyde ou oxydation du butane/naphta. L'acide acétique est dit « glaciaire » et est totalement miscible à l'eau.
L'acide acétique est le composant principal du vinaigre.


L'acide acétique apparaît comme un liquide clair et incolore avec un goût aigre distinctif et une odeur piquante.
L'acide acétique est utilisé comme conservateur, acidulant et aromatisant dans la mayonnaise et les cornichons.
Bien que l'acide acétique soit considéré comme sûr, certains sont convaincus qu'il a des effets potentiellement dangereux sur la santé.


L'acide acétique, systématiquement appelé acide éthanoïque, est un composé organique liquide incolore de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).
Lorsqu'il n'est pas dilué, l'acide acétique est parfois appelé acide acétique glacial.


L'acide acétique est un composé organique appartenant aux acides carboxyliques faibles.
L'ensemble des propriétés de l'acide acétique le classe parmi les réactifs à large spectre et lui permet d'être utilisé dans une grande variété de domaines industriels : de la pharmacologie et de la cosmétologie aux industries chimiques et alimentaires.


L'acide acétique est l'un des acides les plus couramment utilisés dans l'industrie alimentaire et domestique.
L'acide acétique est un liquide incolore, piquant et inodore qui se mélange avec l'eau pour former des solutions de concentrations variables.
En raison de sa capacité à cristalliser à une température déjà positive, l’acide acétique est également appelé « glacial ».


L'acide acétique est un acide carboxylique synthétique doté de propriétés antibactériennes et antifongiques.
Bien que le mécanisme d'action de l'acide acétique ne soit pas entièrement connu, l'acide acétique non dissocié peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.


L'acide acétique, en tant qu'acide faible, peut inhiber le métabolisme des glucides, entraînant ainsi la mort de l'organisme.
L'acide acétique est présent dans la plupart des fruits.
L'acide acétique est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.


Dans la mayonnaise, de l'acide acétique est ajouté pour augmenter l'inactivation des salmonelles.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
La formule chimique de l'acide acétique est CH3COOH et son poids moléculaire est de 60,05 g/mol.


L'acide acétique est un liquide clair et incolore qui a une odeur âcre et un goût aigre.
L'acide acétique est miscible à l'eau et aux solvants organiques les plus courants.
L'acide acétique est produit naturellement dans la plupart des organismes en tant que sous-produit du métabolisme.


L'acide acétique est également un composant majeur du vinaigre, qui est une solution d'acide acétique et d'eau qui se produit naturellement lorsque l'éthanol contenu dans les jus de fruits fermentés subit une oxydation par les bactéries de l'acide acétique.
La production de vinaigre est une pratique ancienne de conservation et d’aromatisation des aliments qui remonte à l’Antiquité.


L'acide acétique a plusieurs applications en dehors de l'industrie alimentaire.
L'acide acétique est utilisé comme solvant dans la production de divers produits chimiques et constitue un intermédiaire important dans la fabrication de polymères, de fibres et de produits pharmaceutiques.


L'acide acétique est classé comme acide faible car il ne s'ionise que partiellement dans l'eau pour produire des ions hydrogène (H+) et des ions acétate (CH3COO-).
Le pH d'une solution à 1 % d'acide acétique est d'environ 2,4, ce qui signifie qu'elle est acide mais relativement moins acide que certains acides plus forts comme l'acide chlorhydrique ou l'acide sulfurique.


L'acide acétique est à la fois naturel et synthétique.
Les sources naturelles comprennent la fermentation et les bactéries.
Lors de la fermentation, l'acide acétique est produit lorsque la levure décompose le sucre en l'absence d'oxygène.


Les bactéries produisent de l'acide acétique lorsqu'elles oxydent l'éthanol.
L'acide acétique synthétique est obtenu en faisant réagir du méthanol avec du monoxyde de carbone en présence d'un catalyseur.
L'acide acétique a une odeur et un goût forts.


L'odeur de l'acide acétique est similaire à celle du vinaigre et le goût est aigre.
L'acide acétique n'est pas considéré comme toxique en petites quantités et est généralement reconnu comme sûr par la Food and Drug Administration (FDA) des États-Unis lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


La sécurité de l'acide acétique dépend de sa concentration, des concentrations plus élevées étant plus corrosives pour la peau et les yeux.
En résumé, l’acide acétique est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
Une autre utilisation importante de l’acide acétique est celle d’intermédiaire chimique.


Enfin, l'acide acétique est un ingrédient important dans le processus de vinification.
Dans ce cas, l’acide acétique est produit naturellement comme sous-produit du processus de fermentation du vin.
Cependant, si les niveaux d’acide acétique sont trop élevés, le vin peut avoir un goût ou une odeur de vinaigre, ce qui n’est pas souhaitable.


Pour éviter cela, les vignerons utilisent des sulfites pour inhiber la croissance des bactéries acétiques dans le vin.
L'acide acétique est également un agent nettoyant efficace, notamment lorsqu'il s'agit d'éliminer les taches tenaces ou l'accumulation de minéraux dues à l'eau dure.
La nature acide de l'acide acétique aide à éliminer la saleté, la crasse et autres impuretés des surfaces.


L'acide acétique se trouve naturellement dans de nombreux aliments, notamment le vinaigre et les produits fermentés.
Cependant, lorsqu’il est utilisé comme additif, l’acide acétique est généralement produit de manière synthétique.
L'acide acétique est généralement reconnu comme sûr (GRAS) lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


Dans l’ensemble, l’acide acétique est considéré comme un additif alimentaire sûr lorsqu’il est utilisé dans les limites recommandées.
Comme pour tout additif alimentaire, l’acide acétique est essentiel pour suivre les réglementations et directives établies par les autorités compétentes.



UTILISATIONS et APPLICATIONS de l’ACIDE ACÉTIQUE :
À la maison, l’acide acétique dilué est souvent utilisé dans les agents détartrants.
Dans l'industrie alimentaire, l'acide acétique est utilisé comme additif alimentaire (numéro UE E260) comme régulateur d'acidité et comme condiment.
L'acide acétique est largement approuvé pour être utilisé comme additif alimentaire.


L'acide acétique 80 % est un produit chimique essentiel avec une large gamme d'applications.
L'acide acétique est un acide organique fort, également connu sous le nom d'acide éthanoïque ou vinaigre, et est utilisé dans diverses industries, de la production de peintures et d'adhésifs aux industries alimentaire et pharmaceutique.


L'acide acétique est un solvant efficace et un agent de condensation dans les processus de synthèse chimique.
L'acide acétique est également utilisé dans la production d'acétate de vinyle, un ingrédient clé dans la fabrication des polymères.
L'acide acétique est une solution hautement concentrée, idéale pour les professionnels et les utilisateurs expérimentés.


Avec l'acide acétique, vous pouvez éliminer le calcaire tenace, les dépôts verts et autres types de pollution.
En général, pour la plupart des applications, l'acide acétique doit d'abord être dilué avec de l'eau.
Pour une solution prête à l'emploi d'acide acétique que vous pouvez utiliser immédiatement pour vos travaux de nettoyage, vous pouvez également acheter du vinaigre de nettoyage .


L'acide acétique est le plus couramment utilisé dans la production d'acétate de vinyle monomère (VAM), dans la production d'esters et pour l'élevage d'abeilles.
En tant qu'acide naturel, l'acide acétique offre un large éventail d'applications possibles : par exemple dans les formulations de nettoyage et pour la décalcification.
De plus, l'acide acétique est couramment utilisé comme herbicide biogénique, bien que son utilisation commerciale comme herbicide ne soit pas autorisée dans les espaces clos.


Applications de l'acide acétique : adhésifs/scellants-B&C, intermédiaires agricoles, vêtements, revêtements architecturaux, revêtements de protection automobile, matériaux de construction, encres d'imprimerie commerciales, produits chimiques de construction, intérieurs décoratifs, engrais, ingrédients alimentaires, conservateurs alimentaires, formulateurs, entretien des surfaces dures, Nettoyants industriels, Nettoyants institutionnels, Intermédiaires, Traitement du pétrole ou du gaz, Autres produits chimiques alimentaires, Autres transports, Composants d'emballage sans contact alimentaire, Peintures et revêtements, Produits chimiques pharmaceutiques, Additifs de procédé, Raffinage, Produits chimiques de spécialité, Matière première et Traitement de l'eau industriel.


L'acide acétique est une matière première utilisée pour la production de nombreux produits en aval.
Pour les applications dans les médicaments, les aliments ou les aliments pour animaux, Eastman fournit de l'acide acétique dans des qualités appropriées pour ces utilisations réglementées.
L'acide acétique se trouve le plus souvent dans le vinaigre, qui est utilisé dans des recettes allant des vinaigrettes aux condiments, soupes et sauces.


Le vinaigre est également utilisé comme conservateur alimentaire et agent de décapage.
De plus, il peut même être utilisé pour fabriquer des produits de nettoyage naturels, des toniques pour la peau, des insecticides et bien plus encore.
Certains médicaments contiennent de l'acide acétique, notamment ceux utilisés pour traiter les otites.


Certains utilisent également l'acide acétique dans le traitement d'autres affections, notamment les verrues, les poux et les infections fongiques, bien que des recherches supplémentaires soient nécessaires pour évaluer son innocuité et son efficacité.
L'acide acétique est également utilisé par les fabricants pour créer une variété de produits différents.


En particulier, l'acide acétique est utilisé pour fabriquer des composés chimiques comme le monomère d'acétate de vinyle ainsi que des parfums, des produits d'hygiène bucco-dentaire, des produits de soins de la peau, des encres et des colorants.
Le rejet d'acide acétique dans l'environnement peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal).


D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques) et utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide acétique peut être trouvé dans les produits contenant des matériaux à base de : papier (par exemple mouchoirs, produits d'hygiène féminine, couches, livres, magazines, papier peint), cuir (par exemple gants, chaussures, sacs à main, meubles), tissus, textiles et vêtements (par exemple vêtements). , matelas, rideaux ou tapis, jouets textiles) et le bois (par exemple sols, meubles, jouets).


L'acide acétique est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits chimiques de traitement de l'eau, produits phytopharmaceutiques et produits de lavage et de nettoyage.
L'acide acétique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement.


L'acide acétique est utilisé pour la fabrication de : produits chimiques.
D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire lors d'une utilisation en extérieur et en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air).


L'acide acétique est utilisé dans les produits suivants : produits de revêtement, parfums et fragrances, produits chimiques et colorants pour papier, produits et colorants de traitement textile, produits de traitement de surfaces métalliques, produits de traitement de surfaces non métalliques et polymères.
L'acide acétique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.


Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : formulation de mélanges, formulation dans des matériaux, fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), comme auxiliaire technologique, pour la fabrication thermoplastique, comme auxiliaire technologique, de substances dans des systèmes fermés avec rejet minimal et dans la production d'articles.


L'acide acétique est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits d'exploration ou de production pétrolière et gazière, produits chimiques de traitement de l'eau, produits de lavage et de nettoyage, polymères et produits de revêtement.
L'acide acétique est utilisé dans les domaines suivants : exploitation minière et formulation de mélanges et/ou reconditionnement.


L'acide acétique est utilisé pour la fabrication de produits chimiques, de textiles, de cuir ou de fourrure, de bois et de produits en bois ainsi que de pâte à papier, de papier et de produits en papier.
Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et dans la fabrication de la substance.


Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), formulation de mélanges, formulation dans des matériaux, dans la production d'articles, comme auxiliaire technologique, pour la fabrication de thermoplastiques, comme auxiliaire technologique et de substances dans des systèmes fermés avec un rejet minimal.


L'acide acétique est utilisé dans les produits suivants : produits de revêtement, produits de lavage et de nettoyage, produits d'assainissement de l'air, lubrifiants et graisses, mastics, enduits, pâte à modeler, produits antigel, engrais, produits phytopharmaceutiques, peintures au doigt, biocides ( par exemple désinfectants, produits antiparasitaires), produits de soudage et de brasage et produits de traitement textile et colorants.


D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire lors de : l'utilisation en extérieur, l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en intérieur dans des systèmes fermés avec un minimum de (par exemple liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile).


Industriellement, l'acide acétique est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l’acide acétique est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
Outre son utilisation comme conservateur naturel et ingrédient commun dans une variété de produits, l’acide acétique a également été associé à plusieurs bienfaits impressionnants pour la santé.


En plus de ses puissantes propriétés antibactériennes, l’acide acétique réduirait également le taux de sucre dans le sang, favoriserait la perte de poids, soulagerait l’inflammation et contrôlerait la tension artérielle.
En tant que distributeurs de produits chimiques, les objectifs pour lesquels ce type d'acide acétique est traité sont variés.


Comme mentionné ci-dessus, l’acide acétique peut être trouvé dans de nombreuses épiceries sous forme de vinaigre blanc.
Dans de tels produits, l'acide acétique ne peut pas être trouvé sous sa forme pure, mais seulement en petites quantités.
L'acide acétique est également présent dans les aliments tels que les aliments en conserve et marinés, les fromages et produits laitiers, les sauces ou les salades préparées.


L'acide acétique est également couramment utilisé dans les industries pharmaceutique, cosmétique et industrielle, à la fois pour produire d'autres substances et pour réguler leurs propriétés, notamment en ce qui concerne leur pH.
En raison de sa forte odeur, l'une de ses autres utilisations principales est en cosmétique comme régulateur de l'arôme des parfums, c'est-à-dire que l'acide acétique permet notamment d'équilibrer les odeurs sucrées.


Dans l'industrie textile, l'acide acétique est utilisé pour teindre les tissus et produire des tissus tels que la viscose ou le latex.
Dans l'industrie chimique, l'acide acétique est utilisé dans la fabrication de produits de nettoyage et, dans l'industrie pharmaceutique, dans des suppléments et certains médicaments, car il est capable de stabiliser la tension artérielle et de réduire le taux de sucre dans le sang.


L'acide acétique est également un ingrédient courant dans les pommades.
Dans les ménages, l’acide acétique dilué est souvent utilisé comme agent de nettoyage. Dans l’industrie alimentaire, l’acide acétique est utilisé comme régulateur d’acidité.
L'acide acétique est utilisé dans la fabrication d'autres produits chimiques, comme additif alimentaire et dans la production pétrolière.


L'acide acétique est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.
Dans les ménages, l’acide acétique dilué est souvent utilisé dans les détartrants.


Dans l'industrie alimentaire, l'acide acétique est contrôlé par le code des additifs alimentaires E260 comme régulateur d'acidité et comme condiment.
En biochimie, le groupe acétyle, dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique joue un rôle central dans le métabolisme des glucides et des graisses.


La demande mondiale d'acide acétique est d'environ 6,5 millions de tonnes métriques par an (t/a), fabriqué à partir de méthanol.
La production d'acide acétique et son utilisation industrielle ultérieure présentent des risques pour la santé des travailleurs, notamment des lésions cutanées accidentelles et des lésions respiratoires chroniques dues à l'inhalation.


L'acide acétique est un réactif chimique pour la production de composés chimiques.
L'utilisation la plus importante de l'acide acétique concerne la production de monomère d'acétate de vinyle, suivie de près par la production d'anhydride et d'ester acétiques.
Le volume d’acide acétique utilisé dans le vinaigre est relativement faible.


Dans le domaine de la chimie analytique, l'acide acétique glacial est largement utilisé pour estimer les substances faiblement alcalines.
L'acide acétique a une large gamme d'applications en tant que solvant polaire et protique.
L'acide acétique est utilisé comme antiseptique en raison de ses qualités antibactériennes


La fabrication de fibre de rayonne implique l'utilisation d'acide acétique.
En médecine, l'acide acétique a été utilisé pour traiter le cancer par injection directe dans la tumeur.
Étant le principal constituant du vinaigre, l’acide acétique est utilisé dans le marinage de nombreux légumes.


La fabrication du caoutchouc implique l'utilisation d'acide acétique.
L'acide acétique est également utilisé dans la fabrication de divers parfums.
L'acide acétique est largement utilisé dans la production de VAM (monomère d'acétate de vinyle).


Lorsque deux molécules d’acide acétique subissent ensemble une réaction de condensation, le produit formé est l’anhydride acétique.
L'acide acétique est largement utilisé dans la préparation industrielle du téréphtalate de diméthyle (DMT).
L'acide acétique est utilisé dans la fabrication d'anhydride acétique, d'acétate de cellulose, d'acétate de vinyle monomère, d'esters acétiques, d'acide chloracétique, de plastiques, de colorants, d'insecticides, de produits chimiques photographiques et de caoutchouc.


D'autres utilisations commerciales de l'acide acétique comprennent la fabrication de vitamines, d'antibiotiques, d'hormones et de produits chimiques organiques, ainsi que comme additif alimentaire (acidulant).
L'acide acétique est également utilisé dans divers procédés d'impression textile.
L'acide acétique est le composant principal du vinaigre, qui contient de 4 à 18 % d'acide acétique.


L'acide acétique est utilisé comme conservateur alimentaire et additif alimentaire (connu sous le nom d'E260).
L'acide acétique est utilisé comme matière première et solvant dans la production d'autres produits chimiques, dans la production pétrolière et gazière, ainsi que dans les industries alimentaire et pharmaceutique.


De grandes quantités d'acide acétique sont utilisées pour fabriquer des produits tels que de l'encre pour l'impression textile, des colorants, des produits chimiques photographiques, des pesticides, des produits pharmaceutiques, du caoutchouc et des plastiques.
L'acide acétique est également utilisé dans certains produits d'entretien ménager pour éliminer le calcaire.


Dans les aliments, l'acide acétique est utilisé pour ses propriétés antibactériennes, comme stabilisateur d'acidité, diluant les couleurs, comme agent aromatisant et pour inhiber la croissance des moisissures dans le pain.
En brassage, l'acide acétique est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.


L'acide acétique peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.
L'acide acétique est souvent utilisé comme vinaigre de table.


L'acide acétique est également utilisé directement comme condiment et dans le marinage des légumes et d'autres aliments.
L'acide acétique est utilisé comme composant principal dans la synthèse ultérieure dans le processus de production alimentaire et pharmaceutique.
Additif alimentaire L'acide acétique est largement utilisé dans le marinage, la mise en conserve, la fabrication de mayonnaise, de sauces et d'autres aliments.


Sous l'une des formes les plus courantes de l'acide acétique, le vinaigre est également utilisé directement comme condiment et dans le marinage des légumes et d'autres aliments pour préserver les aliments contre les bactéries et les champignons.
En brassage, l'acide acétique est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.


Lorsqu'il est utilisé comme additif alimentaire, l'acide acétique possède un numéro E 260.
L'acide acétique peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.


L'utilisation de l'acide acétique est approuvée comme créant une dépendance alimentaire dans l'UE et est généralement reconnue comme une substance alimentaire sûre aux États-Unis.
En plus du vinaigre, l'acide acétique est utilisé comme additif alimentaire et conservateur dans divers autres aliments, notamment les produits de boulangerie, les viandes transformées, les fromages et les condiments.


De nombreux aliments marinés, comme les cornichons et la choucroute, contiennent également de l'acide acétique comme sous-produit naturel du processus de fermentation.
L'acide acétique est également utilisé dans la production de divers ingrédients alimentaires, notamment des sels, des esters et des anhydrides.
Ces dérivés de l'acide acétique sont utilisés comme conservateurs, arômes et émulsifiants dans les aliments transformés.


Quelques exemples de ces dérivés comprennent l'acétate de sodium, l'acétate d'éthyle et l'anhydride acétique.
L'acide acétique est également utilisé dans la production de divers adhésifs, revêtements et encres, ainsi que pour produire de l'acétate de cellulose, utilisé dans les films photographiques et d'autres applications.


L'acide acétique se trouve naturellement dans de nombreux aliments et est également produit synthétiquement pour diverses applications industrielles.
Les dérivés de l'acide acétique sont utilisés comme additifs alimentaires et conservateurs, ainsi que dans la production de divers produits chimiques et matériaux.
L'acide acétique est l'un des acides carboxyliques les plus simples.


Il a une variété d’utilisations, allant de l’alimentaire au médical en passant par l’industrie.
Comme mentionné précédemment, l’acide acétique se trouve principalement dans le vinaigre.
L'acide acétique est également utilisé comme additif alimentaire (numéro E E260) pour réguler l'acidité et comme conservateur.


L'acide acétique est également essentiel dans le processus de décapage, qui consiste à conserver des légumes ou des fruits (comme les concombres, les betteraves ou le zeste de pastèque) dans du vinaigre.
L'acide acétique aide à prévenir la croissance de bactéries nocives et préserve la couleur, la saveur et la texture naturelles des légumes ou des fruits.


Le marinage est une technique couramment utilisée pour conserver les aliments, en particulier dans les pays où les hivers sont longs et où les produits frais ne sont pas disponibles.
L'acide acétique est utilisé dans la production d'une large gamme de produits chimiques et de matériaux, tels que l'acétate de vinyle monomère (VAM), l'acétate de cellulose et l'anhydride acétique.


Ces produits chimiques sont utilisés dans diverses industries, notamment les textiles, les plastiques, les revêtements et les adhésifs.
L'acide acétique peut également être utilisé pour produire des tissus synthétiques qui ressemblent à des tissus naturels comme la soie, la laine ou le coton.
L'acide acétique peut être utilisé pour augmenter l'acidité (et abaisser le pH) des produits alimentaires ainsi que pour améliorer la qualité organoleptique en donnant au produit une saveur acide, comme les chips de sel et de vinaigre.


L'acide acétique est également un conservateur populaire car il arrête la croissance bactérienne dans les vinaigrettes, les sauces, le fromage et les cornichons.
L'acide acétique/vinaigre est utilisé pour mariner les aliments, ce qui est un type de méthode de conservation. Lorsqu’il est utilisé avec du bicarbonate de soude, l’acide acétique agit également comme agent levant chimique.


Outre l’alimentation, l’acide acétique a été utilisé en médecine, notamment dans les gouttes auriculaires, et dans un certain nombre de procédés industriels.
L'acide acétique est utilisé pour fabriquer de l'acétate de cellulose et de l'acétate de polyvinyle, et l'acide acétique glacial en particulier est fréquemment utilisé comme solvant.
Comme mentionné précédemment, l’acide acétique est largement utilisé comme conservateur alimentaire.


L'acide acétique rend les aliments moins hospitaliers aux bactéries nocives pouvant provoquer une intoxication alimentaire.
Lorsqu’il est utilisé en petites quantités, l’acide acétique peut prolonger efficacement la durée de conservation des aliments.
De plus, de l'acide acétique peut également être ajouté au liquide de décapage pour aider à maintenir le niveau d'acidité du produit mariné, le faisant ainsi durer plus longtemps.


Une autre application populaire de l’acide acétique est celle d’exhausteur naturel de goût des aliments.
En plus d'améliorer le goût de nombreux aliments transformés, notamment les sauces, les vinaigrettes et les condiments, l'acide acétique est également utilisé pour donner une saveur aigre aux boissons comme les sodas et les boissons énergisantes.


L'acide acétique est ajouté en petites quantités à ces produits afin de conférer un goût acidulé et rafraîchissant que de nombreux consommateurs préfèrent.
L'acide acétique est utilisé dans une grande variété de produits de nettoyage ménagers, notamment les nettoyants tout usage, les nettoyants pour vitres et les solutions de nettoyage pour salles de bains.
En plus de son utilisation dans les nettoyants ménagers, l’acide acétique est également utilisé comme désherbant naturel.


L'acide acétique peut être pulvérisé sur les mauvaises herbes des jardins et des pelouses pour les tuer sans contaminer le sol.
Certains jardiniers soucieux de l'environnement préfèrent utiliser des sprays de vinaigre plutôt que des herbicides chimiques toxiques, car l'acide acétique est considéré comme une solution plus respectueuse de l'environnement.


Certaines recherches ont également montré que l’acide acétique peut avoir des effets bénéfiques potentiels sur la santé.
Par exemple, l’acide acétique a été étudié pour son potentiel à abaisser le taux de sucre dans le sang et à améliorer la sensibilité à l’insuline.
De plus, l’acide acétique peut aider à perdre du poids en réduisant l’appétit et en favorisant la sensation de satiété.


Cependant, des recherches supplémentaires sont nécessaires pour comprendre pleinement les bienfaits potentiels de l’acide acétique sur la santé.
En termes de sécurité, l'acide acétique doit être manipulé avec précaution.
Pour résumer, l’acide acétique est un ingrédient polyvalent avec de nombreuses applications.


L'acide acétique est couramment utilisé comme conservateur alimentaire, exhausteur de goût et agent de nettoyage.
L'acide acétique présente également des avantages potentiels pour la santé, bien que des recherches supplémentaires soient nécessaires pour confirmer ces avantages.
Comme tout produit chimique, l’acide acétique doit être manipulé avec soin et stocké correctement afin de minimiser les risques de blessures ou de dommages matériels.


En conclusion, l’acide acétique est un ingrédient alimentaire largement utilisé avec de nombreuses applications et avantages.
L'acide acétique est une substance naturelle sans danger lorsqu'elle est utilisée de manière appropriée.
Que vous l'utilisiez en cuisine ou à des fins de nettoyage, l'acide acétique est une solution polyvalente et efficace sur laquelle on compte depuis des siècles.


L’acide acétique est un ingrédient alimentaire polyvalent et largement utilisé, présentant de nombreux avantages et applications possibles, ainsi que quelques inconvénients.
Comprendre les propriétés et les utilisations de l’acide acétique est essentiel pour toute personne travaillant avec des aliments ou des produits chimiques.
Outre l'acide acétique, il existe d'autres types d'acides utilisés dans la production alimentaire, tels que l'acide ascorbique (vitamine C), l'acide citrique et l'acide malique.


Ces acides sont couramment utilisés comme conservateurs, stabilisants, exhausteurs de goût et acidulants, selon la formulation spécifique du produit.
Bien que chaque type d'acide ait ses propres propriétés uniques, l'acide acétique se distingue par son goût aigre et son arôme piquant.
L’une des principales applications de l’acide acétique est la production de vinaigre, un condiment largement utilisé obtenu par fermentation d’éthanol et d’autres sucres.


Le vinaigre de cidre de pomme, le vinaigre balsamique et le vinaigre blanc font partie des variétés de vinaigre les plus populaires disponibles.
Chaque type de vinaigre a la saveur unique de l'acide acétique et peut être utilisé dans une gamme de recettes, des marinades aux vinaigrettes.
Régulateur d'acidité L'acide acétique est couramment utilisé dans les aliments comme agent de conservation et aromatisant.


L'acide acétique est principalement utilisé pour réguler les niveaux d'acidité de divers produits alimentaires, notamment les cornichons, les sauces, les vinaigrettes et les condiments.
De plus, l’acide acétique, régulateur d’acidité, est efficace pour empêcher la croissance de bactéries et de champignons dans les aliments, prolongeant ainsi leur durée de conservation.
L'acide acétique est considéré comme sans danger pour la consommation lorsqu'il est utilisé dans les limites approuvées fixées par les autorités réglementaires.


L'acide acétique est couramment utilisé dans les légumes marinés, les vinaigrettes, les sauces et les condiments pour donner de l'acidité et rehausser les saveurs.
L'acide acétique est utilisé depuis des siècles dans la conservation et l'aromatisation des aliments.
L'acide acétique est un additif couramment utilisé dans l'industrie alimentaire.


L'acide acétique est un acide naturel présent dans le vinaigre et est largement utilisé comme conservateur alimentaire et agent aromatisant.
L'acide acétique est connu pour son goût aigre et est souvent ajouté à divers produits alimentaires tels que les cornichons, les sauces, les condiments et les vinaigrettes pour rehausser leur saveur et prolonger leur durée de conservation.


En tant que conservateur alimentaire, l'acide acétique agit en créant un environnement acide qui inhibe la croissance des bactéries et autres micro-organismes.
Cela aide à prévenir la détérioration des aliments et à augmenter la stabilité de l'acide acétique.
L'acide acétique agit également comme régulateur de pH, aidant à maintenir le niveau d'acidité souhaité dans certains aliments.


Comme pour tout additif alimentaire, il est recommandé de consommer les aliments contenant de l’acide acétique avec modération et dans le cadre d’une alimentation équilibrée.
En conclusion, l’acide acétique est un additif alimentaire largement utilisé qui sert à la fois de conservateur et d’exhausteur de goût.
L'acide acétique donne un goût aigre et contribue à prolonger la durée de conservation de divers produits alimentaires.



-L'acide acétique de formule CH3COOH ou additif alimentaire E260 est utilisé :
*l'industrie alimentaire – connue sous le nom d'additif E260, est impliquée dans la production de produits laitiers, de salades, de sauces, de vinaigrettes, de marinades et de conserves ;
*Industrie pharmaceutique – fait partie de l'aspirine, de la phénacétine, d'autres médicaments et compléments alimentaires qui stabilisent la tension artérielle et réduisent la glycémie ;
*industrie textile – en tant que composant pour la fabrication et la teinture de tissus en rayonne et en latex ;
*sphère cosmétique – utilisée pour équilibrer l’odeur et réguler les caractéristiques de diverses compositions ;
*industrie chimique – production de produits de nettoyage et de détergents, de produits chimiques ménagers, d'acétone, de colorants synthétiques ;
*comme solvant pour vernis, coagulant de latex ;
*comme agent acétylant en synthèse organique ;
*sels d'acide acétique (Fe, Al, Cr, etc.) – mordants pour teinture, etc.


-Élevage d'abeilles :
La fumigation à l'acide acétique tuera une grande variété d'agents pathogènes, tels que les agents responsables du couvain du Crétacé, de la loque européenne, de Nosema et de l'amibe.
L'acide acétique éliminera également tous les stades de la teigne de la cire, à l'exception des pupes.


-Monomère d'acétate de vinyle :
Production d'acétate de vinyle monomère (VAM), l'application consomme environ 40 à 45 % de la production mondiale d'acide acétique.
La réaction se fait avec l'éthylène et l'acide acétique avec l'oxygène sur un catalyseur au palladium.


-Production d'esters :
Les esters d'acide acétique sont utilisés comme solvant dans les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.


-Utiliser comme solvant :
L'acide acétique est un excellent solvant protique polaire.
L'acide acétique est souvent utilisé comme solvant de recristallisation pour purifier les composés organiques.
L'acide acétique est utilisé comme solvant dans la production d'acide téréphtalique (TPA), une matière première pour la production de polyéthylène téréphtalate (PET).


-Utilisation médicale de l'acide acétique :
L’injection d’acide acétique dans une tumeur est utilisée pour traiter le cancer depuis les années 1800.
L'acide acétique est utilisé dans le cadre du dépistage du cancer du col de l'utérus dans de nombreuses régions des pays en développement.

L'acide est appliqué sur le col et si une zone blanche apparaît après environ une minute, le test est positif.
L'acide acétique est un antiseptique efficace lorsqu'il est utilisé sous forme de solution à 1 %, avec un large spectre d'activité contre les streptocoques, les staphylocoques, les pseudomonas, les entérocoques et autres.

L'acide acétique peut être utilisé pour traiter les infections cutanées causées par des souches de pseudomonas résistantes aux antibiotiques typiques.
Bien que l'acide acétique dilué soit utilisé en iontophorèse, aucune preuve de haute qualité ne soutient ce traitement pour la maladie de la coiffe des rotateurs.
En tant que traitement de l'otite externe, il figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.


-Utilisations alimentaires de l'acide acétique :
L'acide acétique contient 349 kcal (1 460 kJ) pour 100 g.
Le vinaigre ne contient généralement pas moins de 4 % d’acide acétique en masse.
Les limites légales sur la teneur en acide acétique varient selon les juridictions.

Le vinaigre est utilisé directement comme condiment et dans le marinage des légumes et autres aliments.
Le vinaigre de table a tendance à être plus dilué (4 à 8 % d'acide acétique), tandis que le décapage alimentaire commercial utilise des solutions plus concentrées.
La proportion d’acide acétique utilisée dans le monde sous forme de vinaigre n’est pas aussi importante que les utilisations industrielles, mais il s’agit de loin de l’application la plus ancienne et la plus connue.


-Acide acétique comme solvant :
À l'état liquide, CH3COOH est un hydrophile (se dissout facilement dans l'eau) et également un solvant polaire et protique.
Un mélange d’acide acétique et d’eau est ainsi similaire à un mélange d’éthanol et d’eau.
L'acide acétique forme également des mélanges miscibles avec l'hexane, le chloroforme et plusieurs huiles.
Cependant, l'acide acétique ne forme pas de mélanges miscibles avec les alcanes à longue chaîne (comme l'octane).


-Monomère d'acétate de vinyle :
La principale utilisation de l’acide acétique est la production d’acétate de vinyle monomère (VAM).
En 2008, on estimait que cette application consommait un tiers de la production mondiale d'acide acétique.

La réaction consiste en de l'éthylène et de l'acide acétique avec de l'oxygène sur un catalyseur au palladium, réalisée en phase gazeuse.
2 H3C−COOH + 2 C2H4 + O2 → 2 H3C−CO−O−CH=CH2 + 2 H2O
L'acétate de vinyle peut être polymérisé en acétate de polyvinyle ou en d'autres polymères, qui sont des composants des peintures et des adhésifs.


-Production d'esters :
Les principaux esters de l'acide acétique sont couramment utilisés comme solvants pour les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.

Ils sont généralement produits par réaction catalysée à partir de l'acide acétique et de l'alcool correspondant :
CH3COO−H + HO−R → CH3COO−R + H2O, R = groupe alkyle général
Par exemple, l'acide acétique et l'éthanol donnent de l'acétate d'éthyle et de l'eau.
CH3COO−H + HO−CH2CH3 → CH3COO−CH2CH3 + H2O

Cependant, la plupart des esters d'acétate sont produits à partir d'acétaldéhyde en utilisant la réaction de Tishchenko.
De plus, les acétates d'éther sont utilisés comme solvants pour la nitrocellulose, les laques acryliques, les dissolvants pour vernis et les teintures pour bois.
Tout d'abord, les monoéthers de glycol sont produits à partir d'oxyde d'éthylène ou d'oxyde de propylène avec de l'alcool, qui sont ensuite estérifiés avec de l'acide acétique.

Les trois principaux produits sont l'acétate d'éther monoéthylique d'éthylène glycol (EEA), l'acétate d'éther monobutylique d'éthylène glycol (EBA) et l'acétate d'éther monométhylique de propylène glycol (PMA, plus communément appelé PGMEA dans les processus de fabrication de semi-conducteurs, où il est utilisé comme solvant de réserve. ).
Cette application consomme environ 15 à 20 % de l’acide acétique mondial.
Il a été démontré que les acétates d'éther, par exemple l'EEE, sont nocifs pour la reproduction humaine.


-Anhydride acétique:
Le produit de la condensation de deux molécules d'acide acétique est l'anhydride acétique.
La production mondiale d'anhydride acétique constitue une application majeure et utilise environ 25 à 30 % de la production mondiale d'acide acétique.
Le processus principal implique la déshydratation de l'acide acétique pour donner du cétène à 700-750 °C.

Le cétène réagit ensuite avec l'acide acétique pour obtenir l'anhydride :
CH3CO2H → CH2=C=O + H2O
CH3CO2H + CH2=C=O → (CH3CO)2O

L'anhydride acétique est un agent d'acétylation.
En tant que tel, la principale application de l'acide acétique concerne l'acétate de cellulose, un textile synthétique également utilisé pour les films photographiques.
L'anhydride acétique est également un réactif pour la production d'héroïne et d'autres composés.


-Utiliser comme solvant :
En tant que solvant protique polaire, l'acide acétique est fréquemment utilisé pour la recristallisation afin de purifier les composés organiques.
L'acide acétique est utilisé comme solvant dans la production d'acide téréphtalique (TPA), la matière première du polyéthylène téréphtalate (PET).
En 2006, environ 20 % de l’acide acétique était utilisé pour la production de TPA.

L'acide acétique est souvent utilisé comme solvant pour les réactions impliquant des carbocations, telles que l'alkylation de Friedel-Crafts.
Par exemple, une étape de la fabrication commerciale du camphre synthétique implique un réarrangement Wagner-Meerwein du camphène en acétate d'isobornyle ; ici, l'acide acétique agit à la fois comme solvant et comme nucléophile pour piéger le carbocation réarrangé.


-Vinaigre:
Le vinaigre contient généralement 4 à 18 % en poids d’acide acétique.
L'acide acétique est utilisé directement comme assaisonnement et marinade de légumes et autres produits alimentaires.
Le vinaigre de table est utilisé le plus souvent dilué (4 à 8 % d'acide acétique), tandis qu'une solution plus concentrée est utilisée pour le décapage des aliments commerciaux.


-Usage industriel:
L'acide acétique est utilisé dans de nombreux processus industriels pour la production de substrats et il est souvent utilisé comme réactif chimique pour la production d'un certain nombre de composés chimiques comme l'anhydride acétique, l'ester, le monomère d'acétate de vinyle, le vinaigre et de nombreux autres matériaux polymères.
L'acide acétique est également utilisé pour purifier les composés organiques car il peut être utilisé comme solvant pour la recristallisation.


-Applications industrielles de l'acide acétique :
En tant qu'acide organique important, l'acide acétique est principalement utilisé dans la synthèse de l'acétate de vinyle, de l'acétate de cellulose, de l'anhydride acétique, de l'acétate, de l'acétate métallique et de l'acide acétique halogéné.

L'acide acétique glacial est également une matière première importante pour les produits pharmaceutiques, les colorants, les pesticides et autres synthèses organiques.
En outre, l'acide acétique est également largement utilisé dans la fabrication de médicaments photographiques, d'acétate de cellulose, d'impression et de teinture de tissus et dans l'industrie du caoutchouc.


-Applications alimentaires de l'acide acétique :
Dans l’industrie alimentaire, l’acide acétique est généralement utilisé comme acidulant, exhausteur de goût et fabrication d’épices.

*Vinaigre synthétique :
Diluer l'acide acétique à 4-5 % avec de l'eau, ajouter divers agents aromatisants, la saveur est similaire à celle du vinaigre d'alcool, le temps de production est court et le prix est bon marché.

En tant qu'agent acide, l'acide acétique glacial peut être utilisé dans les assaisonnements composés, le vinaigre préparé, les aliments en conserve, la gelée et le fromage, et utilisé avec modération en fonction des besoins de production.
L'acide acétique peut également être utilisé comme exhausteur de goût et la dose recommandée est de 0,1 à 0,3 g/kg.


-Usage médical :
L'acide acétique a de nombreuses utilisations dans le domaine médical.
Les utilisations les plus importantes ici sont que l'acide acétique peut être utilisé comme antiseptique contre les pseudomonas, les entérocoques, les streptocoques, les staphylocoques et autres.
L'acide acétique est également utilisé dans le dépistage du cancer du col de l'utérus et pour le traitement des infections.
De plus, l’acide acétique est utilisé comme agent pour lyser les globules rouges avant l’examen des globules blancs.
On dit également que le vinaigre réduit les concentrations élevées de sucre dans le sang.


-Utilisations importantes et populaires de l'acide acétique :
Il existe de nombreuses utilisations de l'acide acétique.
Ainsi, en plus d’être traité comme un simple conservateur alimentaire (vinaigre), l’acide est utilisé dans de nombreux domaines et instances.

Certaines utilisations principales et importantes incluent :
*Usage industriel
*Utilisations médicinales
*Ménage
*Industrie alimentaire


-Industrie alimentaire:
Dans l'industrie alimentaire, l'acide acétique est le plus souvent utilisé dans les opérations commerciales de décapage et dans les condiments comme la mayonnaise, la moutarde et le ketchup.
L'acide acétique est également utilisé pour assaisonner divers aliments comme les salades, etc.
De plus, le vinaigre peut réagir avec des ingrédients alcalins comme le bicarbonate de soude et lorsque cela se produit, il produit un gaz qui contribue à la fabrication des produits de boulangerie.


-Utilisations domestiques :
L'acide acétique, qui est une solution diluée, est largement utilisé comme vinaigre.
Et comme nous le savons, le vinaigre est largement utilisé pour le nettoyage, la lessive, la cuisine et bien d’autres usages ménagers.

Les agriculteurs pulvérisent généralement de l'acide acétique sur l'ensilage du bétail pour contrer la croissance bactérienne et fongique.
En dehors de cela, l’acide acétique est utilisé pour la fabrication d’encres et de colorants ainsi que dans la fabrication de parfums.
L'acide acétique est également impliqué dans la fabrication des industries du caoutchouc et du plastique.


-L'acide acétique de formule CH3COOH ou additif alimentaire E260 est utilisé :
*l'industrie alimentaire – connue sous le nom d'additif E260, est impliquée dans la production de produits laitiers, de salades, de sauces, de vinaigrettes, de marinades et de conserves ;
*Industrie pharmaceutique – fait partie de l'aspirine, de la phénacétine, d'autres médicaments et compléments alimentaires qui stabilisent la tension artérielle et réduisent la glycémie ;
*industrie textile – en tant que composant pour la fabrication et la teinture de tissus en rayonne et en latex ;
*sphère cosmétique – utilisée pour équilibrer l’odeur et réguler les caractéristiques de diverses compositions ;
*industrie chimique – production de produits de nettoyage et de détergents, de produits chimiques ménagers, d'acétone, de colorants synthétiques ;
*comme solvant pour vernis, coagulant de latex ;
*comme agent acétylant en synthèse organique ;
*sels d'acide acétique (Fe, Al, Cr, etc.) – mordants pour teinture, etc.



APPLICATION INDUSTRIELLE DE L'ACIDE ACÉTIQUE :
Grâce à ses propriétés polyvalentes, l'acide acétique joue un rôle essentiel dans diverses industries européennes.

*Dans l'industrie chimique, l'acide acétique est un élément fondamental pour la production de nombreux produits chimiques.
Un exemple est l’acétate de vinyle monomère (VAM), dont l’acide acétique est largement utilisé pour fabriquer des adhésifs, des peintures et des revêtements.
L'acide acétique est également un précurseur essentiel pour la production d'anhydride acétique, d'esters et d'acétate de cellulose.

*L'industrie agroalimentaire utilise largement l'acide acétique comme agent de conservation et aromatisant.
Le vinaigre, principalement composé d'acide acétique, est largement utilisé dans la cuisine, les marinades et les vinaigrettes.

*Dans l'industrie pharmaceutique, l'acide acétique est un intermédiaire crucial dans la synthèse de produits pharmaceutiques, notamment des antibiotiques, des vitamines et des analgésiques.
La nature polyvalente de l’acide acétique permet la production d’une large gamme de médicaments.

*L'industrie textile s'appuie sur l'acide acétique pour fabriquer des fibres d'acétate synthétique.
Les fibres d'acétate sont couramment utilisées dans les vêtements, les tissus d'ameublement et les textiles en raison de leurs excellentes propriétés de drapage et de leur durabilité.



UTILISATIONS ET AVANTAGES DE L'ACIDE ACÉTIQUE :
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique est sous forme de vinaigre domestique, qui est naturellement fabriqué à partir de sources fermentescibles telles que le vin, les pommes de terre, les pommes, les raisins, les baies et les céréales.

Le vinaigre est une solution claire contenant généralement environ 5 pour cent d'acide acétique et 95 pour cent d'eau.
Le vinaigre est utilisé comme ingrédient alimentaire et peut également être un ingrédient dans les produits de soins personnels, les nettoyants ménagers, les shampoings pour animaux de compagnie et de nombreux autres produits pour la maison :

-vinaigre et bicarbonate de soude
*La préparation des aliments:
Le vinaigre est un ingrédient alimentaire courant, souvent utilisé comme saumure dans les liquides de marinade, les vinaigrettes, les marinades et autres vinaigrettes.
Le vinaigre peut également être utilisé dans la préparation des aliments pour aider à contrôler la contamination par Salmonella dans les produits à base de viande et de volaille.

*Nettoyage:
Le vinaigre peut être utilisé dans toute la maison comme nettoyant pour vitres, pour nettoyer les cafetières automatiques et la vaisselle, comme agent de rinçage pour les lave-vaisselle et pour nettoyer le carrelage et le coulis des salles de bains.
Le vinaigre peut également être utilisé pour nettoyer les outils et équipements liés à l’alimentation, car il ne laisse généralement pas de résidus nocifs et nécessite moins de rinçage.

*Jardinage:
À des concentrations de 10 à 20 pour cent, l’acide acétique peut être utilisé comme désherbant dans les jardins et les pelouses.
Lorsqu'il est utilisé comme herbicide, l'acide acétique peut tuer les mauvaises herbes qui ont émergé du sol, mais n'affecte pas les racines des mauvaises herbes, afin qu'elles puissent repousser.

Lorsque l’acide acétique est à une concentration de 99,5 pour cent, on l’appelle acide acétique glacial.
L'acide acétique glacial a diverses utilisations, notamment comme matière première et solvant dans la production d'autres produits chimiques.



LES APPLICATIONS INDUSTRIELLES DE L’ACIDE ACÉTIQUE COMPRENNENT :
*Acétate de vinyle, fibres de cellulose et plastiques :
L'acide acétique est utilisé dans la fabrication de nombreux produits chimiques, notamment l'acétate de vinyle, l'anhydride acétique et les esters d'acétate.
L'acétate de vinyle est utilisé pour fabriquer de l'acétate de polyvinyle, un polymère utilisé dans les peintures, les adhésifs, les plastiques et les finitions textiles.

L'anhydride acétique est utilisé dans la fabrication de fibres d'acétate de cellulose et de plastiques utilisés pour les films photographiques, les vêtements et les revêtements.
L'acide acétique est également utilisé dans la réaction chimique pour produire de l'acide téréphtalique purifié (PTA), qui est utilisé pour fabriquer la résine plastique PET utilisée dans les fibres synthétiques, les contenants alimentaires, les bouteilles de boissons et les films plastiques.

*Solvants :
L'acide acétique est un solvant hydrophile, similaire à l'éthanol.
L'acide acétique dissout les composés tels que les huiles, le soufre et l'iode et se mélange à l'eau, au chloroforme et à l'hexane.

*Acidification du pétrole et du gaz :
L'acide acétique peut aider à réduire la corrosion des métaux et l'accumulation de tartre dans les applications liées aux puits de pétrole et de gaz.
L'acide acétique est également utilisé dans la stimulation des puits de pétrole pour améliorer le débit et augmenter la production de pétrole et de gaz.

*Produits pharmaceutiques et vitamines :
L'industrie pharmaceutique utilise l'acide acétique dans la fabrication de vitamines, d'antibiotiques, d'hormones et d'autres produits.

*Préparation des aliments:
L'acide acétique est couramment utilisé comme produit de nettoyage et de désinfection dans les usines de transformation des aliments.

*Autres utilisations:
Des sels d'acide acétique et divers produits chimiques de caoutchouc et photographiques sont fabriqués à partir d'acide acétique.
L'acide acétique et son sel de sodium sont couramment utilisés comme conservateur alimentaire.



À QUOI PEUT-ON UTILISER L’ACIDE ACÉTIQUE ?
*Élimination du calcaire tenace sur les sanitaires et les appareils de cuisine.
*Lutte contre les dépôts verts sur les terrasses, les meubles de jardin et les surfaces en pierre.
*Détartrage de machines et équipements industriels.
*Nettoyage et désinfection dans l'industrie alimentaire, si dilué de manière adéquate.
*Utilisation comme matière première en synthèse chimique pour la production d'esters, d'esters acétiques et de divers composés organiques.
*En agriculture pour réguler la valeur du pH du sol.
*Comme conservateur dans la transformation des aliments, par exemple lors du marinage des légumes.
*Nettoyage et restauration de façades et monuments.



UTILISATIONS DE L'ACIDE ACÉTIQUE :
Le réactif chimique pour le traitement des composés chimiques est l'acide acétique.
Dans la production de monomère d'acétate de vinyle, d'anhydride acétique et d'esters, l'utilisation d'acide acétique est importante.


*Monomère d'acétate de vinyle :
Le traitement du monomère d'acétate de vinyle (VAM) est la principale application de l'acide acétique.
L'acétate de vinyle subit une polymérisation pour produire de l'acétate de polyvinyle ou d'autres polymères, qui sont des composants des peintures et des adhésifs.

La réaction consiste en de l'éthylène et de l'acide acétique avec de l'oxygène sur un catalyseur au palladium.
2CH3COOH+2C2H4+O2→2CH3CO2CH=CH2+2H2O
La colle à bois utilise également des polymères d'acétate de vinyle.

*Anhydride acétique:
L'anhydride acétique est le résultat de la condensation de deux molécules d'acide acétique.
Le traitement mondial de l'anhydride acétique est une utilisation importante, utilisant environ 25 à 30 pour cent de la production mondiale d'acide acétique.
La méthode clé comprend la déshydratation de l’acide acétique pour donner du cétène à 700-750 °C.

CH3CO2H → CH2 = C = O + H2O
CH3CO2H+CH2=C=O→CH3CO2O

Il est idéal pour la désinfection générale et pour lutter contre la moisissure, car l'acide acétique tue les champignons et les bactéries.
L'acide acétique est utile dans une gamme de produits de nettoyage traditionnels et écologiques, tels que les nettoyants contre la moisissure, les nettoyants pour sols, les sprays pour le nettoyage et le dépoussiérage et les nettoyants pour toitures, sous forme de vinaigre ou d'élément.

Le groupe acétyle est largement utilisé dans le domaine de la biochimie.
Les produits à base d'acide acétique sont un métaboliseur efficace des glucides et des graisses lorsqu'ils sont liés à la coenzyme A.
En tant que traitement de l'otite externe, l'acide acétique est le médicament le meilleur et le plus efficace dans un système de santé figurant sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.



L'ACIDE ACÉTIQUE AU QUOTIDIEN :
L'acide acétique se trouve dans de nombreux produits du quotidien, comme décrit ci-dessus, tels que les aliments, les produits de nettoyage et les cosmétiques, entre autres.
De tous, le vinaigre est l'un des plus importants, car l'acide acétique a différentes utilisations, comme pour la cuisine ou le nettoyage.
L'acide acétique est un produit infaillible lorsqu'il s'agit de traiter les taches tenaces comme l'urine de chien, la rouille ou autres saletés.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est un liquide incolore ; avec une forte odeur de vinaigre.
L'acide acétique est considéré comme un composé organique volatil par l'Inventaire national des polluants.
Densité spécifique : 1,049 à 25 °C
Point de fusion : 16,7°C
Point d'ébullition : 118°C
Pression de vapeur : 1,5 kPa à 20°C



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est hygroscopique, ce qui signifie qu'il a tendance à absorber l'humidité.
L'acide acétique se mélange avec l'alcool éthylique, le glycérol, l'éther, le tétrachlorure de carbone et l'eau et réagit avec les oxydants et les bases.
L'acide acétique concentré est corrosif et attaque de nombreux métaux en formant des gaz inflammables ou explosifs.
L'acide acétique peut également attaquer certaines formes de plastique, de caoutchouc et de revêtements.



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE :
1. Tue les bactéries :
Le vinaigre est utilisé depuis longtemps comme désinfectant naturel, en grande partie en raison de sa teneur en acide acétique.
L'acide acétique possède de puissantes propriétés antibactériennes et peut être efficace pour tuer plusieurs souches spécifiques de bactéries.

En fait, une étude in vitro réalisée en 2014 a révélé que l’acide acétique était capable de bloquer la croissance des myobactéries, un genre de bactérie responsable de la tuberculose et de la lèpre.
D'autres recherches montrent que le vinaigre peut également protéger contre la croissance bactérienne, ce qui peut être partiellement dû à la présence d'acide acétique.


2. Réduit la tension artérielle :
Non seulement l’hypertension artérielle exerce une pression supplémentaire sur le muscle cardiaque et l’affaiblit lentement avec le temps, mais l’hypertension artérielle est également un facteur de risque majeur de maladie cardiaque.
En plus de modifier votre alimentation et votre routine d’exercice, des recherches prometteuses ont montré que l’acide acétique peut également aider à contrôler la tension artérielle.


3. Diminue l’inflammation :
L’inflammation aiguë joue un rôle important dans la fonction immunitaire, aidant à défendre l’organisme contre les maladies et les infections.
Cependant, le maintien de niveaux élevés d’inflammation à long terme peut avoir un effet néfaste sur la santé, des études montrant que l’inflammation pourrait contribuer au développement de maladies chroniques comme les maladies cardiaques et le cancer.
On pense que l’acide acétique réduit l’inflammation et aide à protéger contre les maladies.


4. Prend en charge la perte de poids :
Certaines recherches suggèrent que l’acide acétique pourrait aider à contrôler le poids en favorisant la perte de poids.


5. Favorise le contrôle de la glycémie :
Le vinaigre de cidre de pomme a été bien étudié pour sa capacité à favoriser le contrôle de la glycémie.
La recherche montre que l'acide acétique, l'un des principaux composants présents dans le vinaigre de cidre de pomme, peut jouer un rôle dans ses puissantes propriétés hypoglycémiantes.

Dans une étude, il a été démontré que la consommation de vinaigre avec de l'acide acétique en même temps qu'un repas riche en glucides réduisait les taux de sucre dans le sang et d'insuline grâce à sa capacité à ralentir la vidange de l'estomac.
Une autre étude in vitro a abouti à des résultats similaires, indiquant que l'acide acétique diminuait l'activité de plusieurs enzymes impliquées dans le métabolisme des glucides, ce qui pourrait diminuer l'absorption des glucides et du sucre dans l'intestin grêle.



NOMENCLATURE DE L'ACIDE ACÉTIQUE :
Le nom trivial « acide acétique » est le nom IUPAC le plus couramment utilisé et préféré.
Le nom systématique « acide éthanoïque », un nom IUPAC valide, est construit selon la nomenclature substitutive.
Le nom « acide acétique » dérive du mot latin pour vinaigre, « acetum », qui est lié au mot « acide » lui-même.

« Acide acétique glacial » est un nom pour l'acide acétique sans eau (anhydre).
Semblable au nom allemand « Eisessig » (« vinaigre de glace »), le nom vient des cristaux solides ressemblant à de la glace qui se forment avec agitation, légèrement en dessous de la température ambiante à 16,6 °C (61,9 °F).

L'acide acétique ne peut jamais être véritablement exempt d'eau dans une atmosphère contenant de l'eau, c'est pourquoi la présence de 0,1 % d'eau dans l'acide acétique glacial abaisse son point de fusion de 0,2 °C.
Un symbole courant pour l'acide acétique est AcOH (ou HOAc), où Ac est le symbole du pseudoélément représentant le groupe acétyle CH3−C(=O)− ; la base conjuguée, l'acétate (CH3COO−), est ainsi représentée par AcO−.

(Le symbole Ac pour le groupe fonctionnel acétyle ne doit pas être confondu avec le symbole Ac pour l'élément actinium ; le contexte évite toute confusion parmi les chimistes organiques).
Pour mieux refléter sa structure, l'acide acétique est souvent écrit CH3−C(O)OH, CH3−C(=O)OH, CH3COOH et CH3CO2H.

Dans le contexte des réactions acide-base, l'abréviation HAc est parfois utilisée, où Ac dans ce cas est un symbole pour l'acétate (plutôt que l'acétyle).
L'acétate est l'ion résultant de la perte de H+ de l'acide acétique.
Le nom « acétate » peut également désigner un sel contenant cet anion, ou un ester de l'acide acétique.



HISTOIRE DE L'ACIDE ACÉTIQUE :
Le vinaigre était connu au début de la civilisation comme le résultat naturel de l’exposition de la bière et du vin à l’air, car les bactéries productrices d’acide acétique sont présentes partout dans le monde.
L'utilisation de l'acide acétique en alchimie s'étend jusqu'au troisième siècle avant JC, lorsque le philosophe grec Théophraste a décrit comment le vinaigre agissait sur les métaux pour produire des pigments utiles en art, notamment la céruse (carbonate de plomb) et le vert-de-gris, un mélange vert de sels de cuivre comprenant du cuivre. (II) acétate.

Les Romains de l’Antiquité faisaient bouillir du vin aigre pour produire un sirop très sucré appelé sapa.
Le Sapa produit dans des pots en plomb était riche en acétate de plomb, une substance sucrée également appelée sucre de plomb ou sucre de Saturne, qui contribuait au saturnisme parmi l'aristocratie romaine.

Au XVIe siècle, l'alchimiste allemand Andreas Libavius a décrit la production d'acétone à partir de la distillation sèche de l'acétate de plomb, la décarboxylation cétonique.

La présence d'eau dans le vinaigre a un effet si profond sur les propriétés de l'acide acétique que pendant des siècles, les chimistes ont cru que l'acide acétique glacial et l'acide présent dans le vinaigre étaient deux substances différentes.
Le chimiste français Pierre Adet les a prouvés identiques.


*Acide acétique cristallisé
En 1845, le chimiste allemand Hermann Kolbe synthétisa pour la première fois l'acide acétique à partir de composés inorganiques.
Cette séquence de réaction consistait en une chloration du disulfure de carbone en tétrachlorure de carbone, suivie d'une pyrolyse en tétrachloroéthylène et d'une chloration aqueuse en acide trichloroacétique, et se terminait par une réduction électrolytique en acide acétique.

En 1910, la majeure partie de l'acide acétique glacial était obtenue à partir de la liqueur pyroligneuse, un produit de la distillation du bois.
L'acide acétique a été isolé par traitement avec du lait de chaux, et l'acétate de calcium résultant a ensuite été acidifié avec de l'acide sulfurique pour récupérer l'acide acétique.
A cette époque, l’Allemagne produisait 10 000 tonnes d’acide acétique glacial, dont environ 30 % étaient utilisés pour la fabrication de teinture indigo.

Étant donné que le méthanol et le monoxyde de carbone sont des matières premières de base, la carbonylation du méthanol a longtemps semblé être des précurseurs attrayants de l'acide acétique.
Henri Dreyfus de British Celanese a développé une usine pilote de carbonylation du méthanol dès 1925.

Cependant, le manque de matériaux pratiques capables de contenir le mélange réactionnel corrosif aux hautes pressions nécessaires (200 atm ou plus) a découragé la commercialisation de ces voies.
Le premier procédé commercial de carbonylation du méthanol, utilisant un catalyseur au cobalt, a été développé par la société chimique allemande BASF en 1963.

En 1968, un catalyseur à base de rhodium (cis−[Rh(CO)2I2]−) a été découvert, capable de fonctionner efficacement à basse pression, sans presque aucun sous-produit.
La société chimique américaine Monsanto Company a construit la première usine utilisant ce catalyseur en 1970, et la carbonylation du méthanol catalysée par le rhodium est devenue la méthode dominante de production d'acide acétique (voir procédé Monsanto).

À la fin des années 1990, BP Chemicals a commercialisé le catalyseur Cativa ([Ir(CO)2I2]−), favorisé par l'iridium pour une plus grande efficacité.
Connue sous le nom de procédé Cativa, la production d'acide acétique glacial catalysée par l'iridium est plus verte et a largement supplanté le procédé Monsanto, souvent dans les mêmes usines de production.


*Milieu interstellaire
L'acide acétique interstellaire a été découvert en 1996 par une équipe dirigée par David Mehringer en utilisant l'ancien réseau de la Berkeley-Illinois-Maryland Association à l'observatoire radio de Hat Creek et l'ancien réseau millimétrique situé à l'observatoire radio d'Owens Valley.

Il a été détecté pour la première fois dans le nuage moléculaire Sagittaire B2 Nord (également connu sous le nom de source Sgr B2 Large Molecule Heimat).
L'acide acétique a la particularité d'être la première molécule découverte dans le milieu interstellaire à l'aide uniquement de radio-interféromètres ; dans toutes les découvertes moléculaires ISM précédentes réalisées dans les régimes de longueurs d'onde millimétriques et centimétriques, les radiotélescopes à parabole unique étaient au moins en partie responsables des détections.



QU'EST-CE QUE L'ACIDE ACÉTIQUE DANS LES ALIMENTS ?
L'acide acétique est un additif alimentaire couramment utilisé comme conservateur, exhausteur de goût et régulateur de pH.
L'acide acétique est un acide naturel présent dans le vinaigre et est également produit synthétiquement pour être utilisé dans des applications alimentaires.

L'acide acétique est généralement considéré comme sans danger pour la consommation à de faibles niveaux, et il est couramment utilisé dans les condiments, les aliments marinés, les sauces et les vinaigrettes pour donner un goût piquant et prolonger la durée de conservation.
Cependant, une consommation excessive d’acide acétique peut provoquer une irritation du système digestif.
Comme pour tout additif alimentaire, il est important de consommer l’acide acétique avec modération et de maintenir une alimentation équilibrée.



DÉTAILS PHYSIQUES ET PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
L'acide acétique, ou acide éthanoïque, est un liquide clair et incolore avec une odeur âcre semblable à celle du vinaigre.
L'acide acétique a une formule moléculaire CH₃COOH et un poids moléculaire de 60,05 g/mol.
Avec un point d'ébullition de 118,1 °C et un point de fusion de 16,6 °C, l'acide acétique est hautement soluble dans l'eau et miscible avec la plupart des solvants organiques.
Ces propriétés physiques font de l'acide acétique un composé polyvalent pour diverses applications industrielles.



MÉTHODES DE PRODUCTION DE L'ACIDE ACÉTIQUE :
L'acide acétique est principalement produit par deux méthodes principales : la carbonylation du méthanol et l'oxydation de l'acétaldéhyde.
La première méthode, la carbonylation du méthanol, est le procédé le plus courant pour la production d’acide acétique à grande échelle.
L'acide acétique implique la réaction du méthanol avec le monoxyde de carbone en présence d'un catalyseur, généralement des composés du rhodium ou de l'iode.

Cette réaction catalytique donne de l'acide acétique comme produit principal.
La deuxième méthode implique l'oxydation de l'acétaldéhyde. L'acétaldéhyde peut être oxydé à l'aide de divers catalyseurs, notamment le palladium ou le cuivre, produisant de l'acide acétique comme sous-produit.



A QUEL EST LE BUT DE L’ACIDE ACÉTIQUE DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique est couramment utilisé comme additif alimentaire.
L'acide acétique sert à plusieurs fins dans les additifs alimentaires.
Premièrement, l'acide acétique agit comme un conservateur en inhibant la croissance des bactéries et des champignons, prolongeant ainsi la durée de conservation du produit.
Deuxièmement, l’acide acétique rehausse la saveur et l’arôme des aliments en leur donnant un goût piquant et aigre.
De plus, l’acide acétique peut également être utilisé comme régulateur d’acidité et agent de contrôle du pH dans certains produits alimentaires.



FONCTIONS DE L'ACIDE ACÉTIQUE :
1. Régulateur d'acidité/agent tampon – Modifie ou maintient l'acidité ou la basicité des aliments/cosmétiques.
2. Médicament/médecine – Traite, soulage, guérit ou prévient la maladie. Tel que déclaré officiellement par un organisme gouvernemental de réglementation des médicaments
3. Exfoliant – Élimine les cellules mortes à la surface de la peau
4. Expérimental/breveté – Ingrédient relativement nouveau avec des données disponibles limitées
5. Insecticide/Pesticide – Tue ou inhibe les organismes indésirables
6. Conservateur – Prévient et inhibe la croissance de micro-organismes indésirables qui peuvent être nocifs
7. Solvant (Cosmétiques) – Améliore les propriétés des autres ingrédients



L'ACIDE ACÉTIQUE EST-IL SÛR ?
L'acide acétique est également connu sous le nom d'acide acétique, qui est un additif alimentaire largement utilisé.
L'acide acétique est considéré comme sans danger pour la consommation par les autorités réglementaires telles que la Food and Drug Administration (FDA) et l'Autorité européenne de sécurité des aliments (EFSA).



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE :
L'acide acétique possède de puissantes propriétés antibactériennes.
L'acide acétique aide à réduire la tension artérielle.
L'acide acétique aide également à réduire l'inflammation.
L'acide acétique favorise le contrôle de la glycémie.
L'acide acétique favorise également la perte de poids.



FONCTION ET CARACTÉRISTIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est utilisé comme conservateur contre les bactéries et les champignons.
Dans la mayonnaise, de l'acide acétique est ajouté pour augmenter l'inactivation des salmonelles.
L'activité la plus élevée de l'acide acétique se situe à faible pH.
L'acide acétique peut également être utilisé comme tampon dans les aliments acides.
L'acide acétique est également utilisé comme composant aromatique.



ORIGINE DE L'ACIDE ACÉTIQUE :
Acide naturel, présent dans la plupart des fruits.
L'acide acétique est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.
Produit commercialement par fermentation bactérienne de sucre, de mélasse ou d'alcool ou par synthèse chimique à partir d'acétaldéhyde.



L'ACIDE ACÉTIQUE EST-IL SANS GLUTEN ?
Oui.
L'acide acétique est sans gluten et largement utilisé dans les aliments sans gluten pour donner un goût aigre aux boissons acidulées.



POURQUOI L'ACIDE ACÉTIQUE EST-IL SANS GLUTEN ?
Le gluten est un type de protéine de grain élastique qui aide le blé, le seigle et l’orge à conserver leur forme.
En raison de ses propriétés collantes, le gluten est souvent ajouté à d’autres produits alimentaires (pâtes, sauces, craquelins, produits de boulangerie) pour épaissir ou lier ces produits entre eux.
Les matières premières utilisées dans la fabrication de l'acide acétique sont l'acétylcétène ; Son processus de fabrication est donc sans gluten.
Ainsi, l’acide acétique est sans gluten.



L'ACIDE ACÉTIQUE EST-IL SANS DANGER POUR LA CONSOMMATION DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique est considéré comme sans danger pour la consommation dans les aliments additifs.
L'acide acétique est une substance naturelle que l'on trouve couramment dans le vinaigre.
L'acide acétique est utilisé comme agent aromatisant et conservateur alimentaire dans divers aliments transformés.
Cependant, il est important de noter qu’une consommation excessive d’acide acétique peut avoir des effets néfastes sur la santé.
L'acide acétique est toujours recommandé de consommer des aliments additifs avec modération et dans le cadre d'une alimentation équilibrée.



COMMENT L’ACIDE ACÉTIQUE CONTRIBUE-T-IL À LA CONSERVATION DES ADDITIFS ALIMENTAIRES ?
L'acide acétique contribue à la conservation des additifs alimentaires de plusieurs manières.
Premièrement, l’acide acétique possède des propriétés antimicrobiennes qui inhibent la croissance des bactéries, des levures et des moisissures, réduisant ainsi le risque de détérioration des aliments et prolongeant la durée de conservation des produits.

De plus, l’acide acétique agit comme un régulateur de pH dans les additifs alimentaires.
L'acide acétique aide à maintenir les niveaux d'acidité, créant un environnement défavorable à la croissance de certains micro-organismes.
Ceci est particulièrement important dans les aliments en conserve et marinés où l'acidité joue un rôle crucial dans la prévention de la croissance de bactéries nocives comme Clostridium botulinum.

De plus, l'acide acétique contribue également à la préservation des additifs alimentaires en rehaussant la saveur.
L'acide acétique ajoute une acidité ou une acidité caractéristique, qui peut améliorer le profil gustatif de divers produits.
En améliorant l'expérience sensorielle globale, l'acide acétique peut contribuer à prolonger l'acceptabilité du consommateur et la consommation d'additifs alimentaires.

En résumé, l'acide acétique joue un rôle essentiel dans la préservation des additifs alimentaires en agissant comme agent antimicrobien, régulateur de pH et exhausteur de goût.
L'utilisation de l'acide acétique garantit la sécurité et la durée de conservation prolongée de divers produits alimentaires.
En conclusion, l’acide acétique joue un rôle crucial en tant qu’additif dans l’industrie agroalimentaire.

Grâce à ses propriétés polyvalentes, l'acide acétique rehausse les saveurs et agit comme un conservateur naturel, augmentant ainsi la durée de conservation de divers produits alimentaires.
Malgré certaines inquiétudes concernant sa sécurité et ses effets potentiels sur la santé, les recherches suggèrent que lorsqu'il est consommé avec modération, l'acide acétique est généralement considéré comme sans danger pour la consommation.

En tant que consommateur, il est important de rester informé de la présence d’acide acétique dans nos produits alimentaires et de faire des choix éclairés.
Ainsi, la prochaine fois que vous verrez l’étiquette des ingrédients contenant de l’acide acétique, soyez assuré qu’il peut être considéré comme un ajout sûr et efficace aux additifs alimentaires.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
-Cristaux d'acide acétique :

*Acidité
Le centre hydrogène du groupe carboxyle (−COOH) dans les acides carboxyliques tels que l'acide acétique peut se séparer de la molécule par ionisation :
CH3COOH ⇌ CH3CO − 2 + H+

En raison de cette libération du proton (H+), l'acide acétique a un caractère acide.
L'acide acétique est un acide monoprotique faible.
En solution aqueuse, l'acide acétique a une valeur pKa de 4,76.

La base conjuguée de l'acide acétique est l'acétate (CH3COO−).
Une solution 1,0 M (environ la concentration du vinaigre domestique) a un pH de 2,4, ce qui indique que seulement 0,4 % des molécules d'acide acétique sont dissociées.
Ce n'est que dans une solution très diluée (< 10−6 M) que l'acide acétique est dissocié à > 90 %.

*Équilibre de déprotonation de l'acide acétique dans l'eau
Dimère cyclique de l'acide acétique ; les lignes vertes pointillées représentent les liaisons hydrogène



STRUCTURE DE L'ACIDE ACÉTIQUE :
Dans l'acide acétique solide, les molécules forment des chaînes de molécules individuelles reliées entre elles par des liaisons hydrogène.
En phase vapeur à 120 °C (248 °F), des dimères peuvent être détectés.

Les dimères se produisent également en phase liquide dans des solutions diluées avec des solvants sans liaison hydrogène et, dans une certaine mesure, dans l'acide acétique pur, mais sont perturbés par les solvants se liant à l'hydrogène.

L'enthalpie de dissociation du dimère est estimée entre 65,0 et 66,0 kJ/mol et l'entropie de dissociation entre 154 et 157 J mol−1 K−1.
D'autres acides carboxyliques s'engagent dans des interactions de liaison hydrogène intermoléculaires similaires.



PROPRIÉTÉS DU SOLVANT DE L'ACIDE ACÉTIQUE :
L'acide acétique liquide est un solvant protique hydrophile (polaire), semblable à l'éthanol et à l'eau.
Avec une permittivité statique relative (constante diélectrique) de 6,2, l'acide acétique dissout non seulement les composés polaires tels que les sels inorganiques et les sucres, mais également les composés non polaires tels que les huiles ainsi que les solutés polaires.

L'acide acétique est miscible avec les solvants polaires et non polaires tels que l'eau, le chloroforme et l'hexane.
Avec les alcanes supérieurs (à commencer par l'octane), l'acide acétique n'est pas miscible dans toutes les compositions et la solubilité de l'acide acétique dans les alcanes diminue avec les n-alcanes plus longs.

Les propriétés de solvant et de miscibilité de l’acide acétique en font un produit chimique industriel utile, par exemple comme solvant dans la production de téréphtalate de diméthyle.



BIOCHIMIE DE L'ACIDE ACÉTIQUE :
Aux pH physiologiques, l’acide acétique est généralement entièrement ionisé en acétate.
Le groupe acétyle, formellement dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
En règle générale, l'acide acétique est lié à la coenzyme A par les enzymes acétyl-CoA synthétase, où il joue un rôle central dans le métabolisme des glucides et des graisses.

Contrairement aux acides carboxyliques à chaîne plus longue (les acides gras), l’acide acétique n’est pas présent dans les triglycérides naturels.
La majeure partie de l'acétate généré dans les cellules destiné à être utilisé dans l'acétyl-CoA est synthétisée directement à partir d'éthanol ou de pyruvate.
Cependant, le triglycéride artificiel triacétine (triacétate de glycérine) est un additif alimentaire courant et se trouve dans les cosmétiques et les médicaments topiques ; cet additif est métabolisé en glycérol et en acide acétique dans l'organisme.

L'acide acétique est produit et excrété par les bactéries acétiques, notamment le genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries sont présentes universellement dans les aliments, l’eau et le sol, et l’acide acétique est produit naturellement lorsque les fruits et autres aliments se gâtent.
L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.



PRODUCTION D'ACIDE ACÉTIQUE :
L'acide acétique est produit industriellement à la fois par synthèse et par fermentation bactérienne.
Environ 75 % de l’acide acétique destiné à l’industrie chimique est produit par carbonylation du méthanol, expliqué ci-dessous.

La voie biologique ne représente qu'environ 10 % de la production mondiale, mais l'acide acétique reste important pour la production de vinaigre car de nombreuses lois sur la pureté alimentaire exigent que le vinaigre utilisé dans les aliments soit d'origine biologique.
D'autres procédés sont l'isomérisation du formiate de méthyle, la conversion du gaz de synthèse en acide acétique et l'oxydation en phase gazeuse de l'éthylène et de l'éthanol.

L'acide acétique peut être purifié par congélation fractionnée à l'aide d'un bain de glace.
L'eau et les autres impuretés resteront liquides tandis que l'acide acétique précipitera.
Entre 2003 et 2005, la production mondiale totale d'acide acétique vierge était estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié était produite aux États-Unis.

La production européenne était d'environ 1 Mt/a et en baisse, tandis que la production japonaise était de 0,7 Mt/a.
1,5 Mt supplémentaires étaient recyclées chaque année, portant le marché mondial total à 6,5 Mt/a.
Depuis, la production mondiale est passée de 10,7 Mt/an en 2010 à 17,88 Mt/an en 2023.


*Carbonylation du méthanol :
La majeure partie de l'acide acétique est produite par carbonylation du méthanol.
Dans ce processus, le méthanol et le monoxyde de carbone réagissent pour produire de l'acide acétique selon l'équation :
Le processus implique l’iodométhane comme intermédiaire et se déroule en trois étapes.
Un catalyseur métallique carbonyle est nécessaire pour la carbonylation (étape 2).

CH3OH + HI → CH3I + H2O
CH3I + CO → CH3COI
CH3COI + H2O → CH3COOH + HI

Il existe deux procédés apparentés pour la carbonylation du méthanol : le procédé Monsanto catalysé par le rhodium et le procédé Cativa catalysé par l'iridium.
Ce dernier procédé est plus écologique et plus efficace et a largement supplanté le premier.

Des quantités catalytiques d'eau sont utilisées dans les deux procédés, mais le procédé Cativa en nécessite moins, de sorte que la réaction de conversion eau-gaz est supprimée et moins de sous-produits sont formés.
En modifiant les conditions du procédé, l'anhydride acétique peut également être produit dans des usines utilisant la catalyse au rhodium.


*Oxydation de l'acétaldéhyde :
Avant la commercialisation du procédé Monsanto, la majeure partie de l’acide acétique était produite par oxydation de l’acétaldéhyde.
Cela reste la deuxième méthode de fabrication la plus importante, même si l'acide acétique n'est généralement pas compétitif avec la carbonylation du méthanol.

L'acétaldéhyde peut être produit par hydratation de l'acétylène.
C’était la technologie dominante au début des années 1900.

Les composants légers du naphta sont facilement oxydés par l'oxygène ou même l'air pour donner des peroxydes, qui se décomposent pour produire de l'acide acétique selon l'équation chimique illustrée avec le butane :

2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O
De telles oxydations nécessitent un catalyseur métallique, tel que les sels naphténates de manganèse, de cobalt et de chrome.

La réaction typique est menée à des températures et des pressions conçues pour être aussi chaudes que possible tout en gardant le butane liquide.
Les conditions de réaction typiques sont 150 °C (302 °F) et 55 atm.
Des produits secondaires peuvent également se former, notamment la butanone, l'acétate d'éthyle, l'acide formique et l'acide propionique.

Ces produits secondaires sont également commercialement intéressants et les conditions de réaction peuvent être modifiées pour en produire davantage si nécessaire.
Cependant, la séparation de l'acide acétique de ces sous-produits augmente le coût du procédé.
Des conditions et des catalyseurs similaires sont utilisés pour l'oxydation du butane, l'oxygène de l'air pour produire de l'acide acétique peut oxyder l'acétaldéhyde.

2 CH3CHO + O2 → 2 CH3CO2H
En utilisant des catalyseurs modernes, cette réaction peut avoir un rendement en acide acétique supérieur à 95 %.
Les principaux produits secondaires sont l'acétate d'éthyle, l'acide formique et le formaldéhyde, qui ont tous des points d'ébullition inférieurs à ceux de l'acide acétique et sont facilement séparés par distillation.


*Oxydation de l'éthylène
L'acétaldéhyde peut être préparé à partir d'éthylène via le procédé Wacker, puis oxydé comme ci-dessus.
Plus récemment, la société chimique Showa Denko, qui a ouvert une usine d'oxydation d'éthylène à Ōita, au Japon, en 1997, a commercialisé une conversion en une seule étape moins chère de l'éthylène en acide acétique.

Le processus est catalysé par un catalyseur métallique au palladium supporté par un hétéropolyacide tel que l'acide silicotungstique.
Un procédé similaire utilise le même catalyseur métallique sur l'acide silicotungstique et la silice :

C2H4 + O2 → CH3CO2H
On pense qu'elle est compétitive avec la carbonylation du méthanol pour les petites usines (100 à 250 kt/a), en fonction du prix local de l'éthylène.


*Fermentation oxydative :
Pendant la majeure partie de l’histoire de l’humanité, les bactéries acétiques du genre Acetobacter ont produit de l’acide acétique sous forme de vinaigre.
Avec suffisamment d’oxygène, ces bactéries peuvent produire du vinaigre à partir de divers aliments alcoolisés.

Les aliments couramment utilisés comprennent le cidre de pomme, le vin et les purées de céréales fermentées, de malt, de riz ou de pommes de terre.
La réaction chimique globale facilitée par ces bactéries est la suivante :

C2H5OH + O2 → CH3COOH + H2O
Une solution alcoolique diluée inoculée avec Acetobacter et conservée dans un endroit chaud et aéré se transformera en vinaigre en quelques mois.
Les méthodes industrielles de fabrication du vinaigre accélèrent ce processus en améliorant l’apport d’oxygène aux bactéries.

Les premiers lots de vinaigre produits par fermentation sont probablement consécutifs à des erreurs de vinification.
Si le moût fermente à une température trop élevée, l'acétobactérie submergera la levure naturellement présente sur les raisins.

Alors que la demande de vinaigre à des fins culinaires, médicales et sanitaires augmentait, les vignerons ont rapidement appris à utiliser d'autres matières organiques pour produire du vinaigre pendant les mois chauds de l'été, avant que les raisins ne soient mûrs et prêts à être transformés en vin.
Cette méthode était cependant lente et pas toujours réussie, car les vignerons ne comprenaient pas le processus.

L'un des premiers procédés commerciaux modernes fut la « méthode rapide » ou « méthode allemande », pratiquée pour la première fois en Allemagne en 1823.
Dans ce processus, la fermentation a lieu dans une tour remplie de copeaux de bois ou de charbon de bois.

L'alimentation contenant de l'alcool s'écoule vers le haut de la tour et l'air frais est fourni par le bas par convection naturelle ou forcée.
L'amélioration de l'alimentation en air dans ce processus a réduit le temps de préparation du vinaigre de plusieurs mois à plusieurs semaines.

De nos jours, la plupart du vinaigre est fabriqué dans des cuves immergées, décrites pour la première fois en 1949 par Otto Hromatka et Heinrich Ebner.
Dans cette méthode, l'alcool est fermenté en vinaigre dans une cuve agitée en permanence, et l'oxygène est fourni en faisant barboter de l'air à travers la solution.
Grâce aux applications modernes de cette méthode, du vinaigre à 15 % d'acide acétique peut être préparé en seulement 24 heures dans un processus par lots, voire à 20 % dans un processus par lots de 60 heures.


*Fermentation anaérobie :
Les espèces de bactéries anaérobies, notamment les membres du genre Clostridium ou Acetobacterium, peuvent convertir directement les sucres en acide acétique sans créer d'éthanol comme intermédiaire.
La réaction chimique globale menée par ces bactéries peut être représentée comme suit :

C6H12O6 → 3CH3COOH
Ces bactéries acétogènes produisent de l'acide acétique à partir de composés à un seul carbone, notamment le méthanol, le monoxyde de carbone ou un mélange de dioxyde de carbone et d'hydrogène :

2 CO2 + 4 H2 → CH3COOH + 2 H2O
Cette capacité de Clostridium à métaboliser directement les sucres ou à produire de l'acide acétique à partir d'intrants moins coûteux suggère que ces bactéries pourraient produire de l'acide acétique plus efficacement que les oxydants d'éthanol comme Acetobacter.

Cependant, les bactéries Clostridium sont moins tolérantes aux acides que les Acetobacter.
Même les souches de Clostridium les plus tolérantes aux acides peuvent produire du vinaigre à des concentrations de quelques pour cent seulement, comparées aux souches d'Acetobacter qui peuvent produire du vinaigre à des concentrations allant jusqu'à 20 %.

À l’heure actuelle, il reste plus rentable de produire du vinaigre à l’aide d’Acetobacter plutôt que d’utiliser du Clostridium et de le concentrer.
En conséquence, bien que les bactéries acétogènes soient connues depuis 1940, leur utilisation industrielle se limite à quelques applications de niche.



RÉACTIONS DE L'ACIDE ACÉTIQUE :
L'acide acétique subit les réactions chimiques typiques d'un acide carboxylique.
Lors d'un traitement avec une base standard, l'acide acétique se transforme en acétate métallique et en eau.
Avec des bases fortes (par exemple, des réactifs organolithiens), l'acide acétique peut être doublement déprotoné pour donner LiCH2COOLi.

La réduction de l'acide acétique donne de l'éthanol.
Le groupe OH est le principal site de réaction, comme l'illustre la conversion de l'acide acétique en chlorure d'acétyle.
D'autres dérivés de substitution comprennent l'anhydride acétique ; cet anhydride est produit par perte d'eau de deux molécules d'acide acétique.

Des esters de l'acide acétique peuvent également être formés par estérification Fischer, et des amides peuvent être formés.
Lorsqu'il est chauffé au-dessus de 440 °C (824 °F), l'acide acétique se décompose pour produire du dioxyde de carbone et du méthane, ou pour produire du cétène et de l'eau :
CH3COOH → CH4 + CO2
CH3COOH → CH2=C=O + H2O



RÉACTIONS AVEC LES COMPOSÉS INORGANIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est légèrement corrosif pour les métaux, notamment le fer, le magnésium et le zinc, formant de l'hydrogène gazeux et des sels appelés acétates :
Mg + 2 CH3COOH → (CH3COO)2Mg + H2

Étant donné que l’aluminium forme un film d’oxyde d’aluminium passivant et résistant aux acides, des réservoirs en aluminium sont utilisés pour transporter l’acide acétique.
Des récipients recouverts de verre, d'acier inoxydable ou de polyéthylène sont également utilisés à cet effet.
Les acétates métalliques peuvent également être préparés à partir d'acide acétique et d'une base appropriée, comme dans la réaction populaire « bicarbonate de soude + vinaigre » donnant de l'acétate de sodium :

NaHCO3 + CH3COOH → CH3COONa + CO2 + H2O
Une réaction colorée pour les sels d'acide acétique est une solution de chlorure de fer (III), qui donne une couleur rouge foncé qui disparaît après acidification.
Un test plus sensible utilise du nitrate de lanthane avec de l'iode et de l'ammoniaque pour donner une solution bleue.
Les acétates, lorsqu'ils sont chauffés avec du trioxyde d'arsenic, forment de l'oxyde de cacodyle, qui peut être détecté par ses vapeurs malodorantes.



AUTRES DÉRIVÉS DE L'ACIDE ACÉTIQUE :
Les sels organiques ou inorganiques sont produits à partir de l'acide acétique.
Quelques dérivés commercialement significatifs :
Acétate de sodium, utilisé dans l'industrie textile et comme conservateur alimentaire (E262).

Acétate de cuivre (II), utilisé comme pigment et fongicide.
Acétate d'aluminium et acétate de fer (II)—utilisés comme mordants pour les colorants.
Acétate de palladium (II), utilisé comme catalyseur pour les réactions de couplage organique telles que la réaction de Heck.

Les acides acétiques halogénés sont produits à partir de l'acide acétique.
Quelques dérivés commercialement significatifs :
Acide chloroacétique (acide monochloroacétique, MCA), acide dichloroacétique (considéré comme un sous-produit) et acide trichloroacétique.

Le MCA est utilisé dans la fabrication de colorant indigo.
Acide bromoacétique, qui est estérifié pour produire le réactif bromoacétate d'éthyle.
Acide trifluoroacétique, qui est un réactif courant en synthèse organique.
Les quantités d'acide acétique utilisées dans ces autres applications représentent ensemble 5 à 10 % supplémentaires de l'utilisation d'acide acétique dans le monde.



STRUCTURE DE L'ACIDE ACÉTIQUE :
On peut observer à l’état solide de l’acide acétique qu’il existe une chaîne de molécules dans lesquelles les molécules individuelles sont reliées les unes aux autres via des liaisons hydrogène.
Les dimères de l'acide éthanoïque dans la phase vapeur de l'acide acétique peuvent être trouvés à des températures proches de 120 °C.

Même dans la phase liquide de l'acide éthanoïque, les dimères de l'acide acétique peuvent être trouvés lorsqu'il est présent dans une solution diluée.
Ces dimères sont affectés par les solvants qui favorisent la liaison hydrogène.

La structure de l’acide acétique est donnée par CH3(C=O)OH ou CH3CO2H
Structurellement, l'acide acétique est le deuxième acide carboxylique le plus simple (le plus simple étant l'acide formique, HCOOH) et est essentiellement un groupe méthyle auquel est attaché un groupe fonctionnel carboxyle.



PRÉPARATION DE L'ACIDE ACÉTIQUE :
L'acide acétique est produit industriellement par carbonylation du méthanol.
Les équations chimiques des trois étapes impliquées dans ce processus sont fournies ci-dessous.
CH3OH (méthanol) + HI (iodure d'hydrogène) → CH3I (intermédiaire iodure de méthyle) + H2O

CH3I + CO (monoxyde de carbone) → CH3COI (iodure d'acétyle)
CH3COI + H2O → CH3COOH (acide acétique) + HI

Ici, un intermédiaire d'iodure de méthyle est généré à partir de la réaction entre le méthanol et l'iodure d'hydrogène.
Cet intermédiaire réagit ensuite avec du monoxyde de carbone et le composé résultant est traité avec de l'eau pour donner le produit acide acétique.
Il est important de noter qu’un complexe métal-carbonyle doit être utilisé comme catalyseur pour l’étape 2 de ce procédé.



AUTRES MÉTHODES DE PRÉPARATION DE L'ACIDE ACÉTIQUE :
Certains sels de naphtalène de cobalt, de chrome et de manganèse peuvent être utilisés comme catalyseurs métalliques dans l'oxydation de l'acétaldéhyde.
L’équation chimique de cette réaction peut s’écrire :
O2 + 2CH3CHO → 2CH3COOH

L'éthylène (C2H4) peut être oxydé en acide acétique à l'aide d'un catalyseur au palladium et d'un hétéropolyacide, comme décrit par la réaction chimique suivante.
O2 + C2H4 → CH3COOH

Certaines bactéries anaérobies ont la capacité de convertir directement le sucre en acide acétique.
C6H12O6 → 3CH3COOH
On peut noter qu’aucun intermédiaire éthanolique n’est formé lors de la fermentation anaérobie du sucre par ces bactéries.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE :
Même si l’acide éthanoïque est considéré comme un acide faible, sous sa forme concentrée, il possède de forts pouvoirs corrosifs et peut même attaquer la peau humaine si elle y est exposée.
Certaines propriétés générales de l’acide acétique sont énumérées ci-dessous.

L'acide éthanoïque semble être un liquide incolore et dégage une odeur âcre.
À STP, les points de fusion et d'ébullition de l'acide éthanoïque sont respectivement de 289K et 391K.
La masse molaire de l'acide acétique est de 60,052 g/mol et sa densité sous forme liquide est de 1,049 g.cm-3.

Le groupe fonctionnel carboxyle de l'acide éthanoïque peut provoquer une ionisation du composé, donnée par la réaction : CH3COOH ⇌ CH3COO – + H+
La libération du proton, décrite par la réaction d’équilibre ci-dessus, est à l’origine de la qualité acide de l’acide acétique.
La constante de dissociation acide (pKa) de l'acide éthanoïque dans une solution d'eau est de 4,76.

La base conjuguée de l'acide acétique est l'acétate, donnée par CH3COO–.
Le pH d’une solution d’acide éthanoïque de concentration 1,0 M est de 2,4, ce qui implique qu’elle ne se dissocie pas complètement.
Sous sa forme liquide, l'acide acétique est un solvant polaire et protique, avec une constante diélectrique de 6,2.

Le métabolisme des glucides et des graisses chez de nombreux animaux est centré sur la liaison de l'acide acétique à la coenzyme A.
Généralement, ce composé est produit par la réaction entre le méthanol et le monoxyde de carbone (carbonylation du méthanol).



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE :
Les réactions chimiques subies par l'acide acétique sont similaires à celles des autres acides carboxyliques.
Lorsqu'il est chauffé à des températures supérieures à 440 °C, ce composé subit une décomposition pour produire soit du méthane et du dioxyde de carbone, soit de l'eau et de l'éthénone, comme décrit par les équations chimiques suivantes.

CH3COOH + Chaleur → CO2 + CH4
CH3COOH + Chaleur → H2C=C=O + H2O
Certains métaux comme le magnésium, le zinc et le fer subissent une corrosion lorsqu'ils sont exposés à l'acide acétique.
Ces réactions aboutissent à la formation de sels d'acétate.

2CH3COOH + Mg → Mg(CH3COO)2 (acétate de magnésium) + H2
La réaction entre l’acide éthanoïque et le magnésium entraîne la formation d’acétate de magnésium et d’hydrogène gazeux, comme décrit par l’équation chimique fournie ci-dessus.



AUTRES RÉACTIONS DE L'ACIDE ACÉTIQUE :
L'acide acétique réagit avec les alcalis et forme des sels d'acétate, comme décrit ci-dessous.
CH3COOH + KOH → CH3COOK + H2O
Ce composé forme également des sels d'acétate en réagissant avec les carbonates (avec le dioxyde de carbone et l'eau).
Des exemples de telles réactions comprennent :

2CH3COOH + Na2CO3 (carbonate de sodium) → 2CH3COONa + CO2 + H2O
CH3COOH + NaHCO3 (bicarbonate de sodium) → CH3COONa + CO2 + H2O
La réaction entre PCl5 et l'acide éthanoïque entraîne la formation de chlorure d'éthanoyle.



QUELLES SONT LES SOURCES NATURELLES D'ACIDE ACÉTIQUE ?
Les acétates (sels d'acide acétique) sont des constituants courants des tissus animaux et végétaux et se forment lors du métabolisme des substances alimentaires.
L'acétate est facilement métabolisé par la plupart des tissus et peut donner lieu à la production de cétones comme intermédiaires.
L'acétate est utilisé par l'organisme comme élément de base pour fabriquer des phospholipides, des lipides neutres, des stéroïdes, des stérols et des acides gras saturés et insaturés dans diverses préparations de tissus humains et animaux.



POINTS CLÉS/APERÇU DE L'ACIDE ACÉTIQUE :
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique est sous forme de vinaigre domestique, qui contient généralement environ 5 pour cent d'acide acétique et 95 pour cent d'eau.

Lorsque l'acide acétique est à une concentration de 99,5 pour cent, il est appelé acide acétique glacial, qui peut être utilisé comme matière première et solvant dans la production d'autres produits chimiques.

Les applications industrielles de l'acide acétique glacial comprennent la production d'acétate de vinyle, comme solvant pour dissoudre les huiles, le soufre et l'iode ; acidifier le pétrole et le gaz ; fabrication de produits pharmaceutiques et de vitamines, et transformation des aliments.



COMMENT L'ACIDE ACÉTIQUE PÉNÈTRE DANS L'ENVIRONNEMENT :
L'acide acétique peut pénétrer dans l'environnement à partir des rejets et des émissions des industries.
La combustion de plastiques ou de caoutchouc ainsi que les gaz d'échappement des véhicules peuvent également libérer de l'acide acétique dans l'environnement.
Lorsqu'il est libéré dans le sol, l'acide acétique s'évapore dans l'air où il est naturellement décomposé par la lumière du soleil.
On s’attendrait à ce que les niveaux d’acide acétique dans l’environnement soient faibles.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
L'acide acétique est un liquide lisse et incolore avec une odeur de vinaigre visible, toxique et destructrice de 1 ppm.
Le point de fusion de l'acide acétique est de 16,73°C et le point d'ébullition habituel de 117,9°C.
À 20°C, la densité de l'acide acétique pur est de 1,0491.

C'est de l'acide acétique hautement hygroscopique.
Il est possible de relier la pureté des solutions aqueuses à leur point de congélation.
Dans les acides carboxyliques tels que l'acide acétique, le centre hydrogène du groupe carboxyle −COOH peut se différencier de la molécule par ionisation :

En raison de cette libération de protons H+1, l'acide acétique a un caractère acide.
L'acide acétique est un acide monoprotique faible.
L'acide acétique a une valeur pK de 4,76 dans une solution aqueuse.

L'acétate CH3COO−1 est la base conjuguée.
Pour les solvants polaires et non polaires tels que l'acide, le chloroforme et l'hexane, l'acide acétique est miscible.
Les molécules forment des chaînes dans l’acide acétique solide, avec des liaisons hydrogène reliant les molécules individuelles.

Des dimères peuvent être trouvés dans la vapeur à 120 °C.
Sous forme liquide, les dimères existent souvent dans des solutions diluées dans des solvants sans liaison hydrogène et, dans une certaine mesure, dans l'acide acétique pur ; mais ils interagissent avec des solvants qui se lient à l’hydrogène.

L'acide acétique est normalement complètement ionisé en acétate à phis physiologique.
L'acide acétique est essentiel au métabolisme des glucides et des graisses lorsqu'il est lié à la coenzyme A.
L'acide acétique n'existe pas dans les triglycérides naturels, contrairement aux acides carboxyliques à chaîne plus longue (acides gras).



DÉSHYDRATATION DE L'ACIDE ACÉTIQUE :
La déshydratation de l'acide acétique est l'une des utilisations industrielles les plus importantes de la DA dans la fabrication d'acides aromatiques tels que l'acide téréphtalique (TA), qui implique une grande pureté d'acide acétique.

Deux éléments principaux sont utilisés dans le processus de fabrication : l’oxydation (où le p-xylène est oxydé catalytiquement pour produire du TA brut) et la purification du PTA.
L'acide acétique, présent comme solvant dans le réacteur d'oxydation mais également utile à la réaction elle-même, doit être isolé de l'eau produite par l'oxydation.

Pour le fonctionnement efficace et économique d’une installation TA, la récupération et le stockage du solvant acide acétique sont importants.
À des températures d'eau élevées, l'eau et l'acide acétique présentent un point de pincement, ce qui rend la récupération de l'acide pur très difficile.
Deux absorbeurs (basse et haute pression) et une colonne de déshydratation acide constituent une unité traditionnelle de récupération d'acide acétique en phase PTA.

Les colonnes hautes de 70 à 80 plateaux nécessitent la séparation de l'acide acétique et de l'eau par distillation traditionnelle.
Acétate de N-butyle, qui présente une miscibilité minimale avec l'eau et forme un azéotrope hétérogène (point d'ébullition 90,23°C), qui est un agent azéotropique typique.
Avec toute l’eau introduite dans la colonne de déshydratation, de l’acétate de n-butyle est ajouté en quantités appropriées pour former un azéotrope.

Lors de la condensation, l'azéotrope hétérogène forme deux phases ; une couche organique contenant de l'acétate de n-butyle presque pur et une phase aqueuse contenant de l'eau presque pure.
La phase organique est recyclée vers la colonne de déshydratation, tandis que la phase aqueuse est envoyée vers une colonne de stripping.
La quantité d'acide acétique perdue dans les rejets aqueux est réduite d'environ 40 pour cent car l'AD permet une séparation plus propre.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE ACÉTIQUE :
Poids moléculaire : 60,05 g/mol
XLogP3-AA : -0,2
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 0
Masse exacte : 60,021129366 g/mol
Masse monoisotopique : 60,021129366 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 4
Frais formels : 0
Complexité : 31
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
Formule chimique : CH3COOH
Masse molaire : 60,052 g•mol−1
Aspect : Liquide incolore
Odeur : Fortement vinaigrée
Densité : 1,049 g/cm3 (liquide) ; 1,27 g/cm3 (solide)
Point de fusion : 16 à 17 °C ; 61 à 62 °F ; 289 à 290K
Point d'ébullition : 118 à 119 °C ; 244 à 246 °F ; 391 à 392 K
Solubilité dans l'eau : Miscible
log P : -0,28
Pression de vapeur : 1,54653947 kPa (20 °C) ; 11,6 mmHg (20 °C)
Acidité (pKa) : 4,756
Base conjuguée : Acétate
Susceptibilité magnétique (χ) : -31,54•10−6 cm3/mol
Indice de réfraction (nD) : 1,371 (VD = 18,19)
Viscosité : 1,22 mPa.s ; 1,22 CP
Moment dipolaire : 1,74 D

Thermochimie
Capacité thermique (C) : 123,1 JK−1 mol−1
Entropie molaire standard (S ⦵ 298) : 158,0 JK−1 mol−1
Enthalpie standard de formation (ΔfH ⦵ 298) : -483,88–483,16 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : -875,50–874,82 kJ/mol
État physique : Liquide
Couleur: Incolore
Odeur : Piquante
Point de fusion/point de congélation : Point/intervalle de fusion : 16,2 °C - lit.
Point d'ébullition initial et plage d'ébullition : 117 - 118 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou limites d'explosivité : Limite d'explosivité supérieure : 19,9 % (V), Limite d'explosivité inférieure : 4 % (V)
Point d'éclair : 39 °C - coupelle fermée
Température d'auto-inflammation : 463 °C
Température de décomposition : Distillable à l’état non décomposé à pression normale.
pH : 2,5 à 50 g/L à 20 °C

Viscosité:
Viscosité cinématique : 1,17 mm2/s à 20 °C
Viscosité dynamique : 1,05 mPa•s à 25 °C
Solubilité dans l'eau : 602,9 g/L à 25 °C à 1,013 hPa - complètement soluble
Coefficient de partage (n-octanol/eau) : log Pow : -0,17 à 25 °C - Une bioaccumulation n'est pas attendue.
Pression de vapeur : 20,79 hPa à 25 °C
Densité : 1,049 g/cm3 à 25 °C - lit.
Densité de vapeur relative : 2,07
Tension superficielle : 28,8 mN/m à 10,0 °C
Numéro CAS : 64-19-7
Formule moléculaire : C2H4O2
Poids moléculaire : 60,052 g/mol
Densité : 1,1 ± 0,1 g/cm3
Point d'ébullition : 117,1 ± 3,0 °C à 760 mmHg
Point de fusion : 16,2 °C (lit.)
Point d'éclair : 40,0 ± 0,0 °C

Numéro d'index CE : 607-002-00-6
Numéro CE : 200-580-7
Formule de Hill : C₂H₄O₂
Formule chimique : CH₃COOH
Masse molaire : 60,05 g/mol
Code SH : 2915 21 00
Point d'ébullition : 116 - 118 °C (1013 hPa)
Densité : 1,04 g/cm3 (25 °C)
Limite d'explosion : 4 - 19,9 % (V)
Point d'éclair : 39 °C
Température d'inflammation : 485 °C
Point de fusion : 16,64 °C
Valeur pH : 2,5 (50 g/L, H₂O, 20 °C)
Pression de vapeur : 20,79 hPa (25 °C)
Viscosité cinématique : 1,17 mm2/s (20 °C)

Solubilité : 602,9 g/L soluble
Point d'ébullition : 244°F
Poids moléculaire : 60,1
Point de congélation/point de fusion : 62°F
Pression de vapeur : 11 mmHg
Point d'éclair : 103 °F
Densité spécifique : 1,05
Potentiel d'ionisation : 10,66 eV
Limite inférieure d'explosivité (LIE) : 4,0 %
Limite supérieure d'explosivité (UEL) : 19,9 % à 200 °F
Cote de santé NFPA : 3
Classement incendie NFPA : 2
Cote de réactivité NFPA : 0
Autre numéro CAS : -
Numéro MDL : MFCD00036152
Température de stockage : +20°C



PREMIERS SECOURS DE L'ACIDE ACÉTIQUE :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime.
N'essayez pas de neutraliser.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE ACÉTIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE ACÉTIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Informations complémentaires :
Retirer le récipient de la zone dangereuse et le refroidir avec de l'eau.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE ACÉTIQUE :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : caoutchouc butyle
Épaisseur minimale de la couche : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériel : Gants en latex
Épaisseur minimale de la couche : 0,6 mm
Temps de percée : 30 min
*Protection du corps :
Vêtements de protection antistatiques ignifuges.
*Protection respiratoire:
Type de filtre recommandé : filtre E-(P2)
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE ACÉTIQUE :
-Précautions à prendre pour une manipulation sans danger:
*Conseils sur la protection contre l'incendie et l'explosion :
Prenez des mesures de précaution contre les décharges statiques.
*Mesures d'hygiène:
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités
*Conditions de stockage:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Sensible à l'humidité.



STABILITÉ et RÉACTIVITÉ de l'ACIDE ACÉTIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles


ACIDE ACÉTIQUE
L'acide acétique est un acide organique disponible en différentes concentrations standard.
L'acide acétique pur est connu sous le nom d'acide acétique glacial car il gèle à des températures modérées (16,6 °C).


Numéro CAS : 64-19-7
Numéro CE : 200-580-7
Numéro E : E260 (conservateurs)
Formule moléculaire : C2H4O2 / CH3COOH



SYNONYMES :
Acide acétique, Acide éthanoïque, Vinaigre (une fois dilué), Acétate d'hydrogène, Acide méthanecarboxylique, Acide éthylique, Acide éthanoïque, Acide éthylique, Acide acétique glacial, Acide méthanecarboxylique, Acide vinaigre, CH3COOH, Acétasol, Acide acétique, Acido acetico, Azijnzuur, Essigsaeure , Octowy kwas, Acide acétique glacial, Kyselina octova, UN 2789, Aci-jel, Shotgun, Monomère d'acide éthanoïque, NSC 132953, Acide éthanoïque, vinaigre, acide éthylique, acide vinaigre, acide méthanecarboxylique, fluide d'extraction TCLP 2, fusil de chasse, glacial acide acétique, acide éthanoïque glacial, acide éthanoïque, acide éthylique, acide acétique glacial, acide méthanecarboxylique, acide vinaigre, CH3COOH, acétasol, acide acétique, Acido acetico, Azijnzuur, Essigsaeure, Octowy kwas, acide acétique glacial, Kyselina octova, UN 2789 , Aci-jel, Shotgun, monomère d'acide éthanoïque, NSC 132953, BDBM50074329, FA 2:0, LMFA01010002, NSC132953, NSC406306, acide acétique pour HPLC >=99,8 %, AKOS000268789, ACIDUM ACETICUM [WHO-IP LATIN], 166, ONU 2789, Acide acétique >=99,5 % FCC FG, Acide acétique naturel >=99,5 % FG, Acide acétique ReagentPlus(R) >=99 %, CAS-64-19-7, Code pesticide USEPA/OPP : 044001, Acide acétique USP 99,5-100,5 %, NCGC00255303-01, acide acétique 1 000 microg/mL dans du méthanol, acide acétique SAJ de première qualité >=99,0 %, acide acétique 1 000 microg/mL dans de l'acétonitrile, acide acétique >=99,99 % sur base de métaux traces, acide acétique JIS qualité spéciale >=99,7 %, acide acétique purifié par double distillation, NS00002089, acide acétique UV HPLC spectroscopique 99,9 %, EN300-18074, acide acétique Vetec(TM) de qualité réactif >=99 %, supplément sélectif Bifido B pour la microbiologie, C00033 , D00010, COMPOSANT ORLEX HC ACIDE ACETIQUE GLACIAL, Q47512, VOSOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique glacial de qualité électronique 99,7%, COMPOSANT TRIDESILON ACIDE ACETIQUE GLACIAL, A834671, ACETASOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique >=99,7% SAJ super qualité spéciale, COMPOSANT GLACIAIRE ACÉTIQUE DE BOROFAIR, COMPOSANT GLACIAIRE ACÉTIQUE D'ORLEX HC, COMPOSANT GLACIAIRE ACÉTIQUE DE VOSOL HC, SR-01000944354, COMPOSANT GLACIAIRE ACÉTIQUE DE TRIDESILON, SR-01000944354-1, COMPOSANT GLACIAIRE ACÉTIQUE DE ACETASOL HC , L'acide acétique glacial répond aux spécifications de test USP, InChI=1/C2H4O2/c1-2(3)4/h1H3(H,3,4), Acide acétique >=99,7 % adapté à l'analyse des acides aminés, Acide acétique >=99,7 % pour titrage en milieu non aqueux, Acide acétique pour luminescence BioUltra >=99,5% GC, Acide acétique pa ACS réactif reag. Réponse ISO. Ph.Eur. 99,8 %, acide acétique de qualité semi-conducteur MOS PURANAL(TM) Honeywell 17926, acide acétique glacial Pharmacopée des États-Unis, étalon de référence USP, acide acétique puriss. pa Réactif ACS reag. Réponse ISO. Ph.Eur. >=99,8 %, matériau de référence certifié pour l'acide acétique glacial, étalon secondaire pharmaceutique, puriss d'acide acétique. répond aux spécifications analytiques de la Ph. Eur. BP USP FCC 99,8-100,5 %, acide acétique, acétate glacial, acide acétique, acide actique, UNII-Q40Q9N063P, acide acétique, vinaigre distillé, méthanecarboxylate, acide acétique glacial [USP:JAN], acétasol (TN), acide acétique glacial pour LC-MS, vinaigre (sel/mélange), HOOCCH3, 546-67-8, acide acétique qualité LC/MS, ACIDE ACETIQUE [II], ACIDE ACETIQUE [MI], réactif ACS acide acétique, bmse000191, bmse000817, bmse000857 , Otic Domeboro (sel/mélange), EC 200-580-7, acide acétique (JP17/NF), ACIDE ACETIQUE [FHFI], ACIDE ACETIQUE [INCI], acide acétique [pour LC-MS], ACIDE ACETIQUE [VANDF] , NCIOpen2_000659, NCIOpen2_000682, Acide acétique glacial (USP), 4-02-00-00094 (Référence du manuel Beilstein), 77671-22-8, Acide acétique glacial (JP17), UN 2790 (Sel/Mélange), ACIDE ACÉTIQUE [OMS -DD], ACIDE ACETIQUE [WHO-IP], ACETICUM ACIDUM [HPUS], GTPL1058, acide acétique de qualité HPLC glacial, étalon analytique d'acide acétique, acide acétique de qualité USP glacial, acide acétique puriss. >=80 %, Acide acétique 99,8 % anhydre, Acide acétique AR >=99,8 %, Acide acétique LR >=99,5 %, Acide acétique extra pur 99,8 %, Acide acétique 99,5-100,0 %, Acide acétique Réactif ACS glacial, STR00276, Acétique pureté acide. 99-100%, Tox21_301453, Acide acétique glacial >=99,85%, acide acétique, acide éthanoïque, 64-19-7, Acide éthylique, Acide vinaigre, Acide acétique glacial, Acide acétique glacial, Acide acétique glacial, Acide méthanecarboxylique, Acétasol, Essigsaeure, Acide acétique, Acide pyroligneux, Vinaigre, Azijnzuur, Aceticum acidum, Acido acetico, Octowy kwas, Aci-jel, HOAc, acide éthoïque, Kyselina octova, Acide orthoacétique, AcOH, Monomère d'acide éthanoïque, Acétique, Caswell No. 003, Otique Tridesilon, MeCOOH, acide acétique-17O2, Otic Domeboro, Acidum aceticum glaciale, Acidum aceticum, CH3-COOH, acide acétique-, CH3CO2H, UN2789, UN2790, EPA Pesticide Chemical Code 044001, NSC 132953, NSC-132953, NSC-406306, BRN 0506007, Acide acétique dilué, SIN NO.260, Acide acétique [JAN], DTXSID5024394, MeCO2H, CHEBI:15366, AI3-02394, CH3COOH, INS-260, Q40Q9N063P, E-260, 10.Acide méthanecarboxylique, CHEMBL539, NSC -111201, NSC-112209, NSC-115870, NSC-127175, acide acétique-2-13C,d4, SIN n° 260, DTXCID304394, E 260, acide acétique-13C2 (8CI,9CI), éthanoat, fusil de chasse, MFCD00036152, Acide acétique d'une concentration de plus de 10 pour cent en poids d'acide acétique, 285977-76-6, 68475-71-8, C2:0, alcool acétylique, Orlex, Vosol, ACIDE ACETIC-1-13C-2-D3 -1 H (D), WLN : QV1, ACIDE ACETIQUE (MART.), ACIDE ACETIQUE [MART.], Acide acétique >=99,7%, 57745-60-5, 63459-47-2, numéro FEMA 2006, ACETIC- ACIDE 13C2-2-D3, 97 ATOM % 13C, 97 ATOM % D, réactif acide acétique ACS >=99,7 %, ACY, HSDB 40, CCRIS 5952, 79562-15-5, acide méthane carboxylique, EINECS 200-580-7 , Acide acétique 0,25% dans un récipient en plastique, Essigsaure, Ethylate, acide acétique



L'acide acétique est un composé organique de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).
L'acide acétique est un liquide incolore qui, lorsqu'il n'est pas dilué, est également appelé « acide acétique glacial ».
L'acide acétique est le composant principal du vinaigre (outre l'eau ; le vinaigre contient environ 8 % d'acide acétique en volume) et a un goût aigre distinctif et une odeur piquante.


L'acide acétique de qualité alimentaire est l'un des acides carboxyliques les plus simples.
L'acide acétique est un réactif chimique important et un produit chimique industriel, principalement utilisé dans la production d'acétate de cellulose pour les films photographiques et d'acétate de polyvinyle pour la colle à bois, ainsi que de fibres et de tissus synthétiques.


L'acide acétique, également connu sous le nom d'acide éthanoïque, est un composé liquide et organique incolore.
De formule chimique CH₃COOH, l'acide acétique est un réactif chimique pour la production de produits chimiques.
L'acide acétique a un numéro CAS de 64-19-7.


L'acide acétique, CH3COOH, également connu sous le nom d'acide éthanoïque, est un acide organique qui a une odeur âcre.
L'acide acétique est un acide faible, dans le sens où il n'est que partiellement dissocié dans une solution aqueuse.
L'acide acétique est hygroscopique (absorbe l'humidité de l'air) et gèle à 16,5 °C pour former un solide cristallin incolore.


L'acide acétique est l'un des acides carboxyliques les plus simples et constitue un produit chimique industriel très important.
L'acide acétique est produit par des méthodes biologiques et synthétiques dans l'industrie.
Le sel et l'ester de l'acide acétique sont appelés acétate.


L'acide acétique est complètement soluble dans l'eau.
L'acide acétique est un réactif chimique pour la production de produits chimiques.
L’utilisation unique la plus courante de l’acide acétique concerne la production de monomère d’acétate de vinyle ainsi que la production d’anhydride et d’esters acétiques.


La quantité d'acide acétique dans le vinaigre est relativement faible.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un simple acide carboxylique qui forme généralement un liquide à température ambiante.
L'acide acétique est le plus largement utilisé dans le vinaigre de table en raison de ses propriétés de conservation et est le produit chimique responsable de l'odeur caractéristique du vinaigre.


L'acide acétique a également un large éventail d'applications dans l'industrie chimique et est utilisé dans la synthèse des esters et de l'acétate de vinyle. En laboratoire, l’acide acétique est un solvant couramment utilisé.
L'acide acétique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 1 000 000 tonnes par an.


L'acide acétique est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.
L'acide acétique est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.


Bien qu'il s'agisse généralement du moyen le moins coûteux d'acheter de l'acide acétique, nous constatons que des qualités plus diluées telles que 90 % sont plus demandées pour éliminer la plupart des problèmes de solidification.
L'acide acétique peut sembler devoir se trouver dans un laboratoire de chimie ou une expo-sciences plutôt que dans le garde-manger de votre cuisine.


Cependant, l’acide acétique est en fait le principal composé présent dans le vinaigre et est responsable à la fois de sa saveur et de son acidité uniques.
Non seulement cela, mais l’acide acétique contribue également à de nombreux bienfaits du vinaigre de cidre de pomme pour la santé en raison de ses puissantes propriétés médicinales.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un composé chimique présent dans de nombreux produits différents.


L'acide acétique est peut-être le composant principal du vinaigre, outre l'eau, le plus connu, et on pense qu'il fournit des ingrédients comme le vinaigre de cidre de pomme avec bon nombre de leurs propriétés bénéfiques pour la santé.
Chimiquement parlant, la formule de l’acide acétique est C2H4O2, qui peut également s’écrire CH3COOH ou CH3CO2H.


En raison de la présence d’un atome de carbone dans la structure de l’acide acétique, celui-ci est considéré comme un composé organique.
La densité de l'acide acétique est d'environ 1,05 grammes/cm³ ; Par rapport à d'autres composés comme l'acide nitrique, l'acide sulfurique ou l'acide formique, la densité de l'acide acétique est un peu inférieure.


À l’inverse, le point de fusion de l’acide acétique est nettement plus élevé que celui de nombreux autres acides, et la masse molaire de l’acide acétique et le point d’ébullition de l’acide acétique ont tendance à se situer à peu près au milieu.
L'acide acétique, également connu sous le nom d'acide méthane carboxylique et d'acide éthanoïque, est essentiellement un liquide clair et incolore, qui a une odeur forte et piquante.


Étant donné que l’acide acétique a un atome de carbone dans sa formule chimique, il s’agit d’un composé organique et sa formule chimique est CH3COOH.
Il est intéressant de noter que le mot « acétique » est dérivé d'un mot latin appelé « acetum » qui signifie « vinaigre ».
Le vinaigre est la forme diluée de l’acide acétique et constitue la substance chimique la plus courante chez l’homme.


L'acide acétique est un composant principal du vinaigre et lui confère également son odeur caractéristique.
L'acide acétique (CH3COOH), également appelé acide éthanoïque, est le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal de l'acide acétique est appelé acétate.


Ensuite, lorsque l’acide acétique ou l’acide éthanoïque n’est pas dilué, on l’appelle acide acétique glacial.
L'acide acétique est un acide faible mais lorsqu'il est sous forme concentrée, cet acide est corrosif et peut causer des dommages à la peau.
L'acide acétique se présente sous la forme d'un liquide clair et incolore avec une forte odeur de vinaigre.


Le point d’éclair de l’acide acétique est de 104 °F.
La densité de l'acide acétique est de 8,8 lb/gal.
L'acide acétique est corrosif pour les métaux et les tissus.


L'acide acétique, solution, à plus de 10 % mais pas à plus de 80 % d'acide, se présente sous la forme d'une solution aqueuse incolore.
L'acide acétique sent le vinaigre.
L'acide acétique est corrosif pour les métaux et les tissus.


L'acide acétique, solution, à plus de 80 % d'acide, est une solution aqueuse claire et incolore avec une odeur âcre.
L'acide acétique est constitué de cristaux humides légèrement roses avec une odeur de vinaigre.
L'acide acétique est un acide monocarboxylique simple contenant deux carbones.


L'acide acétique joue le rôle de solvant protique, de régulateur d'acidité alimentaire, de conservateur alimentaire antimicrobien et de métabolite de Daphnia magna.
L'acide acétique est un acide conjugué d'un acétate.
L'acide acétique est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.


L'acide acétique est un métabolite présent ou produit par Escherichia coli.
L'acide acétique est un produit naturel présent dans Camellia sinensis, Microchloropsis et d'autres organismes pour lesquels des données sont disponibles.
L'acide acétique est un acide carboxylique synthétique doté de propriétés antibactériennes et antifongiques.


Bien que son mécanisme d'action ne soit pas entièrement connu, l'acide acétique non dissocié peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.
L'acide acétique est l'un des acides carboxyliques les plus simples.


L'acide acétique est un réactif chimique important et un produit chimique industriel utilisé dans la production de bouteilles de boissons gazeuses en plastique, de films photographiques ; et acétate de polyvinyle pour la colle à bois, ainsi que de nombreuses fibres et tissus synthétiques.
L'acide acétique peut être très corrosif, selon la concentration.


L'acide acétique est un ingrédient de la cigarette.
Le groupe acétyle, dérivé de l'acide acétique, est fondamental pour la biochimie de pratiquement toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, il joue un rôle central dans le métabolisme des glucides et des graisses.


Cependant, la concentration d’acide acétique libre dans les cellules est maintenue à un faible niveau pour éviter de perturber le contrôle du pH du contenu cellulaire.
L'acide acétique est produit et excrété par certaines bactéries, notamment du genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries sont présentes universellement dans les aliments, l’eau et le sol, et l’acide acétique est produit naturellement lorsque les fruits et certains autres aliments se gâtent.


L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.
L'acide acétique /əˈsiːtɪk/, systématiquement nommé acide éthanoïque /ˌɛθəˈnoʊɪk/, est un liquide et un composé organique acide et incolore de formule chimique CH3COOH (également écrit CH3CO2H, C2H4O2 ou HC2H3O2).


Le vinaigre contient au moins 4 % d'acide acétique en volume, ce qui fait de l'acide acétique le composant principal du vinaigre, outre l'eau.
L’acide acétique a été utilisé comme composant du vinaigre tout au long de l’histoire, depuis au moins le troisième siècle avant JC.
L'acide acétique est le deuxième acide carboxylique le plus simple (après l'acide formique).


L'acide acétique est un réactif chimique important et un produit chimique industriel dans divers domaines, utilisé principalement dans la production d'acétate de cellulose pour les films photographiques, d'acétate de polyvinyle pour la colle à bois et de fibres et tissus synthétiques.
L'acide acétique est un composé organique très important dans la vie quotidienne des humains.


Les propriétés solvantes souhaitables de l’acide acétique, ainsi que sa capacité à former des mélanges miscibles avec des composés polaires et non polaires, en font un solvant industriel très important.
L'acide acétique est également connu sous le nom d'acide éthanoïque, d'acide éthylique, d'acide vinaigre et d'acide méthane carboxylique.


L'acide acétique est un sous-produit de la fermentation et donne au vinaigre son odeur caractéristique.
Le vinaigre contient environ 4 à 6 % d’acide acétique dans l’eau.
Des solutions plus concentrées peuvent être trouvées en laboratoire, et l'acide acétique pur ne contenant que des traces d'eau est connu sous le nom d'acide acétique glacial.


Les solutions diluées comme le vinaigre peuvent entrer en contact avec la peau sans danger, mais des solutions plus concentrées brûleront la peau.
L'acide acétique glacial peut provoquer des brûlures cutanées et des lésions oculaires permanentes, et corroder le métal.
L'acide acétique est un composé organique de formule CH3COOH.


L'acide acétique est un acide carboxylique constitué d'un groupe méthyle attaché à un groupe fonctionnel carboxyle.
Le nom systématique IUPAC de l’acide acétique est acide éthanoïque et sa formule chimique peut également s’écrire C2H4O2.
Le vinaigre est une solution d'acide acétique dans l'eau et contient entre 5 % et 20 % d'acide éthanoïque en volume.


L'odeur piquante et le goût aigre sont caractéristiques de l'acide acétique qu'il contient.
Une solution non diluée d’acide acétique est communément appelée acide acétique glacial.
L'acide acétique forme des cristaux qui ressemblent à de la glace à des températures inférieures à 16,6 °C.


Acide acétique (CH3COOH), le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal de l'acide acétique est appelé acétate.


Industriellement, l'acide acétique est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l’acide acétique est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
L'acide acétique a été préparé à l'échelle industrielle par oxydation à l'air de l'acétaldéhyde, par oxydation de l'éthanol (alcool éthylique) et par oxydation du butane et du butène.


Aujourd'hui, l'acide acétique est fabriqué selon un procédé développé par l'entreprise chimique Monsanto dans les années 1960 ; il s'agit d'une carbonylation catalysée par le rhodium-iode du méthanol (alcool méthylique).
L'acide acétique pur, souvent appelé acide acétique glacial, est un liquide corrosif et incolore (point d'ébullition 117,9 °C [244,2 °F] ; point de fusion 16,6 °C [61,9 °F]) complètement miscible à l'eau.


L'acide acétique est un liquide organique clair, incolore avec une odeur âcre semblable à celle du vinaigre domestique.
L'acide acétique ou acide acétique glacial, également connu sous le nom d'acide éthanoïque, est un composé organique de formule chimique CH3COOH.
L'acide acétique glacial pur (acide acétique anhydre) est un liquide hygroscopique incolore avec une forte odeur âcre.


Le point de congélation est de 16,6°C et l'acide acétique se transforme en cristaux incolores après solidification.
L'acide acétique est un acide monobasique organique et peut être miscible à l'eau dans n'importe quelle proportion.
L'acide acétique est particulièrement corrosif pour les métaux.


L'acide acétique est largement présent dans la nature, notamment dans le métabolisme de fermentation et les produits de putréfaction de diverses bactéries acétiques glaciales.
L'acide acétique est également le principal composant du vinaigre.
De plus, l’acide acétique glacial joue toujours un rôle important dans de nombreuses réactions chimiques.


Par exemple, l'acide acétique peut subir des réactions de déplacement avec des métaux tels que le fer, le zinc et le cuivre pour générer des acétates métalliques et de l'hydrogène.
De plus, l'acide acétique peut réagir avec les alcalis, les oxydes alcalins, les sels et certains oxydes métalliques.
L'acide acétique est une substance chimique organique, c'est un liquide incolore avec une odeur très particulière.


L'une de ses utilisations les plus courantes est la composition du vinaigre, bien que l'acide acétique soit également utilisé dans les cosmétiques et les produits pharmaceutiques, dans les industries alimentaire, textile et chimique.
Au niveau industriel, l'acide acétique est produit par carbonylation du méthanol et est utilisé comme matière première pour la production de différents composés.


L'acide acétique peut également être obtenu dans l'industrie alimentaire par le processus de fermentation acétique de l'éthanol, ou plus communément, par fermentation alcoolique et par distillation du bois.
L'acide acétique pur ou acide acétique glacial, également connu sous le nom de CH3COOH, est un liquide qui peut être nocif pour notre santé en raison de ses propriétés irritantes et corrosives et peut provoquer de graves irritations de la peau, des yeux et du tube digestif.


Cependant, grâce à sa combinaison avec différentes substances, l'acide acétique permet d'obtenir des produits du quotidien qui peuvent être familiers à tout le monde, comme le vinaigre.
Le vinaigre est une substance hygroscopique, c'est-à-dire qu'il peut absorber l'humidité de son environnement.


Ainsi, lorsqu’il est mélangé à de l’eau, son volume diminue de manière très significative.
D'autre part, lorsque l'acide acétique à 100 % est exposé à de basses températures, la surface, également connue sous le nom d'essence acétique, cristallise et forme des cristaux semblables à de la glace au sommet.


En raison de la structure chimique de l’acide acétique, son point d’ébullition est très élevé.
De plus, il convient de noter que l’acide acétique, étant un acide carboxylique, a la capacité de se dissocier, mais seulement légèrement, car il s’agit d’un acide faible [FC1] .
De plus, grâce à cette capacité à se dissocier, l’acide acétique conduit efficacement l’électricité.


L'acide acétique est un composé organique de formule chimique CH3COOH.
L'acide acétique est un acide monobasique organique et constitue le principal composant du vinaigre.
L'acide acétique anhydre pur (acide acétique glacial) est un liquide incolore et hygroscopique avec un point de congélation de 16,6 ℃ (62 ℉ ).


Après solidification, l'acide acétique devient un cristal incolore.
L'acide acétique ou acide éthanoïque est un composé organique liquide incolore de formule moléculaire CH3COOH.
Lorsque l’acide acétique est dissous dans l’eau, on l’appelle acide acétique glacial.


Le vinaigre ne contient pas moins de 4 pour cent d’acide acétique en volume, à l’exception de l’eau, ce qui permet à l’acide acétique d’être l’ingrédient principal du vinaigre.
L'acide acétique est produit principalement comme précurseur de l'acétate de polyvinyle et de l'acétate de cellulose, en plus du vinaigre domestique.
L'acide acétique est un acide faible puisque la solution ne se dissocie que légèrement.


Mais l'acide acétique concentré est corrosif et peut endommager la chair.
Le deuxième acide carboxylique le plus simple est l’acide acétique (après l’acide formique).
L'acide acétique est constitué d'un groupe méthyle auquel un groupe carboxyle est lié.


L'acide acétique est un composé organique liquide incolore avec une odeur caractéristique âcre.
L'acide acétique est un acide présent naturellement.
L'acide acétique peut également être produit synthétiquement soit par de l'acétylène, soit en utilisant du méthanol.


L'acide acétique est considéré comme un conservateur naturel pour les produits alimentaires.
L'acide acétique est utilisé depuis des centaines d'années comme conservateur (vinaigre, français pour « vin aigre »).
Si pendant la fermentation du raisin ou d'autres fruits, de l'oxygène pénètre dans le récipient, les bactéries convertissent l'éthanol présent en acide acétique, ce qui rend le vin aigre.


L'acide acétique peut être produit synthétiquement par carbonylation du méthanol, oxydation de l'acétaldéhyde ou oxydation du butane/naphta. L'acide acétique est dit « glaciaire » et est totalement miscible à l'eau.
L'acide acétique est le composant principal du vinaigre.


L'acide acétique apparaît comme un liquide clair et incolore avec un goût aigre distinctif et une odeur piquante.
L'acide acétique est utilisé comme conservateur, acidulant et aromatisant dans la mayonnaise et les cornichons.
Bien que l'acide acétique soit considéré comme sûr, certains sont convaincus qu'il a des effets potentiellement dangereux sur la santé.


L'acide acétique, systématiquement appelé acide éthanoïque, est un composé organique liquide incolore de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).
Lorsqu'il n'est pas dilué, l'acide acétique est parfois appelé acide acétique glacial.


L'acide acétique est un composé organique appartenant aux acides carboxyliques faibles.
L'ensemble des propriétés de l'acide acétique le classe parmi les réactifs à large spectre et lui permet d'être utilisé dans une grande variété de domaines industriels : de la pharmacologie et de la cosmétologie aux industries chimiques et alimentaires.


L'acide acétique est l'un des acides les plus couramment utilisés dans l'industrie alimentaire et domestique.
L'acide acétique est un liquide incolore, piquant et inodore qui se mélange avec l'eau pour former des solutions de concentrations variables.
En raison de sa capacité à cristalliser à une température déjà positive, l’acide acétique est également appelé « glacial ».


L'acide acétique est un acide carboxylique synthétique doté de propriétés antibactériennes et antifongiques.
Bien que le mécanisme d'action de l'acide acétique ne soit pas entièrement connu, l'acide acétique non dissocié peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.


L'acide acétique, en tant qu'acide faible, peut inhiber le métabolisme des glucides, entraînant ainsi la mort de l'organisme.
L'acide acétique est présent dans la plupart des fruits.
L'acide acétique est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.


Dans la mayonnaise, de l'acide acétique est ajouté pour augmenter l'inactivation des salmonelles.
L'acide acétique, également connu sous le nom d'acide éthanoïque, est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
La formule chimique de l'acide acétique est CH3COOH et son poids moléculaire est de 60,05 g/mol.


L'acide acétique est un liquide clair et incolore qui a une odeur âcre et un goût aigre.
L'acide acétique est miscible à l'eau et aux solvants organiques les plus courants.
L'acide acétique est produit naturellement dans la plupart des organismes en tant que sous-produit du métabolisme.


L'acide acétique est également un composant majeur du vinaigre, qui est une solution d'acide acétique et d'eau qui se produit naturellement lorsque l'éthanol contenu dans les jus de fruits fermentés subit une oxydation par les bactéries de l'acide acétique.
La production de vinaigre est une pratique ancienne de conservation et d’aromatisation des aliments qui remonte à l’Antiquité.


L'acide acétique a plusieurs applications en dehors de l'industrie alimentaire.
L'acide acétique est utilisé comme solvant dans la production de divers produits chimiques et constitue un intermédiaire important dans la fabrication de polymères, de fibres et de produits pharmaceutiques.


L'acide acétique est classé comme acide faible car il ne s'ionise que partiellement dans l'eau pour produire des ions hydrogène (H+) et des ions acétate (CH3COO-).
Le pH d'une solution à 1 % d'acide acétique est d'environ 2,4, ce qui signifie qu'elle est acide mais relativement moins acide que certains acides plus forts comme l'acide chlorhydrique ou l'acide sulfurique.


L'acide acétique est à la fois naturel et synthétique.
Les sources naturelles comprennent la fermentation et les bactéries.
Lors de la fermentation, l'acide acétique est produit lorsque la levure décompose le sucre en l'absence d'oxygène.


Les bactéries produisent de l'acide acétique lorsqu'elles oxydent l'éthanol.
L'acide acétique synthétique est obtenu en faisant réagir du méthanol avec du monoxyde de carbone en présence d'un catalyseur.
L'acide acétique a une odeur et un goût forts.


L'odeur de l'acide acétique est similaire à celle du vinaigre et le goût est aigre.
L'acide acétique n'est pas considéré comme toxique en petites quantités et est généralement reconnu comme sûr par la Food and Drug Administration (FDA) des États-Unis lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


La sécurité de l'acide acétique dépend de sa concentration, des concentrations plus élevées étant plus corrosives pour la peau et les yeux.
En résumé, l’acide acétique est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
Une autre utilisation importante de l’acide acétique est celle d’intermédiaire chimique.


Enfin, l'acide acétique est un ingrédient important dans le processus de vinification.
Dans ce cas, l’acide acétique est produit naturellement comme sous-produit du processus de fermentation du vin.
Cependant, si les niveaux d’acide acétique sont trop élevés, le vin peut avoir un goût ou une odeur de vinaigre, ce qui n’est pas souhaitable.


Pour éviter cela, les vignerons utilisent des sulfites pour inhiber la croissance des bactéries acétiques dans le vin.
L'acide acétique est également un agent nettoyant efficace, notamment lorsqu'il s'agit d'éliminer les taches tenaces ou l'accumulation de minéraux dues à l'eau dure.
La nature acide de l'acide acétique aide à éliminer la saleté, la crasse et autres impuretés des surfaces.


L'acide acétique se trouve naturellement dans de nombreux aliments, notamment le vinaigre et les produits fermentés.
Cependant, lorsqu’il est utilisé comme additif, l’acide acétique est généralement produit de manière synthétique.
L'acide acétique est généralement reconnu comme sûr (GRAS) lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


Dans l’ensemble, l’acide acétique est considéré comme un additif alimentaire sûr lorsqu’il est utilisé dans les limites recommandées.
Comme pour tout additif alimentaire, l’acide acétique est essentiel pour suivre les réglementations et directives établies par les autorités compétentes.



UTILISATIONS et APPLICATIONS de l’ACIDE ACÉTIQUE :
À la maison, l’acide acétique dilué est souvent utilisé dans les agents détartrants.
Dans l'industrie alimentaire, l'acide acétique est utilisé comme additif alimentaire (numéro UE E260) comme régulateur d'acidité et comme condiment.
L'acide acétique est largement approuvé pour être utilisé comme additif alimentaire.


L'acide acétique 80 % est un produit chimique essentiel avec une large gamme d'applications.
L'acide acétique est un acide organique fort, également connu sous le nom d'acide éthanoïque ou vinaigre, et est utilisé dans diverses industries, de la production de peintures et d'adhésifs aux industries alimentaire et pharmaceutique.


L'acide acétique est un solvant efficace et un agent de condensation dans les processus de synthèse chimique.
L'acide acétique est également utilisé dans la production d'acétate de vinyle, un ingrédient clé dans la fabrication des polymères.
L'acide acétique est une solution hautement concentrée, idéale pour les professionnels et les utilisateurs expérimentés.


Avec l'acide acétique, vous pouvez éliminer le calcaire tenace, les dépôts verts et autres types de pollution.
En général, pour la plupart des applications, l'acide acétique doit d'abord être dilué avec de l'eau.
Pour une solution prête à l'emploi d'acide acétique que vous pouvez utiliser immédiatement pour vos travaux de nettoyage, vous pouvez également acheter du vinaigre de nettoyage .


L'acide acétique est le plus couramment utilisé dans la production d'acétate de vinyle monomère (VAM), dans la production d'esters et pour l'élevage d'abeilles.
En tant qu'acide naturel, l'acide acétique offre un large éventail d'applications possibles : par exemple dans les formulations de nettoyage et pour la décalcification.
De plus, l'acide acétique est couramment utilisé comme herbicide biogénique, bien que son utilisation commerciale comme herbicide ne soit pas autorisée dans les espaces clos.


Applications de l'acide acétique : adhésifs/scellants-B&C, intermédiaires agricoles, vêtements, revêtements architecturaux, revêtements de protection automobile, matériaux de construction, encres d'imprimerie commerciales, produits chimiques de construction, intérieurs décoratifs, engrais, ingrédients alimentaires, conservateurs alimentaires, formulateurs, entretien des surfaces dures, Nettoyants industriels, Nettoyants institutionnels, Intermédiaires, Traitement du pétrole ou du gaz, Autres produits chimiques alimentaires, Autres transports, Composants d'emballage sans contact alimentaire, Peintures et revêtements, Produits chimiques pharmaceutiques, Additifs de procédé, Raffinage, Produits chimiques de spécialité, Matière première et Traitement de l'eau industriel.


L'acide acétique est une matière première utilisée pour la production de nombreux produits en aval.
Pour les applications dans les médicaments, les aliments ou les aliments pour animaux, Eastman fournit de l'acide acétique dans des qualités appropriées pour ces utilisations réglementées.
L'acide acétique se trouve le plus souvent dans le vinaigre, qui est utilisé dans des recettes allant des vinaigrettes aux condiments, soupes et sauces.


Le vinaigre est également utilisé comme conservateur alimentaire et agent de décapage.
De plus, il peut même être utilisé pour fabriquer des produits de nettoyage naturels, des toniques pour la peau, des insecticides et bien plus encore.
Certains médicaments contiennent de l'acide acétique, notamment ceux utilisés pour traiter les otites.


Certains utilisent également l'acide acétique dans le traitement d'autres affections, notamment les verrues, les poux et les infections fongiques, bien que des recherches supplémentaires soient nécessaires pour évaluer son innocuité et son efficacité.
L'acide acétique est également utilisé par les fabricants pour créer une variété de produits différents.


En particulier, l'acide acétique est utilisé pour fabriquer des composés chimiques comme le monomère d'acétate de vinyle ainsi que des parfums, des produits d'hygiène bucco-dentaire, des produits de soins de la peau, des encres et des colorants.
Le rejet d'acide acétique dans l'environnement peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal).


D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques) et utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide acétique peut être trouvé dans les produits contenant des matériaux à base de : papier (par exemple mouchoirs, produits d'hygiène féminine, couches, livres, magazines, papier peint), cuir (par exemple gants, chaussures, sacs à main, meubles), tissus, textiles et vêtements (par exemple vêtements). , matelas, rideaux ou tapis, jouets textiles) et le bois (par exemple sols, meubles, jouets).


L'acide acétique est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits chimiques de traitement de l'eau, produits phytopharmaceutiques et produits de lavage et de nettoyage.
L'acide acétique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement.


L'acide acétique est utilisé pour la fabrication de : produits chimiques.
D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire lors d'une utilisation en extérieur et en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air).


L'acide acétique est utilisé dans les produits suivants : produits de revêtement, parfums et fragrances, produits chimiques et colorants pour papier, produits et colorants de traitement textile, produits de traitement de surfaces métalliques, produits de traitement de surfaces non métalliques et polymères.
L'acide acétique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.


Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : formulation de mélanges, formulation dans des matériaux, fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), comme auxiliaire technologique, pour la fabrication thermoplastique, comme auxiliaire technologique, de substances dans des systèmes fermés avec rejet minimal et dans la production d'articles.


L'acide acétique est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits d'exploration ou de production pétrolière et gazière, produits chimiques de traitement de l'eau, produits de lavage et de nettoyage, polymères et produits de revêtement.
L'acide acétique est utilisé dans les domaines suivants : exploitation minière et formulation de mélanges et/ou reconditionnement.


L'acide acétique est utilisé pour la fabrication de produits chimiques, de textiles, de cuir ou de fourrure, de bois et de produits en bois ainsi que de pâte à papier, de papier et de produits en papier.
Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et dans la fabrication de la substance.


Le rejet dans l'environnement de l'acide acétique peut survenir lors d'une utilisation industrielle : fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), formulation de mélanges, formulation dans des matériaux, dans la production d'articles, comme auxiliaire technologique, pour la fabrication de thermoplastiques, comme auxiliaire technologique et de substances dans des systèmes fermés avec un rejet minimal.


L'acide acétique est utilisé dans les produits suivants : produits de revêtement, produits de lavage et de nettoyage, produits d'assainissement de l'air, lubrifiants et graisses, mastics, enduits, pâte à modeler, produits antigel, engrais, produits phytopharmaceutiques, peintures au doigt, biocides ( par exemple désinfectants, produits antiparasitaires), produits de soudage et de brasage et produits de traitement textile et colorants.


D'autres rejets d'acide acétique dans l'environnement sont susceptibles de se produire lors de : l'utilisation en extérieur, l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en intérieur dans des systèmes fermés avec un minimum de (par exemple liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile).


Industriellement, l'acide acétique est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l’acide acétique est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
Outre son utilisation comme conservateur naturel et ingrédient commun dans une variété de produits, l’acide acétique a également été associé à plusieurs bienfaits impressionnants pour la santé.


En plus de ses puissantes propriétés antibactériennes, l’acide acétique réduirait également le taux de sucre dans le sang, favoriserait la perte de poids, soulagerait l’inflammation et contrôlerait la tension artérielle.
En tant que distributeurs de produits chimiques, les objectifs pour lesquels ce type d'acide acétique est traité sont variés.


Comme mentionné ci-dessus, l’acide acétique peut être trouvé dans de nombreuses épiceries sous forme de vinaigre blanc.
Dans de tels produits, l'acide acétique ne peut pas être trouvé sous sa forme pure, mais seulement en petites quantités.
L'acide acétique est également présent dans les aliments tels que les aliments en conserve et marinés, les fromages et produits laitiers, les sauces ou les salades préparées.


L'acide acétique est également couramment utilisé dans les industries pharmaceutique, cosmétique et industrielle, à la fois pour produire d'autres substances et pour réguler leurs propriétés, notamment en ce qui concerne leur pH.
En raison de sa forte odeur, l'une de ses autres utilisations principales est en cosmétique comme régulateur de l'arôme des parfums, c'est-à-dire que l'acide acétique permet notamment d'équilibrer les odeurs sucrées.


Dans l'industrie textile, l'acide acétique est utilisé pour teindre les tissus et produire des tissus tels que la viscose ou le latex.
Dans l'industrie chimique, l'acide acétique est utilisé dans la fabrication de produits de nettoyage et, dans l'industrie pharmaceutique, dans des suppléments et certains médicaments, car il est capable de stabiliser la tension artérielle et de réduire le taux de sucre dans le sang.


L'acide acétique est également un ingrédient courant dans les pommades.
Dans les ménages, l’acide acétique dilué est souvent utilisé comme agent de nettoyage. Dans l’industrie alimentaire, l’acide acétique est utilisé comme régulateur d’acidité.
L'acide acétique est utilisé dans la fabrication d'autres produits chimiques, comme additif alimentaire et dans la production pétrolière.


L'acide acétique est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.
Dans les ménages, l’acide acétique dilué est souvent utilisé dans les détartrants.


Dans l'industrie alimentaire, l'acide acétique est contrôlé par le code des additifs alimentaires E260 comme régulateur d'acidité et comme condiment.
En biochimie, le groupe acétyle, dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique joue un rôle central dans le métabolisme des glucides et des graisses.


La demande mondiale d'acide acétique est d'environ 6,5 millions de tonnes métriques par an (t/a), fabriqué à partir de méthanol.
La production d'acide acétique et son utilisation industrielle ultérieure présentent des risques pour la santé des travailleurs, notamment des lésions cutanées accidentelles et des lésions respiratoires chroniques dues à l'inhalation.


L'acide acétique est un réactif chimique pour la production de composés chimiques.
L'utilisation la plus importante de l'acide acétique concerne la production de monomère d'acétate de vinyle, suivie de près par la production d'anhydride et d'ester acétiques.
Le volume d’acide acétique utilisé dans le vinaigre est relativement faible.


Dans le domaine de la chimie analytique, l'acide acétique glacial est largement utilisé pour estimer les substances faiblement alcalines.
L'acide acétique a une large gamme d'applications en tant que solvant polaire et protique.
L'acide acétique est utilisé comme antiseptique en raison de ses qualités antibactériennes


La fabrication de fibre de rayonne implique l'utilisation d'acide acétique.
En médecine, l'acide acétique a été utilisé pour traiter le cancer par injection directe dans la tumeur.
Étant le principal constituant du vinaigre, l’acide acétique est utilisé dans le marinage de nombreux légumes.


La fabrication du caoutchouc implique l'utilisation d'acide acétique.
L'acide acétique est également utilisé dans la fabrication de divers parfums.
L'acide acétique est largement utilisé dans la production de VAM (monomère d'acétate de vinyle).


Lorsque deux molécules d’acide acétique subissent ensemble une réaction de condensation, le produit formé est l’anhydride acétique.
L'acide acétique est largement utilisé dans la préparation industrielle du téréphtalate de diméthyle (DMT).
L'acide acétique est utilisé dans la fabrication d'anhydride acétique, d'acétate de cellulose, d'acétate de vinyle monomère, d'esters acétiques, d'acide chloracétique, de plastiques, de colorants, d'insecticides, de produits chimiques photographiques et de caoutchouc.


D'autres utilisations commerciales de l'acide acétique comprennent la fabrication de vitamines, d'antibiotiques, d'hormones et de produits chimiques organiques, ainsi que comme additif alimentaire (acidulant).
L'acide acétique est également utilisé dans divers procédés d'impression textile.
L'acide acétique est le composant principal du vinaigre, qui contient de 4 à 18 % d'acide acétique.


L'acide acétique est utilisé comme conservateur alimentaire et additif alimentaire (connu sous le nom d'E260).
L'acide acétique est utilisé comme matière première et solvant dans la production d'autres produits chimiques, dans la production pétrolière et gazière, ainsi que dans les industries alimentaire et pharmaceutique.


De grandes quantités d'acide acétique sont utilisées pour fabriquer des produits tels que de l'encre pour l'impression textile, des colorants, des produits chimiques photographiques, des pesticides, des produits pharmaceutiques, du caoutchouc et des plastiques.
L'acide acétique est également utilisé dans certains produits d'entretien ménager pour éliminer le calcaire.


Dans les aliments, l'acide acétique est utilisé pour ses propriétés antibactériennes, comme stabilisateur d'acidité, diluant les couleurs, comme agent aromatisant et pour inhiber la croissance des moisissures dans le pain.
En brassage, l'acide acétique est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.


L'acide acétique peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.
L'acide acétique est souvent utilisé comme vinaigre de table.


L'acide acétique est également utilisé directement comme condiment et dans le marinage des légumes et d'autres aliments.
L'acide acétique est utilisé comme composant principal dans la synthèse ultérieure dans le processus de production alimentaire et pharmaceutique.
Additif alimentaire L'acide acétique est largement utilisé dans le marinage, la mise en conserve, la fabrication de mayonnaise, de sauces et d'autres aliments.


Sous l'une des formes les plus courantes de l'acide acétique, le vinaigre est également utilisé directement comme condiment et dans le marinage des légumes et d'autres aliments pour préserver les aliments contre les bactéries et les champignons.
En brassage, l'acide acétique est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.


Lorsqu'il est utilisé comme additif alimentaire, l'acide acétique possède un numéro E 260.
L'acide acétique peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.


L'utilisation de l'acide acétique est approuvée comme créant une dépendance alimentaire dans l'UE et est généralement reconnue comme une substance alimentaire sûre aux États-Unis.
En plus du vinaigre, l'acide acétique est utilisé comme additif alimentaire et conservateur dans divers autres aliments, notamment les produits de boulangerie, les viandes transformées, les fromages et les condiments.


De nombreux aliments marinés, comme les cornichons et la choucroute, contiennent également de l'acide acétique comme sous-produit naturel du processus de fermentation.
L'acide acétique est également utilisé dans la production de divers ingrédients alimentaires, notamment des sels, des esters et des anhydrides.
Ces dérivés de l'acide acétique sont utilisés comme conservateurs, arômes et émulsifiants dans les aliments transformés.


Quelques exemples de ces dérivés comprennent l'acétate de sodium, l'acétate d'éthyle et l'anhydride acétique.
L'acide acétique est également utilisé dans la production de divers adhésifs, revêtements et encres, ainsi que pour produire de l'acétate de cellulose, utilisé dans les films photographiques et d'autres applications.


L'acide acétique se trouve naturellement dans de nombreux aliments et est également produit synthétiquement pour diverses applications industrielles.
Les dérivés de l'acide acétique sont utilisés comme additifs alimentaires et conservateurs, ainsi que dans la production de divers produits chimiques et matériaux.
L'acide acétique est l'un des acides carboxyliques les plus simples.


Il a une variété d’utilisations, allant de l’alimentaire au médical en passant par l’industrie.
Comme mentionné précédemment, l’acide acétique se trouve principalement dans le vinaigre.
L'acide acétique est également utilisé comme additif alimentaire (numéro E E260) pour réguler l'acidité et comme conservateur.


L'acide acétique est également essentiel dans le processus de décapage, qui consiste à conserver des légumes ou des fruits (comme les concombres, les betteraves ou le zeste de pastèque) dans du vinaigre.
L'acide acétique aide à prévenir la croissance de bactéries nocives et préserve la couleur, la saveur et la texture naturelles des légumes ou des fruits.


Le marinage est une technique couramment utilisée pour conserver les aliments, en particulier dans les pays où les hivers sont longs et où les produits frais ne sont pas disponibles.
L'acide acétique est utilisé dans la production d'une large gamme de produits chimiques et de matériaux, tels que l'acétate de vinyle monomère (VAM), l'acétate de cellulose et l'anhydride acétique.


Ces produits chimiques sont utilisés dans diverses industries, notamment les textiles, les plastiques, les revêtements et les adhésifs.
L'acide acétique peut également être utilisé pour produire des tissus synthétiques qui ressemblent à des tissus naturels comme la soie, la laine ou le coton.
L'acide acétique peut être utilisé pour augmenter l'acidité (et abaisser le pH) des produits alimentaires ainsi que pour améliorer la qualité organoleptique en donnant au produit une saveur acide, comme les chips de sel et de vinaigre.


L'acide acétique est également un conservateur populaire car il arrête la croissance bactérienne dans les vinaigrettes, les sauces, le fromage et les cornichons.
L'acide acétique/vinaigre est utilisé pour mariner les aliments, ce qui est un type de méthode de conservation. Lorsqu’il est utilisé avec du bicarbonate de soude, l’acide acétique agit également comme agent levant chimique.


Outre l’alimentation, l’acide acétique a été utilisé en médecine, notamment dans les gouttes auriculaires, et dans un certain nombre de procédés industriels.
L'acide acétique est utilisé pour fabriquer de l'acétate de cellulose et de l'acétate de polyvinyle, et l'acide acétique glacial en particulier est fréquemment utilisé comme solvant.
Comme mentionné précédemment, l’acide acétique est largement utilisé comme conservateur alimentaire.


L'acide acétique rend les aliments moins hospitaliers aux bactéries nocives pouvant provoquer une intoxication alimentaire.
Lorsqu’il est utilisé en petites quantités, l’acide acétique peut prolonger efficacement la durée de conservation des aliments.
De plus, de l'acide acétique peut également être ajouté au liquide de décapage pour aider à maintenir le niveau d'acidité du produit mariné, le faisant ainsi durer plus longtemps.


Une autre application populaire de l’acide acétique est celle d’exhausteur naturel de goût des aliments.
En plus d'améliorer le goût de nombreux aliments transformés, notamment les sauces, les vinaigrettes et les condiments, l'acide acétique est également utilisé pour donner une saveur aigre aux boissons comme les sodas et les boissons énergisantes.


L'acide acétique est ajouté en petites quantités à ces produits afin de conférer un goût acidulé et rafraîchissant que de nombreux consommateurs préfèrent.
L'acide acétique est utilisé dans une grande variété de produits de nettoyage ménagers, notamment les nettoyants tout usage, les nettoyants pour vitres et les solutions de nettoyage pour salles de bains.
En plus de son utilisation dans les nettoyants ménagers, l’acide acétique est également utilisé comme désherbant naturel.


L'acide acétique peut être pulvérisé sur les mauvaises herbes des jardins et des pelouses pour les tuer sans contaminer le sol.
Certains jardiniers soucieux de l'environnement préfèrent utiliser des sprays de vinaigre plutôt que des herbicides chimiques toxiques, car l'acide acétique est considéré comme une solution plus respectueuse de l'environnement.


Certaines recherches ont également montré que l’acide acétique peut avoir des effets bénéfiques potentiels sur la santé.
Par exemple, l’acide acétique a été étudié pour son potentiel à abaisser le taux de sucre dans le sang et à améliorer la sensibilité à l’insuline.
De plus, l’acide acétique peut aider à perdre du poids en réduisant l’appétit et en favorisant la sensation de satiété.


Cependant, des recherches supplémentaires sont nécessaires pour comprendre pleinement les bienfaits potentiels de l’acide acétique sur la santé.
En termes de sécurité, l'acide acétique doit être manipulé avec précaution.
Pour résumer, l’acide acétique est un ingrédient polyvalent avec de nombreuses applications.


L'acide acétique est couramment utilisé comme conservateur alimentaire, exhausteur de goût et agent de nettoyage.
L'acide acétique présente également des avantages potentiels pour la santé, bien que des recherches supplémentaires soient nécessaires pour confirmer ces avantages.
Comme tout produit chimique, l’acide acétique doit être manipulé avec soin et stocké correctement afin de minimiser les risques de blessures ou de dommages matériels.


En conclusion, l’acide acétique est un ingrédient alimentaire largement utilisé avec de nombreuses applications et avantages.
L'acide acétique est une substance naturelle sans danger lorsqu'elle est utilisée de manière appropriée.
Que vous l'utilisiez en cuisine ou à des fins de nettoyage, l'acide acétique est une solution polyvalente et efficace sur laquelle on compte depuis des siècles.


L’acide acétique est un ingrédient alimentaire polyvalent et largement utilisé, présentant de nombreux avantages et applications possibles, ainsi que quelques inconvénients.
Comprendre les propriétés et les utilisations de l’acide acétique est essentiel pour toute personne travaillant avec des aliments ou des produits chimiques.
Outre l'acide acétique, il existe d'autres types d'acides utilisés dans la production alimentaire, tels que l'acide ascorbique (vitamine C), l'acide citrique et l'acide malique.


Ces acides sont couramment utilisés comme conservateurs, stabilisants, exhausteurs de goût et acidulants, selon la formulation spécifique du produit.
Bien que chaque type d'acide ait ses propres propriétés uniques, l'acide acétique se distingue par son goût aigre et son arôme piquant.
L’une des principales applications de l’acide acétique est la production de vinaigre, un condiment largement utilisé obtenu par fermentation d’éthanol et d’autres sucres.


Le vinaigre de cidre de pomme, le vinaigre balsamique et le vinaigre blanc font partie des variétés de vinaigre les plus populaires disponibles.
Chaque type de vinaigre a la saveur unique de l'acide acétique et peut être utilisé dans une gamme de recettes, des marinades aux vinaigrettes.
Régulateur d'acidité L'acide acétique est couramment utilisé dans les aliments comme agent de conservation et aromatisant.


L'acide acétique est principalement utilisé pour réguler les niveaux d'acidité de divers produits alimentaires, notamment les cornichons, les sauces, les vinaigrettes et les condiments.
De plus, l’acide acétique, régulateur d’acidité, est efficace pour empêcher la croissance de bactéries et de champignons dans les aliments, prolongeant ainsi leur durée de conservation.
L'acide acétique est considéré comme sans danger pour la consommation lorsqu'il est utilisé dans les limites approuvées fixées par les autorités réglementaires.


L'acide acétique est couramment utilisé dans les légumes marinés, les vinaigrettes, les sauces et les condiments pour donner de l'acidité et rehausser les saveurs.
L'acide acétique est utilisé depuis des siècles dans la conservation et l'aromatisation des aliments.
L'acide acétique est un additif couramment utilisé dans l'industrie alimentaire.


L'acide acétique est un acide naturel présent dans le vinaigre et est largement utilisé comme conservateur alimentaire et agent aromatisant.
L'acide acétique est connu pour son goût aigre et est souvent ajouté à divers produits alimentaires tels que les cornichons, les sauces, les condiments et les vinaigrettes pour rehausser leur saveur et prolonger leur durée de conservation.


En tant que conservateur alimentaire, l'acide acétique agit en créant un environnement acide qui inhibe la croissance des bactéries et autres micro-organismes.
Cela aide à prévenir la détérioration des aliments et à augmenter la stabilité de l'acide acétique.
L'acide acétique agit également comme régulateur de pH, aidant à maintenir le niveau d'acidité souhaité dans certains aliments.


Comme pour tout additif alimentaire, il est recommandé de consommer les aliments contenant de l’acide acétique avec modération et dans le cadre d’une alimentation équilibrée.
En conclusion, l’acide acétique est un additif alimentaire largement utilisé qui sert à la fois de conservateur et d’exhausteur de goût.
L'acide acétique donne un goût aigre et contribue à prolonger la durée de conservation de divers produits alimentaires.



-L'acide acétique de formule CH3COOH ou additif alimentaire E260 est utilisé :
*l'industrie alimentaire – connue sous le nom d'additif E260, est impliquée dans la production de produits laitiers, de salades, de sauces, de vinaigrettes, de marinades et de conserves ;
*Industrie pharmaceutique – fait partie de l'aspirine, de la phénacétine, d'autres médicaments et compléments alimentaires qui stabilisent la tension artérielle et réduisent la glycémie ;
*industrie textile – en tant que composant pour la fabrication et la teinture de tissus en rayonne et en latex ;
*sphère cosmétique – utilisée pour équilibrer l’odeur et réguler les caractéristiques de diverses compositions ;
*industrie chimique – production de produits de nettoyage et de détergents, de produits chimiques ménagers, d'acétone, de colorants synthétiques ;
*comme solvant pour vernis, coagulant de latex ;
*comme agent acétylant en synthèse organique ;
*sels d'acide acétique (Fe, Al, Cr, etc.) – mordants pour teinture, etc.


-Élevage d'abeilles :
La fumigation à l'acide acétique tuera une grande variété d'agents pathogènes, tels que les agents responsables du couvain du Crétacé, de la loque européenne, de Nosema et de l'amibe.
L'acide acétique éliminera également tous les stades de la teigne de la cire, à l'exception des pupes.


-Monomère d'acétate de vinyle :
Production d'acétate de vinyle monomère (VAM), l'application consomme environ 40 à 45 % de la production mondiale d'acide acétique.
La réaction se fait avec l'éthylène et l'acide acétique avec l'oxygène sur un catalyseur au palladium.


-Production d'esters :
Les esters d'acide acétique sont utilisés comme solvant dans les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.


-Utiliser comme solvant :
L'acide acétique est un excellent solvant protique polaire.
L'acide acétique est souvent utilisé comme solvant de recristallisation pour purifier les composés organiques.
L'acide acétique est utilisé comme solvant dans la production d'acide téréphtalique (TPA), une matière première pour la production de polyéthylène téréphtalate (PET).


-Utilisation médicale de l'acide acétique :
L’injection d’acide acétique dans une tumeur est utilisée pour traiter le cancer depuis les années 1800.
L'acide acétique est utilisé dans le cadre du dépistage du cancer du col de l'utérus dans de nombreuses régions des pays en développement.

L'acide est appliqué sur le col et si une zone blanche apparaît après environ une minute, le test est positif.
L'acide acétique est un antiseptique efficace lorsqu'il est utilisé sous forme de solution à 1 %, avec un large spectre d'activité contre les streptocoques, les staphylocoques, les pseudomonas, les entérocoques et autres.

L'acide acétique peut être utilisé pour traiter les infections cutanées causées par des souches de pseudomonas résistantes aux antibiotiques typiques.
Bien que l'acide acétique dilué soit utilisé en iontophorèse, aucune preuve de haute qualité ne soutient ce traitement pour la maladie de la coiffe des rotateurs.
En tant que traitement de l'otite externe, il figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.


-Utilisations alimentaires de l'acide acétique :
L'acide acétique contient 349 kcal (1 460 kJ) pour 100 g.
Le vinaigre ne contient généralement pas moins de 4 % d’acide acétique en masse.
Les limites légales sur la teneur en acide acétique varient selon les juridictions.

Le vinaigre est utilisé directement comme condiment et dans le marinage des légumes et autres aliments.
Le vinaigre de table a tendance à être plus dilué (4 à 8 % d'acide acétique), tandis que le décapage alimentaire commercial utilise des solutions plus concentrées.
La proportion d’acide acétique utilisée dans le monde sous forme de vinaigre n’est pas aussi importante que les utilisations industrielles, mais il s’agit de loin de l’application la plus ancienne et la plus connue.


-Acide acétique comme solvant :
À l'état liquide, CH3COOH est un hydrophile (se dissout facilement dans l'eau) et également un solvant polaire et protique.
Un mélange d’acide acétique et d’eau est ainsi similaire à un mélange d’éthanol et d’eau.
L'acide acétique forme également des mélanges miscibles avec l'hexane, le chloroforme et plusieurs huiles.
Cependant, l'acide acétique ne forme pas de mélanges miscibles avec les alcanes à longue chaîne (comme l'octane).


-Monomère d'acétate de vinyle :
La principale utilisation de l’acide acétique est la production d’acétate de vinyle monomère (VAM).
En 2008, on estimait que cette application consommait un tiers de la production mondiale d'acide acétique.

La réaction consiste en de l'éthylène et de l'acide acétique avec de l'oxygène sur un catalyseur au palladium, réalisée en phase gazeuse.
2 H3C−COOH + 2 C2H4 + O2 → 2 H3C−CO−O−CH=CH2 + 2 H2O
L'acétate de vinyle peut être polymérisé en acétate de polyvinyle ou en d'autres polymères, qui sont des composants des peintures et des adhésifs.


-Production d'esters :
Les principaux esters de l'acide acétique sont couramment utilisés comme solvants pour les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.

Ils sont généralement produits par réaction catalysée à partir de l'acide acétique et de l'alcool correspondant :
CH3COO−H + HO−R → CH3COO−R + H2O, R = groupe alkyle général
Par exemple, l'acide acétique et l'éthanol donnent de l'acétate d'éthyle et de l'eau.
CH3COO−H + HO−CH2CH3 → CH3COO−CH2CH3 + H2O

Cependant, la plupart des esters d'acétate sont produits à partir d'acétaldéhyde en utilisant la réaction de Tishchenko.
De plus, les acétates d'éther sont utilisés comme solvants pour la nitrocellulose, les laques acryliques, les dissolvants pour vernis et les teintures pour bois.
Tout d'abord, les monoéthers de glycol sont produits à partir d'oxyde d'éthylène ou d'oxyde de propylène avec de l'alcool, qui sont ensuite estérifiés avec de l'acide acétique.

Les trois principaux produits sont l'acétate d'éther monoéthylique d'éthylène glycol (EEA), l'acétate d'éther monobutylique d'éthylène glycol (EBA) et l'acétate d'éther monométhylique de propylène glycol (PMA, plus communément appelé PGMEA dans les processus de fabrication de semi-conducteurs, où il est utilisé comme solvant de réserve. ).
Cette application consomme environ 15 à 20 % de l’acide acétique mondial.
Il a été démontré que les acétates d'éther, par exemple l'EEE, sont nocifs pour la reproduction humaine.


-Anhydride acétique:
Le produit de la condensation de deux molécules d'acide acétique est l'anhydride acétique.
La production mondiale d'anhydride acétique constitue une application majeure et utilise environ 25 à 30 % de la production mondiale d'acide acétique.
Le processus principal implique la déshydratation de l'acide acétique pour donner du cétène à 700-750 °C.

Le cétène réagit ensuite avec l'acide acétique pour obtenir l'anhydride :
CH3CO2H → CH2=C=O + H2O
CH3CO2H + CH2=C=O → (CH3CO)2O

L'anhydride acétique est un agent d'acétylation.
En tant que tel, la principale application de l'acide acétique concerne l'acétate de cellulose, un textile synthétique également utilisé pour les films photographiques.
L'anhydride acétique est également un réactif pour la production d'héroïne et d'autres composés.


-Utiliser comme solvant :
En tant que solvant protique polaire, l'acide acétique est fréquemment utilisé pour la recristallisation afin de purifier les composés organiques.
L'acide acétique est utilisé comme solvant dans la production d'acide téréphtalique (TPA), la matière première du polyéthylène téréphtalate (PET).
En 2006, environ 20 % de l’acide acétique était utilisé pour la production de TPA.

L'acide acétique est souvent utilisé comme solvant pour les réactions impliquant des carbocations, telles que l'alkylation de Friedel-Crafts.
Par exemple, une étape de la fabrication commerciale du camphre synthétique implique un réarrangement Wagner-Meerwein du camphène en acétate d'isobornyle ; ici, l'acide acétique agit à la fois comme solvant et comme nucléophile pour piéger le carbocation réarrangé.


-Vinaigre:
Le vinaigre contient généralement 4 à 18 % en poids d’acide acétique.
L'acide acétique est utilisé directement comme assaisonnement et marinade de légumes et autres produits alimentaires.
Le vinaigre de table est utilisé le plus souvent dilué (4 à 8 % d'acide acétique), tandis qu'une solution plus concentrée est utilisée pour le décapage des aliments commerciaux.


-Usage industriel:
L'acide acétique est utilisé dans de nombreux processus industriels pour la production de substrats et il est souvent utilisé comme réactif chimique pour la production d'un certain nombre de composés chimiques comme l'anhydride acétique, l'ester, le monomère d'acétate de vinyle, le vinaigre et de nombreux autres matériaux polymères.
L'acide acétique est également utilisé pour purifier les composés organiques car il peut être utilisé comme solvant pour la recristallisation.


-Applications industrielles de l'acide acétique :
En tant qu'acide organique important, l'acide acétique est principalement utilisé dans la synthèse de l'acétate de vinyle, de l'acétate de cellulose, de l'anhydride acétique, de l'acétate, de l'acétate métallique et de l'acide acétique halogéné.

L'acide acétique glacial est également une matière première importante pour les produits pharmaceutiques, les colorants, les pesticides et autres synthèses organiques.
En outre, l'acide acétique est également largement utilisé dans la fabrication de médicaments photographiques, d'acétate de cellulose, d'impression et de teinture de tissus et dans l'industrie du caoutchouc.


-Applications alimentaires de l'acide acétique :
Dans l’industrie alimentaire, l’acide acétique est généralement utilisé comme acidulant, exhausteur de goût et fabrication d’épices.

*Vinaigre synthétique :
Diluer l'acide acétique à 4-5 % avec de l'eau, ajouter divers agents aromatisants, la saveur est similaire à celle du vinaigre d'alcool, le temps de production est court et le prix est bon marché.

En tant qu'agent acide, l'acide acétique glacial peut être utilisé dans les assaisonnements composés, le vinaigre préparé, les aliments en conserve, la gelée et le fromage, et utilisé avec modération en fonction des besoins de production.
L'acide acétique peut également être utilisé comme exhausteur de goût et la dose recommandée est de 0,1 à 0,3 g/kg.


-Usage médical :
L'acide acétique a de nombreuses utilisations dans le domaine médical.
Les utilisations les plus importantes ici sont que l'acide acétique peut être utilisé comme antiseptique contre les pseudomonas, les entérocoques, les streptocoques, les staphylocoques et autres.
L'acide acétique est également utilisé dans le dépistage du cancer du col de l'utérus et pour le traitement des infections.
De plus, l’acide acétique est utilisé comme agent pour lyser les globules rouges avant l’examen des globules blancs.
On dit également que le vinaigre réduit les concentrations élevées de sucre dans le sang.


-Utilisations importantes et populaires de l'acide acétique :
Il existe de nombreuses utilisations de l'acide acétique.
Ainsi, en plus d’être traité comme un simple conservateur alimentaire (vinaigre), l’acide est utilisé dans de nombreux domaines et instances.

Certaines utilisations principales et importantes incluent :
*Usage industriel
*Utilisations médicinales
*Ménage
*Industrie alimentaire


-Industrie alimentaire:
Dans l'industrie alimentaire, l'acide acétique est le plus souvent utilisé dans les opérations commerciales de décapage et dans les condiments comme la mayonnaise, la moutarde et le ketchup.
L'acide acétique est également utilisé pour assaisonner divers aliments comme les salades, etc.
De plus, le vinaigre peut réagir avec des ingrédients alcalins comme le bicarbonate de soude et lorsque cela se produit, il produit un gaz qui contribue à la fabrication des produits de boulangerie.


-Utilisations domestiques :
L'acide acétique, qui est une solution diluée, est largement utilisé comme vinaigre.
Et comme nous le savons, le vinaigre est largement utilisé pour le nettoyage, la lessive, la cuisine et bien d’autres usages ménagers.

Les agriculteurs pulvérisent généralement de l'acide acétique sur l'ensilage du bétail pour contrer la croissance bactérienne et fongique.
En dehors de cela, l’acide acétique est utilisé pour la fabrication d’encres et de colorants ainsi que dans la fabrication de parfums.
L'acide acétique est également impliqué dans la fabrication des industries du caoutchouc et du plastique.


-L'acide acétique de formule CH3COOH ou additif alimentaire E260 est utilisé :
*l'industrie alimentaire – connue sous le nom d'additif E260, est impliquée dans la production de produits laitiers, de salades, de sauces, de vinaigrettes, de marinades et de conserves ;
*Industrie pharmaceutique – fait partie de l'aspirine, de la phénacétine, d'autres médicaments et compléments alimentaires qui stabilisent la tension artérielle et réduisent la glycémie ;
*industrie textile – en tant que composant pour la fabrication et la teinture de tissus en rayonne et en latex ;
*sphère cosmétique – utilisée pour équilibrer l’odeur et réguler les caractéristiques de diverses compositions ;
*industrie chimique – production de produits de nettoyage et de détergents, de produits chimiques ménagers, d'acétone, de colorants synthétiques ;
*comme solvant pour vernis, coagulant de latex ;
*comme agent acétylant en synthèse organique ;
*sels d'acide acétique (Fe, Al, Cr, etc.) – mordants pour teinture, etc.



APPLICATION INDUSTRIELLE DE L'ACIDE ACÉTIQUE :
Grâce à ses propriétés polyvalentes, l'acide acétique joue un rôle essentiel dans diverses industries européennes.

*Dans l'industrie chimique, l'acide acétique est un élément fondamental pour la production de nombreux produits chimiques.
Un exemple est l’acétate de vinyle monomère (VAM), dont l’acide acétique est largement utilisé pour fabriquer des adhésifs, des peintures et des revêtements.
L'acide acétique est également un précurseur essentiel pour la production d'anhydride acétique, d'esters et d'acétate de cellulose.

*L'industrie agroalimentaire utilise largement l'acide acétique comme agent de conservation et aromatisant.
Le vinaigre, principalement composé d'acide acétique, est largement utilisé dans la cuisine, les marinades et les vinaigrettes.

*Dans l'industrie pharmaceutique, l'acide acétique est un intermédiaire crucial dans la synthèse de produits pharmaceutiques, notamment des antibiotiques, des vitamines et des analgésiques.
La nature polyvalente de l’acide acétique permet la production d’une large gamme de médicaments.

*L'industrie textile s'appuie sur l'acide acétique pour fabriquer des fibres d'acétate synthétique.
Les fibres d'acétate sont couramment utilisées dans les vêtements, les tissus d'ameublement et les textiles en raison de leurs excellentes propriétés de drapage et de leur durabilité.



UTILISATIONS ET AVANTAGES DE L'ACIDE ACÉTIQUE :
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique est sous forme de vinaigre domestique, qui est naturellement fabriqué à partir de sources fermentescibles telles que le vin, les pommes de terre, les pommes, les raisins, les baies et les céréales.

Le vinaigre est une solution claire contenant généralement environ 5 pour cent d'acide acétique et 95 pour cent d'eau.
Le vinaigre est utilisé comme ingrédient alimentaire et peut également être un ingrédient dans les produits de soins personnels, les nettoyants ménagers, les shampoings pour animaux de compagnie et de nombreux autres produits pour la maison :

-vinaigre et bicarbonate de soude
*La préparation des aliments:
Le vinaigre est un ingrédient alimentaire courant, souvent utilisé comme saumure dans les liquides de marinade, les vinaigrettes, les marinades et autres vinaigrettes.
Le vinaigre peut également être utilisé dans la préparation des aliments pour aider à contrôler la contamination par Salmonella dans les produits à base de viande et de volaille.

*Nettoyage:
Le vinaigre peut être utilisé dans toute la maison comme nettoyant pour vitres, pour nettoyer les cafetières automatiques et la vaisselle, comme agent de rinçage pour les lave-vaisselle et pour nettoyer le carrelage et le coulis des salles de bains.
Le vinaigre peut également être utilisé pour nettoyer les outils et équipements liés à l’alimentation, car il ne laisse généralement pas de résidus nocifs et nécessite moins de rinçage.

*Jardinage:
À des concentrations de 10 à 20 pour cent, l’acide acétique peut être utilisé comme désherbant dans les jardins et les pelouses.
Lorsqu'il est utilisé comme herbicide, l'acide acétique peut tuer les mauvaises herbes qui ont émergé du sol, mais n'affecte pas les racines des mauvaises herbes, afin qu'elles puissent repousser.

Lorsque l’acide acétique est à une concentration de 99,5 pour cent, on l’appelle acide acétique glacial.
L'acide acétique glacial a diverses utilisations, notamment comme matière première et solvant dans la production d'autres produits chimiques.



LES APPLICATIONS INDUSTRIELLES DE L’ACIDE ACÉTIQUE COMPRENNENT :
*Acétate de vinyle, fibres de cellulose et plastiques :
L'acide acétique est utilisé dans la fabrication de nombreux produits chimiques, notamment l'acétate de vinyle, l'anhydride acétique et les esters d'acétate.
L'acétate de vinyle est utilisé pour fabriquer de l'acétate de polyvinyle, un polymère utilisé dans les peintures, les adhésifs, les plastiques et les finitions textiles.

L'anhydride acétique est utilisé dans la fabrication de fibres d'acétate de cellulose et de plastiques utilisés pour les films photographiques, les vêtements et les revêtements.
L'acide acétique est également utilisé dans la réaction chimique pour produire de l'acide téréphtalique purifié (PTA), qui est utilisé pour fabriquer la résine plastique PET utilisée dans les fibres synthétiques, les contenants alimentaires, les bouteilles de boissons et les films plastiques.

*Solvants :
L'acide acétique est un solvant hydrophile, similaire à l'éthanol.
L'acide acétique dissout les composés tels que les huiles, le soufre et l'iode et se mélange à l'eau, au chloroforme et à l'hexane.

*Acidification du pétrole et du gaz :
L'acide acétique peut aider à réduire la corrosion des métaux et l'accumulation de tartre dans les applications liées aux puits de pétrole et de gaz.
L'acide acétique est également utilisé dans la stimulation des puits de pétrole pour améliorer le débit et augmenter la production de pétrole et de gaz.

*Produits pharmaceutiques et vitamines :
L'industrie pharmaceutique utilise l'acide acétique dans la fabrication de vitamines, d'antibiotiques, d'hormones et d'autres produits.

*Préparation des aliments:
L'acide acétique est couramment utilisé comme produit de nettoyage et de désinfection dans les usines de transformation des aliments.

*Autres utilisations:
Des sels d'acide acétique et divers produits chimiques de caoutchouc et photographiques sont fabriqués à partir d'acide acétique.
L'acide acétique et son sel de sodium sont couramment utilisés comme conservateur alimentaire.



À QUOI PEUT-ON UTILISER L’ACIDE ACÉTIQUE ?
*Élimination du calcaire tenace sur les sanitaires et les appareils de cuisine.
*Lutte contre les dépôts verts sur les terrasses, les meubles de jardin et les surfaces en pierre.
*Détartrage de machines et équipements industriels.
*Nettoyage et désinfection dans l'industrie alimentaire, si dilué de manière adéquate.
*Utilisation comme matière première en synthèse chimique pour la production d'esters, d'esters acétiques et de divers composés organiques.
*En agriculture pour réguler la valeur du pH du sol.
*Comme conservateur dans la transformation des aliments, par exemple lors du marinage des légumes.
*Nettoyage et restauration de façades et monuments.



UTILISATIONS DE L'ACIDE ACÉTIQUE :
Le réactif chimique pour le traitement des composés chimiques est l'acide acétique.
Dans la production de monomère d'acétate de vinyle, d'anhydride acétique et d'esters, l'utilisation d'acide acétique est importante.


*Monomère d'acétate de vinyle :
Le traitement du monomère d'acétate de vinyle (VAM) est la principale application de l'acide acétique.
L'acétate de vinyle subit une polymérisation pour produire de l'acétate de polyvinyle ou d'autres polymères, qui sont des composants des peintures et des adhésifs.

La réaction consiste en de l'éthylène et de l'acide acétique avec de l'oxygène sur un catalyseur au palladium.
2CH3COOH+2C2H4+O2→2CH3CO2CH=CH2+2H2O
La colle à bois utilise également des polymères d'acétate de vinyle.

*Anhydride acétique:
L'anhydride acétique est le résultat de la condensation de deux molécules d'acide acétique.
Le traitement mondial de l'anhydride acétique est une utilisation importante, utilisant environ 25 à 30 pour cent de la production mondiale d'acide acétique.
La méthode clé comprend la déshydratation de l’acide acétique pour donner du cétène à 700-750 °C.

CH3CO2H → CH2 = C = O + H2O
CH3CO2H+CH2=C=O→CH3CO2O

Il est idéal pour la désinfection générale et pour lutter contre la moisissure, car l'acide acétique tue les champignons et les bactéries.
L'acide acétique est utile dans une gamme de produits de nettoyage traditionnels et écologiques, tels que les nettoyants contre la moisissure, les nettoyants pour sols, les sprays pour le nettoyage et le dépoussiérage et les nettoyants pour toitures, sous forme de vinaigre ou d'élément.

Le groupe acétyle est largement utilisé dans le domaine de la biochimie.
Les produits à base d'acide acétique sont un métaboliseur efficace des glucides et des graisses lorsqu'ils sont liés à la coenzyme A.
En tant que traitement de l'otite externe, l'acide acétique est le médicament le meilleur et le plus efficace dans un système de santé figurant sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.



L'ACIDE ACÉTIQUE AU QUOTIDIEN :
L'acide acétique se trouve dans de nombreux produits du quotidien, comme décrit ci-dessus, tels que les aliments, les produits de nettoyage et les cosmétiques, entre autres.
De tous, le vinaigre est l'un des plus importants, car l'acide acétique a différentes utilisations, comme pour la cuisine ou le nettoyage.
L'acide acétique est un produit infaillible lorsqu'il s'agit de traiter les taches tenaces comme l'urine de chien, la rouille ou autres saletés.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est un liquide incolore ; avec une forte odeur de vinaigre.
L'acide acétique est considéré comme un composé organique volatil par l'Inventaire national des polluants.
Densité spécifique : 1,049 à 25 °C
Point de fusion : 16,7°C
Point d'ébullition : 118°C
Pression de vapeur : 1,5 kPa à 20°C



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est hygroscopique, ce qui signifie qu'il a tendance à absorber l'humidité.
L'acide acétique se mélange avec l'alcool éthylique, le glycérol, l'éther, le tétrachlorure de carbone et l'eau et réagit avec les oxydants et les bases.
L'acide acétique concentré est corrosif et attaque de nombreux métaux en formant des gaz inflammables ou explosifs.
L'acide acétique peut également attaquer certaines formes de plastique, de caoutchouc et de revêtements.



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE :
1. Tue les bactéries :
Le vinaigre est utilisé depuis longtemps comme désinfectant naturel, en grande partie en raison de sa teneur en acide acétique.
L'acide acétique possède de puissantes propriétés antibactériennes et peut être efficace pour tuer plusieurs souches spécifiques de bactéries.

En fait, une étude in vitro réalisée en 2014 a révélé que l’acide acétique était capable de bloquer la croissance des myobactéries, un genre de bactérie responsable de la tuberculose et de la lèpre.
D'autres recherches montrent que le vinaigre peut également protéger contre la croissance bactérienne, ce qui peut être partiellement dû à la présence d'acide acétique.


2. Réduit la tension artérielle :
Non seulement l’hypertension artérielle exerce une pression supplémentaire sur le muscle cardiaque et l’affaiblit lentement avec le temps, mais l’hypertension artérielle est également un facteur de risque majeur de maladie cardiaque.
En plus de modifier votre alimentation et votre routine d’exercice, des recherches prometteuses ont montré que l’acide acétique peut également aider à contrôler la tension artérielle.


3. Diminue l’inflammation :
L’inflammation aiguë joue un rôle important dans la fonction immunitaire, aidant à défendre l’organisme contre les maladies et les infections.
Cependant, le maintien de niveaux élevés d’inflammation à long terme peut avoir un effet néfaste sur la santé, des études montrant que l’inflammation pourrait contribuer au développement de maladies chroniques comme les maladies cardiaques et le cancer.
On pense que l’acide acétique réduit l’inflammation et aide à protéger contre les maladies.


4. Prend en charge la perte de poids :
Certaines recherches suggèrent que l’acide acétique pourrait aider à contrôler le poids en favorisant la perte de poids.


5. Favorise le contrôle de la glycémie :
Le vinaigre de cidre de pomme a été bien étudié pour sa capacité à favoriser le contrôle de la glycémie.
La recherche montre que l'acide acétique, l'un des principaux composants présents dans le vinaigre de cidre de pomme, peut jouer un rôle dans ses puissantes propriétés hypoglycémiantes.

Dans une étude, il a été démontré que la consommation de vinaigre avec de l'acide acétique en même temps qu'un repas riche en glucides réduisait les taux de sucre dans le sang et d'insuline grâce à sa capacité à ralentir la vidange de l'estomac.
Une autre étude in vitro a abouti à des résultats similaires, indiquant que l'acide acétique diminuait l'activité de plusieurs enzymes impliquées dans le métabolisme des glucides, ce qui pourrait diminuer l'absorption des glucides et du sucre dans l'intestin grêle.



NOMENCLATURE DE L'ACIDE ACÉTIQUE :
Le nom trivial « acide acétique » est le nom IUPAC le plus couramment utilisé et préféré.
Le nom systématique « acide éthanoïque », un nom IUPAC valide, est construit selon la nomenclature substitutive.
Le nom « acide acétique » dérive du mot latin pour vinaigre, « acetum », qui est lié au mot « acide » lui-même.

« Acide acétique glacial » est un nom pour l'acide acétique sans eau (anhydre).
Semblable au nom allemand « Eisessig » (« vinaigre de glace »), le nom vient des cristaux solides ressemblant à de la glace qui se forment avec agitation, légèrement en dessous de la température ambiante à 16,6 °C (61,9 °F).

L'acide acétique ne peut jamais être véritablement exempt d'eau dans une atmosphère contenant de l'eau, c'est pourquoi la présence de 0,1 % d'eau dans l'acide acétique glacial abaisse son point de fusion de 0,2 °C.
Un symbole courant pour l'acide acétique est AcOH (ou HOAc), où Ac est le symbole du pseudoélément représentant le groupe acétyle CH3−C(=O)− ; la base conjuguée, l'acétate (CH3COO−), est ainsi représentée par AcO−.

(Le symbole Ac pour le groupe fonctionnel acétyle ne doit pas être confondu avec le symbole Ac pour l'élément actinium ; le contexte évite toute confusion parmi les chimistes organiques).
Pour mieux refléter sa structure, l'acide acétique est souvent écrit CH3−C(O)OH, CH3−C(=O)OH, CH3COOH et CH3CO2H.

Dans le contexte des réactions acide-base, l'abréviation HAc est parfois utilisée, où Ac dans ce cas est un symbole pour l'acétate (plutôt que l'acétyle).
L'acétate est l'ion résultant de la perte de H+ de l'acide acétique.
Le nom « acétate » peut également désigner un sel contenant cet anion, ou un ester de l'acide acétique.



HISTOIRE DE L'ACIDE ACÉTIQUE :
Le vinaigre était connu au début de la civilisation comme le résultat naturel de l’exposition de la bière et du vin à l’air, car les bactéries productrices d’acide acétique sont présentes partout dans le monde.
L'utilisation de l'acide acétique en alchimie s'étend jusqu'au troisième siècle avant JC, lorsque le philosophe grec Théophraste a décrit comment le vinaigre agissait sur les métaux pour produire des pigments utiles en art, notamment la céruse (carbonate de plomb) et le vert-de-gris, un mélange vert de sels de cuivre comprenant du cuivre. (II) acétate.

Les Romains de l’Antiquité faisaient bouillir du vin aigre pour produire un sirop très sucré appelé sapa.
Le Sapa produit dans des pots en plomb était riche en acétate de plomb, une substance sucrée également appelée sucre de plomb ou sucre de Saturne, qui contribuait au saturnisme parmi l'aristocratie romaine.

Au XVIe siècle, l'alchimiste allemand Andreas Libavius a décrit la production d'acétone à partir de la distillation sèche de l'acétate de plomb, la décarboxylation cétonique.

La présence d'eau dans le vinaigre a un effet si profond sur les propriétés de l'acide acétique que pendant des siècles, les chimistes ont cru que l'acide acétique glacial et l'acide présent dans le vinaigre étaient deux substances différentes.
Le chimiste français Pierre Adet les a prouvés identiques.


*Acide acétique cristallisé
En 1845, le chimiste allemand Hermann Kolbe synthétisa pour la première fois l'acide acétique à partir de composés inorganiques.
Cette séquence de réaction consistait en une chloration du disulfure de carbone en tétrachlorure de carbone, suivie d'une pyrolyse en tétrachloroéthylène et d'une chloration aqueuse en acide trichloroacétique, et se terminait par une réduction électrolytique en acide acétique.

En 1910, la majeure partie de l'acide acétique glacial était obtenue à partir de la liqueur pyroligneuse, un produit de la distillation du bois.
L'acide acétique a été isolé par traitement avec du lait de chaux, et l'acétate de calcium résultant a ensuite été acidifié avec de l'acide sulfurique pour récupérer l'acide acétique.
A cette époque, l’Allemagne produisait 10 000 tonnes d’acide acétique glacial, dont environ 30 % étaient utilisés pour la fabrication de teinture indigo.

Étant donné que le méthanol et le monoxyde de carbone sont des matières premières de base, la carbonylation du méthanol a longtemps semblé être des précurseurs attrayants de l'acide acétique.
Henri Dreyfus de British Celanese a développé une usine pilote de carbonylation du méthanol dès 1925.

Cependant, le manque de matériaux pratiques capables de contenir le mélange réactionnel corrosif aux hautes pressions nécessaires (200 atm ou plus) a découragé la commercialisation de ces voies.
Le premier procédé commercial de carbonylation du méthanol, utilisant un catalyseur au cobalt, a été développé par la société chimique allemande BASF en 1963.

En 1968, un catalyseur à base de rhodium (cis−[Rh(CO)2I2]−) a été découvert, capable de fonctionner efficacement à basse pression, sans presque aucun sous-produit.
La société chimique américaine Monsanto Company a construit la première usine utilisant ce catalyseur en 1970, et la carbonylation du méthanol catalysée par le rhodium est devenue la méthode dominante de production d'acide acétique (voir procédé Monsanto).

À la fin des années 1990, BP Chemicals a commercialisé le catalyseur Cativa ([Ir(CO)2I2]−), favorisé par l'iridium pour une plus grande efficacité.
Connue sous le nom de procédé Cativa, la production d'acide acétique glacial catalysée par l'iridium est plus verte et a largement supplanté le procédé Monsanto, souvent dans les mêmes usines de production.


*Milieu interstellaire
L'acide acétique interstellaire a été découvert en 1996 par une équipe dirigée par David Mehringer en utilisant l'ancien réseau de la Berkeley-Illinois-Maryland Association à l'observatoire radio de Hat Creek et l'ancien réseau millimétrique situé à l'observatoire radio d'Owens Valley.

Il a été détecté pour la première fois dans le nuage moléculaire Sagittaire B2 Nord (également connu sous le nom de source Sgr B2 Large Molecule Heimat).
L'acide acétique a la particularité d'être la première molécule découverte dans le milieu interstellaire à l'aide uniquement de radio-interféromètres ; dans toutes les découvertes moléculaires ISM précédentes réalisées dans les régimes de longueurs d'onde millimétriques et centimétriques, les radiotélescopes à parabole unique étaient au moins en partie responsables des détections.



QU'EST-CE QUE L'ACIDE ACÉTIQUE DANS LES ALIMENTS ?
L'acide acétique est un additif alimentaire couramment utilisé comme conservateur, exhausteur de goût et régulateur de pH.
L'acide acétique est un acide naturel présent dans le vinaigre et est également produit synthétiquement pour être utilisé dans des applications alimentaires.

L'acide acétique est généralement considéré comme sans danger pour la consommation à de faibles niveaux, et il est couramment utilisé dans les condiments, les aliments marinés, les sauces et les vinaigrettes pour donner un goût piquant et prolonger la durée de conservation.
Cependant, une consommation excessive d’acide acétique peut provoquer une irritation du système digestif.
Comme pour tout additif alimentaire, il est important de consommer l’acide acétique avec modération et de maintenir une alimentation équilibrée.



DÉTAILS PHYSIQUES ET PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
L'acide acétique, ou acide éthanoïque, est un liquide clair et incolore avec une odeur âcre semblable à celle du vinaigre.
L'acide acétique a une formule moléculaire CH₃COOH et un poids moléculaire de 60,05 g/mol.
Avec un point d'ébullition de 118,1 °C et un point de fusion de 16,6 °C, l'acide acétique est hautement soluble dans l'eau et miscible avec la plupart des solvants organiques.
Ces propriétés physiques font de l'acide acétique un composé polyvalent pour diverses applications industrielles.



MÉTHODES DE PRODUCTION DE L'ACIDE ACÉTIQUE :
L'acide acétique est principalement produit par deux méthodes principales : la carbonylation du méthanol et l'oxydation de l'acétaldéhyde.
La première méthode, la carbonylation du méthanol, est le procédé le plus courant pour la production d’acide acétique à grande échelle.
L'acide acétique implique la réaction du méthanol avec le monoxyde de carbone en présence d'un catalyseur, généralement des composés du rhodium ou de l'iode.

Cette réaction catalytique donne de l'acide acétique comme produit principal.
La deuxième méthode implique l'oxydation de l'acétaldéhyde. L'acétaldéhyde peut être oxydé à l'aide de divers catalyseurs, notamment le palladium ou le cuivre, produisant de l'acide acétique comme sous-produit.



A QUEL EST LE BUT DE L’ACIDE ACÉTIQUE DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique est couramment utilisé comme additif alimentaire.
L'acide acétique sert à plusieurs fins dans les additifs alimentaires.
Premièrement, l'acide acétique agit comme un conservateur en inhibant la croissance des bactéries et des champignons, prolongeant ainsi la durée de conservation du produit.
Deuxièmement, l’acide acétique rehausse la saveur et l’arôme des aliments en leur donnant un goût piquant et aigre.
De plus, l’acide acétique peut également être utilisé comme régulateur d’acidité et agent de contrôle du pH dans certains produits alimentaires.



FONCTIONS DE L'ACIDE ACÉTIQUE :
1. Régulateur d'acidité/agent tampon – Modifie ou maintient l'acidité ou la basicité des aliments/cosmétiques.
2. Médicament/médecine – Traite, soulage, guérit ou prévient la maladie. Tel que déclaré officiellement par un organisme gouvernemental de réglementation des médicaments
3. Exfoliant – Élimine les cellules mortes à la surface de la peau
4. Expérimental/breveté – Ingrédient relativement nouveau avec des données disponibles limitées
5. Insecticide/Pesticide – Tue ou inhibe les organismes indésirables
6. Conservateur – Prévient et inhibe la croissance de micro-organismes indésirables qui peuvent être nocifs
7. Solvant (Cosmétiques) – Améliore les propriétés des autres ingrédients



L'ACIDE ACÉTIQUE EST-IL SÛR ?
L'acide acétique est également connu sous le nom d'acide acétique, qui est un additif alimentaire largement utilisé.
L'acide acétique est considéré comme sans danger pour la consommation par les autorités réglementaires telles que la Food and Drug Administration (FDA) et l'Autorité européenne de sécurité des aliments (EFSA).



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE :
L'acide acétique possède de puissantes propriétés antibactériennes.
L'acide acétique aide à réduire la tension artérielle.
L'acide acétique aide également à réduire l'inflammation.
L'acide acétique favorise le contrôle de la glycémie.
L'acide acétique favorise également la perte de poids.



FONCTION ET CARACTÉRISTIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est utilisé comme conservateur contre les bactéries et les champignons.
Dans la mayonnaise, de l'acide acétique est ajouté pour augmenter l'inactivation des salmonelles.
L'activité la plus élevée de l'acide acétique se situe à faible pH.
L'acide acétique peut également être utilisé comme tampon dans les aliments acides.
L'acide acétique est également utilisé comme composant aromatique.



ORIGINE DE L'ACIDE ACÉTIQUE :
Acide naturel, présent dans la plupart des fruits.
L'acide acétique est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.
Produit commercialement par fermentation bactérienne de sucre, de mélasse ou d'alcool ou par synthèse chimique à partir d'acétaldéhyde.



L'ACIDE ACÉTIQUE EST-IL SANS GLUTEN ?
Oui.
L'acide acétique est sans gluten et largement utilisé dans les aliments sans gluten pour donner un goût aigre aux boissons acidulées.



POURQUOI L'ACIDE ACÉTIQUE EST-IL SANS GLUTEN ?
Le gluten est un type de protéine de grain élastique qui aide le blé, le seigle et l’orge à conserver leur forme.
En raison de ses propriétés collantes, le gluten est souvent ajouté à d’autres produits alimentaires (pâtes, sauces, craquelins, produits de boulangerie) pour épaissir ou lier ces produits entre eux.
Les matières premières utilisées dans la fabrication de l'acide acétique sont l'acétylcétène ; Son processus de fabrication est donc sans gluten.
Ainsi, l’acide acétique est sans gluten.



L'ACIDE ACÉTIQUE EST-IL SANS DANGER POUR LA CONSOMMATION DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique est considéré comme sans danger pour la consommation dans les aliments additifs.
L'acide acétique est une substance naturelle que l'on trouve couramment dans le vinaigre.
L'acide acétique est utilisé comme agent aromatisant et conservateur alimentaire dans divers aliments transformés.
Cependant, il est important de noter qu’une consommation excessive d’acide acétique peut avoir des effets néfastes sur la santé.
L'acide acétique est toujours recommandé de consommer des aliments additifs avec modération et dans le cadre d'une alimentation équilibrée.



COMMENT L’ACIDE ACÉTIQUE CONTRIBUE-T-IL À LA CONSERVATION DES ADDITIFS ALIMENTAIRES ?
L'acide acétique contribue à la conservation des additifs alimentaires de plusieurs manières.
Premièrement, l’acide acétique possède des propriétés antimicrobiennes qui inhibent la croissance des bactéries, des levures et des moisissures, réduisant ainsi le risque de détérioration des aliments et prolongeant la durée de conservation des produits.

De plus, l’acide acétique agit comme un régulateur de pH dans les additifs alimentaires.
L'acide acétique aide à maintenir les niveaux d'acidité, créant un environnement défavorable à la croissance de certains micro-organismes.
Ceci est particulièrement important dans les aliments en conserve et marinés où l'acidité joue un rôle crucial dans la prévention de la croissance de bactéries nocives comme Clostridium botulinum.

De plus, l'acide acétique contribue également à la préservation des additifs alimentaires en rehaussant la saveur.
L'acide acétique ajoute une acidité ou une acidité caractéristique, qui peut améliorer le profil gustatif de divers produits.
En améliorant l'expérience sensorielle globale, l'acide acétique peut contribuer à prolonger l'acceptabilité du consommateur et la consommation d'additifs alimentaires.

En résumé, l'acide acétique joue un rôle essentiel dans la préservation des additifs alimentaires en agissant comme agent antimicrobien, régulateur de pH et exhausteur de goût.
L'utilisation de l'acide acétique garantit la sécurité et la durée de conservation prolongée de divers produits alimentaires.
En conclusion, l’acide acétique joue un rôle crucial en tant qu’additif dans l’industrie agroalimentaire.

Grâce à ses propriétés polyvalentes, l'acide acétique rehausse les saveurs et agit comme un conservateur naturel, augmentant ainsi la durée de conservation de divers produits alimentaires.
Malgré certaines inquiétudes concernant sa sécurité et ses effets potentiels sur la santé, les recherches suggèrent que lorsqu'il est consommé avec modération, l'acide acétique est généralement considéré comme sans danger pour la consommation.

En tant que consommateur, il est important de rester informé de la présence d’acide acétique dans nos produits alimentaires et de faire des choix éclairés.
Ainsi, la prochaine fois que vous verrez l’étiquette des ingrédients contenant de l’acide acétique, soyez assuré qu’il peut être considéré comme un ajout sûr et efficace aux additifs alimentaires.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
-Cristaux d'acide acétique :

*Acidité
Le centre hydrogène du groupe carboxyle (−COOH) dans les acides carboxyliques tels que l'acide acétique peut se séparer de la molécule par ionisation :
CH3COOH ⇌ CH3CO − 2 + H+

En raison de cette libération du proton (H+), l'acide acétique a un caractère acide.
L'acide acétique est un acide monoprotique faible.
En solution aqueuse, l'acide acétique a une valeur pKa de 4,76.

La base conjuguée de l'acide acétique est l'acétate (CH3COO−).
Une solution 1,0 M (environ la concentration du vinaigre domestique) a un pH de 2,4, ce qui indique que seulement 0,4 % des molécules d'acide acétique sont dissociées.
Ce n'est que dans une solution très diluée (< 10−6 M) que l'acide acétique est dissocié à > 90 %.

*Équilibre de déprotonation de l'acide acétique dans l'eau
Dimère cyclique de l'acide acétique ; les lignes vertes pointillées représentent les liaisons hydrogène



STRUCTURE DE L'ACIDE ACÉTIQUE :
Dans l'acide acétique solide, les molécules forment des chaînes de molécules individuelles reliées entre elles par des liaisons hydrogène.
En phase vapeur à 120 °C (248 °F), des dimères peuvent être détectés.

Les dimères se produisent également en phase liquide dans des solutions diluées avec des solvants sans liaison hydrogène et, dans une certaine mesure, dans l'acide acétique pur, mais sont perturbés par les solvants se liant à l'hydrogène.

L'enthalpie de dissociation du dimère est estimée entre 65,0 et 66,0 kJ/mol et l'entropie de dissociation entre 154 et 157 J mol−1 K−1.
D'autres acides carboxyliques s'engagent dans des interactions de liaison hydrogène intermoléculaires similaires.



PROPRIÉTÉS DU SOLVANT DE L'ACIDE ACÉTIQUE :
L'acide acétique liquide est un solvant protique hydrophile (polaire), semblable à l'éthanol et à l'eau.
Avec une permittivité statique relative (constante diélectrique) de 6,2, l'acide acétique dissout non seulement les composés polaires tels que les sels inorganiques et les sucres, mais également les composés non polaires tels que les huiles ainsi que les solutés polaires.

L'acide acétique est miscible avec les solvants polaires et non polaires tels que l'eau, le chloroforme et l'hexane.
Avec les alcanes supérieurs (à commencer par l'octane), l'acide acétique n'est pas miscible dans toutes les compositions et la solubilité de l'acide acétique dans les alcanes diminue avec les n-alcanes plus longs.

Les propriétés de solvant et de miscibilité de l’acide acétique en font un produit chimique industriel utile, par exemple comme solvant dans la production de téréphtalate de diméthyle.



BIOCHIMIE DE L'ACIDE ACÉTIQUE :
Aux pH physiologiques, l’acide acétique est généralement entièrement ionisé en acétate.
Le groupe acétyle, formellement dérivé de l'acide acétique, est fondamental pour toutes les formes de vie.
En règle générale, l'acide acétique est lié à la coenzyme A par les enzymes acétyl-CoA synthétase, où il joue un rôle central dans le métabolisme des glucides et des graisses.

Contrairement aux acides carboxyliques à chaîne plus longue (les acides gras), l’acide acétique n’est pas présent dans les triglycérides naturels.
La majeure partie de l'acétate généré dans les cellules destiné à être utilisé dans l'acétyl-CoA est synthétisée directement à partir d'éthanol ou de pyruvate.
Cependant, le triglycéride artificiel triacétine (triacétate de glycérine) est un additif alimentaire courant et se trouve dans les cosmétiques et les médicaments topiques ; cet additif est métabolisé en glycérol et en acide acétique dans l'organisme.

L'acide acétique est produit et excrété par les bactéries acétiques, notamment le genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries sont présentes universellement dans les aliments, l’eau et le sol, et l’acide acétique est produit naturellement lorsque les fruits et autres aliments se gâtent.
L'acide acétique est également un composant de la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.



PRODUCTION D'ACIDE ACÉTIQUE :
L'acide acétique est produit industriellement à la fois par synthèse et par fermentation bactérienne.
Environ 75 % de l’acide acétique destiné à l’industrie chimique est produit par carbonylation du méthanol, expliqué ci-dessous.

La voie biologique ne représente qu'environ 10 % de la production mondiale, mais l'acide acétique reste important pour la production de vinaigre car de nombreuses lois sur la pureté alimentaire exigent que le vinaigre utilisé dans les aliments soit d'origine biologique.
D'autres procédés sont l'isomérisation du formiate de méthyle, la conversion du gaz de synthèse en acide acétique et l'oxydation en phase gazeuse de l'éthylène et de l'éthanol.

L'acide acétique peut être purifié par congélation fractionnée à l'aide d'un bain de glace.
L'eau et les autres impuretés resteront liquides tandis que l'acide acétique précipitera.
Entre 2003 et 2005, la production mondiale totale d'acide acétique vierge était estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié était produite aux États-Unis.

La production européenne était d'environ 1 Mt/a et en baisse, tandis que la production japonaise était de 0,7 Mt/a.
1,5 Mt supplémentaires étaient recyclées chaque année, portant le marché mondial total à 6,5 Mt/a.
Depuis, la production mondiale est passée de 10,7 Mt/an en 2010 à 17,88 Mt/an en 2023.


*Carbonylation du méthanol :
La majeure partie de l'acide acétique est produite par carbonylation du méthanol.
Dans ce processus, le méthanol et le monoxyde de carbone réagissent pour produire de l'acide acétique selon l'équation :
Le processus implique l’iodométhane comme intermédiaire et se déroule en trois étapes.
Un catalyseur métallique carbonyle est nécessaire pour la carbonylation (étape 2).

CH3OH + HI → CH3I + H2O
CH3I + CO → CH3COI
CH3COI + H2O → CH3COOH + HI

Il existe deux procédés apparentés pour la carbonylation du méthanol : le procédé Monsanto catalysé par le rhodium et le procédé Cativa catalysé par l'iridium.
Ce dernier procédé est plus écologique et plus efficace et a largement supplanté le premier.

Des quantités catalytiques d'eau sont utilisées dans les deux procédés, mais le procédé Cativa en nécessite moins, de sorte que la réaction de conversion eau-gaz est supprimée et moins de sous-produits sont formés.
En modifiant les conditions du procédé, l'anhydride acétique peut également être produit dans des usines utilisant la catalyse au rhodium.


*Oxydation de l'acétaldéhyde :
Avant la commercialisation du procédé Monsanto, la majeure partie de l’acide acétique était produite par oxydation de l’acétaldéhyde.
Cela reste la deuxième méthode de fabrication la plus importante, même si l'acide acétique n'est généralement pas compétitif avec la carbonylation du méthanol.

L'acétaldéhyde peut être produit par hydratation de l'acétylène.
C’était la technologie dominante au début des années 1900.

Les composants légers du naphta sont facilement oxydés par l'oxygène ou même l'air pour donner des peroxydes, qui se décomposent pour produire de l'acide acétique selon l'équation chimique illustrée avec le butane :

2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O
De telles oxydations nécessitent un catalyseur métallique, tel que les sels naphténates de manganèse, de cobalt et de chrome.

La réaction typique est menée à des températures et des pressions conçues pour être aussi chaudes que possible tout en gardant le butane liquide.
Les conditions de réaction typiques sont 150 °C (302 °F) et 55 atm.
Des produits secondaires peuvent également se former, notamment la butanone, l'acétate d'éthyle, l'acide formique et l'acide propionique.

Ces produits secondaires sont également commercialement intéressants et les conditions de réaction peuvent être modifiées pour en produire davantage si nécessaire.
Cependant, la séparation de l'acide acétique de ces sous-produits augmente le coût du procédé.
Des conditions et des catalyseurs similaires sont utilisés pour l'oxydation du butane, l'oxygène de l'air pour produire de l'acide acétique peut oxyder l'acétaldéhyde.

2 CH3CHO + O2 → 2 CH3CO2H
En utilisant des catalyseurs modernes, cette réaction peut avoir un rendement en acide acétique supérieur à 95 %.
Les principaux produits secondaires sont l'acétate d'éthyle, l'acide formique et le formaldéhyde, qui ont tous des points d'ébullition inférieurs à ceux de l'acide acétique et sont facilement séparés par distillation.


*Oxydation de l'éthylène
L'acétaldéhyde peut être préparé à partir d'éthylène via le procédé Wacker, puis oxydé comme ci-dessus.
Plus récemment, la société chimique Showa Denko, qui a ouvert une usine d'oxydation d'éthylène à Ōita, au Japon, en 1997, a commercialisé une conversion en une seule étape moins chère de l'éthylène en acide acétique.

Le processus est catalysé par un catalyseur métallique au palladium supporté par un hétéropolyacide tel que l'acide silicotungstique.
Un procédé similaire utilise le même catalyseur métallique sur l'acide silicotungstique et la silice :

C2H4 + O2 → CH3CO2H
On pense qu'elle est compétitive avec la carbonylation du méthanol pour les petites usines (100 à 250 kt/a), en fonction du prix local de l'éthylène.


*Fermentation oxydative :
Pendant la majeure partie de l’histoire de l’humanité, les bactéries acétiques du genre Acetobacter ont produit de l’acide acétique sous forme de vinaigre.
Avec suffisamment d’oxygène, ces bactéries peuvent produire du vinaigre à partir de divers aliments alcoolisés.

Les aliments couramment utilisés comprennent le cidre de pomme, le vin et les purées de céréales fermentées, de malt, de riz ou de pommes de terre.
La réaction chimique globale facilitée par ces bactéries est la suivante :

C2H5OH + O2 → CH3COOH + H2O
Une solution alcoolique diluée inoculée avec Acetobacter et conservée dans un endroit chaud et aéré se transformera en vinaigre en quelques mois.
Les méthodes industrielles de fabrication du vinaigre accélèrent ce processus en améliorant l’apport d’oxygène aux bactéries.

Les premiers lots de vinaigre produits par fermentation sont probablement consécutifs à des erreurs de vinification.
Si le moût fermente à une température trop élevée, l'acétobactérie submergera la levure naturellement présente sur les raisins.

Alors que la demande de vinaigre à des fins culinaires, médicales et sanitaires augmentait, les vignerons ont rapidement appris à utiliser d'autres matières organiques pour produire du vinaigre pendant les mois chauds de l'été, avant que les raisins ne soient mûrs et prêts à être transformés en vin.
Cette méthode était cependant lente et pas toujours réussie, car les vignerons ne comprenaient pas le processus.

L'un des premiers procédés commerciaux modernes fut la « méthode rapide » ou « méthode allemande », pratiquée pour la première fois en Allemagne en 1823.
Dans ce processus, la fermentation a lieu dans une tour remplie de copeaux de bois ou de charbon de bois.

L'alimentation contenant de l'alcool s'écoule vers le haut de la tour et l'air frais est fourni par le bas par convection naturelle ou forcée.
L'amélioration de l'alimentation en air dans ce processus a réduit le temps de préparation du vinaigre de plusieurs mois à plusieurs semaines.

De nos jours, la plupart du vinaigre est fabriqué dans des cuves immergées, décrites pour la première fois en 1949 par Otto Hromatka et Heinrich Ebner.
Dans cette méthode, l'alcool est fermenté en vinaigre dans une cuve agitée en permanence, et l'oxygène est fourni en faisant barboter de l'air à travers la solution.
Grâce aux applications modernes de cette méthode, du vinaigre à 15 % d'acide acétique peut être préparé en seulement 24 heures dans un processus par lots, voire à 20 % dans un processus par lots de 60 heures.


*Fermentation anaérobie :
Les espèces de bactéries anaérobies, notamment les membres du genre Clostridium ou Acetobacterium, peuvent convertir directement les sucres en acide acétique sans créer d'éthanol comme intermédiaire.
La réaction chimique globale menée par ces bactéries peut être représentée comme suit :

C6H12O6 → 3CH3COOH
Ces bactéries acétogènes produisent de l'acide acétique à partir de composés à un seul carbone, notamment le méthanol, le monoxyde de carbone ou un mélange de dioxyde de carbone et d'hydrogène :

2 CO2 + 4 H2 → CH3COOH + 2 H2O
Cette capacité de Clostridium à métaboliser directement les sucres ou à produire de l'acide acétique à partir d'intrants moins coûteux suggère que ces bactéries pourraient produire de l'acide acétique plus efficacement que les oxydants d'éthanol comme Acetobacter.

Cependant, les bactéries Clostridium sont moins tolérantes aux acides que les Acetobacter.
Même les souches de Clostridium les plus tolérantes aux acides peuvent produire du vinaigre à des concentrations de quelques pour cent seulement, comparées aux souches d'Acetobacter qui peuvent produire du vinaigre à des concentrations allant jusqu'à 20 %.

À l’heure actuelle, il reste plus rentable de produire du vinaigre à l’aide d’Acetobacter plutôt que d’utiliser du Clostridium et de le concentrer.
En conséquence, bien que les bactéries acétogènes soient connues depuis 1940, leur utilisation industrielle se limite à quelques applications de niche.



RÉACTIONS DE L'ACIDE ACÉTIQUE :
L'acide acétique subit les réactions chimiques typiques d'un acide carboxylique.
Lors d'un traitement avec une base standard, l'acide acétique se transforme en acétate métallique et en eau.
Avec des bases fortes (par exemple, des réactifs organolithiens), l'acide acétique peut être doublement déprotoné pour donner LiCH2COOLi.

La réduction de l'acide acétique donne de l'éthanol.
Le groupe OH est le principal site de réaction, comme l'illustre la conversion de l'acide acétique en chlorure d'acétyle.
D'autres dérivés de substitution comprennent l'anhydride acétique ; cet anhydride est produit par perte d'eau de deux molécules d'acide acétique.

Des esters de l'acide acétique peuvent également être formés par estérification Fischer, et des amides peuvent être formés.
Lorsqu'il est chauffé au-dessus de 440 °C (824 °F), l'acide acétique se décompose pour produire du dioxyde de carbone et du méthane, ou pour produire du cétène et de l'eau :
CH3COOH → CH4 + CO2
CH3COOH → CH2=C=O + H2O



RÉACTIONS AVEC LES COMPOSÉS INORGANIQUES DE L'ACIDE ACÉTIQUE :
L'acide acétique est légèrement corrosif pour les métaux, notamment le fer, le magnésium et le zinc, formant de l'hydrogène gazeux et des sels appelés acétates :
Mg + 2 CH3COOH → (CH3COO)2Mg + H2

Étant donné que l’aluminium forme un film d’oxyde d’aluminium passivant et résistant aux acides, des réservoirs en aluminium sont utilisés pour transporter l’acide acétique.
Des récipients recouverts de verre, d'acier inoxydable ou de polyéthylène sont également utilisés à cet effet.
Les acétates métalliques peuvent également être préparés à partir d'acide acétique et d'une base appropriée, comme dans la réaction populaire « bicarbonate de soude + vinaigre » donnant de l'acétate de sodium :

NaHCO3 + CH3COOH → CH3COONa + CO2 + H2O
Une réaction colorée pour les sels d'acide acétique est une solution de chlorure de fer (III), qui donne une couleur rouge foncé qui disparaît après acidification.
Un test plus sensible utilise du nitrate de lanthane avec de l'iode et de l'ammoniaque pour donner une solution bleue.
Les acétates, lorsqu'ils sont chauffés avec du trioxyde d'arsenic, forment de l'oxyde de cacodyle, qui peut être détecté par ses vapeurs malodorantes.



AUTRES DÉRIVÉS DE L'ACIDE ACÉTIQUE :
Les sels organiques ou inorganiques sont produits à partir de l'acide acétique.
Quelques dérivés commercialement significatifs :
Acétate de sodium, utilisé dans l'industrie textile et comme conservateur alimentaire (E262).

Acétate de cuivre (II), utilisé comme pigment et fongicide.
Acétate d'aluminium et acétate de fer (II)—utilisés comme mordants pour les colorants.
Acétate de palladium (II), utilisé comme catalyseur pour les réactions de couplage organique telles que la réaction de Heck.

Les acides acétiques halogénés sont produits à partir de l'acide acétique.
Quelques dérivés commercialement significatifs :
Acide chloroacétique (acide monochloroacétique, MCA), acide dichloroacétique (considéré comme un sous-produit) et acide trichloroacétique.

Le MCA est utilisé dans la fabrication de colorant indigo.
Acide bromoacétique, qui est estérifié pour produire le réactif bromoacétate d'éthyle.
Acide trifluoroacétique, qui est un réactif courant en synthèse organique.
Les quantités d'acide acétique utilisées dans ces autres applications représentent ensemble 5 à 10 % supplémentaires de l'utilisation d'acide acétique dans le monde.



STRUCTURE DE L'ACIDE ACÉTIQUE :
On peut observer à l’état solide de l’acide acétique qu’il existe une chaîne de molécules dans lesquelles les molécules individuelles sont reliées les unes aux autres via des liaisons hydrogène.
Les dimères de l'acide éthanoïque dans la phase vapeur de l'acide acétique peuvent être trouvés à des températures proches de 120 °C.

Même dans la phase liquide de l'acide éthanoïque, les dimères de l'acide acétique peuvent être trouvés lorsqu'il est présent dans une solution diluée.
Ces dimères sont affectés par les solvants qui favorisent la liaison hydrogène.

La structure de l’acide acétique est donnée par CH3(C=O)OH ou CH3CO2H
Structurellement, l'acide acétique est le deuxième acide carboxylique le plus simple (le plus simple étant l'acide formique, HCOOH) et est essentiellement un groupe méthyle auquel est attaché un groupe fonctionnel carboxyle.



PRÉPARATION DE L'ACIDE ACÉTIQUE :
L'acide acétique est produit industriellement par carbonylation du méthanol.
Les équations chimiques des trois étapes impliquées dans ce processus sont fournies ci-dessous.
CH3OH (méthanol) + HI (iodure d'hydrogène) → CH3I (intermédiaire iodure de méthyle) + H2O

CH3I + CO (monoxyde de carbone) → CH3COI (iodure d'acétyle)
CH3COI + H2O → CH3COOH (acide acétique) + HI

Ici, un intermédiaire d'iodure de méthyle est généré à partir de la réaction entre le méthanol et l'iodure d'hydrogène.
Cet intermédiaire réagit ensuite avec du monoxyde de carbone et le composé résultant est traité avec de l'eau pour donner le produit acide acétique.
Il est important de noter qu’un complexe métal-carbonyle doit être utilisé comme catalyseur pour l’étape 2 de ce procédé.



AUTRES MÉTHODES DE PRÉPARATION DE L'ACIDE ACÉTIQUE :
Certains sels de naphtalène de cobalt, de chrome et de manganèse peuvent être utilisés comme catalyseurs métalliques dans l'oxydation de l'acétaldéhyde.
L’équation chimique de cette réaction peut s’écrire :
O2 + 2CH3CHO → 2CH3COOH

L'éthylène (C2H4) peut être oxydé en acide acétique à l'aide d'un catalyseur au palladium et d'un hétéropolyacide, comme décrit par la réaction chimique suivante.
O2 + C2H4 → CH3COOH

Certaines bactéries anaérobies ont la capacité de convertir directement le sucre en acide acétique.
C6H12O6 → 3CH3COOH
On peut noter qu’aucun intermédiaire éthanolique n’est formé lors de la fermentation anaérobie du sucre par ces bactéries.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE :
Même si l’acide éthanoïque est considéré comme un acide faible, sous sa forme concentrée, il possède de forts pouvoirs corrosifs et peut même attaquer la peau humaine si elle y est exposée.
Certaines propriétés générales de l’acide acétique sont énumérées ci-dessous.

L'acide éthanoïque semble être un liquide incolore et dégage une odeur âcre.
À STP, les points de fusion et d'ébullition de l'acide éthanoïque sont respectivement de 289K et 391K.
La masse molaire de l'acide acétique est de 60,052 g/mol et sa densité sous forme liquide est de 1,049 g.cm-3.

Le groupe fonctionnel carboxyle de l'acide éthanoïque peut provoquer une ionisation du composé, donnée par la réaction : CH3COOH ⇌ CH3COO – + H+
La libération du proton, décrite par la réaction d’équilibre ci-dessus, est à l’origine de la qualité acide de l’acide acétique.
La constante de dissociation acide (pKa) de l'acide éthanoïque dans une solution d'eau est de 4,76.

La base conjuguée de l'acide acétique est l'acétate, donnée par CH3COO–.
Le pH d’une solution d’acide éthanoïque de concentration 1,0 M est de 2,4, ce qui implique qu’elle ne se dissocie pas complètement.
Sous sa forme liquide, l'acide acétique est un solvant polaire et protique, avec une constante diélectrique de 6,2.

Le métabolisme des glucides et des graisses chez de nombreux animaux est centré sur la liaison de l'acide acétique à la coenzyme A.
Généralement, ce composé est produit par la réaction entre le méthanol et le monoxyde de carbone (carbonylation du méthanol).



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE :
Les réactions chimiques subies par l'acide acétique sont similaires à celles des autres acides carboxyliques.
Lorsqu'il est chauffé à des températures supérieures à 440 °C, ce composé subit une décomposition pour produire soit du méthane et du dioxyde de carbone, soit de l'eau et de l'éthénone, comme décrit par les équations chimiques suivantes.

CH3COOH + Chaleur → CO2 + CH4
CH3COOH + Chaleur → H2C=C=O + H2O
Certains métaux comme le magnésium, le zinc et le fer subissent une corrosion lorsqu'ils sont exposés à l'acide acétique.
Ces réactions aboutissent à la formation de sels d'acétate.

2CH3COOH + Mg → Mg(CH3COO)2 (acétate de magnésium) + H2
La réaction entre l’acide éthanoïque et le magnésium entraîne la formation d’acétate de magnésium et d’hydrogène gazeux, comme décrit par l’équation chimique fournie ci-dessus.



AUTRES RÉACTIONS DE L'ACIDE ACÉTIQUE :
L'acide acétique réagit avec les alcalis et forme des sels d'acétate, comme décrit ci-dessous.
CH3COOH + KOH → CH3COOK + H2O
Ce composé forme également des sels d'acétate en réagissant avec les carbonates (avec le dioxyde de carbone et l'eau).
Des exemples de telles réactions comprennent :

2CH3COOH + Na2CO3 (carbonate de sodium) → 2CH3COONa + CO2 + H2O
CH3COOH + NaHCO3 (bicarbonate de sodium) → CH3COONa + CO2 + H2O
La réaction entre PCl5 et l'acide éthanoïque entraîne la formation de chlorure d'éthanoyle.



QUELLES SONT LES SOURCES NATURELLES D'ACIDE ACÉTIQUE ?
Les acétates (sels d'acide acétique) sont des constituants courants des tissus animaux et végétaux et se forment lors du métabolisme des substances alimentaires.
L'acétate est facilement métabolisé par la plupart des tissus et peut donner lieu à la production de cétones comme intermédiaires.
L'acétate est utilisé par l'organisme comme élément de base pour fabriquer des phospholipides, des lipides neutres, des stéroïdes, des stérols et des acides gras saturés et insaturés dans diverses préparations de tissus humains et animaux.



POINTS CLÉS/APERÇU DE L'ACIDE ACÉTIQUE :
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique est sous forme de vinaigre domestique, qui contient généralement environ 5 pour cent d'acide acétique et 95 pour cent d'eau.

Lorsque l'acide acétique est à une concentration de 99,5 pour cent, il est appelé acide acétique glacial, qui peut être utilisé comme matière première et solvant dans la production d'autres produits chimiques.

Les applications industrielles de l'acide acétique glacial comprennent la production d'acétate de vinyle, comme solvant pour dissoudre les huiles, le soufre et l'iode ; acidifier le pétrole et le gaz ; fabrication de produits pharmaceutiques et de vitamines, et transformation des aliments.



COMMENT L'ACIDE ACÉTIQUE PÉNÈTRE DANS L'ENVIRONNEMENT :
L'acide acétique peut pénétrer dans l'environnement à partir des rejets et des émissions des industries.
La combustion de plastiques ou de caoutchouc ainsi que les gaz d'échappement des véhicules peuvent également libérer de l'acide acétique dans l'environnement.
Lorsqu'il est libéré dans le sol, l'acide acétique s'évapore dans l'air où il est naturellement décomposé par la lumière du soleil.
On s’attendrait à ce que les niveaux d’acide acétique dans l’environnement soient faibles.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE :
L'acide acétique est un liquide lisse et incolore avec une odeur de vinaigre visible, toxique et destructrice de 1 ppm.
Le point de fusion de l'acide acétique est de 16,73°C et le point d'ébullition habituel de 117,9°C.
À 20°C, la densité de l'acide acétique pur est de 1,0491.

C'est de l'acide acétique hautement hygroscopique.
Il est possible de relier la pureté des solutions aqueuses à leur point de congélation.
Dans les acides carboxyliques tels que l'acide acétique, le centre hydrogène du groupe carboxyle −COOH peut se différencier de la molécule par ionisation :

En raison de cette libération de protons H+1, l'acide acétique a un caractère acide.
L'acide acétique est un acide monoprotique faible.
L'acide acétique a une valeur pK de 4,76 dans une solution aqueuse.

L'acétate CH3COO−1 est la base conjuguée.
Pour les solvants polaires et non polaires tels que l'acide, le chloroforme et l'hexane, l'acide acétique est miscible.
Les molécules forment des chaînes dans l’acide acétique solide, avec des liaisons hydrogène reliant les molécules individuelles.

Des dimères peuvent être trouvés dans la vapeur à 120 °C.
Sous forme liquide, les dimères existent souvent dans des solutions diluées dans des solvants sans liaison hydrogène et, dans une certaine mesure, dans l'acide acétique pur ; mais ils interagissent avec des solvants qui se lient à l’hydrogène.

L'acide acétique est normalement complètement ionisé en acétate à phis physiologique.
L'acide acétique est essentiel au métabolisme des glucides et des graisses lorsqu'il est lié à la coenzyme A.
L'acide acétique n'existe pas dans les triglycérides naturels, contrairement aux acides carboxyliques à chaîne plus longue (acides gras).



DÉSHYDRATATION DE L'ACIDE ACÉTIQUE :
La déshydratation de l'acide acétique est l'une des utilisations industrielles les plus importantes de la DA dans la fabrication d'acides aromatiques tels que l'acide téréphtalique (TA), qui implique une grande pureté d'acide acétique.

Deux éléments principaux sont utilisés dans le processus de fabrication : l’oxydation (où le p-xylène est oxydé catalytiquement pour produire du TA brut) et la purification du PTA.
L'acide acétique, présent comme solvant dans le réacteur d'oxydation mais également utile à la réaction elle-même, doit être isolé de l'eau produite par l'oxydation.

Pour le fonctionnement efficace et économique d’une installation TA, la récupération et le stockage du solvant acide acétique sont importants.
À des températures d'eau élevées, l'eau et l'acide acétique présentent un point de pincement, ce qui rend la récupération de l'acide pur très difficile.
Deux absorbeurs (basse et haute pression) et une colonne de déshydratation acide constituent une unité traditionnelle de récupération d'acide acétique en phase PTA.

Les colonnes hautes de 70 à 80 plateaux nécessitent la séparation de l'acide acétique et de l'eau par distillation traditionnelle.
Acétate de N-butyle, qui présente une miscibilité minimale avec l'eau et forme un azéotrope hétérogène (point d'ébullition 90,23°C), qui est un agent azéotropique typique.
Avec toute l’eau introduite dans la colonne de déshydratation, de l’acétate de n-butyle est ajouté en quantités appropriées pour former un azéotrope.

Lors de la condensation, l'azéotrope hétérogène forme deux phases ; une couche organique contenant de l'acétate de n-butyle presque pur et une phase aqueuse contenant de l'eau presque pure.
La phase organique est recyclée vers la colonne de déshydratation, tandis que la phase aqueuse est envoyée vers une colonne de stripping.
La quantité d'acide acétique perdue dans les rejets aqueux est réduite d'environ 40 pour cent car l'AD permet une séparation plus propre.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE ACÉTIQUE :
Poids moléculaire : 60,05 g/mol
XLogP3-AA : -0,2
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 0
Masse exacte : 60,021129366 g/mol
Masse monoisotopique : 60,021129366 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 4
Frais formels : 0
Complexité : 31
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
Formule chimique : CH3COOH
Masse molaire : 60,052 g•mol−1
Aspect : Liquide incolore
Odeur : Fortement vinaigrée
Densité : 1,049 g/cm3 (liquide) ; 1,27 g/cm3 (solide)
Point de fusion : 16 à 17 °C ; 61 à 62 °F ; 289 à 290K
Point d'ébullition : 118 à 119 °C ; 244 à 246 °F ; 391 à 392 K
Solubilité dans l'eau : Miscible
log P : -0,28
Pression de vapeur : 1,54653947 kPa (20 °C) ; 11,6 mmHg (20 °C)
Acidité (pKa) : 4,756
Base conjuguée : Acétate
Susceptibilité magnétique (χ) : -31,54•10−6 cm3/mol
Indice de réfraction (nD) : 1,371 (VD = 18,19)
Viscosité : 1,22 mPa.s ; 1,22 CP
Moment dipolaire : 1,74 D

Thermochimie
Capacité thermique (C) : 123,1 JK−1 mol−1
Entropie molaire standard (S ⦵ 298) : 158,0 JK−1 mol−1
Enthalpie standard de formation (ΔfH ⦵ 298) : -483,88–483,16 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : -875,50–874,82 kJ/mol
État physique : Liquide
Couleur: Incolore
Odeur : Piquante
Point de fusion/point de congélation : Point/intervalle de fusion : 16,2 °C - lit.
Point d'ébullition initial et plage d'ébullition : 117 - 118 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou limites d'explosivité : Limite d'explosivité supérieure : 19,9 % (V), Limite d'explosivité inférieure : 4 % (V)
Point d'éclair : 39 °C - coupelle fermée
Température d'auto-inflammation : 463 °C
Température de décomposition : Distillable à l’état non décomposé à pression normale.
pH : 2,5 à 50 g/L à 20 °C

Viscosité:
Viscosité cinématique : 1,17 mm2/s à 20 °C
Viscosité dynamique : 1,05 mPa•s à 25 °C
Solubilité dans l'eau : 602,9 g/L à 25 °C à 1,013 hPa - complètement soluble
Coefficient de partage (n-octanol/eau) : log Pow : -0,17 à 25 °C - Une bioaccumulation n'est pas attendue.
Pression de vapeur : 20,79 hPa à 25 °C
Densité : 1,049 g/cm3 à 25 °C - lit.
Densité de vapeur relative : 2,07
Tension superficielle : 28,8 mN/m à 10,0 °C
Numéro CAS : 64-19-7
Formule moléculaire : C2H4O2
Poids moléculaire : 60,052 g/mol
Densité : 1,1 ± 0,1 g/cm3
Point d'ébullition : 117,1 ± 3,0 °C à 760 mmHg
Point de fusion : 16,2 °C (lit.)
Point d'éclair : 40,0 ± 0,0 °C

Numéro d'index CE : 607-002-00-6
Numéro CE : 200-580-7
Formule de Hill : C₂H₄O₂
Formule chimique : CH₃COOH
Masse molaire : 60,05 g/mol
Code SH : 2915 21 00
Point d'ébullition : 116 - 118 °C (1013 hPa)
Densité : 1,04 g/cm3 (25 °C)
Limite d'explosion : 4 - 19,9 % (V)
Point d'éclair : 39 °C
Température d'inflammation : 485 °C
Point de fusion : 16,64 °C
Valeur pH : 2,5 (50 g/L, H₂O, 20 °C)
Pression de vapeur : 20,79 hPa (25 °C)
Viscosité cinématique : 1,17 mm2/s (20 °C)

Solubilité : 602,9 g/L soluble
Point d'ébullition : 244°F
Poids moléculaire : 60,1
Point de congélation/point de fusion : 62°F
Pression de vapeur : 11 mmHg
Point d'éclair : 103 °F
Densité spécifique : 1,05
Potentiel d'ionisation : 10,66 eV
Limite inférieure d'explosivité (LIE) : 4,0 %
Limite supérieure d'explosivité (UEL) : 19,9 % à 200 °F
Cote de santé NFPA : 3
Classement incendie NFPA : 2
Cote de réactivité NFPA : 0
Autre numéro CAS : -
Numéro MDL : MFCD00036152
Température de stockage : +20°C



PREMIERS SECOURS DE L'ACIDE ACÉTIQUE :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime.
N'essayez pas de neutraliser.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE ACÉTIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE ACÉTIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Informations complémentaires :
Retirer le récipient de la zone dangereuse et le refroidir avec de l'eau.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE ACÉTIQUE :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : caoutchouc butyle
Épaisseur minimale de la couche : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériel : Gants en latex
Épaisseur minimale de la couche : 0,6 mm
Temps de percée : 30 min
*Protection du corps :
Vêtements de protection antistatiques ignifuges.
*Protection respiratoire:
Type de filtre recommandé : filtre E-(P2)
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE ACÉTIQUE :
-Précautions à prendre pour une manipulation sans danger:
*Conseils sur la protection contre l'incendie et l'explosion :
Prenez des mesures de précaution contre les décharges statiques.
*Mesures d'hygiène:
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités
*Conditions de stockage:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Sensible à l'humidité.



STABILITÉ et RÉACTIVITÉ de l'ACIDE ACÉTIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles


ACIDE ACÉTIQUE 80%
L'acide acétique à 80 % est complètement soluble dans l'eau.
L'acide acétique 80 % est un réactif chimique pour la production de produits chimiques.


Numéro CAS : 64-19-7
Numéro CE : 200-580-7
Numéro E : E260 (conservateurs)
Formule moléculaire : C2H4O2 / CH3COOH



SYNONYMES :
Acide acétique, Acide éthanoïque, Vinaigre (une fois dilué), Acétate d'hydrogène, Acide méthanecarboxylique, Acide éthylique, Acide éthanoïque, Acide éthylique, Acide acétique glacial, Acide méthanecarboxylique, Acide vinaigre, CH3COOH, Acétasol, Acide acétique, Acido acetico, Azijnzuur, Essigsaeure , Octowy kwas, Acide acétique glacial, Kyselina octova, UN 2789, Aci-jel, Shotgun, Monomère d'acide éthanoïque, NSC 132953, Acide éthanoïque, vinaigre, acide éthylique, acide vinaigre, acide méthanecarboxylique, fluide d'extraction TCLP 2, fusil de chasse, glacial acide acétique, acide éthanoïque glacial, acide éthanoïque, acide éthylique, acide acétique glacial, acide méthanecarboxylique, acide vinaigre, CH3COOH, acétasol, acide acétique, Acido acetico, Azijnzuur, Essigsaeure, Octowy kwas, acide acétique glacial, Kyselina octova, UN 2789 , Aci-jel, Shotgun, monomère d'acide éthanoïque, NSC 132953, BDBM50074329, FA 2:0, LMFA01010002, NSC132953, NSC406306, acide acétique pour HPLC >=99,8 %, AKOS000268789, ACIDUM ACETICUM [WHO-IP LATIN], 166, ONU 2789, Acide acétique >=99,5 % FCC FG, Acide acétique naturel >=99,5 % FG, Acide acétique ReagentPlus(R) >=99 %, CAS-64-19-7, Code pesticide USEPA/OPP : 044001, Acide acétique USP 99,5-100,5 %, NCGC00255303-01, acide acétique 1 000 microg/mL dans du méthanol, acide acétique SAJ de première qualité >=99,0 %, acide acétique 1 000 microg/mL dans de l'acétonitrile, acide acétique >=99,99 % sur base de métaux traces, acide acétique JIS qualité spéciale >=99,7 %, acide acétique purifié par double distillation, NS00002089, acide acétique UV HPLC spectroscopique 99,9 %, EN300-18074, acide acétique Vetec(TM) de qualité réactif >=99 %, supplément sélectif Bifido B pour la microbiologie, C00033 , D00010, COMPOSANT ORLEX HC ACIDE ACETIQUE GLACIAL, Q47512, VOSOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique glacial de qualité électronique 99,7%, COMPOSANT TRIDESILON ACIDE ACETIQUE GLACIAL, A834671, ACETASOL HC COMPOSANT ACIDE ACETIQUE GLACIAL, Acide acétique >=99,7% SAJ super qualité spéciale, COMPOSANT GLACIAIRE ACÉTIQUE DE BOROFAIR, COMPOSANT GLACIAIRE ACÉTIQUE D'ORLEX HC, COMPOSANT GLACIAIRE ACÉTIQUE DE VOSOL HC, SR-01000944354, COMPOSANT GLACIAIRE ACÉTIQUE DE TRIDESILON, SR-01000944354-1, COMPOSANT GLACIAIRE ACÉTIQUE DE ACETASOL HC , L'acide acétique glacial répond aux spécifications de test USP, InChI=1/C2H4O2/c1-2(3)4/h1H3(H,3,4), Acide acétique >=99,7 % adapté à l'analyse des acides aminés, Acide acétique >=99,7 % pour titrage en milieu non aqueux, Acide acétique pour luminescence BioUltra >=99,5% GC, Acide acétique pa ACS réactif reag. Réponse ISO. Ph.Eur. 99,8 %, acide acétique de qualité semi-conducteur MOS PURANAL(TM) Honeywell 17926, acide acétique glacial Pharmacopée des États-Unis, étalon de référence USP, acide acétique puriss. pa Réactif ACS reag. Réponse ISO. Ph.Eur. >=99,8 %, matériau de référence certifié pour l'acide acétique glacial, étalon secondaire pharmaceutique, puriss d'acide acétique. répond aux spécifications analytiques de la Ph. Eur. BP USP FCC 99,8-100,5 %, acide acétique, acétate glacial, acide acétique, acide actique, UNII-Q40Q9N063P, acide acétique, vinaigre distillé, méthanecarboxylate, acide acétique glacial [USP:JAN], acétasol (TN), acide acétique glacial pour LC-MS, vinaigre (sel/mélange), HOOCCH3, 546-67-8, acide acétique qualité LC/MS, ACIDE ACETIQUE [II], ACIDE ACETIQUE [MI], réactif ACS acide acétique, bmse000191, bmse000817, bmse000857 , Otic Domeboro (sel/mélange), EC 200-580-7, acide acétique (JP17/NF), ACIDE ACETIQUE [FHFI], ACIDE ACETIQUE [INCI], acide acétique [pour LC-MS], ACIDE ACETIQUE [VANDF] , NCIOpen2_000659, NCIOpen2_000682, Acide acétique glacial (USP), 4-02-00-00094 (Référence du manuel Beilstein), 77671-22-8, Acide acétique glacial (JP17), UN 2790 (Sel/Mélange), ACIDE ACÉTIQUE [OMS -DD], ACIDE ACETIQUE [WHO-IP], ACETICUM ACIDUM [HPUS], GTPL1058, acide acétique de qualité HPLC glacial, étalon analytique d'acide acétique, acide acétique de qualité USP glacial, acide acétique puriss. >=80 %, Acide acétique 99,8 % anhydre, Acide acétique AR >=99,8 %, Acide acétique LR >=99,5 %, Acide acétique extra pur 99,8 %, Acide acétique 99,5-100,0 %, Acide acétique Réactif ACS glacial, STR00276, Acétique pureté acide. 99-100%, Tox21_301453, Acide acétique glacial >=99,85%, acide acétique, acide éthanoïque, 64-19-7, Acide éthylique, Acide vinaigre, Acide acétique glacial, Acide acétique glacial, Acide acétique glacial, Acide méthanecarboxylique, Acétasol, Essigsaeure, Acide acétique, Acide pyroligneux, Vinaigre, Azijnzuur, Aceticum acidum, Acido acetico, Octowy kwas, Aci-jel, HOAc, acide éthoïque, Kyselina octova, Acide orthoacétique, AcOH, Monomère d'acide éthanoïque, Acétique, Caswell No. 003, Otique Tridesilon, MeCOOH, acide acétique-17O2, Otic Domeboro, Acidum aceticum glaciale, Acidum aceticum, CH3-COOH, acide acétique-, CH3CO2H, UN2789, UN2790, EPA Pesticide Chemical Code 044001, NSC 132953, NSC-132953, NSC-406306, BRN 0506007, Acide acétique dilué, SIN NO.260, Acide acétique [JAN], DTXSID5024394, MeCO2H, CHEBI:15366, AI3-02394, CH3COOH, INS-260, Q40Q9N063P, E-260, 10.Acide méthanecarboxylique, CHEMBL539, NSC -111201, NSC-112209, NSC-115870, NSC-127175, acide acétique-2-13C,d4, SIN n° 260, DTXCID304394, E 260, acide acétique-13C2 (8CI,9CI), éthanoat, fusil de chasse, MFCD00036152, Acide acétique d'une concentration de plus de 10 pour cent en poids d'acide acétique, 285977-76-6, 68475-71-8, C2:0, alcool acétylique, Orlex, Vosol, ACIDE ACETIC-1-13C-2-D3 -1 H (D), WLN : QV1, ACIDE ACETIQUE (MART.), ACIDE ACETIQUE [MART.], Acide acétique >=99,7%, 57745-60-5, 63459-47-2, numéro FEMA 2006, ACETIC- ACIDE 13C2-2-D3, 97 ATOM % 13C, 97 ATOM % D, réactif acide acétique ACS >=99,7 %, ACY, HSDB 40, CCRIS 5952, 79562-15-5, acide méthane carboxylique, EINECS 200-580-7 , Acide acétique 0,25% en récipient plastique, Essigsaure, Ethylate, acide acétique, acide éthanoïque, acide éthylique, acide acétique, glacial, acide méthanecarboxylique, acide vinaigre, glacial, acétasol, acide acétique, essigsaeure,



L'acide acétique 80 % est un acide organique disponible en différentes concentrations standard.
L'acide acétique pur 80 % est connu sous le nom d'acide acétique 80 % glacial car il gèle à des températures modérées (16,6 °C).
L'acide acétique 80 % est un composé organique de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).


L'acide acétique 80 % est un liquide incolore qui, lorsqu'il n'est pas dilué, est également appelé « acide acétique glacial 80 % ».
L'acide acétique 80 %, CH3COOH, également connu sous le nom d'acide éthanoïque, est un acide organique qui a une odeur âcre.
L'acide acétique 80 % est un acide faible, dans le sens où il n'est que partiellement dissocié dans une solution aqueuse.


L'acide acétique à 80 % est hygroscopique (absorbe l'humidité de l'air) et gèle à 16,5 °C pour former un solide cristallin incolore.
L'acide acétique à 80 % est l'un des acides carboxyliques les plus simples et constitue un produit chimique industriel très important.
L'acide acétique 80 % est produit par des méthodes biologiques et synthétiques dans l'industrie.


Le sel et l'ester de l'acide acétique à 80 % sont appelés acétate.
L'acide acétique à 80 % est complètement soluble dans l'eau.
L'acide acétique 80 % est un réactif chimique pour la production de produits chimiques.


L'utilisation unique la plus courante de l'acide acétique à 80 % concerne la production de monomère d'acétate de vinyle ainsi que la production d'anhydride et d'esters acétiques.
L'acide acétique à 80 % est le composant principal du vinaigre (en dehors de l'eau ; le vinaigre contient environ 8 % d'acide acétique à 80 % en volume) et a un goût aigre distinctif et une odeur piquante.


L'acide acétique 80 % de qualité alimentaire est l'un des acides carboxyliques les plus simples.
L'acide acétique à 80 % est un réactif chimique important et un produit chimique industriel, principalement utilisé dans la production d'acétate de cellulose pour les films photographiques et d'acétate de polyvinyle pour la colle à bois, ainsi que de fibres et de tissus synthétiques.


L'acide acétique à 80 %, également connu sous le nom d'acide éthanoïque, est un liquide et un composé organique incolore.
De formule chimique CH₃COOH, l'acide acétique 80 % est un réactif chimique pour la production de produits chimiques.
L'acide acétique à 80 % a un numéro CAS de 64-19-7.
La quantité d'acide acétique à 80 % dans le vinaigre est relativement faible.


L'acide acétique 80 %, également connu sous le nom d'acide éthanoïque, est un simple acide carboxylique qui forme généralement un liquide à température ambiante.
L'acide acétique à 80 % est le plus largement utilisé dans le vinaigre de table en raison de ses propriétés conservatrices et est le produit chimique responsable de l'odeur caractéristique du vinaigre.


L'acide acétique 80 % a également une large gamme d'applications dans l'industrie chimique et est utilisé dans la synthèse des esters et de l'acétate de vinyle. En laboratoire, l’acide acétique à 80 % est un solvant couramment utilisé.
L'acide acétique 80 % est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 1 000 000 tonnes par an.


L'acide acétique 80% est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.
L'acide acétique 80 % est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique 80 % otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.


Bien qu'il s'agisse généralement du moyen le moins coûteux d'acheter de l'acide acétique à 80 %, nous constatons que des qualités plus diluées telles que 90 % sont plus demandées pour éliminer la plupart des problèmes de solidification.
L'acide acétique à 80 % peut sembler devoir se trouver dans un laboratoire de chimie ou une expo-sciences plutôt que dans le garde-manger de votre cuisine.


Cependant, l'acide acétique à 80 % est en fait le principal composé présent dans le vinaigre et est responsable à la fois de sa saveur et de son acidité uniques.
Non seulement cela, mais l'acide acétique à 80 % contribue également à de nombreux bienfaits du vinaigre de cidre de pomme pour la santé en raison de ses puissantes propriétés médicinales.
L'acide acétique 80 %, également connu sous le nom d'acide éthanoïque, est un composé chimique présent dans de nombreux produits différents.


L'acide acétique à 80 % est peut-être le composant principal le plus connu du vinaigre, outre l'eau, et on pense qu'il fournit des ingrédients comme le vinaigre de cidre de pomme avec bon nombre de leurs propriétés bénéfiques pour la santé.
Chimiquement parlant, la formule de l'acide acétique à 80 % est C2H4O2, qui peut également s'écrire CH3COOH ou CH3CO2H.


En raison de la présence d'un atome de carbone dans la structure de l'acide acétique à 80 %, il est considéré comme un composé organique.
La densité de l'acide acétique à 80 % est d'environ 1,05 grammes/cm³ ; Par rapport à d'autres composés comme l'acide nitrique, l'acide sulfurique ou l'acide formique, la densité de l'acide acétique 80 % est un peu inférieure.


À l’inverse, le point de fusion de l’acide acétique à 80 % est nettement plus élevé que celui de nombreux autres acides, et la masse molaire de l’acide acétique à 80 % et le point d’ébullition de l’acide acétique à 80 % ont tendance à se situer à peu près au milieu.
L'acide acétique à 80 %, également connu sous le nom d'acide méthane carboxylique et d'acide éthanoïque, est essentiellement un liquide clair et incolore, qui a une odeur forte et piquante.


Étant donné que l'acide acétique à 80 % a un atome de carbone dans sa formule chimique, il s'agit d'un composé organique et sa formule chimique est CH3COOH.
Il est intéressant de noter que le mot « acétique » est dérivé d'un mot latin appelé « acetum » qui signifie « vinaigre ».
Le vinaigre est la forme diluée de l’acide acétique à 80 % et constitue la substance chimique la plus courante chez l’homme.


L'acide acétique à 80 % est un composant principal du vinaigre et donne également au vinaigre son odeur caractéristique.
L'acide acétique 80 % (CH3COOH), également appelé acide éthanoïque, est le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique à 80 % produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal d'acide acétique à 80 % est appelé acétate.


Ensuite, lorsque l'acide acétique à 80 % ou l'acide éthanoïque n'est pas dilué, on l'appelle acide acétique glacial à 80 %.
L'acide acétique 80 % est un acide faible mais lorsqu'il est sous forme concentrée, cet acide est corrosif et peut causer certains dommages à la peau.
L'acide acétique 80 % se présente sous la forme d'un liquide clair et incolore avec une forte odeur de vinaigre.


Le point d'éclair de l'acide acétique 80 % est de 104 °F.
La densité de l'acide acétique à 80 % est de 8,8 lb/gal.
L'acide acétique à 80 % est corrosif pour les métaux et les tissus.


Acide acétique à 80 %, solution, à plus de 10 % mais pas à plus de 80 % d'acide se présente sous la forme d'une solution aqueuse incolore.
L'acide acétique à 80 % sent le vinaigre.
L'acide acétique à 80 % est corrosif pour les métaux et les tissus.


L'acide acétique à 80 %, solution, à plus de 80 % d'acide, est une solution aqueuse claire et incolore avec une odeur âcre.
L'acide acétique à 80 % est constitué de cristaux humides légèrement roses avec une odeur de vinaigre.
L'acide acétique 80 % est un acide monocarboxylique simple contenant deux carbones.


L'acide acétique à 80 % joue le rôle de solvant protique, de régulateur d'acidité alimentaire, de conservateur alimentaire antimicrobien et de métabolite de Daphnia magna.
L'acide acétique à 80 % est un acide conjugué d'un acétate.
L'acide acétique 80% est un produit de l'oxydation de l'éthanol et de la distillation destructrice du bois.


L'acide acétique à 80 % est un métabolite présent ou produit par Escherichia coli.
L'acide acétique 80 % est un produit naturel présent dans Camellia sinensis, Microchloropsis et d'autres organismes pour lesquels des données sont disponibles.
L'acide acétique 80 % est un acide carboxylique synthétique aux propriétés antibactériennes et antifongiques.


Bien que son mécanisme d'action ne soit pas entièrement connu, l'acide acétique non dissocié à 80 % peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.
L'acide acétique 80 % est l'un des acides carboxyliques les plus simples.


L'acide acétique à 80 % est un réactif chimique important et un produit chimique industriel utilisé dans la production de bouteilles de boissons gazeuses en plastique et de films photographiques ; et acétate de polyvinyle pour la colle à bois, ainsi que de nombreuses fibres et tissus synthétiques.
L'acide acétique à 80 % peut être très corrosif, selon la concentration.


L'acide acétique 80 % est un ingrédient de la cigarette.
Le groupe acétyle, dérivé de l'acide acétique à 80 %, est fondamental pour la biochimie de pratiquement toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, il joue un rôle central dans le métabolisme des glucides et des graisses.


Cependant, la concentration d'acide acétique libre à 80 % dans les cellules est maintenue à un faible niveau pour éviter de perturber le contrôle du pH du contenu cellulaire.
L'acide acétique à 80 % est produit et excrété par certaines bactéries, notamment le genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries se trouvent universellement dans les aliments, l’eau et le sol, et l’acide acétique à 80 % est produit naturellement lorsque les fruits et certains autres aliments se gâtent.


L'acide acétique à 80 % entre également dans la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.
L'acide acétique 80 % /əˈsiːtɪk/, systématiquement nommé acide éthanoïque /ˌɛθəˈnoʊɪk/, est un liquide et un composé organique acide et incolore de formule chimique CH3COOH (également écrit CH3CO2H, C2H4O2 ou HC2H3O2).


Le vinaigre contient au moins 4 % d'acide acétique et 80 % en volume, ce qui fait de l'acide acétique 80 % le composant principal du vinaigre, en dehors de l'eau.
L'acide acétique à 80 % a été utilisé comme composant du vinaigre tout au long de l'histoire, depuis au moins le troisième siècle avant JC.
L'acide acétique 80 % est le deuxième acide carboxylique le plus simple (après l'acide formique).


L'acide acétique à 80 % est un réactif chimique important et un produit chimique industriel dans divers domaines, utilisé principalement dans la production d'acétate de cellulose pour films photographiques, d'acétate de polyvinyle pour colle à bois et de fibres et tissus synthétiques.
L'acide acétique 80 % est un composé organique très important dans la vie quotidienne des humains.


Les propriétés solvantes souhaitables de l’acide acétique 80 %, ainsi que sa capacité à former des mélanges miscibles avec des composés polaires et non polaires, en font un solvant industriel très important.
L'acide acétique à 80 % est également connu sous le nom d'acide éthanoïque, d'acide éthylique, d'acide vinaigre et d'acide méthane carboxylique.


L'acide acétique à 80 % est un sous-produit de la fermentation et donne au vinaigre son odeur caractéristique.
Le vinaigre contient environ 4 à 6 % d’acide acétique à 80 % dans l’eau.
Des solutions plus concentrées peuvent être trouvées en laboratoire, et l'acide acétique pur à 80 % ne contenant que des traces d'eau est connu sous le nom d'acide acétique glacial à 80 %.


Les solutions diluées comme le vinaigre peuvent entrer en contact avec la peau sans danger, mais des solutions plus concentrées brûleront la peau.
L'acide acétique glacial à 80 % peut provoquer des brûlures cutanées et des lésions oculaires permanentes, et corrodera le métal.
L'acide acétique 80 % est un composé organique de formule CH3COOH.


L'acide acétique à 80 % est un acide carboxylique constitué d'un groupe méthyle attaché à un groupe fonctionnel carboxyle.
Le nom systématique IUPAC de l'acide acétique 80 % est l'acide éthanoïque et sa formule chimique peut également s'écrire C2H4O2.
Le vinaigre est une solution d'acide acétique à 80 % dans l'eau et contient entre 5 % et 20 % d'acide éthanoïque en volume.


L'odeur piquante et le goût aigre sont caractéristiques de l'acide acétique présent à 80 %.
Une solution non diluée d’acide acétique à 80 % est communément appelée acide acétique glacial à 80 %.
L'acide acétique à 80 % forme des cristaux qui ressemblent à de la glace à des températures inférieures à 16,6 °C.


Acide acétique 80% (CH3COOH), le plus important des acides carboxyliques.
Une solution diluée (environ 5 pour cent en volume) d’acide acétique à 80 % produite par fermentation et oxydation de glucides naturels est appelée vinaigre ; un sel, un ester ou un acylal d'acide acétique à 80 % est appelé acétate.


Industriellement, l'acide acétique à 80 % est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l'acide acétique à 80 % est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
L'acide acétique à 80 % a été préparé à l'échelle industrielle par oxydation à l'air de l'acétaldéhyde, par oxydation de l'éthanol (alcool éthylique) et par oxydation du butane et du butène.


Aujourd'hui, l'acide acétique à 80 % est fabriqué selon un procédé développé par l'entreprise chimique Monsanto dans les années 1960 ; il s'agit d'une carbonylation catalysée par le rhodium-iode du méthanol (alcool méthylique).
L'acide acétique pur 80 %, souvent appelé acide acétique glacial 80 %, est un liquide corrosif et incolore (point d'ébullition 117,9 °C [244,2 °F] ; point de fusion 16,6 °C [61,9 °F]) complètement miscible à l'eau.


L'acide acétique à 80 % est un liquide organique clair, incolore avec une odeur âcre semblable à celle du vinaigre domestique.
L'acide acétique 80 % ou acide acétique glacial 80 %, également connu sous le nom d'acide éthanoïque, est un composé organique de formule chimique CH3COOH.
L'acide acétique glacial pur 80 % (acide acétique anhydre 80 %) est un liquide incolore et hygroscopique avec une forte odeur âcre.


Le point de congélation est de 16,6°C et l'acide acétique à 80 % se transforme en cristaux incolores après solidification.
L'acide acétique 80 % est un acide monobasique organique et peut être miscible à l'eau dans n'importe quelle proportion.
L'acide acétique 80 % est particulièrement corrosif pour les métaux.


L'acide acétique à 80 % est largement présent dans la nature, comme dans le métabolisme de fermentation et les produits de putréfaction de diverses bactéries glaciaires à l'acide acétique à 80 %.
L'acide acétique à 80 % est également le principal composant du vinaigre.
De plus, l'acide acétique glacial à 80 % joue toujours un rôle important dans de nombreuses réactions chimiques.


Par exemple, l'acide acétique à 80 % peut subir des réactions de déplacement avec des métaux tels que le fer, le zinc et le cuivre pour générer des acétates métalliques et de l'hydrogène.
De plus, l'acide acétique 80 % peut réagir avec les alcalis, les oxydes alcalins, les sels et certains oxydes métalliques.
L'acide acétique à 80 % est une substance chimique organique, c'est un liquide incolore avec une odeur très caractéristique.


L'une de ses utilisations les plus courantes est la composition du vinaigre, bien que l'acide acétique à 80 % soit également utilisé dans les produits cosmétiques et pharmaceutiques, dans les industries alimentaire, textile et chimique.
Au niveau industriel, l'acide acétique 80 % est produit par carbonylation du méthanol et est utilisé comme matière première pour la production de différents composés.


L'acide acétique 80 % peut également être obtenu dans l'industrie alimentaire par le processus de fermentation acétique de l'éthanol, ou plus communément expliqué par la fermentation alcoolique et la distillation du bois.
L'acide acétique pur 80 % ou acide acétique glacial 80 %, également connu sous le nom de CH3COOH, est un liquide qui peut être nocif pour notre santé en raison de ses propriétés irritantes et corrosives et peut provoquer de graves irritations de la peau, des yeux et du tube digestif.


Cependant, grâce à sa combinaison avec différentes substances, l'Acide Acétique 80% permet d'obtenir des produits du quotidien qui peuvent être familiers à tout le monde, comme le vinaigre.
Le vinaigre est une substance hygroscopique, c'est-à-dire qu'il peut absorber l'humidité de son environnement.


Ainsi, lorsqu’il est mélangé à de l’eau, son volume diminue de manière très significative.
D'autre part, lorsque l'acide acétique 80 % à 100 % est exposé à de basses températures, la surface, également connue sous le nom d'essence acétique, cristallise et forme des cristaux semblables à de la glace au sommet.


En raison de la structure chimique de l'acide acétique 80 %, son point d'ébullition est très élevé.
De plus, il convient de noter que l'acide acétique 80 %, étant un acide carboxylique, a la capacité de se dissocier, mais seulement légèrement, car il s'agit d'un acide faible [FC1].
De plus, grâce à cette capacité de dissociation, l’Acide Acétique 80% conduit efficacement l’électricité.


L'acide acétique 80 % est un composé organique de formule chimique CH3COOH.
L'acide acétique 80 % est un acide monobasique organique et constitue le composant principal du vinaigre.
L'acide acétique anhydre pur à 80 % (acide acétique glacial à 80 %) est un liquide incolore et hygroscopique avec un point de congélation de 16,6 ℃ (62 ℉ ).


Après solidification, l'acide acétique 80 % devient un cristal incolore.
L'acide acétique 80 % ou acide éthanoïque est un composé organique liquide incolore de formule moléculaire CH3COOH.
Lorsque l’acide acétique à 80 % est dissous dans l’eau, on l’appelle acide acétique glacial à 80 %.


Le vinaigre ne contient pas moins de 4 pour cent d'acide acétique à 80 % en volume, en dehors de l'eau, ce qui permet à l'acide acétique à 80 % d'être l'ingrédient principal du vinaigre.
L'acide acétique 80 % est produit principalement comme précurseur de l'acétate de polyvinyle et de l'acétate de cellulose, en plus du vinaigre domestique.
L'acide acétique à 80 % est un acide faible puisque la solution ne se dissocie que légèrement.


Mais l'acide acétique concentré à 80 % est corrosif et peut endommager la chair.
Le deuxième acide carboxylique le plus simple est l’acide acétique à 80 % (après l’acide formique).
L'acide acétique à 80 % est constitué d'un groupe méthyle auquel un groupe carboxyle est lié.


L'acide acétique à 80 % est un composé organique liquide incolore à l'odeur caractéristique âcre.
L'acide acétique 80 % est un acide présent naturellement.
L'acide acétique à 80 % peut également être produit synthétiquement soit par de l'acétylène, soit en utilisant du méthanol.


L'acide acétique 80 % est considéré comme un conservateur naturel pour les produits alimentaires.
L'acide acétique à 80 % est utilisé depuis des centaines d'années comme conservateur (vinaigre, français pour « vin aigre »).
Si pendant la fermentation du raisin ou d'autres fruits, de l'oxygène pénètre dans le récipient, les bactéries convertissent l'éthanol présent en acide acétique à 80 %, ce qui rend le vin aigre.


L'acide acétique à 80 % peut être produit synthétiquement par carbonylation du méthanol, oxydation de l'acétaldéhyde ou oxydation du butane/naphta.
L'acide acétique à 80 % est qualifié de « glaciaire » et est totalement miscible à l'eau.
L'acide acétique à 80 % est le composant principal du vinaigre.


L'acide acétique à 80 % se présente sous la forme d'un liquide clair et incolore avec un goût aigre distinctif et une odeur piquante.
L'acide acétique à 80 % est utilisé comme conservateur, acidulant et aromatisant dans la mayonnaise et les cornichons.
Bien que l'acide acétique à 80 % soit considéré comme sûr, certains sont convaincus qu'il a des effets potentiellement dangereux sur la santé.


L'acide acétique 80%, systématiquement appelé acide éthanoïque, est un composé organique liquide incolore de formule chimique CH3COOH (également écrit CH3CO2H ou C2H4O2).
Lorsqu'il n'est pas dilué, l'acide acétique à 80 % est parfois appelé acide acétique glacial à 80 %.


L'acide acétique 80 % est un composé organique appartenant aux acides carboxyliques faibles.
L'ensemble des propriétés de l'Acide Acétique 80% le classe comme réactif à large spectre et lui permet d'être utilisé dans une grande variété de domaines industriels : de la pharmacologie et de la cosmétologie aux industries chimiques et alimentaires.


L'acide acétique 80 % est l'un des acides les plus couramment utilisés dans l'industrie alimentaire et domestique.
L'acide acétique à 80 % est un liquide incolore, piquant et inodore qui se mélange avec l'eau pour former des solutions de concentrations variables.
En raison de sa capacité à cristalliser à une température déjà positive, l’acide acétique 80 % est également appelé « glacial ».


L'acide acétique 80 % est un acide carboxylique synthétique aux propriétés antibactériennes et antifongiques.
Bien que le mécanisme d'action de l'acide acétique à 80 % ne soit pas entièrement connu, l'acide acétique à 80 % non dissocié peut améliorer la solubilité des lipides, permettant ainsi une accumulation accrue d'acides gras sur la membrane cellulaire ou dans d'autres structures de la paroi cellulaire.


L'acide acétique à 80 %, en tant qu'acide faible, peut inhiber le métabolisme des glucides, entraînant la mort ultérieure de l'organisme.
L'acide acétique à 80 % est présent dans la plupart des fruits.
L'acide acétique 80 % est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.


Dans la mayonnaise, de l'acide acétique à 80 % est ajouté pour augmenter l'inactivation des salmonelles.
L'acide acétique à 80 %, également connu sous le nom d'acide éthanoïque, est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
La formule chimique de l'acide acétique 80 % est CH3COOH et son poids moléculaire est de 60,05 g/mol.


L'acide acétique à 80 % est un liquide clair et incolore qui a une odeur âcre et un goût aigre.
L'acide acétique à 80 % est miscible à l'eau et aux solvants organiques les plus courants.
L'acide acétique à 80 % est produit naturellement dans la plupart des organismes en tant que sous-produit du métabolisme.


L'acide acétique à 80 % est également un composant majeur du vinaigre, qui est une solution d'acide acétique à 80 % et d'eau qui se produit naturellement lorsque l'éthanol présent dans les jus de fruits fermentés subit une oxydation par les bactéries de l'acide acétique à 80 %.
La production de vinaigre est une pratique ancienne de conservation et d’aromatisation des aliments qui remonte à l’Antiquité.


L'acide acétique 80 % a plusieurs applications en dehors de l'industrie alimentaire.
L'acide acétique à 80 % est utilisé comme solvant dans la production de divers produits chimiques et constitue un intermédiaire important dans la fabrication de polymères, de fibres et de produits pharmaceutiques.


L'acide acétique à 80 % est classé comme acide faible car il ne s'ionise que partiellement dans l'eau pour produire des ions hydrogène (H+) et des ions acétate (CH3COO-).
Le pH d'une solution à 1 % d'acide acétique à 80 % est d'environ 2,4, ce qui signifie qu'elle est acide mais relativement moins acide que certains acides plus forts comme l'acide chlorhydrique ou l'acide sulfurique.


L'acide acétique à 80 % est à la fois naturel et synthétique.
Les sources naturelles comprennent la fermentation et les bactéries.
Lors de la fermentation, l'acide acétique à 80 % est produit lorsque la levure décompose le sucre en l'absence d'oxygène.


Les bactéries produisent de l'acide acétique à 80 % lorsqu'elles oxydent l'éthanol.
L'acide acétique synthétique à 80 % est obtenu en faisant réagir du méthanol avec du monoxyde de carbone en présence d'un catalyseur.
L'acide acétique à 80 % a une odeur et un goût forts.


L'odeur de l'acide acétique 80 % est similaire à celle du vinaigre et le goût est aigre.
L'acide acétique à 80 % n'est pas considéré comme toxique en petites quantités et est généralement reconnu comme sûr par la Food and Drug Administration (FDA) des États-Unis lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


La sécurité de l'acide acétique à 80 % dépend de sa concentration, des concentrations plus élevées étant plus corrosives pour la peau et les yeux.
En résumé, l'acide acétique à 80 % est un acide faible couramment utilisé comme conservateur alimentaire et agent aromatisant.
Une autre utilisation importante de l’acide acétique à 80 % est celle d’intermédiaire chimique.


Enfin, l'acide acétique 80 % est un ingrédient important dans le processus de vinification.
Dans ce cas, l'acide acétique 80 % est produit naturellement comme sous-produit du processus de fermentation du vin.
Cependant, si les niveaux d’acide acétique à 80 % sont trop élevés, le vin peut avoir un goût ou une odeur de vinaigre, ce qui n’est pas souhaitable.


Pour éviter cela, les vignerons utilisent des sulfites pour inhiber la croissance des bactéries de l'acide acétique à 80 % dans le vin.
L'acide acétique à 80 % est également un agent nettoyant efficace, notamment lorsqu'il s'agit d'éliminer les taches tenaces ou l'accumulation de minéraux dues à l'eau dure.
La nature acide de l'acide acétique à 80 % aide à éliminer la saleté, la crasse et autres impuretés des surfaces.


L'acide acétique à 80 % se trouve naturellement dans de nombreux aliments, notamment le vinaigre et les produits fermentés.
Cependant, lorsqu'il est utilisé comme additif, l'acide acétique à 80 % est généralement produit de manière synthétique.
L'acide acétique à 80 % est généralement reconnu comme sûr (GRAS) lorsqu'il est utilisé conformément aux bonnes pratiques de fabrication.


Dans l'ensemble, l'acide acétique à 80 % est considéré comme un additif alimentaire sûr lorsqu'il est utilisé dans les limites recommandées.
Comme pour tout additif alimentaire, l'acide acétique 80 % est essentiel pour suivre les réglementations et directives établies par les autorités compétentes.



UTILISATIONS et APPLICATIONS de l'ACIDE ACÉTIQUE 80% :
À la maison, l’acide acétique dilué à 80 % est souvent utilisé dans les détartrants.
Dans l'industrie alimentaire, l'acide acétique à 80 % est utilisé sous l'additif alimentaire (numéro UE E260) comme régulateur d'acidité et comme condiment.
L'acide acétique à 80 % est largement approuvé pour une utilisation comme additif alimentaire.


L'acide acétique 80 % 80 % est un produit chimique essentiel avec une large gamme d'applications.
L'acide acétique 80 % est un acide organique fort, également connu sous le nom d'acide éthanoïque ou vinaigre, et est utilisé dans diverses industries, de la production de peintures et d'adhésifs aux industries alimentaire et pharmaceutique.


L'acide acétique 80 % est un solvant efficace et un agent de condensation dans les processus de synthèse chimique.
L'acide acétique à 80 % est également utilisé dans la production d'acétate de vinyle, un ingrédient clé dans la fabrication des polymères.
L'Acide Acétique 80% est une solution hautement concentrée, idéale pour les professionnels et les utilisateurs expérimentés.


Avec l'acide acétique 80 %, vous pouvez éliminer le calcaire tenace, les dépôts verts et autres types de pollution.
En général, pour la plupart des applications, l'acide acétique à 80 % doit d'abord être dilué avec de l'eau.
Pour une solution toute prête d'acide acétique à 80 % que vous pouvez utiliser immédiatement pour vos travaux de nettoyage, vous pouvez également acheter du vinaigre de nettoyage.


L'acide acétique à 80 % est le plus couramment utilisé dans la production d'acétate de vinyle monomère (VAM), dans la production d'esters et pour l'élevage d'abeilles.
En tant qu'acide naturel, l'acide acétique 80 % offre une large gamme d'applications possibles : par exemple dans les formulations de nettoyage et pour la décalcification.
De plus, l'acide acétique à 80 % est couramment utilisé comme herbicide biogénique, bien que son utilisation commerciale comme herbicide ne soit pas autorisée dans les espaces clos.


Applications de l'acide acétique 80 % : adhésifs/scellants-B&C, intermédiaires agricoles, vêtements, revêtements architecturaux, revêtements de protection automobile, matériaux de construction, encres d'imprimerie commerciales, produits chimiques de construction, intérieurs décoratifs, engrais, ingrédients alimentaires, conservateurs alimentaires, formulateurs, surfaces dures soins, nettoyants industriels, nettoyants institutionnels.


Applications de l'acide acétique 80 % : intermédiaires, traitement du pétrole ou du gaz, autres produits chimiques alimentaires, autres transports, composants d'emballage sans contact alimentaire, peintures et revêtements, produits chimiques pharmaceutiques, additifs de processus, raffinage, produits chimiques spéciaux, matières premières et eau. traitement industriel.


L'acide acétique 80 % est une matière première utilisée pour la production de nombreux produits en aval.
Pour les applications dans les médicaments, les aliments ou les aliments pour animaux, Eastman fournit de l'acide acétique à 80 % dans des qualités appropriées pour ces utilisations réglementées.
L'acide acétique à 80 % se trouve le plus souvent dans le vinaigre, qui est utilisé dans des recettes allant des vinaigrettes aux condiments, soupes et sauces.


Le vinaigre est également utilisé comme conservateur alimentaire et agent de décapage.
De plus, il peut même être utilisé pour fabriquer des produits de nettoyage naturels, des toniques pour la peau, des insecticides et bien plus encore.
Certains médicaments contiennent de l'acide acétique à 80 %, notamment ceux utilisés pour traiter les otites.


Certains utilisent également l'acide acétique à 80 % dans le traitement d'autres affections, notamment les verrues, les poux et les infections fongiques, bien que des recherches supplémentaires soient nécessaires pour évaluer son innocuité et son efficacité.
L'acide acétique à 80 % est également utilisé par les fabricants pour créer une variété de produits différents.


En particulier, l'acide acétique à 80 % est utilisé pour fabriquer des composés chimiques comme le monomère d'acétate de vinyle ainsi que des parfums, des produits d'hygiène bucco-dentaire, des produits de soins de la peau, des encres et des colorants.
Le rejet dans l'environnement de l'acide acétique 80 % peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal).


D'autres rejets dans l'environnement d'acide acétique à 80 % sont susceptibles de se produire : produits, équipements électroniques) et une utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide acétique 80 % peut être trouvé dans les produits contenant des matériaux à base de : papier (par exemple mouchoirs, produits d'hygiène féminine, couches, livres, magazines, papier peint), cuir (par exemple gants, chaussures, sacs à main, meubles), tissus, textiles et vêtements ( par exemple vêtements, matelas, rideaux ou tapis, jouets textiles) et le bois (par exemple parquets, meubles, jouets).


L'acide acétique 80 % est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits chimiques de traitement de l'eau, produits phytopharmaceutiques et produits de lavage et de nettoyage.
L'Acide Acétique 80% est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement.


L'acide acétique 80 % est utilisé pour la fabrication de : produits chimiques.
D'autres rejets dans l'environnement d'acide acétique à 80 % sont susceptibles de se produire lors d'une utilisation en extérieur et en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air).


L'acide acétique 80 % est utilisé dans les produits suivants : produits de revêtement, parfums et fragrances, produits chimiques et colorants pour papier, produits et colorants de traitement textile, produits de traitement de surfaces métalliques, produits de traitement de surfaces non métalliques et polymères.
L'acide acétique 80 % est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.


Le rejet dans l'environnement de l'acide acétique 80 % peut survenir lors d'une utilisation industrielle : formulation de mélanges, formulation dans des matériaux, fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires). , comme auxiliaire technologique, pour la fabrication thermoplastique, comme auxiliaire technologique, de substances dans des systèmes fermés avec rejet minimal et dans la production d'articles.


L'acide acétique 80 % est utilisé dans les produits suivants : produits chimiques de laboratoire, régulateurs de pH et produits de traitement de l'eau, produits d'exploration ou de production pétrolière et gazière, produits chimiques de traitement de l'eau, produits de lavage et de nettoyage, polymères et produits de revêtement.
L'Acide Acétique 80% est utilisé dans les domaines suivants : exploitation minière et formulation de mélanges et/ou reconditionnement.


L'acide acétique à 80 % est utilisé pour la fabrication de produits chimiques, de textiles, de cuir ou de fourrure, de bois et de produits en bois ainsi que de pâte à papier, de papier et de produits en papier.
Le rejet dans l'environnement de l'acide acétique 80 % peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques des sites industriels, en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires) et dans la fabrication de la substance.


Le rejet dans l'environnement de l'acide acétique 80 % peut survenir lors d'une utilisation industrielle : fabrication de la substance, dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), formulation de mélanges, formulation dans des matériaux. , dans la production d'articles, comme auxiliaire technologique, pour la fabrication de thermoplastiques, comme auxiliaire technologique et de substances dans des systèmes fermés avec rejet minimal.


L'acide acétique 80% est utilisé dans les produits suivants : produits de revêtement, produits de lavage et de nettoyage, produits d'assainissement de l'air, lubrifiants et graisses, enduits, mastics, enduits, pâte à modeler, produits antigel, engrais, produits phytopharmaceutiques, peintures au doigt, biocides (par exemple désinfectants, produits antiparasitaires), produits de soudage et de brasage et produits de traitement textile et colorants.


D'autres rejets dans l'environnement d'acide acétique à 80 % sont susceptibles de se produire lors de : l'utilisation en extérieur, l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en intérieur dans des systèmes fermés. avec un rejet minimal (par exemple, liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile).


Industriellement, l'acide acétique à 80 % est utilisé dans la préparation d'acétates métalliques, utilisés dans certains procédés d'impression ; l'acétate de vinyle, utilisé dans la production de plastiques ; l'acétate de cellulose, utilisé dans la fabrication de films photographiques et de textiles ; et les esters organiques volatils (tels que les acétates d'éthyle et de butyle), largement utilisés comme solvants pour les résines, les peintures et les laques.


Biologiquement, l'acide acétique à 80 % est un intermédiaire métabolique important et il est présent naturellement dans les fluides corporels et dans les jus de plantes.
Outre son utilisation comme conservateur naturel et ingrédient commun dans une variété de produits, l’acide acétique à 80 % a également été associé à plusieurs bienfaits impressionnants pour la santé.


En plus de ses puissantes propriétés antibactériennes, l'acide acétique à 80 % réduirait également le taux de sucre dans le sang, favoriserait la perte de poids, soulagerait l'inflammation et contrôlerait la tension artérielle.
En tant que distributeurs de produits chimiques, les objectifs pour lesquels ce type d'acide acétique à 80 % est traité sont variés.


Comme mentionné ci-dessus, l'acide acétique à 80 % peut être trouvé dans de nombreuses épiceries sous forme de vinaigre blanc.
Dans de tels produits, l'acide acétique 80 % ne peut pas être trouvé sous sa forme pure, mais seulement en petites quantités.
L'acide acétique à 80 % est également présent dans les aliments tels que les aliments en conserve et marinés, les fromages et produits laitiers, les sauces ou les salades préparées.


L'acide acétique 80 % est également couramment utilisé dans les industries pharmaceutique, cosmétique et industrielle, à la fois pour produire d'autres substances et pour réguler leurs propriétés, notamment en ce qui concerne leur pH.
En raison de sa forte odeur, l'une de ses autres utilisations principales est en cosmétique comme régulateur de l'arôme des parfums, c'est-à-dire que l'acide acétique à 80 % permet d'obtenir un équilibre entre les odeurs sucrées en particulier.


Dans l'industrie textile, l'acide acétique 80 % est utilisé pour teindre les tissus et produire des tissus tels que la viscose ou le latex.
Dans l'industrie chimique, l'acide acétique à 80 % est utilisé dans la production de produits de nettoyage et, dans l'industrie pharmaceutique, dans des suppléments et certains médicaments, car il est capable de stabiliser la tension artérielle et de réduire le taux de sucre dans le sang.


L'acide acétique à 80 % est également un ingrédient courant dans les pommades.
Dans les ménages, l'acide acétique dilué à 80 % est souvent utilisé comme agent de nettoyage. Dans l'industrie alimentaire, l'acide acétique à 80 % est utilisé comme régulateur d'acidité.
L'acide acétique à 80 % est utilisé pour fabriquer d'autres produits chimiques, comme additif alimentaire et dans la production pétrolière.


L'acide acétique à 80 % est utilisé localement, parfois en interne, comme contre-irritant et également comme réactif.
L'acide acétique 80 % otique (pour l'oreille) est un antibiotique qui traite les infections causées par des bactéries ou des champignons.
Dans les ménages, l'acide acétique dilué à 80 % est souvent utilisé dans les détartrants.


Dans l'industrie alimentaire, l'acide acétique 80 % est contrôlé par le code d'additif alimentaire E260 comme régulateur d'acidité et comme condiment.
En biochimie, le groupe acétyle, dérivé de l'acide acétique à 80 %, est fondamental pour toutes les formes de vie.
Lorsqu'il est lié à la coenzyme A, l'acide acétique à 80 % joue un rôle central dans le métabolisme des glucides et des graisses.


La demande mondiale d'acide acétique 80 % est d'environ 6,5 millions de tonnes métriques par an (t/a), fabriqué à partir de méthanol.
La production d'acide acétique à 80 % et son utilisation industrielle ultérieure présentent des risques pour la santé des travailleurs, notamment des lésions cutanées accidentelles et des lésions respiratoires chroniques dues à l'inhalation.


L'acide acétique 80 % est un réactif chimique pour la production de composés chimiques.
L'utilisation la plus importante de l'acide acétique à 80 % concerne la production de monomère d'acétate de vinyle, suivie de près par la production d'anhydride et d'ester acétiques.
Le volume d’acide acétique à 80 % utilisé dans le vinaigre est relativement faible.


Dans le domaine de la chimie analytique, l'acide acétique glacial à 80 % est largement utilisé pour estimer les substances faiblement alcalines.
L'acide acétique à 80 % a une large gamme d'applications en tant que solvant polaire et protique.
L'acide acétique 80% est utilisé comme antiseptique en raison de ses qualités antibactériennes


La fabrication de fibre de rayonne implique l'utilisation d'acide acétique à 80 %.
Médicalement, l'acide acétique à 80 % a été utilisé pour traiter le cancer par injection directe dans la tumeur.
Étant le principal constituant du vinaigre, l'acide acétique à 80 % est utilisé dans le marinage de nombreux légumes.


La fabrication du caoutchouc implique l'utilisation d'acide acétique à 80 %.
L'acide acétique à 80 % est également utilisé dans la fabrication de divers parfums.
L'acide acétique à 80 % est largement utilisé dans la production de VAM (monomère d'acétate de vinyle).


Lorsque deux molécules d’acide acétique à 80 % subissent ensemble une réaction de condensation, le produit formé est l’anhydride acétique.
L'acide acétique à 80 % est largement utilisé dans la préparation industrielle du téréphtalate de diméthyle (DMT).
L'acide acétique à 80 % est utilisé dans la fabrication d'anhydride acétique, d'acétate de cellulose, d'acétate de vinyle monomère, d'esters acétiques, d'acide chloracétique à 80 %, de plastiques, de colorants, d'insecticides, de produits chimiques photographiques et de caoutchouc.


D'autres utilisations commerciales de l'acide acétique à 80 % comprennent la fabrication de vitamines, d'antibiotiques, d'hormones et de produits chimiques organiques, ainsi que comme additif alimentaire (acidulant).
L'acide acétique 80 % est également utilisé dans divers procédés d'impression textile.
L'acide acétique 80 % est le composant principal du vinaigre, qui contient 4 à 18 % d'acide acétique 80 %.


L'acide acétique 80 % est utilisé comme conservateur alimentaire et additif alimentaire (appelé E260).
L'acide acétique 80 % est utilisé comme matière première et solvant dans la production d'autres produits chimiques, dans la production pétrolière et gazière, ainsi que dans les industries alimentaire et pharmaceutique.


De grandes quantités d'acide acétique à 80 % sont utilisées pour fabriquer des produits tels que de l'encre pour l'impression textile, des colorants, des produits chimiques photographiques, des pesticides, des produits pharmaceutiques, du caoutchouc et des plastiques.
L'acide acétique à 80 % est également utilisé dans certains produits d'entretien ménager pour éliminer le calcaire.


Dans les aliments, l'acide acétique 80 % est utilisé pour ses propriétés antibactériennes, comme stabilisant de l'acidité, diluant les couleurs, comme agent aromatisant et pour inhiber la croissance des moisissures dans le pain.
Les dérivés de l'acide acétique à 80 % sont utilisés comme additifs alimentaires et conservateurs, ainsi que dans la production de divers produits chimiques et matériaux.


En brassage, l'acide acétique 80 % est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.
L'acide acétique 80 % peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.


L'acide acétique à 80 % est souvent utilisé comme vinaigre de table.
L'acide acétique 80 % est également utilisé directement comme condiment et dans le marinage des légumes et autres aliments.
L'acide acétique à 80 % est utilisé comme composant principal dans la synthèse ultérieure dans le processus de production alimentaire et pharmaceutique.


L'additif alimentaire L'acide acétique à 80 % est largement utilisé dans le marinage, la mise en conserve, la fabrication de mayonnaise, de sauces et d'autres aliments.
Sous l'une des formes les plus courantes d'acide acétique à 80 %, le vinaigre est également utilisé directement comme condiment et dans le marinage des légumes et d'autres aliments pour préserver les aliments contre les bactéries et les champignons.


En brassage, l'acide acétique 80 % est utilisé pour réduire les pertes excessives de glucides de l'orge germée et pour compenser les variations de production, produisant ainsi une bière de qualité constante.
Lorsqu'il est utilisé comme additif alimentaire, l'acide acétique 80 % possède un numéro E 260.


L'acide acétique 80 % peut être trouvé dans la bière, le pain, le fromage, le chutney, la crème de raifort, les cornichons, la crème de salade, la sauce brune, la sauce aux fruits, la sauce et la gelée à la menthe et les aliments en conserve pour bébés, les sardines et les tomates.
L'acide acétique à 80 % est approuvé pour son utilisation comme addictif alimentaire dans l'UE et est généralement reconnu comme une substance alimentaire sûre aux États-Unis.


En plus du vinaigre, l'acide acétique à 80 % est utilisé comme additif alimentaire et conservateur dans divers autres aliments, notamment les produits de boulangerie, les viandes transformées, les fromages et les condiments.
De nombreux aliments marinés, comme les cornichons et la choucroute, contiennent également de l'acide acétique à 80 % comme sous-produit naturel du processus de fermentation.


L'acide acétique à 80 % est également utilisé dans la production de divers ingrédients alimentaires, notamment des sels, des esters et des anhydrides.
Ces dérivés de l'acide acétique 80 % sont utilisés comme conservateurs, arômes et émulsifiants dans les aliments transformés.
Quelques exemples de ces dérivés comprennent l'acétate de sodium, l'acétate d'éthyle et l'anhydride acétique.


L'acide acétique à 80 % est également utilisé dans la production de divers adhésifs, revêtements et encres, ainsi que pour produire de l'acétate de cellulose, utilisé dans les films photographiques et d'autres applications.
L'acide acétique à 80 % se trouve naturellement dans de nombreux aliments et est également produit synthétiquement pour diverses applications industrielles.


L'acide acétique 80 % est l'un des acides carboxyliques les plus simples.
Il a une variété d’utilisations, allant de l’alimentaire au médical en passant par l’industrie.
Comme mentionné précédemment, l'acide acétique à 80 % se trouve principalement dans le vinaigre.


L'acide acétique à 80 % est également utilisé comme additif alimentaire (numéro E E260) pour réguler l'acidité et comme conservateur.
L'acide acétique à 80 % est également essentiel dans le processus de décapage, qui consiste à conserver des légumes ou des fruits (comme les concombres, les betteraves ou le zeste de pastèque) dans du vinaigre.


L'acide acétique à 80 % aide à prévenir la croissance de bactéries nocives et préserve la couleur, la saveur et la texture naturelles des légumes ou des fruits.
Le marinage est une technique couramment utilisée pour conserver les aliments, en particulier dans les pays où les hivers sont longs et où les produits frais ne sont pas disponibles.
L'acide acétique 80 % peut également être utilisé pour produire des tissus synthétiques qui ressemblent à des tissus naturels comme la soie, la laine ou le coton.


L'acide acétique à 80 % est utilisé dans la production d'une large gamme de produits chimiques et de matériaux, tels que l'acétate de vinyle monomère (VAM), l'acétate de cellulose et l'anhydride acétique.
Ces produits chimiques sont utilisés dans diverses industries, notamment les textiles, les plastiques, les revêtements et les adhésifs.


L'acide acétique 80 % peut être utilisé pour augmenter l'acidité (et abaisser le pH) des produits alimentaires ainsi que pour améliorer la qualité organoleptique en donnant au produit une saveur acide, comme celle des chips de sel et de vinaigre.
L'acide acétique à 80 % est également un conservateur populaire car il arrête la croissance bactérienne dans les vinaigrettes, les sauces, le fromage et les cornichons.


L'acide acétique 80 %/vinaigre est utilisé pour mariner les aliments, ce qui est un type de méthode de conservation. Lorsqu'il est utilisé avec du bicarbonate de soude, l'acide acétique à 80 % agit également comme agent levant chimique.
Outre l'alimentation, l'acide acétique à 80 % a été utilisé en médecine, notamment dans les gouttes auriculaires, et dans un certain nombre de procédés industriels.


L'acide acétique à 80 % est utilisé pour fabriquer de l'acétate de cellulose et de l'acétate de polyvinyle, et l'acide acétique glacial à 80 % en particulier est fréquemment utilisé comme solvant.
Comme mentionné précédemment, l'acide acétique à 80 % est largement utilisé comme conservateur alimentaire.
L'acide acétique à 80 % rend les aliments moins hospitaliers aux bactéries nocives pouvant provoquer une intoxication alimentaire.


Lorsqu'il est utilisé en petites quantités, l'acide acétique à 80 % peut prolonger efficacement la durée de conservation des produits alimentaires.
De plus, de l'acide acétique à 80 % peut également être ajouté au liquide de décapage pour aider à maintenir le niveau d'acidité du produit mariné, le faisant ainsi durer plus longtemps.
Une autre application populaire de l’acide acétique à 80 % est celle d’exhausteur de goût naturel des aliments.


En plus d'améliorer le goût de nombreux aliments transformés, notamment les sauces, les vinaigrettes et les condiments, l'acide acétique à 80 % est également utilisé pour donner une saveur aigre aux boissons comme les sodas et les boissons énergisantes.
L'acide acétique 80 % est ajouté en petites quantités à ces produits afin de conférer un goût acidulé et rafraîchissant que de nombreux consommateurs préfèrent.


L'acide acétique à 80 % est utilisé dans une grande variété de produits d'entretien ménager, notamment les nettoyants tout usage, les nettoyants pour vitres et les solutions de nettoyage pour salles de bains.
En plus de son utilisation dans les nettoyants ménagers, l’acide acétique à 80 % est également utilisé comme désherbant naturel.
L'acide acétique à 80 % peut être pulvérisé sur les mauvaises herbes des jardins et des pelouses pour les tuer sans contaminer le sol.


Certains jardiniers soucieux de l'environnement préfèrent utiliser des sprays de vinaigre plutôt que des herbicides chimiques toxiques, car l'acide acétique à 80 % est considéré comme une solution plus respectueuse de l'environnement.
Certaines recherches ont également montré que l'acide acétique à 80 % peut avoir des effets bénéfiques potentiels sur la santé.


Par exemple, l’acide acétique à 80 % a été étudié pour son potentiel à abaisser le taux de sucre dans le sang et à améliorer la sensibilité à l’insuline.
De plus, l'acide acétique à 80 % peut aider à perdre du poids en réduisant l'appétit et en favorisant la sensation de satiété.
Cependant, des recherches supplémentaires sont nécessaires pour comprendre pleinement les bienfaits potentiels de l’acide acétique à 80 % sur la santé.


En termes de sécurité, l'acide acétique 80 % doit être manipulé avec précaution.
Pour résumer, l'acide acétique 80 % est un ingrédient polyvalent avec de nombreuses applications.
L'acide acétique à 80 % est couramment utilisé comme conservateur alimentaire, exhausteur de goût et agent de nettoyage.


L'acide acétique à 80 % présente également des avantages potentiels pour la santé, bien que des recherches supplémentaires soient nécessaires pour confirmer ces avantages.
Comme tout produit chimique, l'acide acétique à 80 % doit être manipulé avec soin et stocké correctement afin de minimiser les risques de blessures ou de dommages matériels.
En conclusion, l'acide acétique 80 % est un ingrédient alimentaire largement utilisé avec de nombreuses applications et avantages.


L'acide acétique à 80 % est une substance naturelle sans danger lorsqu'elle est utilisée de manière appropriée.
Que vous l'utilisiez en cuisine ou à des fins de nettoyage, l'acide acétique à 80 % est une solution polyvalente et efficace sur laquelle on compte depuis des siècles.
L'acide acétique 80 % est un ingrédient alimentaire polyvalent et largement utilisé avec une gamme d'avantages et d'applications possibles, ainsi que quelques inconvénients.


Comprendre les propriétés et les utilisations de l'acide acétique 80 % est essentiel pour toute personne travaillant avec des aliments ou des produits chimiques.
Outre l'acide acétique à 80 %, il existe d'autres types d'acides utilisés dans la production alimentaire, tels que l'acide ascorbique (vitamine C), l'acide citrique et l'acide malique.
Ces acides sont couramment utilisés comme conservateurs, stabilisants, exhausteurs de goût et acidulants, selon la formulation spécifique du produit.


Bien que chaque type d'acide ait ses propres propriétés uniques, l'acide acétique 80 % se distingue par son goût aigre et son arôme piquant.
L'une des principales applications de l'acide acétique à 80 % est la production de vinaigre, un condiment largement utilisé obtenu par fermentation d'éthanol et d'autres sucres.


Le vinaigre de cidre de pomme, le vinaigre balsamique et le vinaigre blanc font partie des variétés de vinaigre les plus populaires disponibles.
Chaque type de vinaigre possède la saveur unique de l'acide acétique 80 % et peut être utilisé dans une gamme de recettes, des marinades aux vinaigrettes.
Régulateur d'acidité L'acide acétique 80 % est couramment utilisé dans les aliments comme agent de conservation et aromatisant.


L'acide acétique à 80 % est principalement utilisé pour réguler les niveaux d'acidité de divers produits alimentaires, notamment les cornichons, les sauces, les vinaigrettes et les condiments.
De plus, le régulateur d'acidité, l'acide acétique à 80 %, est efficace pour empêcher la croissance de bactéries et de champignons dans les aliments, prolongeant ainsi leur durée de conservation.
L'acide acétique à 80 % est considéré comme sans danger pour la consommation lorsqu'il est utilisé dans les limites approuvées fixées par les autorités réglementaires.


L'acide acétique à 80 % est couramment utilisé dans les légumes marinés, les vinaigrettes, les sauces et les condiments pour donner de l'acidité et rehausser les saveurs.
L'acide acétique à 80 % est utilisé depuis des siècles dans la conservation et l'aromatisation des aliments.
L'acide acétique 80 % est un additif couramment utilisé dans l'industrie alimentaire.


L'acide acétique à 80 % est un acide naturel présent dans le vinaigre et est largement utilisé comme conservateur alimentaire et agent aromatisant.
L'acide acétique 80 % est connu pour son goût aigre et est souvent ajouté à divers produits alimentaires tels que les cornichons, les sauces, les condiments et les vinaigrettes pour rehausser leur saveur et prolonger leur durée de conservation.


En tant que conservateur alimentaire, l'acide acétique à 80 % agit en créant un environnement acide qui inhibe la croissance des bactéries et autres micro-organismes.
Cela aide à prévenir la détérioration des aliments et à augmenter la stabilité de l'acide acétique à 80 %.
L'acide acétique 80 % agit également comme régulateur de pH, aidant à maintenir le niveau d'acidité souhaité dans certains aliments.


Comme pour tout additif alimentaire, il est recommandé de consommer les aliments contenant de l'acide acétique à 80 % avec modération et dans le cadre d'une alimentation équilibrée.
En conclusion, l'acide acétique 80 % est un additif alimentaire largement utilisé qui sert à la fois de conservateur et d'exhausteur de goût.
L'acide acétique à 80 % donne un goût aigre et contribue à prolonger la durée de conservation de divers produits alimentaires.


-On utilise de l'acide acétique 80% de formule CH3COOH ou additif alimentaire E260 :
*l'industrie alimentaire – connue sous le nom d'additif E260, est impliquée dans la production de produits laitiers, de salades, de sauces, de vinaigrettes, de marinades et de conserves ;
*Industrie pharmaceutique – fait partie de l'aspirine, de la phénacétine, d'autres médicaments et compléments alimentaires qui stabilisent la tension artérielle et réduisent la glycémie ;
*industrie textile – en tant que composant pour la fabrication et la teinture de tissus en rayonne et en latex ;
*sphère cosmétique – utilisée pour équilibrer l’odeur et réguler les caractéristiques de diverses compositions ;
*industrie chimique – production de produits de nettoyage et de détergents, de produits chimiques ménagers, d'acétone, de colorants synthétiques ;
*comme solvant pour vernis, coagulant de latex ;
*comme agent acétylant en synthèse organique ;
*sels d'acide acétique 80% (Fe, Al, Cr, etc.) – mordants pour teinture, etc.


-Élevage d'abeilles :
La fumigation à l'acide acétique à 80 % tuera une grande variété d'agents pathogènes, tels que les agents responsables du couvain du Crétacé, de la loque européenne, de la Nosema et de l'amibe.
L'acide acétique à 80 % éliminera également tous les stades de la teigne de la cire, à l'exception des pupes.


-Monomère d'acétate de vinyle :
Production d'acétate de vinyle monomère (VAM), l'application consomme environ 40 à 45 % de la production mondiale d'acide acétique à 80 %.
La réaction se fait avec de l'éthylène et de l'acide acétique à 80 % avec de l'oxygène sur un catalyseur au palladium.


-Production d'esters :
Les esters d'acide acétique à 80 % sont utilisés comme solvant dans les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.


-Utiliser comme solvant :
L'acide acétique à 80 % est un excellent solvant protique polaire.
L'acide acétique 80 % est souvent utilisé comme solvant de recristallisation pour purifier les composés organiques.
L'acide acétique à 80 % est utilisé comme solvant dans la production d'acide téréphtalique (TPA), une matière première pour la production de polyéthylène téréphtalate (PET).


-Usage médical de l'acide acétique 80% :
L'injection d'acide acétique à 80 % dans une tumeur est utilisée pour traiter le cancer depuis les années 1800.
L'acide acétique à 80 % est utilisé dans le cadre du dépistage du cancer du col de l'utérus dans de nombreuses régions du monde en développement.

L'acide est appliqué sur le col et si une zone blanche apparaît après environ une minute, le test est positif.
L'acide acétique à 80 % est un antiseptique efficace lorsqu'il est utilisé sous forme de solution à 1 %, avec un large spectre d'activité contre les streptocoques, les staphylocoques, les pseudomonas, les entérocoques et autres.

L'acide acétique à 80 % peut être utilisé pour traiter les infections cutanées causées par des souches de pseudomonas résistantes aux antibiotiques typiques.
Bien que l'acide acétique dilué à 80 % soit utilisé en ionophorèse, aucune preuve de haute qualité ne soutient ce traitement pour la maladie de la coiffe des rotateurs.
En tant que traitement de l'otite externe, il figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.


-Utilisations alimentaires de l'acide acétique 80% :
L'acide acétique à 80 % contient 349 kcal (1 460 kJ) pour 100 g.
Le vinaigre ne contient généralement pas moins de 4 % d’acide acétique, soit 80 % en masse.
Les limites légales concernant la teneur en acide acétique de 80 % varient selon les juridictions.

Le vinaigre est utilisé directement comme condiment et dans le marinage des légumes et autres aliments.
Le vinaigre de table a tendance à être plus dilué (4 à 8 % d'acide acétique à 80 %), tandis que le décapage alimentaire commercial utilise des solutions plus concentrées.
La proportion d'acide acétique 80 % utilisée dans le monde sous forme de vinaigre n'est pas aussi importante que les utilisations industrielles, mais il s'agit de loin de l'application la plus ancienne et la plus connue.


-Acide acétique 80% comme solvant :
À l'état liquide, CH3COOH est un hydrophile (se dissout facilement dans l'eau) et également un solvant polaire et protique.
Un mélange d’acide acétique à 80 % et d’eau est ainsi similaire à un mélange d’éthanol et d’eau.
L'acide acétique à 80 % forme également des mélanges miscibles avec l'hexane, le chloroforme et plusieurs huiles.
Cependant, l'acide acétique à 80 % ne forme pas de mélanges miscibles avec les alcanes à longue chaîne (comme l'octane).


-Monomère d'acétate de vinyle :
La principale utilisation de l'acide acétique à 80 % est la production d'acétate de vinyle monomère (VAM).
En 2008, on estimait que cette application consommait un tiers de la production mondiale d'acide acétique à 80 %.

La réaction consiste en de l'éthylène et de l'acide acétique à 80 % avec de l'oxygène sur un catalyseur au palladium, réalisée en phase gazeuse.
2 H3C−COOH + 2 C2H4 + O2 → 2 H3C−CO−O−CH=CH2 + 2 H2O
L'acétate de vinyle peut être polymérisé en acétate de polyvinyle ou en d'autres polymères, qui sont des composants des peintures et des adhésifs.


-Production d'esters :
Les principaux esters de l'acide acétique 80 % sont couramment utilisés comme solvants pour les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.

Ils sont généralement produits par réaction catalysée à partir d’acide acétique à 80 % et de l’alcool correspondant :
CH3COO−H + HO−R → CH3COO−R + H2O, R = groupe alkyle général
Par exemple, l'acide acétique à 80 % et l'éthanol donnent de l'acétate d'éthyle et de l'eau.
CH3COO−H + HO−CH2CH3 → CH3COO−CH2CH3 + H2O

Cependant, la plupart des esters d'acétate sont produits à partir d'acétaldéhyde en utilisant la réaction de Tishchenko.
De plus, les acétates d'éther sont utilisés comme solvants pour la nitrocellulose, les laques acryliques, les dissolvants pour vernis et les teintures pour bois.
Tout d'abord, les monoéthers de glycol sont produits à partir d'oxyde d'éthylène ou d'oxyde de propylène avec de l'alcool, qui sont ensuite estérifiés avec de l'acide acétique à 80 %.

Les trois principaux produits sont l'acétate d'éther monoéthylique d'éthylène glycol (EEA), l'acétate d'éther monobutylique d'éthylène glycol (EBA) et l'acétate d'éther monométhylique de propylène glycol (PMA, plus communément appelé PGMEA dans les processus de fabrication de semi-conducteurs, où il est utilisé comme solvant de réserve. ).
Cette application consomme environ 15 à 20 % de l'acide acétique mondial à 80 %.
Il a été démontré que les acétates d'éther, par exemple l'EEE, sont nocifs pour la reproduction humaine.


-Anhydride acétique:
Le produit de la condensation de deux molécules d'acide acétique à 80 % est l'anhydride acétique.
La production mondiale d'anhydride acétique constitue une application majeure et utilise environ 25 à 30 % de la production mondiale d'acide acétique à 80 %.
Le processus principal implique la déshydratation de l'acide acétique à 80 % pour donner du cétène à 700-750 °C.

Le cétène est ensuite mis à réagir avec de l'acide acétique à 80 % pour obtenir l'anhydride :
CH3CO2H → CH2=C=O + H2O
CH3CO2H + CH2=C=O → (CH3CO)2O

L'anhydride acétique est un agent d'acétylation.
En tant que tel, l'application principale de l'acide acétique 80 % concerne l'acétate de cellulose, un textile synthétique également utilisé pour les films photographiques.
L'anhydride acétique est également un réactif pour la production d'héroïne et d'autres composés.


-Utiliser comme solvant :
En tant que solvant protique polaire, l'acide acétique 80 % est fréquemment utilisé pour la recristallisation afin de purifier les composés organiques.
L'acide acétique à 80 % est utilisé comme solvant dans la production d'acide téréphtalique (TPA), la matière première du polyéthylène téréphtalate (PET).
En 2006, environ 20 % de l'acide acétique 80 % était utilisé pour la production de TPA.

L'acide acétique à 80 % est souvent utilisé comme solvant pour les réactions impliquant des carbocations, telles que l'alkylation de Friedel-Crafts.
Par exemple, une étape de la fabrication commerciale du camphre synthétique implique un réarrangement Wagner-Meerwein du camphène en acétate d'isobornyle ; ici, l'acide acétique à 80 % agit à la fois comme solvant et comme nucléophile pour piéger le carbocation réarrangé.


-Vinaigre:
Le vinaigre contient généralement 4 à 18 % en poids d'acide acétique à 80 %.
L'acide acétique 80 % est utilisé directement comme assaisonnement et marinade de légumes et autres produits alimentaires.
Le vinaigre de table est utilisé le plus souvent plus dilué (4% à 8% d'acide acétique à 80%), tandis qu'une solution plus concentrée est utilisée pour le décapage des aliments commerciaux.


-Usage industriel:
L'acide acétique à 80 % est utilisé dans de nombreux processus industriels pour la production de substrats et il est souvent utilisé comme réactif chimique pour la production d'un certain nombre de composés chimiques comme l'anhydride acétique, l'ester, le monomère d'acétate de vinyle, le vinaigre et de nombreux autres matériaux polymères. .
L'acide acétique à 80 % est également utilisé pour purifier les composés organiques car il peut être utilisé comme solvant pour la recristallisation.


-Applications industrielles de l'acide acétique 80% :
En tant qu'acide organique important, l'acide acétique 80 % est principalement utilisé dans la synthèse de l'acétate de vinyle, de l'acétate de cellulose, de l'anhydride acétique, de l'acétate, de l'acétate métallique et de l'acide acétique halogéné 80 %.

L'acide acétique glacial à 80 % est également une matière première importante pour les produits pharmaceutiques, les colorants, les pesticides et autres synthèses organiques.
En outre, l'acide acétique à 80 % est également largement utilisé dans la fabrication de médicaments photographiques, d'acétate de cellulose, dans l'impression et la teinture de tissus et dans l'industrie du caoutchouc.


-Applications alimentaires de l'acide acétique 80% :
Dans l'industrie alimentaire, l'acide acétique 80 % est généralement utilisé comme acidulant, exhausteur de goût et fabrication d'épices.

*Vinaigre synthétique :
Diluer l'acide acétique 80 % à 4-5 % avec de l'eau, ajouter divers agents aromatisants, la saveur est similaire à celle du vinaigre d'alcool, le temps de production est court et le prix est bon marché.

En tant qu'agent acide, l'acide acétique glacial à 80 % peut être utilisé dans les assaisonnements composés, le vinaigre préparé, les aliments en conserve, la gelée et le fromage, et utilisé avec modération en fonction des besoins de production.
L'acide acétique à 80 % peut également être utilisé comme exhausteur de goût et la dose recommandée est de 0,1 à 0,3 g/kg.


-Usage médical :
L'acide acétique à 80 % a de nombreuses utilisations dans le domaine médical.
Les utilisations les plus importantes ici sont que l'acide acétique à 80 % peut être utilisé comme antiseptique contre les pseudomonas, les entérocoques, les streptocoques, les staphylocoques et autres.
L'acide acétique à 80 % est également utilisé dans le dépistage du cancer du col de l'utérus et pour le traitement des infections.
De plus, l’acide acétique à 80 % est utilisé comme agent pour lyser les globules rouges avant l’examen des globules blancs.
On dit également que le vinaigre réduit les concentrations élevées de sucre dans le sang.


-Utilisations importantes et populaires de l'acide acétique 80 % :
Il existe de nombreuses utilisations de l’acide acétique 80 %.
Ainsi, en plus d’être traité comme un simple conservateur alimentaire (vinaigre), l’acide est utilisé dans de nombreux domaines et instances.

Certaines utilisations principales et importantes incluent :
*Usage industriel
*Utilisations médicinales
*Ménage
*Industrie alimentaire


-Industrie alimentaire:
Dans l'industrie alimentaire, l'acide acétique à 80 % est le plus souvent utilisé dans les opérations de décapage commerciales et dans les condiments comme la mayonnaise, la moutarde et le ketchup.
L'acide acétique à 80 % est également utilisé pour assaisonner divers aliments comme les salades, etc.
De plus, le vinaigre peut réagir avec des ingrédients alcalins comme le bicarbonate de soude et lorsque cela se produit, il produit un gaz qui contribue à la fabrication des produits de boulangerie.


-Utilisations domestiques :
L'acide acétique à 80 %, qui est une solution diluée, est largement utilisé comme vinaigre.
Et comme nous le savons, le vinaigre est largement utilisé pour le nettoyage, la lessive, la cuisine et bien d’autres usages ménagers.

Les agriculteurs pulvérisent généralement de l'acide acétique à 80 % sur l'ensilage du bétail pour contrer la croissance bactérienne et fongique.
En dehors de cela, l’acide acétique à 80 % est utilisé pour la fabrication d’encres et de colorants et est également utilisé dans la fabrication de parfums.
L'acide acétique à 80 % est également impliqué dans la fabrication des industries du caoutchouc et du plastique.



UTILISATIONS ET BIENFAITS DE L'ACIDE ACÉTIQUE 80%
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique à 80 % est sous forme de vinaigre domestique, qui est naturellement fabriqué à partir de sources fermentescibles telles que le vin, les pommes de terre, les pommes, les raisins, les baies et les céréales.

Le vinaigre est une solution claire contenant généralement environ 5 pour cent d’acide acétique, 80 pour cent et 95 pour cent d’eau.
Le vinaigre est utilisé comme ingrédient alimentaire et peut également être un ingrédient dans les produits de soins personnels, les nettoyants ménagers, les shampoings pour animaux de compagnie et de nombreux autres produits pour la maison :

-vinaigre et bicarbonate de soude
*La préparation des aliments:
Le vinaigre est un ingrédient alimentaire courant, souvent utilisé comme saumure dans les liquides de marinade, les vinaigrettes, les marinades et autres vinaigrettes.
Le vinaigre peut également être utilisé dans la préparation des aliments pour aider à contrôler la contamination par Salmonella dans les produits à base de viande et de volaille.

*Nettoyage:
Le vinaigre peut être utilisé dans toute la maison comme nettoyant pour vitres, pour nettoyer les cafetières automatiques et la vaisselle, comme agent de rinçage pour les lave-vaisselle et pour nettoyer le carrelage et le coulis des salles de bains.
Le vinaigre peut également être utilisé pour nettoyer les outils et équipements liés à l’alimentation, car il ne laisse généralement pas de résidus nocifs et nécessite moins de rinçage.

*Jardinage:
À des concentrations de 10 à 20 pour cent, l'acide acétique à 80 % peut être utilisé comme désherbant dans les jardins et les pelouses.
Lorsqu'il est utilisé comme herbicide, l'acide acétique à 80 % peut tuer les mauvaises herbes qui ont émergé du sol, mais n'affecte pas les racines des mauvaises herbes, afin qu'elles puissent repousser.

Lorsque l'acide acétique à 80 % est à une concentration de 99,5 %, on parle d'acide acétique glacial à 80 %.
L'acide acétique glacial à 80 % a diverses utilisations, notamment comme matière première et solvant dans la production d'autres produits chimiques.



LES APPLICATIONS INDUSTRIELLES DE L'ACIDE ACÉTIQUE 80 % COMPRENNENT :
*Acétate de vinyle, fibres de cellulose et plastiques :
L'acide acétique à 80 % est utilisé pour fabriquer de nombreux produits chimiques, notamment l'acétate de vinyle, l'anhydride acétique et les esters d'acétate.
L'acétate de vinyle est utilisé pour fabriquer de l'acétate de polyvinyle, un polymère utilisé dans les peintures, les adhésifs, les plastiques et les finitions textiles.

L'anhydride acétique est utilisé dans la fabrication de fibres d'acétate de cellulose et de plastiques utilisés pour les films photographiques, les vêtements et les revêtements.
L'acide acétique à 80 % est également utilisé dans la réaction chimique pour produire de l'acide téréphtalique purifié (PTA), qui est utilisé pour fabriquer la résine plastique PET utilisée dans les fibres synthétiques, les contenants alimentaires, les bouteilles de boissons et les films plastiques.

*Solvants :
L'acide acétique à 80 % est un solvant hydrophile, similaire à l'éthanol.
L'acide acétique à 80 % dissout les composés tels que les huiles, le soufre et l'iode et se mélange à l'eau, au chloroforme et à l'hexane.

*Acidification du pétrole et du gaz :
L'acide acétique à 80 % peut aider à réduire la corrosion des métaux et l'accumulation de tartre dans les applications de puits de pétrole et de gaz.
L'acide acétique à 80 % est également utilisé dans la stimulation des puits de pétrole pour améliorer le débit et augmenter la production de pétrole et de gaz.

*Produits pharmaceutiques et vitamines :
L'industrie pharmaceutique utilise l'acide acétique à 80 % dans la fabrication de vitamines, d'antibiotiques, d'hormones et d'autres produits.

*Préparation des aliments:
L'acide acétique à 80 % est couramment utilisé comme produit de nettoyage et de désinfection dans les usines de transformation des aliments.

*Autres utilisations:
Les sels d'acide acétique à 80 % et divers produits chimiques en caoutchouc et photographiques sont fabriqués à partir d'acide acétique à 80 %.
L'acide acétique 80 % et son sel de sodium sont couramment utilisés comme conservateur alimentaire.



À QUOI PEUT-ON UTILISER L’ACIDE ACÉTIQUE 80 % ?
*Élimination du calcaire tenace sur les sanitaires et les appareils de cuisine.
*Lutte contre les dépôts verts sur les terrasses, les meubles de jardin et les surfaces en pierre.
*Détartrage de machines et équipements industriels.
*Nettoyage et désinfection dans l'industrie alimentaire, si dilué de manière adéquate.
*Utilisation comme matière première en synthèse chimique pour la production d'esters, d'esters acétiques et de divers composés organiques.
*En agriculture pour réguler la valeur du pH du sol.
*Comme conservateur dans la transformation des aliments, par exemple lors du marinage des légumes.
*Nettoyage et restauration de façades et monuments.



UTILISATIONS DE L'ACIDE ACÉTIQUE 80% :
Le réactif chimique pour le traitement des composés chimiques est l'acide acétique à 80 %.
Dans la production de monomère d'acétate de vinyle, d'anhydride acétique et d'esters, l'utilisation d'acide acétique à 80 % est importante.


*Monomère d'acétate de vinyle :
Le traitement du monomère d'acétate de vinyle (VAM) est la principale application de l'acide acétique à 80 %.
L'acétate de vinyle subit une polymérisation pour produire de l'acétate de polyvinyle ou d'autres polymères, qui sont des composants des peintures et des adhésifs.

La réaction consiste en de l'éthylène et de l'acide acétique à 80 % avec de l'oxygène sur un catalyseur au palladium.
2CH3COOH+2C2H4+O2→2CH3CO2CH=CH2+2H2O
La colle à bois utilise également des polymères d'acétate de vinyle.

*Anhydride acétique:
L'anhydride acétique est le résultat de la condensation de deux molécules d'acide acétique à 80 %.
Le traitement mondial de l'anhydride acétique est une utilisation importante, utilisant environ 25 à 30 pour cent de la production mondiale d'acide acétique à 80 %.
La méthode clé comprend la déshydratation à 80 % de l’acide acétique pour donner du cétène à 700-750 °C.

CH3CO2H → CH2 = C = O + H2O
CH3CO2H+CH2=C=O→CH3CO2O

Il est idéal pour la désinfection générale et la lutte contre la moisissure, car l'acide acétique à 80 % tue les champignons et les bactéries.
L'acide acétique à 80 % est utile dans une gamme de produits de nettoyage traditionnels et écologiques, tels que les nettoyants contre la moisissure, les nettoyants pour sols, les sprays pour le nettoyage et le dépoussiérage et les nettoyants pour toits, sous forme de vinaigre ou d'élément.

Le groupe acétyle est largement utilisé dans le domaine de la biochimie.
Les produits à base d'acide acétique à 80 % sont un métaboliseur efficace des glucides et des graisses lorsqu'ils sont liés à la coenzyme A.
En tant que traitement de l'otite externe, l'acide acétique à 80 % est le médicament le meilleur et le plus efficace dans un système de santé figurant sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.



APPLICATION INDUSTRIELLE DE L'ACIDE ACÉTIQUE 80% :
Grâce à ses propriétés polyvalentes, l'acide acétique 80 % joue un rôle essentiel dans diverses industries européennes.

*Dans l'industrie chimique, l'acide acétique 80 % est un élément fondamental pour la production de nombreux produits chimiques.
Un exemple est l’acétate de vinyle monomère (VAM), dont l’acide acétique à 80 % est largement utilisé pour fabriquer des adhésifs, des peintures et des revêtements.
L'acide acétique 80 % est également un précurseur essentiel pour la production d'anhydride acétique, d'esters et d'acétate de cellulose.

*L'industrie agroalimentaire utilise largement l'acide acétique à 80 % comme agent de conservation et aromatisant.
Le vinaigre, principalement composé d'acide acétique à 80 %, est largement utilisé dans la cuisine, les marinades et les vinaigrettes.

*Dans l'industrie pharmaceutique, l'acide acétique 80 % est un intermédiaire crucial dans la synthèse de produits pharmaceutiques, notamment des antibiotiques, des vitamines et des analgésiques.
La nature polyvalente de l'acide acétique 80 % permet la production d'une large gamme de médicaments.

*L'industrie textile utilise 80 % d'acide acétique pour fabriquer des fibres d'acétate synthétique.
Les fibres d'acétate sont couramment utilisées dans les vêtements, les tissus d'ameublement et les textiles en raison de leurs excellentes propriétés de drapage et de leur durabilité.



QU'EST-CE QUE L'ACIDE ACÉTIQUE À 80 % DANS LES ALIMENTS ?
L'acide acétique 80 % est un additif alimentaire couramment utilisé comme conservateur, exhausteur de goût et régulateur de pH.
L'acide acétique à 80 % est un acide naturel présent dans le vinaigre et est également produit synthétiquement pour être utilisé dans des applications alimentaires.
L'acide acétique à 80 % est généralement considéré comme sans danger pour une consommation à faibles niveaux, et il est couramment utilisé dans les condiments, les aliments marinés, les sauces et les vinaigrettes pour donner un goût piquant et prolonger la durée de conservation.
Cependant, une consommation excessive d'acide acétique à 80 % peut provoquer une irritation du système digestif.
Comme pour tout additif alimentaire, il est important de consommer l'Acide Acétique 80% avec modération et de maintenir une alimentation équilibrée.



ACIDE ACÉTIQUE 80% AU QUOTIDIEN :
L'acide acétique à 80 % se trouve dans de nombreux produits du quotidien comme décrit ci-dessus, tels que les aliments, les produits de nettoyage et les cosmétiques, entre autres.
De tous, le vinaigre est l'un des plus importants, car l'acide acétique à 80 % a différentes utilisations, comme pour la cuisine ou le nettoyage.
L'Acide Acétique 80% est un produit infaillible lorsqu'il s'agit de traiter les taches tenaces comme l'urine de chien, la rouille ou autres saletés.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est un liquide incolore ; avec une forte odeur de vinaigre.
L'acide acétique à 80 % est considéré comme un composé organique volatil par l'Inventaire national des polluants.
Densité spécifique : 1,049 à 25 °C
Point de fusion : 16,7°C
Point d'ébullition : 118°C
Pression de vapeur : 1,5 kPa à 20°C



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 % est hygroscopique, ce qui signifie qu'il a tendance à absorber l'humidité.
L'acide acétique à 80 % se mélange avec l'alcool éthylique, le glycérol, l'éther, le tétrachlorure de carbone et l'eau et réagit avec les oxydants et les bases.
L'acide acétique concentré à 80 % est corrosif et attaque de nombreux métaux en formant des gaz inflammables ou explosifs.
L'acide acétique à 80 % peut également attaquer certaines formes de plastique, de caoutchouc et de revêtements.



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE 80% :
1. Tue les bactéries :
Le vinaigre est utilisé depuis longtemps comme désinfectant naturel, en grande partie grâce à sa teneur en acide acétique à 80 %.
L'acide acétique à 80 % possède de puissantes propriétés antibactériennes et peut être efficace pour tuer plusieurs souches spécifiques de bactéries.

En fait, une étude in vitro de 2014 a révélé que l'acide acétique à 80 % était capable de bloquer la croissance des myobactéries, un genre de bactérie responsable de la tuberculose et de la lèpre.
D'autres recherches montrent que le vinaigre peut également protéger contre la croissance bactérienne, ce qui peut être partiellement dû à la présence d'acide acétique à 80 %.


2. Réduit la tension artérielle :
Non seulement l’hypertension artérielle exerce une pression supplémentaire sur le muscle cardiaque et l’affaiblit lentement avec le temps, mais l’hypertension artérielle est également un facteur de risque majeur de maladie cardiaque.
En plus de modifier votre alimentation et votre routine d'exercice, des recherches prometteuses ont montré que l'acide acétique à 80 % peut également aider à contrôler la tension artérielle.


3. Diminue l’inflammation :
L’inflammation aiguë joue un rôle important dans la fonction immunitaire, aidant à défendre l’organisme contre les maladies et les infections.
Cependant, le maintien de niveaux élevés d’inflammation à long terme peut avoir un effet néfaste sur la santé, des études montrant que l’inflammation pourrait contribuer au développement de maladies chroniques comme les maladies cardiaques et le cancer.
On pense que l'acide acétique à 80 % réduit l'inflammation pour aider à protéger contre les maladies.


4. Prend en charge la perte de poids :
Certaines recherches suggèrent que l'acide acétique à 80 % pourrait aider à contrôler le poids en favorisant la perte de poids.


5. Favorise le contrôle de la glycémie :
Le vinaigre de cidre de pomme a été bien étudié pour sa capacité à favoriser le contrôle de la glycémie.
La recherche montre que l'acide acétique à 80 %, l'un des principaux composants présents dans le vinaigre de cidre de pomme, peut jouer un rôle dans ses puissantes propriétés hypoglycémiantes.

Dans une étude, il a été démontré que la consommation de vinaigre contenant 80 % d’acide acétique en même temps qu’un repas riche en glucides réduisait les niveaux de sucre dans le sang et d’insuline grâce à sa capacité à ralentir la vidange de l’estomac.
Une autre étude in vitro a abouti à des résultats similaires, indiquant que l'acide acétique à 80 % diminuait l'activité de plusieurs enzymes impliquées dans le métabolisme des glucides, ce qui pourrait diminuer l'absorption des glucides et du sucre dans l'intestin grêle.



NOMENCLATURE DE L'ACIDE ACÉTIQUE 80% :
Le nom trivial « Acide acétique 80 % » est le nom IUPAC le plus couramment utilisé et préféré.
Le nom systématique « acide éthanoïque », un nom IUPAC valide, est construit selon la nomenclature substitutive.
Le nom « Acide Acétique 80 % » dérive du mot latin pour vinaigre, « acetum », qui est lié au mot « acide » lui-même.

« Acide acétique glacial 80 % » est un nom pour l'acide acétique 80 % sans eau (anhydre).
Semblable au nom allemand « Eisessig » (« vinaigre de glace »), le nom vient des cristaux solides ressemblant à de la glace qui se forment avec agitation, légèrement en dessous de la température ambiante à 16,6 °C (61,9 °F).

L'acide acétique à 80 % ne peut jamais être véritablement exempt d'eau dans une atmosphère contenant de l'eau, c'est pourquoi la présence de 0,1 % d'eau dans l'acide acétique glacial à 80 % abaisse son point de fusion de 0,2 °C.
Un symbole courant pour l'acide acétique à 80 % est AcOH (ou HOAc), où Ac est le symbole du pseudoélément représentant le groupe acétyle CH3−C(=O)− ; la base conjuguée, l'acétate (CH3COO−), est ainsi représentée par AcO−.

(Le symbole Ac pour le groupe fonctionnel acétyle ne doit pas être confondu avec le symbole Ac pour l'élément actinium ; le contexte évite toute confusion parmi les chimistes organiques).
Pour mieux refléter sa structure, l'acide acétique 80 % est souvent écrit CH3−C(O)OH, CH3−C(=O)OH, CH3COOH et CH3CO2H.

Dans le contexte des réactions acide-base, l'abréviation HAc est parfois utilisée, où Ac dans ce cas est un symbole pour l'acétate (plutôt que l'acétyle).
L'acétate est l'ion résultant de la perte de H+ de l'acide acétique 80 %.
Le nom « acétate » peut également désigner un sel contenant cet anion, ou un ester de l'acide acétique à 80 %.



HISTOIRE DE L'ACIDE ACÉTIQUE 80% :
Le vinaigre était connu au début de la civilisation comme le résultat naturel de l’exposition de la bière et du vin à l’air, car les bactéries productrices d’acide acétique à 80 % sont présentes dans le monde entier.
L'utilisation de l'acide acétique à 80 % en alchimie s'étend jusqu'au troisième siècle avant JC, lorsque le philosophe grec Théophraste a décrit comment le vinaigre agissait sur les métaux pour produire des pigments utiles dans l'art, notamment la céruse (carbonate de plomb) et le vert-de-gris, un mélange vert de sels de cuivre. y compris l'acétate de cuivre(II).

Les Romains de l’Antiquité faisaient bouillir du vin aigre pour produire un sirop très sucré appelé sapa.
Le Sapa produit dans des pots en plomb était riche en acétate de plomb, une substance sucrée également appelée sucre de plomb ou sucre de Saturne, qui contribuait au saturnisme parmi l'aristocratie romaine.

Au XVIe siècle, l'alchimiste allemand Andreas Libavius a décrit la production d'acétone à partir de la distillation sèche de l'acétate de plomb, la décarboxylation cétonique.

La présence d'eau dans le vinaigre a un effet si profond sur les propriétés de l'acide acétique à 80 % que pendant des siècles, les chimistes ont cru que l'acide acétique glacial à 80 % et l'acide présent dans le vinaigre étaient deux substances différentes.
Le chimiste français Pierre Adet les a prouvés identiques.


*Acide acétique cristallisé 80%
En 1845, le chimiste allemand Hermann Kolbe synthétisa pour la première fois de l'acide acétique à 80 % à partir de composés inorganiques.
Cette séquence de réaction consistait en une chloration du disulfure de carbone en tétrachlorure de carbone, suivie d'une pyrolyse en tétrachloroéthylène et d'une chloration aqueuse en acide trichloroacétique à 80 %, et se terminait par une réduction électrolytique en acide acétique à 80 %.

En 1910, la majeure partie de l'acide acétique glacial à 80 % était obtenue à partir de la liqueur pyroligneuse, un produit de la distillation du bois.
L'acide acétique à 80 % a été isolé par traitement avec du lait de chaux, et l'acétate de calcium résultant a ensuite été acidifié avec de l'acide sulfurique pour récupérer l'acide acétique à 80 %.
A cette époque, l’Allemagne produisait 10 000 tonnes d’acide acétique glacial à 80 %, dont environ 30 % étaient utilisés pour la fabrication de teinture indigo.

Étant donné que le méthanol et le monoxyde de carbone sont des matières premières de base, la carbonylation du méthanol a longtemps semblé être des précurseurs attrayants de l'acide acétique à 80 %.
Henri Dreyfus de British Celanese a développé une usine pilote de carbonylation du méthanol dès 1925.

Cependant, le manque de matériaux pratiques capables de contenir le mélange réactionnel corrosif aux hautes pressions nécessaires (200 atm ou plus) a découragé la commercialisation de ces voies.
Le premier procédé commercial de carbonylation du méthanol, utilisant un catalyseur au cobalt, a été développé par la société chimique allemande BASF en 1963.

En 1968, un catalyseur à base de rhodium (cis−[Rh(CO)2I2]−) a été découvert, capable de fonctionner efficacement à basse pression, sans presque aucun sous-produit.
La société chimique américaine Monsanto Company a construit la première usine utilisant ce catalyseur en 1970, et la carbonylation du méthanol catalysée par le rhodium est devenue la méthode dominante de production d'acide acétique à 80 % (voir procédé Monsanto).

À la fin des années 1990, BP Chemicals a commercialisé le catalyseur Cativa ([Ir(CO)2I2]−), favorisé par l'iridium pour une plus grande efficacité.
Connu sous le nom de procédé Cativa, la production d'acide acétique glacial à 80 % catalysée par l'iridium est plus écologique et a largement supplanté le procédé Monsanto, souvent dans les mêmes usines de production.


*Milieu interstellaire
L'acide acétique interstellaire à 80 % a été découvert en 1996 par une équipe dirigée par David Mehringer en utilisant l'ancien réseau de la Berkeley-Illinois-Maryland Association à l'observatoire radio de Hat Creek et l'ancien réseau millimétrique situé à l'observatoire radio d'Owens Valley.

Il a été détecté pour la première fois dans le nuage moléculaire Sagittaire B2 Nord (également connu sous le nom de source Sgr B2 Large Molecule Heimat).
L'Acide Acétique 80% a la particularité d'être la première molécule découverte dans le milieu interstellaire à l'aide uniquement de radio-interféromètres ; dans toutes les découvertes moléculaires ISM précédentes réalisées dans les régimes de longueurs d'onde millimétriques et centimétriques, les radiotélescopes à parabole unique étaient au moins en partie responsables des détections.



DÉTAILS PHYSIQUES ET PROPRIÉTÉS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 %, ou acide éthanoïque, est un liquide clair et incolore avec une odeur âcre semblable à celle du vinaigre.
L'acide acétique 80 % a une formule moléculaire CH₃COOH et un poids moléculaire de 60,05 g/mol.
Avec un point d'ébullition de 118,1 °C et un point de fusion de 16,6 °C, l'acide acétique 80 % est hautement soluble dans l'eau et miscible avec la plupart des solvants organiques.
Ces propriétés physiques font de l'acide acétique 80 % un composé polyvalent pour diverses applications industrielles.



MÉTHODES DE PRODUCTION DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est principalement produit par deux méthodes principales : la carbonylation du méthanol et l'oxydation de l'acétaldéhyde.
La première méthode, la carbonylation du méthanol, est le processus le plus courant pour la production à grande échelle d’acide acétique à 80 %.
L'acide acétique à 80 % implique la réaction du méthanol avec le monoxyde de carbone en présence d'un catalyseur, généralement des composés du rhodium ou de l'iode.

Cette réaction catalytique donne de l'acide acétique à 80 % comme produit principal.
La deuxième méthode implique l'oxydation de l'acétaldéhyde. L'acétaldéhyde peut être oxydé à l'aide de divers catalyseurs, notamment le palladium ou le cuivre, produisant de l'acide acétique à 80 % comme sous-produit.



A QUEL EST LE BUT DE L'ACIDE ACÉTIQUE À 80% DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique à 80 % est couramment utilisé comme additif alimentaire.
L'acide acétique à 80 % sert à plusieurs fins dans les additifs alimentaires.
Premièrement, l'acide acétique à 80 % agit comme conservateur en inhibant la croissance des bactéries et des champignons, prolongeant ainsi la durée de conservation du produit.
Deuxièmement, l'acide acétique à 80 % rehausse la saveur et l'arôme des aliments en leur donnant un goût piquant et aigre.
De plus, l'acide acétique à 80 % peut également être utilisé comme régulateur d'acidité et agent de contrôle du pH dans certains produits alimentaires.



FONCTIONS DE L'ACIDE ACÉTIQUE 80% :
1. Régulateur d'acidité/agent tampon – Modifie ou maintient l'acidité ou la basicité des aliments/cosmétiques.
2. Médicament/médecine – Traite, soulage, guérit ou prévient la maladie. Tel que déclaré officiellement par un organisme gouvernemental de réglementation des médicaments
3. Exfoliant – Élimine les cellules mortes à la surface de la peau
4. Expérimental/breveté – Ingrédient relativement nouveau avec des données disponibles limitées
5. Insecticide/Pesticide – Tue ou inhibe les organismes indésirables
6. Conservateur – Prévient et inhibe la croissance de micro-organismes indésirables qui peuvent être nocifs
7. Solvant (Cosmétiques) – Améliore les propriétés des autres ingrédients



L'ACIDE ACÉTIQUE EST-IL SÛR À 80 % ?
L'acide acétique 80 % est également connu sous le nom d'acide acétique 80 %, qui est un additif alimentaire largement utilisé.
L'acide acétique à 80 % est considéré comme sans danger pour la consommation par les autorités réglementaires telles que la Food and Drug Administration (FDA) et l'Autorité européenne de sécurité des aliments (EFSA).



BIENFAITS POUR LA SANTÉ DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 % possède de puissantes propriétés antibactériennes.
L'acide acétique à 80 % aide à réduire la tension artérielle.
L'acide acétique à 80 % aide également à réduire l'inflammation.
L'acide acétique à 80 % favorise le contrôle de la glycémie.
L'acide acétique à 80 % favorise également la perte de poids.



FONCTION & CARACTÉRISTIQUES DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est utilisé comme conservateur contre les bactéries et les champignons.
Dans la mayonnaise, de l'acide acétique à 80 % est ajouté pour augmenter l'inactivation des salmonelles.
L'activité la plus élevée de l'acide acétique à 80 % se situe à faible pH.
L'acide acétique à 80 % peut également être utilisé comme tampon dans les aliments acides.
L'acide acétique à 80 % est également utilisé comme composant aromatique.



ORIGINE DE L'ACIDE ACÉTIQUE 80% :
Acide naturel, présent dans la plupart des fruits.
L'acide acétique 80 % est produit par fermentation bactérienne et donc présent dans tous les produits fermentés.
Produit commercialement par fermentation bactérienne de sucre, de mélasse ou d'alcool ou par synthèse chimique à partir d'acétaldéhyde.



L'ACIDE ACÉTIQUE EST-IL À 80 % SANS GLUTEN ?
Oui.
L'acide acétique à 80 % est sans gluten et largement utilisé dans les aliments sans gluten pour donner un goût aigre aux boissons acidulées.



POURQUOI L'ACIDE ACÉTIQUE EST-IL À 80 % SANS GLUTEN ?
Le gluten est un type de protéine de grain élastique qui aide le blé, le seigle et l’orge à conserver leur forme.
En raison de ses propriétés collantes, le gluten est souvent ajouté à d’autres produits alimentaires (pâtes, sauces, craquelins, produits de boulangerie) pour épaissir ou lier ces produits entre eux.
Les matières premières utilisées dans la fabrication de l'acide acétique à 80 % sont l'acétylcétène ; Son processus de fabrication est donc sans gluten.
Ainsi, l'acide acétique 80 % est sans gluten.



L'ACIDE ACÉTIQUE À 80 % EST-IL SÛR POUR LA CONSOMMATION DANS LES ADDITIFS ALIMENTAIRES ?
L'acide acétique à 80 % est considéré comme sans danger pour la consommation dans les additifs alimentaires.
L'acide acétique à 80 % est une substance naturelle que l'on trouve couramment dans le vinaigre.
L'acide acétique à 80 % est utilisé comme agent aromatisant et conservateur alimentaire dans divers aliments transformés.
Cependant, il est important de noter qu'une consommation excessive d'acide acétique 80 % peut avoir des effets néfastes sur la santé.
L'Acide Acétique 80% est toujours recommandé de consommer les aliments additifs avec modération et dans le cadre d'une alimentation équilibrée.



COMMENT L'ACIDE ACÉTIQUE 80% CONTRIBUE-T-IL À LA CONSERVATION DES ADDITIFS ALIMENTAIRES ?
L'Acide Acétique 80% contribue à la conservation des additifs alimentaires de plusieurs manières.
Premièrement, l'acide acétique à 80 % possède des propriétés antimicrobiennes qui inhibent la croissance des bactéries, des levures et des moisissures, réduisant ainsi le risque de détérioration des aliments et prolongeant la durée de conservation des produits.

De plus, l'acide acétique à 80 % agit comme un régulateur de pH dans les additifs alimentaires.
L'acide acétique 80 % aide à maintenir les niveaux d'acidité, créant un environnement défavorable à la croissance de certains micro-organismes.
Ceci est particulièrement important dans les aliments en conserve et marinés où l'acidité joue un rôle crucial dans la prévention de la croissance de bactéries nocives comme Clostridium botulinum.

De plus, l'acide acétique à 80 % contribue également à la préservation des additifs alimentaires en rehaussant la saveur.
L'acide acétique à 80 % ajoute une acidité ou une acidité caractéristique, qui peut améliorer le profil gustatif de divers produits.
En améliorant l'expérience sensorielle globale, l'acide acétique à 80 % peut contribuer à prolonger l'acceptabilité du consommateur et la consommation d'additifs alimentaires.

En résumé, l'acide acétique à 80 % joue un rôle essentiel dans la préservation des aliments additifs en agissant comme agent antimicrobien, régulateur de pH et exhausteur de goût.
L'utilisation de l'acide acétique à 80 % garantit la sécurité et la durée de conservation prolongée de divers produits alimentaires.
En conclusion, l'acide acétique 80 % joue un rôle crucial en tant qu'additif dans l'industrie alimentaire.

Grâce à ses propriétés polyvalentes, l'acide acétique 80 % rehausse les saveurs et agit comme un conservateur naturel, augmentant ainsi la durée de conservation de divers produits alimentaires.
Malgré certaines inquiétudes concernant sa sécurité et ses effets potentiels sur la santé, les recherches suggèrent que lorsqu'il est consommé avec modération, l'acide acétique à 80 % est généralement considéré comme sans danger pour la consommation.

En tant que consommateur, il est important de rester informé de la présence d'acide acétique 80 % dans nos produits alimentaires et de faire des choix éclairés.
Ainsi, la prochaine fois que vous verrez l'étiquette des ingrédients contenant de l'acide acétique à 80 %, soyez assuré qu'il peut être considéré comme un ajout sûr et efficace aux additifs alimentaires.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE 80% :
-Cristaux d'acide acétique 80% :

*Acidité
Le centre hydrogène du groupe carboxyle (−COOH) dans les acides carboxyliques tels que l'acide acétique à 80 % peut se séparer de la molécule par ionisation :
CH3COOH ⇌ CH3CO − 2 + H+

En raison de cette libération du proton (H+), l'acide acétique 80 % a un caractère acide.
L'acide acétique 80 % est un acide monoprotique faible.
En solution aqueuse, l'acide acétique à 80 % a une valeur pKa de 4,76.

La base conjuguée de l'acide acétique à 80 % est l'acétate (CH3COO−).
Une solution 1,0 M (environ la concentration de vinaigre domestique) a un pH de 2,4, ce qui indique que seulement 0,4 % des molécules d'acide acétique à 80 % sont dissociées.
Ce n'est que dans une solution très diluée (< 10−6 M) que l'acide acétique à 80 % est dissocié à > 90 %.

*Équilibre de déprotonation de l'acide acétique 80 % dans l'eau
Dimère cyclique d'acide acétique 80 % ; les lignes vertes pointillées représentent les liaisons hydrogène



STRUCTURE DE L'ACIDE ACÉTIQUE 80% :
Dans l'acide acétique solide à 80 %, les molécules forment des chaînes de molécules individuelles reliées entre elles par des liaisons hydrogène.
En phase vapeur à 120 °C (248 °F), des dimères peuvent être détectés.

Les dimères se produisent également en phase liquide dans des solutions diluées avec des solvants sans liaison hydrogène et, dans une certaine mesure, dans l'acide acétique pur à 80 %, mais sont perturbés par les solvants se liant à l'hydrogène.

L'enthalpie de dissociation du dimère est estimée entre 65,0 et 66,0 kJ/mol et l'entropie de dissociation entre 154 et 157 J mol−1 K−1.
D'autres acides carboxyliques s'engagent dans des interactions de liaison hydrogène intermoléculaires similaires.



PROPRIÉTÉS DU SOLVANT DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique liquide à 80 % est un solvant protique hydrophile (polaire), similaire à l'éthanol et à l'eau.
Avec une permittivité statique relative (constante diélectrique) de 6,2, l'acide acétique 80 % dissout non seulement les composés polaires tels que les sels inorganiques et les sucres, mais également les composés non polaires tels que les huiles ainsi que les solutés polaires.

L'acide acétique à 80 % est miscible avec les solvants polaires et non polaires tels que l'eau, le chloroforme et l'hexane.
Avec les alcanes plus élevés (en commençant par l'octane), l'acide acétique à 80 % n'est pas miscible dans toutes les compositions, et la solubilité de l'acide acétique à 80 % dans les alcanes diminue avec les n-alcanes plus longs.

Les propriétés de solvant et de miscibilité de l'acide acétique à 80 % en font un produit chimique industriel utile, par exemple comme solvant dans la production de téréphtalate de diméthyle.



BIOCHIMIE DE L'ACIDE ACÉTIQUE 80% :
Aux pH physiologiques, l’acide acétique à 80 % est généralement entièrement ionisé en acétate.
Le groupe acétyle, formellement dérivé de l'acide acétique à 80 %, est fondamental pour toutes les formes de vie.
En règle générale, l'acide acétique à 80 % est lié à la coenzyme A par les enzymes acétyl-CoA synthétase, où il joue un rôle central dans le métabolisme des glucides et des graisses.

Contrairement aux acides carboxyliques à chaîne plus longue (les acides gras), l'acide acétique à 80 % n'est pas présent dans les triglycérides naturels.
La majeure partie de l'acétate généré dans les cellules destiné à être utilisé dans l'acétyl-CoA est synthétisée directement à partir d'éthanol ou de pyruvate.
Cependant, le triglycéride artificiel triacétine (triacétate de glycérine) est un additif alimentaire courant et se trouve dans les cosmétiques et les médicaments topiques ; cet additif est métabolisé en glycérol et en acide acétique à 80 % dans l'organisme.

L'acide acétique 80 % est produit et excrété par les bactéries de l'acide acétique 80 %, notamment le genre Acetobacter et Clostridium acetobutylicum.
Ces bactéries se trouvent universellement dans les aliments, l’eau et le sol, et l’acide acétique à 80 % est produit naturellement lorsque les fruits et autres aliments se gâtent.
L'acide acétique à 80 % entre également dans la lubrification vaginale des humains et d'autres primates, où il semble servir d'agent antibactérien doux.



PRODUCTION D'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est produit industriellement à la fois par synthèse et par fermentation bactérienne.
Environ 75 % de l'acide acétique (80 %) destiné à être utilisé dans l'industrie chimique est obtenu par carbonylation du méthanol, expliqué ci-dessous.

La voie biologique ne représente qu'environ 10 % de la production mondiale, mais l'acide acétique à 80 % reste important pour la production de vinaigre car de nombreuses lois sur la pureté alimentaire exigent que le vinaigre utilisé dans les aliments soit d'origine biologique.
D'autres procédés sont l'isomérisation du formiate de méthyle, la conversion du gaz de synthèse en acide acétique à 80 % et l'oxydation en phase gazeuse de l'éthylène et de l'éthanol.

L'acide acétique à 80 % peut être purifié par congélation fractionnée à l'aide d'un bain de glace.
L'eau et les autres impuretés resteront liquides tandis que l'acide acétique à 80 % précipitera.
Entre 2003 et 2005, la production mondiale totale d'acide acétique vierge à 80 % était estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié était produite aux États-Unis.

La production européenne était d'environ 1 Mt/a et en baisse, tandis que la production japonaise était de 0,7 Mt/a.
1,5 Mt supplémentaires étaient recyclées chaque année, portant le marché mondial total à 6,5 Mt/a.
Depuis, la production mondiale est passée de 10,7 Mt/an en 2010 à 17,88 Mt/an en 2023.


*Carbonylation du méthanol :
La plupart de l'acide acétique à 80 % est produit par carbonylation du méthanol.
Dans ce processus, le méthanol et le monoxyde de carbone réagissent pour produire de l'acide acétique à 80 % selon l'équation :
Le processus implique l’iodométhane comme intermédiaire et se déroule en trois étapes.
Un catalyseur métallique carbonyle est nécessaire pour la carbonylation (étape 2).

CH3OH + HI → CH3I + H2O
CH3I + CO → CH3COI
CH3COI + H2O → CH3COOH + HI

Il existe deux procédés apparentés pour la carbonylation du méthanol : le procédé Monsanto catalysé par le rhodium et le procédé Cativa catalysé par l'iridium.
Ce dernier procédé est plus écologique et plus efficace et a largement supplanté le premier.

Des quantités catalytiques d'eau sont utilisées dans les deux procédés, mais le procédé Cativa en nécessite moins, de sorte que la réaction de conversion eau-gaz est supprimée et moins de sous-produits sont formés.
En modifiant les conditions du procédé, l'anhydride acétique peut également être produit dans des usines utilisant la catalyse au rhodium.


*Oxydation de l'acétaldéhyde :
Avant la commercialisation du procédé Monsanto, la majeure partie de l'acide acétique à 80 % était produite par oxydation de l'acétaldéhyde.
Cela reste la deuxième méthode de fabrication la plus importante, même si l'acide acétique à 80 % n'est généralement pas compétitif avec la carbonylation du méthanol.

L'acétaldéhyde peut être produit par hydratation de l'acétylène.
C’était la technologie dominante au début des années 1900.

Les composants du naphta léger sont facilement oxydés par l'oxygène ou même l'air pour donner des peroxydes, qui se décomposent pour produire de l'acide acétique à 80 % selon l'équation chimique illustrée avec le butane :

2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O
De telles oxydations nécessitent un catalyseur métallique, tel que les sels naphténates de manganèse, de cobalt et de chrome.

La réaction typique est menée à des températures et des pressions conçues pour être aussi chaudes que possible tout en gardant le butane liquide.
Les conditions de réaction typiques sont 150 °C (302 °F) et 55 atm.
Des produits secondaires peuvent également se former, notamment la butanone, l'acétate d'éthyle, l'acide formique et l'acide propionique.

Ces produits secondaires sont également commercialement intéressants et les conditions de réaction peuvent être modifiées pour en produire davantage si nécessaire.
Cependant, la séparation de l'acide acétique à 80 % de ces sous-produits augmente le coût du procédé.
Des conditions et des catalyseurs similaires sont utilisés pour l'oxydation du butane, l'oxygène de l'air pour produire de l'acide acétique à 80 % peut oxyder l'acétaldéhyde.

2 CH3CHO + O2 → 2 CH3CO2H
En utilisant des catalyseurs modernes, cette réaction peut avoir un rendement en acide acétique de 80 % supérieur à 95 %.
Les principaux produits secondaires sont l'acétate d'éthyle, l'acide formique et le formaldéhyde, qui ont tous des points d'ébullition inférieurs à ceux de l'acide acétique à 80 % et sont facilement séparés par distillation.


*Oxydation de l'éthylène
L'acétaldéhyde peut être préparé à partir d'éthylène via le procédé Wacker, puis oxydé comme ci-dessus.
Plus récemment, la société chimique Showa Denko, qui a ouvert une usine d'oxydation d'éthylène à Ōita, au Japon, en 1997, a commercialisé une conversion en une seule étape moins chère de l'éthylène en acide acétique à 80 %.

Le processus est catalysé par un catalyseur métallique au palladium supporté par un hétéropolyacide tel que l'acide silicotungstique.
Un procédé similaire utilise le même catalyseur métallique sur l'acide silicotungstique et la silice :

C2H4 + O2 → CH3CO2H
On pense qu'elle est compétitive avec la carbonylation du méthanol pour les petites usines (100 à 250 kt/a), en fonction du prix local de l'éthylène.


*Fermentation oxydative :
Pendant la majeure partie de l’histoire de l’humanité, les bactéries à 80 % d’acide acétique du genre Acetobacter ont produit de l’acide acétique à 80 %, sous forme de vinaigre.
Avec suffisamment d’oxygène, ces bactéries peuvent produire du vinaigre à partir de divers aliments alcoolisés.

Les aliments couramment utilisés comprennent le cidre de pomme, le vin et les purées de céréales fermentées, de malt, de riz ou de pommes de terre.
La réaction chimique globale facilitée par ces bactéries est la suivante :

C2H5OH + O2 → CH3COOH + H2O
Une solution alcoolique diluée inoculée avec Acetobacter et conservée dans un endroit chaud et aéré se transformera en vinaigre en quelques mois.
Les méthodes industrielles de fabrication du vinaigre accélèrent ce processus en améliorant l’apport d’oxygène aux bactéries.

Les premiers lots de vinaigre produits par fermentation sont probablement consécutifs à des erreurs de vinification.
Si le moût fermente à une température trop élevée, l'acétobactérie submergera la levure naturellement présente sur les raisins.

Alors que la demande de vinaigre à des fins culinaires, médicales et sanitaires augmentait, les vignerons ont rapidement appris à utiliser d'autres matières organiques pour produire du vinaigre pendant les mois chauds de l'été, avant que les raisins ne soient mûrs et prêts à être transformés en vin.
Cette méthode était cependant lente et pas toujours réussie, car les vignerons ne comprenaient pas le processus.

L'un des premiers procédés commerciaux modernes fut la « méthode rapide » ou « méthode allemande », pratiquée pour la première fois en Allemagne en 1823.
Dans ce processus, la fermentation a lieu dans une tour remplie de copeaux de bois ou de charbon de bois.

L'alimentation contenant de l'alcool s'écoule vers le haut de la tour et l'air frais est fourni par le bas par convection naturelle ou forcée.
L'amélioration de l'alimentation en air dans ce processus a réduit le temps de préparation du vinaigre de plusieurs mois à plusieurs semaines.

De nos jours, la plupart du vinaigre est fabriqué dans des cuves immergées, décrites pour la première fois en 1949 par Otto Hromatka et Heinrich Ebner.
Dans cette méthode, l'alcool est fermenté en vinaigre dans une cuve agitée en permanence, et l'oxygène est fourni en faisant barboter de l'air à travers la solution.
Grâce aux applications modernes de cette méthode, du vinaigre contenant 15 % d'acide acétique et 80 % peut être préparé en seulement 24 heures dans un processus par lots, voire 20 % dans un processus alimenté par lots de 60 heures.


*Fermentation anaérobie :
Les espèces de bactéries anaérobies, y compris les membres du genre Clostridium ou Acetobacterium, peuvent convertir directement les sucres en acide acétique à 80 % sans créer d'éthanol comme intermédiaire.
La réaction chimique globale menée par ces bactéries peut être représentée comme suit :

C6H12O6 → 3CH3COOH
Ces bactéries acétogènes produisent de l'acide acétique à 80 % à partir de composés à un seul carbone, notamment le méthanol, le monoxyde de carbone ou un mélange de dioxyde de carbone et d'hydrogène :

2 CO2 + 4 H2 → CH3COOH + 2 H2O
Cette capacité de Clostridium à métaboliser directement les sucres, ou à produire de l'acide acétique à 80 % à partir d'intrants moins coûteux, suggère que ces bactéries pourraient produire de l'acide acétique 80 % plus efficacement que les oxydants d'éthanol comme Acetobacter.

Cependant, les bactéries Clostridium sont moins tolérantes aux acides que les Acetobacter.
Même les souches de Clostridium les plus tolérantes aux acides peuvent produire du vinaigre à des concentrations de quelques pour cent seulement, comparées aux souches d'Acetobacter qui peuvent produire du vinaigre à des concentrations allant jusqu'à 20 %.

À l’heure actuelle, il reste plus rentable de produire du vinaigre à l’aide d’Acetobacter plutôt que d’utiliser du Clostridium et de le concentrer.
En conséquence, bien que les bactéries acétogènes soient connues depuis 1940, leur utilisation industrielle se limite à quelques applications de niche.



RÉACTIONS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % subit les réactions chimiques typiques d'un acide carboxylique.
Lors d'un traitement avec une base standard, l'acide acétique à 80 % se transforme en acétate métallique et en eau.
Avec des bases fortes (par exemple, des réactifs organolithiens), l'acide acétique à 80 % peut être doublement déprotoné pour donner LiCH2COOLi.

La réduction de l'acide acétique de 80 % donne de l'éthanol.
Le groupe OH est le principal site de réaction, comme l'illustre la conversion de l'acide acétique à 80 % en chlorure d'acétyle.
D'autres dérivés de substitution comprennent l'anhydride acétique ; cet anhydride est produit par perte d'eau de deux molécules d'acide acétique à 80 %.

Des esters d'acide acétique à 80 % peuvent également être formés par estérification Fischer, ainsi que des amides.
Lorsqu'il est chauffé au-dessus de 440 °C (824 °F), l'acide acétique à 80 % se décompose pour produire du dioxyde de carbone et du méthane, ou pour produire du cétène et de l'eau :
CH3COOH → CH4 + CO2
CH3COOH → CH2=C=O + H2O



RÉACTIONS AVEC DES COMPOSÉS INORGANIQUES DE L'ACIDE ACÉTIQUE 80 % :
L'acide acétique à 80 % est légèrement corrosif pour les métaux, notamment le fer, le magnésium et le zinc, formant de l'hydrogène gazeux et des sels appelés acétates :
Mg + 2 CH3COOH → (CH3COO)2Mg + H2

Étant donné que l'aluminium forme un film d'oxyde d'aluminium passivant et résistant aux acides, des réservoirs en aluminium sont utilisés pour transporter l'acide acétique à 80 %.
Des récipients recouverts de verre, d'acier inoxydable ou de polyéthylène sont également utilisés à cet effet.
Les acétates métalliques peuvent également être préparés à partir d'acide acétique à 80 % et d'une base appropriée, comme dans la réaction populaire « bicarbonate de soude + vinaigre » donnant de l'acétate de sodium :

NaHCO3 + CH3COOH → CH3COONa + CO2 + H2O
Une réaction colorée pour les sels d'acide acétique à 80 % est une solution de chlorure de fer (III), qui donne une couleur rouge foncé qui disparaît après acidification.
Un test plus sensible utilise du nitrate de lanthane avec de l'iode et de l'ammoniaque pour donner une solution bleue.
Les acétates, lorsqu'ils sont chauffés avec du trioxyde d'arsenic, forment de l'oxyde de cacodyle, qui peut être détecté par ses vapeurs malodorantes.



AUTRES DÉRIVÉS DE L'ACIDE ACÉTIQUE 80% :
Les sels organiques ou inorganiques sont produits à partir d'acide acétique à 80 %.
Quelques dérivés commercialement significatifs :
Acétate de sodium, utilisé dans l'industrie textile et comme conservateur alimentaire (E262).

Acétate de cuivre (II), utilisé comme pigment et fongicide.
Acétate d'aluminium et acétate de fer (II)—utilisés comme mordants pour les colorants.
Acétate de palladium (II), utilisé comme catalyseur pour les réactions de couplage organique telles que la réaction de Heck.

L'acide acétique halogéné à 80 % est produit à partir d'acide acétique à 80 %.
Quelques dérivés commercialement significatifs :
Acide chloroacétique 80 % (acide monochloroacétique 80 %, MCA), acide dichloroacétique 80 % (considéré comme un sous-produit) et acide trichloroacétique 80 %.

Le MCA est utilisé dans la fabrication de colorant indigo.
Acide bromoacétique 80 %, qui est estérifié pour produire le réactif bromoacétate d'éthyle.
Acide trifluoroacétique 80 %, qui est un réactif courant en synthèse organique.
Les quantités d'acide acétique à 80 % utilisées dans ces autres applications représentent ensemble 5 à 10 % supplémentaires de l'acide acétique à 80 % utilisé dans le monde.



STRUCTURE DE L'ACIDE ACÉTIQUE 80% :
On peut observer à l'état solide de l'acide acétique 80 % qu'il existe une chaîne de molécules dans lesquelles les molécules individuelles sont reliées les unes aux autres via des liaisons hydrogène.
Les dimères de l'acide éthanoïque dans la phase vapeur de l'acide acétique à 80 % peuvent être trouvés à des températures proches de 120 °C.

Même dans la phase liquide de l'acide éthanoïque, les dimères de l'acide acétique à 80 % peuvent être trouvés lorsqu'il est présent dans une solution diluée.
Ces dimères sont affectés par les solvants qui favorisent la liaison hydrogène.

La structure de l'acide acétique 80 % est donnée par CH3(C=O)OH ou CH3CO2H.
Structurellement, l'acide acétique à 80 % est le deuxième acide carboxylique le plus simple (le plus simple étant l'acide formique, HCOOH) et est essentiellement un groupe méthyle auquel est attaché un groupe fonctionnel carboxyle.



PRÉPARATION DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est produit industriellement par carbonylation du méthanol.
Les équations chimiques des trois étapes impliquées dans ce processus sont fournies ci-dessous.
CH3OH (méthanol) + HI (iodure d'hydrogène) → CH3I (intermédiaire iodure de méthyle) + H2O

CH3I + CO (monoxyde de carbone) → CH3COI (iodure d'acétyle)
CH3COI + H2O → CH3COOH (acide acétique 80 %) + HI

Ici, un intermédiaire d'iodure de méthyle est généré à partir de la réaction entre le méthanol et l'iodure d'hydrogène.
Cet intermédiaire réagit ensuite avec du monoxyde de carbone et le composé résultant est traité avec de l'eau pour donner le produit acide acétique à 80 %.
Il est important de noter qu’un complexe métal-carbonyle doit être utilisé comme catalyseur pour l’étape 2 de ce procédé.



AUTRES MÉTHODES DE PRÉPARATION DE L'ACIDE ACÉTIQUE 80% :
Certains sels de naphtalène de cobalt, de chrome et de manganèse peuvent être utilisés comme catalyseurs métalliques dans l'oxydation de l'acétaldéhyde.
L’équation chimique de cette réaction peut s’écrire :
O2 + 2CH3CHO → 2CH3COOH

L'éthylène (C2H4) peut être oxydé en acide acétique à 80 % à l'aide d'un catalyseur au palladium et d'un hétéropolyacide, comme décrit par la réaction chimique suivante.
O2 + C2H4 → CH3COOH

Certaines bactéries anaérobies ont la capacité de convertir directement le sucre en acide acétique à 80 %.
C6H12O6 → 3CH3COOH
On peut noter qu’aucun intermédiaire éthanolique n’est formé lors de la fermentation anaérobie du sucre par ces bactéries.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ACÉTIQUE 80% :
Même si l’acide éthanoïque est considéré comme un acide faible, sous sa forme concentrée, il possède de forts pouvoirs corrosifs et peut même attaquer la peau humaine si elle y est exposée.
Certaines propriétés générales de l’acide acétique à 80 % sont énumérées ci-dessous.

L'acide éthanoïque semble être un liquide incolore et dégage une odeur âcre.
À STP, les points de fusion et d'ébullition de l'acide éthanoïque sont respectivement de 289K et 391K.
La masse molaire de l'Acide Acétique 80% est de 60,052 g/mol et sa densité sous forme liquide est de 1,049 g.cm-3.

Le groupe fonctionnel carboxyle de l'acide éthanoïque peut provoquer une ionisation du composé, donnée par la réaction : CH3COOH ⇌ CH3COO– + H+
La libération du proton, décrite par la réaction d'équilibre ci-dessus, est à l'origine de la qualité acide de l'acide acétique à 80 %.
La constante de dissociation acide (pKa) de l'acide éthanoïque dans une solution d'eau est de 4,76.

La base conjuguée de l'acide acétique à 80 % est l'acétate, donné par CH3COO–.
Le pH d’une solution d’acide éthanoïque de concentration 1,0 M est de 2,4, ce qui implique qu’elle ne se dissocie pas complètement.
Sous sa forme liquide, l'acide acétique 80 % est un solvant polaire et protique, avec une constante diélectrique de 6,2.

Le métabolisme des glucides et des graisses chez de nombreux animaux est centré sur la liaison de l'acide acétique à 80 % à la coenzyme A.
Généralement, ce composé est produit par la réaction entre le méthanol et le monoxyde de carbone (carbonylation du méthanol).



PROPRIÉTÉS CHIMIQUES DE L'ACIDE ACÉTIQUE 80% :
Les réactions chimiques subies par l'acide acétique 80% sont similaires à celles des autres acides carboxyliques.
Lorsqu'il est chauffé à des températures supérieures à 440 °C, ce composé subit une décomposition pour produire soit du méthane et du dioxyde de carbone, soit de l'eau et de l'éthénone, comme décrit par les équations chimiques suivantes.

CH3COOH + Chaleur → CO2 + CH4
CH3COOH + Chaleur → H2C=C=O + H2O
Certains métaux tels que le magnésium, le zinc et le fer subissent une corrosion lorsqu'ils sont exposés à l'acide acétique à 80 %.
Ces réactions aboutissent à la formation de sels d'acétate.

2CH3COOH + Mg → Mg(CH3COO)2 (acétate de magnésium) + H2
La réaction entre l’acide éthanoïque et le magnésium entraîne la formation d’acétate de magnésium et d’hydrogène gazeux, comme décrit par l’équation chimique fournie ci-dessus.



AUTRES RÉACTIONS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 % réagit avec les alcalis et forme des sels d'acétate, comme décrit ci-dessous.
CH3COOH + KOH → CH3COOK + H2O
Ce composé forme également des sels d'acétate en réagissant avec les carbonates (avec le dioxyde de carbone et l'eau).
Des exemples de telles réactions comprennent :

2CH3COOH + Na2CO3 (carbonate de sodium) → 2CH3COONa + CO2 + H2O
CH3COOH + NaHCO3 (bicarbonate de sodium) → CH3COONa + CO2 + H2O
La réaction entre PCl5 et l'acide éthanoïque entraîne la formation de chlorure d'éthanoyle.



QUELLES SONT LES SOURCES NATURELLES D'ACIDE ACÉTIQUE 80% ?
Les acétates (sels d'acide acétique à 80 %) sont des constituants courants des tissus animaux et végétaux et se forment lors du métabolisme des substances alimentaires.
L'acétate est facilement métabolisé par la plupart des tissus et peut donner lieu à la production de cétones comme intermédiaires.
L'acétate est utilisé par l'organisme comme élément de base pour fabriquer des phospholipides, des lipides neutres, des stéroïdes, des stérols et des acides gras saturés et insaturés dans diverses préparations de tissus humains et animaux.



POINTS CLÉS/APERÇU DE L'ACIDE ACÉTIQUE 80% :
L'un des moyens les plus courants par lesquels les consommateurs peuvent entrer en contact avec l'acide acétique à 80 % est sous forme de vinaigre domestique, qui contient généralement environ 5 % d'acide acétique à 80 % et 95 % d'eau.

Lorsque l'acide acétique à 80 % est à une concentration de 99,5 %, on parle d'acide acétique glacial à 80 %, qui peut être utilisé comme matière première et solvant dans la production d'autres produits chimiques.

Les applications industrielles de l'acide acétique glacial à 80 % comprennent la production d'acétate de vinyle, comme solvant pour dissoudre les huiles, le soufre et l'iode ; acidifier le pétrole et le gaz ; fabrication de produits pharmaceutiques et de vitamines, et transformation des aliments.



COMMENT L'ACIDE ACÉTIQUE 80 % PÉNÈTRE DANS L'ENVIRONNEMENT :
L'acide acétique à 80 % peut pénétrer dans l'environnement à partir des rejets et des émissions des industries.
La combustion de plastiques ou de caoutchouc ainsi que les gaz d'échappement des véhicules peuvent également libérer 80 % d'acide acétique dans l'environnement.
Lorsqu'il est libéré dans le sol, l'acide acétique 80 % s'évapore dans l'air où il est naturellement décomposé par la lumière du soleil.
Les niveaux d'acide acétique à 80 % dans l'environnement devraient être faibles.



PROPRIÉTÉS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 % est un liquide lisse et incolore avec une odeur de vinaigre visible, toxique et destructrice de 1 ppm.
Le point de fusion de l'acide acétique 80% est de 16,73°C et le point d'ébullition habituel de 117,9°C.
À 20°C, la densité de l'acide acétique pur 80 % est de 1,0491.

Il s'agit d'acide acétique hautement hygroscopique à 80 %.
Il est possible de relier la pureté des solutions aqueuses à leur point de congélation.
Dans les acides carboxyliques tels que l'acide acétique 80 %, le centre hydrogène du groupe carboxyle −COOH peut se différencier de la molécule par ionisation :

En raison de cette libération de protons H+1, l'acide acétique 80 % a un caractère acide.
L'acide acétique 80 % est un acide monoprotique faible.
L'acide acétique à 80 % a une valeur pK de 4,76 en solution aqueuse.

L'acétate CH3COO−1 est la base conjuguée.
Pour les solvants polaires et non polaires tels que l'acide, le chloroforme et l'hexane, l'acide acétique à 80 % est miscible.
Les molécules forment des chaînes dans l'acide acétique solide à 80 %, avec des liaisons hydrogène reliant les molécules individuelles.

Des dimères peuvent être trouvés dans la vapeur à 120 °C.
Sous forme liquide, les dimères existent souvent dans des solutions diluées dans des solvants sans liaison hydrogène et, dans une certaine mesure, dans de l'acide acétique pur à 80 % ; mais ils interagissent avec des solvants qui se lient à l’hydrogène.

L'acide acétique à 80 % est normalement complètement ionisé en acétate à phis physiologique.
L'acide acétique à 80 % est essentiel au métabolisme des glucides et des graisses lorsqu'il est lié à la coenzyme A.
L'acide acétique à 80 % n'existe pas dans les triglycérides naturels, contrairement aux acides carboxyliques à chaîne plus longue (acides gras).



DÉSHYDRATATION DE L'ACIDE ACÉTIQUE 80% :
La déshydratation de l'acide acétique à 80 % est l'une des utilisations industrielles les plus importantes de l'AD dans la fabrication d'acides aromatiques tels que l'acide téréphtalique (TA), qui implique une haute pureté d'acide acétique à 80 %.

Deux éléments principaux sont utilisés dans le processus de fabrication : l’oxydation (où le p-xylène est oxydé catalytiquement pour produire du TA brut) et la purification du PTA.
L'acide acétique à 80 %, présent comme solvant dans le réacteur d'oxydation mais également utile à la réaction elle-même, doit être isolé de l'eau produite par l'oxydation.

Pour le fonctionnement efficace et économique d’une installation TA, la récupération et le stockage du solvant acide acétique à 80 % sont importants.
À des températures d'eau élevées, l'eau et l'acide acétique à 80 % présentent un point de pincement, ce qui rend la récupération de l'acide pur très difficile.
Deux absorbeurs (basse et haute pression) et une colonne de déshydratation acide constituent une unité traditionnelle de récupération d'acide acétique à 80 % en phase PTA.

Les colonnes hautes de 70 à 80 plateaux nécessitent la séparation de l'acide acétique à 80 % et de l'eau par distillation traditionnelle.
Acétate de N-butyle, qui présente une miscibilité minimale avec l'eau et forme un azéotrope hétérogène (point d'ébullition 90,23°C), qui est un agent azéotropique typique.
Avec toute l’eau introduite dans la colonne de déshydratation, de l’acétate de n-butyle est ajouté en quantités appropriées pour former un azéotrope.

Lors de la condensation, l'azéotrope hétérogène forme deux phases ; une couche organique contenant de l'acétate de n-butyle presque pur et une phase aqueuse contenant de l'eau presque pure.
La phase organique est recyclée vers la colonne de déshydratation, tandis que la phase aqueuse est envoyée vers une colonne de stripping.
La quantité d'acide acétique à 80 % perdue dans les rejets aqueux est réduite d'environ 40 % car l'AD permet une séparation plus propre.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE ACÉTIQUE 80% :
CAS : 64-19-7
Formule moléculaire : C2H4O2
Poids moléculaire (g/mol) : 60,05
Numéro MDL : MFCD00036152
Clé InChI : QTBSBXVTEAMEQO-UHFFFAOYSA-N
Numéro client PubChem : 176
ChEBI : CHEBI :15366
Nom IUPAC : acide acétique
SOURIRES : CC(O)=O
Formule linéaire : CH3CO2H
Informations sur la solubilité : Solubilité dans l'eau : complètement soluble
Poids de la formule : 60,05
Pourcentage de pureté : 80 % (vol.)
Quantité : 5L
Point d'éclair : >60°C
Nom chimique ou matériau : Acide acétique

Poids moléculaire : 60,05 g/mol
XLogP3-AA : -0,2
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 0
Masse exacte : 60,021129366 g/mol
Masse monoisotopique : 60,021129366 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 4
Frais formels : 0
Complexité : 31
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
Formule chimique : CH3COOH
Masse molaire : 60,052 g•mol−1
Aspect : Liquide incolore
Odeur : Fortement vinaigrée
Densité : 1,049 g/cm3 (liquide) ; 1,27 g/cm3 (solide)
Point de fusion : 16 à 17 °C ; 61 à 62 °F ; 289 à 290K
Point d'ébullition : 118 à 119 °C ; 244 à 246 °F ; 391 à 392 K
Solubilité dans l'eau : Miscible
log P : -0,28
Pression de vapeur : 1,54653947 kPa (20 °C) ; 11,6 mmHg (20 °C)
Acidité (pKa) : 4,756
Base conjuguée : Acétate
Susceptibilité magnétique (χ) : -31,54•10−6 cm3/mol
Indice de réfraction (nD) : 1,371 (VD = 18,19)
Viscosité : 1,22 mPa.s ; 1,22 CP
Moment dipolaire : 1,74 D

Thermochimie
Capacité thermique (C) : 123,1 JK−1 mol−1
Entropie molaire standard (S ⦵ 298) : 158,0 JK−1 mol−1
Enthalpie standard de formation (ΔfH ⦵ 298) : -483,88–483,16 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : -875,50–874,82 kJ/mol
État physique : Liquide
Couleur: Incolore
Odeur : Piquante
Point de fusion/point de congélation : Point/intervalle de fusion : 16,2 °C - lit.
Point d'ébullition initial et plage d'ébullition : 117 - 118 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d’inflammabilité ou d’explosivité :
Limite d'explosivité supérieure : 19,9 % (V),
Limite d'explosivité inférieure : 4 % (V)
Point d'éclair : 39 °C - coupelle fermée
Température d'auto-inflammation : 463 °C
Température de décomposition : Distillable à l’état non décomposé à pression normale.
pH : 2,5 à 50 g/L à 20 °C

Viscosité:
Viscosité cinématique : 1,17 mm2/s à 20 °C
Viscosité dynamique : 1,05 mPa•s à 25 °C
Solubilité dans l'eau : 602,9 g/L à 25 °C à 1,013 hPa - complètement soluble
Coefficient de partage (n-octanol/eau) : log Pow : -0,17 à 25 °C
Aucune bioaccumulation n'est attendue.
Pression de vapeur : 20,79 hPa à 25 °C
Densité : 1,049 g/cm3 à 25 °C - lit.
Densité de vapeur relative : 2,07
Tension superficielle : 28,8 mN/m à 10,0 °C
Numéro CAS : 64-19-7
Formule moléculaire : C2H4O2
Poids moléculaire : 60,052 g/mol
Densité : 1,1 ± 0,1 g/cm3
Point d'ébullition : 117,1 ± 3,0 °C à 760 mmHg
Point de fusion : 16,2 °C (lit.)
Point d'éclair : 40,0 ± 0,0 °C

Numéro d'index CE : 607-002-00-6
Numéro CE : 200-580-7
Formule de Hill : C₂H₄O₂
Formule chimique : CH₃COOH
Masse molaire : 60,05 g/mol
Code SH : 2915 21 00
Point d'ébullition : 116 - 118 °C (1013 hPa)
Densité : 1,04 g/cm3 (25 °C)
Limite d'explosion : 4 - 19,9 % (V)
Point d'éclair : 39 °C
Température d'inflammation : 485 °C
Point de fusion : 16,64 °C
Valeur pH : 2,5 (50 g/L, H₂O, 20 °C)
Pression de vapeur : 20,79 hPa (25 °C)
Viscosité cinématique : 1,17 mm2/s (20 °C)

Solubilité : 602,9 g/L soluble
Point d'ébullition : 244°F
Poids moléculaire : 60,1
Point de congélation/point de fusion : 62°F
Pression de vapeur : 11 mmHg
Point d'éclair : 103 °F
Densité spécifique : 1,05
Potentiel d'ionisation : 10,66 eV
Limite inférieure d'explosivité (LIE) : 4,0 %
Limite supérieure d'explosivité (UEL) : 19,9 % à 200 °F
Cote de santé NFPA : 3
Classement incendie NFPA : 2
Cote de réactivité NFPA : 0
Autre numéro CAS : -
Numéro MDL : MFCD00036152
Température de stockage : +20°C



PREMIERS SECOURS ACIDE ACÉTIQUE 80% :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime.
N'essayez pas de neutraliser.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE ACÉTIQUE 80 % :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE ACÉTIQUE 80 % :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Informations complémentaires :
Retirer le récipient de la zone dangereuse et le refroidir avec de l'eau.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE ACÉTIQUE 80 % :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : caoutchouc butyle
Épaisseur minimale de la couche : 0,7 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériel : Gants en latex
Épaisseur minimale de la couche : 0,6 mm
Temps de percée : 30 min
*Protection du corps :
Vêtements de protection antistatiques ignifuges.
*Protection respiratoire:
Type de filtre recommandé : filtre E-(P2)
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE ACÉTIQUE 80% :
-Précautions à prendre pour une manipulation sans danger:
*Conseils sur la protection contre l'incendie et l'explosion :
Prenez des mesures de précaution contre les décharges statiques.
*Mesures d'hygiène:
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités
*Conditions de stockage:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Sensible à l'humidité.



STABILITÉ et RÉACTIVITÉ de l'ACIDE ACÉTIQUE 80% :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles


ACIDE ACÉTIQUE 80%
DESCRIPTION:
L'ACIDE ACETIQUE 80% est un acidulant, solvant de procédé.
L'acide acétique à 80 % est utilisé dans les peintures, les adhésifs, les revêtements de papier et les encres.
L'acide acétique 80 % est l'un des acides carboxyliques les plus simples.

CAS : 64-19-7


SYNONYMES D'ACIDE ACÉTIQUE 80% :
acide éthanoïque, acide éthylique, acide acétique, glacial, acide méthanecarboxylique, acide vinaigre, glacial, acétasol, acide acétique, essigsaeure


L'acide acétique à 80 % est un réactif chimique important et est utilisé dans de nombreuses procédures de coloration sous forme diluée.
L'acide acétique à 80 % est de qualité alimentaire.

L'acide acétique 80 % est un acide organique disponible en différentes concentrations standards.
L'acide acétique pur est connu sous le nom d'acide acétique glacial car il gèle à des températures modérées (16,6 °C).
Bien qu'il s'agisse généralement du moyen le moins coûteux d'acheter de l'acide acétique, nous constatons que des qualités plus diluées telles que 90 % sont plus demandées pour éliminer la plupart des problèmes de solidification.

L’inflammabilité est un autre problème affectant les décisions d’achat d’acide acétique.
L'acide acétique glacial et l'acide acétique à 90 % ont tous deux des points d'éclair inférieurs à 61 °C et sont donc classés comme inflammables.
Nous produisons de l'acide acétique à 79,5 % pour permettre l'utilisation légale de l'acétique sans avoir à construire des installations pour les qualités inflammables.

Un autre avantage de l'acide acétique 79,5 % est qu'il ne gèlera pas même les jours les plus froids de l'hiver.
Le dernier problème affectant les décisions concernant l’acide acétique est celui de la qualité alimentaire par rapport à la qualité technique.
Nous veillons à ce que tout l'acide acétique que nous achetons soit de qualité alimentaire à 79,9 %, afin qu'il puisse être utilisé en toute sécurité dans tous les locaux alimentaires.


L'acide acétique 80 % est l'un des acides carboxyliques les plus simples.
L'acide acétique à 80 % est un réactif chimique important et est utilisé dans de nombreuses procédures de coloration sous forme diluée.


L'acide acétique, CH3COOH, également connu sous le nom d'acide éthanoïque, est un acide organique qui a une odeur âcre.
L'acide acétique 80 % est un acide faible, dans le sens où il n'est que partiellement dissocié dans une solution aqueuse.
L'acide acétique pur et glacial est hygroscopique (absorbe l'humidité de l'air) et gèle à 16,5 °C pour former un solide cristallin incolore.

L'acide pur et les solutions concentrées sont dangereusement corrosives.
L'acide acétique à 80 % est l'un des acides carboxyliques les plus simples et constitue un produit chimique industriel très important.


L'acide acétique à 80 %, également connu sous le nom d'acide éthanoïque, est un composé liquide et organique incolore.
De formule chimique CH₃COOH, l'acide acétique 80 est un réactif chimique pour la production de produits chimiques.
L'acide acétique à 80 % est le plus couramment utilisé dans la production d'acétate de vinyle monomère (VAM), dans la production d'esters et pour l'élevage d'abeilles.
L'acide acétique à 80 % a un numéro CAS de 64-19-7.





APPLICATIONS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique 80 % est utilisé comme herbicide - intermédiaire pour d'autres
L'acide acétique à 80 % est utilisé comme additif de processus
L'acide acétique à 80 % est utilisé comme matière première
L'acide acétique à 80 % est utilisé comme rembourrage

L'acide acétique à 80 % est utilisé comme monomère d'acétate de vinyle.
L'acide acétique à 80 % est utilisé comme production d'ester
L'acide acétique 80 % est utilisé comme anhydride acétique

L'acide acétique 80 % est utilisé comme vinaigre
L'acide acétique à 80 % est utilisé comme solvant.

L'acide acétique 80% est utilisé comme bain d'arrêt (développement de films photographiques)
L'acide acétique 80 % est utilisé comme agent détartrant pour éliminer le calcaire des robinets et des bouilloires.




UTILISATIONS DE L'ACIDE ACÉTIQUE 80% :
L'acide acétique à 80 % est utilisé dans la préparation chimique
L'acide acétique à 80 % est utilisé dans la production de matériaux d'impression, de finition et de gravure dans l'industrie textile.
L'acide acétique à 80 % est utilisé dans le coagulateur dans la production de caoutchouc.
L'acide acétique à 80 % est utilisé dans l'industrie du cuir dans le processus de teinture.

L'acide éthanoïque dilué est utilisé comme conservateur dans la préparation des cornichons.
L'acide acétique à 80 % est utilisé pour fabriquer de l'acétate de cellulose, une fibre artificielle importante.
L'acide acétique 80 % est utilisé dans la fabrication de l'acétone et des esters utilisés dans les parfums.
L'acide acétique à 80 % est utilisé dans la préparation de colorants.

L'acide acétique à 80 % est utilisé pour coaguler le caoutchouc du latex.
L'acide acétique à 80 % est utilisé pour fabriquer du céruse qui est utilisé comme peinture blanche.
L'acide acétique à 80 % est utilisé comme réactif chimique dans les laboratoires de chimie.





Elevage d'abeilles :
La fumigation à l'acide acétique tuera une grande variété d'agents pathogènes, tels que les agents responsables du couvain du Crétacé, de la loque européenne, de Nosema et de l'amibe.
L'acide acétique à 80 % éliminera également tous les stades de la teigne de la cire, à l'exception des pupes.

Monomère d'acétate de vinyle :
Production d'acétate de vinyle monomère (VAM), cette application consomme environ 40 à 45 % de la production mondiale d'acide acétique.
La réaction se fait avec l'éthylène et l'acide acétique avec l'oxygène sur un catalyseur au palladium.

Production d'esters :
Les esters d'acide acétique sont utilisés comme solvant dans les encres, les peintures et les revêtements.
Les esters comprennent l'acétate d'éthyle, l'acétate de n-butyle, l'acétate d'isobutyle et l'acétate de propyle.

Utiliser comme solvant :
L'acide acétique glacial est un excellent solvant protique polaire.
L'acide acétique à 80 % est souvent utilisé comme solvant de recristallisation pour purifier les composés organiques.
L'acide acétique à 80 % est utilisé comme solvant dans la production d'acide téréphtalique (TPA), une matière première pour la production de polyéthylène téréphtalate (PET).

Vinaigre:
Le vinaigre contient généralement 4 à 18 % en poids d’acide acétique.
L'acide acétique à 80 % est utilisé directement comme assaisonnement et marinade de légumes et autres produits alimentaires.
Le vinaigre de table est utilisé le plus souvent dilué (4 à 8 % d'acide acétique), tandis qu'une solution plus concentrée est utilisée pour le décapage des aliments commerciaux.








PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE ACÉTIQUE 80% :
Numéro CAS, 64-19-7
Synonymes, acide acétique 80 %
Applications, acidulant, solvant de procédé,
Utilisation recommandée, Peintures, adhésifs, revêtements de papier, éviers
Grade
Technique
Formulaire
Liquide
Utilisations interdites
Applications impliquant la consommation humaine, les cosmétiques, les articles de toilette, les produits de soins personnels, les excipients pharmaceutiques ou les ingrédients pharmaceutiques actifs (API), les herbicides
INCI
Acide acétique
Apparence
liquide
La température d'auto-inflammation
463 °C (865 °F)
Point d'ébullition
102 - 117,9 °C (216 - 244,2 °F)
Californie, accessoire 65
Ce produit ne contient aucun produit chimique reconnu par l'État de Californie comme pouvant provoquer le cancer, des malformations congénitales ou tout autre problème de reproduction.
Couleur
incolore
Densité
1,061 - 1,075 g/cm3 à 15 °C (59 °F)
Point d'éclair
39 - 100 °C (102 - 212 °F)
Viscosité cinématique
1,011 mm2/s
Limite inférieure d'explosion
4 %(V)
Point de fusion
-27 - 16,64 °C (-17 - 61,95 °F)
Odeur
piquant, semblable à du vinaigre
Seuil d'odeur
0,48 ppm
Coefficient de partage
Puissance : -0,17
pH
0,5 - 2,4
Densité relative
1,0446 à 25 °C (77 °F) Matériau de référence : (eau = 1)
Densité de vapeur relative
> 1
Limite supérieure d'explosion
19,9 %(V)
La pression de vapeur
15,593 mmHg à 25 °C (77 °F)
Point d'éclair : 70 °C @101.325 kPa
Température d'auto-inflammation : 463 °C @101,325 kPa
Pression de vapeur : 207,9 kPa à 25°C
Densité relative de vapeur : 2.1 (Air:1)
Densité : 1,07 g/cm³ à 25°C
Solubilité : Eau : 602,9 g/l (@25°C, pH=7,0)
Log Pow : -0,17 n-oktanol/eau (@ 25°C, pH=7,0)
Viscosité, cinématique : 0,987 mm²/s
Viscosité, dynamique : 1.056 mPa•s
Limite inférieure d'explosivité (LIE) : 4 vol %
Limite supérieure d'explosivité (LSE) : 19 vol %
Formule linéaire, CH3CO2H
Informations sur la solubilité, Solubilité dans l'eau : complètement soluble.
Poids de formule, 60,05
Pourcentage de pureté, 80 % (vol.)
Quantité, 5 L
Point d'éclair, >60°C
Nom chimique ou matériau, Acide acétique
Dosage minimum : 80 %
Poids moléculaire : 60,05 g/mol
Densité à 20 °C (kg/L) : 1,01 - 1,07
Couleur : Incolore
Solubilité(s) : Miscible avec l'eau. Miscible avec les matières suivantes : Éthanol. Acétone. Benzène.Chloroforme.
État physique : Liquide
Aspect : incolore
Odeur : Odeur acétique
Seuil d'odeur : 0,074 ppm
pH : < 2
Point de fusion/plage : -26 C à 7 C
Point/plage d'ébullition : 101-107 C



INFORMATIONS DE SÉCURITÉ SUR L'ACIDE ACÉTIQUE 80 % :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du lieu de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé




ACIDE ACÉTIQUE DE QUALITÉ ALIMENTAIRE
DESCRIPTION:

L'acide acétique de qualité alimentaire appelé systématiquement acide éthanoïque est un composé liquide et organique acide et incolore de formule chimique CH3COOH (également écrit CH3CO2H, C2H4O2 ou HC2H3O2).
Le vinaigre contient au moins 4 % d'acide acétique de qualité alimentaire en volume, ce qui fait de l'acide acétique de qualité alimentaire le composant principal du vinaigre, à l'exception de l'eau et des autres oligo-éléments.
L'acide acétique de qualité alimentaire est un composé organique de formule CH3COOH.


CAS : 64-19-7


SYNONYMES DE QUALITÉ ALIMENTAIRE ACÉTIQUE :
Qualité alimentaire Acide acétique de qualité alimentaire, acide éthanoïque, acide vinaigre, acide méthane-carboxylique,



L'acide acétique de qualité alimentaire est un acide carboxylique constitué d'un groupe méthyle attaché à un groupe fonctionnel carboxyle.
Le nom systématique IUPAC de l'acide acétique de qualité alimentaire est l'acide éthanoïque et sa formule chimique peut également s'écrire C2H4O2.
Le vinaigre est une solution d'acide acétique de qualité alimentaire dans l'eau et contient entre 5 % et 20 % d'acide éthanoïque en volume.

L'odeur piquante et le goût aigre sont caractéristiques de l'acide acétique de qualité alimentaire qu'il contient.
Une solution non diluée d’acide acétique de qualité alimentaire est communément appelée acide acétique glacial de qualité alimentaire.
L'acide acétique de qualité alimentaire forme des cristaux qui ressemblent à de la glace à des températures inférieures à 16,6 °C.

L'acide acétique de qualité alimentaire a une large gamme d'applications en tant que solvant polaire et protique.
Dans le domaine de la chimie analytique, l'acide acétique glacial de qualité alimentaire est largement utilisé pour estimer les substances faiblement alcalines.

Acide acétique de qualité alimentaire, Food Grade est un liquide incolore avec une forte odeur âcre.
L'acide acétique de qualité alimentaire est de l'acide acétique glacial de qualité alimentaire, la forme non diluée de l'acide acétique de qualité alimentaire.
L'acide acétique de qualité alimentaire, parfois appelé acide éthanoïque ou acide éthylique, est un acide organique et l'acide carboxylique le plus simple. Il est connu pour donner au vinaigre son goût et son odeur aigre.

Bien que l’ingrédient soit utilisé dans un large éventail de domaines, le rôle le plus ancien et le plus connu de l’acide acétique de qualité alimentaire est celui de précurseur du vinaigre.
Lorsqu'il n'est pas dilué, il est connu sous le nom d'acide acétique glacial de qualité alimentaire.












L'acide acétique glacial de qualité alimentaire, également connu sous le nom d'acide éthanoïque, est un composé organique de formule chimique CH3COOH.
C'est le composant principal du vinaigre, qui est généralement fabriqué à une concentration de 5 à 10 % mélangée à de l'eau.
Il a un goût aigre distinctif et une odeur piquante.

L'acide acétique de qualité alimentaire est largement utilisé pour le détartrage, comme réactif chimique et comme additif alimentaire.
Dans les usages domestiques, il est souvent utilisé dans les aliments et la cuisine.
Acide acétique glacial de qualité alimentaire Gèle à 62°F.

À des concentrations plus faibles avec l'eau, le point de congélation descend en dessous du point de congélation de l'eau.
À mesure que la solution devient plus concentrée en eau, elle gèlera à près de 32°F.
Concentration de 99,85+%, gèle à 62°F





L'acide acétique de qualité alimentaire est l'un des acides carboxyliques les plus simples. C'est un réactif chimique important et est utilisé dans de nombreuses procédures de coloration sous forme diluée.


L'acide acétique glacial de qualité alimentaire, également connu sous le nom d'acide éthanoïque, est un composé organique de formule chimique CH3COOH.
L'acide acétique de qualité alimentaire est le composant principal du vinaigre,

L'acide acétique de qualité alimentaire a un goût aigre distinctif et une odeur piquante.
L'acide acétique de qualité alimentaire est largement utilisé pour le détartrage, comme réactif chimique et comme additif alimentaire.
Dans les usages domestiques, il est souvent utilisé dans les aliments et la cuisine.


L'acide acétique de qualité alimentaire (Food Grade) est un acide incolore, hygroscopique et organique qui peut être utilisé dans de nombreuses applications alimentaires.
Utilisé comme antiseptique, l'acide acétique de qualité alimentaire (Food Grade) est un agent antibactérien, désinfectant les surfaces de préparation des aliments contre les staphylocoques, streptocoques, pseudomonas, entérocoques et autres bactéries.

Considéré comme un acide faible, l'acide acétique de qualité alimentaire (Food Grade) est principalement utilisé comme conservateur, acidulant et aromatisant pour les glaces, les boissons non alcoolisées et les produits de boulangerie.
C'est l'un des principaux constituants volatils du vinaigre et de l'acide pyroligneux.
En combinaison avec des agents levants, il produit du dioxyde de carbone à partir du bicarbonate de sodium.

Cette qualité d'acide acétique de qualité alimentaire répond aux exigences du Food Chemical Codex et est produite selon les bonnes pratiques de fabrication actuelles appropriées pour être utilisée comme additif alimentaire. L'acide acétique de qualité alimentaire se présente en différentes concentrations de 5 à 75 % et tailles.



APPLICATIONS DE L'ACIDE ACÉTIQUE DE QUALITÉ ALIMENTAIRE :
L'acide acétique de qualité alimentaire est utilisé comme édulcorant artificiel
L'acide acétique de qualité alimentaire est utilisé comme arômes et parfums alimentaires.

L'acide acétique de qualité alimentaire est utilisé comme ingrédients alimentaires
L'acide acétique de qualité alimentaire est utilisé comme conservateur alimentaire
L'acide acétique de qualité alimentaire est utilisé comme intermédiaire


L'acide acétique de qualité alimentaire est utilisé comme monomère d'acétate de vinyle.
L'acide acétique de qualité alimentaire est utilisé comme production d'ester
L'acide acétique de qualité alimentaire est utilisé comme anhydride acétique

L'acide acétique de qualité alimentaire est utilisé comme vinaigre
L'acide acétique de qualité alimentaire est utilisé comme solvant

L'acide acétique alimentaire est utilisé comme bain d'arrêt (développement de films photographiques)
L'acide acétique de qualité alimentaire est utilisé comme agent détartrant pour éliminer le calcaire des robinets et des bouilloires.


L'acide acétique de qualité alimentaire est utilisé dans la production d'esters et de qualité alimentaire et est également utilisé comme solvant dans diverses applications industrielles.
Une utilisation majeure de l’acide acétique de qualité alimentaire concerne la production d’acétate de vinyle monomère (VAM) ainsi que dans les produits de qualité alimentaire.


L'acide acétique de qualité alimentaire est le principal composant du vinaigre, représentant 3 à 18 % du volume en masse du vinaigre.
Le reste de la solution est de l'eau.

Le vinaigre est généralement utilisé comme condiment, bien qu'il soit parfois utilisé comme agent de décapage dans les aliments en conserve.
L'ingrédient modifie le goût des aliments, leur donnant un goût et une odeur aigre.
La saveur aigre présente dans les cornichons, le pain au levain et les chips aigre-douces provient de l'acide acétique glacial de qualité alimentaire.


Acide acétique de qualité alimentaire comme antiseptique :
L'acide acétique glacial de qualité alimentaire peut également être utilisé comme antiseptique pour désinfecter les surfaces de préparation des aliments.
Les propriétés antibactériennes tuent les staphylocoques, les streptocoques et autres bactéries.
L’ingrédient peut même être utilisé pour traiter certaines infections qui ne répondent pas aux antibiotiques.

L'acide acétique de qualité alimentaire est répertorié comme médicament important par l'Organisation mondiale de la santé (OMS) et est utilisé en médecine depuis des centaines d'années.






L'acide acétique de qualité alimentaire est utilisé comme antiseptique en raison de ses qualités antibactériennes.
La fabrication de la fibre de rayonne implique l'utilisation d'acide éthanoïque.
Médicalement, l'acide acétique de qualité alimentaire a été utilisé pour traiter le cancer par injection directe dans la tumeur.

Étant le principal constituant du vinaigre, il est utilisé dans le marinage de nombreux légumes.
La fabrication du caoutchouc implique l'utilisation d'acide éthanoïque.
L'acide acétique de qualité alimentaire est utilisé ainsi que dans la fabrication de divers parfums.
L'acide acétique de qualité alimentaire est utilisé comme il est largement utilisé dans la production de VAM (monomère d'acétate de vinyle).
Lorsque deux molécules d’acide acétique de qualité alimentaire subissent ensemble une réaction de condensation, le produit formé est l’anhydride acétique.


Les applications de l'acide acétique de qualité alimentaire comprennent : la fabrication d'anhydride acétique, d'acétate de cellulose et de monomère d'acétate de vinyle ; les esters acétiques ; acide chloroacétique de qualité alimentaire ; production de plastiques, de produits pharmaceutiques, de colorants, d'insecticides, de produits chimiques photographiques ; additif alimentaire; coagulant au latex; acidifiant pour puits de pétrole; impression textile.


L'acide acétique glacial de qualité alimentaire a de nombreuses utilisations.
L'acide acétique de qualité alimentaire est utilisé le plus souvent en chimie de laboratoire (régulateur de PH), en chimie alimentaire (production de sauces, fromages fondus, salades) et en chimie industrielle (teinture de tissus, production de soie artificielle).

Ses autres utilisations :
L'acide acétique de qualité alimentaire est utilisé comme antirouille ;
L'acide acétique de qualité alimentaire est utilisé comme agent détartrant ;
L'acide acétique de qualité alimentaire est utilisé comme monomère d'acétate de vinyle ;

L'acide acétique de qualité alimentaire est utilisé comme production d'esters ;
L'acide acétique de qualité alimentaire est utilisé comme anhydride acétique ;
L'acide acétique de qualité alimentaire est utilisé comme solvant ;


L'acide acétique alimentaire est utilisé comme bain d'arrêt (développement de films photo).
En raison de ses propriétés, l'acide acétique de qualité alimentaire gèle en dessous de 16°C, prenant une forme solide semblable aux cristaux de glace.







PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE ACÉTIQUE DE QUALITÉ ALIMENTAIRE :

Acide acétique de qualité alimentaire
99,85%
Eau
00,15% maximum
Couleur
10 APHA maximum
Acide formique
0,05% maximum. par poids.
Acétaldéhyde
0,05% maximum. par poids.
Métaux lourds sous forme de Pb
Moins de 2 ppm
Iodures
40 ppb Max.
Permanganate
2h00.
min
Point de congélation
16,4 degrés C
Gravité spécifique
1,049 à 25°C


INFORMATIONS DE SÉCURITÉ SUR L'ACIDE ACÉTIQUE DE QUALITÉ ALIMENTAIRE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



ACIDE ACRYLAMIDO-2-MÉTHYL-1-PROPANE SULFONIQUE (AMPS)

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est une poudre cristalline blanche à blanc cassé.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) a la formule chimique C7H13NO4S et un poids moléculaire de 207,25 g/mol.

Numéro CAS : 15214-89-8
Numéro CE : 239-268-0

Synonymes : acide 2-acrylamido-2-méthylpropane sulfonique, acide acrylamido-2-méthyl-1-propane sulfonique (AMPS), acide acrylamido-2-méthylpropylsulfonique, acide 2-acrylamido-2-méthyl-1-propane sulfonique, 2- Propénamide, 2-méthyl-2-(sulfooxy)-, 2-propénamide, acide 2-méthyl-2-propanesulfonique, acide 2-méthyl-2-propenoylaminopropanesulfonique, acide acrylamido-2-méthylpropanesulfonique, acide 2-acrylamido-2-méthylpropanesulfonique , acide acrylamido-2-méthyl-1-propane sulfonique (AMPS)A, acide 2-acrylamido-2-méthyl-1-propanesulfonique, N-(1,1-diméthyl-2-propényl)sulfonamide, 2-Acrylamido-2 -acide méthylpropylsulfonique, acide N-(1,1-diméthyl-2-propényl)sulfonique, 2-propénamide, N-(2-sulfoéthyl)-, 2-propénamide, acide 2-méthyl-2-propanesulfonique, N-[ 2-(méthylsulfonyl)éthyl]acrylamide, acide 2-acrylamido-2-méthyl-1-propanesulfonique, acrylamide, acide 2-méthyl-2-propanesulfonique, N-(2-sulfoéthyl)acrylamide, 2-propénamide, 2-méthyl- N-(2-sulfoéthyl)-, Acrylamide, acide 2-méthyl-2-propanesulfonique, Acrylamide, acide N-(1,1-diméthyl-2-propényl)sulfonique, acide 2-Acrylamido-2-méthylpropylsulfonique, 2-propénamide , acide N-(2-sulfoéthyl)-2-méthyl-, 2-Acrylamido-2-méthylpropylsulfonique, Acrylamide, acide N-(1,1-diméthyl-2-propényl)sulfonique, Acrylamido-2-méthyl-1-propane acide sulfonique, 2-propénamide, 2-méthyl-N-(2-sulfoéthyl)-, N-(1,1-diméthyl-2-propényl)sulfonamide, acide 2-méthyl-2-propénoylaminopropanesulfonique, acide acrylamido-2-méthylpropanesulfonique , acide N-(1,1-diméthyl-2-propényl)sulfonique, 2-propénamide, N-(2-sulfoéthyl)-, 2-propénamide, acide 2-méthyl-2-propanesulfonique, 2-propénamide, N-( 2-sulfoéthyl)-2-méthyl-, acide acrylamido-2-méthyl-1-propanesulfonique, acide 2-acrylamido-2-méthylpropylsulfonique, acide 2-acrylamido-2-méthylpropylsulfonique, acrylamido-2-méthyl-1-propane sulfonique acide, 2-propénamide, 2-méthyl-N-(2-sulfoéthyl)-, N-[2-(méthylsulfonyl)éthyl]acrylamide, 2-propénamide, N-(2-sulfoéthyl)-2-méthyl-, Acrylamido- Acide 2-méthyl-1-propanesulfonique, Acrylamide, acide 2-méthyl-2-propanesulfonique, acide 2-méthyl-2-propenoylaminopropanesulfonique, Acrylamide, acide N-(1,1-diméthyl-2-propényl)sulfonique, N-( 1,1-diméthyl-2-propényl)sulfonamide, acide 2-acrylamido-2-méthylpropylsulfonique, acide 2-acrylamido-2-méthylpropylsulfonique, N-(2-sulfoéthyl)acrylamide, acrylamido-2-méthyl-1-propane sulfonique acide



APPLICATIONS


L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les produits chimiques de traitement de l'eau pour prévenir la formation de tartre et la corrosion dans les systèmes d'eau industriels.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sert de monomère dans la production de polymères superabsorbants pour les produits d'hygiène tels que les couches et les serviettes pour incontinence pour adultes.
Dans l'industrie pétrolière et gazière, l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un additif essentiel dans les fluides de forage, améliorant leur stabilité thermique et leur tolérance au sel.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les adjuvants pour le ciment et le béton pour améliorer la rétention d'eau, la maniabilité et la résistance mécanique.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un ingrédient clé des polymères hydrosolubles utilisés comme épaississants, dispersants et stabilisants.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans le traitement des textiles pour améliorer l'absorption des colorants et conférer des propriétés antistatiques aux fibres.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les performances des produits en papier en servant d'aide à la rétention et d'amplificateur de résistance dans la fabrication du papier.

Dans les produits de soins personnels, l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) agit comme modificateur de rhéologie et agent revitalisant dans les shampooings, crèmes et lotions.
Les polymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés comme dispersants dans les formulations de pigments et de colorants pour assurer une distribution uniforme des couleurs.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les peintures et revêtements à base d'eau pour améliorer l'adhérence, la flexibilité et la résistance aux facteurs environnementaux.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un composant crucial dans la formulation d'adhésifs sensibles à la pression, offrant une adhérence et une adhérence améliorées.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les superplastifiants pour le béton afin d'augmenter la fluidité sans ajouter d'eau supplémentaire.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est incorporé dans des formulations d'hydrogel pour des applications médicales et pharmaceutiques, y compris les pansements.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production de résines échangeuses d'ions pour les processus de purification et d'adoucissement de l'eau.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore la stabilité thermique et oxydative des polymères utilisés dans les applications à haute température.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation d'émulsifiants et de dispersants pour les produits chimiques agricoles, garantissant des mélanges stables.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les performances des lubrifiants et des graisses en assurant l'inhibition de la corrosion et la stabilité.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production de caoutchouc synthétique et d'élastomères, améliorant leur aptitude à la transformation et leurs performances.

Les copolymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés dans les adhésifs à base d'eau pour les applications d'emballage et de travail du bois.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sert de monomère fonctionnel dans la synthèse de polymères spéciaux dotés de propriétés spécifiques, telles que la conductivité et la biocompatibilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation d'agents antitartre pour les usines de dessalement et les tours de refroidissement.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un ingrédient clé dans la fabrication de floculants pour le traitement des eaux usées, contribuant à l'élimination des matières en suspension.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production de revêtements pour appareils électroniques, offrant résistance à l'humidité et durabilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation des encres d'imprimerie pour améliorer la viscosité et la stabilité.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les performances des scellants et des calfeutrants utilisés dans la construction, offrant une meilleure adhérence et une meilleure flexibilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les détergents et les produits de nettoyage pour améliorer leur efficacité en agissant comme agent dispersant et anti-redéposition.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la fabrication de lentilles de contact, où il aide à maintenir l'humidité et le confort.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un composant important dans la formulation des fluides de fracturation hydraulique, contribuant à l'extraction du pétrole et du gaz.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les gels et mousses coiffants pour fournir des propriétés de tenue et de conditionnement.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production de revêtements pour emballages alimentaires, améliorant les propriétés barrières et la durabilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les formulations agricoles comme amendement du sol pour améliorer la rétention d'eau et la disponibilité des nutriments.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est inclus dans la formulation des additifs antigel et liquide de refroidissement pour prévenir la corrosion et le tartre.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans l'industrie cosmétique pour ses propriétés filmogènes et de rétention d'humidité.

Les polymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés comme épaississants dans les peintures au latex, offrant de meilleures propriétés d'application et de finition.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans le traitement des eaux usées industrielles pour éliminer les métaux lourds et les contaminants organiques.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est incorporé dans les encres à base d'eau pour améliorer la qualité d'impression et la stabilité sur divers substrats.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation de revêtements ignifuges, améliorant ainsi leur efficacité et leur durabilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans l'industrie minière pour améliorer l'efficacité des processus de flottation du minerai.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production d'électrolytes en gel pour les batteries, améliorant la conductivité ionique et la stabilité.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la synthèse de membranes hydrophiles pour les processus de filtration et de séparation.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est inclus dans les formulations pharmaceutiques pour contrôler la libération des médicaments et améliorer la biodisponibilité.
Les polymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés dans la production d'adhésifs médicaux, fournissant des liaisons solides et flexibles.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation d'inhibiteurs de rouille pour la protection des métaux dans diverses applications industrielles.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la fabrication de papiers spéciaux, tels que les papiers photographiques et d'impression, pour améliorer la qualité et les performances.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation de lubrifiants pour les procédés de tréfilage et de travail des métaux.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la production d'agents imperméabilisants pour textiles, offrant durabilité et protection.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est inclus dans la formulation de matériaux de construction, tels que les coulis et les mastics, pour améliorer l'adhérence et la flexibilité.

Les polymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés dans la production de revêtements automobiles, offrant durabilité et résistance aux facteurs environnementaux.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation de nettoyants industriels, améliorant leur efficacité dans l'élimination des contaminants tenaces.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans le développement de matériaux avancés pour des applications biomédicales, telles que les systèmes d'administration de médicaments et les échafaudages d'ingénierie tissulaire.



DESCRIPTION


L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est une poudre cristalline blanche à blanc cassé.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) a la formule chimique C7H13NO4S et un poids moléculaire de 207,25 g/mol.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est connu pour sa haute solubilité dans l'eau, ce qui le rend adapté aux formulations aqueuses.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est couramment utilisé comme monomère dans la synthèse des polymères.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est largement utilisé dans l'industrie du traitement de l'eau pour ses propriétés d'inhibition du tartre.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) présente une excellente stabilité thermique et hydrolytique.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) peut copolymériser avec une large gamme de monomères vinyliques.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est souvent utilisé pour modifier les propriétés des polymères synthétiques et naturels.
Dans l'industrie pétrolière et gazière, l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est un additif essentiel dans les fluides de forage et la récupération assistée du pétrole.

La présence d'un groupe acide sulfonique dans l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) confère un caractère ionique et un caractère hydrophile élevés.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est efficace pour prévenir la formation de tartres de sulfate de calcium et de carbonate de calcium.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les propriétés de rétention d'eau des adjuvants pour béton.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans l'industrie textile pour améliorer la teinture des tissus.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) confère des propriétés antistatiques aux fibres textiles.

Dans les produits de soins personnels, l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) fonctionne comme un épaississant et un agent revitalisant.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans les polymères superabsorbants pour les produits d'hygiène comme les couches.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les propriétés mécaniques des matériaux polymères.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les performances des adhésifs et des mastics à base d'eau.
Les polymères à base d'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) sont utilisés comme dispersants dans diverses applications industrielles.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) contribue à la stabilité thermique des matériaux polymères utilisés dans des environnements à haute température.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est efficace pour stabiliser les suspensions et les émulsions.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans l'industrie papetière pour améliorer la résistance et la qualité du papier.

L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) peut former des hydrogels à haute capacité d'absorption d'eau.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est utilisé dans la formulation de revêtements et de peintures pour une adhérence et une durabilité améliorées.
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) améliore les performances et la stabilité des formulations chimiques dans diverses applications.



PROPRIÉTÉS


Aspect : Poudre cristalline blanche à blanc cassé
Formule moléculaire : C7H13NO4S
Poids moléculaire : 207,25 g/mol
Point de fusion : Environ 190-195°C (avec décomposition)
Point d'ébullition : se décompose avant l'ébullition
Densité : 1,35 g/cm³
Solubilité dans l'eau : Très soluble
Solubilité dans d'autres solvants : Peu soluble dans l'éthanol ; insoluble dans la plupart des solvants organiques
pH (en solution) : généralement acide
Odeur : Inodore
Hygroscopique : Oui



PREMIERS SECOURS


Inhalation:

Étapes immédiates :
Amenez immédiatement la personne concernée à l'air frais.
Assurez-vous qu’ils sont dans une position confortable pour respirer.

Assistance respiratoire :
Si la personne a des difficultés à respirer, fournissez-lui de l'oxygène si disponible et si elle est formée pour le faire.

Surveillance des symptômes :
Gardez un œil sur les symptômes tels que la toux, l’essoufflement ou une respiration sifflante.
Si ces symptômes persistent ou s'aggravent, consultez immédiatement un médecin.

Action d'urgence :
Si la personne ne respire pas, commencez la RCR (réanimation cardio-pulmonaire) et appelez les services médicaux d'urgence.


Contact avec la peau:

Étapes immédiates :
Retirez immédiatement tous les vêtements et accessoires contaminés pour éviter toute exposition ultérieure.

La lessive:
Rincer soigneusement la zone cutanée affectée avec beaucoup d'eau pendant au moins 15 minutes.
Utilisez du savon si disponible pour garantir l’élimination complète du produit chimique.

Surveillance des symptômes :
Recherchez des signes d'irritation cutanée, tels que des rougeurs, des démangeaisons ou une éruption cutanée.
Si une irritation persiste ou se développe, consulter un médecin.

Manipulation des vêtements :
Laver les vêtements contaminés avant de les réutiliser pour éviter tout contact ultérieur.


Lentilles de contact:

Étapes immédiates :
Rincer immédiatement les yeux à grande eau tiède pendant au moins 15 minutes.
Gardez les paupières ouvertes et déplacez le globe oculaire dans toutes les directions pour assurer un rinçage complet.

Action d'urgence :
Retirez les lentilles de contact si elles sont présentes et faciles à faire.
Continuez à rincer.

Surveillance des symptômes :
Surveillez les signes d'irritation tels que rougeur, douleur, gonflement ou vision floue.
Si l’un de ces symptômes persiste, consultez immédiatement un médecin.

Suivi :
Même en l’absence de symptômes, il est conseillé de consulter un médecin pour s’assurer qu’aucun dommage n’est survenu aux yeux.


Ingestion:

Étapes immédiates :
Ne pas faire vomir sauf indication contraire du personnel médical.

Rince-bouche :
Rincer abondamment la bouche avec de l'eau.

Attention médicale:
Consultez immédiatement un médecin, même si aucun symptôme n'est présent.

Surveillance des symptômes :
Recherchez des signes d'inconfort gastro-intestinal, tels que des nausées, des vomissements, des douleurs abdominales ou de la diarrhée.
Fournir à l’équipe médicale des informations sur le produit chimique ingéré.


MANIPULATION ET STOCKAGE

Manutention:

Équipement de protection individuelle (EPI) :
Portez un EPI approprié, notamment des gants, des lunettes de sécurité, une blouse de laboratoire et, si nécessaire, une protection respiratoire.
Assurez-vous que l’EPI est fabriqué à partir de matériaux résistants aux produits chimiques et inspectez régulièrement l’usure.

Précautions générales de manipulation :
Manipuler dans un endroit bien ventilé ou sous une hotte aspirante pour minimiser l'exposition par inhalation.
Évitez tout contact avec la peau, les yeux et les vêtements. Se laver soigneusement les mains et le visage après manipulation.
Ne pas manger, boire ou fumer dans les zones où l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est manipulé ou stocké.

Procédures en cas de déversement et de fuite :
En cas de petit déversement, utiliser un matériau absorbant approprié et l'éliminer conformément aux réglementations locales.
En cas de déversements plus importants, évacuez la zone et suivez les procédures d'urgence. Utiliser un confinement approprié pour prévenir la contamination de l'environnement.

Pratiques de travail sécuritaires :
Utiliser des hottes chimiques ou une ventilation locale appropriée pour éviter toute exposition aux vapeurs et à la poussière.
Assurez-vous que tous les conteneurs sont correctement étiquetés avec le nom du produit chimique et les avertissements de danger.

Équipements et outils :
Utilisez des outils et des équipements fabriqués à partir de matériaux compatibles avec l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) pour éviter les réactions chimiques.
Inspecter et entretenir régulièrement les équipements pour assurer leur bon fonctionnement et leur sécurité.

Formation et Documentation :
Assurez-vous que tout le personnel manipulant l’acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est formé aux techniques de manipulation appropriées, aux procédures d’urgence et à l’utilisation de l’EPI.
Tenir à jour les fiches de données de sécurité (FDS) et les rendre accessibles à tout le personnel.


Stockage:

Exigences en matière de zone de stockage :
Conservez l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) dans un endroit frais, sec et bien ventilé, à l'abri de la lumière directe du soleil, des sources de chaleur et des matériaux incompatibles.
Désignez une zone de stockage spécifique pour l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS), clairement étiquetée et réservée au personnel autorisé uniquement.

Spécifications du conteneur :
Utilisez des récipients faits de matériaux compatibles tels que le polyéthylène ou le verre. Assurez-vous qu’ils sont bien fermés pour empêcher la pénétration de l’humidité.
Inspectez régulièrement les conteneurs de stockage pour détecter tout signe de dommage ou de fuite.

Contrôle de la température:
Conservez l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) à des températures comprises entre 10 et 25 °C (50 et 77 °F) pour éviter toute dégradation.
Évitez l'exposition à des températures extrêmes qui peuvent entraîner une décomposition ou une altération des propriétés chimiques.

Humidité et contrôle de l'humidité :
L'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) est hygroscopique et doit être conservé dans un environnement à faible humidité.
Utilisez des déshydratants dans les zones de stockage pour contrôler les niveaux d’humidité.

Ségrégation:
Conservez l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) à l'écart des substances incompatibles telles que les agents oxydants forts, les acides et les bases pour éviter les réactions chimiques.
Assurer la séparation physique des aliments, des boissons et des aliments pour animaux pour éviter toute contamination.

Protection contre le feu:
Bien que l’acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) ne soit pas hautement inflammable, il est important de le stocker à l’écart des sources d’inflammation.
Équipez les zones de stockage de systèmes d’extinction d’incendie appropriés et gardez les numéros de téléphone d’urgence facilement accessibles.

Étiquetage et documentation :
Étiquetez clairement tous les conteneurs de stockage avec le nom chimique, le numéro CAS et les avertissements de danger.
Tenez un journal d’inventaire des produits chimiques stockés et mettez-le régulièrement à jour pour suivre les conditions d’utilisation et de stockage.

Procédures d'urgence:
Établissez et affichez clairement des procédures d’urgence en cas de déversements, de fuites et d’autres rejets accidentels.
Assurez-vous que les douches d’urgence et les douches oculaires sont facilement accessibles dans les zones de stockage et de manutention.

Inspection et entretien :
Effectuer des inspections régulières des zones de stockage pour garantir le respect des règles de sécurité et identifier les dangers potentiels.
Tenir des registres des inspections, de la maintenance et de tout incident pour une amélioration continue de la sécurité.

Considérations relatives à l'élimination :
Éliminez l'acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) conformément aux réglementations locales, étatiques et fédérales. Consultez la FDS pour les recommandations spécifiques d'élimination.
Ne jetez pas l’acide acrylamido-2-méthyl-1-propane sulfonique (AMPS) avec les poubelles ordinaires ou dans les égouts. Faites appel à des entreprises certifiées d’élimination des déchets pour les produits chimiques dangereux.

ACIDE ACRYLIQUE GLACIAL (GAA)
La formule moléculaire de l'acide acrylique glacial (GAA) est C3H4O2.
L'acide acrylique glacial (GAA) est un liquide clair et incolore avec une odeur âcre caractéristique.
L'acide acrylique glacial (GAA) joue un rôle de métabolite.


Numéro CAS : 79-10-7
Numéro CE : 201-177-9
Formule chimique : C3H4O2



SYNONYMES :
GAA, ACIDE ACRYLIQUE, acide 2-propénoïque, 79-10-7, acide propénoïque, acide prop-2-énoïque, acide vinylformique, acide acroléique, acide propène, acide éthylènecarboxylique, acide acrylique, acide acroléique, acide propénoïque, acide vinylformique, Acide 2-propénoïque, acide acrylique raffiné, acide acrylique de haute pureté, GAA, acide acrylique glacial, acide 2-propénoïque, acide vinyl formique, acide éthylènecarboxylique, acide méthacrylique, acide 2-propénoïque, acide 2-méthyl-, a-méthylacrylique



L'acide acrylique glacial (GAA) est un liquide clair et incolore avec une odeur âcre caractéristique.
L'acide acrylique glacial (GAA) est miscible à l'eau, aux alcools et aux éthers.
L'acide acrylique glacial (GAA) subira les réactions typiques d'un acide carboxylique, ainsi que des réactions de double liaison similaires à celles des esters acrylates.


L'acide acrylique glacial (GAA) se prête à la préparation de polymères ainsi qu'à son utilisation comme intermédiaire chimique.
Les esters acryliques, mono- et multifonctionnels, sont généralement préparés à partir d'acide acrylique.
L'acide acrylique glacial (GAA) est un liquide clair et incolore avec une odeur âcre caractéristique.


L'acide acrylique glacial (GAA) est miscible à l'eau, soluble dans la plupart des solvants organiques et présente une volatilité relativement faible.
L'acide acrylique glacial (GAA) se présente sous la forme d'un liquide incolore avec une odeur âcre distinctive.
L'acide acrylique glacial (GAA) est un liquide incolore avec une odeur âcre distinctive.


Le point d’éclair de l’acide acrylique glacial (GAA) est de 130°F.
L'acide acrylique glacial (GAA) est un acide monocarboxylique alpha, bêta-insaturé qui est un éthène substitué par un groupe carboxy.
L'acide acrylique glacial (GAA) joue un rôle de métabolite.


L'Acide Acrylique Glacial (GAA) est un liquide clair et incolore à l'odeur âcre miscible à l'eau, aux alcools et aux éthers.
L'acide acrylique glacial (GAA) est un acide monocarboxylique insaturé qui subira les réactions typiques d'un acide carboxylique ainsi que celles d'un composé vinylique.


L'acide acrylique glacial (GAA) est l'acide carboxylique le plus simple et un précurseur de nombreux autres acrylates, polymères acryliques et copolymères.
L’acide acrylique glacial (GAA) est l’élément de base de toute la chimie acrylique.
L'acide acrylique glacial (GAA) est un acide monocarboxylique insaturé.


L'acide acrylique glacial (GAA) est efficace comme composé vinylique et comme acide carboxylique.
L'acide acrylique glacial (GAA) est facilement soumis à des réactions de (co)polymérisation radiale et d'addition.
Les copolymères d'acide acrylique glacial (GAA) peuvent être préparés avec des esters (méth)acryliques, de l'acrylonitrile, de l'acétate de vinyle, du chlorure de vinyle, du styrène et d'autres monomères par toutes les technologies de polymérisation radicalaire connues.


L'acide acrylique glacial (GAA) est un monomère d'acide monocarboxylique insaturé qui est un liquide clair et incolore avec une odeur âcre miscible à l'eau, aux alcools et aux éthers.
La formule moléculaire de l'acide acrylique glacial (GAA) est C3H4O2.


L'acide acrylique glacial (GAA) est un acide acrylique de haute pureté utilisé pour une synthèse organique et un polyélectrolyte.
L'acide acrylique glacial (GAA) contient 220 ppm d'inhibiteur de MEHQ.
L'acide acrylique glacial (GAA) est un acide carboxylique insaturé disponible sous forme de liquide clair et incolore avec une odeur âcre caractéristique.


L'acide acrylique glacial (GAA) est miscible à l'eau, aux alcools et aux éthers.
L'Acide Acrylique Glacial (GAA) subit les réactions typiques d'un acide carboxylique, ainsi que des réactions de double liaison similaires à celles des esters acrylates.


L'acide acrylique glacial (GAA) est utilisé pour la préparation des polymères et comme intermédiaire chimique.
Les esters acryliques sont généralement préparés à partir d'acide acrylique.
L'acide acrylique glacial (GAA) est un liquide clair et incolore avec une odeur âcre caractéristique.


L'acide acrylique glacial (GAA) est miscible à l'eau, aux alcools et aux éthers.
L'acide acrylique glacial (GAA) subira les réactions typiques d'un acide carboxylique, ainsi que des réactions de double liaison similaires à celles des esters acrylates.


L'acide acrylique glacial (GAA) se prête à la préparation de polymères ainsi qu'à son utilisation comme intermédiaire chimique.
Les esters acryliques, mono- et multifonctionnels, sont généralement préparés à partir d'acide acrylique.
L'acide acrylique glacial (GAA) est un co-monomère d'acide carboxylique insaturé utilisé dans une large gamme de copolymères.


L'acide acrylique glacial (GAA) copolymérise facilement avec les esters acryliques et méthacryliques, l'éthylène, l'acétate de vinyle, le styrène, le butadiène, l'acrylonitrile, les esters d'acide maléique, le chlorure de vinyle et le chlorure de vinylidène.
Les copolymères qui contiennent de l'acide acrylique glacial (GAA) peuvent être solubilisés ou présenter une dispersion améliorée dans l'eau ; le fragment acide carboxylique peut être utilisé pour des réactions de couplage ou de réticulation.


L'acide acrylique glacial (GAA) est un liquide clair et incolore avec une odeur piquante et âcre.
L'acide acrylique glacial (GAA) est composé d'un groupe fonctionnel vinyle polymérisable à une extrémité et d'un groupe acide réactif à l'autre extrémité.
L'acide acrylique glacial (GAA) est miscible à l'eau, soluble dans la plupart des solvants organiques et présente une volatilité relativement faible.


La vapeur de l'acide acrylique glacial (GAA) est plus lourde que l'air.
L'acide acrylique glacial (GAA) se copolymérise facilement avec une grande variété de monomères.
Le groupe acide ajouté confère des propriétés telles que la durabilité, la résistance, l'adhérence et une Tg élevée.


Applications L'acide acrylique glacial (GAA) peut être homopolymérisé en acide polyacrylique qui est utilisé dans les super absorbants.
polymères (SAP), résines échangeuses d'ions et détergents.
L'acide acrylique glacial (GAA) peut être copolymérisé avec une variété d'autres monomères tels que le MMA, l'EHA, le VAM, le styrène et le chlorure de vinyle.
Ces produits présentent une bonne résistance aux intempéries, une bonne flexibilité, une bonne dureté et une bonne résistance à l'abrasion.



UTILISATIONS et APPLICATIONS de l’ACIDE ACRYLIQUE GLACIAL (GAA) :
L'acide acrylique glacial (GAA) est utilisé pour des finitions, des revêtements, des adhésifs, des encres, des lubrifiants, des saturants et des plastiques à base de copolymères.
L'acide acrylique glacial (GAA) est également utilisé dans la production d'une grande variété d'esters spéciaux, dans les fluides de forage et les produits chimiques de traitement des minéraux, les détergents, les produits chimiques de traitement de l'eau et les matériaux superabsorbants.


L'acide acrylique glacial (GAA) est utilisé comme polymère, intermédiaire chimique
Utilisation recommandée de l'acide acrylique glacial (GAA) : peintures et revêtements, adhésifs, détergents, traitement de l'eau, polymères super absorbants (SAP), récupération améliorée de l'huile et cirages pour sols.


L'acide acrylique glacial (GAA) est également utilisé dans la fabrication de peintures, de revêtements, d'adhésifs et de liants, de détergents, de couches et de cirages pour sols, ainsi que dans diverses applications médicales.
L'acide acrylique glacial (GAA) est largement utilisé dans les polymères super absorbants, la polymérisation par addition de macromoléculaires et de monomères pour les polyélectrolytes, la synthèse organique, les réactifs de traitement de l'eau et les produits chimiques pour la fabrication du papier comme monomère fonctionnel.


L'acide acrylique glacial (GAA) est un produit chimique qui est généralement polymérisé pour donner des émulsions et des résines à structure mécanique.
L'acide acrylique glacial (GAA) est utilisé comme matière première pour les acrylates spéciaux.
Recommandé pour l'application de l'acide acrylique glacial (GAA) dans la production de matériaux d'imprégnation et d'adhésifs.


L'acide acrylique glacial (GAA) est utilisé dans la production de polymères et d'esters d'acrylate et comme matière première pour les synthèses chimiques.
L'acide acrylique glacial (GAA) est utilisé dans les revêtements, les adhésifs, les résines solides et les composés de moulage.
L'acide acrylique glacial (GAA) possède des propriétés utiles telles que la flexibilité, une bonne résistance aux intempéries, une adhérence, une dureté et une résistance à l'abrasion et aux huiles et, en tant que tel, il est utilisé comme additif dans une large gamme de produits.


L'acide acrylique glacial (GAA) est utilisé comme additif dans une variété de finitions, revêtements, adhésifs, encres, lubrifiants, saturants et plastiques à base de copolymères.
L'acide acrylique glacial (GAA) est également utilisé dans une gamme d'esters pour des applications spécialisées telles que dans les produits chimiques de traitement de l'eau, les fluides de forage, les produits chimiques de traitement des minéraux, les adjuvants de détergents et les superabsorbants.


En tant que polymère superabsorbant (SAP), l'acide acrylique glacial (GAA) est utilisé dans la production de couches et autres produits hygiéniques.
L'acide acrylique glacial (GAA) peut également être copolymérisé avec des acrylamides, qui agissent comme floculant dans la purification de l'eau.
L'acide acrylique glacial (GAA) est une version sans eau de l'acide acrylique.


L'acide acrylique glacial (GAA) et ses acrylates sont utilisés comme composants de polymères utilisés dans les adhésifs, les revêtements, les encres, les plastiques, les élastomères, le traitement de l'eau, les soins personnels et diverses autres industries.
Applications clés de l'acide acrylique glacial (GAA) : peintures ; Revêtements ; Adhésifs; Construction; Détergents; Soins personnels; Traitements du cuir ; Produits chimiques textiles; Fabrication de résine acrylique ; Traitement de l'eau.


L'acide acrylique glacial (GAA) est couramment utilisé dans un certain nombre de produits finis tels que les finitions pour textiles, cuirs et papiers, les cirages pour sols, les plastiques, les inhibiteurs de tartre, les produits de coiffure et de finition, les peintures, les laques, les adhésifs, la peinture pour véhicules, les dispersants, les saturants. et des épaississants.
L'acide acrylique glacial (GAA) est utilisé pour produire divers esters à partir de réactions d'estérification avec de l'alcool.


L'acide polyacrylique et les copolymères d'acide acrylique glacial (GAA) sont utilisés dans les industries des pâtes et papiers, des peintures et vernis, des industries textiles, dans la production de détergents, de céramiques, de parfums et de cosmétiques, dans le traitement de l'eau, en médecine et dans la production pétrolière comme liants, agents filmogènes, épaississants, inhibiteurs de tartre, adhésifs, modificateurs de boue de forage, médicaments modificateurs, etc.


Le champ d’application de l’acide acrylique glacial (GAA) est en constante expansion.
L'acide acrylique glacial (GAA) est utilisé pour synthétiser ses esters et ses sels.
L'acide acrylique glacial (GAA) est utilisé dans la production de superabsorbants.


L'acide acrylique glacial (GAA) est utilisé dans la production de : dispersions acryliques et aqueuses, revêtements industriels et architecturaux, peintures et vernis, textiles, pâtes et papiers, revêtements de papier et de cuir, revêtements de bois et de métal, agents filmogènes, épaississants, Inhibiteurs de tartre, adhésifs, modificateurs de boue de forage, encres, calfeutrants et produits d'étanchéité, et de nombreuses autres industries…


L'acide acrylique glacial (GAA) possède des propriétés utiles telles que la flexibilité, une bonne résistance aux intempéries, une adhérence, une dureté et une résistance à l'abrasion et aux huiles et, en tant que tel, il est utilisé comme additif dans une large gamme de produits.
L'acide acrylique glacial (GAA) copolymérise facilement avec les esters acryliques et méthacryliques, l'éthylène, l'acétate de vinyle, le styrène, le butadiène, l'acrylonitrile, les esters maléiques, le chlorure de vinyle et le chlorure de vinylidène.


L'Acide Acrylique Glacial (GAA) a 2 applications principales, pour l'application polymère et pour la fabrication d'esters acryliques.
L'acide acrylique glacial (GAA) est couramment utilisé comme additif dans une variété de finitions à base de copolymères, de revêtements, d'adhésifs, d'encres, de lubrifiants, de textiles, de cuir, de finitions en papier, de cirages pour sols, de plastiques, d'inhibiteurs de tartre, de produits de coiffure et de finition, peintures, laques, plastiques, adhésifs, dispersants et épaississants.


L'acide acrylique glacial (GAA) est également utilisé dans une gamme d'esters pour des applications spécialisées telles que dans les produits chimiques de traitement de l'eau lorsqu'il est copolymérisé avec des acrylamides, dans les fluides de forage, dans les produits chimiques de traitement des minéraux, dans les détergents et dans les polymères super absorbants (SAP) pour le production de couches et de produits hygiéniques.


L'acide acrylique glacial (GAA) est utilisé pour les polymères super absorbants, le traitement de l'eau, la récupération améliorée du pétrole, les peintures et revêtements, les adhésifs et les détergents.
Les copolymères d'acide acrylique glacial (GAA) peuvent être utilisés sous la forme de leurs acides libres, sels d'ammonium ou sels alcalins dans des applications telles que des épaississants, des agents dispersants, des floculants, des colloïdes protecteurs et des dispersions de polymères, des agents mouillants, des revêtements, des adhésifs, des encres et des textiles. se termine.


L'acide acrylique glacial (GAA) est utilisé dans les industries d'un polymère super absorbant et d'une polymérisation par addition de macromolécule.
L'acide acrylique glacial (GAA) est également utilisé dans une grande variété de copolymères spécialisés dans les fluides de forage et les produits chimiques de traitement des minéraux, les polymères de traitement de l'eau et les matériaux superabsorbants.



BIENFAITS DE L'ACIDE ACRYLIQUE GLACIAL (GAA) :
* Résistance à l'humidité et à l'abrasion
* Résistance aux chocs, flexibilité, durabilité et ténacité
*Adhésion à sec



INDUSTRIES SUGGÉRÉES POUR L'ACIDE ACRYLIQUE GLACIAL (GAA) :
*Adhésifs et mastics,
*Plastiques et emballages,
*Revêtements et peintures,
*Construction et matériaux de construction



PROPRIÉTÉS IMPORTANTES DE L'ACIDE ACRYLIQUE GLACIAL (GAA) :
Les chaînes polymères résultantes portent des groupes fonctionnels qui confèrent les propriétés importantes suivantes aux produits polymères :
• Résistance aux chocs, flexibilité, durabilité, ténacité
• Résistance aux intempéries, résistance à l'humidité
• Sites de réticulation, le groupe acide réagit facilement avec les alcools, les acrylates et les styrènes.
• La dureté, l'adhérence humide et sèche et la résistance à l'abrasion sont également des propriétés des copolymères GAA.
• L'acide acrylique glacial (GAA) est également utilisé dans la fabrication de peintures, de revêtements, d'adhésifs et de liants, de détergents, de couches et de cirages pour sols, ainsi que dans diverses applications médicales.



SOLUTIONS DE SYNTHÈSE D'ACIDE ACRYLIQUE GLACIAL (GAA) :
L'acide acrylique glacial (GAA) et ses esters subissent les réactions de la double liaison qui se combinent facilement avec eux-mêmes ou avec d'autres monomères (par exemple, amides, méthacrylates, acrylonitrile, vinyle, styrène et butadiène) pour former des homopolymères ou des copolymères utilisés dans le production de revêtements, adhésifs, élastomères, polymères super absorbants, floculants, ainsi que fibres et plastiques.
Les polymères d'acrylate présentent une large gamme de propriétés dépendant du type de monomères et des conditions de réaction.



BIENFAITS DE L'ACIDE ACRYLIQUE GLACIAL (GAA) :
*Résistance aux chocs, flexibilité, durabilité, ténacité
*Résistance aux intempéries, résistance à l'humidité
*Sites de réticulation, le groupe acide réagit facilement avec les alcools, les acrylates et les styrènes
*La dureté, l'adhérence humide et sèche et la résistance à l'abrasion sont également des propriétés des copolymères GAA.



PRODUCTION D'ACIDE ACRYLIQUE GLACIAL (GAA) :
L'acide acrylique glacial (GAA) est synthétisé par l'oxydation du propène via l'acroléine.



APERÇU DU MARCHÉ DE L’ACIDE ACRYLIQUE GLACIAL (GAA) :
La taille du marché de l’acide acrylique glaciaire (GAA) devrait développer les revenus et la croissance exponentielle du marché à un TCAC remarquable au cours de la période de prévision 2023-2030.

La croissance du marché peut être attribuée à la demande croissante d’acide acrylique glacial (GAA) appartenant aux peintures et revêtements, à l’industrie textile, aux agents de traitement de l’eau, aux pâtes et papiers, au pétrole et à d’autres applications à l’échelle mondiale.
Le rapport fournit des informations sur les opportunités lucratives sur le marché de l’acide acrylique glacial (GAA) au niveau national.

Le rapport comprend également un coût précis, des segments, des tendances, une région et un développement commercial des principaux acteurs clés du monde pour la période projetée.
Le rapport sur le marché de l’acide acrylique glacial (GAA) représente des informations recueillies sur un marché au sein d’une industrie ou de diverses industries.

Le rapport sur le marché de l’acide acrylique glacial (GAA) comprend une analyse en termes de données quantitatives et qualitatives avec une période de prévision du rapport s’étendant de 2023 à 2030.



CARACTÉRISTIQUES ET AVANTAGES DE L'ACIDE ACRYLIQUE GLACIAL (GAA) :
*Hydrophilie
*Solubilité dans l'eau
*Adhésion
*Toutes propriétés rhéologiques requises



STOCKAGE ET MANUTENTION DE L'ACIDE ACRYLIQUE GLACIAL (GAA) :
L'acide acrylique glacial (GAA) polymérise facilement et est donc fourni sous forme stabilisée.
L'acide acrylique glacial (GAA) doit être stocké sous air plutôt que sous gaz inertes pour éviter une polymérisation spontanée.
La température de stockage de l'acide acrylique glacial (GAA) doit être comprise entre 15°C et 25°C.
À condition que ces conditions de stockage soient correctement maintenues, le produit peut rester stable pendant une période d’un an.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE ACRYLIQUE GLACIAL (GAA) :
Poids de la formule : 72,06 g/mol
Aspect : Liquide clair et incolore
Odeur : Piquante, âcre
Densité spécifique à 20°C : 1,051
Indice de réfraction à 25°C : 1,415
Viscosité, cps à 20°C : 1,3
Point d'ébullition à 760 mmHg : 141°C
Point de congélation : 14°C
Solubilité dans l'eau : Miscible
Tg de l'homopolymère : 87°C

Poids moléculaire : 72,06 g/mol
Aspect : Liquide incolore
Densité : 1,05 g/cm³
Indice de réfraction : 1,4224
Couleur : 20 maximum.
Analyse : 99,5 % minimum
Teneur en eau : 0,2% Max.
Inhibiteur (MEHQ) : 200 +/- 20 ppm
Odeur : Odeur âcre
Point d'ébullition : 141°C
Point de fusion : 13°C
Point d'éclair : 46°C



PREMIERS SECOURS ACIDE ACRYLIQUE GLACIAL (GAA) :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ACIDE ACRYLIQUE GLACIAL (GAA) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE ACRYLIQUE GLACIAL (GAA) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE ACRYLIQUE GLACIAL (GAA) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE ACRYLIQUE GLACIAL (GAA) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE ACRYLIQUE GLACIAL (GAA) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles

ACIDE ADIPIQUE
L'acide adipique également connu sous le nom d'acide hexane-1,6-dioïque est un acide dibasique de formule moléculaire C3H8O4, CAS 124-04-9.
L'acide adipique est légèrement soluble dans l'eau et soluble dans l'alcool et l'acétone.
L'acide adipique est l'acide dicarboxylique le plus important avec environ 2,5 milliards de kilogrammes produits chaque année et principalement utilisé comme précurseur de la production de nylon.

Numéro CAS : 124-04-9
Numéro CE : 204-673-3
Formule moléculaire : C6H10O4
Masse molaire : 146,14 g/mol

L'acide adipique, également connu sous le nom d'acide hexanedioïque, est un acide dicarboxylique.
L'acide adipique est un intermédiaire du nylon et un précurseur dans la synthèse de polyester polyols pour les systèmes polyuréthanes et les polyuréthanes thermoplastiques.
L'acide adipique est une poudre cristalline incolore.

L'acide adipique est un acide dicarboxylique organique. Disponible en différentes quantités, l'acide adipique est utilisé comme monomère dans la production de nylon.
D'autres applications incluent l'utilisation comme monomère pour la production de polyuréthane, un composant de médicaments à libération contrôlée et un additif alimentaire.

L'acide adipique, poudre blanche solide, est un composé organique très important pour l'industrie chimique actuelle.
L'acide adipique (AA), dont le numéro CAS est 124-04-9, est un acide dicarboxylique de formule : (CH2)4(COOH)2 ; pour le point de vue chimique, l'acide 1,6 hexanedioïque.

La principale application de l'acide adipique est la production de nylon par une réaction de polycondensation.
Les nylons sont produits par la réaction de monomères bifonctionnels contenant des parties égales d'amine et d'acide carboxylique.
Outre la production de nylon 6,6 ainsi que de qualités de nylon de spécialité, l'acide adipique, CAS 124-04-9, trouve de nombreuses autres applications, comme les polyols de polyester pour les polyuréthanes (PU), la fabrication de résines pour les produits en papier, les résines de polyester insaturé, la production d'adipates, de plastifiants pour le PVC et une petite part du marché est constituée d'ingrédients pour l'alimentation et les médicaments.

90% de l'acide adipique est consommé dans l'industrie pour la production de nylon par poly-condensation avec l'hexaméthylène diamine.
L'acide adipique est principalement utilisé pour la production de polymère de nylon 6,6 pour les fibres et les plastiques.

Le nylon a une structure semblable à une protéine.
L'acide adipique peut ensuite être transformé en fibres pour des applications dans les tapis (feutres), les câbles de pneus automobiles et les vêtements.

L'acide adipique peut être utilisé dans la production de composants plastifiants et lubrifiants à base d'acide adipique.
L'acide adipique peut être utilisé dans la production de polyols de polyester pour les systèmes de polyuréthane.

L'acide adipique de qualité technique peut être utilisé pour produire des plastifiants, pour ajouter de la flexibilité et pour donner de la flexibilité aux polyesters insaturés.
L'acide adipique peut être utilisé dans la production de mousses rigides et flexibles, dans la production de revêtements de fil, d'élastomères et d'adhésifs, pour augmenter la flexibilité des résines alkydes, dans la production de résines résistantes humides et dans la production de lubrifiants synthétiques et d'huiles pour l'industrie chimique du papier.

L'acide adipique, poids moléculaire 146,14, HOOCCH2CH2CH,CH2COOH, est un solide cristallin blanc avec un point de fusion d'environ 152°C.
Peu de cet acide dicarboxylique se produit naturellement, mais l'acide adipique est produit à très grande échelle à plusieurs endroits dans le monde.

La majorité de ce matériau est utilisée dans la fabrication du polyamide Nylon-6,6, qui est préparé par réaction avec la 1,6-hexanediamine.
L'acide adipique est un solide cristallin incolore, inodore et au goût aigre qui subit des réactions telles que l'estérification, l'amidation, la réduction, l'halogénation, la formation de sel et la déshydratation.

L'acide adipique subit également plusieurs réactions de polymérisation importantes sur le plan industriel.
L'acide adipique a toujours été fabriqué principalement à partir de cyclohexane.
Cependant, de nombreuses recherches continuent d'être dirigées vers des matières premières alternatives, en particulier le butadiène et le cyclohexène, comme dicté par les changements de prix des hydrocarbures.

Les réglementations sur la qualité de l'air peuvent exercer une pression supplémentaire sur les itinéraires alternatifs, car les fabricants cherchent à éviter les coûts de réduction des NOx.
Lorsqu'il est dispersé sous forme de poussière, l'acide adipique est soumis aux risques normaux d'explosion de poussière.

La matière est irritante, notamment au contact des muqueuses.
Des lunettes de protection ou des écrans faciaux doivent être portés lors de la manipulation du matériau.

Le matériau doit être stocké dans des récipients résistants à la corrosion, à l'écart des matériaux alcalins ou fortement oxydants.
L'acide adipique est un produit chimique organique à très grand volume et est l'un des 50 principaux produits chimiques produits aux États-Unis en termes de volume, bien que la demande soit très cyclique.

L'acide adipique pour le nylon représente environ 60% de la production américaine de cyclohexane.
L'acide adipique est relativement non toxique.

L'acide adipique est un acide dicarboxylique industriel important avec environ 2,5 milliards de kilogrammes produits par an.
L'acide adipique est utilisé principalement dans la production de nylon.
L'acide adipique est relativement rare dans la nature.

L'acide adipique a un goût acidulé et est également utilisé comme additif et gélifiant dans la gelée ou les gélatines.
L'acide adipique est également utilisé dans certains antiacides à base de carbonate de calcium pour les rendre acidulés.

L'acide adipique a également été incorporé dans des comprimés matriciels de formulation à libération contrôlée pour obtenir une libération indépendante du pH pour les médicaments faiblement basiques et faiblement acides.
L'acide adipique dans l'urine et dans le sang est généralement d'origine exogène et est un bon biomarqueur de la consommation de jello.

En fait, une condition connue sous le nom d'acidurie adipique est en fait un artefact de la consommation de jello.
Cependant, certains troubles (tels que le diabète et l'acidurie glutarique de type I.) peuvent entraîner des taux élevés d'acide adipique et d'autres acides dicarboxyliques (tels que l'acide subérique) dans l'urine.

De plus, l'acide adipique est également associé à un déficit en 3-hydroxy-3-méthylglutaryl-CoA lyase, un déficit en carnitine-acylcarnitine translocase, un déficit en malonyl-Coa décarboxylase et un déficit en acyl-CoA déshydrogénase à chaîne moyenne, qui sont des erreurs innées du métabolisme. .
L'acide adipique est également un métabolite microbien présent dans Escherichia.

L'acide adipique ou acide hexanedioïque est le composé organique de formule (CH2)4(COOH)2.
D'un point de vue industriel, l'acide adipique est l'acide dicarboxylique le plus important : environ 2,5 milliards de kilogrammes de cette poudre cristalline blanche sont produits chaque année, principalement comme précurseur pour la production de nylon.

L'acide adipique est par ailleurs rarement présent dans la nature, mais l'acide adipique est connu sous le nom d'additif alimentaire E355 fabriqué avec le numéro E.
Les sels et les esters de l'acide adipique sont appelés adipates.

L'acide adipique est un solide cristallin blanc.
L'acide adipique est insoluble dans l'eau.

Le principal danger est la menace pour l'environnement.
Des mesures immédiates doivent être prises pour limiter la propagation de l'acide adipique dans l'environnement.
L'acide adipique est utilisé pour fabriquer des plastiques et des mousses et pour d'autres usages.

L'acide adipique est un acide dicarboxylique aliphatique à chaîne droite, couramment utilisé dans la fabrication de nylon-6,6 et de plastifiants.
Traditionnellement, l'acide adipique était fabriqué à partir de produits pétrochimiques, mais ces derniers jours, l'acide adipique peut être synthétisé à partir de substrats renouvelables au moyen de méthodes biologiques.

L'acide adipique, ou plus formellement l'acide hexanedioïque, est un solide cristallin blanc qui fond à 152 ºC.
L'acide adipique est l'un des monomères les plus importants de l'industrie des polymères.

L'acide adipique se trouve dans le jus de betterave, mais l'article du commerce - ≈2,5 millions de tonnes d'acide adipique par an - est fabriqué.
En 1906, les chimistes français L. Bouveault et R. Locquin ont rapporté que l'acide adipique peut être produit en oxydant le cyclohexanol.
Aujourd'hui, le procédé de fabrication le plus courant est l'oxydation à l'acide nitrique (HNO3) d'un mélange cyclohexanol-cyclohexanone appelé huile KA (pour cétone-alcool).

Presque tout l'acide adipique est utilisé comme comonomère avec l'hexaméthylènediamine pour produire le nylon 6-6.
L'acide adipique est également utilisé pour fabriquer d'autres polymères tels que les polyuréthanes.

L'utilisation de HNO3 pour produire de l'acide adipique a ses inconvénients : de grandes quantités d'oxyde nitreux (N2O), un gaz à effet de serre, sont coproduites et rejetées dans l'atmosphère.
Fin 2014, KC Hwang et A. Sagadevan de l'Université nationale Tsing Hua (ville de Hsinchu, Taïwan) ont signalé un processus qui utilise l'ozone et la lumière ultraviolette (UV) pour oxyder l'huile KA en acide adipique.

Cette méthode élimine la production de N2O.
Mais avant que le procédé puisse être utilisé commercialement, les problèmes associés à la formation de peroxydes organiques à partir de l'ozone et la difficulté d'utiliser la lumière UV à grande échelle doivent être surmontés.

Applications de l'acide adipique :
L'acide adipique est utilisé pour fabriquer du nylon, des mousses de polyuréthane, des lubrifiants et des plastifiants.
L'acide adipique est utilisé dans les adhésifs, la levure chimique et les arômes alimentaires.

Les principaux marchés de l'acide adipique comprennent l'utilisation comme matières premières pour les résines et les fibres de nylon 6,6, les polyols de polyester et les plastifiants.
Les applications documentées de l'acide adipique sont comme additif lubrifiant dans les revêtements, les mousses et les semelles de chaussures, comme agent de tannage dans l'industrie du cuir, comme régulateur de pH dans des processus tels que la fabrication d'agents de nettoyage, comme agent de granulation dans les pilules désinfectantes à boire. l'eau, comme additif dans la sulfatation des fumées, dans les pastilles lave-vaisselle.

L'acide adipique est utilisé comme additif dans les revêtements et les produits chimiques.
L'acide adipique est utilisé comme acidulant dans les mélanges alimentaires en poudre sèche, en particulier dans les produits aux saveurs délicates et où l'ajout d'un piquant à la saveur n'est pas souhaitable.

L'ajout d'acide adipique aux aliments donne un goût onctueux et acidulé.
Dans les produits aromatisés au raisin, l'acide adipique ajoute une saveur supplémentaire persistante et donne un excellent ensemble aux poudres alimentaires contenant de la gélatine.

Pour des concentrations d'acide adipique comprises entre 0,5 et 2,4 g/100 ml, le pH varie de moins d'une demi-unité.
Le pH est suffisamment bas pour empêcher le brunissement de la plupart des fruits et autres denrées alimentaires.

L'acide adipique peut être utilisé comme matière première dans la préparation de :
Polyesters aliphatiques par réaction avec éthylèneglycol/1,3 propylèneglycol/1,4-butanediol en utilisant un acide inorganique comme catalyseur.
Cyclopentanone utilisant une base faible telle que Na2CO3.
Adipate de polybutylène linéaire (PBA) ayant des acides carboxyliques aux extrémités par réaction avec du 1,4-butanediol.

Utilisations de l'acide adipique :
Plus de 92% de la production d'acide adipique est dédiée à la production de nylon 6,6 par réaction avec HMD Hexaméthylène diamine.
L'acide adipique est utilisé dans le nylon est utilisé dans les fibres, les vêtements, les plastiques, les filaments, les emballages alimentaires.

L'acide adipique est également utilisé dans les résines de polyuréthane, la mousse, les semelles de chaussures et comme additif alimentaire.
Les esters d'acide adipique sont utilisés comme plastifiants pour les résines de PVC (chlorure de polyvinyle) et comme composant lubrifiant.

L'acide adipique est l'un des plus grands distributeurs de produits chimiques en Europe.
L'acide adipique gère les formalités de stockage, de transport, d'exportation et d'importation de l'acide adipique dans le monde.

Environ 60% des 2,5 milliards de kg d'acide adipique produits annuellement sont utilisés comme monomère pour la production de nylon par une réaction de polycondensation avec l'hexaméthylène diamine formant le nylon 66.
D'autres applications majeures concernent également les polymères ; L'acide adipique est un monomère pour la production de polyuréthane et les esters d'acide adipique sont des plastifiants, en particulier dans le PVC.

En médecine:
L'acide adipique a été incorporé dans des comprimés matriciels de formulation à libération contrôlée pour obtenir une libération indépendante du pH pour les médicaments faiblement basiques et faiblement acides.
L'acide adipique a également été incorporé dans le revêtement polymère de systèmes monolithiques hydrophiles pour moduler le pH intragel, entraînant une libération d'ordre zéro d'un médicament hydrophile.

Il a été rapporté que la désintégration au pH intestinal de la gomme laque polymère entérique s'améliorait lorsque l'acide adipique était utilisé comme agent porogène sans affecter la libération dans le milieu acide.
D'autres formulations à libération contrôlée ont inclus de l'acide adipique dans le but d'obtenir un profil de libération tardive.

Dans les aliments :
Des quantités faibles mais significatives d'acide adipique sont utilisées comme ingrédient alimentaire en tant qu'agent aromatisant et gélifiant.
L'acide adipique est utilisé dans certains antiacides à base de carbonate de calcium pour les rendre acidulés.

En tant qu'acidulant dans les poudres à lever, l'acide adipique évite les propriétés hygroscopiques indésirables de l'acide tartrique.
L'acide adipique, rare dans la nature, est naturellement présent dans les betteraves, mais ce n'est pas une source économique pour le commerce par rapport à la synthèse industrielle.

Autres utilisations de l'acide adipique :
Boissons alcoolisées,
Produits de boulangerie,
Assaisonnement,
Délices,
graisses,
Huiles,
Gélatines,
Pudding,
Sauces,
Imitation laitière,
Café instantané,
Thé,
Produits carnés,
Boissons non alcoolisées,
La volaille,
En-cas,
Adhésifs et scellants,
résines alkydes,
Poutre,
Porteur de parfums,
Charbon,
Protection des cultures,
Protection de l'environnement,
Désulfuration des gaz,
Durcisseurs et réticulants pour polymères,
Fabrication de revêtement,
Fabrication de matières colorantes,
Fabrication de fibres,
Fabrication d'herbicides,
Fabrication d'agents pharmaceutiques,
Fabrication de produits photochimiques,
Fabrication de matières plastiques,
Fabrication de tensioactifs,
Fabrication de teintures textiles,
Fabrication de colorants textiles,
Fabrication de papier,
Plastifiants pour polymères,
Polyester,
Résines polyesters,
Auxiliaires polymères,
Trempage,
Lubrifiants synthétiques,
Colorants textiles.

Production d'acide adipique :
L'acide adipique est un composé cristallin blanc principalement obtenu par oxydation du cyclohexanol et de la cyclohexanone avec de l'acide nitrique.
Une méthode alternative de production d'acide adipique est l'hydrocarbylation du butadiène, clivage par oxydation du cyclohexène.

Méthodes de fabrication de l'acide adipique :
Des procédés commercialement importants emploient deux étapes de réaction principales.
La première étape de la réaction est la production des intermédiaires cyclohexanone et cyclohexanol, généralement abrégés en KA, huile KA, ol-one ou anone-anol.
Le KA (cétone, alcool), après séparation du cyclohexane n'ayant pas réagi (qui est recyclé) et des sous-produits de réaction, est ensuite transformé en acide adipique par oxydation avec de l'acide nitrique.

Le cyclohexane est produit par l'oxydation du cyclohexanol ou de la cyclohexanone avec de l'air ou de l'acide nitrique.

Préparation et réactivité de l'acide adipique :
L'acide adipique est produit à partir d'un mélange de cyclohexanone et de cyclohexanol appelé huile KA, abréviation d'huile cétone-alcool.
L'huile KA est oxydée avec de l'acide nitrique pour donner de l'acide adipique, via une voie en plusieurs étapes.

Au début de la réaction, le cyclohexanol est converti en cétone, libérant de l'acide nitreux :
HOC6H11 + HNO3 → OC(CH2)5 + HNO2 + H2O

Parmi les nombreuses réactions de l'acide adipique, la cyclohexanone est nitrosée, ouvrant la voie à la scission de la liaison CC :
HNO2 + HNO3 → NO+NO3− + H2O
OC6H10 + NO+ → OC6H9-2-NO + H+

Les sous-produits du procédé comprennent les acides glutarique et succinique.
L'oxyde nitreux est également produit dans un rapport molaire d'environ un à un par rapport à l'acide adipique, par l'intermédiaire d'un acide nitrolique.

Les procédés apparentés partent du cyclohexanol, qui est obtenu à partir de l'hydrogénation du phénol.

Méthodes de production alternatives :
Plusieurs méthodes ont été développées par carbonylation du butadiène.

Par exemple, l'hydrocarboxylation se déroule comme suit :
CH2=CH−CH=CH2 + 2 CO + 2 H2O → HO2C(CH2)4CO2H

Une autre méthode est le clivage oxydatif du cyclohexène à l'aide de peroxyde d'hydrogène.
Le déchet est l'eau.

Historiquement, l'acide adipique était préparé par oxydation de diverses graisses, d'où son nom (en fin de compte du latin adeps , adipis - «graisse animale»; cf. tissu adipeux ).

Réactions :
L'acide adipique est un acide dibasique (l'acide adipique a deux groupes acides).
Les valeurs de pKa pour leurs déprotonations successives sont de 4,41 et 5,41.

Avec les groupes carboxylate séparés par quatre groupes méthylène, l'acide adipique est adapté aux réactions de condensation intramoléculaire.
Lors d'un traitement avec de l'hydroxyde de baryum à des températures élevées, l'acide adipique subit une cétonisation pour donner de la cyclopentanone.

Environnement de l'acide adipique :
La production d'acide adipique est liée aux émissions de N2O, un puissant gaz à effet de serre et cause de l'appauvrissement de la couche d'ozone stratosphérique.

Chez les producteurs d'acide adipique DuPont et Rhodia (maintenant respectivement Invista et Solvay), des procédés ont été mis en place pour convertir catalytiquement le protoxyde d'azote en produits inoffensifs :
2 N2O → 2 N2 + O2

Sels adipates et esters :
Les formes anionique (HO2C(CH2)4CO2−) et dianionique (−O2C(CH2)4CO2−) de l'acide adipique sont appelées adipates.
Un composé adipate est un sel carboxylate ou un ester de l'acide.

Certains sels d'adipate sont utilisés comme régulateurs d'acidité, notamment :
Adipate de sodium (numéro E E356)
Adipate de potassium (E357)

Certains esters adipates sont utilisés comme plastifiants, notamment :
Adipate de bis(2-éthylhexyle)
Adipate de dioctyle
Adipate de diméthyle

Informations sur les métabolites humains de l'acide adipique :

Emplacements des tissus :
Rein
Foie

Manipulation et stockage de l'acide adipique :

Intervention en cas de déversement sans incendie :
Ne pas toucher ou marcher sur le produit déversé.
Arrêtez la fuite si vous pouvez faire de l'acide adipique sans risque.

Empêche le nuage de poussière.
Pour l'amiante, éviter l'inhalation de poussière.

Couvrir le déversement avec une feuille de plastique ou une bâche pour minimiser la propagation.
Ne pas nettoyer ni jeter, sauf sous la supervision d'un spécialiste.

PETIT DÉVERSEMENT SEC :
Avec une pelle propre, placez le matériau dans un récipient propre et sec et couvrez sans serrer.
Déplacer les conteneurs de la zone de déversement.

PETIT DÉVERSEMENT :
Ramasser avec du sable ou un autre matériau absorbant non combustible et placer dans des conteneurs pour une élimination ultérieure.

GRAND DÉVERSEMENT :
Endiguer loin devant le déversement liquide pour une élimination ultérieure.
Couvrir le déversement de poudre avec une feuille de plastique ou une bâche pour minimiser la propagation.
Empêcher l'entrée dans les cours d'eau, les égouts, les sous-sols ou les zones confinées.

Conditions de stockage de l'acide adipique :

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.

Classe de stockage (TRGS 510) :
Solides non combustibles.

Sécurité de l'acide adipique :
L'acide adipique, comme la plupart des acides carboxyliques, est un irritant cutané léger.
L'acide adipique est légèrement toxique, avec une dose létale médiane de 3600 mg/kg pour l'ingestion orale par des rats.

Mesures de premiers soins de l'acide adipique :

Notes générales:
Enlever les vêtements contaminés.

Après inhalation :
Fournir de l'air frais.
Dans tous les cas de doute, ou lorsque les symptômes persistent, consulter un médecin.

Après contact avec la peau :
Rincer la peau à l'eau/se doucher.
Dans tous les cas de doute, ou lorsque les symptômes persistent, consulter un médecin.

Suite à un contact visuel :
Rincer abondamment à l'eau claire et fraîche pendant au moins 10 minutes en maintenant les paupières écartées.
En cas d'irritation des yeux consulter un ophtalmologiste.

Après ingestion :
Rincer la bouche.
Appelez un médecin si vous ne vous sentez pas bien.

INHALATION:
Transporter la victime à l'air frais.
Consulter un médecin si l'irritation persiste.

YEUX:
Rincer à l'eau pendant au moins 15 min.

PEAU:
Rincer à l'eau.

Lutte contre l'incendie de l'acide adipique :

PETIT FEU:
Poudre chimique sèche, CO2, eau pulvérisée ou mousse ordinaire.

GRAND INCENDIE :
Eau pulvérisée, brouillard ou mousse régulière.
Ne pas disperser le produit déversé avec des jets d'eau à haute pression.

Si l'acide adipique peut être fait en toute sécurité, éloignez les récipients non endommagés de la zone autour du feu.
Endiguer les eaux de ruissellement du contrôle des incendies pour une élimination ultérieure.

INCENDIE IMPLIQUANT DES RÉSERVOIRS :
Refroidir les conteneurs avec de grandes quantités d'eau jusqu'à ce que le feu soit éteint.
Retirer immédiatement en cas de bruit montant provenant des dispositifs de sécurité de ventilation ou de décoloration du réservoir.
Restez TOUJOURS à l'écart des réservoirs engloutis par le feu.

Procédures de lutte contre l'incendie de l'acide adipique :

Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistant à l'alcool, de la poudre chimique sèche ou du dioxyde de carbone.
Porter un appareil respiratoire autonome pour la lutte contre l'incendie si nécessaire.

Arrêtez la décharge si possible, éloignez les gens.
Fermer les sources d'ignition.

Appelez les pompiers.
Éviter le contact avec les solides et la poussière.
Isoler et enlever le matériel déchargé.

Si matière en feu ou impliquée dans un incendie :
Utiliser de l'eau en quantité suffisante sous forme de brouillard.
Des jets d'eau solides peuvent propager un incendie.

Refroidir tous les contenants touchés avec de grandes quantités d'eau.
Appliquez de l'eau d'aussi loin que possible.
Utiliser de la mousse, de la poudre chimique sèche ou du dioxyde de carbone.

Mesures de libération accidentelle d'acide adipique :

Isolement et évacuation :

MESURE DE PRECAUTION IMMEDIATE :
Isoler la zone de déversement ou de fuite dans toutes les directions sur au moins 50 mètres (150 pieds) pour les liquides et au moins 25 mètres (75 pieds) pour les solides.

RÉPANDRE:
Augmentez la distance de mesure de précaution immédiate, dans la direction sous le vent, si nécessaire.

FEU:
Si une citerne, un wagon ou un camion-citerne est impliqué dans un incendie, ISOLER sur 800 mètres (1/2 mile) dans toutes les directions.
Envisagez également une évacuation initiale sur 800 mètres (1/2 mile) dans toutes les directions.

Élimination des déversements d'acide adipique :
Balayer la substance déversée dans des récipients en plastique couverts.
Le cas échéant, humidifiez d'abord pour éviter la formation de poussière.
Laver le reste avec beaucoup d'eau.

Méthodes de nettoyage de l'acide adipique :

Précautions individuelles, équipement de protection et procédures d'urgence :
Utiliser un équipement de protection individuelle.
Éviter la formation de poussière.

Éviter de respirer les vapeurs, les brouillards ou les gaz.
Assurer une ventilation adéquate.

Évacuer le personnel vers des zones sûres.
Éviter de respirer la poussière.

Précautions environnementales:
Empêcher d'autres fuites ou déversements si cela est possible en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l'environnement doit être évité.

Méthodes et matériel de confinement et de nettoyage :
Ramassez et organisez l'élimination sans créer de poussière.
Balayer et pelleter.
Gardez à récipients adaptés et fermés pour l'élimination.

Considérations environnementales - déversement sur le sol :
Creusez une fosse, un étang, une lagune ou une zone de rétention pour contenir les matières liquides ou solides.
Si le temps le permet, les fosses, les étangs, les lagunes, les puisards ou les zones de rétention doivent être scellés avec une membrane souple imperméable.
Couvrir les solides d'une feuille de plastique pour éviter qu'ils ne se dissolvent sous la pluie ou l'eau d'extinction d'incendie.

Considérations environnementales - déversement d'eau :
Utilisez des poches d'eau profonde naturelles, des lagunes excavées ou des barrières de sacs de sable pour piéger les matériaux au fond.
S'il est dissous, dans une région de concentration de 10 ppm ou plus, appliquer du charbon actif à dix fois la quantité déversée.

Retirez le matériau piégé avec des tuyaux d'aspiration.
Utiliser des dragues mécaniques ou des ascenseurs pour enlever les masses immobilisées de polluants et de précipités.

Des mesures électrochimiques ont été effectuées sur le système Cu(2+), acide adipique, acide nitrique (qui modélise les effluents des usines d'acide adipique) pour étudier les raisons de la faible efficacité de courant observée pour le dépôt de cuivre à partir d'une telle solution.
La cause la plus probable est un déplacement cathodique du potentiel de dépôt du cuivre faisant de la réduction du NO3- le processus préféré.

Des expériences de déplétion ont été réalisées sur des effluents réels dans deux cellules tridimensionnelles, une tour à ruissellement bipolaire et un lit de carbone réticulé poreux.
Chacun fonctionne raisonnablement bien et, bien que les rendements de courant soient faibles (environ 20 %), le dépôt est essentiellement contrôlé par transfert de masse.

Agents neutralisants pour acides et caustiques :
Rincer avec une solution diluée de carbonate de soude.

Identifiants de l'acide adipique :
Numéro CAS : 124-04-9
Référence Beilstein : 1209788
ChEBI:CHEBI:30832
ChEMBL : ChEMBL1157
ChemSpider : 191
InfoCard ECHA : 100.004.250
Numéro CE : 204-673-3
Numéro E : E355 (antioxydants, ...)
Référence Gmelin : 3166
KEGG : D08839
PubChem CID : 196
Numéro RTECS : AU8400000
UNII : 76A0JE0FKJ
Numéro ONU : 3077
Tableau de bord CompTox (EPA) : DTXSID7021605

InChI :
InChI=1S/C6H10O4/c7-5(8)3-1-2-4-6(9)10/h1-4H2,(H,7,8)(H,9,10)
Clé : WNLRTRBMVRJNCN-UHFFFAOYSA-N
InChI=1/C6H10O4/c7-5(8)3-1-2-4-6(9)10/h1-4H2,(H,7,8)(H,9,10)
Clé : WNLRTRBMVRJNCN-UHFFFAOYAY

SOURIRES :
O=C(O)CCCCC(=O)O
C(CCC(=O)O)CC(=O)O

Numéro CAS : 124-04-9
Numéro d'index CE : 607-144-00-9
Numéro CE : 204-673-3
Formule de Hill : C₆H₁₀O₄
Masse molaire : 146,14 g/mol
Code SH : 2917 12 00

Numéro CAS : 124-04-9
Poids moléculaire : 146,14
Belstein : 1209788
Numéro CE : 204-673-3
Numéro MDL : MFCD00004420
eCl@ss : 39021711
ID de la substance PubChem : 57653836
NACRES : NA.21

CAS : 124-04-9
Formule moléculaire : C6H10O4
Poids moléculaire (g/mol) : 146,142
Numéro MDL : MFCD00004420
Clé InChI : WNLRTRBMVRJNCN-UHFFFAOYSA-N
PubChem CID : 196
ChEBI:CHEBI:30832
Nom IUPAC : acide hexanedioïque
SOURIRES : C(CCC(=O)O)CC(=O)O

Propriétés de l'acide adipique :
Formule chimique : C6H10O4
Masse molaire : 146,142 g·mol−1
Apparence : Cristaux blancs[1]
Prismes monocliniques[2]
Odeur : Inodore
Densité : 1.360 g/cm3
Point de fusion : 152,1 ° C (305,8 ° F; 425,2 K)
Point d'ébullition : 337,5 ° C (639,5 ° F; 610,6 K)
Solubilité dans l'eau : 14 g/L (10 °C)
24 g/L (25 °C)
1600 g/L (100 °C)
Solubilité : Très soluble dans le méthanol, l'éthanol
soluble dans l'acétone, l'acide acétique
légèrement soluble dans le cyclohexane
négligeable dans le benzène, l'éther de pétrole
log P : 0,08
Pression de vapeur : 0,097 hPa (18,5 °C) = 0,073 mmHg
Acidité (pKa) : 4,43, 5,41
Base conjuguée : Adipate
Viscosité : 4,54 cP (160 °C)

Densité : 1,36 g/cm3 (25 °C)
Point d'éclair : 196 °C
Température d'inflammation : 405 °C
Point de fusion : 150,85 °C
Valeur pH : 2,7 (23 g/l, H₂O, 25 °C)
Pression de vapeur : 0,097 hPa (18,5 °C)
Densité apparente : 700 kg/m3
Solubilité : 15 g/l

Propriétés générales : cristaux blancs solides
Odeur : Inodore
Intensité : 1.360 g/cm3
Point d'ébullition : 337,5°C
Point de fusion : 152,1 °C
Point d'éclair : 196°C
Pression de vapeur : 0,0073 mmHg (18,5 °C)
Indice de réfraction : –
Solubilité (aqueuse) : 14g/L (10°C), 1600 g/L (100°C)

Densité de vapeur : 5 (vs air)
Niveau de qualité : 200
Pression de vapeur : 1 mmHg ( 159,5 °C)
Dosage : 99 %
Forme : cristaux
Température d'auto-inflammation : 788 °F
point d'ébullition : 265 °C/100 mmHg (lit.)
pf : 151-154 °C (lit.)
Solubilité : H2O : soluble 23 g/L à 25 °C
Chaîne SMILES : OC(=O)CCCCC(O)=O
InChI : 1S/C6H10O4/c7-5(8)3-1-2-4-6(9)10/h1-4H2,(H,7,8)(H,9,10)
Clé InChI : WNLRTRBMVRJNCN-UHFFFAOYSA-N

Poids moléculaire : 146,14
XLogP3 : 0,1
Nombre de donneurs d'obligations hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4
Nombre d'obligations rotatives : 5
Masse exacte : 146,05790880
Masse monoisotopique : 146,05790880
Surface polaire topologique : 74,6 Ų
Nombre d'atomes lourds : 10
Complexité : 114
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

Spécifications de l'acide adipique :
Dosage (acidimétrique) : ≥ 99,0 %
Intervalle de fusion (valeur inférieure) : ≥ 150 °C
Intervalle de fusion (valeur supérieure) : ≤ 154 °C
Identité (IR) : test réussi

Point de fusion : 151,0 °C à 153,0 °C
Point d'ébullition : 337,0 °C
CAS Min % : 98,5
CAS Max % : 100,0
Couleur blanche
Plage de pourcentage de dosage : 99 %
Formule linéaire : HO2C(CH2)4CO2H
Beilstein: 02, 649
Plus: 01,15
Indice Merck : 15, 150
Poids de la formule : 146,14
Pourcentage de pureté : 99 %
Quantité : 500 g
Point d'éclair : 196 °C
Spectre Infrarouge : Authentique
Conditionnement : Flacon plastique
Forme Physique : Poudre Cristalline
Nom chimique ou matière : Acide adipique

Structure de l'acide adipique :
Structure cristalline : Monoclinique

Thermochimie de l'acide adipique :
Enthalpie standard de formation (ΔfH⦵298) : −994,3 kJ/mol[3

Produits connexes de l'acide adipique :
Chlorhydrate d'hydroxynorkétamine-d6
Chlorhydrate de (S)-kétamine-d6
Norkétamine-d4
Chlorhydrate de S-(-)-norkétamine-d6
Chlorhydrate de phencyclidine-d5

Composés apparentés de l'acide adipique :

Acides dicarboxyliques apparentés :
acide glutarique
acide pimélique

Composés apparentés:
acide hexanoïque
dihydrazide d'acide adipique
dichlorure d'hexanedioyle
hexanedinitrile
hexanediamide

Noms de l'acide adipique :

Nom IUPAC préféré :
Acide hexanedioïque

Autres noms:
Acide adipique
Acide butane-1,4-dicarboxylique
Acide hexane-1,6-dioïque
acide 1,4-butanedicarboxylique

Synonymes d'acide adipique :
acide adipique
acide hexanedioïque
124-04-9
Acide adipinique
Acide 1,4-butanedicarboxylique
Adilacteten
Acifloctine
Acinetten
Acide 1,6-hexanedioïque
Acide adipique fondu
Kysélina Adipova
Adipinsaure [Allemand]
Acide adipique [Français]
FEMA n° 2011
Kyselina adipova [Tchèque]
Hexanedioate
Adipinsaure
acide adipique
Acide adipidique
Adi-pur
NSC 7622
Acide adipique [NF]
NSC-7622
Hexane-1,6-dicarboxylate
76A0JE0FKJ
Acide hexanedioque
N° SIN 355
ACIDE 1,6-HEXANE-DIOIQUE
E-355
CHEBI:30832
INS-355
NSC7622
Acide adipique (NF)
NCGC00091345-01
E355
acide hexane-1,6-dioïque
Adipinsaure
Acide adipique
Numéro FEMA 2011
CAS-124-04-9
CCRIS 812
HSDB 188
EINECS 204-673-3
MFCD00004420
UNII-76A0JE0FKJ
BRN 1209788
Adipinate
Adipate fondu
AI3-03700
acide hexane dioïque
1,6-hexanedioate
0L1
Acide adipique, 99%
Flocons de néopentyl glycol
Acide adipique-[13C6]
Acide 1, 6-hexanedioïque
Acide adipique, >=99%
ACIDE ADIPIQUE [II]
ACIDE ADIPIQUE [MI]
WLN : QV4VQ
ACIDE ADIPIQUE [FCC]
bmse000424
EC 204-673-3
ACIDE ADIPIQUE [FHFI]
ACIDE ADIPIQUE [HSDB]
ACIDE ADIPIQUE [INCI]
SCHEMBL4930
CHEMBL1157
NCIOpen2_001004
NCIOpen2_001222
HOOC-(CH2)4-COOH
ACIDE ADIPIQUE [MART.]
Acide adipique, >=99.5%
4-02-00-01956 (Référence du manuel Beilstein)
ACIDE ADIPIQUE [USP-RS]
ACIDE ADIPIQUE [OMS-DD]
OFFRE : ER0342
N° SIN 355
DTXSID7021605
Acide adipique, pur., 99,8 %
Pharmakon1600-01301012
ACIDE ADIPIQUE [MONOGRAPHIE EP]
ZINC1530348
Tox21_111118
Tox21_202161
Tox21_300344
BBL011615
LMFA01170048
NSC760121
s3594
STL163338
AKOS000119031
Tox21_111118_1
GCC-230896
CS-W018238
HY-W017522
NSC-760121
NCGC00091345-02
NCGC00091345-03
NCGC00091345-04
NCGC00091345-05
NCGC00254389-01
NCGC00259710-01
AC-10343
BP-21150
BP-30248
Acide hexanedioïque, acide butanedicarboxylique
A0161
Acide adipique, BioXtra, >=99.5% (HPLC)
Acide adipique, grade spécial SAJ, >=99,5 %
E 355
FT-0606810
EN300-18041
Acide adipique, qualité réactif Vetec(TM), >=99%
C06104
D08839
D70505
AB00988898-01
AB00988898-03
Q357415
SR-01000944270
J-005034
J-519542
SR-01000944270-2
Z57127533
Acide adipique, matériau de référence certifié, TraceCERT(R)
F0001-0377
Acide adipique, étalon de référence de la Pharmacopée européenne (EP)
1F1316F2-7A32-4339-8C2A-8CAA84696C95
Acide adipique, étalon de référence de la pharmacopée des États-Unis (USP)
124-04-9 [RN]
204-673-3 [EINECS]
Acide adipique [Français] [ACD/IUPAC Name]
Acide adipique [ACD/IUPAC Name] [Wiki]
Adipinsäure [Allemand] [Nom ACD/IUPAC]
Asapique
Acide hexanedioïque [ACD/Nom de l'index]
Inipol DS
kwas adypinowy [polonais]
kyselina adipová [Tchèque]
MFCD00004420 [numéro MDL]
acide 1,4-butanedicarboxylique
ACIDE 1,6-HEXANEDIOIQUE
ACIDE 1,6-HEXANE-DIOIQUE
121311-78-2 [RN]
19031-55-1 [RN]
Acide 2-oxoadipique
52089-65-3 [RN]
Acifloctine
Acinetten
Adilacteten
Acide adipique FCC
acide adipique
acide adipinique
Acide butane-1,4-dicarboxylique
ACIDE BUTANEDICARBOXYLIQUE
Acide hexanedioïque-3,3,4,4-d4
hydron [Wiki]
QV4VQ [WLN]
ACIDE ALIMENTAIRE 327
L'acide alimentaire 327 est un sel cristallin blanc de formule C6H10CaO6, composé de deux anions lactate H3C(CHOH)CO−2 pour chaque cation calcium Ca2+.
L'acide alimentaire 327 est un additif alimentaire généralement ajouté à une grande variété d'aliments pour améliorer leur texture et leur saveur ou contribuer à prolonger leur durée de conservation.
Le numéro E de l’acide alimentaire 327 est E327.

Numéro CAS : 814-80-2
Numéro CE : 212-406-7
Formule moléculaire : C6H10CaO6
Masse moyenne : 218.218 Da

L'acide alimentaire 327 est un sel cristallin blanc de formule C6H10CaO6, composé de deux anions lactate H3C(CHOH)CO−2 pour chaque cation calcium Ca2+.
L'acide alimentaire 327 forme plusieurs hydrates, le plus courant étant le pentahydrate C6H10CaO6·5H2O.

L'acide alimentaire 327 est utilisé en médecine, principalement pour traiter les carences en calcium ; et comme additif alimentaire avec le numéro E de E327.
Certains cristaux de fromage sont constitués d'acide alimentaire 327.

L'acide alimentaire 327 est un additif alimentaire généralement ajouté à une grande variété d'aliments pour améliorer leur texture et leur saveur ou contribuer à prolonger leur durée de conservation.
L'acide alimentaire 327 peut également être utilisé comme ingrédient dans des médicaments ou dans certains types de suppléments de calcium.

L'acide alimentaire 327 est un sel cristallin noir ou blanc obtenu par l'action de l'acide lactique sur le carbonate de calcium.
L'acide alimentaire 327 est utilisé dans les aliments (comme ingrédient dans la levure chimique) et administré en médecine.

Le numéro E de l’acide alimentaire 327 est E327.
L'acide alimentaire 327 est créé par la réaction de l'acide lactique avec du carbonate de calcium ou de l'hydroxyde de calcium.

L'acide alimentaire 327 se trouve souvent dans les fromages affinés.
De petits cristaux d'acide alimentaire 327 précipitent lorsque l'acide lactique est transformé en une forme moins soluble par les bactéries actives pendant le processus de maturation.

En médecine, l'acide alimentaire 327 est le plus couramment utilisé comme antiacide et également pour traiter les carences en calcium.
L'acide alimentaire 327 peut être absorbé à différents pH et n'a pas besoin d'être pris avec de la nourriture pour être absorbé pour ces raisons.

L'acide alimentaire 327 est ajouté aux aliments sans sucre pour prévenir la carie dentaire.
Lorsqu'il est ajouté à un chewing-gum contenant du xylitol, l'Acide alimentaire 327 augmente la reminéralisation de l'émail des dents.
L'acide alimentaire 327 est également ajouté aux fruits fraîchement coupés tels que les cantaloups pour les garder fermes et prolonger leur durée de conservation, sans le goût amer provoqué par le chlorure de calcium, qui peut également être utilisé à cette fin.

L'acide alimentaire 327 est un sel de calcium.
L'acide alimentaire 327 est une forme de calcium moins concentrée et semble être moins biodisponible que les autres formes de calcium supplémentaire.

Cela signifie que l'acide alimentaire 327 est moins disponible pour être absorbé et utilisé par votre corps.
Pour cette raison, l’acide alimentaire 327 n’est pas la forme la plus pratique de supplément de calcium oral.

L'acide alimentaire 327 est souvent utilisé comme additif alimentaire pour augmenter la teneur en calcium des aliments, remplacer d'autres sels ou augmenter le pH global (c'est-à-dire diminuer l'acidité) de l'aliment.

Cet article examine le supplément Food acid 327 et ce que dit la recherche sur les bienfaits pour la santé de Food acid 327.
L'acide alimentaire 327 traite également des effets secondaires, de la posologie et d'autres options de suppléments de calcium.

L'acide alimentaire 327 est un sel composé de deux anions lactate pour chaque cation calcium (Ca2+).
L'acide alimentaire 327 est préparé commercialement par neutralisation de l'acide lactique avec du carbonate de calcium ou de l'hydroxyde de calcium.

Approuvé par la FDA en tant que substance alimentaire directe, généralement reconnue comme sûre, l'acide alimentaire 327 est utilisé comme agent raffermissant, agent aromatisant, agent levant, stabilisant et épaississant.
L'acide alimentaire 327 se trouve également dans les compléments alimentaires quotidiens comme source de calcium.
L'acide alimentaire 327 est également disponible sous diverses formes d'hydrates, l'acide alimentaire 327 pentahydraté étant le plus courant.

Food acid 327 est un comprimé végétalien sans produits laitiers qui aide à maintenir une densité osseuse saine.
L'acide alimentaire 327 est une excellente source de calcium et une bonne source de magnésium.

La conversion de l'acide alimentaire 327 en acide lactique se fait généralement avec de l'acide sulfurique, entraînant ainsi la génération de gypse (sulfate de calcium) comme sous-produit solide, qui, par accumulation d'acide alimentaire 327, constitue un problème environnemental.

L'acide alimentaire 327 est un additif alimentaire blanc ou crème, presque inodore, dérivé de l'acide lactique, un composé que les cellules créent naturellement lorsqu'elles tentent de produire de l'énergie dans des conditions de faible teneur en oxygène.

Acide alimentaire 327 produit commercialement en neutralisant l'acide lactique avec du carbonate de calcium ou de l'hydroxyde de calcium et le plus souvent utilisé pour stabiliser, épaissir, aromatiser, raffermir ou faire lever les aliments.
L'acide alimentaire 327 est désigné soit par le nom de l'acide alimentaire 327, soit par le numéro E - E327.

L'acide alimentaire 327 peut également être ajouté à des suppléments de calcium ou à des médicaments utilisés pour traiter le reflux acide, la perte osseuse, le mauvais fonctionnement de la glande parathyroïde ou certaines maladies musculaires.

L'acide alimentaire 327 peut également être ajouté à l'alimentation animale ou utilisé pour traiter l'eau afin de rendre l'acide alimentaire 327 propre à la consommation humaine.

Malgré son nom similaire, Food acid 327 ne contient pas de lactose.
En tant que tel, l'acide alimentaire 327 est sans danger pour les personnes intolérantes au lactose.

L'acide alimentaire 327 est un sel cristallin blanc obtenu par l'action de l'acide lactique sur le carbonate de calcium.
L'acide alimentaire 327 est utilisé dans les aliments (comme levure chimique) et administré en médecine.

L'acide alimentaire 327 se trouve souvent dans les fromages affinés.
De petits cristaux d'acide alimentaire 327 précipitent lorsque l'acide lactique est transformé en une forme moins soluble par les bactéries actives pendant le processus de maturation.

En médecine, l'acide alimentaire 327 est le plus couramment utilisé comme antiacide et également pour traiter les carences en calcium.
L'acide alimentaire 327 peut être absorbé à différents pH et n'a pas besoin d'être pris avec de la nourriture pour être absorbé pour ces raisons.

L'acide alimentaire 327 est un produit de qualité supérieure et un extrait d'acide lactique.
L'acide alimentaire 327 fonctionne bien dans la production de caviar, de perles, de spaghettis et de sphères en utilisant des techniques de sphérification.

L'acide alimentaire 327 peut également être utilisé pour enrober les fruits frais et les cantaloups afin de les garder fermes et de prolonger leur durée de conservation.
L'acide alimentaire 327 est un sel blanc non hygroscopique et constitue une source recommandée de calcium.

L'acide alimentaire 327 fournit des sels de calcium sous forme soluble pour réagir avec l'alginate, le gellane ou certains types de carraghénane, ce qui permet la formation d'un gel sans chauffage.
Le goût de l'acide alimentaire 327 est plus discret que celui du chlorure de calcium (salé et parfois amer).

L'acide alimentaire 327 est recommandé pour toutes les réactions de sphérification inverse et réagit là où les sources d'alginate et de calcium sont intimement mélangées dans un environnement diffus ou dans une gélification par contact complet.
L'acide alimentaire 327 fonctionne également bien dans la production de gouttes, de perles de Caviar et de toutes formes de spaghetti par immersion d'une solution d'Alginate dans un bain de prise de Calcium.
Convient aux végétaliens et végétariens, sans OGM, sans gluten, casher, halal.

L'acide alimentaire 327 est enregistré au titre du règlement REACH mais n'est actuellement pas fabriqué et/ou importé dans l'Espace économique européen.
L'acide alimentaire 327 est utilisé par les consommateurs, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

L'acide alimentaire 327 contient 20 % de la valeur quotidienne recommandée en calcium (provenant de l'acide alimentaire 327 et du stéarate) et 12 % de la valeur quotidienne recommandée en magnésium.

L'acide alimentaire 327 est un sel composé de deux anions lactate pour chaque cation calcium (Ca2+).
L'acide alimentaire 327 est préparé commercialement par neutralisation de l'acide lactique avec du carbonate de calcium ou de l'hydroxyde de calcium.
Approuvé par la FDA en tant que substance alimentaire directe, généralement reconnue comme sûre, l'acide alimentaire 327 est utilisé comme agent raffermissant, agent aromatisant, agent levant, stabilisant et épaississant.

L'acide alimentaire 327 se trouve également dans les compléments alimentaires quotidiens comme source de calcium.
L'acide alimentaire 327 est également disponible sous diverses formes d'hydrates, l'acide alimentaire 327 pentahydraté étant le plus courant.

L'acide alimentaire 327 est un minéral utilisé pour traiter ou prévenir les faibles taux de calcium dans le sang (hypocalcémie) chez les personnes qui ne consomment pas suffisamment de calcium par les aliments.
L'acide alimentaire 327 est également utilisé dans le traitement d'affections telles que l'ostéoporose, les troubles de la glande parathyroïde ou encore certains problèmes musculaires.

L'acide alimentaire 327 peut également être utilisé à des fins non répertoriées dans ce guide de médicament.

L'acide alimentaire 327 est couramment utilisé comme additif alimentaire dans les aliments emballés, tels que :
Nectars,
Confitures, gelées et marmelades,
Beurre, margarine et autres types de graisses utilisées pour la cuisson ou la friture,
Fruits et légumes en conserve,
Bière.

L'acide alimentaire 327 est parfois également ajouté aux aliments frais, comme le fromage mozzarella, les pâtes fraîches ou les fruits prédécoupés pour les aider à conserver leur fermeté ou à prolonger leur durée de conservation.

Vous pouvez savoir si un aliment contient de l'acide alimentaire 327 en recherchant l'acide alimentaire 327 sur l'étiquette des ingrédients.
L'acide alimentaire 327 peut également être étiqueté E327.

Applications de l'acide alimentaire 327 :
L'utilisation des suppléments doit être individualisée et approuvée par un professionnel de la santé, tel qu'un diététiste, un pharmacien ou un médecin.
Aucun supplément n’est destiné à traiter, guérir ou prévenir une maladie.

Le calcium est le minéral le plus abondant dans l’organisme.
L'acide alimentaire 327 est nécessaire à la santé des os et à la fonction cardiaque, musculaire et nerveuse.

Dans le corps, les taux de calcium dans le sang restent relativement constants et inchangés.
Le calcium est acquis à partir de sources alimentaires.
Outre le calcium pour la santé des os, les avantages supplémentaires possibles de la supplémentation en acide alimentaire 327 incluent des avantages pour la santé cardiaque, la santé bucco-dentaire et la performance physique.

Santé cardiaque :
Une étude plus ancienne a examiné l'effet de la supplémentation en acide alimentaire 327 sur le cholestérol chez 43 personnes souffrant d'hyperlipidémie et d'inflammation virale antérieure du foie.
Les participants à l'étude ont été divisés en un groupe test et un groupe témoin (placebo).
Le groupe test a reçu de l'acide alimentaire 327 et de la vitamine C trois fois par jour pendant quatre semaines.

Après quatre semaines, Food acid 327 a révélé que le groupe test avait diminué son taux de cholestérol total de 4 %.
De plus, la supplémentation n’a provoqué aucun effet secondaire.
Cependant, il n’y a eu aucun changement statistiquement significatif des autres marqueurs du cholestérol.

Cette étude est prometteuse pour la supplémentation en acide alimentaire 327 sur la santé cardiaque.
Cependant, l’acide alimentaire 327 était petit et utilisait une dose relativement faible d’acide alimentaire 327.
Des études supplémentaires sont nécessaires pour valider le rôle de la supplémentation en acide alimentaire 327 par rapport à la santé cardiaque.

Santé bucco-dentaire:
Une étude a examiné si l’ajout d’acide alimentaire 327 au chewing-gum au xylitol aidait à reminéraliser les lésions de l’émail des dents.
Des lésions artificielles ont été réalisées sur des plaques d'émail de dents humaines extraites et portées par 10 volontaires.
Dix autres ont été utilisés comme témoins et stockés dans un humidificateur.

Les participants à l’étude portaient les plaques d’émail de l’une des manières suivantes :
Sans chewing-gum
Avec chewing-gum contenant du xylitol et de l'acide alimentaire 327
Avec un chewing-gum contenant uniquement du xylitol
Ils l'ont fait quatre fois par jour pendant deux semaines.

La reminéralisation s’est avérée plus importante après avoir mâché du xylitol et de la gomme Food acid 327 que dans les autres groupes.
Cela a conduit les chercheurs à conclure que l’acide alimentaire 327 pourrait augmenter la reminéralisation des surfaces de l’émail des dents.

Une étude de 2014 a examiné la capacité d'un pré-rinçage à l'acide alimentaire 327 à augmenter la protection contre le fluorure contre l'érosion de l'émail dentaire.
Les chercheurs ont découvert que le pré-rinçage suivi d’un rinçage au fluor réduisait considérablement la perte de surface de l’émail lorsqu’il était utilisé avant une épreuve érosive.

Cependant, les chercheurs d'une étude antérieure sur le pré-rinçage de l'acide alimentaire 327 ont découvert que l'acide alimentaire 327 n'affectait pas de manière significative la concentration de fluorure de la plaque, quelles que soient les conditions.

Les résultats mitigés et la petite taille de l’échantillon de ces études signifient que des recherches supplémentaires sont nécessaires avant que l’acide alimentaire 327 puisse être recommandé pour la santé bucco-dentaire.

Applications pharmaceutiques :
L'acide alimentaire 327 est utilisé comme activateur de biodisponibilité et complément nutritionnel dans les formulations pharmaceutiques.
Une qualité séchée par pulvérisation d'acide alimentaire 327 pentahydraté a été utilisée comme diluant pour comprimés dans les systèmes de compression directe et s'est avérée avoir une bonne compactabilité.

Les propriétés de la forme pentahydratée ont été considérées comme supérieures à celles de l’acide alimentaire 327 trihydraté lorsqu’il est utilisé dans des formulations de comprimés à compression directe.
Les propriétés des comprimés peuvent être affectées par l'état d'hydratation de l'acide alimentaire 327 et la taille des particules de l'acide alimentaire 327 : la réduction de la taille des particules augmente la résistance à l'écrasement, tandis que le stockage des comprimés à température élevée entraîne une déshydratation accompagnée d'une réduction de la résistance à l'écrasement.

L'acide alimentaire 327 a également été utilisé comme source d'ions calcium dans la préparation de microsphères d'alginate de calcium pour l'administration à libération contrôlée d'agents actifs.
Il a été démontré que l'acide alimentaire 327 entraîne des concentrations de calcium plus faibles dans les microsphères finies par rapport à l'acétate de calcium.
Thérapeutiquement, l'acide alimentaire 327 a été utilisé dans des préparations pour le traitement de la carence en calcium.

Utilisations de l'acide alimentaire 327 :
L'acide alimentaire 327 est le sel de calcium de l'acide lactique soluble dans l'eau.
L'acide alimentaire 327 a une solubilité de 3,4 g/100 g d'eau à 20°c et est très soluble dans l'eau chaude.

L'acide alimentaire 327 est disponible sous forme monohydratée, trihydratée et pentahydratée. le trihydrate et le pentahydrate ont des solubilités de 9 g dans 100 ml d'eau à 25°c.
L'acide alimentaire 327 contient environ 14 % de calcium.

L'acide alimentaire 327 est utilisé pour stabiliser et améliorer la texture des fruits et légumes en conserve en convertissant la pectine labile en pectate de calcium moins soluble.
L'acide alimentaire 327 empêche ainsi l'effondrement structurel pendant la cuisson.

L'acide alimentaire 327 est utilisé dans les gâteaux des anges, les garnitures fouettées et les meringues pour augmenter l'extensibilité des protéines, ce qui entraîne une augmentation du volume de la mousse.
L'acide alimentaire 327 est également utilisé dans les aliments enrichis en calcium tels que les aliments pour nourrissons et est utilisé pour améliorer les propriétés du lait en poudre en poudre.

L'acide alimentaire 327 est un sel de calcium oral utilisé pour prévenir ou traiter les faibles taux de calcium dans le sang chez les personnes qui ne consomment pas suffisamment de calcium dans leur alimentation, les patients souffrant d'ostéoporose, de faiblesse osseuse ou de diminution de l'activité de la glande parathyroïde.

L'acide alimentaire 327 est utilisé comme conservateur alimentaire et supplément de calcium.
L'acide alimentaire 327 est également utilisé dans les dentifrices, les filtres pour respirateurs, les agents tampons, les agents raffermissants alimentaires et les sels gélifiants à faible teneur en méthoxypectine.

L'acide alimentaire 327 est utilisé pour prévenir ou traiter les faibles taux de calcium dans le sang chez les personnes qui ne consomment pas suffisamment de calcium dans leur alimentation.
L'acide alimentaire 327 peut être utilisé pour traiter des affections causées par de faibles niveaux de calcium telles que la perte osseuse (ostéoporose), la faiblesse des os (ostéomalacie/rachitisme), une diminution de l'activité de la glande parathyroïde (hypoparathyroïdie) et une certaine maladie musculaire (tétanie latente).

L'acide alimentaire 327 peut également être utilisé chez certains patients pour s'assurer qu'ils consomment suffisamment de calcium (comme les femmes enceintes, allaitantes ou ménopausées, les personnes prenant certains médicaments tels que la phénytoïne, le phénobarbital ou la prednisone).
Le calcium joue un rôle très important dans l’organisme.

L'acide alimentaire 327 est nécessaire au fonctionnement normal des nerfs, des cellules, des muscles et des os.
S’il n’y a pas assez de calcium dans le sang, le corps va puiser le calcium dans les os, affaiblissant ainsi les os.
Avoir la bonne quantité de calcium est important pour construire et conserver des os solides.

Médecine:
L'acide alimentaire 327 a plusieurs utilisations en médecine humaine et vétérinaire.
L'acide alimentaire 327 est utilisé en médecine comme antiacide.

L'acide alimentaire 327 est également utilisé pour traiter l'hypocalcémie (carences en calcium).
L'acide alimentaire 327 peut être absorbé à différents pH, il n'est donc pas nécessaire de prendre l'acide alimentaire 327 avec de la nourriture.
Cependant, dans cette utilisation, l'acide alimentaire 327 s'est révélé moins pratique que le citrate de calcium.

Au début du 20e siècle, l'administration orale de Food acid 327 dissous dans l'eau (mais pas dans le lait ou les comprimés) s'est avérée efficace pour prévenir la tétanie chez les humains et les chiens souffrant d'insuffisance parathyroïdienne ou ayant subi une parathyroïdectomie.

L'acide alimentaire 327 se trouve également dans certains bains de bouche et dentifrices comme agent antitartre.
L'acide alimentaire 327 (ou d'autres sels de calcium) est un antidote à l'ingestion de fluorure soluble et d'acide fluorhydrique.

Industrie alimentaire:
L'acide alimentaire 327 est un additif alimentaire classé par la FDA des États-Unis comme étant généralement reconnu comme sûr (GRAS), pour des utilisations comme agent raffermissant, exhausteur de goût ou agent aromatisant, agent levant, complément nutritionnel et stabilisant et épaississant.

L'acide alimentaire 327 est également connu sous le nom de lactate de fromage car l'acide alimentaire 327 coagule le lait, produisant ainsi le chhena utilisé dans la production du fromage paneer.
Le chhena est également utilisé pour fabriquer diverses friandises et autres protéines du lait.

L'acide alimentaire 327 est un ingrédient de certaines levures chimiques contenant du pyrophosphate acide de sodium.
L'acide alimentaire 327 apporte du calcium afin de retarder la levée.

L'acide alimentaire 327 est ajouté aux aliments sans sucre pour prévenir la carie dentaire.
Lorsqu'il est ajouté à un chewing-gum contenant du xylitol, l'Acide alimentaire 327 augmente la reminéralisation de l'émail dentaire.

L'acide alimentaire 327 est également ajouté aux fruits fraîchement coupés, comme les cantaloups, pour les garder fermes et prolonger leur durée de conservation, sans le goût amer provoqué par le chlorure de calcium, qui peut également être utilisé à cette fin.

L'acide alimentaire 327 est utilisé en gastronomie moléculaire comme agent liposoluble sans saveur pour la sphérification simple et inversée.
L'acide alimentaire 327 réagit avec l'alginate de sodium pour former une peau autour de l'aliment.

Aliments pour animaux :
L'acide alimentaire 327 peut être ajouté aux rations animales comme source de calcium.

Chimie:
L'acide alimentaire 327 était autrefois un intermédiaire dans la préparation de l'acide lactique à usage alimentaire et médical.
L'acide impur provenant de diverses sources a été converti en acide alimentaire 327, purifié par cristallisation, puis reconverti en acide par traitement à l'acide sulfurique, qui a précipité le calcium sous forme de sulfate de calcium.

Cette méthode a donné un produit plus pur que celui qui serait obtenu par distillation de l’acide d’origine.
Récemment, le lactate d'ammonium a été utilisé comme alternative au calcium dans ce processus.

Traitement de l'eau:
L'acide alimentaire 327 a été considéré comme un coagulant pour éliminer les matières en suspension de l'eau, comme une alternative renouvelable, non toxique et biodégradable au chlorure d'aluminium AlCl3.

Biobéton :
L'ajout d'acide alimentaire 327 augmente considérablement la résistance à la compression et réduit la perméabilité à l'eau du biobéton, en permettant à des bactéries telles que Enterococcus faecalis, Bacillus cohnii, Bacillus pseudofirmus et Sporosarcina pasteurii de produire plus de calcite.

Utilisations par les consommateurs :
L'acide alimentaire 327 est utilisé dans les produits suivants : cosmétiques et produits de soins personnels.
D'autres rejets dans l'environnement de l'acide alimentaire 327 sont susceptibles de se produire à partir de : l'utilisation en intérieur comme auxiliaire technologique.

Utilisations répandues par les professionnels :
L'acide alimentaire 327 est utilisé dans les produits suivants : produits phytopharmaceutiques, cirages et cires et produits de lavage et de nettoyage.
L'acide alimentaire 327 est utilisé dans les domaines suivants : agriculture, sylviculture et pêche.
D'autres rejets dans l'environnement de l'acide alimentaire 327 sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur comme auxiliaire technologique.

Utilisations sur sites industriels :
L'acide alimentaire 327 est utilisé dans les produits suivants : produits de traitement de surfaces métalliques, produits de traitement de surfaces non métalliques et semi-conducteurs.
L'acide alimentaire 327 est utilisé pour la fabrication de : produits chimiques et équipements électriques, électroniques et optiques.
Le rejet dans l'environnement de Food acid 327 peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels et comme auxiliaire technologique.

Caractéristiques de l'acide alimentaire 327 :

Food acid 327 est un comprimé végétalien sans produits laitiers qui aide à maintenir une densité osseuse saine.

L'acide alimentaire 327 est une excellente source de calcium et une bonne source de magnésium comme :
Soutient la fonction musculaire et nerveuse,
Soutient les fonctions normales des cellules et des membranes cellulaires,

Soutient le processus normal de coagulation sanguine,
Favorise le bon fonctionnement des systèmes enzymatiques,

Soutient et aide à maintenir une densité osseuse saine et un remodelage,
Fournit un soutien dans la fonction de réponse du système immunitaire,

Une quantité adéquate de calcium dans le cadre d'une alimentation saine, associée à l'activité physique, peut réduire le risque d'ostéoporose plus tard dans la vie,
Excellente source de calcium,

Bonne source de magnésium,
Végétalien, végétarien, sans gluten, sans produits laitiers, sans soja.

Acide alimentaire 327 pour maintenir une densité osseuse saine :
Le remodelage osseux (renouvellement osseux) est un cycle continu de dégradation osseuse par les ostéoclastes dans les zones du corps où l'os n'est pas nécessaire et de reconstruction osseuse assurée par les ostéoblastes.
En d’autres termes, l’os lui-même subit un remodelage continu, avec une résorption et un dépôt constants de calcium dans le nouvel os.
L'équilibre entre la résorption osseuse et le dépôt est important pour la santé des os, et l'acide alimentaire 327 change avec l'âge.

Le calcium et le magnésium sont essentiels à la santé des os.
99 % de l'apport en calcium du corps est stocké dans les os et les dents, où l'acide alimentaire 327 soutient une structure et une fonction osseuses normales et saines.
Prendre un supplément de calcium supplémentaire peut aider à augmenter l’apport de calcium dans l’organisme.

Le magnésium contribue également au développement structurel des os, avec 50 à 60 % d'entre eux étant présents dans les os.
Le magnésium participe notamment à la formation osseuse et influence les activités des ostéoblastes (reconstruction osseuse) et des ostéoclastes (dégradation osseuse).

Acide alimentaire 327 pour la santé du système immunitaire :
Le calcium et le magnésium contribuent tous deux à soutenir certains aspects du système immunitaire sain du corps.
Les signaux de calcium (Ca2+) contrôlent divers aspects du fonctionnement cellulaire comme les lymphocytes T.

Les lymphocytes T – ainsi que d’autres cellules immunitaires – réagissent aux particules étrangères présentes dans le corps.
Ces cellules T, fabriquées dans la moelle osseuse et essentielles à l’immunité à médiation cellulaire, ont besoin d’un flux d’ions calcium soutenu pour leur régulation, leur activation et leur prolifération.

Des recherches émergentes indiquent que le magnésium peut également jouer un rôle dans la réponse du système immunitaire humain, notamment par l'intermédiaire des transporteurs de magnésium.
Un certain nombre de transporteurs de magnésium ont été identifiés dans les cellules immunitaires, comme le transporteur de magnésium 1 (MagT1).
MagT1 est exprimé dans la rate, le thymus, les lymphocytes T et B, ce qui suggère que MagT1 pourrait être impliqué dans les fonctions du système immunitaire humain.

Avantages de l'acide alimentaire 327 :

Avantages possibles pour la santé :
Très peu d’études ont spécifiquement étudié les bienfaits de l’acide alimentaire 327 sur la santé.

Cela dit, l'acide alimentaire 327 peut être utilisé comme source principale de calcium dans les suppléments de calcium, et certaines études établissent un lien entre les régimes riches en calcium et des os plus forts et plus sains, bien que les recherches soient incohérentes.
Bien que s’approvisionner en calcium directement à partir des aliments reste le meilleur moyen d’ingérer ce minéral, les suppléments peuvent être un outil utile pour ceux qui ne parviennent pas à obtenir suffisamment de calcium par leur alimentation seule.

Lorsqu'il est consommé sous forme de supplément, Food acid 327 peut offrir des avantages similaires à ceux associés à d'autres suppléments de calcium, notamment :
Des os plus solides.
Lorsqu’ils sont associés à de la vitamine D, les suppléments de calcium contribueraient au développement et au maintien d’os solides et sains.

Diminution de la pression artérielle.
Les régimes riches en calcium peuvent aider à abaisser légèrement la tension artérielle systolique (le chiffre le plus élevé) chez les personnes ayant une tension artérielle élevée.

Cependant, il semble y avoir peu de bénéfices chez les personnes ayant une tension artérielle normale.
Protection contre la prééclampsie.

Des apports élevés en calcium pendant la grossesse peuvent réduire le risque de prééclampsie, une complication grave qui touche jusqu'à 14 % des grossesses dans le monde.
Protection contre le cancer du côlon.

Des études suggèrent qu'un apport élevé en calcium provenant d'aliments ou de suppléments peut réduire le risque de cancer du côlon.
Des recherches supplémentaires sont néanmoins nécessaires pour confirmer ces résultats.

Des études plus anciennes suggèrent en outre que les gommes à mâcher contenant de l'acide alimentaire 327 ainsi que l'édulcorant artificiel xylitol peuvent aider à protéger contre les caries.
Pourtant, des recherches supplémentaires sont nécessaires pour confirmer ces résultats.

Gramme par gramme, l'acide alimentaire 327 a tendance à fournir de plus petites quantités de calcium que les formes de calcium plus populaires, telles que le carbonate de calcium et le citrate de calcium.

Par conséquent, pour contenir des quantités équivalentes de calcium, les suppléments d’acide alimentaire 327 peuvent être plus gros que les autres types de suppléments de calcium, ce qui les rend potentiellement plus difficiles à avaler.
Vous devrez peut-être également prendre davantage de pilules.

L'acide alimentaire 327 est probablement moins constipant que le carbonate de calcium, mais l'acide alimentaire 327 n'apporte aucun avantage supplémentaire au-delà de ceux associés au citrate de calcium.
Cela explique pourquoi l'acide alimentaire 327 est rarement utilisé comme ingrédient principal dans les suppléments de calcium.

Propriétés typiques de l'acide alimentaire 327 :
L'ion lactate est chiral, avec deux énantiomères, D (−, R) et L (+, S).
L'isomère L est celui normalement synthétisé et métabolisé par les organismes vivants, mais certaines bactéries peuvent produire la forme D ou convertir la forme L en D.
Ainsi, l'acide alimentaire 327 possède également des isomères D et L, où tous les anions sont du même type.

Certains procédés de synthèse donnent un mélange des deux à parts égales, ce qui donne le sel DL (racémique).
Les formes L et DL se présentent sous forme de cristaux à la surface du fromage Cheddar vieilli.

La solubilité du L-lactate de calcium dans l'eau augmente considérablement en présence d'ions d-gluconate, de 6,7 g/dl à 25 °C à 9,74 g/dl ou plus.
Paradoxalement, alors que la solubilité du L-lactate de calcium augmente avec la température de 10 °C (4,8 g/dl) à 30 °C (8,5 g/dl), la concentration d'ions Ca2+ libres diminue de près de moitié.
Cela s’explique par le fait que les ions lactate et calcium deviennent moins hydratés et forment un complexe C3H5O3Ca+.

La forme DL (racémique) du sel est beaucoup moins soluble dans l'eau que les isomères purs L ou D, de sorte qu'une solution contenant aussi peu que 25 % de la forme D déposera des cristaux de lactate DL racémiques au lieu du L-lactate. .

Le pentahydrate perd de l'eau dans une atmosphère sèche entre 35 et 135 °C, étant réduit sous forme anhydre et perdant son caractère cristallin.
Le processus est inversé à 25 °C et 75 % d’humidité relative.

Pharmacodynamique de l'acide alimentaire 327 :
Les deux composants de l’acide alimentaire 327, l’ion calcium et l’acide lactique, jouent respectivement un rôle essentiel dans le corps humain en tant qu’élément squelettique et source d’énergie.

Mécanisme d'action de l'Acide Alimentaire 327 :
Dans les environnements aqueux tels que le tractus gastro-intestinal (GI), l'acide alimentaire 327 se dissociera en cation calcium et en anions acide lactique, la base conjuguée de l'acide lactique.
L'acide lactique est un composé naturel qui sert de carburant ou d'énergie chez les mammifères en agissant comme intermédiaire omniprésent dans les voies métaboliques.
L'acide lactique diffuse dans les muscles et est transporté vers le foie par la circulation sanguine pour participer à la gluconéogenèse.

Absorption de l'acide alimentaire 327 :
Pour être absorbé, le calcium doit être sous forme librement soluble (Ca2+) ou lié à une molécule organique soluble.
L'absorption du calcium se produit principalement au niveau du duodénum et du jéjunum proximal en raison d'un pH plus acide et de l'abondance des protéines liant le calcium.
L'absorption moyenne du calcium représente environ 25 % de l'apport en calcium (la plage est de 10 à 40 %) dans l'intestin grêle et est médiée à la fois par la diffusion passive et le transport actif.

Préparation de l'acide alimentaire 327 :
L'acide alimentaire 327 peut être préparé par la réaction de l'acide lactique avec du carbonate de calcium ou de l'hydroxyde de calcium.

Depuis le XIXe siècle, le sel est obtenu industriellement par fermentation d'hydrates de carbone en présence de sources minérales de calcium telles que le carbonate de calcium ou l'hydroxyde de calcium.
La fermentation peut produire du lactate D ou L, ou un mélange racémique des deux, selon le type d'organisme utilisé.

Informations générales sur la fabrication de l'acide alimentaire 327 :

Secteurs de transformation de l'industrie :
Commerce de gros et de détail

Manipulation et stockage de l'acide alimentaire 327 :

Conseils pour la protection contre l'incendie et l'explosion :
Prévoir une ventilation par aspiration appropriée aux endroits où la poussière se forme.

Mesures d'hygiène:
Pratique générale d'hygiène industrielle.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Conserver dans un endroit frais.

Classe de stockage :
Classe de stockage (TRGS 510) : 11 : Solides combustibles

Stabilité et réactivité de Acide alimentaire 327 :

Réactivité:
Pas de données disponibles

Stabilité chimique:
Stable dans les conditions de stockage recommandées.

Possibilité de réactions dangereuses:
Pas de données disponibles

Conditions à éviter :
Pas de données disponibles

Matériaux incompatibles :
Agents oxydants forts

Sécurité et précautions de l'acide alimentaire 327 :
Selon la Food and Drug Administration (FDA), l'acide alimentaire 327 est généralement reconnu comme sûr (GRAS) et peut être ajouté à tous les aliments, à l'exception des aliments et préparations pour nourrissons.

L'acide alimentaire 327 est considéré comme une source sûre de calcium dans les suppléments de calcium.
De plus, étant donné que l'acide alimentaire 327 contient moins de calcium que les autres formes, l'acide alimentaire 327 est moins susceptible de provoquer la constipation ou les maux d'estomac généralement associés aux suppléments contenant du carbonate de calcium.

Cela dit, il est important de noter qu'une consommation excessive d'acide alimentaire 327 peut entraîner une hypercalcémie, une affection caractérisée par des taux sanguins de calcium dangereusement élevés, pouvant provoquer des problèmes cardiaques ou rénaux.

Il est préférable de ne pas dépasser l'apport quotidien maximal (UL) de 2 500 mg par jour pour les adultes de moins de 50 ans et les personnes enceintes ou allaitantes, de 2 000 mg par jour pour les personnes de 51 ans ou plus et de 3 000 mg par jour pour les acides alimentaires 327. les personnes enceintes ou allaitantes de moins de 19 ans.

Les suppléments d'acide alimentaire 327 peuvent également interagir avec certains médicaments, notamment les diurétiques, les antibiotiques et les antiépileptiques.
Par conséquent, il est préférable de demander conseil à votre médecin avant de prendre de tels suppléments.

Mesures de premiers secours de l'acide alimentaire 327 :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.

En cas de contact avec la peau :
Laver avec du savon et beaucoup d'eau.

En cas de contact visuel :
Rincer les yeux avec de l'eau par mesure de précaution.

En cas d'ingestion:
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.

Mesures de lutte contre l'incendie de l'acide alimentaire 327 :

Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.

Dangers particuliers résultant de l'acide alimentaire 327 ou d'un mélange :
Oxydes de carbone
Oxyde de calcium

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.

Informations complémentaires :
Pas de données disponibles

Mesures en cas de dispersion accidentelle de l'acide alimentaire 327 :

Précautions individuelles, équipement de protection et procédures d'urgence :
Eviter la formation de poussière.
Évitez de respirer les vapeurs, les brouillards ou les gaz.

Précautions environnementales:
Aucune précaution environnementale particulière requise.

Méthodes et matériels de confinement et de nettoyage :
Balayer et pelleter.
Gardez à récipients adaptés et fermés pour l'élimination.

Identifiants de l'acide alimentaire 327 :
Numéro CAS : 814-80-2
ChEMBL : ChEMBL2106111
ChemSpider : 12592
Banque de médicaments : DB13231
Carte d'information ECHA : 100.011.278
Numéro CE : 212-406-7
Numéro E : E327 (antioxydants, ...)
CID PubChem : 13144
UNII : 2URQ2N32W3
Tableau de bord CompTox (EPA) : DTXSID0020236
InChI : InChI=1S/2C3H6O3.Ca/c2*1-2(4)3(5)6;/h2*2,4H,1H3,(H,5,6);/q;;+2/p- 2
Clé : MKJXYGKVIBWPFZ-UHFFFAOYSA-L
InChI=1/2C3H6O3.Ca/c2*1-2(4)3(5)6;/h2*2,4H,1H3,(H,5,6);/q;;+2/p-2
Clé : MKJXYGKVIBWPFZ-NUQVWONBAM
SOURIRES : [Ca+2].[O-]C(=O)C(O)C.[O-]C(=O)C(O)C

Numéro CAS : 5743-47-5
Numéro CE : 248-953-3
Note: Ph Eur,BP,USP,E 327
Formule de Hill : C₆H₁₀CaO₆*5H₂O
Masse molaire : 308,30 g/mol
Code SH : 2918 11 00

Formule moléculaire : C6H10CaO6
Masse moyenne : 218.218 Da
Masse monoisotopique : 218,010330 Da
ID ChemSpider : 12592

Propriétés de l'Acide alimentaire 327 :
Formule chimique : C6H10CaO6
Masse molaire : 218,22 g/mol
Aspect : poudre blanche ou blanc cassé, légèrement efflorescente
Densité : 1,494 g/cm3
Point de fusion : 240 °C (464 °F ; 513 K) (anhydre)
120 °C (pentahydraté)
Solubilité dans l'eau : L-lactate, anhydre, g/100 mL : 4,8 (10 °C), 5,8 (20 °C), 6,7 (25 °C), 8,5 (30 °C) ; 7,9 g/100 ml (30 °C)
Solubilité : très soluble dans le méthanol, insoluble dans l'éthanol
Acidité (pKa) : 6,0-8,5
Indice de réfraction (nD) : 1,470

Température d'inflammation : 610 °C
Point de fusion : 240 °C
Valeur pH : 7 (50 g/l, H₂O, 20 °C)
Densité apparente : 300 - 500 kg/m3
Solubilité : 50 g/l

Poids moléculaire : 218,22 g/mol
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 6
Nombre de liaisons rotatives : 0
Masse exacte : 218,0103289 g/mol
Masse monoisotopique : 218,0103289 g/mol
Surface polaire topologique : 121Ų
Nombre d'atomes lourds : 13
Complexité : 53,5
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 2
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 3
Le composé est canonisé : oui

Spécifications de l'acide alimentaire 327 :
Dosage (complexométrique ; calculé sur substance séchée) : 98,0 - 101,0 %
Identité (spectre IR) : réussit le test
Identité (Calcium) : réussit le test
Identité (Lactat) : réussit le test
Aspect : poudre cristalline ou granulaire blanche à presque blanche
Aspect de la solution (71 g/l ; eau) : presque transparente (≤ 6 NTU) et de couleur pas plus intense que la solution de référence BY₆
Acidité ou alcalinité : réussit le test
pH (71 g/l ; eau) : 6,0 - 8,0
Chlorure (Cl) : ≤ 200 ppm
Fluorure (F) : ≤ 30 ppm
Sulfate (SO₄) : ≤ 400 ppm
Métaux lourds (en Pb) : ≤ 10 ppm
Al (aluminium) : ≤ 50 ppm
As (Arsenic) : ≤ 3 ppm
Ba (Baryum)* : ≤ 70 ppm
Fe (Fer) : ≤ 50 ppm
Hg (Mercure) : ≤ 1 ppm
Pb (plomb) : ≤ 2 ppm
Sels de magnésium et alcalins : ≤ 1,0 %
Acides gras volatils : réussit le test
Substances réductrices : réussit le test
Solvants résiduels (ICH Q3C) : exclus par procédé de production
Perte au séchage (125 °C) : 22,0 - 27,0 %

Noms de l’acide alimentaire 327 :

Noms des processus réglementaires :
Le lactate de calcium
Le lactate de calcium
le lactate de calcium

Noms IUPAC :
bis(2-hydroxypropanoate) de calcium

Nom IUPAC préféré :
Bis(2-hydroxypropanoate) de calcium

Autres noms:
lactate de calcium 5-hydraté,
le lactate de calcium,
acide 2-hydroxypropanoïque
sel de calcium pentahydraté

Autres identifiants :
5743-48-6

Synonymes de l’acide alimentaire 327 :
le lactate de calcium
814-80-2
Calphosane
Dilactate de calcium
2-hydroxypropanoate de calcium
L-lactate hémicalcique
Conclyte de calcium
Acide lactique, sel de calcium (2:1)
Sel de calcium de l'acide 2-hydroxypropanoïque
63690-56-2
calcium ; 2-hydroxypropanoate
Acide propanoïque, 2-hydroxy-, sel de calcium (2:1)
Lactate de calcium anhydre
2-hydroxypropanoate de calcium (1:2)
5743-48-6
Lactate de calcium [USAN:JAN]
CCRIS 3669
HSDB 976
Calcium (sous forme de lactate)
bis(2-hydroxypropanoate) de calcium
EINECS212-406-7
Lactate de calcium, anhydre
Ins n°327
UNII-2URQ2N32W3
AI3-04468
2URQ2N32W3
28305-25-1
LACTATE DE CALCIUM (1 G)
DTXSID0020236
INS-327
INS-327-
EINECS227-266-2
Lactate de calcium [II]
Lactate de calcium [IM]
Lactate de calcium [FCC]
Lactate de calcium [HSDB]
Lactate de calcium [INCI]
Lactate de calcium (1:2)
Lactate de calcium [VANDF]
E-327
CE 212-406-7
Lactate de calcium [OMS-DD]
DTXCID60236
Calcium (sous forme de lactate) [VANDF]
Lactate de calcium
C3H6O3.1/2Ca
Calcium (S)-2-hydroxy-propanate
CAS-814-80-2
(+/-)-Acide lactique, sel de calcium (2:1)
dl-lactate de calcium
C3-H6-O3.1/2Ca
L(+)-lactate de calcium
Acide propanoïque, 2-hydroxy-, sel de calcium
C3H6O3.xCa
Acide lactique, sel de calcium
SCHEMBL4319
C3-H6-O3.x-Ca
CHEMBL2106111
HY-B2227A
LACTATE DE CALCIUM [USP-RS]
Sel de calcium d'acide lactique (2:1)
MKJXYGKVIBWPFZ-UHFFFAOYSA-L
AMY37027
Tox21_201378
Tox21_302896
Bis(acide 2-hydroxypropanoïque) calcium
AKOS015837558
LACTATE DE CALCIUM [MONOGRAPHIE EP]
DB13231
LS-2396
NCGC00256365-01
NCGC00258929-01
LS-192480
Sel de calcium de l'acide 2-hydroxypropanoïque (2:1)
CS-0021602
FT-0623403
FT-0652809
F16480
LACTATE DE CALCIUM ANHYDRE [MONOGRAPHIE USP]
LACTATE DE CALCIUM, ANHYDRE [impureté EP]
A840142
Acide propanoïque, 2-hydroxy-, sel de calcium (2;1)
Q419693
227-266-2 [EINECS]
2URQ2N32W3
5743-48-6 [RN]
814-80-2 [RN]
Bis(2-hydroxypropanoate) de calcium [Français] [Nom ACD/IUPAC]
Bis (2-hydroxypropanoate) de calcium [Nom ACD/IUPAC]
Dilactate de calcium
D-LACTATE DE CALCIUM
Lactate de calcium [JP15] [Nom commercial] [USP]
LACTATE DE CALCIUM, L-
Calciumbis (2-hydroxypropanoat) [allemand] [nom ACD/IUPAC]
Acide propanoïque, 2-hydroxy-, sel de calcium (2:1) [ACD/Index Name]
[(2-HYDROXYPROPANOYL)OXY]CALCIO 2-HYDROXYPROPANOATE
[28305-25-1] [RN]
145179-24-4 [RN]
16127-59-6 [RN]
240-289-2 [EINECS]
28305-25-1 [RN]
Sel de calcium de l'acide 2-hydroxypropanoïque
3-imidazo[1,2-a]pyrazinecarboxaldéhyde
5497-50-7 [RN]
5743-47-5 [RN]
63690-56-2 [RN]
Calcet
CALCIUM (S)-2-HYDROXYPROPIONATE
2-hydroxypropanoate de calcium
2-hydroxypropanoate de calcium (1:2)
calcium et 2-hydroxypropanoate
Lactate de calcium [USAN:JAN] [JAN] [USAN]
LACTATE DE CALCIUM, ANHYDRE
le lactate de calcium
Calphosane
Conclyte de calcium
L-lactate hémicalcique
Imidazo[1,2-a]pyrazine-3-carbaldéhyde [Nom ACD/IUPAC]
sel de calcium d'acide lactique
Sel de calcium d'acide lactique (2:1)
MFCD00035548
MFCD00065401
MFCD00078198
UNII:2URQ2N32W3
ACIDE ALLOMALÉIQUE
L'acide allomaléique joue un rôle de régulateur de l'acidité des aliments, de métabolite fondamental et de géroprotecteur.
L'acide allomaléique est l'isomère trans de l'acide butènedioïque, tandis que l'acide maléique est l'isomère cis.
L'acide allomaléique est un acide butènedioïque dans lequel la double liaison C=C a une géométrie E.

Numéro CAS : 110-17-8
Numéro CE : 203-743-0
Formule chimique : HOOCCHCHCOOH
Masse molaire : 116,07 g/mol

L'acide allomaléique est un composé organique de formule HO2CCH=CHCO2H.
Solide blanc, l’acide allomaléique est largement présent dans la nature.

L'acide allomaléique a un goût de fruit et a été utilisé comme additif alimentaire.
Le numéro E de l’acide allomaléique est E297.

Les sels et esters sont appelés fumarates.
Fumarate peut également désigner l'ion C4H2O2−4 (en solution).
L'acide allomaléique est l'isomère trans de l'acide butènedioïque, tandis que l'acide maléique est l'isomère cis.

L'acide allomaléique peut être préparé par fermentation en employant des espèces de Rhizopus.
Récemment, une synthèse à l'échelle industrielle de l'acide allomaléique à partir de matières premières renouvelables et de biomasse lignocellulosique a été proposée.

L'acide allomaléique est un composé organique (cela signifie que l'acide allomaléique est constitué de carbone).
La formule chimique de l’acide allomaléique est C4H4O4.

L'acide allomaléique se trouve principalement à l'état solide et est de couleur blanche.
L'acide allomaléique a un goût fruité.

L'acide allomaléique est également connu sous le nom d'acide fumarique.
L'acide allomaléique est un acide dicarboxylique.

L'acide allomaléique est largement utilisé comme additif alimentaire.
Même la peau humaine produit de l'acide allomaléique lorsque l'acide allomaléique est exposé au soleil.

L'acide allomaléique est un sous-produit du cycle de l'urée chez l'homme.
Les sels et esters de l’acide allomaléique sont collectivement appelés fumarates.
Les acides fumarique et maléique ont été découverts séparément par Braconnet et par Vauquelin alors qu'ils effectuaient la distillation sèche de l'acide malique en 1817.

L'acide allomaléique apparaît comme un solide cristallin incolore.
Le principal danger est la menace pour l’environnement.

Des mesures immédiates doivent être prises pour limiter la propagation dans l'environnement.
Combustible, mais peut être difficile à enflammer.
L'acide allomaléique est utilisé pour fabriquer des peintures et des plastiques, dans la transformation et la conservation des aliments, ainsi que pour d'autres utilisations.

L'acide allomaléique est un acide butènedioïque dans lequel la double liaison C=C a une géométrie E.
L'acide allomaléique est un métabolite intermédiaire dans le cycle de l'acide citrique.

L'acide allomaléique joue un rôle de régulateur de l'acidité des aliments, de métabolite fondamental et de géroprotecteur.
L'acide allomaléique est un acide conjugué d'un fumarate (1-).

L'acide allomaléique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide allomaléique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

L'acide allomaléique ou acide trans-butènedioïque est un composé chimique cristallin blanc largement présent dans la nature.
L'acide allomaléique est un intermédiaire clé dans le cycle de l'acide tricarboxylique pour la biosynthèse des acides organiques chez l'homme et d'autres mammifères.
L'acide allomaléique est également un ingrédient essentiel de la vie végétale.

Lorsqu’il est utilisé comme additif alimentaire, la nature hydrophobe de l’acide allomaléique se traduit par une acidité et un impact gustatif persistants et durables.
Le composé polyvalent diminue également le pH avec un minimum d’acidité ajoutée dans les produits dont le pH est supérieur à 4,5.
L'acide allomaléique de faible poids moléculaire confère à l'acide allomaléique une plus grande capacité tampon que les autres acides alimentaires à des pH proches de 3,O.

En raison de la force de l'acide allomaléique, moins d'acide allomaléique est nécessaire par rapport à d'autres acides alimentaires biologiques, réduisant ainsi les coûts par unité de poids.

L'acide allomaléique (C4H4O4) est un acide organique largement présent dans la nature et constitue un composant de la biosynthèse organique chez l'homme.
Chimiquement, l'acide allomaléique est un acide dicarboxylique insaturé.

L'acide allomaléique existe sous forme de cristaux blancs ou presque blancs, inodores et au goût très acidulé.
L'acide allomaléique est généralement non toxique et non irritant.

L'acide allomaléique est utilisé dans les produits alimentaires et les boissons depuis les années 1940.
La recherche alimentaire montre que l'acide allomaléique peut améliorer la qualité et réduire les coûts de nombreux produits alimentaires et boissons.

L'acide allomaléique est non hygroscopique (n'absorbe pas l'humidité).
Dans l’industrie cosmétique, l’acide allomaléique est utilisé comme agent nettoyant pour les prothèses dentaires.

L'acide allomaléique est également utilisé dans l'alimentation animale.
L'acide allomaléique est utilisé dans les formulations pharmaceutiques orales et a été utilisé en clinique dans le traitement du psoriasis.
Le fumarate de diméthyle (Tecfidera) est l'ester méthylique de l'acide allomaléique et a été approuvé en 2013 pour une utilisation dans la sclérose en plaques.

L'acide allomaléique est obtenu à partir de la transformation d'anhydride maléique ou de solutions d'acide maléique résultant du processus d'isomérisation (lavage) de l'anhydride phtalique.
Les domaines d'application de l'acide allomaléique sont les résines polyester insaturées, les aliments acidifiants pour animaux et les produits plastifiés.

L'acide allomaléique est un produit chimique spécialisé important avec de nombreuses applications industrielles allant de l'utilisation de l'acide allomaléique comme matière première pour la synthèse de résines polymères à l'acidulant dans les aliments et les produits pharmaceutiques.
Actuellement, l’acide allomaléique est principalement produit par synthèse chimique à base de pétrole.
Les ressources pétrolières limitées, la hausse des prix du pétrole et les préoccupations environnementales accrues liées à la synthèse chimique ont suscité l'intérêt pour le développement d'acide allomaléique d'origine biologique à partir de ressources renouvelables.

La fermentation fongique filamenteuse avec Rhizopus spp peut produire de l'acide allomaléique à partir du glucose via une voie d'acide tricarboxylique réducteur (TCA) et était autrefois utilisée dans l'industrie avant l'essor de l'industrie pétrochimique.
Cependant, la fermentation conventionnelle de l’acide allomaléique est coûteuse en raison du faible rendement et de la faible productivité de l’acide allomaléique.

La fermentation fongique filamenteuse est également difficile à opérer en raison de la morphologie de l'acide allomaléique.
Des méthodes permettant de contrôler la croissance cellulaire sous forme de pellets et d’immobiliser les mycéliums dans un biofilm ont été développées pour améliorer les performances de fermentation.

L'acide allomaléique atténue l'expression de l'éotaxine-1 dans les fibroblastes stimulés par le TNF-α en supprimant la signalisation NF-Κb dépendante de p38 MAPK.
L’acide allomaléique a récemment été identifié comme un oncométabolite ou un métabolite endogène cancérigène.

Des niveaux élevés de cet acide organique peuvent être trouvés dans les tumeurs ou dans les biofluides entourant les tumeurs.
L'action oncogène de l'acide allomaléique apparaît en raison de la capacité de l'acide allomaléique à inhiber les enzymes contenant la prolyl hydroxylase.

L'acide allomaléique (fumarate, acide 2-butènedioïque, acide trans-butènedioïque) est un intermédiaire dans le cycle de l'acide citrique utilisé par les cellules pour produire de l'énergie sous forme d'adénosine triphosphate (ATP) à partir des aliments ; également un produit du cycle de l'urée.

L'acide allomaléique est un composé organique de formule (COOH)CH=CH(COOH).
Solide blanc, l’acide allomaléique est largement présent dans la nature.

L'acide allomaléique a un goût de fruit et a été utilisé comme additif alimentaire.
Le numéro E de l’acide allomaléique est E297.

L'acide allomaléique est l'isomère trans de l'acide butènedioïque, tandis que l'acide maléique est l'isomère cis.

L'acide allomaléique est produit naturellement dans les organismes eucaryotes à partir du succinate du complexe 2 de la chaîne de transport d'électrons via l'enzyme succinate déshydrogénase, impliquée dans la production d'ATP.
Le produit de qualité alimentaire peut être obtenu par synthèse chimique ou par biosynthèse.
L'acide allomaléique est utilisé pour contrôler la fermentation malolactique des vins dans les conditions réglementaires.

La production par synthèse chimique est la plus courante :
L'acide allomaléique implique l'isomérisation de l'acide maléique obtenu à partir de l'hydrolyse de l'anhydride maléique, produit par l'oxydation du butane ou du benzène. La production par biosynthèse, plus durable, devrait se développer rapidement.
L'acide allomaléique implique la fermentation par Rhizopus oryzae, notamment de résidus agroalimentaires (ex : pommes).

L'acide allomaléique est préparé en solution dans un volume de vin avant incorporation.

Applications de l’acide allomaléique :
L'acide allomaléique a été utilisé comme étalon pour la détermination quantitative des composés phénoliques dans les échantillons d'ortie par HPLC.
L'acide allomaléique peut être utilisé dans la préparation de cristaux d'acide L-lysine-allomaléique.
L'acide allomaléique peut également être utilisé pour la fabrication industrielle de résines synthétiques et de polymères écologiques/biodégradables.

Utilisé dans le vin, l'acide allomaléique permet de contrôler la fermentation malolactique.
En effet, ajouté précocement après la fin de la fermentation alcoolique (fructose/glucose inférieur à 1 g/L), l'acide allomaléique bloque toute fermentation malolactique.

Ajouté lors de la fermentation malolactique, l'acide allomaléique permet de terminer partiellement la fermentation.
L'acide allomaléique est un outil d'un grand intérêt lorsqu'on souhaite limiter [l'utilisation du SO2] ou faire des vins sans SO2.

Utilisations de l’acide allomaléique :
Les esters de l'acide allomaléique sont utilisés pour le traitement du psoriasis en raison de leurs propriétés antioxydantes et anti-inflammatoires.
L'acide allomaléique est utilisé comme additif alimentaire.

L'acide allomaléique aide à préserver le goût et la qualité des produits alimentaires grâce à la faible capacité d'absorption d'eau de l'acide allomaléique.
L'acide allomaléique est utilisé par les pharmacies pour produire du fumarate ferreux et de l'alexipharmique.
L'acide allomaléique est utilisé dans la production d'acide tartrique.

L'acide allomaléique est apparenté à l'acide malique et, comme l'acide malique, l'acide allomaléique est impliqué dans la production d'énergie (sous forme d'adénosine triphosphate [ATP]) à partir des aliments.

L'acide allomaléique est un agent biochimique essentiel dans la respiration cellulaire des plantes et des animaux.
L'acide allomaléique est utilisé comme fortifiant (résines de format papier, résines de polyester insaturées et résines de revêtement de surface alkyde), antioxydant alimentaire, mordant de colorant et médicament.

L'acide allomaléique est également utilisé dans les dentifrices (détachant) et pour fabriquer d'autres produits chimiques.
L'acide allomaléique est utilisé dans les esters et adduits de colophane, les huiles siccatives, les encres d'imprimerie et les aliments (acidulant et agent aromatisant).

L'acide allomaléique est principalement utilisé dans les préparations pharmaceutiques liquides comme acidulant et aromatisant.
L'acide allomaléique peut être inclus comme partie acide des formulations de comprimés effervescents, bien que cette utilisation soit limitée car l'acide allomaléique a une solubilité extrêmement faible dans l'eau.

L'acide allomaléique est également utilisé comme agent chélateur qui présente une synergie lorsqu'il est utilisé en combinaison avec d'autres véritables antioxydants.
Dans la conception de nouvelles formulations de granulés fabriquées par extrusion-sphéronisation, l'acide allomaléique a été utilisé pour faciliter la sphéronisation, favorisant la production de granulés fins.

L'acide allomaléique a également été étudié comme agent de remplissage alternatif au lactose dans les pellets.
L'acide allomaléique a été étudié comme lubrifiant pour comprimés effervescents, et les copolymères d'acide allomaléique et d'acide sébacique ont été étudiés comme microsphères bioadhésives.

L'acide allomaléique a également été utilisé dans des formulations de granulés pelliculés comme agent acidifiant et également pour augmenter la solubilité des médicaments.
L'acide allomaléique est également utilisé comme additif alimentaire à des concentrations allant jusqu'à 3 600 ppm et comme agent thérapeutique dans le traitement du psoriasis et d'autres troubles cutanés.

L'acide allomaléique est produit naturellement par l'organisme, mais pour les applications industrielles, l'acide allomaléique est synthétisé chimiquement.
L'acide allomaléique est utilisé pour conférer un goût acidulé aux aliments transformés.

L'acide allomaléique est également utilisé comme agent antifongique dans les aliments en boîte tels que les préparations à gâteaux et les farines, ainsi que dans les tortillas.
L'acide allomaléique est également ajouté au pain pour augmenter la porosité du produit cuit final.

L'acide allomaléique est utilisé pour conférer un goût aigre au pain au levain et au pain de seigle.
Dans les mélanges à gâteaux, l'acide allomaléique est utilisé pour maintenir un pH bas et éviter l'agglutination des farines utilisées dans le mélange.

Dans les boissons aux fruits, l’acide allomaléique est utilisé pour maintenir un pH bas, ce qui contribue à stabiliser la saveur et la couleur.
L'acide allomaléique empêche également la croissance d'E. coli dans les boissons lorsqu'il est utilisé en association avec le benzoate de sodium.

Lorsqu'il est ajouté aux vins, l'acide allomaléique aide à empêcher la poursuite de la fermentation tout en maintenant un pH bas et en éliminant les traces d'éléments métalliques.
De cette façon, l’acide allomaléique contribue à stabiliser le goût du vin.

L'acide allomaléique peut également être ajouté aux produits laitiers, aux boissons pour sportifs, aux confitures, aux gelées et aux bonbons.
L'acide allomaléique aide à briser les liaisons entre les protéines de gluten du blé et à créer une pâte plus souple.
L'acide allomaléique est utilisé dans l'encollage du papier, le toner d'imprimante et la résine polyester pour la fabrication de murs moulés.

Nourriture:
L'acide allomaléique est utilisé comme acidulant alimentaire depuis 1946.
L'acide allomaléique est approuvé pour une utilisation comme additif alimentaire dans l'UE, aux États-Unis, en Australie et en Nouvelle-Zélande.

En tant qu'additif alimentaire, l'acide allomaléique est utilisé comme régulateur d'acidité et peut être désigné par le numéro E E297.
L'acide allomaléique est généralement utilisé dans les boissons et les levures chimiques pour lesquelles des exigences de pureté sont imposées.

L'acide allomaléique est utilisé dans la fabrication des tortillas de blé comme conservateur alimentaire et comme acide dans le levain.
L'acide allomaléique est généralement utilisé comme substitut de l'acide tartrique et parfois à la place de l'acide citrique, à raison de 1 g d'acide allomaléique pour environ 1,5 g d'acide citrique, afin d'ajouter de l'acidité, de la même manière que l'acide malique. utilisé.
En plus d'être un composant de certains arômes artificiels de vinaigre, tels que les chips aromatisées au « sel et vinaigre », l'acide allomaléique est également utilisé comme coagulant dans les mélanges à pudding sur la cuisinière.

Le Comité scientifique de la Commission européenne sur l'alimentation animale, qui fait partie de la DG Santé, a constaté en 2014 que l'acide allomaléique est « pratiquement non toxique », mais que des doses élevées sont probablement néphrotoxiques après une utilisation à long terme.

Médecine:
L'acide allomaléique a été développé comme médicament pour traiter le psoriasis, une maladie auto-immune, dans les années 1950 en Allemagne sous la forme d'un comprimé contenant 3 esters, principalement du fumarate de diméthyle, et commercialisé sous le nom de Fumaderm par Biogen Idec en Europe.
Biogen développera plus tard le principal ester, le fumarate de diméthyle, comme traitement de la sclérose en plaques.

Chez les patients atteints de sclérose en plaques rémittente, l'ester diméthylfumarate (BG-12, Biogen) a réduit de manière significative la progression des rechutes et du handicap dans un essai de phase 3.
L'acide allomaléique active la voie de réponse antioxydante Nrf2, la principale défense cellulaire contre les effets cytotoxiques du stress oxydatif.

Utilisations répandues par les professionnels :
L'acide allomaléique est utilisé dans les produits suivants : produits chimiques de laboratoire, adhésifs et produits d'étanchéité, produits phytopharmaceutiques, encres et toners, régulateurs de pH et produits de traitement de l'eau. L'acide allomaléique est utilisé dans les domaines suivants : recherche et développement scientifique, travaux de construction et agriculture, sylviculture et pêche. L'acide allomaléique est utilisé pour la fabrication de : machines et véhicules, meubles et équipements électriques, électroniques et optiques. Le rejet dans l'environnement de l'acide allomaléique peut survenir lors d'une utilisation industrielle : comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires). D'autres rejets d'acide allomaléique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Utilisations sur sites industriels :
L'acide allomaléique est utilisé dans les produits suivants : polymères, adhésifs et produits d'étanchéité, produits de revêtement, produits pharmaceutiques, encres et toners et produits chimiques de laboratoire.
L'acide allomaléique a une utilisation industrielle conduisant à la fabrication d'une autre substance (utilisation d'intermédiaires).

L'acide allomaléique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et recherche et développement scientifique.
L'acide allomaléique est utilisé pour la fabrication de : produits chimiques.
Le rejet dans l'environnement de l'acide allomaléique peut survenir lors d'une utilisation industrielle : comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), pour la fabrication de thermoplastiques et comme auxiliaire technologique.

Utilisations industrielles :
Produits chimiques agricoles (non pesticides)
Intermédiaires
Monomères
Inconnu ou raisonnablement vérifiable
Autre précisez)
Additifs de peinture et additifs de revêtement non décrits dans d'autres catégories
Auxiliaires technologiques non spécifiés ailleurs
Auxiliaires technologiques, spécifiques à la production pétrolière
Agents tensioactifs
Agent imperméabilisant

Utilisations par les consommateurs :
L'acide allomaléique est utilisé dans les produits suivants : adhésifs et produits d'étanchéité, produits de revêtement, encres et toners, ainsi que produits cosmétiques et de soins personnels.
D'autres rejets dans l'environnement d'acide allomaléique sont susceptibles de se produire lors de l'utilisation en extérieur et en intérieur comme auxiliaire technologique.

Autres utilisations par les consommateurs :
Produits chimiques agricoles (non pesticides)
Arôme et nutriments
Inconnu ou raisonnablement vérifiable
Autre précisez)

Utilisations thérapeutiques :
L'acide allomaléique est utilisé dans les formulations pharmaceutiques orales et les produits alimentaires et est généralement considéré comme une matière relativement non toxique et non irritante.

Les préparations d’acide allomaléique sont utilisées comme traitement efficace et à long terme du psoriasis.

L'acide allomaléique et les esters d'acide allomaléique (FAE) sont déjà utilisés pour le traitement du psoriasis et sont connus pour avoir un effet immunomodulateur.
Une étude clinique de phase II chez des patients atteints de sclérose en plaques rémittente (SEP-RR) avec l'ester d'acide allomaléique modifié BG-12 a montré comme « preuve de principe » dans une conception d'IRM fréquente que les EAF réduisaient de manière significative le nombre de lésions rehaussant le gadolinium après 24 semaines. de traitement.
D'autres études de phase III ont été lancées pour explorer l'efficacité à long terme de cette substance.

Le traitement oral du psoriasis en ambulatoire, à l'aide d'une préparation contenant des dérivés de l'acide allomaléique, a été évalué en monothérapie initiale (3 mois) et en traitement de base à long terme (12-14 mois) chez 13 et 11 patients, respectivement.
L'évolution de la maladie a été analysée au cas par cas.

Après l'achèvement des deux parties de l'essai, la moitié des patients qui n'avaient que peu répondu au traitement antipsoriasique conventionnel ont montré une amélioration significative après plusieurs semaines de traitement.
Chez 4 patients, le traitement a dû être arrêté en raison de douleurs abdominales.

Aucun effet secondaire grave, notamment de nature rénale, hépatique ou hématologique, n'a pu être établi.
Des études chez la souris et le rat n'ont révélé qu'une faible toxicité aiguë des dérivés de l'acide allomaléique utilisés.

Dans des analyses supplémentaires, des hypothèses ont été traitées concernant le mécanisme d'action de l'acide allomaléique dans le psoriasis.
Pour établir des dérivés de l'acide allomaléique dans le traitement du psoriasis, des études sur la toxicité chronique et la pharmacocinétique devront être menées.
D'autres essais cliniques devraient évaluer un seul dérivé de l'acide allomaléique plutôt que des mélanges.

Autres utilisations:
L'acide allomaléique est utilisé dans la fabrication de résines polyester et d'alcools polyhydriques et comme mordant pour les colorants.
Lorsque de l'acide allomaléique est ajouté à leur alimentation, les agneaux produisent jusqu'à 70 % de méthane en moins lors de la digestion.

Processus industriels avec risque d’exposition :
Transformation des pâtes et papiers
Peinture (pigments, liants et biocides)
Textiles (impression, teinture ou finition)

Propriétés typiques de l'acide allomaléique :

Propriétés physiques:
L'acide allomaléique apparaît principalement sous la forme d'un solide de couleur blanche.
L'acide allomaléique a une odeur de fruit.

Le poids moléculaire de l’acide allomaléique est de 116 amu.
L'acide allomaléique est combustible, mais l'acide allomaléique est difficile à allumer un incendie.

L'acide allomaléique subit une sublimation à 200°C.
Le point de fusion de l'acide allomaléique est de 572 à 576 °F.

Propriétés chimiques:
L'acide allomaléique est soluble dans l'éthanol et l'acide sulfurique concentré.
L'acide allomaléique est soluble dans l'alcool mais insoluble dans le benzène, l'eau et le chloroforme.

La capacité à absorber l’humidité atmosphérique est très moindre.
Le pH de l'acide allomaléique est de 3,19
Lorsque l'acide allomaléique est chauffé en présence du réactif de Bayers, l'acide allomaléique donne naissance à l'acide tartrique racémique.

Caractéristiques de l'acide allomaléique :
L'une des propriétés de l'acide allomaléique est d'inhiber ou de bloquer la fermentation malolactique à une certaine concentration.
L’acide allomaléique constitue donc un outil de choix pour limiter l’utilisation du SO2 précédemment utilisé à cet effet.

Synthèse et réactions de l'acide allomaléique :
L'acide allomaléique a d'abord été préparé à partir d'acide succinique.
Une synthèse traditionnelle implique l'oxydation du furfural (issu de la transformation du maïs) à l'aide de chlorate en présence d'un catalyseur à base de vanadium.

Actuellement, la synthèse industrielle de l'acide allomaléique repose principalement sur l'isomérisation catalytique de l'acide maléique dans des solutions aqueuses à faible pH.
L'acide maléique est accessible en grands volumes en tant que produit d'hydrolyse de l'anhydride maléique, produit par oxydation catalytique du benzène ou du butane.

Les propriétés chimiques de l'acide allomaléique peuvent être anticipées à partir des groupes fonctionnels des composants de l'acide allomaléique.
Cet acide faible forme un diester, l'acide allomaléique subit des additions à travers la double liaison et l'acide allomaléique est un excellent diénophile.

L'acide allomaléique ne brûle pas dans une bombe calorimétrique dans des conditions où l'acide maléique déflagre doucement.
Pour les expériences pédagogiques conçues pour mesurer la différence d'énergie entre les isomères cis et trans, une quantité mesurée de carbone peut être broyée avec le composé en question et l'enthalpie de combustion calculée par différence.

Formule de l'acide allomaléique :
La formule de l’acide allomaléique, également appelée formule de l’acide fumarique, est discutée dans cet article.
L'acide allomaléique est un acide dicarboxylique et un acide conjugué du fumarate.
La formule moléculaire ou chimique de l'acide allomaléique est C4H4O4.

L'acide allomaléique est un précurseur du L-malate dans le cycle du TCA.
L'acide allomaléique est généré par oxydation de l'acide succinique à l'aide de la succinate déshydrogénase.

Le fumarate est converti en malate par l'enzyme fumarase.
Des niveaux élevés d’acide allomaléique sont présents dans les biofluides entourant les tumeurs ou à l’intérieur des tumeurs.

Méthodes de fabrication de l’acide allomaléique :
Commercialement, l'acide allomaléique peut être préparé à partir de glucose par l'action de champignons tels que Rhizopus nigricans, comme sous-produit de la fabrication d'anhydrides maléique et phtalique, et par isomérisation de l'acide maléique à l'aide de chaleur ou d'un catalyseur.
À l'échelle du laboratoire, l'acide allomaléique peut être préparé par oxydation du furfural avec du chlorate de sodium en présence de pentoxyde de vanadium.

L'acide maléique ou l'anhydride maléique, en particulier l'eau de lavage contenant de l'acide maléique provenant de la production d'anhydride maléique ou d'anhydride phtalique, sert de matière première pour la fabrication de l'acide allomaléique.
La concentration en acide maléique doit être d'au moins 30 %.

L'acide maléique est converti presque quantitativement par isomérisation thermique ou catalytique en acide allomaléique peu soluble, qui est récupéré par filtration.
Diverses substances ont été proposées comme catalyseurs : les acides minéraux (par exemple l'acide chlorhydrique) ; les composés soufrés tels que les thiocyanates, les thiazoles, les thiosemicarbazides, les thiourées ; ou des composés de brome en combinaison avec des peroxydes (par exemple, le persulfate).

La thiourée est la plus couramment utilisée en pratique.
L'eau de lavage contenant de l'acide maléique contient des impuretés qui peuvent affecter la qualité et le rendement.

Ce problème peut être largement évité (1) par prétraitement thermique de l'eau de lavage, (2) par ajout d'urée si de la thiourée est utilisée comme catalyseur, et (3) par ajout de sulfites ou passage de dioxyde de soufre et ajout d'acides minéraux.
L'acide allomaléique brut obtenu est purifié par recristallisation dans l'eau, combinée à une purification par du charbon actif.
Les pertes lors de l'épuration sont d'environ 10 %.

Informations générales sur la fabrication de l'acide allomaléique :

Secteurs de transformation de l'industrie :
Agriculture, foresterie, pêche et chasse
Toutes les autres fabrications de produits chimiques organiques de base
Fabrication de matériaux de pavage, de toiture et de revêtement d'asphalte
Construction
Fabrication d'aliments, de boissons et de produits du tabac
Inconnu ou raisonnablement vérifiable
Activités de forage, d’extraction et de soutien du pétrole et du gaz
Fabrication de peintures et de revêtements
Fabrication de matières plastiques et de résines
Fabrication de textiles, de vêtements et de cuir

Informations sur les métabolites humains de l’acide allomaléique :

Emplacements des tissus :
Placenta
Prostate

Emplacements cellulaires :
Extracellulaire
Membrane
Mitochondries

Biosynthèse et apparition de l'acide allomaléique :
L'acide allomaléique est produit dans les organismes eucaryotes à partir du succinate du complexe 2 de la chaîne de transport d'électrons via l'enzyme succinate déshydrogénase.
L'acide allomaléique est l'un des deux acides dicarboxyliques insaturés isomères, l'autre étant l'acide maléique.
Dans l'acide allomaléique, les groupes acide carboxylique sont trans (E) et dans l'acide maléique, ils sont cis (Z).

L'acide allomaléique se trouve dans la fumeterre (Fumaria officinalis), les champignons bolets (en particulier Boletus fomentarius var. pseudo-igniarius), le lichen et la mousse d'Islande.

Le fumarate est un intermédiaire du cycle de l'acide citrique utilisé par les cellules pour produire de l'énergie sous forme d'adénosine triphosphate (ATP) à partir des aliments.
L'acide allomaléique est formé par l'oxydation du succinate par l'enzyme succinate déshydrogénase.
Le fumarate est ensuite converti par l'enzyme fumarase en malate.

La peau humaine produit naturellement de l'acide allomaléique lorsqu'elle est exposée au soleil.
Le fumarate est également un produit du cycle de l'urée.

Manipulation et stockage de l’acide allomaléique :

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Hermétiquement fermé.
Sec.

Classe de stockage :
Classe de stockage (TRGS 510) : 11 : Solides combustibles

Stabilité et réactivité de l'acide allomaléique :

Réactivité
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Une gamme d'env. 15 Kelvin en dessous du point d'éclair doivent être considérés comme critiques.

Ce qui suit s'applique en général aux substances et mélanges organiques inflammables :
En cas de distribution fine correspondante, on peut généralement supposer un potentiel d'explosion de poussière en cas de tourbillonnement.

Stabilité chimique:
L'acide allomaléique est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Possibilité de réactions dangereuses:

Réactions violentes possibles avec :
Agents oxydants
Socles
Les agents réducteurs
Amines

Conditions à éviter :
Fort chauffage.

Matériaux incompatibles :
Pas de données disponibles

Sécurité de l'acide allomaléique :
L'acide allomaléique est « pratiquement non toxique » mais des doses élevées sont probablement néphrotoxiques après une utilisation à long terme.

Mesures de premiers secours concernant l'acide allomaléique :

YEUX:
Vérifiez d’abord si la victime porte des lentilles de contact et retirez-les si elles sont présentes.
Rincer les yeux de la victime avec de l'eau ou une solution saline normale pendant 20 à 30 minutes tout en appelant simultanément un hôpital ou un centre antipoison.

Ne mettez aucune pommade, huile ou médicament dans les yeux de la victime sans instructions spécifiques d'un médecin.
Transporter IMMÉDIATEMENT la victime après avoir rincé les yeux vers un hôpital même si aucun symptôme (tel qu'une rougeur ou une irritation) ne se développe.

PEAU:
Inonder IMMÉDIATEMENT la peau affectée avec de l'eau tout en retirant et en isolant tous les vêtements contaminés.
Lavez soigneusement toutes les zones cutanées affectées avec de l’eau et du savon.
Si des symptômes tels qu'une rougeur ou une irritation apparaissent, appelez IMMÉDIATEMENT un médecin et soyez prêt à transporter la victime à l'hôpital pour y être soignée.

INHALATION:
Quitter IMMÉDIATEMENT la zone contaminée ; prenez de grandes respirations d'air frais.
Si des symptômes (tels qu'une respiration sifflante, de la toux, un essoufflement ou une sensation de brûlure dans la bouche, la gorge ou la poitrine) apparaissent, appelez un médecin et soyez prêt à transporter la victime à l'hôpital.

Fournir une protection respiratoire appropriée aux sauveteurs entrant dans une atmosphère inconnue.
Dans la mesure du possible, un appareil respiratoire autonome (ARA) doit être utilisé ; s'il n'est pas disponible, utilisez un niveau de protection supérieur ou égal à celui conseillé sous Vêtements de protection.

INGESTION:
NE PAS PROVOQUER DE VOMISSEMENTS.
Si la victime est consciente et ne convulse pas, donnez-lui 1 ou 2 verres d'eau pour diluer le produit chimique et appelez IMMÉDIATEMENT un hôpital ou un centre antipoison.

Soyez prêt à transporter la victime à l'hôpital si un médecin vous le conseille.
Si la victime a des convulsions ou est inconsciente, ne rien administrer par voie orale, s'assurer que les voies respiratoires de la victime sont ouvertes et la coucher sur le côté, la tête plus basse que le corps.

NE PAS PROVOQUER DE VOMISSEMENTS.
Transporter IMMÉDIATEMENT la victime à l'hôpital.

Lutte contre l'incendie de l'acide allomaléique :
Utiliser de l'eau pulvérisée, de la poudre sèche, de la mousse, du dioxyde de carbone.

Procédures de lutte contre l'incendie :

Si le matériel est en feu ou impliqué dans un incendie :
Utilisez de l'eau en quantités abondantes sous forme de brouillard.
Des jets d'eau solides peuvent propager le feu.

Refroidir tous les conteneurs concernés avec de grandes quantités d'eau.
Appliquez de l’eau aussi loin que possible.
Utilisez de la mousse, des produits chimiques secs ou du dioxyde de carbone.

Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.

Équipement de protection spécial pour les pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.

Mesures contre les rejets accidentels d’acide allomaléique :

Précautions individuelles, équipement de protection et procédures d'urgence

Conseils aux non-secouristes :
Eviter l'inhalation de poussières.
Évitez tout contact avec la substance.

Assurer une ventilation adéquate.
Évacuer la zone dangereuse, respecter les procédures d'urgence, consulter un expert.

Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.

Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.

Respecter les éventuelles restrictions matérielles.
Prendre à sec.

Éliminer correctement.
Nettoyer la zone touchée.
Eviter la génération de poussières.

Identifiants de l'acide allomaléique :
Numéro CAS : 110-17-8
Référence Beilstein : 605763
ChEBI : CHEBI :18012
ChEMBL : ChEMBL503160
ChemSpider : 10197150
Banque de médicaments : DB04299
Carte d'information ECHA : 100.003.404
Numéro CE : 203-743-0
Numéro E : E297 (conservateurs)
Référence Gmelin : 49855
KEGG : C00122
CID PubChem : 444972
Numéro RTECS : LS9625000
UNII : 88XHZ13131
Numéro ONU : 9126
Tableau de bord CompTox (EPA) : DTXSID3021518
InChI : InChI=1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1+
Clé : VZCYOOQTPOCHFL-OWOJBTEDSA-N
InChI=1/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1+
Clé : VZCYOOQTPOCHFL-OWOJBTEDBF
SOURIRES : C(=C/C(=O)O)\C(=O)O

Numéro CAS : 110-17-8
Numéro d'index CE : 607-146-00-X
Numéro CE : 203-743-0
Catégorie : ChP,NF,JPE
Formule de Hill : C₄H₄O₄
Formule chimique : HOOCCHCHCOOH
Masse molaire : 116,07 g/mol
Code SH : 2917 19 80

Synonyme(s) : acide (2E)-2-butènedioïque, acide trans-butènedioïque
Formule linéaire : HOOCCH=CHCOOH
Numéro CAS : 110-17-8
Poids moléculaire : 116,07
Beilstein: 605763
Numéro CE : 203-743-0
Numéro MDL : MFCD00002700
eCl@ss : 39021709
ID de substance PubChem : 329757345
NACRES : NA.21

Propriétés de l'acide allomaléique :
Formule chimique : C4H4O4
Masse molaire : 116,072 g·mol−1
Aspect : Solide blanc
Densité : 1,635 g/cm3
Point de fusion : 287 °C (549 °F ; 560 K) (se décompose)
Solubilité dans l'eau : 4,9 g/L à 20 °C
Acidité (pKa) : pka1 = 3,03, pka2 = 4,44 (15 °C, isomère cis)
Susceptibilité magnétique (χ) : −49,11·10−6 cm3/mol
Moment dipolaire : non nul

pression de vapeur : 1,7 mmHg ( 165 °C)
Niveau de qualité : 200
qualité : purum
Analyse : ≥99,0 % (T)
forme : poudre
température d'auto-inflammation : 1364 °F
expl. lim.: 40 %
mp : 298-300 °C (subl.) (lit.)
solubilité : 95 % éthanol : soluble 0,46 g/10 mL, clair, incolore
Chaîne SMILES : OC(=O)\C=C\C(O)=O
InChI : 1S/C4H4O4/c5-3(6)1-2-4(7)8/h1-2H,(H,5,6)(H,7,8)/b2-1+
Clé InChI : VZCYOOQTPOCHFL-OWOJBTEDSA-N

Point d'ébullition : 290 °C (1013 hPa) (sublimé)
Densité : 1,64 g/cm3 (20 °C)
Point d'éclair : 273 °C
Température d'inflammation : 375 °C
Point de fusion : 287 °C
Valeur pH : 2,1 (4,9 g/l, H₂O, 20 °C)
Pression de vapeur : <0,001 hPa (20 °C)
Solubilité : 4,9 g/l

Poids moléculaire : 116,07 g/mol
XLogP3 : -0,3
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4
Nombre de liaisons rotatives : 2
Masse exacte : 116,01095860 g/mol
Masse monoisotopique : 116,01095860 g/mol
Surface polaire topologique : 74,6 Ų
Nombre d'atomes lourds : 8
Complexité : 119
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 1
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Spécifications de l’acide allomaléique :
Dosage (calculé sur substance anhydre) : 99,5 - 100,5 %
Dosage (HPLC ; calculé sur substance anhydre) : 98,0 - 102,0 %
Identité (IR) : réussit le test
Identité (JPE 1) : réussi le test
Identité (JPE 2/ChP 1) : réussi le test
Identité (JPE 3) : réussi le test
Identité (HPLC) : réussit le test
Aspect de la solution : réussit le test
Sulfate (SO₄) : ≤ 0,010 %
Métaux lourds (en Pb) : ≤ 10 ppm
As (Arsenic) : ≤ 2 ppm
Acide malique (HPLC) (NF) : ≤ 1,5 %
Acide maléique (HPLC) (NF) : ≤ 0,1 %
Acide maléique (HPLC) (JPE) : réussit le test
Acide maléique (HPLC) (ChP) : ≤ 0,1 %
Toute impureté individuelle non spécifiée (HPLC) : ≤ 0,1 %
Somme de toutes les impuretés (HPLC) : ≤ 0,2 %
Solvants résiduels (ICH Q3C) : exclus par procédé de production
Eau (KF) : ≤ 0,5 %
Cendres sulfatées : ≤ 0,05 %

Produits connexes de l’acide allomaléique :
Télaglénastat (CB-839)Nouveau
Setanaxib (GKT137831)Nouveau
LB-100Nouveau
Puromycine 2HCl
Cyclosporine A
Cyclophosphamide monohydraté
Ganciclovir
Calcitriol
Ribavirine (ICN-1229)
BAPTA-AM

Composés associés de l’acide allomaléique :
Chlorure de fumaryle
Fumaronitrile
Fumarate de diméthyle
Fumarate d'ammonium
Fumarate de fer(II)

Acides carboxyliques associés :
Acide maléique
Acide succinique
Acide crotonique

Noms de l’acide fumarique :

Noms des processus réglementaires :
L'acide fumarique
L'acide fumarique
l'acide fumarique

Noms traduits :
acide fumarique (fr)
acido fumarico (il)
Fumaarhape (et)
Fumaarihapo (fi)
fumaarzuur (nl)
Fumarna Kiselina (heure)
fumarna kislina (sl)
fumaro rūgštis (lt)
fumarová kyselina (cs)
fumarsyra (sv)
fumarsyre (da)
fumarsyre (non)
Fumarsäure (de)
fumársav (hu)
fumārskābe (lv)
Kyselina Fumarova (sk)
acide fumaire (es)
acide fumaire (pt)
φουμαρικό οξύ (el)
фумарова киселина (bg)

Noms IUPAC :
Acide (2E)-but-2-ènedioïque
(E) acide but-2-ènedioïque
Acide (E)-but-2-ènedioïque
(E) -Acide butènedioïque
Acide 1,2-éthylène dicarboxylique
ACIDE 2-BUTENEDIOIQUE
Acide 2-butènedioïque (2E)-Acide fumarique
Acide 2-butènedioïque, E-
acide fumarique
Acide but-2-ènedioïque
acide but-2-ènedioïque
Acide E-butènedioïque
Flocons FA
L'ACIDE FUMARIQUE
L'acide fumarique
L'acide fumarique
l'acide fumarique
L'acide fumarique
L'acide fumarique
l'acide fumarique
acide fumarique, acide butènedioïque, acide allomaléique, acide bolétique, acide donitique, acide lichénique
Fumarsäure
trans-1,2-éthylènedicarboxylique
acide trans-2-butènedioïque
trans-Butendisäure
Acide trans-butènedioïque

Nom IUPAC préféré :
Acide (2E)-But-2-ènedioïque

Appellations commerciales:
Acide (E)-2-butènedioïque
Acide 1,2-éthylène dicarboxylique
Acide allomaléique
Acide bolétique
Acide butènedioïque, (E)-
L'acide fumarique
acide trans-1,2-éthylènedicarboxylique
ACIDE TRANS-BUTÉNÉDICARBOXYLIQUE

Autres noms:
L'acide fumarique
acide trans-1,2-éthylènedicarboxylique
Acide 2-butènedioïque
acide trans-butènedioïque
Acide allomaléique
Acide bolétique
Acide donitique
Acide lichénique

Autres identifiants :
110-17-8
607-146-00-X
623158-97-4
909873-99-0

Synonymes de l’acide allomaléique :
l'acide fumarique
110-17-8
Acide 2-butènedioïque
acide trans-butènedioïque
Acide allomaléique
fumarate
Acide lichénique
Acide bolétique
Acide tumarique
Acide (2E)-but-2-ènedioïque
acide trans-1,2-éthylènedicarboxylique
Acide allomalénique
Acide but-2-ènedioïque
acide trans-2-butènedioïque
Acide (E)-2-butènedioïque
Fumaricum acide
Acide 2-butènedioïque, (E)-
Kyselina Fumarova
Acide butènedioïque
Acide 2-butènedioïque (E)-
USAF EK-P-583
Acide butènedioïque, (E)-
FEMA n° 2488
Acide (2E)-2-butènedioïque
Caswell n ° 465E
Numéro FEMA 2488
NSC-2752
Fumarsaeure
Acide allomaléique
Acide bolétique
Acide lichénique (VAN)
Acide 2-butènedioïque (2E)-
Acide 1,2-éthylènedicarboxylique, (E)
CCRIS 1039
HSDB710
Acide 2-(E)-butènedioïque
Kyselina Fumarova [tchèque]
acide trans-but-2-ènedioïque
Acide (E)-but-2-ènedioïque
U-1149
fumarate d'ammonium
(E) -Acide butènedioïque
Acide 1,2-éthènedicarboxylique, trans-
Code chimique des pesticides EPA 051201
AI3-24236
6915-18-0
EINECS203-743-0
fumarate, 10
BRN0605763
Acide fumarique (NF)
Acide fumarique [NF]
SIN N° 297
DTXSID3021518
UNII-88XHZ13131
CHEBI:18012
Acide E-2-butènedioïque
Acide fumarique (8CI)
INS-297
NSC2752
acide éthylènedicarboxylique
FC 33 (acide)
88XHZ13131
E297
DTXCID601518
Acide maléique-2,3-13C2
E-297
ACIDE 2(TRANS)-BUTENEDIOIQUE
CE 203-743-0
4-02-00-02202 (référence du manuel Beilstein)
fum
Acide maléique-2,3-d2
F0067
ACIDE FUMARIQUE (II)
ACIDE FUMARIQUE [II]
(E)-2-Butènedioate
Acide fumarique 1000 microg/mL dans acétonitrile : eau
ACIDE FUMARIQUE (MART.)
ACIDE FUMARIQUE [MART.]
ACIDE FUMARIQUE (USP-RS)
ACIDE FUMARIQUE [USP-RS]
(2E)-mais-2-ènedioate
ACIDE FUMARIQUE (IMPURETÉ USP)
ACIDE FUMARIQUE [IMPURETÉ USP]
Acide donitique
acide but-2-ènedioïque
CAS-110-17-8
acide trans-1,2-éthènedicarboxylique
IMPURETÉ A ACIDE MALIQUE (IMPURETÉ EP)
IMPURETÉ ACIDE MALIQUE A [IMPURETÉ EP]
Acide (E)-1,2-éthylènedicarboxylique
acide trans-1,2-éthylènediccarboxylique
IMPURETÉ B AUROTHIOMALATE DE SODIUM (IMPURETÉ EP)
IMPURETÉ B AUROTHIOMALATE DE SODIUM [IMPURETÉ EP]
fumarsaure
Allomaléate
Bolétaire
Lichenate
Acide fumarique
Acide lichenico
acide fumarique
Acide bolétique
Acide fumarique
Acidum fumaricum
Acide allomaléique
trans-butènedioate
NCGC00091192-02
24461-33-4
26099-09-2
Acide Fumarique,(S)
MFCD00002700
trans-2-Butendisaure
trans-2-butènedioate
2-(E)-Butènedioate
Acide fumarique, 99%
Acide trans butendioico
FUM (Code CHRIS)
trans-éthylènedicarbonsaure
Acide (Trans)-butènedioïque
Acide fumarique, >=99%
Numéro FEMA : 2488
bmse000083
D03GOO
ACIDE FUMARIQUE [IM]
WLN : QV1U1VQ-T
ACIDE FUMARIQUE [FCC]
Acide Futrans-2-Butènedioïque
SCHEMBL1177
ACIDE FUMARIQUE [FHFI]
ACIDE FUMARIQUE [HSDB]
ACIDE FUMARIQUE [INCI]
ACIDE FUMARIQUE [VANDF]
MLS002454406
Acide 1,2-éthylènedicarboxylique
Acide 2-butènedioïque, (2E)-
Acide (2E)-2-butènedioïque #
S04-0167
ACIDE FUMARIQUE [QUI-DD]
CHEMBL503160
FUMARICUM ACIDUM [HPUS]
trans-1,2-éthylènedicarboxylate
BDBM26122
CHEBI:22958
Acide 2-butènedioïque (2E-(9CI)
HMS2270C12
Pharmakon1600-01301022
Acide fumarique, >=99,0% (T)
AMY30339
STR02646
Acide trans 1,2-etenedicarbossilico
Tox21_201769
Tox21_302826
Acide 2-butènedioïque (2E)- (9CI)
Acide trans 1,2-etilendicarbossilico
Acide fumarique, >=99%, FCC, FG
LS-500
NA9126
NSC760395
s4952
AKOS000118896
Acide fumarique, étalon qNMR pour le DMSO
GCC-266065
CS-W016599
DB01677
HY-W015883
NSC-760395
OU17920
Code des pesticides USEPA/OPP : 051201
NCGC00091192-01
NCGC00091192-03
NCGC00256360-01
NCGC00259318-01
BP-13087
Acide fumarique, testé selon USP/NF
SMR000112117
Acide fumarique, puriss., >=99,5% (T)
EN300-17996
Acide fumarique, qualité réactif Vetec(TM), 99 %
1, (E)
C00122
D02308
D85166
Q139857
Acide fumarique, BioReagent, adapté à la culture cellulaire
J-002389
Fumarate ; Acide 2-butènedioïque ; Acide trans-butènedioïque
Z57127460
F8886-8257
Acide fumarique, matériau de référence certifié, TraceCERT(R)
26B3632D-E93F-4655-90B0-3C17855294BA
Acide fumarique, anhydre, fluide, Redi-Dri(TM), >=99 %
Acide fumarique, étalon de référence de la Pharmacopée européenne (EP)
Acide fumarique, étalon de référence de la Pharmacopée des États-Unis (USP)
Acide fumarique, étalon secondaire pharmaceutique ; Matériel de référence certifié
623158-97-4
Acide fumarique [Wiki]
(2E)-2-Butendisäure [Allemand] [Nom ACD/IUPAC]
Acide (2E) -2-butènedioïque [Nom ACD/IUPAC]
Acide (2E)-But-2-ènedioïque
Acide (E)-1,2-éthylènedicarboxylique
Acide (E)-2-butènedioïque
(E) -Acide butènedioïque
Acide 1,2-éthènedicarboxylique, trans-
110-17-8 [RN]
203-743-0 [EINECS]
Acide 2-butènedioïque [Nom ACD/IUPAC]
Acide 2-butènedioïque (2E)-
Acide 2-butènedioïque, (2E)-[ACD/Nom de l'index]
Acide 2-butènedioïque, (E)-
605763 [Beilstein]
Acide (2E)-2-butènedioïque [Français] [ACD/IUPAC Name]
Acidum fumaricum
Acide butènedioïque, (E)-
Acide E-2-butènedioïque
MFCD00002700 [numéro MDL]
acide trans-1,2-éthènedicarboxylique
acide trans-1,2-éthylènedicarboxylique
ACIDE TRANS-2-BUTENEDIOIQUE
acide trans-but-2-ènedioïque
acide trans-butènedioïque
(2E)-Mais-2-ènedioate
(E)-2-Butènedioate
(E)-mais-2-ènedioate
Acide (E)-but-2-ènedioïque
(E)-HO2CCH=CHCO2H
Acide 1,2-éthylènedicarboxylique, (E)
2-(E)-Butènedioate
Acide 2-(E)-butènedioïque
Acide 2-butènedioïque (E)-
4-02-00-02202 [Beilstein]
605762 [Beilstein]
Acide allomalénique
Bolétaire
Acide bolétique
acide cis-butènedioïque
Acide fumarique manquant
Fumaricum acide
Fumarsaeure
Kyselina Fumarova [tchèque]
Lichenate
Acide lichénique (VAN)
phénanthrène-9,10-dione
phénanthrène-9,10-dione ; 9,10-phénanthraquinone
QV1U1VQ-T [WLN]
STR02646
trans-1,2-éthylènedicarboxylate
acide trans-1,2-éthylènetricarboxylique
trans-2-butènedioate
trans-butènedioate
延胡索酸 [chinois]
ACIDE AMINOACÉTIQUE


L'acide aminoacétique, communément appelé acide aminoacétique, est l'acide aminé le plus simple trouvé dans la nature.
L'acide aminoacétique est une petite molécule organique dont la formule moléculaire est C2H5NO2.
L'acide aminoacétique est incolore, inodore et insipide et se présente souvent sous forme de poudre cristalline blanche.
Sa structure chimique est constituée d'un seul groupe amino (-NH2) et d'un groupe carboxyle (-COOH) attachés au même atome de carbone.

Numéro CAS : 56-40-6
Numéro CE : 200-272-2



APPLICATIONS


L'acide aminoacétique est largement utilisé dans l'industrie pharmaceutique comme agent tampon pour maintenir le pH des médicaments et des formulations.
L'acide aminoacétique sert d'agent stabilisant pour les vaccins et certaines protéines thérapeutiques.
Dans l’industrie alimentaire, l’acide aminoacétique est utilisé comme exhausteur de goût, contribuant au goût savoureux de divers plats.
L'acide aminoacétique fonctionne comme un neurotransmetteur dans le système nerveux central, jouant un rôle dans la transmission du signal.

L'acide aminoacétique est utilisé comme supplément pour potentiellement améliorer la qualité du sommeil et améliorer la relaxation.
L'acide aminoacétique est un composant clé du collagène, la protéine la plus abondante dans le corps humain, contribuant à la santé de la peau et à la cicatrisation des plaies.
Dans les cosmétiques et les produits de soin, il est utilisé pour ses propriétés hydratantes et anti-âge.

La production de gélatine, essentielle dans les industries alimentaire, pharmaceutique et photographique, repose sur l'acide aminoacétique.
L'acide aminoacétique est utilisé dans la fabrication d'antiacides pour neutraliser l'excès d'acide gastrique.
L'acide aminoacétique joue un rôle dans la synthèse de la créatine, essentielle au métabolisme énergétique musculaire.

Dans l’industrie des aliments pour animaux de compagnie, de l’acide aminoacétique est ajouté pour améliorer l’appétence et fournir de l’azote essentiel.
L'acide aminoacétique est utilisé comme engrais foliaire en agriculture pour fournir aux plantes des nutriments essentiels.
L'acide aminoacétique est un précurseur important dans la synthèse des porphyrines, essentielles à l'hémoglobine et à la chlorophylle.

L'acide aminoacétique est utilisé comme réducteur dans diverses réactions chimiques et peut réduire les ions métalliques en laboratoire.
Dans l’industrie textile, il est utilisé dans les processus de teinture pour améliorer la solidité et l’uniformité des couleurs.
L'acide aminoacétique agit comme un agent chélateur, se liant aux ions métalliques et aidant à éliminer les taches métalliques et le tartre.
L'acide aminoacétique est utilisé comme composant dans certaines crèmes et lotions pour la peau pour favoriser l'hydratation de la peau.

L'acide aminoacétique est utilisé comme complément alimentaire pour ses avantages potentiels en matière de soutien à la santé métabolique.
Dans l’industrie du papier et de la pâte à papier, il est utilisé comme additif pour améliorer les processus de blanchiment de la pâte.

L'acide aminoacétique joue un rôle dans la synthèse des purines, essentielles à l'ADN et à l'ARN.
L'acide aminoacétique est utilisé dans la fabrication de produits chimiques spécialisés et comme matière première pour divers composés organiques.
En médecine vétérinaire, l’acide aminoacétique peut être utilisé comme traitement de certains troubles métaboliques chez les animaux.
L'acide aminoacétique sert d'agent stabilisant pour certaines enzymes et protéines utilisées en biotechnologie et en recherche.

L'acide aminoacétique est utilisé comme composant dans certains détergents à vaisselle pour améliorer l'efficacité du nettoyage.
Dans l’industrie brassicole, il peut être utilisé comme agent de clarification pour clarifier la bière et éliminer les impuretés.

L'acide aminoacétique est un composant crucial dans la formulation des shampooings et revitalisants, contribuant à la force des cheveux et à la rétention d'humidité.
L'acide aminoacétique est utilisé dans la fabrication de dentifrices et de bains de bouche pour améliorer la saveur et la fraîcheur des produits de soins bucco-dentaires.
Dans l’industrie du cuir, l’acide aminoacétique est utilisé comme agent tannant dans la production d’articles en cuir de haute qualité.
L'acide aminoacétique est un ingrédient important des compléments alimentaires visant à favoriser la croissance et la récupération musculaire.
L'acide aminoacétique est utilisé dans le processus de brassage pour contrôler le pH de la bière et éviter les arômes indésirables.

Dans l'industrie textile, il sert d'agent d'égalisation de teinture, assurant une répartition uniforme de la couleur pendant la teinture.
L'acide aminoacétique est utilisé dans la production de détergents pour améliorer les capacités de nettoyage et d'élimination des taches.

L'acide aminoacétique joue un rôle dans la synthèse des acides nucléiques, contribuant au matériel génétique des organismes vivants.
L'acide aminoacétique est utilisé dans la fabrication d'explosifs, où il agit comme agent stabilisant.
Dans la production de produits cosmétiques et de soins de la peau, il contribue à maintenir la stabilité et la cohérence du produit.

L'acide aminoacétique est utilisé comme agent complexant les métaux dans les processus de galvanoplastie pour améliorer la qualité des revêtements métalliques.
L'acide aminoacétique est un ingrédient clé de certaines boissons énergisantes et suppléments en raison de ses propriétés potentielles d'amélioration des performances.
Dans l’industrie pharmaceutique, il est utilisé comme excipient dans les formulations de comprimés et de gélules pour faciliter l’administration des médicaments.

L'acide aminoacétique peut être utilisé comme agent réducteur dans les analyses chimiques et les expériences en laboratoire.
L'acide aminoacétique est utilisé dans la production de produits chimiques spécialisés, notamment des herbicides et des pesticides.
L'acide aminoacétique est ajouté à certaines formulations d'aliments pour animaux pour améliorer l'absorption des nutriments et la santé globale.

Dans la production de cosmétiques, il peut être utilisé pour réguler le pH des produits et améliorer l’hydratation de la peau.
L'acide aminoacétique est utilisé dans la synthèse de divers produits chimiques, notamment des polymères, des tensioactifs et des plastifiants.
L'acide aminoacétique joue un rôle dans la formation d'acides biliaires dans le foie, facilitant la digestion et l'absorption des graisses.
L'acide aminoacétique est un composant de certains compléments alimentaires visant à soutenir les fonctions cognitives et la mémoire.

Dans la fabrication de la céramique et du verre, il est utilisé comme fondant pour réduire les températures de fusion.
L'acide aminoacétique est utilisé comme supplément dans certains régimes alimentaires des volailles pour améliorer la croissance et la qualité des plumes.

L'acide aminoacétique est utilisé comme stabilisant pour les enzymes utilisées dans l'industrie alimentaire et des boissons.
Dans l’industrie de la construction, il peut être ajouté aux formulations de ciment pour améliorer la résistance et la durabilité du béton.
L'acide aminoacétique est utilisé dans la production de plastiques biodégradables, contribuant ainsi à la création de matériaux respectueux de l'environnement.

L'acide aminoacétique est un ingrédient courant dans les produits de soin de la peau, notamment les crèmes et les sérums, en raison de ses propriétés hydratantes et apaisantes pour la peau.
Dans l'industrie textile, il est utilisé comme assistant de teinture pour améliorer la solidité des couleurs et l'uniformité des tissus teints.

L'acide aminoacétique sert d'agent chélateur dans les processus de traitement de l'eau, aidant à éliminer les ions de métaux lourds des eaux usées.
Dans le secteur agricole, il peut être utilisé comme amendement du sol pour améliorer la structure du sol et la rétention des nutriments.

L'acide aminoacétique est utilisé dans la formulation de certains médicaments vétérinaires, notamment dans le traitement du bétail.
L'acide aminoacétique joue un rôle dans la synthèse de l'hème, un composant de l'hémoglobine responsable du transport de l'oxygène dans les globules rouges.
L'acide aminoacétique est utilisé dans la production de certains produits pharmaceutiques, tels que les antiacides et les analgésiques.

Dans l’industrie des aliments pour animaux de compagnie, il est ajouté aux friandises et aux suppléments pour animaux de compagnie en raison de ses bienfaits potentiels pour la santé.
L'acide aminoacétique est utilisé comme agent stabilisant pour les enzymes utilisées dans la recherche en biologie moléculaire et en biotechnologie.
L'acide aminoacétique peut être incorporé dans des solutions de bain de refroidissement pour les équipements de laboratoire afin de contrôler la température pendant les expériences.

Dans l’industrie automobile, l’acide aminoacétique peut être utilisé comme composant dans les liquides de refroidissement moteur et les solutions antigel.
L'acide aminoacétique est un ingrédient clé de certains suppléments nutritionnels à base de protéines, contribuant à la santé et à la récupération musculaire.

L'acide aminoacétique est utilisé dans la synthèse de divers composés chimiques, notamment des pesticides et des herbicides.
L'acide aminoacétique peut être trouvé dans certains sirops contre la toux et pastilles pour la gorge en vente libre pour ses propriétés apaisantes.
Dans la production de céramique et de verre, il agit comme fondant pour abaisser les températures de fusion et améliorer la consistance.

L'acide aminoacétique est utilisé dans la fabrication d'agents moussants pour les extincteurs et les équipements de lutte contre l'incendie.
L'acide aminoacétique joue un rôle dans la synthèse des purines et des pyrimidines, essentielles à la formation des acides nucléiques.
L'acide aminoacétique est utilisé comme agent tampon en électrophorèse, une technique de séparation de molécules en laboratoire.
Dans l’industrie de la construction, il peut être ajouté au ciment pour améliorer la maniabilité et la résistance du béton.

L'acide aminoacétique est un ingrédient de certains compléments alimentaires commercialisés pour le soulagement du stress et la relaxation.
L'acide aminoacétique est utilisé dans la production de caoutchouc synthétique et de plastiques, contribuant à leur élasticité.
L'acide aminoacétique est utilisé dans la fabrication d'adhésifs et de produits d'étanchéité pour améliorer les performances des produits.

Dans l’industrie alimentaire, il peut être utilisé comme additif alimentaire pour rehausser le goût et la saveur de divers plats.
L'acide aminoacétique entre dans la composition de certaines formulations pour le traitement et le conditionnement du cuir.
L'acide aminoacétique est utilisé dans la production de produits chimiques spécialisés, notamment ceux utilisés dans les industries de l'électronique et des semi-conducteurs.

L'acide aminoacétique est utilisé dans l'industrie cosmétique pour créer des masques pour le visage et des produits de soin de la peau pour ses propriétés apaisantes et hydratantes.
Dans l’industrie des soins pour animaux de compagnie, on peut le trouver dans les shampoings et les produits de toilettage pour animaux de compagnie pour favoriser la santé du pelage.
L'acide aminoacétique est un composant de certains compléments alimentaires visant à favoriser la santé digestive globale.

L'acide aminoacétique sert d'agent tampon dans la production de certains vaccins pour maintenir leur stabilité.
Dans la fabrication de produits chimiques photographiques, l’acide aminoacétique est utilisé comme agent de développement.
L'acide aminoacétique joue un rôle dans la synthèse de divers types d'antibiotiques et d'agents antimicrobiens.
L'acide aminoacétique est utilisé dans la production d'adhésifs spéciaux, notamment ceux utilisés dans l'industrie de la construction.

Dans le domaine pharmaceutique, il est utilisé comme excipient dans l’enrobage des comprimés pour améliorer l’administration des médicaments.
L'acide aminoacétique peut être ajouté aux aliments pour volailles comme complément alimentaire pour améliorer la croissance et la qualité des plumes.
Dans la production de savons et de détergents, il agit comme un tensioactif, améliorant ainsi l’efficacité du nettoyage.
L'acide aminoacétique est utilisé comme agent complexant les métaux dans l'industrie minière pour extraire les métaux précieux des minerais.

L'acide aminoacétique joue un rôle dans la synthèse des neurotransmetteurs, tels que la sérine et le glutathion, influençant le fonctionnement cérébral.
Dans l’industrie vinicole, il est utilisé comme agent de clarification pour clarifier et améliorer le goût du vin.
L'acide aminoacétique peut être ajouté aux solutions d'extinction d'incendie pour améliorer leur efficacité de lutte contre l'incendie.
L'acide aminoacétique sert d'agent réducteur dans les réactions chimiques, en particulier dans la préparation de produits chimiques spécialisés.

Dans le secteur automobile, l’acide aminoacétique est utilisé dans la formulation de certains liquides de refroidissement moteur et antigels.
L'acide aminoacétique est un composant de certaines formulations de substituts de viande à base de plantes pour améliorer la saveur et la texture.
Dans la fabrication de céramiques, il est utilisé pour améliorer les processus de moulage et de cuisson.
L'acide aminoacétique peut être utilisé comme régulateur de pH dans les expériences de laboratoire et en chimie analytique.

L'acide aminoacétique est ajouté à certaines formulations de nettoyants pour le corps et de gels douche pour ses propriétés nettoyantes douces.
Dans l’industrie des semi-conducteurs, il est utilisé comme matériau dopant pour modifier les propriétés électriques du silicium.
L'acide aminoacétique joue un rôle dans la synthèse de l'hème, indispensable au fonctionnement de l'hémoglobine.

L'acide aminoacétique peut être incorporé dans des solutions de bain de refroidissement pour les équipements de laboratoire afin de maintenir des températures précises.
L'acide aminoacétique est utilisé dans la production de plastiques et de polymères spéciaux destinés à des applications industrielles spécifiques.
Dans l’industrie du papier et de la pâte à papier, il est utilisé pour améliorer l’efficacité des processus de blanchiment du papier.



DESCRIPTION


L'acide aminoacétique est un nom commun pour le composé chimique appelé acide aminoacétique.
Sa formule chimique est C2H5NO2, et c’est l’acide aminé le plus simple, ce qui en fait un élément constitutif essentiel des protéines.
L'acide aminoacétique est un composé organique avec un seul groupe amino (-NH2) et un groupe carboxyle (-COOH) attaché au même atome de carbone.
L'acide aminoacétique est considéré comme un acide aminé non essentiel car le corps humain peut le synthétiser à partir d'autres précurseurs, mais il n'en reste pas moins crucial pour diverses fonctions physiologiques.

L'acide aminoacétique, communément appelé acide aminoacétique, est l'acide aminé le plus simple trouvé dans la nature.
L'acide aminoacétique est une petite molécule organique dont la formule moléculaire est C2H5NO2.
L'acide aminoacétique est incolore, inodore et insipide et se présente souvent sous forme de poudre cristalline blanche.
Sa structure chimique est constituée d'un seul groupe amino (-NH2) et d'un groupe carboxyle (-COOH) attachés au même atome de carbone.

L'acide aminoacétique est classé parmi les acides aminés non essentiels, car le corps humain peut le synthétiser à partir d'autres acides aminés.
L'acide aminoacétique joue un rôle essentiel en tant qu'élément constitutif des protéines, formant des liaisons peptidiques entre les acides aminés des chaînes protéiques.
En tant que neurotransmetteur, l'acide aminoacétique sert de neurotransmetteur inhibiteur dans le système nerveux central.

L'acide aminoacétique aide à réguler l'activité du cerveau et de la moelle épinière, contribuant ainsi au contrôle moteur et à la perception sensorielle.
L'acide aminoacétique est souvent utilisé comme supplément sous forme de poudre ou de capsules d'acide aminoacétique pour ses bienfaits potentiels pour la santé.
L'acide aminoacétique est impliqué dans la synthèse de la créatine, un composé essentiel à la production d'énergie dans les cellules musculaires.
L'acide aminoacétique est connu pour son goût sucré, qui est utilisé comme exhausteur de goût dans l'industrie alimentaire.

Dans l’industrie pharmaceutique, il est utilisé comme stabilisant et agent tampon dans les formulations médicamenteuses.
L'industrie cosmétique utilise l'acide aminoacétique dans les produits de soin de la peau pour ses propriétés hydratantes et anti-âge.
L'acide aminoacétique est un composant essentiel dans la production de gélatine, qui est utilisée dans les aliments, les produits pharmaceutiques et la photographie.
L'acide aminoacétique est souvent ajouté aux aliments pour animaux de compagnie pour améliorer l'appétence et comme source d'azote pour les animaux de compagnie.
En agriculture, il est utilisé comme engrais foliaire pour apporter aux plantes les nutriments essentiels.

En tant que molécule biologiquement importante, l’acide aminoacétique est impliqué dans divers processus métaboliques.
L'acide aminoacétique facilite la synthèse des porphyrines, essentielles à la production d'hémoglobine et de chlorophylle.

La petite taille de l’acide aminoacétique et l’absence de centre chiral en font un élément constitutif polyvalent en chimie organique.
L'acide aminoacétique est utilisé dans la préparation de peptides, de produits pharmaceutiques et de produits chimiques spécialisés.
L'acide aminoacétique présente des propriétés physiques uniques, telles qu'une haute solubilité dans l'eau et une faible toxicité.

L'acide aminoacétique est considéré comme l'un des « acides aminés à chaîne ramifiée » et est essentiel à la formation du collagène.
Dans les recherches en laboratoire, l'acide aminoacétique est souvent utilisé comme tampon pour contrôler le pH dans les expériences biologiques.
L'acide aminoacétique est un composant de certains médicaments antiacides en raison de son pouvoir tampon.
Dans l’ensemble, les diverses propriétés et fonctions de l’acide aminoacétique en font un composé fondamental en biologie, en chimie et dans diverses industries.



PROPRIÉTÉS


Formule chimique : C2H5NO2
Poids moléculaire : 75,07 g/mol
Structure chimique : L'acide aminoacétique a une structure chimique simple avec un groupe amino (-NH2) et un groupe carboxyle (-COOH) attachés au même atome de carbone.
État physique : L’acide aminoacétique existe sous forme de solide cristallin blanc à température ambiante.
Solubilité : Il est hautement soluble dans l’eau et légèrement soluble dans l’éthanol et d’autres solvants organiques.
Point de fusion : L'acide aminoacétique a un point de fusion d'environ 240°C (464°F).
Point d'ébullition : Il se décompose avant d'atteindre son point d'ébullition.
Odeur : L'acide aminoacétique est inodore.
Goût : Il a un goût sucré.
Couleur : L’acide aminoacétique apparaît généralement sous la forme d’un solide blanc et incolore.
Densité : La densité de l'acide aminoacétique est d'environ 1,6 g/cm³.
Niveau de pH : Une solution d’acide aminoacétique est de nature légèrement acide avec un pH d’environ 2,34 à température ambiante lorsqu’elle est complètement ionisée.
Hygroscopique : L'acide aminoacétique est hygroscopique, ce qui signifie qu'il absorbe facilement l'humidité de l'air.
Stabilité : L'acide aminoacétique est stable dans des conditions normales mais peut se décomposer à haute température.
Activité optique : L'acide aminoacétique est optiquement inactif car il lui manque un centre chiral.
Chaleur de combustion : La chaleur de combustion de l’acide aminoacétique est d’environ 10,2 kJ/g.
Réactivité : L'acide aminoacétique est un composé non réactif dans des conditions typiques.
Toxicité : L'acide aminoacétique est considéré comme non toxique et sans danger pour la consommation.



PREMIERS SECOURS


Inhalation:

Si de la poussière ou un aérosol d'acide aminoacétique est inhalé, retirez immédiatement la personne affectée de la zone contaminée vers un espace bien ventilé.
Si la personne éprouve des difficultés à respirer, consultez rapidement un médecin.
Fournir de l'oxygène si les difficultés respiratoires persistent.
Si la personne perd connaissance, administrez la RCR et appelez une assistance médicale d’urgence.


Contact avec la peau:

En cas de contact cutané avec l'acide aminoacétique, retirer rapidement les vêtements et bijoux contaminés.
Lavez la zone cutanée affectée avec beaucoup d’eau pendant au moins 15 minutes.
Utilisez un savon doux si disponible pour aider à éliminer tout acide aminoacétique résiduel.
Consulter un médecin en cas d'irritation, de rougeur ou d'autres réactions cutanées indésirables.


Lentilles de contact:

Si l'acide aminoacétique entre en contact avec les yeux, rincez immédiatement les yeux affectés avec de l'eau tiède courante pendant au moins 15 minutes. Assurer un rinçage complet sous les paupières.
Maintenez les paupières ouvertes pendant le rinçage pour faciliter l'élimination du produit chimique.
Contactez un ophtalmologiste ou consultez un médecin pour évaluer toute lésion ou irritation oculaire.


Ingestion:

Si de l'acide aminoacétique est ingéré, ne faites pas vomir sauf indication contraire d'un professionnel de la santé.
Rincez-vous la bouche avec de l'eau et buvez beaucoup d'eau pour aider à diluer le produit chimique.
Consultez immédiatement un médecin ou contactez un centre antipoison pour obtenir des conseils.
Si la personne présente des symptômes tels que des difficultés à avaler, des douleurs abdominales sévères ou une altération de la conscience, ne retardez pas l'assistance médicale.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection : Lors de la manipulation de l'acide aminoacétique, portez un équipement de protection individuelle (EPI) approprié, notamment des lunettes de sécurité, des gants, une blouse de laboratoire et des chaussures appropriées.

Ventilation : travaillez dans un endroit bien ventilé ou utilisez des systèmes de ventilation par aspiration locaux pour minimiser l'exposition à la poussière.

Éviter l'inhalation : Éviter de respirer les poussières, les vapeurs ou les aérosols d'acide aminoacétique. Utilisez un masque anti-poussière ou un respirateur avec le filtre approprié si nécessaire.

Prévenir le contact avec la peau :
Éviter tout contact avec la peau en portant des gants résistant aux produits chimiques et des vêtements de protection appropriés.

Protection des yeux:
Portez des lunettes de sécurité ou un écran facial pour vous protéger contre tout contact oculaire potentiel.

Éviter l'ingestion :
Ne pas manger, boire ou fumer dans les zones où l'acide aminoacétique est manipulé.
Se laver soigneusement les mains après manipulation.

Déversements et fuites :
Nettoyer immédiatement les déversements pour éviter toute contamination.
Utiliser des matériaux absorbants appropriés et les éliminer correctement.

Outils et équipement:
Assurez-vous que tous les outils et équipements de laboratoire ou industriels utilisés avec l’acide aminoacétique sont propres et en bon état de fonctionnement pour éviter les accidents ou la contamination.

Hygiène:
Pratiquez une bonne hygiène personnelle, y compris un lavage régulier des mains, après avoir manipulé de l'acide aminoacétique.


Stockage:

Zone de stockage:
Conservez l'acide aminoacétique dans un endroit frais, sec et bien ventilé, à l'abri de la lumière directe du soleil et des matières incompatibles.

Température:
Maintenir les températures de stockage dans la plage recommandée, généralement égales ou inférieures à la température ambiante.

Conteneurs :
Conservez l'acide aminoacétique dans des récipients hermétiquement fermés, tels que des bouteilles, des fûts ou des sacs, pour éviter l'absorption d'humidité et la contamination.

Séparation:
Conservez l’acide aminoacétique à l’écart des agents oxydants forts, des acides et des bases, car il pourrait réagir avec eux.

Étiquetage :
Étiquetez clairement les conteneurs de stockage avec le nom du produit, les informations sur les dangers et les précautions de manipulation.

Accessibilité:
Assurez-vous que l'acide aminoacétique est stocké dans un endroit accessible uniquement au personnel formé et autorisé.

Matériaux incompatibles :
Évitez de stocker l'acide aminoacétique à proximité de produits chimiques ou de substances incompatibles pour éviter des réactions potentielles.



SYNONYMES


Glycocoll
Acide aminoéthanoïque
Acide aminoacétique
Glycolixir
Glycosthène
Acide aminoacétique Marque pharmaceutique d'acide aminoacétique
Acide aminoacétique, composé avec l'acide carbonique (1:1)
Kyselina Glycinova
Aminoessigsaeure
Acide aminoacétique
Acide aminoéthanoïque
Gel d'acide aminoacétique marque d'acide aminoacétique
Acide acétique, amino-
Acide amidocétique
Aminoacétate
Chlorhydrate d'acide aminoacétique
Glycine
Glisine
Aminoessigsaeure
Leimzucker
Monazoline
Norvaline
Trolamine
Pesticol
Aminoéthanoate
Glycocollum
Glycostène
Glicine
Aminoéthanoate
Glicine
Glycocine
Glycinium
Glycokoll
Glycolsaeuramine
Glyzine
Kyselina Glycinova
Glicine [tchèque]
Carbonate d'acide aminoacétique (1:1)
Acide aminoacétique, sel d'ammonium
Amide d'acide aminoacétique
Acide aminoacétique bétaïne
Hydroxyde d'acide aminoacétique
Acide aminoacétique, sel de baryum
Acide aminoacétique, sel de calcium
Acide aminoacétique, sel de cuivre(2+)
Acide aminoacétique, sel de fer
Acide aminoacétique, sel de plomb
Acide aminoacétique, sel de lithium
Acide aminoacétique, sel de magnésium
Acide aminoacétique, sel de manganèse(2+)
ACIDE AMINOSULFONIQUE
L'acide aminosulfonique, également connu sous le nom d'acide amidosulfonique, d'acide amidosulfurique et d'acide sulfamidique, est un composé moléculaire de formule H3NSO3.
L'acide aminosulfonique appartient à la classe de composés inorganiques connus sous le nom d'autres oxydes non métalliques.
L'acide aminosulfonique est principalement un précurseur de composés au goût sucré.


Numéro CAS : 5329-14-6
Numéro CE : 226-218-8
Formule linéaire : NH2SO3H
Formule chimique : H3NSO3


L'acide aminosulfonique, également connu sous le nom d'acide amidosulfonique, d'acide amidosulfurique et d'acide sulfamidique, est un composé moléculaire de formule H3NSO3.
Ce composé incolore et hydrosoluble, l'acide aminosulfonique, trouve de nombreuses applications.
L'acide aminosulfonique fond à 205 °C avant de se décomposer à des températures plus élevées en eau, trioxyde de soufre, dioxyde de soufre et azote.


L'acide aminosulfonique (H3NSO3) peut être considéré comme un composé intermédiaire entre l'acide sulfurique (H2SO4) et le sulfamide (H4N2SO2), remplaçant efficacement un groupe hydroxyle (-OH) par un groupe amine (-NH2) à chaque étape.
Ce modèle ne peut pas s’étendre davantage dans les deux sens sans détruire le fragment sulfonyle (–SO2–).


Les sulfamates sont des dérivés de l'acide aminosulfonique.
L'acide aminosulfonique est principalement un précurseur de composés au goût sucré.
La réaction avec la cyclohexylamine suivie de l'ajout de NaOH donne C6H11NHSO3Na, cyclamate de sodium.


Les sulfamates ont été utilisés dans la conception de nombreux types d'agents thérapeutiques tels que les antibiotiques, les inhibiteurs nucléosidiques/nucléotidiques de la transcriptase inverse du virus de l'immunodéficience humaine (VIH), les inhibiteurs de la protéase du VIH (IP), les médicaments anticancéreux (inhibiteurs de la stéroïde sulfatase et de l'anhydrase carbonique), les médicaments antiépileptiques. et les médicaments amaigrissants.


Les composés apparentés sont également des édulcorants, tels que l'acésulfame de potassium.
L'acide aminosulfonique est préférable à l'acide chlorhydrique en usage domestique, en raison de sa sécurité intrinsèque.
S'il est mélangé par erreur avec des produits à base d'hypochlorite tels que l'eau de Javel, l'acide aminosulfonique ne forme pas de chlore gazeux, contrairement aux acides les plus courants ; la réaction (neutralisation) avec l'ammoniac produit un sel, comme illustré dans la section ci-dessus.


L'acide aminosulfonique trouve également des applications dans le nettoyage industriel des équipements des laiteries et des brasseries.
Bien que l'acide aminosulfonique soit considéré comme moins corrosif que l'acide chlorhydrique, des inhibiteurs de corrosion sont souvent ajoutés aux nettoyants commerciaux dont il fait partie.


L'acide aminosulfonique appartient à la classe de composés inorganiques connus sous le nom d'autres oxydes non métalliques.
Il s'agit de composés inorganiques contenant un atome d'oxygène d'un état d'oxydation de -2, dans lesquels l'atome le plus lourd lié à l'oxygène appartient à la classe des « autres non-métaux ».


L'acide aminosulfonique, également connu sous le nom d'acide amidosulfonique, d'acide amidosulfurique et d'acide sulfamidique, est un composé moléculaire de formule H3NSO3.
Ce composé incolore et hydrosoluble, l'acide aminosulfonique, trouve de nombreuses applications.
L'acide aminosulfonique, également connu sous le nom d'acide amidosulfonique, d'acide amidosulfurique, d'acide aminosulfonique et d'acide sulfamidique, est un composé moléculaire de formule H3NSO3.


L'acide aminosulfonique fond à 205°C avant de se décomposer en eau, trioxyde de soufre, dioxyde de soufre et azote à des températures plus élevées.
L'acide aminosulfonique (H3NSO3) peut être considéré comme un intermédiaire entre l'acide sulfurique (H2SO4) et le sulfamide (H4N2SO2), remplaçant efficacement un groupe hydroxyle (-OH) par un groupe amine (-NH2) à chaque étape.


Ce motif ne peut pas s'étendre dans les deux sens sans cliver le fragment sulfonyle (-SO2-).
Les sulfamates sont des dérivés de l'acide sulfamique.
Offrant des possibilités intéressantes en matière de déchaumage et de décapage dans l’industrie du cuir.


L'acide aminosulfonique est La forme déprotonée (sulfamate) est un contre-ion courant du nickel (II) en galvanoplastie.
L'acide aminosulfonique est légèrement soluble dans le méthanol et insoluble dans l'éthanol et l'éther.
Les caractéristiques des groupes fonctionnels doubles du gène aminé et du radical sulfonique peuvent provoquer une réaction chimique avec de nombreuses matières.


Le point de fusion de l'acide aminosulfonique est de 205 ℃ .
Et la température de décomposition de l’acide aminosulfonique est de 209 ℃ .
L'acide aminosulfonique apparaît sous la forme d'un solide cristallin blanc.


La densité de l'Acide Aminosulfonique est de 2,1 g/cm3.
Le point de fusion de l’acide aminosulfonique est de 205 °C.
L'acide aminosulfonique est utilisé pour fabriquer des colorants et d'autres produits chimiques.


L'acide aminosulfonique est le plus simple des acides sulfamiques constitué d'un seul atome de soufre lié de manière covalente par des liaisons simples aux groupes hydroxy et amino et par des doubles liaisons à deux atomes d'oxygène.
L'acide aminosulfonique est le plus simple des acides sulfamiques, constitué d'un seul atome de soufre lié de manière covalente aux groupes hydroxy et amino par des liaisons simples et à deux atomes d'oxygène par des doubles liaisons.


L'acide aminosulfonique, également connu sous le nom d'acide amidosulfonique, d'acide amidosulfurique, d'acide aminosulfonique, d'acide sulfamique et d'acide sulfamidique, est un composé moléculaire de formule H3NSO3.
Cet acide aminosulfonique incolore et hydrosoluble trouve de nombreuses applications.


L'acide aminosulfonique fond à 205 °C avant de se décomposer à des températures plus élevées en eau, trioxyde de soufre, dioxyde de soufre et azote.
L'acide aminosulfonique (H3NSO3) peut être considéré comme un composé intermédiaire entre l'acide sulfurique (H2SO4) et le sulfamide (H4N2SO2), remplaçant efficacement un groupe hydroxyle (-OH) par un groupe amine (-NH2) à chaque étape.


Ce modèle ne peut pas s’étendre davantage dans les deux sens sans détruire le fragment sulfonyle (–SO2–).
Les sulfamates sont des dérivés de l'acide aminosulfonique.



UTILISATIONS et APPLICATIONS de l’ACIDE AMINOSULFONIQUE :
Agent de nettoyage : L’agent de nettoyage à l’acide aminosulfonique a une large gamme d’applications. L'acide aminosulfonique peut nettoyer le tartre et la rouille dans les chaudières, les condenseurs, les échangeurs de chaleur, les chemises et les canalisations chimiques.
Le Département de l'Agriculture des États-Unis autorise l'utilisation de l'acide aminosulfonique comme nettoyant acide dans les installations de transformation de la viande fraîche, de la volaille, du lapin et des œufs.


Industrie textile : L'acide aminosulfonique peut éliminer l'excès de nitrate dans les réactions de diazotation dans l'industrie de la teinture et comme fixateur dans la teinture textile.
L'acide aminosulfonique peut être utilisé pour détartrer les machines à café et à expresso domestiques et dans les nettoyants pour prothèses dentaires.
L'acide aminosulfonique est utilisé dans de nombreux domaines.


L'acide aminosulfonique est utilisé comme étalon en acidométrie car le solide n'est pas hygroscopique.
L'acide aminosulfonique est utilisé comme catalyseur dans diverses réactions chimiques organiques.
Il a été démontré que l’acide aminosulfonique élimine les nitrites d’un mélange de nitrites et de nitrates.


L'acide aminosulfonique agit comme un catalyseur pour le processus d'estérification.
L'acide aminosulfonique peut également former une couche ignifuge sur les textiles, et l'acide sulfamique peut fabriquer des agents de nettoyage des fils et d'autres auxiliaires dans l'industrie textile.


Industrie du papier : L’acide aminosulfonique peut être utilisé comme agent de blanchiment. Il peut réduire ou éliminer la catalyse des ions de métaux lourds dans la liqueur de blanchiment, garantissant ainsi la qualité de la liqueur de blanchiment, réduisant l'oxydation et la dégradation des ions métalliques sur les fibres, empêchant la réaction de pelage des fibres et améliorant la résistance et la blancheur des fibres. pulpe.


Industrie pétrolière : L’acide aminosulfonique peut être utilisé pour éliminer le colmatage et améliorer la perméabilité du réservoir.
Une solution d’acide aminosulfonique est injectée dans une formation productrice de carbonate pour doubler la production de pétrole.
Agriculture : L’acide aminosulfonique et le sulfamate d’ammonium ont été initialement développés comme herbicides.


On dit qu’ils ont un effet d’exposition lorsqu’ils sont appliqués directement sur les plantes ; lorsqu'il est appliqué sur le sol, il a un effet destructeur sur les mâles.
Solution de galvanoplastie : L’acide aminosulfonique est couramment utilisé dans le placage d’or ou d’alliage. L'Italie a remplacé le bain d'acide fluorosilicique par un bain de sulfamate de plomb.
Cela réduira la pollution.


L'acide aminosulfonique est un composé utilisé dans la synthèse d'édulcorants et d'agents thérapeutiques
L'acide aminosulfonique est utilisé comme étalon en acidométrie car le solide n'est pas hygroscopique.
L'acide aminosulfonique est utilisé comme catalyseur dans diverses réactions chimiques organiques.


Il a été démontré que l’acide aminosulfonique élimine les nitrites d’un mélange de nitrites et de nitrates.
L'acide aminosulfonique agit comme un catalyseur pour le processus d'estérification.
L’acide aminosulfonique est un précurseur de composés principalement au goût sucré. La réaction avec la cyclohexylamine suivie de l'ajout de NaOH donne C6H11NHSO3Na, cyclamate de sodium.


Les composés apparentés sont également des édulcorants tels que l'acésulfame de potassium.
Les sulfamates sont utilisés dans le contenu de nombreux médicaments tels que les antibiotiques, les médicaments amaigrissants, les inhibiteurs nucléosidiques/nucléotidiques de la transcriptase inverse du virus de l'immunodéficience humaine (VIH), les inhibiteurs de la protéase du VIH (IP), les médicaments anticancéreux (inhibiteurs de la stéroïde sulfatase et de l'anhydrase carbonique), les médicaments antiépileptiques. .


L'acide aminosulfonique est utilisé comme catalyseur pour le processus d'estérification.
L'acide aminosulfonique est utilisé pour la production de colorants et de pigments.
L'urée est utilisée comme coagulant pour les résines de formaldéhyde.


L'acide aminosulfonique est la principale matière première du sulfamate d'ammonium, un herbicide et un matériau ignifuge largement utilisé pour les produits ménagers.
L'acide aminosulfonique est utilisé dans l'industrie des pâtes et papiers comme stabilisant du chlorure.
L'acide aminosulfonique est utilisé pour la synthèse du protoxyde d'azote en réagissant avec l'acide nitrique.


La forme déprotonée (sulfamate) est un contre-ion courant du nickel (II) en galvanoplastie.
L'acide aminosulfonique est utilisé pour séparer les ions nitrite d'un mélange d'ions nitrite et nitrate (NO3− + NO2−) lors de l'analyse qualitative du nitrate avec le test Brown Ring.


L'acide aminosulfonique est utilisé comme agent de nettoyage acide, généralement pour les métaux et les céramiques, parfois comme composant de mélanges purs ou exclusifs.
L'acide aminosulfonique est souvent utilisé pour éliminer la rouille et le calcaire afin de remplacer l'acide chlorhydrique moins cher, plus volatil et irritant.
L'acide aminosulfonique peut être utilisé comme détartrant dans les machines à café et à expresso domestiques et dans les nettoyants pour prothèses dentaires.


L'acide aminosulfonique peut également être utilisé pour le nettoyage industriel des équipements de laiterie et de brasserie.
L'acide aminosulfonique peut être utilisé comme tensioactif amphotère, agents de nettoyage de pièces métalliques, édulcorants cyclamates, blanchisseurs de pâte à papier, retardateurs de feu, stabilisants de chlore (stérilisation) et additifs de galvanoplastie.


L'acide aminosulfonique peut s'en sortir avec l'oxyde de surface.
Ainsi, l'acide aminosulfonique peut nettoyer la chaudière et stériliser les bactéries présentes dans l'eau, blanchir les fibres, le bois et le papier, et éliminer les nitrates du tabac. L'acide aminosulfonique peut également être utilisé comme matière première pour les pesticides intermédiaires.


L'acide aminosulfonique est fréquemment utilisé pour éliminer la rouille et le calcaire, en remplacement de l'acide chlorhydrique, plus volatil et irritant, qui est moins cher.
L'acide aminosulfonique est souvent un composant du détartrant domestique, par exemple, le gel épais Lime-A-Way contient jusqu'à 8 % d'acide sulfamique et a un pH de 2,0 à 2,2, ou des détergents utilisés pour éliminer le calcaire.


Comparé à la plupart des acides minéraux forts courants, l’acide aminosulfonique possède des propriétés de détartrage de l’eau souhaitables, une faible volatilité et une faible toxicité.
L'acide aminosulfonique forme des sels hydrosolubles de calcium, de nickel et de fer ferrique.
L'acide aminosulfonique est utilisé comme catalyseur pour le processus d'estérification, la fabrication de colorants et de pigments, l'herbicide, l'ingrédient dans les comprimés pour prothèses dentaires et le coagulateur pour les résines d'urée-formaldéhyde.


Ingrédient dans les moyens d'extinction d'incendie : L'acide aminosulfonique est la principale matière première du sulfamate d'ammonium, un herbicide et un matériau ignifuge largement utilisé pour les produits ménagers.
L'acide aminosulfonique est utilisé dans l'industrie des pâtes et papiers comme stabilisant du chlorure.


L'acide aminosulfonique est utilisé pour la synthèse du protoxyde d'azote par réaction avec l'acide nitrique
L'acide aminosulfonique est utilisé dans les produits chimiques d'entretien ménager tels que Cameo.
L'acide aminosulfonique est utilisé comme agent de nettoyage acide, parfois pur ou comme composant de mélanges exclusifs, généralement pour les métaux et les céramiques.


L'acide aminosulfonique est fréquemment utilisé pour éliminer la rouille et le calcaire, remplaçant l'acide chlorhydrique plus volatil et irritant.
L'acide aminosulfonique est souvent un composant des agents détartrants ou des détergents ménagers utilisés pour éliminer le calcaire.
Comparé à la plupart des acides minéraux forts courants, l'acide aminosulfonique possède des propriétés de détartrage de l'eau souhaitables, une faible volatilité, une faible toxicité et est un solide soluble dans l'eau formant des sels de calcium et de fer III solubles.


L'acide aminosulfonique trouve également des applications dans le nettoyage industriel des équipements des laiteries et des brasseries.
Bien que l'acide aminosulfonique soit considéré comme moins corrosif que l'acide chlorhydrique en raison de son pKa plus faible, des inhibiteurs de corrosion sont souvent ajoutés aux nettoyants commerciaux dont il est un composant.


Il est possible que l'acide aminosulfonique agisse comme un ligand dans certaines circonstances, tout comme l'ion chlorure pour Fe-III, lorsque l'acide chlorhydrique est utilisé pour éliminer la rouille.
L'acide aminosulfonique est utilisé comme agent nettoyant de détartrage


L'acide aminosulfonique est un agent détartrant efficace, il est utilisé pour nettoyer les types d'équipements industriels et d'appareils ménagers.
L'acide aminosulfonique peut éliminer la rouille, le calcaire et la corrosion.
L'acide aminosulfonique est largement utilisé dans le nettoyage du métal, de la céramique et des composés de chaudière, des surfaces de sol, des équipements ménagers, des condenseurs, des canalisations chimiques, etc.


L'acide aminosulfonique est utilisé dans l'industrie de la pâte à papier
L'acide aminosulfonique prévient la dégradation de la pulpe due à la température au stade de la chloration et du chlorhydrate.
L'acide aminosulfonique permet un blanchiment à une température plus élevée et à un pH plus bas sans perte de résistance.


L'acide aminosulfonique est utilisé dans la fabrication de colorants et de pigments.
L'acide aminosulfonique est plus efficace, la réaction de l'acide sulfamique avec les nitrites est pratiquement instantanée et il peut éliminer l'excès de nitrite suite aux réactions de diazotation.


L'acide aminosulfonique est utilisé dans la teinture du cuir
L'acide aminosulfonique est utilisé dans la stabilisation du chlore
L'acide aminosulfonique peut être utilisé pour stabiliser le chlore dans les piscines et les tours de refroidissement.


L'acide aminosulfonique est préférable à l'acide chlorhydrique en usage domestique, en raison de sa sécurité intrinsèque.
S'il est mélangé par inadvertance avec des produits à base d'hypochlorite tels que l'eau de Javel, l'acide aminosulfonique ne forme pas de chlore gazeux, contrairement aux acides les plus courants ; la réaction (neutralisation) avec l'ammoniac produit un sel, comme illustré dans la section ci-dessus.


L'acide aminosulfonique trouve également des applications dans le nettoyage industriel des équipements des laiteries et des brasseries.
Bien que l'acide aminosulfonique soit considéré comme moins corrosif que l'acide chlorhydrique, des inhibiteurs de corrosion sont souvent ajoutés aux nettoyants commerciaux dont il fait partie.


L'acide aminosulfonique peut être utilisé comme détartrant pour détartrer les machines à café et à expresso domestiques et dans les nettoyants pour prothèses dentaires.
Autres utilisations de l'acide aminosulfonique : catalyseur pour le processus d'estérification, fabrication de colorants et de pigments, herbicide, détartrant pour l'élimination du tartre, coagulateur pour les résines urée-formaldéhyde et ingrédient dans les moyens d'extinction d'incendie.


L'acide aminosulfonique est la principale matière première du sulfamate d'ammonium, un herbicide et un matériau ignifuge largement utilisé pour les produits ménagers.
L'acide aminosulfonique est utilisé dans l'industrie des pâtes et papiers comme stabilisant du chlorure.
L'acide aminosulfonique est utilisé pour la synthèse du protoxyde d'azote par réaction avec l'acide nitrique.


L'acide aminosulfonique est La forme déprotonée (sulfamate) est un contre-ion courant du nickel (II) en galvanoplastie.
L'acide aminosulfonique est utilisé pour séparer les ions nitrite du mélange d'ions nitrite et nitrate (NO3−+ NO2−) lors de l'analyse qualitative du nitrate par le test Brown Ring.


L'acide aminosulfonique est utilisé pour obtenir des solvants eutectiques profonds avec de l'urée.
L'acide aminosulfonique est utilisé pour le polissage de l'argent.
L'acide aminosulfonique est utilisé dans les produits suivants : produits de lavage et de nettoyage, biocides (par exemple désinfectants, produits antiparasitaires), produits de polissage, produits de traitement de l'air, produits de traitement de surfaces non métalliques, carburants et polymères.


L'acide aminosulfonique est utilisé dans les services miniers et de santé offshore.
Le rejet d'acide aminosulfonique dans l'environnement peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques des sites industriels et les substances dans des systèmes fermés avec des émissions minimales.


L'acide aminosulfonique est utilisé dans les liquides/détergents de lavage de machine, les produits d'entretien automobile, les peintures, les revêtements ou les adhésifs, les parfums, les assainisseurs d'air, les fluides hydrauliques dans les suspensions automobiles, les lubrifiants dans l'huile moteur, les liquides de frein, les liquides de refroidissement dans les réfrigérateurs et les radiateurs électriques à base d'huile. .
L'acide aminosulfonique est un acide soluble dans l'eau, modérément fort.


Intermédiaire entre l'acide sulfurique et le sulfamide, l'acide aminosulfonique peut être utilisé comme précurseur de composés au goût sucré, comme composant médicamenteux thérapeutique, comme agent de nettoyage acide et comme catalyseur d'estérification.
L’acide amidosulfonique est principalement un précurseur de composés au goût sucré. L'acide aminosulfonique a été utilisé dans la conception de nombreux types d'agents thérapeutiques tels que les antibiotiques, les inhibiteurs nucléosidiques/nucléotidiques de la transcriptase inverse du virus de l'immunodéficience humaine (VIH), les inhibiteurs de la protéase du VIH (IP), les médicaments anticancéreux (inhibiteurs de la stéroïde sulfatase et de l'anhydrase carbonique). , les médicaments antiépileptiques et les médicaments amaigrissants.


L'acide aminosulfonique est principalement un précurseur de composés au goût sucré. La réaction avec la cyclohexylamine suivie de l'ajout de NaOH donne C6H11NHSO3Na, cyclamate de sodium.
Les composés apparentés sont également des édulcorants, tels que l'acésulfame de potassium.


Les sulfamates ont été utilisés dans la conception de nombreux types d'agents thérapeutiques tels que les antibiotiques, les inhibiteurs nucléosidiques/nucléotidiques de la transcriptase inverse du virus de l'immunodéficience humaine (VIH), les inhibiteurs de la protéase du VIH (IP), les médicaments anticancéreux (inhibiteurs de la stéroïde sulfatase et de l'anhydrase carbonique), les anti- médicaments contre l'épilepsie et médicaments amaigrissants.


-Agent de nettoyage
L'acide aminosulfonique est utilisé comme agent de nettoyage acide et détartrant, parfois pur ou comme composant de mélanges exclusifs, généralement pour les métaux et la céramique.
À des fins de nettoyage, il existe différentes qualités en fonction de l'application, telles que les qualités GP, SR et TM.


-Les applications spécifiques de l'acide phosphorique comprennent :
*En traitement antirouille par conversion de phosphate ou passivation
*Comme étalon externe pour la résonance magnétique nucléaire du phosphore-31.
*Dans les piles à combustible à acide phosphorique.
*Dans la production de charbon actif.
*Dans le traitement des semi-conducteurs composés, pour graver l'arséniure d'indium et de gallium de manière sélective par rapport au phosphure d'indium.
*En microfabrication pour graver le nitrure de silicium de manière sélective par rapport au dioxyde de silicium.
*En tant qu'ajusteur de pH dans les cosmétiques et les produits de soins de la peau.
*En tant qu'agent désinfectant dans les industries laitières, alimentaires et brassicoles.


-Agent de nettoyage:
L'acide aminosulfonique est utilisé comme agent de nettoyage acide, parfois pur ou comme composant de mélanges exclusifs, généralement pour les métaux et les céramiques.
L'acide aminosulfonique est fréquemment utilisé pour éliminer la rouille et le calcaire, en remplacement de l'acide chlorhydrique, plus volatil et irritant, qui est moins cher.
L'acide aminosulfonique est souvent un composant des agents détartrants ménagers, par exemple, le gel épais Lime-A-Way contient jusqu'à 8 % d'acide sulfamique et a un pH de 2,0 à 2,2, ou des détergents utilisés pour éliminer le calcaire.
Comparé à la plupart des acides minéraux forts courants, l’acide aminosulfonique possède des propriétés de détartrage de l’eau souhaitables, une faible volatilité et une faible toxicité.
L'acide aminosulfonique forme des sels hydrosolubles de calcium et de fer ferrique.



L’ACIDE AMINOSULFONIQUE PEUT ÊTRE UTILISÉ DANS LES ÉTUDES SUIVANTES :
• Comme catalyseur dans la synthèse des aryl-14H-dibenzo[aj]xanthènes.
• Comme catalyseur vert pour la préparation d'amide à partir de cétoxime.
• Comme équivalent ammoniac dans la synthèse régiosélective d'amines allyliques primaires, via des réactions de substitution allylique.
• Synthèse de quinolones polysubstituées.

L'acide sulfamique peut être utilisé dans les procédés suivants :
• Comme titrant dans la détermination du volume d'injection de la burette et du facteur d'étalonnage chimique.
• Neutraliser l'excès d'acide nitreux dans le dosage colorimétrique du paracétamol par la méthode colorimétrique modifiée de Glynn et Kendal.
• Pour prévenir la perte endogène de mercure (Hg) lors de la mesure du Hg dans l'urine par la méthode de spectrométrie de masse à plasma inductif (ICP-MS).
• Comme catalyseur acide et piégeur d'hypochlorite dans l'oxydation du chlorite de la dialdéhyde cellulose (DAC).
• Comme catalyseur hétérogène dans la synthèse de dérivés polyhydroquinoléiques par réaction de condensation de Hantzsch.
• Comme catalyseur dans la dégradation de la fibre de bambou en 5-hydroxyméthylfurfural (HMF).
• Comme réactif acide dans la détermination des silicates dans les échantillons d'eau basée sur la microfluidique centrifuge.
• Comme catalyseur dans la synthèse de la déazaoxaflavine à température ambiante.



PROPRIÉTÉS DE L'ACIDE AMINOSULFONIQUE :
L'acide aminosulfonique est également connu sous le nom d'acide sulfamique.
L'acide aminosulfonique est un cristal orthorhombique blanc non volatil, non hygroscopique et inodore.
L'acide aminosulfonique a une grande stabilité à des températures normales.
L'acide aminosulfonique peut conserver sa qualité d'origine pendant plusieurs années et est librement soluble dans l'eau et l'ammoniac liquide, fortement acide en solution aqueuse.



À QUOI RESSEMBLE L’ACIDE AMINOSULFONIQUE ?
L'acide aminosulfonique est un solide blanc, inodore et cristallin



DANS QUELS SECTEURS L’ACIDE AMINOSULFONIQUE EST-IL UTILISÉ ?
*Industrie pharmaceutique
*Édulcorants
*Production de peinture et de pigments
*systèmes de prévention des incendies
*industrie du papier
*Séparateur de nitrite de nitrate dans le test de l'anneau de Brown
*Nettoyant/détartrant domestique et industriel



PARENTS ALTERNATIFS DE L'ACIDE AMINOSULFONIQUE :
*Monoamides d'acide sulfurique
*Oxydes inorganiques



SUBSTITUANTS DE L'ACIDE AMINOSULFONIQUE :
*Autre oxyde non métallique
*Monoamide d'acide sulfurique
*Oxyde inorganique



COMMENT L'ACIDE AMINOSULFONIQUE EST-IL PRODUIT?
L'acide aminosulfonique est produit industriellement en traitant l'urée avec un mélange de trioxyde de soufre et d'acide sulfurique (ou oléum).
La conversion s'effectue en deux étapes :
OC(NH2)2 + SO3 → OC(NH2)(NHSO3H)
OC(NH2)(NHSO3H) + H2SO4 → CO2 + 2H3NSO3



PRODUCTION D'ACIDE AMINOSULFONIQUE :
L'acide aminosulfonique est produit industriellement en traitant l'urée avec un mélange de trioxyde de soufre et d'acide sulfurique (ou oléum).
La conversion s'effectue en deux étapes, la première étant la sulfamation :
OC(NH2)2 + SO3 → OC(NH2)(NHSO3H)
OC(NH2)(NHSO3H) + H2SO4 → CO2 + 2 H3NSO3
Ainsi, environ 96 000 tonnes ont été produites en 1995.



STRUCTURE ET RÉACTIVITÉ DE L'ACIDE AMINOSULFONIQUE :
Le composé est bien décrit par la formule H3NSO3, et non par le tautomère H2NSO2(OH).
Les distances de liaison pertinentes sont de 1,44 Å pour le S = O et de 1,77 Å pour le S – N.
La plus grande longueur du S – N est compatible avec une liaison unique.
De plus, une étude de diffraction neutronique a localisé les atomes d’hydrogène, tous trois distants de 1,03 Å de l’azote.
A l'état solide, la molécule d'acide aminosulfonique est bien décrite par une forme zwitterionique.



HYDROLYSE DE L'ACIDE AMINOSULFONIQUE :
Le solide cristallin est indéfiniment stable dans des conditions de stockage ordinaires, cependant, les solutions aqueuses d'acide aminosulfonique s'hydrolysent lentement en bisulfate d'ammonium, selon la réaction suivante :
H3NSO3 + H2O → [NH4]+[HSO4]−
Son comportement ressemble à celui de l'urée, (H2N)2CO.
Les deux comportent des groupes aminés liés à des centres attracteurs d’électrons qui peuvent participer à des liaisons délocalisées.
Les deux libèrent de l'ammoniac lorsqu'ils sont chauffés dans l'eau, l'urée libérant du CO2 tandis que l'acide aminosulfonique libère de l'acide sulfurique.



RÉACTIONS ACIDE-BASE DE L'ACIDE AMINOSULFONIQUE :
L'acide aminosulfonique est un acide moyennement fort, Ka = 0,101 (pKa = 0,995).
Parce que le solide n'est pas hygroscopique, l'acide aminosulfonique est utilisé comme étalon en acidimétrie (dosages quantitatifs de la teneur en acide).
H3NSO3 + NaOH → NaH2NSO3 + H2O
Une double déprotonation peut être effectuée dans une solution d'ammoniaque pour donner l'anion HNSO2−3.
H3NSO3 + 2NH3 → HNSO2−3 + 2NH+4



RÉACTION AVEC LES ACIDES NITRIQUES ET NITRES, L'ACIDE AMINOSULFONIQUE :
Avec l'acide nitreux, l'acide aminosulfonique réagit pour donner de l'azote :
HNO2 + H3NSO3 → H2SO4 + N2 + H2O
tandis qu'avec l'acide nitrique concentré, il fournit du protoxyde d'azote :
HNO3 + H3NSO3 → H2SO4 + N2O + H2O



RÉACTION AVEC L'HYPOCHLORITE, L'ACIDE AMINOSULFONIQUE :
La réaction des ions hypochlorite en excès avec l'acide aminosulfonique ou un sel sulfamate donne naissance de manière réversible aux ions N-chlorosulfamate et N,N-dichlorosulfamate.
HClO + H2NSO3H → ClNHSO3H + H2O
HClO + ClNHSO3H ⇌ Cl2NSO3H + H2O
Par conséquent, l'acide aminosulfonique est utilisé comme piégeur d'hypochlorite dans l'oxydation des aldéhydes avec du chlorite telle que l'oxydation Pinnick.



RÉACTION AVEC LES ALCOOLS, L'ACIDE AMINOSULFONIQUE :
Lors du chauffage, l'acide aminosulfonique réagit avec les alcools pour former les organosulfates correspondants.
L'acide aminosulfonique est plus cher que d'autres réactifs pour ce faire, tels que l'acide chlorosulfonique ou l'oléum, mais il est également beaucoup plus doux et ne sulfonera pas les cycles aromatiques.

Les produits sont fabriqués sous forme de sels d'ammonium.
De telles réactions peuvent être catalysées par la présence d'urée.
Sans la présence de catalyseurs, l'acide aminosulfonique ne réagira pas avec l'éthanol à des températures inférieures à 100 °C.

ROH + H2NSO3H → ROS(O)2O− + NH+4
Un exemple de cette réaction est la production de sulfate de 2-éthylhexyle, un agent mouillant utilisé dans la mercerisation du coton, en combinant l'acide aminosulfonique avec le 2-éthylhexanol.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE AMINOSULFONIQUE :
Formule chimique : H3NSO3
Masse molaire : 97,10 g/mol
Aspect : cristaux blancs
Densité : 2,15 g/cm3
Point de fusion : 205 °C (401 °F ; 478 K) se décompose
Solubilité dans l'eau : Modérée, avec hydrolyse lente
Solubilité : Modérément soluble dans le DMF
Légèrement : Vsoluble dans MeOH
Insoluble dans les hydrocarbures
Acidité (pKa) : 1,0
État physique : cristallin
Couleur blanche
Odeur : inodore
Point de fusion/point de congélation :
Point/intervalle de fusion : 215 - 225 °C - déc.
Point d'ébullition initial et intervalle d'ébullition : Aucune donnée disponible
Inflammabilité (solide, gaz) : Le produit n'est pas inflammable.
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Aucune donnée disponible
Température d'auto-inflammation : > 400 °C
Température relative d'auto-inflammation des solides
Température de décomposition : 209 °C
pH : 1,5 à 10 g/l à 20 °C

Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : 181,4 g/l à 20 °C
soluble470 g/l à 80 °C
Coefficient de partage:
n-octanol/eau :
Pas de données disponibles
Pression de vapeur : 0,008 hPa à 20 °C
0,025 hPa à 100 °C
Densité : 2 151 g/cm3 à 25 °C
Densité relative : Aucune donnée disponible
Vapeur relative
densité:
Pas de données disponibles
Particule
caractéristiques:
Pas de données disponibles
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité :
Constante de dissociation : -0,99 à 25 °C


Poids moléculaire : 97,10 g/mol
XLogP3-AA : -1,6
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4
Nombre de liaisons rotatives : 0
Masse exacte : 96,98336413 g/mol
Masse monoisotopique : 96,98336413 g/mol
Surface polaire topologique : 88,8 Å ²
Nombre d'atomes lourds : 5
Frais formels : 0
Complexité : 92,6
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Point de fusion °C : 205
Densité g/cm³ : 2,13 20 °C
Solubilité g/ L : 181,4 20 °C,
Soluble avec l'eau (soluble dans l'acétone et le méthanol)
Pression de vapeur Pa : 0,8 à 20 °C
LogP : 0 à 20 °C
pKa : -0,997 20 °C
pH : 0,41 solution 1 N
CAS : 5329-14-6
Formule moléculaire : H3NO3S
Poids moléculaire (g/mol) : 97,088
Numéro MDL : MFCD00011603
Clé InChI : IIACRCGMVDHOTQ-UHFFFAOYSA-N
CID PubChem : 5987
ChEBI
CHEBI:9330
Nom IUPAC : acide sulfamique
SOURIRES : NS(=O)(=O)O
Formule chimique : H3NSO3
Poids moléculaire : 97,10 g/mol
Point de fusion : 205 °C
Densité : 2,15 g/cm3

Formule chimique : H3NO3S
Poids moléculaire moyen : 97,094
Poids moléculaire monoisotopique : 96,983363657
Nom IUPAC : acide sulfamique
Nom traditionnel : acides sulfoniques
Numéro de registre CAS : 5329-14-6
SOURIRES : NS(O)(=O)=O
Identifiant InChI :
InChI=1S/H3NO3S/c1-5(2,3)4/h(H3,1,2,3,4)
Clé InChI : IIACRCGMVDHOTQ-UHFFFAOYSA-N
Forme moléculaire : H3NO3S
Apparence : Blanc solide
Mol. Poids : 97,09
Stockage : 2-8°C Réfrigérateur
Conditions d'expédition : ambiante
Applications : NA



PREMIERS SECOURS DE L'ACIDE AMINOSULFONIQUE :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE AMINOSULFONIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE AMINOSULFONIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Utiliser des mesures d'extinction adaptées aux circonstances locales et à l'environnement immédiat.
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Supprimez (abattez) les gaz/vapeurs/brouillards avec un jet d'eau pulvérisée.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE AMINOSULFONIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre B-(P2)
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE AMINOSULFONIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.
*Classe de stockage :
Classe de stockage (TRGS 510) : 8B :
Incombustible



STABILITÉ et RÉACTIVITÉ de l'ACIDE AMINOSULFONIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible



SYNONYMES :
ACIDE SULFAMIQUE
5329-14-6
Acide amidosulfonique
Acide sulfamique
Acide aminosulfonique
Acide amidosulfurique
Acide imidosulfonique
Acide sulfamidique
Acide sulfaminique
Géant
Acide aminosulfurique
Acide sulfamidique
Kyselina sulfaminova
Kyselina Amidosulfonova
Caswell n ° 809
acide sulfuramidique
CNS 1871
Sulfamidesaure
HSDB 795
Amidohydroxydioxydo-soufre
Amidoschwefelsaeure
EINECS226-218-8
Code chimique des pesticides EPA 078101
UNII-9NFU33906Q
CHEBI:9330
DTXSID6034005
AI3-15024
9NFU33906Q
NSC-1871
H2NSO3H
MFCD00011603
UN2967
CHEMBL68253
DTXCID4014005
[S(NH2)O2(OH)]
CE 226-218-8
Acide sulfamique [UN2967]
(S(NH2)O2(OH))
CAS-5329-14-6
ACIDE SULFAMIQUE, ACS
ACIDE SULFAMIQUE, REAG
sulfoamine
Acide sulfamique-
acide amidosulfurique
Acide sulfamique (ACN
DÉTARTRAGE
ALPROJET W
ACIDE AMINESULFONIQUE
WLN : ZSWQ
NH2SO3H
Acide sulfamique (emballage)
Acide sulfamique, qualité ACS
H3NO3S
ACIDE SULFAMIQUE [MI]
NCIOpen2_000675
ACIDE SULFAMIQUE [HSDB]
BDBM26994
H3-N-O3-S
NSC1871
Acide sulfamique, pa, 99,5 %
Acide sulfamique, étalon analytique
Acide sulfamique, qualité réactif, 98 %
Tox21_201905
Tox21_303482
NA2967
STL282725
7773-06-0 (sel de mono-ammonium)
AKOS005287325
Acide sulfamique, réactif ACS, 99,3%
ONU 2967
NCGC00090927-01
NCGC00090927-02
NCGC00257489-01
NCGC00259454-01
Acide sulfamique [UN2967] [Corrosif]
Acide sulfamique, ReagentPlus(R), >=99 %
Acide sulfamique, >=99,5% (alcalimétrique)
LS-147664
FT-0688102
Acide sulfamique, base à 99,999 % de métaux traces
Acide sulfamique, SAJ première qualité, >=99,0 %
Acide sulfamique, qualité spéciale JIS, >=99,5 %
Q412304
W-105754
Acide sulfamique, étalon analytique (pour acidimétrie), réactif ACS
Acide amidosulfonique
Acide amidosulfurique
Acide aminosulfonique
Acide sulfamique
Acide aminosulfurique
Acide imidosulfonique
Acide sulfamidique
ONU 2967
Acide sulfaminique
CNS 1871
acide sulfamidique
Acide amidosulfurique
Détartrant à l'acide sulfamique
Acide sulfamidique
Acide sulfamidique
Acide sulfamique.
Acide sulfamique
Alprojet W
Acide Amidosulfurique
Acide aminesulfonique
Acide aminosulfonique
Acide aminosulfurique
CNS 1871
Acide sulfamidique
Acide sulfaminique
Acide Sulphamique
Acide sulfamique
5329-14-6
Acide imidosulfonique
Acide sulfamidique
acide sulfamidique
Alprojet W
ACIDE AMIDOSULFONIQUE
AMIDOSULFONSAEURE
Acide amidosulfurique
Acide amidosulfonique
Acide aminesulfonique
Acide aminosulfonique
ACIDE AMINO-SULFONIQUE
Acide aminosulfurique
CNS 1871
Nettoyage du tartre
Acide sulfamique
Acide amidosulfonique
Acide amidosulfurique
Acide sulfamidique
Sulfamidesaure
Acide sulfaminique
Acide sulfamique
acide sulfamidique
ONU 2967
Caswell n ° 809
EINECS226-218-8
Code chimique des pesticides EPA 078101
Kyselina Amidosulfonova
Kyselina sulfaminova
UNII-9NFU33906Q
Amidoschwefelsaeure
Sulfamidesaure
[S(NH2)O2(OH)]
acide sulfamidique
1266250-83-2
[S(NH2)O2(OH)]
Amidoschwefelsaeure
Acide amidosulfurique
Acide aminosulfonique
Acide imidosulfonique
Acide sulfamidique
Sulfamidesaure
Acide sulfaminique
Acide sulfamique
Acide sulfamidique
Amidosulfate
Amidosulfate
Acide amidosulfurique
Aminosulfonate
Aminosulfonate
Acide aminosulfonique
Imidosulfonate
Imidosulfonate
Acide imidosulfonique
Sulfamidate
Sulphamidate
Sulphamidsaure
Sulfaminate
Sulphaminate
Acide sulfaminique
Sulfamate
Acide sulfamique
Sulphamate
Amidosulfonate
Amidosulfonate
Acide amidosulfonique
Ammate
Sulfamate d'ammonium
Acide sulfamique, sel d'indium (+3)
Acide sulfamique, sel de magnésium (2:1)
Acide sulfamique, sel de monoammonium
Acide sulfamique, sel monopotassique
Acide sulfamique, sel de nickel (+2) (2:1)
Acide sulfamique, sel d'étain (+2)
Acide sulfamique, sel de zinc (2:1)
7773-06-0 (sel de mono-ammonium)
Amidohydroxydioxidosulfure
Acide aminosulfurique
Géant
Acide sulfamique, ac
Acide sulfamique, réactif
Acide sulfuramidique
Acide amidosulfonique
Acide Amidosulfonique
Stéradent Active Plus
Acide sulfamidique
Acide sulfaminique
Acide Sulphamique
Alprojet W
Acide Amidosulfurique
Acide aminesulfonique
Acide aminosulfonique
Acide aminosulfurique
CNS 1871




ACIDE ASCORBIQUE
L'acide ascorbique, un complément alimentaire soluble dans l'eau, est consommé par les humains plus que tout autre complément.
Le nom ascorbique signifie antiscorbut et désigne la capacité de l'ascorbique à combattre cette maladie.
La vitamine C est l'énantiomère L de l'acide ascorbique.

CAS : 50-81-7
FM : C6H8O6
MW : 176,12
EINECS : 200-066-2

L'acide ascorbique est un puissant antioxydant nécessaire à la synthèse du collagène et d'autres protéines.
L'acide ascorbique joue également de nombreux rôles dans la prévention des maladies causées par le stress oxydatif.
Il a été démontré que l’acide ascorbique est un traitement efficace contre les maladies infectieuses telles que la septicémie et la tuberculose.
Les effets de l'acide ascorbique sur la tension artérielle dépendent de la dose, les faibles doses étant inefficaces, mais les doses élevées provoquant une augmentation de la tension artérielle.
L’acide ascorbique peut être utilisé comme système modèle pour étudier l’impact de la vitamine D sur la santé des os, car il nécessite la vitamine D pour fonctionner correctement.

Une carence en acide ascorbique chez l’homme entraîne l’incapacité de l’organisme à synthétiser le collagène, qui est la protéine la plus abondante chez les vertébrés.
L'acide ascorbique est un donneur d'électrons naturel et sert donc d'agent réducteur.
L'acide ascorbique est synthétisé à partir du glucose dans le foie de la plupart des espèces de mammifères, à l'exclusion des humains, des primates non humains ou des cobayes qui doivent l'obtenir par voie alimentaire.
Chez l'homme, l'acide ascorbique agit comme donneur d'électrons pour huit enzymes différentes, y compris celles liées à l'hydroxylation du collagène, à la synthèse de la carnitine (qui aide à la génération d'adénosine triphosphate), à la synthèse de la noradrénaline, au métabolisme de la tyrosine et aux peptides amidants.
L'acide ascorbique démontre une activité antioxydante qui pourrait être bénéfique pour réduire le risque de développer des maladies chroniques telles que le cancer, les maladies cardiovasculaires et la cataracte.
Poudre cristalline blanche à jaune très pâle avec un agréable goût acide piquant.

Le scorbut (du mot français scorbutus) est reconnu comme une maladie qui touche l'humanité depuis des milliers d'années.
Les agrumes tels que les oranges, les citrons et les limes ont ensuite été identifiés comme des traitements tout aussi efficaces.
Ce n'est qu'au cours des 100 dernières années qu'une carence en vitamine C a été définitivement identifiée comme la cause du scorbut.
En 1932, Waugh et King isolèrent la vitamine C cristalline du jus de citron et démontrèrent qu'elle était le facteur antiscorbutique présent dans chacun de ces traitements.
La structure et la formule chimique de la vitamine C ont été identifiées en 1933 par Hirst et al.
Étant donné que les humains sont l’une des rares espèces animales incapables de synthétiser la vitamine C, l’acide ascorbique doit être disponible en tant que composant alimentaire.

Les sources alimentaires d'acide ascorbique comprennent les fruits (en particulier les agrumes), les légumes (en particulier les poivrons) et les pommes de terre.
Bien que certains produits commerciaux proviennent d’églantier et d’agrumes, la plupart de l’acide ascorbique est préparé de manière synthétique.
L'acide ascorbique est désormais communément appelé acide ascorbique en raison de son caractère acide et de son efficacité dans le traitement et la prévention du scorbut (scorbut).
Le caractère acide est dû aux deux hydroxyles énoliques ; l'hydroxyle C3 a une valeur de pKa de 4,1 et l'hydroxyle C2 a une valeur de pKa de 11,6.
Toutes les activités biologiques résident dans l'acide L-ascorbique ; par conséquent, toutes les références à la vitamine C, à l'acide ascorbique, à l'ascorbate et à leurs dérivés font référence à cette forme.
Le sel de sodium monobasique est la forme de sel habituelle.

Propriétés chimiques de l'acide ascorbique
Point de fusion : 190-194 °C (déc.)
alpha: 20,5 º (c=10,H2O)
Point d'ébullition : 227,71°C (estimation approximative)
Densité : 1,65 g/cm3
Indice de réfraction : 21° (C=10, H2O)
FEMA : 2109 | ACIDE ASCORBIQUE
Température de stockage : Conserver entre +5°C et +30°C.
Solubilité H2O : 50 mg/mL à 20 °C, clair, presque incolore
Forme : poudre
pka : 4,04, 11,7 (à 25 ℃)
Couleur : blanc à légèrement jaune
PH : 3,59 (solution 1 mM) ; 3,04 (solution 10 mM) ; 2,53 (solution 100 mM) ;
Odeur : Inodore
Plage de pH : 1 à 2,5
Activité optique : [α]25/D 19,0 à 23,0°, c = 10% dans H2O
Type d'odeur : vert
Solubilité dans l'eau : 333 g/L (20 ºC)
Merck : 14 830
BR: 84272
Classe BCS : 1
Stabilité : Stable. Peut être faiblement sensible à la lumière ou à l’air.
Incompatible avec les agents oxydants, les alcalis, le fer, le cuivre.
InChIKey : CIWBSHSKHKDKBQ-JLAZNSOCSA-N
LogP : -1,85
Référence de la base de données CAS : 50-81-7 (référence de la base de données CAS)
Référence chimique NIST : Acide ascorbique (50-81-7)
Système d'enregistrement des substances de l'EPA : Acide ascorbique (50-81-7)

Soluble dans l'eau; légèrement soluble dans l'alcool; insoluble dans l'éther, le chloroforme, le benzène, l'éther de pétrole, les huiles et les graisses.
Stable à l'air lorsqu'il est sec.
Une unité internationale équivaut à 0,05 milligramme d’acide L-ascorbique.
L'acide ascorbique se présente sous la forme d'une poudre cristalline, non hygroscopique, inodore, de couleur blanche à jaune clair, ou de cristaux incolores au goût piquant et acide.
L'acide ascorbique s'assombrit progressivement lors de l'exposition à la lumière.

Propriétés physiques
Aspect : cristal blanc ou poudre cristalline, inodore et aux saveurs acides.
La couleur vire au jaunâtre lorsqu'elle est exposée à l'air pendant une longue période.
La solution aqueuse d'acide ascorbique est une réaction acide.
Solubilité : la vitamine C est soluble dans l'eau, légèrement soluble dans l'éthanol et insoluble dans le chloroforme ou l'éther.
Point de fusion : 190-192°C.
L'acide ascorbique se décomposerait en fondant.
Rotation optique spécifique : +20,5 à +21,5°.
L'acide ascorbique est un acide bibasique (le pKa est de 4,1 et 11,8).
L'acide ascorbique se présente principalement sous forme de sel de sodium et de sel de calcium, et sa solution aqueuse est une réaction fortement acide.
L'acide ascorbique est un puissant agent réducteur.

Histoire
L'acide ascorbique est un terme général désignant les composés ayant une activité acide ascorbique, notamment l'acide ascorbique, l'acide déhydroascorbique et ses isomères.
La compréhension de l’acide ascorbique a traversé un processus long et douloureux.
Bien que la relation entre le scorbut et la nourriture stockée soit évidente, les traitements de cette maladie ont été malavisés.
En 1601, le capitaine britannique James Lancaster découvrit la maladie sur le navire de la Compagnie des Indes orientales et considérait le scorbut comme une « pourriture », qui pouvait rendre les tissus alcalins.
Au début du XIXe siècle, la compréhension et le traitement du scorbut avaient évolué vers une approche juste.

L’exposé de l’étiologie du scorbut et de la théorie métabolique a duré plus d’un siècle.
Au début du XXe siècle, inspirés par le modèle animal du béribéri, des chercheurs de l'Université d'Oslo de Christchurch ont découvert un animal susceptible de souffrir accidentellement du scorbut et ont ensuite établi un modèle animal précieux.
Cette expérience a démontré que l'extrait isolé du citron avait une activité antiscorbut.
Jusqu’en 1932, de nombreux groupes de recherche obtenaient le cristal anti-scorbut de différentes plantes et identifiaient ce cristal comme étant de l’acide ascorbique et de la vitamine C.
L'année suivante, la structure chimique de l'acide ascorbique a été élucidée, puis sa synthèse artificielle a été réalisée.

Les usages
Le point de départ de la synthèse de l'acide ascorbique est l'oxydation sélective du composé sucré D-sorbit en L-sorbose à l'aide de la bactérie Acetobacter suboxydans.
L'acide ascorbique est ensuite converti en acide L-ascorbique, mieux connu sous le nom de vitamine C.
Les sels de sodium, de potassium et de calcium des acides ascorbiques sont appelés ascorbates et sont utilisés comme conservateurs alimentaires.
Pour rendre l'acide ascorbique liposoluble, l'acide ascorbique peut être estérifié.
Les esters d'acide ascorbique et d'acides, tels que l'acide palmitique pour former le palmitate d'ascorbyle et l'acide stéarique pour former le stéarate ascorbique, sont utilisés comme antioxydants dans les aliments, les produits pharmaceutiques et les cosmétiques.
L'acide ascorbique est également essentiel au métabolisme de certains acides aminés.
L'acide ascorbique aide à protéger les cellules contre les dommages causés par les radicaux libres, favorise l'absorption du fer et est essentiel à de nombreux processus métaboliques.

L'acide ascorbique est un antioxydant bien connu.
L'effet de l'acide ascorbique sur la formation de radicaux libres lorsqu'il est appliqué localement sur la peau au moyen d'une crème n'a pas été clairement établi.
L’efficacité des applications topiques a été remise en question en raison de l’instabilité de l’acide ascorbique (il réagit avec l’eau et se dégrade).
Certaines formes auraient une meilleure stabilité dans les systèmes d’eau.
Les analogues synthétiques tels que le phosphate d’ascorbyle de magnésium font partie de ceux considérés comme les plus efficaces, car ils ont tendance à être plus stables.
Lors de l’évaluation de sa capacité à lutter contre les dommages causés par les radicaux libres, à la lumière de son effet synergique avec la vitamine e, l’acide ascorbique brille.

Lorsque la vitamine e réagit avec un radical libre, l’acide ascorbique, à son tour, est endommagé par le radical libre qu’il combat.
L'acide ascorbique intervient pour réparer les dommages causés par les radicaux libres dans la vitamine e, lui permettant ainsi de poursuivre ses fonctions de piégeage des radicaux libres.
Des recherches antérieures ont indiqué que des concentrations élevées d'acide ascorbique appliqué localement sont photoprotectrices et, apparemment, la préparation vitaminée utilisée dans ces études a résisté au savon et à l'eau, au lavage ou au frottement pendant trois jours.
Des recherches plus récentes ont indiqué que l'acide ascorbique ajoute une protection contre les dommages causés par les UVB lorsqu'il est combiné avec des produits chimiques de protection solaire UVB.
Cela amènerait à conclure qu’en combinaison avec des agents de protection solaire conventionnels, l’acide ascorbique pourrait permettre une protection solaire plus durable et plus large.

Encore une fois, la synergie entre l'acide ascorbique et l'e peut donner des résultats encore meilleurs, car apparemment une combinaison des deux offre une très bonne protection contre les dommages causés par les UVB.
Cependant, l’acide ascorbique semble être nettement meilleur que l’e pour protéger contre les dommages causés par les UVA.
Une autre conclusion est que la combinaison de l'acide ascorbique et de la crème solaire offre une meilleure protection que la somme de la protection offerte par l'un des trois ingrédients agissant seul.
L'acide ascorbique agit également comme régulateur de la biosynthèse du collagène.
L'acide ascorbique est connu pour contrôler les substances colloïdales intercellulaires telles que le collagène et, lorsqu'il est formulé dans les véhicules appropriés, il peut avoir un effet éclaircissant pour la peau.
On dit que l’acide ascorbique est capable d’aider le corps à se fortifier contre les maladies infectieuses en renforçant le système immunitaire.
Il existe certaines preuves (bien que controversées) selon lesquelles la vitamine C peut traverser les couches de la peau et favoriser la guérison des tissus endommagés par des brûlures ou des blessures.
L'acide ascorbique se trouve donc dans les pommades et les crèmes contre les brûlures utilisées pour les abrasions.
L'acide ascorbique est également populaire dans les produits anti-âge.
Les études actuelles indiquent également de possibles propriétés anti-inflammatoires.

Coenzyme pour un certain nombre de réactions d'hydroxylation ; nécessaire à la synthèse du collagène.
Largement distribué chez les plantes et les animaux.
Un apport insuffisant entraîne des syndromes de carence tels que le scorbut.
Utilisé comme antimicrobien et antioxydant dans les denrées alimentaires.

Applications pharmaceutiques
L'acide ascorbique est utilisé comme antioxydant dans les formulations pharmaceutiques aqueuses à une concentration de 0,01 à 0,1 % p/v.
L'acide ascorbique a été utilisé pour ajuster le pH des solutions injectables et comme complément pour les liquides oraux.
L'acide ascorbique est également largement utilisé dans les aliments comme antioxydant.
L'acide ascorbique s'est également révélé utile comme agent stabilisant dans les micelles mixtes contenant du tétrazépam.

Pharmacologie
L'acide ascorbique est considéré comme un cofacteur enzymatique classique ou un antioxydant, mais également comme un matériau de transition dans la réaction des ions métalliques.
Et toutes ces fonctions de l’acide ascorbique sont liées à la propriété d’antioxydation.

Utilisation clinique
L'acide ascorbique est indiqué pour le traitement et la prévention des carences connues ou suspectées.
Bien que le scorbut soit rare, on l’observe chez les personnes âgées, les nourrissons, les alcooliques et les toxicomanes.
L’ascorbate peut également être utilisé pour améliorer l’absorption du fer non hémique alimentaire ou des suppléments de fer.
L'acide ascorbique (mais pas le sel de sodium) était historiquement utilisé pour acidifier l'urine en raison de l'excrétion de l'acide ascorbique inchangé, bien que cette utilisation soit tombée en disgrâce.
L'ascorbate augmente également la chélation du fer par la déféroxamine, expliquant son utilisation dans le traitement de la toxicité ferreuse.

L'acide ascorbique se trouve dans les fruits et légumes frais.
L'acide ascorbique est très soluble dans l'eau, est facilement détruit par la chaleur, notamment en milieu alcalin, et s'oxyde rapidement à l'air.
Les fruits et légumes qui ont été conservés à l’air, coupés ou meurtris, lavés ou cuits peuvent avoir perdu une grande partie de leur teneur en acide ascorbique.
La maladie de carence associée à un manque d'acide ascorbique est appelée scorbut.
Les premiers symptômes comprennent un malaise et une hyperkératose folliculaire.
La fragilité capillaire se traduit par des hémorragies, notamment au niveau des gencives.
Un développement anormal des os et des dents peut survenir chez les enfants en pleine croissance.
Les besoins de l’organisme en acide ascorbique augmentent pendant les périodes de stress, comme la grossesse et l’allaitement.

Méthodes de production
L'acide ascorbique est préparé synthétiquement ou extrait de diverses sources végétales dans lesquelles il est présent naturellement, comme l'églantier, le cassis, le jus d'agrumes et le fruit mûr de Capsicum annuum L.
Une procédure de synthèse courante implique l'hydrogénation du D-glucose en D-sorbitol, suivie d'une oxydation à l'aide d'Acetobacter suboxydans pour former du L-sorbose.
Un groupe carboxyle est ensuite ajouté en C1 par oxydation à l'air du dérivé diacétonique du Lsorbose et l'acide diacétone-2-céto-L-gulonique résultant est converti en acide L-ascorbique par chauffage avec de l'acide chlorhydrique.

L'acide ascorbique est produit synthétiquement selon le procédé Reichstein, qui est la méthode de production standard depuis les années 1930.
Le processus commence par une fermentation suivie d'une synthèse chimique.
La première étape consiste à réduire le D-glucose à haute température en D-sorbitol.
Le D-sorbitol subit une fermentation bactérienne, le transformant en L-sorbose.
Le L-sorbose réagit ensuite avec l'acétone en présence d'acide sulfurique concentré pour produire du diacétone-L-sorbose, qui est ensuite oxydé avec du chlore et de l'hydroxyde de sodium pour produire de l'acide diacétone-cétogulonique (DAKS).

Le DAKS est ensuite estérifié avec un catalyseur acide et des matières organiques pour donner un ester méthylique d'acide gulonique. Ce dernier est chauffé et réagit avec de l'alcool pour produire de l'acide ascorbique brut, qui est ensuite recristallisé pour augmenter sa pureté.
Depuis le développement du procédé Reichstein il y a plus de 70 ans, celui-ci a subi de nombreuses modifications.
Dans les années 1960, une méthode développée en Chine appelée processus de fermentation en deux étapes utilisait une deuxième étape de fermentation du L-sorbose pour produire un intermédiaire différent du DAKS appelé KGA (acide 2-céto-L-gulonique), qui était alors transformé en acide ascorbique.
Le processus en deux étapes repose moins sur des produits chimiques dangereux et nécessite moins d’énergie pour convertir le glucose en acide ascorbique.

Processus de fabrication
Le D-glucose a été réduit en D-sorbitol avec un hydrogène sur Ni Raney, puis il a été transformé en L-sorbose avec l'acetobacter suboxydans et les groupes hydroxyle du L-sorbose ont été protégés par un traitement à l'acétone, ce qui a donné le diacéton-L-sorbose. .
Un traitement ultérieur avec NaOCl/Raney Ni a produit de l'acide di-O-isopropylidène-2-oxo-L-gulonique.
Une hydrolyse partielle avec du HCl aqueux a donné de l'acide 2-oxo-L-gulonique déprotégé, qui a donné de l'acide ascorbinique par chauffage avec du HCl.

Réactions à l'air et à l'eau
Peut être sensible à une exposition prolongée à l'air et à la lumière.
Sensible à l'humidité.
Soluble dans l'eau.
Les solutions aqueuses sont oxydées par l'air dans une réaction accélérée par les alcalis, le fer et le cuivre.
Le taux dépend du pH et de la concentration en oxygène.
Également sujet à dégradation dans des conditions anaérobies.

Profil de réactivité
L'acide ascorbique est une lactone.
Réagit comme un agent réducteur relativement puissant et décolore de nombreux colorants.
Forme des sels métalliques stables.
Incompatible avec les oxydants, les colorants, les alcalis, le fer et le cuivre.
Également incompatible avec les sels ferriques et les sels de métaux lourds, notamment le cuivre, le zinc et le manganèse.

Actions Biochimie/Physiol
L'acide ascorbique présente principalement des propriétés antioxydantes.
L'acide ascorbique protège les plantes du stress oxydatif et les mammifères des maladies associées au stress oxydatif.
L'acide ascorbique protège principalement des radicaux hydroxyles, du superoxyde et de l'oxygène singulet.
De plus, l’acide ascorbique réduit également l’α-tocophérol, un antioxydant lié à la membrane (forme oxydée).
L'acide ascorbique améliore la vasodilatation dépendante de l'endothélium dans divers troubles, notamment le diabète, la maladie coronarienne, l'hypertension et l'insuffisance cardiaque chronique.

Toxicologie
L'acide ascorbique, ou vitamine C, est largement présent dans les plantes.
Les structures de l'acide ascorbique et de l'acide déhydroascorbique sont illustrées à la figure 10.5.
L'acide ascorbique est non seulement un nutriment important, mais il est également utilisé comme antioxydant dans divers aliments.
Cependant, l’acide ascorbique n’est pas soluble dans les graisses et est instable dans des conditions basiques.
L'acide ascorbique réduit la toxicité du cadmium et des doses excessives prolongent le temps de rétention d'un composé organique du mercure dans un système biologique.
Les surdoses de vitamine C (106 g) provoquent une transpiration, une tension nerveuse et une diminution du pouls.
L'OMS recommande que l'apport quotidien soit inférieur à 0,15 mg/kg.
Aucune toxicité due à l'acide ascorbique n'a été signalée.

Bien que des injections intraveineuses répétées de 80 mg d'acide déhydroascorbique se soient révélées diabétogènes chez le rat, la consommation orale de 1,5 g/jour d'acide ascorbique pendant six semaines n'a eu aucun effet sur la tolérance au glucose ou la glycosurie chez 12 mâles adultes normaux et n'a produit aucune modification de la glycémie. concentrations chez 80 diabétiques après cinq jours.
Le même rapport note qu'une dose intraveineuse de 100 mg d'acide déhydroascorbique administrée quotidiennement pendant des périodes prolongées ne produit aucun signe de diabète.
L'acide ascorbique est facilement oxydé en acide déhydroascorbique, qui est réduit par le glutathion présent dans le sang.

Synonymes
acide l-ascorbique
acide ascorbique
vitamine C
50-81-7
L(+)-Acide ascorbique
L-ascorbate
Ascoltin
ascorbate
Ascorbicap
Acide cévitamique
Hybrine
Laroscorbine
Testascorbique
Allercorbe
Ascorbajen
Ascorbutine
Ascortéal
Ascorvit
Cantaxine
Cébicure
Cégiolan
Celaskon
Cénétone
Cénolate
Cescorbat
Cétéémican
Cévatine
Cévitamine
Citriscorbe
Colascor
Concemin
Lemascorbe
Proscorbine
Roscorbique
Viforcit
Viscorine
Vitamine
Vitamine
Vitascorbol
Adénex
Ascorbe
Ascorin
Cantan
Cébion
Cébione
Céglion
Cémagyl
Cemill
Céréon
Cergona
Cétamid
Cévalin
Cévimin
Cévital
Cévitan
Cevitex
Ciamine
Rédoxon
Ribéna
Vicelat
Vitalité
Vitacée
Vitamine
Cébid
Cécon
Céline
Cevex
Cipca
Hicée
Xitix
Davitamon C
Arco-cee
Planavit C
Catavin C
Ce prêté
Liqui-Cee
Vicomine C
Cee-Vite
Cevi-Offre
Natrascorbe
Scorbacide
Scorbu-C
Sécorbate
Duoscorbe
Niveau C
C-Vimin
Cétane-Caps TD
Cewin
Vitamine antiscorbique
C-Long
C-Quin
Portée en C
Meri-C
Cee-Caps TD
Acide L-lyxoascorbique
Acide L-xylascorbique
3-Oxo-L-gulofuranolactone
Vitamine antiscorbutique
Ce-Mi-Lin
Natrascorb injectable
3-Keto-L-gulofuranolactone
IDO-C
Acide L-(+)-ascorbique
Cétane-Caps TC
Acide ascorbinique
CE-VI-Sol
Acide ascorbique
Kyselina Askorbova
Dora-C-500
Ascorbate ferreux
ACIDE AZÉLAÏQUE
L'acide azélaïque est un acide dicarboxylique saturé naturel à neuf carbones (COOH (CH2) 7-COOH).
L'acide azélaïque est un précurseur de divers produits industriels, notamment des polymères et des plastifiants, et entre également dans la composition de nombreux revitalisants capillaires et cutanés.
L'acide azélaïque est un ingrédient aux propriétés magiques antibactériennes, régulatrices des cellules cutanées, anti-inflammatoires et éclaircissantes pour la peau.

Numéro CAS : 123-99-9
Numéro CE : 204-669-1
Formule moléculaire : C9H16O4
Masse molaire : 188,22 g/mol

Synonymes : 1,7-dicarboxyheptane, acide 1,7-heptanedicarboxylique, acide 1,9-nonanedioïque, acide azélaïque, acidum azelaicum, acide anchoique, acide azélaïque, ACIDE AZELAIQUE, acide azélaïque, Azelainsäure Deutsch, acide lépargylique, acide n-nonanedioïque , Nonandisäure Deutsch, Acide nonanedioïque, acide 1,7-heptanedicarboxylique, 1101094 [Beilstein], 123-99-9 [RN], 204-669-1 [EINECS], Acide azélaïque [Français] [Nom ACD/IUPAC], acide nonanedioïque [français], Acido azelaico [espagnol], acide anchoique, acide azalaïque, azelaate [ACD/IUPAC Name], Azelaic acid [ACD/IUPAC Name] [USAN] [Wiki], Azelaic acid, Azelainsäure [allemand] [ACD/ Nom IUPAC], Azelex [Nom commercial], Finaceae [Nom commercial], acide lepargylique, MFCD00004432 [numéro MDL], Nonandisäure [allemand], acide nonanedioïque [ACD/Nom de l'index], Skinoren [Nom commercial], 1,7-dicarboxyheptane , 1,9-NONANEDIOIC ACID, 119176-67-9 [RN], acide azelaique [français], Acido azelaico [espagnol], Acidum acelaicum, Acidum azelaicum [latin], AHI, AZ1, Azelaic acid,, azelaicacid, Azelainsäure [ Nom ACD/IUPAC], Azelate, DB00548, Emery's L-110, Finacea [Wiki], acide heptanedicarboxylique, acide n-nonanedioïque, Nonandisäure, Nonanedioate, acide nonanedioïque-D14, acide nonanedionique, Skinorem, acide azélaïque soluble dans l'eau, Zumilin, азелаиновая кислота, حمض أزيلائيك , 壬二酸, acide azélaïque, ACIDE NONANEDIOIQUE, 123-99-9, Finacea, Acide anchoique, Azelex, acide 1,7-heptanedicarboxylique, acide lepargylique, Skinoren, acide 1,9-nonanedioïque, heptanedicarboxylique acide , Acide n-nonanedioïque, Emerox 1110, Emerox 1144, acide azélaïque, Finevin, acide azélaïque, acidum azelaicum, azélate, anhydride polyazélaïque, Skinorem, 1,7-Dicarboxyheptane, acide azélaïque, qualité technique, Emery's L-110, azélaate, Poly (anhydride azélaïque), ZK 62498, ZK-62498, UNII-F2VW3D43YT, NSC 19493, acide azélaïque 99%, acide azélaïque, 98%, CHEBI:48131, MFCD00004432, F2VW3D43YT, MLS000069659, 26776-28-3, NSC19493, NSC- 19493, NCGC00014993-07, SMR000059164, Acido azelaico, Azalaic Acid, DSSTox_CID_1640, Acide azelaique [français], Acido azelaico [espagnol], Acidum azelaicum [latin], DSSTox_RID_76254, DSSTox_GSID_21640, heptane-1,7-di acide carboxylique, acide azélaïque [ USAN:INN], polyanhydride azélaïque, acide nonanedioïque, homopolymère, azélaïque, polyanhydride d'acide azélaïque, CAS-123-99-9, Finacea (TN), Azelex (TN), SR-01000075671, EINECS 204-669-1, acide azélaïque (USAN/INN), BRN 1101094, Azelaicacidtech, Azelainsaeure, Lepargylate, Nonandisaeure, Anchoate, Acide nonanedioïque, sel de sodium, n-Nonanedioate, AI3-06299, acide nonanedionique, HSDB 7659, 1tuf, groupe acide azélaïque, 1,9-Nonanedioate , SH-441, AGN-191861, Spectrum_000057, ACMC-1BTAP, Opera_ID_740, polyanhydride polyazélaïque, 1,7-heptanedicarboxylate, Spectrum2_000995, Spectrum3_000278, Spectrum4_000401, Spectrum5_001304, C9-120-alpha-polymorph, C9-140-al pha-polymorphe, C9-180-alpha-polymorph, C9-220-alpha-polymorph, C9-260-alpha-polymorph, C9-298-alpha-polymorph, Epitope ID: 187039, A-9800, EC 204-669-1, acide nonanedioïque homopolymère, Lopac-246379, SCHEMBL3887, CHEMBL1238, Lopac0_000051, BSPBio_001756, KBioGR_000662, KBioSS_000437, acide nonanedioïque Acide azélaïque, 4-02-00-02055 (référence du manuel Beilstein), 1-O-hexadécyl-2-(8-carboxy octanoyl)- La sn-glycéro-3-phosphocholine a un acide nonanedioïque parent fonctionnel, la 1-azelaoyl-sn-glycéro-3-phosphocholine a un acide nonanedioïque parent fonctionnel, la 1-palmitoyl-2-azelaoyl-sn-glycéro-3-phosphocholine a un acide nonanedioïque parent fonctionnel. , la 2-azelaoyl-sn-glycéro-3-phosphocholine a un acide nonanedioïque parent fonctionnel, le monoglycoside d'acide nonanedioïque a un acide nonanedioïque parent fonctionnel, l'azélaate est une base conjuguée de l'acide nonanedioïque, l'azélaate (2−) est une base conjuguée de l'acide nonanedioïque

L'acide azélaïque est un acide dicarboxylique naturel produit par Malassezia furfur et présent dans les céréales à grains entiers, le seigle, l'orge et les produits d'origine animale.
L'acide azélaïque possède une activité antibactérienne, kératolytique, comédolytique et antioxydante.

L'acide azélaïque est bactéricide contre Proprionibacterium acids et Staphylococcus epidermidis en raison de son effet inhibiteur sur la synthèse des protéines cellulaires microbiennes.
L'acide azélaïque exerce ses effets kératolytiques et comédolytiques en réduisant l'épaisseur de la couche cornée et en diminuant le nombre de granules de kératohyaline en réduisant la quantité et la répartition de la filaggrine dans les couches épidermiques.

L'acide azélaïque possède également un effet anti-inflammatoire direct en raison de l'activité piégeuse de l'acide azélaïque des radicaux libres d'oxygène.
Ce médicament est utilisé localement pour réduire l’inflammation associée à l’acné et à la rosacée.

L'acide azélaïque est un acide dicarboxylique saturé présent naturellement dans le blé, le seigle et l'orge.
L'acide azélaïque est également produit par Malassezia furfur, également connu sous le nom de Pityrosporum ovale, une espèce de champignon que l'on trouve normalement sur la peau humaine.

L'acide azélaïque est efficace contre un certain nombre d'affections cutanées, telles que l'acné légère à modérée, lorsqu'il est appliqué localement dans une formulation de crème à 20 %.
L'acide azélaïque agit en partie en arrêtant la croissance des bactéries cutanées responsables de l'acné et en gardant les pores de la peau clairs.
L'action antimicrobienne de l'acide azélaïque peut être attribuée à l'inhibition de la synthèse des protéines cellulaires microbiennes.

L'acide azélaïque est un acide dicarboxylique saturé naturel à neuf carbones (COOH (CH2) 7-COOH).
L'acide azélaïque possède diverses actions biologiques in vitro et in vivo.

L'intérêt pour l'activité biologique de l'acide azélaïque est né à l'origine d'études sur les lipides de la surface de la peau et sur la pathogenèse de l'hypochromie dans l'infection par le pityriasis versicolor.
Plus tard, il a été démontré que l'acide azélaïque Pityrosporum peut oxyder les acides gras insaturés en acides dicarboxyliques C8-C12 qui sont des inhibiteurs compétitifs de la tyrosinase in vitro.

L'acide azélaïque a été choisi pour des recherches plus approfondies et le développement d'un nouveau médicament topique destiné au traitement des troubles hyperpigmentaires pour les raisons suivantes : L'acide azélaïque possède une activité antityrosinase moyenne, est peu coûteux et plus soluble pour être incorporé dans une crème de base que d'autres dicarboxyliques. acides.
L'acide azélaïque est une autre option pour le traitement topique de l'acné vulgaire inflammatoire légère à modérée.

L'acide azélaïque offre une efficacité similaire à celle d'autres agents sans les effets secondaires systémiques des antibiotiques oraux ou la sensibilisation allergique du peroxyde de benzoyle topique et avec moins d'irritation que la trétinoïne.
L'acide azélaïque est moins cher que certaines autres préparations contre l'acné sur ordonnance, mais l'acide azélaïque est beaucoup plus cher que les préparations de peroxyde de benzoyle en vente libre.
On ne sait pas si l’acide azélaïque est sûr et efficace lorsqu’il est utilisé en association avec d’autres agents.

L'acide azélaïque est un composé organique de formule HOOC(CH2)7COOH.
Cet acide dicarboxylique saturé existe sous forme de poudre blanche.

L'acide azélaïque se trouve dans le blé, le seigle et l'orge.
L'acide azélaïque est un précurseur de divers produits industriels, notamment des polymères et des plastifiants, et entre également dans la composition de nombreux revitalisants capillaires et cutanés.

L'acide azélaïque a un rôle d'agent antibactérien.
L'acide azélaïque a un rôle d'agent antinéoplasique.

L'acide azélaïque a le rôle d'un médicament dermatologique.
L'acide azélaïque a un rôle de métabolite végétal.

L'acide azélaïque est un acide α,ω-dicarboxylique.
L'acide azélaïque est un acide conjugué de l'azélaate.
L'acide azélaïque est un acide conjugué de l'azélaate (2−).

L'acide azélaïque est un acide dicarboxylique et est une poudre cristalline blanche disponible en différents degrés de pureté en fonction de l'application finale.
Le processus de production innovant permet d'obtenir un acide azélaïque d'une très haute pureté et d'une faible teneur en monocarboxyliques, caractéristiques fondamentales pour l'utilisation de l'acide azélaïque comme intermédiaire dans les processus de polymérisation, généralement comme alternative à l'acide sébacique et à l'acide adipique.

L'effet physiologique de l'acide azélaïque se traduit par une diminution de la synthèse des protéines et une diminution de l'activité des glandes sébacées.

L'acide azélaïque est un ingrédient aux propriétés magiques antibactériennes, régulatrices des cellules cutanées, anti-inflammatoires et éclaircissantes pour la peau.
L'acide azélaïque est particulièrement utile pour les peaux à tendance acnéique ou à tendance rosacée (à une concentration de 10 % et plus)
L'acide azélaïque est un médicament délivré sur ordonnance aux États-Unis, mais peut être acheté librement dans l'UE à une concentration allant jusqu'à 10 %.

L'acide azélaïque est un composé présent dans le blé, le seigle et l'orge qui peut aider à traiter l'acné et la rosacée, car l'acide azélaïque apaise l'inflammation.
L'acide azélaïque traite les taches solaires et le mélasma car l'acide azélaïque bloque la production d'une pigmentation anormale

L'acide azélaïque est également un inhibiteur de la tyrosinase, ce qui signifie que l'acide azélaïque peut prévenir l'hyperpigmentation car il interfère avec la production de mélanine.
L'acide azélaïque est anti-inflammatoire pour l'acné et l'acide azélaïque est anti-pigmentaire car il bloque la tyrosinase.

L'acide azélaïque est un exfoliant plus doux que les autres acides alpha-hydroxy (AHA), notamment les acides glycolique, lactique et mandélique.

Chimiquement, l'acide azélaïque est un acide dicarboxylique.
L'acide azélaïque agit sur la peau comme un exfoliant doux sans rinçage qui aide à désobstruer les pores et à affiner la surface de la peau.

L'acide azélaïque réduit également considérablement les facteurs cutanés qui entraînent une sensibilité et des bosses et offre des bienfaits antioxydants.
L'acide azélaïque peut être dérivé de céréales comme l'orge, le blé et le seigle, mais c'est la forme conçue en laboratoire qui est généralement utilisée dans les produits de soin de la peau en raison de la stabilité et de l'efficacité de l'acide azélaïque.

Une grande partie des recherches sur cet ingrédient a porté sur des produits topiques délivrés uniquement sur ordonnance avec des concentrations comprises entre 15 % et 20 %, mais des avantages incroyables peuvent être observés même à des concentrations plus faibles.

L'acide azélaïque est un acide naturel présent dans les céréales comme l'orge, le blé et le seigle.
L’acide azélaïque d’aujourd’hui est synthétisé en laboratoire pour garantir que l’acide azélaïque est uniforme et stable.

L'acide azélaïque est un exfoliant qui débouche les pores et réduit également la pigmentation et les effets des cicatrices.
L'acide azélaïque manipule les couches supérieures des cellules, ce qui vous laisse un teint lisse et visiblement plus sain.
Si vous recherchez un teint plus lumineux avec une uniformité visiblement améliorée, les soins de la peau contenant de l'acide azélaïque sont un excellent choix.

L'acide azélaïque n'est pas un ingrédient de soin de la peau extrêmement courant, mais l'acide azélaïque peut être trouvé dans certains produits anti-âge et éclaircissants en vente libre à des concentrations allant jusqu'à 10 %.
Cependant, pour traiter l’acné ou la rosacée, une dose de prescription d’au moins 15 % est nécessaire.

L’acide azélaïque est relativement obscur comparé à certains des acides de soin de la peau les plus tendances et les plus connus comme l’acide glycolique, lactique, salicylique et même hyaluronique.
Mais l’acide azélaïque agit légèrement différemment des autres acides de soin de la peau.

L'acide azélaïque en vente libre peut aider à améliorer les points noirs mineurs, à affiner les pores, à uniformiser le teint et à éclaircir le teint.
Plus fort, l’acide azélaïque sur ordonnance présente encore plus de bienfaits pour la peau.

Des formulations topiques d'acide azélaïque ont été utilisées pour traiter un large éventail de maladies physiologiques, notamment l'acné, les dermatoses hyperpigmentaires, la chute des cheveux, les rides, l'hyperhidrose, les dermatoses inflammatoires non acnéiques, les maladies cutanées infectieuses et l'ichtyose.
Cependant, les seules formulations topiques d'acide azélaïque actuellement connues sont des dispersions.

Les dispersions délivrent de l'acide azélaïque à l'état non dissous.
Lorsqu’il est appliqué sur la peau, l’acide azélaïque non dissous n’est pas facilement absorbé et, par conséquent, un excès d’acide azélaïque doit être présent pour être efficace.

Plus la concentration d’acide azélaïque est élevée, plus l’irritation de la peau (brûlure, picotement et rougeur) est probable.
Ce qu'il faut, c'est une composition topique d'acide azélaïque complètement solubilisée.

L'acide azélaïque solubilisé est beaucoup moins susceptible d'irriter la peau car l'acide azélaïque à l'état dissous est beaucoup plus facilement absorbé par la nécessité d'être présent dans la formulation pour être efficace, réduisant ainsi le risque d'irritation de la peau.
Bien que l’acide azélaïque soit quelque peu soluble dans l’eau, les huiles cosmétiques et les alcools, chacun de ces solvants présente de sérieuses limites.

Ainsi, l'eau ne dissout que marginalement l'acide azélaïque, de sorte qu'une solution d'eau et d'acide azélaïque contiendrait un maximum d'environ 0,24 % en poids (p/p) d'acide azélaïque, ce qui n'est probablement pas suffisant pour être efficace.
L'acide azélaïque est peu ou pas soluble dans les huiles cosmétiques.

Les alcools sont de bons solvants mais ne sont pas satisfaisants car de grandes quantités d'alcool, par exemple l'alcool isopropylique, dans une composition topique ont pour effet secondaire indésirable de dessécher la peau.
En effet, certains alcools, par exemple l'alcool éthylique, rendent l'acide azélaïque instable aux températures et pressions atmosphériques normales, ce qui entraîne une composition totalement inefficace.

L'acide azélaïque est produit par une levure (Malassezia fur fur, également connue sous le nom de Pityrosporum ovale) qui fait partie de la flore cutanée normale.
L'acide azélaïque peut aider à la fois contre l'acné vulgaire et l'acné rosacée en tant qu'antimicrobien, anti-inflammatoire et comédolytique.

L'acide azélaïque peut également être utilisé pour l'hyperpigmentation post-inflammatoire.
Une étude comparant les résultats d'essais cliniques européens a montré que la crème à l'acide azélaïque à 20 % est aussi efficace que la trétinoïne à 0,05 %, le peroxyde de benzoyle à 5 % et l'érythromycine topique à 2 %.
L'acide azélaïque est similaire au peroxyde de benzoyle, mais il existe moins de preuves de l'utilité de l'acide azélaïque.

Dosage:
La posologie recommandée est de 20 % de crème pour l'acné vulgaire et de 15 % de gel pour l'acné rosacée, toutes deux appliquées une à deux fois par jour.

Précautions:
Peut provoquer une hypopigmentation et une certaine irritation cutanée, mais est généralement bien toléré.

Acide azélaïque topique :
L'application topique d'acide azélaïque semble extrêmement efficace dans la rosacée papulopustuleuse.
Initialement, l'acide azélaïque était libéré dans une formulation de crème à 20 % et s'est révélé efficace dans le traitement de la rosacée légère à modérée.

Une formulation en gel à 15 % d'acide azélaïque a considérablement amélioré l'administration d'acide azélaïque et s'est révélée supérieure dans des études comparatives à la crème à 20 % d'acide azélaïque.
L'acide azélaïque est tout aussi efficace que la crème ou le gel de métronidazole.

Dans une méta-analyse de cinq essais en double aveugle portant sur l'acide azélaïque topique (crème ou gel) pour le traitement de la rosacée par rapport à un placebo ou à d'autres traitements topiques, quatre des cinq études ont démontré une diminution significative du nombre moyen de lésions inflammatoires et de la gravité de l'érythème après le traitement. avec l'acide azélaïque par rapport au placebo, et l'acide azélaïque s'est avéré égal au métronidazole dans la rosacée papulopustuleuse.
Cependant, aucune diminution significative de la gravité des télangiectasies n’a été observée dans aucun des groupes de traitement.

La surexpression du peptide cathélicidine LL-37 a été impliquée dans la physiopathologie de la rosacée, et l'acide azélaïque s'est avéré inhiber l'expression pathologique de la cathélicidine, ainsi que l'activité hyperactive de la protéase qui clive la cathélicidine en LL-37.
Une petite étude interventionnelle prospective et ouverte a été réalisée pour évaluer les effets du gel d'acide azélaïque à 15 % sur les lésions inflammatoires de la rosacée papulopustuleuse.
L'utilisation d'acide azélaïque a été associée à une réduction significative des lésions inflammatoires, et ces résultats ont persisté au-delà de la phase de traitement actif.

Pelures chimiques:

Agents de blanchiment :
Les hydroquinones sont les agents de blanchiment les plus couramment utilisés ; les autres produits comprennent l'acide azélaïque, l'aloésine, la vitamine C, l'arbutine, l'extrait de réglisse, la glabridine, le méquinol (4-hydroxyanisol), la mélatonine, la niacinamide, le mûrier à papier, le soja, la vitamine E, l'acide kojique, les acides α et β-hydroxy et les rétinoïdes. et une thérapie combinée aux rétinoïdes.

L'acide azélaïque est un médicament sur ordonnance utilisé pour traiter l'acné vulgaire légère à modérée, ainsi que la rosacée.

L'acide azélaïque se présente sous forme de gel, de lotion et de crème.
L'acide azélaïque est vendu sous les marques Azelex, Finacea et Finevin, ainsi que l'acide azélaïque générique.

Utilisations de l'acide azélaïque :
L'acide azélaïque est utilisé dans de nombreuses préparations pharmaceutiques comme ingrédient actif dans l'acné rosacée, en raison de son efficacité thérapeutique.
L'origine végétale de l'acide azélaïque le rend particulièrement adapté également à d'autres applications importantes telles que la synthèse d'esters complexes.

Utilisations en pratique :
L'acide azélaïque topique est approuvé par la Food and Drug Administration (FDA) pour le traitement de l'acné vulgaire inflammatoire légère à modérée sous la marque Azelex sous forme de crème à 20 %.
L'acide azélaïque est également approuvé par la FDA pour la rosacée papulopustuleuse légère à modérée sous la marque Finacea sous forme de gel à 15 % et de mousse à 15 %.
À l’heure actuelle, l’acide azélaïque n’est approuvé pour aucun autre sous-type de rosacée.

Dans les études cliniques sur le gel d'acide azélaïque à 15 % (Finacea), une certaine réduction de l'érythème a été observée chez les patients traités pour la rosacée papulopustuleuse, mais aucun essai clinique spécifique n'a été réalisé pour étudier l'érythème de la rosacée en l'absence de papules et de pustules.
L'acide azélaïque est également utilisé hors AMM pour le traitement des troubles d'hyperpigmentation, y compris le mélasma, en raison de l'inhibition de la tyrosinase par l'acide azélaïque.

Pharmacocinétique :
L'acide azélaïque topique a une biodisponibilité allant jusqu'à 10 % dans l'épiderme et le derme.
Environ 4 % de la crème ou du gel d’acide azélaïque est absorbé par voie systémique après application topique.

L'acide azélaïque est un acide dicarboxylique saturé (HOOC-(CH2)7-COOH) présent dans de nombreux aliments, notamment les produits d'origine animale et les grains entiers.
L'acide azélaïque peut subir une certaine bêta-oxydation en acides dicarboxyliques à chaîne plus courte, mais l'acide azélaïque est principalement excrété sous sa forme originale dans l'urine.

La demi-vie de l'acide azélaïque topique est d'environ 12 heures et le patient doit appliquer de l'acide azélaïque sur la zone concernée deux fois par jour.
Des résultats favorables sont généralement observés dans les 4 semaines chez les patients atteints d'acné vulgaire et dans les 12 semaines chez les patients atteints de rosacée papulopustuleuse.

Utilisations de l’acide azélaïque pour l’acné :

L'acide azélaïque agit en :
Nettoyer vos pores des bactéries susceptibles de provoquer des irritations ou des éruptions cutanées.
Réduire l’inflammation afin que l’acné devienne moins visible, moins rouge et moins irritée.
Encourage doucement le renouvellement cellulaire afin que votre peau guérisse plus rapidement et que les cicatrices soient minimisées.

L'acide azélaïque peut être utilisé sous forme de gel, de mousse ou de crème.

Tous les formulaires ont les mêmes instructions d’utilisation de base :
Lavez soigneusement la zone affectée avec de l'eau tiède et séchez-la.
Utilisez un nettoyant ou un savon doux pour vous assurer que la zone est propre.

Lavez-vous les mains avant d'appliquer le médicament.
Appliquez une petite quantité de médicament sur la zone affectée, frottez de l'acide azélaïque et laissez sécher complètement.

Une fois le médicament séché, vous pouvez appliquer des produits cosmétiques.
Il n'est pas nécessaire de couvrir ou de bander votre peau.
Gardez à l’esprit que vous devez éviter d’utiliser des astringents ou des nettoyants « nettoyants en profondeur » lorsque vous utilisez de l’acide azélaïque.

Certaines personnes devront appliquer le médicament deux fois par jour, mais cela variera selon les instructions du médecin.

Acide azélaïque pour les cicatrices d'acné :
Certaines personnes utilisent l'azélaïque pour traiter les cicatrices d'acné en plus des poussées actives.
L'acide azélaïque favorise le renouvellement cellulaire, ce qui constitue un moyen de réduire l'apparition de cicatrices graves.

L'acide azélaïque empêche également ce que l'on appelle la synthèse de mélanine, la capacité de votre peau à produire des pigments qui peuvent varier le teint de votre peau.

Si vous avez essayé d'autres médicaments topiques pour soulager les cicatrices ou les imperfections qui tardent à guérir, l'acide azélaïque pourrait vous aider.
Des recherches supplémentaires sont nécessaires pour comprendre pour qui ce traitement fonctionne le mieux et quelle est l’efficacité de l’acide azélaïque.

Autres utilisations:
L'acide azélaïque est également utilisé pour d'autres affections cutanées, telles que l'hyperpigmentation, la rosacée et l'éclaircissement de la peau.

Acide azélaïque pour l'hyperpigmentation :
Après une éruption cutanée, l’inflammation peut entraîner une hyperpigmentation sur certaines zones de votre peau.
L'acide azélaïque empêche les cellules cutanées décolorées de se peupler.

Une étude pilote de 2011 a montré que l’acide azélaïque peut traiter l’acné tout en atténuant l’hyperpigmentation déclenchée par l’acné.
Des recherches plus approfondies sur les peaux de couleur ont également montré que l'acide azélaïque est sûr et bénéfique pour cette utilisation.

Acide azélaïque pour éclaircir la peau :
La même propriété qui rend l’acide azélaïque efficace pour le traitement de l’hyperpigmentation inflammatoire permet également à l’acide azélaïque d’éclaircir la peau décolorée par la mélanine.

L'utilisation d'acide azélaïque pour éclaircir la peau dans les zones inégales ou tachées de votre peau en raison de la mélanine s'est avérée efficace, selon une étude plus ancienne.

Acide azélaïque pour la rosacée :
L'acide azélaïque peut réduire l'inflammation, ce qui en fait un traitement efficace contre les symptômes de la rosacée.
Des études cliniques démontrent que le gel d'acide azélaïque peut améliorer continuellement l'apparence du gonflement et des vaisseaux sanguins visibles provoqués par la rosacée.

Selon des recherches plus anciennes, la crème à l'acide azélaïque pourrait être aussi efficace que le peroxyde de benzoyle et la trétinoïne (Retin-A) pour le traitement de l'acné.
Bien que les résultats de l’acide azélaïque soient similaires à ceux du peroxyde de benzoyle, il est également plus coûteux.

L'acide azélaïque agit également plus doucement que l'acide alpha-hydroxy, l'acide glycolique et l'acide salicylique.
Bien que ces autres acides soient suffisamment puissants pour être utilisés seuls dans les peelings chimiques, l’acide azélaïque ne l’est pas.

Cela signifie que même si l’acide azélaïque est moins susceptible d’irriter votre peau, l’acide azélaïque doit également être utilisé de manière cohérente et avoir le temps d’agir.

Emporter:
L'acide azélaïque est un acide naturel plus doux que certains acides plus populaires utilisés pour traiter l'acné.
Bien que les résultats du traitement à l’acide azélaïque ne soient pas immédiatement évidents, des recherches indiquent que cet ingrédient est efficace.

Il a été démontré que l’acné, le teint irrégulier, la rosacée et les affections cutanées inflammatoires sont tous traités efficacement avec l’acide azélaïque.
Comme pour tout médicament, suivez attentivement les instructions de dosage et d’application de votre médecin.

Les acides du visage, ou acides cutanés, agissent en exfoliant ou en exfoliant la couche supérieure de votre peau.
Chaque fois que vous exfoliez votre peau, de nouvelles cellules cutanées émergent pour remplacer les anciennes.
Le processus aide à uniformiser le teint de votre peau et rend l’acide azélaïque globalement plus lisse.

De nombreux acides pour le visage sont disponibles en vente libre dans les magasins de produits de beauté et les pharmacies.

Les options populaires incluent :
Acides alpha-hydroxy, tels que l'acide glycolique, lactique, citrique, malique ou tartrique
Acide azélaïque
l'acide kojique
Acide salicylique
Vitamine C (sous forme d'acide L-ascorbique)

Utilisations principales :
Fibres (Ex. Nylon 6,9 - Nylon 5,9 - Nylon 6,69)
Polyester Polyols (Polyuréthanes et PUR Hotmelt)
Bioplastiques (Polyesters)
Adhésifs thermofusibles (Polyamides, Polyester)
Durcisseurs polyamides (résines époxy)
Plastifiants basse température (Dioctyle Azelate DOZ)

L'acide azélaïque peut également être utilisé directement dans d'autres formulations telles que :
Électrolytes pour condensateurs
Graisses complexes au lithium
Fluides pour le travail des métaux, inhibiteurs de corrosion
Revêtement - Résines en poudre (GMA)
Liquides de refroidissement du moteur

Applications de l'acide azélaïque :
L'acide azélaïque est un acide naturel présent dans les céréales comme l'orge, le blé et le seigle.
L'acide azélaïque possède des propriétés antimicrobiennes et anti-inflammatoires, qui le rendent efficace dans le traitement des affections cutanées comme l'acné et la rosacée.

L'acide azélaïque peut prévenir de futures épidémies et éliminer les bactéries de vos pores qui causent l'acné.
L'acide azélaïque est appliqué sur votre peau et est disponible sous forme de gel, de mousse et de crème.

Azelex et Finacea sont deux marques de préparations topiques sur ordonnance.
Ils contiennent 15 pour cent ou plus d’acide azélaïque. Certains produits en vente libre contiennent de plus petites quantités.

Étant donné que l'acide azélaïque met un certain temps à agir, l'acide azélaïque en lui-même n'est généralement pas le premier choix d'un dermatologue pour traiter l'acné.
L'acide azélaïque a également des effets secondaires, tels que des brûlures cutanées, une sécheresse et une desquamation.

L'acide azélaïque antibactérien, antiphlogistique et kératolytique est utilisé dans le traitement de l'acné.
L'acide azélaïque est également utilisé pour le traitement de la pigmentation cutanée, notamment le mélasma et l'hyperpigmentation post-inflammatoire, en particulier chez les personnes à peau plus foncée.

L'acide azélaïque a été recommandé comme alternative à l'hydroquinone.
En tant qu'inhibiteur de la tyrosinase, l'acide azélaïque réduit la synthèse de mélanine.

Environ 4 à 8 % de la substance appliquée localement est absorbée par voie systémique.
Dans les expérimentations animales, l'acide azélaïque, même à fortes doses, n'est pas tératogène.
Cependant, il manque des études systématiques sur l’utilisation de l’acide azélaïque chez l’homme.

Recommandation:
Pendant la grossesse, l'acide azélaïque ne doit être utilisé que pour des indications strictes sur de petites surfaces cutanées, par exemple l'acné du visage, de préférence pas au cours du premier trimestre.

Les esters de cet acide dicarboxylique trouvent des applications dans la lubrification et les plastifiants.
Dans les industries des lubrifiants, l’acide azélaïque est utilisé comme agent épaississant dans la graisse complexe au lithium.
Avec l'hexaméthylènediamine, l'acide azélaïque forme du nylon-6,9, qui trouve des utilisations spécialisées comme plastique.

Médical:
L'acide azélaïque est utilisé pour traiter l'acné légère à modérée, à la fois l'acné comédonienne et l'acné inflammatoire.
L'acide azélaïque appartient à une classe de médicaments appelés acides dicarboxyliques.

L'acide azélaïque agit en tuant les bactéries de l'acné qui infectent les pores de la peau.
L'acide azélaïque diminue également la production de kératine, une substance naturelle qui favorise la croissance des bactéries de l'acné.

L'acide azélaïque est également utilisé comme traitement topique en gel contre la rosacée, en raison de sa capacité à réduire l'inflammation.
L'acide azélaïque élimine les bosses et les gonflements causés par la rosacée.
On pense que le mécanisme d’action passe par l’inhibition de l’activité hyperactive de la protéase qui convertit la cathélicidine en peptide cutané antimicrobien LL-37.

Traitement de l'acnée:
Chez les patients souffrant d'acné modérée, deux fois par jour pendant 3 mois, l'acide azélaïque topique à 20 % a réduit le nombre de comédons, de papules et de pustules.
Avec les rétinoïdes, l'acide azélaïque est considéré comme efficace pour améliorer les résultats du traitement de l'acné.

Les études sur ces derniers étaient cependant certes limitées.
Dans l'examen comparatif des effets de l'acide azélaïque topique, de l'acide salicylique, du nicotinamide, du soufre, du zinc et de l'acide alpha-hydroxy, l'acide azélaïque a bénéficié de preuves d'efficacité de plus haute qualité que les autres.

Agent blanchissant :
L'acide azélaïque a été utilisé pour le traitement de la pigmentation cutanée, notamment le mélasma et l'hyperpigmentation post-inflammatoire, en particulier chez les peaux plus foncées.
L'acide azélaïque a été recommandé comme alternative à l'hydroquinone.

En tant qu'inhibiteur de la tyrosinase, l'acide azélaïque réduit la synthèse de mélanine.
Selon un rapport de 1988, l'acide azélaïque (en association avec le sulfate de zinc) in vitro s'est révélé être un puissant inhibiteur de la 5α-réductase (inhibition de 90 %), similaire aux médicaments contre la chute des cheveux, le finastéride et le dutastéride.
Des recherches in vitro du milieu des années 80 évaluant la capacité dépigmentante (blanchissante) de l'acide ont conclu que l'acide azélaïque n'est efficace (cytotoxique pour les mélanocytes) qu'à des concentrations élevées.

Une revue plus récente a affirmé que l'acide azélaïque à 20 % était plus puissant que l'hydroquinone à 4 % après une période d'application de trois mois sans les effets indésirables de cette dernière et qu'il était encore plus efficace s'il était appliqué avec de la trétinoïne pendant la même période.

Les noms de marques:
Les marques d'acide azélaïque incluent Dermaz 99, Crema Pella Perfetta (acide azélaïque micronisé, dipalmitate kojique et extrait de réglisse), Azepur99, Azetec99, Azaclear (acide azélaïque et niacinamide), AzClear Action, Azelex, White Action cream, Finacea, Finevin, Mélazépam, Skinoren, Ezanic, Azelac, Azaderm (Acnegen, Eziderm, Acnicam, Azelexin au Pakistan)

Agents antibactériens topiques :

Troubles de la pigmentation :
L'acide azélaïque n'a aucune activité dépigmentante sur la peau normale, les taches de rousseur solaires, les taches de rousseur séniles, les lentigines, les kératoses séborrhéiques pigmentées ou les naevus.
L'acide azélaïque a une certaine activité contre l'hypermélanose causée par des agents physiques et chimiques, l'hyperpigmentation post-inflammatoire, le mélasma, le lentigo malin et le mélanome lentigo malin.
Dans le mélasma, un traitement de 24 semaines avec une crème d'acide azélaïque à 20 % seul a montré une efficacité similaire à un traitement de 8 semaines avec une crème de clobétasol à 0,05 %, suivi de 16 semaines avec une crème d'acide azélaïque à 20 % (amélioration de 90 % contre 96,7 %).

Avantages de l'acide azélaïque dans les produits de soins de la peau :
Les produits à base d'acide azélaïque à des concentrations de 10 % ou moins ne sont pas faciles à trouver, car très peu de marques ont découvert les puissants bienfaits de l'acide azélaïque pour la peau, peut-être parce que c'est un ingrédient très difficile à formuler correctement.
Si elle n'est pas formulée correctement, la texture peut être granuleuse, ce qui pourrait être problématique pour la peau.

Si vous vous demandez si vous devez choisir un produit cosmétique de soin de la peau à base d'acide azélaïque ou une version sur ordonnance, des recherches ont montré qu'une concentration de 10 % peut encore améliorer bon nombre des imperfections visibles avec lesquelles certains d'entre nous sont confrontés, des bosses au teint terne et irrégulier. et diverses préoccupations liées au vieillissement.

Mais il existe certains problèmes de peau tenaces ou avancés pour lesquels il est préférable d’envisager l’un des produits sur ordonnance contenant de l’acide azélaïque.
Vous et votre dermatologue pouvez discuter si un produit à base d'acide azélaïque sur ordonnance vous convient et comment intégrer l'acide azélaïque dans votre routine de soins de la peau.

La science derrière les produits de soins de la peau à l’acide azélaïque :
Les chercheurs ont une théorie sur la façon dont l’acide azélaïque exerce sa magie sur l’amélioration de la peau.
Ce que l'on soupçonne, c'est que l'acide azélaïque agit en inhibant les éléments qui se comportent mal sur et dans les couches supérieures de la peau.

Si rien n’est fait, ces fauteurs de troubles entraînent des imperfections cutanées persistantes et visibles (comme des taches brunes et des marques post-imperfections), un teint terne et des signes de sensibilité.
L'acide azélaïque semble avoir une capacité semblable à celle d'un radar pour interrompre ou inhiber ce qui provoque des agissements cutanés.
La peau « entend » le message envoyé par l’acide azélaïque et y répond favorablement, ce qui conduit à une peau remarquablement meilleure, quel que soit votre âge, votre type de peau ou vos préoccupations.

Les recherches en cours sur l'acide azélaïque nous ont amené à formuler notre Booster d'acide azélaïque à 10 %.
L'acide azélaïque qu'il contient cible un large éventail d'imperfections cutanées et est formulé avec 0,5 % d'acide salicylique pour un petit coup de pouce pour affiner les pores.

Le booster d'acide azélaïque à 10 % contient également un complexe apaisant d'extraits de plantes éclaircissants ainsi que de l'adénosine réparatrice pour la peau, un ingrédient énergisant qui réduit visiblement les signes du vieillissement.
Ajouter le Booster d'acide azélaïque à 10 % à votre routine est simple : l'acide azélaïque peut être appliqué une à deux fois par jour après avoir nettoyé, tonifié et exfolié.

Appliquer sur l'acide azélaïque propre ou mélanger avec votre sérum ou crème hydratante préféré.
L'acide azélaïque peut être appliqué sur l'ensemble du visage, ou vous pouvez cibler les zones à imperfections si nécessaire.
Pendant la journée, terminez avec un écran solaire à large spectre avec un FPS de 30 ou plus.

Le booster n’est pas une crème ou un gel d’acide azélaïque ; au lieu de cela, l'acide azélaïque est un hybride gel-crème compatible avec tous les types de peau et peut être utilisé avec n'importe lequel de nos autres produits, y compris nos exfoliants, ce qui pourrait vous amener à vous demander comment l'acide azélaïque se compare aux exfoliants AHA et BHA.

Avantages de l'acide azélaïque pour la peau :
L'acide azélaïque est un ingrédient de soin multifonctionnel qui répond à une multitude de problèmes liés aux éruptions cutanées et à l'inflammation.

Exfolie en douceur :
L'acide azélaïque pénètre profondément dans les pores et élimine les cellules mortes de la peau qui provoquent un teint terne et des pores obstrués.

Combat l'acné :
L'acide azélaïque a des propriétés antibactériennes et, selon Fusco, l'acide azélaïque serait bactéricide contre P. acids, ce qui conduit à l'acné.

Réduit l’inflammation :
L'acide azélaïque apaise les irritations et aide à améliorer les bosses rouges causées par l'inflammation.

Unifie le teint :
L'acide azélaïque inhibe la tyrosinase, une enzyme responsable de l'hyperpigmentation.
L'acide azélaïque est efficace sur l'hyperpigmentation post-inflammatoire due aux poussées d'acné et peut également avoir un effet sur le mélasma.

Traite la rosacée :
L'acide azélaïque pourrait aider à lutter contre l'obstruction des pores, l'inflammation et les infections secondaires causées par la rosacée.

L'acide azélaïque est ce qu'on appelle l'acide carboxylique.
Ce n'est pas un AHA ou un BHA mais un parent éloigné d'eux (tous étant des acides carboxyliques).
L'acide azélaïque se trouve naturellement dans le blé, le seigle et l'orge.

Effet antibactérien → Anti-acné :
L'acide azélaïque a un grand effet antibactérien.
L'acide azélaïque agit contre plusieurs bactéries, notamment Propionibacterium acnés (P. acnés), responsable de l'acné.
Il est prouvé que très peu d’ingrédients agissent contre P.acnés, ce qui fait donc de l’acide azélaïque un excellent choix pour les peaux à tendance acnéique.

Pour le traitement de l’acné, 20 % est le choix standard de concentration de prescription.
En comparant l'acide azélaïque à 20 % à d'autres traitements contre l'acné comme la crème à l'acide rétinoïque à 0,05 %, la crème au peroxyde de benzoyle à 5 % ou la pommade à l'érythromycine à 2 %, l'acide azélaïque n'avait rien à rougir puisque l'acide azélaïque a montré une efficacité similaire.

Il existe également une étude qui a montré que l'acide azélaïque à 5 % est également quelque peu efficace (amélioration d'environ 32 %) et que l'acide azélaïque peut être rendu beaucoup plus efficace en combinant l'acide azélaïque avec 2 % de clindamycine (amélioration d'environ 64 %).

Régule la production de cellules cutanées → Anti-Acné :
L'acide azélaïque agit également sur les cellules qui tapissent les follicules pileux en modifiant la façon dont ils mûrissent et prolifèrent, ce qui diminue le « colmatage » folliculaire et aide à prévenir les points noirs, les points blancs et les lésions d'acné enflammées.
L'acide azélaïque contribue à une production saine de cellules cutanées dans les pores, ce qui est souvent problématique pour les peaux sujettes à l'acné et aux points noirs, ce qui est bien !

Effet anti-inflammatoire → Anti-rosacée, anti-acné :
La troisième propriété magique de l’acide azélaïque est qu’il a un effet anti-inflammatoire prouvé.
C’est cool non seulement pour traiter l’acné, mais aussi pour traiter la rosacée.
15 % est la dose standard de prescription pour le traitement de la rosacée.

Effet éclaircissant de la peau → Anti-PIH, anti-mélasma :
Enfin, l’acide azélaïque présente également des propriétés éclaircissantes pour la peau.
L'acide azélaïque semble être particulièrement efficace contre l'hyperpigmentation post-inflammatoire (qui accompagne souvent l'acné) et le mélasma.

Des études ont comparé 20% d'acide azélaïque à 2% et 4% d'hydroquinone et là encore, l'acide azélaïque n'a pas à rougir, l'acide azélaïque a montré des propriétés éclaircissantes cutanées similaires. (Bien qu’il soit intéressant de noter que l’acide azélaïque ne semble pas efficace pour éclaircir les taches de vieillesse appelées lentigines solaires.)

En fin de compte, l’acide azélaïque peut changer la donne (ou plutôt changer la peau), en particulier pour les peaux à tendance acnéique ou rosacée.
Il est antibactérien, peut réguler la production problématique de cellules cutanées dans les pores, il est anti-inflammatoire et aide même à lutter contre le PIH et le mélasma.
L'acide azélaïque peut vraiment faire beaucoup.

L'acide azélaïque garde les pores clairs :
L'acide azélaïque est un comédolytique.
Cela signifie que l’acide azélaïque aide à éliminer les blocages de pores existants (comédons AKA) et empêche la formation de nouveaux.
Des pores clairs et moins de blocages de pores conduisent finalement à moins de boutons.

L'acide azélaïque exfolie en douceur :
L'acide azélaïque est également un kératolytique.
Les kératolytiques aident votre peau à exfolier en dissolvant les vieilles cellules cutanées squameuses.
L'acide azélaïque est un exfoliant assez doux, surtout par rapport à d'autres traitements contre l'acné comme les rétinoïdes topiques.

L'acide azélaïque réduit les bactéries responsables de l'acné :
L'acide azélaïque tue les Propionibacteria acids, les bactéries responsables des poussées d'acné enflammées.
Cela réduit à son tour les rougeurs et l’inflammation.

L'acide azélaïque unifie le teint :
Un autre avantage de l’acide azélaïque est sa capacité à améliorer l’hyperpigmentation post-inflammatoire, ou les taches décolorées que les boutons laissent derrière eux.
Les teints sujets à l’hyperpigmentation bénéficieront particulièrement de l’acide azélaïque.

Production d'acide azélaïque :
L'acide azélaïque est produit industriellement par ozonolyse de l'acide oléique.
Le produit secondaire est l’acide nonanoïque.

L'acide azélaïque est produit naturellement par Malassezia furfur (également connue sous le nom de Pityrosporum ovale), une levure qui vit sur la peau normale.
La dégradation bactérienne de l'acide nonanoïque donne de l'acide azélaïque.

Fonction biologique de l'acide azélaïque :
Chez les plantes, l'acide azélaïque agit comme une « poussée de détresse » impliquée dans les réponses de défense après une infection.
L'acide azélaïque sert de signal qui induit l'accumulation d'acide salicylique, un élément important de la réponse défensive d'une plante.

Mécanisme d'action de l'acide azélaïque :
Le mécanisme d’action de l’acide azélaïque n’est pas bien compris.
Cependant, in vitro, l'acide azélaïque possède une activité antimicrobienne contre Propionibacterium acids et Staphylococcus epidermidis, très probablement par inhibition de la synthèse des protéines cellulaires microbiennes.

Des microcomédons et des comédons peuvent survenir en raison d'une hyperkératinisation.
L'acide azélaïque produit un effet anticomédonien en diminuant l'hyperkératinisation.

Les biopsies ont montré une diminution de l'épaisseur de la couche cornée, des granules de kératohyaline et de la filaggrine chez les patients traités par une crème à l'acide azélaïque.
L'acide azélaïque inhibe également de manière compétitive la tyrosinase, une enzyme impliquée dans la conversion de la tyrosine en mélanine.

Enfin, le mécanisme d'action de l'acide azélaïque comprend également l'inhibition de la synthèse de l'ADN et des enzymes mitochondriales, induisant ainsi des effets cytotoxiques directs sur les mélanocytes.
Par conséquent, on pense que l’acide azélaïque diminue l’hyperpigmentation post-inflammatoire.

Alternatives :
Actuellement, il n’existe aucun autre médicament connu ayant le même mécanisme d’action que l’acide azélaïque.
D'autre part, il existe de nombreux autres médicaments qui peuvent être utilisés dans le traitement de l'acné vulgaire, tels que les rétinoïdes topiques et oraux, les antibiotiques oraux et topiques, le peroxyde de benzoyle, la dapsone topique, l'acide salicylique, la thérapie photodynamique, les lasers et les peelings.

Les antibiotiques développent une résistance lorsqu’ils ne sont pas utilisés en association avec le peroxyde de benzoyle et ne doivent donc pas être utilisés en monothérapie.
L'acide azélaïque est une monothérapie efficace contre l'acné vulgaire chez la femme enceinte.

Manipulation et stockage de l'acide azélaïque :

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Hermétiquement fermé.
Sec.

Classe de stockage :
Classe de stockage (TRGS 510) : 11 : Solides combustibles

Stabilité et réactivité de l'acide azélaïque :

Réactivité
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Une gamme d'env. 15 Kelvin en dessous du point d'éclair doivent être considérés comme critiques.
Ce qui suit s'applique en général aux substances et mélanges organiques inflammables : en cas de répartition fine correspondante, on peut généralement supposer un potentiel d'explosion de poussière en cas de tourbillonnement.

Stabilité chimique:
L'acide azélaïque est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Possibilité de réactions dangereuses:
Pas de données disponibles

Conditions à éviter :
Fort chauffage.

Matériaux incompatibles :
Bases, Agents réducteurs, Agents oxydants

Avertissements et precautions
Des réactions d'hypersensibilité ont été rapportées lors de l'utilisation d'acide azélaïque.
L'acide azélaïque doit être évité chez les patients présentant des réactions d'hypersensibilité connues à l'acide azélaïque ou à ses composants.

Une hypopigmentation a également été rapportée avec l'utilisation d'acide azélaïque.
La peau doit être surveillée pour détecter tout signe d'hypopigmentation, en particulier chez les patients au teint foncé.
De plus, tout contact avec les yeux, la bouche et les autres muqueuses doit être évité.

Mesures de premiers secours de l'acide azélaïque :

Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.

En cas d'inhalation :

Après inhalation :
Air frais.

En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.

En cas de contact visuel :

Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.

En cas d'ingestion:

Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.

Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles

Mesures de lutte contre l'incendie de l'acide azélaïque :

Moyens d'extinction appropriés :
Eau Mousse Dioxyde de carbone (CO2) Poudre sèche

Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.

Dangers particuliers résultant de la substance ou du mélange :
Oxydes de carbone
Combustible.

Les vapeurs sont plus lourdes que l'air et peuvent se propager sur le sol.
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Possibilité de dégagement de gaz ou de vapeurs de combustion dangereux en cas d'incendie.

Conseils aux pompiers :
Restez dans la zone dangereuse uniquement avec un appareil respiratoire autonome.
Éviter tout contact avec la peau en gardant une distance de sécurité ou en portant des vêtements de protection appropriés.

Informations complémentaires :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.

Mesures en cas de dispersion accidentelle de l'acide azélaïque :

Précautions individuelles, équipement de protection et procédures d'urgence :

Conseils aux non-secouristes :
Eviter l'inhalation de poussières.
Évitez tout contact avec la substance.

Assurer une ventilation adéquate.
Évacuer la zone dangereuse, respecter les procédures d'urgence, consulter un expert.

Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.

Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations. Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.

Prendre à sec.
Éliminer correctement.

Nettoyer la zone touchée.
Eviter la génération de poussières.

Identifiants de l'acide azélaïque :
Numéro CAS : 123-99-9
Référence Beilstein : 1101094
ChEBI : CHEBI :48131
ChEMBL : ChEMBL1238
ChemSpider : 2179
Banque de médicaments : DB00548
Carte d'information ECHA : 100.004.246
Numéro CE : 204-669-1
Référence Gmelin : 261342
IUPHAR/BPS : 7484
KEGG : D03034
CID PubChem : 2266
UNII : F2VW3D43YT
Tableau de bord CompTox (EPA) : DTXSID8021640
InChI : InChI=1S/C9H16O4/c10-8(11)6-4-2-1-3-5-7-9(12)13/h1-7H2,(H,10,11)(H,12, 13)
Clé: BDJRBEYXGGNYIS-UHFFFAOYSA-N
InChI=1/C9H16O4/c10-8(11)6-4-2-1-3-5-7-9(12)13/h1-7H2,(H,10,11)(H,12,13)
Clé : BDJRBEYXGGNYIS-UHFFFAOYAK
SOURIRES : O=C(O)CCCCCCCC(=O)O

Numéro CAS : 123-99-9
Numéro CE : 204-669-1

Formule chimique : C9H16O4
Masse molaire : 188,22 g/mol
Aspect : solide blanc
Densité : 1,443 g/mL
Point de fusion : 109 à 111 °C (228 à 232 °F ; 382 à 384 K)
Point d'ébullition : 286 °C (547 °F ; 559 K) à 100 mmHg
Solubilité dans l'eau : 2,14 g/L
Acidité (pKa) : 4,550, 5,498

Nom d’affichage : Acide azélaïque
Numéro CE : 204-669-1
Nom CE : Acide azélaïque
Numéro CAS : 123-99-9
Formule moléculaire : C9H16O4
Nom IUPAC : acide nonanedioïque

Numéro CAS : 123-99-9
Numéro CE : 204-669-1
Formule de Hill : C₉H₁₆O₄
Formule chimique : HOOC(CH₂)₇COOH
Masse molaire : 188,22 g/mol
Code SH : 2917 13 90

Synonyme(s) : Acide nonanedioïque
Formule linéaire : HO2C(CH2)7CO2H

Propriétés de l'acide azélaïque :
Formule chimique : C9H16O4
Masse molaire : 188,22 g/mol
Aspect : solide blanc
Densité : 1,443 g/mL
Point de fusion : 109 à 111 °C (228 à 232 °F ; 382 à 384 K)
Point d'ébullition : 286 °C (547 °F ; 559 K) à 100 mmHg
Solubilité dans l'eau : 2,14 g/L
Acidité (pKa) : 4,550, 5,498

densité de vapeur : 6,5 (vs air)
Niveau de qualité : 200
Pression de vapeur : <1 mmHg ( 20 °C)
Dosage : 98 %
forme : poudre
point d'ébullition : 286 °C/100 mmHg (lit.)
mp : 109-111 °C (lit.)
Chaîne SMILES : OC(=O)CCCCCCCC(O)=O
InChI : 1S/C9H16O4/c10-8(11)6-4-2-1-3-5-7-9(12)13/h1-7H2,(H,10,11)(H,12,13)
Clé InChI : BDJRBEYXGGNYIS-UHFFFAOYSA-N

Point d'ébullition : 237 °C (20 hPa)
Densité : 1,029 g/cm3 (20 °C)
Point d'éclair : 215 °C
Point de fusion : 107 °C
Valeur pH : 3,5 (1 g/l, H₂O)
Pression de vapeur : <1 hPa (20 °C)
Solubilité : 2,4 g/l

Spécifications de l’acide azélaïque :
Dosage (GC, surface %) : ≥ 90,0 % (a/a)
Identité (IR) : réussit le test

Pharmacologie de l'acide azélaïque :
Code ATC : D10AX03 (OMS)
Itinéraires de
administration : topique
Pharmacocinétique :
Biodisponibilité : Très faible
Demi-vie biologique : 12 h
Statut légal:
AU : S2 (pharmacie uniquement)
États-Unis : ℞ uniquement

Noms de l’acide azélaïque :

Nom IUPAC préféré :
Acide nonanedioïque
Acide 1,7-heptanedicarboxylique
Acide 1,9-nonanedioïque
Acide azélaïque
Acide azélaïque
Acidum azélaïcum
Acide anchoique
Acide azélaïque
Acide azélaïque
acide azélaïque
Acide azélaïque, qualité technique
Azélex
Emérox 1110
Emérox 1144
Finacéa
Acide heptanedicarboxylique
Acide lépargylique
Skinoren

Nom CAS :
Acide nonanedioïque

Noms IUPAC :
Acide 1,7-heptanedicarboxylique
ACIDE AZÉLAÏQUE
Acide Azélaïque
Acide azélaïque
acide azélaïque
Acide azélaïque
acide azélaïque
Azélainsäure
Acide Azéléique
Acide nonanedioïque
acide nonanedioïque
Acide nonanedioïque
Acide non anédionique

Appellations commerciales:
Crodacide DC1195
Acide Azélaïco
ACIDE BÉHÉNIQUE
L'acide béhénique est un composant majeur de l'huile de ben (ou huile de behen), qui est extraite des graines de l'arbre à pilon (Moringa oleifera).
L'acide béhénique est ainsi nommé du mois persan Bahman, lorsque les racines de cet arbre ont été récoltées.
L'acide béhénique est également présent dans certaines autres huiles et plantes oléagineuses, notamment l'huile de colza (canola) et l'huile et la peau d'arachide.

Numéro CAS : 112-85-6
Formule moléculaire : C22H44O2
Poids moléculaire : 340,58
Numéro EINECS : 204-010-8

Synonymes : Acide docosanoïque, Acide béhénique, 112-85-6, Acide 1-docosanoïque, ACIDE N-DOCOSANOÏQUE, Acide hydrofol 560, Hydrofol 2022-55, Glycon B-70, Acide docosoïque, Hystrene 5522, Hystrene 9022, Glycon B 70, Prifrac 2989, Behensaeure, Docosansaeure, Dokosansaeure, Acide docosanique, CHEBI :28941, HSDB 5578, Edenor C 22-85R, EINECS 204-010-8, NSC 32364, UNII-H390488X0A, CRODACID B, ORISTAR BA, AI3-52709, C22:0, NSC-32364, H390488X0A, EXL 5, PRIFRAC 2987, NAA 22S, NAA 222S, DTXSID3026930, Acide docosanoïque (en morceaux, en pastilles ou en flocons), EC 204-010-8, NSC32364, MFCD00002807, FA 22:0, B 95, CH3-(CH2)20-COOH, CH3-[CH2]20-COOH, n-Docosanoate, 1-Docosanoate, alcool docosanoylique, acide gras 22:0, Acide béhénique, 99%, Prifac 2987, Acide béhénique, technique, Acide docosanoïque, ?99%, ACIDE BÉHÉNIQUE [MI], SCHEMBL6579, EXL-5, Acide béhénique ; Acide docosanoïque, ACIDE DOCOSANOÏQUE [HSDB], DTXCID306930, CHEMBL1173474, AGP-103, Acide béhénique, étalon analytique, BBL025601, BDBM50488776, LMFA01010022, s5381, STL146320, AKOS005720830, CCG-267927, CS-W013765, HY-W013049, NCGC00475914-02, AS-54401, B-95, B1248, B1747, D0963, FT-0745232, NS00005465, C08281, P50011, A854667, Q422590, W-108636, ACIDE BÉHÉNIQUE (CONSTITUANT DE L'HUILE DE GRAINES DE BOURRACHE), E2AAC59F-4B8D-460C-9C6E-E4E82C905122, 08O

Des pellicules monomoléculaires d'acide stéarique et d'acide béhénique se sont formées sur des substrats 0,1M dans du chlorure de sodium, du bicarbonate de sodium ou du phosphate de sodium et ont été étudi��es par analyse IR.
L'acide béhénique (également acide docosanoïque) est un acide carboxylique, l'acide gras saturé de formule C21H43COOH.
En apparence, l'acide béhénique se compose d'un solide blanc bien que les échantillons impurs apparaissent jaunâtres.

On estime que l'acide béhénique contient 13 livres (5,9 kg) d'acide béhénique.
En tant qu'huile diététique, l'acide béhénique est mal absorbé.
Malgré sa faible biodisponibilité par rapport à l'acide oléique, l'acide béhénique est un acide gras saturé qui augmente le cholestérol chez l'homme.

L'acide béhénique est un acide gras saturé utilisé comme intermédiaire chimique dans la synthèse de divers composés.
Des pellicules monomoléculaires d'acide stéarique et d'acide béhénique se sont formées sur des substrats 0,1M dans du chlorure de sodium, du bicarbonate de sodium ou du phosphate de sodium et ont été étudiées par analyse IR.
L'acide béhénique a été utilisé pour étudier le comportement de phase des acides à longue chaîne dans le propane supercritique.

L'acide béhénique a également été utilisé dans la fabrication de films métalliques Langmuir-Blodgett (LB).
L'acide béhénique, également acide docosanoïque, est un acide carboxylique normal, un acide gras de formule C21H43COOH.
L'acide béhénique est un constituant important de l'huile de behen extraite des graines de l'arbre à huile de Ben, et il est ainsi nommé du mois persan Bahman lorsque les racines de cet arbre ont été récoltées.

L'acide béhénique a été identifié dans le placenta humain (PMID :32033212 ).
L'acide béhénique est un acide gras utilisé comme épaississant, agent nettoyant et opacifiant dans les cosmétiques.
Également connu sous le nom d'acide béhénique, cet ingrédient peut être d'origine végétale ou synthétique.

L'acide béhénique est un composant majeur de l'huile de moringa et se trouve également dans l'huile d'arachide.
La nature saturée de cet acide gras à longue chaîne (plus de 20 molécules de carbone) ressemblant à de la cire est ce qui lui confère des propriétés opacifiantes et rehaussantes de texture.
L'acide béhénique est parfois utilisé comme alternative à l'acide stéarique, une décision dépendant de l'esthétique souhaitée.

Bien qu'il s'agisse d'un acide gras saturé, son poids moléculaire plus faible et son affinité pour la peau lui permettent d'améliorer la pénétration d'autres ingrédients sans présenter de risque d'irritation.
Bien qu'il soit également classé comme tensioactif (agent nettoyant), l'acide béhénique est généralement utilisé avec des tensioactifs purs pour créer des textures de gel à l'huile enrichies d'acides gras qui peuvent éliminer efficacement mais en douceur l'excès de sébum et les ingrédients plus tenaces et longue tenue.
Les niveaux d'utilisation de l'acide béhénique dans les cosmétiques varient de 0,024 à 22 %.

Des produits comme le rouge à lèvres qui peuvent entraîner une ingestion accidentelle peuvent contenir jusqu'à 14 % d'acide béhénique.
Toutes ces quantités sont considérées comme sans danger pour la peau.
L'acide béhénique, également connu sous le nom de docosanoate, C22:0 ou acide 1-docosanoïque, appartient à la classe des composés organiques connus sous le nom d'acides gras à très longue chaîne.

Il s'agit d'acides gras avec une queue aliphatique qui contient au moins 22 atomes de carbone.
L'acide béhénique est une molécule très hydrophobe, pratiquement insoluble dans l'eau, et relativement neutre.
En apparence, il se compose de cristaux ou de poudre de couleur blanche à crème avec un point de fusion de 80 °∞C et un point d'ébullition de 306 °∞C.

L'acide béhénique est un composant majeur de l'huile de Ben (ou huile de behen), qui est extraite des graines de l'arbre à huile de Ben (Moringa oleifera).
L'acide béhénique se trouve également dans l'huile de canola et l'huile d'arachide.
En tant qu'huile diététique, l'acide béhénique est mal absorbé.

Malgré sa faible biodisponibilité par rapport à l'acide oléique, l'acide béhénique est un acide gras saturé qui augmente le cholestérol (LDL) chez l'homme et n'est donc pas un substitut approprié de l'acide palmitique dans les triacylglycérols manufacturés.
L'acide béhénique est souvent utilisé pour donner aux revitalisants et aux hydratants capillaires leurs propriétés lissantes.
L'acide béhénique est également utilisé dans les huiles lubrifiantes et comme retardateur d'évaporation de solvant dans les décapants de peinture.

L'amide d'acide béhénique est utilisé comme agent anti-mousse dans les détergents, les vernis à sol et les bougies anti-gouttes.
L'acide béhénique est un acide gras saturé dérivé des extraits d'huile de plantes et utilisé comme composant d'agents de conditionnement.
L'acide béhénique fait également partie d'un nouveau complexe d'ingrédients lipophiles développés pour le traitement de la peau sèche.

Les propriétés de l'acide béhénique ont été étudiées par rapport à d'autres acides gras et il a été constaté que l'acide béhénique n'inhibe pas l'enzyme UDP-glucuronosyltransférase (UGT) 1A1.
Les niveaux élevés d'acide béhénique chez les patients atteints de tumeurs gliales de bas grade sont un indicateur important de la persistance de l'intégrité et de la résistance des tissus.
Par conséquent, les niveaux d'acide béhénique peuvent être un facteur pronostique dans les tumeurs gliales.

L'acide béhénique est un acide gras qui a été utilisé comme sonde de fluorescence pour la détection de la vapeur d'eau.
L'acide béhénique s'est avéré efficace antibactérien contre des bactéries telles que Acinetobacter baumannii, Staphylococcus aureus et Pseudomonas aeruginosa.
L'acide béhénique est également connu pour inhiber la synthèse des acides gras dans les microsomes hépatiques du rat et pour avoir des propriétés biologiques telles que la capacité d'induire une stéatose hépatique.

Cet acide gras se trouve dans certains lichens et peut en être purifié à l'aide d'une méthode analytique impliquant la chromatographie liquide à pression constante.
L'acide béhénique se trouve également dans l'huile de behen, qui est produite en pressant les noix de la graine du hêtre.
L'acide béhénique est utilisé pour donner aux revitalisants et aux hydratants capillaires leurs propriétés lissantes.

L'acide béhénique est également utilisé pour étudier le comportement de phase des acides à longue chaîne dans le propane supercritique.
L'acide béhénique est mal absorbé et un acide gras saturé qui augmente le cholestérol chez l'homme.
L'acide béhénique est composé de flocons blancs à écoulement libre avec une odeur caractéristique.

L'acide béhénique est idéal pour une utilisation dans les produits de soins personnels.
L'acide béhénique est un composant majeur de l'huile de ben (Moringa oleifera) et peut également être trouvé dans l'huile d'arachide, l'huile de colza et l'huile de coton.
Présent dans diverses graisses animales, bien qu'en plus petites quantités par rapport aux huiles végétales.

L'acide béhénique est utilisé dans les hydratants, les lotions et les crèmes pour ses propriétés émollientes.
L'acide béhénique aide à adoucir et à lisser la peau en formant une barrière protectrice qui réduit la perte d'eau.
Couramment trouvé dans les revitalisants et les traitements capillaires, l'acide béhénique aide à améliorer la texture des cheveux, les rendant plus lisses et plus faciles à coiffer.

Inclus dans les nettoyants pour le visage et le corps pour sa capacité à améliorer la texture du produit et à fournir une application lisse.
L'acide béhénique est utilisé comme émulsifiant dans les formulations pharmaceutiques pour assurer la répartition uniforme des ingrédients actifs dans les crèmes, les pommades et les lotions.
Aide à augmenter la viscosité des formulations topiques, fournissant une consistance souhaitable.

L'acide béhénique et ses dérivés sont utilisés dans la formulation de lubrifiants et de graisses industriels en raison de leur point de fusion élevé et de leur stabilité.
Utilisé dans la production de tensioactifs et de détergents pour leur capacité à réduire la tension superficielle et à améliorer l'efficacité du nettoyage.
L'acide béhénique est utilisé comme plastifiant dans la fabrication des plastiques pour améliorer leur flexibilité et leur durabilité.

Utilisé comme additif alimentaire et conservateur en raison de ses propriétés antioxydantes, bien que son utilisation dans cette industrie soit limitée par rapport à d'autres applications.
L'acide béhénique est très efficace pour fournir une hydratation durable à la peau et aux cheveux.
Aide à lisser la peau rugueuse et à améliorer la texture des cheveux.

Améliore la stabilité des émulsions dans les formulations cosmétiques et pharmaceutiques.
Généralement considéré comme sûr pour une utilisation dans les cosmétiques et les produits de soins personnels.

Cependant, comme pour tout ingrédient, l'acide béhénique doit être utilisé dans les concentrations recommandées pour éviter les irritations cutanées.
L'acide béhénique est biodégradable et ne présente pas de risques environnementaux importants lorsqu'il est utilisé dans les produits ménagers et de soins personnels.

Point de fusion : 72-80 °C (lit.)
Point d'ébullition : 306°C 60mm
Densité D4100 : 0,8221
pression de vapeur : 0Pa à 25°C
indice de réfraction : nD100 1,4270
Point d'éclair : 306°C/60mm
Température de stockage : Scellé à sec, température ambiante
solubilité : chloroforme : soluble50mg/mL, clair
forme : Poudre cristalline
pka : 4,78±0,10 (prédit)
couleur : Blanc à légèrement jaune
Odeur : légère odeur
Solubilité dans l'eau : Soluble dans le DMF (~3 mg/ml), le méthanol chaud, l'eau (0,15 mg/ml à 25 °C), le chloroforme et l'éthanol (2,18 mg/ml à 25 °C).
Téléphone : 14 1023
BRN : 1792887
Stabilité : Stable. Combustible. Incompatibles avec les bases, les agents oxydants, les agents réducteurs.
InChIKey : UKMSUNONTOPOIO-UHFFFAOYSA-N
LogP : 4,121-9,91 à 25°C

L'acide béhénique, également connu sous le nom d'acide docosanoïque, est un acide gras saturé à longue chaîne avec 22 atomes de carbone.
L'acide béhénique a la formule chimique CH3(CH2)20COOH et se trouve couramment dans diverses sources naturelles telles que les huiles végétales et les graisses animales.
L'acide béhénique est utilisé dans les crèmes et les sérums anti-âge pour aider à réduire l'apparence des rides et ridules en fournissant une hydratation en profondeur et en améliorant l'élasticité de la peau.

Inclus dans les baumes à lèvres et les rouges à lèvres pour sa capacité à créer une couche lisse et protectrice qui empêche la perte d'humidité et protège les lèvres des dommages environnementaux.
On le trouve dans les crèmes et les gels à raser pour fournir une glisse en douceur, réduisant l'irritation et laissant la peau douce et hydratée.
L'acide béhénique est utilisé dans les crèmes et les onguents médicamenteux pour traiter des affections telles que l'eczéma, le psoriasis et la peau sèche en fournissant une barrière hydratante et en réduisant l'inflammation.

Utilisé dans l'enrobage des gélules pharmaceutiques pour améliorer leur stabilité et contrôler la libération des ingrédients actifs.
L'acide béhénique est utilisé dans les fluides d'usinage des métaux pour améliorer la lubrification et le refroidissement pendant les processus d'usinage, prolongeant ainsi la durée de vie des outils et améliorant la qualité des produits finis.
L'acide béhénique est utilisé dans la production de finitions textiles et d'adoucissants pour améliorer le toucher et la durabilité des tissus.

Agit comme un auxiliaire technologique dans la fabrication des plastiques et du caoutchouc, améliorant leur flexibilité, leur douceur et leurs performances globales.
L'acide béhénique est parfois inclus dans les produits nutraceutiques pour ses bienfaits potentiels pour la santé, notamment l'amélioration de la santé cardiovasculaire et la fourniture d'énergie.
L'acide béhénique est utilisé dans certaines applications de conservation des aliments en raison de ses propriétés antioxydantes, qui aident à prolonger la durée de conservation des produits alimentaires.

La longue chaîne hydrocarbonée de l'acide béhénique le rend hydrophobe, ce qui contribue à ses excellentes propriétés émollientes.
Le groupe carboxyle (-COOH) à une extrémité de la molécule lui permet d'interagir avec d'autres ingrédients dans les formulations, améliorant ainsi la stabilité et la texture.
L'acide béhénique peut être dérivé de sources naturelles par des processus d'extraction et de purification, ou il peut être synthétisé par des réactions chimiques impliquant des hydrocarbures et la carboxylation.

Divers dérivés de l'acide béhénique, tels que l'alcool béhénylique et le béhénamide, sont utilisés dans des formulations pour offrir des avantages similaires avec différentes propriétés physiques et chimiques adaptées à des applications spécifiques.
L'acide béhénique provient souvent d'huiles végétales renouvelables, telles que l'huile de moringa et l'huile d'arachide, ce qui en fait un choix durable pour les formulateurs axés sur les ingrédients écologiques.
En tant qu'acide gras naturel, l'acide béhénique est biodégradable et se décompose en composants inoffensifs dans l'environnement, minimisant ainsi son impact écologique.

Les progrès de la chimie verte permettent des méthodes plus durables et plus efficaces d'extraction et de synthèse de l'acide béhénique, réduisant ainsi l'empreinte environnementale de sa production.
Les recherches en cours visent à améliorer les propriétés de l'acide béhénique grâce à de nouvelles techniques de formulation, telles que l'encapsulation et la nano-émulsion, afin d'améliorer son administration et son efficacité dans les applications cosmétiques et pharmaceutiques.
Des études explorent les avantages potentiels de l'acide béhénique pour la santé, en particulier son rôle dans l'amélioration de la fonction de barrière cutanée, la réduction de l'inflammation et l'hydratation durable.

L'acide béhénique est un acide carboxylique, l'acide gras saturé dont la formule C21H43COOH.
En apparence, il se compose d'un solide blanc bien que les échantillons impurs apparaissent jaunâtres.
L'acide béhénique est un acide gras saturé ayant 22 atomes de carbone.

Ainsi, l'acide béhénique est un SOS TAG et est analogue au POP, au POSt et au StOSt.
Cependant, l'acide béhénique a un point de fusion de 56°C et peut agir comme une graine pour la cristallisation du beurre de cacao TAG sous forme bêta (V).
Avec un point de fusion aussi élevé, les cristaux d'acide béhénique survivent à la fusion du chocolat et fournissent des graines pour la cristallisation ultérieure sous une forme stable.

L'acide béhénique est utilisé pour synthétiser le béhénylbéhénate, un agent hydratant présent dans de nombreuses formulations de soins de la peau et des cheveux.
Il a été constaté qu'un régime riche en acide béhénique augmentait les taux sériques de cholestérol LDL chez les participants humains.
Au contraire, les triacylglycérols structurés contenant de l'acide b��hénique ont tendance à réduire les dépôts de graisse chez les rats.

La capranine, un triacylglycérol contenant de l'acide béhénique, est un substitut de graisse hypocalorique utilisé pour la fabrication de bonbons.
L'acide béhénique est un acide gras saturé de carbone à chaîne linéaire de 22 atomes de carbone.
L'acide béhénique est naturellement présent dans l'huile de behen qui est extraite des graines de l'arbre à pilon (Moringa oleifera).

L'acide béhénique, également acide docosanoïque, est un acide carboxylique normal, un acide gras de formule C21H43COOH.
En apparence, l'acide béhénique se compose de cristaux ou de poudre de couleur blanche à crème avec un point de fusion de 74-78°C et un point d'ébullition de 306°C.
L'acide béhénique est un composant majeur de l'huile de Ben, également connue sous le nom d'huile de béhén ou d'huile de Moringa, qui est extraite des graines de Moringa oleifera et est utilisée dans les cosmétiques.

Le nom « behenic » dérive du mont persan Bahman, où les graines de cet arbre étaient récoltées.
L'acide béhénique appartient au groupe des acides gras saturés (pas de double liaison, donc sa notation abrégée est 22:0).
L'acide béhénique fait également partie du groupe des acides gras à très longue chaîne (ATLCF), à partir de 20 atomes de carbone.

Utilise:
L'acide béhénique est un acide gras à longue chaîne utilisé dans les formulations de produits pour former une émulsion visqueuse.
L'acide béhénique est considéré comme une matière première non comédogène.
L'acide béhénique est utilisé pour donner aux revitalisants et aux hydratants capillaires leurs propriétés lissantes.

L'acide béhénique est également utilisé pour étudier le comportement de phase des acides à longue chaîne dans le propane supercritique.
L'acide béhénique est un acide gras à longue chaîne, il a les objectifs suivants : Cires, textiles, produits pharmaceutiques, émulsifiants et produits de soins personnels, lubrifiants, esters, synthèse chimique et spécialités.
Commercialement, l'acide béhénique est souvent utilisé pour donner aux revitalisants et aux hydratants capillaires leurs propriétés lissantes.

L'acide béhénique est également utilisé dans les huiles lubrifiantes et comme retardateur d'évaporation de solvant dans les décapants de peinture.
Son amide est utilisé comme agent anti-mousse dans les détergents, les vernis à sol et les bougies anti-gouttes. La réduction de l'acide béhénique donne de l'alcool béhénylique.
L'acide béhénique est un produit naturel avec l'une des plus fortes concentrations d'acide béhénique et est utilisé dans les après-shampooings.

L'acide béhénique est utilisé pour donner aux revitalisants et aux hydratants capillaires leurs propriétés lissantes.
L'acide béhénique est également utilisé pour étudier le comportement de phase des acides à longue chaîne dans le propane supercritique.
Agit comme un émollient, fournissant une hydratation longue durée et améliorant la douceur et la douceur de la peau.

Aide à réduire l'apparence des rides et ridules en fournissant une hydratation en profondeur et en améliorant l'élasticité de la peau.
Forme une barrière protectrice pour prévenir la perte d'humidité et protéger les lèvres des dommages environnementaux.
Fournit une glisse en douceur, réduisant l'irritation et laissant la peau douce et hydratée.

Améliore la texture des cheveux, les rendant plus lisses et plus faciles à coiffer.
Ajoute de la brillance et réduit les frisottis en enrobant la tige du cheveu et en emprisonnant l'humidité.
L'acide béhénique améliore la texture, ce qui facilite l'application du produit et laisse la peau lisse.

L'acide béhénique est utilisé dans les traitements de maladies telles que l'eczéma et le psoriasis en raison de ses propriétés hydratantes et anti-inflammatoires.
Améliore l'efficacité et l'application des anesthésiques topiques.
Améliore la stabilité des gélules pharmaceutiques et contrôle la libération des ingrédients actifs.

L'acide béhénique améliore la lubrification et le refroidissement pendant les processus d'usinage, améliorant ainsi la durée de vie des outils et la qualité du produit.
Fournit une stabilité et un point de fusion élevé, ce qui le rend adapté aux applications à haute température.
Améliore le toucher et la durabilité des tissus.

L'acide béhénique améliore la flexibilité, la douceur et les performances globales des plastiques et du caoutchouc.
L'acide béhénique est utilisé dans la production de détergents et d'agents de nettoyage pour réduire la tension superficielle et améliorer l'efficacité du nettoyage.
Utilisé dans certaines applications de conservation des aliments en raison de ses propriétés antioxydantes, prolongeant la durée de conservation des produits alimentaires.

L'acide béhénique est inclus dans les suppléments de santé pour ses avantages cardiovasculaires potentiels et ses propriétés énergétiques.
Amélioration de l'administration et de l'efficacité de l'acide béhénique dans diverses applications.
Explorer des méthodes d'extraction et de synthèse plus respectueuses de l'environnement pour réduire l'impact environnemental.

L'acide béhénique est utilisé dans les hydratants, les crèmes et les lotions pour fournir une hydratation en profondeur et améliorer la texture de la peau.
L'acide béhénique forme une barrière protectrice sur la peau, empêchant la perte d'humidité et améliorant la douceur.
Présent dans les produits anti-âge pour sa capacité à lisser les rides et ridules en améliorant l'élasticité et la fermeté de la peau.

Soutient la fonction de barrière naturelle de la peau, ce qui la rend adaptée aux produits visant à réparer les peaux sèches ou abîmées.
Ajoute de l'hydratation et améliore la maniabilité des cheveux en lissant les cuticules et en réduisant les frisottis.
Fournit une hydratation intensive et aide à renforcer les tiges des cheveux, réduisant la casse et améliorant la santé globale des cheveux.

L'acide béhénique agit comme un agent revitalisant pour adoucir et protéger les lèvres des gerçures et des dommages environnementaux.
Améliore la texture et le toucher des rouges à lèvres, offrant une application lisse et une couleur longue durée.
Fournit un effet lubrifiant pour un rasage en douceur, tout en hydratant la peau et en réduisant les irritations.

Les propriétés apaisantes de l'acide béhénique le rendent adapté aux traitements topiques des affections cutanées inflammatoires comme l'eczéma et le psoriasis.
Inclus dans les formulations pour la cicatrisation des plaies, les traitements de la dermatite et les onguents médicamenteux.
Améliore la stabilité et la durée de conservation des gélules pharmaceutiques, assurant la libération contrôlée des ingrédients actifs.

L'acide béhénique est utilisé comme additif lubrifiant pour améliorer les processus de coupe et d'usinage en réduisant la friction et l'accumulation de chaleur.
Fournit viscosité et stabilité, améliorant les performances des machines industrielles dans diverses conditions de fonctionnement.
Adoucit les tissus et réduit l'électricité statique, améliorant ainsi le toucher et le confort des textiles.

L'acide béhénique agit comme un plastifiant dans la fabrication des plastiques et du caoutchouc, améliorant la flexibilité, la durabilité et l'efficacité du traitement.
L'acide béhénique est utilisé dans les formulations de détergents et de produits de nettoyage pour améliorer la solubilité et la dispersion des ingrédients actifs, améliorant ainsi les performances de nettoyage.
L'acide béhénique est utilisé comme antioxydant pour préserver les produits alimentaires et prolonger la durée de conservation.

Inclus dans les compléments alimentaires pour ses avantages potentiels pour la santé, tels que le soutien de la santé cardiovasculaire et du métabolisme énergétique.
La recherche explore l'utilisation de l'acide béhénique dans des matériaux avancés tels que les polymères biosourcés, les revêtements et les applications biomédicales en raison de sa biocompatibilité et de ses propriétés fonctionnelles.
Se concentrer sur des méthodes d'approvisionnement et de production durables pour réduire l'impact environnemental et promouvoir des formulations respectueuses de l'environnement.

Profil de sécurité :
L'acide béhénique, en particulier sous sa forme pure, peut potentiellement provoquer une irritation ou une sensibilisation cutanée chez les personnes ayant la peau sensible ou allergiques.
Il est recommandé d'utiliser des produits contenant de l'acide béhénique dans les concentrations recommandées et de cesser l'utilisation en cas d'irritation.
Le contact direct avec l'acide béhénique peut provoquer une irritation des yeux.

En cas de contact accidentel, rincez abondamment les yeux avec de l'eau et consultez un médecin si l'irritation persiste.
L'inhalation de poussières ou d'aérosols d'acide béhénique peut provoquer une irritation respiratoire, en particulier à des concentrations élevées ou une exposition prolongée.
Une ventilation adéquate doit être assurée lors de la manipulation de poudres ou de formes aérosolisées d'acide béhénique.

Bien qu'elle ne soit généralement pas préoccupante dans des scénarios d'utilisation normale, l'ingestion de grandes quantités d'acide béhénique peut provoquer une irritation gastro-intestinale.
Il est important de manipuler les produits contenant de l'acide béhénique conformément aux directives de sécurité afin d'éviter toute ingestion accidentelle.

L'acide béhénique est biodégradable et n'est pas considéré comme dangereux pour l'environnement dans des conditions normales d'utilisation.
Cependant, comme pour toute substance chimique, les déversements ou les rejets à grande échelle dans l'environnement doivent être évités afin d'éviter tout impact potentiel sur l'environnement.



ACIDE BÉHÉNIQUE (ACIDE DOCOSANOÏQUE)
L'acide béhénique (acide docosanoïque) est un acide gras utilisé comme sonde à fluorescence pour la détection de la vapeur d'eau.
L'acide béhénique (acide docosanoïque) s'est révélé avoir une efficacité antibactérienne contre les bactéries, notamment Acinetobacter baumannii, Staphylococcus aureus et Pseudomonas aeruginosa.
L'acide béhénique (acide docosanoïque) est également connu pour inhiber la synthèse des acides gras dans les microsomes hépatiques du rat et pour posséder des propriétés biologiques telles que la capacité d'induire une stéatose hépatique.

CAS : 112-85-6
FM : C22H44O2
MW : 340,58
EINECS : 204-010-8

Synonymes
ACIDE N-DOCOSANOÏQUE ;ACIDE BÉHÉNIQUE ;ACIDE CARBOXYLIQUE C22 ;Acide hydrofol ;Arsénite de fer(III), pentahydraté ;O-arsénite de fer(III), pentahydraté ;Acide docosanoïque, 85 %, tech.;Acide 1-docosanoïque ;Acide docosanoïque ; Acide béhénique; 112-85-6; Acide 1-docosanoïque; ACIDE N-DOCOSANOÏQUE; Acide Hydrofol 560; Hydrofol 2022-55; Glycon B-70; Acide docosoïque; Hystrene 5522; Hystrene 9022; Glycon B 70; Prifrac 2989; Behensaeure ;Docosansaeure;Dokosansaeure;Acide docosanique;CHEBI:28941;HSDB 5578;Edenor C 22-85R;EINECS 204-010-8;NSC 32364;UNII-H390488X0A;CRODACID B;ORISTAR BA;AI3-52709;C22:0;NSC -32364;1219804-98-4;H390488X0A;Acide docosanoïque-12,12,13,13-d4;EXL 5;PRIFRAC 2987;NAA 22S;NAA 222S;DTXSID3026930;Acide docosanoïque (morceaux ou pastilles ou flocons);EC 204 -010-8;1193721-65-1;1193721-67-3;NSC32364;MFCD00002807;FA 22:0;B 95;ACIDE DOCOSANOÏQUE-7,7,8,8-D4;DOCOSANOÏQUE-22,22,22- ACIDE D3 ; CH3-(CH2)20-COOH ;CH3-[CH2]20-COOH ;n-Docosanoate ;1-Docosanoate ;alcool docosanoyle ;acide gras 22:0 ;Acide béhénique, 99 % ;Prifac 2987 ;Acide béhénique, Technique ;Acide docosanoïque, ?99 % ;ACIDE BEHÉNIQUE [MI] ;SCHEMBL6579 ;ACIDE BEHÉNIQUE [INCI] ;EXL-5 ;Acide béhénique ; Acide docosanoïque; ACIDE DOCOSANOÏQUE [HSDB]; DTXCID306930; CHEMBL1173474; AGP-103; Acide béhénique, étalon analytique; BDBM50488776; LMFA01010022; ;NCGC00475914-02;AS-54401 ;B-95;B1248;B1747;D0963;FT-0745232;NS00005465;C08281;P50011;A854667;Q422590;W-108636;ACIDE BÉHÉNIQUE (CONSTITUANT DE L'HUILE DE GRAINES DE Bourrache);E2AAC59F-4B8D-460C-9C6E -E4E82C905122;08O

L'acide béhénique (acide docosanoïque) se trouve dans certains lichens et peut en être purifié à l'aide d'une méthode analytique impliquant la chromatographie liquide à pression constante.
L'acide béhénique (acide docosanoïque) se trouve également dans l'huile de behen, qui est produite en pressant les noix des graines du hêtre.
Un acide gras saturé à chaîne droite, C22, à longue chaîne.
Des films monomoléculaires d'acide stéarique et béhénique ont été formés sur des substrats 0,1 M dans du chlorure de sodium, du bicarbonate de sodium ou du phosphate de sodium et ont été étudiés par analyse IR.
L'acide béhénique (acide docosanoïque) est un acide carboxylique, l'acide gras saturé de formule C21H43COOH.
En apparence, l'acide béhénique (acide docosanoïque) est constitué d'un solide blanc bien que les échantillons impurs semblent jaunâtres.

À 9 %, l'acide béhénique (acide docosanoïque) est un composant majeur de l'huile de ben (ou huile de behen), qui est extraite des graines du pilon (Moringa oleifera).
L'acide béhénique (acide docosanoïque) doit son nom au mois persan Bahman, lorsque les racines de cet arbre ont été récoltées.
L'acide béhénique (acide docosanoïque) est également présent dans certaines autres huiles et plantes oléagineuses, notamment l'huile et les peaux de colza (canola) et d'arachide.
On estime qu’une tonne de peaux d’arachide contient 13 livres (5,9 kg) d’acide béhénique (acide docosanoïque).

L'acide béhénique (acide docosanoïque) est un acide gras utilisé comme épaississant, agent nettoyant et opacifiant dans les cosmétiques.
Également connu sous le nom d’acide béhénique (acide docosanoïque), cet ingrédient peut être d’origine végétale ou synthétique.
L’acide béhénique (acide docosanoïque) est un composant majeur de l’huile de moringa et se trouve également dans l’huile d’arachide.
La nature saturée de cet acide gras semblable à une cire à longue chaîne (plus de 20 molécules de carbone) confère à l’acide béhénique (acide docosanoïque) des propriétés opacifiantes et améliorant la texture.
L'acide béhénique (acide docosanoïque) est parfois utilisé comme alternative à l'acide stéarique, une décision dépendant de l'esthétique souhaitée.

Bien qu'il s'agisse d'un acide gras saturé, son poids moléculaire plus faible et son affinité pour la peau permettent �� l'acide béhénique (acide docosanoïque) de favoriser la pénétration d'autres ingrédients sans présenter de risque d'irritation.
Bien qu'il soit également classé comme tensioactif (agent nettoyant), l'acide béhénique est généralement utilisé avec des tensioactifs purs pour créer des textures de gel d'huile enrichies d'acides gras qui peuvent éliminer efficacement mais en douceur l'excès de sébum et les ingrédients plus tenaces et de longue durée.
Les niveaux d'utilisation de l'acide béhénique dans les cosmétiques varient de 0,024 à 22 %.
Les produits comme le rouge à lèvres qui peuvent entraîner une ingestion accidentelle peuvent contenir jusqu'à 14 % d'acide béhénique. Toutes ces quantités sont considérées comme sans danger pour la peau.

Acide docosanoïqueL'acide béhénique (acide docosanoïque) joue un rôle de métabolite végétal.
L'acide béhénique (acide docosanoïque) est un acide gras saturé à chaîne droite et un acide gras à chaîne longue.
L'acide béhénique (acide docosanoïque) est un acide conjugué d'un béhénate.
L'acide béhénique, également connu sous le nom d'acide docosanoïque, est un acide gras saturé qui appartient au groupe des produits oléochimiques.
Cet acide gras polyvalent se distingue par sa structure chimique unique, sa stabilité exceptionnelle et sa résistance à l'oxydation.
Ces propriétés font de l’acide béhénique une matière première recherchée dans diverses industries.
L'acide gras est souvent extrait des huiles végétales et des graisses animales.

Propriétés chimiques de l'acide béhénique (acide docosanoïque)
Point de fusion : 72-80 °C(lit.)
Point d'ébullition : 306°C 60 mm
Densité : d4100 0,8221
Pression de vapeur : 0Pa à 25℃
Indice de réfraction : nD100 1,4270
Fp : 306°C/60mm
Température de stockage. : Scellé à sec, température ambiante
Solubilité : chloroforme : soluble 50 mg/mL, clair
Forme : Poudre cristalline
Pka : 4,78 ± 0,10 (prédit)
Couleur : Blanc à légèrement jaune
Odeur : légère odeur
Solubilité dans l'eau : Soluble dans le DMF (~3 mg/ml), le méthanol chaud, l'eau (0,15 mg/ml à 25°C), le chloroforme et l'éthanol (2,18 mg/ml à 25°C).
Merck : 14 1023
Numéro de référence : 1792887
Stabilité : Stable. Combustible. Incompatible avec les bases, les agents oxydants, les agents réducteurs.
InChIKey : UKMSUNONTOPOIO-UHFFFAOYSA-N
LogP : 4,121-9,91 à 25 ℃
Référence de la base de données CAS : 112-85-6 (référence de la base de données CAS)
Référence chimique NIST : Acide béhénique (acide docosanoïque) (112-85-6)
Système d'enregistrement des substances de l'EPA : Acide béhénique (acide docosanoïque) (112-85-6)

En tant qu'huile alimentaire, l'acide béhénique (acide docosanoïque) est mal absorbé.
Malgré sa faible biodisponibilité par rapport à l'acide oléique, l'acide béhénique (acide docosanoïque) est un acide gras saturé qui augmente le cholestérol chez l'homme.

Les usages
L'acide béhénique (acide docosanoïque) est un acide gras à longue chaîne, il a les objectifs suivants : cires, textiles, produits pharmaceutiques, émulsifiants et produits de soins personnels, lubrifiants, esters, synthèse chimique et spécialités.
L'acide béhénique (acide docosanoïque) est un acide gras à longue chaîne utilisé dans les formulations de produits pour former une émulsion visqueuse.
L'acide béhénique (acide docosanoïque) est considéré comme une matière première non comédogène.
L’acide béhénique (acide docosanoïque) est utilisé pour conférer aux revitalisants capillaires et aux hydratants leurs propriétés lissantes.
L'acide béhénique (acide docosanoïque) est également utilisé pour étudier le comportement des phases des acides à longue chaîne dans le propane supercritique.

Dans le commerce, l’acide béhénique (acide docosanoïque) est souvent utilisé pour conférer aux revitalisants capillaires et aux hydratants leurs propriétés lissantes.
L'acide béhénique (acide docosanoïque) est également utilisé dans les huiles lubrifiantes et comme retardateur d'évaporation des solvants dans les décapants pour peinture.
L'amide de l'acide béhénique (acide docosanoïque) est utilisé comme agent anti-mousse dans les détergents, les cirages pour sols et les bougies sans gouttes.
La réduction de l'acide béhénique donne de l'alcool béhénylique.
L'huile de Pracaxi (issue des graines de Pentaclethra macroloba) est un produit naturel avec l'une des concentrations les plus élevées d'acide béhénique et est utilisée dans les revitalisants capillaires.

Production
L'acide béhénique (acide docosanoïque) est produit par un processus appelé hydrogénation.
Dans ce processus, les acides gras insaturés, tels que l’acide oléique, sont convertis en acides gras saturés, notamment l’acide béhénique.
Ce processus est crucial car l'acide béhénique (acide docosanoïque) garantit que l'acide béhénique a la composition chimique et les propriétés attendues dans diverses industries.
Le produit final peut être une poudre blanche ou un liquide, selon la pureté de l'acide béhénique (acide docosanoïque) et son utilisation prévue.
La forme en poudre est souvent utilisée dans les industries cosmétiques et pharmaceutiques, tandis que la variante liquide est préférée pour les applications industrielles.

Acide béhénique (acide docosanoïque) dans diverses branches
L'acide béhénique (acide docosanoïque) est un acide gras polyvalent qui trouve des applications dans diverses industries en raison de ses propriétés chimiques uniques.
Dans l'industrie cosmétique, l'acide béhénique (acide docosanoïque) est principalement utilisé pour ses propriétés hydratantes et sa stabilité.
L'acide béhénique (acide docosanoïque) est ajouté aux produits de soin de la peau tels que les crèmes, les lotions et les baumes à lèvres.
L'acide béhénique (acide docosanoïque) aide à garder la peau hydratée et contribue à la texture et à la consistance des produits.

Dans l'industrie pharmaceutique, l'acide béhénique (acide docosanoïque) est couramment utilisé comme ingrédient dans la formulation de médicaments et de pommades.
La stabilité de cet acide gras garantit aux médicaments une durée de conservation plus longue sans altération ni perte d’efficacité.
L'acide béhénique (acide docosanoïque) améliore l'efficacité des préparations topiques et peut aider au traitement des affections cutanées.

Enfin, l'acide béhénique (acide docosanoïque) est également largement utilisé dans les secteurs industriels, comme la production de revêtements et d'encres.
L'acide béhénique (acide docosanoïque) sert de lubrifiant et peut améliorer la viscosité de ces matériaux, optimisant ainsi les performances.
De plus, l'acide béhénique (acide docosanoïque) est utilisé dans l'industrie textile pour adoucir les fibres et améliorer la texture des tissus.
ACIDE BENZÉNÉACÉTIQUE
L'acide benzèneacétique, également connu sous le nom de phénylacétate, est un métabolite d'acide gras aromatique de la phénylalanine ayant une activité antinéoplasique potentielle.
Naturellement présent chez les mammifères, l'acide benzèneacétique induit la différenciation, l'inhibition de la croissance et l'apoptose des cellules tumorales.
L'acide benzèneacétique est un ester d'acétate obtenu par condensation formelle du phénol avec de l'acide acétique.

Numéro CAS : 122-79-2
Numéro CE : 204-575-0
Formule moléculaire : C8H8O2
Poids moléculaire (g/mol) : 136,15

(Acétyloxy)benzène, 100843-EP2301983A1, 100843-EP2371831A1, 122-79-2, 355G9R500Y, 4-06-00-00613 (référence du manuel Beilstein), A0043, ACÉTATE, PHÉNYLE, acétates, acide acétique phényle, ester phénylique de l'acide acétique , Acide acétique, ester de phényle, ACIDE ACÉTIQUE, PHENYLESTER, Acide acétique, ester de phényle, Ester d'acide acétique-phényle, Acétoxybenzène, Acétylphénol, Acétylphénol, Actate de phényle, AI3-01972, AKOS002710242, bmse000481, bmse010117, BRN 0636458, C00548 , CHEBI : 8082, CHEMBL289559, CS-0102517, CS-O-10949, D88203, DTXCID4030178, DTXSID3051626, EC 204-575-0, EINECS 204-575-0, FEMA 3958, FEMA NO. 3958, Fenylester kyseliny octove, Fenylester kyseliny octove [tchèque], FT-0659102, FT-0673718, HSDB 2667, HY-128733, MFCD00008699, NCI60_002262, NSC 27795, NSC-27795, NSC2779 5, Phen-d5-ol, acétate, phénol acétate, phénoxyéthan-1-one, ACÉTATE DE PHÉNYLE, ACÉTATE DE PHÉNYLE [FHFI], ACÉTATE DE PHÉNYLE [HSDB], ACÉTATE DE PHÉNYLE [MI], acétate de phényle, 99 %, acétate de phényle, étalon analytique, ester phénylique de l'acide acétique, PhOAc, PIPERAZINECITRATEHYDRATE, PS-5400, Q419645, QY9, SCHEMBL35500, STK022563, UNII-355G9R500Y, W-109455, WLN : 1VOR, 2-phénylacétate, benzèneacétate, acide benzèneacétique, ion (1-) [ACD/Index Name], BENZYLFORMATE, phényle acétate [Allemand] [Nom ACD/IUPAC], Phenylacetate [Nom ACD/IUPAC] [Wiki], Phénylacétate [Français] [Nom ACD/IUPAC], Phenylethanoate, w-Phenylacetate, ω-Phenylacetate, 103-82-2 [RN] , 2-phényléthanoate, 3539899 [Beilstein], acétate, phényl-, A-PHÉNYL-ACETATE, anion phénylacétate, phénylacétate (1-), anion acide phénylacétique, 122-79-2 [RN], 204-575-0 [EINECS ], 355G9R500Y, 636458 [Beilstein], Acétate de phényle [Français] [ACD/IUPAC Name], Acetic acid phényl ester, Acetic acid, phényl ester [ACD/Index Name], AJ2800000, MFCD00008699 [numéro MDL], Phenyl acetate [ Nom ACD/IUPAC] [Wiki], Phenyl-acetat [Allemand] [Nom ACD/IUPAC], (2,3,4,5,6-Pentadeuteriophényl) acétate, [122-79-2] [RN], 1072946- 32-7 [RN], 1072946-33-8 [RN], 122-84-9 [RN], 204-578-7 [EINECS], 22705-26-6 [RN], 2-phénylacétate, 4-06 -00-00613 [Beilstein], 4-06-00-00613 (Référence du manuel Beilstein) [Beilstein], 4-08-00-00460 [Beilstein], 4-13-00-00137 [Beilstein], 4'-méthoxyphényle -2-propanone, ester phénylique de l'acide acétique ; Éthanoate de phényle, acide acétique, phénylester, ester de phényle d'acide acétique, ester de phényle d'acide acétique, acétoxybenzène, acétylphénol, EINECS 204-575-0, FEMA 3958, Fenylester kyseliny octove, Fenylester kyseliny octove [tchèque], MFCD03792523 [numéro MDL ], o-acétylphénol, ACÉTATE DE PHÉNOL, acétate de phényle sur polystyrène, environ 4 mmol/g, ACÉTATE DE PHÉNYLE|ACÉTATE DE PHÉNYLE, acétate de phényle-d5, acide phénylacétique, ester phénylique de l'acide acétique, éthanoate de phényle, acétate de phényle [Nom ACD/IUPAC ] [Wiki], PS-5400, QY9, UNII : 355G9R500Y, UNII-355G9R500Y, WLN : 1VOR

L'acide benzèneacétique est l'ester du phénol et de l'acide acétique.
L'acide benzèneacétique peut être produit en faisant réagir du phénol (qui peut être produit par décarboxylation de l'aspirine) avec de l'anhydride acétique ou du chlorure d'acétyle.

L'acide benzèneacétique peut être séparé en phénol et en un sel d'acétate, par saponification : chauffer l'acide benzèneacétique avec une base forte, telle que l'hydroxyde de sodium, produira du phénol et un sel d'acétate (acétate de sodium, si de l'hydroxyde de sodium était utilisé).

L'acide benzèneacétique, également connu sous le nom de phénylacétate, est un métabolite d'acide gras aromatique de la phénylalanine ayant une activité antinéoplasique potentielle.
Naturellement présent chez les mammifères, l'acide benzèneacétique induit la différenciation, l'inhibition de la croissance et l'apoptose des cellules tumorales.

Les mécanismes d'action de l'acide benzèneacétique comprennent une diminution de la prénylation des protéines, l'activation des récepteurs activés par la prolifération des peroxysomes, l'inhibition de la méthylation de l'ADN et l'épuisement de la glutamine.
L'acide benzèneacétique appartient à la classe des composés organiques appelés esters phénoliques.

Ce sont des composés aromatiques contenant un cycle benzénique substitué par un groupe hydroxyle et un groupe ester.
L'acide benzèneacétique a un goût de type phénolique.

L'acide benzèneacétique est un ester d'acétate obtenu par condensation formelle du phénol avec de l'acide acétique.
L'acide benzèneacétique est un membre des acides benzèneacétiques et un membre des benzènes.
L'acide benzèneacétique est fonctionnellement lié à un phénol.

L'acide benzèneacétique est un produit naturel présent dans Euglena gracilis et Arabidopsis thaliana pour les données disponibles.
L'acide benzèneacétique est un métabolite présent ou produit par Saccharomyces cerevisiae.

L'acide benzèneacétique, également connu sous le nom d'(acétyloxy)benzène, est l'ester de l'acide acétique et du phénol et est le plus souvent utilisé comme solvant.
Les produits non classés fournis par Spectrum indiquent une qualité adaptée à un usage industriel général ou à des fins de recherche et ne conviennent généralement pas à la consommation humaine ou à un usage thérapeutique.

L'acide benzèneacétique est enregistré au titre du règlement REACH mais n'est actuellement pas fabriqué et/ou importé dans l'Espace économique européen.
L'acide benzèneacétique est utilisé sur les sites industriels et dans le secteur manufacturier.

L'acide benzèneacétique, également connu sous le nom d'acétylphénol ou d'acide alpha-toluique, appartient à la classe de composés du benzène et de ses dérivés substitués.
Ce sont des composés aromatiques contenant un système de noyau monocyclique constitué de benzène.

L'acide benzèneacétique est légèrement soluble (dans l'eau) et un composé faiblement acide (sur la base de son pKa).
L'acide benzèneacétique peut être synthétisé à partir de l'acide acétique.

L'acide benzèneacétique est également un composé parent d'autres produits de transformation, notamment l'acide hydratropique, l'acide 2,4,5-trihydroxybenzèneacétique et le mandélamide.
L'acide benzèneacétique est un composé au goût sucré, civette et floral et peut être trouvé dans un certain nombre de produits alimentaires tels que l'hysope, le niébé, l'endive et le karité, ce qui fait de l'acide benzèneacétique un biomarqueur potentiel pour la consommation de ces produits alimentaires.

L'acide benzèneacétique se trouve principalement dans la plupart des biofluides, notamment le liquide céphalo-rachidien (LCR), la salive, les selles et le sang.
L'acide benzèneacétique existe dans toutes les espèces vivantes, des bactéries aux humains.

Chez l'homme, l'acide benzèneacétique est impliqué dans le métabolisme de l'acide benzèneacétique.
De plus, l’acide benzèneacétique est associé aux maladies rénales et à la phénylcétonurie.

L'acide benzèneacétique est un composé potentiellement toxique non cancérigène (non répertorié par le CIRC).
L'acide benzèneacétique est un médicament utilisé comme traitement d'appoint pour le traitement de l'hyperammoniémie aiguë et de l'encéphalopathie associée chez les patients présentant des déficits en enzymes du cycle de l'urée.

L'acide benzèneacétique est l'ester d'un phénol et de l'acide acétique.
L'acide benzèneacétique est un métabolite du phénylbutyrate (PB), un neurotransmetteur naturel, la phényléthylamine, un médicament anticancéreux.
Naturellement, l’acide benzèneacétique est un odorant présent dans les fraises, les fruits de la passion et le thé noir.

Le taux d’acide benzèneacétique dans l’urine a été utilisé comme marqueur pour le diagnostic de certaines formes de troubles dépressifs majeurs unipolaires.
L'acide benzèneacétique est utilisé comme substrat outil pour étudier l'activité de l'estérase dans le sang des patients dans le cadre d'études cliniques sur l'effet des suppléments nutritionnels sur les niveaux de paraoxonase-1.

L'acide benzèneacétique est un ester aromatique.
Les niveaux d'acide benzèneacétique dans l'urine sont un marqueur pour le diagnostic de certaines formes de troubles dépressifs majeurs unipolaires.
L'acide benzèneacétique subit un réarrangement de Fries pour former un mélange d'o- et de p-hydroxyacétophénones qui sont des intermédiaires utiles dans la fabrication de produits pharmaceutiques.

L'acide benzèneacétique est produit à partir de la dégradation bactérienne de la phénylalanine non absorbée.

En matière de santé, les bactéries intestinales bénéfiques produisent certaines vitamines B et stimulent le bon fonctionnement immunitaire.
Cependant, si votre acide gastrique n’est pas suffisant, si vous ne parvenez pas à digérer les protéines ou si votre alimentation ne fournit pas suffisamment de fibres, la prolifération de bactéries défavorables qui en résulte peut libérer des produits toxiques que votre corps doit éliminer.

Utilisations de l’acide benzèneacétique :
L'acide benzèneacétique est utilisé comme solvant, réactif de laboratoire et en synthèse organique
L'acide benzèneacétique est un solvant, une synthèse organique, un réactif de laboratoire

L'acide benzèneacétique est un solvant aprotique à haut point d'ébullition
L'acide benzèneacétique est utilisé comme intermédiaire chimique pour la synthèse de l'o-hydroxyacétophénone ; la p-hydroxyacétophénone; synéphrine

Utilisations sur sites industriels :
L'acide benzèneacétique a une utilisation industrielle conduisant à la fabrication d'une autre substance (utilisation d'intermédiaires).
L'acide benzèneacétique est utilisé pour la fabrication de : produits chimiques.
Le rejet dans l'environnement de l'acide benzèneacétique peut survenir lors d'une utilisation industrielle : comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires).

Utilisations industrielles :
Intermédiaires

Informations sur les métabolites humains de l'acide benzèneacétique :

Emplacements cellulaires :
Cytoplasme
Extracellulaire

Manipulation et stockage de l’acide benzèneacétique :

Précautions à prendre pour une manipulation sans danger:
mesures contre les décharges statiques.

Mesures d'hygiène:
Changez les vêtements contaminés.
Protection cutanée préventive recommandée.
Se laver les mains après avoir travaillé avec la substance.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Hermétiquement fermé.

Classe de stockage :
Classe de stockage (TRGS 510) : 10 : Liquides combustibles

Stabilité et réactivité de l'acide benzèneacétique :

Réactivité:
Forme des mélanges explosifs avec l'air en cas de chauffage intense.
Une gamme d'env. 15 Kelvin en dessous du point d'éclair doivent être considérés comme critiques.

Stabilité chimique:
L'acide benzèneacétique est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Conditions à éviter :
Fort chauffage.

Matériaux incompatibles :
Oxydants forts, Acides forts, Bases fortes, Agents réducteurs forts Agents oxydants forts, Acides forts, Bases fortes, Agents réducteurs forts

Mesures de premiers secours concernant l'acide benzèneacétique :

Conseils généraux :
Montrer la fiche de données de sécurité de l'acide benzèneacétique au médecin présent.

Après inhalation :
Air frais.

En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.

Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.

Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.

Mesures de lutte contre l'incendie de l'acide benzèneacétique :

Moyens d'extinction inappropriés :
Pour l'acide benzèneacétique, aucune limitation concernant les agents extincteurs n'est indiquée.

Dangers particuliers résultant de l'acide benzèneacétique ou d'un mélange :
Oxydes de carbone

Les vapeurs sont plus lourdes que l'air et peuvent se propager sur le sol.
Forme des mélanges explosifs avec l'air en cas de chauffage intense.

Conseils aux pompiers :
En cas d'incendie, porter un appareil respiratoire autonome.

Informations complémentaires :
Retirer le récipient de la zone dangereuse et le refroidir avec de l'eau.
Empêcher l'eau d'extinction d'incendie
de contaminer les eaux de surface ou le système d’eau souterraine.

Mesures en cas de rejet accidentel d’acide benzèneacétique :

Précautions individuelles, équipement de protection et procédures d'urgence :

Conseils aux non-secouristes :
Ne pas respirer les vapeurs, les aérosols.
Évitez tout contact avec la substance.

Assurer une ventilation adéquate.
Tenir à l'écart de la chaleur et des sources d'ignition.
Évacuer la zone dangereuse, respecter les procédures d'urgence, consulter un expert.

Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.

Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.

Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant les liquides.

Éliminer correctement.
Nettoyer la zone touchée.

Mesures en cas de rejet accidentel d’acide benzèneacétique :

Protection personnelle:
Respirateur à filtre pour gaz et vapeurs organiques adapté à la concentration dans l'air d'acide benzèneacétique.
Recueillir le liquide qui fuit dans des récipients hermétiques.

Absorber le liquide restant avec du sable ou un absorbant inerte.
Ensuite, stockez et éliminez conformément aux réglementations locales.

Méthodes d'élimination de l'acide benzèneacétique :
Au moment de l'examen, les critères relatifs aux pratiques de traitement des terres ou d'élimination par enfouissement (décharge sanitaire) sont sujets à une révision importante.
Avant de mettre en œuvre l'élimination terrestre des résidus de déchets (y compris les boues résiduaires), consulter les agences de réglementation environnementale pour obtenir des conseils sur les pratiques d'élimination acceptables.

Identifiants de l'acide benzèneacétique :
Numéro CAS : 122-79-2
ChEBI : CHEBI :8082
ChemSpider : 28969
Carte d'information ECHA : 100.004.160
CID PubChem : 31229
UNII : 355G9R500Y
Tableau de bord CompTox (EPA) : DTXSID3051626
InChI : InChI=1S/C8H8O2/c1-7(9)10-8-5-3-2-4-6-8/h2-6H,1H3
Clé : IPBVNPXQWQGGJP-UHFFFAOYSA-N
InChI=1/C8H8O2/c1-7(9)10-8-5-3-2-4-6-8/h2-6H,1H3
Clé : IPBVNPXQWQGGJP-UHFFFAOYAF
SOURIRES : CC(=O)Oc1ccccc1

Synonyme(s) : Ester phénylique de l’acide acétique
Formule linéaire : CH3COOC6H5
Numéro CAS : 122-79-2
Poids moléculaire : 136,15
Beilstein: 636458
Numéro CE : 204-575-0
Numéro MDL : MFCD00008699
ID de substance PubChem : 24846821
NACRES : NA.22

CAS : 122-79-2
Formule moléculaire : C8H8O2
Poids moléculaire (g/mol) : 136,15
Numéro MDL : MFCD00008699
Clé InChI : IPBVNPXQWQGGJP-UHFFFAOYSA-N
CID PubChem : 31229
ChEBI : CHEBI :8082
Nom IUPAC : acétate de phényle
SOURIRES : CC(=O)OC1=CC=CC=C1

Propriétés de l'acide benzèneacétique :
Formule chimique : C8H8O2
Masse molaire : 136,150 g·mol−1
Densité : 1,075 g/mL
Point de fusion : −30 °C (−22 °F ; 243 K)
Point d'ébullition : 195-196 °C (383-385 °F ; 468-469 K)
Susceptibilité magnétique (χ) : -82,04·10−6 cm3/mol

Niveau de qualité : 100
Dosage : 99 %
Indice de réfraction : n20/D 1,501 (lit.)
point d'ébullition : 196 °C (lit.)
Densité : 1,073 g/mL à 25 °C (lit.)
Chaîne SMILES : CC(=O)Oc1ccccc1
InChI : 1S/C8H8O2/c1-7(9)10-8-5-3-2-4-6-8/h2-6H,1H3
Clé InChI : IPBVNPXQWQGGJP-UHFFFAOYSA-N
Informations génétiques : humain... PON1 (5444)

Poids moléculaire : 136,15 g/mol
XLogP3 : 1,5
Nombre de donneurs de liaisons hydrogène : 0
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 2
Masse exacte : 136,052429494 g/mol
Masse monoisotopique : 136,052429494 g/mol
Surface polaire topologique : 26,3 Ų
Nombre d'atomes lourds : 10
Complexité : 114
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Spécifications de l’acide benzèneacétique :
Couleur: Incolore
Point d'ébullition : 195°C
Quantité : 25g
Poids de la formule : 136,15
Pourcentage de pureté : ≥98,0 % (GC)
Forme physique : Liquide
Nom chimique ou matériau : acétate de phényle

Noms de l’acide benzèneacétique :

Noms des processus réglementaires :
Acétate de phényle
acétate de phényle

Noms IUPAC :
Acétate de phényle
Acétate de phényle
acétate de phényle
acétate de phényle

Nom IUPAC préféré :
Acétate de phényle

Nom IUPAC systématique :
Éthanoate de phényle

Autres noms:
Acétate de phénol
(Acétyloxy)benzène
Acétoxybenzène

Autres identifiants :
122-79-2
ACIDE BENZOIQUE
L'acide benzoïque est le membre le plus simple de la famille des acides carboxyliques aromatiques.
L'acide benzoïque est un acide faible qui est un précurseur pour la synthèse de nombreux composés organiques importants.
Plus de 90 pour cent de l’acide benzoïque commercial est converti directement en phénol et caprolactame.

CAS : 65-85-0
FM : C7H6O2
MW : 122,12
EINECS : 200-618-2

Synonymes
210;a 1 (acide);Acide benzoïque;Acide benzoïque abenzoïque;Acide méfénamique Impureté D;Acide benzylique;Acide benzoïque SS;Bromure de glycopyrronium EP Impureté D;acide benzoïque;65-85-0;Acide dracylique;acide benzènecarboxylique;Carboxybenzène; Acide benzèneformique; acide phénylformique; acide benzèneméthanoïque; acide phénylcarboxylique; benzoate; Retardex; Benzoesaeure GK; Benzoesaeure GV; Retarder BA; Tenn-Plas; Acide benzoïque; Salvo liquide; Solvo poudre; Benzoesaeure; Acide benzoïque, technologie; Unisept BZA; HA 1 (acide); Kyselina benzoova; Acide benzoïque (naturel); HA 1; Benzoate (VAN); Acide benzèneméthonique; FEMA No. 2131; Vevovitall; Acido benzoico; Menno-florades; NSC 149; Benzoesaeure [allemand]; Caswell No. 081;Acide diacylique;Acide oracylique;Benzoicum acidum;CCRIS 1893;HSDB 704;Acide benzoique [français];Acido benzoico [italien];E 210;Kyselina benzoova [tchèque];AI3-0310;AI3-03710;Diacylate;EPA Pesticide Code chimique 009101;CHEBI:30746;Salvo en poudre;Acidum benzoïcum;NSC-149;UNII-8SKN0B0MIM;E210;Salvo, liquide;Solvo, poudre;8SKN0B0MIM;Acide benzoïque (e 210);EINECS 200-618-2;Tennplas; Acide carboxylique aromatique; MFCD00002398; Acide benzoïque [USP: JAN]; Acide benzoïque-3,5-d2; DTXCID80143; ACIDE BENZOIC-4-D1; INS NO.210; EC 200-618-2 ; Benzèneformate ; Phénylformate ; Benzèneméthanoate ; Phénylcarboxylate ; Benzènecarboxylate ; Acide benzoïque 100 microg/mL dans l'acétone ; Acide benzoïque (USP : JAN); /mL dans le dichlorométhane ;ACIDE BENZOÏQUE (MART.);ACIDE BENZOÏQUE [MART.];ACIDE BENZOÏQUE (USP-RS);ACIDE BENZOÏQUE [USP-RS];ACIDE BENZOÏQUE (MONOGRAPHIE EP);ACIDE BENZOÏQUE [MONOGRAPHIE EP];BENZOÏQUE ACIDE (MONOGRAPHIE USP);ACIDE BENZOIQUE [MONOGRAPHIE USP];Acide benzoïque;Acide benzoïque [USAN:JAN];CAS-65-85-0;MFCD00002400;NSC7918;B A;Acide benzoïque (TN);phénylcarboxy;Dracylate;ProvitaCombat ;acide benzoïque;acide benzoïque;acide bezoïque;acide aromatique;benzènecarboxylique;Benzoicum Ac;lingettes pour paupières;acide benzoïque;Provita Equiband;Retarder BAX;1gyx

L'utilisation de l'acide benzoïque dans la production de benzoates de glycol pour l'application de plastifiants dans les formulations adhésives est en augmentation.
Le composé organique est également utilisé dans la fabrication de résines alkydes et d’additifs de boue de forage pour les applications de récupération de pétrole brut.
L'acide benzoïque est également utilisé comme activateur de polymérisation du caoutchouc, retardateur, résines, peinture alkyde, plastifiants, colorants et fibres.
L'acide benzoïque et ses esters sont présents dans les abricots, les canneberges, les champignons et les plantes de jasmin.
L'histoire de l'acide benzoïque remonte au XVIe siècle.
En 1875, Salkowski, un éminent scientifique, découvrit ses capacités antifongiques.
En médecine, l’acide benzoïque est le principal composant de la résine de benjoin et constitue un constituant de la pommade de Whitfield qui est utilisée pour le traitement des maladies fongiques de la peau telles que la teigne, la teigne et le pied d’athlète.

L'acide benzoïque a été découvert au XVIe siècle.
En 1556, Nostradamus a décrit pour la première fois l'effet de carbonisation du benjoin ; Après la découverte du déchiffrement béni d'Alexius Pedemontanus et Brian en 1560 et 1596.
En 1875, les Salkowski ont découvert le pouvoir antifongique de l'acide benzoïque, c'est pourquoi l'acide benzoïque est utilisé pour la conservation à long terme de la chicouté.
L'acide benzoïque est un solide cristallin incolore également connu sous le nom d'acide benzènecarboxylique.
L'acide benzoïque est l'acide carboxylique aromatique le plus simple, avec un groupe carboxyle (-COOH) lié directement au cycle benzénique.
L'acide benzoïque se trouve naturellement dans la résine de benjoin d'un certain nombre de plantes.
L'acide benzoïque a été isolé pour la première fois à partir de la distillation sèche du benjoin par Blaise de Vigenère (1523-1596) au XVIe siècle.
Friedrich Whler (1800-1882) et Justus von Liebig (1803-1873) préparèrent de l'acide benzoïque à partir d'huile d'amande amère oxydante (benzaldéhyde) en 1832 et déterminèrent la formule de chacun de ces composés.

Ils ont proposé que l’huile d’amande amère, C7H6O, et l’acide benzoïque soient des dérivés du radical benzoyle, C7H5O ; la théorie radicale était une des premières théories majeures dans le développement de la chimie organique.
Composé comprenant un noyau de cycle benzénique portant un substituant acide carboxylique.
L'acide borique, H3B03, également connu sous le nom d'acide boracique, d'acide orthoborique et de sassolite, est un solide blanc composé de cristaux tricliniques.
L'acide benzoïque est un dérivé de l'oxyde de baryum et est soluble dans l'eau.
Un solide cristallin blanc.
Légèrement soluble dans l'eau.
Le principal danger est le risque de dommages environnementaux en cas de rejet.
Des mesures immédiates doivent être prises pour limiter la propagation dans l'environnement.
Utilisé pour fabriquer d’autres produits chimiques, comme conservateur alimentaire et pour d’autres utilisations.
L'acide benzoïque est un composé organique solide blanc (ou incolore) de formule C6H5COOH, dont la structure est constituée d'un cycle benzénique (C6H6) avec un substituant carboxyle (−C(=O)OH).

Le groupe benzoyle est souvent abrégé « Bz » (à ne pas confondre avec « Bn » qui est utilisé pour benzyle), donc l'acide benzoïque est également désigné par BzOH, puisque le groupe benzoyle a la formule –C6H5CO.
L'acide benzoïque est l'acide carboxylique aromatique le plus simple.
Le nom est dérivé de la gomme de benjoin, qui fut longtemps sa seule source.
L'acide benzoïque est présent naturellement dans de nombreuses plantes et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.
Les sels d'acide benzoïque sont utilisés comme conservateurs alimentaires.
L'acide benzoïque est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.
Les sels et esters de l’acide benzoïque sont appelés benzoates.

Propriétés chimiques de l'acide benzoïque
Point de fusion : 121-125 °C(lit.)
Point d'ébullition : 249 °C(lit.)
Densité : 1,08
Densité de vapeur : 4,21 (vs air)
Pression de vapeur : 10 mm Hg ( 132 °C)
Indice de réfraction : 1,504
FEMA : 2131 | ACIDE BENZOIQUE
Fp : 250 °F
Température de stockage : 2-8°C
Solubilité : soluble, clair, incolore (éthanol à 95 %, 1 g/3 ml)
Forme : Solide
pka : 4,19 (à 25 ℃)
Couleur : Blanc à jaune-beige à orange
PH : 3,66 (solution 1 mM) ; 3,12 (solution 10 mM) ; 2,6 (solution 100 mM) ;
Odeur : à 100,00 %. légère urine de baume
Type d'odeur : balsamique
Solubilité dans l'eau : Légèrement soluble. 0,34 g/100 ml
Merck : 14 1091
Numéro JECFA : 850
Numéro de référence : 636131
Constante de la loi de Henry : (x 10-8 atm?m3/mol) : 7,02 (calculé, U.S. EPA, 1980a)
Stabilité : Stable. Combustible. Incompatible avec les bases fortes, les oxydants forts, les alcalis.
Clé InChIKey : WPYMKLBDIGXBTP-UHFFFAOYSA-N
LogP : 1,870
Référence de la base de données CAS : 65-85-0 (référence de la base de données CAS)
Référence chimique NIST : Acide benzoïque (65-85-0)
Système d'enregistrement des substances de l'EPA : Acide benzoïque (65-85-0)

Cristaux écailleux ou en forme d’aiguilles.
Avec une odeur de formaldéhyde ou de benzène.
Légèrement soluble dans l'eau, soluble dans l'éthanol, le méthanol, l'éther diéthylique, le chloroforme, le benzène, le toluène, le CS2, le CCl4 et la térébenthine.
L'acide benzoïque, C6H5COOH, également connu sous le nom d'acide benzène carboxylique et d'acide phényl formique, est un solide cristallin monoclinique incolore qui a un point de fusion de 122,4 °C et se sublime facilement à 100 °C.
L'acide benzoïque est un acide carboxylique aromatique légèrement soluble dans l'eau et modérément soluble dans l'alcool et l'éther.
L'acide benzoïque est utilisé comme conservateur et ses dérivés sont précieux en médecine, dans le commerce et dans l'industrie.
Aiguilles, écailles ou poudre incolores à blanches avec une légère odeur de benjoin ou de benzaldéhyde.
Shaw et coll. (1970) ont signalé un seuil de goût dans l'eau de 85 ppm.

Les usages
1. Utilisé comme réactif chimique et conservateur.
2. L'acide benzoïque est un conservateur alimentaire important.
Dans des conditions acides, l'acide benzoïque a des effets inhibiteurs sur les moisissures, les levures et les bactéries, mais son effet est faible sur les bactéries productrices d'acide.
Les valeurs de pH antimicrobiennes les plus appropriées vont de 2,5 à 4, généralement inférieures, la valeur de pH est appropriée de 4,5 à 5.
Dans l'industrie alimentaire avec des fûts en plastique concentrés de jus de fruits et de légumes, la quantité maximale utilisée ne doit pas dépasser 2,0 g/kg ; en confiture (hors conserve), (goût) boisson à base de jus, sauce soja, vinaigre à la dose maximale de 1,0 g/kg ; dans les bonbons mous, le vin, le vin à la dose maximale de 0,8 g/kg séparément ; dans les légumes marinés à faible teneur en sel, la sauce, les fruits confits, la dose maximale est de 0,5 g/kg ; dans les boissons gazeuses, la plus grande quantité utilisée est de 0,2 g/kg. En raison de l'acide benzoïque, légèrement soluble dans l'eau, son utilisation peut permettre de dissoudre une petite quantité d'éthanol.
3. Conservateur ; agents antimicrobiens.
En raison de la faible solubilité de l'acide benzoïque, son utilisation doit être agitée ou dissoute dans une petite quantité d'eau chaude ou d'éthanol.
Lorsqu'il est utilisé dans la boisson gazeuse avec du concentré de jus de fruit, l'acide benzoïque est facilement volatil avec la vapeur d'eau, si souvent utilisé dans le sel de sodium, en plus de l'équivalent sodium ci-dessus de l'acide benzoïque 0,847 g.

4. Souvent utilisé comme agent fixateur ou conservateur.
Également utilisé comme agent de conservation des arômes des jus de fruits.
Comme parfum avec un parfum de parfum.
Peut également être utilisé pour le chocolat, le citron, l'orange, les baies, les noix, les essences comestibles de type fruits confits.
L'arôme du tabac est également couramment utilisé.
5. L'acide benzoïque et son sel de sodium sont des conservateurs alimentaires.
Dans des conditions acides, il inhibe les levures et les moisissures.
Lorsque le pH est de 3, la force antibactérienne et lorsque le pH est de 6, l'effet de nombreux champignons est très faible, de sorte que le pH antibactérien optimal est de 2,5 à 4,0.
L'acide benzoïque est principalement utilisé pour la production de conservateurs de benzoate de sodium, de colorants intermédiaires, de pesticides, de plastifiants, de mordant, de médicaments, d'épices et peut également être utilisé comme modificateur de résine alkyde et de résine polyamide pour la production de polyester, d'acide téréphtalique et d'équipements usagés, de fer. et agent antirouille en acier.
6. Principalement utilisé pour les antifongiques et les antiseptiques.
7. Utilisé en médecine, supports de colorants, plastifiants, épices et conservateurs alimentaires tels que la production, et peut également être utilisé pour peindre l'amélioration des performances de la résine alkyde ; utilisé comme intermédiaire pharmaceutique et colorant, utilisé pour la préparation de plastifiant et d'épices, etc., ainsi que comme agent antirouille pour l'équipement, le fer et l'acier.

Le benzoate de sodium est un dérivé important de l'acide benzoïque produit industriellement par neutralisation de l'acide benzoïque à l'aide d'une solution d'hydroxyde de sodium ou de bicarbonate de sodium.
Le benzoate de calcium, le benzoate de potassium et d'autres sels de benzoate sont également produits.
L'acide benzoïque et le benzoate de sodium (C6H5COONa) sont utilisés comme conservateurs alimentaires et ajoutés aux aliments, jus et boissons acides.

Utilisations agricoles
Fongicide, Insecticide : Utilisé dans la fabrication de benzoates ; plastifiants, chlorure de benzoyle, résines alkydes, dans la fabrication de conservateurs alimentaires, utilisés comme liant de teinture dans l'impression en calicot ; en séchage du tabac, arômes, parfums, dentifrices, standard en chimie analytique.
Non actuellement enregistré pour une utilisation aux États-Unis.
L'acide benzoïque est actuellement utilisé dans une douzaine de pays européens.

Utilisation clinique
L'acide benzoïque est un métabolite de l'alcool benzylique et le benzoate de sodium est le sel de sodium de l'acide benzoïque.
Ces trois composés apparentés sont utilisés comme conservateurs dans une variété de produits, tels que les cosmétiques, les dentifrices, les produits capillaires, les préparations médicamenteuses et les émollients, ainsi que dans les aliments.
Il est bien connu qu’ils provoquent des CoU non immunologiques et les réactions dépendent de la concentration.
La prise orale et le contact cutané d'alcool benzylique, d'acide benzoïque ou de benzoate de sodium peuvent provoquer des réactions immédiates ; cependant, il existe un manque de corrélation entre les deux et les tests cutanés ne doivent pas être utilisés pour prédire la sensibilité à la prise orale de ces conservateurs.
Les réactions immédiates à l’ingestion orale de ces conservateurs sont rares.
Nettis et coll. ont étudié 47 patients ayant des antécédents d'urticaire après l'ingestion de repas ou de produits contenant du benzoate de sodium, et un seul patient a présenté une réaction urticarienne généralisée à un test de provocation orale de 50 mg de benzoate de sodium.

Réactions
Les réactions de l'acide benzoïque peuvent se produire soit au niveau du cycle aromatique, soit au niveau du groupe carboxyle :

Anneau aromatique
La réaction de substitution aromatique électrophile aura lieu principalement en position 3 en raison du groupe carboxylique attracteur d'électrons ; c'est-à-dire que l'acide benzoïque est méta-directeur.
La deuxième réaction de substitution (à droite) est plus lente car le premier groupe nitro se désactive.
À l'inverse, si un groupe activateur (donneur d'électrons) était introduit (par exemple, alkyle), une deuxième réaction de substitution se produirait plus facilement que la première et le produit disubstitué pourrait s'accumuler dans une mesure significative.

Groupe carboxyle
Toutes les réactions mentionnées pour les acides carboxyliques sont également possibles pour l'acide benzoïque.
Les esters d’acide benzoïque sont le produit d’une réaction catalysée par un acide avec des alcools.
Les amides d'acide benzoïque sont plus facilement disponibles en utilisant des dérivés d'acide activés (tels que le chlorure de benzoyle) ou en couplant des réactifs utilisés dans la synthèse peptidique comme le DCC et le DMAP.
L'anhydride benzoïque le plus actif est formé par déshydratation à l'aide d'anhydride acétique ou de pentoxyde de phosphore.
Les dérivés d'acides hautement réactifs tels que les halogénures d'acide sont facilement obtenus en les mélangeant avec des agents d'halogénation comme les chlorures de phosphore ou le chlorure de thionyle.
Les orthoesters peuvent être obtenus par la réaction d'alcools dans des conditions acides sans eau avec du benzonitrile.
La réduction en benzaldéhyde et alcool benzylique est possible en utilisant DIBAL-H, Li Al H4 ou le borohydrure de sodium.
La décarboxylation du benzoate en benzène catalysée par le cuivre peut être effectuée par chauffage dans de la quinoléine.
En outre, la décarboxylation de Hunsdiecker peut être obtenue en formant le sel d'argent et en chauffant.
L'acide benzoïque peut également être décarboxylé par chauffage avec un hydroxyde alcalin ou de l'hydroxyde de calcium.

Calorimétrie
L'acide benzoïque est l'étalon chimique le plus couramment utilisé pour déterminer la capacité thermique d'une bombe calorimétrique.

Matière première
L'acide benzoïque est utilisé pour fabriquer un grand nombre de produits chimiques, dont des exemples importants sont :
Le chlorure de benzoyle, C6H5C(O)Cl, est obtenu par traitement du benzoïque avec du chlorure de thionyle, du phosgène ou l'un des chlorures de phosphore.
C6H5C(O) Cl est une matière première importante pour plusieurs dérivés de l'acide benzoïque comme le benzoate de benzyle, qui est utilisé dans les arômes artificiels et les insectifuges.

Conservateur alimentaire
L'acide benzoïque et ses sels sont utilisés comme conservateurs alimentaires, représentés par les numéros E E210, E211 , E212 et E213 . L'acide benzoïque inhibe la croissance des moisissures, des levures et de certaines bactéries.
L'acide benzoïque est soit ajouté directement, soit créé à partir de réactions avec son sel de sodium, de potassium ou de calcium.
Le mécanisme commence par l’absorption de l’acide benzoïque dans la cellule.

Médicinal
L'acide benzoïque est un constituant de la pommade de Whitfiel qui est utilisée pour le traitement des maladies fongiques de la peau telles que la teigne, la teigne et le pied d'athlète.
En tant que composant principal de la résine de benjoin, l'acide benzoïque est également un ingrédient majeur de la teinture de benjoin et du baume de Fria.
Ces produits sont utilisés depuis longtemps comme antiseptiques topiques et décongestionnants par inhalation.
L'acide benzoïque était utilisé comme expectorant, analgésique et antiseptique au début du 20e siècle.

Conservateurs alimentaires
L'acide benzoïque et le benzoate de sodium sont des conservateurs alimentaires couramment utilisés.
Dans des conditions acides, l'acide benzoïque a un effet inhibiteur sur les levures et les moisissures.
Lorsque la valeur du pH est de 3, la force antibactérienne est de 6, lorsque l'effet de moisissure est très faible, de sorte que l'inhibition de la valeur de pH optimale est de 2,5 à 4,0.
Dans l'industrie alimentaire avec des fûts en plastique concentrés de jus de fruits et de légumes, l'utilisation maximale ne doit pas dépasser 2,0 g/kg ; dans la confiture (à l'exclusion des conserves), les jus de fruits (goût), les boissons, la sauce soja, le vinaigre en quantité maximale de 1,0 g/kg ; dans le vin, les bonbons, le vin dans une quantité maximale de 0,8 g/kg à faible teneur en sel ; cornichons, sauces, fruits confits, utiliser le plus gros 0,5g/kg de carbonate ; utilisez la plus grande boisson 0,2 g/kg. en raison de la solubilité de l'acide benzoïque, lorsqu'il est utilisé, il sera agité ou dissous dans une petite quantité d'eau chaude ou d'éthanol.
L'utilisation de jus de fruits concentrés dans la boisson gazeuse utilisée pour l'acide benzoïque facilement volatile avec la vapeur, l'acide benzoïque est couramment utilisé dans le sel de sodium.

L'acide benzoïque dans l'industrie alimentaire est un conservateur courant dans les produits laitiers, mais son ajout n'est pas autorisé.
En général, l’acide benzoïque est considéré comme sûr.
Mais pour certaines populations particulières, notamment les nourrissons, une consommation à long terme d’acide benzoïque peut entraîner de l’asthme, de l’urticaire, une acidose métabolique et d’autres effets indésirables.
Le déodorant Paul à l'acide benzoïque est également utilisé comme boisson.
Comme le parfum crème doux.
Peut également être utilisé pour le chocolat, le citron, l'orange, les sous-baies, les noix, les fruits confits et d'autres arômes comestibles.
L'arôme de tabac est également couramment utilisé.
En plus de l'acide benzoïque, il est également utilisé comme pesticide, médicament, colorant, mordant et plastifiant pour la production de matières premières, de résine polyamide et d'agent modificateur de résine alkyde et d'agent antirouille pour équipements en acier.

Danger
L'accumulation d'acide benzoïque est moindre, faible toxicité dans le corps impliqué et dans le métabolisme.
En cas de consommation excessive d'acide benzoïque, le foie et les reins du corps seront menacés.
La sécurité maximale des boissons gazeuses contenant de l'acide benzoïque est de 5 mg/kg de poids corporel, puis calculée en fonction du poids de 60 kg, la limite quotidienne est de 300 mg, l'acide benzoïque pour les boissons gazeuses, la quantité maximale d'utilisation est de 0,2 g/kg, puis bu 1,5 kg de boisson est sans danger.
L'acide benzoïque a de forts effets toxiques sur les micro-organismes, mais la toxicité du sel de sodium est très faible.
Une dose quotidienne de 0,5 g n'a aucune toxicité pour le corps, même en quantité ne dépassant pas 4 g pour la santé et ne présente aucun danger.
Dans les tissus humains et animaux, il peut se lier aux composants protéiques de la glycine et, par détoxification, former de l'acide hippurique excrété dans l'urine.
Les cristallites ou poussières d'acide benzoïque sur la peau, les yeux, le nez et la gorge ont un effet stimulant.
Même si c'est du sel de sodium, si vous en prenez beaucoup, cela peut également endommager l'estomac.
L'opérateur doit porter un équipement de protection.
Doit être stocké dans un endroit sec et aéré, humide et chaud, loin de la source d'incendie.

Préparation
Méthode de préparation industrielle
L'acide benzoïque industriel est principalement obtenu par préparation d'oxydation à l'air en phase liquide de toluène.
Le processus utilisait du naphténate de cobalt comme catalyseur, en réponse à une température de 140 à 160 ℃ et une pression de fonctionnement de 0,2 à 0,3 MPa et une réponse à l'acide benzoïque.
Réaction après étuvage au toluène, distillation sous vide et recristallisation pour obtenir le produit.
Le processus utilise des matières premières bon marché et un rendement élevé.
Par conséquent, l’acide benzoïque est principalement utilisé dans l’industrie.

Méthode de préparation en laboratoire de la réaction principale :
1.C6H5CH3+ KMnO4+H2O-C6H5 COOK+KOH+MnO2+H2O (l'eau en face du dioxyde de manganèse est fournie avec l'environnement de réaction de l'eau)
2.C6H5 COOK+HCl--C6H5 COOH
Médicament et posologie :
Toluène 1,5 g (1,7 ml, 0,016 mol), permanganate de potassium 5 g (0,032 mol), CTAB (bromure de cétyl triméthylammonium) 0,1 g.
Opération expérimentale :
Avec flacon à fond rond de 100 ml.
Installez un appareil à reflux. ajouter 5 g de permanganate de potassium, 0,1 g de bromure d'hexadécyl triméthylammonium, 1,7 ml de toluène et 50 ml d'eau dans le ballon de réaction, agiter à ébullition chauffée (agitation vigoureuse, ébullition violente), maintenir la solution réactive à ébullition stable.
Lorsque de grandes quantités de précipité brun, le permanganate de potassium violet peu profond ou ont disparu, la couche de toluène a disparu, la réaction est pratiquement terminée.
Filtrer les précipitations de dioxyde de manganèse, les lixiviats de décharge par l'acide chlorhydrique concentré, les précipitations d'acide benzoïque, filtrer le produit brut.
La recristallisation de l'eau du produit brut.
Au bain-marie bouillant pour sécher, peser, mesurer le point de fusion.

Méthodes de production
Préparations industrielles
L'acide benzoïque est produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le processus est catalysé par des naphténates de cobalt ou de manganèse.
Le processus utilise des matières premières bon marché, produit un rendement élevé et est considéré comme écologique.

Synthèse en laboratoire
L'acide benzoïque est bon marché et facilement disponible, c'est pourquoi la synthèse en laboratoire de l'acide benzoïque est principalement pratiquée pour sa valeur pédagogique.
L'acide benzoïque est une préparation courante de premier cycle.
Pour toutes les synthèses, l'acide benzoïque peut être purifié par recristallisation dans l'eau en raison de sa haute solubilité dans l'eau chaude et de sa faible solubilité dans l'eau froide.
L’absence de solvants organiques pour la recristallisation rend cette expérience particulièrement sûre.
D'autres solvants de recristallisation possibles comprennent l'acide acétique (anhydre ou aqueux), le benzène, l'acétone, l'éther de pétrole et un mélange d'éthanol et d'eau.
La solubilité de l'acide benzoïque dans plus de 40 solvants avec des références à des sources originales peut être trouvée dans le cadre de l'Open Notebook Science Challenge.

Production biotechnologique
L'acide benzoïque est exclusivement synthétisé chimiquement à l'échelle industrielle.
Le toluène issu des voies pétrochimiques est oxydé en présence du catalyseur permanganate de potassium en acide benzoïque.
Cependant, une étude récente a décrit pour la première fois un procédé de production d'acide benzoïque par fermentation utilisant Streptomyces maritimus.
La production d'acide benzoïque lors de la culture sur glucose, amidon et cellobiose a été étudiée.
Les meilleurs résultats ont été obtenus avec des concentrations de produit de 460 mg.L-1 en 6 jours en utilisant l'amidon comme substrat.
De plus, un S. maritimus génétiquement modifié optimisé pour la sécrétion d'endo-glucanase a été testé sur de la cellulose gonflée à l'acide phosphorique.
Une concentration finale en produit de 125 mg.L-1 a été observée après 4 jours de culture.
ACIDE BENZOIQUE (BENZOATE DE SODIUM)
L'acide benzoïque (benzoate de sodium) apparaît sous la forme d'un solide cristallin blanc.
L'acide benzoïque (benzoate de sodium) est légèrement soluble dans l'eau.


Numéro CAS : 65-85-0
Numéro CE : 200-618-2
Numéro MDL : MFCD00002398
Numéro E : E210
Formule linéaire : C6H5COOH
Formule chimique : C7H6O2



SYNONYMES :
Acide benzènecarboxylique, Carboxybenzène, Acide benzoïque, Acide benzènecarboxylique, Carboxybenzène, E210, Acide dracylique, Acide phénylméthanoïque, Acide phénylcarboxylique, Alcool benzoylique, Acide benzoylique, Carboxylbenzène, Acide hydrogénphénique, Acide phénoique, Acide benzènecarboxylique, acide dracylique, acide phénylcarboxylique, Carboxybenzène, E210 , Acide dracylique, Acide phénylméthanoïque, BzOH, Acide benzènecarboxylique, Acide benzèneformique, Acide benzèneméthanoïque, Benzoesaeure GK, Benzoesaeure GV, Carboxybenzène, Acide dracylique, Acide phénylcarboxylique, Acide phénylformique, Retarder BA, Retardex, Salvo, liquide, Solvo, poudre, Tenn- Plas, Acide benzoique, Acide benzoïque, tech., Kyselina benzoova, Benzoesaeure, Salvo poudre, E 210, HA 1, HA 1 (acide), Phenylcarboxy, Acide benzèneméthonique, Acide diacylique, Fleurs de benjamin, Fleurs de benjoin, Acide oracylique, Retardateur BAX, NSC 149, benzoate de sodium, 532-32-1, Sobénate, Antimol, Acide benzoïque, sel de sodium, Sel de sodium de l'acide benzoïque, Benzoate de sodium, Benzoate de soude, Benzoate, sodium, sodium ; benzoate, Natrium benzoicum, FEMA Non 3025, Fuminaru, Benzoan sodny, Caswell No. 746, Microcare sb, PUROX S, FEMA Number 3025, CCRIS 3921, HSDB 696, Benzoesaeure (na-salz), UNII-OJ245FE5EU, EINECS 208-534-8, OJ245FE5EU, benzoïque. acide sodique, code chimique des pesticides EPA 009103, INS NO.211, DTXSID1020140, E211, AI3-07835, INS-211, MFCD00012463, DTXCID90140, benzoate de sodium, E-211, CHEBI:113455, EC 208-534-8, COMPOSANT AMMONUL SODIUM benzoate, composant ucéphane, benzoate de sodium, benzoate de sodium (II), benzoate de sodium [II], benzoate de sodium (MART.), benzoate de sodium [MART.], benzoate de sodium (USP-RS), benzoate de sodium [USP-RS], benzoan sodny [tchèque], benzoate de sodium (monographie EP), benzoate de sodium [monographie EP ], Benzoesaeure (na-salz) [allemand], brouillard s panax, BzONa, benzoate de sodium [USAN: JAN], benzoate monosodique, benzoate de sodium, ( S), Benzoate de sodium (TN), brume s panax pour recharge, brume s panax tout-en-un, SCHEMBL823, CHEMBL1356, benzoate de sodium [MI], benzoate de sodium (JP17/NF), benzoate de sodium [FCC], benzoate de sodium [JAN ], benzoate de sodium [FHFI], benzoate de sodium [HSDB], benzoate de sodium [USAN], benzoate de sodium [VANDF], benzoate de sodium [WHO-DD], acide benzoïque, sel de sodium (1:1), HY-Y1316, Tox21_300125 , benzoate de sodium [livre orange], AKOS003053000, AKOS015890021, CCG-266169, NCGC00254072-01, CAS-532-32-1, DA-57965, composant benzoate de sodium d'ammonul, composant benzoate de sodium d'ucephan CS-00177. 88, NS00074364, S0593, D02277, A829462, Q423971, J-519752



L'acide benzoïque (benzoate de sodium) est un composé fongistatique largement utilisé comme conservateur alimentaire.
L'acide benzoïque (benzoate de sodium) est conjugué à la GLYCINE dans le foie et excrété sous forme d'acide hippurique.
L'acide benzoïque (benzoate de sodium), un composé organique cristallin blanc appartenant à la famille des acides carboxyliques, largement utilisé comme conservateur alimentaire et dans la fabrication de divers cosmétiques, colorants, plastiques et répulsifs contre les insectes.


L'acide benzoïque (benzoate de sodium) apparaît sous la forme d'un solide cristallin blanc.
L'acide benzoïque (benzoate de sodium) est légèrement soluble dans l'eau.


L'acide benzoïque (benzoate de sodium) est un composé comprenant un noyau benzénique portant un substituant acide carboxylique.
L'acide benzoïque (benzoate de sodium) joue le rôle d'un conservateur alimentaire antimicrobien, d'un inhibiteur EC 3.1.1.3 (triacylglycérol lipase), d'un inhibiteur EC 1.13.11.33 (arachidonate 15-lipoxygénase), d'un métabolite végétal, d'un métabolite xénobiotique humain, d'une algue. métabolite et un allergène médicamenteux.


L'acide benzoïque (benzoate de sodium) est un acide conjugué d'un benzoate.
L'acide benzoïque (benzoate de sodium) est un composé fongistatique largement utilisé comme conservateur alimentaire.
L'acide benzoïque (benzoate de sodium) est conjugué à la GLYCINE dans le foie et excrété sous forme d'acide hippurique.


L'acide benzoïque (benzoate de sodium) est utilisé comme traitement des troubles du cycle de l'urée en raison de sa capacité à lier les acides aminés. Cela conduit à l’excrétion de ces acides aminés et à une diminution des niveaux d’ammoniac.
Des recherches récentes montrent que l'acide benzoïque (benzoate de sodium) peut être bénéfique en tant que traitement d'appoint (1 gramme/jour) dans la schizophrénie.


Les scores totaux sur l’échelle du syndrome positif et négatif ont chuté de 21 % par rapport au placebo.
L'acide benzoïque (benzoate de sodium) est un agent liant l'azote. Le mécanisme d'action de l'acide benzoïque (benzoate de sodium) est celui d'une activité de liaison aux ions ammonium.


L'acide benzoïque (benzoate de sodium) est un produit naturel présent dans Desmos chinensis, Paeonia emodi et d'autres organismes pour lesquels des données sont disponibles.
L'acide benzoïque (benzoate de sodium), C6H5COOH, est un solide cristallin incolore et l'acide carboxylique aromatique le plus simple.
Décrit pour la première fois au XVIe siècle, l'acide benzoïque (benzoate de sodium) existe dans de nombreuses plantes ; il représente environ 20 pour cent de la gomme de benjoin, une résine végétale.


L'acide benzoïque (benzoate de sodium) a été préparé pour la première fois par synthèse vers 1860 à partir de composés dérivés du goudron de houille.
L'acide benzoïque (benzoate de sodium) est fabriqué commercialement par la réaction chimique du toluène (un hydrocarbure obtenu à partir du pétrole) avec de l'oxygène à des températures d'environ 200 °C (environ 400 °F) en présence de sels de cobalt et de manganèse comme catalyseurs.


L'acide benzoïque pur (benzoate de sodium) fond à 122 °C (252 °F) et est très légèrement soluble dans l'eau.
L'acide benzoïque (benzoate de sodium) est un acide aromatique monofonctionnel, largement utilisé comme élément de base pour la synthèse de résines alkydes.
L'acide benzoïque (benzoate de sodium) est une poudre cristalline blanche modérément forte utilisée comme conservateur dans les boissons gazeuses.


L'acide benzoïque (benzoate de sodium) retarde la croissance de certains micro-organismes et n'altère ni le goût ni l'odeur de la boisson.
L'acide benzoïque (benzoate de sodium) dépend beaucoup du pH.
Alors que l'acide benzoïque (benzoate de sodium) présente une certaine activité jusqu'à pH 6 (environ 1,55 %), il est plus actif à pH 3 (94 %).


Comme l'acide benzoïque (benzoate de sodium), il est considéré comme étant avant tout un antifongique, mais il présente une certaine activité contre les bactéries.
L'acide benzoïque (benzoate de sodium) est médiocre contre les pseudomonades.
L'acide benzoïque (benzoate de sodium) est inactivé par les produits non ioniques et en augmentant le pH.


L'acide benzoïque (benzoate de sodium) est un composé organique présent dans les tissus végétaux et animaux, qui peut également être produit par des micro-organismes.
L'acide benzoïque (benzoate de sodium) protège contre les levures, les moisissures et certains types de bactéries et est un produit chimique naturellement présent dans une gamme de fruits, légumes et produits laitiers.


L'acide benzoïque (benzoate de sodium) est un composé organique décrit par la formule chimique C6H5COOH.
L'acide benzoïque (benzoate de sodium) est constitué d'un groupe carboxyle attaché à un cycle benzénique.
Par conséquent, l’acide benzoïque (benzoate de sodium) est considéré comme un acide carboxylique aromatique.


L'acide benzoïque (benzoate de sodium) existe sous forme de solide cristallin et incolore dans des conditions normales.
Le terme « benzoate » fait référence aux esters et sels de C6H5COOH.
La production commerciale de l'acide benzoïque (benzoate de sodium) se fait via l'oxydation partielle du toluène avec de l'oxygène, catalysée par les naphténates de manganèse ou de cobalt.


Une autre méthode industrielle de préparation de l'acide benzoïque (benzoate de sodium) consiste à faire réagir du trichlorotoluène avec de l'hydroxyde de calcium en présence d'eau et à traiter le produit benzoate de calcium avec de l'acide chlorhydrique.
L'acide benzoïque (benzoate de sodium) est dosé par HPLC.


L'acide benzoïque (benzoate de sodium) /bɛnˈzoʊ.ɪk/ est un composé organique solide blanc (ou incolore) de formule C6H5COOH, dont la structure est constituée d'un cycle benzénique (C6H6) avec un substituant carboxyle (−C(=O)OH).
Le groupe benzoyle est souvent abrégé « Bz » (à ne pas confondre avec « Bn » qui est utilisé pour le benzyle), ainsi l'acide benzoïque (benzoate de sodium) est également désigné par BzOH, puisque le groupe benzoyle a la formule –C6H5CO.


L'acide benzoïque (benzoate de sodium) est l'acide carboxylique aromatique le plus simple.
L'acide benzoïque (benzoate de sodium) est présent naturellement dans de nombreuses plantes et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.
Les sels d'acide benzoïque (benzoate de sodium) sont utilisés comme conservateurs alimentaires.


L'acide benzoïque (benzoate de sodium) est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.
Les sels et esters de l'acide benzoïque (benzoate de sodium) sont appelés benzoates /ˈbɛnzoʊ.eɪt/.
L'acide benzoïque (benzoate de sodium) est un conservateur.


L'acide benzoïque (benzoate de sodium) est bactériostatique et fongistatique dans des conditions acides.
L'acide benzoïque (benzoate de sodium) se trouve également dans les bains de bouche à base d'alcool et les vernis à argent.
L'acide benzoïque (benzoate de sodium) peut également être trouvé dans les sirops contre la toux comme le Robitussin.


L'acide benzoïque (benzoate de sodium) est déclaré sur l'étiquette d'un produit sous le nom « Acide benzoïque (benzoate de sodium) » ou E211.
L'acide benzoïque (benzoate de sodium) est également utilisé dans les feux d'artifice comme combustible dans un mélange de sifflets, une poudre qui produit un sifflement lorsqu'elle est comprimée dans un tube et enflammée.



UTILISATIONS et APPLICATIONS de l'ACIDE benzoïque (benzoate de sodium) :
Les aliments dans lesquels l'acide benzoïque (benzoate de sodium) peut être utilisé et les niveaux maximaux pour son application sont contrôlés par les lois alimentaires locales.
Parmi les dérivés de l'acide benzoïque (benzoate de sodium) figurent le benzoate de sodium, un sel utilisé comme conservateur alimentaire ; le benzoate de benzyle, un ester utilisé comme acaricide ; et le peroxyde de benzoyle, utilisé dans le blanchiment de la farine et dans le déclenchement de réactions chimiques pour la préparation de certains plastiques.


L'acide benzoïque (benzoate de sodium) est naturellement présent sous forme libre et liée sous forme d'esters dans de nombreuses espèces végétales et animales. Des quantités appréciables ont été trouvées dans la plupart des baies (environ 0,05 %).
Les canneberges contiennent jusqu'à 300 à 1 300 mg d'acide benzoïque libre (benzoate de sodium) par kg de fruit.


Les concentrations typiques d'acide benzoïque (benzoate de sodium) comme conservateur dans les aliments se situent entre 0,05 et 0,1 %.
L'acide benzoïque (benzoate de sodium) est un composé fongistatique largement utilisé comme conservateur alimentaire.
L'acide benzoïque (benzoate de sodium) est souvent conjugué à la glycine dans le foie et excrété sous forme d'acide hippurique.


L'acide benzoïque (benzoate de sodium) est un sous-produit du métabolisme de la phénylalanine chez les bactéries.
L'acide benzoïque (benzoate de sodium) est également produit lorsque les bactéries intestinales transforment les polyphénols (provenant de fruits ou de boissons ingérés).
L'acide benzoïque (benzoate de sodium) est utilisé pour fabriquer d'autres produits chimiques, comme conservateur alimentaire et pour d'autres utilisations.


Synthétiquement, l'acide benzoïque (benzoate de sodium) et une large gamme de dérivés et composés benzéniques apparentés, tels que les sels, les esters d'alkyle, les parabènes, l'alcool benzylique, le benzaldéhyde et le peroxyde de benzoyle, sont couramment utilisés comme conservateurs antibactériens et antifongiques et comme agents aromatisants dans produits alimentaires, cosmétiques, d'hygiène et pharmaceutiques.


Lorsqu'il est utilisé comme composant des résines alkydes, l'acide benzoïque (benzoate de sodium) améliore la brillance, la dureté et la résistance chimique.
Cependant, en raison de la faible solubilité de l'acide benzoïque (benzoate de sodium) dans l'eau, le benzoate de sodium, sel soluble dans l'eau, est utilisé à la place.
Le benzoate de sodium augmente l'acidité de la boisson gazeuse, formant de l'acide benzoïque (benzoate de sodium) qui possède des propriétés conservatrices.


L’acide benzoïque (benzoate de sodium) est principalement utilisé dans la production industrielle du composé aromatique phénol.
Cela se fait via un processus connu sous le nom de décarboxylation oxydative.
L'acide benzoïque (benzoate de sodium) peut être noté que la température idéale à laquelle ce processus peut être effectué se situe entre 300 et 400 °C.


De plus, l'acide benzoïque (benzoate de sodium) et ses sels sont largement utilisés dans l'industrie alimentaire comme conservateurs alimentaires.
La production de phénol implique l'utilisation d'acide benzoïque (benzoate de sodium).
L'acide benzoïque (benzoate de sodium) est utilisé dans les onguents qui préviennent ou traitent les maladies fongiques de la peau.


L'acide benzoïque (benzoate de sodium) est utilisé comme conservateur dans l'industrie alimentaire.
L'acide benzoïque (benzoate de sodium) est un ingrédient présent dans de nombreux produits cosmétiques, tels que les rouges à lèvres.
L'acide benzoïque (benzoate de sodium) est également un précurseur du chlorure de benzoyle, qui trouve son application dans la fabrication d'autres produits chimiques, colorants, parfums, herbicides et médicaments.


Si l'acide benzoïque (benzoate de sodium) est utilisé comme conservateur, le pH du produit fini devra peut-être être suffisamment abaissé pour libérer l'acide libre pour une activité utile.
L'un des composants du dentifrice, du bain de bouche et des crèmes nettoyantes pour le visage est le C6H5.


L'acide benzoïque (benzoate de sodium) est également utilisé dans la fabrication de colorants et d'insectifuges.
L'acide benzoïque (benzoate de sodium) est principalement utilisé dans les aliments acides tels que les vinaigrettes (vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (vinaigre) et les condiments.


L'acide benzoïque (benzoate de sodium) est souvent associé au sorbate de potassium dans les produits à faible pH pour fournir un effet conservateur synergique contre les levures et les moisissures.
L'acide benzoïque (benzoate de sodium) n'est pas un conservateur à large spectre à usage cosmétique et doit être associé à d'autres conservateurs.


-L'acide benzoïque (benzoate de sodium) est principalement consommé dans la production de phénol par décarboxylation oxydative à 300−400 °C :
C6H5CO2H+12O2 ⟶ C6H5OH+CO2
La température requise peut être abaissée à 200 °C par l'ajout de quantités catalytiques de sels de cuivre(II).
Le phénol peut être converti en cyclohexanol, qui est une matière première pour la synthèse du nylon.



FONCTIONS ET APPLICATIONS DE L'ACIDE benzoïque (benzoate de sodium) :
1 、 L'acide benzoïque (benzoate de sodium) est largement utilisé dans l'industrie alimentaire comme conservateur alimentaire.

2 、 L'acide benzoïque (benzoate de sodium) est utilisé comme conservateur pour la sauce soja, le vinaigre, les sauces à faible teneur en sel, les jus, la confiture, le vin de fruits, les aliments en conserve, l'eau gazeuse, le sirop de boisson, le tabac, etc.

3 、 L'industrie pharmaceutique est utilisée pour préparer des sédatifs à l'acide benzoïque (benzoate de sodium) et d'autres médicaments antiseptiques.

4 、 L'acide benzoïque (benzoate de sodium) est également utilisé pour le papier anticorrosion, la peinture au latex, le cirage de chaussures, la colle et le tissu.

5. L'acide benzoïque (benzoate de sodium) peut également être utilisé pour fabriquer du mordant dans l'industrie des colorants, du plastifiant dans l'industrie du plastique et des matières premières pour l'industrie du parfum.

6 、 En tant que réactif chimique, l'acide benzoïque (benzoate de sodium) est utilisé comme cosolvant pour le test de bilirubine sérique.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE benzoïque (benzoate de sodium) :
L'acide benzoïque (benzoate de sodium) a un aspect incolore à l'état solide, qui est de nature cristalline.
La structure cristalline de l'acide benzoïque (benzoate de sodium) est monoclinique.
La présence du noyau aromatique confère à l'acide benzoïque (benzoate de sodium) une odeur légèrement agréable.
À une température de 130°C, la densité de l'acide benzoïque (benzoate de sodium) diminue à 1,075 grammes par centimètre cube.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE benzoïque (benzoate de sodium) :
L'acide benzoïque (benzoate de sodium) est soluble dans l'eau et la solubilité à 25 °C et 100 °C est respectivement de 3,44 g/L et 56,31 g/L.
L'acide benzoïque (benzoate de sodium) est soluble dans le benzène, le tétrachlorure de carbone, l'acétone et les alcools.
La constante de dissociation acide (pKa) de l'acide benzoïque (benzoate de sodium) correspond à 4,2
Les réactions de l'acide benzoïque (benzoate de sodium) peuvent se produire au niveau du groupe carboxyle ou même au niveau du cycle aromatique.



MÉDICINAL D'ACIDE BENZOÏQUE (BENZOATE DE SODIUM) :
L'acide benzoïque (benzoate de sodium) est un constituant d'une pommade utilisée pour le traitement des maladies fongiques de la peau telles que la teigne et le pied d'athlète.
En tant que composant principal de la gomme de benjoin, l'acide benzoïque (benzoate de sodium) est également un ingrédient majeur de la teinture de benjoin et du baume de Friar.
Ces produits sont utilisés depuis longtemps comme antiseptiques topiques et décongestionnants par inhalation.

L'acide benzoïque (benzoate de sodium) était utilisé comme expectorant, analgésique et antiseptique au début du 20e siècle.
Utilisations de niche et de laboratoire de l'acide benzoïque (benzoate de sodium) : Dans les laboratoires d'enseignement, l'acide benzoïque (benzoate de sodium) est un étalon courant pour l'étalonnage d'un calorimètre à bombe.



PRÉCURSEUR DES PLASTIFIANTS DE L'ACIDE BENZOÏQUE (BENZOATE DE SODIUM) :
Les plastifiants benzoate, tels que les esters de glycol, de diéthylèneglycol et de triéthylèneglycol, sont obtenus par transestérification du benzoate de méthyle avec le diol correspondant.
Ces plastifiants, utilisés de manière similaire à ceux dérivés de l'ester de l'acide téréphtalique, représentent des alternatives aux phtalates.



PRÉCURSEUR DE L'ACIDE BENZOÏQUE (BENZOATE DE SODIUM) ET CONSERVATEURS ASSOCIÉS :
L'acide benzoïque (benzoate de sodium) et ses sels sont utilisés comme conservateurs alimentaires, représentés par les numéros E E210, E211, E212 et E213.
L'acide benzoïque (benzoate de sodium) inhibe la croissance des moisissures, des levures[23] et de certaines bactéries.
L'acide benzoïque (benzoate de sodium) est soit ajouté directement, soit créé à partir de réactions avec son sel de sodium, de potassium ou de calcium.

Le mécanisme commence par l’absorption de l’acide benzoïque (benzoate de sodium) dans la cellule.
Si le pH intracellulaire passe à 5 ou moins, la fermentation anaérobie du glucose via la phosphofructokinase est diminuée de 95 %.

L'efficacité de l'acide benzoïque (benzoate de sodium) et du benzoate dépend donc du pH de l'aliment.
L'acide benzoïque (benzoate de sodium), les benzoates et leurs dérivés sont utilisés comme conservateurs pour les aliments et boissons acides tels que les jus d'agrumes (acide citrique), les boissons gazeuses (dioxyde de carbone), les boissons gazeuses (acide phosphorique), les cornichons (vinaigre) et autres. aliments acidifiés.



RÉACTIONS DE L'ACIDE benzoïque (benzoate de sodium) :
Les réactions de l’acide benzoïque (benzoate de sodium) peuvent se produire soit au niveau du cycle aromatique, soit au niveau du groupe carboxyle.


Anneau aromatique :
Réactions sur les cycles aromatiques de l'acide benzoïque (benzoate de sodium)
La réaction de substitution aromatique électrophile aura lieu principalement en position 3 en raison du groupe carboxylique attracteur d'électrons ; c'est-à-dire que l'acide benzoïque (benzoate de sodium) est méta-directeur.


Groupe carboxyle :
Les réactions typiques des acides carboxyliques s'appliquent également à l'acide benzoïque (benzoate de sodium).
Les esters benzoates sont le produit d’une réaction catalysée par un acide avec des alcools.

Les amides de l'acide benzoïque (benzoate de sodium) sont généralement préparés à partir de chlorure de benzoyle.
La déshydratation en anhydride benzoïque est induite avec de l'anhydride acétique ou du pentoxyde de phosphore.

Les dérivés d'acides hautement réactifs tels que les halogénures d'acide sont facilement obtenus en les mélangeant avec des agents d'halogénation comme les chlorures de phosphore ou le chlorure de thionyle.
Les orthoesters peuvent être obtenus par réaction d'alcools dans des conditions acides et sans eau avec du benzonitrile.

La réduction en benzaldéhyde et en alcool benzylique est possible en utilisant DIBAL-H, LiAlH4 ou le borohydrure de sodium.
La décarboxylation en benzène peut être effectuée par chauffage dans de la quinoléine en présence de sels de cuivre.
La décarboxylation de Hunsdiecker peut être obtenue en chauffant le sel d'argent.



STRUCTURE DE L'ACIDE benzoïque (benzoate de sodium) :
La structure d’une molécule d’acide benzoïque (benzoate de sodium) est illustrée ci-dessous.
Cette molécule est constituée d’un noyau benzénique auquel est liée une fonction carboxyle.
La molécule est composée de 7 atomes de carbone, 6 atomes d'hydrogène et 2 atomes d'oxygène.



SYNTHÈSE EN LABORATOIRE DE L'ACIDE benzoïque (benzoate de sodium) :
Il est bon marché et facilement disponible, c'est pourquoi la synthèse en laboratoire de l'acide benzoïque (benzoate de sodium) est principalement pratiquée pour sa valeur pédagogique.
L'acide benzoïque (benzoate de sodium) est une préparation courante de premier cycle.

L'acide benzoïque (benzoate de sodium) peut être purifié par recristallisation dans l'eau en raison de sa haute solubilité dans l'eau chaude et de sa faible solubilité dans l'eau froide.
L’absence de solvants organiques pour la recristallisation rend cette expérience particulièrement sûre.
Ce procédé donne habituellement un rendement d'environ 65 %.

Par hydrolyse ;
Comme les autres nitriles et amides, le benzonitrile et le benzamide peuvent être hydrolysés en acide benzoïque (benzoate de sodium) ou en sa base conjuguée dans des conditions acides ou basiques.

Du réactif de Grignard ;
Le bromobenzène peut être converti en acide benzoïque (benzoate de sodium) par « carboxylation » du bromure de phénylmagnésium intermédiaire.
Cette synthèse offre un exercice pratique aux étudiants pour réaliser une réaction de Grignard, une classe importante de réaction de formation de liaison carbone-carbone en chimie organique.

Oxydation des composés benzyliques ;
L'alcool benzylique, le chlorure de benzyle et pratiquement tous les dérivés benzyliques sont facilement oxydés en acide benzoïque (benzoate de sodium).



PRODUCTION D'ACIDE benzoïque (benzoate de sodium) :
Préparations industrielles;
L'acide benzoïque (benzoate de sodium) est produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le processus est catalysé par des naphténates de cobalt ou de manganèse.
Le processus utilise des matériaux abondants et se déroule avec un rendement élevé.


oxydation du toluène ;
Le premier procédé industriel impliquait la réaction du benzotrichlorure (trichlorométhylbenzène) avec de l'hydroxyde de calcium dans l'eau, en utilisant du fer ou des sels de fer comme catalyseur.
Le benzoate de calcium résultant est converti en acide benzoïque (benzoate de sodium) avec de l'acide chlorhydrique.

Le produit contient des quantités importantes de dérivés chlorés de l'acide benzoïque (benzoate de sodium).
Pour cette raison, l’acide benzoïque (benzoate de sodium) destiné à la consommation humaine a été obtenu par distillation sèche de la gomme benjoin.
L'acide benzoïque de qualité alimentaire (benzoate de sodium) est désormais produit de manière synthétique.



HISTOIRE DE L'ACIDE BENZOÏQUE (BENZOATE DE SODIUM) :
L'acide benzoïque (benzoate de sodium) a été découvert au XVIe siècle.
La distillation sèche de la gomme de benjoin a été décrite pour la première fois par Nostradamus (1556), puis par Alexius Pedemontanus (1560) et Blaise de Vigenère (1596).
Justus von Liebig et Friedrich Wöhler ont déterminé la composition de l'acide benzoïque (benzoate de sodium).

Ces derniers ont également étudié la relation entre l'acide hippurique et l'acide benzoïque (benzoate de sodium).
En 1875, Salkowski découvrit les propriétés antifongiques de l'acide benzoïque (benzoate de sodium), longtemps utilisé dans la conservation des fruits de chicouté contenant du benzoate.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE benzoïque (benzoate de sodium) :
Numéro CAS : 65-85-0
Poids moléculaire : 122,12
Beilstein: 636131
Numéro CE : 200-618-2
Numéro MDL : MFCD00002398
Aspect : Flocons blancs ou jaunâtres
Formule chimique : C7H6O2
Masse molaire : 122,123 g/mol
Aspect : Solide cristallin incolore

Odeur : Odeur légère et agréable
Densité : 1,2659 g/cm3 (15 °C)
1,0749 g/cm3 (130 °C)
Point de fusion : 122 °C (252 °F ; 395 K)
Point d'ébullition : 250 °C (482 °F ; 523 K)
Solubilité dans l'eau : 1,7 g/L (0 °C)
2,7 g/L (18 °C)
3,44 g/L (25 °C)
5,51 g/L (40 °C)
21,45 g/L (75 °C)
56,31 g/L (100 °C)

Solubilité : Soluble dans l'acétone, le benzène, CCl4, CHCl3, l'alcool,
éther éthylique, hexane, phényles, ammoniac liquide, acétates
Solubilité dans le méthanol : 30 g/100 g (−18 °C)
32,1 g/100 g (−13 °C)
71,5 g/100 g (23 °C)
Solubilité dans l'éthanol : 25,4 g/100 g (−18 °C)
47,1 g/100 g (15 °C)
52,4 g/100 g (19,2 °C)
55,9 g/100 g (23 °C)

Solubilité dans l'acétone : 54,2 g/100 g (20 °C)
Solubilité dans l'huile d'olive : 4,22 g/100 g (25 °C)
Solubilité dans le 1,4-dioxane : 55,3 g/100 g (25 °C)
log P : 1,87
Pression de vapeur : 0,16 Pa (25 °C)
0,19 kPa (100 °C)
22,6 kPa (200 °C)
Acidité : (pKa)
4,202 (H2O)
11.02 (DMSO)

Susceptibilité magnétique (χ) : −70,28•10−6 cm3/mol
Indice de réfraction (nD) : 1,5397 (20 °C)
1,504 (132 °C)
Viscosité : 1,26 mPa (130 °C)
Structure:
Structure cristalline : Monoclinique
Forme moléculaire : Planaire
Moment dipolaire : 1,72 D dans le dioxane
Thermochimie:
Capacité thermique (C) : 146,7 J/mol•K

Entropie molaire standard (S ⦵ 298) : 167,6 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −385,2 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : −3228 kJ/mol
État physique : cristallin
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 121 - 125 °C - allumé.
Point d'ébullition initial et plage d'ébullition : 249 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible

Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Aucune donnée disponible
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 2,8 à 25 °C
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible

Coefficient de partage : n-octanol/eau :
log Pow: 1,88 - Aucune bioaccumulation n'est attendue.
Pression de vapeur : Aucune donnée disponible
Densité : 1,26 g/cm3 à 15 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible

Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité :
Tension superficielle : 67,5 mN/m à 1g/l à 20 °C
Densité de vapeur relative : 4,22 - (Air = 1,0)
Perte au séchage : ≤0,5 % après trois heures de séchage sur acide sulfurique
Plage de fusion : 121,5-123,5°C
PH : environ 4 (solution dans l’eau)

Aspect de la solution : Clarification, incolore
Durée de conservation : 2 ans
Solubilité dans l'eau : 12,2 mg/mL
logP : 1,29
logP : 1,63
journaux : -1,1
pKa (acide le plus fort) : 4,08
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 0
Surface polaire : 40,13 Ų
Nombre de liaisons rotatives : 1

Réfractivité : 44,15 m³•mol⁻¹
Polarisabilité : 11,53 ų
Nombre d'anneaux : 1
Biodisponibilité : 1
Règle de cinq : Oui
Filtre Ghose: Non
Règle de Veber : non
Règle de type MDDR : non
Formule d'acide benzoïque : C7H6O2 ou C6H5COOH
Poids moléculaire/masse molaire : 122,12 g/mol
Densité : 1,27 g/cm³ à 15°C
Point d'ébullition : 523 K
Point de fusion : 395 K



PREMIERS SECOURS DE L'ACIDE benzoïque (benzoate de sodium) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE benzoïque (benzoate de sodium) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE benzoïque (benzoate de sodium) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE benzoïque (benzoate de sodium) :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE benzoïque (benzoate de sodium) :
-Précautions à prendre pour une manipulation sans danger:
*Conseils pour une manipulation sécuritaire :
Travaillez sous une capuche.
*Mesures d'hygiène:
Changez immédiatement les vêtements contaminés.
Appliquer une protection cutanée préventive.
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conditions de stockage:
Hermétiquement fermé.
Sec.
Conserver dans un endroit bien aéré.
Conserver sous clé ou dans un endroit accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE benzoïque (benzoate de sodium) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible
-Matériaux incompatibles :
Pas de données disponibles


ACIDE BENZOÏQUE (E210)
L'acide benzoïque (E210) /bɛnˈzoʊ.ɪk/ est un composé organique solide blanc (ou incolore) de formule C6H5COOH, dont la structure est constituée d'un cycle benzénique (C6H6) avec un substituant carboxyle (−C(=O)OH).
Le groupe benzoyle est souvent abrégé « Bz » (à ne pas confondre avec « Bn » qui est utilisé pour benzyle), ainsi l'acide benzoïque (E210) est également désigné par BzOH, puisque le groupe benzoyle a la formule –C6H5CO.


Numéro CAS : 65-85-0
Numéro CE : 200-618-2
Numéro MDL : MFCD00002398
Numéro E : E210
Formule linéaire : C6H5COOH
Formule chimique : C7H6O2



Acide benzènecarboxylique, Carboxybenzène, Acide benzoïque, Acide benzènecarboxylique, Carboxybenzène, E210, Acide dracylique, Acide phénylméthanoïque, Acide phénylcarboxylique, Alcool benzoylique, Acide benzoylique, Carboxylbenzène, Acide hydrogénphénique, Acide phénoique, Acide benzènecarboxylique, acide dracylique, acide phénylcarboxylique, Carboxybenzène, E210 , Acide dracylique, acide phénylméthanoïque, BzOH,



L'acide benzoïque (E210) est un composé organique d'acides aromatiques et de l'acide aromatique le plus simple, de formule C7H6O2.
L'acide benzoïque (E210) est à l'origine fabriqué à partir de gomme de benjoin, appelée acide de benjoin.
Le point de fusion de l'acide benzoïque (E210) est de 122,13 ºC, le point d'ébullition est de 249,2 ºC et la densité relative (15/4 ºC) est de 1,2659.


L’acide benzoïque (E210) se présente sous la forme d’un cristal aciculaire ou squameux blanc.
L'acide benzoïque (E210) se sublimera au-dessus de 100 ºC.
L'acide benzoïque (E210) est légèrement soluble dans l'eau froide, l'hexane, l'eau chaude, l'éthanol, l'éther, le chloroforme, le benzène, le sulfure de carbone et la térébenthine, etc.


L'acide benzoïque (E210) existe largement dans la nature sous forme d'acides libres, d'esters ou de leurs dérivés.
L'acide benzoïque (E210) est principalement utilisé dans la préparation de conservateurs à base de benzoate de sodium, et utilisé dans la synthèse de médicaments, de colorants, mais également dans la production de plastifiants, de mordants, de fongicides et d'épices.


L'acide benzoïque (E210) peut être préparé par oxydation directe du toluène en présence de dioxyde de manganèse, ou par décarboxylation de l'anhydride phtalique avec de la vapeur d'eau.
L'acide benzoïque (E210) est présent naturellement dans de nombreuses plantes et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.
Les sels et esters de l'acide benzoïque (E210) sont connus sous le nom de benzoates /ˈbɛnzoʊ.eɪt/.


L'acide benzoïque (E210) est un additif alimentaire approuvé par l'Union européenne (UE) et utilisé comme conservateur naturel antifongique et antibactérien (en milieu acide) dans les produits alimentaires.
L'acide benzoïque (E210) est une forme d'écailles, d'aiguilles ou de cristaux blancs ayant une odeur de benjoin.


La poudre d'acide benzoïque (E210) est soluble dans l'alcool, l'éther, le chloroforme, le benzène et le disulfure de carbone tout en étant légèrement soluble dans l'eau.
L'E210 est également connu sous le nom commun d'acide benzoïque (E210), mais peut également être appelé carboxybenzène ou acide dracyclique.
L'acide benzoïque (E210) est produit par hydrolyse du benzonitrile et du benzamide et peut être purifié par recristallisation dans l'eau, en raison de sa haute solubilité.


L'acide benzoïque (E210) est également présent naturellement dans les fruits et légumes comestibles.
Le groupe benzoyle est souvent abrégé « Bz » (à ne pas confondre avec « Bn » qui est utilisé pour benzyle), ainsi l'acide benzoïque (E210) est également désigné par BzOH, puisque le groupe benzoyle a la formule –C6H5CO.


L'acide benzoïque (E210) est l'acide carboxylique aromatique le plus simple.
Le nom est dérivé de la gomme de benjoin, qui fut longtemps sa seule source.
L'acide benzoïque (E210) /bɛnˈzoʊ.ɪk/ est un composé organique solide blanc (ou incolore) de formule C6H5COOH, dont la structure est constituée d'un cycle benzénique (C6H6) avec un substituant carboxyle (−C(=O)OH).


L'acide benzoïque (E210), les benzoates et les esters d'acide benzoïque se trouvent couramment dans la plupart des fruits, en particulier les baies.
Les canneberges sont une source très riche en acide benzoïque (E210).
Outre les fruits, les benzoates sont naturellement présents dans les champignons, la cannelle, les clous de girofle et certains produits laitiers (en raison de la fermentation bactérienne).


À des fins commerciales, l'acide benzoïque (E210) est préparé chimiquement à partir de toluène.
L'acide benzoïque (E210) est l'acide carboxylique aromatique le plus simple.
L'acide benzoïque (E210) est un composé organique fabriqué par synthèse chimique, disponible sous forme de poudre cristallisée blanche.


L'acide benzoïque (E210) et ses sels (tels que le benzoate de potassium et le benzoate de sodium) sont largement utilisés comme conservateurs pour les aliments et boissons acides.
L'acide benzoïque (E210) est largement accepté comme additif alimentaire sûr dans de nombreux pays avec le numéro E E210.
En tant que fournisseur et fabricant professionnel d'additifs alimentaires, Foodchem International Corporation fournit de l'acide benzoïque (E210) de qualité à des clients du monde entier depuis plus de 10 ans.


En termes de biosynthèse de l'acide benzoïque (E210), le benzoate est produit dans les plantes à partir de l'acide cinnamique.
Une voie a été identifiée à partir du phénol via le 4-hydroxybenzoate.
L'acide benzoïque (E210) est également connu sous le nom de fleurs de benjoin, acide phénylcarboxylique, carboxybenzène.


L'acide benzoïque (E210) est obtenu à partir du benjoin, une résine exsudée par des arbres originaires d'Asie.
L'acide benzoïque (E210) est un type important de conservateur alimentaire acide.
Dans des conditions acides, les champignons, les levures et les bactéries ont une inhibition, mais moins d'effet sur les bactéries produisent de l'acide.


La bactériostase de la valeur optimale du pH de 2,5 à 2,5 est inférieure au pH de 4,5 à 5,0.
Dans l'industrie alimentaire avec des fûts en plastique de jus de fruits et de légumes concentrés, la quantité maximale ne dépassant pas 2,0 g/kg ; Dans la confiture (sans compter les canettes), les boissons à base de jus de fruits (goût), la sauce soja, le vinaigre, la plus grande utilisation de 1,0 g /kg ; La plus grande utilisation dans la gelée, le vin, le vin de fruits, 0,8 g/kg ; Dans les cornichons à faible teneur en sel, la confiture, les fruits confits, la quantité maximale de 0,5 g/kg ; La plus grande utilisation dans les boissons gazeuses, 0,2 g/kg.


L'acide benzoïque (E210) est légèrement soluble dans l'eau, disponible en utilisant une petite quantité d'éthanol pour le dissoudre.
L'acide benzoïque (E210), C7H6O2 -ou C6H5COOH-, est un solide cristallin incolore et un acide carboxylique aromatique simple.
Le nom est dérivé de la gomme de benjoin, qui fut longtemps sa seule source connue.


L'acide benzoïque (E210) est présent naturellement dans de nombreuses plantes et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.
Les sels d'acide benzoïque (E210) sont utilisés comme conservateurs alimentaires et l'acide benzoïque (E210) est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.


Les sels et esters de l'acide benzoïque (E210) sont appelés benzoates.
L'acide benzoïque (E210), C7H6O2 (ou C6H5COOH), est un solide cristallin incolore et l'acide carboxylique aromatique le plus simple.
Le nom dérive de la gomme de benjoin, qui fut longtemps la seule source d'acide benzoïque (E210).


Cet acide faible, l'acide benzoïque (E210), et ses sels sont utilisés comme conservateur alimentaire.
L'acide benzoïque (E210) est un précurseur important pour la synthèse de nombreuses autres substances organiques.
Les dérivés du benzène à substitution alkyle donnent l'acide benzoïque (E210) avec les oxydants stoechiométriques le permanganate de potassium, le trioxyde de chrome et l'acide nitrique.


L'acide benzoïque (E210) est un acide monocarboxylique aromatique.
L'acide benzoïque (E210) se présente sous forme de folioles ou d'aiguilles incolores. L'acide benzoïque (E210) réagit avec les réactifs hydrogénants pour donner de l'acide hexahydrobenzoïque.


Lors de sa décomposition (par chauffage) en présence de chaux ou d'alcali, l'acide benzoïque (E210) fournit du benzène et du dioxyde de carbone.
L'acide benzoïque (E210) peut être synthétisé par l'oxydation atmosphérique du toluène catalysée par le cobalt ou le manganèse.
L'acide benzoïque (E210) peut être purifié par recristallisation dans l'eau en raison de sa haute solubilité dans l'eau chaude et de sa faible solubilité dans l'eau froide.


L’absence de solvants organiques pour la recristallisation rend cette expérience particulièrement sûre.
L'acide benzoïque (E210) est un solide blanc qui est un conservateur largement utilisé.
Bien que ce conservateur prévienne ou retarde les pertes nutritionnelles dues aux changements microbiologiques, enzymatiques ou chimiques des aliments au cours de sa durée de conservation, on soupçonne que de petites quantités de benzène puissent se former à partir de l'acide benzoïque (E210) dans les boissons non alcoolisées en présence d'acide ascorbique.


L'acide benzoïque (E210) et l'acide ascorbique sont des additifs alimentaires qui doivent être déclarés sur les denrées alimentaires.
L'acide benzoïque (E210) ou E 210 est un conservateur également présent naturellement, par exemple dans les canneberges.
Une quantité maximale de 150 mg/l d'acide benzoïque (E210) peut être ajoutée aux boissons aromatisées non alcoolisées.


L'acide benzoïque (E210), /bɛnˈzoʊ.ɪk/, C7H6O2 (ou C6H5COOH), est un solide cristallin incolore et un simple acide carboxylique aromatique.
Le nom d’Acide Benzoïque (E210) dérive de la gomme de benjoin, qui fut longtemps sa seule source connue.
L'acide benzoïque (E210) est présent naturellement dans de nombreuses plantes et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.


Les sels d'acide benzoïque (E210) sont utilisés comme conservateurs alimentaires et l'acide benzoïque est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.
Les sels et esters de l'acide benzoïque (E210) sont connus sous le nom de benzoates /ˈbɛnzoʊ.eɪt/.


L'acide benzoïque (E210) est présent naturellement, tout comme ses esters, dans de nombreuses espèces végétales et animales.
Des quantités appréciables ont été trouvées dans la plupart des baies (environ 0,05 %).
Les fruits mûrs de plusieurs espèces de Vaccinium (par exemple, la canneberge, V. vitis macrocarpon ; la myrtille, V. myrtillus) contiennent jusqu'à 0,03 à 0,13 % d'acide benzoïque libre (E210).


L'acide benzoïque (E210) se forme également dans les pommes après une infection par le champignon Nectria galligena.
Parmi les animaux, l'acide benzoïque (E210) a été identifié principalement chez les espèces omnivores ou phytophages, par exemple dans les viscères et les muscles du lagopède alpin (Lagopus muta), ainsi que dans les sécrétions glandulaires du bœuf musqué mâle (Ovibos moschatus) ou des éléphants mâles d'Asie ( Elephas maximus).


La gomme de benjoin contient jusqu'à 20 % d'acide benzoïque (E210) et 40 % d'esters d'acide benzoïque.
Cryptanaerobacter phénolicus est une espèce de bactérie qui produit du benzoate à partir du phénol via le 4-hydroxybenzoate.
L'acide benzoïque (E210) est présent sous forme d'acide hippurique (N-benzoylglycine) dans l'urine des mammifères, en particulier des herbivores (Gr. hippopotames = cheval ; ouron = urine).


Les humains produisent environ 0,44 g/L d’acide hippurique dans leur urine, et si la personne est exposée au toluène ou à l’acide benzoïque, ce niveau peut dépasser ce niveau.
De nombreuses entreprises de cosmétiques utilisent l'acide benzoïque (E210) comme ingrédient dans de nombreux produits, comme les crèmes et les rouges à lèvres.
Vous pouvez également trouver de l'acide benzoïque (E210) ou du benzoate de sodium dans le dentifrice, le gel douche, le shampoing, les crèmes hydratantes et les crèmes solaires, selon une revue de mars 2019 dans le Journal of Preventive Medicine and Hygiene.


L'utilisation de l'acide benzoïque (E210) dans cette industrie reflète l'objectif de l'industrie alimentaire en tant que conservateur : les produits biologiques sont également autorisés à utiliser du benzoate de sodium dans leurs produits.
Le benzoate de sodium a été noté comme le conservateur le plus courant dans les produits à rincer, selon l'examen de mars 2019 du Journal of Preventive Medicine and Hygiene.


L'acide benzoïque (E210) est un solide cristallin incolore et un acide carboxylique aromatique simple.
Les sels d'acide benzoïque (E210) sont utilisés comme conservateurs alimentaires et l'acide benzoïque est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.
Les sels et esters de l'acide benzoïque (E210) sont appelés benzoates.


L'acide benzoïque (E210) est un solide blanc produit par oxydation partielle du toluène avec de l'oxygène.
L'acide benzoïque (E210) est l'acide carboxylique aromatique le plus simple et sert d'intermédiaire dans la biosynthèse de nombreux métabolites secondaires.
Les sels et esters de l'acide benzoïque (E210) sont appelés benzoates.
L'acide benzoïque (E210) est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.



UTILISATIONS et APPLICATIONS de l'ACIDE BENZOÏQUE (E210) :
Les sels d'acide benzoïque (E210) sont utilisés comme conservateurs alimentaires.
L'acide benzoïque (E210) est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.
L'acide benzoïque (E210) était utilisé comme expectorant, analgésique et antiseptique au début du 20e siècle.


Utilisations de niche et de laboratoire : dans les laboratoires d'enseignement, l'acide benzoïque (E210) est un étalon courant pour l'étalonnage d'un calorimètre de bombe.
L'acide benzoïque (E210) est l'un des conservateurs largement utilisés dans l'industrie alimentaire pour protéger les aliments de tout changement chimique nocif et aide à mieux réguler la croissance des microbes.


L'acide benzoïque (E210), en tant que conservateur alimentaire, est un précurseur important pour la synthèse de nombreuses autres substances organiques.
L'acide benzoïque (E210) est un conservateur alimentaire de type acide ; dans des conditions acides, il a un effet inhibiteur sur les moisissures, les levures et les bactéries, mais il a un faible effet sur les bactéries productrices d'acide.


Le pH optimal pour la bactériostase de l'acide benzoïque (E210) était de 2,5 à 4,0.
L'acide benzoïque (E210) est utilisé dans la production de plastifiants, d'épices et de conservateurs alimentaires, ainsi que dans l'amélioration des performances des revêtements en résine alkyde.


L'acide benzoïque (E210) est également utilisé comme agent de conservation de la saveur pour les boissons à base de jus de fruits.
L'acide benzoïque (E210) est utilisé dans le chocolat, le citron, les oranges, les baies, les noix, les conserves et d'autres arômes alimentaires.
L'acide benzoïque (E210) est utilisé dans la production de nombreux additifs industriels tels que les plastifiants benzoates.


Avec plusieurs de ses sels, l'acide benzoïque (E210) est utilisé comme conservateur pour l'alimentation humaine et animale.
Les esters de l'acide benzoïque (E210) sont des parfums courants.
Ces dernières années, l'acide benzoïque (E210) s'est également révélé efficace contre la diarrhée post-sevrage des porcelets lorsqu'il est administré comme additif alimentaire.


L'acide benzoïque (E210) est principalement consommé dans la production de phénol par décarboxylation oxydative à 300-400 °C :
C6H5CO2H+12O2 ⟶C6H5OH +CO2
La température requise peut être abaissée à 200 °C par l'ajout de quantités catalytiques de sels de cuivre(II).


Le phénol peut être converti en cyclohexanol, qui est une matière première pour la synthèse du nylon.
Les concentrations typiques d'acide benzoïque (E210) comme conservateur dans les aliments se situent entre 0,05 et 0,1 %.
Les aliments dans lesquels l'acide benzoïque (E210) peut être utilisé et les niveaux maximaux pour son application sont contrôlés par les lois alimentaires locales.


L'acide benzoïque (E210) est un constituant de la pommade de Whitfield qui est utilisée pour le traitement des maladies fongiques de la peau telles que la teigne et le pied d'athlète.
En tant que composant principal de la gomme de benjoin, l'acide benzoïque (E210) est également un ingrédient majeur de la teinture de benjoin et du baume de Friar.
Ces produits sont utilisés depuis longtemps comme antiseptiques topiques et décongestionnants par inhalation.


L'acide benzoïque (E210) est utilisé comme conservateur, cosmétique, alimentation animale, pharmaceutique, antimicrobien, antifongique, antibactérien, boisson gazeuse, boisson alcoolisée, boisson en poudre, crème glacée, bonbons, chewing-gum, glaçages, jus de fruits, puddings, sauces, pâtisseries, Saucisse, colorants alimentaires, lait, vin, agent aromatisant, colorant, dentifrice, revêtement, caoutchouc.


L'acide benzoïque (E210) est un agent antiseptique, antifongique et antipyrétique et peut être utilisé comme étalon métrique alcalin.
L'acide benzoïque (E210) est l'un des conservateurs largement utilisés dans l'industrie alimentaire pour protéger les aliments de tout changement chimique nocif et aide à mieux réguler la croissance des microbes.


L'acide benzoïque (E210) est ajouté aux boissons alcoolisées, aux produits de boulangerie, aux fromages, aux gommes, aux condiments, aux produits laitiers surgelés, aux condiments, aux sucreries molles, aux sirops et aux substituts de sucre.
L'acide benzoïque (E210) est utilisé dans les cosmétiques, comme antiseptique dans de nombreux médicaments contre la toux et comme antifongique dans les pommades.


L'acide benzoïque (E210) est utilisé dans les médicaments, les supports de colorants, les plastifiants, les épices, les conservateurs alimentaires et d'autres productions, également utilisé dans l'amélioration des performances des revêtements de résine alkyde.
L'acide benzoïque (E210) est principalement utilisé comme antifongique et antiseptique de désinfection.


L'acide benzoïque (E210) est utilisé comme réactif chimique et conservateur.
L'acide benzoïque (E210) est un encens fixé, généralement utilisé comme agent ou conservateur.
L'acide benzoïque (E210) est également utilisé dans la fabrication de plastifiants, de revêtements en résine et de caprolactame.


L'agent d'assurance est également utilisé comme boisson aux fruits. Peut être utilisé comme crème avec le sucré. Peut également être utilisé pour les arômes de chocolat, de citron, d'orange, de baies, de noix, de fruits confits. Également couramment utilisé dans les arômes de cigarettes.
L'acide benzoïque (E210) est utilisé comme conservateur et agent antimicrobien.


L'acide benzoïque (E210) est un type important de conservateurs alimentaires.
Dans des conditions acides, le PH optimal bactériostatique 2,5 4,0 est inférieur au PH4,5-5,0.
L'acide benzoïque (E210) est utilisé dans les médicaments, les supports de colorants, les plastifiants, les épices, les conservateurs alimentaires et d'autres productions, également utilisé dans l'amélioration des performances des revêtements de résine alkyde.


L'acide benzoïque (E210) est un composé organique largement utilisé comme conservateur dans les industries alimentaires et des boissons.
En tant que conservateur, l'acide benzoïque (E210) peut être utilisé dans une grande variété d'industries, notamment : la production alimentaire, les boissons, les produits pharmaceutiques, les cosmétiques, l'agriculture/l'alimentation animale et diverses autres industries.


L'acide benzoïque (E210) a pour effet de stériliser et d'inhiber la croissance des bactéries, et est peu toxique et insipide, il est donc largement utilisé comme conservateur.
L'acide benzoïque (E210) est utilisé comme conservateur dans les aliments et les boissons pour empêcher la croissance de moisissures, de levures et de champignons.


En général, les sels sont préférés à la forme acide car ils sont plus solubles dans l’eau.
Le pH optimal pour l'activité antimicrobienne est inférieur à pH 6,5 et les sorbates sont généralement utilisés à des concentrations de 0,025 % à 0,10 %.
L'ajout de sels de sorbate aux aliments augmentera cependant légèrement le pH des aliments, de sorte que le pH devra peut-être être ajusté pour garantir la sécurité.


L'acide benzoïque (E210) peut être utilisé comme étalon dans les études quantitatives et calorimétriques.
L'acide benzoïque (E210) peut être utilisé comme intermédiaire dans la synthèse des éléments suivants : peintures, pigments, vernis, agents mouillants, composés aromatiques, chlorure de benzoyle, benzotrichlorure. Il a été utilisé pour étudier le mécanisme de réaction d'addition complexe de radicaux hydroxyles avec divers composés aromatiques.


Pour la même raison, l'acide benzoïque (E210) est également utilisé dans les cosmétiques pour contribuer à leur donner de la longévité et à éloigner les bactéries qui pourraient les abîmer.
Les fabricants utilisent souvent le sel inactif de l'acide benzoïque (E210) appelé benzoate de sodium, qui est soluble dans l'eau.
L'acide benzoïque (E210) est utilisé comme conservateur alimentaire et convient particulièrement aux aliments, jus de fruits et boissons gazeuses dont le pH est naturellement acide.


L'acide benzoïque (E210) utilisé comme conservateur dans les aliments, les boissons, les dentifrices, les bains de bouche, les dentifrices, les cosmétiques et les produits pharmaceutiques est réglementé.
Les niveaux d'utilisation typiques de l'acide benzoïque (E210) comme conservateur dans les aliments se situent entre 0,05 et 0,1 %.
Les aliments dans lesquels l'acide benzoïque (E210) peut être utilisé et les niveaux maximaux pour son application sont contrôlés par les lois alimentaires locales.


L'acide benzoïque (E210) est principalement consommé dans la production de phénol par décarboxylation oxydative à 300-400 °C :
C6H5CO2H + 1/2 O2 → C6H5OH + CO2
La température requise peut être abaissée à 200 °C par l'ajout de quantités catalytiques de sels de cuivre(II).


Le phénol peut être converti en cyclohexanol, qui est une matière première pour la synthèse du nylon.
Des inquiétudes ont été exprimées quant au fait que l'acide benzoïque (E210) et ses sels pourraient réagir avec l'acide ascorbique (vitamine C) présent dans certaines boissons gazeuses, formant ainsi de petites quantités de benzène.


Applications clés de l'acide benzoïque (E210) : conservateurs alimentaires, produits de nettoyage, conservateurs, adhésifs et produits d'étanchéité, produits pharmaceutiques, lubrifiants, aliments pour animaux, produits cosmétiques, peintures et revêtements.
L'acide benzoïque (E210) est utilisé comme conservateur (naturel, légèrement soluble dans l'eau).


L'acide benzoïque (E210) est un acide organique présent naturellement dans diverses plantes, fruits et baies et est utilisé comme conservateur pour ses propriétés antifongiques, anti-levures et antibactériennes dans les aliments.


L'acide benzoïque (E210) est couramment utilisé dans les aliments transformés comme la bière, les fruits en conserve, les boissons énergisantes, les cupcakes, le café, les boissons gazeuses, les confitures, les vinaigrettes, les pâtes à tartiner, les rouleaux de printemps, les crèmes, le ketchup, les jus de fruits, les cornichons, les desserts, les sauces marinées. maquereau, hareng mariné, produits de bœuf et de poulet, gâteaux, glaces, gelées, olives, saucisses, houmous, porc en conserve, poisson en conserve, vin, tacos, poisson séché, chewing-gum, tortillas, pain de maïs, garnitures, crevettes, salade et autres.


-Précurseur de plastifiants
Les plastifiants benzoate, tels que les esters de glycol, de diéthylèneglycol et de triéthylèneglycol, sont obtenus par transestérification du benzoate de méthyle avec le diol correspondant.

Ces plastifiants, utilisés de manière similaire à ceux dérivés de l'ester de l'acide téréphtalique, représentent des alternatives aux phtalates.
Alternativement, ces espèces apparaissent par traitement du chlorure de benzoyle avec le diol.
Ces plastifiants sont utilisés de manière similaire à ceux dérivés de l'ester de l'acide téréphtalique.


-Précurseur du benzoate de sodium et conservateurs associés :
L'acide benzoïque (E210) et ses sels sont utilisés comme conservateurs alimentaires, représentés par les numéros E E210, E211, E212 et E213.
L'acide benzoïque (E210) inhibe la croissance des moisissures, des levures[23] et de certaines bactéries.

L'acide benzoïque (E210) est soit ajouté directement, soit créé à partir de réactions avec son sel de sodium, de potassium ou de calcium.
Le mécanisme commence par l’absorption de l’acide benzoïque (E210) dans la cellule.
Si le pH intracellulaire passe à 5 ou moins, la fermentation anaérobie du glucose via la phosphofructokinase est diminuée de 95 %.

L'efficacité de l'acide benzoïque (E210) et du benzoate dépend donc du pH de l'aliment.
L'acide benzoïque (E210), les benzoates et leurs dérivés sont utilisés comme conservateurs pour les aliments et boissons acides tels que les jus d'agrumes (acide citrique), les boissons gazeuses (dioxyde de carbone), les boissons gazeuses (acide phosphorique), les cornichons (vinaigre) et autres acidifiés. nourriture.

Les aliments et boissons acides comme les jus de fruits (acide citrique), les boissons gazeuses (dioxyde de carbone), les boissons gazeuses (acide phosphorique), les cornichons (vinaigre) ou autres aliments acidifiés sont conservés avec de l'acide benzoïque (E210) et des benzoates.


-Utilisation de l'acide benzoïque comme additif alimentaire :
Les éleveurs de porcs du monde entier comptent depuis des décennies sur l'oxyde de zinc pour lutter contre la diarrhée post-sevrage (DAP) des porcelets.
Pourtant, l'utilisation de l'oxyde de zinc a été restreinte ces dernières années en raison de ses graves répercussions environnementales.

Face à l'interdiction prochaine de l'oxyde de zinc dans l'UE et aux restrictions croissantes sur son utilisation à l'échelle mondiale, les fabricants d'additifs alimentaires se sont tournés vers l'acide benzoïque (E210), une alternative efficace, soit administrée directement, soit appliquée avec des revêtements à libération lente. la prévention et l’atténuation des personnes handicapées.

L'acide benzoïque (E210) ne présente aucun danger pour l'environnement en raison de sa nature organique.
L'acide benzoïque (E210) peut également accélérer le processus d'engraissement des porcelets.


-Utiliser comme conservateur alimentaire et précurseur d'autres conservateurs de sel benzoïque :
L'acide benzoïque (E210) est un puissant agent antiseptique largement utilisé dans l'alimentation humaine et animale.
Cependant, en raison de sa faible solubilité, l’acide benzoïque (E210) est souvent préférable à l’utilisation de ses sels.
Le sel de sodium, le sel de calcium et le sel de potassium de l'acide benzoïque (E210) sont parmi les conservateurs alimentaires les plus courants dans l'industrie alimentaire moderne.


-Utiliser comme précurseur de plastifiant :
L'acide benzoïque (E210) est l'ingrédient nécessaire à la production de plastifiants benzoate et dibenzoate.
Ces plastifiants sont principalement utilisés dans les revêtements de sol, les films, les adhésifs et les produits d'étanchéité.
Les plastifiants benzoates typiques comprennent le benzoate d'isodécyle (IDB) et le benzoate d'isononyle (INB).

Les plastifiants dibenzoates courants comprennent le dibenzoate de dipropylène glycol et le dibenzoate de néopentylglycol.
Bien que les plastifiants phtalates aient été les plastifiants les plus couramment utilisés au cours des dernières décennies, les plastifiants sans phtalates tels que les benzoates ont augmenté ces dernières années à mesure que les organismes de réglementation du monde entier ont pris conscience du danger potentiel des phtalates pour la santé humaine.


-Qualité alimentaire de l'acide benzoïque (E210) :
L'acide benzoïque (E210) est largement utilisé comme conservateur dans les industries agroalimentaires.
L'acide benzoïque (E210) de Foodchem est disponible sous forme de poudre cristallisée blanche (teneur > 99,5 %).


-Niveau industriel:
L'acide benzoïque (E210) est largement utilisé dans l'industrie.
L'acide benzoïque (E210) de qualité industrielle de Foodchem est disponible sous forme de .


-Utilisations manufacturières de l'acide benzoïque (E210) :
L'acide benzoïque (E210) est fréquemment utilisé en milieu industriel, où sa réaction avec l'acide carboxylique est utilisée pour la production de phénol.
Ce solide légèrement acide, l'acide benzoïque (E210), est utilisé comme désinfectant et est donc couramment utilisé dans les bains de bouche et les nettoyants ménagers.
L'acide benzoïque (E210) est également utilisé dans la production de plastiques.


-Conservateur dans la fabrication des aliments :
L'acide benzoïque (E210) – également connu sous le nom d'E210 – est largement utilisé dans la fabrication et la conservation des aliments grâce à son activité antimicrobienne.
Des tests ont montré sa capacité à inhiber la croissance des moisissures, des levures et de certaines autres bactéries. L'acide benzoïque (E210) est le plus couramment utilisé dans les boissons gazeuses, les glaçages, les confitures, les salades préparées, la sauce soja et les garnitures de pâtisserie.



POUVOIR PHARMACEUTIQUE DE LA POUDRE D'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) a été utilisé pour aider à traiter les inflammations et irritations cutanées telles que les brûlures mineures, les piqûres d'insectes, l'eczéma et les infections fongiques.
Son objectif est de prévenir les infections, et l'acide benzoïque (E210) est souvent associé à l'acide salicylique, qui est utilisé pour aider la peau à se débarrasser de ses cellules mortes.
Au début du XXe siècle, l’acide benzoïque (E210) était utilisé comme analgésique, antiseptique et expectorant.
Et l’acide benzoïque (E210) peut encore être utilisé aujourd’hui dans certains produits qui s’attaquent à ces problèmes.



ACIDE BENZOÏQUE (E210) DANS LES ALIMENTS :
Un certain nombre d'aliments contiennent naturellement de l'acide benzoïque (E210), mais les quantités varient.
En règle générale, les aliments contenant de l’acide benzoïque naturel (E210) en contiennent de très petites quantités.
Les fraises en contiennent jusqu'à 29 milligrammes/kilogramme. Les produits laitiers ont tendance à contenir des niveaux d'acide benzoïque (E210) légèrement plus élevés que les aliments végétaux, jusqu'à 28 milligrammes/kilogramme rapportés dans certains fromages, selon l'analyse ci-dessus.

L'acide benzoïque (E210) naturellement présent dans le lait se situe entre 2 et 5 milligrammes/kilogramme.
Pour mettre cela en perspective, à moins que vous ne mangiez 2 livres de fromage par jour, votre consommation d'acide benzoïque naturel (E210) sera assez faible.
Il est difficile de savoir exactement quelle quantité d'acide benzoïque (E210) ou de benzoate de sodium a été ajoutée aux aliments.

La FDA fixe des quantités maximales pour les aliments individuels, mais les quantités ne sont pas indiquées sur l'emballage.
Si un aliment en contient, vous verrez de l'acide benzoïque (E210) ou du benzoate de sodium dans la liste des ingrédients.
Les boissons gazeuses sont l’un des aliments les plus courants contenant de l’acide benzoïque (E210) ou du benzoate de sodium.
D'autres incluent des fruits en conserve et séchés, des produits de boulangerie et d'autres aliments transformés.



PRÉPARATIONS DE LABORATOIRE D'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est bon marché et facilement disponible, c'est pourquoi la synthèse en laboratoire de l'acide benzoïque est principalement pratiquée pour sa valeur pédagogique.
L'acide benzoïque (E210) est une préparation courante de premier cycle et une propriété pratique du composé est que son point de fusion est égal à son poids moléculaire (122).

Pour toutes les synthèses, l'acide benzoïque (E210) peut être purifié par recristallisation dans l'eau en raison de sa haute solubilité dans l'eau chaude et de sa faible solubilité dans l'eau froide.
L’absence de solvants organiques pour la recristallisation rend cette expérience particulièrement sûre.

*Par hydrolyse :
Comme tout autre nitrile ou amide, le benzonitrile et le benzamide peuvent être hydrolysés en acide benzoïque (E210) ou en sa base conjuguée dans des conditions acides ou basiques.
Du benzaldéhyde
La dismutation du benzaldéhyde induite par une base, la réaction de Cannizzaro, fournit des quantités égales de benzoate et d'alcool benzylique ; ces derniers peuvent être éliminés par distillation.

*Du bromobenzène :
Le bromobenzène dans l'éther diéthylique est agité avec des tournures de magnésium pour produire du bromure de phénylmagnésium (C6H5MgBr).
Ce réactif de Grignard est ajouté lentement à de la neige carbonique (dioxyde de carbone solide) pour donner du benzoate.
De l'acide dilué est ajouté pour former de l'acide benzoïque (E210).

*De l'alcool benzylique :
L'alcool benzylique est chauffé au reflux avec du permanganate de potassium ou d'autres réactifs oxydants dans l'eau.
Le mélange est filtré à chaud pour éliminer l'oxyde de manganèse, puis laissé refroidir pour donner de l'acide benzoïque (E210).



PRODUCTION D'ACIDE BENZOÏQUE (E210) :
Préparations industrielles
L'acide benzoïque (E210) est produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le processus est catalysé par des naphténates de cobalt ou de manganèse.
Le processus utilise des matériaux abondants et se déroule avec un rendement élevé.



INDUSTRIES DE L'ACIDE BENZOÏQUE (E210) :
*Pharmacie
*Polymères
*Nettoyage
*CAS & Construction
*Beauté et soins personnels
*Alimentation et nutrition
*Nutrition animale
*Lubrifiants
*Traitement chimique
*Caoutchouc



CONSERVATEUR ALIMENTAIRE D'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) et ses sels sont utilisés comme conservateur alimentaire, représentés par les numéros E E210, E211, E212 et E213.
L'acide benzoïque (E210) inhibe la croissance des moisissures, des levures et de certaines bactéries.
L'acide benzoïque (E210) est soit ajouté directement, soit créé à partir de réactions avec son sel de sodium, de potassium ou de calcium.

Le mécanisme commence par l’absorption de l’acide benzoïque (E210) dans la cellule.
Si le pH intracellulaire passe à 5 ou moins, la fermentation anaérobie du glucose via la phosphofructokinase est diminuée de 95 %.
L'efficacité de l'acide benzoïque (E210) et du benzoate dépend donc du pH de l'aliment.

Les aliments et boissons acides comme les jus de fruits (acide citrique), les boissons gazeuses (dioxyde de carbone), les boissons gazeuses (acide phosphorique), les cornichons (vinaigre) ou autres aliments acidifiés sont conservés avec de l'acide benzoïque (E210) et des benzoates.
Les niveaux d'utilisation typiques de l'acide benzoïque (E210) comme conservateur dans les aliments se situent entre 0,05 et 0,1 %.

Les aliments dans lesquels l'acide benzoïque (E210) peut être utilisé et les limites maximales pour son application sont fixés par la législation alimentaire internationale.
Des inquiétudes ont été exprimées quant au fait que l'acide benzoïque (E210) et ses sels pourraient réagir avec l'acide ascorbique (vitamine C) présent dans certaines boissons gazeuses, formant ainsi de petites quantités de benzène.



RÉACTIONS DE L'ACIDE BENZOÏQUE (E210) :
Les réactions de l'acide benzoïque (E210) peuvent se produire soit au niveau du cycle aromatique, soit au niveau du groupe carboxyle.
Anneau aromatique
Réactions sur les cycles aromatiques de l'acide benzoïque (E210)
La réaction de substitution aromatique électrophile aura lieu principalement en position 3 en raison du groupe carboxylique attracteur d'électrons ; c'est-à-dire que l'acide benzoïque (E210) est méta-directeur.



PROPRIÉTÉS DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est un flocon cristallin blanc, une aiguille, une poudre ou un granulé avec une odeur de benjoin ou de benzaldéhyde.
L'acide benzoïque (E210) est légèrement soluble dans l'eau tout en étant facilement soluble dans l'éther, l'éthanol, le dichlorométhane, l'éther diéthylique et d'autres solvants organiques.
L'acide benzoïque (E210) est un acide faible et a un goût acide qui influencera le goût et le PH des aliments.



FONCTION ET CARACTÉRISTIQUES DE L'ACIDE BENZOÏQUE (E210) :
*L'acide benzoïque (E210) et les benzoates sont utilisés comme conservateurs contre les levures et les champignons dans les produits acides.
*L'acide benzoïque (E210) est peu efficace contre les bactéries et inefficace dans les produits dont le pH est supérieur à 5 (légèrement acide ou neutre).
*Des concentrations élevées donnent un goût aigre, ce qui limite l'application. *Les benzoates sont souvent préférés en raison de leur meilleure solubilité.



BIENFAITS DE L'ACIDE BENZOÏQUE (E210) :
*Production continue et faible saturation.
*Le plus grand fabricant chinois d'acide benzoïque (E210) et de benzoate de sodium.
*L'un des fabricants d'acide benzoïque (E210) les plus anciens en Chine et l'un des rédacteurs de la norme nationale relative aux conservateurs alimentaires, à l'acide benzoïque et au benzoate de sodium.



CERTAINES SOURCES NATURELLES D'ACIDE BENZOÏQUE (E210) COMPRENNENT :
*Fruits : Abricots, pruneaux, baies, canneberges, pêches, kiwi, bananes, pastèque, ananas, oranges
*Épices : Cannelle, clous de girofle, piment de la Jamaïque, poivre de Cayenne, graines de moutarde, thym, curcuma, coriandre
*Légumes : Champignons (champignon), pois mange-tout, concombres, radis, choux, pommes de terre, oignons, ail, épinards
*Noix : Noix de cajou, amandes, pistaches
*Laitiers : Yaourt, fromage, lait
La plupart des fruits, légumes et noix ne contiennent pas plus de 2 milligrammes d'acide benzoïque (E210) par kilogramme, selon une étude approfondie de mai 2017 dans Critical Reviews in Food Science and Nutrition.



PRODUCTION D'ACIDE BENZOÏQUE (E210) :
Préparations industrielles :
L'acide benzoïque (E210) est produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le processus est catalysé par des naphténates de cobalt ou de manganèse.

Le processus utilise des matières premières bon marché, produit un rendement élevé et est considéré comme écologique.
La capacité de production américaine d'acide benzoïque (E210) est estimée à 126 000 tonnes par an (139 000 tonnes), dont une grande partie est consommée au niveau national pour préparer d'autres produits chimiques industriels.



PRÉPARATION HISTORIQUE DE L'ACIDE BENZOÏQUE (E210) :
Le premier procédé industriel impliquait la réaction du benzotrichlorure (trichlorométhylbenzène) avec de l'hydroxyde de calcium dans l'eau, en utilisant du fer ou des sels de fer comme catalyseur.
Le benzoate de calcium obtenu est converti en acide benzoïque (E210) avec de l'acide chlorhydrique.
Le produit contient des quantités importantes de dérivés chlorés de l'acide benzoïque (E210).
C'est pour cette raison que l'acide benzoïque (E210) destiné à la consommation humaine a été obtenu par distillation sèche de la gomme de benjoin.
L'acide benzoïque de qualité alimentaire (E210) est désormais produit de manière synthétique.



COMMENT EST FABRIQUÉ L’ACIDE BENZOÏQUE (E210) ?
Il existe deux types d'acide benzoïque (E210), l'un est la forme naturelle extraite des plantes et peut être utilisé comme arôme avec le FEMA n° 2131.
Un autre est le plus utilisé, obtenu à partir de la synthèse du toluène et nous aimerions ici présenter le bref processus de fabrication de celui-ci.
Autres méthodes

L'acide benzoïque de qualité alimentaire (E210) peut également être fabriqué à partir des deux méthodes suivantes mentionnées par la FDA :
anhydride phtalique fondu avec un catalyseur à base d'oxyde de zinc
hydrolyse du benzotrichlorure
À propos, l'acide benzoïque (E210) peut également être produit à partir de benzoate de sodium avec du HCL.



EXEMPLES DE PRODUITS ALIMENTAIRES ET DE BOISSONS CONTENANT PARFOIS DE L'ACIDE BENZOÏQUE (E210) :
*hareng mariné
*maquereau mariné
*bière
*café
*boissons non alcoolisées
*sauces desserts
*crème de salade
*vinaigrettes
*Confiture
*pulpe
*purées



HISTOIRE DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) a été découvert au XVIe siècle.
La distillation sèche de la gomme de benjoin a été décrite pour la première fois par Nostradamus (1556), puis par Alexius Pedemontanus (1560) et Blaise de Vigenère (1596).

Justus von Liebig et Friedrich Wöhler ont déterminé la structure de l'acide benzoïque (E210) en 1832.
Ils ont également étudié la relation entre l'acide hippurique et l'acide benzoïque (E210).
En 1875, Salkowski découvrit les capacités antifongiques de l'acide benzoïque (E210), longtemps utilisé dans la conservation des fruits contenant du benzoate.



Qu'est-ce que l'acide benzoïque (E210) et en quoi l'acide benzoïque (E210) est-il différent du benzoate de sodium ?
L'acide benzoïque (E210), s'il n'est pas naturellement présent dans les aliments, peut être ajouté pour aider à ajuster le pH d'un produit emballé.
Fondamentalement, l'acide benzoïque (E210) réduit le pH pour le rendre plus acide afin que les levures et les bactéries ne puissent pas se développer et gâcher vos aliments.
L'acide benzoïque (E210) est couramment utilisé depuis environ 100 ans pour la sécurité et la conservation des aliments, selon un rapport plus ancien de septembre 2009 dans « Modern Biopolymer Science ».

Vous pouvez voir l'acide benzoïque (E210) seul, mais vous pouvez également voir le nom « benzoate de sodium », qui est simplement le sel de sodium de l'acide benzoïque avec une structure chimique légèrement différente.
L'acide benzoïque (E210) n'est pas d'origine naturelle, mais cela ne veut pas dire qu'il est nocif.

Le Comité mixte d'experts sur les additifs alimentaires de l'Organisation mondiale de la santé (OMS) a fixé pour la première fois la dose journalière acceptable (DJA) pour l'acide benzoïque (E210) et le benzoate de sodium en 1962.
Ils ont conclu qu'il est sécuritaire de consommer de l'acide benzoïque (E210) en quantités de zéro à 5 milligrammes par kilogramme (2,2 livres) de poids corporel.
Et puis, en 2021, l’OMS a augmenté la DJA d’acide benzoïque (E210) entre zéro et 20 milligrammes par kilogramme (2,2 livres) de poids corporel.



FONCTIONS DE L'ACIDE BENZOÏQUE (E210)
1. Conservateur antimicrobien :
Tue et inhibe activement la croissance des micro-organismes indésirables qui peuvent être nocifs.


2. Antioxydant :
L'acide benzoïque (E210) réduit l'oxydation pour éviter la formation de radicaux libres pouvant être nocifs pour la santé.


3. Conservateur :
L'acide benzoïque (E210) prévient et inhibe la croissance de micro-organismes indésirables qui peuvent être nocifs
L'acide benzoïque (E210) est présent naturellement dans de nombreuses plantes.
L'acide benzoïque (E210) est un composé fongistatique largement utilisé comme conservateur alimentaire (numéro E 210).

Les sels d'acide benzoïque (E210) sont également utilisés comme conservateurs alimentaires qui inhibent la croissance des moisissures, des levures et de certaines bactéries.
L'acide benzoïque (E210) est soit ajouté directement, soit créé à partir de réactions avec son sel de sodium, de potassium ou de calcium.
L'acide benzoïque (E210) est un précurseur important pour la synthèse industrielle de nombreuses autres substances organiques.

Les aliments et boissons acides comme les jus de fruits (acide citrique), les boissons gazeuses (dioxyde de carbone), les boissons gazeuses (acide phosphorique), les cornichons (vinaigre) ou autres aliments acidifiés sont conservés avec de l'acide benzoïque (E210) et des benzoates.
L'acide benzoïque (E210) est approuvé pour être utilisé comme additif alimentaire et conservateur cosmétique dans l'UE.
L'acide benzoïque (E210) est également reconnu comme substance alimentaire sûre aux États-Unis.



PRÉPARATION DE L'ACIDE BENZOÏQUE (E210)
L'acide benzoïque (E210) a d'abord été fabriqué par distillation sèche de colle de benjoin ou par hydrolyse alcaline, mais peut également être fabriqué à partir d'hydrolyse d'acide hippurique.
L'industrie est l'acide benzoïque (E210) en présence de cobalt, catalyseur de manganèse par oxydation à l'air du toluène. Eau ou par anhydride phtalique, décarboxylation.

Méthode au permanganate de potassium a toluène + + eau + hydroxyde de potassium, benzoate de potassium + dioxyde de manganèse + eau (l'eau se trouve devant l'environnement de réaction de l'acide benzoïque (E210)) médicaments et dosage : toluène 1,5 g (1,7 ml, 1,7 mol), potassium permanganate, 5 g (0,032 mole), bromure d'hexadécyl triméthylammonium. Procédé opératoire : 0,1 g avec un ballon à fond rond de 100 ml.
Les dispositifs anti-retour.

Dans le flacon de réaction, ajoutez respectivement 5 g de permanganate de potassium, 0,1 g de bromure d'hexadécyl triméthylammonium, 1,7 ml de toluène et 50 ml d'eau, remuez et faites bouillir (agitation vigoureuse, ébullition violente), maintenez l'ébullition lisse de la solution de réactifs.
Lorsqu'un grand nombre de précipités bruns sont générés, le violet du permanganate de potassium devient peu profond ou disparaît, la couche de toluène disparaît, fin basique de la réaction.

Filtrer le précipité de dioxyde de manganèse, l'acidification acide du filtrat, avec une précipitation épaisse de sel, la précipitation de l'acide benzoïque (E210), le produit brut du filtre d'aspiration.
La recristallisation de l'eau du produit grossier.

L'acide benzoïque (E210) est utilisé dans un bain-marie bouillant pour sécher, peser et mesurer son point de fusion.
Méthode 2 acide benzoïque potassium + acide chlorhydrique concentré, acide benzoïque (E210).




PRODUCTION D'ACIDE BENZOÏQUE (E210)
*Préparations industrielles :
L'acide benzoïque (E210) est produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le processus est catalysé par des naphténates de cobalt ou de manganèse.
Le processus utilise des matériaux abondants et se déroule avec un rendement élevé.


*oxydation du toluène :
Le premier procédé industriel impliquait la réaction du benzotrichlorure (trichlorométhylbenzène) avec de l'hydroxyde de calcium dans l'eau, en utilisant du fer ou des sels de fer comme catalyseur.
Le benzoate de calcium obtenu est converti en acide benzoïque (E210) avec de l'acide chlorhydrique.

Le produit contient des quantités importantes de dérivés chlorés de l'acide benzoïque (E210).
C'est pour cette raison que l'acide benzoïque (E210) destiné à la consommation humaine a été obtenu par distillation sèche de la gomme de benjoin.
L'acide benzoïque de qualité alimentaire (E210) est désormais produit de manière synthétique.


*Synthèse en laboratoire :
L'acide benzoïque (E210) est bon marché et facilement disponible, c'est pourquoi la synthèse en laboratoire de l'acide benzoïque est principalement pratiquée pour sa valeur pédagogique.
L'acide benzoïque (E210) est une préparation courante de premier cycle.

L'acide benzoïque (E210) peut être purifié par recristallisation dans l'eau en raison de sa haute solubilité dans l'eau chaude et de sa faible solubilité dans l'eau froide.
L’absence de solvants organiques pour la recristallisation rend cette expérience particulièrement sûre.
Ce procédé donne habituellement un rendement d'environ 65 %.


*Par hydrolyse :
Comme les autres nitriles et amides, le benzonitrile et le benzamide peuvent être hydrolysés en acide benzoïque (E210) ou en sa base conjuguée dans des conditions acides ou basiques.


*Du réactif de Grignard :
Le bromobenzène peut être converti en acide benzoïque (E210) par « carboxylation » du bromure de phénylmagnésium intermédiaire.
Cette synthèse offre un exercice pratique aux étudiants pour réaliser une réaction de Grignard, une classe importante de réaction de formation de liaison carbone-carbone en chimie organique.


*Oxydation des composés benzyliques :
L'alcool benzylique, le chlorure de benzyle et pratiquement tous les dérivés benzyliques sont facilement oxydés en acide benzoïque (E210).


*Du benzaldéhyde :
La dismutation du benzaldéhyde induite par une base, la réaction de Cannizzaro, fournit des quantités égales de benzoate et d'alcool benzylique ; ces derniers peuvent être éliminés par distillation.


*Du bromobenzène :
Le bromobenzène peut être converti en acide benzoïque (E210) par « carboxylation » du bromure de phénylmagnésium intermédiaire.
Cette synthèse offre un exercice pratique aux étudiants pour réaliser une réaction de Grignard, une classe importante de réaction de formation de liaison carbone-carbone en chimie organique.


*De l'alcool benzylique :
L'alcool benzylique est chauffé au reflux avec du permanganate de potassium ou d'autres réactifs oxydants dans l'eau.
Le mélange est filtré à chaud pour éliminer le dioxyde de manganèse, puis laissé refroidir pour donner de l'acide benzoïque (E210).


*À partir du chlorure de benzyle :
L'acide benzoïque (E210) peut être préparé par oxydation du chlorure de benzyle en présence de KMnO4 alcalin :
C6H5CH2Cl + 2 KOH + 2 [O] → C6H5COOH + KCl + H2O



HISTOIRE DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) a été découvert au XVIe siècle.
La distillation sèche de la gomme de benjoin a été décrite pour la première fois par Nostradamus (1556), puis par Alexius Pedemontanus (1560) et Blaise de Vigenère (1596).

Justus von Liebig et Friedrich Wöhler ont déterminé la composition de l'acide benzoïque (E210).
Ces derniers ont également étudié la relation entre l'acide hippurique et l'acide benzoïque (E210).

En 1875, Salkowski découvrit les propriétés antifongiques de l'acide benzoïque (E210), longtemps utilisé dans la conservation des fruits de chicouté contenant du benzoate.



SOURCE D'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) peut être créé en le dérivant de sources naturelles.
Cependant, commercialement, l'acide benzoïque (E210) est généralement créé synthétiquement par oxydation en phase liquide du toluène (qui est un produit issu du traitement pétrochimique).



FABRICATION D'ACIDE BENZOÏQUE (E210) :
L'additif est produit en utilisant l'oxydation en phase liquide de l'ingrédient d'origine tout en étant également exposé à l'oxygène et à un catalyseur au cobalt.
Ensuite, la sublimation, la recristallisation et la neutralisation (ainsi que d'autres processus) peuvent être appliquées pour purifier l'acide benzoïque (E210) de tout sous-produit potentiel ayant pu survenir au cours du processus de fabrication (ces sous-produits comprennent généralement le benzoate de benzyle). , Benzaldéhyde, Alcool benzylique, Acide formique, Acide acétique).



Dose journalière admissible en acide benzoïque (E210) :
Il est recommandé de ne pas utiliser l'acide benzoïque (E210) en quantités supérieures à 5 milligrammes par kilogramme de poids corporel par jour.



BIENFAITS DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) peut aider à lutter contre la dépression majeure, les troubles paniques et d'autres problèmes mentaux.
L'acide benzoïque (E210) présente divers avantages lorsqu'il est appliqué directement sur la peau.



BIOLOGIE ET EFFETS SUR LA SANTÉ DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est présent naturellement, tout comme ses esters, dans de nombreuses espèces végétales et animales.
Des quantités appréciables se retrouvent dans la plupart des baies (environ 0,05 %).
Les fruits mûrs de plusieurs espèces de Vaccinium (par exemple, la canneberge, V. vitis macrocarpon ; la myrtille, V. myrtillus) contiennent jusqu'à 0,03 à 0,13 % d'acide benzoïque libre (E210).

L'acide benzoïque (E210) se forme également dans les pommes après une infection par le champignon Nectria galligena.
Parmi les animaux, l'acide benzoïque (E210) a été identifié principalement chez les espèces omnivores ou phytophages, par exemple dans les viscères et les muscles du lagopède alpin (Lagopus muta), ainsi que dans les sécrétions glandulaires du bœuf musqué mâle (Ovibos moschatus) ou des éléphants mâles d'Asie ( Elephas Maximus).
La gomme de benjoin contient jusqu'à 20 % d'acide benzoïque (E210) et 40 % d'esters d'acide benzoïque.



CHIMIE DE L'ACIDE BENZOÏQUE (E210) :
Les réactions de l'acide benzoïque (E210) peuvent se produire soit au niveau du cycle aromatique, soit au niveau du groupe carboxylique :

*Anneau aromatique
La réaction de substitution aromatique électrophile aura lieu principalement en position 3 par rapport au groupe carboxylique attracteur d’électrons.
La deuxième réaction de substitution (à droite) est plus lente car le premier groupe nitro se désactive.

À l'inverse, si un groupe activateur (donneur d'électrons) était introduit (par exemple, alkyle), une deuxième réaction de substitution se produirait plus facilement que la première et le produit disubstitué pourrait ne pas s'accumuler de manière significative.


*Groupe carboxylique
Toutes les réactions mentionnées pour les acides carboxyliques sont également possibles pour l'acide benzoïque (E210).
Les esters d’acide benzoïque (E210) sont le produit de la réaction catalysée par l’acide avec des alcools.

Les amides de l'acide benzoïque (E210) sont plus facilement disponibles en utilisant des dérivés d'acide activés (tels que le chlorure de benzoyle) ou en couplant des réactifs utilisés dans la synthèse peptidique comme le DCC et le DMAP.

L'anhydride benzoïque le plus actif est formé par déshydratation à l'aide d'anhydride acétique ou de pentoxyde de phosphore.
Les dérivés d'acides hautement réactifs tels que les halogénures d'acide sont facilement obtenus en les mélangeant avec des agents d'halogénation comme les chlorures de phosphore ou le chlorure de thionyle.
Les orthoesters peuvent être obtenus par réaction d'alcools dans des conditions acides et sans eau avec du benzonitrile.

La réduction en benzaldéhyde et en alcool benzylique est possible en utilisant DIBAL-H, LiAlH4 ou le borohydrure de sodium.
La décarboxylation du benzoate en benzène, catalysée par le cuivre, peut être effectuée par chauffage dans de la quinoléine.
En outre, la décoarboxylation de Hunsdiecker peut être obtenue en formant le sel d'argent et en chauffant.



FONCTIONS ET APPLICATIONS DE L'ACIDE BENZOÏQUE (E210) :
Dans l'industrie alimentaire, l'acide benzoïque (E210) et le benzoate de sodium peuvent être utilisés comme conservateurs pour la sauce soja, les cornichons, le cidre de pomme, les jus de fruits, les aliments pour animaux, etc.
Dans les médicaments, les cosmétiques, les dentifrices, les poudres parfumées, les feuilles de tabac, etc., l'acide benzoïque (E210) et le benzoate de sodium sont également utilisés comme conservateurs.



HISTOIRE DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) a été découvert au XVIe siècle.
La distillation sèche de la gomme de benjoin a été décrite pour la première fois par Nostradamus (1556), puis par Alexius Pedemontanus (1560) et Blaise de Vigenère (1596).

Un travail pionnier en 1830 à travers diverses expériences basées sur l'amygdaline, obtenue à partir de l'huile d'amandes amères (le fruit de Prunus dulcis) par Pierre Robiquet et Antoine Boutron-Charlard, deux chimistes français, avait produit du benzaldéhyde mais ils n'ont pas réussi à élaborer une interprétation appropriée. de la structure de l'amygdaline qui expliquerait l'acide benzoïque (E210), et a ainsi raté l'identification du radical benzoyle C7H5O.

Cette dernière étape fut franchie quelques mois plus tard (1832) par Justus von Liebig et Friedrich Wöhler, qui déterminèrent la composition de l'acide benzoïque (E210).
Ces derniers ont également étudié la relation entre l'acide hippurique et l'acide benzoïque (E210).
En 1875, Salkowski découvrit les capacités antifongiques de l'acide benzoïque (E210), longtemps utilisé dans la conservation des fruits de chicouté contenant du benzoate.

L'acide benzoïque (E210) est également l'un des composés chimiques présents dans le castoréum.
L'acide benzoïque (E210) est extrait des sacs de ricin du castor d'Amérique du Nord.



MÉDICINAL D'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est un constituant de la pommade Whitfield qui est utilisée pour le traitement des maladies fongiques de la peau telles que la teigne, la teigne et le pied d'athlète.



PURIFICATION DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est purifié par recristallisation du produit brut.
Cela implique de dissoudre le matériau et de permettre à l'acide benzoïque (E210) de recristalliser (ou de se resolidifier), laissant toutes les impuretés en solution et permettant au matériau pur d'être isolé de la solution.



SYNTHÈSE DE L'ACIDE BENZOÏQUE (E210) :
L'acide benzoïque (E210) est utilisé pour fabriquer un grand nombre de produits chimiques, dont les exemples importants sont :
Le chlorure de benzoyle, C6H5C(O)Cl, est obtenu par traitement du benzoïque avec du chlorure de thionyle, du phosgène ou l'un des chlorures de phosphore.

Le C6H5C(O)Cl est une matière première importante pour plusieurs dérivés de l'acide benzoïque (E210) comme le benzoate de benzyle, qui est utilisé comme arômes artificiels et répulsifs contre les insectes.

Le peroxyde de benzoyle, [C6H5C(O)O]2, est obtenu par traitement au peroxyde.
Le peroxyde est un initiateur de radicaux dans les réactions de polymérisation et également un composant des produits cosmétiques.

Les plastifiants benzoates, tels que les esters de glycol, de diéthylèneglycol et de triéthylèneglycol, sont obtenus par transestérification du benzoate de méthyle avec le diol correspondant.

Alternativement, ces espèces apparaissent par traitement du chlorure de benzoyle avec le diol.
Ces plastifiants sont utilisés de manière similaire à ceux dérivés de l'ester de l'acide téréphtalique.

Le phénol, C6H5OH, est obtenu par décarboxylation oxydative à 300-400°C.
La température requise peut être abaissée à 200°C par l'ajout de quantités catalytiques de sels de cuivre(II).
Le phénol peut être converti en cyclohexanol, qui est une matière première pour la synthèse du nylon.



PRÉPARATION HISTORIQUE DE L'ACIDE BENZOÏQUE (E210) :
Le premier procédé industriel impliquait la réaction du benzotrichlorure (trichlorométhylbenzène) avec de l'hydroxyde de calcium dans l'eau, en utilisant du fer ou des sels de fer comme catalyseur.
Le benzoate de calcium obtenu est converti en acide benzoïque (E210) avec de l'acide chlorhydrique.

Le produit contient des quantités importantes de dérivés chlorés de l'acide benzoïque (E210).
C'est pour cette raison que l'acide benzoïque (E210) destiné à la consommation humaine a été obtenu par distillation sèche de la gomme de benjoin.
L'acide benzoïque de qualité alimentaire (E210) est désormais produit de manière synthétique.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE BENZOÏQUE (E210) :
Numéro CAS : 65-85-0
Poids moléculaire : 122,12
Beilstein: 636131
Numéro CE : 200-618-2
Numéro MDL : MFCD00002398
Aspect : Flocons blancs ou jaunâtres
Formule chimique : C7H6O2
Masse molaire : 122,123 g/mol
Aspect : Solide cristallin incolore
Odeur : Odeur légère et agréable
Densité : 1,2659 g/cm3 (15 °C)
1,0749 g/cm3 (130 °C)
Point de fusion : 122 °C (252 °F ; 395 K)
Point d'ébullition : 250 °C (482 °F ; 523 K)
Solubilité dans l'eau : 1,7 g/L (0 °C)
2,7 g/L (18 °C)
3,44 g/L (25 °C)
5,51 g/L (40 °C)
21,45 g/L (75 °C)
56,31 g/L (100 °C)

Solubilité : Soluble dans l'acétone, le benzène, CCl4, CHCl3, l'alcool,
éther éthylique, hexane, phényles, ammoniac liquide, acétates
Solubilité dans le méthanol : 30 g/100 g (−18 °C)
32,1 g/100 g (−13 °C)
71,5 g/100 g (23 °C)
Solubilité dans l'éthanol : 25,4 g/100 g (−18 °C)
47,1 g/100 g (15 °C)
52,4 g/100 g (19,2 °C)
55,9 g/100 g (23 °C)
Solubilité dans l'acétone : 54,2 g/100 g (20 °C)
Solubilité dans l'huile d'olive : 4,22 g/100 g (25 °C)
Solubilité dans le 1,4-dioxane : 55,3 g/100 g (25 °C)
log P : 1,87
Pression de vapeur : 0,16 Pa (25 °C)
0,19 kPa (100 °C)
22,6 kPa (200 °C)

Acidité : (pKa)
4,202 (H2O)
11.02 (DMSO)
Susceptibilité magnétique (χ) : −70,28•10−6 cm3/mol
Indice de réfraction (nD) : 1,5397 (20 °C)
1,504 (132 °C)
Viscosité : 1,26 mPa (130 °C)
Structure:
Structure cristalline : Monoclinique
Forme moléculaire : Planaire
Moment dipolaire : 1,72 D dans le dioxane
Thermochimie:
Capacité thermique (C) : 146,7 J/mol•K[4]
Entropie molaire standard (S ⦵ 298) : 167,6 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −385,2 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : −3228 kJ/mol

État physique : cristallin
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 121 - 125 °C - allumé.
Point d'ébullition initial et plage d'ébullition : 249 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Aucune donnée disponible
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : 2,8 à 25 °C
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible

Coefficient de partage : n-octanol/eau :
log Pow: 1,88 - Aucune bioaccumulation n'est attendue.
Pression de vapeur : Aucune donnée disponible
Densité : 1,26 g/cm3 à 15 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité :
Tension superficielle : 67,5 mN/m à 1g/l à 20 °C
Densité de vapeur relative : 4,22 - (Air = 1,0)
Perte au séchage : ≤0,5 % après trois heures de séchage sur acide sulfurique
Plage de fusion : 121,5-123,5°C
PH : environ 4 (solution dans l’eau)
Aspect de la solution : Clarification, incolore
Durée de conservation : 2 ans



PREMIERS SECOURS ACIDE BENZOÏQUE (E210) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE BENZOÏQUE (E210) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE BENZOÏQUE (E210) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE BENZOÏQUE (E210) :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE BENZOÏQUE (E210) :
Précautions à prendre pour une manipulation sans danger:
*Conseils pour une manipulation sécuritaire :
Travaillez sous une capuche.
*Mesures d'hygiène:
Changez immédiatement les vêtements contaminés.
Appliquer une protection cutanée préventive.
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conditions de stockage:
Hermétiquement fermé.
Sec.
Conserver dans un endroit bien aéré.
Conserver sous clé ou dans un endroit accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE BENZOÏQUE (E210) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible
-Matériaux incompatibles :
Pas de données disponibles


ACIDE BORIQUE (ACIDE ORTHO BORIQUE)
L'acide borique (acide orthoborique) a un rôle astringent.
L'acide borique (acide orthoborique) est un acide conjugué d'un dihydrogénborate.
L'acide borique (acide orthoborique) a la formule chimique H3BO3, parfois écrite B(OH)3.


Numéro CAS : 10043-35-3
Numéro CE : 233-139-2
Numéro MDL : MFCD00011337
Numéro E : E284 (conservateurs)
Formule chimique : BH3O3
Formule moléculaire : BH3O3 / H3BO3 / B(OH)3



SYNONYMES :
Acide borique, Acide orthoborique, Acide borique, Sassolite, Borofax, Trihydroxyborane, Boranetriol, Borate d'hydrogène, Acidum boricum, ACIDE BORIQUE, Acide orthoborique, 10043-35-3, Acide boracique, Borofax, Hydroxyde de bore, Trihydroxyde de bore, Acide borique (H3BO3 ), Basilit B, Acide borique (BH3O3), 11113-50-1, Trihydroxyborone, Orthoborsaeure, Borsaeure, Borsaure, Trihydroxyborane, Acide orthoborique (B(OH)3), Optibor, Acidum boricum, NCI-C56417, composant d'Aci- Jel, acide borique (VAN), Bluboro, Boricum acidum, Caswell No. 109, trihydroxydoboron, flocons d'acide borique, B(OH)3, CCRIS 855, NSC 81726, HSDB 1432, acide orthoborique (H3BO3), EINECS 233-139- 2, UNII-R57ZHV85D4, MFCD00011337, NSC-81726, acide borique (TN), code chimique des pesticides EPA 011001, INS NO.284, R57ZHV85D4, CHEBI:33118, AI3-02406, INS-284, (10B) Acide orthoborique, borique acide (h(sub 3)bo(sub 3)), H3BO3, DTXSID1020194, E-284, EC 233-139-2, [B(OH)3], NSC81726, NCGC00090745-02, ACIDE BORIQUE (II), BORIQUE ACIDE [II], acide orthoborique, ACIDE BORIQUE (MART.), ACIDE BORIQUE [MART.], ACIDE BORIQUE (USP-RS), ACIDE BORIQUE [USP-RS], DTXCID10194, ACIDE BORIQUE (impureté EP), ACIDE BORIQUE [ IMPURETÉ EP], ACIDE BORIQUE (MONOGRAPHIE EP), ACIDE BORIQUE [MONOGRAPHIE EP], (B(OH)3), acide ortho-borique, acide borique [USAN:JAN], orthoborate d'hydrogène, BO3, CAS-10043-35- 3, Acide borique [JAN:NF], ACIDE BORIQUE, ACS, Canagyn, acido borico, Orthoborc acd, The Killer, Acide borique, V-Bella, HYLAFEM, Bluboro (sel/mélange), antifongique homéopathique, acide borique de qualité ACS, GYNOX-SOFT, Acide borique, Puratronic ?, WLN : QBQQ, ACIDE BORIQUE [MI], Acide borique, réactif ACS, ACIDE BORIQUE [JAN], Heptaoxotetra-Borate(2-), bmse000941, Acide borique (JP15/NF), Acide borique (JP17/NF), ACIDE BORIQUE [INCI], Acidum boricum (Sel/Mélange), ACIDE BORIQUE [VANDF], Acide borique, qualité NF/USP, ACIDE BORIQUE [WHO-DD], Acide borique, qualité biochimique, BIDD : ER0252, acide borique, BORICUM ACIDUM [HPUS], CHEMBL42403, ACIDE BORIQUE (B(OH)3), qualité d'électrophorèse d'acide borique, collyre oculaire (sel/mélange), HYLAFEMBORICUM ACIDUM 3X, BDBM39817, KGBXLFKZBHKPEV-UHFFFAOYSA-, Acide borique, 99,9% base de métaux, BCP21018, Acide borique, 99,99% base de métaux, Acide borique, BioXtra, >=99,5%, EINECS 237-478-7, Tox21_111004, Tox21_202185, Tox21_301000, 1332-77-0 (di-potassium sel), MFCD00151271, acide borique, base de métaux à 99,998 %, AKOS015833571, acide borique, réactif ACS, >=99,5 %, DB11326, code pesticide USEPA/OPP : 011001, acide borique, base de métaux traces à 99,97 %, acide borique, USP, 99,5-100,5 %, NCGC00090745-01, NCGC00090745-03, NCGC00090745-04, NCGC00090745-05, NCGC00254902-01, NCGC00259734-01, acide borique, ReagentPlus(R), >=99,5 %, BP-13473, SY319258, Acide borique , 99,999 % de base de métaux traces, acide borique, première qualité SAJ, >=99,5 %, acide borique, pour électrophorèse, >=99,5 %, acide borique, qualité spéciale JIS, >=99,5 %, acide borique, réactif Vetec(TM) grade, 98 %, InChI=1/BH3O3/c2-1(3)4/h2-4H, NS00013411, Acide borique, comprimé, 1 g d'acide borique par comprimé, D01089, A800201, Q187045, J-000132, J-523836 , Acide borique, >=99,5%, adapté à l'analyse des acides aminés, Acide borique, NIST(R) SRM(R) 951a, étalon isotopique, Acide borique, NIST(R) SRM(R) 973, étalon acidimétrique, Acide borique, BioUltra, pour la biologie moléculaire, >=99,5 % (T), acide borique, étalon de référence de la Pharmacopée des États-Unis (USP), acide borique, test de culture cellulaire, test de culture de cellules végétales, >=99,5 %, acide borique, certification de performance biotechnologique, >=99,5 % (titration), culture cellulaire testée, acide borique, pa, réactif ACS, reag. ISO, reag. Ph. Eur., 99,5-100,5%, Acide borique, BioReagent, pour la biologie moléculaire, adapté à la culture cellulaire, adapté à la culture de cellules végétales, >=99,5%, Acide borique, puriss. pa, réactif ACS, reag. ISO, reag. Ph. Eur., substance tampon, >=99,8%, acide borique, puriss., répond aux spécifications analytiques de la Ph. Eur., BP, NF, 99,5-100,5%, poudre, acide orthoborique, acide boracique, borofax, hydroxyde de bore, trihydroxyde de bore, basilit b, trihydroxyborone, h3bo3, puce, 11113-50-1, acide borique, acide boracique, acide orthoborique, H3-BO3, acide boracique, acide borique (BH3O3), acide borique (H3BO3), Borofax, bore hydroxyde, trihydroxyde de bore, NCI-C56417, acide orthoborique (B(OH)3), Borsaure, B(OH)3, Basilit B,



L'acide borique (acide orthoborique) est un matériau précurseur d'autres composés du bore.
Le mélange d’acide borique (acide orthoborique) et d’huile de silicone est utile dans la production de mastic idiot.
Acide borique (acide orthoborique) également connu sous le nom de borate d'hydrogène, acide boracique, acide orthoborique et acidum boricum.


Le plus souvent, l’acide borique (acide orthoborique) est utilisé comme antiseptique, insecticide, ignifuge, absorbeur de neutrons et précurseur d’autres produits chimiques.
L'acide borique (acide orthoborique) se présente sous forme de cristaux incolores ou de poudre blanche qui se dissout dans l'eau.
L'acide borique (acide orthoborique) est également présent en combinaison avec d'autres minéraux tels que le borax et la boracite.


Dans son état minéral, l’acide borique (acide orthoborique) est connu sous le nom de sasolit.
L'acide borique (acide orthoborique) est un hydrate d'oxyde borique faiblement acide doté de légères propriétés antiseptiques, antifongiques et antivirales.
L'acide borique (acide orthoborique) est une poudre blanche amorphe ou un solide cristallin incolore.


L'acide borique (acide orthoborique) est soluble dans l'eau ; solubilité = 4,7 g/100 ml à 20 ℃ .
L'acide borique (acide orthoborique) a de multiples utilisations dans plusieurs industries, parmi lesquelles les industries pharmaceutique, du verre, de la céramique et des cosmétiques.
L'acide borique (acide orthoborique), également connu sous le nom d'acide orthoborique ou borate d'hydrogène, est un composé chimique qui peut être produit par une série de réactions chimiques.


Une méthode courante pour sa production implique la réaction entre le borax (borate de sodium) et l'acide sulfurique, ce qui donne de l'acide borique (acide orthoborique) comme produit souhaité et du sulfate de sodium (Na2SO4) comme sous-produit.
L'acide borique (acide orthoborique) fait partie des acides boriques.


L'acide borique (acide orthoborique) a un rôle astringent.
L'acide borique (acide orthoborique) est un acide conjugué d'un dihydrogénborate.
L'acide borique (acide orthoborique) et ses sels de borate de sodium sont des pesticides que l'on peut trouver dans la nature et dans de nombreux produits.


L'acide borique (acide orthoborique) et ses sels de sodium combinent chacun le bore avec d'autres éléments de manière différente.
En général, leurs toxicités dépendent chacune de la quantité de bore qu’ils contiennent.
L'acide borique (acide orthoborique) et ses sels de sodium peuvent être utilisés pour lutter contre une grande variété de ravageurs.


Ceux-ci comprennent les insectes, les araignées, les acariens, les algues, les moisissures, les champignons et les mauvaises herbes.
Les produits contenant de l'acide borique (acide orthoborique) sont homologués aux États-Unis depuis 1948.
L'acide borique (acide orthoborique), également appelé borate d'hydrogène, acide boracique, acide orthoborique et acidum boricum, est un acide de Lewis monobasique faible de bore, qui est souvent utilisé comme antiseptique, insecticide, ignifuge, absorbeur de neutrons ou précurseur. à d’autres composés chimiques.


L'acide borique (acide orthoborique) a la formule chimique H3BO3 (parfois écrite B(OH)3) et existe sous forme de cristaux incolores ou de poudre blanche qui se dissout dans l'eau.
Lorsqu’il se présente sous forme minérale, l’acide borique (acide orthoborique) est appelé sassolite.


L'acide borique (acide orthoborique), également appelé acide boracique ou acide orthoborique ou acidum boricum, est un acide faible souvent utilisé comme antiseptique, insecticide, ignifuge, dans les centrales nucléaires pour contrôler le taux de fission de l'uranium et comme précurseur. d'autres composés chimiques.
L'acide borique (acide orthoborique) existe sous forme de cristaux incolores ou de poudre blanche et se dissout dans l'eau.


L'acide borique (acide orthoborique) a la formule chimique H3BO3, parfois écrite B(OH)3.
Lorsqu’il se présente sous forme minérale, l’acide borique (acide orthoborique) est appelé sassolite.
L'acide borique (acide orthoborique) est un insecticide qui fonctionne bien dans les fissures et les crevasses.


L'acide borique (acide orthoborique) est un composé inorganique qui est un acide de Lewis monobasique faible du bore.
Bien que dans certaines réactions chimiques, il agisse comme un acide tribasique.
L'acide borique (acide orthoborique) est également connu sous le nom de borate d'hydrogène, d'acide boracique et d'acide orthoborique.


Le nom IUPAC de l’acide borique (acide orthoborique) est trihydrooxidoboron.
Lorsque l’acide borique (acide orthoborique) est présent sous forme minérale dans la nature, on l’appelle sassolite.
L'acide borique (acide orthoborique) est un solide cristallin à température ambiante.


L'acide borique (acide orthoborique) est un constituant de nombreux minéraux naturels tels que le borax, la boracite, l'ulexite et la colémanite.
Les sels de l'acide borique (acide orthoborique) se trouvent dans l'eau de mer.
L'acide borique (acide orthoborique) se trouve également dans tous les fruits et dans de nombreuses plantes.


Wilhelm Homberg a préparé pour la première fois des cristaux d'acide borique (acide orthoborique) en 1702.
Il lui donna le nom de sal sedativum Hombergi (sel sédatif de Homberg).
Bien que les composés d’acide borique (acide orthoborique) soient utilisés depuis l’époque des Grecs anciens pour le nettoyage, la conservation des aliments et d’autres activités.


L'acide borique (acide orthoborique), également connu sous le nom d'acide boracique ou d'acide orthoborique, est un composé naturel contenant les éléments bore, oxygène et hydrogène (H3BO3).
Les cristaux d’acide borique (acide orthoborique) sont blancs, inodores et presque insipides.


L'acide borique (acide orthoborique) ressemble à du sel de table fin sous forme granulaire ou à de la poudre pour bébé sous forme de poudre.
Les borates, terme général associé aux minéraux contenant du bore tels que le borax et l'acide borique (acide orthoborique), proviennent le plus souvent des lits de lacs salés séchés des déserts ou des zones arides (telles que la Vallée de la Mort, en Californie, en Turquie et en Chine) ou d'autres zones géographiques. régions qui exposent des gisements similaires (comme les Andes en Amérique du Sud).


L'acide borique (acide orthoborique) est un composé chimique contenant du bore, de l'hydrogène et de l'oxygène.
L'acide borique (acide orthoborique) est un acide doux.
L'acide borique (acide orthoborique) existe sous forme de cristaux incolores ou de poudre blanche et se dissout dans l'eau.


L'acide borique (acide orthoborique) est un acide de Lewis monobasique faible de bore.
L'acide borique (acide orthoborique) est une poudre inodore et naturelle sous sa forme originale.
L'acide borique (acide orthoborique) est très populaire et largement utilisé comme alternative sûre aux insecticides chimiques pour lutter contre les ravageurs dans de nombreuses régions du monde.


L'acide borique (acide orthoborique) se trouve principalement à l'état libre dans certaines zones volcaniques.
L'acide borique (acide orthoborique) est également présent comme constituant de nombreux minéraux naturels tels que la boracite, le borax, la colémanite et l'ulexite (boronatrocalcite).


Alternativement, l’acide borique (acide orthoborique) et ses sels se trouvent dans l’eau de mer.
L'acide borique (acide orthoborique) est également présent dans différents types de fruits.
La première synthèse de l'acide borique (acide orthoborique) a été réalisée par Wilhelm Homberg.


Il a utilisé du borax et, sous l'action d'acides minéraux, a synthétisé le composé.
Il est intéressant de noter que si vous regardez l’histoire, vous remarquerez l’utilisation de borates et d’acide borique (acide orthoborique) par les anciens Grecs.
L'acide borique (acide orthoborique), également appelé borate d'hydrogène, acide boracique, acide orthoborique ou acidum boricum, est un acide faible de bore souvent utilisé comme antiseptique, insecticide, ignifuge ou absorbeur de neutrons, et précurseur d'autres composés chimiques. .


La formule chimique de l'acide borique (acide orthoborique) est H3BO3.
L'acide borique (acide orthoborique) existe sous forme de cristaux incolores ou de poudre blanche et se dissout dans l'eau.
Lorsqu’il se présente sous forme minérale, l’acide borique (acide orthoborique) est appelé sassolite.


L'acide borique (acide orthoborique) se trouve sous sa forme native dans certaines régions volcaniques comme la Toscane, les îles Lipari et le Nevada.
L'acide borique (acide orthoborique) est généralement mélangé à la vapeur provenant des fissures du sol et se trouve également comme constituant de nombreux minéraux (borax, boracite, borontrocaïcite et colémanite).


La présence d'acide borique (acide orthoborique) et de ses sels a été constatée dans l'eau de mer.
L'acide borique (acide orthoborique) existe également dans les plantes et surtout dans presque tous les fruits.
L'acide borique (acide orthoborique), également connu sous le nom de borate d'hydrogène, est un acide de Lewis monobasique faible de bore de formule chimique H3BO3.


L'acide borique (acide orthoborique) est connu pour présenter une certaine activité antibactérienne contre des infections telles que la vaginose bactérienne et la candidose.
L'acide borique (acide orthoborique) est un acide de Lewis monobasique de formule chimique H3BO3.
L'acide borique (acide orthoborique) est un composé acide contenant du bore, de l'oxygène et de l'hydrogène.


L'acide borique (acide orthoborique) est également connu sous le nom d'acidum boricum, d'hydrogène borate, d'acide boracique et d'acide orthoborique.
L'acide borique (acide orthoborique) est un acide faible et possède des propriétés antivirales, antifongiques et antiseptiques.
L'acide borique (acide orthoborique) est soluble dans l'eau et n'a aucune odeur caractéristique.


Dans des conditions standard, l’acide borique (acide orthoborique) existe soit sous forme de cristal incolore, soit sous forme de poudre blanche.
L'acide borique (acide orthoborique) peut être préparé en faisant réagir du borax avec de l'acide chlorhydrique.
On peut noter que Wilhelm Homberg fut le premier à préparer de l'acide borique (acide orthoborique) à partir du borax.


L'acide borique (acide orthoborique) est un solide blanc inodore.
Le point de fusion de l’acide borique (acide orthoborique) est de 171 °C.
L'acide borique (acide orthoborique) coule et se mélange à l'eau.


L'acide borique (acide orthoborique) a un rôle astringent.
L'acide borique (acide orthoborique) est un acide conjugué d'un dihydrogénborate.
L'acide borique (acide orthoborique), également connu sous le nom de borate d'hydrogène, est un acide de Lewis monobasique faible de bore de formule chimique H3BO3.


L'acide borique (acide orthoborique) est généralement utilisé dans la transformation et la fabrication industrielles, mais est également utilisé comme additif dans les produits pharmaceutiques, les cosmétiques, les lotions, les savons, les bains de bouche, les dentifrices, les astringents et les collyres.
L'acide borique (acide orthoborique) est connu pour présenter une certaine activité antibactérienne contre des infections telles que la vaginose bactérienne et la candidose.


L'acide borique (acide orthoborique) est un produit naturel présent dans Caenorhabditis elegans avec des données disponibles.
L'acide borique (acide orthoborique) est un hydrate d'oxyde borique faiblement acide doté de légères propriétés antiseptiques, antifongiques et antivirales.
Le mécanisme d’action exact de l’acide borique (acide orthoborique) est inconnu ; généralement cytotoxique pour toutes les cellules.


L'acide borique (acide orthoborique), également appelé borate d'hydrogène, acide boracique, acide orthoborique, est un acide faible de bore souvent utilisé comme antiseptique, insecticide, ignifuge, absorbeur de neutrons ou précurseur d'autres composés chimiques.
L'acide borique (acide orthoborique) a la formule chimique H3BO3 (parfois écrite B(OH)3) et existe sous forme de cristaux incolores ou de poudre blanche qui se dissout dans l'eau.


Lorsqu’il se présente sous forme minérale, l’acide borique (acide orthoborique) est appelé sassolite.
Le borate est un contaminant alimentaire dérivé du papier et du carton en contact avec les aliments.
L'acide borique (acide orthoborique) a une utilisation limitée comme agent antibactérien dans le caviar.


L'acide borique (acide orthoborique), plus précisément l'acide orthoborique, est un composé de bore, d'oxygène et d'hydrogène de formule B(OH)3.
L'acide borique (acide orthoborique) peut également être appelé orthoborate d'hydrogène, trihydroxydoboron ou acide boracique.
L'acide borique (acide orthoborique) est un acide faible et possède des propriétés antivirales, antifongiques et antiseptiques.


L'acide borique (acide orthoborique) se présente généralement sous forme de cristaux incolores ou de poudre blanche, qui se dissout dans l'eau et se présente dans la nature sous forme de sassolite minérale.
L'acide borique (acide orthoborique) est un acide faible qui produit divers anions et sels de borate et peut réagir avec des alcools pour former des esters de borate.



UTILISATIONS et APPLICATIONS de l’ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
La principale utilisation industrielle de l'acide borique (acide orthoborique) est la fabrication de fibre de verre monofilament, généralement appelée fibre de verre textile.
La fibre de verre textile est utilisée pour renforcer les plastiques dans des applications allant des bateaux aux canalisations industrielles en passant par les circuits imprimés informatiques.
L'acide borique (acide orthoborique) est utilisé comme poison nucléaire dans les réacteurs nucléaires modernes de type REP, car il réduit le processus de fission en réduisant le flux de neutrons.


L'acide borique (acide orthoborique) est utilisé dans l'eau de refroidissement du réacteur nucléaire PWR pour contrôler la puissance du réacteur ainsi que pour effectuer un arrêt d'urgence du réacteur.
Dans l'industrie de la bijouterie, l'acide borique (acide orthoborique) est souvent utilisé en combinaison avec de l'alcool dénaturé pour réduire l'oxydation de la surface et donc la formation de calamine sur les métaux lors des opérations de recuit et de brasage.


L'acide borique (acide orthoborique) est utilisé dans la production du verre des écrans plats LCD.
En galvanoplastie, l’acide borique (acide orthoborique) est utilisé dans certaines formules exclusives.
Une de ces formules connues nécessite un rapport d'environ 1 à 10 de H3BO3 à NiSO4, une très petite portion de laurylsulfate de sodium et une petite portion de H2SO4.


La solution d'acide borique (acide orthoborique) et de borax dans un rapport 4:5 est utilisée comme agent ignifuge du bois par imprégnation.
L'acide borique (acide orthoborique) est également utilisé dans la fabrication de masse de pilonnage, une fine poudre contenant de la silice utilisée pour produire des revêtements de fours à induction et des céramiques.


L'acide borique (acide orthoborique) est ajouté au borax pour être utilisé comme flux de soudage par les forgerons.
L'acide borique (acide orthoborique), en combinaison avec de l'alcool polyvinylique (PVA) ou de l'huile de silicone, est utilisé pour fabriquer du Silly Putty.
L'acide borique (acide orthoborique) est également présent dans la liste des additifs chimiques utilisés pour la fracturation hydraulique (fracking) dans les schistes de Marcellus en Pennsylvanie.


L'acide borique (acide orthoborique) est souvent utilisé en conjonction avec la gomme guar comme agent de réticulation et gélifiant pour contrôler la viscosité et la rhéologie du fluide de fracturation injecté à haute pression dans le puits.
L'acide borique (acide orthoborique) est important pour contrôler la viscosité du fluide afin de maintenir en suspension sur de longues distances de transport les grains des agents de soutènement visant à maintenir les fissures dans les schistes suffisamment ouvertes pour faciliter l'extraction du gaz une fois la pression hydraulique relâchée.


Les propriétés rhéologiques de l’hydrogel de gomme de guar réticulée au borate dépendent principalement de la valeur du pH.
L'acide borique (acide orthoborique) est utilisé dans certains fusibles électriques à expulsion comme agent de désionisation/d'extinction.
Lors d'un défaut électrique dans un fusible à expulsion, un arc de plasma est généré par la désintégration et la séparation rapide par ressort de l'élément fusible, qui est généralement une tige métallique spécialisée qui traverse une masse comprimée d'acide borique (acide orthoborique). ) à l'intérieur de l'ensemble fusible.


Le plasma à haute température provoque la décomposition rapide de l'acide borique (acide orthoborique) en vapeur d'eau et en anhydride borique, et à leur tour, les produits de vaporisation désionisent le plasma, contribuant ainsi à interrompre le défaut électrique.
Nous utilisons l’acide borique (acide orthoborique) depuis l’Antiquité.


Actuellement, l’acide borique (acide orthoborique) est principalement utilisé dans les industries.
L'acide borique (acide orthoborique) est utilisé dans la fabrication de fibre de verre monofilament.
L'acide borique (acide orthoborique) est utilisé dans l'industrie de la bijouterie en combinaison avec de l'alcool dénaturé.


L'acide borique (acide orthoborique) est utilisé dans la production de verre pour les écrans plats LCD.
L'acide borique (acide orthoborique) est utilisé en galvanoplastie.
Le mélange d’acide borique (acide orthoborique) est utilisé comme agent ignifuge.


L'acide borique (acide orthoborique) est utilisé dans la fabrication de la masse de pilonnage.
L'acide borique (acide orthoborique) a également des utilisations médicinales, car il réduit les effets nocifs de l'HF.
L'acide borique (acide orthoborique) mélangé au borax est utilisé pour le flux de soudage par les forgerons.


L'acide borique (acide orthoborique) est souvent utilisé comme antiseptique, insecticide, ignifuge, absorbeur de neutrons, etc.
L'acide borique (acide orthoborique) est utilisé pour prévenir ou détruire la pourriture humide et sèche existante dans le bois.
L'acide borique (acide orthoborique) est utilisé comme système tampon primaire dans les piscines.


L'acide borique (acide orthoborique) est utilisé dans certaines centrales nucléaires comme poison neutronique.
Le mélange d'acide borique (acide orthoborique) avec du pétrole ou de l'huile végétale fonctionne comme un excellent lubrifiant.
À des fins médicales, les solutions d'acide borique (acide orthoborique) utilisées comme collyre ou sur la peau abrasée sont connues pour être particulièrement toxiques pour les nourrissons, surtout après une utilisation répétée en raison de leur taux d'élimination lent.


L'acide borique (acide orthoborique) peut être utilisé comme antiseptique pour les brûlures ou coupures mineures et est parfois utilisé dans des pansements ou des pommades ou est appliqué dans une solution très diluée comme collyre dans une solution à 1,5 % d'eau stérilisée.
Pour les utilisations insecticides, l'acide borique (acide orthoborique) agit comme un poison gastrique affectant le métabolisme des insectes, et la poudre sèche est abrasive pour l'exosquelette des insectes.


L'acide borique (acide orthoborique) est également transformé sous forme de pâte ou de gel en tant qu'insecticide puissant et efficace, beaucoup plus sûr pour les humains que de nombreux autres insecticides.
La pâte ou le gel contient des attractifs à base d'acide borique (acide orthoborique) pour attirer les insectes.


L'acide borique (acide orthoborique) provoque lentement une déshydratation.
Pour les utilisations de préservation, l'acide borique (acide orthoborique) prévient et détruit la pourriture humide et sèche existante dans le bois.
L'acide borique (acide orthoborique) peut être utilisé en combinaison avec un support d'éthylène glycol pour traiter le bois extérieur contre les attaques de champignons et d'insectes.


Des concentrés de traitements à base de borate peuvent être utilisés pour empêcher la croissance de mucosités, de mycélium et d’algues, même en milieu marin.
L'acide borique (acide orthoborique) est ajouté au sel lors du durcissement des peaux de bovins, de veaux et de moutons.
Cela aide à contrôler le développement des bactéries et à contrôler les insectes.


Pour les utilisations industrielles, l'acide borique (acide orthoborique) est principalement utilisé dans la fabrication de fibre de verre monofilament, généralement appelée fibre de verre textile.
La fibre de verre textile est utilisée pour renforcer les plastiques dans des applications allant des bateaux aux canalisations industrielles en passant par les circuits imprimés informatiques.


L'acide borique (acide orthoborique) est utilisé dans les centrales nucléaires comme poison neutronique pour ralentir la vitesse à laquelle se produit la fission.
Dans l'industrie de la bijouterie, l'acide borique (acide orthoborique) est souvent utilisé en combinaison avec de l'alcool dénaturé pour réduire l'oxydation de surface et la formation de calcaire sur les métaux lors des opérations de recuit et de brasage.


L'acide borique (acide orthoborique) est utilisé dans la production du verre des écrans plats LCD.
L'acide borique (acide orthoborique) est largement utilisé dans la lutte antiparasitaire.
L'acide borique (acide orthoborique) est utilisé dans la production de fibre de verre monofilament ou de verres de silicate de bore résistants à la chaleur.


L'acide borique (acide orthoborique) est utilisé dans la production de verre pour les écrans plats LCD.
L'acide borique (acide orthoborique) est utilisé comme conservateur pour divers produits alimentaires.
L'acide borique (acide orthoborique) est utilisé dans le domaine médical comme antiseptique.


L'acide borique (acide orthoborique) est utilisé dans la fabrication d'émaux et d'émaux en poterie.
L'acide borique (acide orthoborique) est également utilisé dans certaines centrales nucléaires comme poison neutronique.
L'acide borique (acide orthoborique) est utilisé dans le traitement ou la prévention des carences en bore chez les plantes.


L'acide borique (acide orthoborique) est utilisé en pyrotechnie pour empêcher les réactions de formation d'amides entre l'aluminium et les nitrates, et comme colorant pour rendre le feu vert.
Le bois extérieur peut être traité avec de l'acide borique (acide orthoborique) pour prévenir les champignons et l'acide borique (acide orthoborique) est utilisé en galvanoplastie dans le cadre de certaines formules exclusives.


Infections à levures : Il s’agit d’une autre façon la plus courante d’utiliser l’acide borique (acide orthoborique) à la maison.
Bienfaits de l'acide borique (acide orthoborique) pour la santé : ils ne sont pas seulement utilisés à la maison, ils auraient des propriétés anti-arthritiques et contribueraient à promouvoir la santé des os et des articulations.


L'acide borique (acide orthoborique) est un outil très important dans la lutte antiparasitaire et est largement utilisé depuis longtemps.
L'acide borique (acide orthoborique) est utilisé dans la fabrication de fibres de verre monofilament ou de verres de silicate de bore résistants à la chaleur.
L'acide borique (acide orthoborique) est utilisé dans la production de verre pour les écrans plats LCD.


L'acide borique (acide orthoborique) est utilisé comme conservateur pour le lait et d'autres produits alimentaires.
L'acide borique (acide orthoborique) est utilisé dans le domaine médical comme antiseptique.
L'acide borique (acide orthoborique) est utilisé dans la fabrication d'émaux et d'émaux en poterie.


L'acide borique (acide orthoborique) est également utilisé dans certaines centrales nucléaires comme poison neutronique.
Dans le traitement ou la prévention des carences en bore chez les plantes.
Le bore est couramment utilisé en pyrotechnie pour empêcher les réactions de formation d'amide entre l'aluminium et les nitrates.


De l'acide borique (acide orthoborique) en petites quantités est ajouté au mélange pour neutraliser les amides alcalins qui peuvent réagir avec l'aluminium.
L'acide borique (acide orthoborique) est également utilisé comme colorant pour rendre le feu vert.
Le bois extérieur peut être traité avec cet acide pour prévenir les attaques de champignons et d'insectes.


L'acide borique (acide orthoborique) est utilisé en galvanoplastie dans le cadre de certaines formules exclusives.
L'acide borique (acide orthoborique) est utilisé dans la fabrication de fibre de verre textile
L'acide borique (acide orthoborique) est utilisé dans la production de l'écran plat


L'acide borique (acide orthoborique) est utilisé pour neutraliser l'acide fluorhydrique actif
L'acide borique (acide orthoborique) est utilisé par les forgerons comme flux de soudage
L'acide borique (acide orthoborique) est utilisé en galvanoplastie


L'acide borique (acide orthoborique) est utilisé dans l'industrie de la bijouterie
L'acide borique (acide orthoborique) est utilisé dans la fabrication de mastic idiot
L'acide borique (acide orthoborique) est utilisé comme insecticide


L'acide borique (acide orthoborique) est utilisé comme antiseptique et antibactérien
L'acide borique (acide orthoborique) est utilisé sur les planches de carrom comme lubrifiant sec
L'acide borique (acide orthoborique) est utilisé comme poison neutronique dans certaines centrales nucléaires


L'acide borique (acide orthoborique) est utilisé pour conserver les céréales comme le blé et le riz.
Dans la liste des additifs chimiques utilisés pour la fracturation hydraulique (également appelée fracturation hydraulique), il n'est pas rare que de l'acide borique (acide orthoborique) soit présent.


L'acide borique (acide orthoborique) est également utilisé comme agent de réticulation et gélifiant en combinaison avec la gomme guar et est connu pour réguler la viscosité et la rhéologie du fluide de forage qui est pompé à haute pression dans les puits.
De plus, l'acide borique (acide orthoborique) est d'une importance vitale pour réguler la viscosité du fluide qui aide à maintenir les grains des agents de soutènement en suspension sur de longues distances de transport afin de maintenir les fissures des schistes suffisamment ouvertes.


L'acide borique (acide orthoborique) facilite l'extraction du gaz après avoir relâché la pression hydraulique.
L'acide borique (acide orthoborique) est l'un des borates les plus couramment produits et est largement utilisé dans le monde entier dans les industries pharmaceutique et cosmétique, comme complément nutritionnel, ignifuge, dans la fabrication du verre et de la fibre de verre, et dans la production de produits de préservation du bois pour lutter contre les parasites et les champignons.


Une solution aqueuse diluée d’acide borique (acide orthoborique) est généralement utilisée comme antiseptique doux et comme collyre.
L'acide borique (acide orthoborique) est utilisé dans la fabrication du cuir, la galvanoplastie et les cosmétiques.
L'acide borique (acide orthoborique) est impliqué dans la production de fibre de verre monofilament qui trouve des applications dans les bateaux, la tuyauterie industrielle, les écrans plats LCD et les circuits imprimés informatiques.


L'acide borique (acide orthoborique) est en combinaison avec le tétraborate de sodium décahydraté (borax) et est utilisé comme flux de soudage par les forgerons.
Il existe de nombreuses utilisations domestiques de l’acide borique (acide orthoborique) lorsqu’il est utilisé seul ou en combinaison avec d’autres produits chimiques.
L’acide borique (acide orthoborique) étant moins toxique, il est facile à manipuler à la maison, mais il faut y faire attention.


L'acide borique (acide orthoborique) peut être utilisé pour traiter les infections à levures et l'acné, pour le lavage des yeux en traitant toute infection bactérienne et en apaisant les yeux enflammés, et comme nettoyant, désodorisant, détachant, désinfectant et anti-moisissure.
L'acide borique (acide orthoborique) peut être utilisé comme pesticide pour lutter contre une variété de ravageurs, comme fongicide pour les agrumes et comme herbicide le long des emprises.


L'acide borique (acide orthoborique) peut être utilisé pour la fabrication de fibre de verre textile, de produits en verre ménagers et du verre utilisé dans les écrans LCD, pour renforcer les plastiques dans divers produits (bateaux, circuits imprimés et tuyaux informatiques), comme ignifuge, et comme agent tampon de pH dans le placage.
L'acide borique (acide orthoborique) est un matériau précurseur d'autres composés du bore.


L'acide borique (acide orthoborique) est utilisé pour imperméabiliser le bois et les tissus ignifuges ; comme conservateur; fabrication de ciments, vaisselle, porcelaine, émaux, verre, borates, cuir, tapis, chapeaux, savons, pierres précieuses artificielles ; dans des bains de nickelage ; produits de beauté; impression et teinture, peinture; la photographie; pour imprégner les mèches; condensateurs électriques; acier durcissant.


L'acide borique (acide orthoborique) est également utilisé comme insecticide contre les blattes et les anthrènes noirs des tapis.
L'acide borique (acide orthoborique) peut être utilisé pour étudier la biologie moléculaire, la purification de l'ADN et de l'ARN, les tampons biologiques et les réactifs de biologie moléculaire.
L'acide borique (acide orthoborique) a été utilisé pour tester les effets toxiques du bore sur les paramètres de croissance et du système antioxydant des racines de maïs.


Une solution aqueuse diluée d’acide borique (acide orthoborique) est généralement utilisée comme antiseptique doux et comme collyre.
L'acide borique (acide orthoborique) est également utilisé dans la fabrication du cuir, la galvanoplastie et les cosmétiques.
Antiseptique : l'acide borique (acide orthoborique) est utilisé comme antiseptique et conservateur dans certaines solutions ophtalmiques et produits de soin de la peau.


Lutte antiparasitaire : L’acide borique (acide orthoborique) est utilisé comme insecticide pour lutter contre les fourmis, les cafards et d’autres ravageurs.
Ignifuge : l’acide borique (acide orthoborique) peut être utilisé comme ignifuge dans certaines applications.
Flux dans le soudage : L'acide borique (acide orthoborique) est utilisé comme flux dans les opérations de soudage et de brasage.


Préservation du bois : L'acide borique (acide orthoborique) est utilisé pour protéger le bois des infestations de champignons et d'insectes.
Verre borosilicaté : L'acide borique (acide orthoborique) est un ingrédient clé dans la production de verre borosilicaté, qui présente une résistance thermique élevée et est utilisé pour la verrerie de laboratoire, les ustensiles de cuisine et l'art du verre.


Produits pharmaceutiques : l'acide borique (acide orthoborique) a des applications pharmaceutiques, notamment dans la production de gouttes oculaires et comme ingrédient dans certains médicaments.
L'acide borique (acide orthoborique) est efficace contre les punaises d'eau, les poissons d'argent et les termites, ainsi que contre les cafards et les fourmis.


En conséquence, les produits à base d’acide borique (acide orthoborique) sont utilisés par la population mondiale.
L'acide borique (acide orthoborique) était principalement utilisé pour conserver les aliments et pour le nettoyage.
Plus on en apprend sur les propriétés bénéfiques de l’acide borique (acide orthoborique), plus il est utilisé dans une large gamme de produits de consommation et industriels.


L'acide borique (acide orthoborique) est généralement utilisé dans la transformation et la fabrication industrielles, mais est également utilisé comme additif dans les produits pharmaceutiques, les cosmétiques, les lotions, les savons, les bains de bouche, les dentifrices, les astringents et les collyres 4.
L'acide borique (acide orthoborique) est souvent utilisé comme antiseptique, insecticide, ignifuge, absorbeur de neutrons ou précurseur d'autres composés du bore.


Le terme « acide borique (acide orthoborique) » est également utilisé de manière générique pour tout oxoacide de bore, tel que l'acide métaborique HBO2 et l'acide tétraborique H2B4O7.
En tant que composé antibactérien, l’acide borique (acide orthoborique) peut également être utilisé comme traitement contre l’acné.
L'Acide Borique (Acide Ortho Borique) est également utilisé comme prévention du pied d'athlète, en insérant de la poudre dans les chaussettes ou les bas.


Diverses préparations peuvent être utilisées pour traiter certains types d’otites externes (otites) chez les humains et les animaux.
Le conservateur contenu dans les flacons d’échantillons d’urine au Royaume-Uni est l’acide borique (acide orthoborique).
L'acide borique (acide orthoborique) est l'une des substances les plus couramment utilisées pour contrecarrer les effets nocifs de l'acide fluorhydrique (HF) réactif après un contact accidentel avec la peau.


L'acide borique (acide orthoborique) agit en forçant les anions F− libres dans l'anion tétrafluoroborate inerte.
Ce processus élimine l'extrême toxicité de l'acide fluorhydrique, en particulier sa capacité à séquestrer le calcium ionique du sérum sanguin, ce qui peut entraîner un arrêt cardiaque et une décomposition osseuse ; un tel événement peut survenir à la suite d’un simple contact cutané mineur avec l’HF.
L'acide borique (acide orthoborique) est utilisé dans le traitement des infections à levures et des boutons de fièvre.


-Utilisations médicales de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) peut être utilisé comme antiseptique pour les brûlures ou coupures mineures et est parfois utilisé dans les pommades et les pansements, tels que les peluches boraciques.
L'acide borique (acide orthoborique) est appliqué dans une solution très diluée comme collyre.

Les suppositoires vaginaux à l'acide borique (acide orthoborique) peuvent être utilisés pour les candidoses récurrentes dues à Candida non albicans comme traitement de deuxième intention lorsque le traitement conventionnel a échoué.
L’acide borique (acide orthoborique) est globalement moins efficace que le traitement conventionnel.

L'acide borique (acide orthoborique) épargne en grande partie les lactobacilles dans le vagin.
Sous le nom de TOL-463, l'acide borique (acide orthoborique) est en cours de développement en tant que médicament intravaginal pour le traitement de la candidose vulvo-vaginale.


-Utilisations de tampon pH de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) en équilibre avec sa base conjuguée, l'ion borate, est largement utilisé (dans la plage de concentrations de 50 à 100 ppm d'équivalents en bore) comme système tampon de pH primaire ou complémentaire dans les piscines.

L'acide borique (acide orthoborique) est un acide faible, avec un pKa (le pH auquel le tampon est le plus fort car l'acide libre et l'ion borate sont en concentrations égales) de 9,24 dans de l'eau pure à 25 °C.
Mais le pKa apparent est considérablement plus faible dans les eaux des piscines ou des océans en raison des interactions avec diverses autres molécules en solution.

Il fera environ 9,0 dans une piscine d’eau salée.
Quelle que soit la forme de bore soluble ajoutée, dans la plage acceptable de pH et de concentration de bore pour les piscines, l'acide borique (acide orthoborique) est la forme prédominante en solution aqueuse, comme le montre la figure ci-jointe.

Le système acide borique (acide orthoborique) – borate peut être utile comme système tampon primaire (en remplacement du système bicarbonate avec pKa1 = 6,0 et pKa2 = 9,4 dans des conditions typiques de piscine d'eau salée) dans les piscines équipées de générateurs de chlore d'eau salée qui ont tendance à montrer une dérive vers le haut du pH à partir d’une plage de travail de pH 7,5 à 8,2.

La capacité tampon est plus grande contre l’augmentation du pH (vers le pKa autour de 9,0), comme l’illustre le graphique ci-joint.
L'utilisation d'acide borique (acide orthoborique) dans cette plage de concentrations ne permet aucune réduction de la concentration de HOCl libre nécessaire à l'assainissement de la piscine, mais elle peut ajouter marginalement aux effets photoprotecteurs de l'acide cyanurique et conférer d'autres avantages grâce à son action anticorrosive. activité ou douceur perçue de l'eau, en fonction de la composition globale du soluté de la piscine.


-Utilisations de lubrification de l'acide borique (acide orthoborique) :
Les suspensions colloïdales de nanoparticules d'acide borique (acide orthoborique) dissoutes dans le pétrole ou l'huile végétale peuvent former un lubrifiant remarquable sur les surfaces céramiques ou métalliques avec un coefficient de frottement de glissement qui diminue avec l'augmentation de la pression jusqu'à une valeur allant de 0,10 à 0,02.
Les films B(OH)3 autolubrifiants résultent d'une réaction chimique spontanée entre des molécules d'eau et des revêtements B2O3 dans un environnement humide.
L'acide borique (acide orthoborique) est utilisé pour lubrifier les planches carrom et novuss, permettant un jeu plus rapide.


-Utilisations insecticides de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) a été enregistré pour la première fois aux États-Unis comme insecticide en 1948 pour lutter contre les blattes, les termites, les fourmis de feu, les puces, les poissons d'argent et de nombreux autres insectes.
L'acide borique (acide orthoborique) est généralement considéré comme étant sûr à utiliser dans les cuisines domestiques pour lutter contre les cafards et les fourmis.

L'acide borique (acide orthoborique) agit comme un poison gastrique affectant le métabolisme des insectes, et la poudre sèche est abrasive pour les exosquelettes des insectes.
L'acide borique (acide orthoborique) a également la réputation d'être « le don qui continue de tuer », dans la mesure où les cafards qui traversent des zones légèrement saupoudrées ne meurent pas immédiatement, mais que l'effet est comme des éclats de verre les coupant.

Cela permet souvent au gardon de retourner au nid où l'acide borique (acide orthoborique) meurt rapidement.
Les cafards, étant cannibales, en mangent d'autres tués par contact ou par consommation d'acide borique (acide orthoborique), consommant la poudre piégée dans le cafard mort et les tuant également.


-Utilisations de conservation de l'acide borique (acide orthoborique) :
En combinaison avec son utilisation comme insecticide, l'acide borique (acide orthoborique) prévient et détruit également la pourriture humide et sèche existante dans le bois.
L'acide borique (acide orthoborique) peut être utilisé en combinaison avec un support d'éthylène glycol pour traiter le bois extérieur contre les attaques de champignons et d'insectes.

L'acide borique (acide orthoborique) est possible d'acheter des tiges imprégnées de borate à insérer dans le bois via des trous de forage où l'humidité est connue pour s'accumuler et se loger.
L'acide borique (acide orthoborique) est disponible sous forme de gel et de pâte injectable pour traiter le bois atteint de pourriture sans qu'il soit nécessaire de remplacer le bois.

Des concentrés de traitements à base de borate peuvent être utilisés pour empêcher la croissance de mucus, de mycélium et d’algues, même dans les environnements marins.
L'acide borique (acide orthoborique) est ajouté au sel lors du durcissement des peaux de bovins, de veaux et de moutons.
Cela aide à contrôler le développement bactérien et à contrôler les insectes.


-Applications pharmaceutiques de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) est utilisé comme conservateur antimicrobien dans les gouttes oculaires, les produits cosmétiques, les pommades et les crèmes topiques.
L'acide borique (acide orthoborique) est également utilisé comme conservateur antimicrobien dans les aliments.

L'acide borique (acide orthoborique) et le borate ont un bon pouvoir tampon et sont utilisés pour contrôler le pH ; ils ont été utilisés à cet effet dans des préparations externes telles que des collyres.

L'acide borique (acide orthoborique) a également été utilisé en thérapeutique sous forme de suppositoires pour traiter les infections à levures.
En concentrations diluées, l'acide borique (acide orthoborique) est utilisé comme antiseptique doux, avec de faibles propriétés bactériostatiques et fongistatiques, bien qu'il ait généralement été remplacé par des désinfectants plus efficaces et moins toxiques.


-Utilisations nucléaires de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) est utilisé dans certaines centrales nucléaires comme poison neutronique.
Le bore contenu dans l'acide borique (acide orthoborique) réduit la probabilité de fission thermique en absorbant certains neutrons thermiques.

Les réactions en chaîne de fission sont généralement déterminées par la probabilité que les neutrons libres entraînent une fission et sont déterminées par les propriétés matérielles et géométriques du réacteur.
Le bore naturel est constitué d’environ 20 % d’isotopes de bore-10 et 80 % de bore-11. Le bore-10 a une section efficace élevée pour l'absorption des neutrons (thermiques) de faible énergie.

En augmentant la concentration d'acide borique (acide orthoborique) dans le liquide de refroidissement du réacteur, la probabilité qu'un neutron provoque une fission est réduite.
Les changements dans la concentration d’acide borique (acide orthoborique) peuvent réguler efficacement le taux de fission ayant lieu dans le réacteur.

En fonctionnement normal à puissance, l'acide borique (acide orthoborique) est utilisé uniquement dans les réacteurs à eau sous pression (REP), tandis que les réacteurs à eau bouillante (REB) utilisent un modèle de barre de commande et un débit de liquide de refroidissement pour le contrôle de la puissance, bien que les REB puissent utiliser une solution aqueuse de Acide borique (acide orthoborique) et borax ou pentaborate de sodium pour un système d'arrêt d'urgence si les barres de commande ne parviennent pas à s'insérer.

L'acide borique (acide orthoborique) peut être dissous dans les piscines de combustible usé utilisées pour stocker des éléments combustibles usés.
La concentration est suffisamment élevée pour maintenir la multiplication des neutrons au minimum.
De l'acide borique (acide orthoborique) a été déversé sur le réacteur 4 de la centrale nucléaire de Tchernobyl après sa fusion pour empêcher une autre réaction de se produire.


-Utilisations pyrotechniques de l'acide borique (acide orthoborique) :
Le bore est utilisé en pyrotechnie pour empêcher la réaction de formation d'amide entre l'aluminium et les nitrates.
Une petite quantité d'acide borique (acide orthoborique) est ajoutée à la composition pour neutraliser les amides alcalins susceptibles de réagir avec l'aluminium.

L'acide borique (acide orthoborique) peut être utilisé comme colorant pour rendre le feu vert.
Par exemple, lorsqu'il est dissous dans le méthanol, l'acide borique (acide orthoborique) est couramment utilisé par les jongleurs de feu et les fileuses de feu pour créer une flamme vert foncé beaucoup plus forte que le sulfate de cuivre.


-Utilisations agricoles de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) est utilisé pour traiter ou prévenir les carences en bore chez les plantes.
L'acide borique (acide orthoborique) est également utilisé dans la conservation des céréales telles que le riz et le blé.


-Acide borique (acide orthoborique) comme médicament :
L'acide borique (acide orthoborique) est largement utilisé comme antiseptique pour le traitement des coupures et des brûlures mineures.
De plus, ce composé est également utilisé dans les pansements et les pommades médicales.

Des solutions très diluées d’acide borique (acide orthoborique) peuvent être utilisées comme collyre.
En raison de ses propriétés antibactériennes, l’acide borique (acide orthoborique) peut également être utilisé pour le traitement de l’acné chez l’homme.
Sous sa forme en poudre, l'acide borique (acide orthoborique) peut également être saupoudré dans les chaussettes et les chaussures pour prévenir le pied d'athlète (tinea pedis).


-Actions biochimiques/physiol de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) possède des propriétés antibactériennes et fongicides.
L'acide borique (acide orthoborique) est utilisé dans la thérapie parodontale comme solution d'irrigation car il provoque des effets bactéricides dans les biofilms microbiens du canal radiculaire.

L'acide borique (acide orthoborique) peut favoriser l'activité ostéoblastique et inhiber la perte osseuse.
L'acide borique (acide orthoborique) inhibe l'infection fongique à Candida albicans et a le potentiel de traiter l'infection vaginale.


-Débarrassez-vous des vers :
L'acide borique (acide orthoborique), ainsi que le sucre, peuvent être utilisés pour tuer les fourmis et autres vers.
Ce mélange est transformé en petites boules et placé sur leurs passages.
C’est l’une des utilisations domestiques utiles de l’acide borique (acide orthoborique).
L'acide borique (acide orthoborique) est également utilisé pour se débarrasser des blattes en mélange avec de la graisse de bacon.


- Yeux de savon :
L'acide borique (acide orthoborique), associé à de l'eau tiède et un peu de sel d'Epsom, est également l'une des utilisations domestiques de l'acide borique.
L'acide borique (acide orthoborique) est utilisé pour traiter l'orge et d'autres infections oculaires.


-Gouttes pour les oreilles:
L'acide borique (acide orthoborique), le vinaigre et l'eau distillée peuvent être utilisés pour détruire les champignons formés après la baignade.
Il s’agit d’une autre utilisation domestique de l’acide borique (acide orthoborique).


-Antiseptique:
Toutes les petites blessures peuvent être traitées avec un peu d'acide borique (acide orthoborique) et de l'eau distillée.
La plupart des gens l’utilisent comme remède maison, bien que l’automédication ne soit pas recommandée.
Ils sont également utilisés avec d’autres ingrédients dans les hôpitaux.


-Des puces:
Une autre utilisation domestique de l’acide borique (acide orthoborique) consiste à éliminer les puces du tapis.
En utilisant de l'acide borique (acide orthoborique) sur les tapis, les poux attraperont du borax et finiront par mourir.


-Utilisations de produits de préservation du bois à base d'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) inhibe la croissance du champignon ; protégeant ainsi le meuble, le protégeant des vers et des termites qui peuvent l'attaquer.
C’est une façon d’utiliser l’acide borique (acide orthoborique) à la maison.


-Rinçage des oreilles pour chiens :
Avec d’autres ingrédients, l’acide borique (acide orthoborique) peut être utilisé comme rince-oreilles pour les chiens.
L'acide borique (acide orthoborique) est disponible en pharmacie.
C’est l’une des utilisations domestiques courantes de l’acide borique (acide orthoborique).


-Utilisations pharmaceutiques et cosmétiques de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) est un antiseptique doux ainsi qu'un acide doux qui inhibe la croissance des micro-organismes sur les surfaces externes du corps.
L'acide borique (acide orthoborique) est couramment utilisé dans les solutions pour lentilles de contact, les désinfectants pour les yeux, les remèdes vaginaux, la poudre pour bébé, les préparations anti-âge et les applications externes similaires.


-Utilisations de suppléments nutritionnels d'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) et d'autres borates sont de plus en plus utilisés dans les suppléments nutritionnels en vente libre comme source de bore.
On pense que l’acide borique (acide orthoborique) a une valeur thérapeutique potentielle pour favoriser la santé des os et des articulations et avoir un effet limitant sur les symptômes de l’arthrite.

Il est important de noter que les effets sur la santé de l’acide borique (acide orthoborique) et des suppléments à base de bore sont basés sur des études très récentes et/ou reposent uniquement sur les allégations des fabricants des suppléments.
Il ne faut pas sous-entendre que l’acide borique (acide orthoborique) doit être directement ingéré en tant que supplément ou pour toute autre raison.


-Utilisations ignifuges de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) inhibe la libération de gaz combustibles provenant de la combustion de matériaux cellulosiques, tels que le coton, le bois et les produits à base de papier.
L'acide borique (acide orthoborique) libère également de l'eau chimiquement liée pour réduire davantage la combustion.
Un charbon de carbone se forme qui inhibe davantage la combustion.

Les futons, matelas, meubles rembourrés, isolants et plaques de plâtre sont des produits de consommation courants qui utilisent de l'acide borique (acide orthoborique) comme ignifuge.
Les plastiques, textiles, revêtements spéciaux et autres produits industriels contiennent également de l'acide borique (acide orthoborique) pour renforcer leur capacité à résister à l'exposition aux flammes.


-Utilisations du verre et de la fibre de verre de l'acide borique (acide orthoborique) :
Les verres résistants à la chaleur, borosilicates et autres verres spéciaux reposent sur l'acide borique (acide orthoborique) et d'autres borates similaires pour augmenter la résistance chimique et thermique du verre.

Les ampoules halogènes, les ustensiles de cuisine, la verrerie allant au micro-ondes, la verrerie de laboratoire et de nombreux articles en verre de tous les jours sont améliorés par l'ajout d'acide borique (acide orthoborique).
L'acide borique (acide orthoborique) contribue également au processus de fibrage de la fibre de verre, qui est utilisée dans l'isolation en fibre de verre ainsi que dans la fibre de verre textile (un matériau semblable à un tissu couramment utilisé dans les skis, les circuits imprimés et d'autres applications similaires).


-Utilisations de l'acide borique (acide orthoborique) pour la préservation du bois et la lutte antiparasitaire :
L'acide borique (acide orthoborique) est une source courante de composés de bore lorsqu'il est utilisé dans la formulation de produits qui contrôlent les champignons et les insectes.
Les champignons sont des plantes qui ne contiennent pas de chlorophylle et qui doivent disposer d'une source extérieure de nourriture (comme la cellulose du bois).

Les composés de bore inhibent la croissance des champignons et se sont révélés être un agent de préservation du bois fiable.
De même, l’acide borique (acide orthoborique) est utilisé dans les piscines et les spas comme substitut plus sûr et « plus doux » au chlore.
L'acide borique (acide orthoborique), le borax et d'autres sels sont couramment utilisés pour adoucir l'eau de la piscine et prévenir la contamination.

L'acide borique (acide orthoborique) est un produit naturel de lutte contre les insectes de plus en plus populaire.
Contrairement aux sprays contre les frelons ou les fourmis, l'acide borique (acide orthoborique) ne tue pas les insectes au contact en utilisant des produits chimiques hautement toxiques.
L’acide borique (acide orthoborique) agit plutôt comme un dessicant qui déshydrate de nombreux insectes en provoquant de minuscules fissures ou fissures dans leurs exosquelettes.

Cela finit par les dessécher.
La « salinité » de l’acide borique (acide orthoborique) interfère également avec leur métabolisme électrolytique très simple.


-Autres utilisations de l'acide borique (acide orthoborique) :
L'acide borique (acide orthoborique) est couramment utilisé en métallurgie pour durcir et traiter les alliages d'acier ainsi que pour faciliter l'application de matériaux de placage métallique.
L'acide borique (acide orthoborique) est utilisé dans les revêtements céramiques et émaillés, dans les adhésifs, comme lubrifiant et dans de nombreux autres produits de consommation et industriels.



PROPRIÉTÉS DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est un solide cristallin blanc que l'on trouve généralement sous forme de poudre.
L'acide borique (acide orthoborique) a une sensation de toucher doux et savonneux.
L'acide borique (acide orthoborique) est peu soluble dans l'eau froide mais très soluble dans l'eau chaude.
L'acide borique (acide orthoborique) a tendance à se comporter comme un acide très faible.
L'acide borique (acide orthoborique) se déshydrate lorsqu'il est chauffé au-dessus de 170 °C et forme de l'acide métaborique.



STRUCTURE DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) a une structure trigonale.
Si l’on regarde la formule chimique de l’acide borique (acide orthoborique), c’est BH3O3.
Ici, les trois atomes d’oxygène forment une géométrie planaire trigonale autour du bore.

La longueur de la liaison BO est de 136 pm et celle de l'OH est de 97 pm.
Le groupe ponctuel moléculaire est C3h.
L'acide borique cristallin (acide orthoborique) est constitué de couches de molécules B(OH)3 maintenues ensemble par des liaisons hydrogène d'une longueur de 272 pm.
La distance entre deux couches adjacentes est de 318 pm.



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Il existe deux méthodes courantes pour la préparation de l’acide borique (acide orthoborique).

*Utilisation du borax :
L'acide borique (acide orthoborique) peut être obtenu en traitant une solution chaude concentrée de borax avec de l'acide sulfurique ou de l'acide chlorhydrique.
À la suite de la concentration de la solution, des cristaux d’acide borique (acide orthoborique) se forment.
Na2B4O7•10H2O + 2 HCl → 4 B(OH)3 [ou H3BO3] + 2 NaCl + 5 H2O

*Hydrolyse des composés du bore :
Une autre méthode pouvant être utilisée est l’hydrolyse.
L'acide borique (acide orthoborique) peut être utilisé sur des composés du bore tels que les hydrures, les halogénures et les nitrures.
B2H6 + 6H2O → 2B(OH)3 + 6H2
BX3 + 3 H2O → B(OH)3 + 3 HX (X = Cl, Br, I)



STRUCTURE DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Chaque molécule d'acide borique (acide orthoborique) comporte des liaisons simples bore-oxygène.
L'atome de bore occupe la position centrale et est lié à trois groupes hydroxydes.
La géométrie moléculaire globale de l’acide borique (acide orthoborique) est planaire trigonale.



COMMENT FONCTIONNE L’ACIDE BORIQUE (ACIDE ORTHO BORIQUE) ?
L'acide borique (acide orthoborique) peut tuer les insectes s'ils en mangent.
L'acide borique (acide orthoborique) perturbe leur estomac et peut affecter leur système nerveux.
L'acide borique (acide orthoborique) peut également rayer et endommager l'extérieur des insectes.

L'acide borique (acide orthoborique) et le borax, un sel de borate de sodium, peuvent tuer les plantes en les faisant sécher.
Le métaborate de sodium, un autre sel de borate de sodium, empêche les plantes de produire l'énergie dont elles ont besoin à partir de la lumière.
L'acide borique (acide orthoborique) peut également arrêter la croissance de champignons, tels que les moisissures.
L'acide borique (acide orthoborique) les empêche de se reproduire.



PRÉSENCE D'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique), ou sassolite, se trouve principalement à l'état libre dans certaines régions volcaniques, par exemple dans la région italienne de Toscane, dans les îles Lipari et dans l'État américain du Nevada.
Dans ces milieux volcaniques, l'acide borique (acide orthoborique) sort, mélangé à de la vapeur, des fissures du sol.

L'acide borique (acide orthoborique) est également présent comme constituant de nombreux minéraux naturels – borax, boracite, ulexite (boronatrocalcite) et colémanite.
L'acide borique (acide orthoborique) et ses sels se trouvent dans l'eau de mer.
L'acide borique (acide orthoborique) se trouve également dans les plantes, y compris presque tous les fruits.

L'acide borique (acide orthoborique) a été préparé pour la première fois par Wilhelm Homberg (1652-1715) à partir de borax, par l'action d'acides minéraux, et a reçu le nom de sal sedativum Hombergi (« sel sédatif de Homberg »).
Cependant, les borates, y compris l'acide borique (acide orthoborique), sont utilisés depuis l'époque des Grecs anciens pour le nettoyage, la conservation des aliments et d'autres activités.



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) peut être préparé en faisant réagir du borax (tétraborate de sodium décahydraté) avec un acide minéral, tel que l'acide chlorhydrique :
Na2B4O7•10H2O + 2 HCl → 4 B(OH)3 [ou H3BO3] + 2 NaCl + 5 H2O
Il se forme également comme sous-produit de l'hydrolyse des trihalogénures de bore et du diborane :
B2H6 + 6H2O → 2B(OH)3 + 6H2
BX3 + 3 H2O → B(OH)3 + 3 HX (X = Cl, Br, I)



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Par Borax -
L'acide borique (acide orthoborique) est préparé par réaction du borax avec de l'acide minéral (ou acide chlorhydrique).
La réaction impliquée est donnée ci-dessous.
Na2B4O7.10H2O + 2HCl →4B(OH)3 + 2NaCl + 5H2O

Par hydrolyse du Diborane -
L'acide borique (acide orthoborique) est également formé comme sous-produit de l'hydrolyse du diborane.
La réaction impliquée est donnée ci-dessous.
B2H6 + 6H2O → 2B(OH)3 + 6H2

Par hydrolyse du trihalogénure -
L'acide borique (acide orthoborique) est également formé comme sous-produit de l'hydrolyse des trihalogénures de bore.
La réaction impliquée est donnée ci-dessous.
BX3 + 3H2O → B(OH)3 + 3HX (X = Cl, Br, I)



QUELS SONT CERTAINS PRODUITS CONTENANT DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) ?
Les produits contenant de l'acide borique (acide orthoborique) peuvent être des liquides, des granulés, des granulés, des comprimés, des poudres mouillables, des poussières, des tiges ou des appâts.
Ils sont utilisés à l’intérieur de lieux comme les maisons, les hôpitaux et les bâtiments commerciaux.
Ils sont également utilisés dans les zones résidentielles extérieures, dans les réseaux d’égouts et sur les cultures vivrières et non alimentaires.

Il existe plus de cinq cents produits contenant de l’acide borique (acide orthoborique) vendus aux États-Unis.
Plusieurs produits non pesticides contenant de l'acide borique (acide orthoborique) comprennent les amendements du sol, les engrais, les nettoyants ménagers, les détergents à lessive et les produits de soins personnels.



STRUCTURE CRISTALLINE DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) a une géométrie planaire trigonale en raison de trois atomes d'oxygène autour du bore.
Dans cette liaison, la durée de BO est de 136 heures et OH est de 97 heures.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Les propriétés physiques de l'acide borique (acide orthoborique) sont les suivantes.
L'acide borique (acide orthoborique) est un solide cristallin incolore ou blanc à température ambiante.
La masse molaire de l'acide borique (acide orthoborique) est de 61,83 g/mol.

Le point de fusion de l’acide borique (acide orthoborique) est de 170,9 ℃ .
Le point d’ébullition de l’acide borique (acide orthoborique) est de 300 ℃ .
L'acide borique (acide orthoborique) est soluble dans l'eau.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Les propriétés chimiques de l'acide borique (acide orthoborique) sont les suivantes.
En chauffant, l'acide borique (acide orthoborique) donne de l'acide métaborique.
La réaction à 170 ℃ est donnée ci-dessous.
H3BO3 → HBO2 + H2O

A 300 ℃ , il donne de l'acide tétraborique.
La réaction est donnée ci-dessous.
4HBO2 → H2B4O7 + H2O

En chauffant au-dessus de 330 ℃ , il donne du trioxyde de bore.
La réaction est donnée ci-dessous.
H2B4O7 → 2B2O3 + H2O

L'acide borique (acide orthoborique) réagit avec l'alcool et donne des esters de borate.
La réaction est donnée ci-dessous.
B(OH)3 + 3ROH → B(OR)3 + 3H2O

L'acide borique (acide orthoborique) se dissout également dans l'acide sulfurique anhydre.
La réaction est donnée ci-dessous.
B(OH)3 + 6H2SO4→ B(HSO4)4- + 2HSO4- + 3H3O+



L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) EST-IL UNE SUBSTANCE SÛRE ?
L'acide borique (acide orthoborique) est écologique car il s'agit d'une substance naturelle.
Parce qu'il s'agit d'une substance non toxique, l'acide borique (acide orthoborique) est sans danger pour les animaux domestiques et la faune.



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L’une des méthodes les plus simples de préparation de l’acide borique (acide orthoborique) consiste à faire réagir le borax avec n’importe quel acide minéral (acide chlorhydrique, par exemple).
L’équation chimique de cette réaction peut s’écrire :
Na2B4O7.10H2O + 2HCl → 4H3BO3 + 5H2O + 2NaCl
L'acide borique (acide orthoborique) peut également être préparé à partir de l'hydrolyse du diborane et des trihalogénures de bore (tels que le trichlorure de bore ou le trifluorure de bore).



PROPRIÉTÉS DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Dans des conditions standard de température et de pression (STP), l'acide borique (acide orthoborique) existe sous la forme d'un solide cristallin blanc assez soluble dans l'eau.
La solubilité du H3BO3 dans l’eau dépend de la température.

À une température de 25 °C, la solubilité de l’acide borique (acide orthoborique) dans l’eau est de 57 g/L.
Cependant, lorsque l'eau est chauffée à 100 °C, la solubilité de l'acide borique (acide orthoborique) augmente jusqu'à environ 275 g/L.
On peut également noter que l’acide borique (acide orthoborique) est peu soluble dans la pyridine et légèrement soluble dans l’acétone.

La base conjuguée de l’acide borique (acide orthoborique) est l’anion borate.
On sait que l'acidité des solutions d'acide borique (acide orthoborique) augmente avec les polyols contenant des diols cis-vicinaux (comme le mannitol et le glycérol).

On sait que la valeur du pK de B(OH)3 s'étend jusqu'à cinq ordres de grandeur (de 9 à 4), sous différentes concentrations de mannitol.
On peut noter qu'en présence de mannitol, la solution d'acide borique (acide orthoborique) avec une acidité accrue peut être appelée acide mannitoborique.



MÉTHODES DE PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Il existe deux méthodes courantes pour la préparation de l’acide borique (acide orthoborique).
L'acide borique (acide orthoborique) peut être obtenu en traitant une solution chaude concentrée de borax avec de l'acide sulfurique ou de l'acide chlorhydrique.
Au fur et à mesure que la solution se concentre, des cristaux d’acide borique (acide orthoborique) se forment.
Hydrolyse des composés du bore : Une autre méthode courante est l’hydrolyse des composés du bore tels que les hydrures, les halogénures et les nitrures.



DIRECTIVES DE STOCKAGE ET DE MANIPULATION DE L’ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Conservez l'acide borique (acide orthoborique) dans un endroit frais et sec, à l'abri de l'humidité et de la lumière directe du soleil.
Conservez l'acide borique (acide orthoborique) dans son contenant d'origine, hermétiquement fermé pour éviter l'absorption d'humidité et la contamination.
Conservez l'acide borique (acide orthoborique) à l'écart des matières incompatibles, des acides forts et des agents réducteurs.
Lors de la manipulation, portez un équipement de protection individuelle (EPI) approprié, notamment des gants et des lunettes de sécurité.



INFORMATIONS DE SÉCURITÉ DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est généralement considéré comme sûr lorsqu'il est utilisé conformément aux directives et réglementations.
En cas de contact, rincer abondamment à l'eau.
Gardez l'acide borique (acide orthoborique) hors de portée des enfants et des animaux domestiques.
Suivez la fiche de données de sécurité (FDS) fournie par le fabricant ou le fournisseur pour obtenir des informations de sécurité détaillées et les mesures de premiers secours.



MÉTHODES DE PURIFICATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Cristalliser l'acide borique (acide orthoborique) trois fois dans H2O (3 ml/g) entre 100° et 0°, après filtration sur verre fritté.
Séchez-le jusqu'à poids constant sur de l'acide métaborique dans un dessicateur.
C'est de la vapeur volatile.

Après deux recristallisations de grade ACS.
il avait Ag à 0,2 ppm.
Sa solubilité (%) dans H2O est de 2,66 à 0o, 4,0 à 12o et 24 à 80o.
À 100°, il perd H2O pour former de l'acide métaborique (HBO2).

Lorsqu'il est chauffé jusqu'au rouge ou lentement à 200°, ou sur P2O5 sous vide, il se déshydrate en anhydride borique (B2O3) [1303-82-6] pour donner un verre dur blanc ou des cristaux avec m ~ 294°.
Le verre se ramollit en chauffant et se liquéfie à la chaleur rouge.
L'acide borique (acide orthoborique) est un astringent, un fongicide et un antibactérien.



INCOMPATIBILITÉS DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) se décompose à une température supérieure à 100 °C, formant de l'anhydride borique et de l'eau.
L'acide borique (acide orthoborique) est hygroscopique ; il absorbera l'humidité de l'air.
La solution aqueuse d’acide borique (acide orthoborique) est un acide faible ; incompatible avec les agents réducteurs puissants, notamment les métaux alcalins et les hydrures métalliques (peut générer de l'hydrogène gazeux explosif) ; anhydride acétique, carbonates alcalins et hydroxydes.

Attaque le fer en présence d'humidité.
L'acide borique (acide orthoborique) est incompatible avec l'eau, les bases fortes et les métaux alcalins.
L'acide borique (acide orthoborique) réagit violemment avec le potassium et les anhydrides d'acide.
Il forme également un complexe avec la glycérine, qui est un acide plus fort que l’acide borique (acide orthoborique).



ÉLIMINATION DES DÉCHETS D'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Les acides boriques (acide orthoborique) peuvent être récupérés à partir des déchets organiques du procédé comme alternative à leur élimination.



HISTOIRE DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) a été préparé pour la première fois par Wilhelm Homberg (1652-1715) à partir de borax, par l'action d'acides minéraux, et a reçu le nom de sal sedativum Hombergi (« sel sédatif de Homberg »).
Cependant, l'acide borique (acide orthoborique) et les borates sont utilisés depuis l'époque des Grecs anciens pour le nettoyage, la conservation des aliments et d'autres activités.



STRUCTURE MOLÉCULAIRE ET CRISTALLINE DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Les trois atomes d'oxygène forment une géométrie planaire trigonale autour du bore.
La longueur de la liaison BO est de 136 pm et la OH est de 97 pm. Le groupe ponctuel moléculaire est C3h.
Deux formes cristallines d’acide borique (acide orthoborique) sont connues : triclinique et hexagonale.
Le premier est le plus courant ; le second, un peu plus stable thermodynamiquement, peut être obtenu avec une méthode de préparation spéciale.



TRICLINIQUE D'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
La forme triclinique de l'acide borique (acide orthoborique) est constituée de couches de molécules B(OH)3 maintenues ensemble par des liaisons hydrogène avec une séparation O...O de 272 pm.
La distance entre deux couches adjacentes est de 318 pm



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) peut être préparé en faisant réagir du borax (tétraborate de sodium décahydraté) avec un acide minéral, tel que l'acide chlorhydrique :
Na2B4O7•10H2O + 2 HCl → 4 B(OH)3 + 2 NaCl + 5 H2O
L'acide borique (acide orthoborique) est également formé comme sous-produit de l'hydrolyse des trihalogénures de bore et du diborane :
B2H6 + 6H2O → 2B(OH)3 + 6H2
BX3 + 3 H2O → B(OH)3 + 3 HX (X = Cl, Br, I)



RÉACTIONS DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Pyrolyse :
Lorsqu'il est chauffé, l'acide borique (acide orthoborique) subit une déshydratation en trois étapes.
Les températures de transition signalées varient considérablement d'une source à l'autre.

Lorsqu'il est chauffé au-dessus de 140 °C, l'acide borique (acide orthoborique) produit de l'acide métaborique (HBO2) avec perte d'une molécule d'eau :
B(OH)3 → HBO2 + H2O
Chauffer l'acide métaborique au-dessus d'environ 180 °C élimine une autre molécule d'eau formant de l'acide tétraborique, également appelé acide pyroborique (H2B4O7) :

4HBO2 → H2B4O7 + H2O
Un chauffage supplémentaire (jusqu'à environ 530 °C) conduit à du trioxyde de bore :

H2B4O7 → 2B2O3 + H2O
Solution aqueuse
Lorsque l’acide borique (acide orthoborique) est dissous dans l’eau, il se dissocie partiellement pour donner de l’acide métaborique :

B(OH)3 ⇌HBO2 + H2O
La solution est légèrement acide en raison de l’ionisation des acides :

B(OH)3 + H2O ⇌ [BO(OH)2] − + H3O+
HBO2 + H2O ⇌ [BO2] − + H3O+
Cependant, la spectroscopie Raman de solutions fortement alcalines a montré la présence d'ions [B(OH)4]−, amenant certains à conclure que l'acidité est exclusivement due à l'extraction de OH− de l'eau :

B(OH)3 + HO− ⇌ B(OH) − 4
De manière équivalente,

B(OH)3 + H2O ⇌ B(OH) − 4+ H+ (K = 7,3×10−10 ; pK = 9,14)
Ou, plus exactement,
B(OH)3 + 2 H2O ⇌ B(OH) − 4 + H3O+
Cette réaction se produit en deux étapes, avec le complexe neutre aquatrihydroxybore B(OH)3(OH2) comme intermédiaire :

B(OH)3 + H2O → B(OH)3(OH2)
B(OH)3(OH2) + H2O + HO− → [B(OH)4]− + H3O+
Cette réaction peut être caractérisée comme l'acidité de Lewis du bore vers [HO]−, plutôt que comme l'acidité de Brønsted.
Cependant, certains de ses comportements vis-à-vis de certaines réactions chimiques suggèrent que l'acide borique (acide orthoborique) est également de l'acide tribasique au sens de Brønsted.

L'acide borique (acide orthoborique), mélangé au borax Na2B4O7•10H2O (plus exactement Na2B4O5(OH)4•8H2O) dans le rapport pondéral de 4:5, est hautement soluble dans l'eau, bien qu'ils ne soient pas aussi solubles séparément.



SOLUTION D'ACIDE SULFURIQUE D'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) se dissout également dans l'acide sulfurique anhydre selon l'équation :
B(OH)3 + 6 H2SO4 → [B(SO4H)4]− + 2 [HSO4]− + 3 H3O+
L'acide borique (acide orthoborique) est un acide extrêmement fort, encore plus fort que l'oléum d'origine.



ESTERIFICATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) réagit avec les alcools pour former des esters de borate, B(OR)3 où R est alkyle ou aryle.
La réaction est généralement pilotée par un agent déshydratant, tel que l'acide sulfurique concentré :

B(OH)3 + 3ROH → B(OR)3 + 3H2O
Aux diols vicinaux
L'acidité des solutions d'acide borique (acide orthoborique) est considérablement augmentée en présence de diols cis-vicinaux (composés organiques contenant des groupes hydroxyle orientés de manière similaire dans les atomes de carbone adjacents, (R1, R2) = C (OH) − C (OH) =(R3,R4)) comme le glycérol et le mannitol.

L'anion tétrahydroxyborate formé lors de la dissolution réagit spontanément avec ces diols pour former des esters anioniques relativement stables contenant un ou deux cycles -B−O−C−C−O− à cinq chaînons.
Par exemple, la réaction avec le mannitol H(HCOH)6H, dont les deux hydroxyles moyens sont en orientation cis, peut s'écrire

B(OH)3 + H2O ⇌ [B(OH)4] − + H+
[B(OH)4]− + H(HCOH)6H ⇌ [B(OH)2(H(HCOH)2(HCO − )2(HCOH)2H)] − + 2 H2O
[B(OH)2(H(HCOH)2(HCO−)2(HCOH)2H)]− + H(HCOH)6H ⇌ [B(H(HCOH)2(HCO − )2(HCOH)2H)2 ] − + 2H2O
Donner la réaction globale

B(OH)3 + 2 H(HCOH)6H ⇌ [B(H(HCOH)2(HCO − )2(HCOH)2H)2] − + 3 H2O + H+
La stabilité de ces anions esters de mannitoborate déplace l'équilibre de droite et augmente ainsi l'acidité de la solution de 5 ordres de grandeur par rapport à celle de l'oxyde borique pur, abaissant le pKa de 9 à moins de 4 pour une concentration suffisante de mannitol.

La solution résultante a été appelée acide mannitoborique.
L'ajout de mannitol à une solution initialement neutre contenant de l'acide borique (acide orthoborique) ou des borates simples abaisse suffisamment son pH pour qu'elle puisse être titrée par une base forte comme NaOH, y compris avec un titreur potentiométrique automatisé.

Cette propriété est utilisée en chimie analytique pour déterminer la teneur en borate de solutions aqueuses, par exemple pour suivre l'appauvrissement en acide borique (acide orthoborique) par les neutrons dans l'eau du circuit primaire d'un réacteur à eau légère lorsque le composé est ajouté sous forme de neutrons. un poison neutronique lors des opérations de ravitaillement.



PRÉPARATION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est produit à partir de borax, de colémanite ou d'autres borates inorganiques par réaction avec de l'acide sulfurique ou de l'acide chlorhydrique et en refroidissant la solution à la température appropriée :
Na2B4O7 ? 10Η2Ο + H2SO4 → 4H3BO3 + Na2SO4 + 5H2O

L'acide borique (acide orthoborique) peut également être préparé par extraction d'une saumure de borax faible avec une solution de kérosène d'un diol aromatique, tel que le 2-éthyl-1,3-hexanediol ou le 3-chloro-2-hydroxy-5-(1 Alcool ,1,3,3-tétraméthylbutyl)benzylique.
Le chélate diol-borate formé se sépare en une phase kérosène.
Le traitement à l'acide sulfurique donne de l'acide borique (acide orthoborique) qui se divise en phase aqueuse et est purifié par recristallisation.



MÉTHODES DE PRODUCTION DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est présent naturellement sous forme de sassolite minérale.
Cependant, la majorité de l’acide borique (acide orthoborique) est produite par réaction de borates inorganiques avec de l’acide sulfurique dans un milieu aqueux.
Le borate de sodium et le borate de calcium partiellement raffiné (colémanite) sont les principales matières premières.
Lorsque l'acide borique (acide orthoborique) est fabriqué à partir de colémanite, le minerai finement broyé est vigoureusement agité avec de la liqueur mère et de l'acide sulfurique à environ 908 ℃ .
Le sulfate de calcium sous-produit est éliminé par filtration et l'acide borique (acide orthoborique) est cristallisé en refroidissant le filtrat.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est un cristal triclinique incolore et transparent ou un granule ou une poudre blanche ; densité 1,435 g/cm3 ; fond à 171°C sous chauffage normal ; cependant, un chauffage lent entraîne une perte d’eau ; peu soluble dans l'eau froide (4,7% à 20°C) ; pH de la solution 0,1 M 5,1 ; se dissout facilement dans l'eau chaude (19,1 % à 80°C et 27,5 % à 100°C) ; également soluble dans les alcools inférieurs et modérément soluble dans la pyridine.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
L'acide borique (acide orthoborique) est une poudre ou des granulés blancs et inodore.
L'acide borique (acide orthoborique) est incompatible avec le potassium, l'anhydride acétique, les alcalis, les carbonates et les hydroxydes.
L'acide borique (acide orthoborique) est utilisé dans la production de fibre de verre textile, d'écrans plats et de gouttes pour les yeux.

L'acide borique (acide orthoborique) est reconnu pour son application comme tampon de pH et comme agent antiseptique et émulsifiant modéré.
L'acide borique (acide orthoborique) est une poudre blanche amorphe ou un solide cristallin incolore.
L'acide borique (acide orthoborique) se présente sous la forme d'une poudre cristalline blanche hygroscopique, de plaques brillantes incolores ou de cristaux blancs.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
Formule chimique : BH3O3
Masse molaire : 61,83 g/mol
Aspect : Solide cristallin blanc
Densité : 1,435 g/cm³
Point de fusion : 170,9 °C (339,6 °F ; 444,0 K)
Point d'ébullition : 300 °C (572 °F ; 573 K)
Solubilité dans l'eau:
2,52 g/100 ml (0 °C)
4,72 g/100 ml (20 °C)
5,7 g/100 ml (25 °C)
19,10 g/100 ml (80 °C)
27,53 g/100 ml (100 °C)
Solubilité dans d'autres solvants :
Soluble dans les alcools inférieurs
Modérément soluble dans la pyridine
Très légèrement soluble dans l'acétone
log P : -0,29

Acidité (pKa) : 9,24 (premier proton), 12,4 (second), 13,3 (complet)
Base conjuguée : Borate
Susceptibilité magnétique (χ) : -34,1•10^(-6) cm³/mol
Poids moléculaire : 61,84 g/mol
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 3
Nombre de liaisons rotatives : 0
Masse exacte : 62,0175241 g/mol
Masse monoisotopique : 62,0175241 g/mol
Surface polaire topologique : 60,7 Å ²
Nombre d'atomes lourds : 4
Frais formels : 0
Complexité : 8
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0

Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Poids moléculaire/masse molaire : 61,83 g/mol
Densité : 1,435 g/cm³ (standard)
1,48 g/cm³ (à 23 °C)
Point d'ébullition : 158 °C
Point de fusion:
300 °C (standard)
1000 °C (décomposition)
Numéro CAS : 10043-35-3
Numéro d'index CE : 005-007-00-2
Numéro CE : 233-139-2
Formule de colline : BH₃O₃
Formule chimique : H₃BO₃
Code SH : 2810 00 90
Niveau de qualité : MQ200
Propriétés supplémentaires :
Valeur pH : 5,1 (1,8 g/l, H₂O, 25 °C)
Pression de vapeur : <0,1 hPa (25 °C)
Densité apparente : 400 - 600 kg/m³

Solubilité : 49,2 g/l
Propriétés physiques:
État physique : Cristallin
Couleur blanche
Odeur : Inodore
Point de fusion/point de congélation : 160 °C
Point d'ébullition initial et plage d'ébullition : Aucune donnée disponible
Inflammabilité (solide, gaz) : Ininflammable (solide)
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
Propriétés chimiques:
pH : 5,1 à 1,8 g/l à 25 °C
Solubilité:
Hydrosolubilité : 49,2 g/l à 20 °C, complètement soluble
Coefficient de partage (n-Octanol/Eau) :
log Pow : -1,09 à 22 °C

Propriétés physiques:
Pression de vapeur : < 0,1 hPa à 25 °C
Densité : 1,48 g/cm³ à 23 °C
Densité relative : 1,49 à 23 °C
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : Aucune
Information de sécurité:
Constante de dissociation : 8,94 à 20 °C
Propriétés chimiques (récapitulatif) :
Noms IUPAC : Acide borique, Trihydroxydoboron
Formule chimique : BH₃O₃
Masse molaire : 61,83 g/mol
Aspect : Solide cristallin blanc
Densité : 1,435 g/cm³
Point de fusion : 170,9 °C
Point d'ébullition : 300 °C

Solubilité dans l'eau:
2,52 g/100 ml à 0 °C
4,72 g/100 mL à 20 °C
5,7 g/100 mL à 25 °C
19,10 g/100 mL à 80 °C
27,53 g/100 mL à 100 °C
Solubilité dans d'autres solvants :
Soluble dans les alcools inférieurs
Modérément soluble dans la pyridine
Numéro CBN : CB6128144
Formule moléculaire : structure de Lewis BH3O3
Poids moléculaire : 61,83
Numéro MDL : MFCD00236358
Fichier MOL : 10043-35-3.mol
Solubilité : Légèrement soluble dans l'acétone et la pyridine.
Forme moléculaire : plan trigonal
Moment dipolaire : zéro
Aspect : Granulé blanc

Couleur blanche
Point de fusion : Environ 185°C (décomposition)
Densité : 1,435 g/cm³
Odeur : Inodore
Point d'éclair : Aucun
Plage de pourcentage de test : 99,8 %
Forme physique : Granulaire
Numéro Beilstein: 1697939
Poids de la formule : 61,83 g/mol
Nom chimique ou matériau : Acide borique
Point de fusion : 160 °C (déc.) (lit.)
Point d'ébullition : 219-220 °C (9,7513 mmHg)
Densité : 1,440 g/cm³
Pression de vapeur : 2,6 mm Hg (20 °C)
Température de stockage : Conserver entre +5°C et +30°C.
Solubilité : H2O : soluble
Formulaire : solution de travail
pKa : 8,91 ± 0,43 (prédit)

Gravité spécifique : 1,435
Couleur : ≤10 (APHA)
pH : 3,6-4,4 (25 ℃ , solution saturée dans H2O)
Odeur : Inodore
Plage de pH : 3,8 - 4,8
Solubilité dans l'eau : 49,5 g/L (20 ºC)
Sensibilité : Hygroscopique
λmax (longueur d'onde d'absorption maximale) : λ : 260 nm Amax : 0,05, λ : 280 nm Amax : 0,05
Indice Merck : 14 1336
BRN (numéro de registre Beilstein) : 1697939
Limites d'exposition : ACGIH : TWA 2 mg/m3 ; STEL 6 mg/m3
InChIKey : KGBXLFKZBHKPEV-UHFFFAOYSA-N
LogP : -1,09 à 22 ℃
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE BORIQUE
Référence de la base de données CAS : 10043-35-3 (référence de la base de données CAS)
FDA UNII : R57ZHV85D4
Référence chimique NIST : B(OH)3(10043-35-3)
Système d'enregistrement des substances de l'EPA : Acide orthoborique (10043-35-3)



PREMIERS SECOURS DE L'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Consultez un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Prenez soin de vous.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Utiliser des mesures d'extinction adaptées aux circonstances locales et à l'environnement immédiat.
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité.
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Précautions à prendre pour une manipulation sans danger:
*Mesures d'hygiène:
Changez immédiatement les vêtements contaminés.
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.
Conserver dans un endroit bien aéré.
Conserver sous clé ou dans un endroit accessible uniquement aux personnes qualifiées ou autorisées.
Température de stockage recommandée, voir l'étiquette du produit.
*Classe de stockage :
Classe de stockage (TRGS 510) : 6.1D :
Incombustible.



STABILITÉ et RÉACTIVITÉ de l'ACIDE BORIQUE (ACIDE ORTHO BORIQUE) :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible


ACIDE CAPRIQUE
L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
La formule de l'acide caprique est CH3(CH2)8COOH.


Numéro CAS : 334-48-5
1002-62-6 (sel de sodium)
Numéro CE : 206-376-4
NOM INCI : Acide Caprique
NOM CHIMIQUE : Acide n-décanoïque
Formule chimique : C10H20O2



SYNONYMES :
Acide décanoïque, acide caprynique, acide caprynique, acide décoique, acide décylique, acide 1-nonanecarboxylique, C10:0, acide caprique, acide n-décanoïque, acide n-caprique, acide décoique, acide décylique, acide caprique, acide n-décylique , Acide 1-nonanecarboxylique, acide caprynique, acide n-décoique, Hexacide 1095, Econosan Acid Sanitizer, NSC 5025, acide décanoïque (naturel), FEMA n° 2364, C10:0, Dekansaeure, Emery 659, Kaprinsaeure, CCRIS 4610, HSDB 2751, EINECS 206-376-4, UNII-4G9EDB6V73, Code chimique des pesticides EPA 128955, BRN 1754556, 4G9EDB6V73, Caprate de plomb, DTXSID9021554, Prifac 296, CHEBI:30813, AI3-04453, Prifac NSC, -5025, MFCD00004441, Lunac 10-95, Lunac 10-98, PRIFAC-2906, DTXCID201554, PALMAC-99-10, NSC5025, caprynate, décoate, décylate, 4-02-00-01041 (référence du manuel Beilstein), n-caprate, n-décate, n-décylate, NCGC00091320-02, 1-nonanecarboxylate, anion acide décanoïque, DKA, CH3-(CH2)8-COOH, CH3-[CH2]8-COOH, Versatic 10, CAS-334-48-5, caprinsaure, décansaure , Decansaeure, Docansaure, Acide décatoïque, acide 1-décanoïque, acide nonanecarboxylique, acide gras 10:0, Prifrac 296, Prifrac 2906, Acide décanoïque, 96%, Decansaeure (Altstoff), Acide nonane-1-carboxylique, DECANsaure (ALTSTOFF) , bmse000370, ACIDE CAPRIQUE [INCI], SCHEMBL2682, WLN : QV9, ACIDE DÉCANOÏQUE [FCC], ACIDE N-CAPRIQUE [MI], ACIDE DÉCANOÏQUE [FHFI], ACIDE DÉCANOÏQUE [HSDB], Acide décanoïque, >=98,0%, MLS002415724 , ACIDE IS_D19-DÉCANOÏQUE, (1(1)(3)C)Acide décanoïque, CHEMBL107498, GTPL5532, ACIDE 1-NONANE CARBOXYLIQUE, ACIDE N-CAPRIQUE [WHO-DD], acide décanoïque, sel de plomb (2+), NAA 102, Acide décanoïque, étalon analytique, HMS2267B15, Acide décanoïque, >=98,0 % (GC), Tox21_113533, Tox21_202209, Tox21_300366, LMFA01010010, s6906, STL445666, Acide décanoïque, >=98 %, FCC, FG, 00119623, CS-W016025 , DB03600, FA 10:0, HY-W015309, Code des pesticides USEPA/OPP : 128955, NCGC00091320-01, NCGC00091320-03, NCGC00091320-04, NCGC00091320-05, NCGC00254437-01, NCGC0025975. 8-01, AS-14704, BP- 27911, FA(10:0), SMR001252255, SY061635, D0017, Acide décanoïque, naturel, >=98 %, FCC, FG, FT-0665532, FT-0665533, EN300-19724, C-1095, C01571, D70225, A875289 , Acide caprique (constituant de la scie Palmetto), Q422613, W-202368, acide caprique (constituant de la scie Palmetto) [DSC], Z104474944, B1334-066368, 98230577-0D20-4F70-B532-00AC60132CFE, 1- (S) -) Acide cis 9-Aminooctahydro-10-oxo-6H-pyridazino[1,2-a][1,2]diazépine-1-carboxylique, ester t-butylique, acide décanoïque, acide n-caprique, acide n-décoique, n -Acide décylique, acide caprique, acide caprynique, acide caprynique, acide décoique, acide décylique, acide 1-nonanecarboxylique, acide nonane-1-carboxylique, néo-Fat 10, Hexacide 1095, Emery 659, Prifrac 296, acide 1-décanoïque, NSC 5025, Acide décanoïque (acide caprique), acide 1-nonanecarboxylique, C10:0, acide caprinique, CH3-[CH2]8-COOH, décanoate, acide décoique, acide décylique, Dekansaeure, Kaprinsaeure, acide N-Caprique, N- Acide décanoïque, acide N-décoïque, acide N-décylique, 1-Nonanecarboxylate, Caprinate, Acide décanoïque, Décoate, Décylate, N-Caprate, N-Décanoate, N-Décoate, N-Décylate, Caprate, Caprynate, Acide caprynique, Émeri 659, Lunac 10-95, Lunac 10-98, Prifac 2906, Prifac 296, acide décanoïque, sel de sodium, caprate de sodium, décanoate de sodium, FA(10:0), acide décanoïque, acide n-caprique, acide n-décoique, Acide n-décylique, acide caprique, acide caprynique, acide caprynique, acide décoique, acide décylique, acide 1-nonanecarboxylique, acide nonane-1-carboxylique, néo-graisse 10, hexaacide 1095, émeri 659, Prifrac 296, acide 1-décanoïque , NSC 5025, Acide décanoïque (acide caprique), C10:0, Caprate, Acide caprique, Caprinate, Acide caprynique, Caprynate, Acide caprynique, CH3-[CH2]8-COOH, Décanoate, Acide décanoïque, Acide décanoïque (acide caprique) , Décoate, Acide décoique, Décylate, Acide décylique, Dekansaeure, Kaprinsaeure, n-Caprate, acide n-Caprique, n-Décanoate, acide n-Décanoïque, n-Décoate, acide n-Décoique, n-Décylate, acide n-Décylique , Acide nonane-1-carboxylique, 10:0, Emery 659, Lunac 10-95, Lunac 10-98, Prifac 2906, Prifac 296, Acide décanoïque, sel de sodium, Caprate de sodium, Décanoate de sodium, FA(10:0), ACIDE N-DÉCANOÏQUE, ACIDE CAPRIQUE, Acide décoique, C10:0, acide c-10, acide n-décoïque, acide caprynique, ACIDE CAPRINIQUE, caprate (10:0), acide 1-décanoïque, acide 1-décanoïque, acide caprique, Acide caprynique, acide caprynique, acide décoique, acide décylique, acide n-caprique, acide n-décanoïque, acide n-décoïque, acide n-décylique,



L'acide caprique est un solide cristallin blanc avec une odeur rance.
Le point de fusion de l'acide caprique est de 31,5 °C.
L'acide caprique est soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué ; non toxique.


L'acide caprique est un acide gras saturé en C10 à chaîne droite.
L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.


L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.
L'acide caprique dérive d'un hydrure d'une décennie.


L'acide caprique est un solide.
L'acide caprique appartient aux acides gras à chaîne droite.
Ce sont des acides gras à chaîne aliphatique droite.


Les protéines ciblées par l'acide décanoïque comprennent la furine, l'octanoyltransférase, la 3-oxoacyl-[acyl-carrier-protein] synthase 1, la protéine de liaison à l'albumine peptostreptococcique et la protéine putative non caractérisée tcp14.
L'acide caprique est un métabolite présent ou produit par Escherichia coli.


L'acide caprique est un produit naturel présent dans Xerula pudens, Litsea glutinosa et d'autres organismes pour lesquels des données sont disponibles.
L'acide caprique est un acide gras saturé à chaîne moyenne avec un squelette de 10 carbones.
L'acide caprique se trouve naturellement dans les huiles de noix de coco et de palmiste ainsi que dans le lait de divers mammifères.


L'acide caprique fait partie de la série d'acides gras présents dans les huiles et les graisses animales.
Les noms des acides caproïque, caprylique et caprique sont tous dérivés du mot câpre (latin : « chèvre »).
Ce sont des liquides huileux transparents, incolores, légèrement jaunâtres, aux odeurs inconfortables.


L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et esters de l’acide décanoïque sont appelés caprates ou décanoates.


Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.
L'acide caprique est un acide saturé à chaîne courte présent naturellement dans les huiles de palme et de noix de coco, ainsi que dans certains types de lait.
Également connu sous le nom d’acide gras C10 et d’acide décanoïque, l’acide caprique est généralement dérivé de sources végétales et animales.


La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et esters de l’acide décanoïque sont appelés caprates ou décanoates.
L'acide caprique est un solide cristallin blanc avec une odeur rance.


De petites quantités sont présentes dans le lait de vache et le lait de chèvre, mais elles sont abondantes dans les huiles tropicales telles que l'huile de coco et l'huile de palmiste.
L'acide caprique est un acide gras.
Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.


L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
L'acide caprique est soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué ; non toxique.
L'acide caprique est un acide gras saturé en C10 à chaîne droite.


L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.
L'acide caprique est obtenu par fractionnement d'une huile de type laurique.


L'acide caprique obtenu a un point de fusion d'environ 7°C.
Sous forme liquide, l’acide caprique est presque incolore et possède une odeur caractéristique.
L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées.


L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.
L'acide caprique dérive d'un hydrure de décane.


L'acide caprique est un solide.
L'acide caprique appartient aux acides gras à chaîne droite.
Ce sont des acides gras à chaîne aliphatique droite.


Les protéines ciblées par l'acide décanoïque comprennent la furine, l'octanoyltransférase, la 3-oxoacyl-[acyl-carrier-protein] synthase 1, la protéine de liaison à l'albumine peptostreptococcique et la protéine putative non caractérisée tcp14.
L'acide caprique, également connu sous le nom d'acide décanoïque, est un acide gras saturé en C10.


L'acide caprique fait partie de la série d'acides gras présents dans les huiles et les graisses animales.
Les noms des acides caproïque, caprylique et caprique sont tous dérivés du mot câpre (latin pour chèvre).
Ces acides gras sont des liquides huileux transparents légèrement jaunâtres avec un arôme moite et désagréable qui rappelle celui de la chèvre.


L'acide caprique est un mélange d'acides gras dérivés d'huiles végétales et végétales.
L'acide caprique est un produit oléochimique polyvalent, couramment utilisé comme intermédiaire pour les triglycérides à chaîne moyenne, la fabrication de triglycérides caprylique-caprique, les esters de glycérol, les esters de polyol, les solubilisants pour l'huile minérale, les inhibiteurs de corrosion, etc.


L'acide caprique est un acide gras.
L'acide caprique, également connu sous le nom de décanoate ou 10:0, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
Sur la base d'une revue de la littérature, un nombre important d'articles ont été publiés sur l'acide caprique.



UTILISATIONS et APPLICATIONS de l’ACIDE CAPRIQUE :
L'acide caprique est utilisé comme arôme et parfum.
L'acide caprique est utilisé pour fabriquer des esters utilisés dans la production de parfums et d'arômes artificiels, ainsi que d'aliments et de boissons.
L'acide caprique est un ingrédient antimicrobien naturel utilisé dans les désinfectants pour les surfaces et les équipements en contact avec les aliments, en particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles.


L'acide caprique est également utilisé dans les lubrifiants et les graisses pour l'alimentation animale, la fabrication de graisses lubrifiantes, les fluides de travail des métaux, les solubilisants pour les huiles minérales, les soins personnels et les ingrédients antimicrobiens naturels.
L'acide caprique agit également comme émulsifiant et émollient, ainsi que comme plastique.


L'acide caprique est utilisé dans les plastifiants et le caoutchouc.
L'acide caprique est utilisé dans la fabrication de caoutchouc synthétique et de textiles.
L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures.


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.
Ceux-ci sont utilisés dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de teintures.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
L'acide caprique, l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0) représentent environ 15 % des acides gras contenus dans la matière grasse du lait de chèvre (PMID 16747831).


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.


L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.
L'acide caprique est utilisé comme intermédiaire de cristaux liquides.


Pour fabriquer des esters, l’acide caprique est utilisé dans la production de parfums et d’arômes artificiels.
Utilisations de l'acide caprique dans les aliments et les boissons : ingrédient antimicrobien naturel dans les désinfectants pour les surfaces et les équipements en contact avec les aliments, en particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles.


L'acide caprique est également utilisé dans l'alimentation animale, les lubrifiants et les graisses, la fabrication de graisses lubrifiantes, les fluides de travail des métaux et les solubilisants pour huiles minérales.
Utilisations de l'acide caprique pour les soins personnels : ingrédient antimicrobien naturel.
L'acide caprique agit également comme émulsifiant et émollient.


L'acide caprique est utilisé dans les plastiques.
L'acide caprique est utilisé dans les plastifiants et le caoutchouc
L'acide caprique est utilisé dans la fabrication de caoutchouc synthétique et de textiles.


L'acide caprique peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple, emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple, vêtements, matelas, rideaux ou tapis, jouets textiles) et cuir (par exemple, gants, chaussures, sacs à main, meubles).
L'acide caprique est utilisé dans les produits suivants : adhésifs et produits d'étanchéité, lubrifiants et graisses, engrais, produits phytopharmaceutiques, cirages et cires et produits de lavage et de nettoyage.


L'acide caprique est utilisé dans les domaines suivants : agriculture, foresterie et pêche.
L'acide caprique est utilisé dans les produits suivants : polymères, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, engrais, encres et toners, régulateurs de pH, produits de traitement de l'eau et fluides de travail des métaux.


Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide caprique peut être responsable de la prolifération mitochondriale associée au régime cétogène, qui peut se produire via l'agonisme des récepteurs PPARgamma et le ciblage de gènes impliqués dans la biogenèse mitochondriale.


L'acide caprique est un liquide soluble et peut être utilisé dans tout processus dans lequel un produit conventionnel d'origine animale est généralement utilisé.
L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments, comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels, et comme solubilisant pour l'huile minérale.


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits ; comme intermédiaire dans d'autres synthèses chimiques.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide caprique est approuvé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : l'alimentation humaine et animale, la lutte contre les insectes, les fourmis, etc., la repousse ou l'attraction des parasites.


Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal) et traitement par abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage).


D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques) et utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide caprique peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide caprique est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement textile et colorants, adhésifs et produits d'étanchéité, produits de traitement du cuir, lubrifiants et graisses et produits de lavage et de nettoyage.


L'acide caprique est utilisé pour la fabrication de : textiles, cuir ou fourrure, produits chimiques, pâte à papier, papier et produits en papier, machines et véhicules.
Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : dans la production d'articles, dans des auxiliaires technologiques sur des sites industriels, comme auxiliaire technologique et comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires).


Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : fabrication de la substance.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques. De plus, l'acide caprique est utilisé en synthèse organique et dans la fabrication de lubrifiants, de graisses, de caoutchouc, de plastiques et de colorants.


L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.
L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures.


L'acide caprique est généralement utilisé dans les savons, les crèmes et les lotions.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.


L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.


L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
L'acide caprique, l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0) représentent environ 15 % des acides gras contenus dans la matière grasse du lait de chèvre.
L'acide caprique est utilisé dans les produits de consommation, les amines, les bétaïnes, les mélanges, les détergents, les nettoyants ménagers, les tensioactifs, les arômes et les parfums, les esters, les additifs de parfum, l'alimentation et la pharmacie, les médicaments, la synthèse organique, les lubrifiants, les fluides et les champs pétrolifères, les esters, les soins personnels, les mélanges. , Émollients et Esters.


L'acide caprique est le plus couramment utilisé dans les industries des cosmétiques et des soins personnels, de l'alimentation/des boissons et de la pharmacie.
D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide caprique est utilisé dans divers processus industriels et de fabrication.
L'acide caprique est principalement obtenu à partir du fractionnement d'une huile de type laurique. L'acide caprique obtenu a un point de congélation de 31°C.
L'acide caprique est solide à température ambiante, blanc opaque et avec une odeur piquante caractéristique.


L'acide caprique est utilisé. Les acides gras fractionnés sont principalement utilisés dans la fabrication de : Amines, esters, alcools gras, peroxydes, parfums, arômes, finition de surface, lubrifiants, savons métalliques, cosmétiques, aliments pour animaux, papier, plastiques, détergents, produits chimiques, résines. et les revêtements.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.


L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.
L'acide caprique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, enduits, mastics, plâtres, pâte à modeler, peintures au doigt, produits d'entretien de l'air, cirages et cires et produits phytopharmaceutiques.


D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.
L'acide caprique est utilisé dans la production de caprylate/caprate de méthyle, un lubrifiant utilisé dans l'industrie du plastique.


Les applications de l'acide caprique comprennent les cosmétiques, les soins personnels, les aliments et les arômes, les lubrifiants, les fluides de travail des métaux, les produits pharmaceutiques, les textiles, le papier, la polymérisation en émulsion, les peintures, la protection des cultures et le brassage.
Ce sont des liquides huileux transparents, incolores, légèrement jaunâtres, aux odeurs inconfortables.


L'acide caprique est utilisé comme arôme et parfum.
L'acide caprique est utilisé comme intermédiaire dans les synthèses chimiques.
Ceux-ci sont utilisés dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de teintures.


L'acide caprique est utilisé dans divers processus industriels et de fabrication.
L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments, comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels, et comme solubilisant pour l'huile minérale.


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.


-Utilisations pharmaceutiques de l'acide caprique :
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles.
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection retard) en utilisant sa forme caprate.
Quelques exemples de médicaments disponibles sous forme d'ester de caprate comprennent la nandrolone (sous forme de décanoate de nandrolone), la fluphénazine (sous forme de décanoate de fluphénazine), le brompéridol (sous forme de décanoate de brompéridol) et l'halopéridol (sous forme de décanoate d'halopéridol).


-Médicaments:
Des sels décanoates et des esters de divers médicaments sont disponibles.
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour les tissus adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection dépôt) en utilisant la forme décanoate de l'acide caprique.
Quelques exemples de médicaments disponibles sous forme d'ester ou de sel de décanoate comprennent la nandrolone, la fluphénazine, le brompéridol, l'halopéridol et la vanoxérine.



PARENTS ALTERNATIFS DE L'ACIDE CAPRIQUE :
*Acides gras à chaîne droite
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE CAPRIQUE :
*Acide gras à chaîne moyenne
*Acide gras à chaîne droite
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



PRÉSENCE D'ACIDE CAPRIQUE :
L'acide caprique signalé se trouve dans les pommes, la bière, les préférences du pain, le beurre, l'huile, le fromage, le fromage bleu, le fromage Romano, le fromage cheddar, le fromage Roquefort, les fèves de cacao torréfiées, le cognac, le raisin muscat, les moûts de raisin et le vin, ainsi que d'autres produits naturels. sources.
L'acide caprique est également signalé dans les huiles d'écorces d'agrumes, le jus d'orange, les abricots, la goyave, la papaye, la fraise, le beurre, le yaourt, le lait, le mouton, l'huile de houblon, le whisky Bourbon et écossais, le rhum, le café, la mangue et le thé.



QUE FAIT L’ACIDE CAPRIQUE DANS UNE FORMULATION ?
*Nettoyage
*Émulsifiant
*Masquage
*Surfactant
*Parfumage



PRODUCTION D'ACIDE CAPRIQUE :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters de triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
Ce sel est un composant de certains types de savons.



LES BIENFAITS POUR LA SANTÉ DE L'ACIDE CAPRIQUE ET DE L'ACIDE CAPRYLIQUE :
L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées.
De petites quantités sont présentes dans le lait de vache et le lait de chèvre, mais l'acide caprique est abondant dans les huiles tropicales telles que l'huile de coco et l'huile de palmiste.
L'acide caprylique est un acide gras naturellement présent dans le lait de coco et le lait maternel.
Cet acide gras saturé, l'acide caprique, également connu sous le nom d'acide octanoïque, est également présent dans le beurre et l'huile de palme.
Découvrez les bienfaits pour la santé de l’acide caprylique et de l’acide caprique.



BIENFAITS DE L'ACIDE CAPRIQUE :
1. Antiviral :
L'acide caprique possède de fortes propriétés antivirales et antimicrobiennes.
L'acide caprique est converti en monocaprine dans l'organisme, où il peut aider à combattre les virus, les bactéries et la levure Candida albicans.
Les solutions contenant de la monocaprine peuvent être utilisées comme désinfectant pour les prothèses dentaires, selon une étude de juin 2009 publiée dans la revue dentaire scandinave Acta Odontologica Scandinavica.

2. Énergie :
Les graisses saturées comprennent des acides gras à longue chaîne (LCT), qui subissent un long processus digestif dans votre corps et ne constituent pas une source d'énergie saine.
Les triglycérides à chaîne moyenne (MCT) tels que l'acide caprique sont rapidement décomposés et traités dans le foie, et peuvent être utilisés comme source d'énergie pour alimenter vos entraînements.
En fait, lorsque les athlètes mangeaient des aliments contenant des MCT au lieu de LCT pendant 2 semaines, ils étaient capables de s'entraîner plus longtemps et plus durement, selon une étude de 2009 publiée dans le Journal of Nutritional Science and Vitaminology.

3. Perte de poids :
Les MCT tels que l'acide caprique peuvent entraîner une plus grande dépense énergétique et favoriser la perte de graisse et de poids, selon une petite étude de mars 2003 dans Obesity Research.
Vous devriez discuter de tout projet de perte de poids avec votre médecin, y compris des changements alimentaires proposés et de l'exercice.

4. Acné :
L'acide caprique s'est révélé être un traitement efficace contre l'acné grâce à ses propriétés anti-inflammatoires, selon une étude de mars 2014 publiée dans le Journal of Dermatological Science.



PRÉSENCE D'ACIDE CAPRIQUE :
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0).
Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.



PRODUCTION D'ACIDE CAPRIQUE :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters de triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
Ce sel est un composant de certains types de savons.



PRODUITS PHARMACEUTIQUES, ACIDE CAPRIQUE :
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles. L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection retard) en utilisant la forme caprate de l'acide caprique.
Quelques exemples de médicaments disponibles sous forme d'ester de caprate comprennent la nandrolone (sous forme de décanoate de nandrolone), la fluphénazine (sous forme de décanoate de fluphénazine), le brompéridol (sous forme de décanoate de brompéridol) et l'halopéridol (sous forme de décanoate d'halopéridol).



PRÉSENCE D'ACIDE CAPRIQUE :
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0).
Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE CAPRIQUE :
Formule chimique : C10H20O2
Masse molaire : 172,268 g·mol−1
Aspect : Cristaux blancs
Odeur : Forte rance et désagréable
Densité : 0,893 g/cm3 (25 °C)
0,8884 g/cm3 (35,05 °C)
0,8773 g/cm3 (50,17 °C)
Point de fusion : 31,6 °C (88,9 °F ; 304,8 K)
Point d'ébullition : 268,7 °C (515,7 °F ; 541,8 K)
Solubilité dans l'eau : 0,015 g/100 mL (20 °C)
Solubilité : Soluble dans l'alcool, l'éther, CHCl3, C6H6, CS2, acétone
log P : 4,09
Pression de vapeur : 4,88·10−5 kPa (25 °C)
0,1 kPa (108 °C)
2,03 kPa (160 °C)

Acidité (pKa) : 4,9
Conductivité thermique : 0,372 W/m·K (solide)
0,141 W/m·K (liquide)
Indice de réfraction (nD) : 1,4288 (40 °C)
Viscosité : 4,327 cP (50 °C), 2,88 cP (70 °C)
Structure cristalline : Monoclinique (−3,15 °C)
Groupe spatial : P21/c
Constante de réseau :
a = 23,1 Å, b = 4,973 Å, c = 9,716 Å
α = 90°, β = 91,28°, γ = 90°
Thermochimie:
Capacité thermique (C) : 475,59 J/mol·K
Enthalpie standard de formation (ΔfH ⦵ 298) : −713,7 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 6079,3 kJ/mol
Poids moléculaire : 172,26 g/mol
XLogP3 : 4,1

Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 8
Masse exacte : 172,146329876 g/mol
Masse monoisotopique : 172,146329876 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 12
Frais formels : 0
Complexité : 110
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
Numéro CAS : 334-48-5
Numéro d'index CE : 607-709-00-X
Numéro CE : 206-376-4
Formule de Hill : C₁₀H₂₀O₂
Formule chimique : CH₃(CH₂)₈COOH
Masse molaire : 172,26 g/mol
Code SH : 2915 90 70
Densité : 0,89 g/cm3 (20 °C)
Point d'éclair : 147 °C
Point de fusion : 29 - 32 °C
Valeur pH : 4 (0,2 g/l, H₂O, 20 °C)
Pression de vapeur : 0,13 hPa (79 °C)
Densité apparente : 690 kg/m3
État physique : cristallin
Couleur : blanc, jaune clair
Odeur : rance
Point de fusion/point de congélation :
Point/plage de fusion : 27 - 32 °C - allumé.

Point d'ébullition initial et plage d'ébullition : 268 - 270 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : 147 °C - coupelle fermée - ASTM D 93
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : environ 4 à 0,2 g/l à 20 °C
Viscosité
Viscosité, cinématique : 6 mm2/s à 40 °C - (ECHA)
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : 0,0618 g/l à 25 °C
Coefficient de partage : n-octanol/eau :
log Pow: 4,09 - Bioaccumulation potentielle
Pression de vapeur : 0,13 hPa à 79 °C
Densité : 0,893 g/mL à 25 °C - lit.
Densité relative : Aucune donnée disponible

Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité :
Solubilité dans d'autres solvants : Éthanol 50 g/l à 20 °C
Tension superficielle : 34,4 mN/m à 20 - 25 °C
Formule chimique : C10H20O2
Poids moléculaire moyen : 172,2646
Poids moléculaire monoisotopique : 172,146329884
Nom IUPAC : acide décanoïque
Nom traditionnel : acide caprique
Numéro de registre CAS : 334-48-5
SOURIRES : CCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : GHVNFZFCNZKVNT-UHFFFAOYSA-N

Nom IUPAC : acide décanoïque
Nom traditionnel IUPAC : acide caprique
Formule : C10H20O2
InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : GHVNFZFCNZKVNT-UHFFFAOYSA-N
Poids moléculaire : 172,2646
Masse exacte : 172,146329884
SOURIRES : CCCCCCCCCC(O)=O
Formule chimique : C10H20O2
Masse moléculaire moyenne : 172,265 g/mol
Masse monoisotopique : 172,146 g/mol
Numéro de registre CAS : 334-48-5
Nom IUPAC : acide décanoïque
Nom traditionnel : acide caprique

SOURIRES : CCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : InChIKey=GHVNFZFCNZKVNT-UHFFFAOYSA-N
POIDS MOLÉCULAIRE : 172,26
ASPECT : Liquide clair, incolore à légèrement jaune
DENSITÉ : 0,88 g/cm3
ANALYSE : 97 % MIN.
POINT D'ÉBULLITION : 269 °C
POINT DE FUSION : 28 - 31 °C
POINT D'ÉCLAIR : 150 °C
ODEUR : âcre, piquante et irritante
VALEUR ACIDE : 321 - 329
COULEUR (JARDINIER): 1 MAX.

VALEUR IODE : 0,5 MAX.
TITRE : 28 - 32 °C
CLASSE : Acides gras fractionnés
MARCHÉ : Oléochimie
Solubilité dans l'eau : 0,095 g/L
logP : 3,93
logP : 3,59
logS : -3,3
pKa (acide le plus fort) : 4,95
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre de liaisons rotatives : 8
Réfractivité : 49,48 m³·mol⁻¹
Polarisabilité : 21,61 ų

Nombre de sonneries : 0
Biodisponibilité : 1
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : Oui
Règle de type MDDR : Oui
Numéro CBN : CB1669961
Formule moléculaire : C10H20O2
Poids moléculaire : 172,26
Numéro MDL : MFCD00004441
Fichier MOL : 334-48-5.mol
Point de fusion : 27-32 °C(lit.)
Point d'ébullition : 268-270 °C(lit.)
Densité : 0,893 g/mL à 25 °C(lit.)
pression de vapeur : 15 mm Hg ( 160 °C)
indice de réfraction : 1,4169
FEMA : 2364 | ACIDE DÉCANOÏQUE

Point d'éclair : >230 °F
température de stockage : température ambiante
solubilité : chloroforme (légèrement), méthanol (légèrement)
pka : 4,79 ± 0,10 (prédit)
forme : Solide cristallin
Couleur blanche
PH : 4 (0,2 g/l, H2O, 20 ℃ )
Odeur : Inodore
Type d'odeur : grasse
Viscosité : 6 mm2/s
Solubilité dans l'eau : 0,15 g/L (20 ºC)
Merck : 14 1758
Numéro JECFA : 105
Numéro de référence : 1754556
Stabilité : Stable.
LogP : 4,1 à 20 ℃

Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE DÉCANOÏQUE
Référence de la base de données CAS : 334-48-5 (référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 4G9EDB6V73
Référence chimique NIST : Acide décanoïque (334-48-5)
Système d'enregistrement des substances de l'EPA : Acide décanoïque (334-48-5)
Formule chimique : C10H20O2
Poids moléculaire moyen : 172,2646
Poids moléculaire monoisotopique : 172,146329884
Nom IUPAC : Acide décanoïque
Nom traditionnel : Acide caprique
Numéro de registre CAS : 334-48-5
SOURIRES : CCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : GHVNFZFCNZKVNT-UHFFFAOYSA-N



PREMIERS SECOURS DE L'ACIDE CAPRIQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Appelez immédiatement un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE CAPRIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE CAPRIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE CAPRIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE CAPRIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE CAPRIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles


ACIDE CAPRIQUE
L'acide caprique est un acide gras saturé avec un squelette de 10 carbones.
L'acide caprique est naturellement présent dans les huiles de noix de coco, l'huile de palmiste et le lait de vache/chèvre.
L'acide caprique est le plus couramment utilisé dans les industries des cosmétiques et des soins personnels, de l'alimentation/des boissons et de la pharmacie.

CAS : 334-48-5
FM : C10H20O2
MW : 172,26
EINECS : 206-376-4

Synonymes
acidedécanoique;Caprinsαure;Acide caprynique;acide caprynique;Decansαure;Acide décatoique;Acide décoique;acide décoique;Acide décanoïque;ACIDE CAPRIQUE;334-48-5;Acide n-décanoïque;Acide n-caprique;Acide décoique;Acide décylique;Acide caprinique;n -Acide décylique; Acide 1-nonanecarboxylique; Acide caprynique; Acide n-décoique; Hexacide 1095; Assainisseur d'acide Econosan; NSC 5025; Acide décanoïque (naturel); FEMA No. 2364; C10: 0; Dekansaeure; Emery 659; Kaprinsaeure; CCRIS Code chimique des pesticides EPA 128955; SC-5025;MFCD00004441;Lunac 10-95; Lunac 10-98; PRIFAC-2906; n-décylate; Caprate de plomb; NCGC00091320-02; 1-nonanecarboxylate; Anion acide décanoïque; DKA; CH3-(CH2) 8-COOH; CH3-[CH2] 8-COOH; Versatic 10; CAS-334-48-5 ; caprinsaure;decansaure;Decansaeure;Docansaure;Acide décatoique;Acide 1-décanoïque;acide nonanecarboxylique;acide gras 10:0;Prifrac 296;Prifrac 2906;Acide C10;Acide décanoïque, 96%;Decansaeure (Altstoff);Nonane-1-carboxylique acide ; DECANsaure (ALTSTOFF) ;

L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
De plus, l'acide caprique est utilisé en synthèse organique et dans la fabrication de lubrifiants, de graisses, de caoutchouc, de plastiques et de colorants.
L'acide décanoïque, ou acide caprique, est un acide gras saturé.
La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et les esters de l'acide décanoïque sont appelés décanoates ou « caprates ».
Le terme acide caprique vient du latin « capric » qui désigne les chèvres en raison de leurs similitudes olfactives.
L'acide caprique est présent naturellement dans l'huile de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : le caproïque (un acide gras en C6) et le caprylique (un acide gras en C8).

Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.
L'acide caprique est un acide gras saturé en C10 à chaîne droite.
L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.
L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.
L'acide caprique dérive d'un hydrure de décane.
L'acide caprique est un solide cristallin blanc avec une odeur rance.
Point de fusion 31,5 °C.
Soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué ; non toxique.
Utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.

L'acide caprique est un acide gras saturé en C10 à chaîne droite.
L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.
L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.
L'acide caprique dérive d'un hydrure de décane.
L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et esters de l’acide caprique sont appelés caprates ou décanoates.
Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.

Propriétés chimiques de l'acide décanoïque
Point de fusion : 27-32 °C(lit.)
Point d'ébullition : 268-270 °C(lit.)
densité : 0,893 g/mL à 25 °C(lit.)
pression de vapeur : 15 mm Hg ( 160 °C)
indice de réfraction : 1,4169
FEMA : 2364 | ACIDE DÉCANOÏQUE
Fp : >230 °F
température de stockage : température ambiante
solubilité : chloroforme (légèrement), méthanol (légèrement)
pka : 4,79 ± 0,10 (prédit)
forme : Solide cristallin
Couleur blanche
PH : 4 (0,2 g/l, H2O, 20 ℃)
Odeur : Inodore
Type d'odeur : grasse
Solubilité dans l'eau : 0,15 g/L (20 ºC)
Merck : 14 1758
Numéro JECFA : 105
Numéro de référence : 1754556
Stabilité : Stable. Incompatible avec les bases, les agents réducteurs, les agents oxydants.
LogP : 4,1 à 20 ℃
Référence de la base de données CAS : 334-48-5 (référence de la base de données CAS)
Référence chimique NIST : Acide décanoïque (334-48-5)
Système d'enregistrement des substances de l'EPA : Acide décanoïque (334-48-5)

Occurrence
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0).
Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.

Les usages
Fabrication d'esters pour arômes et parfums artificiels de fruits.
Également comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.

Médicaments
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour les tissus adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection Depot) en utilisant sa forme décanoate.

Quelques exemples de médicaments disponibles sous forme d'ester ou de sel d'acide caprique comprennent la nandrolone, la fluphénazine, le brompéridol, l'halopéridol et la vanoxérine.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.

Médicaments
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles.
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection retard) en utilisant sa forme caprate.
Quelques exemples de médicaments disponibles sous forme d'ester de caprate comprennent la nandrolone (sous forme de décanoate de nandrolone), la fluphénazine (sous forme de décanoate de fluphénazine), le brompéridol (sous forme de décanoate de brompéridol) et l'halopéridol (sous forme de décanoate d'halopéridol).

Méthodes de production
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol, en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide décanoïque ou la saponification de ses esters, généralement des triglycérides, avec de l'hydroxyde de sodium donnera du décanoate de sodium.
Ce sel (CH3(CH2)8COO-Na+) est un composant de certains types de savons.

Production
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters de triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
Ce sel est un composant de certains types de savons.

Profil de réactivité
L'acide caprique réagit de manière exothermique pour neutraliser les bases.
Peut réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
Peut absorber suffisamment d'eau de l'air et se dissoudre suffisamment dans l'acide caprique pour corroder ou dissoudre les pièces et les conteneurs en fer, en acier et en aluminium.
Réagit avec les sels de cyanure ou les solutions de sels de cyanure pour générer du cyanure d'hydrogène gazeux. Réagit de manière exothermique avec les composés diazoïques, les dithiocarbamates, les isocyanates, les mercaptans, les nitrures et les sulfures pour générer des gaz inflammables et/ou toxiques.

Peut réagir avec les sulfites, les nitrites, les thiosulfates (pour donner du H2S et du SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.
Réagit avec les carbonates et les bicarbonates pour générer un gaz inoffensif (dioxyde de carbone).
Peut être oxydé de manière exothermique par des agents oxydants forts et réduit par des agents réducteurs puissants ; une grande variété de produits est possible.
Peut initier des réactions de polymérisation ou catalyser (augmenter la vitesse de) des réactions entre d'autres matériaux.

Danger pour la santé
Nocif en cas d'ingestion ou d'inhalation.
Le produit est irritant pour les tissus des muqueuses, des voies respiratoires supérieures, des yeux et de la peau.

Actions Biochimie/Physiol
L'acide caprique est utile dans l'atténuation du stress oxydatif.
L'acide caprique dans le régime cétogène est impliqué dans la biogenèse mitochondriale, améliorant ainsi l'activité de la citrate synthase et du complexe I de la chaîne de transport d'électrons.

Effets
L'acide caprique agit comme un antagoniste non compétitif des récepteurs AMPA à des concentrations thérapeutiquement pertinentes, de manière dépendante de la tension et des sous-unités, ce qui est suffisant pour expliquer ses effets antiépileptiques.
Cette inhibition directe de la neurotransmission excitatrice par l'acide caprique dans le cerveau contribue à l'effet anticonvulsivant du régime cétogène MCT.
L'acide caprique et le pérampanel, un antagoniste des récepteurs AMPA, agissent sur des sites distincts du récepteur AMPA. Il est donc possible que l'acide caprique ait un effet coopératif sur le récepteur AMPA, ce qui suggère que le pérampanel et le régime cétogène pourraient être synergiques.

L'acide caprique pourrait être responsable de la prolifération mitochondriale associée au régime cétogène, et cela pourrait se produire via l'agonisme des récepteurs PPARγ et ses gènes cibles impliqués dans la biogenèse mitochondriale.
L'activité du complexe I de la chaîne de transport d'électrons est considérablement augmentée par le traitement à l'acide décanoïque.

L'acide caprique doit cependant être noté que les acides gras à chaîne moyenne ingérés par voie orale seraient très rapidement dégradés par métabolisme de premier passage en étant absorbés dans le foie via la veine porte, et sont rapidement métabolisés via les intermédiaires du coenzyme A via la β-oxydation et l'acide citrique. cycle acide pour produire des corps de dioxyde de carbone, d’acétate et de cétone.
Il n’est pas clair si les cétones, le β-hydroxybutyrate et l’acétone ont une activité antiépileptique directe.
ACIDE CAPRIQUE
L'acide caprique est un acide gras.
Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.
L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.


Numéro CAS : 334-48-5
1002-62-6 (sel de sodium)
Numéro CE : 206-376-4
NOM INCI : Acide Caprique
NOM CHIMIQUE : Acide n-décanoïque
Formule chimique : C10H20O2


La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et esters de l’acide décanoïque sont appelés caprates ou décanoates.
L'acide caprique est un solide cristallin blanc avec une odeur rance.


L'acide caprique est soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué ; non toxique.
L'acide caprique est un acide gras saturé en C10 à chaîne droite.
L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.


L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.
L'acide caprique dérive d'un hydrure de décane.


L'acide caprique est un solide.
L'acide caprique appartient aux acides gras à chaîne droite.
Ce sont des acides gras à chaîne aliphatique droite.


Les protéines ciblées par l'acide caprique comprennent la furine, l'octanoyltransférase, la 3-oxoacyl-[acyl-carrier-protein] synthase 1, la protéine de liaison à l'albumine peptostreptococcique et la protéine putative non caractérisée tcp14.
L'acide caprique est un métabolite présent ou produit par Escherichia coli.


L'acide caprique est un acide gras saturé à chaîne moyenne avec un squelette de 10 carbones.
L'acide caprique se trouve naturellement dans les huiles de noix de coco et de palmiste ainsi que dans le lait de divers mammifères.
L'acide caprique fait partie de la série d'acides gras présents dans les huiles et les graisses animales.


Les noms des acides caproïque, caprylique et caprique sont tous dérivés du mot câpre (latin : « chèvre »).
L'acide caprique est un acide saturé à chaîne courte présent naturellement dans les huiles de palme et de noix de coco, ainsi que dans certains types de lait.
Également connu sous le nom d’acide gras C10 et d’acide décanoïque, l’acide caprique est généralement dérivé de sources végétales et animales.


L'acide caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.
L'acide caprique, également connu sous le nom d'acide décanoïque, est un acide gras saturé en C10.


L'acide caprique fait partie de la série d'acides gras présents dans les huiles et les graisses animales.
Les noms des acides caproïque, caprylique et caprique sont tous dérivés du mot câpre (latin pour chèvre).
Ces acides gras sont des liquides huileux transparents légèrement jaunâtres avec un arôme moite et désagréable qui rappelle celui de la chèvre.


L'acide caprique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide caprique est un acide gras végétal renouvelable qui agit comme émollient dans les produits de soins personnels.


L'acide caprique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide caprique (acide décanoïque) est un acide gras à chaîne moyenne présent dans les graisses saturées (beurre de vache et huiles végétales comme l'huile de coco).


L'acide caprique est un constituant majeur du régime cétogène MCT, fournissant environ 40 % des graisses à chaîne moyenne contenues dans l'alimentation.
L'acide caprique aurait un effet positif sur le contrôle des crises grâce à l'inhibition directe du récepteur AMPA et sur les maladies mitochondriales grâce à la liaison au PPARgamma.


L'acide caprique traverse facilement la barrière hémato-encéphalique, probablement par une combinaison de diffusion et de transport médié par un transporteur saturable via un transporteur d'acide gras à chaîne moyenne.
L'acide caprique fait partie de la série d'acides gras présents dans les huiles et les graisses animales.


Les noms des acides caproïque, caprylique et caprique sont tous dérivés du mot câpre (latin : « chèvre »).
Ce sont des liquides huileux transparents, incolores, légèrement jaunâtres, aux odeurs inconfortables.
Ceux-ci sont utilisés dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de teintures.


L'acide caprique, également connu sous le nom de décanoate ou 10:0, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
Sur la base d'une revue de la littérature, un nombre important d'articles ont été publiés sur l'acide caprique.


L'acide caprique est un acide gras saturé avec un squelette de 10 carbones.
L'acide caprique est naturellement présent dans les huiles de noix de coco, l'huile de palmiste et le lait de vache/chèvre.
L'acide caprique est un acide gras saturé.


La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et les esters de l'acide décanoïque sont appelés décanoates ou « caprates ».
Le terme acide caprique vient du latin « capric » qui désigne les chèvres en raison de leurs similitudes olfactives.


L'acide caprique est présent naturellement dans l'huile de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : le caproïque (un acide gras en C6) et le caprylique (un acide gras en C8).


Avec l'acide décanoïque, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.
L'acide caprique est un solide cristallin blanc ou des aiguilles.
L'acide caprique a une odeur grasse, désagréable et rance.


L'acide caprique est un acide gras saturé en C10 à chaîne droite.
L'acide caprique joue le rôle d'agent antibactérien, d'agent anti-inflammatoire, de métabolite humain, de composant d'huile volatile, de métabolite végétal et de métabolite d'algues.


L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate. Il dérive d'un hydrure de décane.
L'acide caprique est un solide cristallin blanc avec une odeur rance. Point de fusion 31,5°C.


L'acide caprique est soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué ; non toxique.
L'acide caprique est insoluble dans l'eau.


L'acide caprique (également connu sous le nom d'acide décanoïque) est un acide gras à chaîne moyenne (= MCFA) abondant dans les huiles tropicales telles que l'huile de noix de coco, alors que de petites quantités sont présentes dans le lait de chèvre, de vache et humain.
Les MCFA sont quasiment inexistants dans les viandes car les animaux les oxydent très rapidement à partir des plantes consommées, et ne s'accumulent pas dans les tissus.


Les acides gras sont classés en acides gras à chaîne courte, moyenne ou longue.
– les acides gras à chaîne courte (AGCC) contiennent moins de six carbones
– les acides gras à chaîne moyenne (AGCM) contiennent de six à 12 carbones
– et les acides gras à longue chaîne (LCFA) contiennent plus de 12 carbones


Dans les tissus humains, les acides caprique, laurique et myristique sont oxydés par les voies oxydatives peroxysomales dans une plus grande mesure que les acides gras à chaîne plus longue.
Les peroxysomes sont des sous-unités au sein d’une cellule qui ont une fonction spécifique. Ils sont présents dans toutes les cellules humaines à l'exception des érythrocytes matures.
Ils remplissent des fonctions métaboliques essentielles, notamment la bêta-oxydation (= le processus par lequel les molécules d'acides gras sont décomposées).


L'acide caprique (acide décanoïque) est un acide gras saturé.
La formule de l'acide caprique est CH3(CH2)8COOH.
Les sels et les esters de l'acide caprique sont appelés décanoates ou « caprates ».


Le terme acide caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.


Deux autres acides portent le nom des chèvres : le caproïque (un acide gras en C6) et le caprylique (un acide gras en C8).
Avec l'acide caprique, ceux-ci totalisent 15 % de matière grasse du lait de chèvre.
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire dacanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.


La neutralisation de l'acide caprique ou la saponification de ses esters, généralement des triglycérides, avec de l'hydroxyde de sodium donnera du décanoate de sodium.
Ce sel (CH3(CH2)8COO−Na+) est un composant de certains types de savons.



UTILISATIONS et APPLICATIONS de l’ACIDE CAPRIQUE :
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.


L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.
L'acide caprique est utilisé comme intermédiaire de cristaux liquides.


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits ; comme intermédiaire dans d'autres synthèses chimiques.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprique est utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits et comme intermédiaire pour les additifs de qualité alimentaire.


Ce sont des liquides huileux transparents, incolores, légèrement jaunâtres, aux odeurs inconfortables.
Ceux-ci sont utilisés dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de teintures.
L'acide caprique est utilisé dans divers processus industriels et de fabrication.


L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments, comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels, et comme solubilisant pour l'huile minérale.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.
L'acide caprique est utilisé comme arôme et parfum.


Pour fabriquer des esters, l’acide caprique est utilisé dans la production de parfums et d’arômes artificiels.
Utilisations de l'acide caprique dans les aliments et les boissons : ingrédient antimicrobien naturel dans les désinfectants pour les surfaces et les équipements en contact avec les aliments, en particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles.


L'acide caprique est également utilisé dans l'alimentation animale, les lubrifiants et les graisses, la fabrication de graisses lubrifiantes, les fluides de travail des métaux et les solubilisants pour huiles minérales.
Utilisations de l'acide caprique pour les soins personnels : ingrédient antimicrobien naturel.
L'acide caprique agit également comme émulsifiant et émollient.


L'acide caprique est utilisé dans les plastiques.
L'acide caprique est utilisé dans les plastifiants et le caoutchouc
L'acide caprique est utilisé dans la fabrication de caoutchouc synthétique et de textiles.


L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures.
L'acide caprique est généralement utilisé dans les savons, les crèmes et les lotions.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.


L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
L'acide caprique, l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0) représentent environ 15 % des acides gras contenus dans la matière grasse du lait de chèvre.


L'acide caprique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide caprique est approuvé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : l'alimentation humaine et animale, la lutte contre les insectes, les fourmis, etc., la repousse ou l'attraction des parasites.


L'acide caprique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, enduits, mastics, plâtres, pâte à modeler, peintures au doigt, produits d'entretien de l'air, cirages et cires et produits phytopharmaceutiques.
D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal) et traitement par abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage).


D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques) et utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide caprique peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide caprique peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple, emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple, vêtements, matelas, rideaux ou tapis, jouets textiles) et cuir (par exemple, gants, chaussures, sacs à main, meubles).


L'acide caprique est utilisé dans les produits suivants : adhésifs et produits d'étanchéité, lubrifiants et graisses, engrais, produits phytopharmaceutiques, cirages et cires et produits de lavage et de nettoyage.
L'acide caprique est utilisé dans les domaines suivants : agriculture, foresterie et pêche.


L'acide caprique est utilisé dans les produits suivants : polymères, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, engrais, encres et toners, régulateurs de pH, produits de traitement de l'eau et fluides de travail des métaux.
Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.


L'acide caprique est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement textile et colorants, adhésifs et produits d'étanchéité, produits de traitement du cuir, lubrifiants et graisses et produits de lavage et de nettoyage.


L'acide caprique est utilisé pour la fabrication de : textiles, cuir ou fourrure, produits chimiques, pâte à papier, papier et produits en papier, machines et véhicules.
Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : dans la production d'articles, dans des auxiliaires technologiques sur des sites industriels, comme auxiliaire technologique et comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires).


Le rejet dans l'environnement de l'acide caprique peut survenir lors d'une utilisation industrielle : fabrication de la substance.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques. De plus, l'acide caprique est utilisé en synthèse organique et dans la fabrication de lubrifiants, de graisses, de caoutchouc, de plastiques et de colorants.


L'acide caprique est utilisé dans les produits de consommation, les amines, les bétaïnes, les mélanges, les détergents, les nettoyants ménagers, les tensioactifs, les arômes et les parfums, les esters, les additifs de parfum, l'alimentation et la pharmacie, les médicaments, la synthèse organique, les lubrifiants, les fluides et les champs pétrolifères, les esters, les soins personnels, les mélanges. , Émollients et Esters.


L'acide caprique est le plus couramment utilisé dans les industries des cosmétiques et des soins personnels, de l'alimentation/des boissons et de la pharmacie.
D'autres rejets d'acide caprique dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


-Médicaments:
Des sels décanoates et des esters de divers médicaments sont disponibles.
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour les tissus adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection dépôt) en utilisant la forme décanoate de l'acide caprique.
Quelques exemples de médicaments disponibles sous forme d'ester ou de sel de décanoate comprennent la nandrolone, la fluphénazine, le brompéridol, l'halopéridol et la vanoxérine.



PRÉSENCE D'ACIDE CAPRIQUE :
L'acide caprique signalé se trouve dans les pommes, la bière, les préférences du pain, le beurre, l'huile, le fromage, le fromage bleu, le fromage Romano, le fromage cheddar, le fromage Roquefort, les fèves de cacao torréfiées, le cognac, le raisin muscat, les moûts de raisin et le vin, ainsi que d'autres produits naturels. sources.
L'acide caprique est également signalé dans les huiles d'écorces d'agrumes, le jus d'orange, les abricots, la goyave, la papaye, la fraise, le beurre, le yaourt, le lait, le mouton, l'huile de houblon, le whisky Bourbon et écossais, le rhum, le café, la mangue et le thé.



LES BIENFAITS POUR LA SANTÉ DE L'ACIDE CAPRIQUE ET DE L'ACIDE CAPRYLIQUE :
L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées.
De petites quantités sont présentes dans le lait de vache et le lait de chèvre, mais l'acide caprique est abondant dans les huiles tropicales telles que l'huile de coco et l'huile de palmiste.
L'acide caprylique est un acide gras naturellement présent dans le lait de coco et le lait maternel.
Cet acide gras saturé, l'acide caprique, également connu sous le nom d'acide octanoïque, est également présent dans le beurre et l'huile de palme.
Découvrez les bienfaits pour la santé de l’acide caprylique et de l’acide caprique.



BIENFAITS DE L'ACIDE CAPRIQUE :
1. Antiviral :
L'acide caprique possède de fortes propriétés antivirales et antimicrobiennes.
L'acide caprique est converti en monocaprine dans l'organisme, où il peut aider à combattre les virus, les bactéries et la levure Candida albicans.
Selon une étude de juin 2009 publiée dans la revue dentaire scandinave Acta Odontologica Scandinavica, les solutions contenant de la monocaprine peuvent être utilisées comme désinfectant pour les prothèses dentaires.

2. Énergie :
Les graisses saturées comprennent des acides gras à longue chaîne (LCT), qui subissent un long processus digestif dans votre corps et ne constituent pas une source d'énergie saine.
Les triglycérides à chaîne moyenne (MCT) tels que l'acide caprique sont rapidement décomposés et traités dans le foie, et peuvent être utilisés comme source d'énergie pour alimenter vos entraînements.
En fait, lorsque les athlètes mangeaient des aliments contenant des MCT au lieu de LCT pendant 2 semaines, ils étaient capables de s'entraîner plus longtemps et plus durement, selon une étude de 2009 publiée dans le Journal of Nutritional Science and Vitaminology.

3. Perte de poids :
Les MCT tels que l'acide caprique peuvent entraîner une plus grande dépense énergétique et favoriser la perte de graisse et de poids, selon une petite étude de mars 2003 dans Obesity Research.
Vous devriez discuter de tout projet de perte de poids avec votre médecin, y compris des changements alimentaires proposés et de l'exercice.

4. Acné :
L'acide caprique s'est révélé être un traitement efficace contre l'acné grâce à ses propriétés anti-inflammatoires, selon une étude de mars 2014 publiée dans le Journal of Dermatological Science.



PROFIL DE RÉACTIVITÉ DE L'ACIDE CAPRIQUE :
L'acide caprique réagit de manière exothermique pour neutraliser les bases.
L'acide caprique peut réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
L'acide caprique peut absorber suffisamment d'eau de l'air et se dissoudre suffisamment dans l'acide caprique pour corroder ou dissoudre les pièces et les conteneurs en fer, en acier et en aluminium.

L'acide caprique réagit avec les sels de cyanure ou les solutions de sels de cyanure pour générer du cyanure d'hydrogène gazeux.
L'acide caprique réagit de manière exothermique avec les composés diazoïques, les dithiocarbamates, les isocyanates, les mercaptans, les nitrures et les sulfures pour générer des gaz inflammables et/ou toxiques.
L'acide caprique peut réagir avec les sulfites, les nitrites, les thiosulfates (pour donner du H2S et du SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

L'acide caprique réagit avec les carbonates et les bicarbonates pour générer un gaz inoffensif (dioxyde de carbone).
L'acide caprique peut être oxydé de manière exothermique par des agents oxydants puissants et réduit par des agents réducteurs puissants ; une grande variété de produits est possible.
L'acide caprique peut initier des réactions de polymérisation ou catalyser (augmenter la vitesse de) des réactions entre d'autres matériaux.



MÉTHODES DE PURIFICATION DE L'ACIDE CAPRIQUE :
L'acide caprique est mieux purifié par conversion en son ester méthylique, b 114,0o/15 mm (en utilisant un excès de MeOH, en présence de H2SO4).
Le H2SO4 et le MeOH sont éliminés, l'ester est distillé sous vide à travers une colonne de 3 pieds remplie d'hélices de verre.
L'acide caprique est ensuite obtenu à partir de l'ester par saponification et distillation sous vide.



INCOMPATIBILITÉS DE L'ACIDE CAPRIQUE :
L'acide caprique est un acide carboxylique organique.
L'acide caprique est incompatible avec les composés d'argent.



MÉTHODES DE PRODUCTION DE L'ACIDE CAPRIQUE :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol, en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters, généralement des triglycérides, avec de l'hydroxyde de sodium donnera du décanoate de sodium.
Ce sel (CH3(CH2)8COO-Na+) est un composant de certains types de savons.



PARENTS ALTERNATIFS DE L'ACIDE CAPRIQUE :
*Acides gras à chaîne droite
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE CAPRIQUE :
*Acide gras à chaîne moyenne
*Acide gras à chaîne droite
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



QUE FAIT L’ACIDE CAPRIQUE DANS UNE FORMULATION ?
*Nettoyage
*Émulsifiant
*Masquage
*Surfactant
*Parfumage



PRODUCTION D'ACIDE CAPRIQUE :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters de triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
Ce sel est un composant de certains types de savons.



PRODUITS PHARMACEUTIQUES, ACIDE CAPRIQUE :
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles. L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection retard) en utilisant la forme caprate de l'acide caprique.
Quelques exemples de médicaments disponibles sous forme d'ester de caprate comprennent la nandrolone (sous forme de décanoate de nandrolone), la fluphénazine (sous forme de décanoate de fluphénazine), le brompéridol (sous forme de décanoate de brompéridol) et l'halopéridol (sous forme de décanoate d'halopéridol).



PRÉSENCE D'ACIDE CAPRIQUE :
L'acide caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom des chèvres : l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0).
Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE CAPRIQUE :
Formule chimique : C10H20O2
Masse molaire : 172,268 g•mol−1
Aspect : Cristaux blancs
Odeur : Forte rance et désagréable
Densité : 0,893 g/cm3 (25 °C)
0,8884 g/cm3 (35,05 °C)
0,8773 g/cm3 (50,17 °C)
Point de fusion : 31,6 °C (88,9 °F ; 304,8 K)
Point d'ébullition : 268,7 °C (515,7 °F ; 541,8 K)
Solubilité dans l'eau : 0,015 g/100 mL (20 °C)
Solubilité : Soluble dans l'alcool, l'éther, CHCl3, C6H6, CS2, acétone
log P : 4,09
Pression de vapeur : 4,88•10−5 kPa (25 °C)
0,1 kPa (108 °C)
2,03 kPa (160 °C)
Acidité (pKa) : 4,9
Conductivité thermique : 0,372 W/m•K (solide)
0,141 W/m•K (liquide)
Indice de réfraction (nD) : 1,4288 (40 °C)

Viscosité : 4,327 cP (50 °C), 2,88 cP (70 °C)
Structure cristalline : Monoclinique (−3,15 °C)
Groupe spatial : P21/c
Constante de réseau :
a = 23,1 Å, b = 4,973 Å, c = 9,716 Å
α = 90°, β = 91,28°, γ = 90°
Thermochimie:
Capacité thermique (C) : 475,59 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −713,7 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 6079,3 kJ/mol
Poids moléculaire : 172,26 g/mol
XLogP3 : 4,1
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 8
Masse exacte : 172,146329876 g/mol
Masse monoisotopique : 172,146329876 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 12
Frais formels : 0
Complexité : 110
Nombre d'atomes d'isotopes : 0

Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Numéro CAS : 334-48-5
Numéro d'index CE : 607-709-00-X
Numéro CE : 206-376-4
Formule de Hill : C₁₀H₂₀O₂
Formule chimique : CH₃(CH₂)₈COOH
Masse molaire : 172,26 g/mol
Code SH : 2915 90 70
Densité : 0,89 g/cm3 (20 °C)
Point d'éclair : 147 °C
Point de fusion : 29 - 32 °C
Valeur pH : 4 (0,2 g/l, H₂O, 20 °C)
Pression de vapeur : 0,13 hPa (79 °C)
Densité apparente : 690 kg/m3
État physique : cristallin
Couleur : blanc, jaune clair
Odeur : rance

Point de fusion/point de congélation :
Point/plage de fusion : 27 - 32 °C - allumé.
Point d'ébullition initial et plage d'ébullition : 268 - 270 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : 147 °C - coupelle fermée - ASTM D 93
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : environ 4 à 0,2 g/l à 20 °C
Viscosité
Viscosité, cinématique : 6 mm2/s à 40 °C - (ECHA)
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : 0,0618 g/l à 25 °C
Coefficient de partage : n-octanol/eau :
log Pow: 4,09 - Bioaccumulation potentielle
Pression de vapeur : 0,13 hPa à 79 °C
Densité : 0,893 g/mL à 25 °C - lit.
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune

Autres informations de sécurité :
Solubilité dans d'autres solvants : Éthanol 50 g/l à 20 °C
Tension superficielle : 34,4 mN/m à 20 - 25 °C
Formule chimique : C10H20O2
Poids moléculaire moyen : 172,2646
Poids moléculaire monoisotopique : 172,146329884
Nom IUPAC : acide décanoïque
Nom traditionnel : acide caprique
Numéro de registre CAS : 334-48-5
SOURIRES : CCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : GHVNFZFCNZKVNT-UHFFFAOYSA-N
Nom IUPAC : acide décanoïque
Nom traditionnel IUPAC : acide caprique
Formule : C10H20O2
InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : GHVNFZFCNZKVNT-UHFFFAOYSA-N
Poids moléculaire : 172,2646
Masse exacte : 172,146329884
SOURIRES : CCCCCCCCCC(O)=O
Formule chimique : C10H20O2

Masse moléculaire moyenne : 172,265 g/mol
Masse monoisotopique : 172,146 g/mol
Numéro de registre CAS : 334-48-5
Nom IUPAC : acide décanoïque
Nom traditionnel : acide caprique
SOURIRES : CCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12)
Clé InChI : InChIKey=GHVNFZFCNZKVNT-UHFFFAOYSA-N
POIDS MOLÉCULAIRE : 172,26
ASPECT : Liquide clair, incolore à légèrement jaune
DENSITÉ : 0,88 g/cm3
ANALYSE : 97 % MIN.
POINT D'ÉBULLITION : 269 °C
POINT DE FUSION : 28 - 31 °C
POINT D'ÉCLAIR : 150 °C
ODEUR : âcre, piquante et irritante
VALEUR ACIDE : 321 - 329
COULEUR (JARDINIER): 1 MAX.
VALEUR IODE : 0,5 MAX.
TITRE : 28 - 32 °C
CLASSE : Acides gras fractionnés
MARCHÉ : Produits oléochimiques

Solubilité dans l'eau : 0,095 g/L
logP : 3,93
logP : 3,59
logS : -3,3
pKa (acide le plus fort) : 4,95
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 2
Nombre de donneurs d'hydrogène : 1
Surface polaire : 37,3 Ų
Nombre de liaisons rotatives : 8
Réfractivité : 49,48 m³•mol⁻¹
Polarisabilité : 21,61 ų
Nombre de sonneries : 0
Biodisponibilité : 1
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : Oui
Règle de type MDDR : Oui
Numéro CBN : CB1669961
Formule moléculaire : C10H20O2
Poids moléculaire : 172,26
Numéro MDL : MFCD00004441
Fichier MOL : 334-48-5.mol
Point de fusion : 27-32 °C(lit.)
Point d'ébullition : 268-270 °C(lit.)
Densité : 0,893 g/mL à 25 °C(lit.)
pression de vapeur : 15 mm Hg ( 160 °C)

indice de réfraction : 1,4169
FEMA : 2364 | ACIDE DÉCANOÏQUE
Point d'éclair : >230 °F
température de stockage : température ambiante
solubilité : chloroforme (légèrement), méthanol (légèrement)
pka : 4,79 ± 0,10 (prédit)
forme : Solide cristallin
Couleur blanche
PH : 4 (0,2 g/l, H2O, 20 ℃ )
Odeur : Inodore
Type d'odeur : grasse
Viscosité : 6 mm2/s
Solubilité dans l'eau : 0,15 g/L (20 ºC)
Merck : 14 1758
Numéro JECFA : 105
Numéro de référence : 1754556
Stabilité : Stable.
LogP : 4,1 à 20 ℃
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE DÉCANOÏQUE
Référence de la base de données CAS : 334-48-5 (référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 4G9EDB6V73
Référence chimique NIST : Acide décanoïque (334-48-5)
Système d'enregistrement des substances de l'EPA : Acide décanoïque (334-48-5)



PREMIERS SECOURS DE L'ACIDE CAPRIQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Appelez immédiatement un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE CAPRIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE CAPRIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE CAPRIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE CAPRIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE CAPRIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
Acide décanoïque
Acide caprinique
Acide caprynique
Acide décoique
Acide décylique
Acide 1-nonanecarboxylique
C10:0 (nombres lipidiques)
Acide décanoïque
ACIDE CAPRIQUE
334-48-5
Acide n-décanoïque
Acide n-caprique
Acide décoique
Acide décylique
Acide caprinique
Acide n-décylique
Acide 1-nonanecarboxylique
Acide caprynique
Acide n-décoique
Hexacide 1095
Désinfectant acide Econosan
NSC 5025
Acide décanoïque (naturel)
FEMA n° 2364
C10:0
Dékansaeure
Émeri 659
Kaprinsaeure
CCRIS 4610
HSDB 2751
EINECS206-376-4
UNII-4G9EDB6V73
Code chimique des pesticides EPA 128955
BRN1754556
4G9EDB6V73
Capitaine principal
DTXSID9021554
Prifac 296
CHEBI:30813
AI3-04453
Prifac 2906
NSC-5025
MFCD00004441
Lunac 10-95
Lunac 10-98
PRIFAC-2906
DTXCID201554
PALMAC-99-10
NSC5025
caprynate
décoller
décyler
4-02-00-01041 (référence du manuel Beilstein)
n-caprate
n-décate
n-décylate
NCGC00091320-02
1-nonanecarboxylate
Anion acide décanoïque
ACD
CH3-(CH2)8-COOH
CH3-[CH2]8-COOH
Versatique 10
CAS-334-48-5
caprinsaure
décansaure
Décansaeure
Docansaure
Acide décatoïque
acide 1-décanoïque
acide nonanecarboxylique
acide gras 10:0
Prifrac 296
Prifrac 2906
Acide décanoïque, 96%
Décansaeure (Altstoff)
Acide nonane-1-carboxylique
DÉCANsaure (ALTSTOFF)
bmse000370
ACIDE CAPRIQUE [INCI]
SCHEMBL2682
WLN : QV9
ACIDE DÉCANOÏQUE [FCC]
ACIDE N-CAPRIQUE [MI]
ACIDE DÉCANOÏQUE [FHFI]
ACIDE DÉCANOÏQUE [HSDB]
Acide décanoïque, >=98,0%
MLS002415724
IS_D19-ACIDE DÉCANOÏQUE
(1(1)(3)C)Acide décanoïque
CHEMBL107498
GTPL5532
ACIDE 1-NONANE CARBOXYLIQUE
ACIDE N-CAPRIQUE [QUI-DD]
Acide décanoïque, sel de plomb (2+)
ANA 102
Acide décanoïque, étalon analytique
HMS2267B15
Acide décanoïque, >=98,0 % (GC)
Tox21_113533
Tox21_202209
Tox21_300366
LMFA01010010
s6906
STL445666
Acide décanoïque, >=98%, FCC, FG
AKOS000119623
CS-W016025
DB03600
FA 10:0
HY-W015309
Code des pesticides USEPA/OPP : 128955
NCGC00091320-01
NCGC00091320-03
NCGC00091320-04
NCGC00091320-05
NCGC00254437-01
NCGC00259758-01
AS-14704
BP-27911
FA(10:0)
SMR001252255
SY061635
D0017
Acide décanoïque, naturel, >=98%, FCC, FG
FT-0665532
FT-0665533
EN300-19724
C-1095
C01571
D70225
A875289
ACIDE CAPRIQUE (CONSTITUANT DU PALMIER NAIN)
Q422613
W-202368
ACIDE CAPRIQUE (CONSTITUANT DU PALMIER NAIN) [DSC]
Z104474944
B1334-066368
98230577-0D20-4F70-B532-00AC60132CFE
InChI=1/C10H20O2/c1-2-3-4-5-6-7-8-9-10(11)12/h2-9H2,1H3,(H,11,12
Acide 1-(S)- cis 9-Aminooctahydro-10-oxo-6H-pyridazino[1,2-a][1,2]diazépine-1-carboxylique, ester t-butylique
Acide décanoïque
Acide n-caprique
Acide n-décoique
Acide n-décylique
Acide caprique
Acide caprinique
Acide caprynique
Acide décoique
Acide décylique
Acide 1-nonanecarboxylique
Acide nonane-1-carboxylique
néo-Gros 10
Hexacide 1095
Émeri 659
Prifrac 296
Acide 1-décanoïque
NSC 5025
Acide décanoïque (acide caprique)
Acide 1-nonanecarboxylique
C10:0
Acide caprinique
CH3-[CH2]8-COOH
Décanoate
Acide décoique
Acide décylique
Dékansaeure
Kaprinsaeure
Acide N-Caprique
Acide N-décanoïque
Acide N-décoique
Acide N-Décylique
1-Nonanecarboxylate
Capriner
Acide décanoïque
Décoate
Décyler
N-Caprate
N-Décanoate
N-Décoate
N-Décylate
Taux de capitalisation
Caprynate
Acide caprynique
Émeri 659
Lunac 10-95
Lunac 10-98
Prifac 2906
Prifac 296
Acide décanoïque, sel de sodium
Caprate de sodium
Décanoate de sodium
FA(10:0)
1-Nonanecarboxylate
Acide 1-nonanecarboxylique
Taux de capitalisation
Capriner
Acide caprinique
Caprynate
Acide caprynique
Décoate
Acide décoique
Décyler
acide 1-décanoïque
1-Nonanecarboxylate
Acide 1-nonanecarboxylique
Acide 15-(4-iodophényl)-3(R,S)-méthylpentadécanoïque (123I)
Acide 15-(p-iodophényl)-3-méthylpentadécanoïque (123I)
C10:0
Taux de capitalisation
Acide caprique
Capriner
Acide caprinique
Caprynate
Acide caprynique
CH3-[CH2]8-COOH
Décanoate
Acide décanoïque
Acide décanoïque (acide caprique)
Décoate
Acide décoique
Décyler
Acide décylique
Dékansaeure
Kaprinsaeure
n-Caprate
Acide n-caprique
n-Décanoate
Acide n-décanoïque
n-Décoate
Acide n-décoique
n-Décylate
Acide n-décylique
Acide nonane-1-carboxylique
10h00
Émeri 659
Lunac 10-95
Lunac 10-98
Prifac 2906
Prifac 296
Acide décanoïque, sel de sodium
Caprate de sodium
Décanoate de sodium
FA(10:0)
ACIDE N-DÉCANOÏQUE
ACIDE CAPRIQUE
Acide décoique
C10:0
acide c-10
acide n-décoïque
Acide caprynique
ACIDE CAPRINIQUE
caprate (10:0)
acide 1-décanoïque
Acide 1-décanoïque
Acide caprique
Acide caprinique
Acide caprynique
Acide décoique
Acide décylique
Acide n-caprique
Acide n-décanoïque
Acide n-décoique
Acide n-décylique


ACIDE CAPRIQUE
L'acide caprique est également connu sous le nom d'acide décanoïque ou acide décylique
L'acide caprique est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
La formule de l'acide caprique est CH3(CH2)8COOH.


NUMÉRO CAS : 334-48-5

NUMÉRO CE : 206-376-4

FORMULE MOLÉCULAIRE : C10H20O2

POIDS MOLÉCULAIRE : 172,26 g/mol

NOM IUPAC : acide décanoïque


Les sels et les esters de l'acide caprique sont appelés caprates ou décanoates.
L'acide caprique est dérivé du latin "caper / capra" car l'odeur moite et désagréable du composé rappelle celle des chèvres

L'acide caprique est un acide saturé à chaîne courte présent naturellement dans les huiles de palme et de noix de coco, ainsi que dans certains types de lait.
L'acide caprique est utilisé pour une variété de processus industriels et de fabrication.
L'acide caprique est généralement dérivé de sources végétales et animales.

L'acide caprique est un liquide pâle
L'acide caprique a une forte odeur.

Présence d'acide caprique :
L'acide caprique est naturellement présent dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom de chèvres : l'acide caproïque (un acide gras en C6 : 0) et l'acide caprylique (un acide gras en C8 : 0).
Avec l'acide caprique, ceux-ci totalisent 15% de matière grasse de lait de chèvre

Production d'acide caprique :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant de trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
L'acide caprique est un composant de certains types de savon.

LES USAGES:
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes de fruits artificiels et les parfums.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et pharmaceutiques

Médicaments:
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles.
L'acide caprique étant un acide gras, la formation d'un sel ou d'un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection à effet retard) en utilisant sa forme caprate.
Certains exemples de médicaments disponibles sous forme d'ester caprate comprennent la nandrolone, la fluphénazine, le brompéridol et l'halopéridol.

L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments
L'acide caprique est également utilisé comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels

L'acide caprique peut être utilisé comme solubilisant pour l'huile minérale.
L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.

APPLICATIONS:

*Saveur et parfum
Fabriquer des esters utilisés dans la production de parfums et d'arômes artificiels

*Nourriture et boisson
Ingrédient antimicrobien naturel dans les désinfectants pour surfaces et équipements en contact avec les aliments
En particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles.
L'acide caprique est utilisé dans l'alimentation animale

*Lubrifiants et Graisses
Fabrication de graisse lubrifiante

* Fluides de travail des métaux
Solubilisant pour huiles minérales

* Soins personnels
Ingrédient antimicrobien naturel.
L'acide caprique agit également comme émulsifiant et émollient

*Plastiques
L'acide caprique est utilisé dans les plastifiants

*Caoutchouc
L'acide caprique est utilisé dans la fabrication de caoutchouc synthétique

*Tissus
L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures

L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées
L'acide caprique est un acide gras que l'on trouve naturellement dans la noix de coco et le lait maternel.
L'acide caprique est également présent dans le beurre et l'huile de palme

Avantages de l'acide caprique
1. Antiviral
L'acide caprique a de fortes propriétés antivirales et antimicrobiennes.
L'acide caprique est converti en monocaprine dans le corps, où il peut aider à combattre les virus, les bactéries et la levure Candida albicans.

2. Énergie
Les graisses saturées comprennent les acides gras à longue chaîne (LCT), qui subissent un long processus de digestion dans votre corps et ne sont pas une source d'énergie saine.
Les triglycérides à chaîne moyenne (MCT) tels que l'acide caprique sont décomposés rapidement et traités dans le foie, et peuvent être utilisés comme source d'énergie pour alimenter vos entraînements.

4. Acné
L'acide caprique s'est révélé être un traitement efficace contre l'acné grâce à ses propriétés anti-inflammatoires

L'acide caprique est un solide cristallin blanc avec une odeur rance.
Le point de fusion de l'acide caprique est de 31,5 °C

Acide caprique soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué
L'acide caprique est non toxique

L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits
L'acide caprique est utilisé comme intermédiaire pour les additifs de qualité alimentaire.
L'acide caprique est un acide gras saturé à chaîne droite en C10.

L'acide caprique a un rôle de :
-un agent antibactérien
-un anti-inflagent sexuel
-un métabolite humain
-un composant huileux volatil
-un métabolite végétal
-un métabolite algal

L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.

L'acide caprique dérive d'un hydrure d'un décane.
L'acide caprique est un solide.
L'acide caprique appartient aux acides gras à chaîne droite.


PROPRIÉTÉS PHYSIQUES:

-Poids moléculaire : 172,26 g/mol

-XLogP3 : 4.1

-Masse exacte : 172,146329876 g/mol

-Masse monoisotopique : 172,146329876 g/mol

-Surface polaire topologique : 37,3 Å²

-Description physique : Solide blanc avec une odeur désagréable

-Couleur blanche

-Forme : Solide

-Odeur : Odeur rance

-Point d'ébullition : 268,7 °C

-Point de fusion : 31,9 °C

-Point d'éclair : 235 °F

-Solubilité : 61,8 mg/L

-Densité : 0,893

-Pression de vapeur : 0,000366 mmHg

-Viscosité : 4.30 mPa.sec

-Chaleur de combustion : -6 108,7 kJ/mol

-Tension superficielle : 25,0 mN/m


L'acide caprique fait partie de la série des acides gras présents dans les huiles et les graisses animales
L'acide caprique est un liquide huileux transparent jaunâtre clair incolore avec des odeurs désagréables.

L'acide caprique est utilisé dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de colorants.
L'acide caprique appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.


PROPRIÉTÉS CHIMIQUES:

-Nombre de donneurs d'obligations hydrogène : 1

-Nombre d'accepteurs de liaison hydrogène : 2

-Nombre d'obligations rotatives : 8

- Nombre d'atomes lourds : 12

-Charge formelle : 0

-Complexité : 110

-Nombre d'atomes isotopiques : 0

-Nombre de stéréocentres atomiques définis : 0

-Nombre de stéréocentres d'atomes non définis : 0

-Nombre de stéréocentres de liaison définis : 0

-Nombre de stéréocentres de liaison indéfinis : 0

- Nombre d'unités liées par covalence : 1

-Le composé est canonisé : oui

-Classes chimiques : Autres classes -> Acides organiques


L'acide caprique est principalement obtenu à partir du fractionnement d'une huile de type laurique.
L'acide caprique obtenu a un point de congélation de 31°C.

L'acide caprique est solide à température ambiante
Acide caprique blanc opaque solide
L'acide caprique a une odeur piquante caractéristique.

Substituts :
Acide gras à chaîne moyenne
Acide gras à chaîne droite
Acide monocarboxylique ou dérivés
Acide carboxylique
Dérivé d'acide carboxylique
Composé oxygéné organique
Oxyde organique
Dérivé d'hydrocarbure
Composé organooxygéné
Groupe carbonyle
Composé acyclique aliphatique


Acide caprique un acide gras C10H20O2 trouvé dans les graisses et les huiles
L'acide caprique est utilisé dans les arômes et les parfums

L'acide caprique (acide décanoïque) est un acide gras saturé.
La formule de l'acide caprique est CH3(CH2)8COOH

Acide caprique également connu sous le nom d'acide décanoïque
L'acide caprique est un acide gras saturé à dix carbones.
L'acide caprique est présent dans le palmiste, la graisse de noix de coco et la matière grasse du lait

L'acide caprique est un acide gras renouvelable et d'origine végétale
L'acide caprique agit comme émollient dans les produits de soins personnels.

L'acide caprique est utilisé dans la fabrication d'esters pour les arômes artificiels de fruits et les parfums.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, de lubrifiants, de graisses, de caoutchouc, de colorants, de plastiques, d'additifs alimentaires et de produits pharmaceutiques.

L'acide caprique est utilisé pour une variété de processus industriels et de fabrication.
L'acide caprique est généralement dérivé de sources végétales et animales.
L'acide caprique est un liquide pâle

L'acide caprique a une forte odeur.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes de fruits artificiels et les parfums.

L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments

L'acide caprique est également utilisé comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels
L'acide caprique peut être utilisé comme solubilisant pour l'huile minérale.
L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.

L'acide caprique agit également comme émulsifiant et émollient
L'acide caprique est utilisé dans les plastifiants

L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures
L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées

L'acide caprique est un acide gras que l'on trouve naturellement dans la noix de coco et le lait maternel.
L'acide caprique est également présent dans le beurre et l'huile de palme
L'acide caprique est un solide cristallin blanc avec une odeur rance.

L'acide caprique est non toxique
L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits
L'acide caprique dérive d'un hydrure d'un décane.


SYNONYMES :

Acide décanoïque
ACIDE CAPRIQUE
334-48-5
Acide n-décanoïque
Acide n-caprique
Acide décoique
Acide décylique
Acide caprinique
Acide n-décylique
Acide 1-nonanecarboxylique
Acide caprynique
Acide n-décoïque
Hexacide 1095
NSC 5025
FEMA n° 2364
C10:0
Captation de plomb
Émeri 659
MFCD00004441
4G9EDB6V73
DTXSID9021554
CHEBI:30813
capryné
décaper
décyler
NSC-5025
n-caprate
n-décapage
n-décylate
NCGC00091320-02
1-nonanecarboxylate
Anion acide décanoïque
ACD
DTXCID201554
Désinfectant acide Econosan
Acide décanoïque
Polyvalent 10
CAS-334-48-5
CCRIS 4610
HSDB 2751
EINECS 206-376-4
EPA Pesticide ChimiquelCode 128955
BRN 1754556
UNII-4G9EDB6V73
Dekansaeure
Kaprinsaeur
AI3-04453
acide 1-décanoïque
acide nonanecarboxylique
Nat. Acide décanoïque
Prifrac 296
Prifac 296
Acide décanoïque, 96%
Prifac 2906
Acide décanoïque-[13C]
Acide nonane-1-carboxylique
Lunac 10-95
Lunac 10-98
bmse000370
ACIDE CAPRIQUE
SCHEMBL2682
WLN : QV9
ACIDE DÉCANOÏQUE
ACIDE N-CAPRIQUE
ACIDE DÉCANOÏQUE
ACIDE DÉCANOÏQUE
Acide décanoïque, >=98.0%
MLS002415724
CH3-[CH2]8-COOH
IS_D19-ACIDE DÉCANOÏQUE
PRIFAC-2906
(1(1)(3)C)Acide décanoïque
CHEMBL107498
GTPL5532
PALMAC-99-10
ACIDE N-CAPRIQUE [WHO-DD]
Acide décanoïque, sel de plomb (2+)
NSC5025
Acide décanoïque, étalon analytique
HMS2267B15
Acide décanoïque, >=98.0% (GC)
Tox21_113533
Tox21_202209
Tox21_300366
LMFA01010010
s6906
STL445666
Acide décanoïque, >=98%, FCC, FG
AKOS000119623
CS-W016025
DB03600
FA 10:0
HY-W015309
NCGC00091320-01
NCGC00091320-03
NCGC00091320-04
NCGC00091320-05
NCGC00254437-01
NCGC00259758-01
AS-14704
BP-27911
FA(10:0)
SMR001252255
SY061635
D0017
Acide décanoïque, naturel, >=98%, FCC, FG
FT-0665532
FT-0665533
EN300-19724
C01571
D70225
A875289
Q422613
W-202368
ACIDE CAPRIQUE (CONSTITUANT DU PALMIER NAIN)
Z104474944
B1334-066368
98230577-0D20-4F70-B532-00AC60132CFE
1-(S)-cis 9-aminooctahydro-10-oxo-6H-pyridazino[1,2-a][1,2]diazépine-1-carboxylique, ester t-butylique
acide caprique (décanoïque) naturel
acide caprique
Acide N-caprique
acide caprique (décanoïque), naturel
capriacide
acide caprinique
acide caprynique
acide décanoïque
acide 1-décanoïque
Acide N-décanoïque
acide décanoïque
acide décanoïque (acide caprique)
acide décanoïque naturel (caprique)
acide décanoïque (caprique) naturel
acide décanoïque (naturel)
acide décanoïque naturel
acide décoique
Acide N-décoïque
acide décylique
Acide N-décylique
désinfectant acide éconosan
kaprinsaeure
lunatique 10-95
lunatique 10-98
néo-gras 10
Acide 1-nonane carboxylique
polyvalent 10
Acide décanoïque
1754556 [Beilstein]
acide 1-décanoïque
Acide 1-nonanecarboxylique
1--Acide nonanecarboxylique
Acide C10
C10:0
Acide caprique
Acide caprinique
Acide caprynique
MFCD00004441
Acide n-caprique
acide n-décanoïque
Acide n-décoïque
Acide n-décylique
Lunac 10-95
Lunac 10-98
Acide décanoïque|Acide caprique
Acide décanoïque-2,2-d2
acide décoique
Acide décylique
Dekansaeure
Kaprinsaeur
Néo-gras 10
Acide nonane-1-carboxylique
QV9 [WLN]
Polyvalent 10
Acide polyvalent 10
ACIDE CAPRIQUE
L'acide caprique est également connu sous le nom d'acide décanoïque ou acide décylique
L'acide caprique est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
La formule de l'acide caprique est CH3(CH2)8COOH.


NUMÉRO CAS : 334-48-5

NUMÉRO CE : 206-376-4

FORMULE MOLÉCULAIRE : C10H20O2

POIDS MOLÉCULAIRE : 172,26 g/mol

NOM IUPAC : acide décanoïque


Les sels et les esters de l'acide caprique sont appelés caprates ou décanoates.
L'acide caprique est dérivé du latin "caper / capra" car l'odeur moite et désagréable du composé rappelle celle des chèvres

L'acide caprique est un acide saturé à chaîne courte présent naturellement dans les huiles de palme et de noix de coco, ainsi que dans certains types de lait.
L'acide caprique est utilisé pour une variété de processus industriels et de fabrication.
L'acide caprique est généralement dérivé de sources végétales et animales.

L'acide caprique est un liquide pâle
L'acide caprique a une forte odeur.

Présence d'acide caprique :
L'acide caprique est naturellement présent dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.
Deux autres acides portent le nom de chèvres : l'acide caproïque (un acide gras en C6 : 0) et l'acide caprylique (un acide gras en C8 : 0).
Avec l'acide caprique, ceux-ci totalisent 15% de matière grasse de lait de chèvre

Production d'acide caprique :
L'acide caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant de trioxyde de chrome (CrO3) dans des conditions acides.
La neutralisation de l'acide caprique ou la saponification de ses esters triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
L'acide caprique est un composant de certains types de savon.

LES USAGES:
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes de fruits artificiels et les parfums.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et pharmaceutiques

Médicaments:
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles.
L'acide caprique étant un acide gras, la formation d'un sel ou d'un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection à effet retard) en utilisant sa forme caprate.
Certains exemples de médicaments disponibles sous forme d'ester caprate comprennent la nandrolone, la fluphénazine, le brompéridol et l'halopéridol.

L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments
L'acide caprique est également utilisé comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels

L'acide caprique peut être utilisé comme solubilisant pour l'huile minérale.
L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.

APPLICATIONS:

*Saveur et parfum
Fabriquer des esters utilisés dans la production de parfums et d'arômes artificiels

*Nourriture et boisson
Ingrédient antimicrobien naturel dans les désinfectants pour surfaces et équipements en contact avec les aliments
En particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles.
L'acide caprique est utilisé dans l'alimentation animale

*Lubrifiants et Graisses
Fabrication de graisse lubrifiante

* Fluides de travail des métaux
Solubilisant pour huiles minérales

* Soins personnels
Ingrédient antimicrobien naturel.
L'acide caprique agit également comme émulsifiant et émollient

*Plastiques
L'acide caprique est utilisé dans les plastifiants

*Caoutchouc
L'acide caprique est utilisé dans la fabrication de caoutchouc synthétique

*Tissus
L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures

L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées
L'acide caprique est un acide gras que l'on trouve naturellement dans la noix de coco et le lait maternel.
L'acide caprique est également présent dans le beurre et l'huile de palme

Avantages de l'acide caprique
1. Antiviral
L'acide caprique a de fortes propriétés antivirales et antimicrobiennes.
L'acide caprique est converti en monocaprine dans le corps, où il peut aider à combattre les virus, les bactéries et la levure Candida albicans.

2. Énergie
Les graisses saturées comprennent les acides gras à longue chaîne (LCT), qui subissent un long processus de digestion dans votre corps et ne sont pas une source d'énergie saine.
Les triglycérides à chaîne moyenne (MCT) tels que l'acide caprique sont décomposés rapidement et traités dans le foie, et peuvent être utilisés comme source d'énergie pour alimenter vos entraînements.

4. Acné
L'acide caprique s'est révélé être un traitement efficace contre l'acné grâce à ses propriétés anti-inflammatoires

L'acide caprique est un solide cristallin blanc avec une odeur rance.
Le point de fusion de l'acide caprique est de 31,5 °C

Acide caprique soluble dans la plupart des solvants organiques et dans l'acide nitrique dilué
L'acide caprique est non toxique

L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits
L'acide caprique est utilisé comme intermédiaire pour les additifs de qualité alimentaire.
L'acide caprique est un acide gras saturé à chaîne droite en C10.

L'acide caprique a un rôle de :
-un agent antibactérien
-un anti-inflagent sexuel
-un métabolite humain
-un composant huileux volatil
-un métabolite végétal
-un métabolite algal

L'acide caprique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprique est un acide conjugué d'un décanoate.

L'acide caprique dérive d'un hydrure d'un décane.
L'acide caprique est un solide.
L'acide caprique appartient aux acides gras à chaîne droite.


PROPRIÉTÉS PHYSIQUES:

-Poids moléculaire : 172,26 g/mol

-XLogP3 : 4.1

-Masse exacte : 172,146329876 g/mol

-Masse monoisotopique : 172,146329876 g/mol

-Surface polaire topologique : 37,3 Å²

-Description physique : Solide blanc avec une odeur désagréable

-Couleur blanche

-Forme : Solide

-Odeur : Odeur rance

-Point d'ébullition : 268,7 °C

-Point de fusion : 31,9 °C

-Point d'éclair : 235 °F

-Solubilité : 61,8 mg/L

-Densité : 0,893

-Pression de vapeur : 0,000366 mmHg

-Viscosité : 4.30 mPa.sec

-Chaleur de combustion : -6 108,7 kJ/mol

-Tension superficielle : 25,0 mN/m


L'acide caprique fait partie de la série des acides gras présents dans les huiles et les graisses animales
L'acide caprique est un liquide huileux transparent jaunâtre clair incolore avec des odeurs désagréables.

L'acide caprique est utilisé dans la synthèse organique, la fabrication de parfums, de médicaments, de graisses lubrifiantes, de caoutchouc et de colorants.
L'acide caprique appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.


PROPRIÉTÉS CHIMIQUES:

-Nombre de donneurs d'obligations hydrogène : 1

-Nombre d'accepteurs de liaison hydrogène : 2

-Nombre d'obligations rotatives : 8

- Nombre d'atomes lourds : 12

-Charge formelle : 0

-Complexité : 110

-Nombre d'atomes isotopiques : 0

-Nombre de stéréocentres atomiques définis : 0

-Nombre de stéréocentres d'atomes non définis : 0

-Nombre de stéréocentres de liaison définis : 0

-Nombre de stéréocentres de liaison indéfinis : 0

- Nombre d'unités liées par covalence : 1

-Le composé est canonisé : oui

-Classes chimiques : Autres classes -> Acides organiques


L'acide caprique est principalement obtenu à partir du fractionnement d'une huile de type laurique.
L'acide caprique obtenu a un point de congélation de 31°C.

L'acide caprique est solide à température ambiante
Acide caprique blanc opaque solide
L'acide caprique a une odeur piquante caractéristique.

Substituts :
Acide gras à chaîne moyenne
Acide gras à chaîne droite
Acide monocarboxylique ou dérivés
Acide carboxylique
Dérivé d'acide carboxylique
Composé oxygéné organique
Oxyde organique
Dérivé d'hydrocarbure
Composé organooxygéné
Groupe carbonyle
Composé acyclique aliphatique


Acide caprique un acide gras C10H20O2 trouvé dans les graisses et les huiles
L'acide caprique est utilisé dans les arômes et les parfums

L'acide caprique (acide décanoïque) est un acide gras saturé.
La formule de l'acide caprique est CH3(CH2)8COOH

Acide caprique également connu sous le nom d'acide décanoïque
L'acide caprique est un acide gras saturé à dix carbones.
L'acide caprique est présent dans le palmiste, la graisse de noix de coco et la matière grasse du lait

L'acide caprique est un acide gras renouvelable et d'origine végétale
L'acide caprique agit comme émollient dans les produits de soins personnels.

L'acide caprique est utilisé dans la fabrication d'esters pour les arômes artificiels de fruits et les parfums.
L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, de lubrifiants, de graisses, de caoutchouc, de colorants, de plastiques, d'additifs alimentaires et de produits pharmaceutiques.

L'acide caprique est utilisé pour une variété de processus industriels et de fabrication.
L'acide caprique est généralement dérivé de sources végétales et animales.
L'acide caprique est un liquide pâle

L'acide caprique a une forte odeur.
L'acide caprique est utilisé dans la fabrication d'esters pour les arômes de fruits artificiels et les parfums.

L'acide caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprique est couramment utilisé comme arôme artificiel dans les aliments

L'acide caprique est également utilisé comme désinfectant antimicrobien naturel dans les usines de transformation des aliments et certains produits de soins personnels
L'acide caprique peut être utilisé comme solubilisant pour l'huile minérale.
L'acide caprique est également utilisé comme agent de synthèse organique dans de nombreux procédés de fabrication, ainsi que comme ester qui facilite l'absorption de certains médicaments dans les tissus adipeux.

L'acide caprique agit également comme émulsifiant et émollient
L'acide caprique est utilisé dans les plastifiants

L'acide caprique est utilisé dans les traitements textiles et la fabrication de teintures
L'acide caprique est un acide gras à chaîne moyenne présent dans les graisses saturées

L'acide caprique est un acide gras que l'on trouve naturellement dans la noix de coco et le lait maternel.
L'acide caprique est également présent dans le beurre et l'huile de palme
L'acide caprique est un solide cristallin blanc avec une odeur rance.

L'acide caprique est non toxique
L'acide caprique est utilisé pour fabriquer des esters pour les parfums et les arômes de fruits
L'acide caprique dérive d'un hydrure d'un décane.


SYNONYMES :

Acide décanoïque
ACIDE CAPRIQUE
334-48-5
Acide n-décanoïque
Acide n-caprique
Acide décoique
Acide décylique
Acide caprinique
Acide n-décylique
Acide 1-nonanecarboxylique
Acide caprynique
Acide n-décoïque
Hexacide 1095
NSC 5025
FEMA n° 2364
C10:0
Captation de plomb
Émeri 659
MFCD00004441
4G9EDB6V73
DTXSID9021554
CHEBI:30813
capryné
décaper
décyler
NSC-5025
n-caprate
n-décapage
n-décylate
NCGC00091320-02
1-nonanecarboxylate
Anion acide décanoïque
ACD
DTXCID201554
Désinfectant acide Econosan
Acide décanoïque
Polyvalent 10
CAS-334-48-5
CCRIS 4610
HSDB 2751
EINECS 206-376-4
EPA Pesticide ChimiquelCode 128955
BRN 1754556
UNII-4G9EDB6V73
Dekansaeure
Kaprinsaeur
AI3-04453
acide 1-décanoïque
acide nonanecarboxylique
Nat. Acide décanoïque
Prifrac 296
Prifac 296
Acide décanoïque, 96%
Prifac 2906
Acide décanoïque-[13C]
Acide nonane-1-carboxylique
Lunac 10-95
Lunac 10-98
bmse000370
ACIDE CAPRIQUE
SCHEMBL2682
WLN : QV9
ACIDE DÉCANOÏQUE
ACIDE N-CAPRIQUE
ACIDE DÉCANOÏQUE
ACIDE DÉCANOÏQUE
Acide décanoïque, >=98.0%
MLS002415724
CH3-[CH2]8-COOH
IS_D19-ACIDE DÉCANOÏQUE
PRIFAC-2906
(1(1)(3)C)Acide décanoïque
CHEMBL107498
GTPL5532
PALMAC-99-10
ACIDE N-CAPRIQUE [WHO-DD]
Acide décanoïque, sel de plomb (2+)
NSC5025
Acide décanoïque, étalon analytique
HMS2267B15
Acide décanoïque, >=98.0% (GC)
Tox21_113533
Tox21_202209
Tox21_300366
LMFA01010010
s6906
STL445666
Acide décanoïque, >=98%, FCC, FG
AKOS000119623
CS-W016025
DB03600
FA 10:0
HY-W015309
NCGC00091320-01
NCGC00091320-03
NCGC00091320-04
NCGC00091320-05
NCGC00254437-01
NCGC00259758-01
AS-14704
BP-27911
FA(10:0)
SMR001252255
SY061635
D0017
Acide décanoïque, naturel, >=98%, FCC, FG
FT-0665532
FT-0665533
EN300-19724
C01571
D70225
A875289
Q422613
W-202368
ACIDE CAPRIQUE (CONSTITUANT DU PALMIER NAIN)
Z104474944
B1334-066368
98230577-0D20-4F70-B532-00AC60132CFE
1-(S)-cis 9-aminooctahydro-10-oxo-6H-pyridazino[1,2-a][1,2]diazépine-1-carboxylique, ester t-butylique
acide caprique (décanoïque) naturel
acide caprique
Acide N-caprique
acide caprique (décanoïque), naturel
capriacide
acide caprinique
acide caprynique
acide décanoïque
acide 1-décanoïque
Acide N-décanoïque
acide décanoïque
acide décanoïque (acide caprique)
acide décanoïque naturel (caprique)
acide décanoïque (caprique) naturel
acide décanoïque (naturel)
acide décanoïque naturel
acide décoique
Acide N-décoïque
acide décylique
Acide N-décylique
désinfectant acide éconosan
kaprinsaeure
lunatique 10-95
lunatique 10-98
néo-gras 10
Acide 1-nonane carboxylique
polyvalent 10
Acide décanoïque
1754556 [Beilstein]
acide 1-décanoïque
Acide 1-nonanecarboxylique
1--Acide nonanecarboxylique
Acide C10
C10:0
Acide caprique
Acide caprinique
Acide caprynique
MFCD00004441
Acide n-caprique
acide n-décanoïque
Acide n-décoïque
Acide n-décylique
Lunac 10-95
Lunac 10-98
Acide décanoïque|Acide caprique
Acide décanoïque-2,2-d2
acide décoique
Acide décylique
Dekansaeure
Kaprinsaeur
Néo-gras 10
Acide nonane-1-carboxylique
QV9 [WLN]
Polyvalent 10
Acide polyvalent 10


ACIDE CAPROÏQUE
L'acide caproïque est un acide aliphatique.
L'acide caproïque est un liquide huileux incolore ou légèrement jaune avec une odeur de fromage limbourgeois.


Numéro CAS : 142-62-1
Numéro CE : 205-550-7
Numéro MDL : MFCD00004421
NOM INCI : « Acide caproïque »
NOM CHIMIQUE : Acide caproïque, acide hexanoïque
Formule moléculaire : C6H12O2 / CH3(CH2)4COOH


L'acide caproïque est un liquide huileux incolore ou légèrement jaune avec une odeur de fromage limbourgeois.
L'acide caproïque est une solution solide blanche ou incolore à jaune clair avec une odeur désagréable.
L'acide caproïque est un liquide clair, incolore et nauséabond.


L'acide caproïque est un liquide huileux/fromage, incolore à jaune très pâle, avec une odeur semblable à celle de la sueur.
L'acide caproïque est miscible avec l'alcool, la plupart des huiles fixes, l'éther, 1 ml dans 250 ml d'eau.
L'acide caproïque appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.


Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide caproïque est un acide aliphatique.
L'acide caproïque, également connu sous le nom d'acide hexanoïque ou C6:0, est un acide gras à chaîne moyenne.


Les acides gras à chaîne moyenne (AGCM) sont des acides gras dotés de queues aliphatiques de 6 à 12 carbones, qui peuvent former des triglycérides à chaîne moyenne.
L'acide caproïque est un liquide huileux incolore qui sent le fromage avec une odeur cireuse ou de basse-cour comme celle des chèvres ou d'autres animaux de basse-cour.
Son nom vient du mot latin capra, signifiant « chèvre ».


Deux autres acides gras portent le nom des chèvres : l'acide caprylique (C8) et l'acide caprique (C10).
Avec l'acide caproïque, ils représentent 15 % des matières grasses du lait de chèvre.
L'acide caproïque est un acide gras présent naturellement dans diverses graisses et huiles animales.


Bien qu’il soit généralement plus abondant chez les animaux, l’acide caproïque se trouve dans tous les organismes, des bactéries aux plantes en passant par les animaux.
L’acide caproïque est l’un des produits chimiques qui confèrent à l’enveloppe charnue en décomposition du ginkgo son odeur désagréable caractéristique.
L'acide caproïque est également l'un des composants de la vanille et du fromage. Industriellement, l’acide caproïque est principalement utilisé dans la fabrication de ses esters destinés à être utilisés comme arômes artificiels et dans la fabrication de dérivés hexyliques, tels que les hexylphénols.


L'acide caproïque a été associé à un déficit en acyl-CoA déshydrogénase à chaîne moyenne, qui est une erreur innée du métabolisme.
En tant que composé organique relativement volatil, l'acide caproïque a été identifié comme un biomarqueur fécal de l'infection à Clostridium difficile.
L'acide caproïque appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.


Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
Acide caproïque, nom commun de l'acide hexanoïque, un acide gras saturé à chaîne courte qui peut être créé par l'activité métabolique des levures.
L'acide caproïque est l'un des trois acides gras nommés en relation avec Capra, le genre des chèvres ; les autres sont les acides caprylique et caprique.


Les noms proviennent des quantités élevées de ces acides gras présents dans le lait de chèvre, qui confèrent au lait son odeur et sa saveur caractéristiques.
L'acide caproïque donne une saveur normale au lait de chèvre, mais il n'est généralement pas souhaitable dans la bière.
Dans la bière, l'acide caproïque a un arôme piquant, moite et fromager.


L'acide caproïque est excrété par la levure lors d'une conservation prolongée à des températures chaudes et à un nombre élevé de cellules de levure.
L'état de la levure influence également l'excrétion des acides gras et les bières fermentées à chaud sous pression présentent des concentrations accrues de ces acides gras (et des esters correspondants) pendant la garde.


Les quantités normales d'acide caproïque se situent entre 1 et 2 ppm, tandis que des quantités accrues peuvent avoir des effets négatifs sur la mousse et le goût.
Pour éviter ces effets, les brasseurs retirent souvent la levure dès que possible après la fermentation.
Lorsque le temps presse, une centrifugeuse est parfois utilisée entre les cuves de fermentation et de stockage, bien que dans ce cas, le processus soit généralement calibré pour laisser un peu de levure derrière pour faciliter la maturation.


Les souches de levure Brettanomyces « sauvages » ont tendance à produire de l'acide caproïque en grande quantité, et bien que cela crée des arômes inadaptés à la plupart des styles de bière, certains brasseurs peuvent le désirer comme agent complexant.
L'acide caproïque est une caractéristique majeure des arômes de lambic et les bières intentionnellement inoculées avec des cultures de Brettanomyces présenteront souvent des caractéristiques distinctement « géniales ».


L'acide caproïque est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 100 à < 1 000 tonnes par an.
L'acide caproïque, également connu sous le nom d'acide hexanoïque, est l'acide carboxylique dérivé de l'hexane de formule chimique CH3(CH2)4COOH.


L'acide caproïque est un liquide huileux incolore avec une odeur grasse, de fromage, cireuse et semblable à celle des chèvres ou d'autres animaux de basse-cour.
Les sels et esters de l'acide caproïque sont appelés caproates ou hexanoates.
Plusieurs médicaments progestatifs sont des esters de caproate, tels que le caproate d'hydroxyprogestérone et le caproate de gestonorone.


Deux autres acides portent le nom des chèvres : l'acide caprylique (C8) et l'acide caprique (C10).
Avec l'acide caproïque, ils représentent 15 % des matières grasses du lait de chèvre.
Les acides caproïque, caprylique et caprique (le caprique est une substance semblable à un cristal ou à une cire, alors que les deux autres sont des liquides mobiles) ne sont pas seulement utilisés pour la formation d'esters, mais sont également couramment utilisés « purs » dans : le beurre, le lait, crème, fraise, pain, bière, noix et autres saveurs.


L'acide caproïque apparaît sous la forme d'un solide cristallin blanc ou d'une solution incolore à jaune clair avec une odeur désagréable.
L'acide caproïque est insoluble à légèrement soluble dans l'eau et moins dense que l'eau.
L'acide caproïque est un acide gras saturé en C6 à chaîne droite.


L’acide caproïque joue le rôle de métabolite humain et de métabolite végétal.
L'acide caproïque est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caproïque est un acide conjugué d'un hexanoate.


L'acide caproïque est un métabolite présent ou produit par Escherichia coli.
L'acide caproïque est un produit naturel présent dans Staphisagria macrosperma, Rhododendron mucronulatum et d'autres organismes pour lesquels des données sont disponibles.
L'acide caproïque est un acide gras saturé à chaîne moyenne avec un squelette à 6 carbones.


L'acide caproïque se trouve naturellement dans diverses graisses et huiles végétales et animales.
L'acide caproïque est un liquide huileux incolore qui sent le fromage.
L'acide caproïque est un acide gras présent naturellement dans diverses graisses et huiles animales.
L'acide caproïque est un métabolite présent ou produit par Saccharomyces cerevisiae.



UTILISATIONS et APPLICATIONS de l’ACIDE CAPROÏQUE :
L'acide caproïque est utilisé pour fabriquer des esters d'arômes artificiels, de dérivés hexyliques, de produits chimiques pour le caoutchouc, de siccatifs pour vernis, de résines et de produits pharmaceutiques.
L'acide caproïque est également utilisé en chimie analytique et dans les attractifs pour insectes.
L'acide caproïque est utilisé pour fabriquer des parfums.


L'acide caproïque est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide caproïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, adhésifs et produits d'étanchéité, peintures au doigt, produits d'entretien de l'air, cirages et cires, produits phytopharmaceutiques et produits cosmétiques et de soins personnels. .


Le rejet d'acide caproïque dans l'environnement peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal) et traitement par abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage).


D'autres rejets d'acide caproïque dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, construction et matériaux de construction en métal, en bois et en plastique), utilisation en intérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple libération des tissus, textiles lors du lavage, du retrait de peintures intérieures) et utilisation extérieure dans des matériaux longue durée à haut taux de démoulage (par exemple pneus, produits en bois traités, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) .


L'acide caproïque peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
D'autres rejets d'acide caproïque dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide caproïque peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).


L'acide caproïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, adhésifs et mastics, cirages et cires, produits phytopharmaceutiques, lubrifiants et graisses et régulateurs de pH et produits de traitement de l'eau.
L'acide caproïque est utilisé dans les domaines suivants : agriculture, foresterie et pêche, formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.


L'acide caproïque est utilisé pour la fabrication de produits chimiques, de produits alimentaires, de textiles, de cuir ou de fourrure, de machines et de véhicules.
D'autres rejets d'acide caproïque dans l'environnement sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide caproïque est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners.
Le rejet dans l'environnement de l'acide caproïque peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.


L'acide caproïque est utilisé dans les produits suivants : polymères, produits de traitement des textiles et colorants, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de lavage et de nettoyage, adhésifs et produits d'étanchéité ainsi que lubrifiants et graisses.
L'acide caproïque est utilisé dans les domaines suivants : agriculture, foresterie et pêche, formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.


L'acide caproïque est utilisé pour la fabrication de produits chimiques, de textiles, de cuir ou de fourrure, de machines et de véhicules et de produits alimentaires.
Le rejet dans l'environnement de l'acide caproïque peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.


Le rejet dans l'environnement de l'acide caproïque peut survenir lors d'une utilisation industrielle : fabrication de la substance.
L'acide caproïque est un triglycérides à chaîne moyenne (MCT).
Les MCT sont largement utilisés pour la nutrition parentérale chez les individus nécessitant une nutrition complémentaire et sont plus largement utilisés dans les aliments, les médicaments et les cosmétiques ; ils sont essentiellement non toxiques.


L'acide caproïque est sans danger pour la consommation alimentaire humaine jusqu'à des niveaux de 1 g/kg.
L'acide caproïque est un acide gras présent naturellement dans diverses graisses et huiles animales, et est l'un des produits chimiques qui confèrent à l'enveloppe charnue en décomposition du ginkgo son odeur désagréable caractéristique.


L'acide caproïque est également l'un des composants de la vanille et du fromage.
L'acide caproïque est principalement utilisé dans la fabrication de ses esters destinés à être utilisés comme arômes artificiels et dans la fabrication de dérivés hexyliques, tels que les hexylphénols.
L'acide caproïque est utilisé pour fabriquer des parfums.



PARENTS ALTERNATIFS DE L'ACIDE CAPROÏQUE :
*Acides gras à chaîne droite
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE CAPROÏQUE :
*Acide gras à chaîne moyenne
*Acide gras à chaîne droite
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE CAPROÏQUE :
Formule chimique : C6H12O2
Masse molaire : 116,160 g•mol−1
Aspect : Liquide huileux
Odeur : chèvre
Densité : 0,929 g/cm3
Point de fusion : −3,4 °C (25,9 °F ; 269,8 K)
Point d'ébullition : 205,8 °C (402,4 °F ; 478,9 K)
Solubilité dans l'eau : 1,082 g/100 mL
Solubilité : soluble dans l’éthanol, l’éther
Acidité (pKa) : 4,88
Susceptibilité magnétique (χ) : −78,55•10−6 cm3/mol
Indice de réfraction (nD) : 1,4170
Viscosité : 3,1 mP
Poids moléculaire : 116,16 g/mol
XLogP3 : 1,9
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 4
Masse exacte : 116,083729621 g/mol
Masse monoisotopique : 116,083729621 g/mol

Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 8
Frais formels : 0
Complexité : 68,9
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
NUMÉRO CAS : 142-62-1
POIDS MOLÉCULAIRE : 116,2
NUMÉRO D'ENREGISTREMENT BEILSTEIN : 773837
NUMÉRO CE : 205-550-7
NUMÉRO MDL : MFCD00004421
État physique : clair, liquide
Couleur : incolore
Odeur : Puanteur.
Point de fusion/point de congélation :
Point/plage de fusion : -3 °C

Point d'ébullition initial et plage d'ébullition : 204 - 205 °C à 1,013 hPa
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d’inflammabilité ou d’explosivité :
Limite d'explosivité supérieure : 10 %(V)
Limite d'explosivité inférieure : 2 %(V)
Point d'éclair : 102 °C - coupelle fermée
Température d'auto-inflammation : 380 °C à 1,013 hPa
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau. 10,3 g/l à 25 °C - complètement soluble
Coefficient de partage : n-octanol/eau :
log Pow: 1,75 à 25 °C - Aucune bioaccumulation n'est attendue.
Pression de vapeur : 1 hPa à 72 °C, 0,24 hPa à 20 °C
Densité : 0,927 g/cm3 à 25 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune

Autres informations de sécurité :
Constante de dissociation 4,88
Densité de vapeur relative : 4,01 - (Air = 1,0)
Poids moléculaire : 116,16
Formule chimique : C6H12O2
Forme physique/odeur : incolore à jaune très pâle, liquide huileux/fromage, odeur de sueur
Solubilité : miscible avec l'alcool, la plupart des huiles fixes, l'éther, 1 ml dans 250 ml d'eau
Solubilité dans l'éthanol : -
Point d'ébullition (°C) : 205°
Analyse min % : 98,0 %
Indice d'acide max : -
Indice de réfraction : 1,415-1,418
Densité spécifique : 0,923-0,928
Autres exigences : Pt de solidification : > -4,5°
Formule chimique : C6H12O2
Poids moléculaire moyen : 116,1583
Poids moléculaire monoisotopique : 116,083729628
Nom IUPAC : acide hexanoïque
Nom traditionnel : acide hexanoïque

Numéro de registre CAS : 142-62-1
SOURIRES : CCCCCC(O)=O
Identifiant InChI : InChI=1S/C6H12O2/c1-2-3-4-5-6(7)8/h2-5H2,1H3,(H,7,8)
Clé InChI : FUZZWVXGSFPDMH-UHFFFAOYSA-N
Densité de vapeur : 4,01 (air = 1)
Pression de vapeur : 0,18 mmHg (20 °C)
Noms alternatifs : Acide hexanoïque ; Acide C6
Allumage automatique : 380 °C (716 °F)
Numéro de catalogue de base : 15055380
Numéro de registre Beilstein : 773837
Point d'ébullition : 202-203 °C (lit.)
N° CAS : 142-62-1
Densité : 0,927 g/mL à 25 °C(lit.)
Numéro CE : 205-550-7
Point d'éclair : 215,6 °F / 102 °C (éclairé)
Mentions de danger : H302-H311 + H331-H314
Point de fusion : −4 °C (lit.)
Formule moléculaire : C6H12O2
Poids moléculaire : 116,2
N° CAS : 142-62-1

Formule moléculaire : C6H12O2
Poids de la formule : 116,16
Point d'éclair : 104°(219°F)
Forme physique : Liquide clair
Densité : 0,929
Indice de réfraction : 1,4165
Aspect : Jaune pâle
Point de fusion : -4°
Point d'ébullition : 202-203°
Référence Beilstein : 773837
Référence Merck : 14,1759
No ONU : 2829
N° MDL : MFCD00004421
Formule : C₆H₁₂O₂
PM : 116,16 g/mol
Point d'ébullition : 202…203 °C
Point de fusion : –4 °C
Densité : 0,929
Point d'éclair : 104 °C (219 °F)
Température de stockage : ambiante
Numéro MDL : MFCD00004421
Numéro CAS : 142-62-1
EINECS : 205-550-7
ONU : 2829
ADR : 8,III
Indice Merck : 13 01765



PREMIERS SECOURS DE L'ACIDE CAPROÏQUE :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après ingestion : faire boire de l'eau à la victime.
Appelez immédiatement un médecin.
N'essayez pas de neutraliser.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE DE L'ACIDE CAPROÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles
Ramasser avec un matériau absorbant les liquides.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE CAPROÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE CAPROÏQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,4 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 30 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Type de filtre ABEK
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE CAPROÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Conserver sous clé ou dans un endroit accessible uniquement aux personnes qualifiées ou autorisées.



STABILITÉ et RÉACTIVITÉ de l'ACIDE CAPROÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
Acide hexanoïque
Autres noms
Acide hexoïque
Acide hexylique
Acide butylacétique
Acide pentylformique
Acide 1-pentanecarboxylique
C6:0 (nombres lipidiques)
ACIDE HEXANOÏQUE
Acide caproïque
142-62-1
Acide n-caproïque
Acide n-hexanoïque
Acide capronique
Acide butylacétique
Acide pentylformique
Acide hexoïque
Acide 1-hexanoïque
Acide n-hexylique
Acide n-hexoïque
Acide pentiformique
Acide 1-pentanecarboxylique
Acide pentanecarboxylique
Hexacide 698
Acide hexylique
Kyselina Kapronova
Acide hexanoïque (naturel)
FEMA n° 2559
Acide C6
NSC 8266
CCRIS 1347
HSDB 6813
EINECS205-550-7
UNII-1F8SN134MX
BRN0773837
1F8SN134MX
C6:0
DTXSID7021607
CHEBI:30776
AI3-07701
NSC8266
NSC-8266
Acide hexanoïque-2,2-d2
NCIOpen2_005355
CHEMBL14184
CH3-[CH2]4-COOH
DTXCID101607
ACIDE 1-PENTANE CARBOXYLIQUE
CE 205-550-7
acétate de butyle
capronate
hexylate
pentylformate
4-02-00-00917 (référence du manuel Beilstein)
n-caproate
n-hexoate
n-hexylate
NSC-35598
ACIDE HEXANOÏQUE (ACIDE CAPROÏQUE)
1-hexanoate
1-pentanecarboxylate
Acide hexanoïque-5,5-d2
68603-84-9
70248-25-8
CH3-(CH2)4-COOH
CAS-142-62-1
MFCD00004421
UN2829
Hexanoïque
hexansäure
Acide 2-butylacétique
6NA
EINECS274-509-3
acide gras 6:0
Acide caproïque,(S)
55320-68-8
acide éthyl-4-butanoïque
Acide hexanoïque, 99%
acide méthyle 5-pentanoïque
Acide pentane-1-carboxylique
Acide hexanoïque, >=99 %
n-C5H11COOH
Acide hexanoïque Acide caproïque
bmse000351
SCHEMBL3867
WLN : QV5
CH3(CH2)4COOH
ACIDE CAPROÏQUE [HSDB]
ACIDE CAPROÏQUE [INCI]
ACIDE HEXANOÏQUE [FCC]
ACIDE HEXANOÏQUE [FHFI]
ACIDE N-CAPROÏQUE [MI]
BDBM16433
Acide hexanoïque, étalon analytique
STR10048
EINECS267-013-3
EINECS271-676-4
Tox21_201517
Tox21_300406
FA 6:0
LMFA01010006
Acide hexanoïque, >=98%, FCC, FG
AKOS000119844
FA(6:0)
Acide caproïque [UN2829] [Corrosif]
Acide hexanoïque, naturel, >=98%, FCC
NCGC00248020-01
NCGC00248020-02
NCGC00254504-01
NCGC00259067-01
Acide hexanoïque, pur, >=98,0 % (GC)
Acide hexanoïque 10 microg/mL dans de l'acétonitrile
FT-0659402
FT-0777869
H0105
Acide hexanoïque, naturel, >=98%, FCC, FG
EN300-21589
C01585
CE 271-676-4
ACIDE CAPROÏQUE (CONSTITUANT DU PALMIER NAIN)
Q422597
J-007673
25401AB4-1ECB-481F-AC91-EAAFC9329BDD
ACIDE CAPROÏQUE (CONSTITUANT DU PALMIER NAIN) [DSC]
Z104503532
InChI=1/C6H12O2/c1-2-3-4-5-6(7)8/h2-5H2,1H3,(H,7,8
Acide caproïque
Acide n-caproïque
Acide n-hexanoïque
Acide n-hexoïque
Acide n-hexylique
Acide butylacétique
Acide capronique
Acide hexoïque
Acide pentiformique
Acide pentylformique
Acide 1-pentanecarboxylique
CH3(CH2)4COOH
Acide pentane-1-carboxylique
Acide 1-hexanoïque
Hexacide 698
Kyselina Kapronova
Acide pentanecarboxylique
NSC 8266
Acide C6, acide caproïque
Acide 1-hexanoïque
Acide 1-pentanecarboxylique
6:0
Acide butylacétique
C6:0
Acide capronique
CH3-[CH2]4-COOH
Hexanoate
Acide hexoïque
Acide hexylique
Acide N-Caproïque
Acide N-hexanoïque
Acide N-hexoïque
Acide N-Hexylique
Acide pentanecarboxylique
Acide pentiformique
Acide pentylformique
1-hexanoate
1-pentanecarboxylate
Acétate de butyle
Capronate
Acide hexanoïque
Hexoate
Hexylate
N-Caproate
N-Hexanoate
N-Hexoate
N-Hexylate
Pentanecarboxylate
Pentiformat
Formiate de pentyle
Caproate
Acide hexanoïque, sel de calcium
Acide hexanoïque, sel de sodium, marqué au 1-(11)C
Acide hexanoïque, sel de nickel (2+)
Acide hexanoïque, sel de sodium
Hexanoate de bismuth(III)
Acide hexanoïque, sel de cuivre (2+)
Acide hexanoïque, sel de manganèse (2+)
Bi(ohex)3
Acide hexanoïque, sel de baryum
Acide hexanoïque, sel de potassium
Acide hexanoïque, sel de rhodium (2+)
FA(6:0) BDMH
N-hexanoate de calcium
Acide hexanoïque, sel de sodium (1:1)
Capronate de sodium
Hexanoate de calcium
Sel de sodium de l'acide caproïque
Caproate de sodium
Hexanoate de sodium
Acide 1-pentanecarboxylique
Acide butylacétique
Acide capronique
Hexacide 698
Acide hexanoïque (naturel)
Acide hexoïque
Acide pentanecarboxylique
Acide pentiformique
Acide pentylformique
Acide n-caproïque
Acide n-hexanoïque
Acide n-hexoïque
Acide n-hexylique
UN2829



ACIDE CAPRYLIQUE
L'acide octanoïque, mieux connu sous le nom d'acide caprylique, est un acide gras saturé à huit carbones que l'on trouve naturellement dans le lait de divers mammifères ainsi qu'un constituant mineur de l'huile de coco et de l'huile de palmiste.
L'acide caprylique appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


Numéro CAS : 124-07-2
Numéro CE : 204-677-5
Formule chimique : C8H16O2


L'acide caprylique crée un environnement inhospitalier pour les levures opportunistes déséquilibrées.
L'acide caprylique contient des caprylates de calcium et de potassium qui agissent comme tampons pour permettre à l'acide caprylique de survivre aux processus digestifs et d'atteindre le côlon.
L'acide caprylique est capable de pénétrer dans les cellules de la muqueuse intestinale pour exercer ses effets.


L'acide caprylique se présente sous forme de gélules faciles à avaler
L'acide caprylique favorise un environnement favorable à la flore intestinale bénéfique.
L'acide caprylique, également connu sous le nom d'acide octanoïque, est un triglycéride (acide gras) à chaîne moyenne d'origine naturelle.


L'acide caprylique est naturellement présent dans les produits laitiers et dans plusieurs huiles, comme la noix de coco.
Le calcium et le magnésium agissent comme tampons et aident à ralentir la dispersion et la libération de l'acide caprylique dans le tractus gastro-intestinal.
L'acide caprylique est sans OGM et sans gluten ; et convient aux végétariens et végétaliens


L'acide caprylique est également appelé acide n-octanoïque ou acide gras C8.
L'acide caprylique est un acide gras saturé à chaîne courte présent dans les huiles végétales et certains laits d'animaux. C'est l'une des raisons de son nom, étymologiquement lié au mot latin signifiant chèvre.


L'acide caprylique est un type d'acide gras saturé bénéfique qui possède des propriétés antibactériennes, antivirales, antifongiques et anti-inflammatoires.
L'acide caprylique a été associé à la prévention des infections des voies urinaires, des infections de la vessie, du Candida, des maladies sexuellement transmissibles, des infections buccales comme la gingivite et de nombreuses autres affections.


L’acide caprylique semble jusqu’à présent assez bénéfique pour la santé, mais qu’est-ce que l’acide caprylique ?
En tant qu'acide gras saturé, l'acide caprylique (également parfois appelé acide octanoïque) contient huit atomes de carbone, ce qui en fait un acide gras à chaîne moyenne (MCFA).
L'acide caprylique, également connu sous le nom d'octanoate ou 8:0, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.


Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide caprylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.
L'acide caprylique est un acide gras végétal renouvelable qui agit comme émollient dans les produits de soins personnels.


L'acide caprylique est un acide gras à chaîne moyenne présent dans l'huile de coco.
L'acide caprylique contient de puissantes propriétés antibactériennes, antifongiques et anti-inflammatoires.
Cela rend l'acide caprylique utile dans le traitement des infections à levures, des troubles digestifs, des affections cutanées, des infections des voies urinaires et des infections buccales.


L'acide caprylique a également la capacité de réduire le risque de résistance aux antibiotiques.
L'acide caprylique peut être consommé naturellement dans le cadre d'aliments ou pris comme supplément individuel.
En tant qu'acide gras saturé, l'acide caprylique (parfois appelé acide octanoïque) contient huit atomes de carbone, ce qui en fait un triglycéride à chaîne moyenne (MCT).


Les MCT sont métabolisés davantage comme des glucides que comme des graisses et sont rapidement utilisés comme énergie.
La source la plus riche d'acide caprylique est l'huile de coco et les noix de coco, mais d'autres sources naturelles comprennent le lait de vache entier, le beurre d'arachide, l'huile de palme et le lait maternel.


L'acide caprylique est un acide gras saturé contenant huit atomes de carbone, ce qui en fait l'un des acides gras à chaîne moyenne.
L'acide caprylique, également connu sous le nom d'acide octanoïque, est un triglycéride à chaîne moyenne (acide gras) qui est facilement absorbé et métabolisé.
L'acide caprylique se trouve naturellement dans les produits laitiers et d'autres sources, par exemple le beurre, l'huile de palme et l'huile de noix de coco.


L'acide caprylique est partiellement métabolisé en acides gras saturés et monoinsaturés à longue chaîne selon un processus qui n'est pas entièrement compris.
Pourtant, le mécanisme de ce métabolisme libère de l’énergie d’une manière qui fait de l’acide caprylique une bonne source d’énergie rapidement disponible.
L'acide caprylique est le nom commun de l'acide gras saturé à huit carbones connu sous le nom systématique d'acide octanoïque.


L'acide caprylique se trouve naturellement dans le lait de divers mammifères et constitue un constituant mineur de l'huile de coco et de l'huile de palmiste.
L'acide caprylique est le nom commun de l'acide gras à chaîne droite à huit carbones connu sous le nom systématique d'acide octanoïque.
L'acide caprylique se trouve naturellement dans les noix de coco et le lait maternel.


L'acide caprylique est un liquide huileux au goût rance légèrement désagréable et peu soluble dans l'eau.
L'acide caprylique (du latin capra « chèvre »), également connu sous le nom systématique d'acide octanoïque ou acide C8, est un acide gras saturé, acide gras à chaîne moyenne (MCFA).


L'acide caprylique a la formule développée H3C−(CH2)6−COOH et est un liquide huileux incolore qui est peu soluble dans l'eau avec une odeur et un goût de rance légèrement désagréables.
Les sels et esters de l’acide octanoïque sont appelés octanoates ou caprylates.


L'acide caprylique est un produit chimique industriel courant, produit par oxydation de l'aldéhyde C8.
Les composés de l'acide caprylique se trouvent naturellement dans le lait de divers mammifères et comme constituant mineur de l'huile de coco et de l'huile de palmiste.
Deux autres acides portent le nom des chèvres via le mot latin capra : l'acide caproïque (C6) et l'acide caprique (C10).


Ensemble, ces trois acides gras représentent 15 % des acides gras contenus dans la matière grasse du lait de chèvre.
L'acide caprylique joue un rôle important dans la régulation de l'apport et de la production d'énergie du corps, une fonction qui est assurée par l'hormone ghréline.
La sensation de faim est un signal indiquant que le corps a besoin d’un apport d’énergie sous forme de consommation alimentaire.


La ghréline stimule la faim en déclenchant des récepteurs dans l'hypothalamus.
Afin d'activer ces récepteurs, la ghréline doit subir un processus appelé acylation dans lequel elle acquiert un groupe acyle, et l'acide caprylique le fournit en se liant à un site sérine spécifique sur les molécules de ghréline.


D’autres acides gras placés dans la même position ont des effets similaires sur la faim.
L'acide caprylique (acide octanoïque) est un acide gras à chaîne moyenne que l'on trouve naturellement dans l'huile de palme, l'huile de coco et le lait des humains et de certains animaux.
L'acide caprylique fait partie des produits triglycérides à chaîne moyenne (MCT). L'acide caprylique pourrait avoir des effets anti-inflammatoires.


L'acide caprylique se présente sous la forme d'un liquide incolore à jaune clair avec une légère odeur.
L'acide caprylique est un acide gras saturé à chaîne droite qui est l'heptane dans lequel l'un des hydrogènes d'un groupe méthyle terminal a été remplacé par un groupe carboxy.


L'acide caprylique joue le rôle d'agent antibactérien, de métabolite humain et de métabolite d'Escherichia coli.
L'acide caprylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprylique est un acide conjugué d'un octanoate.


L'acide caprylique est un acide gras à chaîne de huit carbones, également connu sous le nom d'acide octanoïque.
L'acide caprylique se trouve naturellement dans les noix de coco et le lait maternel.
L'acide caprylique est un liquide huileux avec une odeur de rance légèrement désagréable et peu soluble dans l'eau.


L'acide caprylique est un métabolite présent ou produit par Escherichia coli.
L'acide caprylique est un acide gras saturé à chaîne moyenne avec un squelette à 8 carbones.
L'acide caprylique se trouve naturellement dans le lait de divers mammifères et constitue un composant mineur de l'huile de coco et de l'huile de palmiste.


L'acide caprylique est le nom commun de l'acide gras à chaîne droite à huit carbones connu sous le nom systématique d'acide octanoïque.
L'acide caprylique se trouve naturellement dans les noix de coco et le lait maternel.
L'acide caprylique est un liquide huileux au goût rance légèrement désagréable et peu soluble dans l'eau.


L'acide caprylique est un acide gras à chaîne de huit carbones, également connu sous le nom d'acide octanoïque.
L'acide caprylique se trouve naturellement dans les noix de coco et le lait maternel.
L'acide caprylique est un liquide huileux avec une odeur de rance légèrement désagréable et peu soluble dans l'eau.



UTILISATIONS et APPLICATIONS de l’ACIDE CAPRYLIQUE :
L'acide caprylique est utilisé commercialement dans la production d'esters utilisés en parfumerie et également dans la fabrication de colorants.
Commercialement, l'acide caprylique est utilisé dans la production d'esters, qui sont ensuite utilisés dans la fabrication de colorants ainsi qu'en parfumerie.
L’une des qualités intéressantes de l’acide caprylique est qu’il agit comme un antimicrobien.


Cette qualité a rendu l'acide caprylique très populaire commercialement en tant que composant pour la désinfection dans les établissements de manipulation des aliments, les établissements de santé, les écoles/collèges, les installations de soins aux animaux/vétérinaires, les immeubles de bureaux, les installations de loisirs, les locaux d'élevage et les hôtels/motels.
De même, cette qualité est appliquée comme algicide, bactéricide, fongicide et herbicide dans les pépinières, les serres, les jardineries et les aménagements intérieurs.


L’utilisation historique de l’acide caprylique, outre son utilisation commerciale, était destinée à aider à traiter les infections à Candida albicans.
L'acide caprylique est un intermédiaire dans la fabrication d'esters de parfums et de colorants.
Applications clés de l'acide caprylique : Détergent | Désinfectant | Bactéricide | Virucide | Désodorisant | Lipide | Les acides gras


L'acide caprylique est utilisé commercialement dans la production d'esters utilisés en parfumerie ainsi que dans la fabrication de colorants.
L'acide caprylique est un pesticide antimicrobien utilisé comme désinfectant pour les surfaces en contact avec les aliments dans les établissements commerciaux de manipulation des aliments sur les équipements laitiers, les équipements de transformation des aliments, les brasseries, les établissements vinicoles et les usines de transformation des boissons.


L'acide caprylique est également utilisé comme désinfectant dans les établissements de santé et les lieux publics.
De plus, l'acide caprylique est utilisé comme algicide, bactéricide, fongicide et herbicide dans les pépinières, les serres, les jardineries et les intérieurs, ainsi que pour l'ornementation.


Les produits contenant de l'acide caprylique sont formulés sous forme de concentrés/liquides solubles et de liquides prêts à l'emploi.
Le chlorure d'acyle de l'acide caprylique est utilisé dans la synthèse de l'acide perfluorooctanoïque.
L'acide caprylique est utilisé commercialement dans la production d'esters utilisés en parfumerie et également dans la fabrication de colorants.


Les gens utilisent l’acide caprylique pour traiter l’épilepsie, un trouble nerveux qui provoque des tremblements incontrôlables (tremblements essentiels), une insuffisance rénale, des troubles digestifs et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer ces utilisations.
L'acide caprylique est un acide gras saturé contenant huit atomes de carbone, ce qui en fait l'un des acides gras à chaîne moyenne.


L'acide caprylique est utilisé par certaines personnes comme médicament.
La science ne soutient pas l’utilisation de l’acide caprylique pour un quelconque problème de santé.
L'acide caprylique est utilisé comme arôme et parfum, pour fabriquer des esters utilisés dans la production de parfums et d'arômes artificiels, d'aliments et de boissons, naturels.

Ingrédient antimicrobien dans les désinfectants pour contact alimentaire, surfaces et équipements, en particulier dans les usines de transformation de la viande, les brasseries et les établissements vinicoles, les lubrifiants et les graisses, la fabrication de lubrifiants synthétiques, de fluides hydrauliques et de lubrifiants réfrigérants, de fluides de travail des métaux et de solubilisant pour huiles minérales.
L'acide caprylique est principalement utilisé comme agent parfumant et aromatisant dans les parfums et les produits alimentaires.


De plus, l’acide caprylique possède de fortes propriétés antimicrobiennes, ce qui en fait un excellent désinfectant de surface.
En conséquence, l’acide caprylique est souvent utilisé dans les usines de transformation des aliments et des boissons et dans les établissements de santé.
L'acide caprylique sert également de solubilisant pour les huiles minérales et entre dans la composition de divers lubrifiants synthétiques.


Ces dernières années, l’acide caprylique a également gagné en popularité en tant que complément alimentaire.
L'acide caprylique est généralement utilisé dans les savons, les crèmes et les lotions.


-Utilisations alimentaires de l'acide caprylique :
L'acide caprylique est pris comme complément alimentaire. Dans le corps, l’acide caprylique se trouverait sous forme d’octanoate ou d’acide caprylique non protoné.
Certaines études ont montré que les triglycérides à chaîne moyenne (TCM) peuvent contribuer au processus de combustion excessive de calories et donc à la perte de poids ; cependant, un examen systématique des données probantes a conclu que les résultats globaux ne sont pas concluants.
En outre, les athlètes d'endurance et la communauté du culturisme ont manifesté de l'intérêt pour les MCT, mais ils ne se sont pas révélés bénéfiques pour améliorer les performances physiques.


-Utilisations médicales de l'acide caprylique :
L'acide caprylique a été étudié dans le cadre d'un régime cétogène pour traiter les enfants atteints d'épilepsie intraitable.
L'acide caprylique fait actuellement l'objet de recherches comme traitement des tremblements essentiels.



BIENFAITS POUR LA SANTÉ DE L'ACIDE CAPRYLIQUE :
1. Contient des propriétés antibactériennes, antivirales et antifongiques :
En tant que stimulant naturel du système immunitaire, l’acide caprylique est couramment utilisé comme ingrédient dans les fongicides topiques, les nettoyants ménagers, les parfums et les colorants.
Compte tenu de toutes les utilisations connues de l’huile de noix de coco, il n’est pas surprenant que l’acide caprylique gagne en popularité à lui seul pour soigner le corps à l’intérieur comme à l’extérieur.

Pris en interne, l'acide caprylique aide à réduire naturellement la croissance des levures dans le tractus gastro-intestinal tout en aidant les bactéries bénéfiques à se développer.
Dans le même temps, l’acide caprylique est entièrement naturel et ne présente pas les mêmes risques que les antibiotiques agressifs ou les traitements chimiques.
Alors que les antibiotiques peuvent tuer toutes les bactéries de l’environnement intestinal – qu’elles soient bonnes ou mauvaises – l’acide caprylique peut en réalité faire le contraire, en aidant à prévenir un déséquilibre entre la présence de diverses bactéries.

Y a-t-il du vrai dans les allégations de perte de poids de l’acide caprylique ?
Eh bien, une population plus élevée de « bonnes bactéries » dans l’intestin renforce la fonction immunitaire et a de nombreuses implications : des niveaux d’inflammation plus faibles, moins de risques d’allergies, une meilleure fonction cérébrale, une meilleure santé hormonale, un risque moindre d’obésité et bien plus encore.

Parce que la santé intestinale est intrinsèquement liée à de nombreuses fonctions dans tout le corps, les effets de l'acide caprylique pourraient aider à lutter contre les maux de tête, la dépression, la fatigue, la diarrhée, les ballonnements, les mycoses vaginales et les gaz.
Pour renforcer davantage ses effets, certains experts recommandent également de consommer des stimulants immunitaires naturels comme des aliments probiotiques, de l'huile d'origan et des suppléments d'huile de poisson oméga-3 ainsi que de l'acide caprylique pour aider à repeupler l'intestin avec des bactéries saines, réduire l'inflammation et restaurer un « intestin » sain. -connexion cérébrale.

2. Combat le Candida :
Lorsqu’il s’agit de lutter naturellement contre le candida, ne cherchez pas plus loin que l’acide caprylique.
Candida est une maladie qui survient lorsqu'une prolifération de levures se développe dans votre intestin.
C'est très fréquent, surtout chez les femmes, et est associé à des symptômes inconfortables de Candida comme des ballonnements abdominaux, la constipation, la fatigue, le syndrome du côlon irritable, la dépression et les envies de sucre.

Parce que l'acide caprylique agit comme un agent naturel de lutte contre les levures, on pense qu'il peut pénétrer dans les membranes cellulaires des cellules de levure Candida et provoquer leur mort, détoxifiant le tube digestif et accélérant le processus de guérison.
En prenant de l'acide caprylique, le candida peut devenir un problème du passé.
Les chercheurs ont découvert que cet acide gras pris par voie orale réduit rapidement les symptômes associés aux infections virales et fongiques comme Candida et Chlamydia.

La même étude suggère que le meilleur traitement pour ces types de conditions est une combinaison d’acide caprylique concentré pris par voie orale avec des suppléments d’huile de poisson oméga-3.
Ensemble, ceux-ci agissent comme des agents antiviraux puissants et augmentent les télomères des cellules normales (NCT).



L'ACIDE CAPRYLIQUE EST-IL LA MÊME QUE L'HUILE DE COCO ?
Avec l'acide caprique et l'acide laurique, l'acide caprylique est l'un des trois principaux acides gras présents dans l'huile de coco.
C'est donc un composant de l'huile de coco, mais l'acide caprylique n'est pas la même chose.



QUELS ALIMENTS CONTIENNENT DE L'ACIDE CAPRYLIQUE ?
L'acide caprylique peut être trouvé dans les aliments curatifs comme la noix de coco et l'huile de noix de coco, le lait de vache et le lait maternel.



L'ACIDE CAPRYLIQUE EST-IL UN PROBIOTIQUE ?
L'acide caprylique n'est certainement pas un probiotique, mais il contribue à soutenir la santé intestinale et l'environnement probiotique interne que nous avons tous.
Bien que des recherches supplémentaires soient encore nécessaires pour confirmer les utilisations potentielles de l'acide caprylique, les recherches suggèrent que cet acide gras a des applications positives dans la lutte contre l'inflammation, le cancer, le déclin cognitif lié à l'âge, notamment la maladie d'Alzheimer, l'autisme et les problèmes circulatoires.



AVANTAGES ET CARACTÉRISTIQUES DE L'ACIDE CAPRYLIQUE :
*L'acide caprylique favorise un environnement favorable à la microflore bénéfique
*L'acide caprylique fournit une libération progressive, de l'acide caprylique tamponné
*Fabriqué avec des ingrédients végétaliens de haute qualité soutenus par des données scientifiques vérifiables



POINTS CLÉS DE L'ACIDE CAPRYLIQUE :
*Une formule à base de plantes très puissante combinant de l'acide caprylique avec de l'ail, de l'extrait d'origan, de l'extrait de pépins de pamplemousse et de l'extrait de thé vert.
*Conçu pour soutenir la santé digestive
*Supporte le maintien d'une microflore intestinale normale
*Peut être utilisé dans le cadre d'un programme visant à traiter la dysbiose intestinale
*Cible les parois cellulaires des bactéries pathogènes et des levures
*Petites capsules faciles à avaler
*Convient aux végétaliens



QUE FAIT L’ACIDE CAPRYLIQUE POUR LE CORPS ?
En tant que l'un des principaux acides gras présents dans l'huile de noix de coco, l'acide caprylique est récemment devenu largement connu pour ses effets antifongiques, notamment en ce qui concerne le bon fonctionnement des organes digestifs et reproducteurs, notamment la vessie, l'intestin et l'urètre.

L’une des utilisations ou des avantages potentiels les plus populaires de l’acide caprylique, qu’il soit consommé dans le cadre d’aliments ou pris par voie orale sous forme de comprimés, consiste à prévenir la prolifération de champignons de type levure qui peuvent vivre et se développer dans vos intestins.
Mais ce n’est là qu’un des nombreux avantages possibles de l’acide caprylique.



BIENFAITS DE L'ACIDE CAPRYLIQUE :
1. Combattant de Candida intestinale :
La prolifération de levures dans votre intestin est appelée Candida.
Les problèmes associés au candida comprennent les ballonnements abdominaux, le syndrome du côlon irritable, la dépression et le syndrome de fatigue chronique.

En tant qu'agent combattant les levures, l'acide caprique est théorisé selon lequel l'activité antifongique de l'acide caprylique dissout la membrane cellulaire des cellules de levure Candida et provoque leur mort, selon une étude de 2011 dans Acupuncture & Electro-Therapeutics Research.

Disponible sous forme de pilule, de comprimé ou de capsule, en raison de sa liposolubilité, il est recommandé de prendre de l'acide caprylique avec des graisses alimentaires comme le beurre ou l'huile de salade, ou en conjonction avec des acides gras oméga-3 ou de l'huile de lin.
Il est également recommandé de prendre le supplément avec de la nourriture pour éviter tout inconfort gastrique.

2. Infections cutanées et buccales :
Les infections externes à levures se présentent sous diverses formes, comme la vaginite chez la femme, l'eczéma et la teigne chez l'homme.
Pris par voie orale, les agents combattant les levures de l'acide caprylique agissent pour dissoudre les parois cellulaires des bactéries à l'origine de ces infections externes.

L'acide caprylique peut également être utile pour traiter le muguet, une prolifération de levures qui provoque une infection dans la bouche.
Dans l’ensemble, des recherches supplémentaires sont nécessaires pour confirmer ces bienfaits pour la santé.



COMMENT OBTENIR DE L'ACIDE CAPRYLIQUE :
Vous pouvez profiter des bienfaits potentiels de l’acide caprylique en ingérant de l’huile de noix de coco ou en l’appliquant sur votre peau.
Commencez par ajouter 1 cuillère à soupe ou moins d’huile de noix de coco à votre alimentation chaque jour pour vous assurer que vous pouvez la tolérer.
Vous pouvez consommer de l’huile de coco solide ou fondue.
Vous pouvez également l’ajouter à d’autres aliments ou le mélanger à un smoothie.

Intégrer l’huile de coco à votre alimentation est généralement un moyen sûr de vous aider à profiter des bienfaits de l’acide caprylique.
Bien que l’huile de coco soit l’un des moyens les plus populaires d’obtenir votre dose quotidienne d’acide caprylique, il existe plusieurs autres options.
L'huile de palme et les produits laitiers contiennent également de l'acide caprylique.
L'acide caprylique est également disponible sous forme de supplément.



BIENFAITS DE L'ACIDE CAPRYLIQUE :
L'acide caprylique est l'un des acides gras présents dans l'huile de coco.
L'acide caprylique est un acide gras à chaîne moyenne censé posséder de puissantes propriétés antibactériennes, antifongiques et anti-inflammatoires.
Ces propriétés peuvent faire de l’acide caprylique un remède utile dans de nombreuses pathologies.

Certaines recherches suggèrent que l'acide caprylique peut être utile dans la gestion des infections à levures, des affections cutanées, des troubles digestifs et de l'hypercholestérolémie.
L'utilisation de l'acide caprylique comme désinfectant peut également contribuer à réduire le risque de résistance aux antibiotiques.
Vous pouvez prendre de l'acide caprylique par voie orale ou l'appliquer sur votre peau.


***Les infections à levures
Les infections à levures Candida sont un problème médical courant.
Les infections à Candida sont des infections fongiques.
Ils peuvent provoquer des mycoses vaginales, des mycoses des ongles et du muguet buccal.

On pense que les propriétés antifongiques de l’acide caprylique tuent et réduisent les levures.
Une étude de 2011 a révélé que l’acide caprylique était efficace pour réduire les symptômes de certaines infections à Candida.
Et une étude de 2019 a révélé que l’acide caprylique, ainsi que d’autres antifongiques d’origine naturelle, étaient efficaces pour tuer Candida albicans, la levure qui cause généralement les infections à levures.

Bien qu'elle ne soit pas considérée comme un traitement scientifique, une procédure appelée extraction d'huile est parfois utilisée comme remède contre le muguet buccal.
L’extraction d’huile consiste à faire circuler de l’huile de noix de coco dans votre bouche pendant 10 à 20 minutes à la fois.


***Maladies de la peau
Tout comme l’acide caprylique peut aider à gérer les infections à levures, il peut également être bénéfique pour certaines affections cutanées.
Cela est dû en grande partie à ses propriétés antibactériennes et antimicrobiennes, qui l’aident à tuer les bactéries vivant dans la peau.
L'huile de coco peut améliorer les symptômes de certains troubles cutanés en hydratant et en apaisant la peau.
Une étude en éprouvette réalisée en 2019 a révélé que l’huile de noix de coco vierge peut aider à supprimer les marqueurs inflammatoires et à améliorer la fonction de barrière cutanée.


***Désordres digestifs
Il existe des preuves selon lesquelles les acides gras à chaîne moyenne comme l'acide caprylique peuvent aider les patients souffrant de certains troubles digestifs.
Les propriétés anti-inflammatoires et antibactériennes de l'acide caprylique peuvent aider à gérer des affections telles que les maladies inflammatoires de l'intestin ou le syndrome du côlon irritable.

Ces deux affections impliquent une inflammation et parfois des infections bactériennes du système digestif.
Les propriétés antibactériennes peuvent également être bénéfiques pour les personnes atteintes de la maladie de Crohn ou de colite ulcéreuse.
La recherche suggère que le remplacement des acides gras à chaîne longue provenant des aliments d’origine animale par des acides gras à chaîne moyenne, tels que l’acide caprylique présent dans l’huile de noix de coco, pourrait contribuer à réduire l’incidence de la colite spontanée et à protéger contre l’inflammation de l’intestin.

Cependant, des recherches supplémentaires sont nécessaires pour juger correctement de l’efficacité de l’huile de coco dans ces conditions.
Consultez un professionnel de la santé avant d'utiliser de l'acide caprylique ou de l'huile de coco pour traiter un trouble digestif.
Les deux peuvent parfois provoquer des maux d’estomac.


***Résistance aux antibiotiques
La résistance aux antibiotiques est un problème croissant dans le monde, résultant de la mauvaise utilisation et de la surutilisation des antibiotiques.
L'acide caprylique peut être un désinfectant utile qui peut réduire les maladies d'origine alimentaire sans utiliser d'antibiotiques.
Dans une étude de 2020, une combinaison d’acide caprylique et de peroxyde d’hydrogène s’est avérée efficace pour tuer les souches de bactéries qui causent généralement des maladies d’origine alimentaire, telles que Salmonella, Escherichia coli et Listeria.


***Cholestérol
L'acide caprylique est un acide gras à chaîne moyenne.
Certaines études suggèrent que ces acides gras pourraient avoir un effet bénéfique sur l’hypercholestérolémie.
Ils ont découvert que la consommation d’huile de noix de coco était associée de manière significative à un taux de cholestérol HDL (« bon ») plus élevé.

Cependant, l’huile de coco a également augmenté de manière significative le cholestérol LDL dans certaines études.
Une étude réalisée en 2019 sur les effets de la consommation d’huile de coco sur le cholestérol suggère que l’huile de coco augmente considérablement le HDL, le LDL et le cholestérol total par rapport aux autres huiles.
Cependant, davantage d’études humaines sont nécessaires pour mieux comprendre l’effet de l’acide caprylique sur les taux de cholestérol.



COMMENT AGIT L’ACIDE CAPRYLIQUE ?
Voici quelques-uns des avantages de l’acide caprylique :
*L'acide caprylique tue les levures comme Candida albicans
*Des études ont montré que la puissance de l'acide caprylique est similaire à celle des antifongiques sur ordonnance.
*L'acide caprylique aide à réguler l'acidité de votre estomac et de vos intestins.
*L'acide caprylique renforce votre système immunitaire
*Les antifongiques naturels comme l'acide caprylique fonctionnent mieux en combinaison avec d'autres ingrédients naturels.

Cela crée une approche plus puissante et à multiples facettes pour tuer la levure Candida, tout en réduisant les chances de la levure de s'adapter à un seul agent.
Pour un effet maximal, les praticiens de la santé naturelle recommandent de combiner l'acide caprylique avec d'autres antifongiques tels que l'huile d'origan, l'ail et l'extrait de pépins de pamplemousse.



COMMENT L’ACIDE CAPRYLIQUE AIDE-T-IL À LA SURCROISSANCE DE CANDIDA ?
***TUEUR DE LEVURE :
Comme d’autres antifongiques, l’acide caprylique agit en interférant avec les parois cellulaires de la levure Candida.
Grâce à sa chaîne courte, l'acide caprylique est capable de pénétrer relativement facilement dans la paroi cellulaire de la levure.
Il est alors capable d'inhiber la croissance de la levure en s'incorporant à la membrane cellulaire et en provoquant sa rupture.
Cela détruit efficacement les cellules de levure.


***HAUTE PUISSANCE :
Des études répétées ont montré que l'acide caprylique est un traitement efficace contre Candida.
Une étude menée par l'Université japonaise de Niigata a révélé que l'effet fongicide de l'acide caprylique sur Candida Albicans était « extrêmement puissant ».


***RÉGULATEUR D'ACIDITÉ:
En aidant à normaliser l’acidité de votre estomac, l’acide caprylique permet aux tissus de votre corps de devenir plus alcalins.
Les personnes au régime Candida ne savent souvent pas si elles devraient essayer de rendre leur tractus gastro-intestinal plus alcalin ou plus acide.
Afin de décomposer correctement les aliments, l’estomac et les intestins sont naturellement plus acides que le reste du corps.

Un environnement acide dans l’estomac et l’intestin est également nécessaire au bon fonctionnement du système immunitaire.
Cela vous aide à combattre et à prévenir les infections causées par des agents pathogènes opportunistes comme Candida albicans.
L'acide caprylique aide à restaurer un environnement naturel et acide dans votre estomac.


***BOOSTER IMMUNITAIRE :
L'acide caprylique est également connu pour ses propriétés antivirales, antibactériennes et antifongiques et peut aider à traiter les troubles cutanés et l'acné.
L'acide caprylique est également utile pour traiter les infections des voies urinaires, les infections de la vessie, les IST et même la gingivite.



PARENTS ALTERNATIFS DE L'ACIDE CAPRYLIQUE :
*Acides gras à chaîne droite
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE CAPRYLIQUE :
*Acide gras à chaîne moyenne
*Acide gras à chaîne droite
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



LES BIENFAITS DE L'ACIDE CAPRYLIQUE :
L’acide caprylique peut améliorer votre santé de nombreuses manières : de l’acné à la lutte contre les infections en passant par la réduction de l’inflammation intestinale associée aux troubles digestifs.


**Les infections à levures:
Il est courant que les gens souffrent d'infections fongiques, notamment le muguet buccal et vaginal, la mycose des ongles, le pied d'athlète et l'eczéma des pieds.
Des proliférations de levures telles que Candida peuvent survenir dans les intestins et entraîner des problèmes digestifs tels que des ballonnements, le syndrome du côlon irritable, la constipation, les envies de sucre et la dépression.

L'acide caprylique est si efficace dans le traitement des infections à levures car il peut détruire la membrane cellulaire de la cellule Candida.
Une étude de 2011 a révélé que l'acide caprylique réduisait rapidement les symptômes associés à l'infection par Candida albicans et d'autres agents pathogènes coexistants, notamment Helicobacter pylori et le cytomégalovirus.
Les chercheurs ont découvert que l’acide caprylique est supérieur en termes d’efficacité au Diflucan pour traiter ces infections et qu’il procure un soulagement rapide et supérieur.

La même étude suggère qu’il est préférable de prendre l’acide caprylique avec des suppléments d’huile de poisson oméga-3 pour un soutien anti-inflammatoire et immunitaire supplémentaire, avec la capacité d’augmenter les télomères des cellules normales.
La diminution des télomères cellulaires est associée au vieillissement, cette étude met donc en évidence l'application potentielle des acides capryliques dans le cancer, le vieillissement, la maladie d'Alzheimer, l'autisme, les infections et l'amélioration circulatoire générale.


**Acné et autres affections cutanées :
De par ses propriétés antibactériennes et anti-inflammatoires, l’acide caprylique est efficace dans le traitement des affections cutanées, notamment d’origine bactérienne et fongique.
Dans l'acné, on pense que la bactérie commensale Propionibacteriumacnés (P. acnés) est impliquée dans l'inflammation de l'acné.
Une étude a révélé que deux acides gras naturellement présents dans l’huile de coco, l’acide laurique et l’acide caprylique, étaient efficaces pour lutter contre P.acnes.

L’huile de coco peut également être bénéfique pour les personnes qui souffrent de peau sèche, notamment de croûtes de lait, d’eczéma et de psoriasis.
Résistance aux antibiotiques:
Les préoccupations mondiales concernant la résistance aux antibiotiques ont entraîné une augmentation des stratégies de recherche et de traitement impliquant des dérivés naturels.
L'acide caprylique a été inclus parmi ces alternatives, car il a la capacité de combattre les infections sans risque de développement de mutations.

En cas d'ingestion d'acide caprylique, il n'élimine pas les niveaux sains de bactéries comme le feraient les antibiotiques, ce qui contribue à soutenir une fonction immunitaire et digestive saine au lieu de l'altérer.
Il a été rapporté que l'acide caprylique exerce une activité antimicrobienne contre un large éventail de micro-organismes, notamment Pseudomonas aeruginosa multirésistant, Staphylococcus aureus résistant à la méthicilline, E Escherichia coli, Salmonella enteritidis et Candida albicans.
Ces avantages peuvent être utiles dans la préparation des aliments et dans les établissements de soins de santé.


**Désordres digestifs:
Les triglycérides à chaîne moyenne tels que l'acide caprylique sont souvent utilisés dans le traitement des troubles digestifs tels que la maladie de Crohn et le syndrome de l'intestin court.
Cela est dû aux propriétés antibactériennes et anti-inflammatoires de l'acide caprylique qui inhibent la sécrétion d'enzymes et de cellules inflammatoires.
Plus important encore, l'acide caprylique réduit la libération d'une protéine appelée interleukine 8, responsable de l'inflammation des intestins dans la maladie de Crohn.
Grâce à une supplémentation en acide caprylique, les symptômes tels que la douleur, les ballonnements, les saignements et les problèmes intestinaux sont réduits.


**Cholestérol:
L'acide caprylique est un acide gras à chaîne moyenne dont il a été prouvé qu'il a un effet positif sur la réduction du taux de cholestérol élevé.
Une étude de 2013 a confirmé ces résultats.
Ceux qui ont reçu de l'acide caprylique ont signalé des taux de HDL, ou « bon » cholestérol, non affectés, et des taux plus faibles de LDL, ou « mauvais » cholestérol.



COMMENT PRENDRE L'ACIDE CAPRYLIQUE ?
Il est également possible d'obtenir votre dose d'acide caprylique directement à partir de la source naturelle : l'huile de coco.
L'huile de coco contient de l'acide caprylique, de l'acide laurique et de l'acide caprique, trois antifongiques puissants qui fonctionnent très bien en combinaison.
Il est conseillé de commencer par prendre 1 à 2 cuillères à soupe d'huile de noix de coco chaque matin, puis d'augmenter la dose à 5 cuillères à soupe par jour si vous ne ressentez aucun symptôme de Die-Off.
Cependant, un supplément d'acide caprylique est un moyen plus efficace d'apporter une quantité concentrée d'acide caprylique à votre intestin, là où il est nécessaire.



LES BIENFAITS SANTÉ DE L'ACIDE CAPRYLIQUE :
L'acide caprylique et ses deux dérivés, la monocapryline et le caprylate de sodium, sont bénéfiques pour traiter un large éventail de pathologies.
Un fait intéressant à propos de l’acide caprylique est que la plupart d’entre nous y sont déjà habitués en raison de sa présence dans le lait maternel.
Pour la plupart d’entre nous, les effets secondaires ne sont généralement pas préoccupants.

L'huile de triglycéride à chaîne moyenne (MCT) est un mélange d'huiles composé d'acide caprylique, d'acide caprique et parfois d'autres huiles.
Il est scientifiquement prouvé et est utilisé dans certains cas comme médicament en raison de son incroyable éventail d’effets.
Il peut même être utilisé pour soutenir des patients gravement malades.

L'acide caprylique peut être bénéfique pour les éléments suivants :
*Les infections à levures
*Santé intestinale
*Affections cutanées et acné
*Perte de poids
*Diabète
*Épilepsie


*LES INFECTIONS À LEVURES:
Vous pouvez utiliser l’acide caprylique pour traiter toutes les formes d’infections pathogènes à levures Candida, y compris les infections de la peau, des organes génitaux et du système digestif.
L'acide caprylique agit pour inhiber la virulence ou le pouvoir infectieux de Candida.

Il le fait par plusieurs mécanismes différents :
*Candida peut passer de sa forme de levure standard à la forme hyphale, qui est beaucoup plus capable de provoquer des infections.
*L'acide caprylique interfère avec la morphogenèse, qui est le nom de ce processus.
*Candida peut adhérer aux surfaces de votre corps, ce qui augmente son pouvoir infectieux.
*L'acide caprylique affecte les propriétés d'adhésion de Candida.

L'acide caprylique combat les biofilms.
Un biofilm est une colonie de microbes qui exsudent une matière collante qui forme une matrice ou une grille.

Cette vilaine couche sur vos dents le matin ?
C'est un exemple de biofilm.
On estime que près de 70 % de toutes les infections nécessitant un traitement sont dues à la formation de biofilm.

Ils peuvent se former sur un dispositif médical, un organe ou sur un tissu superficiel. L'acide caprylique est une petite molécule.
L'acide caprylique n'est pas chargé électriquement, ce qui signifie qu'il est attiré par d'autres molécules lipidiques et capable de perturber et de pénétrer le biofilm et les membranes cellulaires microbiennes.
En fin de compte, cela affecte la capacité de Candida à provoquer des maladies.

L'acide caprylique crée un environnement plus difficile pour le Candida pathogène invasif.
De plus, l'acide caprylique favorise un environnement sain pour les probiotiques ou bactéries amicales qui soutiennent un microbiome équilibré.
Un microbiome intestinal sain signifie une meilleure santé dans tout votre corps.


*SANTÉ INTESTINALE :
L'acide caprylique est un supplément qui peut favoriser la santé intestinale même si vous n'avez pas de candidose.
Est-ce un probiotique ?
Et bien non.
L'acide caprylique n'est pas un probiotique, mais il peut aider à soutenir la santé de votre système digestif grâce à ses effets anti-inflammatoires et antifongiques.

La colite ulcéreuse et la maladie de Crohn sont des types de maladies inflammatoires de l'intestin qui peuvent survenir dans différentes parties du système digestif.
L'inflammation entraîne des douleurs, une diarrhée intense, des ballonnements, des saignements, une léthargie, une faiblesse, une perte de poids et une malnutrition.
Il peut même progresser dans les couches sous-jacentes de l’intestin, ce qui peut entraîner des complications mortelles.

Un tissu recouvert de mucus appelé épithélium tapisse votre système digestif.
Il agit pour défendre votre intestin contre les toxines et les micro-organismes potentiellement dangereux.
Les personnes souffrant de problèmes inflammatoires dans leur système digestif perdent cette barrière saine recouverte de mucus et, lorsqu'elles sont stimulées, les cellules épithéliales commencent à sécréter de l'interleukine 8 et d'autres protéines qui provoquent l'inflammation.

Il a été démontré que l'acide caprylique aide à traiter la maladie de Crohn en empêchant les tissus de libérer de l'interleukine 8 et en réduisant ainsi l'inflammation de l'intestin.
Le traitement avec les MCFA a entraîné une réduction des symptômes de la maladie de Crohn


*INFECTIONS CUTANÉES ET ACNÉ :
Votre microbiome cutané est constitué de bactéries, de levures et de champignons généralement inoffensifs.
Cependant, si votre système immunitaire est affaibli et que ce microbiome est déséquilibré, il peut parfois provoquer des infections et des problèmes de peau.

Dermatophilus congolensis est une bactérie à Gram positif qui peut provoquer une affection cutanée grave et irritante appelée dermatophilose, non seulement chez les humains, mais également chez les animaux sauvages et d'élevage.
Le résultat de cette infection est des croûtes et des pustules qui peuvent être difficiles à éliminer.
L'acide caprylique s'est révélé très prometteur comme traitement pour cette maladie.


*PERTE DE POIDS:
Des études ont montré que l’acide caprylique peut vous aider à brûler les calories excédentaires, ce qui entraîne une perte de poids.
Le foie décompose ou oxyde facilement les MCFA tels que l’acide caprylique.
Ce taux d’oxydation plus rapide entraîne un taux de dépense énergétique plus élevé.
Vous brûlez des calories plus rapidement si vous ajoutez de l’acide caprylique à votre alimentation et vous déposerez moins de graisse.

Il est prouvé que l’acide caprylique aide au contrôle du poids.
D'autres études examinent le potentiel de l'acide caprylique comme traitement pour les patients obèses.
En plus d'augmenter la dépense énergétique et d'influencer le dépôt de graisse, l'acide caprylique améliore la satiété.
Cela signifie que l’acide caprylique vous rassasie plus longtemps, vous mangez donc naturellement moins et consommez moins de calories.

En 2016, des chercheurs ont utilisé de la glace contenant soit de l'huile de tournesol, soit de l'acide caprylique sous forme d'huile de coco, pour déterminer l'effet sur la satiété.
Avant de manger un repas, les participants ont reçu une glace contenant différents niveaux d’huile de tournesol ou d’huile de coco.
Les personnes qui ont mangé de la glace à la noix de coco ont consommé beaucoup moins de calories pendant leur repas.


*DIABÈTE:
Une étude menée en Chine a montré que l'acide caprylique, lorsqu'il est mélangé à d'autres huiles pour former de l'huile MCT, pourrait être utile dans la gestion du diabète.
Les participants atteints de diabète de type 2 présentaient des taux de sucre dans le sang plus faibles en raison d’une sensibilité accrue à l’insuline.
Ils ont également perdu du poids et diminué leur tour de taille.


*ÉPILEPSIE:
Des recherches ont montré qu'un régime cétogène associé à une supplémentation en acide caprylique peut aider à contrôler les crises qui sont une caractéristique désagréable de l'épilepsie.
Les régimes cétogènes sont riches en graisses et pauvres en glucides.
Le foie décompose cette graisse en cétones que le corps utilise ensuite comme carburant ; cet état métabolique est appelé cétose.

Des études ont combiné un régime cétogène avec de l'acide caprylique, ce qui a réduit le nombre de crises ou la gravité des crises ressenties par une personne épileptique.
L'acide caprylique a des propriétés anticonvulsivantes.


*MALNUTRITION CHRONIQUE :
Les médecins utilisent l'acide caprylique comme source d'énergie chez les patients souffrant de malnutrition chronique, car il est facilement absorbé et digéré.
L'acide caprylique est idéal pour les patients souffrant de troubles tels que la diarrhée chronique, la stéatorrhée (une affection qui affecte la digestion des graisses), ceux qui subissent des interventions chirurgicales à l'estomac et à l'intestin et d'autres affections qui affectent l'absorption des nutriments.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE CAPRYLIQUE :
Formule chimique : C8H16O2
Masse molaire : 144,214 g/mol
Aspect : Liquide huileux incolore
Odeur : Légère, fruitée-acide
Densité : 0,910 g/cm3
Point de fusion : 16,7 °C (62,1 °F ; 289,8 K)
Point d'ébullition : 239,7 °C (463,5 °F ; 512,8 K)
Solubilité dans l'eau : 0,068 g/100 mL
Solubilité : Soluble dans l'alcool, le chloroforme, l'éther, le CS2, l'éther de pétrole, l'acétonitrile
log P : 3,05
Pression de vapeur : 0,25 Pa
Acidité (pKa) : 4,89
1,055 (2,06-2,63 K), 1,53 (−191 °C)
Susceptibilité magnétique (χ) : −101,60•10−6 cm3/mol
Indice de réfraction (nD) : 1,4285
Thermochimie:
Capacité thermique (C) : 297,9 J/K•mol
Enthalpie standard de formation (ΔfH ⦵ 298) : −636 kJ/mol
Poids moléculaire : 144,21 g/mol
XLogP3 : 3
Nombre de donneurs de liaisons hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 6
Masse exacte : 144,115029749 g/mol
Masse monoisotopique : 144,115029749 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 10
Frais formels : 0
Complexité : 89,3

Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Formule : C8H16O2
InChI : InChI=1S/C8H16O2/c1-2-3-4-5-6-7-8(9)10/h2-7H2,1H3,(H,9,10)
Clé InChI : WWZKQHOCKIZLMA-UHFFFAOYSA-N
Poids moléculaire : 144,2114
Masse exacte : 144.115029756
SOURIRES : CCCCCCCC(O)=O
Numéro CAS : 124-07-2
Numéro d'index CE : 607-708-00-4
Numéro CE : 204-677-5
Formule de Hill : C₈H₁₆O₂
Formule chimique : CH₃(CH₂)₆COOH
Masse molaire : 144,21 g/mol
Code SH : 2915 90 70
Couleur: Incolore
Densité : 0,91g/cm3 à 20°C
Plage de pourcentage de test : > 99,5 %
Poids de la formule : 144,2
Forme physique : Liquide
Nom chimique ou matériau : Acide caprylique
Point d'ébullition : 237 °C (1013 hPa)
Densité : 0,91 g/cm3 (20 °C)
Limite d'explosion : 1 % (V)
Point d'éclair : >110 °C
Température d'inflammation : >300 °C
Point de fusion : 16,0 - 16,5 °C
Valeur pH : 4 (0,2 g/l, H₂O, 20 °C)
Pression de vapeur : 0,49 Pa (25 °C)
Solubilité : 0,68 g/l

État physique : liquide clair et visqueux
Couleur : jaune clair
Odeur : faible
Point de fusion/point de congélation
Point/plage de fusion : 15 - 17 °C - allumé.
Point d'ébullition initial et plage d'ébullition : 237 °C - allumé.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d’inflammabilité ou d’explosivité :
Limite d'explosivité inférieure : 1 %(V)
Point d'éclair : > 110 °C - coupelle fermée
Température d'auto-inflammation : > 300 °C à 1,013 hPa
Température de décomposition:
Pas de données disponibles
pH : 3,5 à 0,5 g/l
Viscosité
Viscosité cinématique : 6,6 mm2/s à 20 °C, 1144,08 mm2/s à 40 °C
Viscosité dynamique: 6 mPa.s à 20 °C5,8 mPa.s à 20 °C
Solubilité dans l'eau 0,68 g/l à 20 °C
Coefficient de partage : n-octanol/eau :
log Pow: 3,05 - Aucune bioaccumulation n'est attendue.
Pression de vapeur 13 hPa à 124 °C
Densité 0,91 g/cm3 à 25 °C - lit.
Densité relative 0,91 à 20 °C
Densité de vapeur relative : 4,98 - (Air = 1,0)
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité :
Tension superficielle : 33,7 mN/m à 0,6g/l à 23 °C
Constante de dissociation : 5,23 - 5,3 à 20 °C
Densité de vapeur relative : 4,98 - (Air = 1,0)



PREMIERS SECOURS DE L'ACIDE CAPRYLIQUE :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime.
Appelez immédiatement un médecin.
N'essayez pas de neutraliser.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE DE L'ACIDE CAPRYLIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE CAPRYLIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE CAPRYLIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,4 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : chloroprène
Épaisseur minimale de la couche : 0,65 mm
Temps de percée : 30 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A-(P2)
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE CAPRYLIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.



STABILITÉ et RÉACTIVITÉ de l'ACIDE CAPRYLIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
Acide octanoïque
Acide 1-heptanecarboxylique
Acide octylique
Acide octoïque
C8:0 (indices lipidiques)
acide octanoïque
acide caprylique
124-07-2
acide n-octanoïque
Acide octylique
acide n-caprylique
acide octoïque
acide n-octylique
Acide n-octoïque
acide 1-heptanecarboxylique
Acide énantique
Acide octique
Acide C-8
Caprylsaeure
FEMA n° 2799
Kaprylsaeure
Hexacide 898
Acide octanoïque
Acide octanoïque
acide 1-octanoïque
Acidum octanocium
Kyselina Kaprylova
capryloate
C8:0
octylate
Octansaure
NSC 5024
NSC-5024
ACIDE OCTANOÏQUE (ACIDE CAPRYLIQUE)
Kortacide-0899
CHEBI:28837
Émeri 657
Prifac 2901
Prifac-2901
Lunac 8-95
ÉDENOR C 8-98-100
Acide caprylique-8-13C
Acide octanoïque-7-13C
MFCD00004429
CH3-[CH2]6-COOH
OBL58JN025
DTXSID3021645
NSC5024
n-caprylate
n-octoate
n-octylate
Acide caprylique (NF)
NCGC00090957-01
Acide octanoïque (USAN)
acide 0ctanoïque
1-heptanecarboxylate
ACIDE CAPRYLIQUE [NF]
ACIDE OCTANOÏQUE [USAN]
287111-08-4
68937-74-6
DTXCID501645
Acide caprylique (naturel)
Acide octanoique [anglais]
Acido octanoico [espagnol]
Acidum octanocium [latin]
Kyselina Kaprylova [tchèque]
Acide octanoïque [USAN:INN]
287111-23-3
CAS-124-07-2
Acide C8
CCRIS 4689
HSDB 821
287111-06-2
EINECS204-677-5
BRN1747180
UNII-OBL58JN025
acide caprylique
acide n-octanoïque
acide octanique
AI3-04162
acide octanoïque
Kortacide 0899
acide n-heptanecarboxylique
Acide octanoïque, ?99 %
Lunac 8-98
Acide heptane-1-carboxylique
Acide octanoïque, >=98 %
Acide octanoïque, >=99 %
bmse000502
CE 204-677-5
ACIDE CAPRYLIQUE [MI]
ACIDE OCTANOÏQUE [II]
SCHEMBL3933
WLN : QV7
NCIOpen2_002902
NCIOpen2_009358
Acide octanoïque (USAN/DCI)
ACIDE OCTANOÏQUE [DCI]
ACIDE CAPRYLIQUE [INCI]
ACIDE OCTANOÏQUE [FHFI]
ACIDE OCTANOÏQUE [HSDB]
4-02-00-00982 (référence du manuel Beilstein)
MLS002415762
Acide octanoïque, >=96,0 %
acide caprylique (acide octanoïque)
ACIDE CAPRYLIQUE [VANDF]
IS_D15-ACIDE OCTANOÏQUE
ACIDE OCTANOÏQUE [MART.]
CHEMBL324846
GTPL4585
Acide octanoïque, >=98%, FG
QSPL 011
QSPL184
ACIDE CAPRYLIQUE [USP-RS]
ACIDE OCTANOÏQUE [QUI-DD]
HMS2270A23
Acide octanoïque, étalon analytique
ACIDE CAPRYLIQUE [IMPURETÉ EP]
STR10050
Tox21_111045
Tox21_201279
Tox21_300345
BDBM50485608
ACIDE CAPRYLIQUE [MONOGRAPHIE EP]
FA 8:0
LMFA01010008
s6296
STL282742
AKOS000118802
Acide octanoïque, naturel, >=98%, FG
DB04519
FA(8:0)
Acide octanoïque, pour synthèse, 99,5%
NCGC00090957-02
NCGC00090957-03
NCGC00090957-04
NCGC00090957-05
NCGC00254446-01
NCGC00258831-01
BP-27909
HY-41417
SMR001252279
CS-0016549
FT-0660765
O0027
EN300-21305
C06423
D05220
Q409564
SR-01000865607
J-005040
SR-01000865607-2
BRD-K35170555-001-07-9
Z104495238
ACIDE CAPRYLIQUE (CONSTITUANT DU PALMIER NAIN) [DSC]
Acide octanoïque, matériau de référence certifié, TraceCERT(R)
43FDA9D7-2300-41E7-A373-A34F25B81553
Acide caprylique, étalon de référence de la Pharmacopée européenne (EP)
Acide caprylique, étalon de référence de la Pharmacopée des États-Unis (USP)
Acide caprylique (acide octanoïque), étalon secondaire pharmaceutique ; Matériel de référence certifié
Acide caprique
Acide caproïque
L'acide laurique
MCT
Triglycérides à chaîne moyenne
Octanoate
Acide octanoïque
Tricapryline
acide 0ctanoïque
1-heptanecarboxylate
Acide 1-heptanecarboxylique
acide 1-octanoïque
8-[(1R,2R)-3-Oxo-2-{(Z)-pent-2-ényl}cyclopentyl]octanoate
Acide octanoïque
Acide octanoïque
Acidum octanocium
Acide C-8
C8:0
Caprylate
Acide caprylique
capryloate
Caprylsaeure
CH3-[CH2]6-COOH
Acide énantique
Acide heptane-1-carboxylique
Kaprylsaeure
Kyselina Kaprylova
n-Caprylate
Acide n-caprylique
n-Octanoate
Acide n-octanoïque
n-Octoate
Acide n-octoïque
n-octylate
Acide n-octylique
octanoate
Acide octanoïque
acide octanoïque, ion(1-)
Octansaure
Acide octique
acide octoïque
Octylate
acide octylique
8h00
Acidum octanoïque
ACIDE OCTANOÏQUE (ACIDE CAPRYLIQUE)
OCTANOate (caprylate)
Octoate
Émeri 657
Kortacide 0899
Lunac 8-95
Lunac 8-98
Néo-gras 8
Néo-gras 8S
Prifac 2901
Acide caprylique, sel de cadmium
Acide caprylique, sel de césium
Acide caprylique, sel de manganèse
Acide caprylique, sel de nickel(+2)
Acide caprylique, sel de zinc
Acide caprylique, sel d'aluminium
Acide caprylique, sel de baryum
Acide caprylique, sel de chrome(+2)
Acide caprylique, sel de plomb(+2)
Acide caprylique, sel de potassium
Acide caprylique, sel d'étain(+2)
Octanoate de sodium
Acide caprylique, marqué au 14C
Acide caprylique, sel de lithium
Acide caprylique, sel de ruthénium(+3)
Acide caprylique, sel de sodium
Acide caprylique, sel de sodium, marqué au 11C
Acide caprylique, sel d'étain
Acide caprylique, sel de zirconium
Caprylate de sodium
Acide caprylique, sel d'ammoniaque
Acide caprylique, sel de calcium
Acide caprylique, sel de cobalt
Acide caprylique, sel de cuivre
Acide caprylique, sel de cuivre(+2)
Acide caprylique, sel d'iridum(+3)
Acide caprylique, sel de fer(+3)
Acide caprylique, sel de lanthane(+3)
Acide caprylique, sel de zirconium(+4)
FA(8:0)
Octanoate de lithium



ACIDE CAPRYLIQUE
L'acide caprylique est également connu sous le nom systématique d'acide octanoïque ou acide C8
L'acide caprylique est un acide gras saturé, acide gras à chaîne moyenne (MCFA).
L'acide caprylique a la formule structurale H3C−(CH2)6−COOH


NUMÉRO CAS : 124-07-2

NUMÉRO CE : 204-677-5

FORMULE MOLÉCULAIRE : C8H16O2

POIDS MOLÉCULAIRE : 144,21 g/mol

NOM IUPAC : acide octanoïque


L'acide caprylique est un liquide huileux incolore
L'acide caprylique est peu soluble dans l'eau

L'acide caprylique a une odeur et un goût rance légèrement désagréables.
Les sels et les esters de l'acide caprylique sont appelés octanoates ou caprylates.

L'acide caprylique est un produit chimique industriel courant, qui est produit par oxydation de l'aldéhyde C8.
Les composés de l'acide caprylique se trouvent naturellement dans le lait de divers mammifères et en tant que constituant mineur de l'huile de noix de coco et de l'huile de palmiste.


LES USAGES:
L'acide caprylique est utilisé commercialement dans la production d'esters
L'acide caprylique est utilisé en parfumerie

Acide caprylique également utilisé dans la fabrication de colorants.
L'acide caprylique est un pesticide antimicrobien utilisé comme désinfectant pour les surfaces en contact avec les aliments dans les établissements commerciaux de manipulation des aliments sur les équipements laitiers, les équipements de transformation des aliments, les brasseries, les établissements vinicoles et les usines de transformation des boissons.

L'acide caprylique est utilisé comme désinfectant dans :
-établissements de santé
-écoles/collèges
- soins aux animaux/installations vétérinaires
-installations industrielles
-Immeubles de bureaux
-installations récréatives
-établissements de vente au détail et en gros
-locaux d'élevage
-Restaurants
-hôtels/motels

De plus, l'acide caprylique est utilisé comme algicide, bactéricide, fongicide et herbicide dans les pépinières, les serres, les jardineries et les intérieurs, ainsi que sur l'ornementation.
Les produits contenant de l'acide caprylique sont formulés sous forme de concentrés/liquides solubles et de liquides prêts à l'emploi.

L'acide caprylique joue un rôle important dans la régulation de l'apport et de la production d'énergie par l'organisme, une fonction qui est assurée par l'hormone ghréline.
Le chlorure d'acyle de l'acide caprylique est utilisé dans la synthèse de l'acide perfluorooctanoïque

Usages diététiques :
L'acide caprylique est pris comme complément alimentaire.
Dans le corps, l'acide caprylique se trouverait sous forme d'octanoate ou d'acide caprylique non protoné.

Les triglycérides à chaîne moyenne (TCM) peuvent contribuer au processus de combustion excessive des calories, et donc à la perte de poids
En outre, les athlètes d'endurance et la communauté du culturisme ont manifesté leur intérêt pour les MCT, mais les MCT ne se sont pas avérés bénéfiques pour améliorer les performances physiques.

Utilisations médicales :
L'acide caprylique a été étudié dans le cadre d'un régime cétogène pour traiter les enfants souffrant d'épilepsie réfractaire.
L'acide caprylique fait actuellement l'objet de recherches en tant que traitement du tremblement essentiel

L'acide caprylique (acide octanoïque) est un acide gras à chaîne moyenne que l'on trouve naturellement dans l'huile de palme, l'huile de noix de coco et le lait des humains et de certains animaux.
L'acide caprylique fait partie des produits à base de triglycérides à chaîne moyenne (MCT). Il pourrait avoir des effets anti-inflammatoires.

L'acide caprylique est un acide gras à chaîne moyenne qui aurait de puissantes propriétés antibactériennes, antifongiques et anti-inflammatoires.
Ces propriétés peuvent faire de l'acide caprylique un remède utile pour de nombreuses affections.

L'acide caprylique est également utilisé dans le cadre d'un régime cétogène pour traiter les enfants souffrant d'épilepsie réfractaire.
L'acide caprylique agit également comme antioxydant pour la peau et stimule également les antioxydants dans les produits pour la peau.

L'acide caprylique est également utilisé sous la forme d'un pesticide antimicrobien pour la désinfection des surfaces dans l'industrie alimentaire et laitière.
L'acide caprylique est utilisé comme désinfectant dans certains secteurs et services de santé.

L'acide caprylique a une texture huileuse, c'est pourquoi il est utilisé dans de nombreux produits cosmétiques qui nécessitent une glissance, une facilité d'étalement et une douceur après le toucher.
L'acide caprylique est un type d'acide gras saturé bénéfique qui possède des propriétés antibactériennes, antivirales, antifongiques et anti-inflammatoires

L'acide caprylique, également connu sous le nom d'acide octanoïque en raison de ses 8 atomes de carbone, est un acide gras saturé à chaîne moyenne.
L'acide caprylique est bénéfique pour la santé, notamment en raison de sa capacité à traverser les membranes cellulaires et à faciliter l'absorption des antioxydants.

L'acide caprylique est naturellement présent dans le lait maternel, mais aussi dans la noix de coco.
L'acide caprylique a des propriétés antifongiques et antibactériennes

L'acide caprylique se présente sous la forme d'un liquide incolore à jaune clair
L'acide caprylique a une légère odeur

L'acide caprylique est corrosif pour les métaux et les tissus.
L'acide caprylique est un acide gras saturé à chaîne droite qui est l'heptane dans lequel l'un des hydrogènes d'un groupe méthyle terminal a été remplacé par un groupe carboxy.

L'acide caprylique est également connu sous le nom d'acide octanoïque.
L'acide caprylique a un rôle d'agent antibactérien

L'acide caprylique a également un rôle en tant que métabolite humain et métabolite d'Escherichia coli.
L'acide caprylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.


PROPRIÉTÉS PHYSIQUES:

-Poids moléculaire : 144,21 g/mol

-XLogP3 : 3

-Masse exacte : 144,115029749 g/mol

-Masse monoisotopique : 144.115029749 g/mol

-Surface polaire topologique : 37,3 Å²

-Description physique : Liquide incolore à jaune clair avec une légère odeur

-Couleur : Incolore

-Forme : Liquide huileux

-Odeur: Légère odeur fruitée-acide

-Goût: Goût rance légèrement désagréable

-Point d'ébullition : 239 °C

-Point de fusion : 16,3 °C

-Point d'éclair : 270 °F

-Solubilité : 789 mg/L

-Densité : 0,91

-Pression de vapeur : 0,00371 mmHg

-Viscosité : 5,74 mPa.sec

-Tension superficielle : 23,7 dyn/cm

-Indice de réfraction : 1,4285


L'acide caprylique est un acide conjugué d'un octanoate.
L'acide caprylique est un acide gras à chaîne à huit carbones, également appelé systématiquement acide octanoïque.

L'acide caprylique se trouve naturellement dans les noix de coco et le lait maternel.
L'acide caprylique est un liquide huileux avec une odeur de rance légèrement désagréable
L'acide caprylique est peu soluble dans l'eau.


PROPRIÉTÉS CHIMIQUES:

-Nombre de donneurs d'obligations hydrogène : 1

-Nombre d'accepteurs de liaison hydrogène : 2

-Nombre d'obligations rotatives : 6

- Nombre d'atomes lourds : 10

-Charge formelle : 0

-Complexité : 89,3

-Nombre d'atomes isotopiques : 0

-Nombre de stéréocentres atomiques définis : 0

-Nombre de stéréocentres d'atomes non définis : 0

-Nombre de stéréocentres de liaison définis : 0

-Nombre de stéréocentres de liaison indéfinis : 0

- Nombre d'unités liées par covalence : 1

-Le composé est canonisé : oui

-Classes chimiques : Autres classes -> Acides organiques


Acide caprylique, également connu sous le nom de C8
L'acide caprylique est un puissant triglycéride à chaîne moyenne présent dans l'huile de noix de coco

Acide caprylique, également connu sous le nom d'acide octanoïque
L'acide caprylique est un triglycéride naturel à chaîne moyenne (acide gras).

L'acide caprylique est naturellement présent dans les produits laitiers et plusieurs huiles, comme la noix de coco.
L'acide caprylique est un triglycéride à chaîne moyenne (acide gras) facilement absorbé et métabolisé.
L'acide caprylique se trouve naturellement dans les produits laitiers et d'autres sources, par exemple le beurre et l'huile de palme

Avantages et fonctionnalités :
* L'acide caprylique favorise un environnement favorable à la microflore bénéfique
* L'acide caprylique fournit une libération progressive, de l'acide caprylique tamponné
* Acide caprylique fabriqué avec des ingrédients végétaliens de haute qualité soutenus par une science vérifiable

L'acide caprylique a une odeur légèrement désagréable
L'acide caprylique a un goût brûlant et rance.

L'acide caprylique est également signalé comme ayant une légère odeur fruitée et acide et un goût légèrement acide.
En tant que composé à huit carbones, l'acide caprylique fait partie des acides gras considérés comme ayant une chaîne courte ou moyenne.

L'acide caprylique, CH3(CH2)6COOH est également connu sous le nom d'acide hexylacétique, d'acide n-octanoïque, d'acide octylie et d'acide octique.
L'acide caprylique est un liquide incolore et huileux ayant une odeur légèrement désagréable et un goût brûlant et rance.

L'acide caprylique n'est que légèrement soluble dans l'eau (68 mg par 100 mL à 20 °C).
L'acide caprylique est un composant naturel des huiles de coco et de noix de palme et de la graisse de beurre.

L'acide caprylique est utilisé dans la fabrication de médicaments et de colorants.
L'acide caprylique est un agent aromatisant considéré comme un acide gras à chaîne courte ou moyenne.

L'acide caprylique est présent normalement dans divers aliments
L'acide caprylique est préparé commercialement par oxydation du n-octanol ou par fermentation et distillation fractionnée des acides gras volatils présents.

L'acide caprylique est un acide gras saturé à chaîne droite qui est l'heptane dans lequel l'un des hydrogènes d'un groupe méthyle terminal a été remplacé par un groupe carboxy.
L'acide caprylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne. L'acide caprylique est un acide conjugué d'un octanoate.

L'acide caprylique est largement appliqué dans divers domaines
L'acide caprylique est un pesticide antimicrobien

L'acide caprylique est utilisé comme désinfectant pour les surfaces en contact avec les aliments dans les établissements commerciaux de manipulation des aliments sur les équipements laitiers, les équipements de transformation des aliments, les brasseries, les établissements vinicoles et les usines de transformation des boissons.
De plus, l'acide caprylique est utilisé comme algicide, bactéricide et fongicide dans les pépinières, les serres, les jardineries et les aménagements intérieurs sur les plantes ornementales.

L'acide caprylique est utilisé commercialement dans la production d'esters utilisés en parfumerie et également dans la fabrication de colorants.
L'acide caprylique est produit par fermentation et distillation fractionnée des acides gras volatils présents dans l'huile de coco.
L'acide caprylique se présente sous la forme d'un liquide incolore à jaune clair avec une légère odeur.


SYNONYMES :

acide octanoïque
acide caprylique
124-07-2
acide n-octanoïque
Acide octylique
acide n-caprylique
acide octoïque
acide n-octylique
Acide n-octoïque
acide 1-heptanecarboxylique
Acide énantique
Acide octique
Acide C-8
Kaprylsaure
Hexacide 898
Acide octanoïque
Acide octanoique
Acide 1-octanoïque
Acidum octocium
Kyselina Kaprylova
capryloate
C8:0
octyler
Octansaeure
NSC 5024
NSC-5024
ACIDE OCTANOÏQUE (ACIDE CAPRYLIQUE)
Kortacid-0899
CHEBI:28837
Émeri 657
Prifac 2901
Prifac-2901
Lunac 8-95
EDÉNOR C 8-98-100
Acide caprylique-8-13C
Acide octanoïque-7-13C
CH3-[CH2]6-COOH
OBL58JN025
Caprylsaure
DTXSID3021645
NSC5024
n-caprylate
n-octoate
n-octylate
Acide caprylique
NCGC00090957-01
Acide octanoïque
acide 0ctanoïque
1-heptanecarboxylate
ACIDE CAPRYLIQUE
ACIDE OCTANOÏQUE
68937-74-6
DTXCID501645
Acide caprylique (naturel)
Acidum octocium
Kyselina Kaprylova
Acide octanoïque
287111-06-2
CAS-124-07-2
Acide C8
acide caprylique
acide n-octanoïque
acide octanique
AI3-04162
acidum octanoïque
Cuivre sous forme d'octanoate
Kortacid 0899
CapryliqueAcide 657
acide n-heptanecarboxylique
Lunac 8-98
Acide heptane-1-carboxylique
Mélange d'acide caprylique/caprique
EC 204-677-5
Acide octanoïque-2-[13C]
ACIDE CAPRYLIQUE [USP-RS]
ACIDE OCTANOÏQUE [WHO-DD]
Acide octanoïque-1,2-[13C2]
Acide octanoïque-7,8-[13C2]
NCGC00090957-02
NCGC00090957-03
NCGC00090957-04
NCGC00090957-05
NCGC00254446-01
NCGC00258831-01
BP-27909
HY-41417
SMR001252279
CS-0016549
FT-0660765
O0027
EN300-21305
C06423
D05220
Q409564
SR-01000865607
J-005040
SR-01000865607-2
BRD-K35170555-001-07-9
Z104495238
Acide octanoïque
Acide caprylique (acide octanoïque)
ACIDE N-OCTANOÏQUE

ACIDE CAPRYLIQUE CAPRIQUE
DESCRIPTION:
L'acide caprylique caprique, également connu sous le nom systématique d'acide octanoïque ou acide C8, est un acide gras saturé, acide gras à chaîne moyenne (MCFA).
L'acide caprylique caprique a la formule structurelle H3C−(CH2)6−COOH et est un liquide huileux incolore qui est peu soluble dans l'eau avec une odeur et un goût de rance légèrement désagréables.
Les sels et esters de l’acide octanoïque sont appelés octanoates ou caprylates.

N° CAS : 68937-75-7
Numéro CE : 273-086-2


L'acide caprylique/caprique est un mélange d'acide gras saturé à chaîne moyenne utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.

L'acide caprylique caprique, également connu sous le nom d'acide décanoïque ou d'acide décylique, est un acide gras saturé, un acide gras à chaîne moyenne (MCFA) et un acide carboxylique.
Sa formule est CH3(CH2)8COOH.
Les sels et esters de l’acide décanoïque sont appelés caprates ou décanoates.
Le terme acide caprylique caprique est dérivé du latin « câpre / capra » (chèvre), car l'odeur moite et désagréable du composé rappelle celle des chèvres.

L'acide caprylique caprique est un produit chimique industriel courant, produit par oxydation de l'aldéhyde C8.
Ses composés se trouvent naturellement dans le lait de divers mammifères et comme constituant mineur de l’huile de coco et de l’huile de palmiste.

Deux autres acides portent le nom des chèvres via le mot latin capra : l'acide caproïque (C6) et l'acide caprique (C10).
Ensemble, ces trois acides gras représentent 15 % des acides gras contenus dans la matière grasse du lait de chèvre.


L'acide caprylique caprique est un mélange d'acides gras octanoïques et décanoïques à chaîne courte entièrement fabriqués à partir de sources d'huile végétale.
L'acide caprylique caprique contient généralement entre 53 pour cent et 63 pour cent de C8 et entre 36 pour cent et 47 pour cent de C10.
L'acide caprylique caprique est utile pour de nombreux processus industriels et est expédié sous forme de liquide jaune clair dans des fûts ou des isotanks pratiques.

Alors que les acides caprylique et caprique conventionnels peuvent être obtenus à partir de sources animales et végétales, Acme-Hardesty est le seul fabricant à proposer un produit totalement sans animaux.
En tant que leader des produits oléochimiques industriels depuis plus de 70 ans, vous pouvez compter sur nous pour fournir des produits exceptionnellement purs et stables pour presque toutes les applications.

L'acide caprylique caprique est un acide gras à chaîne moyenne que l'on trouve naturellement dans l'huile de palme, l'huile de coco et le lait des humains et de certains animaux.
L'acide caprylique caprique fait partie des produits triglycérides à chaîne moyenne (MCT).
L'acide caprylique caprique pourrait avoir des effets anti-inflammatoires.

L'acide caprylique-caprique est obtenu par fractionnement d'une huile de type laurique.
Le produit obtenu présente un point de fusion d'environ 7°C.
Sous forme liquide, l’acide caprylique caprique est presque incolore et possède une odeur caractéristique.
L'acide caprylique caprique est également connu sous le nom de MCT (triglycéride à chaîne moyenne).

L'acide caprylique caprique a une composition presque égale d'acides caprylique et caprique.
Les acides gras fractionnés sont principalement utilisés dans la fabrication de : Amines, esters, alcools gras, peroxydes, parfums, arômes, finition de surface, lubrifiants, savons métalliques, cosmétiques, aliments pour animaux, produits chimiques, papier, plastiques, détergents, produits chimiques, résines et revêtements. .



L'acide caprylique-caprique est un mélange d'acides gras dérivés d'huiles végétales et végétales.
L'acide caprylique-caprique est un produit oléochimique polyvalent, couramment utilisé comme intermédiaire pour les triglycérides à chaîne moyenne, la fabrication de triglycérides caprylique-caprique, les esters de glycérol, les esters de polyol, les solubilisants pour l'huile minérale, les inhibiteurs de corrosion, etc.
Les applications incluent les cosmétiques, les soins personnels, les aliments et les arômes, les lubrifiants, les fluides de travail des métaux, les produits pharmaceutiques, les textiles, le papier, la polymérisation en émulsion, les peintures, la protection des cultures, le brassage.


UTILISATIONS DE L'ACIDE CAPRYLIQUE CAPRIQUE :
L'acide caprylique caprique est utilisé commercialement dans la production d'esters utilisés en parfumerie ainsi que dans la fabrication de colorants.

L'acide caprylique caprique est un pesticide antimicrobien utilisé comme désinfectant pour les surfaces en contact avec les aliments dans les établissements commerciaux de manipulation des aliments sur les équipements laitiers, les équipements de transformation des aliments, les brasseries, les établissements vinicoles et les usines de transformation des boissons.
L'acide caprylique caprique est également utilisé comme désinfectant dans les établissements de santé et les lieux publics.
De plus, l'acide caprylique caprique est utilisé comme algicide, bactéricide, fongicide et herbicide dans les pépinières, les serres, les jardineries, les intérieurs et sur l'ornementation.
Les produits contenant de l'acide caprylique caprique sont formulés sous forme de concentrés/liquides solubles et de liquides prêts à l'emploi.

L'acide caprylique caprique joue un rôle important dans la régulation de l'apport et de la production d'énergie du corps, une fonction qui est assurée par l'hormone ghréline.
La sensation de faim est un signal indiquant que le corps a besoin d’un apport d’énergie sous forme de consommation alimentaire.

La ghréline stimule la faim en déclenchant des récepteurs dans l'hypothalamus.
Afin d'activer ces récepteurs, la ghréline doit subir un processus appelé acylation dans lequel elle acquiert un groupe acyle, et l'acide caprylique le fournit en se liant à un site sérine spécifique sur les molécules de ghréline.
D’autres acides gras placés dans la même position ont des effets similaires sur la faim.
Le chlorure d'acyle de l'acide caprylique est utilisé dans la synthèse de l'acide perfluorooctanoïque.


UTILISATIONS ALIMENTAIRES DE L'ACIDE CAPRYLIQUE CAPRIQUE :
L'acide caprylique caprique est pris comme complément alimentaire.
Dans le corps, l’acide caprylique caprique se trouverait sous forme d’octanoate ou d’acide caprylique non protoné.

Certaines études ont montré que les triglycérides à chaîne moyenne (TCM) peuvent contribuer au processus de combustion excessive de calories et donc à la perte de poids ; cependant, un examen systématique des données probantes a conclu que les résultats globaux ne sont pas concluants.
En outre, les athlètes d'endurance et la communauté du culturisme ont manifesté de l'intérêt pour les MCT, mais ils ne se sont pas révélés bénéfiques pour améliorer les performances physiques.


UTILISATIONS MÉDICALES DE L'ACIDE CAPRYLIQUE CAPRIQUE :
L'acide caprylique caprique a été étudié dans le cadre d'un régime cétogène pour traiter les enfants atteints d'épilepsie intraitable.
L'acide caprylique caprique fait actuellement l'objet de recherches comme traitement contre les tremblements essentiels.


L'acide caprylique caprique est utilisé dans la fabrication d'esters pour les arômes et parfums artificiels de fruits.
L'acide caprylique caprique est également utilisé comme intermédiaire dans les synthèses chimiques.
L'acide caprylique caprique est utilisé en synthèse organique et industriellement dans la fabrication de parfums, lubrifiants, graisses, caoutchouc, colorants, plastiques, additifs alimentaires et produits pharmaceutiques.


Médicaments:
Des promédicaments d'ester de caprate de divers produits pharmaceutiques sont disponibles.
L’acide caprique étant un acide gras, la formation d’un sel ou d’un ester avec un médicament augmentera sa lipophilie et son affinité pour le tissu adipeux.
Étant donné que la distribution d'un médicament à partir des tissus adipeux est généralement lente, on peut développer une forme injectable à action prolongée d'un médicament (appelée injection retard) en utilisant sa forme caprate.
Quelques exemples de médicaments disponibles sous forme d'ester de caprate comprennent la nandrolone (sous forme de décanoate de nandrolone), la fluphénazine (sous forme de décanoate de fluphénazine), le brompéridol (sous forme de décanoate de brompéridol) et l'halopéridol (sous forme de décanoate d'halopéridol).



L'acide caprylique/caprique est principalement utilisé dans de nombreux procédés industriels et comme additif dans certains produits.
L'acide caprylique/caprique est un intermédiaire chimique et un lubrifiant, un solubilisant pour les huiles minérales et un agent de flottation fréquemment utilisé dans l'industrie pétrolière et gazière.
L'acide caprylique/caprique est également utilisé dans la production de triglycérides à chaîne moyenne (MCT), des graisses synthétiques utilisées en médecine par les personnes incapables de tolérer d'autres types de graisses.

Lubrifiants et graisses : L'acide caprylique/caprique est utilisé dans la fabrication de lubrifiants synthétiques, de fluides hydrauliques et de lubrifiants réfrigérants. Agit comme un inhibiteur de corrosion et de rouille dans l'antigel
Aliments et saveurs : l'acide caprylique/caprique est un intermédiaire pour fabriquer les MCT (triglycérides à chaîne moyenne).
Fluides de travail des métaux : L'acide caprylique/caprique est un solubilisant pour les huiles minérales Pétrole et gaz : Aide à la flottaison









PRÉSENCE D'ACIDE CAPRYLIQUE CAPRIQUE :
L'acide caprylique caprique est présent naturellement dans l'huile de noix de coco (environ 10 %) et l'huile de palmiste (environ 4 %), sinon il est rare dans les huiles de graines typiques.
L'acide caprylique caprique se trouve dans le lait de divers mammifères et, dans une moindre mesure, dans d'autres graisses animales.

Deux autres acides portent le nom des chèvres : l'acide caproïque (un acide gras en C6:0) et l'acide caprylique (un acide gras en C8:0).
Avec l'acide caprique, ceux-ci totalisent 15 % de la matière grasse du lait de chèvre.

PRODUCTION D'ACIDE CAPRYLIQUE CAPRIQUE :
L'acide caprylique caprique peut être préparé à partir de l'oxydation de l'alcool primaire décanol en utilisant un oxydant trioxyde de chrome (CrO3) dans des conditions acides.

La neutralisation de l'acide caprylique caprique ou la saponification de ses esters de triglycérides avec de l'hydroxyde de sodium donne du caprate de sodium, CH3(CH2)8CO−2Na+.
Ce sel est un composant de certains types de savons.





INFORMATIONS DE SÉCURITÉ SUR L'ACIDE CAPRYLIQUE CAPRIQUE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du lieu de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé





PROPRIÉTÉS DE L'ACIDE CAPRYLIQUE CAPRIQUE :
Formule chimique C8H16O2
Masse molaire 144,214 g/mol
Aspect Liquide huileux incolore
Odeur Légère, fruitée-acide; irritant
Densité 0,910 g/cm3
Point de fusion 16,7 °C (62,1 °F ; 289,8 K)
Point d'ébullition 239,7 °C (463,5 °F; 512,8 K)
Solubilité dans l'eau 0,068 g/100 mL
Solubilité Soluble dans l'alcool, le chloroforme, l'éther, le CS2, l'éther de pétrole, l'acétonitrile
journal P 3.05
Pression de vapeur 0,25 Pa
Acidité (pKa)
4,89
1,055 (2,06-2,63 Ko)
1,53 (−191 °C)
Susceptibilité magnétique (χ) −101,60•10−6 cm3/mol
Indice de réfraction (nD) 1,4285
Thermochimie:
Capacité thermique (C) 297,9 J/K•mol
Enthalpie standard de formation (ΔfH ⦵ 298) −636 kJ/mol
Indice d'acide (mg KOH/g) 352-365
Indice de saponification (mg KOH/g) 354-367
Indice d'iode (% I2absorbé) 1,5 Max
Titre (oC) 7 Max
Couleur (Amour, R/Y) 3.0/25A
C6 4 maximum
C8 45-60
C10 35-50
C12 2 maximum
Autres 1 maximum
Forme du produit Liquide
MASSE MOLÉCULAIRE
144.21
APPARENCE
Liquide clair, incolore à légèrement jaune
DENSITÉ
0,87 g/cm3
ESSAI
55 % (Acide caprylique) / 42 % (Acide caprique) / 1% MAX. (Acide hexanoïque)
POINT D'ÉBULLITION
163 °C
POINT DE FUSION
3 - 6 °C
POINT D'ÉCLAIR
132 °C
ODEUR
âcre, piquant et irritant
INDICE D'ACIDE
356 - 366
COULEUR (JARDINIER)
1 MAX.
VALEUR IODE
1 MAX.
TITRE
7 °C MAXIMUM.
CLASSE
Acides gras fractionnés




ACIDE CAPRYLIQUE/CAPRIQUE (C810)

L'acide caprylique/caprique (C810) est principalement utilisé dans de nombreux procédés industriels et comme additif dans certains produits.
L'acide caprylique/caprique (C810) est un intermédiaire chimique et un lubrifiant, un solubilisant pour les huiles minérales et un agent de flottation fréquemment utilisé dans l'industrie pétrolière et gazière.
L'acide caprylique/caprique (C810) est également utilisé dans la production de triglycérides à chaîne moyenne (MCT), des graisses synthétiques utilisées en médecine par les personnes incapables de tolérer d'autres types de graisses.

CAS : 68937-75-7
FM : C9H18O2
MO : 158.23802
EINECS : 273-086-2

Synonymes
Acides gras, C8-10; Fettsuren, C8-10; Acides gras (C8-C10); Acide gras C8-C10; Caprylique caprique C8-10; Acide octocaprique; Acides gras, C8-1O

L'acide caprylique/caprique (C810) est un acide gras saturé à chaîne droite C9 qui se présente naturellement sous forme d'esters de l'huile de pélargonium.
Possède des propriétés antifongiques et est également utilisé comme herbicide ainsi que dans la préparation de plastifiants et de laques.
L'acide caprylique/caprique (C810) joue un rôle d'antifestant, de métabolite végétal, de métabolite de Daphnia magna et de métabolite d'algues.
L'acide caprylique/caprique (C810) est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide caprylique/caprique (C810) est un acide conjugué d'un nonanoate.
L'acide caprylique/caprique (C810) dérive d'un hydrure de nonane.

L'acide caprylique/caprique (C810) est obtenu à partir du fractionnement d'une huile de type laurique.
L'acide caprylique/caprique (C810) est un mélange d'acides gras dérivés d'huiles végétales et végétales.
L'acide caprylique/caprique (C810) est un produit oléochimique polyvalent, couramment utilisé comme intermédiaire pour les triglycérides à chaîne moyenne, la fabrication de triglycérides caprylique-caprique, les esters de glycérol, les esters de polyol, les solubilisants pour l'huile minérale, les inhibiteurs de corrosion, etc.
Les applications incluent les cosmétiques, les soins personnels, les aliments et les arômes, les lubrifiants, les fluides de travail des métaux, les produits pharmaceutiques, les textiles, le papier, la polymérisation en émulsion, les peintures, la protection des cultures, le brassage.
L'acide caprylique/caprique (C810) contient des acides gras en C8 (53-63 %) et en C10 (35-45 %).

L'acide caprylique/caprique (C810) est dérivé d'huiles végétales renouvelables.
L'acide caprylique/caprique (C810) peut être converti en esters d'alcool gras pour être utilisé comme plastifiants où il améliore la flexibilité à basse température des vinyles.
L'acide caprylique/caprique (C810) se mélange avec des diesters de 1,4-butanediol pour être utilisé comme plastifiant pour les résines vinyliques (par exemple PVC).
L'acide caprylique/caprique (C810) est utilisé dans la production de caprylate de méthyle, un lubrifiant utilisé dans l'industrie du plastique.
L'acide caprylique/caprique (C810) est certifié HALAL et KOSHER.
L'acide caprylique/caprique (C810) est fabriqué dans une installation certifiée GMP et HACCP.

Propriétés chimiques de l'acide caprylique/caprique (C810)
Point d'ébullition : 246℃[à 101 325 Pa]
Pression de vapeur : 1 Pa à 20 ℃
pka : 5,5 [à 20 ℃]
Solubilité dans l'eau : 205 mg/L à 20 ℃
InChI : InChI=1S/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11)
InChIKey : FBUKVWPVBMHYJY-UHFFFAOYSA-N
LogP : 3,1 à 23 ℃
Système d'enregistrement des substances de l'EPA : Acide caprylique/caprique (C810) (68937-75-7)
Sous forme liquide, l’acide caprylique/caprique (C810) est presque incolore et dégage une odeur caractéristique.

Les usages
L'acide caprylique/caprique (C810) est principalement utilisé dans la fabrication de : amines, esters, alcools gras, peroxydes, parfums, arômes, finition de surface, lubrifiants, savons métalliques, cosmétiques, aliments pour animaux, produits chimiques, papier, plastiques, détergents, produits chimiques. , résines et revêtements.
L'acide caprylique/caprique (C810) est utilisé pour une variété d'applications dans des industries telles que les lubrifiants et les graisses, les fluides pour le travail des métaux, les revêtements et les adhésifs, les cosmétiques et les soins personnels, l'alimentation et la nutrition, les produits pharmaceutiques, ainsi que les plastiques et le caoutchouc.

Activité biologique
L'acide caprylique/caprique (C810) et l'acide caprylique sont les composants alimentaires diététiques.
On constate qu'ils inhibent les facteurs de virulence tels que la morphogenèse, l'adhésion et la formation de biofilm chez la levure pathogène humaine Candida albicans.
L'étude de Jadhav a démontré que l'acide caprique et l'acide caprylique affectaient les voies de transduction du signal levure-hyphe.
Le profil d'expression des gènes associés à la morphogenèse induite par le sérum a montré des expressions réduites de Cdc35, Hwp1, Hst7 et Cph1 par le traitement avec les deux acides gras.
Le gène d’élongation cellulaire, Ece1, a été étonnamment régulé négativement par 5 208 fois par le traitement à l’acide caprylique.
Nrg1 et Tup1, régulateurs négatifs de la formation d'hyphes, ont été surexprimés en présence d'acide caprique ou caprylique.
ACIDE CAPRYLIQUE/CAPRIQUE (C810)
L'acide caprylique/caprique (C810) se présente sous la forme d'un liquide jaune pâle.
L'acide caprylique/caprique (C810) n'est pas classé comme dangereux selon la directive CEE.
L'acide caprylique/caprique (C810) est un liquide jaune clair avec une légère odeur


Numéro CAS : 68937-75-7
Numéro CE : 273-086-2
NOM CHIMIQUE : Acide octanoïque/décanoïque
Formule moléculaire : C9H18O2


SYNONYMES :
Acide octocaprique, Fettsuren, C8-10, Acide gras C8-C10, Acides gras, C8-1O, Acides gras, C8-10, Acides gras-(C8-C10), C8-10 Caprylique Caprique, Acides gras, C8-10 , Fettsuren, C8-10, Acides gras-(C8-C10)



L'acide caprylique/caprique (C810) est un mélange d'acides gras octanoïques et décanoïques à chaîne courte entièrement fabriqué à partir de sources d'huile végétale.
L'acide caprylique/caprique (C810) contient généralement entre 53 % et 63 % de C8 et entre 36 % et 47 % de C10.
L'acide caprylique/caprique (C810) est utile pour de nombreux processus industriels et est expédié sous forme de liquide jaune clair dans des fûts ou des isotanks pratiques.


L'acide caprylique/caprique (C810) est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide caprylique/caprique (C810) se présente sous la forme d'un liquide jaune pâle.


L'acide caprylique/caprique (C810) n'est pas classé comme dangereux selon la directive CEE.
L'acide caprylique/caprique (C810) est un liquide jaune clair avec une légère odeur
L'acide caprylique/caprique (C810) est une combinaison de deux acides gras à chaîne moyenne, l'acide caprylique (acide octanoïque) et l'acide caprique (acide décanoïque).


L'acide caprylique/caprique (C810) offre un mélange synergique de propriétés dérivées des deux acides, ce qui le rend précieux dans diverses applications dans différentes industries.
L'acide caprylique/caprique (C810) est un mélange d'acides gras dérivés d'huiles végétales et végétales.


L'acide caprylique/caprique (C810) est un acide gras saturé à chaîne droite C9 qui se présente naturellement sous forme d'esters de l'huile de pélargonium.
L'acide caprylique/caprique (C810) joue un rôle d'antifestant, de métabolite végétal, de métabolite de Daphnia magna et de métabolite d'algues.
L'acide caprylique/caprique (C810) est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.


L'acide caprylique/caprique (C810) est un acide conjugué d'un nonanoate.
L'acide caprylique/caprique (C810) dérive d'un hydrure de nonane.
L'acide caprylique/caprique (C810) est ininflammable.


L'acide caprylique/caprique (C810) est dérivé d'huiles végétales renouvelables.
L'acide caprylique/caprique (C810) peut être converti en esters d'alcool gras pour être utilisé comme plastifiants où il améliore la flexibilité à basse température des vinyles.


L'acide caprylique/caprique (C810) se mélange avec des diesters de 1,4-butanediol pour être utilisé comme plastifiant pour les résines vinyliques (par exemple PVC).
L'acide caprylique/caprique (C810) est certifié HALAL et KOSHER.
L'acide caprylique/caprique (C810) est fabriqué dans une installation certifiée GMP et HACCP.



UTILISATIONS et APPLICATIONS de l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
L'acide caprylique/caprique (C810) est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide caprylique/caprique (C810) est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.


D'autres rejets dans l'environnement d'acide caprylique/caprique (C810) sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur.


Le rejet dans l'environnement de l'acide caprylique/caprique (C810) peut survenir lors d'une utilisation industrielle : traitement par abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal) et traitement par abrasion industrielle avec un taux de libération élevé (par exemple, ponçage). opérations ou décapage de peinture par grenaillage).


D'autres rejets dans l'environnement d'acide caprylique/caprique (C810) sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques) et utilisation en extérieur dans des matériaux de longue durée à faible taux de libération (par exemple, construction et matériaux de construction en métal, en bois et en plastique).


L'acide caprylique/caprique (C810) peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).


L'acide caprylique/caprique (C810) peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), le cuir (par exemple les gants, les chaussures, les sacs à main, les meubles) et le papier utilisé pour l'emballage (à l'exclusion des emballages alimentaires).


L'acide caprylique/caprique (C810) est utilisé dans les produits suivants : adhésifs et mastics, produits de lavage et de nettoyage, lubrifiants et graisses, cirages et cires, produits phytopharmaceutiques et engrais.
L'acide caprylique/caprique (C810) est utilisé dans les domaines suivants : agriculture, foresterie et pêche, formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.


L'acide caprylique/caprique (C810) est utilisé pour la fabrication de : textiles, cuir ou fourrure.
D'autres rejets dans l'environnement d'acide caprylique/caprique (C810) sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur.


L'acide caprylique/caprique (C810) est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, engrais et fluides de travail des métaux.
Le rejet dans l'environnement de l'acide caprylique/caprique (C810) peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.


L'acide caprylique/caprique (C810) est utilisé dans les produits suivants : polymères, produits de traitement des textiles et colorants, régulateurs de pH et produits de traitement de l'eau, adhésifs et produits d'étanchéité, produits de traitement du cuir, produits de lavage et de nettoyage et lubrifiants et graisses.
L'acide caprylique/caprique (C810) est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.


L'acide caprylique/caprique (C810) est utilisé pour la fabrication de : textiles, cuir ou fourrure et produits chimiques.
Le rejet dans l'environnement de l'acide caprylique/caprique (C810) peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques des sites industriels, dans la production d'articles et comme auxiliaire technologique.


Le rejet dans l'environnement de l'acide caprylique/caprique (C810) peut survenir lors d'une utilisation industrielle : fabrication de la substance.
L'acide caprylique/caprique (C810) est principalement utilisé dans de nombreux procédés industriels et comme additif dans certains produits.
L'acide caprylique/caprique (C810) est un intermédiaire chimique et un lubrifiant, un solubilisant pour les huiles minérales et un agent de flottation fréquemment utilisé dans l'industrie pétrolière et gazière.


L'acide caprylique/caprique (C810) est également utilisé dans la production de triglycérides à chaîne moyenne (MCT), des graisses synthétiques utilisées en médecine par les personnes incapables de tolérer d'autres types de graisses.
Lubrifiants et graisses : L'acide caprylique/caprique (C810) est utilisé dans la fabrication de lubrifiants synthétiques et de fluides hydrauliques.


Lubrifiant réfrigérant : L'acide caprylique/caprique (C810) agit comme un inhibiteur de corrosion et de rouille dans l'antigel.
Aliments et saveurs : L'acide caprylique/caprique (C810) est utilisé comme intermédiaire pour fabriquer les MCT (triglycérides à chaîne moyenne).
Fluides de travail des métaux : L'acide caprylique/caprique (C810) est utilisé comme solubilisant pour les huiles minérales.


Pétrole et gaz : L’acide caprylique/caprique (C810) est utilisé comme aide à la flottation.
Les applications courantes de l'acide caprylique/caprique (C810) pour les acides gras comprennent le traitement du caoutchouc, les bougies et les produits cosmétiques ou son utilisation comme matière première pour produire des dérivés tels que les MCT, le savon et le savon métallique.


L'acide caprylique/caprique (C810) est utilisé dans des produits chimiques intermédiaires tels que les alcools gras, les amines grasses et les esters gras, qui peuvent également être fabriqués à partir d'acides gras.
L'acide caprylique/caprique (C810) est utilisé pour une variété d'applications dans des industries telles que les lubrifiants et les graisses, les fluides pour le travail des métaux, les revêtements et les adhésifs, les cosmétiques et les soins personnels, l'alimentation et la nutrition, les produits pharmaceutiques, ainsi que les plastiques et le caoutchouc.


L'acide caprylique/caprique (C810) est un produit oléochimique polyvalent, couramment utilisé comme intermédiaire pour les triglycérides à chaîne moyenne, la fabrication de triglycérides caprylique-caprique, les esters de glycérol, les esters de polyol, les solubilisants pour l'huile minérale, les inhibiteurs de corrosion, etc.
Les applications de l'acide caprylique/caprique (C810) comprennent les cosmétiques, les soins personnels, les aliments et les arômes, les lubrifiants, les fluides de travail des métaux, les produits pharmaceutiques, les textiles, le papier, la polymérisation en émulsion, les peintures, la protection des cultures et le brassage.


L'acide caprylique/caprique (C810) est un acide gras végétal renouvelable qui agit comme émollient dans les produits de soins personnels.
L'acide caprylique/caprique (C810) est généralement utilisé dans les savons, crèmes et lotions.
L'acide caprylique/caprique (C810) est principalement utilisé dans la fabrication de : amines, esters, alcools gras, peroxydes, parfums, arômes, finition de surface, lubrifiants, savons métalliques, cosmétiques, aliments pour animaux, produits chimiques, papier, plastiques, détergents, produits chimiques. , résines et revêtements.


L'acide caprylique/caprique (C810) a des propriétés antifongiques et est également utilisé comme herbicide ainsi que dans la préparation de plastifiants et de laques.
L'acide caprylique/caprique (C810) est un mélange polyvalent d'acide caprylique-caprique qui remplit divers rôles dans plusieurs industries.
Soins personnels : L'acide caprylique/caprique (C810) contribue aux fragrances et aux parfums, améliorant l'expérience sensorielle des produits.


Fabrication chimique et industrielle : l'acide caprylique/caprique (C810) agit comme intermédiaire et antimousse, optimisant les processus et les formulations.
Alimentation et nutrition : L'acide caprylique/caprique (C810) améliore les nutraceutiques et les suppléments, ajoutant de la valeur aux produits diététiques.
Agriculture et alimentation animale : L'acide caprylique/caprique (C810) aide à lutter contre les parasites agricoles en favorisant des pratiques efficaces.


Santé et pharmacie : L'acide caprylique/caprique (C810) joue un rôle important dans la fabrication d'API et le traitement pharmaceutique, contribuant aux procédures critiques liées à la santé.
L'acide caprylique/caprique (C810) est utilisé dans la production de caprylate de méthyle, un lubrifiant utilisé dans l'industrie du plastique.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
Sous forme liquide, l’acide caprylique/caprique (C810) est presque incolore et dégage une odeur caractéristique.



ACTIVITÉ BIOLOGIQUE DE L'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
L'acide caprylique/caprique (C810) est un composant alimentaire diététique.
L'acide caprylique/caprique (C810) inhibe les facteurs de virulence tels que la morphogenèse, l'adhésion et la formation de biofilm chez la levure pathogène humaine Candida albicans.



PRÉPARATION DE L'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
L'acide caprylique/caprique (C810) est obtenu à partir du fractionnement d'une huile de type laurique.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
N° CAS : 68937-75-7
N° CE : 273-086-2
Formule moléculaire : C9H18O2
Poids moléculaire : 158,23802
Numéro MDL :
Numéro CBN : CB2931874
Propriétés:
Point d'ébullition : 254,5 ºC
Point de fusion : 12,4 ºC
Densité : N/A
Pression de vapeur : 1 Pa à 20 ℃
Indice de réfraction : N/A
Solubilité dans l'eau : 205 mg/L à 20 ℃

LogP : 2,82160
pKa : 5,5 (à 20 ℃ )
PSA : 37,30000
Point d'éclair : N/A
Apparence : N/A
Conditions de stockage : 2-8°C
Informations chimiques :
InChI : InChI=1S/C9H18O2/c1-2-3-4-5-6-7-8-9(10)11/h2-8H2,1H3,(H,10,11)
InChIKey : FBUKVWPVBMHYJY-UHFFFAOYSA-N
SOURIRES : C(O)(=O)CCCCCCCC
SOURIRES canoniques : CCCCCCCCC(=O)O
Les références:
Référence de la base de données CAS : Acides gras, C8-10 (Référence de la base de données CAS)
Référence chimique NIST : Acides gras, C8-10 (68937-75-7)
Système d'enregistrement des substances de l'EPA : Acides gras, C8-10 (68937-75-7)



PREMIERS SECOURS ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Description des premiers secours :
*En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
*En cas de contact avec la peau :
Laver avec du savon et beaucoup d'eau.
*En cas de contact visuel :
Rincer les yeux avec de l'eau par mesure de précaution.
*En cas d'ingestion:
Rincer la bouche avec de l'eau.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Précautions environnementales:
Aucune précaution environnementale particulière requise.
-Méthodes et matériels de confinement et de nettoyage :
Balayer et pelleter.
Gardez à récipients adaptés et fermés pour l'élimination



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
-Plus d'informations :
Pas de données disponibles



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
*Protection de la peau :
Manipuler avec des gants.
Se laver et se sécher les mains.
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
Choisir une protection corporelle en fonction de son type
*Protection respiratoire:
La protection respiratoire n'est pas requise.
-Contrôle de l'exposition environnementale :
Aucune précaution environnementale particulière requise.



MANIPULATION et STOCKAGE de l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Précautions à prendre pour une manipulation sans danger:
*Mesures d'hygiène:
Pratique générale d'hygiène industrielle.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Conserver dans un endroit frais.
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.



STABILITÉ et RÉACTIVITÉ de l'ACIDE CAPRYLIQUE/CAPRIQUE (C810) :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Stable dans les conditions de stockage recommandées.
-Possibilité de réactions dangereuses:
Pas de données disponibles
-Conditions à éviter :
Pas de données disponibles


ACIDE CARBOLIQUE (PHÉNOL)
DESCRIPTION:

Le phénol, ou benzénol, (également connu sous le nom d'acide carbolique ou acide phénolique) est un composé organique aromatique de formule moléculaire C6H5OH.
L'acide phénique (phénol) est un solide cristallin blanc volatil.
La molécule est constituée d'un groupe phényle (−C6H5) lié à un groupe hydroxy (−OH).
Légèrement acide, l'acide phénique (phénol) nécessite une manipulation prudente car l'acide phénique (phénol) peut provoquer des brûlures chimiques.

Numéro CAS : 108-95-2

L'acide phénique (phénol) a d'abord été extrait du goudron de houille, mais il est aujourd'hui produit à grande échelle (environ 7 millions de tonnes par an) à partir de matières premières dérivées du pétrole.
L'acide phénique (phénol) est un produit industriel important en tant que précurseur de nombreux matériaux et composés utiles.
L'acide phénique (phénol) est principalement utilisé pour synthétiser les plastiques et les matériaux associés.
L'acide carbolique (phénol) et ses dérivés chimiques sont essentiels à la production de polycarbonates, d'époxy, de bakélite, de nylon, de détergents, d'herbicides tels que les herbicides phénoxy et de nombreux médicaments pharmaceutiques.

L'acide phénique (phénol) est constitué d'un groupe hydroxyle et d'un groupe phényle attachés l'un à l'autre.
L'acide phénique (phénol) se dissout considérablement dans l'eau.
Auparavant, l'acide carbolique (phénol) était utilisé comme savon carbolique.
L'acide phénique (phénol) est légèrement acide et corrosif pour les voies respiratoires, les yeux et la peau.

L'acide phénique (phénol) est un solide cristallin de couleur blanche et doit être manipulé avec précaution car il peut provoquer des brûlures chimiques. Friedlieb Ferdinand Runge a découvert le phénol en 1834.

L'acide phénique (phénol) a été extrait du goudron de houille.
L'acide phénique (phénol) est également connu sous le nom d'acide phénolique.
Si un composé est constitué d’un cycle aromatique à six chaînons et lié directement à un groupe hydroxyle, il peut alors être appelé phénol.

L'acide phénique (communément appelé phénol) est une molécule chimique aromatique de formule moléculaire C6H5OH et de formule moléculaire C6H5OH.
L'acide phénique (phénol) est une substance cristalline blanche inflammable.
L'acide phénique (phénol) est le membre le plus simple de la famille des composés organiques phénols.

Les phénols sont parfois appelés acides phéniques en raison de leur extrême acidité.
En raison de la résonance, la molécule de phénol a une charge partielle positive sur l'atome d'oxygène, et l'anion créé par la perte d'un ion hydrogène est également stabilisé par résonance.
L'acide phénique (phénol) est par définition un hydroxybenzène.

L'acide phénique (phénol) est connu sous le nom de phénol.
Son nom IUPAC serait benzénol, dérivé de la même manière que les noms IUPAC des alcools aliphatiques.



SOURCES NATURELLES DE PHÉNOL (ACIDE CARBOLIQUE) - C6H6O
Le phénol est un constituant du goudron de houille et se forme lors de la décomposition des matières organiques. Une augmentation des niveaux environnementaux de phénol peut résulter des incendies de forêt.
Il a été détecté parmi les composants volatils du lisier.
Sources industrielles de phénols et autres composés aromatiques associés provenant d'une raffinerie de pétrole, de produits pétrochimiques, de fabrication de produits chimiques organiques de base, de raffinage du charbon, de produits pharmaceutiques, de tanneries et de pâtes à papier, ainsi que de papeteries.

NOMENCLATURE DU PHÉNOL (ACIDE CARBOLIQUE) - C6H6O
Les phénols sont des composés organiques contenant au moins un groupe -OH directement lié au cycle benzénique.
En fonction du nombre de groupes hydroxyle attachés au cycle benzénique, les phénols peuvent être classés en phénols monohydriques, dihydriques et trihydriques.

Phénols monohydriques – Le membre le plus simple de la série est l’hydroxybenzène, communément appelé phénol, tandis que d’autres sont appelés phénols substitués.
Les trois hydroxyles toluènes isomères sont appelés crésols.
Phénols dihydriques – Les trois dihydroxybenzènes isomères, à savoir le catéchol, le résorcinol et le quinol, sont mieux connus sous leurs noms communs.
Phénols trihydriques – Les trihydroxyphénols sont connus sous les noms communs appelés pyrogallol, hydroxyquinol et phloroglucinol.

SYNTHÈSE DU PHÉNOL (ACIDE CARBOLIQUE)- C6H6O
Les phénols peuvent être synthétisés par les méthodes suivantes.

1. A partir d'acides sulfoniques (par fusion alcaline du benzène sulfonate de sodium)
Le premier procédé commercial de synthèse du phénol.
Le benzène sulfonate de sodium est fusionné avec l'hydroxyde de sodium à 573 K pour produire du phénoxate de sodium, qui, une fois acidifié, produit du phénol.


2. A partir de sels de diazonium (par hydrolyse du sel de diazonium – méthode de laboratoire)
Lorsqu’une solution de sel de diazonium est distillée à la vapeur ou ajoutée au dil.H2SO4 bouillant, elle forme du phénol.

RÉACTIONS CHIMIQUES DU PHÉNOL (ACIDE CARBOLIQUE) - C6H6O
Un groupe hydroxyle est attaché à un cycle aromatique et il active fortement le directeur ortho/para, les phénols possèdent une réactivité considérable au niveau de leurs carbones ortho et para envers la substitution aromatique électrophile.

1. Réactions de l’anneau aromatique
Le groupe -OH dans le phénol est ortho et para directeur car il augmente la densité électronique aux positions ortho et para en raison de la résonance.
Ainsi, le phénol subit des réactions de substitution électrophile.

2. Halogénation
Comme le groupe -NH2, le groupe -OH est tellement activateur qu'il est assez difficile d'empêcher la polysubstitution.

S'il est nécessaire d'arrêter la réaction au stade de la monosubstitution, la réaction doit être effectuée dans des solvants non polaires comme CCl4 et CS2 et à des températures plus basses.

PROPRIÉTÉS DE L'ACIDE CARBOLIQUE (PHÉNOL) :
L'acide phénique (phénol) est un composé organique sensiblement soluble dans l'eau, avec environ 84,2 g dissous dans 1 000 ml (0,895 M).
Des mélanges homogènes de phénol et d’eau avec des rapports massiques phénol/eau d’environ 2,6 et plus sont possibles.
Le sel de sodium du phénol, le phénoxate de sodium, est beaucoup plus soluble dans l'eau.

L'acide phénique (phénol) est un solide combustible (cote NFPA = 2).
Lorsqu'il est chauffé, l'acide phénique (phénol) produit des vapeurs inflammables et explosives à des concentrations de 3 à 10 % dans l'air.
Des extincteurs au dioxyde de carbone ou à poudre chimique doivent être utilisés pour lutter contre les incendies de phénol.

ACIDITÉ DE L'ACIDE CARBOLIQUE (PHÉNOL) :
L'acide phénique (phénol) est plus acide que les alcools aliphatiques.
Son acidité accrue est attribuée à la stabilisation par résonance de l’anion phénolate.
De cette façon, la charge négative de l’oxygène est délocalisée sur les atomes de carbone ortho et para via le système pi.

Une explication alternative implique le cadre sigma, postulant que l'effet dominant est l'induction des carbones hybridés sp2 les plus électronégatifs ; le retrait inductif de densité électronique comparativement plus puissant fourni par le système sp2 par rapport à un système sp3 permet une grande stabilisation de l'oxyanion.
À l'appui de la deuxième explication, le pKa de l'énol de l'acétone dans l'eau est de 10,9, ce qui le rend à peine moins acide que le phénol (pKa 10,0).
Ainsi, le plus grand nombre de structures de résonance dont dispose le phénolate par rapport à l’énolate d’acétone semble peu contribuer à sa stabilisation.
Cependant, la situation change lorsque les effets de solvatation sont exclus.

Liaison hydrogène :
Dans le tétrachlorure de carbone et dans les solvants alcanes, le phénol se lie à une large gamme de bases de Lewis telles que la pyridine, l'éther diéthylique et le sulfure de diéthyle.
Les enthalpies de formation d'adduits et les déplacements de fréquence −OH IR accompagnant la formation d'adduits ont été compilés.
L'acide carbolique (phénol) est classé comme un acide dur

Tautomérie :
Le phénol présente une tautomérie céto-énol avec son tautomère céto instable, la cyclohexadiénone, mais l'effet est presque négligeable.
La constante d’équilibre pour l’énolisation est d’environ 10-13, ce qui signifie que seulement une molécule sur dix billions est sous forme céto à tout moment.
La faible quantité de stabilisation obtenue en échangeant une liaison C=C contre une liaison C=O est plus que compensée par la grande déstabilisation résultant de la perte d’aromaticité.
L'acide phénique (phénol) existe donc essentiellement entièrement sous forme d'énol.
La cyclohexadiénone 4, 4' substituée peut subir un réarrangement diénone-phénol dans des conditions acides et former du phénol 3,4-disubstitué stable.

Pour les phénols substitués, plusieurs facteurs peuvent favoriser le tautomère céto : (a) des groupes hydroxy supplémentaires (voir résorcinol) (b) l'annulation comme dans la formation de naphtols, et (c) la déprotonation pour donner le phénolate.
Les phénoxes sont des énolates stabilisés par l'aromaticité. Dans des circonstances normales, le phénoxate est plus réactif en position oxygène, mais la position oxygène est un nucléophile « dur » alors que les positions alpha-carbone ont tendance à être « molles ».


RÉACTIONS DE L'ACIDE CARBOLIQUE (PHÉNOL) :
Sous-structure en phénol neutre "forme".
Image d'une surface électrostatique calculée d'une molécule de phénol neutre, montrant les régions neutres en vert, les zones électronégatives en orange-rouge et le proton phénolique électropositif en bleu.

Diagramme des phases phénol-eau : certaines combinaisons de phénol et d'eau peuvent former deux solutions dans une bouteille.
Le phénol est très réactif envers la substitution aromatique électrophile.
La nucléophilie accrue est attribuée au don de densité électronique pi de O dans l'anneau.
De nombreux groupes peuvent être attachés au cycle, via l'halogénation, l'acylation, la sulfonation et des processus associés.

L'acide phénique (phénol) est si fortement activé que la bromation et la chloration conduisent facilement à une polysubstitution.
La réaction donne des dérivés 2- et 4-substitués.
La régiochimie de l'halogénation change dans les solutions fortement acides où PhOH2]+ prédomine.

L'acide phénique (phénol) réagit avec l'acide nitrique dilué à température ambiante pour donner un mélange de 2-nitrophénol et de 4-nitrophénol tandis qu'avec l'acide nitrique concentré, des groupes nitro supplémentaires sont introduits, par exemple pour donner du 2,4,6-trinitrophénol.
Les alkylations Friedel Crafts du phénol et de ses dérivés se déroulent souvent sans catalyseurs.
Les agents alkylants comprennent les halogénures d'alkyle, les alcènes et les cétones.

Ainsi, l'adamantyl-1-bromure, le dicyclopentadiène), et les cyclohexanones donnent respectivement du 4-adamantylphénol, un dérivé bis(2-hydroxyphényl) et un 4-cyclohexylphénols.
Les alcools et les hydroperoxydes alkylent les phénols en présence de catalyseurs acides solides (par exemple certaines zéolites).
Des crésols et des cumylphénols peuvent ainsi être produits.

Les solutions aqueuses de phénol sont faiblement acides et virent légèrement le tournesol bleu au rouge.
L'acide phénique (phénol) est neutralisé par l'hydroxyde de sodium formant du phénate ou phénolate de sodium, mais étant plus faible que l'acide carbonique, il ne peut pas être neutralisé par le bicarbonate de sodium ou le carbonate de sodium pour libérer du dioxyde de carbone.

C6H5OH + NaOH → C6H5ONa + H2O
Lorsqu’un mélange de phénol et de chlorure de benzoyle est secoué en présence d’une solution diluée d’hydroxyde de sodium, du benzoate de phényle se forme.
Ceci est un exemple de la réaction de Schotten-Baumann :
C6H5COCl + HOC6H5 → C6H5CO2C6H5 + HCl

L'acide phénique (phénol) est réduit en benzène lorsqu'il est distillé avec de la poussière de zinc ou lorsque sa vapeur passe sur des granules de zinc à 400 °C :
C6H5OH + Zn → C6H6 + ZnO
Lorsque l'acide phénique (phénol) est traité avec du diazométhane en présence de trifluorure de bore (BF3), l'anisole est obtenu comme produit principal et l'azote gazeux comme sous-produit.
C6H5OH + CH2N2 → C6H5OCH3 + N2

L'acide phénique (phénol) et ses dérivés réagissent avec le chlorure de fer (III) pour donner des solutions intensément colorées contenant des complexes de phénoxate.

PRODUCTION D'ACIDE CARBOLIQUE (PHÉNOL) :
En raison de l'importance commerciale du phénol, de nombreuses méthodes ont été développées pour sa production, mais le procédé au cumène est la technologie dominante.

Processus Cumène :
Le procédé au cumène, également appelé procédé Hock, représente 95 % de la production (2003).
Il s'agit de l'oxydation partielle du cumène (isopropylbenzène) via le réarrangement de Hock :
Comparé à la plupart des autres procédés, le procédé au cumène utilise des conditions douces et des matières premières peu coûteuses.

Pour que le procédé soit économique, le phénol et le sous-produit acétone doivent être demandés.
En 2010, la demande mondiale d'acétone était d'environ 6,7 millions de tonnes, dont 83 pour cent étaient satisfaits avec de l'acétone produite par le procédé au cumène.

Une voie analogue au processus au cumène commence par le cyclohexylbenzène.
Il est oxydé en hydroperoxyde, semblable à la production d'hydroperoxyde de cumène.
Via le réarrangement de Hock, l'hydroperoxyde de cyclohexylbenzène se clive pour donner du phénol et de la cyclohexanone.
La cyclohexanone est un précurseur important de certains nylons.

Oxydation du benzène, du toluène, du cyclohexylbenzène :
L’oxydation directe du benzène (C6H6) en phénol est théoriquement possible et d’un grand intérêt, mais elle n’a pas été commercialisée :
C6H6 + O → C6H5OH

L'oxyde nitreux est un oxydant potentiellement « vert » qui est un oxydant plus puissant que l'O2.
Les voies de production de protoxyde d’azote restent cependant peu compétitives.

Une électrosynthèse employant un courant alternatif donne du phénol à partir du benzène.
L'oxydation du toluène, telle que développée par Dow Chemical, implique une réaction catalysée par le cuivre du benzoate de sodium fondu avec l'air :
C6H5CH3 + 2O2 → C6H5OH + CO2 + H2O

Il est proposé que la réaction se déroule via la formation de benzyoylsalicylate.
L'autooxydation du cyclohexylbenzène donne l'hydroperoxyde.
La décomposition de cet hydroperoxyde donne de la cyclohexanone et du phénol.

Méthodes plus anciennes :
Les premières méthodes reposaient sur l’extraction du phénol à partir de dérivés du charbon ou sur l’hydrolyse de dérivés du benzène.

Hydrolyse de l'acide benzènesulfonique :
La route commerciale originale a été développée par Bayer et Monsanto au début des années 1900, sur la base des découvertes de Wurtz et Kekule.
Le procédé implique la réaction d'une base forte avec l'acide benzènesulfonique, en procédant par la réaction de l'hydroxyde avec le benzènesulfonate de sodium pour donner du phénoxate de sodium.

L'acidification de ce dernier donne du phénol.
La conversion nette est :
C6H5SO3H + 2NaOH → C6H5OH + Na2SO3 + H2O

Hydrolyse du chlorobenzène :
Le chlorobenzène peut être hydrolysé en phénol à l'aide d'une base (procédé Dow) ou de vapeur (procédé Raschig-Hooker) :
C6H5Cl + NaOH → C6H5OH + NaCl
C6H5Cl + H2O -> C6H5OH + HCl
Ces méthodes souffrent du coût du chlorobenzène et de la nécessité d'éliminer le chlorure sous-produit.

Pyrolyse du charbon :
L'acide phénique (phénol) est également un sous-produit récupérable de la pyrolyse du charbon.
Dans le procédé Lummus, l'oxydation du toluène en acide benzoïque est réalisée séparément.

UTILISATIONS DE L'ACIDE CARBOLIQUE (PHÉNOL) :
Les principales utilisations du phénol, qui consomment les deux tiers de sa production, concernent sa conversion en précurseurs de plastiques.
La condensation avec l'acétone donne du bisphénol-A, un précurseur clé des polycarbonates et des résines époxydes.
La condensation du phénol, des alkylphénols ou des diphénols avec le formaldéhyde donne des résines phénoliques, dont un exemple célèbre est la bakélite.

L'hydrogénation partielle du phénol donne la cyclohexanone, un précurseur du nylon.
Les détergents non ioniques sont produits par alkylation du phénol pour donner les alkylphénols, par exemple le nonylphénol, qui sont ensuite soumis à une éthoxylation.
Le phénol est également un précurseur polyvalent pour un large éventail de médicaments, notamment l'aspirine, mais également de nombreux herbicides et médicaments pharmaceutiques.

Le phénol est un composant de la technique d'extraction liquide-liquide phénol-chloroforme utilisée en biologie moléculaire pour obtenir des acides nucléiques à partir de tissus ou d'échantillons de cultures cellulaires.
Selon le pH de la solution, l'ADN ou l'ARN peuvent être extraits.

Médical:
L'acide phénique (phénol) était largement utilisé comme antiseptique. Son utilisation a été lancée par Joseph Lister
Du début des années 1900 aux années 1970, il était utilisé dans la production de savon carbolique.
Les liquides concentrés de phénol sont utilisés pour le traitement permanent des ongles incarnés des orteils et des doigts, une procédure connue sous le nom de matricectomie chimique.

La procédure a été décrite pour la première fois par Otto Boll en 1945.
Depuis lors, le phénol est devenu le produit chimique de choix pour les matricectomies chimiques réalisées par les podologues.

Le phénol liquide concentré peut être utilisé localement comme anesthésique local pour les procédures d'otologie, telles que la myringotomie et la mise en place d'un tube de tympanotomie, comme alternative à l'anesthésie générale ou à d'autres anesthésiques locaux.
Il possède également des qualités hémostatiques et antiseptiques qui le rendent idéal pour cet usage.

Le spray au phénol, généralement contenant 1,4 % de phénol comme ingrédient actif, est utilisé médicalement pour traiter les maux de gorge.
C'est l'ingrédient actif de certains analgésiques oraux tels que le spray chloraseptique, le TCP et le Carmex.

Utilisations de niche :
L’acide phénique (phénol) est si peu coûteux qu’il attire également de nombreuses utilisations à petite échelle.
L'acide phénique (phénol) est un composant des décapants de peinture industriels utilisés dans l'industrie aéronautique pour éliminer les revêtements époxy, polyuréthane et autres revêtements chimiquement résistants.

Pour des raisons de sécurité, l'utilisation du phénol dans les produits cosmétiques est interdite dans l'Union européenne et au Canada.

L'acide phénique (phénol) est utilisé comme précurseur dans les médicaments
L'acide phénique (phénol) est utilisé comme antiseptique
L'acide phénique (phénol) est utilisé dans la production de nylon

L'acide phénique (phénol) est utilisé pour conserver les vaccins
L'acide phénique (phénol) est utilisé dans les analgésiques oraux
Les dérivés du phénol sont utilisés dans des produits de beauté comme la coloration capillaire et la crème solaire.

L'acide phénique (phénol) est utilisé dans la synthèse des plastiques
L'acide carbolique (phénol) est utilisé pour produire des détergents et des carbonates







HISTOIRE DE L'ACIDE CARBOLIQUE (PHÉNOL) :
L'acide carbolique (phénol) a été découvert en 1834 par Friedlieb Ferdinand Runge, qui l'a extrait (sous forme impure) du goudron de houille.
Runge appelé phénol "Karbolsäure" (acide de charbon, acide carbolique).
Le goudron de houille est resté la principale source jusqu'au développement de l'industrie pétrochimique.
Le chimiste français Auguste Laurent a extrait le phénol sous sa forme pure, en tant que dérivé du benzène, en 1841.

En 1836, Auguste Laurent invente le nom « phène » pour le benzène ; c'est la racine des mots « phénol » et « phényle ».
En 1843, le chimiste français Charles Gerhardt a inventé le nom de « phénol ».

Les propriétés antiseptiques du phénol ont été utilisées par Sir Joseph Lister (1827-1912) dans sa technique pionnière de chirurgie antiseptique.
Lister a décidé que les blessures elles-mêmes devaient être soigneusement nettoyées.
Il recouvrait ensuite les plaies avec un morceau de chiffon ou de peluche recouvert d'acide phénique (phénol).

L’irritation cutanée provoquée par une exposition continue au phénol a finalement conduit à l’introduction de techniques aseptiques (sans germes) en chirurgie.
Le travail de Lister s'inspire des travaux et des expériences de son contemporain Louis Pasteur dans la stérilisation de divers milieux biologiques.
Il a émis l’hypothèse que si les germes pouvaient être tués ou prévenus, aucune infection ne se produirait.
Lister a estimé qu’un produit chimique pourrait être utilisé pour détruire les micro-organismes responsables de l’infection.

Pendant ce temps, à Carlisle, en Angleterre, les autorités expérimentaient un traitement des eaux usées utilisant de l'acide carbolique pour réduire l'odeur des puisards d'eaux usées.
Ayant entendu parler de ces développements et ayant lui-même expérimenté d'autres produits chimiques à des fins antiseptiques sans grand succès, Lister a décidé d'essayer l'acide carbolique comme antiseptique pour les plaies.
Il eut sa première chance le 12 août 1865, lorsqu'il reçut un patient : un garçon de onze ans souffrant d'une fracture du tibia qui lui transperça la peau du bas de la jambe. Normalement, l'amputation serait la seule solution.

Cependant, Lister a décidé d’essayer l’acide carbolique.
Après avoir réparé l'os et soutenu la jambe avec des attelles, il a trempé des serviettes en coton propres dans de l'acide phénique non dilué et les a appliquées sur la plaie, recouvertes d'une couche de papier d'aluminium, et les a laissées pendant quatre jours.
Lorsqu'il a vérifié la plaie, Lister a été agréablement surpris de ne trouver aucun signe d'infection, juste une rougeur près des bords de la plaie due à une légère brûlure causée par l'acide phénique.

En réappliquant de nouveaux bandages avec de l'acide phénique dilué, le garçon a pu rentrer chez lui à pied après environ six semaines de traitement.
Le 16 mars 1867, lorsque les premiers résultats des travaux de Lister furent publiés dans le Lancet, il avait traité un total de onze patients en utilisant sa nouvelle méthode antiseptique.
Parmi eux, un seul était décédé, et ce, à cause d'une complication qui n'avait rien à voir avec la technique de pansement de Lister.
Désormais, pour la première fois, les patients souffrant de fractures ouvertes étaient susceptibles de quitter l'hôpital avec tous leurs membres intacts.

Avant l'introduction des opérations antiseptiques à l'hôpital, il y avait seize décès sur trente-cinq cas chirurgicaux.
Près d’un patient sur deux est décédé.
Après l'introduction de la chirurgie antiseptique à l'été 1865, il n'y eut que six décès sur quarante cas.

Le taux de mortalité est passé de près de 50 pour cent à environ 15 pour cent.
Ce fut une réalisation remarquable
Le phénol était l'ingrédient principal du Carbolic Smoke Ball, un dispositif inefficace commercialisé à Londres au 19e siècle comme protection contre la grippe et d'autres maladies, et qui a fait l'objet du célèbre procès Carlill contre Carbolic Smoke Ball Company.

Deuxième Guerre mondiale:
L'effet toxique du phénol sur le système nerveux central, discuté ci-dessous, provoque un effondrement soudain et une perte de conscience chez les humains et les animaux ; un état de crampes précède ces symptômes en raison de l'activité motrice contrôlée par le système nerveux central.

Les injections de phénol ont été utilisées comme moyen d'exécution individuelle par l'Allemagne nazie pendant la Seconde Guerre mondiale.
Il a été utilisé à l'origine par les nazis en 1939 dans le cadre du meurtre de masse d'indésirables dans le cadre de l'Aktion T4.

Les Allemands ont appris que l'extermination de petits groupes était plus économique en injectant du phénol à chaque victime. Des injections de phénol ont été administrées à des milliers de personnes.
Maximilian Kolbe a également été assassiné par injection de phénol après avoir survécu deux semaines de déshydratation et de famine à Auschwitz lorsqu'il s'est porté volontaire pour mourir à la place d'un étranger.
Environ un gramme suffit à provoquer la mort.

Occurrences :
L'acide phénique (phénol) est un produit métabolique normal, excrété en quantités allant jusqu'à 40 mg/L dans l'urine humaine.
La sécrétion des glandes temporales des éléphants mâles a montré la présence de phénol et de 4-méthylphénol pendant la mue.
L'acide phénique (phénol) est également l'un des composés chimiques présents dans le castoréum.
L'acide phénique (phénol) est ingéré à partir des plantes dont se nourrit le castor.

Présence dans le whisky :
L'acide phénique (phénol) est un composant mesurable dans l'arôme et le goût du whisky écossais distinctif d'Islay, généralement environ 30 ppm, mais il peut dépasser 160 ppm dans l'orge maltée utilisée pour produire du whisky.
Cette quantité est différente et probablement supérieure à la quantité présente dans le distillat.

Biodégradation :
Cryptanaerobacter phénolicus est une espèce de bactérie qui produit du benzoate à partir du phénol via le 4-hydroxybenzoate.
Rhodococcus phénolicus est une espèce bactérienne capable de dégrader le phénol comme seule source de carbone




QUESTIONS ET RÉPONSES SUR L'ACIDE CARBOLIQUE (PHÉNOL) :
À quoi sert l’acide phénique (phénol) ?
L'acide carbolique (phénol) est si bon marché qu'il attire de nombreuses applications à petite échelle.
L'acide phénique (phénol) fait partie des décapants de peinture industriels utilisés pour éliminer les revêtements époxy, polyuréthane et autres revêtements chimiquement résistants dans l'industrie aéronautique.
Les dérivés du phénol peuvent être utilisés dans la préparation de cosmétiques, notamment dans les crèmes solaires, les colorations capillaires, les préparations éclaircissantes pour la peau et les toniques/exfoliants pour la peau.

Le phénol est-il acide ou basique ?
L'acide phénique (phénol) peut être considéré comme un acide faible.
L'acide phénique (phénol) est en équilibre avec l'anion phénolate C6H5O− (également appelé phénoxe) dans les solutions aqueuses dont le pH est compris entre 5 et 6.
L’une des raisons pour lesquelles le phénol est plus acide que les composés aliphatiques est qu’il contient un groupe OH et que la résonance du cycle aromatique stabilise l’anion phénolate.

Le phénol est un composé organique considérablement soluble dans l'eau, se dissolvant environ 84,2 g dans 1 000 ml (pour former une solution 0,895 M).
Des mélanges homogènes phénol-eau avec des rapports massiques phénol/eau d'environ 2,6 et plus sont possibles.
Le sel de phénol sodique, phénoxate de sodium, est beaucoup plus soluble dans l'eau.

Qu’est-ce qu’on appelle l’acide carbolique ?
L'acide carbolique (phénol) est également connu sous le nom d'acide carbolique.
L'acide phénique (phénol) est un composé organique aromatique de formule moléculaire C6H5OH.



INFORMATIONS DE SÉCURITÉ SUR L'ACIDE CARBOLIQUE (PHÉNOL) :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé







PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE CARBOLIQUE (PHÉNOL) :
Formule chimique C6H6O
Masse molaire 94,113 g/mol
Aspect Solide cristallin transparent
Odeur Douce et goudronneuse
Densité 1,07 g/cm3
Point de fusion 40,5 °C (104,9 °F; 313,6 K)
Point d'ébullition 181,7 °C (359,1 °F; 454,8 K)
Solubilité dans l'eau 8,3 g/100 mL (20 °C)
journal P 1,48
Pression de vapeur 0,4 mmHg (20 °C)
Acidité (pKa)
9,95 (dans l'eau),
18,0 (en DMSO),
29,1 (dans l'acétonitrile)
Phénoxyde de base conjugué
UV-vis (λmax) 270,75 nm
Moment dipolaire 1,224 D
C6H6O Phénol
Poids moléculaire/masse molaire 94,11 g/mol
Densité 1,07 g/cm³
Point de fusion 40,5 °C
Point d'ébullition 181,7 °C





ACIDE CARBOXYACÉTIQUE (ACIDE MALONIQUE)
L'acide carboxyacétique (acide malonique) est un composé organique utile avec divers avantages.
L'acide carboxyacétique (acide malonique) est le nom de l'IUPAC est l'acide propanedioïque.
L'acide carboxyacétique (acide malonique) ne doit pas être confondu avec l'acide malique ou maléique.

Numéro CAS : 141-82-2
Formule moléculaire : C3H4O4
Poids moléculaire : 104,06
Numéro EINECS : 205-503-0Acide carboxyacétique (acide malonique)

Acide carboxyacétique (acide malonique), acide propanedioïque, 141-82-2, dicarboxyméthane, acide carboxyacétique, acide méthanedicarboxylique, malonate, Kyselina malonova, USAF EK-695, acide 1,3-propanedioïque, dicarboxylate, acide malonique, acide dicarboxylique, Kyselina malonova [tchèque], NSC 8124, UNII-9KX7ZMG0MK, 9KX7ZMG0MK, AI3-15375, H2malo, EINECS 205-503-0, MFCD00002707, BRN 1751370, acide méthanedicarbonique, CHEBI :30794, malonate de thallium, HOOC-CH2-COOH, NSC-8124, acide propane-1,3-dioïque, alpha, Acide oméga-dicarboxylique, DTXSID7021659, HSDB 8437, NSC8124, 4-02-00-01874 (Référence du manuel Beilstein), Acide 1,3-propanoïque, ACIDE PROPANEDIOLIQUE, ACIDE MÉTAHNEDICARBOXYLIQUE, 2fah, Acide carboxyacétique (acide malonique), 99%, Acide carboxyacétique (acide malonique) (8CI), 1o4m, MLI, Acide dicarboxylique malonate, Acide carboxyacétique (acide malonique), 99,5%, Acide propanedioïque (9CI), SCHEMBL336, WLN : QV1VQ, Acide carboxyacétique (acide malonique) [MI], CH2(COOH)2, CHEMBL7942, Acide carboxyacétique (acide malonique) [INCI], DTXCID401659, SCHEMBL1471092, BDBM14673, Acide propanedioïque Sel de dithallium, Acide carboxyacétique (Acide malonique), étalon analytique, AMY11201, BCP05571, STR00614, Tox21_200534, AC8295, LMFA01170041, S3029, Acide carboxyacétique (Acide malonique), ReagentPlus(R), 99%, AKOS000119034, CS-W019962, DB02175, ACIDE PROPANEDIOÏQUE Acide carboxyacétique (Acide malonique), NCGC00248681-01, NCGC00258088-01, BP-11453, CAS-141-82-2, SY001875, Acide carboxyacétique (Acide malonique), SAJ première qualité, >=99.0%, FT-0628127, FT-0628128, FT-0690260, FT-0693474, M0028, NS00013842, EN300-18457, Acide carboxyacétique (acide malonique), qualité réactif Vetec(TM), 98 %, C00383, C02028, C04025, Q421972, J-521669, Z57965450, F1908-0177, Acide carboxyacétique (acide malonique), matériau de référence certifié, TraceCERT(R), 592A9849-68C3-4635-AA3D-CBC44965EA3A, acide carboxyacétique (acide malonique), qualité sublimée, >=99,95 % à base de métaux traces, ACIDE DICARBOXYLIQUE C3 ; ACIDE PROPANEDIOLIQUE ; ACIDE MÉTHANEDICARBOXYLIQUE, InChI=1/C3H4O4/c4-2(5)1-3(6)7/h1H2,(H,4,5)(H,6,7, Acide carboxyacétique (acide malonique), anhydre, à écoulement libre, Redi-Dri(TM), ReagentPlus(R), 99%, LML.

L'acide carboxyacétique (acide malonique), également connu sous le nom d'acide propanedioïque, est un acide dicarboxylique de structure CH2 (COOH)2.
L'acide carboxyacétique (acide malonique) a trois types de formes cristallines, dont deux sont tricliniques et une est monoclinique.
Ce cristallisé à partir de l'éthanol est constitué de cristaux tricliniques blancs.

L'acide carboxyacétique (acide malonique) se décompose en acide acétique et en dioxyde de carbone à 140 °C.
L'acide carboxyacétique (acide malonique) ne se décompose pas sous vide à 1,067×103~1,333×103Pa sous vide, mais se sublime directement.
La forme ionisée de l'acide carboxyacétique (acide malonique), ainsi que ses esters et sels, sont connus sous le nom de malonates.

Par exemple, le malonate de diéthyle est l'ester éthylique de l'acide carboxyacétique (acide malonique).
Le nom vient du latin malum, qui signifie pomme.
L'acide carboxyacétique (acide malonique) est un solide cristallin blanc qui se décompose à environ 135 °C.

L'acide carboxyacétique (acide malonique) a une solubilité élevée dans l'eau et les solvants oxygénés et présente une acidité supérieure à celle de l'acide acétique, qui a une valeur pK de 4,75.
Les valeurs de pKa pour la perte de ses premier et deuxième protons sont respectivement de 2,83 et 5,69.
L'acide carboxyacétique (acide malonique) est légèrement soluble dans la pyridine.

L'acide carboxyacétique (acide malonique) peut se décomposer en acide formique et en dioxyde de carbone dans le cas du permanganate de potassium.
Étant donné que l'acide carboxyacétique (acide malonique) génère du dioxyde de carbone et de l'eau après chauffage sans problèmes de pollution, il peut être directement utilisé comme agent de traitement de surface de l'aluminium.
L'acide carboxyacétique (acide malonique) est un acide dicarboxylique appartenant à la famille des acides carboxyliques.

L'acide carboxyacétique (acide malonique) contient deux groupes fonctionnels de l'acide carboxylique.
Habituellement, un acide carboxyacétique (acide malonique) présente le même comportement chimique que les acides monocarboxyliques.
Cela se produit naturellement dans certains fruits.

L'acide carboxyacétique (acide malonique), est un acide dicarboxylique de formule chimique CH₂(COOH)₂.
L'acide carboxyacétique (acide malonique) est un composé contenant deux groupes fonctionnels de l'acide carboxylique (-COOH) attachés à un atome de carbone central.
L'acide carboxyacétique (acide malonique) est remarquable pour son utilisation en chimie organique, en particulier dans la préparation de certains produits chimiques par une série de réactions connues sous le nom de synthèse d'esters maloniques.

Dans cette synthèse, le diester de l'acide carboxyacétique (acide malonique) est souvent utilisé comme matière première pour introduire une unité à deux atomes de carbone dans une molécule.
L'acide carboxyacétique (acide malonique) est un acide alpha,oméga-dicarboxylique dans lequel les deux groupes carboxy sont séparés par un seul groupe méthylène.
L'acide carboxyacétique (acide malonique) joue un rôle de métabolite humain.

L'acide carboxyacétique (acide malonique) est un acide conjugué d'un malonate(1-).
L'acide carboxyacétique (acide malonique) est un composé organique naturellement présent dans certains fruits.
Les fruits produits en agriculture biologique ont des concentrations plus élevées d'acide carboxyacétique (acide malonique) que ceux générés par les pratiques agricoles conventionnelles.

L'acide carboxyacétique (acide malonique) se trouve souvent dans certains agrumes et légumes.
L'acide carboxyacétique (acide malonique) est un composant des aliments, il est présent chez les animaux, y compris les humains.
L'acide carboxyacétique (acide malonique) est un acide dicarboxylique de structure CH2 (COOH)2.

La forme ionisée de l'acide carboxyacétique (acide malonique), ainsi que ses esters et sels, sont connus sous le nom de malonates.
Par exemple, le malonate de diéthyle est l'ester diéthylique de l'acide carboxyacétique (acide malonique).
Le nom provient du mot grec μᾶλον (malon) qui signifie « pomme ».

L'acide carboxyacétique (acide malonique) est une substance naturelle présente dans de nombreux fruits et légumes.
Il est suggéré que les agrumes produits en agriculture biologique contiennent des niveaux plus élevés d'acide carboxyacétique (acide malonique) que les fruits produits en agriculture conventionnelle.
L'acide carboxyacétique (acide malonique), également connu sous le nom de malonate ou H2MALO, appartient à la classe des composés organiques connus sous le nom d'acides dicarboxyliques et de dérivés.

Ce sont des composés organiques contenant exactement deux groupes d'acide carboxylique.
L'acide carboxyacétique (acide malonique) est une molécule très hydrophobe, pratiquement insoluble (dans l'eau), et relativement neutre.
L'acide carboxyacétique (acide malonique) existe chez toutes les espèces vivantes, allant des bactéries aux humains.

Chez l'homme, l'acide carboxyacétique (acide malonique) participe à un certain nombre de réactions enzymatiques.
En particulier, l'acide carboxyacétique (acide malonique) et l'acide acétique peuvent être convertis en acide acétoacétique ; qui est médié par l'enzyme acide gras synthase.
De plus, l'acide carboxyacétique (acide malonique) et la coenzyme A peuvent être biosynthétisés à partir du malonyl-CoA grâce à son interaction avec l'enzyme acide gras synthase.

Un acide carboxyacétique (acide malonique) dans lequel les deux groupes carboxy sont séparés par un seul groupe méthylène.
Chez l'homme, l'acide carboxyacétique (acide malonique) est impliqué dans la biosynthèse des acides gras.
En dehors du corps humain, l'acide carboxyacétique (acide malonique) a été détecté, mais non quantifié, dans plusieurs aliments différents, tels que les betteraves rouges, les maïs, les haricots écarlates, les betteraves communes et les laits de vache.

Cela pourrait faire de l'acide carboxyacétique (acide malonique) un biomarqueur potentiel pour la consommation de ces aliments.
L'acide carboxyacétique (acide malonique), en ce qui concerne l'homme, s'est avéré associé à plusieurs maladies telles que l'œsophagite à éosinophiles, l'acide malonique et méthylcarboxyacétique combiné (acide malonique) et la prééclampsie précoce ; L'acide carboxyacétique (acide malonique) a également été lié au trouble métabolique inné du déficit en malonyl-coa décarboxylase.
L'acide carboxyacétique (acide malonique) est un solide cristallin blanc à température ambiante et est soluble dans l'eau.

L'acide carboxyacétique (acide malonique) a été utilisé dans diverses réactions chimiques et synthèses organiques en raison de sa capacité à agir comme un élément de base polyvalent pour l'introduction de groupes d'acide carboxylique dans les molécules organiques.
La synthèse de l'acide carboxyacétique (acide malonique) est utilisée pour synthétiser des dérivés de l'acide carboxylique en créant un acide acétique substitué.
La synthèse de l'acide carboxyacétique (acide malonique) est une méthode utilisée en chimie organique pour synthétiser des dérivés de l'acide carboxylique.

L'acide carboxyacétique (acide malonique) implique l'alkylation et l'hydrolyse acide subséquente d'un ester malonique pour créer un acide acétique substitué.
Le procédé tire son nom du réactif acide carboxyacétique (acide malonique), qui est utilisé comme matière première dans la réaction.
La première étape de la synthèse de l'acide carboxyacétique (acide malonique) est la déprotonation de l'ester malonique.

Ceci est réalisé en traitant l'ester avec une base forte, généralement de l'éthoxyde de sodium.
Il en résulte la formation d'un ion énolate, qui est une espèce très réactive.
L'ion énolate subit ensuite une alkylation.

Cela implique la réaction de l'ion énolate avec un halogénure d'alkyle, entraînant la substitution d'un atome d'hydrogène sur l'acide carboxyacétique (acide malonique) par un groupe alkyle.
Cette étape peut être répétée pour introduire deux groupes alkyle sur l'ester malonique.
La dernière étape de la synthèse de l'ester malonique est l'hydrolyse acide et la décarboxylation de l'ester malonique alkylé.

Cela implique de traiter l'ester avec un acide, généralement de l'acide chlorhydrique, et de le chauffer.
Il en résulte la perte d'une molécule de dioxyde de carbone et la formation d'un acide acétique substitué.
La synthèse de l'acide carboxyacétique (acide malonique) est une méthode polyvalente pour la synthèse de dérivés de l'acide carboxylique.

L'acide carboxyacétique (acide malonique) permet l'introduction d'une large gamme de groupes alkyle sur la molécule d'acide acétique, fournissant une méthode pour la synthèse d'une large gamme de dérivés de l'acide carboxylique.
Les conditions de réaction sont relativement douces, et les réactifs et les matières premières sont facilement disponibles, ce qui en fait une méthode pratique pour la synthèse de dérivés de l'acide carboxylique.
L'acide carboxyacétique (acide malonique) est le sel de sodium, qui réagit ensuite avec le cyanure de sodium pour fournir le sel de sodium de l'acide cyanoacétique via une substitution nucléophile.

Le groupe nitrile peut être hydrolysé avec de l'hydroxyde de sodium en malonate de sodium, et l'acidification permet d'obtenir de l'acide carboxyacétique (acide malonique).
Industriellement, cependant, l'acide carboxyacétique (acide malonique) est produit par hydrolyse du malonate de diméthyle ou du malonate de diéthyle.
L'acide carboxyacétique (acide malonique) a également été produit par fermentation du glucose.

L'acide carboxyacétique (acide malonique) est un acide dicarboxylique de formule chimique C3H4O4.
Les acides dicarboxyliques sont des composés organiques contenant deux groupes fonctionnels de l'acide carboxylique.
Les acides dicarboxyliques présentent généralement le même comportement chimique et la même réactivité que les acides monocarboxyliques.

L'acide carboxyacétique (acide malonique) est une substance présente dans certains fruits qui se produit naturellement.
Les fruits générés en agriculture biologique contiennent des concentrations plus élevées d'acide carboxyacétique (acide malonique) dans les agrumes par rapport aux fruits générés en agriculture conventionnelle.
L'acide carboxyacétique (acide malonique) est un composant normal de l'urine humaine, en petites quantités, mais une maladie génétique appelée acide méthyl carboxyacétique (acide malonique) (également connue sous le nom d'acide carboxyacétique (acide malonique) provoque des niveaux élevés d'acide méthyl carboxyacétique (acide malonique) dans le sérum sanguin et l'urine.

Les patients atteints de ce trouble souffrent d'acidose métabolique sévère et d'un blocage métabolique dans la conversion dépendante de la vitamine B12 du propionyl CoA en succinyl CoA.
Chez les nourrissons, les symptômes peuvent inclure un retard de développement, une cardiomyopathie, un retard mental et, dans ses formes les plus graves, la mort néonatale.
Le sel de calcium de l'acide carboxyacétique (acide malonique) est présent en forte concentration dans la betterave.

L'acide carboxyacétique (acide malonique) existe à l'état normal sous forme de cristaux blancs.
L'acide carboxyacétique (acide malonique) est l'exemple classique d'inhibiteur compétitif : il agit contre la succinate déshydrogénase (complexe II) dans la chaîne de transport d'électrons respiratoires.
L'acide carboxyacétique (acide malonique) réagit comme un acide carboxylique typique : formant des dérivés d'amide, d'ester, d'anhydride et de chlorure.

L'acide carboxyacétique (acide malonique) peut être utilisé comme intermédiaire aux dérivés mono-ester ou amide, tandis que le chlorure de malonyle est le plus utile pour obtenir des diesters ou des diamides.
Dans une réaction bien connue, l'acide carboxyacétique (acide malonique) se condense avec l'urée pour former de l'acide barbiturique.
L'acide carboxyacétique (acide malonique) peut également être condensé avec de l'acétone pour former l'acide de Meldrum, un intermédiaire polyvalent dans les transformations ultérieures.

Les esters de l'acide carboxyacétique (acide malonique) sont également utilisés comme synthon −CH2COOH dans la synthèse des esters maloniques.
L'acide carboxyacétique (acide malonique), également appelé acide propanedioïque, (HO2CCH2CO2H), un acide organique dibasique dont l'ester diéthylique est utilisé dans les synthèses de vitamines B1 et B6, de barbituriques et de nombreux autres composés précieux.
L'acide carboxyacétique (acide malonique) lui-même est plutôt instable et a peu d'applications.

Le sel de calcium de l'acide carboxyacétique (acide malonique) est présent dans la betterave, mais l'acide carboxyacétique (acide malonique) est généralement préparé par hydrolyse du malonate de diéthyle.
L'acide carboxyacétique (acide malonique) subit les réactions habituelles des acides carboxyliques ainsi qu'un clivage facile en acide acétique et en dioxyde de carbone.
L'acide carboxyacétique (acide malonique), également appelé ester malonique, est préparé par la réaction de l'alcool éthylique avec l'acide cyanoacétique.

L'utilité de l'acide carboxyacétique (acide malonique) dans la synthèse provient de la réactivité du groupe méthylène (CH2) de l'acide carboxyacétique (acide malonique) ; Un atome d'hydrogène est facilement éliminé par l'éthoxyde de sodium ou une autre base forte, et le dérivé résultant réagit facilement avec un halogénure d'alkyle pour former un alkylmalonate de diéthyle.
Un deuxième groupe alkyle peut être introduit de la même manière.
Les dialkylmalonates de diéthyle sont convertis par réaction avec l'urée en barbituriques.

L'acide carboxyacétique (acide malonique) est un liquide incolore et parfumé qui bout à 181,4 °C.
L'acide carboxyacétique (acide malonique) est le substrat de départ de la synthèse des acides gras mitochondriaux (mtFASII), dans laquelle il est converti en malonyl-CoA par la malonyl-CoA synthétase (ACSF3).
De plus, le dérivé de la coenzyme A du malonate, le malonyl-CoA, est un précurseur important dans la biosynthèse des acides gras cytosoliques avec l'acétyl CoA.

Le malonyl CoA y est formé à partir de l'acétyl CoA par l'action de l'acétyl-CoA carboxylase, et le malonate est transféré à une protéine porteuse d'acyle pour être ajouté à une chaîne d'acides gras.
Le groupe fonctionnel carboxyle qui caractérise les acides carboxyliques est inhabituel en ce sens qu'il est composé de deux groupes fonctionnels décrits plus haut dans ce texte.
Comme on peut le voir dans la formule de droite, le groupe carboxyle est constitué d'un groupe hydroxyle lié à un groupe carbonyle.

L'acide carboxyacétique (acide malonique) est souvent écrit sous forme condensée sous la forme –CO2H ou –COOH.
D'autres combinaisons de groupes fonctionnels ont été décrites précédemment, et des changements significatifs dans le comportement chimique à la suite d'interactions de groupe ont été décrits (par exemple, le phénol et l'aniline).
Dans ce cas, le changement des propriétés chimiques et physiques résultant de l'interaction du groupe hydroxyle et carbonyle est si profond que la combinaison est habituellement traitée comme un groupe fonctionnel distinct et différent.

L'acide carboxyacétique (acide malonique), anciennement l'acide propanedioïque, est le deuxième plus petit acide dicarboxylique aliphatique. (L'acide oxalique est le plus petit.)
L'acide carboxyacétique (acide malonique) ne doit pas être confondu avec l'acide malique ou maléique, qui contiennent tous deux également deux carboxyles.
L'acide carboxyacétique (acide malonique) est un solide cristallin blanc avec un point de décomposition de ≈135 °C.

L'acide carboxyacétique (acide malonique) est très soluble dans l'eau et les solvants oxygénés.
L'acide carboxyacétique (acide malonique) est un précurseur des polyesters spéciaux ; L'acide carboxyacétique (acide malonique) est utilisé dans la fabrication de barbituriques, de revêtements et de récipients biodégradables ; et l'acide carboxyacétique (acide malonique) est même un composant des adhésifs chirurgicaux.
L'acide carboxyacétique (acide malonique) (nom systématique IUPAC : acide propanedioïque) est un acide dicarboxylique de structure CH₂(COOH)₂.

La forme ionisée de l'acide carboxyacétique (acide malonique), ainsi que ses esters et sels, sont connus sous le nom de malonates.
Par exemple, le malonate de diéthyle est l'ester diéthylique de l'acide carboxyacétique (acide malonique).
L'acide carboxyacétique (acide malonique) est un acide dicarboxylique de formule chimique C3H4O4.

L'acide carboxyacétique (acide malonique) est un composé organique contenant deux groupes fonctionnels de l'acide carboxylique.
L'acide carboxyacétique (acide malonique) présente généralement le même comportement chimique et la même réactivité que les acides monocarboxyliques.

L'acide carboxyacétique (acide malonique) est une substance présente dans certains fruits qui se produit naturellement.
Les fruits issus de l'agriculture biologique contiennent des concentrations plus élevées d'acide carboxyacétique (acide malonique) dans les agrumes que les fruits issus de l'agriculture conventionnelle

Point de fusion : 132-135 °C (déc.) (lit.)
Point d'ébullition : 140°C (décomposition)
Densité : 1.619 g/cm3 à 25 °C
pression de vapeur : 0-0,2 Pa à 25 °C
Indice de réfraction : 1.4780
Point d'éclair : 157°C
température de stockage : scellé à sec, température ambiante
solubilité : 1 M NaOH : soluble100mg/mL, limpide à légèrement trouble, incolore à légèrement jaune
pka : 2,83 (à 25 °C)
forme : Liquide
couleur : Blanc
PH : 3,17 (solution de 1 mM) ; 2,5 (solution de 10 mM) ; 1,94 (solution de 100 mM)
Solubilité dans l'eau : 1400 g/L (20 ºC)
Merck : 14 5710
BRN : 1751370
Stabilité : Stable. Incompatible avec les agents oxydants, les agents réducteurs, les bases.
InChIKey : OFOBLEOULBTSOW-UHFFFAOYSA-N
LogP : -0,81

L'acide carboxyacétique (acide malonique) se condense avec l'urée pour former de l'acide barbiturique.
L'acide carboxyacétique (acide malonique) est également fréquemment utilisé comme énolate dans les condensations de Knoevenagel ou condensé avec de l'acétone pour former l'acide de Meldrum.
Les esters de l'acide carboxyacétique (acide malonique) sont également utilisés comme synthon CH2COOH dans la synthèse des esters maloniques.

L'acide carboxyacétique (acide malonique) est l'exemple classique d'un inhibiteur compétitif de l'enzyme succinate déshydrogénase (complexe II), dans la chaîne de transport d'électrons respiratoires.
L'acide carboxyacétique (acide malonique) se lie au site actif de l'enzyme sans réagir, en concurrence avec le succinate de substrat habituel mais dépourvu du groupe CH2CH2 nécessaire à la déshydrogénation.
Cette observation a permis de déduire la structure du site actif dans la succinate déshydrogénase.

L'acide carboxyacétique (acide malonique) donne des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, à la fois organiques (par exemple, les amines) et inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent de l'évolution de quantités importantes de chaleur.

La neutralisation entre un acide et une base produit de l'eau et un sel.
L'acide carboxyacétique (acide malonique) avec six atomes de carbone ou moins est librement ou modérément soluble dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l'eau.
L'acide carboxyacétique soluble (acide malonique) se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.

Le pH des solutions d'acide carboxyacétique (acide malonique) est donc inférieur à 7,0. De nombreux acides carboxyliques insolubles réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.
L'acide carboxyacétique (acide malonique) en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent également en principe pour l'acide carboxyacétique solide (acide malonique), mais sont lentes si l'acide solide reste sec.

Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d'eau de l'air et se dissoudre suffisamment dans l'acide carboxyacétique (acide malonique) pour corroder ou dissoudre les pièces et les récipients en fer, en acier et en aluminium.
L'acide carboxyacétique (acide malonique), comme les autres acides, réagit avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.

Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Les gaz et la chaleur inflammables et/ou toxiques sont générés par la réaction de l'acide carboxyacétique (acide malonique) avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.
L'acide carboxyacétique (acide malonique), en particulier en solution aqueuse, réagit également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et les bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais toujours de la chaleur.
Comme d'autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants forts et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.

Une grande variété de produits est possible.
Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme d'autres acides, ils catalysent souvent (augmentent le taux de) réactions chimiques L'acide carboxyacétique (acide malonique) est incompatible avec les oxydants forts.
L'acide carboxyacétique (acide malonique) est également incompatible avec les bases et les agents réducteurs.

Acide carboxyacétique (acide malonique), (HO2CCH2CO2H), un acide organique dibasique dont l'ester diéthylique est utilisé dans les synthèses de vitamines B1 et B6, de barbituriques et de nombreux autres composés précieux.
L'acide carboxyacétique (acide malonique) lui-même est plutôt instable et a peu d'applications.
L'acide carboxyacétique (acide malonique) est un sel de calcium présent dans la betterave, mais l'acide lui-même est généralement préparé par hydrolyse du malonate de diéthyle.

L'acide carboxyacétique (acide malonique) subit les réactions habituelles des acides carboxyliques ainsi qu'un clivage facile en acide acétique et en dioxyde de carbone.
L'acide carboxyacétique (acide malonique), également appelé ester malonique, est préparé par la réaction de l'alcool éthylique avec l'acide cyanoacétique.
L'acide carboxyacétique (acide malonique) est utile dans la synthèse provient de la réactivité de son groupe méthylène (CH2) ; Un atome d'hydrogène est facilement éliminé par l'éthoxyde de sodium ou une autre base forte, et le dérivé résultant réagit facilement avec un halogénure d'alkyle pour former un alkylmalonate de diéthyle.

Un deuxième groupe alkyle peut être introduit de la même manière.
Les dialkylmalonates de diéthyle sont convertis par réaction avec l'urée en barbituriques.
L'acide carboxyacétique (acide malonique) est un liquide incolore et parfumé qui bout à 181,4 °C.

La structure a été déterminée par cristallographie aux rayons X et de nombreuses données sur les propriétés, y compris pour la thermochimie en phase condensée, sont disponibles auprès du National Institute of Standards and Technology.
Une préparation classique d'acide carboxyacétique (acide malonique) commence à partir de l'acide chloroacétique[9] :
L'acide carboxyacétique (acide malonique) est l'exemple classique d'un inhibiteur compétitif de l'enzyme succinate déshydrogénase (complexe II), dans la chaîne de transport d'électrons respiratoires.

L'acide carboxyacétique (acide malonique) se lie au site actif de l'enzyme sans réagir, en concurrence avec le succinate de substrat habituel mais dépourvu du groupe −CH2CH2− requis pour la déshydrogénation.
Cette observation a permis de déduire la structure du site actif dans la succinate déshydrogénase.
L'inhibition de cette enzyme diminue la respiration cellulaire

Étant donné que l'acide carboxyacétique (acide malonique) est un composant naturel de nombreux aliments, il est présent chez les mammifères, y compris les humains.
L'acide carboxyacétique (acide malonique) est également connu sous le nom d'acide propanedioïque ou dicarboxyméthane.
Le nom est dérivé d'un mot grec Malon qui signifie pomme.

Les malonates sont la forme ionisée de l'acide carboxyacétique (acide malonique), ainsi que de ses esters et sels.
L'acide carboxyacétique (acide malonique) se présente sous la forme d'un cristal blanc ou d'une poudre cristalline.
L'acide carboxyacétique (acide malonique) se dissout dans l'alcool, la pyridine et l'éther.

L'acide carboxyacétique (acide malonique) a été préparé pour la première fois en 1858 par le chimiste français Victor Dessaignes par oxydation de l'acide malique.
L'acide carboxyacétique (acide malonique) se trouve dans certains fruits, à savoir les agrumes.
La quantité d'acide carboxyacétique (acide malonique) produite à partir de fruits issus de l'agriculture biologique est supérieure à celle des fruits cultivés en agriculture conventionnelle.

L'acide carboxyacétique (acide malonique) peut être produit par la fermentation du glucose.
De plus, l'acide carboxyacétique (acide malonique) et la coenzyme A peuvent être biosynthétisés à partir du malonyl-CoA grâce à l'interaction de l'acide carboxyacétique (acide malonique) avec l'enzyme acide gras synthase.
domaine malonyl/acétyl transférase.
Un acide carboxyacétique (acide malonique) dans lequel les deux groupes carboxy sont séparés par un seul groupe méthylène.

Chez l'homme, l'acide carboxyacétique (acide malonique) est impliqué dans la biosynthèse des acides gras.
En dehors du corps humain, l'acide carboxyacétique (acide malonique) a été détecté, mais non quantifié, dans plusieurs aliments différents, tels que les betteraves rouges, les maïs, les haricots écarlates, les betteraves communes et les laits de vache.
Cela pourrait faire de l'acide carboxyacétique (acide malonique) un biomarqueur potentiel pour la consommation de ces aliments.

L'acide carboxyacétique (acide malonique), en ce qui concerne l'homme, s'est avéré être associé à plusieurs maladies telles que l'œsophagite à éosinophiles, l'acide malonique et l'acide méthylcarboxyacétique combinés
Acide carboxyacétique (acide malonique) et prééclampsie précoce ; L'acide carboxyacétique (acide malonique) a également été lié au trouble métabolique inné du déficit en malonyl-coa décarboxylase.
L'acide carboxyacétique (acide malonique) est un acide dicarboxylique de formule structurelle CH2 (COOH) 2 et de formule chimique C3H4O4.

Le nom acide carboxyacétique (acide malonique) provient du mot « Malon » qui signifie « pomme » en grec.
L'acide méthane carboxyacétique (acide malonique) est un autre nom pour l'acide carboxyacétique (acide malonique).
L'ester et les sels de l'acide carboxyacétique (acide malonique) sont appelés malonates.

L'acide carboxyacétique (acide malonique) a des réactions organiques similaires à celles de l'acide monocarboxylique où se forment des dérivés d'amide, d'ester, d'anhydride et de chlorure.
Enfin, le malonate d'ester malonique en tant que dérivé de la coenzyme A malonyl CoA qui est un précurseur aussi important que l'acétyl CoA dans la biosynthèse des acides gras

Préparation:
L'acide carboxyacétique (acide malonique) est généralement produit à partir de l'acide chloroacétique.
Réaction : L'acide carboxyacétique (acide malonique) est ajouté à la bouilloire de réaction en ajoutant une solution aqueuse de carbonate de sodium pour générer une solution aqueuse de chloroacétate de sodium, puis une solution de cyanure de sodium à 30% est lentement ajoutée goutte à goutte, et la réaction est effectuée à une température prédéterminée pour générer du cyanoacétate de sodium.
Une fois la réaction de cyanation terminée, ajoutez de l'hydroxyde de sodium pour le chauffage et l'hydrolyse pour générer une solution de malonate de sodium, concentrez, puis ajoutez goutte à goutte de l'acide sulfurique pour l'acidification afin de générer de l'acide carboxyacétique (acide malonique), filtrez et séchez pour obtenir le produit.

Souvent, cette méthode ne permet pas d'obtenir un produit suffisamment pur ou le produit pur a un rendement extrêmement faible.
Industriellement, l'acide carboxyacétique (acide malonique) est également produit par hydrolyse du malonate de diméthyle ou du malonate de diéthyle.
Cette méthode de fabrication est capable d'obtenir un rendement et une pureté plus élevés, mais la synthèse organique de l'acide carboxyacétique (acide malonique) par ces procédés est extrêmement coûteuse et dangereuse pour l'environnement.

Utilise:
L'acide carboxyacétique (acide malonique) est utilisé comme intermédiaire dans la fabrication de barbituriques et d'autres produits pharmaceutiques.
L'acide carboxyacétique (acide malonique) est un composant utilisé comme stabilisateur dans de nombreux produits cosmétiques et pharmaceutiques haut de gamme. L'acide carboxyacétique (acide malonique) est également utilisé comme élément constitutif de la synthèse chimique, en particulier pour introduire le groupe moléculaire -CH2-COOH.
L'acide carboxyacétique (acide malonique) est utilisé pour l'introduction d'une fraction acide acétique dans des conditions douces par condensation de Knoevenagel et décarboxylation ultérieure.

L'acide carboxyacétique (acide malonique) agit comme un élément constitutif de la synthèse organique.
L'acide carboxyacétique (acide malonique) est également utile comme précurseur pour les polyesters et les résines alkydes, qui est utilisé dans les applications de revêtement, protégeant ainsi contre les rayons UV, la corrosion et l'oxydation.
L'acide carboxyacétique (acide malonique) agit comme agent de réticulation dans l'industrie du revêtement et des adhésifs chirurgicaux.

L'acide carboxyacétique (acide malonique) trouve une application dans la production de produits chimiques spécialisés, d'arômes et de parfums, de réticulants polymères et de produits pharmaceutiques.
L'acide carboxyacétique (acide malonique) est un précurseur des polyesters spéciaux.
L'acide carboxyacétique (acide malonique) peut être converti en 1,3-propanediol pour une utilisation dans les polyesters et les polymères (dont l'utilité n'est cependant pas claire).

L'acide carboxyacétique (acide malonique) peut également être un composant des résines alkydes, qui sont utilisées dans un certain nombre d'applications de revêtements pour protéger contre les dommages causés par la lumière UV, l'oxydation et la corrosion.
L'une des applications de l'acide carboxyacétique (acide malonique) est dans l'industrie des revêtements en tant que réticulant pour les revêtements en poudre durcis à basse température, qui deviennent de plus en plus précieux pour les substrats sensibles à la chaleur et le désir d'accélérer le processus de revêtement.
Le marché mondial des revêtements pour automobiles était estimé à 18,59 milliards de dollars en 2014, avec un taux de croissance annuel combiné prévu de 5,1 % jusqu'en 2022.

L'acide carboxyacétique (acide malonique) est utilisé dans un certain nombre de processus de fabrication en tant que produit chimique spécialisé de grande valeur, notamment l'industrie électronique, l'industrie des arômes et des parfums, les solvants spécialisés, la réticulation des polymères et l'industrie pharmaceutique.
En 2004, la production mondiale annuelle d'acide carboxyacétique (acide malonique) et de diesters apparentés s'élevait à plus de 20 000 tonnes métriques.
La croissance potentielle de ces marchés pourrait résulter des progrès de la biotechnologie industrielle qui cherche à remplacer les produits chimiques à base de pétrole dans les applications industrielles.

En 2004, l'acide carboxyacétique (acide malonique) a été classé par le ministère américain de l'Énergie comme l'un des 30 principaux produits chimiques à produire à partir de la biomasse.
Dans les applications alimentaires et pharmaceutiques, l'acide carboxyacétique (acide malonique) peut être utilisé pour contrôler l'acidité, soit comme excipient dans la formulation pharmaceutique, soit comme additif conservateur naturel pour les aliments.
L'acide carboxyacétique (acide malonique) est utilisé comme produit chimique de base pour produire de nombreux composés précieux, notamment les composés aromatiques et parfumés gamma-nonalactone, l'acide cinnamique et le composé pharmaceutique valproate.

L'acide carboxyacétique (acide malonique) (jusqu'à 37,5 % p/p) a été utilisé pour réticuler les amidons de maïs et de pomme de terre afin de produire un thermoplastique biodégradable ; Le processus est effectué dans l'eau à l'aide de catalyseurs non toxiques.
Les polymères à base d'amidon représentaient 38 % du marché mondial des polymères biodégradables en 2014, les emballages alimentaires, les emballages en mousse et les sacs de compost étant les principaux segments d'utilisation finale.
L'acide carboxyacétique (acide malonique) est un composant clé dans la synthèse de l'ester malonique, une méthode polyvalente pour introduire une unité à deux atomes de carbone dans une molécule.

Le diester dérivé de l'acide carboxyacétique (acide malonique) peut subir des réactions de substitution nucléophile, fournissant une voie pour la synthèse de divers composés organiques.
L'acide carboxyacétique (acide malonique) peut agir comme un acide dibasique faible, formant des sels et des esters.
L'acide carboxyacétique (acide malonique) est un protons acide, ce qui le rend adapté aux réactions impliquant la chimie acido-basique.

La synthèse d'esters maloniques est largement utilisée dans l'industrie pharmaceutique pour la synthèse d'intermédiaires qui sont ensuite transformés en divers médicaments.
Cela inclut la préparation de barbituriques et d'autres composés pharmaceutiques.
L'acide carboxyacétique (acide malonique) peut être utilisé comme indicateur dans certaines méthodes de chimie analytique, en particulier dans les titrages impliquant des acides et des bases faibles.

Formation de complexes métalliques : L'acide carboxyacétique (acide malonique) peut former des complexes avec divers ions métalliques.
Ces complexes peuvent avoir des applications en catalyse et dans d'autres procédés chimiques.
Les dérivés de l'acide carboxyacétique (acide malonique) sont utilisés dans l'industrie des arômes et des parfums pour synthétiser des composés aromatiques.

Ces composés contribuent aux odeurs et aux goûts caractéristiques de certains aliments, boissons et parfums.
L'acide carboxyacétique (acide malonique) est souvent utilisé dans la synthèse des pyrazoles, une classe de composés ayant diverses applications, notamment en tant que produits pharmaceutiques et agrochimiques.
Les dérivés de l'acide carboxyacétique (acide malonique) sont précieux en synthèse organique pour la préparation d'une variété de composés, tels que les acides acétiques, les acides céto et les acides aminés.

Les dérivés de l'acide carboxyacétique (acide malonique) trouvent une application dans l'industrie des colorants, où ils sont utilisés dans la synthèse de certains colorants et pigments.
L'acide carboxyacétique (acide malonique) a été utilisé dans la préparation de produits chimiques utilisés dans les processus de développement photographique.
L'acide carboxyacétique (acide malonique) et ses dérivés sont couramment utilisés dans les laboratoires de recherche pour la synthèse organique et comme éléments constitutifs pour la construction de molécules plus complexes.

Les dérivés de l'acide carboxyacétique (acide malonique) peuvent être utilisés dans certaines réactions de polymérisation, contribuant ainsi à la production de polymères aux propriétés spécifiques.
L'acide carboxyacétique (acide malonique) peut être utilisé comme tampon dans certaines applications chimiques et biologiques en raison de sa capacité à maintenir un pH stable.
L'acide carboxyacétique (acide malonique) est utilisé dans certains procédés de galvanoplastie comme agent complexant pour certains ions métalliques, aidant au dépôt de revêtements métalliques.

Les dérivés de l'acide carboxyacétique (acide malonique) sont couramment utilisés dans le développement de nouvelles méthodologies de synthèse et l'exploration des mécanismes de réaction organique dans les milieux de recherche.
L'acide carboxyacétique (acide malonique) et ses dérivés sont utilisés dans la synthèse de produits chimiques spécialisés, dont certains trouvent des applications dans des procédés industriels uniques.
L'acide carboxyacétique (acide malonique) peut être utilisé dans certaines analyses et expériences chimiques, servant de réactif ou de matière première dans les procédures de laboratoire.

Certaines études suggèrent que l'acide carboxyacétique (acide malonique) pourrait avoir des propriétés antioxydantes, ce qui pourrait avoir des applications potentielles dans la recherche liée à la santé.
L'acide carboxyacétique (acide malonique) est un précurseur de divers sels de malonate, qui ont des applications dans différentes industries, y compris la production de certains agents de nettoyage et détergents.

Profil d'innocuité :
L'acide carboxyacétique (acide malonique) peut provoquer une irritation de la peau, des yeux et des muqueuses.
L'acide carboxyacétique (acide malonique) est conseillé d'utiliser un équipement de protection individuelle approprié, tel que des gants et des lunettes de sécurité, lors de la manipulation de ce composé.
L'ingestion ou l'inhalation d'acide carboxyacétique (acide malonique) peut être nocive.

L'acide carboxyacétique (acide malonique) est important pour éviter ces voies d'exposition. L'ingestion peut entraîner une irritation du tractus gastro-intestinal.
L'acide carboxyacétique (acide malonique) n'est pas combustible en soi, mais il peut émettre des fumées irritantes ou toxiques lorsqu'il est chauffé.
L'acide carboxyacétique (acide malonique) doit être stocké à l'écart des sources de chaleur et des flammes nues.

Bien que l'acide carboxyacétique (acide malonique) soit lui-même biodégradable, ses dérivés et sous-produits peuvent avoir des impacts environnementaux différents.
Des pratiques d'élimination appropriées doivent être suivies pour minimiser tout dommage potentiel à l'environnement.


ACIDE CHROMIQUE
L'acide chromique est un acide inorganique composé des éléments chrome, oxygène et hydrogène.
L'acide chromique est une poudre solide rouge violacé foncé, inodore et semblable à du sable.
Lorsqu'il est dissous dans l'eau, l'acide chromique est un acide fort.

CAS : 7738-94-5
FM : H2CrO4
MW : 118,01
EINECS : 231-801-5

L'acide chromique fait généralement référence à un ensemble de composés générés par l'acidification de solutions contenant des anions chromate et dichromate ou par la dissolution du trioxyde de chrome dans l'acide sulfurique.
L'acide chromique contient du chrome hexavalent.
Le chrome hexavalent fait référence au chrome à l'état d'oxydation +6 et est plus toxique que les autres états d'oxydation de l'atome de chrome en raison de sa plus grande capacité à pénétrer dans les cellules et de son potentiel rédox plus élevé.
L'acide chromique moléculaire, H2CrO4, a beaucoup en commun avec l'acide sulfurique, H2SO4, car les deux sont classés comme acides forts.

L'acide chromique était largement utilisé dans l'industrie de la réparation d'instruments, en raison de sa capacité à « éclaircir » le laiton brut.
Un bain d’acide chromique laisse une patine jaune vif sur le laiton.
En raison de préoccupations croissantes en matière de santé et d’environnement, beaucoup ont cessé d’utiliser ce produit chimique dans leurs ateliers de réparation.
La plupart de l'acide chromique est vendu ou disponible sous forme de solution aqueuse à 10 %.

L'acide chromique, CrO3, est composé de cristaux foncés, rouge violacé, inodores, solubles dans l'eau.
La densité spécifique est de 2,7, ce qui est plus lourd que l'eau.
L'acide chromique est un puissant agent oxydant et peut exploser au contact de matières organiques.
L'acide chromique est un poison corrosif pour la peau et a une TLV de 0,05 mg/m3 d'air.
L'acide chromique est un cancérigène connu pour l'homme.
Le numéro d'identification ONU à quatre chiffres est 1463.
La désignation NFPA 704 est santé 3, inflammabilité 0 et réactivité 1.
La section blanche au bas du diamant 704 porte un préfixe « oxy », indiquant que l'acide chromique est un oxydant.
Il existe 2 types d'acide chromique : l'acide chromique moléculaire de formule H2CrO4 et l'acide dichromique de formule H2Cr2O7.

Le terme acide chromique est généralement utilisé pour désigner un mélange obtenu en ajoutant de l'acide sulfurique concentré à un dichromate, qui peut contenir divers composés, notamment du trioxyde de chrome solide.
Ce type d’acide chromique peut être utilisé comme mélange nettoyant pour le verre.
L'acide chromique peut également désigner l'espèce moléculaire H2CrO4 dont le trioxyde est l'anhydride.
L'acide chromique contient du chrome dans un état d'oxydation de +6 (ou VI).
L'acide chromique est un agent oxydant puissant et corrosif et modérément cancérigène.
L'acide chromique est un flocon ou une poudre cristalline inodore, rouge violacé foncé.

Le nom est d’usage courant, bien que le véritable acide chromique, H2CrO4, n’existe qu’en solution.
L'acide chromique est un solide rouge violacé foncé qui n'existe qu'en solution.
L'hydrate d'oxyde de chrome, l'acide chromique, est utilisé dans les bains de galvanoplastie.
L'acide chromique est soluble dans l'eau avec dégagement de chaleur.
Le matériau lui-même est incombustible, mais l'acide chromique accélère la combustion des matériaux combustibles.
La solution d'acide chromique est corrosive pour les métaux et les tissus.

Acide chromique moléculaire
L'acide chromique moléculaire, H2CrO4, a beaucoup en commun avec l'acide sulfurique, H2SO4.
Seul l’acide sulfurique peut être classé dans la liste des 7 acides forts.
En raison des lois pertinentes au concept d'« énergie d'ionisation de premier ordre », le premier proton se perd plus facilement.
L'acide chromique se comporte de manière extrêmement similaire à la déprotonation de l'acide sulfurique.
Étant donné que le processus de titrage acide-base polyvalent comporte plus d'un proton (surtout lorsque l'acide est la substance de départ et que la base est le titrant), les protons ne peuvent quitter un acide qu'un à la fois.
La première étape est donc la suivante :

H2CrO4 ⇌ [HCrO4]− + H+
Le pKa pour l’équilibre n’est pas bien caractérisé.
Les valeurs rapportées varient entre environ −0,8 et 1,6.
La valeur à force ionique nulle est difficile à déterminer car la demi-dissociation ne se produit que dans une solution très acide, à environ pH 0, c'est-à-dire avec une concentration en acide d'environ 1 mol dm−3.
Une autre complication est que l'ion [HCrO4]− a une tendance marquée à se dimériser, avec la perte d'une molécule d'eau, pour former l'ion dichromate, [Cr2O7]2− :

2 [HCrO4]− ⇌ [Cr2O7]2− + H2Olog KD = 2,05.
De plus, le dichromate peut être protoné :

[HCr2O7]− ⇌ [Cr2O7]2− + H+pK = 1,8
La valeur pK de cette réaction montre qu'elle peut être ignorée à pH > 4.

La perte du deuxième proton se produit dans la plage de pH comprise entre 4 et 8, ce qui fait de l'ion [HCrO4]− un acide faible.
L'acide chromique moléculaire pourrait en principe être fabriqué en ajoutant du trioxyde de chrome à de l'eau (cf. fabrication de l'acide sulfurique).

CrO3 + H2O ⇌ H2CrO4
mais en pratique, la réaction inverse se produit lorsque l'acide chromique moléculaire est déshydraté.
C'est ce qui se produit lorsque de l'acide sulfurique concentré est ajouté à une solution de bichromate.
Au début, la couleur passe de l'orange (bichromate) au rouge (acide chromique), puis des cristaux rouge foncé de trioxyde de chrome précipitent du mélange, sans autre changement de couleur.
Les couleurs sont dues aux transitions LMCT.
Le trioxyde de chrome est l'anhydride de l'acide chromique moléculaire.
L'acide chromique est un acide de Lewis et peut réagir avec une base de Lewis, telle que la pyridine, dans un milieu non aqueux tel que le dichlorométhane (réactif de Collins).

Propriétés chimiques de l'acide chromique
Point de fusion : 196°C
Densité : 2.290
Solubilité : Méthanol (légèrement)
Forme : Liquide
Couleur : transparent, orange.
PH : 3,03 (solution 1 mM) ; 2,33 (solution 10 mM) ; 2,06 (solution 100 mM)
Solubilité dans l'eau : TRÈS Soluble
Système d'enregistrement des substances de l'EPA : Acide chromique (VI) (7738-94-5)

Les usages
L'acide chromique est un intermédiaire dans le chromage et est également utilisé dans les émaux céramiques et le verre coloré.
Parce qu'une solution d'acide chromique dans l'acide sulfurique (également connu sous le nom de mélange sulfochromique ou acide chromosulfurique) est un puissant agent oxydant, l'acide chromique peut être utilisé pour nettoyer la verrerie de laboratoire, en particulier des résidus organiques autrement insolubles.
Cette demande a été refusée en raison de préoccupations environnementales.
De plus, l’acide laisse des traces d’ions chromiques paramagnétiques (Cr3+) qui peuvent interférer avec certaines applications, comme la spectroscopie RMN.
L'acide chromique est particulièrement le cas pour les tubes RMN.
La solution Piranha peut être utilisée pour la même tâche, sans laisser de résidus métalliques.

L'acide chromique était largement utilisé dans l'industrie de la réparation des instruments de musique, en raison de sa capacité à « éclaircir » le laiton brut.
Un bain d’acide chromique laisse une patine jaune vif sur le laiton.
En raison de préoccupations croissantes en matière de santé et d’environnement, beaucoup ont cessé d’utiliser ce produit chimique dans leurs ateliers de réparation.
L'acide chromique était utilisé dans les teintures capillaires dans les années 1940, sous le nom de Melereon.
L'acide chromique est utilisé comme agent de blanchiment dans le traitement d'inversion photographique en noir et blanc.
Produits chimiques (chromates, agents oxydants, catalyseurs), intermédiaires de chromage, médicaments (caustiques), gravure par procédé, anodisation, émaux céramiques, verre coloré, nettoyage des métaux, encres, tannage, peintures, mordant textile, agent d'attaque pour plastiques.

Réactions
L'acide chromique est capable d'oxyder de nombreux types de composés organiques et de nombreuses variantes de ce réactif ont été développées :
L'acide chromique dans l'acide sulfurique aqueux et l'acétone est connu sous le nom de réactif de Jones, qui oxydera les alcools primaires et secondaires respectivement en acides carboxyliques et en cétones, tout en affectant rarement les liaisons insaturées.
L'acide chromique est généré à partir du trioxyde de chrome et du chlorure de pyridinium.
L'acide chromique convertit les alcools primaires en aldéhydes correspondants (R – CHO).
Le réactif de Collins est un adduit de trioxyde de chrome et de pyridine utilisé pour diverses oxydations.
L'acide chromique, CrO2Cl2 est un composé moléculaire bien défini généré à partir de l'acide chromique.

Profil de réactivité
Agent oxydant très puissant, cancérigène confirmé pour l'homme.
Au contact de réactifs réducteurs, l'acide chromique peut provoquer une violente explosion, au contact de matières organiques, l'acide chromique peut provoquer une violente oxydation conduisant à une inflammation.
Dangereusement réactif avec l'acétone, les alcools, les métaux alcalins (sodium, potassium), l'ammoniac, l'arsenic, le diméthylformamide, le sulfure d'hydrogène, le phosphore, l'acide peroxyformique, la pyridine, le sélénium, le soufre et de nombreux autres produits chimiques.
Lorsqu'elle est mélangée à de l'acide sulfurique pour les opérations de nettoyage du verre, la solution utilisée en bouteille fermée peut exploser en raison de la pression interne du dioxyde de carbone résultant de la contamination par des composés carbonés.

Synonymes
ACIDE CHROMIQUE
Acide chromique (VI)
7738-94-5
dihydroxy(dioxo)chrome
Acide chromique
Caswell n ° 221
Acide chromique (H2CrO4)
acide tétraoxochromique
CCRIS 8994
HSDB 6769
UNII-SA8VOV0V7Q
SA8VOV0V7Q
EINECS231-801-5
Code chimique des pesticides EPA 021101
AI3-51760
dihydroxydioxydochrome
dihydrogène (tétraoxydochromate)
DTXSID8034455
CHEBI:33143
J34.508C
OXYDE D'HYDROXYDE DE CHROME (CR(OH)2O2)
(CrO2(OH)2)
[CrO2(OH)2]
Acide chromique [anglais]
Oxyde d'hydrogène de chrome
Code des pesticides : 021101
DTXCID6014455
KRVSOGSZCMJSLX-UHFFFAOYSA-L
AMY22327
AKOS025243247
Q422642
ACIDE CHROMIQUE
L'acide chromique est également appelé acide tétraoxochromique ou acide chromique (VI).
L'acide chromique est généralement un mélange obtenu en ajoutant de l'acide sulfurique concentré (H2SO4) à un dichromate composé d'une variété de composés et de trioxyde de chrome solide.
L'acide chromique est également utilisé dans les émaux colorés sur verre et céramique.

CAS : 7738-94-5
FM : H2CrO4
MW : 118,01
EINECS : 231-801-5

Synonymes
ACIDE CHROMIQUE;Acide chromique (VI);7738-94-5;dihydroxy(dioxo)chrome;Acide chromique;Caswell No.221;Acide chromique (H2CrO4);acide tétraoxochromique;CCRIS 8994;HSDB6769;UNII-SA8VOV0V7Q;SA8VOV0V7Q;EINECS 231-801-5 ; Code chimique des pesticides EPA 021101 ; AI3-51760 ; dihydroxydioxydochrome ; dihydrogène (tétraoxydochromate); );[CrO2(OH)2];Acide chromique [Français];Oxyde d'hydrogène de chrome;Pesticide;Code: 021101;DTXCID6014455;KRVSOGSZCMJSLX-UHFFFAOYSA-L;AMY22327;AKOS025243247;Q422642

Dans les années 1940, l’acide chromique faisait partie intégrante de plusieurs teintures capillaires.
L'acide chromique, CrO3, est composé de cristaux foncés, rouge violacé, inodores, solubles dans l'eau.
La densité spécifique est de 2,7, ce qui est plus lourd que l'eau.
L'acide chromique est un puissant agent oxydant et peut exploser au contact de matières organiques.
L'acide chromique est un poison corrosif pour la peau et a une TLV de 0,05 mg/m3 d'air.
L'acide chromique est un cancérigène connu pour l'homme.
Le numéro d'identification ONU à quatre chiffres est 1463.
La désignation NFPA 704 est santé 3, inflammabilité 0 et réactivité 1.
La section blanche au bas du diamant 704 porte un préfixe « oxy », indiquant que l'acide chromique est un oxydant.

Le nom est d’usage courant, bien que le véritable acide chromique, H2CrO4, n’existe qu’en solution.
Un acide hypothétique, H2CrO4, connu uniquement dans les sels chromates.
L'acide chromique est un solide rouge violacé foncé qui n'existe qu'en solution.
Hydrate d'oxyde de chrome, il est utilisé dans les bains de galvanoplastie.
L'acide chromique est soluble dans l'eau avec dégagement de chaleur.
Le matériau lui-même est incombustible, mais l'acide chromique accélère la combustion des matériaux combustibles.
La solution d'acide chromique est corrosive pour les métaux et les tissus.

L'acide chromique est un acide inorganique composé des éléments chrome, oxygène et hydrogène.
L'acide chromique est une poudre solide rouge violacé foncé, inodore et semblable à du sable.
Lorsqu'il est dissous dans l'eau, l'acide chromique est un acide fort.
Il existe 2 types d'acide chromique : l'acide chromique moléculaire de formule H2CrO4 et l'acide dichromique de formule H2Cr2O7.

Le terme acide chromique est généralement utilisé pour désigner un mélange obtenu en ajoutant de l'acide sulfurique concentré à un dichromate, qui peut contenir divers composés, notamment du trioxyde de chrome solide.
Ce type d’acide chromique peut être utilisé comme mélange nettoyant pour le verre.
L'acide chromique peut également désigner l'espèce moléculaire H2CrO4 dont le trioxyde est l'anhydride.
L'acide chromique contient du chrome dans un état d'oxydation de +6 (ou VI).
L'acide chromique est un agent oxydant puissant et corrosif et modérément cancérigène.

Acide chromique moléculaire
L'acide chromique moléculaire, H2CrO4, a beaucoup en commun avec l'acide sulfurique, H2SO4.
Seul l’acide sulfurique peut être classé dans la liste des 7 acides forts.
En raison des lois pertinentes au concept d'« énergie d'ionisation de premier ordre », le premier proton se perd plus facilement.
L'acide chromique se comporte de manière extrêmement similaire à la déprotonation de l'acide sulfurique.
Étant donné que le processus de titrage acide-base polyvalent comporte plus d'un proton (surtout lorsque l'acide est la substance de départ et que la base est le titrant), les protons ne peuvent quitter un acide qu'un à la fois.

La première étape est donc la suivante :
H2CrO4 ⇌ [HCrO4]− + H+
Le pKa pour l’équilibre n’est pas bien caractérisé.
Les valeurs rapportées varient entre environ −0,8 et 1,6.
La valeur à force ionique nulle est difficile à déterminer car la demi-dissociation ne se produit que dans une solution très acide, à environ pH 0, c'est-à-dire avec une concentration en acide d'environ 1 mol dm−3.
Une autre complication est que l'ion [HCrO4]− a une tendance marquée à se dimériser, avec la perte d'une molécule d'eau, pour former l'ion dichromate, [Cr2O7]2− :

2 [HCrO4]− ⇌ [Cr2O7]2− + H2O log KD = 2,05.
De plus, le dichromate peut être protoné :

[HCr2O7]− ⇌ [Cr2O7]2− + H+ pK = 1,8[4]
La valeur pK de cette réaction montre qu'elle peut être ignorée à pH > 4.

La perte du deuxième proton se produit dans la plage de pH comprise entre 4 et 8, ce qui fait de l'ion [HCrO4]− un acide faible.
L'acide chromique moléculaire pourrait en principe être fabriqué en ajoutant du trioxyde de chrome à de l'eau (cf. fabrication de l'acide sulfurique).

CrO3 + H2O ⇌ H2CrO4
mais en pratique, la réaction inverse se produit lorsque l'acide chromique moléculaire est déshydraté.
C'est ce qui se produit lorsque de l'acide sulfurique concentré est ajouté à une solution de bichromate.
Au début, la couleur passe de l'orange (bichromate) au rouge (acide chromique), puis des cristaux rouge foncé de trioxyde de chrome précipitent du mélange, sans autre changement de couleur.
Les couleurs sont dues aux transitions LMCT.
Le trioxyde de chrome est l'anhydride de l'acide chromique moléculaire.
L'acide chromique est un acide de Lewis et peut réagir avec une base de Lewis, telle que la pyridine dans un milieu non aqueux tel que le dichlorométhane (réactif de Collins).

L'acide chromique de haute pureté est utilisé dans la fabrication de revêtements métalliques et plastiques afin de produire une finition chromée solide et résistante au ternissement.
L'acide chromique trouve des applications dans de nombreuses industries, notamment dans la fabrication d'appareils électroménagers et d'automobiles.
L'acide chromique est également utilisé comme agent de préservation du bois pour les pilotis marins, les poteaux téléphoniques, le bois d'aménagement paysager et d'autres applications industrielles du bois.
En tant qu'agent oxydant puissant, l'acide chromique trouve également des applications dans la synthèse organique et pour la préparation d'autres produits chimiques à base de chrome de qualité analytique.

L'acide chromique fait généralement référence à un mélange produit en ajoutant de l'acide sulfurique concentré à un bichromate.
Le dichromate peut contenir plusieurs autres composés tels que le trioxyde de chrome solide.
L'acide chromique est un très bon produit chimique pour le nettoyage du verre.
La forme anhydre du trioxyde (H2CrO4) peut également être appelée acide chromique.
L'acide chromique est un agent oxydant puissant et abrasif.
Chimiquement, l'acide chromique peut se rappeler de l'acide sulfurique et agit de la même manière lorsqu'il produit de l'hydrogène.
Seul l'acide sulfurique produit le premier proton beaucoup plus facilement que l'acide chromique.
De plus, l'acide chromique se désintègre lentement en atteignant le point d'ébullition et, dans des environnements appropriés, l'acide chromique devient dessicant.

Propriétés chimiques de l'acide chromique
Point de fusion : 196°C
Densité : 2.290
Solubilité : Méthanol (légèrement)
Forme : Liquide
Couleur : transparent, orange.
PH : 3,03 (solution 1 mM) ; 2,33 (solution 10 mM) ; 2,06 (solution 100 mM)
Solubilité dans l'eau : TRÈS Soluble
Système d'enregistrement des substances de l'EPA : Acide chromique (7738-94-5)
L'acide chromique est un flocon ou une poudre cristalline inodore, rouge violacé foncé.

Les usages
Dans le commerce de la chimie, l'acide chromique est utilisé dans la production de chromate, qui est un sel d'acide chromique.
Une grande partie de la production d’acide chromique est utilisée pour le revêtement en chrome.
L'acide chromique est utilisé comme brûleur dans les domaines médicaux car il s'agit d'un bon agent oxydant.
L'acide chromique est également efficace pour nettoyer les saletés organiques des verres dans les laboratoires, mais cette méthode n'est pas préférée en raison de ses dommages à l'environnement.
L'acide chromique est également utilisé comme pigment de caoutchouc dans les processus de sculpture, la fabrication de glaçages au sel, la coloration des verres, le nettoyage des métaux, la production d'encre et de teintures.

Produits chimiques (chromates, agents oxydants, catalyseurs), intermédiaires de chromage, médicaments (caustiques), gravure par procédé, anodisation, émaux céramiques, verre coloré, nettoyage des métaux, encres, tannage, peintures, mordant textile, agent d'attaque pour plastiques.
L'acide chromique est un intermédiaire dans le chromage et est également utilisé dans les émaux céramiques et le verre coloré.
Parce qu'une solution d'acide chromique dans l'acide sulfurique (également connu sous le nom de mélange sulfochromique ou acide chromosulfurique) est un puissant agent oxydant, elle peut être utilisée pour nettoyer la verrerie de laboratoire, en particulier des résidus organiques autrement insolubles.
Cette demande a été refusée en raison de préoccupations environnementales.
De plus, l’acide laisse des traces d’ions chromiques paramagnétiques (Cr3+) qui peuvent interférer avec certaines applications, comme la spectroscopie RMN.
C'est notamment le cas des tubes RMN.
La solution Piranha peut être utilisée pour la même tâche, sans laisser de résidus métalliques.

L'acide chromique était largement utilisé dans l'industrie de la réparation des instruments de musique, en raison de sa capacité à « éclaircir » le laiton brut.
Un bain d’acide chromique laisse une patine jaune vif sur le laiton.
En raison de préoccupations croissantes en matière de santé et d’environnement, beaucoup ont cessé d’utiliser ce produit chimique dans leurs ateliers de réparation.
L’acide chromique était utilisé dans les teintures capillaires dans les années 1940, sous le nom de Melereon.
L'acide chromique est utilisé comme agent de blanchiment dans le traitement d'inversion photographique en noir et blanc.

Réactions
L'acide chromique est capable d'oxyder de nombreux types de composés organiques et de nombreuses variantes de ce réactif ont été développées :
L'acide chromique dans l'acide sulfurique aqueux et l'acétone est connu sous le nom de réactif de Jones, qui oxydera les alcools primaires et secondaires respectivement en acides carboxyliques et en cétones, tout en affectant rarement les liaisons insaturées.
Le chlorochromate de pyridinium est généré à partir de trioxyde de chrome et de chlorure de pyridinium.
Ce réactif convertit les alcools primaires en aldéhydes correspondants (R – CHO).
Le réactif de Collins est un adduit de trioxyde de chrome et de pyridine utilisé pour diverses oxydations.
Le chlorure de chromyle, CrO2Cl2, est un composé moléculaire bien défini généré à partir de l'acide chromique.

Transformations illustratives
Oxydation des méthylbenzènes en acides benzoïques.
Scission oxydative de l'indène en acide homophtalique.
Oxydation de l'alcool secondaire en cétone (cyclooctanone) et nortricyclanone.

Utilisation dans l'analyse organique qualitative
En chimie organique, des solutions diluées d'acide chromique peuvent être utilisées pour oxyder les alcools primaires ou secondaires en aldéhydes et cétones correspondants.
De même, l'acide chromique peut également être utilisé pour oxyder un aldéhyde en son acide carboxylique correspondant.
Les alcools tertiaires et les cétones ne sont pas affectés.
Étant donné que l'oxydation est signalée par un changement de couleur allant de l'orange au vert brunâtre (indiquant que le chrome est réduit de l'état d'oxydation +6 à +3), l'acide chromique est couramment utilisé comme réactif de laboratoire dans les écoles secondaires ou les collèges de premier cycle en chimie comme test analytique qualitatif. pour la présence d'alcools primaires ou secondaires, ou d'aldéhydes.

Réactifs alternatifs
Dans les oxydations d'alcools ou d'aldéhydes en acides carboxyliques, l'acide chromique est l'un des nombreux réactifs, dont plusieurs sont catalytiques.
Par exemple, les sels de nickel(II) catalysent les oxydations par l'eau de Javel (hypochlorite).
Les aldéhydes sont relativement facilement oxydés en acides carboxyliques et des agents oxydants doux suffisent.
Des composés d'argent (I) ont été utilisés à cette fin.
Chaque oxydant présente des avantages et des inconvénients.
Au lieu d’utiliser des oxydants chimiques, une oxydation électrochimique est souvent possible.

Production
L’acide chromique est obtenu en ajoutant des additifs chimiques à la solution aqueuse de trioxyde de chrome.
Le trioxde de chrome est généralement produit en mettant 2,4 moles de dichromate de sodium et 2,8 moles d'acide sulfurique.

Profil de réactivité
Agent oxydant très puissant, cancérigène confirmé pour l'homme.
Au contact de réactifs réducteurs, l'acide chromique peut provoquer une violente explosion, au contact de matières organiques, l'acide chromique peut provoquer une violente oxydation conduisant à une inflammation.
Dangereusement réactif avec l'acétone, les alcools, les métaux alcalins (sodium, potassium), l'ammoniac, l'arsenic, le diméthylformamide, le sulfure d'hydrogène, le phosphore, l'acide peroxyformique, la pyridine, le sélénium, le soufre et de nombreux autres produits chimiques.
Lorsqu'elle est mélangée à de l'acide sulfurique pour les opérations de nettoyage du verre, la solution utilisée en bouteille fermée peut exploser en raison de la pression interne du dioxyde de carbone résultant de la contamination par des composés carbonés.

Danger
Un cancérigène pour l'homme.
Un poison.
Corrosif pour la peau.
Agent oxydant puissant, peut exploser au contact d'agents réducteurs, peut s'enflammer au contact de matières organiques.
Irritant des voies respiratoires supérieures.
Très irritant pour les yeux et les voies respiratoires.
L'ingestion provoque de graves symptômes gastro-intestinaux.
Le contact avec les yeux ou la peau provoque des brûlures ; un contact prolongé produit une dermatite.
ACIDE CITRIQUE
L'acide citrique se présente sous la forme d'une poudre cristalline blanche ou de cristaux granulaires et, étant donné que l'acide citrique est un sel, possède un goût salé/salé sans véritable odeur détectable.
L'acide citrique est un composé chimique, le sel de sodium du citrate trisodique.
L'acide citrique est obtenu en faisant réagir le citrate de sodium avec de l'hydroxyde, du carbonate ou du bicarbonate de sodium, puis cristallisé et déshydraté.

Numéro CAS : 68-04-2
Numéro CE : 200-675-3
Formule chimique : Na3C6H5O7
Masse molaire : 294,10 g/mol

L'acide citrique a la formule chimique Na3C6H5O7.
L'acide citrique est parfois simplement appelé « citrate de sodium », bien que l'acide citrique puisse désigner l'un des trois sels de sodium du citrate trisodique.
L'acide citrique possède une saveur saline et légèrement acidulée et est un alcali doux.

L'acide citrique est légèrement basique et peut être utilisé avec le citrate de sodium pour fabriquer des tampons biologiquement compatibles.

L'acide citrique a la formule chimique Na3C6H5O7.

L'acide citrique peut désigner l'un des trois sels de sodium du citrate trisodique.
L'acide citrique est léger et peut être utilisé avec le citrate de sodium pour fabriquer des tampons biocompatibles.

L'acide citrique, l'un des sels de sodium du citrate trisodique, est un composé présent dans tous les organismes vivants et fait partie des voies métaboliques clés de toutes les cellules du corps.
L'acide citrique se trouve en concentrations élevées dans les fruits aigres, les kiwis, les fraises et de nombreux autres fruits.
L'acide citrique est préparé commercialement par fermentation de mélasse par la moisissure Aspergillus niger.

L'acide citrique, également appelé citrate de sodium, sel trisodique ou additif alimentaire E331, est le sel tribasique du citrate trisodique.
L'acide citrique se présente sous la forme d'une poudre cristalline blanche ou de cristaux granulaires et, étant donné que l'acide citrique est un sel, possède un goût salé/salé sans véritable odeur détectable.

L'acide citrique porte le numéro CAS 6132-04-3 et la formule Na3C6H5O7.
L'acide citrique est soluble dans l'eau, non toxique et entièrement biodégradable.

L'acide citrique est une poudre cristalline blanche ou des cristaux granuleux blancs, légèrement déliquescents dans l'air humide, librement solubles dans l'eau, pratiquement insolubles dans l'alcool.

Comme le citrate de sodium, l'acide citrique a un goût aigre.
D'un point de vue médical, l'acide citrique est utilisé comme agent alcalinisant.

L'acide citrique agit en neutralisant l'excès d'acide dans le sang et l'urine.
L'acide citrique a été indiqué pour le traitement de l'acidose métabolique.

L'acide citrique est obtenu en faisant réagir le citrate de sodium avec de l'hydroxyde, du carbonate ou du bicarbonate de sodium, puis cristallisé et déshydraté.

L'acide citrique est également présent naturellement dans les agrumes.
L'acide citrique est communément appelé « citrate de sodium », mais ce terme est ambigu car l'acide citrique peut également désigner le sel de sodium ou monosodique.

L'acide citrique est structuré de telle manière qu'un atome de sodium est attaché à chacun des trois groupes carboxyle présents.
De même, le citrate monosodique est un composé chimique contenant un sodium dans la molécule et le citrate disodique est un composé chimique contenant deux atomes de sodium.

L'acide citrique est étiqueté comme additif alimentaire avec le symbole E331.

L'acide citrique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide citrique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

L'acide citrique est produit par neutralisation complète du citrate trisodique avec de l'hydroxyde ou du carbonate de sodium de haute pureté, puis par cristallisation et déshydratation.
La forme hydratée courante, l'acide citrique dihydraté, est largement utilisée dans les aliments, les boissons et diverses applications techniques, principalement comme agent tampon, séquestrant ou émulsifiant.

L'acide citrique anhydre est fabriqué à partir d'acide citrique dihydraté.
Les molécules d'eau des cristaux dihydratés sont éliminées par un procédé breveté sans détruire la matrice cristalline d'origine.

Les cristaux résultants possèdent une matrice poreuse qui peut être utilisée comme support pour des substances inorganiques et/ou organiques telles que des parfums et des tensioactifs.
En raison de la faible teneur en eau de l'acide citrique, l'acide citrique anhydre n'ajoute pas d'eau à la formulation.

L'acide citrique a même l'excellente capacité d'absorber l'excédent d'eau des formulations sensibles à l'humidité, offrant ainsi une meilleure durée de conservation au produit final.
Par conséquent, l’acide citrique anhydre trouve des utilisations particulières dans les formulations sensibles à l’eau comme les boissons instantanées ainsi que les comprimés et les poudres dans les produits pharmaceutiques et les détergents.

L’acide citrique anhydre se présente sous forme de cristaux granulaires blancs ou de poudre cristalline blanche.
L'acide citrique est librement soluble dans l'eau et pratiquement insoluble dans l'éthanol (96 %).

L'acide citrique est un sel neutre non toxique et peu réactif.
L'acide citrique est chimiquement stable s'il est stocké à température ambiante.
L'acide citrique anhydre est entièrement biodégradable et peut être éliminé avec les déchets ordinaires ou les eaux usées.

L'acide citrique dihydraté est largement utilisé dans les aliments, les boissons et les charges comme agent tampon, séquestrant ou émulsifiant.
Acide citrique utilisé comme anticoagulant dans les transfusions sanguines, laxatif osmotique, fluides fonctionnels, solvants de nettoyage, produits d'entretien de l'ameublement, produits pour laver la vaisselle et nettoyage des radiateurs d'automobile.

L'acide citrique est produit par neutralisation complète de l'acide citrique avec de l'hydroxyde ou du carbonate de sodium de haute pureté et cristallisation ultérieure.
L'acide citrique dihydraté est largement utilisé dans les aliments, les boissons et diverses applications techniques, principalement comme agent tampon, séquestrant ou émulsifiant.

L'acide citrique dihydraté se présente sous forme de cristaux granulaires blancs ou de poudre cristalline blanche avec un goût agréable et salé.
L'acide citrique est légèrement déliquescent dans l'air humide, facilement soluble dans l'eau et pratiquement insoluble dans l'éthanol (96 %).

L'acide citrique dihydraté est un sel neutre non toxique et peu réactif.
L'acide citrique est chimiquement stable s'il est stocké à température ambiante.
L'acide citrique dihydraté est entièrement biodégradable et peut être éliminé avec les déchets ordinaires ou les eaux usées.

Acide citrique dans les aliments :
L'acide citrique est un additif alimentaire portant le numéro E E331.
L'acide citrique est utilisé dans une variété d'aliments et de boissons transformés, principalement comme exhausteur de goût et conservateur.
En tant qu'agent émulsifiant, l'acide citrique est également utilisé dans la fabrication du fromage pour permettre au fromage de fondre sans séparation des huiles et des graisses.

L'acide citrique présent dans les aliments tamponne les niveaux de pH pour aider à réguler l'acidité d'une variété d'aliments afin d'équilibrer le goût et est également capable de conférer une saveur acidulée/aigre à une grande variété de boissons.

Domaines d'utilisation de l'acide citrique :
L'acide citrique est souvent utilisé comme additif alimentaire comme arôme ou conservateur.
Le numéro E est E331.

L'acide citrique est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'acide citrique est un ingrédient courant de la Bratwurst et est également disponible dans le commerce pour les boissons et les mélanges de boissons, contribuant ainsi à une saveur acidulée.

L'acide citrique se trouve dans les mélanges de gélatine, les glaces, les confitures, les desserts, le lait en poudre, les fromages fondus, les sodas et le vin.
L'acide citrique peut être utilisé comme émulsifiant lors de la fabrication du fromage.
L'acide citrique permet au fromage de fondre sans rester gras.

L'acide citrique, une base conjuguée d'un acide faible, peut agir comme agent tampon ou régulateur d'acidité en résistant aux changements de pH.
L'acide citrique est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'acide citrique se trouve dans les mini récipients à lait utilisés dans les machines à café.
L'acide citrique est une substance particulièrement efficace pour éliminer le tartre carbonaté des chaudières sans se fissurer et pour nettoyer les radiateurs des voitures.

Utilisations de l'acide citrique :
L'acide citrique a de nombreuses utilisations, mais est principalement utilisé dans l'industrie alimentaire.

L'acide citrique a des applications similaires à celles de l'acide citrique. L'acide citrique est donc généralement utilisé comme exhausteur de goût, pour acidifier les aliments ou les boissons, ou comme conservateur.

L'acide citrique est également couramment utilisé en médecine comme ingrédient médicamenteux, généralement pour les personnes souffrant d'infections des voies urinaires.
L'acide citrique joue également un rôle d'anticoagulant, ce qui signifie que l'acide citrique inhibe la coagulation du sang.

De plus, l'acide citrique est utilisé en chimie.
L'acide citrique est un composant des tampons et un composant du réactif de Benedict, utilisé pour détecter les sucres et les aldéhydes.
L'acide citrique se trouve également dans les cosmétiques tels que les gels douche, les shampoings ou les crèmes pour la peau, car l'acide citrique leur donne le bon niveau d'acidité et est utilisé comme conservateur.

Une autre application de l’acide citrique consiste à éliminer le tartre des chaudières, à nettoyer les radiateurs de voiture et les tôles ou casseroles brûlées.
L'acide citrique est également utilisé dans la production de produits de nettoyage, car il adoucit l'eau, permettant ainsi aux détergents d'agir plus efficacement.

L'acide citrique est utilisé dans des applications similaires au citrate trisodique.
Ces utilisations incluent comme régulateur d'acidité dans les aliments et les boissons, comme agent séquestrant pour empêcher l'apparition de calcaire avec les savons et les détergents et comme agent émulsifiant pour faciliter les processus de mélange chimique où deux éléments séparés sont incapables de se mélanger (par exemple l'huile et l'eau) et aide à maintenir ces mélanges stables une fois formulés.

L'acide citrique est utilisé dans la collecte de sang (anticoagulant), la photographie et la production alimentaire. (agent séquestrant, émulsifiant et acidulant)
Utilisation autorisée comme ingrédient inerte dans les produits pesticides non alimentaires.

Acide citrique dans l’industrie alimentaire :

Nourriture:
L'acide citrique est principalement utilisé comme additif alimentaire, généralement pour donner du goût ou comme conservateur.
Le numéro E de l’acide citrique est E331.

L'acide citrique est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'acide citrique est un ingrédient courant de la bratwurst et est également utilisé dans les boissons commerciales prêtes à boire et les mélanges pour boissons, contribuant ainsi à une saveur acidulée.
L'acide citrique se trouve dans le mélange de gélatine [clarification nécessaire], la crème glacée, le yaourt, les confitures, les bonbons, le lait en poudre, les fromages fondus, les boissons gazeuses et le vin [citation nécessaire], entre autres.

En tant que base conjuguée d'un acide faible, le citrate peut jouer le rôle d'agent tampon ou de régulateur d'acidité, résistant aux changements de pH.
L'acide citrique est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'acide citrique peut être trouvé dans les mini-conteneurs de lait utilisés avec les machines à café.
L'acide citrique est le produit d'antiacides, tels que l'Alka-Seltzer, lorsqu'ils sont dissous dans l'eau.

Le pH d'une solution de 5 g/100 ml d'eau à 25 °C est compris entre 7,5 et 9,0.
L'acide citrique est ajouté à de nombreux produits laitiers emballés commercialement pour contrôler l'impact du pH sur le système gastro-intestinal humain, principalement dans les produits transformés tels que le fromage et le yaourt.

L'acide citrique peut être utilisé pour optimiser la sécurité et la qualité des snacks, des céréales, des produits de boulangerie et des produits à base de pommes de terre tels que les frites sans affecter le processus de production.

L'acide citrique se trouve dans les boissons gazeuses, les produits laitiers, les confiseries, les aliments préparés, les viandes et légumes en conserve, la margarine, la moutarde, les sauces, la mayonnaise, les épices, les confitures et bien plus encore.
Cela n’est pas surprenant, car l’acide citrique possède diverses propriétés importantes pour l’industrie alimentaire.

Premièrement, l’acide citrique est utilisé comme régulateur d’acidité pour maintenir le pH approprié de l’acide citrique.
L'acide citrique se trouve dans les sodas, notamment ceux au goût de citron, les boissons énergisantes, les desserts ou les confitures.

L'acide citrique est un agent séquestrant, ce qui signifie que l'acide citrique est une substance qui lie les ions métalliques, appelés chélates.
Grâce à cela, le consommateur est protégé des effets nocifs des métaux lourds présents dans les aliments.

L'acide citrique est également un émulsifiant – L'acide citrique permet la préparation d'une solution uniforme à partir de deux liquides non miscibles.
L'acide citrique est utile, par exemple, dans la production de fromage, car l'acide citrique ne devient pas gras après avoir fondu, car l'acide citrique empêche la séparation des graisses.

Une autre utilisation de l’acide citrique dans l’industrie alimentaire est celle d’un conservateur.
L'acide citrique protège les graisses contenues dans l'acide citrique de l'oxydation et du rancissement.
L'acide citrique prévient également les changements de couleur des aliments.

Utilisations médicales :
En 1914, le médecin belge Albert Hustin et le médecin et chercheur argentin Luis Agote ont utilisé avec succès l'acide citrique comme anticoagulant dans les transfusions sanguines, Richard Lewisohn déterminant la concentration correcte de l'acide citrique en 1915.
L'acide citrique continue d'être utilisé aujourd'hui dans les tubes de prélèvement sanguin et pour la conservation du sang dans les banques de sang.

L'ion citrate chélate les ions calcium dans le sang en formant des complexes de citrate de calcium, perturbant ainsi le mécanisme de coagulation sanguine.
Récemment, l'acide citrique a également été utilisé comme agent de blocage dans les lignes de vascath et d'hémodialyse au lieu de l'héparine en raison du risque plus faible d'anticoagulation systémique de l'acide citrique.

En 2003, Ööpik et al. a montré que l'utilisation d'acide citrique (0,5 g/kg de poids corporel) améliorait les performances de course sur 5 km de 30 secondes.

L'acide citrique est utilisé pour soulager l'inconfort lié aux infections des voies urinaires, telles que la cystite, pour réduire l'acidose observée dans l'acidose tubulaire rénale distale, et peut également être utilisé comme laxatif osmotique.
L'acide citrique est un composant majeur de la solution de réhydratation orale de l'OMS.

L'acide citrique est utilisé comme antiacide, notamment avant l'anesthésie, lors des césariennes afin de réduire les risques associés à l'aspiration du contenu gastrique.

L'acide citrique en médecine :
L'acide citrique est non seulement connu comme additif alimentaire, mais aussi comme composé chimique important en médecine.
L'acide citrique est utilisé dans les laboratoires d'analyses où sont effectués des analyses de sang car l'acide citrique a un effet anticoagulant.

Cela empêche les cellules sanguines de s’agglutiner.
L'acide citrique est ensuite utilisé comme composant de solutions pour remplir les cathéters d'hémodialyse.

L'acide citrique abaisse la concentration d'héparine, ce qui réduit les risques associés aux troubles de la coagulation chez les patients souffrant d'une maladie rénale ou de la coagulation sanguine.
Cela neutralise les effets secondaires pendant et après le traitement de dialyse.
Cet effet est également extrêmement utile lors du stockage du sang ou lors de transfusions.

L'acide citrique est également utilisé comme médicament.
L'acide citrique traite les calculs rénaux, la goutte et réduit les symptômes de l'acidose métabolique.

L'acide citrique peut également être utilisé comme laxatif.
L'acide citrique peut être utilisé pour traiter l'hypercalcémie, une condition dans laquelle la concentration de calcium dans le sang est trop élevée.
L'acide citrique agit en augmentant l'excrétion de calcium par l'urine.

Utilisations par les consommateurs :
L'acide citrique est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, produits de traitement de l'air, cosmétiques et produits de soins personnels, adoucisseurs d'eau, parfums et fragrances, produits chimiques de traitement de l'eau, produits de revêtement, encres et toners, produits de traitement textile et colorants, biocides (par exemple désinfectants, produits antiparasitaires), engrais, adsorbants, charges, mastics, plâtres, pâte à modeler, produits chimiques de laboratoire et produits photochimiques.
D'autres rejets d'acide citrique dans l'environnement sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur dans des matériaux à longue durée de vie. à faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie avec un taux de libération élevé (par exemple pneus, bois traité produits, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)), utilisation en intérieur dans des matériaux de longue durée à fort taux de relargage (ex. relargage des tissus, textiles lors du lavage, élimination des peintures intérieures) et une utilisation extérieure dans des matériaux de longue durée avec un faible taux de libération (par exemple, construction et matériaux de construction en métal, en bois et en plastique).

Utilisations répandues par les professionnels :
L'acide citrique est utilisé dans les produits suivants : produits chimiques de laboratoire, produits de lavage et de nettoyage, produits de traitement de l'air, parfums et fragrances, cirages et cires, adoucisseurs d'eau, produits chimiques de traitement de l'eau, biocides (par exemple désinfectants, produits antiparasitaires), produits de revêtement, charges. , mastics, plâtres, pâte à modeler, encres et toners, produits de traitement textile et teintures, engrais, produits photochimiques, produits cosmétiques et de soins personnels et adsorbants.
L'acide citrique est utilisé dans les domaines suivants : services de santé, travaux de construction, mines, agriculture, sylviculture et pêche et formulation de mélanges et/ou reconditionnement.
L'acide citrique est utilisé pour la fabrication de : machines, véhicules et meubles.

D'autres rejets d'acide citrique dans l'environnement sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur dans des matériaux à longue durée de vie. à faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple métal, bois et construction et matériaux de construction en plastique), utilisation en extérieur dans des matériaux à longue durée de vie et à taux de démoulage élevé (par exemple pneus, produits en bois traités, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires). )), utilisation en intérieur dans des matériaux à longue durée de vie avec un taux de rejet élevé (par exemple, libération des tissus, des textiles lors du lavage, enlèvement des peintures intérieures), utilisation en intérieur dans des systèmes fermés avec un rejet minimal (par exemple, liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile). ) et utilisation en extérieur dans des systèmes fermés avec un rejet minimal (par exemple liquides hydrauliques dans les suspensions automobiles, lubrifiants dans l'huile moteur et liquides de freinage).

Utilisations sur sites industriels :
L'acide citrique est utilisé dans les produits suivants : régulateurs de pH et produits de traitement de l'eau, produits de lavage et de nettoyage, cirages et cires et produits chimiques de traitement de l'eau.
L'acide citrique est utilisé dans les domaines suivants : mines, services de santé et travaux de construction.
L'acide citrique est utilisé pour la fabrication de : machines et véhicules, textiles, cuir ou fourrure, métaux, produits métalliques, équipements électriques, électroniques et optiques et produits chimiques.

Le rejet dans l'environnement de l'acide citrique peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels, de substances dans des systèmes fermés avec un rejet minimal, comme auxiliaire technologique, dans la formulation de mélanges et dans la production d'articles.
D'autres rejets d'acide citrique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Autres utilisations:

Nourriture:
Aliments pour bébés, préparations pour nourrissons
Boulangerie
Céréales, Snacks
Confiserie
Laitier
Alternatives laitières
Desserts, Glaces
Les saveurs
Préparations de fruits, pâtes à tartiner sucrées
Fruits légumes
Substituts de viande
Viande, Fruits de mer
Produits à base de plantes
Plats cuisinés, plats instantanés
Sauces, vinaigrettes, assaisonnements

Breuvages:
Boissons alcoolisées
Boissons gazeuses
Boissons instantanées, sirops
Boissons à base de jus
À base de plantes
Thé et café prêt-à-boire
Boissons sportives et énergisantes
Des eaux

Soins de santé:
Nutrition Clinique
Équipement médical
OTC, Compléments Alimentaires
Produits pharmaceutiques

Soins personnels :
Cosmétiques de couleur
Parfums
Soin des cheveux
Soins bucco-dentaires
Soins de la peau
Savons et produits de bain

Nettoyants et détergents :
Lavage de la vaisselle
Nettoyants industriels
Entretien du linge
Entretien des surfaces

Applications industrielles:
Adhésifs, mastics
Produits agrochimiques, engrais
Construction
Produits chimiques raffinés, produits chimiques en bon état
Encres, peintures, revêtements
Forage pétrolier
Papier
Plastiques, polymères
Textiles, Cuir

Aliments pour animaux et aliments pour animaux :
Alimentation
La nourriture pour animaux

Pharmaceutique :
Agent tampon
Agent chélatant
Source minérale

Processus industriels avec risque d’exposition :
Traitement photographique

Applications de l'acide citrique :
L'acide citrique dihydraté est largement utilisé dans les aliments, les boissons et les charges comme agent tampon, séquestrant ou émulsifiant.
Acide citrique utilisé comme anticoagulant dans les transfusions sanguines, laxatif osmotique, fluides fonctionnels, solvants de nettoyage, produits d'entretien de l'ameublement, produits pour laver la vaisselle et nettoyage des radiateurs d'automobile.

Nourriture:
L'acide citrique est principalement utilisé comme additif alimentaire, généralement pour donner du goût ou comme conservateur.
Le numéro E de l’acide citrique est E331.

L'acide citrique est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'acide citrique est un ingrédient courant de la bratwurst et est également utilisé dans les boissons commerciales prêtes à boire et les mélanges pour boissons, contribuant ainsi à une saveur acidulée.
L'acide citrique se trouve entre autres dans les mélanges de gélatine, les glaces, les yaourts, les confitures, les bonbons, le lait en poudre, les fromages fondus, les boissons gazeuses et le vin[3].

L'acide citrique peut être utilisé comme stabilisant émulsifiant lors de la fabrication du fromage.
L'acide citrique permet au fromage de fondre sans devenir gras en empêchant les graisses de se séparer.

Mise en mémoire tampon :
En tant que base conjuguée d'un acide faible, le citrate peut jouer le rôle d'agent tampon ou de régulateur d'acidité, résistant aux changements de pH.
L'acide citrique est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'acide citrique peut être trouvé dans les mini-conteneurs de lait utilisés avec les machines à café.
L'acide citrique est le produit d'antiacides, tels que l'Alka-Seltzer, lorsqu'ils sont dissous dans l'eau.

Le pH d'une solution de 5 g/100 ml d'eau à 25 °C est compris entre 7,5 et 9,0.
L'acide citrique est ajouté à de nombreux produits laitiers emballés dans le commerce pour contrôler l'impact du pH sur le système gastro-intestinal humain, principalement dans les produits transformés tels que le fromage et le yaourt, bien que l'acide citrique ait également des effets bénéfiques sur la microstructure physique du gel.

Chimie:
L'acide citrique est un composant de la solution qualitative de Benedict, souvent utilisé en analyse organique pour détecter la présence de sucres réducteurs tels que le glucose.

Médecine:
En 1914, le médecin belge Albert Hustin et le médecin et chercheur argentin Luis Agote ont utilisé avec succès l'acide citrique comme anticoagulant dans les transfusions sanguines, Richard Lewisohn déterminant la concentration correcte de l'acide citrique en 1915.
L'acide citrique continue d'être utilisé aujourd'hui dans les tubes de prélèvement sanguin et pour la conservation du sang dans les banques de sang.

L'ion citrate chélate les ions calcium dans le sang en formant des complexes de citrate de calcium, perturbant ainsi le mécanisme de coagulation sanguine.
Récemment, l'acide citrique a également été utilisé comme agent de blocage dans les lignes de vascath et d'hémodialyse au lieu de l'héparine en raison du risque plus faible d'anticoagulation systémique de l'acide citrique.

En 2003, Ööpik et al. a montré que l'utilisation d'acide citrique (0,5 g/kg de poids corporel) améliorait les performances de course sur 5 km de 30 secondes.

L'acide citrique est utilisé pour soulager l'inconfort lié aux infections des voies urinaires, telles que la cystite, pour réduire l'acidose observée dans l'acidose tubulaire rénale distale, et peut également être utilisé comme laxatif osmotique.
L'acide citrique est un composant majeur de la solution de réhydratation orale de l'OMS.

L'acide citrique est utilisé comme antiacide, notamment avant l'anesthésie, lors des césariennes afin de réduire les risques associés à l'aspiration du contenu gastrique.

Détartrage chaudière :
L'acide citrique est un agent particulièrement efficace pour éliminer le tartre carbonaté des chaudières sans les mettre hors service et pour nettoyer les radiateurs d'automobiles.

Soins de santé:

Comprimés et préparations effervescents :
La réaction de l'acide citrique et du bicarbonate libère du dioxyde de carbone, ce qui facilite la dissolution des ingrédients actifs et améliore l'appétence.
Les systèmes effervescents sont largement utilisés dans les produits de nettoyage des prothèses dentaires, ainsi que dans les analgésiques et les comprimés de vitamines.

Substances pharmaceutiquement actives — beaucoup sont fournies sous forme de sel de citrate.

Contrôle du pH :
L'acide citrique, avec le citrate de sodium ou de potassium, est un système tampon efficace utilisé dans diverses applications pharmaceutiques et cosmétiques pour améliorer la stabilité et (le cas échéant) renforcer l'activité des conservateurs.

Saveur:
Le goût piquant et acide de l’acide citrique (qui est souvent utilisé pour rehausser les saveurs des fruits) peut aider à masquer le goût médicinal désagréable des produits pharmaceutiques.

Antioxydant :
L’ion citrate est un puissant agent chélateur des ions métaux traces.

Anticoagulant sanguin :
L’ion citrate chélatera le calcium, réduisant ainsi la tendance du sang à coaguler.

Diurétique – le citrate de potassium a des propriétés diurétiques.
Dispositifs médicaux de nutrition clinique
OTC, Compléments Alimentaires Produits Pharmaceutiques
Déodorants Cosmétiques Colorés
Parfums Soins des cheveux
Soins bucco-dentaires Soins de la peau Savons et produits pour le bain

Nettoyants et détergents :
Les principaux composants des produits de nettoyage sont les tensioactifs et les adjuvants.
D'autres ingrédients sont ajoutés pour fournir une variété de fonctions, par exemple augmenter les performances de nettoyage pour des sols/surfaces spécifiques, assurer la stabilité du produit et fournir une identité unique à un produit.

Les phosphates complexes et l’acide citrique sont des constructeurs séquestrants courants.
Les constructeurs améliorent ou maintiennent l'efficacité de nettoyage du tensioactif.

La fonction première des constructeurs est de réduire la dureté de l’eau.
Cela se fait soit par séquestration, soit par chélation (en maintenant les minéraux de dureté en solution) ; par précipitation (formant une substance insoluble) ; ou par échange d'ions (échange de particules chargées électriquement).
Les constructeurs peuvent également fournir et maintenir l'alcalinité, ce qui facilite le nettoyage, en particulier des sols acides ; aide à empêcher la saleté enlevée de se redéposer pendant le lavage et émulsionne les saletés huileuses et grasses.

Nettoyants industriels pour le lavage de la vaisselle :

Entretien du linge Entretien des surfaces :

Industriel
Le citrate de sodium est utilisé comme nettoyant industriel pour éliminer les couches de calcium et de rouille des blocs de vapeur et des systèmes d'eau chaude.
En tant que produit chimique, le citrate de sodium est utilisé pour traiter l'aluminium, le cuivre et d'autres surfaces métalliques.

Le citrate de sodium et les citrates sont utilisés comme agents tampons et complexants dans les bains de galvanoplastie.
Les industries du bâtiment et du textile profitent également de la capacité chélatrice exceptionnelle du citrate de sodium ainsi que de la non-toxicité de l'acide citrique.

Les exemples incluent le retardement de prise des plâtres de gypse et la finition textile.
D'autres applications industrielles du citrate de sodium et des citrates vont de la désulfuration des gaz de combustion et de la récupération du pétrole à la décontamination des matériaux radioactifs des réacteurs nucléaires.

Adhésifs, mastics, produits agrochimiques, engrais
Construction, Chimie Fine
Encres, peintures, revêtements, traitement de surface métallique
Extraction et raffinage de minerais de forage pétrolier
Papier, plastiques, polymères
Textiles, Cuir

Principales fonctions de l'acide citrique :
Régulateur de pH
Agent chélatant
Agent tampon
Exhausteur de goût
Stabilisateur
Agent émulsifiant

Propriétés de l'acide citrique :
L'acide citrique se présente sous la forme d'une poudre blanche, inodore, au goût légèrement salé.
L'acide citrique se présente sous forme d'hydrate en combinaison avec de l'eau.

L'acide citrique se caractérise par le fait qu'il est hygroscopique, de sorte qu'il absorbe et se combine facilement avec l'eau.
Par conséquent, l’acide citrique doit être stocké dans des conditions telles que l’acide citrique soit protégé de l’humidité.
Bien que l'acide citrique soit un sel d'acide, l'acide citrique a un pH alcalin.

Propriétés typiques :
Dihydraté
Blanc
Cristaux granulaires ou poudre cristalline
Typique, pratiquement inodore
Agréablement salé
Librement soluble dans l'eau
Pratiquement insoluble dans l'éthanol (96 %)
Non toxique
Faible réactif
Stable chimiquement et microbiologiquement
Entièrement biodégradable

Mécanisme d'action de l'acide citrique :
L'acide citrique chélate les ions calcium libres, les empêchant de former un complexe avec le facteur tissulaire et le facteur de coagulation VIIa pour favoriser l'activation du facteur de coagulation X.
Cela inhibe l’initiation extrinsèque de la cascade de coagulation.

L'acide citrique peut également exercer un effet anticoagulant via un mécanisme jusqu'à présent inconnu, dans la mesure où la restauration de la concentration en calcium n'inverse pas complètement l'effet du citrate.
L'acide citrique est une base faible et réagit donc avec l'acide chlorhydrique dans l'estomac pour augmenter le pH.

Acide citrique L'acide citrique est ensuite métabolisé en bicarbonate qui agit ensuite comme un agent alcalinisant systémique, augmentant le pH du sang et de l'urine.
L'acide citrique agit également comme diurétique et augmente l'excrétion urinaire du calcium.

Pharmacologie et biochimie de l'acide citrique :

Classification pharmacologique MeSH :

Tampons :
Un système chimique qui fonctionne pour contrôler les niveaux d’ions spécifiques en solution.
Lorsque le niveau d’ions hydrogène dans la solution est contrôlé, le système est appelé tampon pH.

Conservateurs alimentaires :
Substances capables d'inhiber, de retarder ou d'arrêter le processus de fermentation, d'acidification ou autre détérioration des aliments.

Anticoagulants :
Agents qui empêchent la COAGULATION DU SANG.

Méthode de fabrication de l’acide citrique :
Préparez le tampon d’acide citrique en mélangeant l’acide citrique, l’acide chlorhydrique et l’eau ultra pure dans un bécher ou une fiole conique de 2 L.
Utilisez un agitateur magnétique pour vous assurer que tous les réactifs sont correctement dissous.

Ajuster au pH 6,01 avec les solutions d’hydroxyde de sodium à 0,5 % (p/v) et d’acide chlorhydrique à 0,5 % (v/v).
Ajoutez cette solution à la cocotte minute.

Placez l'autocuiseur sur la plaque chauffante et allumez l'acide citrique à pleine puissance.
Ne fixez pas le couvercle de l'autocuiseur à ce stade ; déposez simplement de l’acide citrique dessus.

En attendant que l'autocuiseur bout, déparaffinez et réhydratez les coupes de paraffine en les plaçant dans trois changements de xylène pendant 3 min chacun, suivis de trois changements d'IMS ou de méthanol pendant 3 min chacun, suivis d'eau froide du robinet. .
Gardez-les dans l’eau du robinet jusqu’à ce que la cocotte minute arrive à ébullition.

Une fois que la cocotte minute bout, transférez les lames de l’eau du robinet vers la cocotte minute.
Faites attention à la solution chaude et à la vapeur : utilisez des pinces et des gants. Fixez le couvercle de l'autocuiseur en suivant les instructions du fabricant.

Une fois que la cocotte a atteint sa pleine pression (voir les instructions du fabricant), laissez cuire 3 min.

Au bout de 3 minutes, éteignez la plaque chauffante et placez la cocotte minute dans un évier vide.
Activez la soupape de surpression (voir les instructions du fabricant) et faites couler de l'eau froide sur la cuisinière.

Une fois dépressurisé, ouvrez le couvercle et faites couler de l’eau froide dans la cuisinière pendant 10 minutes.
Faites attention à la solution chaude et à la vapeur.

Continuez avec un protocole de coloration immunochimique approprié.

Manipulation et stockage de l'acide citrique :
Manipulation Assurer une ventilation adéquate.
Évitez tout contact avec la peau, les yeux ou les vêtements.

Éviter l'ingestion et l'inhalation.
Eviter la formation de poussière.
Stockage Conserver les récipients bien fermés dans un endroit sec, frais et bien ventilé.

Stabilité et réactivité de Acide citrique :

Réactif:
Danger Aucun connu, sur la base des informations disponibles.

La stabilité:
Stable dans des conditions normales.
Conditions à éviter Produits incompatibles.

Chaleur excessive.
Eviter la formation de poussière.

Matériaux incompatibles :
Agents oxydants forts, Agents réducteurs forts, Acides, Bases

Produits de décomposition dangereux:
Monoxyde de carbone (CO), Dioxyde de carbone (CO2), Oxydes de sodium

Polymérisation hasardeuse:
Une polymérisation dangereuse ne se produit pas. Réactions dangereuses Aucune dans des conditions normales de traitement.

Mesures de premiers secours de l'acide citrique :

Lentilles de contact:
Rincer immédiatement et abondamment à l'eau, également sous les paupières, pendant au moins 15 minutes.
Consulter un médecin si des symptômes apparaissent.

Contact avec la peau:
Laver immédiatement à grande eau pendant au moins 15 minutes.
Si l'irritation cutanée persiste, appeler un médecin.

Inhalation:
Retirer à l'air frais.
Obtenez immédiatement des soins médicaux si des symptômes apparaissent.
S'il ne respire pas, pratiquer la respiration artificielle.

Ingestion:
NE PAS faire vomir.
Obtenez immédiatement des soins médicaux si des symptômes apparaissent.

Symptômes et effets les plus importants :
Pas d'information disponible.

Notes au médecin :
Traiter de manière symptomatique

Mesures de lutte contre l'incendie de l'acide citrique :

Moyens d'extinction appropriés :
Eau pulvérisée, dioxyde de carbone (CO2), poudre chimique sèche, mousse résistante à l'alcool.

La température d'auto-inflammation:
500 °C / 932 °F

Mesures en cas de dispersion accidentelle d'acide citrique :
Précautions personnelles Assurer une ventilation adéquate.
Eviter la formation de poussière.

Eviter le contact avec la peau et les yeux.
Utiliser un équipement de protection individuelle si nécessaire.
Précautions environnementales Aucune précaution environnementale particulière requise.

Méthodes de confinement et de nettoyage :
Balayer et pelleter dans des récipients appropriés pour l'élimination.
Eviter la formation de poussière.

Identifiants de l'acide citrique :
Numero CAS:
68-04-2
6132-04-3 (dihydraté)
6858-44-2 (pentahydraté)

ChEMBL : ChEMBL1355
ChemSpider : 5989
Carte d'information ECHA : 100.000.614
Numéro E : E331iii (antioxydants, ...)
CID PubChem : 6224
Numéro RTECS : GE8300000

UNII :
RS7A450LGA
B22547B95K (dihydraté)

Tableau de bord CompTox (EPA) : DTXSID2026363
InChI : InChI=1S/C6H8O7.3Na/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7, 8)(H,9,10)(H,11,12);;;/q;3*+1/p-3
Clé: HRXKRNGNAMMEHJ-UHFFFAOYSA-K
InChI=1/C6H8O7.3Na/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7,8) (H,9,10)(H,11,12);;;/q;3*+1/p-3
Clé : HRXKRNGNAMMEHJ-DFZHHIFOAL
SOURIRES : C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O.[Na+].[Na+].[Na+]

Numéro CAS : 6132-04-3
Numéro CE : 200-675-3
Note : Ph Eur, BP, JP, USP, E 331
Formule de Hill : C₆H₅Na₃O₇ * 2 H₂O
Masse molaire : 294,10 g/mol
Code SH : 2918 15 00

Code produit : NA2043
Numéro CAS : 6132-04-3
Dosage (pureté) : USP
Méthode de pureté : par titrage
Poids moléculaire : 294,10
Forme : solide
Aspect : poudre blanche
Point de fusion : 300 C
Point d'ébullition : 309,6 C
Titrage : 99,0-101,0 %
Type de titrage : avec HCLO4
Formule moléculaire : Na3C6H5O7 · 2H2O
Formule linéaire : HOC(COONa)(CH2COONa)2 · 2H2O

Propriétés de l'acide citrique :
Formule chimique : Na3C6H5O7
Masse molaire : 258,06 g/mol (anhydre), 294,10 g/mol (dihydraté)
Aspect : Poudre cristalline blanche
Densité : 1,7 g/cm3
Point de fusion : > 300 °C (572 °F ; 573 K) (les hydrates perdent de l'eau à environ 150 °C)
Point d'ébullition : se décompose
Solubilité dans l'eau : Forme pentahydratée : 92 g/100 g H2O (25 °C)

Point de fusion : 300°C (substance anhydre)
Valeur pH : 7,5 - 9,0 (50 g/l, H₂O, 25°C)
Densité apparente : 600 kg/m3
Solubilité : 720 g/l

Poids moléculaire : 294,10 g/mol
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 9
Nombre de liaisons rotatives : 2
Masse exacte : 293,99396471 g/mol
Masse monoisotopique : 293,99396471 g/mol
Surface polaire topologique : 143Ų
Nombre d'atomes lourds : 18
Complexité : 211
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 6
Le composé est canonisé : oui

Spécifications de l’acide citrique :
Dosage (titrage à l'acide perchlorique, calqué sur substance anhydre (Ph Eur)) : 99,0 - 101,0 %
Dosage (titrage à l'acide perchlorique, substance préalablement séchée) (JP/USP) : 99,0 - 100,5 %
Identité (Na) : réussit le test
Identité (Citrate) : réussit le test
Identité (réaction à l'inflammation) : réussit le test
Aspect : cristaux blancs à presque blancs
Aspect de la solution (100 g/l, eau sans CO₂) : claire et incolore
Acidité ou alcalinité : réussit le test
pH (50 g/l d'eau sans CO₂) : 7,5 - 8,5
Chlorure (Cl) : ≤ 50 ppm
Sulfate (SO₄) : ≤ 150 ppm
Métaux lourds (en Pb) : ≤ 5 ppm
Al (aluminium) : ≤ 5 ppm
As (Arsenic) : ≤ 1 ppm
Hg (Mercure) : ≤ 1 ppm
Pb (plomb) : ≤ 1 ppm
Oxalate (sous forme de C₂H₂O₄) : ≤ 100 ppm
Tartrate (C₄H₄O₆) : réussit le test
Solvants résiduels (ICH (Q3C)) : exclus par procédé de fabrication
Substance facilement carbonisable : réussit le test
Eau (selon Karl Fischer) : 11,0 - 13,0 %
Perte au séchage (180 °C, 18 h) : 10,0 - 13,0 %

Composés apparentés de l’acide citrique :
Citrate monosodique
Citrate disodique
Citrate de calcium
Acide citrique

Noms de l’acide citrique :

Noms IUPAC :
Acide 1,2,3-propanetricarboylique, sel 2-hydroxy-trisodique, dihydraté
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique
Acide 2-hydroxy-1,2,3-propanetrioïque, sel trisodique
Ascorbaton de sodium trisodico-anidro E331
Sel trisodique d'acide citrique, Citrate de sodium tribasique, Citrate de sodium
2-hydroxypropane-1,2,3-tricarboxylate de sodium
CITRATE DE SODIUM
Citrate de sodium
citrate de sodium
Citrate de sodium
citrate de sodium dihydraté
Citrate de sodium dihydraté
Citrate de sodium – OU 10
Citrate trisodique
Citrate trisodique
Citrate de trinatium dihydraté
Trinatrium-2-hydroxypropan-1,2,3-tricarboxylate
Trisodique 2-hydroxypropane-1,2,3-
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté
2-hydroxypropane-1,2,3-tricarboxylate trisodiqueCitrate trisodique
3-hydroxy-3-carboxylate-1,5-pentanedicaroxylate trisodique
CITRATE TRISODIQUE
Citrate trisodique
Citrate trisodique
citrate trisodique
Citrate trisodique
Citrate trisodique
citrate trisodique
citrate trisodique (dihydraté)
citrate trisodique 2-hidrate
Citrate trisodique dihydraté
citrate trisodique dihydraté
Citrate trisodique, 2-hydroxypropane-1,2,3-tricarboxylate trisodique
Citrate trisodique; 2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate de trisodium
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate ; dihydraté

Nom IUPAC préféré :
2-hydroxypropane-1,2,3-tricarboxylate trisodique

Noms des processus réglementaires :
Citrate de sodium anhydre
Citrate trisodique
citrate trisodique

Appellations commerciales:
Citrate de trisodium, dihydraté
Citrate de trisodio, dihydraté
Citrate de sodium
CITRATE DE SODIUM
Citrate de sodium
CITRATE DE SODIUM DIHYDRATE
Citrate trisodique dihydraté
Trinatriumcitraatdihydraat
Trinatriumcitrat-Dihydraté
Trisodio citrato diidrato
Citrate trisodique
citrate trisodique
CITRATE DE TRISODIUM DIHYDRATE
Citrate trisodique dihydraté
CITRATRE TRISODIQUE

Autres noms:
Citrate de sodium
Citrate trisodique
Citrosodine
Acide citrique, sel trisodique
E331

Autres identifiants :
1000844-65-4
1648840-06-5
183748-56-3
2095548-08-4
6132-04-3
68-04-2
8055-55-8
856354-90-0

Synonymes de l’acide citrique :
Citrate trisodique dihydraté
Citrate de sodium dihydraté
6132-04-3
Citrate de sodium tribasique dihydraté
Citrate de sodium hydraté
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel trisodique, dihydraté
Sel trisodique d'acide citrique dihydraté
Citrate de sodium hydraté
CITRATE DE SODIUM, DIHYDRATE
2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté
MFCD00150031
B22547B95K
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate ; dihydraté
DTXSID1049437
Natrum citricum
Acide citrique, sel trisodique, dihydraté
Citronensaeure,Trinatrium-Salz-Dihydrate
N-1560
Citras natrii, déshydratés
CITRATE DE SODIUM HYDRE (II)
CITRATE DE SODIUM HYDRE [II]
2-hydroxypropane-1,2,3-tricarboxylate trisodique-eau (1/2)
Citrate trisodique dihydraté ; Sel trisodique d'acide citrique dihydraté
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanetricarboxylique dihydraté
MFCD00130806
CITRATE DE SODIUM (MONOGRAPHIE EP)
CITRATE DE SODIUM [MONOGRAPHIE EP]
citrate trisodique dihydraté
CITRATE DE TRISODIUM DIHYDRATE (II)
CITRATE DE TRISODIUM DIHYDRATE [II]
UNII-B22547B95K
CITRATE DE TRISODIUM DIHYDRATE (MONOGRAPHIE USP)
CITRATE DE TRISODIUM DIHYDRATE [MONOGRAPHIE USP]
2-hydroxypropane-1,2,3-tricarboxylate de sodium dihydraté
Citrate de sodium
Tricitrasol
Tricitrasol (TN)
Citrate de sodium; 2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté ; Citrate de sodium dihydraté
Citrate de sodium (TN)
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium, hydraté (1:3:2)
D05KTE
Citrate de sodium [USP:JAN]
Citrate de sodium tribasique dihydraté
CITRATE DE SODIUM [FHFI]
DTXCID0029397
Citrate de sodium hydraté (JP17)
CHEBI:32142
Citrate trisodique dihydraté, ACS
NLJMYIDDQXHKNR-UHFFFAOYSA-K
CITRATE DE SODIUM HYDRATE [JAN]
CITRATE DE SODIUM DIHYDRATE [MI]
AKOS025293920
Citrate de sodium dihydraté, >=99%, FG
CITRATE DE SODIUM DIHYDRATE [VANDF]
BP-31019
CITRATE DE SODIUM DIHYDRATE [QUI-DD]
Citrate de sodium tribasique dihydraté, >=98 %
Citrate de sodium dihydraté, qualité réactif ACS
CITRATE DE SODIUM, DIHYDRATE [WHO-IP]
D01781
F82065
Citrate de sodium tribasique dihydraté, AR, >=99 %
Citrate de sodium tribasique dihydraté, LR, >=99 %
Réactif ACS acide citrique, sel trisodique dihydraté
NATRII CITRAS, DÉSHYDRATÉ [WHO-IP LATINE]
A833161
A835986
Q22075862
Citrate de sodium dihydraté de qualité biochimique, granulaire fin
Citrate de sodium tribasique dihydraté, USP, 99,0-100,5 %
Citrate de sodium tribasique dihydraté (qualité biologie moléculaire)
Citrate de sodium tribasique dihydraté, réactif ACS, >=99,0 %
2-oxydanylpropane-1,2,3-tricarboxylate trisodique dihydraté
Acide citrique, sel trisodique dihydratéCitrate trisodique dihydraté
Citrate de sodium tribasique dihydraté, BioUltra, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, testé sur culture de cellules d'insectes
Citrate de sodium tribasique dihydraté, qualité spéciale JIS, >=99,0 %
Citrate de sodium tribasique dihydraté, pa, réactif ACS, 99,0 %
Citrate de sodium tribasique dihydraté, purum pa, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, SAJ première qualité, >=99,0 %
Citrate de sodium tribasique dihydraté, testé selon Ph.Eur.
Citrate trisodique dihydraté, répond aux spécifications de test USP
Citrate de sodium tribasique dihydraté, BioXtra, >=99,0 % (titrage)
Citrate de sodium tribasique dihydraté, pour la biologie moléculaire, >=99%
Citrate de sodium tribasique dihydraté, qualité réactif Vetec(TM), 98 %
Citrate de sodium, étalon de référence de la Pharmacopée américaine (USP)
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium, dihydraté
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique, dihydraté
Citrate de sodium tribasique dihydraté, pa, réactif ACS, reag. ISO, 99-101 %
Citrate de sodium tribasique dihydraté, BioUltra, pour la biologie moléculaire, >=99,5 % (NT)
Citrate de sodium tribasique dihydraté, puriss. pa, réactif ACS, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, adapté à l'analyse des acides aminés, >=99,0 %
Citrate de sodium, étalon secondaire pharmaceutique ; Matériel de référence certifié
Citrate de sodium tribasique dihydraté, puriss. pa, réactif ACS, reag. ISO, reag. Ph. Eur., >=99,5%
Citrate de sodium tribasique dihydraté, adapté à l'analyse des acides aminés, >=98 % (titrage), poudre
Citrate trisodique [Nom ACD/IUPAC] [Wiki]
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium (1:3) [ACD/Nom de l'index]
200-675-3 [EINECS]
68-04-2 [RN]
994-36-5 [RN]
Citrate de trisodium [Français] [Nom ACD/IUPAC]
Sel trisodique d'acide citrique
MFCD00012462 [numéro MDL]
RS7A450LGA
2-hydroxy-1,2,3-propanetricarboxylate de sodium
Citrate de sodium [JAN] [USAN] [Wiki]
Citrate de sodium anhydre
Trinatriumcitrat [Allemand] [Nom ACD/IUPAC]
Citrate de trisodium
2-hydroxypropane-1,2,3-tricarboxylate trisodique
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel trisodique
114456-61-0 [RN]
205-623-3 [EINECS]
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanenetricarboxylique
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanetricarboxylique
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique
Citnatine
Citrate Concentrémanquant
citrate de sodium
citrate trisodique
Citrate manquant
Citrème
Sel de sodium d'acide citrique anhydre
Sel trisodique de l'acide citrique, anhydre
Acide citrique, sel trisodique
Citrosodine
Citrosodine
Citrosode
Isolyte E
Natrocitral
2-hydroxypropane-1,2,3-tricarboxylate de sodium
Citrate de sodium (USP)
Tampon citrate de sodium
CITRATE DE SODIUM TRIBASIQUE
Citrate de sodium, anhydre
Synthèse à la demande
citrate trisodique
Citrate trisodique anhydre
citrate trisodique
UNII-RS7A450LGA
ACIDE CYSTÉIQUE
L'acide cystéique est un acide aminé généré par oxydation de la cystéine, par lequel un groupe thiol est entièrement oxydé en un groupe acide sulfonique/sulfonate.
L'acide cystéique, également connu sous le nom de cystéate ou 3-sulfoalanine, appartient à la classe de composés organiques appelés acides alpha-aminés.
L'acide cystéique existe dans toutes les espèces vivantes, des bactéries aux humains.

Numéro CAS : 498-40-8
Numéro CE : 207-861-3
Formule moléculaire : C3H7NO5S
Poids moléculaire (g/mol) : 169,15

Acide cystéique, 3-sulfoalanine, ACIDE DL-CYSTEIQUE, acide 2-amino-3-sulfopropanoïque, 13100-82-8, cystéate, bêta-sulfoalanine, Alanine, 3-sulfo-, 3024-83-7, acide cystéique, ceptéique acide, Acide ciptéique, Acide cystéique, A3OGP4C37W, CHEBI:21260, Cysteinesulfonate, 2-amino-3-sulfopropanoate, L-Cysteate, UNII-A3OGP4C37W, cystéinsaure, Cepteate, Cipteate, Cysterate, NSC 254030, NSC-254030, L-Cysteic acide, 8, 3-sulfoalanine, (L)-, 2-Amino-3-sulfopropionate, ACIDE CYSTEIQUE [MI], ACIDE CYSTEIQUE, DL-, CHEMPACIFIC41266, SCHEMBL44030, acide m2-amino-3-sulfopro-panoïque, CHEMBL1171434, Acide 2-azanyl-3-sulfo-propanoïque, BDBM85473, DTXSID40862048, XVOYSCVBGLVSOL-UHFFFAOYSA-N, BBL100099, MFCD00065088, NSC254030, STL301905, AKOS005174455, 3-sulfoalanine (H-DL- Cys(O3H)-OH), LS-04435 , FT-0627746, FT-0655399, FT-0683826, C-9550, EN300-717791, A820275, Q2823250, Z1198149799, InChI=1/C3H7NO5S/c4-2(3(5)6)1-10(7,8 )9/h2H,1,4H2,(H,5,6)(H,7,8,9, 13100-82-8 [RN], acide 2-amino-3-sulfopropanoïque, 3024-83-7 [RN ], 3-Sulfoalanine [allemand] [Nom ACD/IUPAC], 3-Sulfoalanine [Nom ACD/IUPAC], 3-Sulfoalanine [Français] [Nom ACD/IUPAC], A3OGP4C37W, Acide a-Amino-b-sulfopropionique, Alanine , 3-sulfo-[ACD/Nom de l'index], CYA, acide cystéique, acide cystéique (VAN), ACIDE CYSTEIQUE, D-, ACIDE CYSTEIQUE, DL-, ACIDE CYSTEIQUE, L-, acide DL-cystéique, acide L-cystéique , UNII : A3OGP4C37W, acide α-amino-β-sulfopropionique, 2-Amino-3-sulfopropanoate [Nom ACD/IUPAC], 2-Amino-3-sulfopropionate, Cepteate, Cipteate, Cysteinesulfonate, Cysterate, (R)-2- Acide amino-3-sulfopropanoïque, acide (S)-2-amino-3-sulfopropanoïque, [13100-82-8] [RN], 207-861-3 [EINECS], acide 2-Amino-3-sulfopropionique, 35554 -98-4 [RN], 3-sulfoalanine, (L)-, 3-sulfoalanine|alanine, 3-sulfo-, Alanine, 3-sulfo-, L-, C-9550, acide ceptéique, acide ciptéique, cystéate, cystéinate, acide cystéine sulfonique, ACIDE CYSTEINESULFONIC, acide cystéinique, cystéine, acide cystéique, DL-CYSTEICACID, L-Alanine, 3-sulfo-[ACD/Index Name], L-cystéate, acide L-cystéique, 8, MFCD00007524, MFCD00065088 [numéro MDL], β-sulfoalanine

L'acide cystéique, également connu sous le nom de 3-sulfo-l-alanine, est le composé organique de formule HO3SCH2CH(NH2)CO2H.
L'acide cystéique est souvent appelé cystéate, qui, à pH proche de la neutralité, prend la forme −O3SCH2CH(NH3+)CO2−.

L'acide cystéique est un acide aminé généré par oxydation de la cystéine, par lequel un groupe thiol est entièrement oxydé en un groupe acide sulfonique/sulfonate.
L'acide cystéique est ensuite métabolisé via le 3-sulfolactate, qui se transforme en pyruvate et en sulfite/bisulfite.
L'enzyme L-cystéate sulfo-lyase catalyse cette conversion.

Le cystéate est un précurseur biosynthétique de la taurine dans les microalgues.
En revanche, la plupart de la taurine animale est fabriquée à partir de sulfinate de cystéine.

L'acide cystéique et l'acide cystéine sulfinique (intermédiaires métaboliques issus de la biosynthèse de la taurine dans le cerveau) réduisent considérablement l'absorption de la [3H]taurine dans les neurones en culture, alors que la cystéine, l'acide iséthionique, la cystéamine et la cystamine ne présentent aucune altération du transport de la taurine.

L'acide cystéique, également connu sous le nom de cystéate ou 3-sulfoalanine, appartient à la classe de composés organiques appelés acides alpha-aminés.
Ce sont des acides aminés dans lesquels le groupe amino est attaché à l’atome de carbone immédiatement adjacent au groupe carboxylate (carbone alpha).

Un acide aminosulfonique qui est l'analogue de l'acide sulfonique de la cystéine.
L'acide cystéique est un composé basique très fort (basé sur le pKa de l'acide cystéique).

L'acide cystéique existe dans toutes les espèces vivantes, des bactéries aux humains.
Chez l'homme, l'acide cystéique participe à un certain nombre de réactions enzymatiques.
En particulier, l'acide cystéique peut être converti en taurine grâce à l'interaction de l'acide cystéique avec l'enzyme cystéine sulfinique décarboxylase.

De plus, l'acide cystéique peut être converti en taurine grâce à l'interaction de l'acide cystéique avec l'enzyme glutamate décarboxylase 1.
Chez l'homme, l'acide cystéique est impliqué dans le métabolisme de la taurine et de l'hypotaurine.

L'acide cystéique, également connu sous le nom de cystéate ou 3-sulfoalanine, appartient à la classe de composés organiques appelés acides alpha-aminés.
Ce sont des acides aminés dans lesquels le groupe amino est attaché à l’atome de carbone immédiatement adjacent au groupe carboxylate (carbone alpha).

L'acide cystéique est un composé basique très fort (basé sur le pKa de l'acide cystéique).
L'acide cystéique existe dans toutes les espèces vivantes, des bactéries aux humains.

L'acide L-cystéique est une bêta-sulfoalanine.
L'acide cystéique est un acide aminé avec un groupe acide sulfonique C-terminal qui a été isolé de cheveux humains oxydés avec du permanganate.
L'acide cystéique se trouve normalement dans la partie externe de la toison du mouton, là où la laine est exposée à la lumière et aux intempéries.

L'acide cystéique, également connu sous le nom de 3-sulfo-1-alanine, est un composé organique de formule HO3SCH2CH(NH2)CO2H.
L'acide cystéique est souvent appelé cystéate et, à pH presque neutre, l'acide cystéique prend la forme -O3SCH2CH(NH3+)CO2-.

Acide aminé produit par l'oxydation de la cystéine, où le groupe thiol est complètement oxydé en un groupe acide sulfonique/sulfonate.
L'acide cystéique est ensuite métabolisé via l'acide 3-sulfolactique et converti en pyruvate et sulfite/bisulfite.

L'enzyme L-cystéate sulfolyase catalyse cette conversion.
L'acide cystéique est le précurseur biosynthétique de la taurine dans les microalgues.
En revanche, la plupart de la taurine chez les animaux est fabriquée à partir d’acide cystéine sulfinique.

L'acide Fmoc-L-cystéique est un dérivé de cystéine protégé par Fmoc potentiellement utile pour les études protéomiques et les techniques de synthèse peptidique en phase solide.
La cystéine est un acide aminé polyvalent impliqué dans de nombreux processus biologiques, notamment la formation de liaisons disulfure, un composant essentiel de la structure des protéines.
Ce composé pourrait être utile comme analogue inhabituel d’acides aminés pour faciliter la déconvolution de la structure et de la fonction des protéines.

L'acide cystéique est un acide aminosulfonique qui est l'analogue de l'acide sulfonique de la cystéine.
L'acide cystéique joue un rôle de métabolite animal.
L'acide cystéique est un dérivé de l'alanine, un acide aminosulfonique, un acide carboxyalcanesulfonique, un dérivé de la cystéine et un acide alpha-aminé non protéinogène.

L'acide cystéique est un métabolite présent ou produit par Escherichia coli (souche K12, MG1655).

L'acide cystéique est un produit naturel présent chez Phaseolus vulgaris et Homo sapiens avec des données disponibles.

L'acide cystéique peut être facilement oxydé, les principaux produits de dégradation étant des disulfures mélangés au sein d'une molécule, des liaisons croisées disulfure entre les molécules et des acides sulfénique, sulfinique et cystéique.
Les métaux de transition tels que Cu2+ et Fe3+ peuvent catalyser la formation de liaisons disulfure.

À titre d'exemple, le facteur de croissance des fibroblastes humains (FGF-1) forme des dimères à la suite de disulfures intermoléculaires par oxydation catalysée par le cuivre.
Ces réactions catalysées par un métal peuvent généralement se produire sans groupe thiol voisin.

En l'absence de métaux de transition, la formation de nouveaux ponts disulfure intramoléculaires ou intermoléculaires nécessite généralement un groupe thiol libre à proximité qui brise le pont disulfure natif existant, puis le thiol libre peut se réoxyder pour former le pont disulfure.
Étant donné que cette réaction nécessite un anion thiol libre (pKa est d'environ 9), une augmentation du pH de la solution entraînera une augmentation de la formation de disulfure mixte.

Cependant, les valeurs de pKa de l'acide cystéique peuvent varier en fonction de la proximité d'autres groupes ionisants dans la structure tertiaire.
Ces interactions sont principalement de nature électrostatique et puisque l'ionisation de ces groupes voisins change avec le pH, les valeurs pKa des résidus d'acide cystéique seront fonction du pH.

A titre d'exemple, le thiol pKa dans la papaïne pour le site actif Cys 25 a été estimé à 4,1 à pH 6 et à 8,4 à pH 9.
Cette observation suggère qu'à pH 6, il existe un résidu His avec une charge positive à proximité immédiate de l'acide cystéique 25, alors qu'à pH 9, les interactions électrostatiques sont dominées par des résidus proches chargés négativement tels que les résidus Asp ou Glu.

Les effets des environnements électrostatiques locaux sur les valeurs de pKa des thiols et sur l'échange de disulfures ont été discutés par Snyder, Cennerazzo, Karalis et Field (1981).
L'appariement d'ions avec des résidus His a également été proposé pour la diminution des valeurs Cys pKa.

L'acide cystéique a été utilisé pour se coupler à des marqueurs hydrophobes tels que les colorants cyanine et rhodamine et d'autres résidus hydrophobes afin d'augmenter leur solubilité dans l'eau.
En tant que di- ou tripeptide, une augmentation supplémentaire du caractère hydrophile peut être obtenue

L'acide cystéique a été utilisé pour se coupler à des marqueurs hydrophobes tels que les colorants cyanine et rhodamine et d'autres résidus hydrophobes afin d'augmenter leur solubilité dans l'eau.
En tant que di- ou tripeptide, une augmentation supplémentaire du caractère hydrophile peut être obtenue.

L'acide cystéique peut être couplé dans le SPPS par des réactifs de couplage standards à base de phosphonium ou d'uranium.
Dans les technologies à haut débit pour le séquençage de l'ADN et la génomique marquée par un colorant modifié
Les didésoxynucléoside-5'-triphosphates ont été synthétisés pour des applications « à charge directe » dans l'ADN.

La L-cystéine et l'acide L-cystéique ont été synthétisés par la méthode d'électrolyse couplée.
Une pureté élevée supérieure à 98 % et un rendement élevé supérieur à 90 % des deux produits ont été obtenus.

Lorsque la densité de courant était de 7 A/dm2 et la concentration de L-cystéine de 0,6 mol/dm3, l'efficacité de courant la plus élevée de l'anode et de la cathode a été atteinte.
L'efficacité actuelle totale était supérieure à 180 %.

Les comportements de voltamétrie cyclique de l'acide bromhydrique et de la cystine ont montré qu'une réaction EC typique avait lieu dans la cellule anodique.
La réaction anodique et la réaction chimique successive se sont accélérées pour obtenir une vitesse et une efficacité de courant élevées.

L'acide L-cystéique est l'énantiomère L de l'acide cystéique.
L'acide cystéique joue un rôle de métabolite d'Escherichia coli et de métabolite humain.

L'acide cystéique est un acide cystéique, un acide aminosulfonique, un dérivé de L-alanine, un dérivé de L-cystéine et un acide L-alpha-aminé non protéinogène.
L'acide cystéique est un acide conjugué d'un L-cystéate (1-).

L'acide L-cystéique est une bêta-sulfoalanine.
L'acide cystéique est un acide aminé avec un groupe acide sulfonique C-terminal qui a été isolé de cheveux humains oxydés avec du permanganate.
L'acide cystéique se trouve normalement dans la partie externe de la toison du mouton, là où la laine est exposée à la lumière et aux intempéries.

Utilisations de l'acide cystéique :
Acide aminé avec un groupe acide sulfonique C-terminal qui a été isolé de cheveux humains oxydés avec du permanganate.
L'acide cystéique se trouve normalement dans la partie externe de la toison du mouton, là où la laine est exposée à la lumière et aux intempéries.

Application de l'acide cystéique :
Étalon interne pour l’analyse des acides aminés.

Biochem/physiol Actions de l'acide cystéique :
L'acide L-cystéique est un analogue de l'aspartate contenant du soufre qui peut être utilisé comme inhibiteur compétitif de l'aspartate bactérien : l'échange d'antiporteur d'alanine (AspT) de l'aspartate et dans d'autres systèmes biologiques de l'aspartate.
L'acide L-cystéique est utilisé dans le développement de tensioactifs monomères.

L'acide L-cystéique est un produit d'oxydation de la cystéine.
L'acide L-cystéique, un analogue de l'acide cystéine sulfinique, peut être utilisé dans les études sur les acides aminés excitateurs du cerveau, tels que ceux qui se lient aux récepteurs de l'acide cystéine sulfinique.
L'acide L-cystéique est un agoniste utile de plusieurs récepteurs métabotropiques du glutamate (mGluR) du rat.

Pharmacologie et biochimie de l'acide cystéique :

Informations sur les métabolites humains :

Emplacements cellulaires :
Mitochondries

Manipulation et stockage de l'acide cystéique :

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:

Conditions de stockage:
Hermétiquement fermé.
Sec.

Classe de stockage :
Classe de stockage (TRGS 510) : 11 : Solides combustibles

Stabilité et réactivité de l'Acide Cystéique :

Réactivité:

Ce qui suit s'applique en général aux substances et mélanges organiques inflammables :
En cas de distribution fine correspondante, on peut généralement supposer un potentiel d'explosion de poussière en cas de tourbillonnement.

Stabilité chimique:
L'acide cystéique est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Possibilité de réactions dangereuses:
Pas de données disponibles

Conditions à éviter :
Pas d'information disponible

Matériaux incompatibles :
Agents oxydants forts

Mesures de premiers secours de l'acide cystéique :

En cas d'inhalation :

Après inhalation :
Air frais.

En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.

En cas de contact visuel :

Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.

En cas d'ingestion:

Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.

Mesures de lutte contre l'incendie de l'acide cystéique :

Moyens d'extinction appropriés :
Eau Mousse Dioxyde de carbone (CO2) Poudre sèche

Moyens d'extinction inappropriés :
Pour l'acide cystéique, aucune limitation concernant les agents extincteurs n'est indiquée.

Dangers particuliers résultant de l'acide cystéique :
Oxydes de carbone
Oxydes d'azote (NOx)
Oxydes de soufre
Combustible.

Possibilité de dégagement de gaz ou de vapeurs de combustion dangereux en cas d'incendie.

Conseils aux pompiers :
En cas d'incendie, porter un appareil respiratoire autonome.

Informations complémentaires :
Supprimez (abattez) les gaz/vapeurs/brouillards avec un jet d'eau pulvérisée.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.

Mesures en cas de libération accidentelle d'acide cystéique :

Précautions individuelles, équipement de protection et procédures d'urgence :

Conseils aux non-secouristes :
Eviter l'inhalation de poussières.
Évacuer la zone dangereuse, respecter les procédures d'urgence, consulter un expert.

Précautions environnementales
Ne laissez par le produit entrer dans des canalisations.

Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations. Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.

Prendre à sec.
Éliminer correctement.

Nettoyer la zone touchée.
Eviter la génération de poussières.

Identifiants de l'acide cystéique :
Numero CAS:
13100-82-8 (D/L)
35554-98-4 (D)
498-40-8 (L)

ChEBI : CHEBI :17285
ChemSpider : 65718
Banque de médicaments : DB03661
Carte d'information ECHA : 100.265.539
Numéro CE : 207-861-3
MeSH : Cystéique+acide
CID PubChem : 25701

UNII :
A3OGP4C37W (D/L)
YWB11Z1XEI (D)
M6W2DJ6N5K (L)

Tableau de bord CompTox (EPA) : DTXSID40862048
InChI : InChI=1S/C3H7NO5S/c4-2(3(5)6)1-10(7,8)9/h2H,1,4H2,(H,5,6)(H,7,8,9) /t2-/m0/s1
Clé : XVOYSCVBGLVSOL-REOHCLBHSA-N
InChI=1/C3H7NO5S/c4-2(3(5)6)1-10(7,8)9/h2H,1,4H2,(H,5,6)(H,7,8,9)/t2 -/m0/s1
SOURIRES : C(C(C(=O)O)N)S(=O)(=O)O

Synonyme(s) : Acide (R)-2-Amino-3-sulfopropionique
Formule linéaire : HO3SCH2CH(NH2)CO2H·H2O
Numéro CAS : 23537-25-9
Poids moléculaire : 187,17
Beilstein: 3714036
Numéro MDL : MFCD00149544
ID de substance PubChem : 24858207
NACRES : NA.26

CAS : 498-40-8
Formule moléculaire : C3H7NO5S
Poids moléculaire (g/mol) : 169,15
Numéro MDL : MFCD00007524
Clé InChI : XVOYSCVBGLVSOL-UHFFFAOYNA-N
CID PubChem : 72886
ChEBI : CHEBI :17285
Nom IUPAC : acide 2-amino-3-sulfopropanoïque
SOURIRES : NC(CS(O)(=O)=O)C(O)=O

Propriétés de l'acide cystéique :
Formule chimique : C3H7NO5S
Masse molaire : 169,15 g·mol−1
Aspect : Cristaux ou poudre blancs
Point de fusion : se décompose vers 272 °C
Solubilité dans l'eau : Soluble

Niveau de qualité : 200
Analyse : ≥99,0 % (T)
forme : poudre ou cristaux
activité optique : [α]20/D +7,5±0,5°, c = 5% dans H2O
technique(s) : LC/MS : appropriée
couleur : blanc à jaune pâle
mp : 267 °C (déc.) (lit.)
solubilité : H2O : soluble
application(s) : synthèse peptidique
Chaîne SMILES : [H]O[H].N[C@@H](CS(O)(=O)=O)C(O)=O
InChI : 1S/C3H7NO5S.H2O/c4-2(3(5)6)1-10(7,8)9;/h2H,1,4H2,(H,5,6)(H,7,8,9 );1H2/t2-;/m0./s1
Clé InChI : PCPIXZZGBZWHJO-DKWTVANSSA-N

Poids moléculaire : 169,16 g/mol
XLogP3-AA : -4,5
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 6
Nombre de liaisons rotatives : 3
Masse exacte : 169,00449350 g/mol
Masse monoisotopique : 169,00449350 g/mol
Surface polaire topologique : 126Ų
Nombre d'atomes lourds : 10
Complexité : 214
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Spécifications de l’acide cystéique :
Couleur blanche
Quantité : 1 g
Poids de la formule : 169,15
Pourcentage de pureté : ≥98,0 % (T)
Forme physique : Poudre cristalline
Nom chimique ou matériau : Acide L-cystéique

Produits connexes de l’acide cystéique :
(R)-(-)-2,2-Diméthyl-1,3-dioxolane-4-méthanol
Ester méthylique de l'acide (R)-(+)-2,2-diméthyl-1,3-dioxolane-4-carboxylique
[2R-[2a,6a,7b(R*)]]-7-[[[[(1,1-Diméthyléthoxy)carbonyl]amino]phénylacétyl]amino]-3-méthylène-8-oxo-5-thia- Acide 1-azabicyclo[4.2.0]octane-2-carboxylique 5-oxyde
(S)-4',7-Diméthyl Équol
(3a'R,4'S,5'S,6a'S)-5'-[[(1,1-Diméthyléthyl)diméthylsilyl]oxy]hexahydro-N-[(1R)-2-hydroxy-1-phényléthyl]-5,5- diméthyl-spiro[1,3-dioxane-2,2'(1'H)-pentalène]-4'-carboxamide

Noms de l'acide cystéique :

Nom UICPA :
Acide (R)-2-Amino-3-sulfopropanoïque

Noms des processus réglementaires :
Acide L-cystéique
Acide L-cystéique

Autres noms:
3-Sulfo-l-alanine

Autres identifiants :
498-40-8
ACIDE DE COCO
L'acide de noix de coco est dérivé de la noix de coco.
L'acide de noix de coco se compose de divers acides gras extraits de l'huile de cocos nucifera (noix de coco).
L'acide de noix de coco joue le rôle d'agent tensioactif-nettoyant et émollient.

CAS : 61788-47-4
FM : C19H21NO5
EINECS : 262-978-7

Synonymes
Acide gras d'huile de coco; Edenor K 8-18 MY; Acides gras de coco; ACIDE DE COCO; Acide cocinique; Acide .alpha.-Cocinique; Acide 3-benzènedicarboxylique, 4-hydroxy-6-méthyl-1; Acide d'huile de coco; 61788 -47-4
;Acide gras d'huile de coco;(4R,4aR,7S,7aR,12bS)-7-hydroxy-9-méthoxy-3-méthyl-2,4,4a,7,7a,13-hexahydro-1H-4,12- acide méthanobenzofuro[3,2-e]isoquinoléine-11-carboxylique

L’acide de noix de coco a été appelé « l’huile la plus saine au monde ».
En tant qu’acide gras à chaîne moyenne, l’huile de coco a un effet sur la physiologie humaine sensiblement différent de celui des acides gras à chaîne longue les plus courants dans notre alimentation.
Les acides gras saturés contenus dans l’huile de coco sont essentiellement des acides gras à chaîne moyenne.
Et la viande, le lait, les œufs et les plantes (y compris presque toutes les huiles végétales), qu’elles soient saturées ou insaturées, sont des acides gras à longue chaîne.

L'acide de noix de coco est un dérivé de l'huile de noix de coco, produite à partir du fruit du cocotier (Cocos nucifera).
L'acide de coco peut être produit en séchant d'abord le fruit à la lumière du soleil ou dans des fours.
La chair séchée ou « coprah » subit ensuite une pression à froid ou une extraction par solvant pour en extraire l’huile.
L’acide de coco est particulièrement riche en graisses saturées, notamment en acides gras laurique, myristique et palmitique, qui peuvent être séparés ou « fractionnés » en acide de coco.

L'acide de noix de coco est un tensioactif alcalin (agent nettoyant).
En plus d'aider à prévenir la formation excessive de mousse, en particulier dans les machines à haute efficacité, cela permet également à l'acide de noix de coco de rincer plus facilement la saleté tout en garantissant des performances de nettoyage puissantes.
L'acide de noix de coco est un ester glycérylique de l'huile de noix de coco qui provient de l'expression des parties internes séchées de la noix de coco.
L'acide de l'acide de noix de coco est capable de pénétrer dans la tige capillaire, nourrissant les cheveux avec des vitamines, des minéraux et des acides gras à chaîne moyenne.
Donnant une structure longue et droite, ce type d’acide gras est plus facilement absorbé en profondeur dans les cheveux plutôt que de simplement recouvrir les mèches, bénéficiant ainsi aux cheveux de l’intérieur.

L'acide cocinique est un acide gras présent dans l'huile de coco.
L'acide de noix de coco a été utilisé comme agent conditionneur et comme émulsifiant pour la production d'huile de noix de coco hydrogénée.
L’acide de coco est également utilisé comme alcool gras sulfaté ou non, que l’on retrouve dans les profils de nombreuses huiles naturelles.
Les acides gras contenus dans l’acide de noix de coco sont combinés à un alcool pour produire des esters, qui sont utilisés comme ingrédient dans de nombreux produits cosmétiques.

L'acide de coco est connu comme « l'huile la plus saine sur Terre ».
L'acide de noix de coco en tant qu'acide gras à chaîne moyenne, son impact sur la physiologie humaine est sensiblement différent des acides gras à chaîne longue les plus courants dans nos aliments.
Les acides gras saturés contenus dans l’acide de noix de coco sont essentiellement des acides gras à chaîne moyenne.
La viande, le lait, les œufs et les plantes (y compris presque toutes les huiles végétales), qu'elles soient saturées ou insaturées, sont des acides gras à longue chaîne.
L'acide de coco, obtenu à partir de la chair de noix de coco (sèche), est une graisse blanche ou jaune clair.
Acide de noix de coco 65 % à 74 %, humidité 4 % à 7 %.

La valeur de saponification de l'acide de noix de coco est très élevée et l'indice de réfraction est très faible, la composition en acides gras de la teneur saturée en huile de noix de coco est supérieure à 90 %.
Les graisses sont constituées d’acides gras et sont divisées en trois catégories : les graisses monoinsaturées, les graisses polyinsaturées et les graisses saturées.
Les graisses saturées, présentes principalement dans les produits d'origine animale comme la viande et le lait, sont solides à température ambiante et sont associées à de nombreux problèmes de santé humaine : obésité, taux de cholestérol élevé et risque accru de maladie cardiaque.
En tant que graisse saturée végétale, l’huile de coco faisait autrefois partie des graisses malsaines et il était conseillé d’éviter l’acide de coco.
Cependant, bien que l’huile de coco soit une graisse saturée, l’acide de coco n’est pas un aliment malsain.
En fait, il contient de nombreux avantages pour la santé.

L'huile de coco (ou graisse de coco) est une huile comestible dérivée des amandes, de la viande et du lait du fruit du cocotier.
L'huile de coco est une graisse solide blanche en dessous d'environ 25 °C (77 °F) et une huile liquide claire et fine dans les climats plus chauds. Les variétés non raffinées ont un arôme distinct de noix de coco.
L'huile de coco est utilisée comme huile alimentaire et dans des applications industrielles pour la production de cosmétiques et de détergents.
L'huile est riche en acides gras à chaîne moyenne.
En raison de sa teneur élevée en graisses saturées, de nombreuses autorités sanitaires recommandent d’en limiter la consommation alimentaire.

Composition
L'acide de noix de coco est une série de différents types d'acides gras extraits de l'huile de noix de coco.
Le principal acide gras est l'acide laurique, accompagné d'autres acides gras saturés, tels que l'acide caprylique, l'acide caprique, l'acide myristique, l'acide palmitique et l'acide stéarique, et d'une petite quantité d'acides gras insaturés. C12 : 57 %, C14 : 22 %, C16 : 10 %

Les usages
Composition nutritionnelle et grasse
L'acide de coco contient 99 % de matières grasses, composées principalement de graisses saturées (82 % du total ; tableau).
Dans une quantité de référence de 100 grammes, l'huile de coco fournit 890 calories.
La moitié de la teneur en graisses saturées de l'huile de coco est l'acide laurique (41,8 grammes pour 100 grammes de composition totale), tandis que les autres graisses saturées importantes sont l'acide myristique (16,7 g), l'acide palmitique (8,6 g) et l'acide caprylique (6,8 g). .
Les graisses monoinsaturées représentent 6 % de la composition totale et les graisses polyinsaturées 2 % (tableau).
L'acide de coco contient des phytostérols, alors qu'il n'y a pas de micronutriments en quantité significative (tableau).

Dans la nourriture
L'acide de coco a une longue histoire en Asie, notamment dans les régions tropicales où la plante est abondante, où elle est utilisée pour la cuisine.
L'acide de coco est l'huile de choix dans la cuisine srilankaise, où elle est utilisée pour faire sauter et frire, dans les plats salés et sucrés.
L'acide de noix de coco joue également un rôle de premier plan dans les cuisines de Thaïlande et du Kerala.

En tant qu'huile introduite relativement récemment dans les pays occidentaux, l'acide de coco est couramment utilisé dans les produits de boulangerie, les pâtisseries et les sautés, ayant une qualité semblable à celle d'une noix avec une certaine douceur.
L'acide de noix de coco est parfois utilisé par les chaînes de cinéma pour faire éclater du pop-corn.

D'autres utilisations culinaires incluent le remplacement des graisses solides produites par hydrogénation dans les produits de boulangerie et de confiserie.
L’acide de noix de coco hydrogéné ou partiellement hydrogéné est souvent utilisé dans les crèmes non laitières et les collations.
En friture, le point de fumée de l’huile de coco est de 177 °C (351 °F).

Industrie
L'acide de noix de coco a été testé pour être utilisé comme matière première pour le biodiesel destiné à être utilisé comme carburant pour moteur diesel.
De cette manière, l’acide de noix de coco peut être appliqué aux générateurs électriques et aux transports utilisant des moteurs diesel.
Étant donné que l'huile de coco pure a une température de gélification élevée (22 à 25 °C (72 à 77 °F)), une viscosité élevée et une température minimale de chambre de combustion de 500 °C (932 °F) (pour éviter la polymérisation du carburant ), l’acide de coco est généralement transestérifié pour fabriquer du biodiesel.
L'utilisation du B100 (100 % biodiesel) n'est possible que dans les climats tempérés, car le point de gel est d'environ 10 °C (50 °F).
L'huile doit répondre à la norme Weihenstephan pour utiliser de l'huile végétale pure comme carburant.
Des dommages modérés à graves dus à la carbonisation et au colmatage se produiraient dans un moteur non modifié.

Les Philippines, Vanuatu, Samoa et plusieurs autres pays insulaires tropicaux utilisent l’acide de coco comme source de carburant alternative pour faire fonctionner les automobiles, les camions et les bus, ainsi que pour alimenter les générateurs.
Le biodiesel dérivé de l’huile de coco est actuellement utilisé comme carburant pour les transports aux Philippines.
Des recherches plus approfondies sur le potentiel de l'huile de coco comme carburant pour la production d'électricité sont en cours dans les îles du Pacifique, même si à ce jour il semble que l'acide de coco ne soit pas utile comme source de carburant en raison du coût de la main-d'œuvre et des contraintes d'approvisionnement.

L'acide de noix de coco a été testé pour être utilisé comme lubrifiant moteur et comme huile de transformateur.
L'acide de noix de coco (et ses dérivés, tels que l'acide gras de noix de coco) sont utilisés comme matières premières dans la fabrication de tensioactifs tels que la cocamidopropylbétaïne, le cocamide MEA et le cocamide DEA.
Les acides dérivés de l'huile de coco peuvent être utilisés comme herbicides.
Le traitement à la lipase catalytique aurait conféré à l’huile de coco des caractéristiques antimicrobiennes.
Avant l’avènement de l’éclairage électrique, l’acide de coco était la principale huile utilisée pour l’éclairage en Inde et était exportée sous forme d’huile de cochin.

Savon
Voir aussi : Savon
L'acide de coco est un ingrédient de base important pour la fabrication du savon.
Le savon à base d'huile de noix de coco a tendance à être dur, bien qu'il retient plus d'eau que le savon à base d'autres huiles et augmente ainsi les rendements du fabricant.
L'acide de coco est plus soluble dans l'eau dure et l'eau salée que les autres savons, ce qui lui permet de mousser plus facilement.

Autres utilisations
L'huile peut être utilisée pour traiter la sécheresse et les plaies dues à l'eau salée et aux coups de soleil.
L'acide de noix de coco peut être utilisé pour brûler dans une torche ou goutte à goutte dans le feu pour créer une fumée repoussant les insectes.
L'acide de coco protège également le métal de la corrosion.

L'acide gras de l'acide de noix de coco peut être utilisé comme matière première de réaction pour les esters, les amines, les amides, les savons, etc. ; il peut être utilisé comme composant huileux dans les cosmétiques et les produits pharmaceutiques.
Mélangez des matériaux tels que des peintures et des huiles.
Les ingrédients huileux des produits cosmétiques et pharmaceutiques conviennent à la synthèse ou à la composition de détergents quotidiens et industriels, d'auxiliaires de fabrication du papier et d'huiles de fibres chimiques.
L'acide de noix de coco est un tensioactif ou un détergent.
L'acide de coco se trouve souvent dans les produits de lessive et de vaisselle, les savons, les nettoyants pour le visage, les shampoings, les déodorants, les nettoyants pour le corps et d'autres produits.
L'acide de coco était utilisé comme détergent.

Le tensioactif est généralement alcalin et le moussage de l'acide de noix de coco est réduit en abaissant le pH à l'aide d'acides gras de noix de coco.
Cela facilite le rinçage des tensioactifs, des taches et des salissures tout en offrant un niveau élevé de capacité de nettoyage.
Examen des ingrédients cosmétiques L'acide de coco est considéré comme sans danger pour une utilisation dans les cosmétiques.
L'acide de noix de coco convient à la synthèse ou à la composition de détergents quotidiens et industriels, d'auxiliaires de fabrication du papier et d'huiles de fibres chimiques.
L'acide de noix de coco est un tensioactif ou un agent nettoyant.
L'acide de coco se trouve souvent dans les produits de lessive et de vaisselle, les savons, les nettoyants pour le visage, les shampoings, les déodorants, les nettoyants pour le corps et d'autres produits.
Utilisez l’acide de noix de coco comme nettoyant.

Fabrication
L'acide de noix de coco peut être extrait par un processus humide ou sec.
Plus simplement (mais peut-être moins efficacement), l'huile peut être produite en chauffant la viande via de l'eau bouillante, le soleil ou un feu lent.

Procédé humide
Le procédé tout humide utilise du lait de coco extrait de la noix de coco crue plutôt que du coprah séché.
Les protéines du lait de coco créent une émulsion d'huile et d'eau.
L’étape la plus problématique consiste à briser l’émulsion pour récupérer le pétrole.
Auparavant, cela se faisait par ébullition prolongée, mais cela produit une huile décolorée et n'est pas économique.
Les techniques modernes utilisent des centrifugeuses et des prétraitements comprenant le froid, la chaleur, les acides, les sels, les enzymes, l'électrolyse, les ondes de choc, la distillation à la vapeur ou une combinaison de ceux-ci.
Malgré de nombreuses variantes et technologies, le traitement par voie humide est moins viable que le traitement à sec en raison d'un rendement inférieur de 10 à 15 %, même en tenant compte des pertes dues à la détérioration et aux ravageurs liés au traitement à sec.
Les procédés humides nécessitent également des investissements en équipements et en énergie, ce qui entraîne des coûts d'investissement et d'exploitation élevés.

Procédé sec
Le traitement à sec nécessite que la viande soit extraite de la coquille et séchée au feu, au soleil ou dans des fours pour créer du coprah.
Le coprah est pressé ou dissous avec des solvants, produisant de l'huile de noix de coco et une purée riche en protéines et en fibres.
La purée est de mauvaise qualité pour la consommation humaine et est plutôt donnée aux ruminants ; il n'y a aucun processus pour extraire les protéines de la purée.
Une bonne récolte de la noix de coco (l'âge d'une noix de coco peut être de 2 à 20 mois au moment de la cueillette) fait une différence significative dans l'efficacité du processus de fabrication de l'huile.
Le coprah fabriqué à partir de noix immatures est plus difficile à travailler et produit un produit de qualité inférieure avec des rendements inférieurs.

Les transformateurs conventionnels d'acide de noix de coco utilisent l'hexane comme solvant pour extraire jusqu'à 10 % d'huile en plus que ce qui est produit avec uniquement des broyeurs rotatifs et des expulseurs.
Ils raffinent ensuite l’huile pour éliminer certains acides gras libres afin de réduire la susceptibilité au rancissement.
D'autres processus pour augmenter la durée de conservation comprennent l'utilisation de coprah avec une teneur en humidité inférieure à 6 %, le maintien de la teneur en humidité de l'huile en dessous de 0,2 %, le chauffage de l'huile à 130-150 °C (266-302 °F) et l'ajout de sel ou d'acide citrique. .

huile vierge
L'huile de coco vierge (VCO) peut être produite à partir de lait de coco frais, de viande ou de résidus.
La production d'acide de noix de coco à partir de la viande fraîche implique soit un broyage humide, soit un séchage des résidus, et l'utilisation d'une presse à vis pour extraire l'huile.
L'acide de coco peut également être extrait de la viande fraîche en la râpant et en la séchant jusqu'à une teneur en humidité de 10 à 12 %, puis en utilisant une presse manuelle pour extraire l'huile.
La production d'acide de coco à partir du lait de coco consiste à râper la noix de coco et à la mélanger avec de l'eau, puis à extraire l'huile.
Le lait peut également être fermenté pendant 36 à 48 heures, l'huile retirée et la crème chauffée pour éliminer toute huile restante.
Une troisième option consiste à utiliser une centrifugeuse pour séparer l’huile des autres liquides.
L’acide de coco peut également être extrait des résidus secs issus de la production de lait de coco.

Un millier de noix de coco mûres pesant environ 1 440 kilogrammes (3 170 livres) donnent environ 170 kg (370 lb) de coprah dont environ 70 litres (15 imp gal) d'huile de coco peuvent être extraits.

Production
En 2020, la production mondiale d'acide de coco était de 2,61 millions de tonnes métriques (2,88 millions de tonnes courtes), menée par les Philippines et l'Indonésie, représentant ensemble 60 % du total mondial.
ACIDE DÉCANÉDIOÏQUE
ACIDE DÉCANÉDIOÏQUE = ACIDE SÉBACIQUE = ACIDE 1,8-OCTANÉDICARBOXYLIQUE


Numéro CAS : 111-20-6
Numéro CE : 203-845-5
Numéro MDL : MFCD00004440
Formule moléculaire : C10H18O4 / HOOC(CH2)8COOH


L'acide décanedioïque est un acide dicarboxylique organique.
L'acide décanedioïque est un acide dicarboxylique naturel de formule chimique (CH2)8(CO2H)2.
L'acide décanedioïque est un flocon blanc ou un solide en poudre.
Sebaceus est latin pour bougie de suif, sébum est latin pour suif et fait référence à son utilisation dans la fabrication de bougies.


L'acide décanedioïque est un dérivé de l'huile de ricin.
L'acide décanedioïque est une poudre granuleuse blanche.
Le point de fusion de l'acide décanedioïque est de 153 ° F.
L'acide décanedioïque est légèrement soluble dans l'eau.


L'acide décanedioïque se sublime lentement à 750 mmHg lorsqu'il est chauffé au point de fusion.
L'acide décanedioïque est un acide alpha, oméga-dicarboxylique qui est le dérivé 1,8-dicarboxy de l'octane.
L'acide décanedioïque a un rôle de métabolite humain et de métabolite végétal.
L'acide décanedioïque est un acide alpha, oméga-dicarboxylique et un acide gras dicarboxylique.


L'acide décanedioïque est un acide conjugué d'un sébacate (2-) et d'un sébacate.
L'acide décanedioïque dérive d'un hydrure d'un décane.
L'acide décanedioïque est un produit naturel présent dans Isatis tinctoria, Euglena gracilis et d'autres organismes pour lesquels des données sont disponibles.
L'acide décanedioïque est un acide gras liquide naturel en C10, directement produit à partir d'huile de ricin.


L'acide décanedioïque est un acide dicarboxylique naturel saturé à chaîne droite avec 10 atomes de carbone.
L'acide décanedioïque est un acide urinaire normal.
L'acide décanedioïque est un flocon blanc ou un cristal en poudre légèrement soluble dans l'eau qui a été proposé comme substrat énergétique alternatif dans la nutrition parentérale totale.


L'acide décanedioïque a été nommé du latin sebaceus (bougie de suif) ou sébum (suif) en référence à son utilisation dans la fabrication de bougies.
L'acide décanedioïque appartient à la classe des composés organiques connus sous le nom d'acides gras à chaîne moyenne.
Ce sont des acides gras à queue aliphatique qui contiennent entre 4 et 12 atomes de carbone.
L'acide décanedioïque est une poudre granuleuse blanche.


Le point de fusion de l'acide décanedioïque est de 153 ° F.
L'acide décanedioïque est légèrement soluble dans l'eau.
L'acide décanedioïque se sublime lentement à 750 mm Hg lorsqu'il est chauffé au point de fusion.;DryPowder; DryPowder, PelletsLargeCristaux ; AutreSolide ; PelletsGroscristaux;Solide;POUDRE BLANCHE, D'ODEUR CARACTERISTIQUE.


L'acide décanedioïque, un acide dicarboxylique de structure (HOOC) (CH2)8(COOH), est un dérivé chimique naturel de l'huile de ricin dont l'innocuité a été prouvée in vivo.
L'acide décanedioïque est un acide dicarboxylique naturel saturé à chaîne droite avec 10 atomes de carbone.
L'acide décanedioïque est un acide urinaire normal.


L'acide décanedioïque est un flocon blanc ou un cristal en poudre légèrement soluble dans l'eau qui a été proposé comme substrat énergétique alternatif dans la nutrition parentérale totale.
L'acide décanedioïque a été nommé du latin sebaceus (bougie de suif) ou sébum (suif) en référence à son utilisation dans la fabrication de bougies.
L'acide décanedioïque est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 tonnes par an.


L'acide décanedioïque est un cristal floconneux blanc.
L'acide décanedioïque est légèrement soluble dans l'eau, soluble dans l'alcool et l'éther.
L'acide décanedioïque est également la matière première pour la production de résines alkydes (utilisées comme revêtements de surface, revêtements de nitrocellulose plastifiée et vernis à base de résine d'urée) et de caoutchouc polyuréthane, de résines cellulosiques, de résines vinyliques et de plastifiants, adoucissants et solvants en caoutchouc synthétique.


L'acide décanedioïque est un acide dicarboxylique de structure (HOOC)(CH2)8(COOH) et est d'origine naturelle.
À l'état pur, l'acide décanedioïque est un flocon blanc ou un cristal en poudre. L'acide décanedioïque est décrit comme non dangereux, bien que sous sa forme en poudre, il puisse être sujet à une inflammation instantanée (un risque typique lors de la manipulation de poudres organiques fines).
Sebaceus est latin pour bougie de suif, sébum (suif) est latin pour suif et fait référence à son utilisation dans la fabrication de bougies.


L'acide décanedioïque est un dérivé de l'huile de ricin, la grande majorité de la production mondiale étant réalisée en Chine, qui exporte chaque année plus de 20 000 tonnes métriques, ce qui représente plus de 90 % du commerce mondial du produit.
L'acide décanedioïque est constitué de cristaux floconneux blancs.
L'acide décanedioïque est légèrement soluble dans l'eau, soluble dans l'alcool et l'éther.


L'acide décanedioïque est un métabolite urinaire qui a été identifié comme un biomarqueur anti-fatigue.
L'acide décanedioïque a été nommé par Thenard LJ (1802) du latin sebaceus (bougie de suif) ou sébum (suif) en référence à son utilisation dans la fabrication de bougies.
Thenard LJ a isolé ce composé à partir de produits de distillation de suif de boeuf.
En 1954, il a été signalé que l'acide décanedioïque était produit à plus de 10 000 tonnes par an par fission alcaline de l'huile de ricin.


L'acide décanedioïque est un acide alpha, oméga-dicarboxylique qui est le dérivé 1,8-dicarboxy de l'octane.
L'acide décanedioïque a un rôle de métabolite humain et de métabolite végétal.
L'acide décanedioïque est un acide alpha, oméga-dicarboxylique et un acide gras dicarboxylique.
L'acide décanedioïque est un acide conjugué d'un sébacate (2-) et d'un sébacate.


L'acide décanedioïque dérive d'un hydrure d'un décane.
L'acide décanedioïque est un acide dicarboxylique naturel qui est un dérivé de l'huile de ricin.
L'acide décanedioïque est un acide dicarboxylique naturel saturé à chaîne droite avec 10 atomes de carbone.
L'acide décanedioïque est un acide urinaire normal.


L'acide décanedioïque est un flocon blanc ou un cristal en poudre légèrement soluble dans l'eau qui a été proposé comme substrat énergétique alternatif dans la nutrition parentérale totale.
L'acide décanedioïque a été nommé du latin sebaceus (bougie de suif) ou sébum (suif) en référence à son utilisation dans la fabrication de bougies.
L'acide décanedioïque (acide 1,8-octanedicarboxylique) est un acide dicarboxylique naturel saturé à chaîne droite.


L'acide décanedioïque est un acide dérivé de l'huile de ricin.
L'acide décanedioïque est vendu sous la forme d'une poudre blanche et granuleuse et parfois désigné par l'un de ses noms chimiques : acide 1,8-octanedicarboxylique ou acide décanedioïque.
L'acide décanedioïque est fabriqué à partir d'huile de ricin et appartient à la série homologue des acides dicarboxyliques.
L'application la plus connue de l'acide décanedioïque est la production de polyamides.



UTILISATIONS et APPLICATIONS de l'ACIDE DÉCANÉDIOÏQUE :
Utilisations cosmétiques de l'acide décanedioïque : agents tampons
Dans le cadre industriel, l'acide décanedioïque et ses homologues tels que l'acide azélaïque peuvent être utilisés comme monomère pour le nylon 610, les plastifiants, les lubrifiants, les fluides hydrauliques, les cosmétiques, les bougies, etc.
L'acide décanedioïque est un métabolite urinaire qui a été identifié comme un biomarqueur anti-fatigue.


L'acide décanedioïque et ses dérivés tels que l'acide azélaïque ont une variété d'utilisations industrielles comme plastifiants, lubrifiants, fluides hydrauliques, cosmétiques, bougies, etc.
L'acide décanedioïque est utilisé dans la synthèse de résines polyamides et alkydes.
L'acide décanedioïque est également utilisé comme intermédiaire pour les aromatiques, les antiseptiques et les matériaux de peinture.


L'acide décanedioïque peut être utilisé comme intermédiaire de synthèse pour les esters de sébacates qui peuvent être utilisés comme émollients, agent masquant, agent filmogène, agent de conditionnement des cheveux ou de la peau, SPF Booster, etc.
L'acide décanedioïque agit également comme agent tampon et neutralisant.
L'acide décanedioïque est utilisé dans les formulations de soins de la peau, de soins capillaires et de soins solaires.


L'acide décanedioïque et ses dérivés tels que l'acide azélaïque ont une variété d'utilisations industrielles comme plastifiants, lubrifiants, fluides hydrauliques, cosmétiques, bougies, etc.
L'acide décanedioïque est utilisé dans la synthèse de résines polyamides et alkydes.
L'acide décanedioïque est également utilisé comme intermédiaire pour les aromatiques, les antiseptiques et les matériaux de peinture


L'acide décanedioïque est largement utilisé dans la préparation d'esters d'acide sébacique, tels que le sébacate de dibutyle, le sébacate de dioctyle, le sébacate de diisooctyle.
L'acide décanedioïque peut être utilisé comme plastifiant pour les plastiques et le caoutchouc résistant au froid, ainsi que pour le polyamide, le polyuréthane, la résine alkyde, l'huile lubrifiante synthétique, les additifs pour huile lubrifiante, les épices, les revêtements, les cosmétiques, etc.
L'acide décanedioïque peut également être utilisé comme matière première pour la production de nylon 1010, de nylon 910, de nylon 810, de nylon 610, de nylon 9 et d'ester diéthylhexylique d'huile lubrifiante résistant aux hautes températures.


L'acide décanedioïque est utilisé par les consommateurs, dans les articles, par les travailleurs professionnels (utilisations répandues), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide décanedioïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, adhésifs et produits d'étanchéité, carburants, lubrifiants et graisses, produits de revêtement et engrais.


Le rejet dans l'environnement de l'acide décanedioïque peut se produire lors de l'utilisation industrielle : de substances dans des systèmes fermés avec un rejet minimal.
D'autres rejets dans l'environnement de cette substance sont susceptibles de se produire suite à : une utilisation en intérieur (par exemple, liquides de lavage en machine/détergents, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et désodorisants), une utilisation en extérieur, une utilisation en intérieur dans des systèmes fermés avec un minimum de (par exemple, liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile) et utilisation à l'extérieur dans des systèmes fermés avec un minimum de dégagement (par exemple, liquides hydrauliques dans les suspensions automobiles, lubrifiants dans l'huile moteur et liquides de freinage).


L'acide décanedioïque est utilisé comme matière première pour les résines alkyde et polyester, les plastifiants, les caoutchoucs de polyester et les fibres synthétiques de polyamide.
L'acide décanedioïque est utilisé comme émollient topique.
L'acide décanedioïque est utilisé comme stabilisant dans les résines alkydes, les polyesters maléiques et autres, les polyuréthanes et les fibres.
L'acide décanedioïque est également utilisé dans les produits de peinture, les bougies, les parfums, les lubrifiants à basse température et les fluides hydrauliques, et pour fabriquer du nylon.


Dans le cadre industriel, l'acide décanedioïque et ses homologues tels que l'acide azélaïque peuvent être utilisés dans les plastifiants, les lubrifiants, les fluides hydrauliques, les cosmétiques, les bougies, etc.
L'acide décanedioïque est également utilisé comme intermédiaire pour les aromatiques, les antiseptiques et les matériaux de peinture.
L'acide décanedioïque et ses dérivés, comme l'acide azélaïque, ont une variété d'utilisations industrielles comme plastifiants, lubrifiants, huiles de pompe à diffusion, cosmétiques, bougies, etc.


L'acide décanedioïque est également utilisé dans la synthèse du polyamide, comme le nylon, et des résines alkydes.
Un isomère, l'acide isosébacique, a plusieurs applications dans la fabrication de plastifiants à base de résine vinylique, de plastiques d'extrusion, d'adhésifs, d'esters lubrifiants, de polyesters, de résines de polyuréthane et de caoutchouc synthétique.
L'acide décanedioïque est largement utilisé dans le processus de fabrication du nylon 6-10.


L'acide décanedioïque peut être utilisé comme inhibiteur de corrosion dans les fluides de travail des métaux et comme agent complexant dans les graisses.
En particulier, l'acide décanedioïque est utilisé comme épaississant dans la graisse au complexe de lithium.
De plus, l'acide décanedioïque peut être utilisé comme intermédiaire dans la production d'aromatiques, d'antiseptiques et de matériaux de peinture ainsi que dans la synthèse de résines polyamides et alkydes.


L'acide décanedioïque peut également être trouvé dans les plastifiants, les lubrifiants, les fluides hydrauliques, les cosmétiques et la fabrication de bougies.
En cosmétique, l'acide décanedioïque peut être utilisé comme ingrédient tampon pour l'ajustement du pH ou comme intermédiaire chimique dans la synthèse de divers esters.
L'acide décanedioïque et ses dérivés tels que l'acide azélaïque ont une variété d'utilisations industrielles comme plastifiants, lubrifiants, fluides hydrauliques, cosmétiques, bougies, etc.


L'acide décanedioïque est utilisé dans la synthèse de résines polyamides et alkydes.
L'acide décanedioïque est également utilisé comme intermédiaire pour les aromatiques, les antiseptiques et les matériaux de peinture.
L'acide dodécanedioïque est principalement utilisé dans les revêtements et peintures en poudre de qualité supérieure, les adhésifs, les pâtes et papiers, les installations chimiques et industrielles, les tensioactifs, les antiseptiques.


En combinaison avec l'amine, l'acide décanedioïque est utilisé pour produire des résines polyamides plastiques techniques qui sont un nylon 6-12 haute performance, des adhésifs, des lubrifiants synthétiques diester, des fibres, des curatifs, des plastifiants, des revêtements polyester, des résines époxy.
Lorsqu'il est utilisé en mélange avec d'autres acides dibasiques, l'acide décanedioïque est particulièrement efficace comme inhibiteur de corrosion ferreux pour les fluides de travail des métaux, les liquides de refroidissement pour moteurs, les nettoyants pour métaux et les fluides hydrauliques aqueux.


L'acide décanedioïque peut également être utilisé comme agent complexant pour la graisse au complexe de lithium qui augmentera le point de goutte et améliorera la stabilité mécanique.
En raison de ses propriétés lissantes et revitalisantes, l'huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.


L'acide décanedioïque était historiquement utilisé dans la fabrication de bougies et a aujourd'hui de nombreuses fonctions dans la fabrication et la transformation industrielle.
L'acide décanedioïque est utilisé comme matière première pour divers produits.
De plus, l'acide décanedioïque est utilisé comme agent de réticulation dans l'industrie des adhésifs, comme plastifiant dans l'industrie des plastiques, comme composant de lubrifiants et comme diluant dans les films d'emballage.


Certaines des principales utilisations de l'acide décanedioïque incluent son rôle d'intermédiaire dans le nylon, les résines synthétiques et d'autres plastiques.
Les propriétés anticorrosives de l'acide décanedioïque en font un complément utile aux fluides de travail des métaux et à l'antigel.
L'acide décanedioïque est également un additif et un épaississant pour les graisses et les lubrifiants, ainsi qu'un intermédiaire dans les peintures et autres revêtements.


-Utilisations de l'acide décanedioïque dans les fluides de travail des métaux :
En raison de ses propriétés lissantes et revitalisantes, l'huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.


-Lubrifiants et Graisses d'utilisation de l'Acide Décanedioïque :
Les acides gras contenus dans l'huile de ricin lui confèrent d'excellentes propriétés lubrifiantes.
Vous pouvez choisir l'huile de ricin traditionnelle ou l'huile de ricin noire jamaïcaine comme lubrifiant dans l'étirage des métaux et d'autres procédés industriels.


-Utilisations plastiques de l'acide décanedioïque :
En raison de ses propriétés lissantes et revitalisantes, l'huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.


-Applications de l'acide décanedioïque :
*Polymères
*Plastifiants
*Lubrifiants
*Inhibiteurs de corrosion


-Utilisations de l'acide décanedioïque :
*Plastifiants
*Lubrifiants
* Fluides hydrauliques
*Produits de beauté
*Bougies
*Mise en mémoire tampon
*Agent de régulation du pH
*Ajusteur de pH
* Adhésifs et scellants
*Peintures et revêtements
*Produits de soins personnels



PRODUCTION d'ACIDE DECANEDIOIQUE :
L'acide décanedioïque est produit à partir d'huile de ricin par clivage de l'acide ricinoléique, qui est obtenu à partir d'huile de ricin.
L'octanol et la glycérine sont un sous-produit.
L'acide décanedioïque peut également être obtenu à partir de la décaline via l'hydroperoxyde tertiaire, qui donne la cyclodécénone, un précurseur de l'acide sébacique.
La quasi-totalité de la production industrielle actuelle d'acide décanedioïque utilise l'huile de ricin comme matière première.
Méthode de craquage de l'huile de ricin :

L'huile de ricin est chauffée sous l'action de l'hydrolyse alcaline pour générer du savon sodique d'acide ricinoléique, puis on ajoute de l'acide sulfurique pour générer de l'acide ricinoléique ; en présence de crésol diluant, ajouter un alcali chauffé à 260-280 ℃ pour le craquage pour générer du sel de sodium double d'acide décanedioïque et du secoctanol et de l'hydrogène, matériau craqué dilué par de l'eau, chauffé et neutralisé avec de l'acide, le sel de sodium double en un sel monosodique ; puis bouilli avec de l'acide après décoloration de la solution de neutralisation au charbon actif.
Le sel monosodique de l'acide décanedioïque est transformé en cristaux d'acide sébacique, puis séparé et séché pour obtenir le produit fini.



MÉTHODES DE PURIFICATION DE L'ACIDE DÉCANÉDIOÏQUE :
Purifier l'acide décanedioïque via le sel disodique qui, après cristallisation dans l'eau bouillante (charbon de bois), est à nouveau converti en acide libre.
L'acide libre est cristallisé à plusieurs reprises à partir d'eau distillée chaude ou de Me2CO/éther de pétrole et séché sous vide.



PROFIL DE RÉACTIVITÉ de l'ACIDE DÉCANÉDIOÏQUE :
L'acide décanedioïque réagit de manière exothermique pour neutraliser les bases, tant organiques qu'inorganiques.
L'acide décanedioïque peut réagir rapidement avec des solutions aqueuses contenant une base chimique et se dissoudre lorsque la neutralisation génère un sel soluble.
L'acide décanedioïque réagit avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions sont lentes à sec, mais les systèmes peuvent absorber suffisamment d'eau de l'air pour permettre la corrosion des pièces et des conteneurs en fer, en acier et en aluminium.
Réagit lentement avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
Réagit avec les solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.



LA PRINCIPALE MÉTHODE DE PRÉPARATION DE L'ACIDE DÉCANÉDIOÏQUE :
(1) L'huile de ricin est une matière première, le ricinoléate est séparé de l'huile de ricin, avec la condition de gonfler et 280 ~ 300 ℃ , la soude caustique procède à la fusion alcaline et la réaction est chauffée pendant 10h, le sel de sodium acide de sébum peut obtenir, produit adjoint est le 2-octanol.
Le sel de sodium est dissous dans l'eau, en ajoutant de l'acide sulfurique pour neutraliser, après décoloration, la solution est refroidie pour précipiter l'acide sébacé, elle est lavée à l'eau froide, et enfin recristallisée.
CH3 (CH2) 5CH (OH) CH2CH = CH (CH2) 7COOH +
2NaOH → CH3 (CH2) 5CH (OH) CH3 + NaOOC (CH2) 8COONa + H2
NaOOC (CH2) 3COONa + H2SO4 → HOOC (CH2) 8COOH + Na2SO4

(2) L'acide adipique (hexane diacide) est une matière première à synthétiser.
L'acide adipique et le méthanol peuvent procéder à une réaction d'estérification pour former de l'adipate de diméthyle, la membrane échangeuse d'ions procède à une oxydation électrolytique pour obtenir un dimère, c'est-à-dire du sébacate de diméthyle, puis réagit avec l'hydroxyde de sodium pour former le sel disodique, l'acide chlorhydrique (ou l'acide sulfurique) est utilisé pour neutraliser et l'acide décanedioïque peut obtenir.



PREPARATION de l'ACIDE DECANEDIOIQUE :
L'acide décanedioïque est normalement fabriqué à partir d'huile de ricin, qui est essentiellement du triricinoléate de glycérol.
L'huile de ricin est chauffée avec de l'hydroxyde de sodium à environ 250°e.
Ce traitement aboutit à la saponification de l'huile de ricin en acide ricinoléique qui est ensuite clivé pour donner du 2-octanol et de l'acide décanedioïque :
Ce procédé conduit à de faibles rendements en acide décanedioïque (environ 50 % par rapport à l'huile de ricin) mais, néanmoins, d'autres voies ne se sont pas révélées compétitives.
L'acide décanedioïque est un solide cristallin incolore, mp 134 ℃ .



PARENTS ALTERNATIFS de l'ACIDE DÉCANÉDIOÏQUE :
*Acides dicarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE DÉCANÉDIOÏQUE :
* Acide gras à chaîne moyenne
*Acide dicarboxylique ou dérivés
*Acide carboxylique
*Dérivé d'acide carboxylique
*Composé oxygéné organique
*Oxyde organique
* Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé acyclique aliphatique



TYPE DE COMPOSE d'ACIDE DECANEDIOIQUE :
* Toxine animale
*Toxine cosmétique
* Toxine alimentaire
* Toxine industrielle / professionnelle
*Métabolite
*Composé naturel
*Composé organique
*Plastifiant



PROPRIETES PHYSIQUES et CHIMIQUES de l'ACIDE DECANEDIOIQUE :
Formule chimique : C10H18O4
Masse molaire : 202,250 g•mol−1
Densité : 1,209 g/cm3
Point de fusion : 131 à 134,5 ° C (267,8 à 274,1 ° F; 404,1 à 407,6 K)
Point d'ébullition : 294,4 ° C (561,9 ° F; 567,5 K) à 100 mmHg
Solubilité dans l'eau : 0,25 g/L
Acidité (pKa) : 4,720, 5,450
Poids moléculaire : 202,25
XLogP3 : 2.1
Nombre de donneurs d'obligations hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4

Nombre d'obligations rotatives : 9
Masse exacte : 202.12050905
Masse monoisotopique : 202,12050905
Surface polaire topologique : 74,6 Å ²
Nombre d'atomes lourds : 14
Charge formelle : 0
Complexité : 157
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

État physique : poudre
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/intervalle de fusion : 133 - 137 °C - lit.
Point initial d'ébullition et intervalle d'ébullition : 294,5 °C à 133 hPa - lit.
Inflammabilité (solide, gaz): Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible

Viscosité
Viscosité, cinématique : Aucune donnée disponible
Viscosité, dynamique : Aucune donnée disponible
Solubilité dans l'eau : 0,224 g/l à 20 °C - Ligne directrice 105 de l'OCDE
Coefficient de partage:
n-octanol/eau : log Pow : 1,5 à 23 °C
Pression de vapeur : 1 hPa à 183 °C
Densité : 1 210 g/cm3 à 20 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés comburantes : aucune
Autres informations de sécurité : Aucune donnée disponible

Solubilité dans l'eau : 0,91 g/L
log P : 1,93
log P : 2,27
logs : -2,4
pKa (acide le plus fort) : 4,72
Charge physiologique : -2
Nombre d'accepteurs d'hydrogène : 4
Nombre de donneurs d'hydrogène : 2
Surface polaire : 74,6 Ų
Nombre d'obligations rotatives : 9
Réfractivité : 51,14 m³•mol⁻¹
Polarisabilité : 22,61 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de Cinq : Oui
Filtre fantôme : Oui
Règle de Veber : Non
Règle de type MDDR : Non

Point de fusion : 133-137 °C (lit.)
Point d'ébullition : 294,5 °C/100 mmHg (lit.)
Densité : 1,21
pression de vapeur : 1 mm Hg ( 183 °C)
indice de réfraction : 1,422
Point d'éclair : 220 °C
température de stockage : Conserver en dessous de +30°C.
solubilité : éthanol : 100 mg/mL
forme: Poudre ou Granulés
pka : 4,59, 5,59 (à 25 ℃ )
couleur : Blanc à blanc cassé
Solubilité dans l'eau : 1 g/L (20 ºC)
Merck : 14,8415

BRN : 1210591
Stabilité : stable.
LogP : 1,5 à 23 ℃
Aspect : poudre granuleuse blanche (est)
Dosage : 95,00 à 100,00
Liste Codex des produits chimiques alimentaires : non
Point de fusion : 130,80 °C. @ 760,00 mmHg
Point d'ébullition : 364,00 à 365,00 °C. @ 760,00 mmHg
Point d'ébullition : 235,00 à 234,00 °C. à 10,00 mm de mercure
Point d'éclair : 389,00 °F. TCC ( 198.30 °C. ) (est)
logP (d/s): 1.706 (est)
Soluble dans : eau, 1000 mg/L @ 20 °C (exp)
eau, 1420 mg/L @ 25 °C (est)



PREMIERS SECOURS de l'ACIDE DECANEDIOIQUE :
-Description des mesures de premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau à l'eau/se doucher.
*En cas de contact avec les yeux :
Après contact visuel :
Rincer abondamment à l'eau.
Retirer les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication de toute attention médicale immédiate et traitement spécial nécessaire :
Pas de données disponibles



MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE DÉCANÉDIOÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériel de confinement et de nettoyage :
Couvrir les drains.
Recueillir, lier et pomper les déversements.
Reprendre à sec.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DÉCANÉDIOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
*Moyens d'extinction inappropriés :
Pour cette substance/ce mélange, aucune limitation des agents extincteurs n'est donnée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION PERSONNELLE de l'ACIDE DÉCANÉDIOÏQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser des lunettes de sécurité
*Protection de la peau :
Coordonnées complètes :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DÉCANÉDIOÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sécher



STABILITE et REACTIVITE de l'ACIDE DECANEDIOIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante).
-Conditions à éviter :
Pas d'information disponible



SYNONYMES :
Acide décanedioïque
Acide 1,8-octanedicarboxylique
Acide décane-1,10-dioïque
acide sébacique
ACIDE DÉCANÉDIOÏQUE
111-20-6
Acide 1,8-octanedicarboxylique
Acide 1,10-décanedioïque
Acides sébaciques
Sébacinsaure
Acide décanedicarboxylique
Acide n-décanedioïque
Acide sébacique
Sébacinsaeure
USAF HC-1
Acide ipomique
Acide séracique
Acide décanedioïque, homopolymère
NSC 19492
UNII-97AN39ICTC
1,8-dicarboxyoctane
26776-29-4
NSC19492
97AN39ICTC
acide octane-1,8-dicarboxylique
CHEBI:41865
NSC-19492
DSSTox_CID_6867
DSSTox_RID_78231
DSSTox_GSID_26867
Acide sébacique
CAS-111-20-6
CCRIS 2290
EINECS 203-845-5
BRN 1210591
n-décanedioate
Acide iponique
AI3-09127
sébaçate disodique
4-oxodécanedioate
MFCD00004440
1,10-décanedioate
Acide sébacique, 94%
Acide sébacique, 99%
Acide dicarboxylique C10
1i8j
1l6s
1l6a
1,8-octanedicarboxylate
WLN : QV8VQ
ACIDE SÉBACIQUE
EC 203-845-5
SCHEMBL3977
NCIOpen2_008624
ACIDE SÉBACIQUE
4-02-00-02078
ACIDE SÉBACIQUE
CHEMBL1232164
DTXSID7026867
Acide sébacique, >=95.0% (GC)
ZINC1531045
Tox21_201778
Tox21_303263
BBL011473
LMFA01170006
s5732
STL146585
AKOS000120056
GCC-266598
CS-W015503
DB07645
GS-6713
HY-W014787
NCGC00164361-01
NCGC00164361-02
NCGC00164361-03
NCGC00257150-01
NCGC00259327-01
BP-27864
NCI60_001628
DB-121158
FT-0696757
C08277
A894762
C10-120
C10-140
C10-180
C10-220
C10-260
C10-298
Q413454
Q-201703
Z1259273339
301CFA7E-7155-4D51-BD2F-EB921428B436
Acide 1,8-octanedicarboxylique
Acide décanedioïque
Acide octane-1,8-dicarboxylique
Acide 1,10-décanedioïque
Acide 1,8-octanedicarboxylique
NSC 19492
NSC 97405
Acide n-décanedioïque
1,10-décanedioate
Acide 1,10-décanedioïque
1,8-Dicarboxyoctane
1,8-octanedicarboxylate
Acide 1,8-octanedicarboxylique
Acide 4,7-dioxosebacique
Acide 4,7-dioxosebacique
4-oxodécanedioate
4-oxodécanedioate
Acide 4-oxodécanedioïque
Acide 1,10-décanedioïque
1,8-Dicarboxyoctane
Acide décanedioïque
Sébacinsaeure
1,10-décanedioate
Décanedioate
Sébacate
1,8-octanedicarboxylate
Acide 1,8-octanedicarboxylique
Acide 4,7-dioxosebacique
4-oxodécanedioate
Acide 4-oxodécanedioïque
Acide sébacique
Acide décanedicarboxylique
Acide dicarboxylique C10
Acide ipomique
N-décanedioate
Acide N-décanedioïque
Acides sébaciques
Sébacinsaure
Acide séracique
Acide sébacique, sel d'aluminium
Acide sébacique, sel de monocadmium
Acide sébacique, sel de sodium
ACIDE DÉCANÉDIOÏQUE
sébacé
USAF hc-1
acides sébaciques
ACIDE SÉBACIQUE pur
Acide n-décanedioïque
Acide 1,10-décanedioïque
Acide décanedicarboxylique
sébacate (décanedioate)
ACIDE 1,8-OCTANEDICARBOXYLIQUE
1,10-décanedioate
Acide 1,10-décanedioïque
1,8-octanedicarboxylate
Acide 1,8-octanedicarboxylique
Acide 4,7-dioxosebacique
4-oxodécanedioate
Acide 4-oxodécanedioïque
Acide sébacique
Acide décanedicarboxylique
Décanedioate
Acide 1,8-octanedicarboxylique
Acide 1,10-décanedioïque
Acide n-décanedioïque
4-oxodécanedioate
1,8-Dicarboxyoctane
Acide octane-1,8-dicarboxylique
Acide sébacique
Acide ipomique
Acide séracique



ACIDE DÉCANÉDIOQUE (ACIDE SÉBACIQUE)

DESCRIPTION:
L'acide décanedioïque (acide sébacique) est une poudre granulaire blanche.
L'acide décanedioïque (acide sébacique) a un point de fusion de 153 °F.
L'acide décanedioïque (acide sébacique) est légèrement soluble dans l'eau.

CAS 111-20-6
Numéro de la Communauté européenne (CE) 203-845-5
Formule moléculaire C10H18O4



SYNONYMES DE L'ACIDE DÉCANEDIOIQUE (ACIDE SÉBACIQUE) :
Acide 1,8-octanedicarboxylique, acide décanedioïque, acide décanedioïque, sel disodique, acide décanedioïque, sel de sodium, décanedioate disodique, sébacate disodique, acide sébacique, acide sébacique, sel d'aluminium, acide sébacique, sel disodique, acide sébacique, sel monocadmium, sébacique acide, sel de sodium, acide sébacique, ACIDE DÉCANEDIOIQUE, acide 111-20-6,1,8-octanedicarboxylique, acide 1,10-décanedioïque, Sebacinsaure, acide décanedicarboxylique, acide n-décanedioïque, acide sébacique, Sebacinsaeure, USAF HC-1 , Acide ipomique, acide séracique, NSC 19492, UNII-97AN39ICTC, 1,8-dicarboxyoctane, 26776-29-4, CCRIS 2290, EINECS 203-845-5,97AN39ICTC, BRN 1210591, DTXSID7026867, CHEBI: 41865, AI3-09127 ,NSC19492,NSC-19492,acide octane-1,8-dicarboxylique,POLY(ANHYDRIDE SÉBACIQUE),DTXCID806867,EC 203-845-5,4-02-00-02078 (référence du manuel Beilstein),MFCD00004440,Sebacinsaure [allemand] ,Acide sebacique [Français],SEBACIC ACID (MART.),SEBACIC ACID [MART.],SebacicAcid,CAS-111-20-6,n-Decanedioate,Iponic acid,disodium-sebacate,4-oxodecanedioate,1,10- Décanedioate, ACIDE DÉCANEDIOC, Acide sébacique, 94 %, Acide sébacique, 99 %, Acide dicarboxylique C10,1i8j,1l6s,1l6y,1,8-Octanedicarboxylate,WLN : QV8VQ, ACIDE SEBACIQUE [MI], SCHEMBL3977, NCIOpen2_008624, ACIDE SEBACIQUE [ INCI], CHEMBL1232164, FEMA NO. ACIDE 4943,1,8-OCTANEDCARBOXYLIQUE, Acide sébacique, >=95,0% (GC),Tox21_201778,Tox21_303263,LMFA01170006,s5732,AKOS000120056,CCG-266598,CS-W015503,DB07645,GS-6713,HY- W014787,NCGC00164361- 01,NCGC00164361-02,NCGC00164361-03,NCGC00257150-01,NCGC00259327-01,BP-27864,NCI60_001628,FT-0696757,NS00011501,EN300-19796,C08277,A89476 2,Q413454,Q-201703,Z104475420,301CFA7E-7155- Acide 4D51-BD2F-EB921428B436,1,8-octanedicarboxylique ; Acide décanedioïque ; Acide octane-1,8-dicarboxylique



L'acide sébacique est un acide dicarboxylique naturel de formule chimique HO2C(CH2)8CO2H.
L'acide décanedioïque (acide sébacique) est un flocon blanc ou un solide en poudre.
Sebaceus est le latin pour bougie de suif, le sébum est le latin pour suif et fait référence à son utilisation dans la fabrication de bougies.

L'acide sébacique est un dérivé de l'huile de ricin.
En milieu industriel, l'acide sébacique et ses homologues comme l'acide azélaïque peuvent être utilisés comme monomère pour le nylon 610, les plastifiants, les lubrifiants, les fluides hydrauliques, les cosmétiques, les bougies, etc.
L'acide décanedioïque (acide sébacique) peut être utilisé comme tensioactif dans l'industrie des huiles lubrifiantes pour augmenter les propriétés antirouille des huiles lubrifiantes sur les métaux.



PRODUCTION D'ACIDE DÉCANEDIOIQUE (ACIDE SÉBACIQUE) :
L'acide sébacique est produit à partir de l'huile de ricin par clivage de l'acide ricinoléique, obtenu à partir de l'huile de ricin.
L'octanol et la glycérine sont un sous-produit.
L'acide décanedioïque (acide sébacique) peut également être obtenu à partir de la décaline via l'hydroperoxyde tertiaire, qui donne la cyclodécénone, un précurseur de l'acide sébacique.


SIGNIFICATION MÉDICALE POTENTIELLE DE L'ACIDE DÉCANÉDIOÏQUE (ACIDE SÉBACIQUE) :
Le sébum est une sécrétion des glandes sébacées de la peau.
Il s'agit d'un ensemble cireux de lipides composé de triglycérides (≈41 %), d'esters de cire (≈26 %), de squalène (≈12 %) et d'acides gras libres (≈16 %).[4][5]

Les sécrétions d'acides gras libres dans le sébum comprennent les acides gras polyinsaturés et l'acide sébacique.
L'acide sébacique se trouve également dans d'autres lipides qui recouvrent la surface de la peau.
Les neutrophiles humains peuvent convertir l'acide sébacique en son analogue 5-oxo, c'est-à-dire l'acide 5-oxo-6E,8Z-octadécénoïque, un analogue structurel de l'acide 5-oxo-eicosatétraénoïque et, comme cet acide oxo-eicosatétraénoïque, est un activateur exceptionnellement puissant des éosinophiles. , monocytes et autres cellules pro-inflammatoires provenant des humains et d’autres espèces.

Cette action est médiée par le récepteur OXER1 sur ces cellules.
Il est suggéré que l'acide sébacique est converti en son analogue 5-oxo et stimule ainsi les cellules pro-inflammatoires pour contribuer à l'aggravation de diverses affections cutanées inflammatoires.
APPLICATIONS DE L'ACIDE DÉCANEDIOIQUE (ACIDE SÉBACIQUE) :
L'acide sébacique a été utilisé dans la synthèse de :
polyesters biodégradables et élastomères [poly(sébacate de glycérol)]
nouveau bio-nylon, PA5.10
nouvel hydrogel à réponse thermique à base de nanoparticules de poly(éther-ester anhydride) pour des applications d'administration de médicaments


Applications majeures :
Notre acide sébacique offre une solution compétitive dans de nombreuses applications :

Produire des polymères
Dans l'industrie : pour produire des plastifiants, des lubrifiants et des retardateurs de corrosion
En cosmétique : comme ingrédient tampon ou comme intermédiaire chimique pour produire une large gamme d’esters


Applications cosmétiques :
Notre acide sébacique peut être utilisé directement dans la formulation cosmétique comme correcteur de pH (tampon).
Dans ce cas, les principales applications sont les soins de la peau (principalement les soins du visage et du cou) et les cosmétiques de couleur.
L'acide sébacique est également largement utilisé comme intermédiaire de synthèse pour produire des esters de sébacates tels que le DIPS ou le DIS (sébacate de diisopropyle), le DOS (sébacate de diéthylhexyle), le DES (sébacate de diéthyle) et le DBS (sébacate de dibutyle).

Ces sébacates sont utilisés comme : émollient, solvant, plastifiant, masquant (réduire ou inhiber l'odeur basique du produit), filmogène, conditionneur capillaire ou cutané.
Généralement, les esters de sébacate sont censés permettre une bonne pénétration, donner une sensation cutanée non grasse et soyeuse.
Ces esters sont également reconnus pour être un bon dispersant de pigments (DOS), un bon booster de facteur de protection solaire (SPF) (mélange DIPS) et empêcher le blanchiment dans les antisudorifiques (DIPS).

Applications des plastifiants :
L'acide sébacique (DC 10), largement utilisé pour produire une large gamme de plastiques, apporte à ces plastiques une partie biosourcée.

CAS :
En raison de ses propriétés lissantes et revitalisantes, l’huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.

Fluides pour le travail des métaux :
En raison de ses propriétés lissantes et revitalisantes, l’huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.


Lubrifiants et graisses :
Les acides gras contenus dans l’huile de ricin lui confèrent d’excellentes propriétés lubrifiantes.
Vous pouvez choisir l’huile de ricin traditionnelle ou l’huile de ricin noire jamaïcaine comme lubrifiant dans l’étirage des métaux et d’autres processus industriels.

Plastiques :
En raison de ses propriétés lissantes et revitalisantes, l’huile de ricin noire jamaïcaine est idéale pour une utilisation dans des produits tels que les nettoyants, les hydratants et les produits de soins capillaires ethniques.

Utilisations et caractéristiques de l'acide sébacique :
L'acide sébacique Acme-Hardesty est raffiné à une pureté minimale de 99,5 %.
Il a un indice d'acide minimum de 550, une teneur maximale en cendres de 0,03 pour cent et un niveau d'humidité maximum de 0,20 pour cent.

Son point de fusion est compris entre 131,0 et 134,5°C.
Certaines des principales utilisations de l’acide sébacique incluent le rôle d’intermédiaire dans le nylon, les résines synthétiques et d’autres plastiques.
Ses propriétés anticorrosives en font un complément utile aux fluides de travail des métaux et aux antigels.
C'est également un additif et un épaississant pour les graisses et les lubrifiants, ainsi qu'un intermédiaire dans les peintures et autres revêtements.


BIENFAITS DE L'ACIDE SÉBACIQUE :
Dans les produits cosmétiques, l’acide sébacique peut agir comme correcteur de pH.
Dans les plastiques, l'acide sébacique peut être utilisé pour offrir une meilleure flexibilité et une température de fusion plus basse.

Pour les lubrifiants et les applications anticorrosion, l'acide sébacique est utilisé pour produire un dérivé de sel pouvant être utilisé comme liquide de refroidissement pour les moteurs d'avions, d'automobiles et de camions.

Voici les attributs qui rendent l’acide sébacique aussi flexible qu’il l’est.
• Excellent pouvoir lubrifiant
• Fluidité à basse température
• Stabilité thermique supérieure
• Points d'éclair élevés
• Points d'écoulement faibles

Utilisations courantes de l’acide sébacique :
Sebaceus est le latin pour bougie de suif et sebum est le latin pour suif.
Ces termes font référence à l'utilisation de l'acide sébacique dans la fabrication de bougies.
Mais comme indiqué ci-dessus, l’acide sébacique a de nombreuses utilisations en milieu industriel.

L'acide décanedioïque (acide sébacique) peut être utilisé comme monomère pour le nylon, les lubrifiants, les fluides hydrauliques, les cosmétiques, les plastifiants et plus encore.
L'acide décanedioïque (acide sébacique) peut également être utilisé comme intermédiaire pour les antiseptiques, les aromatiques et les produits de peinture.



PROPRIÉTÉS DE L'ACIDE DÉCANÉDIOQUE (ACIDE SÉBACIQUE) :
• Haute pureté
• 100% d'origine végétale
• Chaîne linéaire
• Formes de granulés ou de poudre
• Haute réactivité pour produire une large gamme d'esters

Acide décanedioïque (acide sébacique) Se sublime lentement à 750 mmHg lorsqu'il est chauffé jusqu'au point de fusion.
L'acide décanedioïque (acide sébacique) est un acide alpha, oméga-dicarboxylique qui est le dérivé 1,8-dicarboxy de l'octane.
L'acide décanedioïque (acide sébacique) joue un rôle de métabolite humain et de métabolite végétal.

L'acide décanedioïque (acide sébacique) est un acide alpha, oméga-dicarboxylique et un acide gras dicarboxylique.
Acide décanedioïque (acide sébacique) C'est un acide conjugué d'un sébacate (2-) et d'un sébacate.

L'acide décanedioïque (acide sébacique) dérive d'un hydrure de décane.
L'acide décanedioïque (acide sébacique) est un produit naturel présent dans Isatis tinctoria, Euglena gracilis et d'autres organismes pour lesquels des données sont disponibles.



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE DÉCANEDIOIQUE (ACIDE SÉBACIQUE) :
Masse moléculaire
202,25 g/mole
XLLogP3
2.1
Nombre de donneurs de liaisons hydrogène
2
Nombre d'accepteurs de liaison hydrogène
4
Nombre de liaisons rotatives
9
Masse exacte
202,12050905 g/mole
Masse monoisotopique
202,12050905 g/mole
Surface polaire topologique
74,6Ų
Nombre d'atomes lourds
14
Charge formelle
0
Complexité
157
Nombre d'atomes isotopiques
0
Nombre de stéréocentres d'atomes défini
0
Nombre de stéréocentres d'atomes non défini
0
Nombre de stéréocentres de liaison définis
0
Nombre de stéréocentres de liaison non défini
0
Nombre d'unités liées de manière covalente
1
Le composé est canonisé
Oui
Formule chimique, C10H18O4
Masse molaire, 202,250 g•mol−1
Densité, 1,209 g/cm3
Point de fusion, 131 à 134,5 °C (267,8 à 274,1 °F ; 404,1 à 407,6 K)
Point d'ébullition, 294,4 °C (561,9 °F; 567,5 K) à 100 mmHg
Solubilité dans l'eau, 0,25 g/L[1]
Acidité (pKa), 4,720, 5,450[1]
Numéro CAS, 111-20-6
Numéro CE, 203-845-5
Formule de Hill, C₁₀H₁₈O₄
Formule chimique, HOOC(CH₂)₈COOH
Masse molaire, 202,25 g/mol
Code SH, 2917 13 10
Point d'ébullition, 295 °C (133 hPa)
Densité, 1,210 g/cm3 (20 °C)
Point de fusion, 133 - 137 °C
Pression de vapeur, 1 hPa (183 °C)
Densité apparente, 600 - 620 kg/m3
Solubilité, 1 g/l
Dosage (GC, surface%), ≥ 98,0 % (a/a)
Plage de fusion (valeur inférieure), ≥ 131 °C
Plage de fusion (valeur supérieure), ≤ 134 °C
Identité (IR), réussit le test
Point de fusion, 131°C à 134°C
Densité, 1.271
Point d'ébullition, 295 °C (100 mmHg)
Point d'éclair, 220°C (428°F)
Formule linéaire, HO2C(CH2)8CO2H
Quantité, 100 g
Beilstein, 1210591
Indice Merck, 14,8415
Informations sur la solubilité, légèrement soluble dans l'eau.
Poids de formule, 202,25
Pourcentage de pureté, ≥98 %
Nom chimique ou matériau, Acide sébacique
Message d'intérêt public :
74.60000
XLogP3 :
2.1
Apparence:
poudre blanche
Densité:
1,231 g/cm3
Point de fusion:
130,8 °C
Point d'ébullition:
294,5 °C
Point d'éclair:
220 °C
Indice de réfraction :
1.422
Solubilité dans l'eau :
Solubilité dans l'eau, g/100 ml : 0,1 (mauvaise)
Conditions de stockage:
Séchage par ventilation à basse température dans le local de stockage
La pression de vapeur:
1,24E-06mmHg à 25°C
Densité, 1,1 ± 0,1 g/cm3
Point d'ébullition, 374,3 ± 0,0 °C à 760 mmHg
Point de fusion, 133-137 °C(lit.)
Formule moléculaire, C10H18O4
Poids moléculaire, 202,247
Point d'éclair, 198,3 ± 19,7 °C
Masse exacte, 202.120514
PSA, 74,60000
LogP, 1,86
Pression de vapeur, 0,0±1,8 mmHg à 25°C
Indice de réfraction, 1,475
Stabilité, stabilité. Combustible. Incompatible avec les agents oxydants forts, les bases, les agents réducteurs.
Solubilité dans l'eau, 1 g/L (20 ºC)





INFORMATIONS DE SÉCURITÉ SUR L'ACIDE DÉCANÉDIOÏQUE (ACIDE SÉBACIQUE) :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



ACIDE DÉHYDROACÉTIQUE (DHA)
L'acide déhydroacétique (DHA) est un composé organique qui a plusieurs applications industrielles.
L'acide déhydroacétique (DHA) est un cristal incolore ou une poudre jaune clair, insoluble dans l'eau, soluble dans le benzène, l'éther, l'acétone et l'éthanol chaud.


Numéro(s) CAS : 520-45-6771-03-916807-48-0
Numéro(s) CE : 208-293-9212-227-4
Numéro MDL : MFCD00066709
Nom chimique/IUPAC : 3-acétyl-6-méthyl-2H-pyran-2,4(3H)-dione
Formule chimique : C8H8O4



SYNONYMES :
DHA, dhaa, 3-ACETYL-6-METHYL-2H-PYRAN-2,4(3H)-DIONE, 2H-Pyran-2-one, 3-acétyl-4-hydroxy-6-méthyl-, Geogard(R) 221, DÉHYDRANONE, Biocide 470F, Geogard(R) 361, Geogard(R) 111A, DA, Déhydroacétique, 2H-Pyran-2,4(3H)-dione, 3-acétyl-6-méthyl-, Acide déshydracétique, DHA, DHS, 3-acétyl-6-méthyldihydropyrandione-2,4(3H), acide 4-hexénoïque, 2-acétyl-5-hydroxy-3-oxo-, δ-lactone, méthylacétopyronone, 2-acétyl-5-hydroxy-3 acide -oxo-4-hexénoïque, δ-lactone, 3-acétyl-6-méthyl-2,4(3H)-pyrandione, 3-acétyl-6-méthyl-2H-pyran-2,4(3H)-dione, 3-acétyl-6-méthylpyrandione-2,4, 3-acétyl-4-hydroxy-6-méthyl-2H-pyran-2-one, 3-acétyl-6-méthyl-2H-pyran-2,4(3H) -dione, forme énol, Kyselina dehydroacetova, DHAA, 3-Acetyl-6-methyl-pyran-2,4-dione, 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione, ion( 1-), 3-Acétyl-6-méthyl-2,3-dihydropyran-2,4-dione, Acide acétique, déshydro-, Biocide 470F, NSC 8770, 3-Acétyl-2-hydroxy-6-méthyl-4H- pyran-4-one, Biocide 470F, Méthylacétopyronone



L'acide déhydroacétique (DHA) est un composé organique synthétique de formule chimique C8H8O4.
L'acide déhydroacétique (DHA) est une poudre blanche à jaune clair soluble dans divers solvants organiques tels que le glycérol et le propylène glycol.
L'acide déhydroacétique (DHA) appartient à la famille des pyrones.


L'acide déhydroacétique (DHA), de formule chimique C8H8O4 et de numéro d'enregistrement CAS 520-45-6, est un composé connu pour ses applications dans l'industrie des cosmétiques et des soins personnels.
Cette poudre cristalline blanche se caractérise par sa capacité à inhiber la croissance des micro-organismes, faisant de l'acide déhydroacétique (DHA) un ingrédient populaire dans divers produits de soins de la peau et des cheveux.


L'acide déhydroacétique (DHA) est souvent utilisé comme conservateur, contribuant ainsi à prolonger la durée de conservation de ces produits en empêchant la croissance de bactéries, de levures et de moisissures.
L'acide déhydroacétique (DHA) est considéré comme sans danger pour une utilisation dans les cosmétiques et a été approuvé par des organismes de réglementation tels que l'Union européenne et la Food and Drug Administration des États-Unis.


Dans l’ensemble, l’acide déhydroacétique (DHA) joue un rôle crucial dans le maintien de la qualité et de la sécurité des produits cosmétiques et de soins personnels.
L'acide déhydroacétique (DHA) est un cristal incolore ou une poudre jaune clair, insoluble dans l'eau, soluble dans le benzène, l'éther, l'acétone et l'éthanol chaud.
L'acide déhydroacétique (DHA) est une pyran-2,4-dione substituée en position 3 par un groupe acétyle et en position 6 par un groupe méthyle.


L'acide déhydroacétique (DHA), fongicide et bactéricide, est principalement utilisé dans les fruits et légumes transformés.
L'acide déhydroacétique (DHA) joue un rôle de fongicide, d'agent antibactérien et de plastifiant.
L'acide déhydroacétique (DHA) est une pyran-2,4-dione et une cétone.


L'acide déhydroacétique (DHA) est largement présent dans de nombreuses huiles de poisson des grands fonds, des algues marines et certaines plantes terrestres.
L'acide déshydroacétique (DHA) est un acide gras insaturé oméga-3, essentiel à la nutrition. MP44C.
L'acide déhydroacétique (DHA) est très instable à la lumière, à l'oxygène et à la chaleur, facile à oxyder et à craquer, et un antioxydant doit généralement être ajouté.


De plus, de la lécithine, du dextrose, de la cyclodextrine ou un gaz inerte peuvent être ajoutés pour améliorer la stabilité de la préparation.
L'acide déhydroacétique (DHA) est un cristal incolore ou une poudre jaune clair, insoluble dans l'eau, soluble dans le benzène, l'éther, l'acétone et l'éthanol chaud.
L'acide déhydroacétique (DHA), également connu sous le nom de 3-acétyl-6-méthyl-2H-pyran-2,4 (3H)-dione, est un conservateur synthétique fréquemment utilisé dans les produits cosmétiques.


L'acide déhydroacétique (DHA) agit comme une sorte de garde cosmétique, empêchant la croissance de levures, de moisissures et de bactéries dans les produits afin de prolonger leur durée de conservation.
L'acide déhydroacétique (DHA) apparaît généralement en quantités infimes, allant de 0,06 % à un maximum de 0,6 % dans les cosmétiques prêts à l'emploi.


L'acide déhydroacétique (DHA) est classé comme dérivé du pyrone.
L'acide déhydroacétique (DHA) se présente sous la forme d'une poudre cristalline inodore, incolore à blanche, presque insoluble dans l'eau et modérément soluble dans la plupart des solvants organiques.


L'acide déhydroacétique (DHA) est un ingrédient sûr qui aide à empêcher la détérioration des cosmétiques et des aliments.
L'acide déhydroacétique (DHA) est efficace contre un large éventail de micro-organismes, mais il est particulièrement actif contre les moisissures et les levures.
L'acide déhydroacétique (DHA) est l'un des rares conservateurs autorisés pour les demandes Ecocert.


L'acide déhydroacétique (DHA) est classé comme dérivé du pyrone.
L'acide déhydroacétique (DHA) se présente sous la forme d'une poudre cristalline inodore, incolore à blanche, presque insoluble dans l'eau et modérément soluble dans la plupart des solvants organiques.


L'acide déhydroacétique (DHA), également connu sous le nom de déhydroacétate de sodium, est utilisé comme conservateur dans les cosmétiques.
L'acide déhydroacétique (DHA) tue les micro-organismes et empêche leur croissance et leur reproduction, protégeant ainsi les cosmétiques et les produits de soins personnels de la détérioration.


L'acide déhydroacétique (DHA) est un composé organique accepté pour une utilisation dans les cosmétiques naturels, offrant un large spectre de stabilité sur une large plage de valeurs de pH.
L'acide déhydroacétique (DHA) est soluble dans l'eau avec un pH efficace compris entre 2 et 6 ; il est plus efficace à des niveaux de pH inférieurs à 5,5.


L'acide déhydroacétique (DHA) est un conservateur synthétique.
L'acide déhydroacétique (DHA) est un dérivé de la pyrone, généralement synthétisé par la dimérisation catalysée par une base du dicétène.
L'acide déhydroacétique (DHA) offre une efficacité antifongique fiable à des niveaux d'utilisation de produit relativement faibles.


L'acide déshydroacétique (DHA) est à base d'acide déshydroacétique (DHA) ; Ces conservateurs bénéficient d'un large éventail d'acceptations réglementaires mondiales pour de nombreuses applications de soins personnels et cosmétiques.
Les données de test de l'acide déhydroacétique (DHA) sur les parabènes montrent une efficacité plus élevée et des performances nettement meilleures dans les formulations à pH faible à neutre.


L'acide déhydroacétique (DHA) est un fongicide à large spectre ; il a une puissante inhibition sur les bactéries, les moisissures et les levures, en particulier les moisissures.
L'acide déhydroacétique (DHA) peut se dissoudre dans plusieurs types d'huiles.
Cependant, l’acide déhydroacétique (DHA) est peu soluble dans l’eau.


L'acide déhydroacétique (DHA) est stable à la chaleur et son action antimicrobienne ne sera pas affectée même par la chaleur jusqu'à 248 °F, de sorte qu'il peut être utilisé dans toutes sortes d'aliments traités thermiquement.
Mais l’acide déhydroacétique (DHA) s’évapore avec la vapeur d’eau.


L’acide déhydroacétique (DHA) doit donc être ajouté au cours de la dernière période du processus de chauffage et, par conséquent, la quantité doit augmenter.
L'acide déhydroacétique (DHA) présente un excellent profil de toxicité et est non sensibilisant et non irritant.
Sous sa forme brute, l'acide déhydroacétique (DHA) se présente sous la forme d'une poudre cristalline blanche et inodore.


De plus, l’acide déhydroacétique (DHA) est un ingrédient sûr et bien toléré par la plupart des types de peau.
La formule chimique de l'acide déhydroacétique (DHA) est C8H8O4.
L'acide déhydroacétique (DHA) est un composé organique qui a plusieurs applications industrielles.



UTILISATIONS et APPLICATIONS de l’ACIDE DÉHYDROACÉTIQUE (DHA) :
L’acide déhydroacétique (DHA) est un agent antimicrobien à large spectre, à faible toxicité et à haute efficacité.
L'acide déhydroacétique (DHA) est utilisé comme conservateur et agent anti-moisissure dans la peinture, l'huile, les produits en cuir, les denrées alimentaires, les aliments pour animaux, les matériaux d'emballage et les cosmétiques.
La quantité maximale autorisée d'acide déhydroacétique (DHA) (fraction massique) est de 0,6 % (acide) et la teneur d'usage général (fraction massique) est de 0,02 % à 0,2 %.


L'acide déhydroacétique (DHA) est un conservateur à large spectre, possédant notamment une forte capacité bactériostatique contre les moisissures et les levures.
L'acide déhydroacétique (DHA) est un conservateur alimentaire sûr et un agent de conservation approuvé par la FAO et l'OMS.
L'utilisation principale de l'acide déhydroacétique (DHA) est un agent antibactérien à faible toxicité, à haute efficacité et à large spectre.


L'acide déhydroacétique (DHA) est un composé organique synthétique couramment utilisé comme conservateur dans les cosmétiques et les produits de soins personnels pour empêcher la croissance des bactéries et des moisissures.
L'acide déhydroacétique (DHA) est utilisé comme stabilisant pour les produits cosmétiques et pharmaceutiques en raison de son activité fongicide et bactéricide, comme additif pour les stabilisants du PVC et pour la synthèse de médicaments vétérinaires.


Le conservateur Geogard(R) 111a est à base d'acide déhydroacétique (DHA) et est donc reconnu par les principales autorités réglementaires des cosmétiques, des produits de toilette et des parfums du monde entier pour une utilisation dans les produits cosmétiques et de soins personnels.
Le conservateur Geogard(R) 221 est à base d'acide déhydroacétique (DHA) et d'alcool benzylique et est donc reconnu par les principales autorités réglementaires mondiales en matière de cosmétiques, de produits de toilette et de parfums pour une utilisation dans les produits cosmétiques et de soins personnels.


Le conservateur Geogard(R) 361 est basé sur six composants synergiques, tous largement acceptés par les réglementations mondiales : acide déhydroacétique (DHA) ; acide salicylique; acide benzoique; phénoxyéthanol; l'alcool benzylique; et chlorure de benzéthonium.
L'acide déhydroacétique (DHA) est utilisé comme antifongique, antibactérien


L'acide déhydroacétique (DHA) est un conservateur à faible potentiel sensibilisant.
L'acide déhydroacétique (DHA) est un acide faible utilisé comme agent destructeur de champignons et de bactéries dans les cosmétiques.
La présence de matière organique diminue l'efficacité de l'acide déhydroacétique (DHA).


L'acide déhydroacétique (DHA) n'est ni irritant ni allergique lorsqu'il est appliqué sur la peau.
L'acide déhydroacétique (DHA) est un conservateur sous forme de poudre cristalline dont la solubilité est inférieure à 0,1 g dans 100 g d'eau à 25°C.
L'acide déhydroacétique (DHA) peut subir diverses réactions chimiques qui lui confèrent une utilité dans de nombreuses applications.


L'acide déhydroacétique (DHA) est utilisé à raison de 0,01 à 0,5 % pour inhiber la croissance microbiologique dans divers aliments.
L'acide déhydroacétique (DHA) est utilisé pour les courges coupées ou pelées, avec pas plus de 65 ppm restant dans ou sur la courge préparée.
L'acide déhydroacétique (DHA) peut être utilisé comme anti-moisissure et antiseptique pour les revêtements, l'huile, les produits en cuir, les denrées alimentaires, les aliments pour animaux, les matériaux d'emballage et les cosmétiques.


L'utilisation principale de l'acide déhydroacétique (DHA) est un agent antibactérien à faible toxicité, à haute efficacité et à large spectre.
L'acide déhydroacétique (DHA) est largement utilisé dans la lutte contre la moisissure et la corrosion des revêtements, des huiles, des produits en cuir, des denrées alimentaires, des aliments pour animaux, des matériaux d'emballage et des cosmétiques.
L'acide déhydroacétique (DHA) est un nouveau type de conservateur chimique, un intermédiaire très important de synthèse organique et un bon plastifiant.


Depuis qu’il s’est révélé antibactérien, l’acide déhydroacétique (DHA) et certains de ses dérivés ont été utilisés comme conservateurs dans de nombreux pays.
À l'heure actuelle, l'acide déhydroacétique (DHA) et certains de ses dérivés ont été utilisés dans la lutte contre la moisissure et la corrosion de produits industriels tels que l'alimentation, le textile, la fabrication du papier, le caoutchouc, les plastiques, les archives et les arts et métiers, avec de bons résultats.


L'acide déhydroacétique (DHA) est facile à dissoudre dans la solution aqueuse de base fixe, mais difficile à dissoudre dans l'eau.
1 g est environ soluble dans 35 ml d'éthanol et 5 ml d'acétone.
Le pH de sa solution aqueuse saturée en acide déhydroacétique (DHA) est égal à 4.


Industriellement, l’acide déhydroacétique (DHA) a plusieurs utilisations.
L'acide déhydroacétique (DHA) est utilisé comme fongicide et bactéricide.
Le sel de sodium, le déhydroacétate de sodium, est souvent utilisé à la place de l'acide déhydroacétique (DHA) en raison de sa plus grande solubilité dans l'eau.


L'acide déhydroacétique (DHA) est utilisé comme conservateur alimentaire pour prévenir les ballonnements des cornichons dans les courges et les fraises.
Lorsqu'il est utilisé comme additif alimentaire, l'acide déhydroacétique (DHA) est désigné par le système de numérotation international des additifs alimentaires ou le numéro E 265.
L'acide déhydroacétique (DHA) est utilisé comme plastifiant dans les résines synthétiques.


L'acide déhydroacétique (DHA) est utilisé comme antienzyme dans les dentifrices.
L'acide déhydroacétique (DHA) est utilisé comme précurseur des diméthyl-4-pyridones.
L'utilisation typique recommandée de l'acide déhydroacétique (DHA) est de 0,2 à 1 %.


En tant que conservateur, l'acide déhydroacétique (DHA) est utilisé dans la formulation d'une grande variété de produits, notamment les produits de bain, de soins de la peau, de bronzage, de crème solaire, de parfum, de rasage, de soins pour les cheveux et les ongles, ainsi que le maquillage des yeux et du visage.
L'acide déhydroacétique (DHA) est utilisé comme conservateur dans les produits pharmaceutiques, alimentaires et cosmétiques.


Les étalons secondaires pharmaceutiques destinés à être appliqués au contrôle qualité offrent aux laboratoires pharmaceutiques et aux fabricants une alternative pratique et rentable à la préparation d’étalons de travail internes.
L'acide déhydroacétique (DHA) est stable à la chaleur et son action antimicrobienne ne sera pas affectée même par la chaleur jusqu'à 248 °F, de sorte qu'il peut être utilisé dans toutes sortes d'aliments traités thermiquement.


De plus, l’acide déhydroacétique (DHA) agit comme un conservateur, améliorant ainsi l’efficacité d’autres agents antimicrobiens comme le phénoxyéthanol.
L'acide déhydroacétique (DHA) est un conservateur mondialement approuvé pour les cosmétiques et les articles de toilette, caractérisé par une efficacité élevée, un faible coût d'utilisation et une activité à large spectre.


L'acide déhydroacétique (DHA) est un bon fongicide et un bactéricide doux qui convient aux formulations conformes au NPA et à la Soil Association.
L'acide déhydroacétique (DHA) est un composé organique servant principalement de conservateur dans l'industrie des cosmétiques et des soins personnels.


L'acide déhydroacétique (DHA) combat la croissance de micro-organismes tels que les bactéries, les levures et les moisissures dans les produits, augmentant ainsi la durée de conservation.
L'acide déhydroacétique (DHA) est compatible avec d'autres conservateurs lorsqu'il est combiné pour une efficacité accrue, ce qui en fait un choix polyvalent.
L'action inhibitrice de l'acide déhydroacétique (DHA) est meilleure dans un environnement acide.


-Conservateur en cosmétique utilise de l'acide déhydroacétique (DHA) :
L'acide déhydroacétique (DHA) est un conservateur largement utilisé dans les cosmétiques et les produits de soins personnels, en particulier dans les produits de soins de la peau et des cheveux.
L'acide déhydroacétique (DHA) aide à prévenir la croissance des bactéries, champignons et autres micro-organismes, prolongeant ainsi la durée de conservation de ces produits.
Le formulateur utilise de l'acide déhydroacétique (DHA) dans les hydratants, crèmes, lotions, shampoings, revitalisants et autres articles de soins personnels.


-Utilisations de l'acide déhydroacétique (DHA) dans l'industrie agroalimentaire :
L'acide déhydroacétique (DHA) est un conservateur alimentaire dans certains pays.
L'acide déhydroacétique (DHA) est efficace contre un large éventail de micro-organismes et peut être utilisé dans divers produits alimentaires et boissons pour empêcher leur détérioration.


-Utilisations agricoles de l'acide déhydroacétique (DHA) :
L'acide déhydroacétique (DHA) est parfois utilisé comme conservateur dans les produits agricoles.
L'acide déhydroacétique (DHA) peut être appliqué aux cultures, aux fruits et aux légumes pour empêcher la croissance microbienne et prolonger leur durée de conservation.


-Utilisations pharmaceutiques de l'acide déhydroacétique (DHA) :
L'acide déhydroacétique (DHA) est un conservateur présent dans certaines formulations pharmaceutiques.
L'acide déhydroacétique (DHA) aide à maintenir l'intégrité et la stabilité des médicaments en inhibant la contamination microbienne.


-Utilisations du traitement de l'eau de l'acide déhydroacétique (DHA) :
L'acide déhydroacétique (DHA) peut également être utilisé comme biocide dans les systèmes de traitement de l'eau.
L'acide déhydroacétique (DHA) aide à contrôler la croissance des bactéries et des algues, à prévenir l'encrassement et à maintenir la qualité de l'eau.



A quoi sert l'acide déshydroacétique (DHA) ?
L'acide déhydroacétique (DHA) est largement utilisé dans l'industrie cosmétique comme conservateur efficace.
L'acide déhydroacétique (DHA) empêche la croissance de bactéries et de champignons nocifs dans les formulations pour les faire durer plus longtemps. L'acide déhydroacétique (DHA) se trouve couramment dans les lotions, crèmes, shampoings, revitalisants et autres formulations à base d'eau où la contamination microbienne est un problème.

De plus, l'acide déhydroacétique (DHA) sert d'agent antimicrobien, garantissant la sécurité et l'intégrité du produit.
L'efficacité à large spectre de l'acide déhydroacétique (DHA), sa stabilité dans diverses formulations et sa compatibilité avec d'autres conservateurs en font un choix polyvalent pour maintenir la qualité et la sécurité des produits cosmétiques et de soins personnels.



ORIGINE DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déshydroacétique (DHA) est synthétisé par la réaction du dicétène et de l'acide acétique.
Le dicétène, un composé hautement réactif, réagit avec l'acide acétique dans des conditions contrôlées pour former de l'acide déhydroacétique (DHA).
Ce processus implique des étapes minutieuses de régulation de la température et de purification pour garantir la pureté du produit final. L'acide déhydroacétique (DHA) synthétisé est ensuite cristallisé et séché pour être utilisé en cosmétique.



QUE FAIT L’ACIDE DÉHYDROACÉTIQUE (DHA) DANS UNE FORMULATION ?
*Antimicrobien
*Conservateur



PROFIL DE SÉCURITÉ DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est un ingrédient sûr lorsqu'il est utilisé dans les niveaux de concentration recommandés de 0,6 % ou moins.
L'acide déhydroacétique (DHA) n'est pas irritant et est approuvé par les agences de réglementation du monde entier.
Cependant, un patch test est recommandé avant d'utiliser tout nouveau produit contenant de l'acide déhydroacétique (DHA).
L’acide déhydroacétique (DHA) étant d’origine synthétique, il convient aux formulations végétaliennes et halal.



ALTERNATIVES À L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
*PHÉNOXYÉTHANOL,
*BENZOATE DE SODIUM,
*SORBATE DE POTASSIUM



FONCTIONS DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
*Conservateur
*Booster de conservateur



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est une poudre blanche à crème qui n'est que très légèrement soluble dans l'eau (moins de 0,1 %).
Cependant, le sel de sodium hydraté (CSH7Na04.H20) a une solubilité de 33 % dans l'eau à 25°C et de 48 % dans le propylène glycol.
L'acide déhydroacétique (DHA) est soluble à 22 % dans l'acétone, à 18 % dans le benzène et 1 g se dissout dans environ 35 ml d'éthanol.

L'acide déhydroacétique (DHA) est utilisé pour réduire les ballonnements des cornichons et comme pesticide et conservateur pour les courges et les fraises.
Le niveau d’utilisation autorisé de l’acide déhydroacétique (DHA) est de 65 ppm.

L'acide déhydroacétique (DHA) est l'un des additifs alimentaires présents dans le vin rouge et a été déterminé par spectrométrie de masse quadripolaire en tandem avec chromatographie liquide ultra-rapide (UFLC-MS/MS).
Pour doser l'acide déhydroacétique (DHA), ajouter 500 mg dans un flacon Erlenmeyer de 250 ml et dissoudre dans 75 ml d'alcool neutre.

Après l’ajout de phénolphtaléine TS, titrez avec 0,1 N NaOH jusqu’à un point final rose qui persiste pendant au moins 30 s. Chaque ml de NaOH 0,1 N = 16,82 mg d'acide déhydroacétique (DHA).
L'acide déhydroacétique (DHA) est un produit chimique synthétique (il n'existe actuellement aucun conservateur d'origine végétale répondant à nos normes d'efficacité) qui est considéré comme présentant un faible risque pour la santé humaine et pour l'environnement.



ANALYSE DE SYNTHÈSE DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est généralement synthétisé par la dimérisation catalysée par une base du dicétène.
Une procédure détaillée pour sa synthèse peut être trouvée dans la Procédure de synthèse organique.



ANALYSE DE LA STRUCTURE MOLÉCULAIRE DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
La formule moléculaire de l'acide déhydroacétique (DHA) est C8H8O4.
Le poids moléculaire de l'acide déhydroacétique (DHA) est de 168,1467.
La norme IUPAC InChI de l'acide déhydroacétique (DHA) est InChI=1S/C8H8O4/c1-4-3-6 (10)7 (5 (2)9)8 (11)12-4/h3,7H,1-2H3 .



ANALYSE DES PROPRIÉTÉS PHYSIQUES ET CHIMIQUES DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est une poudre cristalline inodore, incolore à blanche.
L'acide déhydroacétique (DHA) est presque insoluble dans l'eau et modérément soluble dans la plupart des solvants organiques.
L'acide déhydroacétique (DHA) a un point de fusion de 109 °C et un point d'ébullition de 270 °C.



L'ACIDE DÉHYDROACÉTIQUE (DHA) EST-IL SÛR À UTILISER ?
L'acide déhydroacétique (DHA) est considéré comme sans danger pour une utilisation dans les cosmétiques et les produits de soins personnels lorsqu'il est utilisé en quantités appropriées.
L'acide déhydroacétique (DHA) est largement utilisé et approuvé comme conservateur dans une variété de produits de soins personnels.

Comme toujours, l'acide déhydroacétique (DHA) est toujours préférable pour tester de nouveaux produits et si vous avez la peau sensible ou des allergies connues, il est toujours préférable de consulter un dermatologue avant utilisation.
De plus, il est toujours bon de vérifier l'acide déhydroacétique (DHA) dans la liste des ingrédients du produit pour s'assurer qu'il est exempt de tout ingrédient auquel vous pourriez être allergique.



ALLÉGATIONS AVANTAGES DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
*Antibactérien,
*Antifongique,
*Large stabilité du pH,
*Stabilité chimique,
*Compatibilité,
*Préservation,
*Une performance supérieure



CARACTÈRES DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est une poudre cristalline blanche ou jaune clair, inodore, insipide, point de fusion 108-110 degrés, point d'ébullition 270 degrés.
L'acide déhydroacétique (DHA) est un antiseptique et un inhibiteur de moisissure peu toxique et très efficace.
Dans des conditions acides et alcalines, l'acide déhydroacétique (DHA) a un certain effet antibactérien, en particulier l'effet inhibiteur le plus puissant sur les moisissures.
L'acide déhydroacétique (DHA) est un désinfectant efficace.



PRÉPARATION DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
L'acide déhydroacétique (DHA) est préparé par dimérisation catalysée par une base du dicétène.
L'acide déhydroacétique (DHA) est une base organique couramment utilisée, notamment l'imidazole, le DABCO et la pyridine.



CARACTÉRISTIQUE DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
1. Conservateur à large spectre
L'acide déhydroacétique (DHA) peut inhiber la croissance des bactéries, levures, moisissures, Escherichia coli et autres micro-organismes qui peuvent facilement gâcher les aliments, les boissons, les préparations pharmaceutiques et les cosmétiques.


2. Peut inhiber la croissance des levures, des moisissures et des bactéries
L'acide déhydroacétique (DHA) a un effet puissant sur les levures et les moisissures qui sont faciles à détériorer les aliments.

La concentration efficace d'acide déhydroacétique (DHA) est de 0,05 à 0,1 % et la posologie générale est de 0,03 à 0,05 %.
Fondamentalement, l’effet antibactérien de l’acide déhydroacétique (DHA) n’est pas affecté par le pH des aliments ou par le chauffage.


3. Stabilité relative élevée
L'acide déhydroacétique (DHA) n'a pas d'exigences particulières pour l'environnement extérieur.

L'acide déhydroacétique (DHA) peut être utilisé à température, pression et humidité normales et n'a aucune exigence stricte pour le processus de production.
Le déhydroacétate de sodium est très stable à la lumière et à la chaleur, sauf que l'acide déhydroacétique (DHA) n'est pas affecté par les conditions acides et alcalines.


4. Haute sécurité
L'acide déhydroacétique (DHA) est une sorte de conservateur et d'antiseptique alimentaire approuvé par la FAO et l'OMS.

L'acide déhydroacétique (DHA) peut prévenir ou retarder la formation d'un cancer du foie lors du processus de décomposition progressive en solution aqueuse, et un contact à long terme ne causera pas de dommages irritants à la peau.
En termes d'application, l'acide déhydroacétique (DHA) n'affecte pas le goût et la saveur des aliments.



D’OÙ PROVIENT L’ACIDE DÉSHYDROACÉTIQUE (DHA) ?
L'acide déhydroacétique (DHA) est synthétisé chimiquement et ne provient d'aucune source végétale ou naturelle.



O EST-IL UTILISÉ L’ACIDE DÉHYDROACÉTIQUE (DHA) ?
L'acide déhydroacétique (DHA) est couramment utilisé comme conservateur dans une large gamme de produits de beauté tels que les hydratants, les shampoings, les revitalisants et les laques pour cheveux.



QUELS SONT LES BIENFAITS DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) ?
*Conservateur
L'acide déhydroacétique (DHA) aide à prévenir la croissance des bactéries et des moisissures, prolongeant ainsi la durée de conservation des produits.

*Respectueux de la nature
L'acide déhydroacétique (DHA) est considéré comme respectueux de l'environnement, il est biodégradable et non toxique.

*Compatible avec d'autres conservateurs
L'acide déhydroacétique (DHA) est compatible avec une large gamme d'autres conservateurs, ce qui permet un niveau d'utilisation global plus faible, ce qui en fait une bonne option pour la formulation de produits.

*Efficacité
Il a été démontré que l'acide déhydroacétique (DHA) est très efficace pour prévenir la croissance des bactéries et des moisissures, ce qui peut contribuer à garantir la sécurité et la qualité des produits de beauté.



MÉCANISME D'ACTION DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
Mécanisme d'action
L'acide déhydroacétique (DHA) agit en tuant les micro-organismes et en empêchant leur croissance et leur reproduction, protégeant ainsi les cosmétiques et les produits de soins personnels de la détérioration.



ORIENTATIONS FUTURES DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
Quant aux orientations futures, même si des tendances ou des avancées spécifiques en matière de recherche ne sont pas facilement disponibles, l'acide déhydroacétique (DHA) continue de faire l'objet d'études dans divers domaines en raison de ses propriétés conservatrices et de son rôle dans les produits cosmétiques.



CONSERVATION DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
1. Conservez l'acide déhydroacétique (DHA) dans un entrepôt frais, sec et bien ventilé.
Gardez l'acide déhydroacétique (DHA) à l'écart du feu et de la chaleur.
Protégez l’acide déhydroacétique (DHA) de la lumière directe du soleil.
Emballage scellé.

2. L'acide déhydroacétique (DHA) doit être stocké séparément des acides et des produits chimiques comestibles, et le stockage mixte doit être évité.
La zone de stockage doit être équipée de matériaux appropriés pour contenir la fuite.



PRÉPARATION DE L'ACIDE DÉSHYDROACÉTIQUE (DHA) :
1) L'acide déhydroacétique (DHA) est préparé à partir d'acétoacétate d'éthyle par autocondensation dans des conditions légèrement alcalines (bicarbonate de sodium).
2) par polymérisation du Cétène, obtenu par décomposition thermique de l'Acétone).



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DÉHYDROACÉTIQUE (DHA) :
Aspect : L’acide déhydroacétique est une poudre cristalline beige à jaune clair.
Odeur : légère acidité
Poids moléculaire : 168,15 g/mol
Point de fusion : Environ 109-111 °C (228-232°F)
Solubilité de (25 ℃ , g/100g) : éthanol 3, glycol 1,7,
huile d'olive < 1,6, glycérine < 0,1, eau < 0,1.
Son pH d'une solution aqueuse saturée est de 4.
Aspect : Poudre cristalline blanche à blanc cassé
Point d'ébullition, ℃ : 269,9
Point de fusion, ℃ : 109,00 ~ 111,00
Point d'éclair, ℃ : 157

Indice de réfraction : 1,4611
Solubilité : Légèrement soluble dans l’éthanol et l’eau froide
spécification
Articles : Spécification
Aspect : Poudre cristalline blanche à blanc cassé
Dosage, % : 98,00 ~ 100,5 0 (sur substance séchée)
Point de fusion, ℃ : 109,00 ~ 111,00
Perte au séchage, % : ≤1,00
Résidu au feu, % : ≤0,10
Plomb (en Pb), mg/kg : ≤0,50
Nom IUPAC : 3-acétyl-6-méthylpyran-2,4-dione
InChI : InChI=1S/C8H8O4/c1-4-3-6(10)7(5(2)9)8(11)12-4/h3,7H,1-2H3

Clé InChI : PGRHXDWITVMQBC-UHFFFAOYSA-N
SOURIRES canoniques : CC1=CC(=O)C(C(=O)O1)C(=O)C
Formule moléculaire : C8H8O4
ID de substance DSSTOX : DTXSID6020014
Poids moléculaire : 168,15 g/mol
Description physique : Poudre sèche, solide incolore et inodore ;
Très réactif ;
Solide blanc à crème ;
Poudre blanche inodore ;
Point d'ébullition : 269,9 °C à 760 mm HG
Point d'éclair : 157 °C ; 315 °F (TASSE OUVERTE)

Solubilité : (WT/WT) 22 % DANS L'ACÉTONE, 18 % DANS LE BENZÈNE, 5 % DANS LE MÉTHANOL,
3% EN ÉTHANOL USP, 3% EN TÉTRACHLORURE DE CARBONE, 5% EN ÉTHER, 0,7% EN N-HEPTANE,
MOINS DE 0,1% EN GLYCEROL, 1,6% EN HUILE D'OLIVE, 1,7% EN PROPYLENE GLYCOL,
MOINS DE 0,1% DANS L'EAU À 25 °C, SOL DANS LES ALCALIES, solubilité dans l'eau = 690 mg/l à 25 °C
Densité de vapeur : 5,8 (AIR = 1)
Pression de vapeur : 1,9 MM HG À 100 °C
Couleur/Forme: AIGUILLES D'EAU,
AIGUILLES RHOMBIQUES OU PRISMES D'ALCOOL,
POUDRE CRISTALLINE BLANCHE À CRÈME,
POUDRE INCOLORE, Cristaux incolores
Numéro CAS : 520-45-6, 16807-48-0
Point de fusion : 109-111 °C (SUBLIMES)

Propriétés chimiques:
Point d'ébullition : 269,9 °C, 270 °C (lit.), 270 °C ; 518 °F ; 543 Ko
Point de fusion : 109-111°C, 111-113°C (lit.), 109 °C ; 228 °F ; 382 Ko
pH : 4-6, 4 (2g/l, H2O, 20 ℃ )
Solubilité : Légèrement soluble dans l'eau, 2g/l,
Solubilité dans l'eau : 500 mg/L à 25 ℃
Viscosité : Faible
Formule chimique : C8H8O4
Masse molaire : 168,148 g•mol−1, 168,15 g•mol−1
Aspect : Cristaux blancs, Jaune clair ou crème,
Poudre cristalline fine
Densité : 1,1816 (estimation approximative)
Pression de vapeur : 0,001 hPa (20 °C)
Indice de réfraction : 1,4611 (estimation)
Point d'éclair : 157°C

Température de stockage : Conserver en dessous de +30°C
Forme : poudre cristalline fine
pKa : 5,53 ± 0,40 (prédit)
Odeur : Presque inodore, goût légèrement aigre-doux
Stabilité : Stable, Incompatible avec les agents oxydants,
bases, agents réducteurs
LogP : 0,78 à 20 ℃
FDA 21 CFR : 172.130, 175.105
Identifiants :
Numéro CBN : CB0139753
Formule moléculaire : C8H8O4
Poids moléculaire : 168,15 g•mol−1

Numéro MDL : MFCD00066709
Fichier MOL : 520-45-6.mol
Clé InChIKey : PGRHXDWITVMQBC-UHFFFAOYSA-N
FDA UNII : 2KAG279R6R
Les références:
Merck : 14,2865
BR: 6129
Référence de la base de données CAS : 520-45-6 (Référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
Référence chimique NIST : Acide déhydroacétique (520-45-6)
Système d'enregistrement des substances de l'EPA : 3-acétyl-6-méthyl-2H-pyran-2,4(3H)-dione (520-45-6)
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE DÉHYDROACÉTIQUE



PREMIERS SECOURS de l'ACIDE DÉHYDROACÉTIQUE (DHA) :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE DÉHYDROACÉTIQUE (DHA) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE DÉSHYDROACÉTIQUE (DHA) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DÉHYDROACÉTIQUE (DHA) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DÉHYDROACÉTIQUE (DHA) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE DÉHYDROACÉTIQUE (DHA) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ACIDE DIMÈRE
L'acide dimère, également connu sous le nom d'acide dimère, est un acide dicarboxylique comportant un groupe alkyle à 36 carbones (C36).
La formule moléculaire de l'acide dimère est C36H68O4.


Numéro CAS : 61788-89-4
Numéro CE : 500-148-0
Numéro MDL : MFCD00163478
Formule moléculaire : C36H64O4



SYNONYMES :
acides gras dimérisés, acide gras dimère, acide dimère C36, acide dimère C36C, ACIDES GRAS, DIMÉRACIDES, acide dimère de haute pureté, acides gras C18-insaturésdimères, acides gras, diméracides, C18, dimères, C18, non toxiques, acides gras, C18-insaturés ., dimères, dipolymère (acide octadécadiénoïque)



L'acide dimère, également connu sous le nom d'acide dimère, est un acide dicarboxylique comportant un groupe alkyle à 36 carbones (C36).
L'acide dimère est produit en dimérisant les acides gras insaturés en C18 à partir d'huiles et de graisses végétales, telles que l'acide linoléique et l'acide oléique.
Les huiles végétales et les graisses issues du recyclage des huiles de cuisson usagées sont également utilisées comme matières premières.


La structure des produits acides dimères varie en fonction des acides gras utilisés et de la méthode de polymérisation.
La qualité industrielle de l'acide dimère varie, contenant différentes quantités de trimère et d'autres substances en plus du dimère.
L'acide dimère appartient à la classe des acides dicarboxyliques, obtenus par dimérisation d'acides gras insaturés.


L'acide dimère est non toxique et a un aspect transparent visqueux jaune.
L'acide dimère est principalement utilisé pour fabriquer des résines polyamides et des adhésifs thermofusibles.
En fonction de leurs propriétés, les résines polyamides à base d'acide dimère peuvent être classées comme réactives ou non réactives.


Les polyamides réactifs agissent comme agents de durcissement pour les résines époxy, dont l'acide dimère est utilisé pour fabriquer des adhésifs et des revêtements de surface.
Tandis que les polyamides non réactifs sont largement utilisés pour fabriquer des encres d’imprimerie et des adhésifs thermofusibles.
Acide dimère transparent au liquide jaune, l'acide dimère est une sorte de polymère acide de dualité à partir d'acide gras.


L'acide dimère fait référence à la dimérisation d'un acide gras insaturé linéaire ou d'un ester d'acide gras insaturé avec de l'acide linoléique d'huile naturelle comme composant principal, qui est auto-condensé par la réaction de cycloaddition de Diels-Alder sous la catalyse de l'argile.
L'acide dimère est un mélange de divers isomères, dans lequel les principaux composants sont des dimères, de petites quantités de trimères ou de multimères et des traces de monomères n'ayant pas réagi.


L'acide dimère est un liquide jaune clair ou jaune, visqueux, non toxique et transparent.
La formule moléculaire de l'acide dimère est C36H68O4.
Le numéro CAS de l’acide dimère est 61788-89-4.


L'acide dimère est un acide dicarboxylique fabriqué en dimérisant des acides gras insaturés obtenus à partir de tallöl, d'acide oléique, de canola ou d'huile de coton, généralement sur des catalyseurs à base d'argile.
L'acide dimère est un acide dicarboxylique produit par dimérisation d'acides gras insaturés obtenus à partir de tallöl, d'acide oléique, d'huile de canola ou d'huile de coton, généralement sur des catalyseurs à base d'argile.


Les acides dimères, ou acides gras dimérisés, sont des acides dicarboxyliques préparés en dimérisant des acides gras insaturés obtenus à partir de tallöl, généralement sur des catalyseurs à base d'argile.
Le numéro CAS de l'acide dimère est [61788-89-4].


L'acide dimère est un liquide transparent visqueux jaune clair ou jaune.
L'acide dimère contient généralement principalement un dimère d'acide oléique.
L'acide dimère est également appelé acide dimère C36.


L'acide dimère peut être converti en amines dimères par réaction avec l'ammoniac et réduction ultérieure.
L'acide dimère est une substance fascinante qui joue un rôle crucial dans diverses industries.
L'acide dimère est un composé principalement obtenu à partir de tallöl, un sous-produit de l'industrie papetière.
L’acide gras du tallöl subit un processus connu sous le nom de dimérisation, aboutissant à un acide dimère.



UTILISATIONS et APPLICATIONS de l’ACIDE DIMERE :
L'acide dimère est utilisé comme modificateur pour les résines thermodurcissables et thermoplastiques, comme matière première pour la polyamidoamine, un agent de durcissement de résine époxy et la résine polyamide thermoplastique.
L'acide dimère est utilisé dans les peintures, les encres et les adhésifs.


Sa flexibilité rend l’acide dimère adapté à une utilisation comme lubrifiant et huile de coupe.
L'acide dimère est également ajouté aux inhibiteurs de corrosion et aux inhibiteurs de rouille, et dans les cosmétiques comme agent bloquant pour empêcher l'évaporation de l'humidité de la peau, maintenant ainsi l'humidité de la peau.


L'acide dimère est utilisé dans des applications industrielles, notamment un modificateur de viscosité pour les puits de pétrole et de gaz, un tensioactif pour la récupération du pétrole, des inhibiteurs de corrosion à base d'amine et des composants fonctionnels pour les industries du revêtement, du papier, des adhésifs, des carburants et des lubrifiants.
De plus, les résines polyamides à base d'acide dimère sont largement utilisées comme additifs pour le fioul et comme lubrifiants dans les résines alkydes, les adhésifs et les tensioactifs.


La demande d’acide dimère devrait augmenter en raison de ses applications complètes dans des industries telles que les peintures et revêtements, les adhésifs et les produits chimiques pour champs pétrolifères, entre autres.
Ces industries connaîtraient une croissance persistante à l’avenir, augmentant ainsi la croissance du marché mondial des acides dimères.


Actuellement, les polymères non réactifs dominent le segment des applications sur le marché des acides dimères.
Cependant, les polymères réactifs devraient afficher le TCAC le plus élevé en raison de la popularité croissante de l'acide dimère dans les revêtements de construction et marins, en particulier en Asie-Pacifique.


Malgré sa position optimiste, l’industrie des acides dimères sera probablement témoin de fluctuations du prix des matières premières telles que l’huile de colza, l’huile de coton et l’huile de soja, qui pourraient entraver la croissance du marché au cours de la période de prévision.
L'acide dimère est principalement utilisé pour synthétiser des résines polyamide et des adhésifs thermofusibles.


L'acide dimère est un oléochimique important largement utilisé dans les revêtements, les tensioactifs, les lubrifiants, les encres d'imprimerie, les adhésifs thermofusibles et d'autres industries.
L'acide dimère est utilisé dans les résines alkydes synthétiques, dans les encres d'imprimerie, la résine polyamide, les adhésifs de peinture en perles, dans les textiles, les détergents et un additif de lubrifiant et d'huile antirouille.


L'acide dimère est utilisé pour la synthèse de résines polyamide et d'adhésifs thermofusibles polyamide.
L'acide dimère est également utilisé dans la fabrication de résines alkydes, d'adhésifs, de tensioactifs, comme additifs pour le mazout et comme lubrifiant.
L'acide dimère peut être utilisé pour synthétiser des résines polyamide et des adhésifs thermofusibles.


L'acide dimère est également utilisé dans les résines alkydes, les adhésifs, les tensioactifs, les additifs pour fioul et les lubrifiants.
L'acide dimère est principalement utilisé pour la synthèse de résines polyamide et d'adhésifs thermofusibles polyamide.
L'acide dimère est également utilisé dans les résines alkydes, les adhésifs, les tensioactifs, comme additifs pour le fioul, les lubrifiants, etc.
L'acide dimère a une gamme d'applications, des revêtements de surface aux lubrifiants et additifs pour carburants.


-Rôle de l'acide dimère dans les lubrifiants :
L'acide dimère trouve également son application dans la formulation d'additifs pour huiles et lubrifiants.
Le poids moléculaire élevé et la structure unique de l’acide dimère contribuent à améliorer le pouvoir lubrifiant et la stabilité thermique.
Ces caractéristiques font de l’acide dimère un composant idéal dans les lubrifiants automobiles et industriels.


-Additifs pour carburant et plus :
La polyvalence de l’acide dimère s’étend à son rôle de tensioactif dans le fioul. Il contribue à améliorer les propriétés d'écoulement du carburant et l'efficacité de la combustion.
L'acide dimère est également utilisé dans la formulation d'adhésifs et de résines thermofusibles, qui sont utilisées dans divers procédés de fabrication.

L'acide dimère est un ingrédient clé dans la production d'adhésifs.
Sa structure chimique unique lui permet de former des liaisons solides, faisant de l'acide dimère un choix privilégié pour les applications intensives.
Les adhésifs trouvent leur utilisation dans l’automobile, la construction et même dans l’industrie aérospatiale.


-Surfactants et agents de nettoyage
Au-delà de son rôle dans les revêtements et les lubrifiants, l’acide dimère est également utilisé dans la production de tensioactifs.
Ces tensioactifs sont utilisés dans les agents de nettoyage, les détergents et même dans les produits de soins personnels.
L'efficacité de l'acide dimère à décomposer les huiles et les graisses en fait un composant précieux dans ces applications.


-Un choix durable :
Un autre avantage de l’acide dimère est sa durabilité.
L’acide dimère étant obtenu à partir du tallöl, un sous-produit de l’industrie papetière, il contribue à la réduction des déchets et favorise une économie circulaire.
Cela fait de l’acide dimère un choix écologique pour diverses applications.


-Applications de l'acide dimère dans les revêtements de surface :
L’une des principales utilisations de l’acide dimère est la production de résines alkydes.
Ces résines sont principalement utilisées pour les peintures et revêtements synthétiques, notamment dans le secteur de la construction.
Les résines alkydes offrent d'excellentes propriétés telles que la durabilité, la brillance et l'adhérence, ce qui en fait un choix privilégié pour les applications intérieures et extérieures.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE DIMÈRE :
L'acide dimère est un liquide visqueux transparent jaune clair avec une bonne stabilité thermique : il ne cristallise pas à basse température de -20 °C et ne perd pas sa fluidité transparente ; il ne s'évapore pas et ne gélifie pas à 250 °C.
La couleur s'assombrit considérablement lorsqu'elle est chauffée à l'air.

L’exposition aux ions métalliques, en particulier aux ions cuivre et fer, peut favoriser la détérioration de la couleur.
L'acide dimère hydrogéné est un liquide presque incolore et transparent, et la couleur n'est pas facile à approfondir même lorsqu'il est chauffé.
L'acide dimère est insoluble dans l'eau, mais soluble dans l'éther, l'éthanol, l'acétone, le chloroforme, le benzène et les solvants de la série pétrolière.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DIMÈRE :
L'acide dimère est un composé multifonctionnel, il peut donc effectuer de nombreuses réactions chimiques et a une réactivité similaire aux acides gras insaturés généraux.
L'acide dimère peut réagir avec les métaux alcalins pour former des sels métalliques et peut également être dérivé en chlorures d'acide, amides, esters, diisocyanates et autres produits.



MÉCANISME DE RÉACTION DE L'ACIDE DIMÈRE :
L'acide dimère est obtenu en chauffant et en polymérisant un acide gras insaturé sous l'action d'un catalyseur.
Le mécanisme réactionnel de dimérisation, le consensus actuel est la théorie de la réaction d'addition de Diels-Alder entre les acides gras insaturés conjugués et non conjugués.



LA CHIMIE DERRIÈRE L’ACIDE DIMÈRE :
Les acides dimères sont des acides dicarboxyliques formés par dimérisation d'acides gras insaturés.
Le processus aboutit à un liquide visqueux jaune clair ou jaune, qui a un poids moléculaire plus élevé que celui des matières premières de l'acide dimère.
Cet attribut fait de l'acide dimère un excellent choix pour la synthèse de résines polyamide et d'autres matériaux hautes performances.



PRÉPARATION DE L'ACIDE DIMÈRE :
L'acide dimère est préparé en chauffant et en polymérisant un acide gras insaturé sous l'action d'un catalyseur.



ANALYSE DU MARCHÉ DE L’ACIDE DIMÈRE :
Le marché de l’acide dimère devrait enregistrer un TCAC de plus de 5 % au cours de la période de prévision.
Le marché a été entravé par la pandémie de COVID-19, car les confinements, les distances sociales et les sanctions commerciales ont déclenché des perturbations massives dans les réseaux mondiaux de la chaîne d’approvisionnement.

Le secteur de la construction a connu un déclin en raison de l'arrêt des activités.
Cependant, l’état retrouvé en 2021 devrait profiter au marché au cours de la période de prévision.
Les applications croissantes des résines polyamide et l’utilisation croissante d’adhésifs et d’additifs pour fioul stimulent la croissance du marché.
La fluctuation des prix des matières premières et l’incertitude quant à la production d’huile de colza, d’huile de coton et d’huile de soja devraient freiner la croissance du marché.



PRODUCTION D'ACIDE DIMÈRE :
L'acide dimère est produit à partir de différents acides gras par chauffage. Il faut un acide gras avec des doubles liaisons conjuguées ou d'autres acides gras insaturés.
Des exemples de tels acides gras sont les acides linoléiques conjugués.
La réaction est réalisée par addition Diels-Alder, ce qui entraîne la formation d'un cycle C6 partiellement insaturé.
Outre le dimère, des trimères ainsi que des monomères (n'ayant pas réagi) des acides gras peuvent être présents dans le mélange.



TENDANCES DU MARCHÉ DES ACIDES DIMÈRES :
Cette section couvre les principales tendances du marché qui façonnent le marché des acides dimères selon nos experts en recherche :

*Demande croissante de résines alkydes et d’adhésifs
L'acide dimère est connu sous le nom d'acides gras dimérisés et appartient au groupe des acides dicarboxyliques.
L'acide dimère trouve son application dans les revêtements de surface, les lubrifiants et les additifs pour carburants.

L'acide dimère est utilisé pour fabriquer des résines alkydes, principalement utilisées pour les peintures et revêtements synthétiques et utilisées dans l'industrie de la construction en raison de leurs propriétés.
En 2021, les États-Unis ont produit 123,9 milliards de livres de résines.
Le polyéthylène haute densité (PEHD) était la résine la plus produite cette année-là, avec une production de 22 milliards de livres.

Le polyéthylène linéaire basse densité (LLDPE) représentait un volume de production similaire, à 21,7 milliards de livres.
Les propriétés de l'acide dimère comprennent un poids moléculaire élevé, des difficultés de cristallisation et de distillation, une structure cyclique très flexible, soluble dans les hydrocarbures et une réactivité facilement contrôlée.

Les adhésifs thermofusibles en polyamide utilisent en grande partie de l'acide dimère dans le processus de fabrication.
Ces adhésifs thermofusibles sont utilisés sur le métal, le papier, le bois et de nombreux plastiques, comme le PVC, le polypropylène traité en surface et le polyéthylène, pour une excellente adhérence, en raison de leurs caractéristiques.

Les polyamides synthétiques sont couramment utilisés dans les textiles, l'industrie automobile, les tapis, les ustensiles de cuisine et les vêtements de sport en raison de leur grande durabilité et résistance.
L'industrie manufacturière des transports est le principal consommateur, représentant 35 % de la consommation de polyamide (PA).

Les adhésifs thermofusibles ont une stabilité thermique, des points de fusion et une résistance chimique élevés à de nombreux composés.
Ces propriétés augmentent la demande de ces adhésifs par rapport aux autres adhésifs dans le scénario actuel.
En 2021, la production mondiale de polyamide s'élevait à 5,87 millions de tonnes.

Selon Statista, d’ici 2027, la valeur marchande des adhésifs devrait atteindre près de 65 milliards de dollars, et celle des produits d’étanchéité à un peu plus de 15 milliards de dollars.
En raison de la forte demande des industries utilisatrices finales telles que l’alimentation et les boissons, les applications croissantes d’adhésifs dans l’industrie de l’emballage stimulent le marché de l’acide dimère.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DIMÈRE :
Numéro CBN : CB51011196
Formule moléculaire : C36H64O4
Poids moléculaire : 560,91
Numéro MDL : MFCD00163478
Fichier MOL : 61788-89-4.mol
Pression de vapeur : 0-0,029 Pa à 25 ℃
Forme : Visqueux
LogP : 1-14,81 à pH2
Additifs indirects utilisés dans les substances en contact avec les aliments : ACIDES GRAS (C18), INSATURES, DIMÈRES
FDA UNII : 04P17590AP
Système d'enregistrement des substances de l'EPA : C18-Unsatd.
dimères d'acides gras (61788-89-4)

Poids moléculaire : 564,92
Aspect : Liquide brun et visqueux
Densité : 0,950 g/cm3
Dosage : 70 - 85 % (acide dibasique)
Point d'ébullition : > 260°C
Point de fusion : -18°C (point d'écoulement)
Point d'éclair : > 257°C
Odeur : Légèrement grasse
Indice d'acide : 181 MIN.
Classe : Acides dimères et acides trimères

Dosage : 95,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point d'ébullition : 360,60 °C à 760,00 mm Hg (est)
Pression de vapeur : 0,000004 mmHg à 25,00°C (est)
Point d'éclair : 523,00 °F TCC (273,00 °C) (est)
logP (dont) : 7,180 (est)
Soluble dans : eau, 0,03771 mg/L à 25°C (est)



PREMIERS SECOURS DE L'ACIDE DIMERE :
-Description des premiers secours :
*En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
*En cas de contact avec la peau :
Laver avec du savon et beaucoup d'eau.
*En cas de contact visuel :
Rincer les yeux avec de l'eau par mesure de précaution.
*En cas d'ingestion:
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE DIMÈRE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Gardez à récipients adaptés et fermés pour l'élimination.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DIMERE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
-Plus d'informations :
Pas de données disponibles



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DIMÈRE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
*Protection de la peau :
Manipuler avec des gants.
Se laver et se sécher les mains.
*Protection du corps :
Vêtements imperméables
*Protection respiratoire:
Protection respiratoire non requise.
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DIMERE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Conserver dans un endroit frais.
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.



STABILITÉ et RÉACTIVITÉ de l'ACIDE DIMÈRE :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Stable dans les conditions de stockage recommandées.
-Possibilité de réactions dangereuses:
Pas de données disponibles
-Conditions à éviter :
Pas de données disponibles


ACIDE DIPICOLINIQUE

L'acide dipicolinique, souvent abrégé en DPA, est un composé chimique de formule moléculaire C7H5NO4.
L'acide dipicolinique est un dérivé de la pyridine et est connu pour son rôle dans les endospores bactériennes, en particulier en tant que composant majeur du noyau des spores.
La structure chimique de l'acide dipicolinique comprend un cycle pyridine et des groupes fonctionnels acide carboxylique.

Numéro CAS : 499-83-2
Numéro CE : 207-838-8



APPLICATIONS


L'acide dipicolinique est utilisé comme marqueur diagnostique pour les tests microbiologiques, indiquant la présence d'endospores bactériennes.
Dans l'industrie alimentaire, la détection de l'acide dipicolinique sert d'indicateur de contamination par spores, garantissant ainsi la sécurité alimentaire.
L'acide dipicolinique joue un rôle crucial dans les kits de détection conçus pour identifier les agents de guerre biologique potentiels, tels que les spores du charbon.

L'acide dipicolinique est utilisé pour évaluer l'efficacité des processus de stérilisation, en particulier dans les établissements de soins de santé.
Les chercheurs utilisent l’acide dipicolinique pour étudier la physiologie, la structure et la germination des spores bactériennes.

L'acide dipicolinique a des applications dans le diagnostic médical, aidant à l'identification d'infections bactériennes spécifiques.
Comprendre le rôle de l'acide dipicolinique dans la formation des spores contribue au développement de stratégies de bioremédiation utilisant des bactéries sporulées.
L'étude de l'acide dipicolinique facilite le développement de produits pharmaceutiques ciblant les spores bactériennes.

Les méthodes de détection impliquant l’acide dipicolinique sont essentielles aux mesures de biosécurité permettant d’identifier et de répondre aux menaces potentielles de bioterrorisme.
La recherche sur l'acide dipicolinique met en lumière les mécanismes de résistance des spores, influençant les stratégies de contrôle environnemental.

En science vétérinaire, l'acide dipicolinique est utilisé pour diagnostiquer les infections bactériennes chez les animaux causées par des bactéries sporulées.
L'acide dipicolinique constitue un outil précieux dans la recherche biologique, élucidant les propriétés et fonctions uniques des endospores bactériennes.
L'acide dipicolinique est un élément clé dans la validation des procédés de stérilisation pharmaceutique, assurant l'élimination des spores bactériennes.

La détection de l'acide dipicolinique est utilisée dans la surveillance environnementale pour évaluer la prévalence des bactéries sporulées dans divers écosystèmes.
La compréhension de l'acide dipicolinique contribue au développement de méthodes de conservation biologique des cultures et des spécimens.
L'acide dipicolinique est impliqué dans des études axées sur la décontamination des surfaces et des environnements contaminés par des spores bactériennes.

Dans les applications biotechnologiques, l'acide dipicolinique est pris en compte dans la conception de systèmes basés sur des spores à diverses fins, telles que la biodétection.
La détection de l'acide dipicolinique est appliquée en microbiologie agricole pour étudier le rôle des bactéries sporulées dans la santé des sols.

L'acide dipicolinique contribue aux études sur l'écologie microbienne en aidant les chercheurs à comprendre la prévalence et l'impact des organismes sporulés dans divers environnements.
L'acide dipicolinique participe aux études phylogénétiques, en aidant à la classification et à l'identification des bactéries en fonction de leurs capacités de formation de spores.
La recherche explore le potentiel d’incorporation de l’acide dipicolinique dans les systèmes d’administration de médicaments, en tirant parti des propriétés uniques des spores.
Des méthodes de détection impliquant l’acide dipicolinique sont utilisées pour surveiller la qualité de l’eau afin d’évaluer la présence de bactéries sporulées.

L'étude de l'acide dipicolinique contribue à comprendre la dynamique des communautés microbiennes du sol influencées par les bactéries sporulées.
La résistance de l'acide dipicolinique aux conditions difficiles a des implications pour l'astrobiologie, notamment dans l'étude du potentiel de survie des spores dans les environnements spatiaux.
L'acide dipicolinique joue un rôle dans l'exploration de stratégies de contrôle biologique, en utilisant des bactéries sporulées pour une intervention ciblée dans divers contextes.

L'acide dipicolinique est à l'étude pour des applications potentielles dans l'industrie cosmétique, notamment dans des formulations conçues pour la santé et la protection de la peau.
Les recherches sur l’acide dipicolinique contribuent à comprendre les mécanismes de résistance aux radiations des bactéries sporulées, pertinents dans des domaines tels que la radiothérapie et l’exploration spatiale.

Les recherches sur la biodégradabilité de l'acide dipicolinique inspirent le développement de matériaux biodégradables, s'alignant sur des initiatives respectueuses de l'environnement.
L'étude des bactéries sporulées et de l'acide dipicolinique aide à développer des stratégies pour atténuer l'encrassement biologique, en particulier dans les environnements marins.

L'acide dipicolinique est étudié pour des applications pharmacologiques potentielles, notamment son interaction avec des récepteurs spécifiques et son impact sur les processus cellulaires.
La recherche suggère des applications potentielles de l’acide dipicolinique en santé dentaire, compte tenu de ses propriétés antimicrobiennes contre les bactéries sporulées dans l’environnement buccal.
Les recherches sur les propriétés de l'acide dipicolinique contribuent aux progrès de la technologie des piles à combustible microbiennes, dans lesquelles des bactéries sporulées sont utilisées pour la production d'énergie.

Comprendre les bactéries sporulées et l’acide dipicolinique facilite le développement d’approches écologiques en matière d’assainissement des déversements d’hydrocarbures.
Le rôle de l'acide dipicolinique dans les mécanismes de résistance des spores a des implications dans le développement de nouvelles méthodes de conservation des aliments, améliorant ainsi la durée de conservation et la sécurité.

Les chercheurs explorent le potentiel de l'acide dipicolinique en tant que cible pour de nouveaux antibiotiques, visant à perturber la formation et la viabilité des spores bactériennes.
L'étude de l'acide dipicolinique contribue au développement d'amendements biologiques des sols, améliorant ainsi la fertilité des sols et la diversité microbienne.
Comprendre les bactéries sporulées et l’acide dipicolinique est pertinent pour concevoir des formulations probiotiques offrant une stabilité et une viabilité étendues.
Les méthodes de détection de l'acide dipicolinique trouvent des applications dans les processus de traitement de l'eau pour surveiller et contrôler la présence de bactéries sporulées.

Les propriétés uniques de l'acide dipicolinique inspirent le développement de biocapteurs pour une détection rapide et sensible des spores bactériennes dans divers environnements.
Les chercheurs explorent le rôle de l'acide dipicolinique dans la résistance des spores en tant que cible potentielle pour le développement d'un vaccin contre les agents pathogènes sporulés.

L'acide dipicolinique est utilisé dans diverses techniques d'analyse chimique, contribuant aux progrès de la chimie analytique.
Les études sur l'acide dipicolinique peuvent avoir des implications en imagerie médicale, servant potentiellement d'agent de contraste ou de marqueur pour certaines conditions.
Les propriétés de l’acide dipicolinique influencent le développement de revêtements antimicrobiens, avec des applications dans les établissements de soins de santé et au-delà.
La recherche sur l'acide dipicolinique aide à comprendre son devenir et son impact dans les processus de traitement des eaux usées, garantissant ainsi la sécurité environnementale.

L'acide dipicolinique est utilisé comme indicateur biologique dans les processus de stérilisation, fournissant une mesure fiable de la destruction des spores.
La stabilité et les propriétés uniques de l'acide dipicolinique sont exploitées dans les techniques de biologie moléculaire, notamment les méthodes d'extraction de l'ADN.

L'étude des bactéries sporulées et de l'acide dipicolinique contribue au développement de stratégies durables de protection des cultures contre certains pathogènes.
L'acide dipicolinique est étudié pour des applications potentielles en ingénierie tissulaire, en tirant parti de ses propriétés dans la conception d'échafaudages et les interactions cellulaires.
L'acide dipicolinique sert d'indicateur dans les études d'impact environnemental, fournissant des informations sur la prévalence et les effets des bactéries sporulées.

La stabilité de l'acide dipicolinique est prise en compte dans la préservation des artefacts du patrimoine culturel, où des bactéries sporulées peuvent être présentes.
La stabilité de l'acide dipicolinique dans des conditions extrêmes le rend pertinent dans l'exploration spatiale, où des spores bactériennes pourraient être présentes, influençant les protocoles de stérilisation des engins spatiaux.

Dans les établissements de soins de santé, l'acide dipicolinique est utilisé comme indicateur biologique pour évaluer l'efficacité des procédures de stérilisation des instruments médicaux.
L'étude de l'acide dipicolinique contribue au développement d'approches respectueuses de l'environnement pour la lutte biologique contre les ravageurs, en exploitant les bactéries sporulées contre les ravageurs.
Les propriétés de stabilité de l'acide dipicolinique sont prises en compte dans les formulations pharmaceutiques, améliorant potentiellement la stabilité de certains médicaments.
Les bactéries sporulées et l'acide dipicolinique sont étudiés pour leur rôle potentiel dans les processus MEOR visant à améliorer la récupération du pétrole des réservoirs.
L'acide dipicolinique inspire le développement de capteurs biologiques capables de détecter les bactéries sporulées en temps réel, facilitant ainsi la surveillance de l'environnement.

La recherche sur l’acide dipicolinique contribue aux stratégies visant à perturber les biofilms, notamment ceux formés par les bactéries sporulées en milieu industriel et médical.
Les propriétés de l'acide dipicolinique sont explorées pour leur potentiel dans l'assainissement des sols, en particulier pour lutter contre la contamination par des bactéries sporulées.
L'étude de l'acide dipicolinique a des implications dans le développement de produits pharmaceutiques vétérinaires ciblant les infections bactériennes sporulées chez les animaux.

L'acide dipicolinique est pris en compte dans le développement de formulations probiotiques pour l'agriculture, améliorant la croissance des plantes et la résistance à certains agents pathogènes.
L'acide dipicolinique sert d'indicateur de la propreté des environnements de salle blanche, en particulier dans les industries exigeant des normes d'hygiène strictes.

Les propriétés uniques de l’acide dipicolinique contribuent aux applications en biologie synthétique, où les organismes sporulés sont conçus à des fins spécifiques.
La recherche explore l'incorporation d'acide dipicolinique dans les matériaux, influençant leurs propriétés mécaniques et chimiques pour diverses applications.

Comprendre l’acide dipicolinique facilite le développement de contre-mesures contre les menaces potentielles de guerre biologique impliquant des bactéries sporulées.
La présence d'acide dipicolinique dans les spores contribue au cycle biogéochimique, influençant la dynamique des nutriments dans divers écosystèmes.
Le rôle de l'acide dipicolinique dans la différenciation cellulaire est étudié dans la recherche sur les cellules souches, explorant son impact sur le devenir cellulaire et le développement des tissus.
Les bactéries sporulées et l'acide dipicolinique sont pris en compte pour optimiser les processus de fermentation, tels que ceux utilisés dans la production de certains aliments et boissons.

L'acide dipicolinique est étudié pour ses applications potentielles en biotechnologie industrielle, en particulier dans le développement de produits biosourcés.
Les propriétés de chélation des métaux de l'acide dipicolinique sont explorées pour des applications potentielles en tant que sorbant dans l'élimination d'ions métalliques spécifiques des solutions.

La prévalence des bactéries sporulées et de l’acide dipicolinique contribue aux études sur le changement climatique, ayant un impact sur le cycle du carbone et de l’azote dans les écosystèmes.
Les propriétés optiques de l'acide dipicolinique inspirent la recherche sur son utilisation potentielle dans le développement de matériaux photoniques pour des applications technologiques.

Comprendre l’acide dipicolinique aide à concevoir des consortiums microbiens pour des fonctions spécifiques, telles que l’amélioration du cycle des nutriments ou la bioremédiation.
La détection de l'acide dipicolinique est explorée pour son potentiel en tant que biomarqueur dans le diagnostic des maladies, offrant ainsi des informations sur des infections bactériennes spécifiques.
La recherche étudie les propriétés catalytiques de l’acide dipicolinique pour des applications potentielles dans les réactions de synthèse chimique et de transformation.
La stabilité de l'acide dipicolinique est prise en compte dans la préservation des spécimens biologiques dans les musées, où des spores peuvent être présentes.



DESCRIPTION


L'acide dipicolinique, souvent abrégé en DPA, est un composé chimique de formule moléculaire C7H5NO4.
L'acide dipicolinique est un dérivé de la pyridine et est connu pour son rôle dans les endospores bactériennes, en particulier en tant que composant majeur du noyau des spores.
La structure chimique de l'acide dipicolinique comprend un cycle pyridine et des groupes fonctionnels acide carboxylique.

L'importance de l'acide dipicolinique réside dans son association avec les spores bactériennes, où il contribue à la résistance à la chaleur et à la déshydratation du noyau des spores.
Lors de la formation des spores, l'acide dipicolinique est complexé avec des ions calcium, formant un sel stable appelé dipicolinate de calcium.
L'acide dipicolinique joue un rôle crucial dans la résistance des spores bactériennes aux conditions environnementales difficiles.

L'acide dipicolinique est caractérisé par une structure moléculaire distincte comportant un cycle pyridine et deux groupes acide carboxylique.
De formule chimique C7H5NO4, il appartient à la classe des composés hétérocycliques appelés acides pyridine carboxyliques.
L'acide dipicolinique est un composant essentiel des endospores bactériennes, contribuant à leur résistance à la chaleur et à la déshydratation.

Dans les spores bactériennes, l'acide dipicolinique forme un complexe stable avec les ions calcium, appelé dipicolinate de calcium.
La présence d'acide dipicolinique dans les spores est une caractéristique biologique clé, assurant une protection contre les stress environnementaux.

L'acide dipicolinique est thermiquement stable, contribuant à la capacité de la spore à résister à des températures élevées lors de processus tels que l'autoclavage.
Son rôle dans la résistance à la déshydratation est essentiel à la survie des spores bactériennes dans des conditions défavorables.
L'acide dipicolinique est lié à la dormance des endospores, permettant aux bactéries de supporter des périodes prolongées d'adversité environnementale.
La complexation de l'acide dipicolinique avec le calcium contribue à la résistance microbienne contre diverses méthodes de décontamination.

L'acide dipicolinique sert de marqueur analytique pour la détection des endospores bactériennes dans certaines applications de diagnostic et de recherche.
La persistance environnementale de l'acide dipicolinique dans les spores joue un rôle crucial dans le cycle de vie des bactéries sporulées.

La capacité à chélater les ions calcium met en valeur ses propriétés de liaison aux métaux, influençant la stabilité structurelle du noyau de la spore.
Bien qu'il s'agisse d'un composé naturel, sa biodégradabilité peut varier en fonction des conditions environnementales.
La présence d'acide dipicolinique contribue à la fonctionnalité et à la résilience des spores microbiennes.
Son interaction avec les ions métalliques, notamment le calcium, est essentielle à la formation et à la stabilité du complexe dipicolinate de calcium.

L'acide dipicolinique est un élément caractéristique des bactéries sporulées, facilitant leur classification et leur identification.
Dans certains contextes, l’acide dipicolinique est utilisé comme indicateur de la présence de spores bactériennes, notamment celles potentiellement utilisées dans la guerre biologique.
Sa stabilité sous les procédés de stérilisation à haute température en fait un indicateur précieux de l’efficacité des méthodes de stérilisation.

L'acide dipicolinique est utilisé dans la recherche en laboratoire comme outil pour étudier les propriétés des spores bactériennes et les mécanismes de résistance.
Sa chimie de coordination, en particulier sa capacité à se coordonner avec les ions métalliques, est un sujet d'intérêt pour la recherche chimique.

Comprendre les propriétés de l'acide dipicolinique a des implications dans les applications biotechnologiques, notamment la biorestauration à base de spores.
Pendant la germination, l'acide dipicolinique est libéré de la spore, jouant un rôle dans l'activation de la spore.

La concentration d'acide dipicolinique dans les spores est liée à leur viabilité et à leur capacité à réintégrer les phases de croissance active.
La recherche sur le rôle de l'acide dipicolinique s'étend à la compréhension des interactions hôte-pathogène et de la virulence bactérienne.
Bien qu’il soit principalement associé aux spores bactériennes, l’acide dipicolinique est également présent naturellement dans certaines plantes et organismes marins.



PROPRIÉTÉS


Formule chimique : C7H5NO4
Poids moléculaire : environ 167,12 g/mol
Structure chimique : comporte un cycle pyridine et deux groupes acide carboxylique.
Point de fusion : se décompose avant de fondre.
Solubilité : Soluble dans l’eau, mais la solubilité peut varier avec la température.
Acidité/Basicité : Présente de faibles propriétés acides en raison des groupes acide carboxylique.
Stabilité : Stable dans des conditions normales ; cependant, se décompose à des températures élevées.
Biodégradabilité : La biodégradabilité de l'acide dipicolinique peut varier en fonction des conditions environnementales.
Formation de complexes : Forme des complexes stables, en particulier avec les ions calcium, appelés dipicolinate de calcium.
Valeurs pKa : Les constantes d'acidité (valeurs pKa) des groupes acide carboxylique influencent son comportement en solution.
Réactivité chimique : Réagit avec divers ions métalliques, influençant son rôle dans la formation de complexes stables.



PREMIERS SECOURS


Inhalation:

En cas d'inhalation, déplacez la personne affectée vers une zone avec de l'air frais.
Permettez à la personne de se reposer dans une position confortable.
Consultez rapidement un médecin.
Si la personne ne respire pas, administrez la respiration artificielle. Si vous êtes formé, effectuez la RCR.


Contact avec la peau:

Retirez immédiatement les vêtements contaminés.
Lavez doucement la zone cutanée affectée avec de l’eau et du savon pendant au moins 15 minutes.
Consulter un médecin si l'irritation, la rougeur ou d'autres effets indésirables persistent.


Lentilles de contact:

Rincer immédiatement les yeux avec beaucoup d'eau, en veillant à ce que les paupières restent ouvertes.
Continuez à rincer pendant au moins 15 minutes.
Consulter immédiatement un médecin et apporter la fiche de données de sécurité du produit si disponible.


Ingestion:

En cas d'ingestion, ne pas faire vomir sauf indication contraire du personnel médical.
Rincer la bouche avec de l'eau et boire beaucoup d'eau (si conscient).
Consultez immédiatement un médecin.
Ne rien faire avaler à une personne inconsciente.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle (EPI) :
Portez un EPI approprié, notamment des gants, des lunettes de sécurité et une blouse de laboratoire, pour éviter tout contact avec la peau et l'exposition des yeux.
Utiliser une protection respiratoire si vous travaillez avec la substance dans une zone mal ventilée.

Ventilation:
Travaillez dans un endroit bien ventilé ou utilisez une ventilation par aspiration locale pour contrôler les concentrations en suspension dans l'air.

Évitement de contact :
Minimiser le contact direct avec la substance.
Manipuler avec des outils ou des équipements conçus pour la tâche spécifique.

Mesures préventives:
Mettre en œuvre de bonnes pratiques d’hygiène industrielle, notamment le lavage régulier des mains et éviter toute exposition inutile.

Intervention en cas de déversement :
En cas de déversement, utiliser des mesures appropriées de contrôle des déversements, telles que des matériaux absorbants, pour contenir et nettoyer le déversement.

Éviter l'ingestion :
Ne pas manger, boire ou fumer dans les zones où l'acide dipicolinique est manipulé.

Propreté des équipements :
Assurez-vous que tout l’équipement utilisé est propre et exempt de contaminants pour éviter toute réaction ou contamination involontaire.

Étiquetage :
Étiquetez clairement tous les conteneurs avec le nom de la substance, les informations sur les dangers et les mesures de précaution nécessaires.

Entraînement:
Fournir une formation au personnel manipulant l’acide dipicolinique sur ses propriétés, les procédures de manipulation sûres et les interventions d’urgence.


Stockage:

Sélection des conteneurs :
Conservez l'acide dipicolinique dans des récipients hermétiquement fermés fabriqués à partir de matériaux compatibles, tels que le verre ou le plastique.
Utilisez des récipients résistants à la substance pour éviter les fuites ou la détérioration.

Conditions de stockage:
Conserver dans un endroit frais et sec, à l'abri de la lumière directe du soleil et des substances incompatibles.
Maintenir les températures de stockage recommandées dans la fiche de données de sécurité du produit.

Ventilation:
Assurer une ventilation adéquate dans les zones de stockage pour éviter l'accumulation de concentrations en suspension dans l'air.

Ségrégation:
Conservez l’acide dipicolinique à l’écart des matières incompatibles, notamment les acides forts, les bases et les agents oxydants.

Éviter la contamination :
Prévenez la contamination en stockant l’acide dipicolinique séparément des autres produits chimiques pour éviter des réactions involontaires.

Contrôle d'accès:
Restreindre l’accès aux zones de stockage au personnel autorisé uniquement.

Mesures de sécurité:
Mettez en œuvre des mesures de sécurité pour empêcher tout accès non autorisé ou vol.

Équipement d'urgence:
Assurez-vous que l’équipement d’urgence, comme les douches oculaires et les douches de sécurité, est facilement accessible dans la zone de stockage.



SYNONYMES


Acide pyridine-2,6-dicarboxylique
Acide 2,6-pyridinedicarboxylique
Pyridine-2,6-dicarboxylate
Acide bis-pyridine-2,6-dicarboxylique
2,6-Dicarboxypyridine
Acide 2,6-pyridine dicarboxylique
Acide 2,6-pyridine-dicarboxylique
Acide pyridine-2,6-biscarboxylique
Bis(2-carboxypyridyl)méthane
2,6-Dicarboxypyridine
Dicarboxylate de pyridine-2,6-diyle
Dipyridine-2,6-dicarboxylate
Acide bis-picolinique
Acide 2,6-pyridyl dicarboxylique
Acide 2,6-picolinique
Acide bis-pyridyl dicarboxylique
2,6-Dicarboxylpyridine
Pyridine de l'acide 2,6-dicarboxylique
Dicarboxylate de 2,6-pyridine
Dipicolinate
2,6-Dicarboxypyridine
Acide 2,6-pyridine-dicarboxylique
2,6-Biscarboxypyridine
Pyridine-2,6-dicarboxylate
2,6-Dicarboxypyridine
Acide bipyridinedicarboxylique
Acide 2,6-pyridinedicarboxylique
Acide pyridine-2,6-dicarboxylique
Bis(2-carboxypyridyl)méthane
2,6-Bis(carboxypyridyl)méthane
2,6-Dicarboxypyridine
Acide 2,6-picolinique
2,6-Dicarboxylpyridine
Pyridine-2,6-bis(acide carboxylique)
Pyridine-2,6-dicarboxylate
Dipyridine-2,6-dicarboxylate
2,6-Dicarboxypyridine
Acide 2,6-pyridyl dicarboxylique
Acide bis-pyridine-2,6-dicarboxylique
Acide 2,6-pyridine dicarboxylique
Dicarboxylate de pyridine-2,6-diyle
Acide bis-pyridyl dicarboxylique
Pyridine-2,6-dicarboxylate
2,6-Dicarboxypyridine
Dicarboxylate de 2,6-pyridine
Acide pyridine-2,6-dicarboxylique
Bis(2-carboxypyridyl)méthane
2,6-Bis(carboxypyridyl)méthane
2,6-Dicarboxypyridine
Acide 2,6-picolinique
ACIDE DL-LACTIQUE
L'acide DL-lactique est un acide organique.
L'acide DL-lactique a la formule moléculaire CH3CH(OH)COOH.
L’acide DL-lactique est blanc à l’état solide et miscible à l’eau.

CAS : 50-21-5
FM : C3H6O3
PM : 90,08
EINECS : 200-018-0

Synonymes
FEMA 2611;ACIDE DL-ALPHA-HYDROXYPROPIONIQUE;Acide DL-lactique, réactif ACS, 85+%;ACIDE LACTIQUE, 85% RÉACTIF (ACS);Lactique;acide dl-lactique, acs;LACTICACIDE,RACÉMIQUE,USP;2-Hydroxy acide -2-méthylacétique
;acide lactique;acide 2-hydroxypropanoïque;acide DL-lactique;50-21-5;acide 2-hydroxypropionique;acide du lait;lactate;Tonsillosan;acide lactique racémique;acide lactique ordinaire;acide éthylidénélactique;26100-51-6;Lactovagan ;Acidum lacticum;Milchsaeure;Acide lactique, dl-;Kyselina mlecna;Lacticum acidum;DL-Milchsaeure;Acide lactique USP;(+/-)-Acide lactique;Acide propanoïque, 2-hydroxy-;Aéthylidenmilchsaeure;598-82-3 ;Acide 1-hydroxyéthanecarboxylique ;Acide alpha-hydroxypropionique ;Acide lactique (naturel);(RS)-2-Hydroxypropionsaeure;FEMA No. 2611;Milchsaure;Kyselina 2-hydroxypropanova;Lurex;Acide propionique, 2-hydroxy-;Purac FCC 80 ;Purac FCC 88;Cheongin samrakhan;acide DL-lactique;numéro FEMA 2611;CCRIS 2951;HSDB 800;Cheongin Haewoohwan;Cheongin Haejanghwan;SY-83;acide 2-hydroxypropionique;(+-)-2-acide hydroxypropanoïque;Biolac;NSC 367919
;Acide lactique, qualité technique;Chem-Cast;acide alpha-hydroxypropanoïque;AI3-03130;HIPURE 88;EINECS 200-018-0;EINECS 209-954-4;EPA Pesticide Chemical Code 128929;Acide lactique, tamponné;NSC- Acide 2-hydroxy-2-méthylacétique; BRN 5238667; INS NO.270; DTXSID7023192; E270
;MFCD00004520;ACIDE LACTIQUE (+-);Acide .alpha.-Hydroxypropanoïque;Acide .alpha.-Hydroxypropionique;DTXCID003192;E-270;EC 200-018-0;NCGC00090972-01;Acide 2-hydroxy-propionique;C01432; Milchsaure [allemand];Acide lactique [JAN];Kyselina mlecna [tchèque];Acide propanoïque, hydroxy-;CAS-50-21-5;(R)-2-Hydroxy-propionic acid;H-D-Lac-OH;2 Hydroxypropionic Acide; Kyselina 2-hydroxypropanova [tchèque]; Acide lactique [USP: JAN]; lactasol; Acide 1-hydroxyéthane 1-carboxylique; acido lactico; DL-Milchsaure; MFCD00064266; Acide (2RS) -2-hydroxypropanoïque; Lactate (TN) ;4b5w;Acide propanoïque, (+-);Acide DL-lactique, racémique;ACIDE LACTIQUE (II);(.+/-.)-Acide lactique;Acide lactique (7CI,8CI);Acide DL-lactique (90 % );Acide lactique (JP17/USP);Acide lactique, 85 %, FCC;Acide lactique, racémique, USP;NCIOpen2_000884;(+-)-ACIDE LACTIQUE;ACIDE DL-LACTIQUE [MI];ACIDE LACTIQUE [WHO-IP] ;(RS)-2-hydroxypropanoïque;ACIDE LACTIQUE, DL-(II);LACTICUM ACIDUM [HPUS];Acide 1-hydroxyéthane carboxylique;33X04XA5AT;Acide DL-lactique (90 pour cent);L-(+)-Acide lactique , 98 % ;CHEMBL1200559 ;Acide lactique naturel, >=85 % ;BDBM23233 ;Acide L-lactique ou acide dl-lactique ;Acide lactique, 85 pour cent, FCC ;ACIDE LACTIQUE, DL-[II] ;Acide DL-lactique, ~90 % (T);Acide DL-lactique, AR, >=88 %;Acide DL-lactique, LR, >=88 %;ACIDE DL-LACTIQUE [WHO-DD];ACIDE LACTIQUE (MONOGRAPHIE EP);Acide lactique , Solution à 10 pour cent ; HY-B2227 ; ACIDE LACTIQUE (MONOGRAPHIE USP) ; Acide propanoïque, 2-hydroxy- (9CI); Tox21_111049; Tox21_202455; Tox21_303616; 78364;Tox21_111049_1;ACIDUM LACTICUM [QUI- IP LATIN];AM87208;DB04398;SB44647;SB44652;Acide propanoïque,2-hydroxy-,(.+/-.)-;Acide 2-hydroxypropionique, acide DL-lactique;NCGC00090972-02;NCGC00090972-03;NCGC00257515-01 ;NCGC00260004-01;849585-22-4;Acide lactique, 85 pour cent, réactif, ACS;(R)-Lactate;Acide (R)-2-hydroxypropionique;;DB-071134;DB-347146;CS-0021601;L0226 ;EN300-19542;Acide lactique, répond aux spécifications de test USP;D00111;F71201;A877374;Acide DL-lactique, première qualité SAJ, 85,0-92,0 %;Q161249;Acide DL-lactique, qualité spéciale JIS, 85,0-92,0 %;Dl -acide alpha-hydroxypropionique ; acide 2-hydroxypropionique ; F2191-0200 ; Z104474158 ; BC10F553-5D5D-4388-BB74-378ED4E24908 ; Matériau de référence certifié ; Acide DL-lactique 90 %, synthétique, répond aux spécifications analytiques de la Ph. Eur. ; 152-36-3

À l’état dissous, l’acide DL-lactique forme une solution incolore.
La production comprend à la fois la synthèse artificielle et les sources naturelles.
L'acide DL-lactique est un acide alpha-hydroxy (AHA) en raison de la présence d'un groupe hydroxyle adjacent au groupe carboxyle.
L'acide DL-lactique est utilisé comme intermédiaire de synthèse dans de nombreuses industries de synthèse organique et dans diverses industries biochimiques.
La base conjuguée de l’acide DL-lactique est appelée lactate (ou anion lactate).
Le nom du groupe acyle dérivé est lactoyle.
Un acide 2-hydroxy monocarboxylique qui est l'acide propanoïque dans lequel l'un des alpha-hydrogènes est remplacé par un groupe hydroxy.
En solution, l'acide DL-lactique peut s'ioniser par perte d'un proton pour produire l'ion lactate CH3CH(OH)CO−2.
Comparé à l’acide acétique, son pKa est inférieur d’une unité, ce qui signifie que l’acide DL-lactique est dix fois plus acide que l’acide acétique.
Cette acidité plus élevée est la conséquence de la liaison hydrogène intramoléculaire entre le groupe α-hydroxyle et le groupe carboxylate.

L'acide DL-lactique est chiral et composé de deux énantiomères.
L’un est connu sous le nom d’acide DL-lactique, d’acide (S)-lactique ou d’acide (+)-lactique, et l’autre, son image miroir, est l’acide d-lactique, l’acide (R)-lactique ou (−)- acide lactique.
Un mélange des deux en quantités égales est appelé acide DL-lactique, ou acide lactique racémique.
L'acide lactique est hygroscopique.
L'acide DL-lactique est miscible à l'eau et à l'éthanol au-dessus de son point de fusion, qui est d'environ 16 à 18 °C (61 à 64 °F).
L'acide DL-lactique et l'acide L-lactique ont un point de fusion plus élevé.
L'acide DL-lactique produit par la fermentation du lait est souvent racémique, bien que certaines espèces de bactéries produisent uniquement de l'acide d-lactique.
D'autre part, l'acide DL-lactique produit par la respiration anaérobie dans les muscles des animaux possède l'énantiomère et est parfois appelé acide « sarcolactique », du grec sarx, signifiant « chair ».

Chez les animaux, l'acide DL-lactique est constamment produit à partir du pyruvate via l'enzyme lactate déshydrogénase (LDH) lors d'un processus de fermentation au cours du métabolisme et de l'exercice normaux.
La concentration de l'acide DL-lactique n'augmente pas jusqu'à ce que le taux de production de lactate dépasse le taux d'élimination du lactate, qui est régi par un certain nombre de facteurs, notamment les transporteurs de monocarboxylates, la concentration et l'isoforme de la LDH et la capacité oxydative des tissus.
La concentration de lactate sanguin est généralement de 1 à 2 mMTooltip millimolaire au repos, mais peut atteindre plus de 20 mM lors d'un effort intense et jusqu'à 25 mM par la suite.
En plus d'autres rôles biologiques, l'acide DL-lactique est le principal agoniste endogène du récepteur 1 de l'acide hydroxycarboxylique (HCA1), qui est un récepteur couplé aux protéines G (GPCR) couplé à Gi/o.

Dans l'industrie, la fermentation de l'acide DL-lactique est réalisée par des bactéries lactiques, qui convertissent les glucides simples tels que le glucose, le saccharose ou le galactose en acide lactique.
Ces bactéries peuvent également se développer dans la bouche ; l'acide qu'ils produisent est responsable de la carie dentaire appelée carie.
En médecine, l'acide DL-lactique est l'un des principaux composants de la solution lactée de Ringer et de la solution de Hartmann.
Ces fluides intraveineux sont constitués de cations sodium et potassium ainsi que d'acide DL-lactique et d'anions chlorure en solution avec de l'eau distillée, généralement à des concentrations isotoniques avec le sang humain.
L'acide DL-lactique est le plus souvent utilisé pour la réanimation liquidienne après une perte de sang due à un traumatisme, une intervention chirurgicale ou des brûlures.

L’acide DL-lactique est l’acide organique le plus répandu dans la nature.
En raison de son atome de carbone a chiral, l’acide DL-lactique a deux formes énantiomères.
Parmi ceux-ci, l’acide DL-lactique est plus important dans les industries alimentaires et pharmaceutiques car les humains ne possèdent que de la L-lactate déshydrogénase.
Le comportement chimique de l’acide DL-lactique est principalement déterminé par les deux groupes fonctionnels.
Outre le caractère acide en milieu aqueux, la bifonctionnalité (un acide carboxylique terminal et un groupe hydroxyle) permet aux molécules d'acide lactique de former des « intérêts » tels que les dimères cycliques, les trimères ou les oligomères plus longs de l'acide lactique.
Après sa première isolation par le chimiste suédois Scheel en 1780 à partir de lait aigre, l'acide DL-lactique est produit commercialement depuis les années 1880 aux États-Unis et plus tard en Europe.
Dans le monde entier, la production d'acide DL-lactique était d'environ 250 000 tonnes métriques par an en 2012 et devrait atteindre 330 000 tonnes métriques d'ici 2015, avec un prix moyen de 1,25 US$ par kilogramme en 2013 (qualité alimentaire, pureté de 80 à 85 %). ).

Environ 85 % de la demande en acide DL-lactique provient de l’industrie alimentaire.
L'acide DL-lactique est principalement utilisé comme agent d'ajustement du pH dans le secteur des boissons et comme conservateur dans l'industrie alimentaire.
L'acide DL-lactique est inclus dans la liste GRAS (généralement reconnue comme sûre) par la Food and Drug Administration des États-Unis en tant qu'ingrédient alimentaire et a également été jugé sûr par l'Autorité européenne de sécurité des aliments.
La dose journalière acceptable pour l’acide DL-lactique a été définie par le Comité mixte FAO/OMS d’experts sur les additifs alimentaires comme « non limitée », et l’acide DL-lactique est également soutenu par le Comité scientifique de l’alimentation.
Au cours des dernières décennies, la consommation d'acide DL-lactique, en raison de ses nouvelles applications, a connu une croissance assez rapide, de 19 % par an.
L’utilisation non alimentaire de l’acide DL-lactique pour la production de polymères contribue à cette croissance.

L'acide polylactique biodégradable est considéré comme une alternative écologique aux autres plastiques issus du pétrole.
L'acide DL-lactique est utilisé dans divers domaines, notamment les systèmes d'administration de médicaments, les dispositifs médicaux, les fibres et les matériaux d'emballage.
L'acide DL-lactique peut être produit par synthèse chimique ou fermentation des glucides.
La voie chimique présente divers problèmes, notamment des matières premières toxiques, de faibles taux de conversion et surtout l’incapacité de produire l’isomère optiquement pur.
Ainsi, environ 90 % de l’acide DL-lactique dans le monde est produit par des procédés biotechnologiques, à savoir des fermentations utilisant des ressources renouvelables, qui sont relativement rapides, économiques et capables de fournir sélectivement un ou deux stéréoisomères de l’acide lactique.

L'acide DL-lactique est un intermédiaire métabolique produit dans les cellules musculaires lors de la glycolyse anaérobie.
L'acide DL-lactique est utilisé pour traiter le cancer et s'est révélé efficace contre le carcinome épidermoïde.
L'acide DL-lactique inhibe également le potentiel de membrane mitochondriale, qui pourrait être l'un des mécanismes par lesquels il provoque la mort cellulaire.
L'acide DL-lactique s'est avéré avoir une efficacité antibactérienne contre un certain nombre de bactéries, notamment Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa et Streptococcus pyogenes.
L'acide DL-lactique inhibe également les activités enzymatiques nécessaires à la croissance bactérienne, telles que les enzymes phosphotransférases et l'uréase.
L'acide DL-lactique est un intermédiaire métabolique qui peut être utilisé pour inhiber la croissance tumorale et les métastases.
L'acide DL-lactique inhibe également la régulation transcriptionnelle dans le sérum humain.

Histoire
Le chimiste suédois Carl Wilhelm Scheele fut le premier à isoler l'acide DL-lactique en 1780 à partir du lait aigre.
Le nom reflète la forme lact-combinante dérivée du mot latin lac, signifiant « lait ».
En 1808, Jöns Jacob Berzelius découvrit que l'acide lactique (en fait le L-lactate) était également produit dans les muscles lors d'un effort.
La structure de l'acide DL-lactique a été établie par Johannes Wislicenus en 1873.
En 1856, le rôle des Lactobacilles dans la synthèse de l'acide DL-lactique est découvert par Louis Pasteur.
Cette voie a été utilisée commercialement par la pharmacie allemande Boehringer Ingelheim en 1895.
En 2006, la production mondiale d'acide DL-lactique a atteint 275 000 tonnes avec une croissance annuelle moyenne de 10 %.

Propriétés chimiques de l'acide DL-lactique
Point de fusion : 18°C
Point d'ébullition : 122 °C/15 mmHg (lit.)
Alpha : -0,05 º (c= pur 25 ºC)
Densité : 1,209 g/mL à 25 °C (lit.)
Densité de vapeur : 0,62 (vs air)
Pression de vapeur : 19 mm de Hg (@ 20°C)
FEMA : 2611 | ACIDE LACTIQUE
Indice de réfraction : n20/D 1,4262
Fp : >230 °F
Température de stockage : 2-8°C
Solubilité : Miscible avec l'eau et avec l'éthanol (96 pour cent).
Forme : sirop
pka : 3,08 (à 100 ℃)
Couleur : Incolore à jaune
Gravité spécifique : 1,209
PH : 3,51 (solution 1 mM) ; 2,96 (solution 10 mM) ; 2,44 (solution 100 mM) ;
Odeur : à 100,00 %. inodore
Type d'odeur : inodore
Solubilité dans l'eau : SOLUBLE
Merck : 14 5336
Numéro JECFA : 930
Numéro de référence : 1209341
Constante diélectrique : 22,0(16℃)
Stabilité : Stable. Combustible. Incompatible avec les agents oxydants forts.
InChIKey : JVTAAEKCZFNVCJ-UHFFFAOYSA-N
LogP : -0,72
Référence de la base de données CAS : 50-21-5 (référence de la base de données CAS)
Référence chimique NIST : Acide DL-lactique (50-21-5)
Système d'enregistrement des substances de l'EPA : Acide DL-lactique (50-21-5)

L'acide DL-lactique est inodore.
L'acide DL-lactique est constitué d'un mélange d'acide lactique (C3H6O3) et de lactate d'acide lactique (C6H10O5).
L'acide DL-lactique est la forme racémique.
L'acide DL-lactique est généralement disponible dans des solutions contenant 50 à 90 % d'acide lactique.
L'acide DL-lactique, CH3CHOHCOOH, également connu sous le nom d'acide 2-hydroxypropanoïque, est un liquide hygroscopique qui existe sous trois formes isométriques.
L'acide DL-lactique se trouve dans le sang et les tissus animaux en tant que produit du métabolisme du glucose et du glycogène.
L'acide DL-lactique est obtenu par fermentation du saccharose (raffinage du maïs). Le mélange racémique est présent dans les aliments préparés par fermentation bactérienne ou préparés synthétiquement.
L'acide DL-lactique est soluble dans l'eau, l'alcool et l'éther.
L'acide DL-lactique est utilisé comme solvant, dans la fabrication de confiseries et en médecine.
L'acide DL-lactique est constitué d'un mélange d'acide 2-hydroxypropionique, de ses produits de condensation, tels que l'acide lactoyllactique et d'autres acides polylactiques, et d'eau.

L'acide DL-lactique se présente généralement sous la forme d'un racémate, l'acide (RS)-lactique, mais dans certains cas, l'isomère (S)-(+) est prédominant.
L'acide DL-lactique est un liquide pratiquement inodore, incolore ou légèrement jaune, visqueux, hygroscopique et non volatil.
Un liquide sirupeux, incolore ou jaunâtre, presque inodore, constitué d'un mélange d'acide DL-lactique et de lactate d'acide lactique (C6H10O5).
L'acide DL-lactique est obtenu par fermentation lactique de sucres ou est préparé synthétiquement.
Le produit commercial est la forme racémique.
L'acide DL-lactique est généralement disponible dans des solutions contenant l'équivalent de 50 % à 90 % d'acide lactique.
L'acide DL-lactique est hygroscopique et lorsqu'il est concentré par ébullition, l'acide se condense pour former du lactate d'acide lactique, l'acide 2-(lactoyloxy)propanoïque, qui, une fois dilué et chauffé, s'hydrolyse en acide lactique.
L'acide DL-lactique est miscible à l'eau et à l'alcool.

Les usages
L'acide DL-lactique est un ingrédient polyvalent utilisé comme conservateur, exfoliant, hydratant et pour apporter de l'acidité à une formulation.
Dans le corps, l’acide DL-lactique se trouve dans le sang et les tissus musculaires en tant que produit du métabolisme du glucose et du glycogène.
L’acide DL-lactique est également un composant du facteur hydratant naturel de la peau.
L'acide DL-lactique a une meilleure absorption d'eau que la glycérine.
Des études indiquent une capacité à augmenter la capacité de rétention d’eau de la couche cornée.
Ils montrent également que la souplesse de la couche cornée est étroitement liée à l’absorption de l’acide DL-lactique ; c'est-à-dire que plus la quantité d'acide lactique absorbée est grande, plus la couche cornée est souple.
Les chercheurs rapportent que l'utilisation continue de préparations formulées avec de l'acide DL-lactique à des concentrations comprises entre 5 et 12 pour cent a entraîné une amélioration légère à modérée des rides fines et a favorisé une peau plus douce et plus lisse.

Les propriétés exfoliantes de l'acide DL-lactique peuvent aider à éliminer l'excès de pigment de la surface de la peau, ainsi qu'à améliorer la texture et la sensation de la peau.
L'acide DL-lactique est un acide alpha-hydroxy présent dans le lait aigre et d'autres sources moins connues, telles que la bière, les cornichons et les aliments préparés par un processus de fermentation bactérienne.
L'acide DL-lactique est caustique lorsqu'il est appliqué sur la peau dans des solutions hautement concentrées.
L'acide DL-lactique est un acidulant qui est un acide organique naturel présent dans le lait, la viande et la bière, mais qui est normalement associé au lait.
L'acide DL-lactique est un liquide sirupeux disponible sous forme de solutions aqueuses à 50 et 88 %, miscible dans l'eau et l'alcool.
L'acide DL-lactique est stable à la chaleur, non volatil et a un goût doux d'acide de lait.
L'acide DL-lactique fonctionne comme un agent de saveur, un conservateur et un ajusteur d'acidité dans les aliments.
L'acide DL-lactique est utilisé dans les olives espagnoles pour éviter la détérioration et donner de la saveur, dans la poudre d'œuf sèche pour améliorer les propriétés de dispersion et de fouettage, dans les fromages à tartiner et dans les mélanges de vinaigrettes.

Précurseur de polymère
Article principal: acide polylactique
Deux molécules d'acide lactique peuvent être déshydratées en lactone lactide.
En présence de catalyseurs, le lactide polymérise en polylactide atactique ou syndiotactique (PLA), qui sont des polyesters biodégradables.
Le PLA est un exemple de plastique qui n’est pas issu de la pétrochimie.

Applications pharmaceutiques et cosmétiques
L'acide DL-lactique est également utilisé dans la technologie pharmaceutique pour produire des lactates hydrosolubles à partir d'ingrédients actifs autrement insolubles.
L'acide DL-lactique est également utilisé dans les préparations topiques et les cosmétiques pour ajuster l'acidité et pour ses propriétés désinfectantes et kératolytiques.
Les bactéries contenant de l’acide DL-lactique se sont révélées prometteuses dans la réduction de l’oxalurie grâce à ses propriétés détartrantes sur les composés de calcium.

nourriture
Aliments fermentés
L'acide DL-lactique se trouve principalement dans les produits laitiers fermentés, tels que le kumis, le laban, le yaourt, le kéfir et certains fromages cottage.
La caséine du lait fermenté est coagulée (caillée) par l'acide DL-lactique.
L'acide DL-lactique est également responsable de la saveur aigre du pain au levain.

Dans les listes d'informations nutritionnelles, l'acide DL-lactique peut être inclus sous le terme « glucides » (ou « glucides par différence »), car cela inclut souvent tout autre chose que l'eau, les protéines, les graisses, les cendres et l'éthanol.
Si tel est le cas, l'énergie alimentaire calculée peut utiliser la norme de 4 kilocalories (17 kJ) par gramme, souvent utilisée pour tous les glucides.
Mais dans certains cas, l’acide DL-lactique est ignoré dans le calcul.
La densité énergétique de l'acide DL-lactique est de 362 kilocalories (1 510 kJ) pour 100 g.

Certaines bières (bière aigre) contiennent volontairement de l'acide DL-lactique, l'un de ces types étant le lambic belge.
Le plus souvent, celle-ci est produite naturellement par diverses souches de bactéries.
Ces bactéries fermentent les sucres en acides, contrairement aux levures qui fermentent les sucres en éthanol.
Après refroidissement du moût, la levure et les bactéries peuvent « tomber » dans les fermenteurs ouverts.
Les brasseurs de styles de bière plus courants veilleraient à ce qu'aucune bactérie de ce type ne puisse pénétrer dans le fermenteur.
Parmi les autres styles de bière aigre, citons la Berliner weisse, la Flandre rouge et la Wild Ale américaine.

En vinification, un processus bactérien, naturel ou contrôlé, est souvent utilisé pour convertir l'acide malique naturellement présent en acide DL-lactique, pour réduire le piquant et pour d'autres raisons liées à la saveur.
Cette fermentation malolactique est réalisée par des bactéries lactiques.
Bien qu'on ne le trouve normalement pas en quantités significatives dans les fruits, l'acide lactique est le principal acide organique du fruit de l'akebia, représentant 2,12 % du jus.

Ajouté séparément
En tant qu'additif alimentaire, l'utilisation de l'acide DL-lactique est approuvée dans l'UE, aux États-Unis, en Australie et en Nouvelle-Zélande ; il est répertorié par son numéro INS 270 ou par son numéro E E270.
L'acide DL-lactique est utilisé comme conservateur alimentaire, agent de salaison et agent aromatisant.
L'acide DL-lactique est un ingrédient des aliments transformés et est utilisé comme décontaminant lors de la transformation de la viande.
L'acide DL-lactique est produit commercialement par fermentation de glucides tels que le glucose, le saccharose ou le lactose, ou par synthèse chimique.
Les sources de glucides comprennent le maïs, les betteraves et le sucre de canne.

Falsification
L'acide DL-lactique a toujours été utilisé pour faciliter l'effacement des encres des papiers officiels devant être modifiés lors de la falsification.

Produits de nettoyage
L'acide DL-lactique est utilisé dans certains nettoyants liquides comme agent détartrant pour éliminer les dépôts d'eau dure tels que le carbonate de calcium.

Production
L'acide DL-lactique est produit industriellement par fermentation bactérienne de glucides ou par synthèse chimique à partir d'acétaldéhyde.
Depuis 2009, l'acide DL-lactique était produit principalement (70 à 90 %) par fermentation.
La production d'acide lactique racémique constitué d'un mélange 1:1 de stéréoisomères d et l, ou de mélanges contenant jusqu'à 99,9 % d'acide l-lactique, est possible par fermentation microbienne.
La production à l’échelle industrielle d’acide DL-lactique par fermentation est possible, mais beaucoup plus difficile.

Production fermentaire
Les produits laitiers fermentés sont obtenus industriellement par fermentation du lait ou du lactosérum par des bactéries Lactobacillus : Lactobacillus acidophilus, Lacticaseibacillus casei (Lactobacillus casei), Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus), Lactobacillus helveticus, Lactococcus lactis, Bacillus amyloliquefaciens et Streptococcus salivarius subsp. thermophilus (Streptococcus thermophilus).

Comme matière première pour la production industrielle d’acide DL-lactique, presque toutes les sources de glucides contenant du C5 (sucre pentose) et du C6 (sucre hexose) peuvent être utilisées.
Le saccharose pur, le glucose provenant de l'amidon, le sucre brut et le jus de betterave sont fréquemment utilisés.
Les bactéries productrices d'acide DL-lactique peuvent être divisées en deux classes : les bactéries homofermentaires comme Lactobacillus casei et Lactococcus lactis, produisant deux moles de lactate à partir d'une mole de glucose, et les espèces hétérofermentaires produisant une mole de lactate à partir d'une mole de glucose ainsi que du carbone. dioxyde et acide acétique/éthanol.

Production chimique
L'acide DL-lactique est synthétisé industriellement en faisant réagir de l'acétaldéhyde avec du cyanure d'hydrogène et en hydrolysant le lactonitrile obtenu.
Lorsque l'hydrolyse est effectuée par l'acide chlorhydrique, du chlorure d'ammonium se forme comme sous-produit ; la société japonaise Musashino est l'un des derniers grands fabricants d'acide DL-lactique par cette voie.
La synthèse de l'acide DL-lactique racémique et énantiopur est également possible à partir d'autres matières premières (acétate de vinyle, glycérol, etc.) par application de procédures catalytiques.

Méthodes de production
L'acide DL-lactique est préparé par fermentation de glucides, tels que le glucose, le saccharose et le lactose, avec Bacillus acidi lacti ou des micro-organismes apparentés.
À l'échelle commerciale, le lactosérum, l'amidon de maïs, les pommes de terre ou la mélasse sont utilisés comme source de glucides.
L'acide DL-lactique peut également être préparé synthétiquement par la réaction entre l'acétaldéhyde et le monoxyde de carbone à 130-200°C sous haute pression, ou par l'hydrolyse des hexoses avec de l'hydroxyde de sodium.
L'acide DL-lactique préparé par fermentation de sucres est lévogyre ; l'acide lactique préparé synthétiquement est racémique.
Cependant, l'acide DL-lactique préparé par fermentation devient dextrogyre lors de la dilution avec de l'eau en raison de l'hydrolyse du lactate d'acide (R)-lactique en acide (S)-lactique.

Actions Biochimie/Physiol
Chez les animaux, l'acide DL-lactique est un composé métabolique produit par la prolifération des cellules et lors de conditions anaérobies telles qu'un exercice intense.
L'acide DL-lactique peut être réoxydé en pyruvate ou converti en glucose via la gluconéogenèse.
L'acide DL-lactique est préférentiellement métabolisé par les neurones chez plusieurs espèces de mammifères et au début du développement cérébral.
ACIDE DL-MALIQUE
N° CAS : 6915-15-7
Numéro CE : 230-022-8
Formule moléculaire : C₄H₆O₅
Masse molaire : 134,09 g/mol
Nom IUPAC : acide 2-hydroxybutanedioïque


LA DESCRIPTION:
L'acide DL-malique est un composé organique de formule moléculaire C4H6O5.
L'acide DL-malique est un acide dicarboxylique qui est fabriqué par tous les organismes vivants, contribue au goût aigre des fruits et est utilisé comme additif alimentaire.

L'acide DL-malique a deux formes stéréoisomères (énantiomères L et D), bien que seul l'isomère L existe naturellement.
Les sels et esters de l'acide DL-malique sont appelés malates.
L'anion malate est un intermédiaire dans le cycle de l'acide citrique.
L'acide DL-malique est un acide organique qui joue un rôle dans le cycle de l'acide citrique.
L'acide DL-malique est également utilisé comme agent antimicrobien et s'est avéré efficace contre les champignons et les bactéries.

L'acide DL-malique se lie au site actif d'enzymes complexes impliquées dans le métabolisme énergétique et il a été démontré qu'il inhibe la régulation transcriptionnelle de nombreux gènes.
L'acide DL-malique a également montré un effet positif sur les troubles métaboliques tels que le diabète sucré et l'hypoglycémie.

L'acide DL-malique peut être synthétisé avec des sels de sodium ou du citrate de sodium, selon le produit final souhaité.
L'acide DL-malique peut également être produit par ablation au laser de l'acide malonique ou par oxydation enzymatique de l'acide tartrique, qui est une source naturelle de ce produit chimique.
L'acide DL-malique est utilisé comme additif alimentaire.
L'acide DL-malique est un composant de certains arômes de vinaigre artificiel.
En outre, l'acide DL-malique est utilisé dans la préparation de composés chiraux, y compris le récepteur κ-opioïde.
L'acide DL-malique est utilisé pour la résolution chirale par électrophorèse capillaire d'échange de ligand.


N° CAS : 6915-15-7
Numéro CE : 230-022-8
Formule moléculaire : C₄H₆O₅
Masse molaire : 134,09 g/mol
Nom IUPAC : acide 2-hydroxybutanedioïque

Étymologie:
Le mot « malic » vient du latin « mālum », qui signifie « pomme ».
Le mot latin apparenté mālus , qui signifie «pommier», est utilisé comme nom du genre Malus , qui comprend toutes les pommes et les pommettes; et l'origine d'autres classifications taxonomiques telles que Maloideae, Malinae et Maleae.

INFORMATIONS CHIMIQUES ET PHYSIQUES SUR L'ACIDE DL-MALIQUE :
Densité : 1,6 g/cm3 (20 °C)
Point d'éclair : 203 °C
Température d'inflammation : 349 °C
Point de fusion : 131 - 133 °C
Valeur pH : 2,3 (10 g/l, H₂O, 20 °C)
Pression de vapeur : <0,1 hPa (20 °C)
Densité apparente : 800 kg/m3
Solubilité : 558 g/l
Dosage (acidimétrique) : ≥ 99,0 %
Intervalle de fusion (valeur inférieure) : ≥ 128 °C
Intervalle de fusion (valeur supérieure) : ≤ 132 °C
Formule chimique C4H6O5
Masse molaire 134,09 g/mol
Aspect Incolore
Acidité (pKa):
pKa1 = 3,40
pKa2 = 5,20
Arsenic (As) : <0.0003%
Plomb (Pb) : <0,0002 %
Cuivre (Cu) : <0.001%
Mercure (Hg) : <0.0001%
Zinc (Zn) : <0,001%
Cendres sulfatées : <0.1%
Eau : <2.0%
Métaux lourds : <0,002 % Poids moléculaire : 134,09
XLogP3 : -1,3
Nombre de donneurs d'obligations hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 5
Nombre d'obligations rotatives : 3
Masse exacte : 134.02152329
Masse monoisotopique : 134,02152329
Surface polaire topologique : 94,8 Å ²
Nombre d'atomes lourds : 9
Charge formelle : 0
Complexité : 129
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui



N° CAS : 6915-15-7
Numéro CE : 230-022-8
Formule moléculaire : C₄H₆O₅
Masse molaire : 134,09 g/mol
Nom IUPAC : acide 2-hydroxybutanedioïque

BIOCHIMIE DE L'ACIDE DL-MALIQUE :
L'acide DL-malique est la forme naturelle, tandis qu'un mélange d'acide L- et D-malique est produit synthétiquement.

Le malate joue un rôle important en biochimie. Dans le processus de fixation du carbone C4, le malate est une source de CO2 dans le cycle de Calvin.
Dans le cycle de l'acide citrique, le (S)-malate est un intermédiaire, formé par l'ajout d'un groupe -OH sur la face si du fumarate.
Il peut également être formé à partir de pyruvate via des réactions anaplérotiques.


Le malate est également synthétisé par la carboxylation du phosphoénolpyruvate dans les cellules de garde des feuilles des plantes.
Le malate, en tant qu'anion double, accompagne souvent les cations potassium lors de l'absorption des solutés dans les cellules de garde afin de maintenir l'équilibre électrique dans la cellule.
L'accumulation de ces solutés dans la cellule de garde diminue le potentiel de soluté, permettant à l'eau de pénétrer dans la cellule et de favoriser l'ouverture des stomates.



ACIDE DL-MALIQUE DANS LES ALIMENTS :
L'acide DL-malique a été isolé pour la première fois du jus de pomme par Carl Wilhelm Scheele en 1785.
Antoine Lavoisier en 1787 a proposé le nom d'acide malique, dérivé du mot latin pour pomme, mālum, tout comme son nom de genre Malus.
En allemand, il est nommé Äpfelsäure (ou Apfelsäure) après le pluriel ou le singulier d'une chose aigre de la pomme, mais le ou les sels sont appelés Malat(e).

L'acide malique est le principal acide de nombreux fruits, y compris les abricots, les mûres, les myrtilles, les cerises, les raisins, les mirabelles, les pêches, les poires, les prunes et les coings et est présent à des concentrations plus faibles dans d'autres fruits, comme les agrumes.
L'acide DL-malique contribue à l'acidité des pommes non mûres.

Les pommes acides contiennent des proportions élevées d'acide.
L'acide DL-malique est présent dans le raisin et dans la plupart des vins avec des concentrations pouvant atteindre 5 g/L.
L'acide DL-malique confère un goût acidulé au vin ; la quantité diminue avec l'augmentation de la maturité des fruits.
Le goût de l'acide malique est très net et pur dans la rhubarbe, plante dont il est l'arôme principal.

L'acide DL-malique est également le composé responsable de la saveur acidulée de l'épice sumac.
L'acide DL-malique est également un composant de certains arômes de vinaigre artificiel, tels que les croustilles aromatisées «sel et vinaigre».

Dans les agrumes, les fruits produits en agriculture biologique contiennent des niveaux d'acide malique plus élevés que les fruits produits en agriculture conventionnelle.
Le processus de fermentation malolactique convertit l'acide malique en acide lactique beaucoup plus doux.
L'acide malique est naturellement présent dans tous les fruits et de nombreux légumes et est généré dans le métabolisme des fruits .

L'acide malique, lorsqu'il est ajouté aux produits alimentaires, est désigné par le numéro E E296.
L'acide DL-malique est parfois utilisé avec ou à la place de l'acide citrique moins acide dans les bonbons acides.
Ces bonbons sont parfois étiquetés avec un avertissement indiquant qu'une consommation excessive peut provoquer une irritation de la bouche.
L'acide DL-malique est approuvé pour une utilisation en tant qu'additif alimentaire dans l'UE, aux États-Unis, en Australie et en Nouvelle-Zélande (où il est répertorié par son numéro SIN 296).

L'acide malique contient 10 kJ (2,39 kilocalories) d'énergie par gramme.

PRODUCTION ET PRINCIPALES RÉACTIONS DE L'ACIDE DL-MALIQUE :
L'acide malique racémique est produit industriellement par la double hydratation de l'anhydride maléique.
En 2000, la capacité de production américaine était de 5 000 tonnes par an.
Les énantiomères peuvent être séparés par résolution chirale du mélange racémique.
L'acide S-malique est obtenu par fermentation de l'acide fumarique.

L'acide malique a joué un rôle important dans la découverte de l' inversion de Walden et du cycle de Walden , dans lequel l'acide (-) -malique est d'abord converti en acide (+) -chlorosuccinique par l'action du pentachlorure de phosphore.
L'oxyde d'argent humide convertit ensuite le composé chloré en acide (+)-malique, qui réagit ensuite avec PCl5 en acide (-)-chlorosuccinique.
Le cycle est terminé lorsque l'oxyde d'argent ramène ce composé à l'acide (-)-malique.

UTILISATIONS DE L'ACIDE DL-MALIQUE :
L'acide l-malique est utilisé pour résoudre l'α-phényléthylamine, un agent de résolution polyvalent à part entière.

Défense des plantes :
La supplémentation du sol avec de la mélasse augmente la synthèse microbienne de MA.
On pense que cela se produit naturellement dans le cadre de la suppression des maladies par les microbes du sol, de sorte que l'amendement du sol avec de la mélasse peut être utilisé comme traitement des cultures en horticulture .

L'acide DL-malique est utilisé comme additif alimentaire.
L'acide DL-malique est un composant de certains arômes de vinaigre artificiel.
En outre, l'acide DL-malique est utilisé dans la préparation de composés chiraux, y compris le récepteur κ-opioïde.
L'acide DL-malique est utilisé pour la résolution chirale par électrophorèse capillaire d'échange de ligand.

N° CAS : 6915-15-7
Numéro CE : 230-022-8
Formule moléculaire : C₄H₆O₅
Masse molaire : 134,09 g/mol
Nom IUPAC : acide 2-hydroxybutanedioïque





INFORMATIONS DE SÉCURITÉ SUR L'ACIDE DL-MALIQUE :
Premiers secours:
Description des premiers secours :
Conseil général :
Consultez un médecin.
Montrer cette fiche de données de sécurité au médecin traitant.
Sortir de la zone dangereuse :

Si inhalé :
En cas d'inhalation, transporter la personne à l'air frais.
En cas d'arrêt respiratoire, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlever immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact avec les yeux :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistant à l'alcool, de la poudre chimique sèche ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Gaz chlorhydrique

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour la lutte contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utiliser un équipement de protection individuelle.

Éviter de respirer les vapeurs, les brouillards ou les gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher d'autres fuites ou déversements si cela est possible en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l'environnement doit être évité.

Méthodes et matériel de confinement et de nettoyage :
Enlever avec un absorbant inerte et éliminer comme un déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Éviter l'inhalation de vapeur ou de brouillard.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les contenants ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du lieu de travail
Ne contient pas de substances avec des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
Manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (US) ou EN 166 (EU).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez des gants appropriés
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Coordonnées complètes :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d'utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques, Le type d'équipement de protection doit être sélectionné en fonction de la concentration et de la quantité de la substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utiliser un respirateur intégral avec une combinaison polyvalente (US) ou des cartouches de respirateur de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utiliser un respirateur à adduction d'air intégral.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l'exposition environnementale
Empêcher d'autres fuites ou déversements si cela est possible en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l'environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Gaz chlorhydrique.

Considérations relatives à l'élimination :
Modes de traitement des déchets :
Produit:
Offrez des solutions excédentaires et non recyclables à une entreprise d'élimination agréée.
Contactez un service d'élimination des déchets professionnel agréé pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé.





N° CAS : 6915-15-7
Numéro CE : 230-022-8
Formule moléculaire : C₄H₆O₅
Masse molaire : 134,09 g/mol
Nom IUPAC : acide 2-hydroxybutanedioïque






SYNONYMES D'ACIDE DL-MALIQUE :

Acide 2-hydroxybutanedioïque
L'acide malique
(+/-)-acide malique
Acide 2-hydroxysuccinique
malate
acide hydroxysuccinique
acide butanedioïque
hydroxy
kyselina jablecna
acide de pomalus
acide hydroxybutanedioïque
acide désoxytétrarique

Conditions d'entrée MeSH :
calcium (hydroxy-1-malate) hexahydraté
malate
l'acide malique
acide malique, isomère (R)
acide malique, sel de calcium, (1:1), isomère (S)
acide malique, sel disodique
acide malique, sel disodique, isomère (R)
acide malique, sel disodique, isomère (S)
acide malique, sel de magnésium (2:1)
acide malique, sel monopotassique, isomère (+-)
acide malique, sel de potassium, isomère (R)
acide malique, sel de sodium, isomère (+-)

Synonymes fournis par le déposant :
l'acide malique
Acide DL-malique
6915-15-7
Acide 2-hydroxybutanedioïque
Acide 2-hydroxysuccinique
617-48-1
malate
Acide butanedioïque, hydroxy-
acide hydroxysuccinique
Acide malique, DL-
Kyselina jablecna
acide hydroxybutanedioïque
Acide de Pomalus
Acide désoxytétrarique
Acide dl-hydroxybutanedioïque
Hydroxybutandisaure
acide alpha-hydroxysuccinique
Musashi-no-Ringosan
Caswell n ° 537
Acide DL-2-hydroxybutanedioïque
FDA 2018
Monohydroxybernsteinsaure
Acide succinique, hydroxy-
Acide R,S(+-)-malique
Kyselina jablecna [Tchèque]
Acide malique [NF]
FEMA n° 26 55
Acide 2-hydroxyéthane-1,2-dicarboxylique
Acide pomaleux
Kyselina hydroxybutandiova [Tchèque]
acide d,l-malique
Code chimique des pesticides EPA 051101
AI3-06292
(+/-)-acide malique
Acide malique, L-
NSC-25941
E296
ACIDE BUTANEDIOÏQUE, HYDROXY-, (S)-
MLS000084707
817L1N4CKP
CHEBI:6650
SIN N° 296
Acide (+-)-1-hydroxy-1,2-éthanedicarboxylique
N° INS. 296
INS-296
NSC25941
Acide malique (NF)
SMR000019054
Acide DL-Pomme
E-296
DSSTox_CID_7640
Acide (R)-hydroxybutanedioïque
Acide (S)-hydroxybutanedioïque
DSSTox_RID_78538
DSSTox_GSID_27640
(+-)-Acide malique
Acide R-malique
Malicum acide
Numéro FEMA 2655
Acide butanedioïque, 2-hydroxy-, (2S)-
CAS-6915-15-7
CCRIS 2950
CCRIS 6567
Acide L-(-)-malique
HSDB 1202
Acide DL-hydroxysuccinique
Kyselina hydroxybutandiova
EINECS 210-514-9
EINECS 230-022-8
NSC 25941
Acide hydroxybutanedioïque, (-)-
Acide (+-)-hydroxysuccinique
UNII-817L1N4CKP
Aepfelsaure
NSC 9232
MFCD00004245
MFCD00064213
Acide (+/-)-2-hydroxysuccinique
Acide hydroxybutanedioïque (+-)-
H2mal
Acide malique racémique
MFCD00064212
.+-.-Acide malique
143435-96-5
Opera_ID_805
Acide 2-hydroxyl-succinique
Acide DL-malique, 99 %
ACIDE MALIQUE [II]
ACIDE MALIQUE [MI]
ACIDE MALIQUE,(DL)
Acide 2-hydroxydicarboxylique
ACIDE MALIQUE [FCC]
SCHEMBL856
Acide 2-hydroxy-butanedioïque
bmse000046
bmse000904
ACIDE MALIQUE [INCI]
CE 210-514-9
CE 230-022-8
ACIDE MALIQUE [VANDF]
Acide malique-, (forme L)-
Acide DL-malique, >=99%
HYOSCYAMINEHYDROBROMURE
Opréa1_130558
Opréa1_624131
ACIDE MALIQUE [USP-RS]
ACIDE MALIQUE [WHO-DD]
acide butanedioïque, 2-hydroxy-
Acide DL-malique-2-[13C]
ACIDE DL-HYDROXYSUCOÏNIQUE
Acide butanedioïque, (.+-.)-
ACIDE DL(+/-)-MALIQUE
GTPL2480
ACIDE 2-HYDROXY-SUCCINIQUE
ACIDE DL-HYROXYBUTANEDIOIQUE
CHEMBL1455497
DTXSID0027640
BDBM92495
ACIDE MALIQUE [EP MONOGRAPHIE]
ACIDE MALIQUE [USP IMPURETÉ]
Acide DL-malique, FCC, >=99%
HMS2358H06
HMS3371C13
Acide DL-malique, étalon analytique
HY-Y1311
STR03457
(+/-)-ACIDE HYDROXYSUCCINIQUE
Tox21_201536
Tox21_300372
s9001
STL283959
ACIDE HYDROXYBUTANEDIOIQUE [HSDB]
AKOS000120085
AKOS017278471
(+/-)-ACIDE HYDROXYBUTANEDIOIQUE
AM81418
GCC-266122
DB12751
Acide DL-malique, ReagentPlus(R), 99 %
NCGC00043225-02
NCGC00043225-03
NCGC00254259-01
NCGC00259086-01
Acide DL-malique, >=98% (GC capillaire)
ACIDE HYDROXYBUTANEDIOIQUE, (+/-)-
SY003313
SY009804
Acide DL-malique, ReagentPlus(R), >=99%
DB-016133
Acide DL-malique 1000 microg/mL dans du méthanol
Acide DL-malique, USP, 99,0-100,5 %
CS-0017784
E 296
EU-0067046
FT-0605225
FT-0625484
FT-0625485
FT-0625539
FT-0632189
M0020
Acide DL-malique, SAJ de première qualité, >=99,0 %
EN300-19229
A19426
C00711
C03668
D04843
Acide DL-malique 1000 microg/mL dans l'acétonitrile
Acide DL-malique, qualité réactif Vetec(TM), 98 %
M-0825
AB00443952-12
Acide malique, conforme aux spécifications de test USP/NF
4-éthoxyphényltrans-4-propylcyclohexanecarboxylate
L023999
Q190143
Q-201028
0C9A2DC0-FEA2-4864-B98B-0597CDD0AD06
F0918-0088
Z104473230
Acide malique, étalon de référence de la pharmacopée des États-Unis (USP)
ACIDE MALIQUE (CONSTITUANT DE LA PRÉPARATION LIQUIDE DE CANNEBERGE) [DSC]
Acide malique, étalon secondaire pharmaceutique ; Matériau de référence certifié
Acide DL-malique, conforme aux spécifications analytiques de la FCC, E296, 99-100,5 % (alcalimétrique)


ACIDE DL-MALIQUE (CAS 6915-15-7)
L'acide DL-Malique (CAS 6915-15-7) est une poudre cristalline blanche utilisée dans diverses applications de laboratoire, notamment la synthèse organique et la recherche.
L'acide DL-malique (CAS 6915-15-7) est un composé organique de formule moléculaire C4H6O5.


Numéro CAS : 6915-15-7
Numéro CE : 230-022-8
Numéro MDL : MFCD00064212
Formule linéaire : HO2CCH2CH(OH)CO2H
Formule moléculaire : C4H6O5


L'acide DL-Malique (CAS 6915-15-7) est une poudre cristalline blanche.
L'acide DL-Malique (CAS 6915-15-7) est un acide organique capable de former des complexes avec des minéraux.
L'acide DL-malique (CAS 6915-15-7) est l'acide le plus typique présent dans les fruits, contribuant au goût aigre.


L'acide DL-Malique (CAS 6915-15-7) a un léger goût aigre.
L'acide DL-Malique (CAS 6915-15-7) est soluble dans l'eau.
L'acide DL-malique (CAS 6915-15-7) est un composé organique de formule moléculaire C4H6O5.


L'acide DL-malique (CAS 6915-15-7) est obtenu sous forme de poudre ou de granulés cristallins blancs ou presque blancs ayant une légère odeur et un goût fortement acide.
Le produit est de l'acide DL-Malique (CAS 6915-15-7) conformément à la norme du Food Additive Spécifications Compendium.
L'acide DL-Malique (CAS 6915-15-7) est presque inodore mais présente une très légère odeur particulière et un goût acide particulier.


L'acide DL-Malique (CAS 6915-15-7) est une poudre cristalline blanche utilisée dans diverses applications de laboratoire, notamment la synthèse organique et la recherche.
En plus d'ajouter de l'acidité aux aliments et aux boissons, l'acide DL-malique (CAS 6915-15-7) a fait l'objet de recherches pour diverses utilisations en matière de santé.
Le malate, la forme ionisée de l'acide DL-malique (CAS 6915-15-7), joue un petit rôle dans le cycle de Krebs, la principale façon dont notre corps génère de l'énergie.


L'acide DL-malique (CAS 6915-15-7) est le racémate de l'acide L-malique intermédiaire métabolique.
L'acide DL-malique (CAS 6915-15-7) réduit l'expression de CCL2 et ICAM induite par l'IFN-gamma et le TNF-alpha dans les kératinocytes humains HaCaT lorsqu'il est utilisé à une concentration de 1 mM.


L'administration topique d'acide DL-malique (CAS 6915-15-7) (10 mM) inhibe l'épaississement de l'épiderme et du derme, ainsi que l'infiltration cutanée des mastocytes et des éosinophiles dans un modèle murin de dermatite atopique induite par le 2,4-dinitrochlorobenzène (DNBC ).
L'acide DL-malique (CAS 6915-15-7) est soluble dans l'eau, l'éthanol et l'acétone.


L'acide DL-Malique (CAS 6915-15-7) est un acide 2-hydroxydicarboxylique qui est de l'acide succinique dans lequel l'un des hydrogènes attachés à un carbone est remplacé par un groupe hydroxy.
L'acide DL-Malique (CAS 6915-15-7) joue un rôle de régulateur de l'acidité des aliments et de métabolite fondamental.


L'acide DL-Malique (CAS 6915-15-7) est un acide 2-hydroxydicarboxylique et un acide C4-dicarboxylique.
L'acide DL-malique (CAS 6915-15-7) est fonctionnellement lié à un acide succinique.
L'acide DL-Malique (CAS 6915-15-7) est un acide conjugué d'un malate(2-) et d'un malate.


L'acide DL-Malique (CAS 6915-15-7) est un acide alpha-hydroxy.
Ne confondez pas l'acide DL-malique (CAS 6915-15-7) avec d'autres acides alpha-hydroxy (AHA).
L'acide DL-Malique (CAS 6915-15-7) est soluble dans l'acétone, l'éther, l'eau, le méthanol et l'éthanol.


L'acide DL-Malique (CAS 6915-15-7) est un composé organique.
L'acide DL-malique (CAS 6915-15-7) est un acide dicarboxylique fabriqué par tous les organismes vivants, qui contribue au goût aigre des fruits et est utilisé comme additif alimentaire.


L'acide DL-malique (CAS 6915-15-7) ne doit pas être confondu avec l'acide maléique ou l'acide malonique.
L'acide DL-malique (CAS 6915-15-7) pour la synthèse 6915-15-7 est un réactif chimique de haute qualité utilisé dans diverses applications de laboratoire, notamment la synthèse organique et la recherche.


L'acide DL-malique (CAS 6915-15-7) est un acide organique capable de former des complexes avec les métaux, l'acide DL-hydroxybutanedioïque.
L'acide DL-malique (CAS 6915-15-7), CAS# 617-48-1, est un isomère de l'acide L-malique fabriqué par synthèse chimique, disponible sous forme de cristaux blancs ou de poudre cristalline.


L'acide DL-Malique (CAS 6915-15-7) est largement utilisé comme régulateur d'acidité.
L'acide DL-malique (CAS 6915-15-7) est reconnu par la FDA américaine comme GRAS (généralement reconnu comme sûr) et largement accepté comme additif alimentaire sûr dans de nombreux pays avec le numéro E E296.


L'acide DL-Malique (CAS 6915-15-7) est incompatible avec les bases, les agents oxydants, les agents réducteurs et les métaux alcalins.
L'acide DL-malique (CAS 6915-15-7) est un acide dicarboxylique largement utilisé comme régulateur d'acidité dans les aliments et les boissons.
L'acide DL-Malique (CAS 6915-15-7) est soluble dans le méthanol, l'éthanol, l'acétone et de nombreux autres solvants polaires.


L'acide malique, également connu sous le nom d'acide 2-hydroxy succinique, possède deux stéréoisomères en raison de la présence d'un atome de carbone asymétrique dans la molécule.
Il en existe trois formes dans la nature, à savoir l'acide malique D, l'acide malique L et son mélange d'acide malique DL.
Poudre cristalline ou cristalline blanche à forte absorption d'humidité, facilement soluble dans l'eau et l'éthanol.


Avoir un goût aigre agréable spécial.
L'acide malique est principalement utilisé dans l'industrie alimentaire et médicale.
L'acide DL-malique (CAS 6915-15-7) est un acide dicarboxylique de formule chimique C4H6O5, qui possède deux structures appelées énantiomères.


L'acide L-malique est présent naturellement dans tous les organismes, tandis que l'acide D-malique doit être synthétisé en laboratoire.
Un mélange d’acide D-malique et d’acide L-malique est appelé mélange racémique, communément appelé acide DL-malique.
Le chimiste suédois Carl Wilhelm Scheele a isolé pour la première fois l'acide malique du jus de pomme en 1785. Son nom vient de « malum », qui est le mot latin pour pomme.


L'acide malique est un contributeur majeur à l'acidité des pommes, bien que sa concentration diminue à mesure que la pomme mûrit.
L'acide DL-malique (CAS 6915-15-7) se forme souvent dans les organismes en tant que produit intermédiaire de réactions métaboliques impliquant le pyruvate.
L'acide DL-malique (CAS 6915-15-7) contient également de nombreux esters et sels appelés malates qui jouent des rôles biologiques essentiels.


Les malates sont une source de dioxyde de carbone dans le cycle de Calvin et sont également un produit intermédiaire dans le cycle de l'acide citrique.
L'acide malique a deux formes stéréoisomères (énantiomères L et D), bien que seul l'isomère L existe naturellement.
Les sels et esters de l’acide malique sont appelés malates.


L'anion malate est un intermédiaire dans le cycle de l'acide citrique.
L'acide malique a un goût propre et doux et une acidité persistante, ce qui lui permet d'être mélangé avec plusieurs acides alimentaires, sucres, édulcorants et arômes de haute intensité pour créer des expériences gustatives uniques.



UTILISATIONS et APPLICATIONS de l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-Malique (CAS 6915-15-7) est utilisé pour la biochimie.
L'acide DL-malique (CAS 6915-15-7) a été utilisé dans des essais étudiant le traitement de la xérostomie, de la dépression et de l'hypertension.
L'acide DL-Malique (CAS 6915-15-7) est un acide alpha-hydroxy présent dans certains fruits et vins.


L'acide DL-malique (CAS 6915-15-7) est utilisé dans les aliments et les cosmétiques, et parfois comme médicament.
L'acide DL-Malique (CAS 6915-15-7) est aigre et acide.
Cela aide à éliminer les cellules mortes de la peau lorsqu’il est appliqué sur la peau.


La source d'acide DL-malique (CAS 6915-15-7) contribue également à produire plus de salive chez les personnes ayant la bouche sèche.
L'acide DL-Malique (CAS 6915-15-7) est également impliqué dans le cycle de Krebs.
Il s’agit d’un processus que le corps utilise pour produire de l’énergie.


Les gens utilisent couramment l’acide DL-malique (CAS 6915-15-7) pour la bouche sèche.
L'acide DL-malique (CAS 6915-15-7) est également utilisé pour traiter l'acné, la fibromyalgie, la fatigue, les rides de la peau et de nombreuses autres affections, mais il n'existe aucune preuve scientifique solide pour étayer ces utilisations.


L'acide DL-Malique (CAS 6915-15-7) est utilisé pour l'acidification des moûts et des vins dans les conditions fixées par la réglementation.
L'acide DL-Malique (CAS 6915-15-7) est utilisé comme additif alimentaire.
L'acide DL-malique (CAS 6915-15-7) est un composant de certains arômes artificiels de vinaigre.


De plus, l'acide DL-malique (CAS 6915-15-7) est utilisé dans la préparation de composés chiraux, y compris les résidus κ-opioïdes.
L'acide DL-malique (CAS 6915-15-7) est utilisé pour la résolution chirale par électrophorèse capillaire échangeuse de ligand.
L'acide DL-Malique (CAS 6915-15-7) est un acide alpha-hydroxy présent dans certains fruits et vins.


Certaines personnes prennent des suppléments d’acide DL-malique (CAS 6915-15-7) pour traiter la fatigue et la bouche sèche.
L'acide DL-malique (CAS 6915-15-7) est également utilisé pour fabriquer certains médicaments, ajouter de la saveur aux aliments et servir d'ingrédient exfoliant naturel dans de nombreux produits utilisés pour améliorer le teint.


L'acide DL-Malique de qualité cristallisation (CAS 6915-15-7) est utilisé pour la formulation d'écrans ou pour l'optimisation.
L'acide DL-Malique (CAS 6915-15-7) est utilisé pour des applications analytiques générales : travaux quantitatifs ou qualitatifs
L'acide DL-Malique (CAS 6915-15-7) est utilisé dans une grande variété de techniques analytiques.


L'acide DL-malique (CAS 6915-15-7) est également l'arôme principal de la rhubarbe et est utilisé pour aromatiser les chips « sel et vinaigre ».
Les utilisations de l’acide DL-malique concernent généralement le rôle de l’acide malique dans la production d’énergie chimique dans des conditions aérobies et anaérobies. Ces utilisations incluent la gestion de l’inconfort, la production d’énergie, l’hygiène bucco-dentaire et la détoxification générale.


Soutien à l'hygiène bucco-dentaire : L'acide DL-malique peut avoir des propriétés antiseptiques qui le rendent utile pour maintenir l'hygiène bucco-dentaire.
Soutien énergétique : l'acide DL-malique peut aider à maintenir des niveaux d'énergie normaux, en particulier dans les maladies chroniques caractérisées par la fatigue.
Détoxification : l’acide DL-malique peut lier les ions métalliques tels que l’aluminium et le plomb.


Cet effet peut contribuer à soutenir la santé générale, en particulier celle du cerveau et du foie.
Gestion de l'inconfort : l'acide DL-malique peut aider à gérer l'inconfort musculaire dû à des maladies chroniques.
Cette utilisation est particulièrement applicable aux conditions caractérisées par de faibles niveaux d’oxygène.


L'acide D-malique est principalement utilisé dans les compléments alimentaires, généralement sous forme d'acide DL-malique.
L'acide DL-malique (CAS 6915-15-7) est la forme synthétisée et est couramment utilisée dans les boissons, les confiseries et les soins personnels.
L'acide DL-malique (CAS 6915-15-7) est utilisé comme acidulant, agent aromatisant antioxydant, agent tampon et agent chélateur.


Dans les formulations pharmaceutiques, la substance est utilisée comme acidulant à usage général.
L'acide DL-malique (CAS 6915-15-7) est également utilisé comme alternative à l'acide citrique dans les poudres effervescentes, les bains de bouche et les comprimés de nettoyage des dents.
De plus, l'acide DL-Malique (CAS 6915-15-7) possède des propriétés chélatrices et antioxydantes et peut être utilisé comme synergiste, avec l'hydroxytoluène butylé, pour retarder l'oxydation des huiles végétales.


L'acide DL-Malique (CAS 6915-15-7) est connu comme le « meilleur régulateur d'acidité alimentaire » dans les domaines biologique et nutritionnel.
L'acide DL-malique (CAS 6915-15-7) est largement utilisé dans les aliments tels que les vins, les boissons, les jus de fruits et
des gommes à mâcher.


L'acide DL-malique (CAS 6915-15-7) est non seulement le troisième régulateur d'acidité alimentaire après l'acide citrique et l'acide lactique, mais également l'un des acides organiques les plus importants et les plus prometteurs de l'industrie alimentaire à travers le monde actuel.
L'acide DL-malique (CAS 6915-15-7) peut être ajouté aux boissons fraîches, aux boissons en poudre, aux boissons à l'acide lactique, aux boissons lactées et aux boissons aux jus de fruits pour améliorer leurs goûts et leurs saveurs.


L'acide DL-Malique (CAS 6915-15-7) est capable de gélatiniser la pectine et peut donc être utilisé pour la confection de gâteaux aux fruits, de gelées de jus de fruits, de purées, etc.
L'acide DL-Malique (CAS 6915-15-7) contient des éléments hydratants naturels pour la peau.
L'acide DL-Malique (CAS 6915-15-7) est utilisé comme conservateur de couleur et antiseptique des jus.


L'acide DL-Malique (CAS 6915-15-7) est un cristal blanc ou une poudre cristalline, assez hygroscopique, se dissolvant facilement dans l'eau et l'alcool.
Cela permet à l'acide DL-malique (CAS 6915-15-7) de dissoudre facilement les « matières collantes » entre les cellules mortes sèches ressemblant à des squames, de manière à lisser les rides de la peau et à rendre la peau tendre, blanche, lumineuse, propre et élastique.


Pour cette raison, l'acide DL-Malique (CAS 6915-15-7) est très apprécié pour son utilisation dans les formules cosmétiques.
L'acide DL-malique est utilisé comme acidulant, agent de rétention de couleur, conservateur et stabilisant d'émulsion dans l'industrie alimentaire, etc.
L'acide DL-malique (CAS 6915-15-7) est couramment utilisé comme acidulant, exhausteur de goût et régulateur de pH.


L'acide DL-Malique (CAS 6915-15-7) est utilisé uniquement à des fins de recherche et non pour la consommation humaine.
Applications clés de l'acide DL-Malique (CAS 6915-15-7) : agent tampon, agent aromatisant, production de vin, contrôle du pH, agent acidifiant, soins personnels et produits anti-âge


L'acide DL-malique (CAS 6915-15-7) est un cristal blanc ou une poudre cristalline avec une capacité d'absorption d'eau élevée et facilement soluble dans l'eau et l'éthanol.
L'acide DL-malique peut être utilisé comme acidulant dans les boissons fraîches (y compris les boissons lactobacilles, les boissons lactées, les boissons gazeuses, le cola), les aliments surgelés (y compris les sorbets et les glaces), les aliments transformés (y compris le vin et la mayonnaise).


L'acide DL-Malique (CAS 6915-15-7) est également utilisé comme stabilisant d'émulsion du jaune d'œuf.
L'acide DL-malique (CAS 6915-15-7) peut également être utilisé comme intermédiaire, cosmétique, rinçage, nettoyant pour métaux, agent tampon, retardateur dans l'industrie textile, agent de blanchiment fluorescent de la fibre de polyester.


En tant qu'acidulant, l'acide DL-malique (CAS 6915-15-7) peut être utilisé dans une grande variété d'industries, notamment : la production alimentaire, les boissons, les produits pharmaceutiques, les cosmétiques, l'agriculture/l'alimentation animale et diverses autres industries.
L'acide DL-Malique (CAS 6915-15-7) est largement utilisé comme régulateur d'acidité.
L'acide DL-malique (CAS 6915-15-7) est couramment utilisé comme acidulant, exhausteur de goût et régulateur de pH dans l'industrie alimentaire et des boissons.


Des formulations contenant de l'acide DL-Malique (CAS 6915-15-7) ont été utilisées comme conservateurs alimentaires et cosmétiques et régulateurs d'acidité.
Dans l'industrie alimentaire, l'acide DL-Malique (CAS 6915-15-7) est utilisé comme acidulants, agents de rétention de couleur, conservateurs et stabilisants d'émulsion comme le jaune d'œuf, également utilisé en pharmacie.


-Synthèse organique :
L'acide DL-malique (CAS 6915-15-7) est souvent utilisé comme matière première ou intermédiaire dans la synthèse de produits pharmaceutiques, de produits agrochimiques et d'autres produits chimiques fins.

Sa nature polyvalente et sa réactivité font de l'acide DL-Malique (CAS 6915-15-7) un composé précieux en chimie organique.
En tant qu'acidulant, l'acide DL-malique (CAS 6915-15-7) peut être utilisé dans une grande variété d'industries, notamment : la production alimentaire, les boissons, les produits pharmaceutiques, les cosmétiques, l'agriculture/l'alimentation animale et diverses autres industries.


-Industrie agroalimentaire :
L'acide DL-malique (CAS 6915-15-7) est couramment utilisé comme acidulant, exhausteur de goût et régulateur de pH dans l'industrie alimentaire et des boissons.
L'acide DL-Malique (CAS 6915-15-7) procure un goût acidulé agréable et aide à préserver la fraîcheur de nombreux produits, notamment les jus de fruits, les boissons gazeuses et les confiseries.



UTILISATIONS DE L'ACIDE DL-MALIQUE EN SOINS DE LA PEAU (CAS 6915-15-7) :
L'acide DL-Malique (CAS 6915-15-7) est un acide alpha-hydroxy, considéré comme un exfoliant naturel.
L'acide DL-malique (CAS 6915-15-7) peut être utilisé pour lisser les rides et ridules, améliorer la texture de la peau, nettoyer les pores et améliorer la peau en général.
Pour cette raison, l'acide DL-Malique (CAS 6915-15-7) a été utilisé dans divers produits de soin de la peau.

Une petite étude publiée en 2013 a révélé que l'acide DL-malique (CAS 6915-15-7) était bénéfique dans le traitement du mélasma, un trouble courant caractérisé par des plaques de peau anormalement foncées.
Pour l’étude, les chercheurs ont assigné aux personnes atteintes de mélasma un régime de soins de la peau comprenant de l’acide DL-malique (CAS 6915-15-7) ainsi que de la vitamine C.

À la fin de l’étude, les chercheurs ont conclu que l’utilisation régulière de l’acide DL-malique (CAS 6915-15-7) dans un programme de soins de la peau pourrait contribuer à améliorer l’apparence du mélasma.
Il convient de préciser que cette étude a utilisé une association d'acide DL-Malique (CAS 6915-15-7) et de vitamine C.

Cela signifie que même si les chercheurs ont conclu que l'acide DL-malique (CAS 6915-15-7) était un composant bénéfique de l'étude, il n'y a aucun moyen de savoir si les résultats étaient dus à l'acide DL-malique (CAS 6915-15-7). 15-7) seule, la vitamine C seule ou une combinaison des deux.



INDUSTRIES DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
*Beauté et soins personnels
*Alimentation et nutrition



CLASSE FONCTIONNELLE DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
Agent aromatisant
FLAVOURING_AGENTAdditifs alimentaires
RÉGULATEUR D'ACIDITÉ



FONCTIONS DES APPLICATIONS DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
(1) Dans l’industrie agroalimentaire :
L'acide DL-malique (CAS 6915-15-7) peut être utilisé dans le traitement et la préparation de boissons, de liqueurs, de jus de fruits et dans la fabrication de bonbons et de confitures, etc.
L'acide DL-Malique (CAS 6915-15-7) a également des effets d'inhibition des bactéries et d'antisepsie et peut éliminer le tartrate pendant le brassage du vin.

(2) Dans l’industrie du tabac :
Les dérivés de l'acide DL-malique (CAS 6915-15-7) (tels que les esters) peuvent améliorer l'arôme du tabac.

(3)Dans l'industrie pharmaceutique :
Les troches et sirops composés d'acide DL-Malique (CAS 6915-15-7) ont un goût de fruit et peuvent faciliter leur absorption et leur diffusion dans l'organisme.



RECHERCHE ET DÉVELOPPEMENT DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-malique est largement utilisé dans la recherche et le développement scientifiques pour ses propriétés uniques.
L'acide DL-malique (CAS 6915-15-7) est souvent utilisé comme étalon dans les techniques analytiques, telles que la chromatographie, pour calibrer et valider les instruments analytiques.



PRÉCAUTIONS ET MANIPULATION DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-Malique (CAS 6915-15-7) pour la synthèse est destiné à un usage en laboratoire uniquement.
L'acide DL-Malique (CAS 6915-15-7) n'est pas adapté à la consommation humaine et doit être manipulé avec précaution.
Lorsque vous travaillez avec de l'acide DL-malique (CAS 6915-15-7), il est important de respecter les bonnes pratiques de laboratoire, notamment le port d'un équipement de protection individuelle approprié, tel que des gants et des lunettes de sécurité.



CONSERVATION DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-Malique (CAS 6915-15-7) doit être conservé dans un endroit frais et sec, à l'abri de la lumière directe du soleil et des sources de chaleur.
Lorsqu'il est stocké correctement, l'acide DL-malique (CAS 6915-15-7) a une longue durée de conservation et peut être utilisé pendant une période prolongée.



CONDITIONNEMENT DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-malique (CAS 6915-15-7) pour la synthèse est disponible dans différentes options de conditionnement pour répondre à différents besoins.
L'acide DL-malique (CAS 6915-15-7) est généralement fourni dans des récipients hermétiquement fermés, tels que des bouteilles en verre ou des sacs en plastique, pour garantir sa qualité et son intégrité pendant le transport et le stockage.



FONCTIONS DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
1. Libère la douleur et réduit la sensation de fatigue ou de fibromyalgie.
Cela le rend utile en médecine ou dans la fabrication de certains produits de santé.
2. Amélioration énergétique.
3.Additif alimentaire : Dans les aliments, l'acide DL-Malique (CAS 6915-15-7) est utilisé comme additif aromatisant pour donner aux aliments un goût acidulé.
4. Soins ou protection de la peau : L'acide DL-malique (CAS 6915-15-7) est également un additif courant dans les produits de soins de la peau.
L'acide DL-malique (CAS 6915-15-7) a été utilisé dans les produits pour la peau pour sa capacité exfoliante.



PURETÉ DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-Malique (CAS 6915-15-7) pour la synthèse est garanti d'une pureté minimale de 98%.
Ce haut niveau de pureté garantit des résultats précis et fiables dans les expériences et recherches scientifiques.



PROPRIÉTÉS DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
1. Comparé à l’acide citrique, l’acide malique a une acidité plus élevée (20 % plus élevée)
2. L'acide DL-malique (CAS 6915-15-7) a une quantité de chaleur plus faible, un goût plus doux, un facteur tampon plus élevé et une durée de vie plus longue.
3. L'acide DL-Malique (CAS 6915-15-7) contient des éléments hydratants naturels pour la peau



FORMULE CHIMIQUE ET POIDS MOLÉCULAIRE DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-malique (CAS 6915-15-7) a une formule chimique de C4H6O5 et un poids moléculaire de 134,09 g/mol.



SIGNES DONT VOUS POUVEZ AVOIR BESOIN D'ACIDE DL-MALIQUE (CAS 6915-15-7) :
Les affections chroniques caractérisées par un inconfort et une fatigue font partie des indications les plus courantes pouvant nécessiter de l'acide DL-malique (CAS 6915-15-7), en particulier la fibromyalgie et le syndrome de fatigue chronique.

L'acide DL-malique (CAS 6915-15-7) peut également aider dans d'autres conditions qui provoquent une gêne au niveau des muscles, des tendons et des ligaments.
La présence de toxines à base de métaux est une autre condition qui peut nécessiter que vous ayez besoin d'acide DL-malique (CAS 6915-15-7).
Vous pouvez également bénéficier de l’acide DL-Malique (CAS 6915-15-7) si vous avez des infections buccales dues à une faible production de salive.


SOLUBILITÉ DE L'ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'acide DL-malique (CAS 6915-15-7) est hautement soluble dans l'eau, l'éthanol et l'acétone.
Cela rend l'acide DL-Malique (CAS 6915-15-7) facile à incorporer dans divers solvants et solutions, permettant une utilisation polyvalente en laboratoire.



Calculs rénaux, acide DL-MALIQUE (CAS 6915-15-7) :
Les calculs rénaux sont douloureux et peuvent toucher de nombreuses personnes.
L'acide DL-malique (CAS 6915-15-7) a fait l'objet de recherches pour son rôle potentiel dans la prévention et le traitement des calculs rénaux.

Dans une étude préliminaire menée en laboratoire, il a été constaté que l’acide DL-malique (CAS 6915-15-7) augmentait le pH de l’urine, rendant ainsi la formation de calculs rénaux moins probable.
Les chercheurs ont conclu qu’une supplémentation en acide DL-malique (CAS 6915-15-7) pourrait aider à traiter les calculs rénaux calciques.

Une étude de 2016 sur l'importance d'une alimentation saine pour prévenir les calculs rénaux a suggéré que les poires pourraient être une option de traitement potentielle.
Selon la revue, l'acide DL-malique (CAS 6915-15-7) contenu dans les poires peut être utilisé pour prévenir la formation de calculs rénaux.
En effet, l'acide DL-malique (CAS 6915-15-7) est un précurseur du citrate, un composé qui inhibe la croissance des cristaux dans les reins.



FIBROMYALGIE, ACIDE DL-MALIQUE (CAS 6915-15-7) :
Une étude pilote de 1995 a révélé que la prise d'acide DL-malique (CAS 6915-15-7) en association avec du magnésium aidait à soulager la douleur et la sensibilité chez les personnes atteintes de fibromyalgie.

Dans cette petite étude, les chercheurs ont assigné 24 personnes atteintes de fibromyalgie à un traitement avec un placebo ou une combinaison d'acide DL-malique (CAS 6915-15-7) et de magnésium.
Après six mois, les personnes traitées avec l'association acide DL-malique (CAS 6915-15-7)/magnésium ont montré une amélioration significative de la douleur et de la sensibilité.

Cependant, étant donné qu’une combinaison de magnésium et d’acide DL-malique (CAS 6915-15-7) a été utilisée dans l’étude, nous ne savons pas qui est responsable des résultats positifs.
Il manque toujours des recherches plus récentes sur l’efficacité de l’acide DL-malique (CAS 6915-15-7) comme traitement contre la fibromyalgie.



BOUCHE SÈCHE, ACIDE DL-MALIQUE (CAS 6915-15-7) :
L'utilisation d'un spray oral à 1 % d'acide DL-malique (CAS 6915-15-7) a été explorée comme traitement de la bouche sèche.
Une étude a évalué des personnes souffrant de sécheresse buccale causée par des antidépresseurs.
Les participants ont été randomisés pour recevoir soit un spray d'acide DL-malique à 1 % (CAS 6915-15-7), soit un placebo.

Après deux semaines d'utilisation des sprays selon les besoins, ceux qui utilisaient le spray à l'acide DL-malique (CAS 6915-15-7) avaient amélioré leurs symptômes de sécheresse buccale et augmenté leur débit de salive.
Des résultats similaires ont été observés dans une autre étude portant sur l’acide DL-malique (CAS 6915-15-7) pour la sécheresse buccale causée par les médicaments contre l’hypertension.
À la fin de cette étude de deux semaines, les participants ayant utilisé le spray d'acide DL-malique à 1 % (CAS 6915-15-7) avaient moins la bouche sèche et plus de salive par rapport au groupe placebo.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
Numéro CAS : 6915-15-7
Poids moléculaire : 134,09
Numéro FEMA : 2655
Beilstein: 1723539
Numéro CE : 230-022-8
Numéro MDL : MFCD00064212
État physique : poudre
Couleur blanche
Odeur : caractéristique
Point de fusion/point de congélation :
Point/plage de fusion : 131 - 133 °C - allumé.
Point d'ébullition initial et intervalle d'ébullition : Aucune donnée disponible
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : 203 °C
Température d'auto-inflammation : 340 °C
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible

Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau 646,6 g/l à 20 °C - complètement soluble
Coefficient de partage : n-octanol/eau : Aucune donnée disponible
Pression de vapeur : < 0,1 hPa à 20 °C
Densité : 1,6 g/cm3 à 20 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Numéro CAS : 6915-15-7
Numéro CE : 230-022-8
Formule de Hill : C₄H₆O₅
Masse molaire : 134,09 g/mol
Code SH : 2918 19 98
Densité : 1,6 g/cm3 (20 °C)
Point d'éclair : 203 °C

Température d'inflammation : 349 °C
Point de fusion : 131 - 133 °C
Valeur pH : 2,3 (10 g/l, H₂O, 20 °C)
Pression de vapeur : <0,1 hPa (20 °C)
Densité apparente : 800 kg/m3
Solubilité : 558 g/l
Poids moléculaire : 134,09 g/mol
XLogP3 : -1,3
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 5
Nombre de liaisons rotatives : 3
Masse exacte : 134,02152329 g/mol
Masse monoisotopique : 134,02152329 g/mol
Surface polaire topologique : 94,8 Å ²
Nombre d'atomes lourds : 9
Frais formels : 0
Complexité : 129
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 1

Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Formule moléculaire/poids moléculaire : C4H6O5 = 134,09
État physique (20 deg.C) : Solide
Numéro CAS : 6915-15-7
Numéro de registre Reaxys : 1723539
ID de substance PubChem : 87572138
Indice Merck (14) : 5707
Numéro MDL : MFCD00064212
CAS : 6915-15-7
Formule moléculaire : C4H6O5
Poids moléculaire (g/mol) : 134,087
Numéro MDL : MFCD00064212
Clé InChI : BJEPYKJPYRNKOW-UHFFFAOYSA-N
Numéro client PubChem : 525
ChEB : CHEBI :6650
Nom IUPAC : acide 2-hydroxybutanedioïque
SOURIRES : C(C(C(=O)O)O)C(=O)O

Point de fusion : 128,0°C à 132,0°C
Plage de pourcentage de test : 99+ %
Formule linéaire : HO2CCH2CH(OH)CO2H
Informations sur la solubilité : Solubilité dans l'eau : 558g/L (20°C).
Autres solubilités : 82,70 g/100 g de méthanol-17,75 g/100 g
acétone (20°C, 45,53 g/100 g d'éthanol-20,70 g/100 g)
dioxane (20°C, 0,84 g/100 g d'éther diéthylique (20°C),
pratiquement insoluble dans le benzène
Poids de la formule : 134,09
Pourcentage de pureté : 99+ %
Point d'éclair : 203°C
Nom chimique ou matériau : Acide DL-malique
CAS : 617-48-1
Formule moléculaire : C4H6O5
Poids moléculaire : 134,09
Détails de stockage : ambiant
Code du tarif harmonisé : 29181998 EXP 2918199890 IMP
Formule moléculaire : C4H6O5
Poids moléculaire : 134,08864
InChI : InChI=1/C4H6O5/c5-2(4(8)9)1-3(6)7/h2,5H,1H2,(H,6,7)(H,8,9)/p-2 /t2-/m1/s1

Numéro de registre CAS : 617-48-1 ; 6915-15-7
EINECS : 210-514-9
Point de fusion : 130-132 ℃
Point d'ébullition : 306,4°C à 760 mmHg
Point d'éclair : 153,4°C
Solubilité dans l'eau : 558 g/L (20 ℃ )
Pression de vapeur : 7,19E-05mmHg à 25°C
Numéro CAS : 6915-15-7
Synonymes : acide DL-malique, acide DL-hydroxysuccinique, acide hydroxybutanedioïque
Formule chimique : C4H6O5
Poids moléculaire : 134,09 g/mol
Pureté : ≥ 98 %
Solubilité : Soluble dans l’eau, l’éthanol et l’acétone
Formule moléculaire : C4H6O5
Masse molaire : 134,09
Densité : 1 609 g/cm3
Point de fusion : 131-133°C (lit.)
Point de Boling : 150 ℃ [à 101 325 Pa]
Rotation spécifique (α) : [α]D20 -0,5 ~ +0,5° (c=5, H2O)
Point d'éclair : 203°C

Solubilité dans l'eau : 500 g/L à 25 ℃
Solubilité : Soluble dans l’eau, l’alcool, légèrement soluble dans l’éther, insoluble dans le benzène.
Pression de vapeur : <0,1 mm Hg (20 °C)
Densité de vapeur : 4,6 (vs air)
Aspect : Cristal blanc ou poudre cristalline
Couleur : Blanc à blanc cassé
pKa : pK1 : 3,458 ; pK2 : 5,097 (25 °C)
Condition de stockage : Réfrigérateur
Stabilité : Stable.
Incompatible avec les oxydants forts, les bases fortes, les amines, les métaux alcalins, les carbonates.
Sensible : sensible à la lumière
MDL : MFCD00064212
MDL : MFCD00064212
InChIKey : BJEPYKJPYRNKOW-UHFFFAOYSA-N
Pouces : 1S/C4H6O5/c5-2(4(8)9)1-3(6)7/h2,5H,1H2,(H,6,7)(H,8,9)
SOURIRES : O([H])C([H])(C(=O)O[H])C([H])([H])C(=O)O[H]
BRN : 1723539
Masse exacte : 134,02200
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 5

Nombre de liaisons rotatives : 3
Masse monoisotopique : 134,02152329 g/mol
Nombre d'atomes lourds : 9
Complexité : 129
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
XLogP3 : -1,3
Compte Tautomère : rien
Charge de surface : 0
Superficie polaire topologique : 94,8
Poids moléculaire : 134,09
LogP : -1,09340
PSA : 94.83000

Merck : 5707
Indice de réfraction : 1,3920 (estimation)
Coefficient de partage de l'eau : 558 G/L (20 ºC)
Point d'ébullition : 306,4 °C à 760 mmHg
Point de fusion : 131-133 °C (lit.)
Pression de vapeur : <0,1 mmHg (20 °C)
Point d'éclair : 203 ºC
Solubilité : méthanol : 0,1 g/mL, clair, incolore
Couleur/Forme: Poudre
PH : 2,3 (10 g/l, H2O, 20 ℃ )
Solubilité : Il est facilement soluble dans l’eau et l’éthanol, mais peu soluble dans l’éther et le benzène.
Il est facile à déliquer et le pH d’une solution aqueuse à 1 % est de 2,34.
Sensibilité : Sensible à la lumière
pka : 3,4 (à 25 ℃ )
Activité optique : [α]/D −0,10 à +0,10°
Densité : 1.609
Odeur : Caractéristique



PREMIERS SECOURS ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE DL-MALIQUE (CAS 6915-15-7) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
ACIDE DL-MALIQUE
ACIDE 2-HYDROXYBUTANEDIOIQUE
ACIDE HYDROXYSUCCINIQUE
ACIDE 2-HYDROXYBUTANEDIOIQUE
Acide (±)-2-hydroxysuccinique
Acide DL-hydroxybutanedioïque
Acide DL-hydroxysuccinique
Acide hydroxybutanedioïque
Acide DL-hydroxysuccinique
l'acide malique
Acide DL-malique
6915-15-7
Acide 2-hydroxybutanedioïque
Acide 2-hydroxysuccinique
617-48-1
malate
acide hydroxysuccinique
Acide butanedioïque, hydroxy-
Kyselina Jablecna
acide hydroxybutanedioïque
Acide pomalus
Acide malique, DL-
Acide désoxytétrarique
Hydroxybutandisaeure
Musashi-no-Ringosan
Caswell n ° 537
Monohydroxybernsteinsaeure
FDA 2018
R,S(+-)-Acide malique
Acide alpha-hydroxysuccinique
Malicum acide
Acide pomaleux
Acide DL-2-hydroxybutanedioïque
Acide succinique, hydroxy-
Numéro FEMA 2655
Acide 2-hydroxyéthane-1,2-dicarboxylique
Acide malique [NF]
Aepfelsaeure
FEMA n° 2655
CCRIS 2950
CCRIS 6567
(+/-)-Acide malique
Code chimique des pesticides EPA 051101
HSDB1202
acide d,l-malique
AI3-06292
H2mal
EINECS210-514-9
EINECS230-022-8
UNII-817L1N4CKP
NSC 25941
NSC-25941
Acide de pomme
817L1N4CKP
CHEBI:6650
SIN N° 296
DTXSID0027640
E296
INS NO. 296
INS-296
Acide malique, L-
Acide L-malique-1-13C
ACIDE BUTANEDIOIQUE, HYDROXY-, (S)-
MLS000084707
DTXCID107640
E-296
Acide (+-)-1-hydroxy-1,2-éthanedicarboxylique
Acide dl-hydroxybutanedioïque
CE 210-514-9
CE 230-022-8
NSC25941
Acide malique (NF)
ACIDE DL-MALIC-2,3,3-D3
SMR000019054
Acide DL-Apple
ACIDE HYDROXYBUTANEDIOIQUE, (+/-)-
ACIDE MALIQUE (II)
ACIDE MALIQUE [II]
(R) -Acide hydroxybutanedioïque
Acide (S)-hydroxybutanedioïque
ACIDE MALIQUE (USP-RS)
ACIDE MALIQUE [USP-RS]
(+-)-Acide malique
Acide R-Malique
ACIDE MALIQUE (MONOGRAPHIE EP)
ACIDE MALIQUE (IMPURETÉ USP)
ACIDE MALIQUE [MONOGRAPHIE EP]
ACIDE MALIQUE [IMPURETÉ USP]
Acide butanedioïque, 2-hydroxy-, (2S)-
CAS-6915-15-7
Acide L-(-)-Malique
Acide hydroxybutanedioïque, (-)-
Acide (+-)-hydroxysuccinique
NSC 9232
MFCD00064213
Acide hydroxybutanedioïque, (+-)-
Acide malique racémique
180991-05-3
(+/-)-ACIDE HYDROXYSUCCINIQUE
MFCD00064212
Acide malique1524
.+-.-Acide malique
Opera_ID_805
Acide 2-hydroxyl-succinique
Acide DL-Malique, 99%
ACIDE MALIQUE [IM]
ACIDE MALIQUE,(DL)
Acide 2-hydroxydicarboxylique
ACIDE MALIQUE [FCC]
SCHEMBL856
Acide 2-hydroxy-butanedioïque
bmse000046
bmse000904
ACIDE MALIQUE [INCI]
ACIDE MALIQUE [VANDF]
Acide malique-, (forme L)-
Acide DL-Malique, >=99%
HYOSCYAMINEHYDROBROMURE
Oprea1_130558
Oprea1_624131
ACIDE MALIQUE [QUI-DD]
acide butanedioïque, 2-hydroxy-
Acide butanedioïque, (.+-.)-
GTPL2480
ACIDE 2-HYDROXY-SUCCINIQUE
CHEMBL1455497
BDBM92495
Acide DL-malique, FCC, >=99 %
HMS2358H06
HMS3371C13
Acide DL-Malique, étalon analytique
HY-Y1311
STR03457
Tox21_201536
Tox21_300372
s9001
ACIDE HYDROXYBUTANEDIOIQUE [HSDB]
AKOS000120085
AKOS017278471
AM81418
GCC-266122
DB12751
Acide DL-malique, ReagentPlus(R), 99 %
NCGC00043225-02
NCGC00043225-03
NCGC00254259-01
NCGC00259086-01
Acide DL-Malique, >=98% (GC capillaire)
SY003313
SY009804
Acide DL-malique, ReagentPlus(R), >=99 %
Acide DL-Malique 1000 microg/mL dans du méthanol
Acide DL-malique, USP, 99,0-100,5 %
CS-0017784
E296
EU-0067046
FT-0605225
FT-0625484
FT-0625485
FT-0625539
FT-0632189
M0020
Acide DL-Malique, SAJ premier grade, >=99,0%
EN300-19229
A19426
C00711
C03668
D04843
Acide DL-malique, qualité réactif Vetec(TM), 98 %
M-0825
AB00443952-12
Acide malique, répond aux spécifications de test USP/NF
4-éthoxyphényltrans-4-propylcyclohexanecarboxylate
L023999
Q190143
Q-201028
0C9A2DC0-FEA2-4864-B98B-0597CDD0AD06
F0918-0088
Z104473230
ACIDE MALIQUE (CONSTITUANT DE LA PRÉPARATION LIQUIDE DE CANNEBERGE)
Acide malique, étalon de référence de la Pharmacopée des États-Unis (USP)
ACIDE MALIQUE (CONSTITUANT DE LA PRÉPARATION LIQUIDE DE CANNEBERGE) [DSC]
Acide malique, étalon secondaire pharmaceutique ; Matériel de référence certifié
Acide DL-malique, conforme aux spécifications analytiques de la FCC, E296, 99-100,5 % (alcalimétrique)
Acide (±)-2-hydroxysuccinique ou acide DL-hydroxybutanedioïque
HO2CCH2CH(OH)CO2H
ACIDE (+/-)-2-HYDROXYSUCCINIQUE
ACIDE DL-POMME
ACIDE DL-HYDROXYBUTANEDIOIQUE
ACIDE DL-HYDROXYSUCCINIQUE
ACIDE DL-HYDROXYSUCOINIQUE
ACIDE DL-HYROXYBUTANEDIOIQUE
DL-MALATE
ACIDE DL(+/-)-MALIQUE
ACIDE DL-MALIQUE
(+/-)-ACIDE HYDROXYBUTANEDIOIQUE
(+/-)-ACIDE HYDROXYSUCCINIQUE
(+/-)-ACIDE MALIQUE
L'ACIDE MALIQUE
ACIDE MALIQUE, DL-
Acide alpha-hydroxysuccinique
acide alpha-hydroxysuccinique
Acide butanedioïque, hydroxy-
acide malique commun
Acide désoxytétrarique
acide désoxytétrarique
Acide DL-hydroxysuccinique
Acide malique
Acide 2-hydroxybutanedioïque
(2R)-2-hydroxybutanedioate
L'acide malique
Acide butanedioïque, 2-hydroxy-
L'acide malique
Acide butanedioïque, hydroxy-
Acide 2-hydroxybutanedioïque
Acide α -hydroxysuccinique
Acide hydroxysuccinique
Acide 2-hydroxyéthane-1,2-dicarboxylique
Acide Pomalus
Acide désoxytétrarique
Acide 2-hydroxysuccinique
Musashi-no-Ringosan
Acide hydroxybutanedioïque
Acide dl-malique
FDA 2018
(±)-Acide malique
Acide DL-malique
R,S(±)-Acide malique
E296
NSC 25941
Nanoveson M
Xéros
Acide monohydroxybutanedioïque
Purac Poudre MA
Purac MA
Fuso M.
DN 1992
ID MeSH : D008293
C00711
L'acide malique
Acide DL-malique
ACIDE MALIQUE, DL-
Acide malique
Musashi-no-Ringosan
Acide DL-hydroxysuccinique
Acide 2-hydroxybutanedioïque
(2R)-2-hydroxybutanedioate



ACIDE DL-TARTARIQUE
NUMÉRO CAS : 133-37-9

NUMÉRO CE : 205-695-6

FORMULE MOLÉCULAIRE : COOH(CHOH)2COOH

POIDS MOLÉCULAIRE : 150,09 g/mol

NOM IUPAC : acide (2S,3S)-2,3-dihydroxybutanedioïque



L'acide DL-tartrique est l'énantiomère D de l'acide tartrique.
L'acide DL-tartrique a un rôle en tant que métabolite d'Escherichia coli.

L'acide DL-tartrique est un acide conjugué d'un D-tartrate(1-).
L'acide DL-tartrique est un énantiomère d'un acide L-tartrique.

L'acide DL-tartrique est un métabolite présent ou produit par Escherichia coli
L'acide DL-tartrique est un acide dicarboxylique cristallin blanc présent dans de nombreuses plantes, en particulier les tamarins et les raisins.
L'acide DL-tartrique est utilisé pour générer du dioxyde de carbone par interaction avec le bicarbonate de sodium après administration orale.

L'acide DL-tartrique a été utilisé comme additif alimentaire tel que les assaisonnements acides.
L'acide DL-tartrique peut également être largement utilisé comme produits chimiques industriels tels que les matières premières pour les détergents.

L'acide DL-tartrique est utilisé comme acidulant, contrôle du pH et aromatisant dans le vin.
L'acide DL-tartrique est également utilisé comme agent antimicrobien

Dans l'industrie pharmaceutique, l'acide DL-tartrique est utilisé comme excipient pour les médicaments peu solubles à des niveaux de pH plus élevés.
L'acide DL-tartrique est utilisé comme agent anti-prise dans les formulations de ciment dans l'industrie de la construction.

L'acide DL-tartrique est une poudre cristalline blanche.
L'acide DL-tartrique est principalement utilisé dans l'industrie alimentaire comme acidulant ou émulsifiant producteur d'ingrédients.

L'acide DL-tartrique peut être utilisé comme matière première pour le pyruvate.
L'acide DL-tartrique est largement utilisé comme boissons et autres acidifiants alimentaires, similaires à l'utilisation et à l'acide citrique.

L'acide DL-tartrique est également utilisé comme agent fractionné pour les additifs pharmaceutiques, alimentaires, chimiques et biologiques.
L'acide DL-tartrique est une poudre incolore et semi-transparente ou blanche, au goût acide.

L'acide DL-tartrique peut être utilisé comme vésicant de la bière, agent d'acidité des aliments, arôme, etc.
L'acide DL-tartrique est également très important pour les industries du tannage, de la photographie, du verre, de l'émail et des équipements de télécommunication.

L'acide DL-tartrique peut être utilisé pour produire un plan
L'acide DL-tartrique est utilisé pour l'analyse chromatographique du réactif et d'un agent masquant.

L'utilisation de l'acide DL-tartrique couvre également l'industrie de la construction en tant que retardateur, agent complexant des métaux pour l'industrie de la galvanoplastie.
L'acide DL-tartrique est un acide dicarboxylique disponible sous forme de poudre cristalline blanche.

L'acide DL-tartrique peut être utilisé dans les zones ci-dessous :
-Comme acidulant ou émulsifiant producteur d'ingrédients dans l'industrie alimentaire ;
-Comme ralentisseur dans l'industrie de la construction;
-Comme intermédiaire, agent de résolution ou agent salifiant dans l'industrie pharmaceutique ;
-Comme agent complexant, agent chélatant ou agent antitartre dans l'industrie de la galvanoplastie et du polissage;
-Comme acide de fruit dans l'industrie cosmétique.

LES USAGES:
L'acide DL-tartrique est un acide cristallin blanc
L'acide DL-tartrique est largement utilisé comme intermédiaire ou agent de résolution dans l'industrie pharmaceutique.
L'acide DL-tartrique est une poudre blanche

Acide DL-tartrique largement utilisé dans l'industrie alimentaire
L'acide DL-tartrique est utilisé comme agent moussant de la bière

Acide DL-tartrique également utilisé comme agent de goût acide
L'acide DL-tartrique peut être utilisé comme agent de modification du goût

L'acide DL-tartrique est principalement utilisé pour fabriquer des sels d'acide tartrique, comme le tartrate de potassium et de sodium
L'acide DL-tartrique peut également être utilisé comme vésicant de la bière, agent d'acidité des aliments et arôme, etc.

La formule chimique de l'acide DL-tartrique est HOOC(CHOH)2COOH
L'acide DL-tartrique est un solide cristallin incolore soluble dans l'eau et dans l'alcool

L'acide DL-tartrique a un goût acide
Le point de fusion de l'acide DL-tartrique est de 170°C
L'acide DL-tartrique est également connu sous le nom d'acide dihydroxysuccinique.

L'acide DL-tartrique est utilisé comme :
-un intermédiaire chimique
-un séquestrant, ainsi que dans le tannage
- des boissons effervescentes
-levure chimique
-céramique
-la photographie
-le traitement des textiles
-argenture miroir
-coloration métal

L'acide DL-tartrique est un acide alpha-hydroxy-carboxylique
L'acide DL-tartrique est diprotique et aldarique dans les caractéristiques acides


PROPRIÉTÉS PHYSIQUES:

-Poids moléculaire : 150,09 g/mol

-XLogP3-AA : -1.9

-Masse exacte : 150,01643791 g/mol

-Masse monoisotopique : 150,01643791 g/mol

-Surface polaire topologique : 115Ų

-Description physique : Solide inodore incolore ou blanc

-Point d'ébullition : 399,26 °C

-Point de fusion : 172,5 °C

-Point d'éclair : 210 °C

-Solubilité : 20,6 g/100 ml

-Densité : 1,79

-Température d'auto-inflammation : 425 °C


L'acide DL-tartrique est un dérivé dihydroxylé de l'acide succinique.
L'acide DL-tartrique est connu des viticulteurs depuis des siècles.

L'acide DL-tartrique est un acide organique diprotique cristallin blanc.
L'acide DL-tartrique est naturellement présent dans de nombreuses plantes, en particulier dans les raisins, les bananes et les tamarins.


PROPRIÉTÉS CHIMIQUES:

-Nombre de donneurs d'obligations hydrogène : 4

-Nombre d'accepteurs de liaison hydrogène : 6

-Nombre d'obligations rotatives : 3

- Nombre d'atomes lourds : 10

-Charge formelle : 0

-Complexité : 134

-Nombre d'atomes isotopiques : 0

-Nombre de stéréocentres atomiques définis : 2

-Nombre de stéréocentres d'atomes non définis : 0

-Nombre de stéréocentres de liaison définis : 0

-Nombre de stéréocentres de liaison indéfinis : 0

- Nombre d'unités liées par covalence : 1

-Le composé est canonisé : oui

-Classes chimiques : Autres classes -> Acides organiques


L'acide DL-tartrique est également l'un des principaux acides présents dans le vin.
L'acide DL-tartrique peut être ajouté aux aliments lorsqu'un goût aigre est souhaité.

L'acide DL-tartrique est un acide organique cristallin blanc aux propriétés anti-inflammatoires et anti-oxydantes naturellement présentes dans de nombreux fruits.
Ces propriétés aident à stimuler l'ensemble des aides à renforcer le système immunitaire d'un individu.

L'acide DL-tartrique est un acide dicarboxylique, que l'on retrouve notamment dans différents fruits comme le raisin, la banane, le tamarin et les agrumes.
L'acide DL-tartrique est également obtenu à partir des sous-produits de la fermentation du vin par les sels, le bitartrate de potassium, également appelé crème tartrique.

L'acide DL-tartrique est un ingrédient important dans les produits de boulangerie où, lorsqu'il est mélangé avec de la levure chimique, il agit comme un agent levant.
L'acide DL-tartrique améliore également les saveurs des fruits et, dans les produits de boulangerie, stabilise les structures et la couleur de la pâte.
Les extraits d'acide DL-tartrique servent de tampons dans le cycle de vinification pour contrôler l'antioxydant E334, l'acidité et les conservateurs ; dans d'autres produits alimentaires, ils agissent comme exhausteurs de goût naturels et émulsifiants alimentaires.

L'acide DL-tartrique est librement soluble dans l'eau
L'acide DL-tartrique est peu soluble dans l'éthanol

L'acide DL-tartrique est utilisé pour générer du dioxyde de carbone par interaction avec le bicarbonate de sodium après administration orale.
L'acide DL-tartrique est un acide organique naturellement présent dans les fruits, notamment le raisin et le tamarin.

L'acide DL-tartrique est un ingrédient principal du vin et lui confère le goût acidulé caractéristique.
L'acide DL-tartrique est principalement fabriqué à partir de matières premières naturelles

Cependant, l'acide DL-tartrique peut également être fabriqué synthétiquement à partir d'anhydride maléique.
L'acide DL-tartrique se trouve dans la crème de tartre, qui est utilisée dans la fabrication de bonbons et de glaçages pour gâteaux.
L'acide DL-tartrique est également utilisé dans la levure chimique où il sert de source d'acide qui réagit avec le bicarbonate de sodium (bicarbonate de soude).

L'acide DL-tartrique est utilisé comme synergiste pour les antioxydants, émulsifiant, séquestrant et aromatisant.
L'acide DL-tartrique est également ajouté à l'acide citrique pour préparer des sels effervescents, améliorant ainsi le goût des médicaments oraux.

L'acide DL-tartrique est également utilisé dans les pigments, les adjuvants de fabrication, les encres, les toners et les colorants.
L'acide DL-tartrique agit comme agent chélateur dans les industries métallurgiques et agricoles.

De plus, l'acide DL-tartrique est utilisé comme lubrifiant et graisse.
L'acide DL-tartrique est mélangé avec du bicarbonate de sodium et utilisé comme agent levant dans la préparation des aliments.
Dans l'industrie pharmaceutique, l'acide DL-tartrique est utilisé dans la préparation de tartre émétique, qui est utilisé dans le sirop contre la toux comme expectorant.


SYNONYMES :

Acide d-tartrique
147-71-7
Acide D-(-)-tartrique
Acide (2S,3S)-2,3-dihydroxysuccinique
ACIDE D(-)-TARTARIQUE
Acide (2S,3S)-2,3-dihydroxybutanedioïque
(-)-Acide tartrique
Acide D-thréarique
Acide (-)-D-tartrique
Acide DL-tartrique
Acide (2S,3S)-(-)-tartrique
Acide (S,S)-tartrique
(-)-(S,S)-acide tartrique
Acide (S,S)-(-)-tartrique
Acide (2S,3S)-tartrique
Acide butanedioïque, 2,3-dihydroxy-, (2S,3S)-
S-Bacampicilline
acide lévo-tartrique
acide tartrique inhabituel
Acide D-(-)-tartrique
UNII-RRX6A4PL3C
RRX6A4PL3C
acide tartrique
CHEBI:15672
EINECS 205-695-6
133-37-9
106449-07-4
tartrate
(+/-)-acide tartrique
DTXSID5046986
Liensweinsaeure
C4-H6-O6
Acide lévotartrique
1rpa
acide tartrique lévo
(-)-Weinsaeure
MFCD00004238
Acide D-()-tartrique
E-7050 Acide (2S,3S)-2,3-dihydroxysuccinique
Acide (+)-D-tartrique
(- )- acide tartrique
NSC-155080
Acide butanedioïque, 2,3-dihydroxy-, (S-(R*,R*))-
(2s, 3s)-acide tartrique
D0K2BZ
ACIDE TARTRIQUE, D-
Acide tartrique, D-(-)-
NCIStruc1_000172
NCIStruc2_000222
MLS001076664
ACIDE D-TARTARIQUE
Acide DL-tartrique, >=99%
SCHEMBL116846
ACIDE TARTRIQUE NON NATUREL
CHEMBL1200861
Acide D-(-)-tartrique, 99 %
DTXSID4043775
Acide (2S,3S) (-) tartrique
HMS2231C23
1007601-97-9
Acide D-thréo-2,3-dihydroxysuccinique
GCC-38066
MFCD00071626
NCGC00014424
NCI155080
s3134
AKOS005067832
DB01694
DS-3383
Acide D-(-)-tartrique
NCGC00014424-02
NCGC00097529-01
BP-13000
BP-31023
Acide DL-tartrique
E334
SMR000499572
AM20080237
CS-0017144
T0026
Acide D-(-)-tartrique
EN300-72270
Acide (2R/S,3R/S)-dihydroxy-1,4-butanedioïque
A22830
C02107
D78024
Acide butanedioïque, 2,3-dihydroxy-, [S-(R,R)]-
Acide DL-tartrique
J-006363
J-501029
Q23034947
Acide (S,S)-tartrique;Acide tartrique;Acide D-(-)-tartrique
Acide butanedioïque, 2,3-dihydroxy-, (S-(thêta, thêta))-
Z1147451575
Acide D-(-)-tartrique
Acide DL-tartrique, anhydre
(-)-Acide tartrique
(-)-acide tartrique
(-)-acide tartrique
(-)-Weinsäure
Acide (2R,3S)-2,3-dihydroxybutanedioïque
(2S,3S)-2,3-dihydroxybutanedioate
Acide (2S,3S)-2,3-dihydroxybutanedioïque
Acide (2S,3S)-2,3-dihydroxysuccinique
Acide 2,3-dihydroxybutanedioïque
Acide D-(-)-tartrique
acide tartrique
Acide D-(−)-tartrique
Acide (-)-(S,S)-tartrique
Acide (-)-D-tartrique
(-)-acide tartrique
Acide (2S,3S)-(-)-tartrique
Acide (2S,3S)-(−)-tartrique
Acide (2S,3S)-2,3-dihydroxybutanedioïque
Acide (2S,3S)-2,3-dihydroxysuccinique
Acide (2S,3S)-tartrique
(S,S)-(-)-acide tartrique
Acide (S,S)-tartrique
Acide [S-(R*,R*)]-2,3-dihydroxybutanedioïque
526-83-0 [RN]
Acide (2S,3S)-2,3-dihydroxysuccinique
Acide butanedioïque, 2,3-dihydroxy-, (2S,3S)-
Acide D-(-)-tartrique
ACIDE D(-)-TARTARIQUE
ACIDE D-2,3-DIHYDROXYBUTANEDIOIQUE
Concentré d'acide DL-tartrique
Acide D-tartrique
Acide D-thréarique
acide d-​(-​)​-​tartrique
Acide D(-)-2,3-dihydroxysuccinique
D(-)ACIDE TARTRIQUE
Acide D-(-)-tartrique|(2S,3S)-(-)-acide tartrique
Acide D-(-)-tartrique
Acide D-(?)-tartrique
acide d-2,3-dihydroxysuccinique

ACIDE DL-TARTRIQUE
L'acide DL-tartrique est utilisé comme synergiste pour les antioxydants, émulsifiant, séquestrant et agent aromatisant.
Il est également ajouté à l'acide citrique pour préparer des sels effervescents, rehaussant ainsi le goût des médicaments oraux.
Il est également utilisé dans les pigments, les auxiliaires technologiques, les encres, les toners et les colorants.

CAS : 133-37-9
FM : C4H6O6
MW : 150,09
EINECS : 205-105-7

Synonymes :
Acide DL-tartrique ; Acide 2,3-dihydroxysuccinique ; acide tartrique; Acide 2,3-dihydroxybutanedioïque ; 526-83-0 ; 133-37-9 ; Acide racémique ; Acide uvique ; Traubensaure; Acide tartrique racémique ; DL-tartrate ; Acide paratartrique ; Aide paratartrique ; ACIDE BUTANEDIOIQUE, 2,3-DIHYDROXY- ; Acide tartrique soluble ; NSC62778 ; Acide tartrique D,L ; Baros ; CHEBI:15674; acide dl-2,3-dihydroxybutanedioïque ; (2RS,3RS)-acide tartrique ; tartrate; Acide E-7050 (2S,3S)-2,3-dihydroxysuccinique ; NSC 148314 ; Acide tartrique, L-(+)- ; acide 2,3-dihydroxy-succinique; C4H6O6; 1007601-97-9 ; Acide butanedioïque, 2,3-dihydroxy-(R*,R*)-(.+/-.)- ; Acide butanedioïque, 2,3-dihydroxy-, (R*,R*)- ; Acide tartrique (VAN); Kyselina vinna [tchèque]; NSC155080 ; Acide tartrique [USAN:JAN] ; Acide 2,3-dihydrosuccinique ; (.+-.)-Acide tartrique ; DTXSID5046986 ; acide d-alpha, bêta-dihydroxysuccinique ; MFCD00071626 ; NSC-148314 ; Kyselina 2,3-dihydroxybutandiova [tchèque]; (+) acide tartrique; (-) acide tartrique; acide 1,2-dicarboxylique; WLN : QVYQYQVQ ; (-) Acide D-tartrique ; Tartare de Sal (Sel/Mélange) ; Acide tartrique, (DL)- ; Acide butanedioïque, 2,3-dihydroxy- (R-(R*,R*))- ; Acide butanedioïque, 2,3-dihydroxy-, [S-(R*,R*)]- ; Acide malique, 3-hydroxy- ; Acide 2,3-dihydroxysuccinique ; Acide succinique, 3-dihydroxy ; SCHEMBL848 ; bmse000167 ; Acide succinique, 3-dihydroxy- ; (.+/-.)-Acide tartrique ; Opréa1_827092 ; ACIDE TARTRIQUE, (L); Acide tartrique, (.+-.)-; Acide butanedioïque, 3-dihydroxy- ; CHEMBL333714 ; Acide dihydroxysuccinique, (DL)- ; Acide tartrique, (.+/-.)-; DTXCID3026986 ; DTXSID501031477 ; HMS3370M15 ; acide (+)-2,3-dihydroxybutanedioïque ; BCP14303 ; Tox21_302052 ; MFCD00064206 ; NSC133735 ; NSC148314 ; NSC608773 ; s2997 ; Acide 2,3-dihydroxysuccinique, (DL)- ; acide 3-carboxy-2,3-dihydroxypropanoïque; AKOS000120086 ; AKOS016844048 ; NSC-133735 ; NSC-608773 ; SB44180 ; SB44181 ; SMP2_000051 ; Acide d-.alpha.,.beta.-dihydroxysuccinique; NCGC00256063-01 ; NCGC00347131-03 ; AS-10983 ; CAS-133-37-9 ; NCI60_001102 ; Acide (+)-2,3-dihydroxy-1,4-butanedioïque ; AM20110247 ; CS-0022654 ; FT-0624346 ; FT-0625514 ; FT-0628018 ; FT-0628243 ; FT-0656080 ; FT-0772946 ; FT-0773804 ; NS00078822 ; NS00079339 ; NS00079739 ; T0001 ; Acide (+/-)-2,3-dihydroxy-1,4-butanedioïque ; EN300-19175 ; A22866 ; Acide butanedioïque,3-dihydroxy-[R-(R*,R*)]- ; A829202 ; Q194322 ; Acide butanedioïque, 3-dihydroxy-, (R*,R*)-(.+-.)- ; F2191-0230 ; Z104473036 ; Acide 1,2-dihydroxyéthane-1,2-dicarboxylique ; Acide 2,3-dihydrosuccinique ; (2S,3S)-(-)-Acide tartrique ; Acide D(-)-Threarique ; Acide D(-)-Dihydroxysuccinique ; Cuivre, mixte. avec le sel monopotassique de l'acide [R-(R*,R*)]-2,3-dihydroxybutanedioïque.

Il agit comme agent chélateur dans les industries métallurgiques et agricoles.
De plus, il est utilisé comme lubrifiant et graisse. Il est mélangé avec du bicarbonate de sodium et utilisé comme agent levant dans la préparation des aliments.
Dans l’industrie pharmaceutique, il est utilisé dans la préparation du tartre émétique, utilisé comme expectorant dans le sirop contre la toux.

L'acide DL-tartrique est un sel de calcium de l'acide tartrique.
Il est utilisé comme étalon dans l'analyse de la teneur totale en calcium et en acide tartrique dans les boissons, les vins, les produits alimentaires et les produits pharmaceutiques.
L'acide DL-tartrique peut être utilisé pour préparer des solutions étalons pour la détermination du chlorure de benzalkonium et d'autres composés naturels par des méthodes chromatographiques.
Les constantes de vitesse de la réaction entre l'acide DL-tartrique et le pantothénate de calcium ont été déterminées par spectroscopie d'impédance électrochimique.
L'intensité de fluorescence des réactions chimioluminescentes avec l'acide DL-tartrique s'est avérée proportionnelle à la concentration d'ions tartrate en solution.
Les données de diffraction des rayons X confirment que l'acide DL-tartrique est un système cristallin orthorhombique de groupe spatial P2/c.


Propriétés chimiques de l'acide DL-tartrique
Point de fusion : 210-212 °C(lit.)
Point d'ébullition : 191,59°C (estimation approximative)
Alpha : [α]D20 -0,2~+0,2° (c=20, H2O)
Densité : 1.788
Pression de vapeur : <0,1 hPa (20 °C)
FEMA : 3044 | ACIDE TARTRIQUE (D-, L-, DL-, MESO-)
Indice de réfraction : 1,5860 (estimation)
Fp : 210 °C
Température de stockage : Conserver en dessous de +30°C.
Solubilité : H2O : 0,1 g/mL, clair
Forme : Liquide
Pka : 3,03, 4,37 (à 25 ℃)
Couleur blanche
PH : 3,19 (solution 1 mM) ; 2,58 (solution 10 mM) ; 2,03 (solution 100 mM) ;
Odeur : à 100,00 %. caramélisé très doux
Type d'odeur : inodore
Solubilité dans l'eau : soluble
Merck : 14 9069
Numéro JECFA : 621
Numéro de référence : 1725148
Constante diélectrique : 35,9(-10℃)
Stabilité : Stable. Incompatible avec les bases, les agents oxydants, les agents réducteurs, l'argent.
InChIKey : FEWJPZIEWOKRBE-UHFFFAOYSA-N
LogP : -1,43
Référence de la base de données CAS : 133-37-9 (référence de la base de données CAS)
Référence chimique NIST : DL-Tartaric (133-37-9)

Propriétés chimiques
L'acide DL-tartrique est un solide cristallin incolore soluble dans l'eau et l'alcool avec un goût acide caractéristique et une température de fusion de 170°C (338°F).
L'acide tartrique naturel est généralement de configuration L (basée sur la configuration absolue de l'acide D-glycérique).
Les formes L des tartrates sont dextrogyres en solution et sont donc désignées sous le nom de L(+)-tartrates.
Il est également connu sous le nom d’acide dihydroxy succinique.
L'acide tartrique est utilisé comme intermédiaire chimique et séquestrant, ainsi que dans le bronzage, les boissons effervescentes, la levure chimique, la céramique, la photographie, le traitement des textiles, l'argenture des miroirs et la coloration des métaux.

Les usages
L'acide DL-tartrique est utilisé comme synergiste pour les antioxydants, émulsifiant, séquestrant et agent aromatisant.
Il est également ajouté à l'acide citrique pour préparer des sels effervescents, rehaussant ainsi le goût des médicaments oraux.
Il est également utilisé dans les pigments, les auxiliaires technologiques, les encres, les toners et les colorants.
Il agit comme agent chélateur dans les industries métallurgiques et agricoles.
De plus, il est utilisé comme lubrifiant et graisse.
Il est mélangé avec du bicarbonate de sodium et utilisé comme agent levant dans la préparation des aliments.
Dans l’industrie pharmaceutique, il est utilisé dans la préparation du tartre émétique, utilisé dans le sirop contre la toux comme expectorant.

Dans la réaction de Debus-Radziszewski en tant qu'acide faible pour la synthèse du liquide ionique d'imidazolium.
Comme additif dans la technique de dépôt électrochimique pour la synthèse de films minces de bismuth destinés à être utilisés comme absorbeurs de rayons X.
En tant qu'agent complexant pour la synthèse de poudre nanocristalline d'oxyde d'indium et d'étain (ITO).
Comme dopant pour la synthèse de nanofibres et de nanotubes de polyaniline par polymérisation par oxydation.

Préparation
Les tartrates utilisés dans le commerce sont obtenus comme sous-produit de la fabrication du vin et ont la configuration L(+). Produit à partir d'argols ou lies de vin, qui se forment lors de la fabrication du vin en extrayant le tartrate acide de potassium, en le transformant en sel de calcium puis en acidifiant avec de l'acide sulfurique dilué ; également par oxydation du d-glucose avec de l'acide nitrique.
L'acide dl-tartrique est obtenu en faisant bouillir l'acide d-tartrique avec une solution aqueuse de NaOH ou par oxydation de l'acide fumarique.
Les acides l- et méso-tartrique sont également connus, mais sont moins importants.

ACIDE DL-TARTRIQUE, 99%
DESCRIPTION:

L'acide DL-tartrique est utilisé comme synergiste pour les antioxydants, émulsifiant, séquestrant et agent aromatisant.
L'acide DL-tartrique à 99 % est également ajouté à l'acide citrique pour préparer des sels effervescents, améliorant ainsi le goût des médicaments oraux.
L'acide DL-tartrique à 99 % est également utilisé dans les pigments, les auxiliaires de fabrication, les encres, les toners et les colorants.


CAS : 133-37-9
Numéro CE : 205-105-7


SYNONYME(S) D'ACIDE DL-TARTRIQUE, 99% :
Acide DL-2,3-dihydroxybutanedioïque

Formule linéaire : HOOC (CHOH) 2COOH
Numéro CAS : 133-37-9
Poids moléculaire : 150,09
Beilstein:1725148
Numéro CE : 205-105-7


L'acide DL-tartrique, 99 %, agit comme agent chélateur dans les industries métallurgiques et agricoles.
De plus, l'acide DL-tartrique à 99 % est utilisé comme lubrifiant et graisse.
L'acide DL-tartrique à 99 % est mélangé avec du bicarbonate de sodium et utilisé comme agent levant dans la préparation des aliments.
Dans l'industrie pharmaceutique, l'acide DL-tartrique est utilisé à 99 % dans la préparation du tartre émétique, qui est utilisé dans le sirop contre la toux comme expectorant.


APPLICATIONS DE L'ACIDE DL-TARTRIQUE, 99% :
L'acide DL-tartrique peut être utilisé :

Dans la réaction de Debus-Radziszewski en tant qu'acide faible pour la synthèse du liquide ionique d'imidazolium.
Comme additif dans la technique de dépôt électrochimique pour la synthèse de films minces de bismuth destinés à être utilisés comme absorbeurs de rayons X.
En tant qu'agent complexant pour la synthèse de poudre nanocristalline d'oxyde d'indium et d'étain (ITO).
Comme dopant pour la synthèse de nanofibres et de nanotubes de polyaniline par polymérisation par oxydation.


L'acide DL-tartrique, 99 %, est utilisé comme synergiste pour les antioxydants, l'émulsifiant, le séquestrant et l'agent aromatisant.
L'acide DL-tartrique à 99 % est également ajouté à l'acide citrique pour préparer des sels effervescents, améliorant ainsi le goût des médicaments oraux.

L'acide DL-tartrique à 99 % est également utilisé dans les pigments, les auxiliaires de fabrication, les encres, les toners et les colorants.
L'acide DL-tartrique, 99 %, agit comme agent chélateur dans les industries métallurgiques et agricoles.

De plus, l'acide DL-tartrique à 99 % est utilisé comme lubrifiant et graisse. Il est mélangé avec du bicarbonate de sodium et utilisé comme agent levant dans la préparation des aliments.
Dans l'industrie pharmaceutique, l'acide DL-tartrique est utilisé à 99 % dans la préparation du tartre émétique, qui est utilisé dans le sirop contre la toux comme expectorant.

Solubilité :
Soluble dans l’eau, l’alcool, les acides minéraux et les alcalis.


L'acide DL-tartrique peut être utilisé dans la réaction de Debus-Radziszewski comme acide faible pour la synthèse du liquide ionique d'imidazolium.
L'acide DL-tartrique à 99 % est utilisé comme additif dans la technique de dépôt électrochimique pour la synthèse de films minces de bismuth destinés à être utilisés comme absorbeurs de rayons X.

L'acide DL-tartrique, 99 %, est utilisé comme agent complexant pour la synthèse de poudre nanocristalline d'oxyde d'indium et d'étain (ITO).
L'acide DL-tartrique, à 99 %, est utilisé comme dopant pour la synthèse de nanofibres et de nanotubes de polyaniline par polymérisation par oxydation.

L'acide DL-tartrique à 99 % et ses sels sont utilisés comme additifs alimentaires pour réguler l'acidité.
Ils sont étiquetés conformément aux normes de l'Union Européenne : acide tartrique E334, tartrate de sodium E335, tartrate de potassium E336, tartrate de potassium et de sodium E337.
L'acide DL-tartrique à 99 % et ses sels sont également utilisés dans la production de fromages fondus.

Le tartrate d'antimoine de potassium (COOK- (CHOH) 2COOSbO), également connu sous le nom d'émétique, a été utilisé comme émétique.
L'acide DL-tartrique à 99 % ou le tartrate acide de sodium est utilisé dans l'analyse chimique pour détecter les ions potassium.



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE DL-TARTRIQUE, 99% :
Niveau de qualité
200
gamme de produits
RéactifPlus®
Essai
99%
député
210-212 °C (éclairé)
Chaîne SOURIRE
O[C@@H]([C@H](O)C(O)=O)C(O)=O
InChI
1S/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)/t1-, 2-/m0/s1
Clé InChI
FEWJPZIEWOKRBE-LWMBPPNESA-N
Point de fusion, 210°C à 212°C (décomposition)
Beilstein, 1725148
Indice Merck, 14 9069
Informations sur la solubilité, soluble dans l'eau, l'alcool, les acides minéraux et les alcalis.
Poids de formule, 150,09
Pourcentage de pureté, 99 %
Quantité, 250 g
Nom chimique ou matériau, acide DL-tartrique
CAS
133-37-9
Nom UICPA
Acide 2,3-dihydroxybutanedioïque
Formule moléculaire
C4H6O6
Clé InChI
FEWJPZIEWOKRBE-UHFFFAOYNA-N
SOURIRES
OC(C(O)C(O)=O)C(O)=O
Poids moléculaire (g/mol)
150.09
Synonyme
(.+-.)-acide tartrique|DL−Acide tartrique|Acide paratartrique|Acide tartrique racémique|Acide uvique
Numéro MDL
MFCD00071626
Apparence (couleur)
Blanc
Apparence (forme)
Poudre cristalline
Spectre infrarouge
Conforme
Point de fusion
200°C à 206°C
Titrage avec NaOH
>=99,4 %
Perte au séchage
=<0,5 %
Métaux lourds (en Pb)
=<20 ppm
Cendres sulfatées
=<0,1 %
Une rotation optique spécifique
-0,5° à +0,5° (20°C, 589 nm) (c=20, H2O)
Apparence (couleur)
Blanc
Apparence (forme)
Composé cristallin
Solubilité (turbidité) 5% aq. solution
Clair
Solubilité (Couleur) 5% aq. solution
Incolore
Dosage (T)
min. 99%
Point de fusion
208 - 212°C
Eau (KF)
maximum. 0,5%













INFORMATIONS DE SÉCURITÉ SUR L'ACIDE DL-TARTRIQUE, 99 % :

Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Éliminer comme produit non utilisé.


ACIDE D-MALIQUE
L'acide D-malique est un inhibiteur qui se lie au dinucléotide phosphate et inhibe les activités enzymatiques.
L'acide D-malique a été utilisé dans des méthodes analytiques pour déterminer la concentration d'acide malonique et d'autres composés apparentés en mesurant le changement de stabilité chimique de l'inhibiteur.
L'acide D-malique est un composé chiral présentant un degré élevé de stabilité chimique, ce qui le rend utile pour les études du métabolisme microbien.

CAS : 636-61-3
FM : C4H6O5
MW : 134,09
EINECS : 211-262-2

Synonymes
Acide butanedioïque, hydroxy-, (R)-;hydroxy-,(R)-acide butanedioïque; (2R)-2-hydroxybutanedioate;(+)-D-MALIQUE ACIDE;D-(+)-malique acide;636-61-3;D-malique acide;D(+)-Malique acide;(R)-2 -Acide hydroxysuccinique;(R)-acide malique;D-malate;(2R)-2-hydroxybutanedioïque;Acide malique, D-;Acide malique forme D-(+);(+)-D-acide malique;D -Acide hydroxybutanedioïque;MFCD00004245;Acide R-malique;(R)-malate;MLS000069520;(r)-(+)-acide hydroxysuccinique;CHEBI:30796;P750Y95K96;SMR000058580;Acide L(+)-malique;Acide butanedioïque, hydroxy -, (2R)-;D-(+)-Acide de pomme;(R)-Acide hydroxybutanedioïque;Acide malique, L(+)-;EINECS 211-262-2;UNII-P750Y95K96;(R)-(+) Acide -2-hydroxysuccinique; Acide D-malique, étalon analytique; ;NS00068397;EN300-96989;ACIDE BUTANEDIOIQUE, 2-HYDROXY-, (2R)-;C00497;M-0800;AAF7D69B-7713-4E35-92ED-EA50BA0FCDCE;Acide D-(+)-Malique, forme non naturelle, >= 97,0 % (T);Q27104149;Z1205493568;ACIDE (2R)-2-HYDROXYBUTANEDIOIQUE; ACIDE 2-HYDROXY-SUCCINIQUE

L'acide D-malique a également une constante cinétique élevée, ce qui le rend utile pour étudier la lyse cellulaire chez E. coli K-12.
Forme optiquement active d'acide malique ayant une configuration (R).
L'acide D-malique, un isomère actif de l'acide malique, est un inhibiteur compétitif du transport de l'acide L(--)malique.
Certaines bactéries appartenant à Arthrobacter, Brevibacterium, Corynebacterium, Pseudomonas, Bacillus et Acinetobacter ont produit de l'acide D-(+)-malique (acide D-malique) à partir de l'acide maléique lorsque les cellules cultivées dans un milieu contenant de l'acide citraconique réagissent de manière aérobie avec l'acide maléique. dans le tampon phosphate pH 7,0 contenant 0,1% de chlorure de sodium.
L'acide D-malique est un acide dicarboxylique fabriqué par tous les organismes vivants, qui contribue au goût agréablement aigre des fruits et est utilisé comme additif alimentaire.
L'acide D-malique a deux formes stéréoisomères (énantiomères L et D), bien que seul l'isomère L existe naturellement.
Les sels et esters de l’acide malique sont appelés malates.
L'anion malate est un intermédiaire dans le cycle de l'acide citrique.

Propriétés chimiques de l'acide D-malique
Point de fusion : 98-102 °C (lit.)
Alpha : 2,2 º (c=3, H2O)
Point d'ébullition : 167,16°C (estimation approximative)
Densité : 1,60
Indice de réfraction : 6,5° (C=10, Acétone)
Température de stockage : Conserver en dessous de +30°C.
Solubilité : Soluble dans le méthanol, l’éthanol, l’acétone et l’éther.
Forme : Poudre cristalline
Pka : 3,61 ± 0,23 (prédit)
Couleur blanche
PH : 2,2 (10 g/l, H2O, 20 ℃)
Activité optique : [α]20/D +28,0±2°, c = 5,5% dans la pyridine
Solubilité dans l'eau : soluble
Merck : 14 5707
Numéro de référence : 1723540
LogP : -1,370 (est)
Référence de la base de données CAS : 636-61-3 (référence de la base de données CAS)
Référence chimique NIST : Acide D-Malique (636-61-3)

Les usages
L'isomère naturel est la forme L que l'on trouve dans les pommes et dans de nombreux autres fruits et plantes.
Réactif sélectif de protection α-amino pour les dérivés d’acides aminés.
Acide D-Malique utilisé comme acidulant et agent aromatisant, additif alimentaire.
Et l’acide D-Malique est également utilisé à la place de l’acide citrique, moins acide, dans les sucreries acidulées.

L'acide D-Malique peut être utilisé :
Comme matière première pour la synthèse totale énantiosélective de -érinapyrone B.
En tant qu'organocatalyseur chiral dans la synthèse d'α-aminophosphonates à partir de divers aldéhydes, d'aniline et de phosphite de diéthyle.

La synthèse
L'acide D-malique est isolé des pommes immatures ; préparé industriellement est obtenu par oxydation catalytique du benzène, puis réaction avec de l'eau à haute température et haute pression pour générer de l'anhydride maléique.
ACIDE DODÉCANÉDIOQUE (CORFREE M1)
DESCRIPTION:

L'acide dodécanedioïque (Corfree M1) est un mélange d'acides dibasiques sans nitrite, principalement en C11 et C12, qui offre d'excellentes propriétés d'inhibition de la corrosion ferreuse.
L'acide dodécanedioïque (Corfree M1) est utilisé dans diverses applications d'inhibiteurs de corrosion, notamment les fluides de travail des métaux, les liquides de refroidissement moteur, les nettoyants pour métaux, les fluides hydrauliques aqueux et les agents de démoulage moulés sous pression.
Lorsqu'il est formulé sous forme de sel d'amine, l'acide dibasique de l'acide dodécanedioïque (Corfree M1) offre une protection supérieure contre la corrosion par rapport aux alternatives telles que l'acide sébacique, l'acide azélaïque et les acides monobasiques à longue chaîne.

N° CAS 72162-23-3
Formule moléculaire : C24H47NO5
Poids de la formule : 429,64


Les formulations d'acide dodécanedioïque (Corfree M1) dibasique ne laissent pas de résidus indésirables et difficiles à nettoyer associés aux formulations de borate d'amine.


INFORMATIONS DE SÉCURITÉ CONCERNANT L'ACIDE DODÉCANÉDIOÏQUE (CORFREE M1) :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE DODÉCANÉDIOÏQUE (CORFREE M1) :
Point de fusion 85-95 °C(lit.)
Densité 1,02 g/mL à 25 °C(lit.)
pression de vapeur 0,002 Pa à 20 ℃
pka 4,45[à 20 ℃ ]
Aspect Flocon blanc/blanc cassé
Acides dibasiques totaux (% en poids ≥ 98,0
Acide dibasique C10 à C12 (% en poids ≥ 95,0
Eau (% en poids) <0,5
Solubilité dans l'eau (25 ºC) (% en poids)
comme acide dibasique <0,05
en sel d'amine TEA >10


SYNONYMES DE L'ACIDE DODÉCANÉDIOÏQUE (CORFREE M1) :
CORMIX I
SANS CORDE?M1
corfree(R)mi
CORFREE(MD) M1
Acide alcanedioïque en C10-12
Acides dibasiques CorMix II
Acides dibasiques COFREE M1
produits issus de fractions à point d'ébullition élevé
acide dodécanedioïque et acide sébacique
corfreem1 (mélange d'acide undécanedioïque

ACIDE DODÉCANOÏQUE
L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécanoïque, réactif, également connu sous le nom d'acide dodécoïque, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.


Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Numéro MDL : MFCD00004440
Formule moléculaire : C10H18O4 / HOOC(CH2)8COOH



SYNONYMES :
Acide dodécanoïque, acide n-dodécanoïque, acide dodécylique, acide dodécoïque, acide laurostéarique, acide vulvique, acide 1-undécanecarboxylique, acide duodécylique, C12:0 (indices lipidiques), acide laurostéarique, Laurates, NSC 5026, acide vulvique, 1-dodécanoïque acide, dodécanoates, acide laurique, acide dodécylique, acide 1-undécanecarboxylique, FA12:0, acide n-dodécanoïque, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, 1-undécanecarboxylique acide, aliphat non. 4, néo-gras 12, acide décanedioïque, acide 1,8-octanedicarboxylique, acide décane-1,10-dioïque, acide sébacique, ACIDE DÉCANEDIOIQUE, 111-20-6, acide 1,8-octanedicarboxylique, 1,10-décanedioïque acide, Acides sébaciques, Sebacinsaure, Acide décanedicarboxylique, Acide n-décanedioïque, Acide sébacique, Sebacinsaeure, USAF HC-1, Acide ipomique, Acide séracique, Acide décanedioïque, homopolymère, NSC 19492, UNII-97AN39ICTC, 1,8-dicarboxyoctane, 26776 -29-4, NSC19492, 97AN39ICTC, acide octane-1,8-dicarboxylique, CHEBI:41865, NSC-19492, DSSTox_CID_6867, DSSTox_RID_78231, DSSTox_GSID_26867, SebacicAcid, CAS-111-20-6, CCRIS 2290, EINECS 203- 845- 5, BRN 1210591, n-décanedioate, acide iponique, AI3-09127, sébacate disodique, 4-oxodécanedioate, MFCD00004440, 1,10-décanedioate, acide sébacique, 94 %, acide sébacique, 99 %, acide dicarboxylique C10, 1i8j, 1l6s, 1l6y, 1,8-Octanedicarboxylate, WLN : QV8VQ, ACIDE SÉBACIQUE, EC 203-845-5, SCHEMBL3977, NCIOpen2_008624, ACIDE SÉBACIQUE, 4-02-00-02078, ACIDE SÉBACIQUE, CHEMBL1232164, 7, acide sébacique, > =95,0 % (GC), ZINC1531045, Tox21_201778, Tox21_303263, BBL011473, LMFA01170006, s5732, STL146585, AKOS000120056, CCG-266598, CS-W015503, DB07645, GS- 6713, HY-W014787, NCGC00164361-01, NCGC00164361-02, NCGC00164361 -03, NCGC00257150-01, NCGC00259327-01, BP-27864, NCI60_001628, DB-121158, FT-0696757, C08277, A894762, C10-120, C10-140, C10-180, C10-220, 260, C10 -298, Q413454, Q-201703, Z1259273339, 301CFA7E-7155-4D51-BD2F-EB921428B436, acide 1,8-octanedicarboxylique, acide décanedioïque, acide octane-1,8-dicarboxylique, acide 1,10-décanedioïque, 1,8 -Acide octanedicarboxylique, NSC 19492, NSC 97405, acide n-décanedioïque, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-dicarboxyoctane, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4,7 -Acide dioxosébacique, Acide 4,7-dioxosébacique, 4-Oxodécanedioate, 4-oxodécanedioate, Acide 4-Oxodécanedioïque, Acide 1,10-Décanedioïque, 1,8-Dicarboxyoctane, Acide décanedioïque, Sébacinsaeure, 1,10-Décanedioate, Décanedioate, Sébacate, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, acide 4,7-dioxosebacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, acide dicarboxylique C10, acide ipomique, N-décanedioate, N- Acide décanedioïque, Acides sébaciques, Sebacinsaure, Acide séracique, Acide sébacique, sel d'aluminium, Acide sébacique, sel de monocadmium, Acide sébacique, sel de sodium, ACIDE DÉCANEDIOIQUE, sébacique, USAF hc-1, acidesebacique, ACIDE SÉBACIQUE pur, acide n-décanedioïque, Acide 1,10-décanedioïque, acide décanedicarboxylique, sébacate (décanedioate), ACIDE 1,8-OCTANEDICARBOXYLIQUE, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4, Acide 7-dioxosébacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, décanedioate, acide 1,8-octanedicarboxylique, acide 1,10-décanedioïque, acide n-décanedioïque, 4-oxodécanedioate, 1,8-dicarboxyoctane , Acide octane-1,8-dicarboxylique, acide sébacique, acide ipomique, acide séracique, acide laurique, ACIDE DODÉCANOÏQUE, 143-07-7, acide n-dodécanoïque, acide dodécylique, acide laurostéarique, acide vulvique, acide dodécoïque, acide duodécylique , Acide 1-undécanecarboxylique, Aliphat No. 4, Ninol AA62 Extra, Wecoline 1295, Acide Hydrofol 1255, Acide Hydrofol 1295, Acide duodécyclique, Hystrene 9512, Univol U-314, Acide laurique pur, Dodécylcarboxylate, Acide laurique (naturel), Laurinsaeure, acide undécane-1-carboxylique, ABL, NSC-5026, FEMA n° 2614, laurate, C-1297, Philacid 1200, CCRIS 669, C12:0, Emery 651, Lunac L 70, CHEBI : 30805, HSDB 6814, EINECS 205-582-1, UNII-1160N9NU9U, BRN 1099477, n-dodécanoate, Kortacid 1299, anion acide dodécanoïque, DTXSID5021590, Prifrac 2920, AI3-00112, Lunac L 98, Univol U 314, Prifac 1160N, 9NU9U, MFCD00002736, DAO , DTXCID801590, CH3-[CH2]10-COOH, NSC5026, EC 205-582-1, dodécylate, laurostéarate, vulvate, 4-02-00-01082 (référence du manuel Beilstein), ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), 1-undécanecarboxylate , ACIDE LAURIQUE (USP-RS), ACIDE LAURIQUE [USP-RS], CH3-(CH2)10-COOH, 8000-62-2, CAS-143-07-7, SMR001253907, laurinsaure, acide dodécanique, Nuvail, laurique -acide, Acide Laurique, 3uil, Acide laurique (NF), DODECANOICACID, acide gras 12:0, Acide laurique, Réactif, Nissan NAA 122, Emery 650, Acide dodécanoïque, 98%, Acide dodécanoïque, 99%, Réactif garanti,99 %, Acide dodécanoïque (laurique), ACIDE LAURIQUE [MI], bmse000509, ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], SCHEMBL5895, NCIOpen2_009480, MLS002177807, MLS002415737, WLN: QV11, Acide dodécanoïque (acide laurique), ACIDE LAURIQUE [ WHO-DD], acide dodécanoïque, >=99,5 %, Edenor C 1298-100, ACIDE DODÉCANOÏQUE [HSDB], CHEMBL108766, GTPL5534, NAA 122, NAA 312, HMS2268C14, HMS3649N06, HY-Y0366, STR08039, acide dodécanoïque, étalon analytique , Acide laurique, >=98%, FCC, FG, Tox21_202149, Tox21_303010, BDBM50180948, LMFA01010012, s4726, STL281860, AKOS000277433, CCG-266587, DB03017, FA 12:0, ACIDE OL 1255 OU 1295, NCGC00090919-01, NCGC00090919- 02, NCGC00090919-03, NCGC00256486-01, NCGC00259698-01, AC-16451, BP-27913, DA-64879, acide dodécanoïque, >=99 % (GC/titration), LAU, acide dodécanoïque, purum, >=96,0 % (GC), Acide laurique, naturel, >=98%, FCC, FG, CS-0015078, L0011, NS00008441, EN300-19951, C02679, D10714, A808010, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN), Q422627, SR-01000838338 , J-007739, SR-01000838338-3, BRD-K67375056-001-07-9, F0001-0507, ACIDE LAURIQUE (CONSTITUANT DU PALMETTE SCINÉ) [DSC], Z104476194, 76C2A2EB-E8BA-40A6-8032-40A9862, 5ED7B, Laurique acide, étalon de référence de la Pharmacopée européenne (EP), acide laurique, étalon de référence de la Pharmacopée américaine (USP), acide laurique, étalon secondaire pharmaceutique ; Matériau de référence certifié, 203714-07-2, 7632-48-6, InChI=1/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/ h2-11H2,1H3,(H,13,14, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, ABL, Acide Laurique, Acide gras C12, C12:0, Acides gras d'huile de coco, DAO, Dodécanoate, acide dodécanoïque, dodécate, Dodécoïque acide, Dodécylate, dodécylcarboxylate, Acide dodécylique, duodécyclate, Acide duodécyclique, duodécylate, Acide duodécylique, LAP, LAU, Laurate, Acide laurique, Laurinsaeure, Laurostéarate, Acide laurostéarique, MYR, n-dodécanoate, acide n-dodécanoïque, laurate de sorbitan, sorbitan monolaurate (NF), undécane-1-carboxylate, acide undécane-1-carboxylique, Vulvate, acide vulvique, CH3-[CH2]10-COOH, acide dodécylcarboxylique, Laate, acide laïque, Aliphat no 4, Edenor C 1298-100. , Emery 651, Hystrene 9512, Kortacid 1299, Lunac L 70, Lunac L 98, Neo-fat 12, Neo-fat 12-43, Nissan naa 122, Philacid 1200, Prifac 2920, Univol u 314, acide 1-dodécanoïque, FA (12:0), acide 1-undécanecarboxylique, ABL, Aliphat no. 4, acide gras C12, acides gras d'huile de coco, dodécanoate, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), acide dodécoïque, dodécylcarboxylate, acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide laurique, Acide laurique pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Acide n-dodécanoïque, N-dodécanoate, Neo-fat 12, Ninol aa62 extra, Acide undécane-1-carboxylique , Univol U 314, Univol U-314, acide vulvique, AI3-00112, BRN 1099477, C-1297, CCRIS 669, EINECS 205-582-1, FEMA NO. 2614, HSDB 6814, HYDROFOL ACID 1255, HYDROFOL ACID 1295, HYSTRENE 9512, NEO-FAT 12-43, PHILACID 1200, PRIFRAC 2920, WECOLINE 1295, acide 1-Undécanecarboxylique, ABL, AC-16451, AC1L1GY2, , AKOS000277433, Aliphat N° 4, CH3-[CH2]10-COOH, acides gras d'huile de coco, DAO, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), Dodécanoate, Acide dodécanoïque (laurique), Acide dodécanoïque (acide laurique), Acide dodécanoïque (acide laurique ), Acide dodécoïque, Dodécylcarboxylate, Acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide hydrofol 1255, Acide hydrofol 1295, Hystrene 9512, I04-1205, L-ALFA-LYSOPHOSPHATIDYLCHOLINE, LAUROYL, L0011, LAP, LAU, Acide laurique , pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, Philacid 1200, Prifrac 2920, SMR001253907, ST023796, Acide Undécane-1-carboxylique, Univol U-314, Acide vulvique, Wecoline 1295, [2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM, n-Dodecanoate, acide n-Dodecanoïque, nchembio.364-comp10 , Acide dodécanoïque, acide n-dodécanoïque, Neo-fat 12, Aliphat no. 4, Abl, Acide dodécylique, Acide laurique, Acide laurostéarique, Neo-fat 12-43, Ninol aa62 extra, Univol u-314, Acide vulvique, Acide 1-undécanecarboxylique, Acide duodécylique, C-1297, Acides gras d'huile de coco, Hydrofol acide 1255, acide Hydrofol 1295, Wecoline 1295, acide dodécoïque, Hystrene 9512, Lunac L 70, acide duodécyclique, Emery 650, n-dodécanoate, Philacid 1200, Prifrac 2920, acide undécane-1-carboxylique, C-1297, acide dodécanoïque, acide dodécoïque, acide duodécylique, acide ndodécanoïque, acide Hydrofol 1255, acide Hydrofol 1295, Hystrene 9512, acide laurostéarique, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, acide 1-undécanecarboxylique, acide vulvique, Wecoline 1295, Acide dodécoïque, acide duodécyclique, Edenor C 1298-100, Emery 650, acide Hydrofol 1295, Hystrene 9512, Kortacid 1299, Laurostéarate, Lunac L 70, Lunac L 98, Neo-fat 12, Ninol AA62 extra, Nissan naa 122, Philacid 1200 , Prifac 2920, Prifrac 2920, Univol U 314, Vulvate, Acide vulvique, Wecoline 1295, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, Dodécylate, Dodécylcarboxylate, Acide dodécylique, Acide duodécylique, Acide laurostéarique, Acide n-dodécanoïque, Undécane-1- acide carboxylique, LAP, LAU, DAO, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, acide 1-undécanecarboxylique, aliphat no. 4, néo-graisse 12, 143-07-7, 205-582-1, ACIDE 1-UNDÉCANECARBOXYLIQUE, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE [HSDB], ACIDE DODÉCOÏQUE, FEMA NO. 2614, LAURATE, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN) [DSC], ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], ACIDE LAURIQUE [MI], ACIDE LAURIQUE [USP-RS], ACIDE LAURIQUE [WHO-DD], ACIDE LAUROSTÉARIQUE, ACIDE N-DODÉCANOÏQUE, NSC-5026, acide dodécanoïque, acide laurique, acide laurostéarique, acide 1-undécanecarboxylique, ABL, Aliphat No. 4, Univol U 314, acide dodécylique, acide vulvique, Neo-Fat 12-43, Acide n-dodécanoïque, Neo-Fat 12, Lunac L 70, Emery 651, Prifac 2920, Nissan NAA 122, Lunac L 98, Hystrene 9512, NAA 312, Kortacid 1299, Philacid 1200, Edenor C 1298-100, NSC 5026, NAA 122, Prifac 2922, Edenor C 12, Prifrac 2920, ContraZeck, acide 1-dodécanoïque, Imex C 1299, Palmac 98-12, Edenor 12/98-100, Palmera B 1231, Edenor C 12-98-100, Lasacid FC 12 , Laurates, Dodécanoates, Palmae 99-12, D 97385, Edenor C12-99, Noix de coco dure 34, Noix de coco dure 42, Radiacid 0624, NS 6, 7632-48-6, 8000-62-2, 8045-27-0, 203714-07-2, 55621-34-6, ACIDE DODÉCANOÏQUE, C12, Emery651, Acide vulvique, FEMA 2614, acide laurique, pur, ACIDE N-DODÉCANOÏQUE, ACIDE LAUROSTÉARIQUE, Acide laurique 98-101 % (acidimétrique), Acide gras ester méthylique sulfonate (MES), acide dodécanoïque D23, acide dodécanoïque-d23,1-acide dodécanoïque-d23, acide 1-undécanecarboxylique-d23, ABL-d23, Aliphat n° 4-d23, ContraZeck-d23, acide dodécylique-d23, Edenor C 12-d23, Edenor C 1298-100-d23, Emery 651-d23, Hystrene 9512-d23, Imex C 1299-d23, Kortacid 1299-d23, Acide laurostéarique-d23, Lunac L 70-d23, Lunac L 98- d23, NAA 122-d23, NAA 312-d23, NSC 5026-d23, Néo-Fat 12-d23, Néo-Fat 12-43-d23, Nissan NAA 122-d23, Philacid 1200-d23, Prifac 2920-d23, Prifac 2922-d23, Prifrac 2920-d23, Univol U 314-d23, acide vulvique-d23, acide n-dodécanoïque-d23, dodécanoate, acides gras d'huile de noix de coco, acide laurostéarique, acide N-dodécanoïque, acide gras C12, acide duodécyclique, vulvique Acide, acide dodécanoïque (acide laurique), acide duodécylique, N-dodécanoate, acide dodécanoïque (laurique), Laurinsaeure, acide laurique, pur, acide laurique (naturel), dodécylcarboxylate, Abl, Dao, Lap, Lau, Myr



L'acide dodécanoïque est un acide gras saturé de formule structurelle CH3(CH2)10COOH.
L'acide dodécanoïque est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécanoïque se trouve également dans le lait maternel (5,8 % des matières grasses totales), le lait de vache (2,2 %) et le lait de chèvre (4,5 %).


L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécanoïque, réactif, également connu sous le nom d'acide dodécanoïque, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide dodécanoïque se trouve naturellement dans le lait maternel ainsi que dans le lait de vache et de chèvre.


La qualité réactive de l'acide dodécanoïque signifie qu'il s'agit de la plus haute qualité disponible dans le commerce pour ce produit chimique et que l'American Chemical Society n'a officiellement fixé aucune spécification pour ce matériau.
L'acide dodécanoïque est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.


L'acide dodécanoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide dodécanoïque liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide dodécanoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécanoïque sont appelés laurates.
L'acide dodécanoïque est un acide gras saturé avec un acide carboxylique terminal.


L'acide carboxylique terminal, l'acide dodécanoïque, peut réagir avec des groupes amine primaire en présence d'activateurs tels que HATU.
L'acide dodécanoïque est une forme marquée au carbone 13 d'un acide gras saturé présent dans le lait de coco, l'huile de coco, l'huile de laurier et l'huile de palmiste, ainsi que dans le lait maternel et d'autres laits d'origine animale.


L'acide dodécanoïque est un inhibiteur de la pompe à protons potentiellement destiné au traitement des infections à Helicobacter pylori.
Des expériences in vitro ont suggéré que certains acides gras, dont l'acide dodécanoïque, pourraient constituer un composant utile dans un traitement contre l'acné, mais aucun essai clinique n'a encore été mené pour évaluer ce bénéfice potentiel chez l'homme.


L'acide dodécanoïque augmente le cholestérol sérique total plus que de nombreux autres acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l’acide dodécanoïque a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».


L'acide dodécanoïque, identifié par le numéro CAS 143-07-7, est un acide gras saturé à chaîne moyenne avec un squelette de 12 atomes de carbone, bien connu pour son rôle dans la fabrication de savons, de détergents et de cosmétiques.
En tant que composant fondamental, l'acide dodécanoïque est réputé pour ses propriétés tensioactives, qui permettent la production d'une mousse riche dans les produits nettoyants.


En recherche, l'acide dodécanoïque est largement utilisé pour étudier le comportement des lipides dans divers systèmes en raison de sa nature amphiphile, qui lui permet de s'assembler en micelles et autres nanostructures dans des solutions aqueuses.
Ces études sont cruciales pour faire progresser les domaines de la science des matériaux et de la nanotechnologie, en particulier dans le développement de systèmes de distribution et l'amélioration des formulations de produits.


De plus, l’acide dodécanoïque est utilisé dans la recherche en science alimentaire où il sert de modèle pour comprendre la digestion et le métabolisme des acides gras à chaîne moyenne.
Les propriétés antimicrobiennes de l'acide dodécanoïque sont également examinées en termes de manière dont elles peuvent être exploitées dans des applications non médicales, telles que la conservation et la sécurité des aliments, où la réduction de la croissance microbienne est essentielle.


De plus, le rôle de l'acide dodécanoïque dans les applications industrielles s'étend à son utilisation comme matière première dans la synthèse de divers dérivés chimiques, notamment les esters utilisés dans les arômes et les parfums, démontrant sa polyvalence et son importance à la fois dans la recherche scientifique et dans les applications industrielles.
L'acide dodécanoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécanoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et constitue un composant majeur de l'huile de noix de coco et de l'huile de palmiste.
L'acide dodécanoïque, C12H24O2, également connu sous le nom d'acide dodécanoïque, est un acide gras saturé avec une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux, l'acide dodécanoïque, a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.


L'acide dodécanoïque est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécanoïque, CAS 143-07-7, formule chimique C12H24O2, est produit sous forme de poudre cristalline blanche, a une légère odeur d'huile de laurier et est soluble dans l'eau, les alcools, les phényles, les haloalcanes et les acétates.


L'acide dodécanoïque est non toxique, sûr à manipuler, peu coûteux et a une longue durée de conservation.
L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécanoïque appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécanoïque est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécanoïque est un composé potentiellement toxique.
L'acide dodécanoïque a la formule chimique C12H24O2.
L'acide dodécanoïque se présente sous la forme d'un solide cristallin blanc avec une odeur caractéristique d'huile de laurier.


L'acide dodécanoïque est insoluble dans l'eau et soluble dans l'éther, le chloroforme et l'alcool.
L'acide dodécanoïque se trouve naturellement dans certaines graisses végétales et animales et est un composant clé de l'huile de coco.
L'acide dodécanoïque est préparé synthétiquement par distillation fractionnée d'autres acides de noix de coco mélangée.


L'acide dodécanoïque est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécanoïque est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.


L'acide dodécanoïque joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.
L'acide dodécanoïque est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécanoïque est un acide conjugué d'un dodécanoate.


L'acide dodécanoïque dérive d'un hydrure de dodécane.
L'acide dodécanoïque est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide dodécanoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


L'acide dodécanoïque est un métabolite présent ou produit par Escherichia coli.
L'acide dodécanoïque est un produit naturel présent dans Ipomoea leptophylla, Arisaema tortuosum et d'autres organismes pour lesquels des données sont disponibles.
L'acide dodécanoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécanoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et constitue un composant majeur de l'huile de noix de coco et de l'huile de palmiste.
L'acide dodécanoïque est le principal acide gras de l'huile de noix de coco et de l'huile de palmiste, et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier.


L'acide dodécanoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécanoïque est un métabolite présent ou produit par Saccharomyces cerevisiae.
L'acide dodécanoïque est un acide gras saturé à chaîne moyenne.


L'acide dodécanoïque se trouve dans de nombreuses graisses végétales ainsi que dans les huiles de noix de coco et de palmiste.
L'acide dodécanoïque est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.
L'acide dodécanoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécanoïque sont appelés laurates.


L'acide dodécanoïque est un précurseur du peroxyde de dilauroyle, un initiateur courant de polymérisations.
L'acide dodécanoïque appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécanoïque, également connu sous le nom de dodécanoate ou acide laurique, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécanoïque est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécanoïque est le principal acide gras de l'huile de noix de coco et de l'huile de palmiste, et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier.
L'acide dodécanoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


L'acide dodécanoïque est un acide gras qui inhibe la croissance des bactéries.
L'acide dodécanoïque inhibe la croissance bactérienne en se liant au site actif de l'enzyme dihydrolipoamide acétyltransférase, qui catalyse la conversion du dihydrolipoamide et de l'acétyl-CoA en succinyl-CoA et en acétoacétyl-CoA.


L'acide dodécanoïque se lie également au phosphate de dinucléotide, qui participe à la régulation de la température de transition de phase et des échantillons biologiques.
Il a également été démontré que l'acide dodécanoïque agit comme un inhibiteur actif de la synthase des acides gras, une enzyme qui catalyse la synthèse des acides gras à partir de l'acétyl-coenzyme A (acétyl-CoA).


Ce processus est essentiel à la croissance bactérienne.
L'acide dodécanoïque a des effets synergiques avec d'autres antibiotiques tels que l'ampicilline, l'érythromycine et la tétracycline.
L'acide dodécanoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécanoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et constitue un composant majeur de l'huile de noix de coco et de l'huile de palmiste.
L'acide dodécanoïque est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide dodécanoïque est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.


La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l’acide dodécanoïque seul (il est irritant et ne se trouve pas seul dans la nature), vous êtes plus susceptible de l’obtenir sous forme d’huile de noix de coco ou de noix de coco fraîches.


Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable de ses bienfaits rapportés.
Étant donné que l’huile de coco contient bien plus que de l’acide dodécanoïque, il serait exagéré de lui attribuer tous les bienfaits de l’huile de coco.
Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide dodécanoïque.


Parmi les avantages, ils suggèrent que l’acide dodécanoïque pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.
Ses effets sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide dodécanoïque sont dus à la manière dont le corps l’utilise.


La majorité de l'acide dodécanoïque est envoyée directement au foie, où il est converti en énergie plutôt que stocké sous forme de graisse.
Comparé à d’autres graisses saturées, l’acide dodécanoïque contribue le moins au stockage des graisses.
L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide dodécanoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécanoïque sont appelés laurates.
Comme beaucoup d’autres acides gras, l’acide dodécanoïque est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.


L'acide dodécanoïque est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l’acide dodécanoïque est neutralisé avec de l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons. L'acide dodécanoïque se présente sous forme de poudre cristalline blanche
L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone utilisé dans les nettoyants industriels, les lubrifiants, les savons, les tensioactifs, les additifs agricoles, les revêtements, les additifs alimentaires et les additifs textiles.


L'acide dodécanoïque, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécanoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste.


Sinon, l’acide dodécanoïque est relativement rare.
L'acide dodécanoïque augmente le cholestérol sérique total plus que tous les acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).


En conséquence, l’acide dodécanoïque a été caractérisé comme ayant « un effet plus favorable sur le cholestérol total :HDL que tout autre acide gras, saturé ou insaturé ».
En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.


À ces fins, l’acide dodécanoïque est neutralisé avec de l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
L'acide dodécanoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécanoïque est un acide carboxylique cristallin blanc avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécanoïque a été trouvé à des niveaux élevés dans l'huile de noix de coco.
L'acide dodécanoïque induit l'activation de NF-κB et l'expression de COX-2, de l'oxyde nitrique synthase inductible (iNOS) et d'IL-1α dans les cellules RAW 264.7 lorsqu'il est utilisé à une concentration de 25 μM.


L'acide dodécanoïque est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.
L'acide dodécanoïque joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.


L'acide dodécanoïque est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécanoïque est un acide conjugué d'un dodécanoate.
L'acide dodécanoïque dérive d'un hydrure de dodécane.


L'acide dodécanoïque est un acide carboxylique cristallin blanc.
L'acide dodécanoïque est utilisé comme plastifiant et pour fabriquer des détergents et des savons.
Les glycérides de l'acide dodécanoïque sont naturellement présents dans les huiles de noix de coco et de palme.


L'acide dodécanoïque est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécanoïque appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécanoïque est un solide blanc et poudreux avec une légère odeur d'huile de baie de noix de coco ou de savon gras et doux.
L'acide dodécanoïque est le principal acide gras de l'huile de noix de coco (49 %) et de l'huile de palmiste (47 à 50 %). On le trouve en moindre quantité dans la muscade sauvage, le lait maternel, le lait de vache, le lait de chèvre et les graines de pastèque. , prune et noix de macadamia.


L'acide dodécanoïque, bien que légèrement irritant pour les muqueuses, présente une toxicité extrêmement faible, est peu coûteux, possède des propriétés antimicrobiennes et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécanoïque est un composé faiblement acide.


L'acide dodécanoïque réagit avec l'hydroxyde de sodium pour générer du laurate de sodium, qui est du savon.
L'acide dodécanoïque a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras saturé ou insaturé ».



UTILISATIONS et APPLICATIONS de l’ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
L'acide dodécanoïque est approuvé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.


Les gens utilisent également l’acide dodécanoïque comme médicament.
Les gens utilisent l’acide dodécanoïque pour traiter des infections virales telles que la grippe, le rhume, l’herpès génital et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer une quelconque utilisation.


L'acide dodécanoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets d'acide dodécanoïque dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


Le rejet dans l'environnement de l'acide dodécanoïque peut résulter d'une utilisation industrielle : traitement d'abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage) et traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage du métal).


D'autres rejets d'acide dodécanoïque dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, produits en bois traités, textiles traités et tissu, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) et utilisation en intérieur dans des matériaux longue durée à taux de dégagement élevé (par exemple dégagement des tissus, textiles lors du lavage, enlèvement des peintures intérieures) .


L'acide dodécanoïque peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


L'acide dodécanoïque peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).


L'acide dodécanoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécanoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécanoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécanoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécanoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


De plus, l’acide dodécanoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécanoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.


L'acide dodécanoïque est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécanoïque est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide dodécanoïque peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets d'acide dodécanoïque dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide dodécanoïque est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, cosmétiques et produits de soins personnels, lubrifiants et graisses. et les produits de traitement des textiles et les teintures.


Le rejet dans l'environnement de l'acide dodécanoïque peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide dodécanoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.


L'acide dodécanoïque est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécanoïque est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide dodécanoïque peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.
Le rejet dans l'environnement de l'acide dodécanoïque peut survenir lors d'une utilisation industrielle : fabrication de la substance.


L'acide dodécanoïque est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide dodécanoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


En laboratoire, l'acide dodécanoïque peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l’acide dodécanoïque est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).
Sa constante cryoscopique est de 3,9°C•kg/mol.


En faisant fondre l'acide dodécanoïque avec la substance inconnue, en le laissant refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.
Dans l'industrie, l'acide dodécanoïque est utilisé comme intermédiaire et comme agent tensioactif.


Les applications industrielles de l'acide dodécanoïque et de ses dérivés comprennent l'acide gras en tant que composant des résines alkydes, des agents mouillants, un accélérateur et un adoucissant pour le caoutchouc, des détergents et des insecticides.
Le marché de consommation utilise l'acide dodécanoïque dans le nettoyage, l'ameublement et la production de produits de soins personnels.


En médecine, l’acide dodécanoïque est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Utilisations et applications courantes de l'acide dodécanoïque : additif, acidifiants, intermédiaire chimique, lubrifiant, synthèse de substances, industries, production chimique, soins personnels et laboratoires.


L'acide dodécanoïque est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide dodécanoïque est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.
Dans l'industrie, l'acide dodécanoïque est utilisé comme intermédiaire et comme agent tensioactif.


Le marché de consommation utilise l'acide dodécanoïque dans le nettoyage, l'ameublement et la production de produits de soins personnels.
En médecine, l’acide dodécanoïque est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
L'acide dodécanoïque est principalement utilisé dans la fabrication et la production de savons et autres produits cosmétiques ainsi que dans les laboratoires scientifiques.


L'acide dodécanoïque est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.
L'acide dodécanoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécanoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécanoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécanoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.


L'acide dodécanoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécanoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.


L'acide dodécanoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécanoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécanoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécanoïque est généralement utilisé pour fabriquer des produits cosmétiques mais est également utilisé en laboratoire pour obtenir la masse molaire de substances.
L'acide dodécanoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


Le laurylsulfate de sodium est le composé dérivé de l'acide dodécanoïque le plus couramment utilisé à cette fin.
Étant donné que l'acide dodécanoïque possède une queue d'hydrocarbure non polaire et une tête d'acide carboxylique polaire, il peut interagir avec des solvants polaires (le plus important étant l'eau) ainsi qu'avec des graisses, permettant à l'eau de dissoudre les graisses.


Cela explique la capacité des shampooings à éliminer la graisse des cheveux.
Une autre utilisation consiste à augmenter le métabolisme, ce qui proviendrait de l'activation par l'acide dodécanoïque de 20 % des hormones thyroïdiennes, qui autrement resteraient en sommeil.
Cela est dû à la libération par l'acide dodécanoïque d'enzymes dans le tractus intestinal qui activent la thyroïde.


Cela pourrait expliquer les propriétés métaboliques de l’huile de coco.
Parce que l'acide dodécanoïque est peu coûteux, a une longue durée de conservation et est non toxique et sans danger à manipuler, il est souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.


L'acide dodécanoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. Il peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécanoïque est largement utilisé dans les cosmétiques et les produits alimentaires.


Dans les applications pharmaceutiques, l'acide dodécanoïque a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide dodécanoïque est également utile pour stabiliser les émulsions huile dans l'eau.


L'acide dodécanoïque a également été évalué pour une utilisation dans les formulations en aérosol.
L'acide dodécanoïque est utilisé dans la production de produits de soins personnels via le sel laurate de sodium.
L'acide dodécanoïque est également étudié dans la recherche métabolique et foodomique pour son impact potentiel sur les maladies cardiovasculaires.


L'acide dodécanoïque a été utilisé comme réactif pour synthétiser des nanoparticules magnétiques MnFe2O4 par la méthode de croissance médiée par les graines.
L'acide dodécanoïque peut subir une estérification avec du 2-éthylhexanol en présence d'un catalyseur à base de zircone sulfatée pour former du 2-éthylhexanoldodécanoate, un biodiesel.
Comme beaucoup d’autres acides gras, l’acide dodécanoïque est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.


L'acide dodécanoïque est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l’acide dodécanoïque réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide dodécanoïque est utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, de détergents et de pesticides.
L'acide dodécanoïque est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.


L'acide dodécanoïque est utilisé comme antimousse ; GB 2760-86 prévoit les épices autorisées à utiliser ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide dodécanoïque est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.


Les types de tensioactifs de l'acide dodécanoïque sont répertoriés dans le tableau ci-joint de cet article.
Certains tensioactifs des dérivés de l'acide dodécanoïque et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).


Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide dodécanoïque a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.
Compte tenu de leurs propriétés moussantes, les dérivés de l'acide laurique (acide h-dodécanoïque) sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.


L'acide dodécanoïque est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.
L'acide dodécanoïque peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide dodécanoïque est un léger irritant mais pas un sensibilisant, et certaines sources le citent comme comédogène.


L'acide dodécanoïque est un acide gras obtenu à partir de l'huile de noix de coco et d'autres graisses végétales.
L'acide dodécanoïque est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.


L'acide dodécanoïque fonctionne comme un lubrifiant, un liant et un agent antimousse.
L'acide dodécanoïque est utilisé comme intermédiaire des cristaux liquides
L'acide dodécanoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


-Utilisations de l'acide dodécanoïque dans le parfum :
L'acide dodécanoïque est utilisé dans les arômes de beurre et dans certains types d'arômes d'agrumes, principalement dans le citron.
La concentration d'acide dodécanoïque utilisée peut varier de 2 à 40 ppm, calculée sur le produit de consommation fini.


-Applications pharmaceutiques de l'acide dodécanoïque :
applications pharmaceutiques, il a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale (14) et de l'absorption intestinale.

L'acide dodécanoïque est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide dodécanoïque a également été évalué pour une utilisation dans les formulations en aérosol.



SOLUBILITÉ DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est soluble dans l'eau, le benzène, l'acétone, l'alcool, l'éther de pétrole, le diméthylsulfoxyde et le diméthylformamide.
L'acide dodécanoïque est légèrement soluble dans le chloroforme.



NOTES D'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est incompatible avec les bases, les agents oxydants et les agents réducteurs.



OÙ TROUVER L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les agents pathogènes tels que les bactéries, les virus et les levures.



PRÉSENCE D'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).

Sinon, l’acide dodécanoïque est relativement rare.
L'acide dodécanoïque se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Dans diverses plantes :
*Le palmier Attalea speciosa, une espèce populairement connue au Brésil sous le nom de babassu – 50% dans l'huile de babassu
*Attalea cohune, le palmier cohune (également arbre à pluie, palmier à huile américain, palmier corozo ou palmier manaca) – 46,5% dans l'huile de cohune
*Astrocaryum murumuru (Arecaceae) un palmier originaire d'Amazonie – 47,5% dans le « beurre de murumuru »
*Huile de coco 49%
*Pycnanthus kombo (muscade africaine)
*Virola surinamensis (muscade sauvage) 7,8–11,5 %
*Graines de palmier pêcher 10,4%
*Noix de bétel 9%
*Graine de palmier dattier 0,56–5,4 %
*Noix de macadamia 0,072–1,1 %
*Prune 0,35–0,38 %
*Graines de pastèque 0,33%
*Viorne opulus 0,24-0,33 %
*Citrullus lanatus (melon egusi)
*Fleur de citrouille 205 ppm, graines de citrouille 472 ppm
*Insecte
*Mouche soldat noire Hermetia illucens 30–50 mg/100 mg de graisse.



PARENTS ALTERNATIFS DE L'ACIDE DODÉCANOÏQUE :
*Acides dicarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE DODÉCANOÏQUE :
*Acide gras à chaîne moyenne
*Acide dicarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



TYPE DE COMPOSÉ D'ACIDE DODÉCANOÏQUE :
*Toxine animale
*Toxine cosmétique
*Toxine alimentaire
*Toxine industrielle/lieu de travail
*Métabolite
*Composé naturel
*Composé organique
*Plastifiant



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est un cristal incolore en forme d'aiguille.
L'acide dodécanoïque est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.



STABILITÉ ET CONDITIONS DE CONSERVATION DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est stable à des températures normales et doit être conservé dans un endroit frais et sec.



SOURCE ET PRÉPARATION DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est un acide gras carboxylique isolé des graisses ou des huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide dodécanoïque.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PRÉSENCE D'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).
Sinon, l’acide dodécanoïque est relativement rare.
L'acide dodécanoïque se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).



SÉCURITÉ DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est largement utilisé dans les préparations cosmétiques, dans la fabrication d'additifs alimentaires et dans les formulations pharmaceutiques.
L'exposition générale à l'acide dodécanoïque se produit par la consommation d'aliments et par contact cutané avec des cosmétiques, des savons et des produits détergents.

L'exposition professionnelle peut provoquer une irritation locale des yeux, du nez, de la gorge et des voies respiratoires, bien que l'acide dodécanoïque soit considéré comme sûr et non irritant pour une utilisation dans les cosmétiques.
Aucun effet toxicologique n’a été observé lorsque l’acide dodécanoïque a été administré à des rats à raison de 35 % de leur alimentation pendant 2 ans.



TRIGLYCÉRIDES À CHAÎNE MOYENNE DE L'ACIDE DODÉCANOÏQUE :
Les triglycérides à chaîne moyenne, ou acides gras, comme l'acide dodécanoïque, se caractérisent par une structure chimique spécifique qui permet à votre corps de les absorber en entier.

Cela les rend plus faciles à digérer : votre corps les traite comme des glucides et ils sont utilisés comme source d’énergie directe.
Comparés aux triglycérides à longue chaîne, le type présent dans d'autres graisses saturées, les MCT contiennent moins de calories par portion, environ 8,3 calories par gramme au lieu des 9 calories standard par gramme, selon un article paru dans "Nutrition Review".



ASPECTS NUTRITIONNELS ET MÉDICAUX DE L'ACIDE DODÉCANOÏQUE :
Bien que 95 % des triglycérides à chaîne moyenne soient absorbés par la veine porte, seuls 25 à 30 % de l'acide dodécanoïque sont absorbés par celle-ci.
L'acide dodécanoïque induit l'apoptose dans le cancer et favorise la prolifération des cellules normales en maintenant l'homéostasie rédox cellulaire.
L'acide dodécanoïque augmente les lipoprotéines sériques totales plus que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL).

En conséquence, l'acide dodécanoïque a été caractérisé comme ayant « un effet plus favorable sur le HDL total que tout autre acide gras [examiné], saturé ou insaturé ».
En général, un rapport lipoprotéines sériques totales/HDL plus faible est en corrélation avec une diminution de l’incidence de l’athérosclérose.

Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/lipoprotéines sériques a révélé en 2003 que les effets nets de l'acide dodécanoïque sur les résultats des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de coco (qui contient près de la moitié de l’acide dodécanoïque) n’a pas non plus été concluante quant à ses effets sur l’incidence des maladies cardiovasculaires.



INCLUER L'ACIDE DODÉCANOÏQUE DANS VOTRE ALIMENTATION :
L'acide dodécanoïque peut être pris en complément, mais il est le plus souvent consommé dans l'huile de coco ou l'huile de palmiste.
L'acide dodécanoïque est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Selon le centre médical NYU Langone, l'huile de noix de coco et l'huile de palmiste contiennent jusqu'à 15 % de MCT, ainsi qu'un certain nombre d'autres graisses.
Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.

Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier ou une odeur grasse.
L'acide dodécanoïque est un constituant commun de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCANOÏQUE :
Comme beaucoup d’autres acides gras, l’acide dodécanoïque est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide dodécanoïque est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l’acide dodécanoïque est neutralisé avec de l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCANOÏQUE :
1. Les méthodes de production industrielle peuvent être regroupées en deux catégories :
* dérivés de la saponification ou de la décomposition à haute température et pression d'huiles et de graisses végétales naturelles ;
* séparé de l'acide gras synthétique.

Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide dodécanoïque.
Les huiles végétales naturelles utilisées pour produire de l'acide dodécanoïque comprennent l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de graines de poivre de montagne.

D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide dodécanoïque.
Le distillat C12 résiduel issu de l'extraction de l'acide dodécanoïque, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide dodécanoïque avec un rendement supérieur à 86 %.

2. Dérivé de la séparation et de la purification de l'huile de noix de coco et d'autres huiles végétales.

3. L'acide dodécanoïque existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide dodécanoïque peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.
La teneur en acide dodécanoïque est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide dodécanoïque.



RÉACTIONS DE L'AIR ET DE L'EAU DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est insoluble dans l'eau.



VALEURS SEUILS D'ARÔME DE L'ACIDE DODÉCANOÏQUE :
Valeurs seuils d'arôme
Caractéristiques aromatiques à 1,0% : gras, crémeux, fromager, cireux de bougie avec une richesse semblable à celle d'un œuf



Seuils gustatifs de l'acide dodécanoïque :
Caractéristiques gustatives à 5 ppm : cireux, gras et huileux, semblable à du suif, crémeux et laiteux avec une sensation enrobante en bouche



PROFIL DE RÉACTIVITÉ DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.

Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.

De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide dodécanoïque pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCANOÏQUE :
L'acide dodécanoïque est un acide gras carboxylique isolé des graisses ou des huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux des proportions élevées d’acide dodécanoïque.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DODÉCANOÏQUE :
Formule chimique : C10H18O4
Masse molaire : 202,250 g•mol−1
Densité : 1,209 g/cm3
Point de fusion : 131 à 134,5 °C (267,8 à 274,1 °F ; 404,1 à 407,6 K)
Point d'ébullition : 294,4 °C (561,9 °F ; 567,5 K) à 100 mmHg
Solubilité dans l'eau : 0,25 g/L
Acidité (pKa) : 4.720, 5.450
Poids moléculaire : 202,25
XLogP3 : 2.1
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4

Nombre de liaisons rotatives : 9
Masse exacte : 202.12050905
Masse monoisotopique : 202,12050905
Surface polaire topologique : 74,6 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 157
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
État physique : poudre
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 133 - 137 °C - allumé.
Point initial d'ébullition et intervalle d'ébullition : 294,5 °C à 133 hPa - lit.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible

Point d'éclair : Non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau: 0,224 g/l à 20 °C - OCDE Ligne directrice 105
Coefficient de partage:
n-octanol/eau : log Pow : 1,5 à 23 °C
Pression de vapeur : 1 hPa à 183 °C
Densité : 1 210 g/cm3 à 20 °C

Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Solubilité dans l'eau : 0,91 g/L
logP : 1,93
logP : 2,27
logS : -2,4
pKa (acide le plus fort) : 4,72

Charge physiologique : -2
Nombre d'accepteurs d'hydrogène : 4
Nombre de donneurs d'hydrogène : 2
Surface polaire : 74,6 Ų
Nombre de liaisons rotatives : 9
Réfractivité : 51,14 m³•mol⁻¹
Polarisabilité : 22,61 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : non
Règle de type MDDR : non

Point de fusion : 133-137 °C (lit.)
Point d'ébullition : 294,5 °C/100 mmHg (lit.)
Densité : 1,21
pression de vapeur : 1 mm Hg ( 183 °C)
indice de réfraction : 1,422
Point d'éclair : 220 °C
Température de stockage : Conserver en dessous de +30°C.
solubilité : éthanol : 100 mg/mL
forme : poudre ou granulés
pka : 4,59, 5,59 (à 25 ℃ )
couleur : Blanc à blanc cassé
Solubilité dans l'eau : 1 g/L (20 ºC)
Merck : 14 8415

Numéro de référence : 1210591
Stabilité : Stable.
LogP : 1,5 à 23 ℃
Aspect : poudre granulaire blanche (est)
Dosage : 95,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point de fusion : 130,80 °C. @ 760,00 mmHg
Point d'ébullition : 364,00 à 365,00 °C. @ 760,00 mmHg
Point d'ébullition : 235,00 à 234,00 °C. @ 10,00 mmHg
Point d'éclair : 389,00 °F. TCC (198,30 °C.) (est)
logP (dont) : 1,706 (est)
Soluble dans : eau, 1000 mg/L à 20 °C (exp)
eau, 1420 mg/L à 25 °C (est)

Formule chimique : C12H24O2
Masse molaire : 200,322 g•mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier
Densité : 1,007 g/cm³ (24 °C),
0,8744 g/cm³ (41,5 °C),
0,8679 g/cm³ (50 °C)
Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)
Point d'ébullition : 297,9 °C (568,2 °F ; 571,0 K),
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg,
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg
Solubilité dans l'eau : 37 mg/L (0 °C), 55 mg/L (20 °C),
63 mg/L (30 °C), 72 mg/L (45 °C), 83 mg/L (100 °C)

Solubilité : Soluble dans les alcools, l'éther diéthylique,
phényles, haloalcanes, acétates
Solubilité dans le méthanol : 12,7 g/100 g (0 °C),
120 g/100 g (20 °C), 2 250 g/100 g (40 °C)
Solubilité dans l'acétone : 8,95 g/100 g (0 °C),
60,5 g/100 g (20 °C), 1 590 g/100 g (40 °C)
Solubilité dans l'acétate d'éthyle : 9,4 g/100 g (0 °C),
52 g/100 g (20°C), 1250 g/100 g (40°C)
Solubilité dans le toluène : 15,3 g/100 g (0 °C),
97 g/100 g (20°C), 1410 g/100 g (40°C)
log P : 4,6

Pression de vapeur : 2,13•10−6 kPa (25 °C),
0,42 kPa (150 °C),
6,67 kPa (210 °C)
Acidité (pKa) : 5,3 (20 °C)
Conductivité thermique : 0,442 W/m•K (solide),
0,1921 W/m•K (72,5 °C),
0,1748 W/m•K (106 °C)
Indice de réfraction (nD) : 1,423 (70 °C),
1,4183 (82 °C)
Viscosité : 6,88 cP (50 °C), 5,37 cP (60 °C)
Structure:
Structure cristalline : Monoclinique (forme α),
Triclinique, aP228 (forme γ)

Groupe spatial : P21/a, n° 14 (forme α), P1, n° 2 (forme γ)
Groupe de points : 2/m (forme α)[8], 1 (forme γ)[9]
Constante de réseau : a = 9,524 Å, b = 4,965 Å,
c = 35,39 Å (forme α),
α = 90°, β = 129,22°, γ = 90°
Thermochimie:
Capacité thermique (C) : 404,28 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −775,6 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 7377 kJ/mol,
7425,8 kJ/mol (292 K)
Poids moléculaire : 200,32 g/mol
XLogP3 : 4,2
Nombre de donneurs de liaisons hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 10
Masse exacte : 200,177630004 g/mol
Masse monoisotopique : 200,177630004 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 132
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Nom IUPAC : acide dodécanoïque
Nom traditionnel IUPAC : acide laurique
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,3178
Masse exacte : 200,177630012
SOURIRES : CCCCCCCCCCCC(O)=O

Formule chimique : C12H24O2
Poids moléculaire moyen : 200,3178
Poids moléculaire monoisotopique : 200,177630012
Nom IUPAC : acide dodécanoïque
Nom traditionnel : acide laurique
Numéro de registre CAS : 143-07-7
SOURIRES : CCCCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Synonymes : acide n-dodécanoïque
Nom IUPAC : Acide dodécanoïque
SOURIRES canoniques : CCCCCCCCCCCC(=O)O
InChI: POULHZVOKOAJMA-UHFFFAOYSA-N

Clé InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Point d'ébullition : 225 °C 100 mmHg (lit.)
Point de fusion : 44-46 °C (lit.)
Point d'éclair : 156 ºC
Densité : 0,883 g/ml
Aspect : Liquide clair
Stockage : Température ambiante
CNo.Chaîne: C12:0
Dérivé composé : acide
Numéro CE : 205-582-1
Acide gras : Dodécanoïque (Laurique)
Codes de danger : Xi

Mentions de danger : Xi
Code SH : 2916399090
LogP : 3,99190
Numéro MDL : MFCD00002736
État physique : Solide
PSA : 37,3
Indice de réfraction : 1,4304
Description de sécurité : 37/39-26-39-36
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
Conditions de stockage : Conserver dans un récipient bien fermé.
Conserver dans un endroit frais, sec et bien ventilé, à l'écart des substances incompatibles.

Mentions de danger supplémentaires : H401-H318-H319
Symbole : GHS05, GHS07
Pression de vapeur : 1 mm Hg ( 121 °C)
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,322 g/mol
SOURIRES : OC(CCCCCCCCCCC)=O
ÉCLABOUSSURE : éclaboussure10-0706-9000000000-b974e08e305014657f85
Source du spectre : HE-1982-0-0
Numéro CB : CB0357278
Formule moléculaire : C12H24O2
Structure de Lewis
Poids moléculaire : 200,32

Numéro MDL : MFCD00002736
Fichier MOL : 143-07-7.mol
Point de fusion : 44-46 °C (lit.)
Point d'ébullition : 225 °C/100 mmHg (lit.)
Densité : 0,883 g/mL à 25 °C (lit.)
Pression de vapeur : 1 mm Hg (121 °C)
Indice de réfraction : 1,4304
FEMA : 2614 | L'ACIDE LAURIQUE
Point d'éclair : >230 °F
Température de stockage : 2-8°C
Solubilité : 4,81 mg/L
Forme : Poudre cristalline de flocons
pKa : 4,92 (H2O, t =25,0) (Incertain)
Gravité spécifique : 0,883
Couleur blanche

Odeur : à 100,00 % d'huile de baie de coco grasse douce
Type d'odeur : grasse
Limite d'explosivité : 0,6 % (V)
Solubilité dans l'eau : insoluble
λmax : 207 nm (MeOH) (lit.)
Numéro JECFA : 111
Merck : 14 5384
Numéro de référence : 1099477
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
LogP : 5

Constante de dissociation : 5,3 à 20°C
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE LAURIQUE
Référence de la base de données CAS : 143-07-7 (Référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 1160N9NU9U
Référence chimique NIST : Acide dodécanoïque (143-07-7)
Système d'enregistrement des substances de l'EPA : Acide laurique (143-07-7)
Poids moléculaire : 200,32
Masse exacte : 200,32
Numéro de référence : 1099477
Numéro CE : 205-582-1
Code SH : 29159010

Caractéristiques
PSA : 37,3
XLogP3 : 4,2
Aspect : Poudre cristalline blanche de flocons
Densité : 0,883 g/cm³ à température : 20 °C
Point de fusion : 44,2 °C
Point d'ébullition : 298,9 °C
Point d'éclair : >230 °F
Indice de réfraction : 1,4304
Solubilité dans l'eau : H2O : insoluble
Conditions de stockage : Conserver à une température inférieure à +30°C
Pression de vapeur : 1 mm Hg (121 °C)
Toxicité : DL50 iv chez la souris : 131 ±5,7 mg/kg (Or, Wretlind)
Limite d'explosivité : 0,6 % (V)
Odeur : Caractéristique, comme l'huile de laurier
pKa : 5,3 (à 20 °C)



PREMIERS SECOURS DE L'ACIDE DODÉCANOÏQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE DODÉCANOÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Prendre à sec.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DODÉCANOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DODÉCANOÏQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DODÉCANOÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec



STABILITÉ et RÉACTIVITÉ de l'ACIDE DODÉCANOÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible

ACIDE DODÉCÏQUE
L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécoïque, réactif, également connu sous le nom d'acide dodécylique, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide dodécoïque est un acide carboxylique cristallin blanc.


Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Numéro MDL : MFCD00004440
Formule moléculaire : C10H18O4 / HOOC(CH2)8COOH



SYNONYMES :
Acide dodécanoïque, acide n-dodécanoïque, acide dodécylique, acide dodécoïque, acide laurostéarique, acide vulvique, acide 1-undécanecarboxylique, acide duodécylique, C12:0 (indices lipidiques), acide laurostéarique, Laurates, NSC 5026, acide vulvique, 1-dodécanoïque acide, dodécanoates, acide laurique, acide dodécylique, acide 1-undécanecarboxylique, FA12:0, acide n-dodécanoïque, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, 1-undécanecarboxylique acide, aliphat non. 4, néo-gras 12, acide décanedioïque, acide 1,8-octanedicarboxylique, acide décane-1,10-dioïque, acide sébacique, ACIDE DÉCANEDIOIQUE, 111-20-6, acide 1,8-octanedicarboxylique, 1,10-décanedioïque acide, Acides sébaciques, Sebacinsaure, Acide décanedicarboxylique, Acide n-décanedioïque, Acide sébacique, Sebacinsaeure, USAF HC-1, Acide ipomique, Acide séracique, Acide décanedioïque, homopolymère, NSC 19492, UNII-97AN39ICTC, 1,8-dicarboxyoctane, 26776 -29-4, NSC19492, 97AN39ICTC, acide octane-1,8-dicarboxylique, CHEBI:41865, NSC-19492, DSSTox_CID_6867, DSSTox_RID_78231, DSSTox_GSID_26867, SebacicAcid, CAS-111-20-6, CCRIS 2290, EINECS 203- 845- 5, BRN 1210591, n-décanedioate, acide iponique, AI3-09127, sébacate disodique, 4-oxodécanedioate, MFCD00004440, 1,10-décanedioate, acide sébacique, 94 %, acide sébacique, 99 %, acide dicarboxylique C10, 1i8j, 1l6s, 1l6y, 1,8-Octanedicarboxylate, WLN : QV8VQ, ACIDE SÉBACIQUE, EC 203-845-5, SCHEMBL3977, NCIOpen2_008624, ACIDE SÉBACIQUE, 4-02-00-02078, ACIDE SÉBACIQUE, CHEMBL1232164, 7, acide sébacique, > =95,0 % (GC), ZINC1531045, Tox21_201778, Tox21_303263, BBL011473, LMFA01170006, s5732, STL146585, AKOS000120056, CCG-266598, CS-W015503, DB07645, GS- 6713, HY-W014787, NCGC00164361-01, NCGC00164361-02, NCGC00164361 -03, NCGC00257150-01, NCGC00259327-01, BP-27864, NCI60_001628, DB-121158, FT-0696757, C08277, A894762, C10-120, C10-140, C10-180, C10-220, 260, C10 -298, Q413454, Q-201703, Z1259273339, 301CFA7E-7155-4D51-BD2F-EB921428B436, acide 1,8-octanedicarboxylique, acide décanedioïque, acide octane-1,8-dicarboxylique, acide 1,10-décanedioïque, 1,8 -Acide octanedicarboxylique, NSC 19492, NSC 97405, acide n-décanedioïque, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-dicarboxyoctane, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4,7 -Acide dioxosébacique, Acide 4,7-dioxosébacique, 4-Oxodécanedioate, 4-oxodécanedioate, Acide 4-Oxodécanedioïque, Acide 1,10-Décanedioïque, 1,8-Dicarboxyoctane, Acide décanedioïque, Sébacinsaeure, 1,10-Décanedioate, Décanedioate, Sébacate, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, acide 4,7-dioxosebacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, acide dicarboxylique C10, acide ipomique, N-décanedioate, N- Acide décanedioïque, Acides sébaciques, Sebacinsaure, Acide séracique, Acide sébacique, sel d'aluminium, Acide sébacique, sel de monocadmium, Acide sébacique, sel de sodium, ACIDE DÉCANEDIOIQUE, sébacique, USAF hc-1, acidesebacique, ACIDE SÉBACIQUE pur, acide n-décanedioïque, Acide 1,10-décanedioïque, acide décanedicarboxylique, sébacate (décanedioate), ACIDE 1,8-OCTANEDICARBOXYLIQUE, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4, Acide 7-dioxosébacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, décanedioate, acide 1,8-octanedicarboxylique, acide 1,10-décanedioïque, acide n-décanedioïque, 4-oxodécanedioate, 1,8-dicarboxyoctane , Acide octane-1,8-dicarboxylique, acide sébacique, acide ipomique, acide séracique, acide laurique, ACIDE DODÉCANOÏQUE, 143-07-7, acide n-dodécanoïque, acide dodécylique, acide laurostéarique, acide vulvique, acide dodécoïque, acide duodécylique , Acide 1-undécanecarboxylique, Aliphat No. 4, Ninol AA62 Extra, Wecoline 1295, Acide Hydrofol 1255, Acide Hydrofol 1295, Acide duodécyclique, Hystrene 9512, Univol U-314, Acide laurique pur, Dodécylcarboxylate, Acide laurique (naturel), Laurinsaeure, acide undécane-1-carboxylique, ABL, NSC-5026, FEMA n° 2614, laurate, C-1297, Philacid 1200, CCRIS 669, C12:0, Emery 651, Lunac L 70, CHEBI : 30805, HSDB 6814, EINECS 205-582-1, UNII-1160N9NU9U, BRN 1099477, n-dodécanoate, Kortacid 1299, anion acide dodécanoïque, DTXSID5021590, Prifrac 2920, AI3-00112, Lunac L 98, Univol U 314, Prifac 1160N, 9NU9U, MFCD00002736, DAO , DTXCID801590, CH3-[CH2]10-COOH, NSC5026, EC 205-582-1, dodécylate, laurostéarate, vulvate, 4-02-00-01082 (référence du manuel Beilstein), ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), 1-undécanecarboxylate , ACIDE LAURIQUE (USP-RS), ACIDE LAURIQUE [USP-RS], CH3-(CH2)10-COOH, 8000-62-2, CAS-143-07-7, SMR001253907, laurinsaure, acide dodécanique, Nuvail, laurique -acide, Acide Laurique, 3uil, Acide laurique (NF), DODECANOICACID, acide gras 12:0, Acide laurique, Réactif, Nissan NAA 122, Emery 650, Acide dodécanoïque, 98%, Acide dodécanoïque, 99%, Réactif garanti,99 %, Acide dodécanoïque (laurique), ACIDE LAURIQUE [MI], bmse000509, ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], SCHEMBL5895, NCIOpen2_009480, MLS002177807, MLS002415737, WLN: QV11, Acide dodécanoïque (acide laurique), ACIDE LAURIQUE [ WHO-DD], acide dodécanoïque, >=99,5 %, Edenor C 1298-100, ACIDE DODÉCANOÏQUE [HSDB], CHEMBL108766, GTPL5534, NAA 122, NAA 312, HMS2268C14, HMS3649N06, HY-Y0366, STR08039, acide dodécanoïque, étalon analytique , Acide laurique, >=98%, FCC, FG, Tox21_202149, Tox21_303010, BDBM50180948, LMFA01010012, s4726, STL281860, AKOS000277433, CCG-266587, DB03017, FA 12:0, ACIDE OL 1255 OU 1295, NCGC00090919-01, NCGC00090919- 02, NCGC00090919-03, NCGC00256486-01, NCGC00259698-01, AC-16451, BP-27913, DA-64879, acide dodécanoïque, >=99 % (GC/titration), LAU, acide dodécanoïque, purum, >=96,0 % (GC), Acide laurique, naturel, >=98%, FCC, FG, CS-0015078, L0011, NS00008441, EN300-19951, C02679, D10714, A808010, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN), Q422627, SR-01000838338 , J-007739, SR-01000838338-3, BRD-K67375056-001-07-9, F0001-0507, ACIDE LAURIQUE (CONSTITUANT DU PALMETTE SCINÉ) [DSC], Z104476194, 76C2A2EB-E8BA-40A6-8032-40A9862, 5ED7B, Laurique acide, étalon de référence de la Pharmacopée européenne (EP), acide laurique, étalon de référence de la Pharmacopée américaine (USP), acide laurique, étalon secondaire pharmaceutique ; Matériau de référence certifié, 203714-07-2, 7632-48-6, InChI=1/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/ h2-11H2,1H3,(H,13,14, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, ABL, Acide Laurique, Acide gras C12, C12:0, Acides gras d'huile de coco, DAO, Dodécanoate, acide dodécanoïque, dodécate, Dodécoïque acide, Dodécylate, dodécylcarboxylate, Acide dodécylique, duodécyclate, Acide duodécyclique, duodécylate, Acide duodécylique, LAP, LAU, Laurate, Acide laurique, Laurinsaeure, Laurostéarate, Acide laurostéarique, MYR, n-dodécanoate, acide n-dodécanoïque, laurate de sorbitan, sorbitan monolaurate (NF), undécane-1-carboxylate, acide undécane-1-carboxylique, Vulvate, acide vulvique, CH3-[CH2]10-COOH, acide dodécylcarboxylique, Laate, acide laïque, Aliphat no 4, Edenor C 1298-100. , Emery 651, Hystrene 9512, Kortacid 1299, Lunac L 70, Lunac L 98, Neo-fat 12, Neo-fat 12-43, Nissan naa 122, Philacid 1200, Prifac 2920, Univol u 314, acide 1-dodécanoïque, FA (12:0), acide 1-undécanecarboxylique, ABL, Aliphat no. 4, acide gras C12, acides gras d'huile de coco, dodécanoate, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), acide dodécoïque, dodécylcarboxylate, acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide laurique, Acide laurique pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Acide n-dodécanoïque, N-dodécanoate, Neo-fat 12, Ninol aa62 extra, Acide undécane-1-carboxylique , Univol U 314, Univol U-314, acide vulvique, AI3-00112, BRN 1099477, C-1297, CCRIS 669, EINECS 205-582-1, FEMA NO. 2614, HSDB 6814, HYDROFOL ACID 1255, HYDROFOL ACID 1295, HYSTRENE 9512, NEO-FAT 12-43, PHILACID 1200, PRIFRAC 2920, WECOLINE 1295, acide 1-Undécanecarboxylique, ABL, AC-16451, AC1L1GY2, , AKOS000277433, Aliphat N° 4, CH3-[CH2]10-COOH, acides gras d'huile de coco, DAO, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), Dodécanoate, Acide dodécanoïque (laurique), Acide dodécanoïque (acide laurique), Acide dodécanoïque (acide laurique ), Acide dodécoïque, Dodécylcarboxylate, Acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide hydrofol 1255, Acide hydrofol 1295, Hystrene 9512, I04-1205, L-ALFA-LYSOPHOSPHATIDYLCHOLINE, LAUROYL, L0011, LAP, LAU, Acide laurique , pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, Philacid 1200, Prifrac 2920, SMR001253907, ST023796, Acide Undécane-1-carboxylique, Univol U-314, Acide vulvique, Wecoline 1295, [2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM, n-Dodecanoate, acide n-Dodecanoïque, nchembio.364-comp10 , Acide dodécanoïque, acide n-dodécanoïque, Neo-fat 12, Aliphat no. 4, Abl, Acide dodécylique, Acide laurique, Acide laurostéarique, Neo-fat 12-43, Ninol aa62 extra, Univol u-314, Acide vulvique, Acide 1-undécanecarboxylique, Acide duodécylique, C-1297, Acides gras d'huile de coco, Hydrofol acide 1255, acide Hydrofol 1295, Wecoline 1295, acide dodécoïque, Hystrene 9512, Lunac L 70, acide duodécyclique, Emery 650, n-dodécanoate, Philacid 1200, Prifrac 2920, acide undécane-1-carboxylique, C-1297, acide dodécanoïque, acide dodécoïque, acide duodécylique, acide ndodécanoïque, acide Hydrofol 1255, acide Hydrofol 1295, Hystrene 9512, acide laurostéarique, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, acide 1-undécanecarboxylique, acide vulvique, Wecoline 1295, Acide dodécoïque, acide duodécyclique, Edenor C 1298-100, Emery 650, acide Hydrofol 1295, Hystrene 9512, Kortacid 1299, Laurostéarate, Lunac L 70, Lunac L 98, Neo-fat 12, Ninol AA62 extra, Nissan naa 122, Philacid 1200 , Prifac 2920, Prifrac 2920, Univol U 314, Vulvate, Acide vulvique, Wecoline 1295, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, Dodécylate, Dodécylcarboxylate, Acide dodécylique, Acide duodécylique, Acide laurostéarique, Acide n-dodécanoïque, Undécane-1- acide carboxylique, LAP, LAU, DAO, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, acide 1-undécanecarboxylique, aliphat no. 4, néo-graisse 12, 143-07-7, 205-582-1, ACIDE 1-UNDÉCANECARBOXYLIQUE, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE [HSDB], ACIDE DODÉCOÏQUE, FEMA NO. 2614, LAURATE, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN) [DSC], ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], ACIDE LAURIQUE [MI], ACIDE LAURIQUE [USP-RS], ACIDE LAURIQUE [WHO-DD], ACIDE LAUROSTÉARIQUE, ACIDE N-DODÉCANOÏQUE, NSC-5026, acide dodécanoïque, acide laurique, acide laurostéarique, acide 1-undécanecarboxylique, ABL, Aliphat No. 4, Univol U 314, acide dodécylique, acide vulvique, Neo-Fat 12-43, Acide n-dodécanoïque, Neo-Fat 12, Lunac L 70, Emery 651, Prifac 2920, Nissan NAA 122, Lunac L 98, Hystrene 9512, NAA 312, Kortacid 1299, Philacid 1200, Edenor C 1298-100, NSC 5026, NAA 122, Prifac 2922, Edenor C 12, Prifrac 2920, ContraZeck, acide 1-dodécanoïque, Imex C 1299, Palmac 98-12, Edenor 12/98-100, Palmera B 1231, Edenor C 12-98-100, Lasacid FC 12 , Laurates, Dodécanoates, Palmae 99-12, D 97385, Edenor C12-99, Noix de coco dure 34, Noix de coco dure 42, Radiacid 0624, NS 6, 7632-48-6, 8000-62-2, 8045-27-0, 203714-07-2, 55621-34-6, ACIDE DODÉCANOÏQUE, C12, Emery651, Acide vulvique, FEMA 2614, acide laurique, pur, ACIDE N-DODÉCANOÏQUE, ACIDE LAUROSTÉARIQUE, Acide laurique 98-101 % (acidimétrique), Acide gras ester méthylique sulfonate (MES), acide dodécanoïque D23, acide dodécanoïque-d23,1-acide dodécanoïque-d23, acide 1-undécanecarboxylique-d23, ABL-d23, Aliphat n° 4-d23, ContraZeck-d23, acide dodécylique-d23, Edenor C 12-d23, Edenor C 1298-100-d23, Emery 651-d23, Hystrene 9512-d23, Imex C 1299-d23, Kortacid 1299-d23, Acide laurostéarique-d23, Lunac L 70-d23, Lunac L 98- d23, NAA 122-d23, NAA 312-d23, NSC 5026-d23, Néo-Fat 12-d23, Néo-Fat 12-43-d23, Nissan NAA 122-d23, Philacid 1200-d23, Prifac 2920-d23, Prifac 2922-d23, Prifrac 2920-d23, Univol U 314-d23, acide vulvique-d23, acide n-dodécanoïque-d23, dodécanoate, acides gras d'huile de noix de coco, acide laurostéarique, acide N-dodécanoïque, acide gras C12, acide duodécyclique, vulvique Acide, acide dodécanoïque (acide laurique), acide duodécylique, N-dodécanoate, acide dodécanoïque (laurique), Laurinsaeure, acide laurique, pur, acide laurique (naturel), dodécylcarboxylate, Abl, Dao, Lap, Lau, Myr



L'acide dodécoïque est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécoïque est un acide conjugué d'un dodécanoate.
L'acide dodécoïque dérive d'un hydrure de dodécane.


L'acide dodécoïque est un acide carboxylique cristallin blanc.
L'acide dodécoïque est utilisé comme plastifiant et pour fabriquer des détergents et des savons.
Les glycérides de l'acide dodécoïque sont naturellement présents dans les huiles de noix de coco et de palme.


L'acide dodécoïque est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécoïque appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de baie de noix de coco ou de savon gras et doux.
L'acide dodécoïque est le principal acide gras de l'huile de noix de coco (49 %) et de l'huile de palmiste (47 à 50 %). On le trouve en moindre quantité dans la muscade sauvage, le lait maternel, le lait de vache, le lait de chèvre et les graines de pastèque. , prune et noix de macadamia.


L'acide dodécoïque, bien que légèrement irritant pour les muqueuses, présente une toxicité extrêmement faible, est peu coûteux, possède des propriétés antimicrobiennes et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécoïque est un composé faiblement acide.


L'acide dodécoïque réagit avec l'hydroxyde de sodium pour générer du laurate de sodium, qui est du savon.
L'acide dodécoïque a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras saturé ou insaturé ».


L'acide dodécoïque est un acide gras saturé de formule développée CH3(CH2)10COOH.
L'acide dodécoïque est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécoïque se trouve également dans le lait maternel (5,8 % des matières grasses totales), le lait de vache (2,2 %) et le lait de chèvre (4,5 %).


L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécoïque, réactif, également connu sous le nom d'acide dodécoïque, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide dodécoïque se trouve naturellement dans le lait maternel ainsi que dans le lait de vache et de chèvre.


La qualité réactive de l'acide dodécoïque signifie qu'il s'agit de la plus haute qualité disponible dans le commerce pour ce produit chimique et que l'American Chemical Society n'a officiellement fixé aucune spécification pour ce matériau.
L'acide dodécoïque est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.


De plus, l’acide dodécoïque est utilisé dans la recherche en science alimentaire où il sert de modèle pour comprendre la digestion et le métabolisme des acides gras à chaîne moyenne.
Les propriétés antimicrobiennes de l'acide dodécoïque sont également examinées en termes de manière dont elles peuvent être exploitées dans des applications non médicales, telles que la conservation et la sécurité des aliments, où la réduction de la croissance microbienne est essentielle.


De plus, le rôle de l'acide dodécoïque dans les applications industrielles s'étend à son utilisation comme matière première dans la synthèse de divers dérivés chimiques, notamment les esters utilisés dans les arômes et les parfums, démontrant sa polyvalence et son importance tant dans la recherche scientifique que dans les applications industrielles.
L'acide dodécoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécoïque, C12H24O2, également connu sous le nom d'acide dodécoïque, est un acide gras saturé avec une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux, l'acide dodécoïque, a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.


L'acide dodécoïque est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécoïque, CAS 143-07-7, formule chimique C12H24O2, est produit sous forme de poudre cristalline blanche, a une légère odeur d'huile de laurier et est soluble dans l'eau, les alcools, les phényles, les haloalcanes et les acétates.


L'acide dodécoïque est non toxique, sûr à manipuler, peu coûteux et a une longue durée de conservation.
L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécoïque appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécoïque est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécoïque est un composé potentiellement toxique.
L'acide dodécoïque a la formule chimique C12H24O2.
L'acide dodécoïque se présente sous la forme d'un solide cristallin blanc avec une odeur caractéristique d'huile de laurier.


L'acide dodécoïque est insoluble dans l'eau et soluble dans l'éther, le chloroforme et l'alcool.
L'acide dodécoïque se trouve naturellement dans certaines graisses végétales et animales et est un composant clé de l'huile de coco.
L'acide dodécoïque est préparé synthétiquement par distillation fractionnée d'autres acides de noix de coco mélangée.


L'acide dodécoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide dodécoïque liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide dodécoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécoïque sont appelés laurates.
L'acide dodécoïque est un acide gras saturé avec un acide carboxylique terminal.


L'acide carboxylique terminal, l'acide dodécoïque, peut réagir avec des groupes amine primaire en présence d'activateurs tels que HATU.
L'acide dodécoïque est une forme marquée au carbone 13 d'un acide gras saturé présent dans le lait de coco, l'huile de coco, l'huile de laurier et l'huile de palmiste, ainsi que dans le lait maternel et d'autres laits d'origine animale.


L'acide dodécoïque est un inhibiteur de la pompe à protons potentiellement destiné au traitement des infections à Helicobacter pylori.
Des expériences in vitro ont suggéré que certains acides gras, dont l'acide dodécoïque, pourraient constituer un composant utile dans un traitement contre l'acné, mais aucun essai clinique n'a encore été mené pour évaluer ce bénéfice potentiel chez l'homme.


L'acide dodécoïque augmente le cholestérol sérique total plus que de nombreux autres acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l’acide dodécoïque a ét�� caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».


L'acide dodécoïque, identifié par le numéro CAS 143-07-7, est un acide gras saturé à chaîne moyenne avec un squelette de 12 atomes de carbone, bien connu pour son rôle dans la fabrication de savons, de détergents et de cosmétiques.
En tant que composant fondamental, l'acide dodécoïque est réputé pour ses propriétés tensioactives, qui permettent la production d'une mousse riche dans les produits nettoyants.


En recherche, l'acide dodécoïque est largement utilisé pour étudier le comportement des lipides dans divers systèmes en raison de sa nature amphiphile, qui lui permet de s'assembler en micelles et autres nanostructures dans des solutions aqueuses.
Ces études sont cruciales pour faire progresser les domaines de la science des matériaux et de la nanotechnologie, en particulier dans le développement de systèmes de distribution et l'amélioration des formulations de produits.


L'acide dodécoïque est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécoïque est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.


L'acide dodécoïque joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.
L'acide dodécoïque est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécoïque est un acide conjugué d'un dodécanoate.


L'acide dodécoïque dérive d'un hydrure de dodécane.
L'acide dodécoïque est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.
L'acide dodécoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


L'acide dodécoïque est un métabolite présent ou produit par Escherichia coli.
L'acide dodécoïque est un produit naturel présent dans Ipomoea leptophylla, Arisaema tortuosum et d'autres organismes pour lesquels des données sont disponibles.
L'acide dodécoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécoïque est le principal acide gras de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier.


L'acide dodécoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécoïque est un métabolite présent ou produit par Saccharomyces cerevisiae.
L'acide dodécoïque est un acide gras saturé à chaîne moyenne.


L'acide dodécoïque se trouve dans de nombreuses graisses végétales ainsi que dans les huiles de noix de coco et de palmiste.
L'acide dodécoïque est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.
L'acide dodécoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécoïque sont appelés laurates.


L'acide dodécoïque est un précurseur du peroxyde de dilauroyle, un initiateur courant de polymérisations.
L'acide dodécoïque appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécoïque, également connu sous le nom de dodécanoate ou acide laurique, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécoïque est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécoïque est le principal acide gras de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécoïque est un solide blanc et poudreux avec une légère odeur d'huile de laurier.
L'acide dodécoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


L'acide dodécoïque est un acide gras qui inhibe la croissance des bactéries.
L'acide dodécoïque inhibe la croissance bactérienne en se liant au site actif de l'enzyme dihydrolipoamide acétyltransférase, qui catalyse la conversion du dihydrolipoamide et de l'acétyl-CoA en succinyl-CoA et en acétoacétyl-CoA.


L'acide dodécoïque se lie également au phosphate dinucléotide, qui participe à la régulation de la température de transition de phase et des échantillons biologiques.
Il a également été démontré que l'acide dodécoïque agit comme un inhibiteur actif de la synthase des acides gras, une enzyme qui catalyse la synthèse des acides gras à partir de l'acétyl-coenzyme A (acétyl-CoA).


Ce processus est essentiel à la croissance bactérienne.
L'acide dodécoïque a des effets synergiques avec d'autres antibiotiques tels que l'ampicilline, l'érythromycine et la tétracycline.
L'acide dodécoïque est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécoïque se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécoïque est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide dodécoïque est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.


La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l’acide dodécoïque seul (il est irritant et ne se trouve pas seul dans la nature), vous êtes plus susceptible de l’obtenir sous forme d’huile de noix de coco ou de noix de coco fraîches.


Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable de ses bienfaits rapportés.
Étant donné que l’huile de coco contient bien plus que de l’acide dodécoïque, il serait exagéré de lui attribuer tous les bienfaits de l’huile de coco.
Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide dodécoïque.


Parmi les avantages, ils suggèrent que l’acide dodécoïque pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.
Ses effets sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide dodécoïque sont dus à la manière dont le corps l’utilise.


La majorité de l'acide dodécoïque est envoyée directement au foie, où il est converti en énergie plutôt que stocké sous forme de graisse.
Comparé aux autres graisses saturées, l’acide dodécoïque contribue le moins au stockage des graisses.
L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide dodécoïque est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécoïque sont appelés laurates.
Comme beaucoup d’autres acides gras, l’acide dodécoïque est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.


L'acide dodécoïque est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l'acide dodécoïque est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons. L'acide dodécoïque se présente sous forme de poudre cristalline blanche
L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone utilisé dans les nettoyants industriels, les lubrifiants, les savons, les tensioactifs, les additifs agricoles, les revêtements, les additifs alimentaires et les additifs textiles.


L'acide dodécoïque, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste.


Sinon, l'acide dodécoïque est relativement rare.
L'acide dodécoïque augmente le cholestérol sérique total plus que n'importe quel acide gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).


En conséquence, l'acide dodécoïque a été caractérisé comme ayant « un effet plus favorable sur le cholestérol total :HDL que tout autre acide gras, saturé ou insaturé ».
En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.


À ces fins, l'acide dodécoïque est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
L'acide dodécoïque est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécoïque est un acide carboxylique cristallin blanc avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécoïque a été trouvé en concentration élevée dans l'huile de coco.
L'acide dodécoïque induit l'activation de NF-κB et l'expression de COX-2, de l'oxyde nitrique synthase inductible (iNOS) et d'IL-1α dans les cellules RAW 264.7 lorsqu'il est utilisé à une concentration de 25 μM.


L'acide dodécoïque est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.
L'acide dodécoïque joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.



UTILISATIONS et APPLICATIONS de l’ACIDE DODÉCOÏQUE :
L'acide dodécoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


De plus, l’acide dodécoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.


L'acide dodécoïque est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécoïque est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


L'acide dodécoïque est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.
L'acide dodécoïque est approuvé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.


Les gens utilisent également l’acide dodécoïque comme médicament.
Les gens utilisent l’acide dodécoïque pour traiter des infections virales telles que la grippe, le rhume, l’herpès génital et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer une quelconque utilisation.


L'acide dodécoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets d'acide dodécoïque dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


Le rejet dans l'environnement de l'acide dodécoïque peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage) et traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage du métal).


D'autres rejets d'acide dodécoïque dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, produits en bois traités, textiles traités et tissu, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) et utilisation en intérieur dans des matériaux longue durée à taux de dégagement élevé (par exemple dégagement des tissus, textiles lors du lavage, enlèvement des peintures intérieures) .


L'acide dodécoïque peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


L'acide dodécoïque peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).


Le rejet dans l'environnement de l'acide dodécoïque peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets dans l'environnement de l'acide dodécoïque sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide dodécoïque est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, cosmétiques et produits de soins personnels, lubrifiants et graisses. et les produits de traitement des textiles et les teintures.


Le rejet dans l'environnement de l'acide dodécoïque peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide dodécoïque est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.


L'acide dodécoïque est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécoïque est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide dodécoïque peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.
Le rejet dans l'environnement de l'acide dodécoïque peut survenir lors d'une utilisation industrielle : fabrication de la substance.


L'acide dodécoïque est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.
L'acide dodécoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


En laboratoire, l'acide dodécoïque peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l'acide dodécoïque est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).
Sa constante cryoscopique est de 3,9°C•kg/mol.


En faisant fondre l'acide dodécoïque avec la substance inconnue, en le laissant refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.
Dans l'industrie, l'acide dodécoïque est utilisé comme intermédiaire et comme agent tensioactif.


Les applications industrielles de l'acide dodécoïque et de ses dérivés comprennent l'acide gras en tant que composant des résines alkydes, des agents mouillants, un accélérateur et un adoucissant pour le caoutchouc, des détergents et des insecticides.
Le marché de consommation utilise l'acide dodécoïque dans le nettoyage, l'ameublement et la production de produits de soins personnels.


L'acide dodécoïque a également été évalué pour une utilisation dans les formulations en aérosol.
L'acide dodécoïque est utilisé dans la production de produits de soins personnels via le sel laurate de sodium.
L'acide dodécoïque est également étudié dans la recherche métabolique et foodomique pour son impact potentiel sur les maladies cardiovasculaires.


L'acide dodécoïque a été utilisé comme réactif pour synthétiser des nanoparticules magnétiques MnFe2O4 par la méthode de croissance médiée par les graines.
L'acide dodécoïque peut subir une estérification avec du 2-éthylhexanol en présence d'un catalyseur à base de zircone sulfatée pour former du 2-éthylhexanoldodécanoate, un biodiesel.
Comme beaucoup d’autres acides gras, l’acide dodécoïque est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.


L'acide dodécoïque est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l’acide dodécoïque réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide dodécoïque est utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, de détergents et de pesticides.
L'acide dodécoïque est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.


L'acide dodécoïque est utilisé comme antimousse ; GB 2760-86 prévoit les épices autorisées à utiliser ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide dodécoïque est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.


Les types de tensioactifs de l'acide dodécoïque sont répertoriés dans le tableau ci-joint de cet article.
Certains tensioactifs des dérivés de l'acide dodécoïque et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de domphène).


Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide dodécoïque a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.
Compte tenu de leurs propriétés moussantes, les dérivés de l'acide laurique (acide h-dodécoïque) sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.


En médecine, l’acide dodécoïque est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Utilisations et applications courantes de l'acide dodécoïque : additif, acidifiants, intermédiaire chimique, lubrifiant, synthèse de substances, industries, production chimique, soins personnels et laboratoires.


L'acide dodécoïque est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide dodécoïque est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.
Dans l'industrie, l'acide dodécoïque est utilisé comme intermédiaire et comme agent tensioactif.


Le marché de consommation utilise l'acide dodécoïque dans le nettoyage, l'ameublement et la production de produits de soins personnels.
En médecine, l’acide dodécoïque est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
L'acide dodécoïque est principalement utilisé dans la fabrication et la production de savons et autres produits cosmétiques ainsi que dans les laboratoires scientifiques.


L'acide dodécoïque est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.
L'acide dodécoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.


L'acide dodécoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.


L'acide dodécoïque est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécoïque est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécoïque est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécoïque est généralement utilisé pour fabriquer des produits cosmétiques mais est également utilisé en laboratoire pour obtenir la masse molaire de substances.
L'acide dodécoïque, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


Le laurylsulfate de sodium est le composé dérivé de l'acide dodécoïque le plus couramment utilisé à cette fin.
Parce que l'acide dodécoïque a une queue d'hydrocarbure non polaire et une tête d'acide carboxylique polaire, il peut interagir avec des solvants polaires (le plus important étant l'eau) ainsi qu'avec des graisses, permettant à l'eau de dissoudre les graisses.


Cela explique la capacité des shampooings à éliminer la graisse des cheveux.
Une autre utilisation consiste à augmenter le métabolisme, ce qui proviendrait de l'activation par l'acide dodécoïque de 20 % des hormones thyroïdiennes, qui autrement resteraient en sommeil.
Cela est dû à la libération par l'acide dodécoïque d'enzymes dans le tractus intestinal qui activent la thyroïde.


Cela pourrait expliquer les propriétés métaboliques de l’huile de coco.
Parce que l'acide dodécoïque est peu coûteux, a une longue durée de conservation et est non toxique et sans danger à manipuler, il est souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.


L'acide dodécoïque est un solide à température ambiante mais fond facilement dans l'eau bouillante. Il peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécoïque est largement utilisé dans les cosmétiques et les produits alimentaires.


Dans les applications pharmaceutiques, l'acide dodécoïque a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide dodécoïque est également utile pour stabiliser les émulsions huile dans l'eau.



L'acide dodécoïque est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.
L'acide dodécoïque peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide dodécoïque est un léger irritant mais pas un sensibilisant, et certaines sources le citent comme comédogène.


L'acide dodécoïque est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.
L'acide dodécoïque est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.


L'acide dodécoïque fonctionne comme un lubrifiant, un liant et un agent antimousse.
L'acide dodécoïque est utilisé comme intermédiaire des cristaux liquides
L'acide dodécoïque est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


-Utilisations de l'acide dodécoïque dans le parfum :
L'acide dodécoïque est utilisé dans les arômes de beurre et dans certains types d'arômes d'agrumes, principalement dans le citron.
La concentration d'acide dodécoïque utilisée peut varier de 2 à 40 ppm, calculée sur le produit de consommation fini.


-Applications pharmaceutiques de l'acide dodécoïque :
applications pharmaceutiques, il a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale (14) et de l'absorption intestinale.
L'acide dodécoïque est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide dodécoïque a également été évalué pour une utilisation dans les formulations en aérosol.



SOLUBILITÉ DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est soluble dans l'eau, le benzène, l'acétone, l'alcool, l'éther de pétrole, le diméthylsulfoxyde et le diméthylformamide.
L'acide dodécoïque est légèrement soluble dans le chloroforme.



NOTES D'ACIDE DODÉCÏQUE :
L'acide dodécoïque est incompatible avec les bases, les agents oxydants et les agents réducteurs.



PARENTS ALTERNATIFS DE L'ACIDE DODÉCÏQUE :
*Acides dicarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SOURCE ET PRÉPARATION DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est un acide carboxylique gras isolé des graisses ou huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide dodécoïque.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PRÉSENCE D'ACIDE DODÉCÏQUE :
L'acide dodécoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).
Sinon, l'acide dodécoïque est relativement rare.
L'acide dodécoïque se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).



SÉCURITÉ DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est largement utilisé dans les préparations cosmétiques, dans la fabrication d'additifs alimentaires et dans les formulations pharmaceutiques.
L'exposition générale à l'acide dodécoïque se produit par la consommation d'aliments et par contact cutané avec des cosmétiques, des savons et des produits détergents.

L'exposition professionnelle peut provoquer une irritation locale des yeux, du nez, de la gorge et des voies respiratoires, bien que l'acide dodécoïque soit considéré comme sûr et non irritant pour une utilisation dans les cosmétiques.
Aucun effet toxicologique n'a été observé lorsque l'acide dodécoïque a été administré à des rats à raison de 35 % de leur alimentation pendant 2 ans.



SUBSTITUANTS DE L'ACIDE DODÉCÏQUE :
*Acide gras à chaîne moyenne
*Acide dicarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



OÙ TROUVER L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les agents pathogènes tels que les bactéries, les virus et les levures.



PRÉSENCE D'ACIDE DODÉCÏQUE :
L'acide dodécoïque, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).

Sinon, l’acide dodécoïque est relativement rare.
L'acide dodécoïque se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Dans diverses plantes :
*Le palmier Attalea speciosa, une espèce populairement connue au Brésil sous le nom de babassu – 50% dans l'huile de babassu
*Attalea cohune, le palmier cohune (également arbre à pluie, palmier à huile américain, palmier corozo ou palmier manaca) – 46,5% dans l'huile de cohune
*Astrocaryum murumuru (Arecaceae) un palmier originaire d'Amazonie – 47,5% dans le « beurre de murumuru »
*Huile de coco 49%
*Pycnanthus kombo (muscade africaine)
*Virola surinamensis (muscade sauvage) 7,8–11,5 %
*Graines de palmier pêcher 10,4%
*Noix de bétel 9%
*Graine de palmier dattier 0,56–5,4 %
*Noix de macadamia 0,072–1,1 %
*Prune 0,35–0,38 %
*Graines de pastèque 0,33%
*Viorne opulus 0,24-0,33 %
*Citrullus lanatus (melon egusi)
*Fleur de citrouille 205 ppm, graines de citrouille 472 ppm
*Insecte
*Mouche soldat noire Hermetia illucens 30–50 mg/100 mg de graisse.



TYPE DE COMPOSÉ D'ACIDE DODÉCÏQUE :
*Toxine animale
*Toxine cosmétique
*Toxine alimentaire
*Toxine industrielle/lieu de travail
*Métabolite
*Composé naturel
*Composé organique
*Plastifiant



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est un cristal incolore en forme d'aiguille.
L'acide dodécoïque est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.



STABILITÉ ET CONDITIONS DE CONSERVATION DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est stable à des températures normales et doit être conservé dans un endroit frais et sec.



TRIGLYCÉRIDES À CHAÎNE MOYENNE DE L'ACIDE DODÉCÏQUE :
Les triglycérides à chaîne moyenne, ou acides gras, comme l'acide dodécoïque, se caractérisent par une structure chimique spécifique qui permet à votre organisme de les absorber en entier.

Cela les rend plus faciles à digérer : votre corps les traite comme des glucides et ils sont utilisés comme source d’énergie directe.
Comparés aux triglycérides à longue chaîne, le type présent dans d'autres graisses saturées, les MCT contiennent moins de calories par portion, environ 8,3 calories par gramme au lieu des 9 calories standard par gramme, selon un article paru dans "Nutrition Review".



ASPECTS NUTRITIONNELS ET MÉDICAUX DE L'ACIDE DODÉCÏQUE :
Bien que 95 % des triglycérides à chaîne moyenne soient absorbés par la veine porte, seulement 25 à 30 % de l'acide dodécoïque y est absorbé.
L'acide dodécoïque induit l'apoptose dans le cancer et favorise la prolifération des cellules normales en maintenant l'homéostasie rédox cellulaire.
L'acide dodécoïque augmente les lipoprotéines sériques totales plus que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL).

En conséquence, l'acide dodécoïque a été caractérisé comme ayant « un effet plus favorable sur le HDL total que tout autre acide gras [examiné], saturé ou insaturé ».
En général, un rapport lipoprotéines sériques totales/HDL plus faible est en corrélation avec une diminution de l’incidence de l’athérosclérose.

Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/lipoprotéines sériques a révélé en 2003 que les effets nets de l'acide dodécoïque sur l'évolution des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de coco (qui contient près de la moitié de l’acide dodécoïque) n’a pas non plus été concluante quant à ses effets sur l’incidence des maladies cardiovasculaires.



INCLUER L'ACIDE DODÉCÏQUE DANS VOTRE ALIMENTATION :
L'acide dodécoïque peut être pris en complément, mais il est le plus souvent consommé dans l'huile de coco ou l'huile de palmiste.
L'acide dodécoïque est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Selon le centre médical NYU Langone, l'huile de noix de coco et l'huile de palmiste contiennent jusqu'à 15 % de MCT, ainsi qu'un certain nombre d'autres graisses.
Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.

Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.



VALEURS SEUILS D'ARÔME DE L'ACIDE DODÉCÏQUE :
Valeurs seuils d'arôme
Caractéristiques aromatiques à 1,0% : gras, crémeux, fromager, cireux de bougie avec une richesse semblable à celle d'un œuf



Seuils gustatifs de l'acide dodécoïque :
Caractéristiques gustatives à 5 ppm : cireux, gras et huileux, semblable à du suif, crémeux et laiteux avec une sensation enrobante en bouche



PROFIL DE RÉACTIVITÉ DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.

Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.

De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide dodécoïque pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est un acide carboxylique gras isolé des graisses ou huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide dodécoïque.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier ou une odeur grasse.
L'acide dodécoïque est un constituant courant de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCÏQUE :
Comme beaucoup d’autres acides gras, l’acide dodécoïque est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide dodécoïque est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l'acide dodécoïque est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCÏQUE :
1. Les méthodes de production industrielle peuvent être regroupées en deux catégories :
* dérivés de la saponification ou de la décomposition à haute température et pression d'huiles et de graisses végétales naturelles ;
* séparé de l'acide gras synthétique.

Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide dodécoïque.
Les huiles végétales naturelles utilisées pour produire l’acide dodécoïque comprennent l’huile de noix de coco, l’huile de noyau de litsea cubeba, l’huile de palmiste et l’huile de graines de poivre de montagne.

D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide dodécoïque.
Le distillat C12 résiduel issu de l'extraction de l'acide dodécoïque, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide dodécoïque avec un rendement supérieur à 86 %.

2. Dérivé de la séparation et de la purification de l'huile de noix de coco et d'autres huiles végétales.

3. L'acide dodécoïque existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide dodécoïque peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.
La teneur en acide dodécoïque est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide dodécoïque.



RÉACTIONS DE L'AIR ET DE L'EAU DE L'ACIDE DODÉCÏQUE :
L'acide dodécoïque est insoluble dans l'eau.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DODÉCOÏQUE :
Point de fusion : 133-137 °C (lit.)
Point d'ébullition : 294,5 °C/100 mmHg (lit.)
Densité : 1,21
pression de vapeur : 1 mm Hg ( 183 °C)
indice de réfraction : 1,422
Point d'éclair : 220 °C
Température de stockage : Conserver en dessous de +30°C.
solubilité : éthanol : 100 mg/mL
forme : poudre ou granulés
pka : 4,59, 5,59 (à 25 ℃ )
couleur : Blanc à blanc cassé
Solubilité dans l'eau : 1 g/L (20 ºC)
Merck : 14 8415

Numéro de référence : 1210591
Stabilité : Stable.
LogP : 1,5 à 23 ℃
Aspect : poudre granulaire blanche (est)
Dosage : 95,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point de fusion : 130,80 °C. @ 760,00 mmHg
Point d'ébullition : 364,00 à 365,00 °C. @ 760,00 mmHg
Point d'ébullition : 235,00 à 234,00 °C. @ 10,00 mmHg
Point d'éclair : 389,00 °F. TCC (198,30 °C.) (est)
logP (dont) : 1,706 (est)
Soluble dans : eau, 1000 mg/L à 20 °C (exp)
eau, 1420 mg/L à 25 °C (est)

Formule chimique : C12H24O2
Masse molaire : 200,322 g•mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier
Densité : 1,007 g/cm³ (24 °C),
0,8744 g/cm³ (41,5 °C),
0,8679 g/cm³ (50 °C)
Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)
Point d'ébullition : 297,9 °C (568,2 °F ; 571,0 K),
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg,
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg
Solubilité dans l'eau : 37 mg/L (0 °C), 55 mg/L (20 °C),
63 mg/L (30 °C), 72 mg/L (45 °C), 83 mg/L (100 °C)

Solubilité : Soluble dans les alcools, l'éther diéthylique,
phényles, haloalcanes, acétates
Solubilité dans le méthanol : 12,7 g/100 g (0 °C),
120 g/100 g (20 °C), 2 250 g/100 g (40 °C)
Solubilité dans l'acétone : 8,95 g/100 g (0 °C),
60,5 g/100 g (20 °C), 1 590 g/100 g (40 °C)
Solubilité dans l'acétate d'éthyle : 9,4 g/100 g (0 °C),
52 g/100 g (20°C), 1250 g/100 g (40°C)
Solubilité dans le toluène : 15,3 g/100 g (0 °C),
97 g/100 g (20°C), 1410 g/100 g (40°C)
log P : 4,6

Pression de vapeur : 2,13•10−6 kPa (25 °C),
0,42 kPa (150 °C),
6,67 kPa (210 °C)
Acidité (pKa) : 5,3 (20 °C)
Conductivité thermique : 0,442 W/m•K (solide),
0,1921 W/m•K (72,5 °C),
0,1748 W/m•K (106 °C)
Indice de réfraction (nD) : 1,423 (70 °C),
1,4183 (82 °C)
Viscosité : 6,88 cP (50 °C), 5,37 cP (60 °C)
Structure:
Structure cristalline : Monoclinique (forme α),
Triclinique, aP228 (forme γ)

Groupe spatial : P21/a, n° 14 (forme α), P1, n° 2 (forme γ)
Groupe de points : 2/m (forme α)[8], 1 (forme γ)[9]
Constante de réseau : a = 9,524 Å, b = 4,965 Å,
c = 35,39 Å (forme α),
α = 90°, β = 129,22°, γ = 90°
Thermochimie:
Capacité thermique (C) : 404,28 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −775,6 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 7377 kJ/mol,
7425,8 kJ/mol (292 K)
Poids moléculaire : 200,32 g/mol
XLogP3 : 4,2
Nombre de donneurs de liaisons hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 10
Masse exacte : 200,177630004 g/mol
Masse monoisotopique : 200,177630004 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 132
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Nom IUPAC : acide dodécanoïque
Nom traditionnel IUPAC : acide laurique
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,3178
Masse exacte : 200,177630012
SOURIRES : CCCCCCCCCCCC(O)=O

Formule chimique : C10H18O4
Masse molaire : 202,250 g•mol−1
Densité : 1,209 g/cm3
Point de fusion : 131 à 134,5 °C (267,8 à 274,1 °F ; 404,1 à 407,6 K)
Point d'ébullition : 294,4 °C (561,9 °F ; 567,5 K) à 100 mmHg
Solubilité dans l'eau : 0,25 g/L
Acidité (pKa) : 4.720, 5.450
Poids moléculaire : 202,25
XLogP3 : 2.1
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4

Nombre de liaisons rotatives : 9
Masse exacte : 202.12050905
Masse monoisotopique : 202,12050905
Surface polaire topologique : 74,6 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 157
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
État physique : poudre
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 133 - 137 °C - allumé.
Point initial d'ébullition et intervalle d'ébullition : 294,5 °C à 133 hPa - lit.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible

Point d'éclair : Non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau: 0,224 g/l à 20 °C - OCDE Ligne directrice 105
Coefficient de partage:
n-octanol/eau : log Pow : 1,5 à 23 °C
Pression de vapeur : 1 hPa à 183 °C
Densité : 1 210 g/cm3 à 20 °C

Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Solubilité dans l'eau : 0,91 g/L
logP : 1,93
logP : 2,27
logS : -2,4
pKa (acide le plus fort) : 4,72

Charge physiologique : -2
Nombre d'accepteurs d'hydrogène : 4
Nombre de donneurs d'hydrogène : 2
Surface polaire : 74,6 Ų
Nombre de liaisons rotatives : 9
Réfractivité : 51,14 m³•mol⁻¹
Polarisabilité : 22,61 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : non
Règle de type MDDR : non

Formule chimique : C12H24O2
Poids moléculaire moyen : 200,3178
Poids moléculaire monoisotopique : 200,177630012
Nom IUPAC : acide dodécanoïque
Nom traditionnel : acide laurique
Numéro de registre CAS : 143-07-7
SOURIRES : CCCCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Synonymes : acide n-dodécanoïque
Nom IUPAC : Acide dodécanoïque
SOURIRES canoniques : CCCCCCCCCCCC(=O)O
InChI: POULHZVOKOAJMA-UHFFFAOYSA-N

Clé InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Point d'ébullition : 225 °C 100 mmHg (lit.)
Point de fusion : 44-46 °C (lit.)
Point d'éclair : 156 ºC
Densité : 0,883 g/ml
Aspect : Liquide clair
Stockage : Température ambiante
CNo.Chaîne: C12:0
Dérivé composé : acide
Numéro CE : 205-582-1
Acide gras : Dodécanoïque (Laurique)
Codes de danger : Xi

Mentions de danger : Xi
Code SH : 2916399090
LogP : 3,99190
Numéro MDL : MFCD00002736
État physique : Solide
PSA : 37,3
Indice de réfraction : 1,4304
Description de sécurité : 37/39-26-39-36
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
Conditions de stockage : Conserver dans un récipient bien fermé.
Conserver dans un endroit frais, sec et bien ventilé, à l'écart des substances incompatibles.

Mentions de danger supplémentaires : H401-H318-H319
Symbole : GHS05, GHS07
Pression de vapeur : 1 mm Hg ( 121 °C)
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,322 g/mol
SOURIRES : OC(CCCCCCCCCCC)=O
ÉCLABOUSSURE : éclaboussure10-0706-9000000000-b974e08e305014657f85
Source du spectre : HE-1982-0-0
Numéro CB : CB0357278
Formule moléculaire : C12H24O2
Structure de Lewis
Poids moléculaire : 200,32

Numéro MDL : MFCD00002736
Fichier MOL : 143-07-7.mol
Point de fusion : 44-46 °C (lit.)
Point d'ébullition : 225 °C/100 mmHg (lit.)
Densité : 0,883 g/mL à 25 °C (lit.)
Pression de vapeur : 1 mm Hg (121 °C)
Indice de réfraction : 1,4304
FEMA : 2614 | L'ACIDE LAURIQUE
Point d'éclair : >230 °F
Température de stockage : 2-8°C
Solubilité : 4,81 mg/L
Forme : Poudre cristalline de flocons
pKa : 4,92 (H2O, t =25,0) (Incertain)
Gravité spécifique : 0,883
Couleur blanche

Odeur : à 100,00 % d'huile de baie de coco grasse douce
Type d'odeur : grasse
Limite d'explosivité : 0,6 % (V)
Solubilité dans l'eau : insoluble
λmax : 207 nm (MeOH) (lit.)
Numéro JECFA : 111
Merck : 14 5384
Numéro de référence : 1099477
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
LogP : 5

Constante de dissociation : 5,3 à 20°C
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE LAURIQUE
Référence de la base de données CAS : 143-07-7 (Référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 1160N9NU9U
Référence chimique NIST : Acide dodécanoïque (143-07-7)
Système d'enregistrement des substances de l'EPA : Acide laurique (143-07-7)
Poids moléculaire : 200,32
Masse exacte : 200,32
Numéro de référence : 1099477
Numéro CE : 205-582-1
Code SH : 29159010

Caractéristiques
PSA : 37,3
XLogP3 : 4,2
Aspect : Poudre cristalline blanche de flocons
Densité : 0,883 g/cm³ à température : 20 °C
Point de fusion : 44,2 °C
Point d'ébullition : 298,9 °C
Point d'éclair : >230 °F
Indice de réfraction : 1,4304
Solubilité dans l'eau : H2O : insoluble
Conditions de stockage : Conserver à une température inférieure à +30°C
Pression de vapeur : 1 mm Hg (121 °C)
Toxicité : DL50 iv chez la souris : 131 ±5,7 mg/kg (Or, Wretlind)
Limite d'explosivité : 0,6 % (V)
Odeur : Caractéristique, comme l'huile de laurier
pKa : 5,3 (à 20 °C)



PREMIERS SECOURS DE L'ACIDE DODÉCÏQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDE DODÉCÏQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Prendre à sec.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DODÉCOÏQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DODÉCOÏQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DODÉCÏQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec



STABILITÉ et RÉACTIVITÉ de l'ACIDE DODÉCOÏQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible

ACIDE DODÉCYLIQUE
L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécylique, réactif, également connu sous le nom d'acide duodécylique, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide dodécylique est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.


Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Numéro MDL : MFCD00004440
Formule moléculaire : C10H18O4 / HOOC(CH2)8COOH



SYNONYMES :
Acide dodécanoïque, acide n-dodécanoïque, acide dodécylique, acide dodécoïque, acide laurostéarique, acide vulvique, acide 1-undécanecarboxylique, acide duodécylique, C12:0 (indices lipidiques), acide laurostéarique, Laurates, NSC 5026, acide vulvique, 1-dodécanoïque acide, dodécanoates, acide laurique, acide dodécylique, acide 1-undécanecarboxylique, FA12:0, acide n-dodécanoïque, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, 1-undécanecarboxylique acide, aliphat non. 4, néo-gras 12, acide décanedioïque, acide 1,8-octanedicarboxylique, acide décane-1,10-dioïque, acide sébacique, ACIDE DÉCANEDIOIQUE, 111-20-6, acide 1,8-octanedicarboxylique, 1,10-décanedioïque acide, Acides sébaciques, Sebacinsaure, Acide décanedicarboxylique, Acide n-décanedioïque, Acide sébacique, Sebacinsaeure, USAF HC-1, Acide ipomique, Acide séracique, Acide décanedioïque, homopolymère, NSC 19492, UNII-97AN39ICTC, 1,8-dicarboxyoctane, 26776 -29-4, NSC19492, 97AN39ICTC, acide octane-1,8-dicarboxylique, CHEBI:41865, NSC-19492, DSSTox_CID_6867, DSSTox_RID_78231, DSSTox_GSID_26867, SebacicAcid, CAS-111-20-6, CCRIS 2290, EINECS 203- 845- 5, BRN 1210591, n-décanedioate, acide iponique, AI3-09127, sébacate disodique, 4-oxodécanedioate, MFCD00004440, 1,10-décanedioate, acide sébacique, 94 %, acide sébacique, 99 %, acide dicarboxylique C10, 1i8j, 1l6s, 1l6y, 1,8-Octanedicarboxylate, WLN : QV8VQ, ACIDE SÉBACIQUE, EC 203-845-5, SCHEMBL3977, NCIOpen2_008624, ACIDE SÉBACIQUE, 4-02-00-02078, ACIDE SÉBACIQUE, CHEMBL1232164, 7, acide sébacique, > =95,0 % (GC), ZINC1531045, Tox21_201778, Tox21_303263, BBL011473, LMFA01170006, s5732, STL146585, AKOS000120056, CCG-266598, CS-W015503, DB07645, GS- 6713, HY-W014787, NCGC00164361-01, NCGC00164361-02, NCGC00164361 -03, NCGC00257150-01, NCGC00259327-01, BP- 27864, NCI60_001628, DB-121158, FT-0696757, C08277, A894762, C10-120, C10-140, C10-180, C10-220, -260, C10 -298, Q413454, Q-201703, Z1259273339, 301CFA7E-7155-4D51-BD2F-EB921428B436, acide 1,8-octanedicarboxylique, acide décanedioïque, acide octane-1,8-dicarboxylique, acide 1,10-décanedioïque, 1,8 -Acide octanedicarboxylique, NSC 19492, NSC 97405, acide n-décanedioïque, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-dicarboxyoctane, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4,7 -Acide dioxosébacique, Acide 4,7-dioxosébacique, 4-Oxodécanedioate, 4-oxodécanedioate, Acide 4-Oxodécanedioïque, Acide 1,10-Décanedioïque, 1,8-Dicarboxyoctane, Acide décanedioïque, Sébacinsaeure, 1,10-Décanedioate, Décanedioate, Sébacate, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, acide 4,7-dioxosebacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, acide dicarboxylique C10, acide ipomique, N-décanedioate, N- Acide décanedioïque, Acides sébaciques, Sebacinsaure, Acide séracique, Acide sébacique, sel d'aluminium, Acide sébacique, sel de monocadmium, Acide sébacique, sel de sodium, ACIDE DÉCANEDIOIQUE, sébacique, USAF hc-1, acidesebacique, ACIDE SÉBACIQUE pur, acide n-décanedioïque, Acide 1,10-décanedioïque, acide décanedicarboxylique, sébacate (décanedioate), ACIDE 1,8-OCTANEDICARBOXYLIQUE, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4, Acide 7-dioxosébacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, décanedioate, acide 1,8-octanedicarboxylique, acide 1,10-décanedioïque, acide n-décanedioïque, 4-oxodécanedioate, 1,8-dicarboxyoctane , Acide octane-1,8-dicarboxylique, acide sébacique, acide ipomique, acide séracique, acide laurique, ACIDE DODÉCANOÏQUE, 143-07-7, acide n-dodécanoïque, acide dodécylique, acide laurostéarique, acide vulvique, acide dodécoïque, acide duodécylique , Acide 1-undécanecarboxylique, Aliphat No. 4, Ninol AA62 Extra, Wecoline 1295, Acide Hydrofol 1255, Acide Hydrofol 1295, Acide duodécyclique, Hystrene 9512, Univol U-314, Acide laurique pur, Dodécylcarboxylate, Acide laurique (naturel), Laurinsaeure, acide undécane-1-carboxylique, ABL, NSC-5026, FEMA n° 2614, laurate, C-1297, Philacid 1200, CCRIS 669, C12:0, Emery 651, Lunac L 70, CHEBI : 30805, HSDB 6814, EINECS 205-582-1, UNII-1160N9NU9U, BRN 1099477, n-dodécanoate, Kortacid 1299, anion acide dodécanoïque, DTXSID5021590, Prifrac 2920, AI3-00112, Lunac L 98, Univol U 314, Prifac 1160N, 9NU9U, MFCD00002736, DAO , DTXCID801590, CH3-[CH2]10-COOH, NSC5026, EC 205-582-1, dodécylate, laurostéarate, vulvate, 4-02-00-01082 (référence du manuel Beilstein), ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), 1-undécanecarboxylate , ACIDE LAURIQUE (USP-RS), ACIDE LAURIQUE [USP-RS], CH3-(CH2)10-COOH, 8000-62-2, CAS-143-07-7, SMR001253907, laurinsaure, acide dodécanique, Nuvail, laurique -acide, Acide Laurique, 3uil, Acide laurique (NF), DODECANOICACID, acide gras 12:0, Acide laurique, Réactif, Nissan NAA 122, Emery 650, Acide dodécanoïque, 98%, Acide dodécanoïque, 99%, Réactif garanti,99 %, Acide dodécanoïque (laurique), ACIDE LAURIQUE [MI], bmse000509, ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], SCHEMBL5895, NCIOpen2_009480, MLS002177807, MLS002415737, WLN: QV11, Acide dodécanoïque (acide laurique), ACIDE LAURIQUE [ WHO-DD], acide dodécanoïque, >=99,5 %, Edenor C 1298-100, ACIDE DODÉCANOÏQUE [HSDB], CHEMBL108766, GTPL5534, NAA 122, NAA 312, HMS2268C14, HMS3649N06, HY-Y0366, STR08039, acide dodécanoïque, étalon analytique , Acide laurique, >=98%, FCC, FG, Tox21_202149, Tox21_303010, BDBM50180948, LMFA01010012, s4726, STL281860, AKOS000277433, CCG-266587, DB03017, FA 12:0, ACIDE OL 1255 OU 1295, NCGC00090919-01, NCGC00090919- 02, NCGC00090919-03, NCGC00256486-01, NCGC00259698-01, AC-16451, BP-27913, DA-64879, acide dodécanoïque, >=99 % (GC/titration), LAU, acide dodécanoïque, purum, >=96,0 % (GC), Acide laurique, naturel, >=98%, FCC, FG, CS-0015078, L0011, NS00008441, EN300-19951, C02679, D10714, A808010, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN), Q422627, SR-01000838338 , J-007739, SR-01000838338-3, BRD-K67375056-001-07-9, F0001-0507, ACIDE LAURIQUE (CONSTITUANT DU PALMETTE SCINÉ) [DSC], Z104476194, 76C2A2EB-E8BA-40A6-8032-40A9862, 5ED7B, Laurique acide, étalon de référence de la Pharmacopée européenne (EP), acide laurique, étalon de référence de la Pharmacopée américaine (USP), acide laurique, étalon secondaire pharmaceutique ; Matériau de référence certifié, 203714-07-2, 7632-48-6, InChI=1/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/ h2-11H2,1H3,(H,13,14, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, ABL, Acide Laurique, Acide gras C12, C12:0, Acides gras d'huile de coco, DAO, Dodécanoate, acide dodécanoïque, dodécate, Dodécoïque acide, Dodécylate, dodécylcarboxylate, Acide dodécylique, duodécyclate, Acide duodécyclique, duodécylate, Acide duodécylique, LAP, LAU, Laurate, Acide laurique, Laurinsaeure, Laurostéarate, Acide laurostéarique, MYR, n-dodécanoate, acide n-dodécanoïque, laurate de sorbitan, sorbitan monolaurate (NF), undécane-1-carboxylate, acide undécane-1-carboxylique, Vulvate, acide vulvique, CH3-[CH2]10-COOH, acide dodécylcarboxylique, Laate, acide laïque, Aliphat no 4, Edenor C 1298-100. , Emery 651, Hystrene 9512, Kortacid 1299, Lunac L 70, Lunac L 98, Neo-fat 12, Neo-fat 12-43, Nissan naa 122, Philacid 1200, Prifac 2920, Univol u 314, acide 1-dodécanoïque, FA (12:0), acide 1-undécanecarboxylique, ABL, Aliphat no. 4, acide gras C12, acides gras d'huile de coco, dodécanoate, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), acide dodécoïque, dodécylcarboxylate, acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide laurique, Acide laurique pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Acide n-dodécanoïque, N-dodécanoate, Neo-fat 12, Ninol aa62 extra, Acide undécane-1-carboxylique , Univol U 314, Univol U-314, acide vulvique, AI3-00112, BRN 1099477, C-1297, CCRIS 669, EINECS 205-582-1, FEMA NO. 2614, HSDB 6814, HYDROFOL ACID 1255, HYDROFOL ACID 1295, HYSTRENE 9512, NEO-FAT 12-43, PHILACID 1200, PRIFRAC 2920, WECOLINE 1295, acide 1-Undécanecarboxylique, ABL, AC-16451, AC1L1GY2, , AKOS000277433, Aliphat N° 4, CH3-[CH2]10-COOH, acides gras d'huile de coco, DAO, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), Dodécanoate, Acide dodécanoïque (laurique), Acide dodécanoïque (acide laurique), Acide dodécanoïque (acide laurique ), Acide dodécoïque, Dodécylcarboxylate, Acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide hydrofol 1255, Acide hydrofol 1295, Hystrene 9512, I04-1205, L-ALFA-LYSOPHOSPHATIDYLCHOLINE, LAUROYL, L0011, LAP, LAU, Acide laurique , pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, Philacid 1200, Prifrac 2920, SMR001253907, ST023796, Acide Undécane-1-carboxylique, Univol U-314, Acide vulvique, Wecoline 1295, [2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM, n-Dodecanoate, acide n-Dodecanoïque, nchembio.364-comp10 , Acide dodécanoïque, acide n-dodécanoïque, Neo-fat 12, Aliphat no. 4, Abl, Acide dodécylique, Acide laurique, Acide laurostéarique, Neo-fat 12-43, Ninol aa62 extra, Univol u-314, Acide vulvique, Acide 1-undécanecarboxylique, Acide duodécylique, C-1297, Acides gras d'huile de coco, Hydrofol acide 1255, acide Hydrofol 1295, Wecoline 1295, acide dodécoïque, Hystrene 9512, Lunac L 70, acide duodécyclique, Emery 650, n-dodécanoate, Philacid 1200, Prifrac 2920, acide undécane-1-carboxylique, C-1297, acide dodécanoïque, acide dodécoïque, acide duodécylique, acide ndodécanoïque, acide Hydrofol 1255, acide Hydrofol 1295, Hystrene 9512, acide laurostéarique, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, acide 1-undécanecarboxylique, acide vulvique, Wecoline 1295, Acide dodécoïque, acide duodécyclique, Edenor C 1298-100, Emery 650, acide Hydrofol 1295, Hystrene 9512, Kortacid 1299, Laurostéarate, Lunac L 70, Lunac L 98, Neo-fat 12, Ninol AA62 extra, Nissan naa 122, Philacid 1200 , Prifac 2920, Prifrac 2920, Univol U 314, Vulvate, Acide vulvique, Wecoline 1295, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, Dodécylate, Dodécylcarboxylate, Acide dodécylique, Acide duodécylique, Acide laurostéarique, Acide n-dodécanoïque, Undécane-1- acide carboxylique, LAP, LAU, DAO, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, acide 1-undécanecarboxylique, aliphat no. 4, néo-graisse 12, 143-07-7, 205-582-1, ACIDE 1-UNDÉCANECARBOXYLIQUE, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE [HSDB], ACIDE DODÉCOÏQUE, FEMA NO. 2614, LAURATE, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN) [DSC], ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], ACIDE LAURIQUE [MI], ACIDE LAURIQUE [USP-RS], ACIDE LAURIQUE [WHO-DD], ACIDE LAUROSTÉARIQUE, ACIDE N-DODÉCANOÏQUE, NSC-5026, acide dodécanoïque, acide laurique, acide laurostéarique, acide 1-undécanecarboxylique, ABL, Aliphat No. 4, Univol U 314, acide dodécylique, acide vulvique, Neo-Fat 12-43, Acide n-dodécanoïque, Neo-Fat 12, Lunac L 70, Emery 651, Prifac 2920, Nissan NAA 122, Lunac L 98, Hystrene 9512, NAA 312, Kortacid 1299, Philacid 1200, Edenor C 1298-100, NSC 5026, NAA 122, Prifac 2922, Edenor C 12, Prifrac 2920, ContraZeck, acide 1-dodécanoïque, Imex C 1299, Palmac 98-12, Edenor 12/98-100, Palmera B 1231, Edenor C 12-98-100, Lasacid FC 12 , Laurates, Dodécanoates, Palmae 99-12, D 97385, Edenor C12-99, Noix de coco dure 34, Noix de coco dure 42, Radiacid 0624, NS 6, 7632-48-6, 8000-62-2, 8045-27-0, 203714-07-2, 55621-34-6, ACIDE DODÉCANOÏQUE, C12, Emery651, Acide vulvique, FEMA 2614, acide laurique, pur, ACIDE N-DODÉCANOÏQUE, ACIDE LAUROSTÉARIQUE, Acide laurique 98-101 % (acidimétrique), Acide gras ester méthylique sulfonate (MES), acide dodécanoïque D23, acide dodécanoïque-d23,1-acide dodécanoïque-d23, acide 1-undécanecarboxylique-d23, ABL-d23, Aliphat n° 4-d23, ContraZeck-d23, acide dodécylique-d23, Edenor C 12-d23, Edenor C 1298-100-d23, Emery 651-d23, Hystrene 9512-d23, Imex C 1299-d23, Kortacid 1299-d23, Acide laurostéarique-d23, Lunac L 70-d23, Lunac L 98- d23, NAA 122-d23, NAA 312-d23, NSC 5026-d23, Néo-Fat 12-d23, Néo-Fat 12-43-d23, Nissan NAA 122-d23, Philacid 1200-d23, Prifac 2920-d23, Prifac 2922-d23, Prifrac 2920-d23, Univol U 314-d23, acide vulvique-d23, acide n-dodécanoïque-d23, dodécanoate, acides gras d'huile de noix de coco, acide laurostéarique, acide N-dodécanoïque, acide gras C12, acide duodécyclique, vulvique Acide, acide dodécanoïque (acide laurique), acide duodécylique, N-dodécanoate, acide dodécanoïque (laurique), Laurinsaeure, acide laurique, pur, acide laurique (naturel), dodécylcarboxylate, Abl, Dao, Lap, Lau, Myr



L'acide dodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécylique sont appelés laurates.
L'acide dodécylique est un acide gras saturé avec un acide carboxylique terminal.


L'acide carboxylique terminal, l'acide dodécylique, peut réagir avec des groupes amine primaire en présence d'activateurs tels que HATU.
L'acide dodécylique est une forme marquée au carbone 13 d'un acide gras saturé présent dans le lait de coco, l'huile de coco, l'huile de laurier et l'huile de palmiste, ainsi que dans le lait maternel et d'autres laits animaux.


L'acide dodécylique est un inhibiteur de la pompe à protons potentiellement destiné au traitement des infections à Helicobacter pylori.
Des expériences in vitro ont suggéré que certains acides gras, dont l'acide dodécylique, pourraient être un composant utile dans un traitement contre l'acné, mais aucun essai clinique n'a encore été mené pour évaluer ce bénéfice potentiel chez l'homme.


L'acide dodécylique augmente le cholestérol sérique total plus que de nombreux autres acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l’acide dodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».


L'acide dodécylique, identifié par le numéro CAS 143-07-7, est un acide gras saturé à chaîne moyenne avec un squelette de 12 atomes de carbone, bien connu pour son rôle dans la fabrication de savons, de détergents et de cosmétiques.
En tant que composant fondamental, l'acide dodécylique est réputé pour ses propriétés tensioactives, qui permettent la production d'une mousse riche dans les produits nettoyants.


L'acide dodécylique est un acide gras saturé de formule développée CH3(CH2)10COOH.
L'acide dodécylique est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécylique se trouve également dans le lait maternel (5,8 % des matières grasses totales), le lait de vache (2,2 %) et le lait de chèvre (4,5 %).


L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécylique, réactif, également connu sous le nom d'acide dodécylique, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide dodécylique se trouve naturellement dans le lait maternel ainsi que dans le lait de vache et de chèvre.


La qualité réactive de l'acide dodécylique signifie qu'il s'agit de la plus haute qualité disponible dans le commerce pour ce produit chimique et que l'American Chemical Society n'a officiellement fixé aucune spécification pour ce matériau.
L'acide dodécylique est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.


L'acide dodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide dodécylique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


En recherche, l'acide dodécylique est largement utilisé pour étudier le comportement des lipides dans divers systèmes en raison de sa nature amphiphile, qui lui permet de s'assembler en micelles et autres nanostructures dans des solutions aqueuses.
Ces études sont cruciales pour faire progresser les domaines de la science des matériaux et de la nanotechnologie, en particulier dans le développement de systèmes de distribution et l'amélioration des formulations de produits.


De plus, l’acide dodécylique est utilisé dans la recherche en science alimentaire où il sert de modèle pour comprendre la digestion et le métabolisme des acides gras à chaîne moyenne.
Les propriétés antimicrobiennes de l'acide dodécylique sont également examinées en termes de manière dont elles peuvent être exploitées dans des applications non médicales, telles que la conservation et la sécurité des aliments, où la réduction de la croissance microbienne est essentielle.


De plus, le rôle de l'acide dodécylique dans les applications industrielles s'étend à son utilisation comme matière première dans la synthèse de divers dérivés chimiques, notamment les esters utilisés dans les arômes et les parfums, démontrant sa polyvalence et son importance tant dans la recherche scientifique que dans les applications industrielles.
L'acide dodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécylique, C12H24O2, également connu sous le nom d'acide dodécylique, est un acide gras saturé avec une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux, l'acide dodécylique, a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.


L'acide dodécylique joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.
L'acide dodécylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécylique est un acide conjugué d'un dodécanoate.


L'acide dodécylique dérive d'un hydrure de dodécane.
L'acide dodécylique est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide dodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


L'acide dodécylique est un métabolite présent ou produit par Escherichia coli.
L'acide dodécylique est un produit naturel présent dans Ipomoea leptophylla, Arisaema tortuosum et d'autres organismes pour lesquels des données sont disponibles.
L'acide dodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécylique est le principal acide gras de l'huile de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier.


L'acide dodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécylique est un métabolite présent ou produit par Saccharomyces cerevisiae.
L'acide dodécylique est un acide gras saturé à chaîne moyenne.


L'acide dodécylique se trouve dans de nombreuses graisses végétales ainsi que dans les huiles de noix de coco et de palmiste.
L'acide dodécylique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.
L'acide dodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécylique sont appelés laurates.


L'acide dodécylique est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécylique, CAS 143-07-7, formule chimique C12H24O2, est produit sous forme de poudre cristalline blanche, a une légère odeur d'huile de laurier et est soluble dans l'eau, les alcools, les phényles, les haloalcanes et les acétates.


L'acide dodécylique est non toxique, sûr à manipuler, peu coûteux et a une longue durée de conservation.
L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécylique est un composé potentiellement toxique.
L'acide dodécylique a la formule chimique C12H24O2.
L'acide dodécylique se présente sous la forme d'un solide cristallin blanc avec une odeur caractéristique d'huile de laurier.


L'acide dodécylique est insoluble dans l'eau et soluble dans l'éther, le chloroforme et l'alcool.
L'acide dodécylique se trouve naturellement dans certaines graisses végétales et animales et est un composant clé de l'huile de coco.
L'acide dodécylique est préparé synthétiquement par distillation fractionnée d'autres acides de noix de coco mélangée.


L'acide dodécylique est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécylique est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.


L'acide dodécylique est un précurseur du peroxyde de dilauroyle, un initiateur courant de polymérisations.
L'acide dodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécylique, également connu sous le nom de dodécanoate ou acide laurique, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide dodécylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide dodécylique est le principal acide gras de l'huile de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier.
L'acide dodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


L'acide dodécylique est un acide gras qui inhibe la croissance des bactéries.
L'acide dodécylique inhibe la croissance bactérienne en se liant au site actif de l'enzyme dihydrolipoamide acétyltransférase, qui catalyse la conversion du dihydrolipoamide et de l'acétyl-CoA en succinyl-CoA et en acétoacétyl-CoA.


La majorité de l'acide dodécylique est envoyée directement au foie, où il est converti en énergie plutôt que stocké sous forme de graisse.
Comparé aux autres graisses saturées, l’acide dodécylique contribue le moins au stockage des graisses.
L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide dodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide dodécylique sont appelés laurates.
Comme beaucoup d’autres acides gras, l’acide dodécylique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.


L'acide dodécylique est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l'acide dodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons. L'acide dodécylique se présente sous forme de poudre cristalline blanche
L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone utilisé dans les nettoyants industriels, les lubrifiants, les savons, les tensioactifs, les additifs agricoles, les revêtements, les additifs alimentaires et les additifs textiles.


L'acide dodécylique, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide dodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste.


Sinon, l'acide dodécylique est relativement rare.
L'acide dodécylique augmente le cholestérol sérique total plus que n'importe quel acide gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).


En conséquence, l'acide dodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol total : HDL que tout autre acide gras, saturé ou insaturé ».
En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.


À ces fins, l'acide dodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
L'acide dodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide dodécylique est un acide carboxylique cristallin blanc avec une légère odeur d'huile de laurier ou de savon.


L'acide dodécylique se lie également au phosphate dinucléotide, qui participe à la régulation de la température de transition de phase et des échantillons biologiques.
Il a également été démontré que l'acide dodécylique agit comme un inhibiteur actif de la synthase des acides gras, une enzyme qui catalyse la synthèse des acides gras à partir de l'acétyl-coenzyme A (acétyl-CoA).


Ce processus est essentiel à la croissance bactérienne.
L'acide dodécylique a des effets synergiques avec d'autres antibiotiques tels que l'ampicilline, l'érythromycine et la tétracycline.
L'acide dodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide dodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide dodécylique est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide dodécylique est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.


La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l’acide dodécylique seul (il est irritant et ne se trouve pas seul dans la nature), vous l’obtiendrez probablement sous forme d’huile de noix de coco ou de noix de coco fraîches.


Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable de ses bienfaits rapportés.
Étant donné que l’huile de coco contient bien plus que de l’acide dodécylique, il serait exagéré de lui attribuer tous les bienfaits de l’huile de coco.
Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide dodécylique.


Parmi les avantages, ils suggèrent que l’acide dodécylique pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.
Ses effets sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide dodécylique sont dus à la manière dont le corps l’utilise.


L'acide dodécylique a été trouvé en concentration élevée dans l'huile de noix de coco.
L'acide dodécylique induit l'activation de NF-κB et l'expression de COX-2, de l'oxyde nitrique synthase inductible (iNOS) et de l'IL-1α dans les cellules RAW 264.7 lorsqu'il est utilisé à une concentration de 25 μM.


L'acide dodécylique est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.
L'acide dodécylique joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.


L'acide dodécylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide dodécylique est un acide conjugué d'un dodécanoate.
L'acide dodécylique dérive d'un hydrure de dodécane.


L'acide dodécylique est un acide carboxylique cristallin blanc.
L'acide dodécylique est utilisé comme plastifiant et pour fabriquer des détergents et des savons.
Les glycérides de l'acide dodécylique sont naturellement présents dans les huiles de noix de coco et de palme.


L'acide dodécylique est un solide blanc avec une légère odeur d'huile de laurier.
L'acide dodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide dodécylique est un solide blanc et poudreux avec une légère odeur d'huile de baie de noix de coco ou de savon gras et doux.
L'acide dodécylique est le principal acide gras de l'huile de noix de coco (49 %) et de l'huile de palmiste (47 à 50 %). On le trouve en moindre quantité dans la muscade sauvage, le lait maternel, le lait de vache, le lait de chèvre et les graines de pastèque. , prune et noix de macadamia.


L'acide dodécylique, bien que légèrement irritant pour les muqueuses, présente une toxicité extrêmement faible, est peu coûteux, possède des propriétés antimicrobiennes et est donc utilisé dans de nombreux savons et shampoings.
L'acide dodécylique est un composé faiblement acide.


L'acide dodécylique réagit avec l'hydroxyde de sodium pour générer du laurate de sodium, qui est du savon.
L'acide dodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras saturé ou insaturé ».



UTILISATIONS et APPLICATIONS de l’ACIDE DODÉCYLIQUE :
L'acide dodécylique peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).


L'acide dodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


De plus, l’acide dodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.


L'acide dodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide dodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets d'acide dodécylique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide dodécylique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.
L'acide dodécylique est autorisé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.


Les gens utilisent également l’acide dodécylique comme médicament.
Les gens utilisent l’acide dodécylique pour traiter des infections virales telles que la grippe, le rhume, l’herpès génital et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer une quelconque utilisation.


L'acide dodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets d'acide dodécylique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


Le rejet dans l'environnement de l'acide dodécylique peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage) et traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage du métal).


D'autres rejets d'acide dodécylique dans l'environnement sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, produits en bois traités, textiles traités et tissu, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) et utilisation en intérieur dans des matériaux longue durée à taux de dégagement élevé (par exemple dégagement des tissus, textiles lors du lavage, enlèvement des peintures intérieures) .


L'acide dodécylique peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


L'acide dodécylique est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, cosmétiques et produits de soins personnels, lubrifiants et graisses. et les produits de traitement des textiles et les teintures.


Le rejet dans l'environnement de l'acide dodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide dodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.


L'acide dodécylique est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide dodécylique est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.
Dans l'industrie, l'acide dodécylique est utilisé comme intermédiaire et comme agent tensioactif.


Le marché de consommation utilise l'acide dodécylique dans le nettoyage, l'ameublement et la production de produits de soins personnels.
En médecine, l’acide dodécylique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
L'acide dodécylique est principalement utilisé dans la fabrication et la production de savons et autres produits cosmétiques ainsi que dans les laboratoires scientifiques.


L'acide dodécylique est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.
L'acide dodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.


L'acide dodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide dodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.


L'acide dodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide dodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide dodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide dodécylique est généralement utilisé pour fabriquer des produits cosmétiques mais est également utilisé en laboratoire pour obtenir la masse molaire de substances.
L'acide dodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


L'acide dodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide dodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide dodécylique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.
Le rejet dans l'environnement de l'acide dodécylique peut survenir lors d'une utilisation industrielle : fabrication de la substance.


L'acide dodécylique est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide dodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


En laboratoire, l'acide dodécylique peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l'acide dodécylique est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).
Sa constante cryoscopique est de 3,9°C•kg/mol.


En faisant fondre l'acide dodécylique avec la substance inconnue, en le laissant refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.
Dans l'industrie, l'acide dodécylique est utilisé comme intermédiaire et comme agent tensioactif.


Les applications industrielles de l'acide dodécylique et de ses dérivés comprennent l'acide gras en tant que composant des résines alkydes, des agents mouillants, un accélérateur et un adoucissant pour le caoutchouc, des détergents et des insecticides.
Le marché de consommation utilise l'acide dodécylique dans le nettoyage, l'ameublement et la production de produits de soins personnels.


En médecine, l’acide dodécylique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Utilisations et applications courantes de l'acide dodécylique : additif, acidifiants, intermédiaire chimique, lubrifiant, synthèse de substances, industries, production chimique, soins personnels et laboratoires.


Le laurylsulfate de sodium est le composé dérivé de l'acide dodécylique le plus couramment utilisé à cette fin.
Parce que l'acide dodécylique a une queue d'hydrocarbure non polaire et une tête d'acide carboxylique polaire, il peut interagir avec des solvants polaires (le plus important étant l'eau) ainsi qu'avec des graisses, permettant à l'eau de dissoudre les graisses.


Cela explique la capacité des shampooings à éliminer la graisse des cheveux.
Une autre utilisation consiste à augmenter le métabolisme, ce qui proviendrait de l'activation par l'acide dodécylique de 20 % des hormones thyroïdiennes, qui autrement resteraient en sommeil.
Cela est dû à la libération par l'acide dodécylique d'enzymes dans le tractus intestinal qui activent la thyroïde.


Cela pourrait expliquer les propriétés métaboliques de l’huile de coco.
Parce que l'acide dodécylique est peu coûteux, a une longue durée de conservation et est non toxique et sans danger à manipuler, il est souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.


L'acide dodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. Il peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide dodécylique est largement utilisé dans les cosmétiques et les produits alimentaires.


Dans les applications pharmaceutiques, l'acide dodécylique a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide dodécylique est également utile pour stabiliser les émulsions huile dans l'eau.


L'acide dodécylique a également été évalué pour une utilisation dans les formulations en aérosol.
L'acide dodécylique est utilisé dans la production de produits de soins personnels via le sel laurate de sodium.
L'acide dodécylique est également étudié dans la recherche métabolique et foodomique pour son impact potentiel sur les maladies cardiovasculaires.


L'acide dodécylique a été utilisé comme réactif pour synthétiser des nanoparticules magnétiques MnFe2O4 par la méthode de croissance médiée par les graines.
L'acide dodécylique peut subir une estérification avec le 2-éthylhexanol en présence d'un catalyseur à base de zircone sulfatée pour former du 2-éthylhexanoldodécanoate, un biodiesel.
Comme beaucoup d’autres acides gras, l’acide dodécylique est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.


L'acide dodécylique est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l’acide dodécylique réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide dodécylique est utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, de détergents et de pesticides.
L'acide dodécylique est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.


L'acide dodécylique est utilisé comme antimousse ; GB 2760-86 prévoit les épices autorisées à utiliser ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide dodécylique est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.


Les types de tensioactifs de l'acide dodécylique sont répertoriés dans le tableau ci-joint de cet article.
Certains tensioactifs des dérivés de l'acide dodécylique et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dodécyl).


Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide dodécylique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.
Compte tenu de leurs propriétés moussantes, les dérivés de l'acide laurique (acide h-dodécylique) sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.


L'acide dodécylique est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.
L'acide dodécylique peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide dodécylique est un léger irritant mais pas un sensibilisant, et certaines sources le citent comme comédogène.


L'acide dodécylique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.
L'acide dodécylique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.


L'acide dodécylique fonctionne comme un lubrifiant, un liant et un agent antimousse.
L'acide dodécylique est utilisé comme intermédiaire des cristaux liquides
L'acide dodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


-Utilisations de l'acide dodécylique dans le parfum :
L'acide dodécylique est utilisé dans les arômes de beurre et dans certains types d'arômes d'agrumes, principalement dans le citron.
La concentration d'acide dodécylique utilisée peut varier de 2 à 40 ppm, calculée sur le produit de consommation fini.


-Applications pharmaceutiques de l'acide dodécylique :
applications pharmaceutiques, il a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale (14) et de l'absorption intestinale.
L'acide dodécylique est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide dodécylique a également été évalué pour une utilisation dans les formulations en aérosol.



SUBSTITUANTS DE L'ACIDE DODÉCYLIQUE :
*Acide gras à chaîne moyenne
*Acide dicarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



TYPE DE COMPOSÉ D'ACIDE DODÉCYLIQUE :
*Toxine animale
*Toxine cosmétique
*Toxine alimentaire
*Toxine industrielle/lieu de travail
*Métabolite
*Composé naturel
*Composé organique
*Plastifiant



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est un cristal incolore en forme d'aiguille.
L'acide dodécylique est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.



STABILITÉ ET CONDITIONS DE CONSERVATION DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est stable à des températures normales et doit être conservé dans un endroit frais et sec.



SOURCE ET PRÉPARATION DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est un acide carboxylique gras isolé des graisses ou huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide dodécylique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



SOLUBILITÉ DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est soluble dans l'eau, le benzène, l'acétone, l'alcool, l'éther de pétrole, le diméthylsulfoxyde et le diméthylformamide.
L'acide dodécylique est légèrement soluble dans le chloroforme.



NOTES D'ACIDE DODÉCYLIQUE :
L'acide dodécylique est incompatible avec les bases, les agents oxydants et les agents réducteurs.



OÙ TROUVER L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les agents pathogènes tels que les bactéries, les virus et les levures.



PRÉSENCE D'ACIDE DODÉCYLIQUE :
L'acide dodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).

Sinon, l’acide dodécylique est relativement rare.
L'acide dodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Dans diverses plantes :
*Le palmier Attalea speciosa, une espèce populairement connue au Brésil sous le nom de babassu – 50% dans l'huile de babassu
*Attalea cohune, le palmier cohune (également arbre à pluie, palmier à huile américain, palmier corozo ou palmier manaca) – 46,5% dans l'huile de cohune
*Astrocaryum murumuru (Arecaceae) un palmier originaire d'Amazonie – 47,5% dans le « beurre de murumuru »
*Huile de coco 49%
*Pycnanthus kombo (muscade africaine)
*Virola surinamensis (muscade sauvage) 7,8–11,5 %
*Graines de palmier pêcher 10,4%
*Noix de bétel 9%
*Graine de palmier dattier 0,56–5,4 %
*Noix de macadamia 0,072–1,1 %
*Prune 0,35–0,38 %
*Graines de pastèque 0,33%
*Viorne opulus 0,24-0,33 %
*Citrullus lanatus (melon egusi)
*Fleur de citrouille 205 ppm, graines de citrouille 472 ppm
*Insecte
*Mouche soldat noire Hermetia illucens 30–50 mg/100 mg de graisse.



PARENTS ALTERNATIFS DE L'ACIDE DODÉCYLIQUE :
*Acides dicarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



PRÉSENCE D'ACIDE DODÉCYLIQUE :
L'acide dodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).
Sinon, l'acide dodécylique est relativement rare.
L'acide dodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).



SÉCURITÉ DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est largement utilisé dans les préparations cosmétiques, dans la fabrication d'additifs alimentaires et dans les formulations pharmaceutiques.
L'exposition générale à l'acide dodécylique se produit par la consommation d'aliments et par contact cutané avec des cosmétiques, des savons et des produits détergents.

L'exposition professionnelle peut provoquer une irritation locale des yeux, du nez, de la gorge et des voies respiratoires, bien que l'acide dodécylique soit considéré comme sûr et non irritant pour une utilisation dans les cosmétiques.
Aucun effet toxicologique n'a été observé lorsque l'acide dodécylique a été administré à des rats à raison de 35 % de leur alimentation pendant 2 ans.



TRIGLYCÉRIDES À CHAÎNE MOYENNE DE L'ACIDE DODÉCYLIQUE :
Les triglycérides à chaîne moyenne, ou acides gras, comme l'acide dodécylique, se caractérisent par une structure chimique spécifique qui permet à votre organisme de les absorber en entier.

Cela les rend plus faciles à digérer : votre corps les traite comme des glucides et ils sont utilisés comme source d’énergie directe.
Comparés aux triglycérides à longue chaîne, le type présent dans d'autres graisses saturées, les MCT contiennent moins de calories par portion, environ 8,3 calories par gramme au lieu des 9 calories standard par gramme, selon un article paru dans "Nutrition Review".



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCYLIQUE :
1. Les méthodes de production industrielle peuvent être regroupées en deux catégories :
* dérivés de la saponification ou de la décomposition à haute température et pression d'huiles et de graisses végétales naturelles ;
* séparé de l'acide gras synthétique.

Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide dodécylique.
Les huiles végétales naturelles utilisées pour produire l’acide dodécylique comprennent l’huile de noix de coco, l’huile de noyau de litsea cubeba, l’huile de palmiste et l’huile de graines de poivre de montagne.

D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide dodécylique.
Le distillat C12 résiduel issu de l'extraction de l'acide dodécylique, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide dodécylique avec un rendement de plus de 86 %.

2. Dérivé de la séparation et de la purification de l'huile de noix de coco et d'autres huiles végétales.

3. L'acide dodécylique existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide dodécylique peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.
La teneur en acide dodécylique est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide dodécylique.



RÉACTIONS DE L'AIR ET DE L'EAU DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est insoluble dans l'eau.



VALEURS SEUILS D'ARÔME DE L'ACIDE DODÉCYLIQUE :
Valeurs seuils d'arôme
Caractéristiques aromatiques à 1,0% : gras, crémeux, fromager, cireux de bougie avec une richesse semblable à celle d'un œuf



VALEURS SEUILS gustatives DE L'ACIDE DODÉCYLIQUE :
Caractéristiques gustatives à 5 ppm : cireux, gras et huileux, semblable à du suif, crémeux et laiteux avec une sensation enrobante en bouche



ASPECTS NUTRITIONNELS ET MÉDICAUX DE L'ACIDE DODÉCYLIQUE :
Bien que 95 % des triglycérides à chaîne moyenne soient absorbés par la veine porte, seulement 25 à 30 % de l'acide dodécylique y est absorbé.
L'acide dodécylique induit l'apoptose dans le cancer et favorise la prolifération des cellules normales en maintenant l'homéostasie rédox cellulaire.
L'acide dodécylique augmente davantage les lipoprotéines sériques totales que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL).

En conséquence, l'acide dodécylique a été caractérisé comme ayant « un effet plus favorable sur le HDL total que tout autre acide gras [examiné], saturé ou insaturé ».
En général, un rapport lipoprotéines sériques totales/HDL plus faible est en corrélation avec une diminution de l’incidence de l’athérosclérose.

Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/lipoprotéines sériques a révélé en 2003 que les effets nets de l'acide dodécylique sur les résultats des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de coco (qui contient près de la moitié de l’acide dodécylique) n’a pas non plus été concluante quant à ses effets sur l’incidence des maladies cardiovasculaires.



INCLUER L'ACIDE DODÉCYLIQUE DANS VOTRE ALIMENTATION :
L'acide dodécylique peut être pris en complément, mais il est le plus souvent consommé dans l'huile de coco ou l'huile de palmiste.
L'acide dodécylique est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Selon le centre médical NYU Langone, l'huile de noix de coco et l'huile de palmiste contiennent jusqu'à 15 % de MCT, ainsi qu'un certain nombre d'autres graisses.
Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.

Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier ou une odeur grasse.
L'acide dodécylique est un constituant courant de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DODÉCYLIQUE :
Comme beaucoup d’autres acides gras, l’acide dodécylique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide dodécylique est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l'acide dodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.



PROFIL DE RÉACTIVITÉ DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.

Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.

De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide dodécylique pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.



MÉTHODES DE PRODUCTION DE L'ACIDE DODÉCYLIQUE :
L'acide dodécylique est un acide carboxylique gras isolé des graisses ou huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide dodécylique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DODÉCYLIQUE :
Formule chimique : C12H24O2
Masse molaire : 200,322 g•mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier
Densité : 1,007 g/cm³ (24 °C),
0,8744 g/cm³ (41,5 °C),
0,8679 g/cm³ (50 °C)
Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)
Point d'ébullition : 297,9 °C (568,2 °F ; 571,0 K),
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg,
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg
Solubilité dans l'eau : 37 mg/L (0 °C), 55 mg/L (20 °C),
63 mg/L (30 °C), 72 mg/L (45 °C), 83 mg/L (100 °C)

Solubilité : Soluble dans les alcools, l'éther diéthylique,
phényles, haloalcanes, acétates
Solubilité dans le méthanol : 12,7 g/100 g (0 °C),
120 g/100 g (20 °C), 2 250 g/100 g (40 °C)
Solubilité dans l'acétone : 8,95 g/100 g (0 °C),
60,5 g/100 g (20 °C), 1 590 g/100 g (40 °C)
Solubilité dans l'acétate d'éthyle : 9,4 g/100 g (0 °C),
52 g/100 g (20°C), 1250 g/100 g (40°C)
Solubilité dans le toluène : 15,3 g/100 g (0 °C),
97 g/100 g (20°C), 1410 g/100 g (40°C)
log P : 4,6

Pression de vapeur : 2,13•10−6 kPa (25 °C),
0,42 kPa (150 °C),
6,67 kPa (210 °C)
Acidité (pKa) : 5,3 (20 °C)
Conductivité thermique : 0,442 W/m•K (solide),
0,1921 W/m•K (72,5 °C),
0,1748 W/m•K (106 °C)
Indice de réfraction (nD) : 1,423 (70 °C),
1,4183 (82 °C)
Viscosité : 6,88 cP (50 °C), 5,37 cP (60 °C)
Structure:
Structure cristalline : Monoclinique (forme α),
Triclinique, aP228 (forme γ)

Groupe spatial : P21/a, n° 14 (forme α), P1, n° 2 (forme γ)
Groupe de points : 2/m (forme α)[8], 1 (forme γ)[9]
Constante de réseau : a = 9,524 Å, b = 4,965 Å,
c = 35,39 Å (forme α),
α = 90°, β = 129,22°, γ = 90°
Thermochimie:
Capacité thermique (C) : 404,28 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −775,6 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 7377 kJ/mol,
7425,8 kJ/mol (292 K)
Poids moléculaire : 200,32 g/mol
XLogP3 : 4,2
Nombre de donneurs de liaisons hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 10
Masse exacte : 200,177630004 g/mol
Masse monoisotopique : 200,177630004 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 132
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Nom IUPAC : acide dodécanoïque
Nom traditionnel IUPAC : acide laurique
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,3178
Masse exacte : 200,177630012
SOURIRES : CCCCCCCCCCCC(O)=O

Formule chimique : C12H24O2
Poids moléculaire moyen : 200,3178
Poids moléculaire monoisotopique : 200,177630012
Nom IUPAC : acide dodécanoïque
Nom traditionnel : acide laurique
Numéro de registre CAS : 143-07-7
SOURIRES : CCCCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Synonymes : acide n-dodécanoïque
Nom IUPAC : Acide dodécanoïque
SOURIRES canoniques : CCCCCCCCCCCC(=O)O
InChI: POULHZVOKOAJMA-UHFFFAOYSA-N

Clé InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Point d'ébullition : 225 °C 100 mmHg (lit.)
Point de fusion : 44-46 °C (lit.)
Point d'éclair : 156 ºC
Densité : 0,883 g/ml
Aspect : Liquide clair
Stockage : Température ambiante
CNo.Chaîne: C12:0
Dérivé composé : acide
Numéro CE : 205-582-1
Acide gras : Dodécanoïque (Laurique)
Codes de danger : Xi

Mentions de danger : Xi
Code SH : 2916399090
LogP : 3,99190
Numéro MDL : MFCD00002736
État physique : Solide
PSA : 37,3
Indice de réfraction : 1,4304
Description de sécurité : 37/39-26-39-36
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
Conditions de stockage : Conserver dans un récipient bien fermé.
Conserver dans un endroit frais, sec et bien ventilé, à l'écart des substances incompatibles.

Mentions de danger supplémentaires : H401-H318-H319
Symbole : GHS05, GHS07
Pression de vapeur : 1 mm Hg ( 121 °C)
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,322 g/mol
SOURIRES : OC(CCCCCCCCCCC)=O
ÉCLABOUSSURE : éclaboussure10-0706-9000000000-b974e08e305014657f85
Source du spectre : HE-1982-0-0
Numéro CB : CB0357278
Formule moléculaire : C12H24O2
Structure de Lewis
Poids moléculaire : 200,32

Numéro MDL : MFCD00002736
Fichier MOL : 143-07-7.mol
Point de fusion : 44-46 °C (lit.)
Point d'ébullition : 225 °C/100 mmHg (lit.)
Densité : 0,883 g/mL à 25 °C (lit.)
Pression de vapeur : 1 mm Hg (121 °C)
Indice de réfraction : 1,4304
FEMA : 2614 | L'ACIDE LAURIQUE
Point d'éclair : >230 °F
Température de stockage : 2-8°C
Solubilité : 4,81 mg/L
Forme : Poudre cristalline de flocons
pKa : 4,92 (H2O, t =25,0) (Incertain)
Gravité spécifique : 0,883
Couleur blanche

Odeur : à 100,00 % d'huile de baie de coco grasse douce
Type d'odeur : grasse
Limite d'explosivité : 0,6 % (V)
Solubilité dans l'eau : insoluble
λmax : 207 nm (MeOH) (lit.)
Numéro JECFA : 111
Merck : 14 5384
Numéro de référence : 1099477
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
LogP : 5

Constante de dissociation : 5,3 à 20°C
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE LAURIQUE
Référence de la base de données CAS : 143-07-7 (Référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 1160N9NU9U
Référence chimique NIST : Acide dodécanoïque (143-07-7)
Système d'enregistrement des substances de l'EPA : Acide laurique (143-07-7)
Poids moléculaire : 200,32
Masse exacte : 200,32
Numéro de référence : 1099477
Numéro CE : 205-582-1
Code SH : 29159010

Caractéristiques
PSA : 37,3
XLogP3 : 4,2
Aspect : Poudre cristalline blanche de flocons
Densité : 0,883 g/cm³ à température : 20 °C
Point de fusion : 44,2 °C
Point d'ébullition : 298,9 °C
Point d'éclair : >230 °F
Indice de réfraction : 1,4304
Solubilité dans l'eau : H2O : insoluble
Conditions de stockage : Conserver à une température inférieure à +30°C
Pression de vapeur : 1 mm Hg (121 °C)
Toxicité : DL50 iv chez la souris : 131 ±5,7 mg/kg (Or, Wretlind)
Limite d'explosivité : 0,6 % (V)
Odeur : Caractéristique, comme l'huile de laurier
pKa : 5,3 (à 20 °C)

Formule chimique : C10H18O4
Masse molaire : 202,250 g•mol−1
Densité : 1,209 g/cm3
Point de fusion : 131 à 134,5 °C (267,8 à 274,1 °F ; 404,1 à 407,6 K)
Point d'ébullition : 294,4 °C (561,9 °F ; 567,5 K) à 100 mmHg
Solubilité dans l'eau : 0,25 g/L
Acidité (pKa) : 4.720, 5.450
Poids moléculaire : 202,25
XLogP3 : 2.1
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4

Nombre de liaisons rotatives : 9
Masse exacte : 202.12050905
Masse monoisotopique : 202,12050905
Surface polaire topologique : 74,6 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 157
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
État physique : poudre
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 133 - 137 °C - allumé.
Point initial d'ébullition et intervalle d'ébullition : 294,5 °C à 133 hPa - lit.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible

Point d'éclair : Non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau: 0,224 g/l à 20 °C - OCDE Ligne directrice 105
Coefficient de partage:
n-octanol/eau : log Pow : 1,5 à 23 °C
Pression de vapeur : 1 hPa à 183 °C
Densité : 1 210 g/cm3 à 20 °C

Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Solubilité dans l'eau : 0,91 g/L
logP : 1,93
logP : 2,27
logS : -2,4
pKa (acide le plus fort) : 4,72

Charge physiologique : -2
Nombre d'accepteurs d'hydrogène : 4
Nombre de donneurs d'hydrogène : 2
Surface polaire : 74,6 Ų
Nombre de liaisons rotatives : 9
Réfractivité : 51,14 m³•mol⁻¹
Polarisabilité : 22,61 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : non
Règle de type MDDR : non

Point de fusion : 133-137 °C (lit.)
Point d'ébullition : 294,5 °C/100 mmHg (lit.)
Densité : 1,21
pression de vapeur : 1 mm Hg ( 183 °C)
indice de réfraction : 1,422
Point d'éclair : 220 °C
Température de stockage : Conserver en dessous de +30°C.
solubilité : éthanol : 100 mg/mL
forme : poudre ou granulés
pka : 4,59, 5,59 (à 25 ℃ )
couleur : Blanc à blanc cassé
Solubilité dans l'eau : 1 g/L (20 ºC)
Merck : 14 8415

Numéro de référence : 1210591
Stabilité : Stable.
LogP : 1,5 à 23 ℃
Aspect : poudre granulaire blanche (est)
Dosage : 95,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point de fusion : 130,80 °C. @ 760,00 mmHg
Point d'ébullition : 364,00 à 365,00 °C. @ 760,00 mmHg
Point d'ébullition : 235,00 à 234,00 °C. @ 10,00 mmHg
Point d'éclair : 389,00 °F. TCC (198,30 °C.) (est)
logP (dont) : 1,706 (est)
Soluble dans : eau, 1000 mg/L à 20 °C (exp)
eau, 1420 mg/L à 25 °C (est)



PREMIERS SECOURS DE L'ACIDE DODÉCYLIQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE DODÉCYLIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Prendre à sec.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DODÉCYLIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DODÉCYLIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DODÉCYLIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec



STABILITÉ et RÉACTIVITÉ de l'ACIDE DODÉCYLIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible


ACIDE DUODÉCYLIQUE
L'acide duodécylique est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide duodécylique, réactif, également connu sous le nom d'acide laurostéarique, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.


Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Numéro MDL : MFCD00004440
Formule moléculaire : C10H18O4 / HOOC(CH2)8COOH



SYNONYMES :
Acide dodécanoïque, acide n-dodécanoïque, acide dodécylique, acide dodécoïque, acide laurostéarique, acide vulvique, acide 1-undécanecarboxylique, acide duodécylique, C12:0 (indices lipidiques), acide laurostéarique, Laurates, NSC 5026, acide vulvique, 1-dodécanoïque acide, dodécanoates, acide laurique, acide dodécylique, acide 1-undécanecarboxylique, FA12:0, acide n-dodécanoïque, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, 1-undécanecarboxylique acide, aliphat non. 4, néo-gras 12, acide décanedioïque, acide 1,8-octanedicarboxylique, acide décane-1,10-dioïque, acide sébacique, ACIDE DÉCANEDIOIQUE, 111-20-6, acide 1,8-octanedicarboxylique, 1,10-décanedioïque acide, Acides sébaciques, Sebacinsaure, Acide décanedicarboxylique, Acide n-décanedioïque, Acide sébacique, Sebacinsaeure, USAF HC-1, Acide ipomique, Acide séracique, Acide décanedioïque, homopolymère, NSC 19492, UNII-97AN39ICTC, 1,8-dicarboxyoctane, 26776 -29-4, NSC19492, 97AN39ICTC, acide octane-1,8-dicarboxylique, CHEBI:41865, NSC-19492, DSSTox_CID_6867, DSSTox_RID_78231, DSSTox_GSID_26867, SebacicAcid, CAS-111-20-6, CCRIS 2290, EINECS 203- 845- 5, BRN 1210591, n-décanedioate, acide iponique, AI3-09127, sébacate disodique, 4-oxodécanedioate, MFCD00004440, 1,10-décanedioate, acide sébacique, 94 %, acide sébacique, 99 %, acide dicarboxylique C10, 1i8j, 1l6s, 1l6y, 1,8-Octanedicarboxylate, WLN : QV8VQ, ACIDE SÉBACIQUE, EC 203-845-5, SCHEMBL3977, NCIOpen2_008624, ACIDE SÉBACIQUE, 4-02-00-02078, ACIDE SÉBACIQUE, CHEMBL1232164, 7, acide sébacique, > =95,0 % (GC), ZINC1531045, Tox21_201778, Tox21_303263, BBL011473, LMFA01170006, s5732, STL146585, AKOS000120056, CCG-266598, CS-W015503, DB07645, GS- 6713, HY-W014787, NCGC00164361-01, NCGC00164361-02, NCGC00164361 -03, NCGC00257150-01, NCGC00259327-01, BP- 27864, NCI60_001628, DB-121158, FT-0696757, C08277, A894762, C10-120, C10-140, C10-180, C10-220, -260, C10 -298, Q413454, Q-201703, Z1259273339, 301CFA7E-7155-4D51-BD2F-EB921428B436, acide 1,8-octanedicarboxylique, acide décanedioïque, acide octane-1,8-dicarboxylique, acide 1,10-décanedioïque, 1,8 -Acide octanedicarboxylique, NSC 19492, NSC 97405, acide n-décanedioïque, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-dicarboxyoctane, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4,7 -Acide dioxosébacique, Acide 4,7-dioxosébacique, 4-Oxodécanedioate, 4-oxodécanedioate, Acide 4-Oxodécanedioïque, Acide 1,10-Décanedioïque, 1,8-Dicarboxyoctane, Acide décanedioïque, Sébacinsaeure, 1,10-Décanedioate, Décanedioate, Sébacate, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, acide 4,7-dioxosebacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, acide dicarboxylique C10, acide ipomique, N-décanedioate, N- Acide décanedioïque, Acides sébaciques, Sebacinsaure, Acide séracique, Acide sébacique, sel d'aluminium, Acide sébacique, sel de monocadmium, Acide sébacique, sel de sodium, ACIDE DÉCANEDIOIQUE, sébacique, USAF hc-1, acidesebacique, ACIDE SÉBACIQUE pur, acide n-décanedioïque, Acide 1,10-décanedioïque, acide décanedicarboxylique, sébacate (décanedioate), ACIDE 1,8-OCTANEDICARBOXYLIQUE, 1,10-décanedioate, acide 1,10-décanedioïque, 1,8-octanedicarboxylate, acide 1,8-octanedicarboxylique, 4, Acide 7-dioxosébacique, 4-oxodécanedioate, acide 4-oxodécanedioïque, acide sébacique, acide décanedicarboxylique, décanedioate, acide 1,8-octanedicarboxylique, acide 1,10-décanedioïque, acide n-décanedioïque, 4-oxodécanedioate, 1,8-dicarboxyoctane , Acide octane-1,8-dicarboxylique, acide sébacique, acide ipomique, acide séracique, acide laurique, ACIDE DODÉCANOÏQUE, 143-07-7, acide n-dodécanoïque, acide dodécylique, acide laurostéarique, acide vulvique, acide dodécoïque, acide duodécylique , Acide 1-undécanecarboxylique, Aliphat No. 4, Ninol AA62 Extra, Wecoline 1295, Acide Hydrofol 1255, Acide Hydrofol 1295, Acide duodécyclique, Hystrene 9512, Univol U-314, Acide laurique pur, Dodécylcarboxylate, Acide laurique (naturel), Laurinsaeure, acide undécane-1-carboxylique, ABL, NSC-5026, FEMA n° 2614, laurate, C-1297, Philacid 1200, CCRIS 669, C12:0, Emery 651, Lunac L 70, CHEBI : 30805, HSDB 6814, EINECS 205-582-1, UNII-1160N9NU9U, BRN 1099477, n-dodécanoate, Kortacid 1299, anion acide dodécanoïque, DTXSID5021590, Prifrac 2920, AI3-00112, Lunac L 98, Univol U 314, Prifac 1160N, 9NU9U, MFCD00002736, DAO , DTXCID801590, CH3-[CH2]10-COOH, NSC5026, EC 205-582-1, dodécylate, laurostéarate, vulvate, 4-02-00-01082 (référence du manuel Beilstein), ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), 1-undécanecarboxylate , ACIDE LAURIQUE (USP-RS), ACIDE LAURIQUE [USP-RS], CH3-(CH2)10-COOH, 8000-62-2, CAS-143-07-7, SMR001253907, laurinsaure, acide dodécanique, Nuvail, laurique -acide, Acide Laurique, 3uil, Acide laurique (NF), DODECANOICACID, acide gras 12:0, Acide laurique, Réactif, Nissan NAA 122, Emery 650, Acide dodécanoïque, 98%, Acide dodécanoïque, 99%, Réactif garanti,99 %, Acide dodécanoïque (laurique), ACIDE LAURIQUE [MI], bmse000509, ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], SCHEMBL5895, NCIOpen2_009480, MLS002177807, MLS002415737, WLN: QV11, Acide dodécanoïque (acide laurique), ACIDE LAURIQUE [ WHO-DD], acide dodécanoïque, >=99,5 %, Edenor C 1298-100, ACIDE DODÉCANOÏQUE [HSDB], CHEMBL108766, GTPL5534, NAA 122, NAA 312, HMS2268C14, HMS3649N06, HY-Y0366, STR08039, acide dodécanoïque, étalon analytique , Acide laurique, >=98%, FCC, FG, Tox21_202149, Tox21_303010, BDBM50180948, LMFA01010012, s4726, STL281860, AKOS000277433, CCG-266587, DB03017, FA 12:0, ACIDE OL 1255 OU 1295, NCGC00090919-01, NCGC00090919- 02, NCGC00090919-03, NCGC00256486-01, NCGC00259698-01, AC-16451, BP-27913, DA-64879, acide dodécanoïque, >=99 % (GC/titration), LAU, acide dodécanoïque, purum, >=96,0 % (GC), Acide laurique, naturel, >=98%, FCC, FG, CS-0015078, L0011, NS00008441, EN300-19951, C02679, D10714, A808010, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN), Q422627, SR-01000838338 , J-007739, SR-01000838338-3, BRD-K67375056-001-07-9, F0001-0507, ACIDE LAURIQUE (CONSTITUANT DU PALMETTE SCINÉ) [DSC], Z104476194, 76C2A2EB-E8BA-40A6-8032-40A9862, 5ED7B, Laurique acide, étalon de référence de la Pharmacopée européenne (EP), acide laurique, étalon de référence de la Pharmacopée américaine (USP), acide laurique, étalon secondaire pharmaceutique ; Matériau de référence certifié, 203714-07-2, 7632-48-6, InChI=1/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/ h2-11H2,1H3,(H,13,14, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, ABL, Acide Laurique, Acide gras C12, C12:0, Acides gras d'huile de coco, DAO, Dodécanoate, acide dodécanoïque, dodécate, Dodécoïque acide, Dodécylate, dodécylcarboxylate, Acide dodécylique, duodécyclate, Acide duodécyclique, duodécylate, Acide duodécylique, LAP, LAU, Laurate, Acide laurique, Laurinsaeure, Laurostéarate, Acide laurostéarique, MYR, n-dodécanoate, acide n-dodécanoïque, laurate de sorbitan, sorbitan monolaurate (NF), undécane-1-carboxylate, acide undécane-1-carboxylique, Vulvate, acide vulvique, CH3-[CH2]10-COOH, acide dodécylcarboxylique, Laate, acide laïque, Aliphat no 4, Edenor C 1298-100. , Emery 651, Hystrene 9512, Kortacid 1299, Lunac L 70, Lunac L 98, Neo-fat 12, Neo-fat 12-43, Nissan naa 122, Philacid 1200, Prifac 2920, Univol u 314, acide 1-dodécanoïque, FA (12:0), acide 1-undécanecarboxylique, ABL, Aliphat no. 4, acide gras C12, acides gras d'huile de coco, dodécanoate, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), acide dodécoïque, dodécylcarboxylate, acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide laurique, Acide laurique pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Acide n-dodécanoïque, N-dodécanoate, Neo-fat 12, Ninol aa62 extra, Acide undécane-1-carboxylique , Univol U 314, Univol U-314, acide vulvique, AI3-00112, BRN 1099477, C-1297, CCRIS 669, EINECS 205-582-1, FEMA NO. 2614, HSDB 6814, HYDROFOL ACID 1255, HYDROFOL ACID 1295, HYSTRENE 9512, NEO-FAT 12-43, PHILACID 1200, PRIFRAC 2920, WECOLINE 1295, acide 1-Undécanecarboxylique, ABL, AC-16451, AC1L1GY2, , AKOS000277433, Aliphat N° 4, CH3-[CH2]10-COOH, acides gras d'huile de coco, DAO, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE (ACIDE LAURIQUE), Dodécanoate, Acide dodécanoïque (laurique), Acide dodécanoïque (acide laurique), Acide dodécanoïque (acide laurique ), Acide dodécoïque, Dodécylcarboxylate, Acide dodécylique, Acide duodécyclique, Acide duodécylique, Emery 650, Acide hydrofol 1255, Acide hydrofol 1295, Hystrene 9512, I04-1205, L-ALFA-LYSOPHOSPHATIDYLCHOLINE, LAUROYL, L0011, LAP, LAU, Acide laurique , pur, Laurinsaeure, Acide laurostéarique, Lunac L 70, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, Philacid 1200, Prifrac 2920, SMR001253907, ST023796, Acide Undécane-1-carboxylique, Univol U-314, Acide vulvique, Wecoline 1295, [2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM, n-Dodecanoate, acide n-Dodecanoïque, nchembio.364-comp10 , Acide dodécanoïque, acide n-dodécanoïque, Neo-fat 12, Aliphat no. 4, Abl, Acide dodécylique, Acide laurique, Acide laurostéarique, Neo-fat 12-43, Ninol aa62 extra, Univol u-314, Acide vulvique, Acide 1-undécanecarboxylique, Acide duodécylique, C-1297, Acides gras d'huile de coco, Hydrofol acide 1255, acide Hydrofol 1295, Wecoline 1295, acide dodécoïque, Hystrene 9512, Lunac L 70, acide duodécyclique, Emery 650, n-dodécanoate, Philacid 1200, Prifrac 2920, acide undécane-1-carboxylique, C-1297, acide dodécanoïque, acide dodécoïque, acide duodécylique, acide ndodécanoïque, acide Hydrofol 1255, acide Hydrofol 1295, Hystrene 9512, acide laurostéarique, Neo-fat 12, Neo-fat 12-43, Ninol AA62 Extra, acide 1-undécanecarboxylique, acide vulvique, Wecoline 1295, Acide dodécoïque, acide duodécyclique, Edenor C 1298-100, Emery 650, acide Hydrofol 1295, Hystrene 9512, Kortacid 1299, Laurostéarate, Lunac L 70, Lunac L 98, Neo-fat 12, Ninol AA62 extra, Nissan naa 122, Philacid 1200 , Prifac 2920, Prifrac 2920, Univol U 314, Vulvate, Acide vulvique, Wecoline 1295, 1-Undécanecarboxylate, Acide 1-Undécanecarboxylique, Dodécylate, Dodécylcarboxylate, Acide dodécylique, Acide duodécylique, Acide laurostéarique, Acide n-dodécanoïque, Undécane-1- acide carboxylique, LAP, LAU, DAO, acide laurique, acide n-dodécanoïque, acide dodécylique, acide vulvique, acide laurostéarique, acide dodécoïque, acide duodécylique, acide 1-undécanecarboxylique, aliphat no. 4, néo-graisse 12, 143-07-7, 205-582-1, ACIDE 1-UNDÉCANECARBOXYLIQUE, ACIDE DODÉCANOÏQUE, ACIDE DODÉCANOÏQUE [HSDB], ACIDE DODÉCOÏQUE, FEMA NO. 2614, LAURATE, ACIDE LAURIQUE (CONSTITUANT DU PALMIER NAIN) [DSC], ACIDE LAURIQUE [FCC], ACIDE LAURIQUE [FHFI], ACIDE LAURIQUE [MI], ACIDE LAURIQUE [USP-RS], ACIDE LAURIQUE [WHO-DD], ACIDE LAUROSTÉARIQUE, ACIDE N-DODÉCANOÏQUE, NSC-5026, acide dodécanoïque, acide laurique, acide laurostéarique, acide 1-undécanecarboxylique, ABL, Aliphat No. 4, Univol U 314, acide dodécylique, acide vulvique, Neo-Fat 12-43, Acide n-dodécanoïque, Neo-Fat 12, Lunac L 70, Emery 651, Prifac 2920, Nissan NAA 122, Lunac L 98, Hystrene 9512, NAA 312, Kortacid 1299, Philacid 1200, Edenor C 1298-100, NSC 5026, NAA 122, Prifac 2922, Edenor C 12, Prifrac 2920, ContraZeck, acide 1-dodécanoïque, Imex C 1299, Palmac 98-12, Edenor 12/98-100, Palmera B 1231, Edenor C 12-98-100, Lasacid FC 12 , Laurates, Dodécanoates, Palmae 99-12, D 97385, Edenor C12-99, Noix de coco dure 34, Noix de coco dure 42, Radiacid 0624, NS 6, 7632-48-6, 8000-62-2, 8045-27-0, 203714-07-2, 55621-34-6, ACIDE DODÉCANOÏQUE, C12, Emery651, Acide vulvique, FEMA 2614, acide laurique, pur, ACIDE N-DODÉCANOÏQUE, ACIDE LAUROSTÉARIQUE, Acide laurique 98-101 % (acidimétrique), Acide gras ester méthylique sulfonate (MES), acide dodécanoïque D23, acide dodécanoïque-d23,1-acide dodécanoïque-d23, acide 1-undécanecarboxylique-d23, ABL-d23, Aliphat n° 4-d23, ContraZeck-d23, acide dodécylique-d23, Edenor C 12-d23, Edenor C 1298-100-d23, Emery 651-d23, Hystrene 9512-d23, Imex C 1299-d23, Kortacid 1299-d23, Acide laurostéarique-d23, Lunac L 70-d23, Lunac L 98- d23, NAA 122-d23, NAA 312-d23, NSC 5026-d23, Néo-Fat 12-d23, Néo-Fat 12-43-d23, Nissan NAA 122-d23, Philacid 1200-d23, Prifac 2920-d23, Prifac 2922-d23, Prifrac 2920-d23, Univol U 314-d23, acide vulvique-d23, acide n-dodécanoïque-d23, dodécanoate, acides gras d'huile de noix de coco, acide laurostéarique, acide N-dodécanoïque, acide gras C12, acide duodécyclique, vulvique Acide, acide dodécanoïque (acide laurique), acide duodécylique, N-dodécanoate, acide dodécanoïque (laurique), Laurinsaeure, acide laurique, pur, acide laurique (naturel), dodécylcarboxylate, Abl, Dao, Lap, Lau, Myr



L'acide duodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide duodécylique est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide duodécylique est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.


La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l’acide duodécylique seul (il est irritant et ne se trouve pas seul dans la nature), vous l’obtiendrez probablement sous forme d’huile de noix de coco ou de noix de coco fraîches.


Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable de ses bienfaits rapportés.
Étant donné que l’huile de coco contient bien plus que de l’acide duodécylique, il serait exagéré de lui attribuer tous les bienfaits de l’huile de coco.
Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide duodécylique.


Parmi les avantages, ils suggèrent que l’acide duodécylique pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.
Ses effets sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide duodécylique sont dus à la manière dont le corps l’utilise.


La majorité de l'acide duodécylique est envoyée directement au foie, où il est converti en énergie plutôt que stocké sous forme de graisse.
Comparé aux autres graisses saturées, l’acide duodécylique contribue le moins au stockage des graisses.
L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide duodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide duodécylique sont appelés laurates.
Comme beaucoup d’autres acides gras, l’acide duodécylique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.


L'acide duodécylique est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l'acide duodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons. L'acide duodécylique se présente sous forme de poudre cristalline blanche
L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone utilisé dans les nettoyants industriels, les lubrifiants, les savons, les tensioactifs, les additifs agricoles, les revêtements, les additifs alimentaires et les additifs textiles.


L'acide duodécylique, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide duodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste.


Sinon, l'acide duodécylique est relativement rare.
L'acide duodécylique augmente le cholestérol sérique total plus que tous les acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).


En conséquence, l’acide duodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol total :HDL que tout autre acide gras, saturé ou insaturé ».
En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.


À ces fins, l'acide duodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide duodécylique est un acide carboxylique cristallin blanc avec une légère odeur d'huile de laurier ou de savon.


L'acide duodécylique est un acide gras saturé de formule développée CH3(CH2)10COOH.
L'acide duodécylique est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide duodécylique se trouve également dans le lait maternel (5,8 % des matières grasses totales), le lait de vache (2,2 %) et le lait de chèvre (4,5 %).


L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.
L'acide duodécylique, réactif, également connu sous le nom d'acide duodécylique, est un acide gras à chaîne moyenne qui a une vague odeur de savon et se présente sous forme de poudre.
L'acide duodécylique se trouve naturellement dans le lait maternel ainsi que dans le lait de vache et de chèvre.


La qualité réactive de l'acide duodécylique signifie qu'il s'agit de la plus haute qualité disponible dans le commerce pour ce produit chimique et que l'American Chemical Society n'a officiellement fixé aucune spécification pour ce matériau.
L'acide duodécylique est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.


L'acide duodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide duodécylique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.


L'acide duodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide duodécylique sont appelés laurates.
L'acide duodécylique est un acide gras saturé avec un acide carboxylique terminal.


L'acide carboxylique terminal, l'acide duodécylique, peut réagir avec des groupes amine primaire en présence d'activateurs tels que HATU.
L'acide duodécylique est une forme marquée au carbone 13 d'un acide gras saturé présent dans le lait de coco, l'huile de coco, l'huile de laurier et l'huile de palmiste, ainsi que dans le lait maternel et d'autres laits d'origine animale.


L'acide duodécylique est un inhibiteur de la pompe à protons potentiellement destiné au traitement des infections à Helicobacter pylori.
Des expériences in vitro ont suggéré que certains acides gras, dont l'acide duodécylique, pourraient être un composant utile dans un traitement contre l'acné, mais aucun essai clinique n'a encore été mené pour évaluer ce bénéfice potentiel chez l'homme.


L'acide duodécylique augmente le cholestérol sérique total plus que de nombreux autres acides gras.
Mais l’essentiel de cette augmentation est imputable à une augmentation des lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l’acide duodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».


L'acide duodécylique, identifié par le numéro CAS 143-07-7, est un acide gras saturé à chaîne moyenne avec un squelette de 12 atomes de carbone, bien connu pour son rôle dans la fabrication de savons, de détergents et de cosmétiques.
En tant que composant fondamental, l'acide duodécylique est réputé pour ses propriétés tensioactives, qui permettent la production d'une mousse riche dans les produits nettoyants.


En recherche, l'acide duodécylique est largement utilisé pour étudier le comportement des lipides dans divers systèmes en raison de sa nature amphiphile, qui lui permet de s'assembler en micelles et autres nanostructures dans des solutions aqueuses.
Ces études sont cruciales pour faire progresser les domaines de la science des matériaux et de la nanotechnologie, en particulier dans le développement de systèmes de distribution et l'amélioration des formulations de produits.


De plus, l’acide duodécylique est utilisé dans la recherche en science alimentaire où il sert de modèle pour comprendre la digestion et le métabolisme des acides gras à chaîne moyenne.
Les propriétés antimicrobiennes de l'acide duodécylique sont également examinées en termes de manière dont elles peuvent être exploitées dans des applications non médicales, telles que la conservation et la sécurité des aliments, où la réduction de la croissance microbienne est essentielle.


De plus, le rôle de l'acide duodécylique dans les applications industrielles s'étend à son utilisation comme matière première dans la synthèse de divers dérivés chimiques, notamment les esters utilisés dans les arômes et les parfums, démontrant sa polyvalence et son importance tant dans la recherche scientifique que dans les applications industrielles.
L'acide duodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide duodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide duodécylique, C12H24O2, également connu sous le nom d'acide duodécylique, est un acide gras saturé avec une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux, l'acide duodécylique, a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.


L'acide duodécylique est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide duodécylique, CAS 143-07-7, formule chimique C12H24O2, est produit sous forme de poudre cristalline blanche, a une légère odeur d'huile de laurier et est soluble dans l'eau, les alcools, les phényles, les haloalcanes et les acétates.


L'acide duodécylique est non toxique, sûr à manipuler, peu coûteux et a une longue durée de conservation.
L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans la catégorie des acides gras à chaîne moyenne.
L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.


L'acide duodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide duodécylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide duodécylique est un composé potentiellement toxique.
L'acide duodécylique a la formule chimique C12H24O2.
L'acide duodécylique se présente sous la forme d'un solide cristallin blanc avec une odeur caractéristique d'huile de laurier.


L'acide duodécylique est insoluble dans l'eau et soluble dans l'éther, le chloroforme et l'alcool.
L'acide duodécylique se trouve naturellement dans certaines graisses végétales et animales et est un composant clé de l'huile de coco.
L'acide duodécylique est préparé synthétiquement par distillation fractionnée d'autres acides de noix de coco mélangée.


L'acide duodécylique est un solide blanc avec une légère odeur d'huile de laurier.
L'acide duodécylique est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.


L'acide duodécylique joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.
L'acide duodécylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide duodécylique est un acide conjugué d'un dodécanoate.


L'acide duodécylique dérive d'un hydrure de dodécane.
L'acide duodécylique est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide duodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


L'acide duodécylique est un métabolite présent ou produit par Escherichia coli.
L'acide duodécylique est un produit naturel présent dans Ipomoea leptophylla, Arisaema tortuosum et d'autres organismes pour lesquels des données sont disponibles.
L'acide duodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide duodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide duodécylique est le principal acide gras de l'huile de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier.


L'acide duodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.
L'acide duodécylique est un métabolite présent ou produit par Saccharomyces cerevisiae.
L'acide duodécylique est un acide gras saturé à chaîne moyenne.


L'acide duodécylique se trouve dans de nombreuses graisses végétales ainsi que dans les huiles de noix de coco et de palmiste.
L'acide duodécylique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne.
L'acide duodécylique est un solide poudreux blanc brillant avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide duodécylique sont appelés laurates.


L'acide duodécylique est un précurseur du peroxyde de dilauroyle, un initiateur courant de polymérisations.
L'acide duodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.


L'acide duodécylique, également connu sous le nom de dodécanoate ou acide laurique, appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.
L'acide duodécylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.


L'acide duodécylique est le principal acide gras de l'huile de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de laurier.
L'acide duodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


L’acide duodécylique est un acide gras qui inhibe la croissance des bactéries.
L'acide duodécylique inhibe la croissance bactérienne en se liant au site actif de l'enzyme dihydrolipoamide acétyltransférase, qui catalyse la conversion du dihydrolipoamide et de l'acétyl-CoA en succinyl-CoA et en acétoacétyl-CoA.


L'acide duodécylique se lie également au phosphate de dinucléotide, qui participe à la régulation de la température de transition de phase et des échantillons biologiques.
Il a également été démontré que l'acide duodécylique agit comme un inhibiteur actif de la synthase des acides gras, une enzyme qui catalyse la synthèse des acides gras à partir de l'acétyl-coenzyme A (acétyl-CoA).


Ce processus est essentiel à la croissance bactérienne.
L'acide duodécylique a des effets synergiques avec d'autres antibiotiques tels que l'ampicilline, l'érythromycine et la tétracycline.
L'acide duodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.


L'acide duodécylique a été trouvé en concentration élevée dans l'huile de coco.
L'acide duodécylique induit l'activation de NF-κB et l'expression de COX-2, de l'oxyde nitrique synthase inductible (iNOS) et d'IL-1α dans les cellules RAW 264.7 lorsqu'il est utilisé à une concentration de 25 μM.


L'acide duodécylique est un acide gras saturé à chaîne droite à douze carbones à chaîne moyenne doté de fortes propriétés bactéricides ; le principal acide gras de l’huile de coco et de l’huile de palmiste.
L'acide duodécylique joue le rôle de métabolite végétal, d'agent antibactérien et de métabolite algal.


L'acide duodécylique est un solide blanc et poudreux avec une légère odeur d'huile de baie de noix de coco ou de savon gras et doux.
L'acide duodécylique est le principal acide gras de l'huile de noix de coco (49 %) et de l'huile de palmiste (47 à 50 %). On le trouve en moindre quantité dans la muscade sauvage, le lait maternel, le lait de vache, le lait de chèvre et les graines de pastèque. , prune et noix de macadamia.


L'acide duodécylique, bien que légèrement irritant pour les muqueuses, présente une toxicité extrêmement faible, est peu coûteux, possède des propriétés antimicrobiennes et est donc utilisé dans de nombreux savons et shampoings.
L'acide duodécylique est un composé faiblement acide.


L'acide duodécylique réagit avec l'hydroxyde de sodium pour générer du laurate de sodium, qui est du savon.
L'acide duodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras saturé ou insaturé ».


L'acide duodécylique est un acide gras saturé à chaîne droite et un acide gras à chaîne moyenne.
L'acide duodécylique est un acide conjugué d'un dodécanoate.
L'acide duodécylique dérive d'un hydrure de dodécane.


L'acide duodécylique est un acide carboxylique cristallin blanc.
L'acide duodécylique est utilisé comme plastifiant et pour fabriquer des détergents et des savons.
Les glycérides de l'acide duodécylique sont naturellement présents dans les huiles de noix de coco et de palme.


L'acide duodécylique est un solide blanc avec une légère odeur d'huile de laurier.
L'acide duodécylique appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.



UTILISATIONS et APPLICATIONS de l’ACIDE DUODÉCYLIQUE :
L'acide duodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide duodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets dans l'environnement de l'acide duodécylique sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


L'acide duodécylique est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, cosmétiques et produits de soins personnels, lubrifiants et graisses. et les produits de traitement des textiles et les teintures.


Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.


L'acide duodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.
L'acide duodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.


Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : fabrication de la substance.


L'acide duodécylique est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide duodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide laurique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.


En laboratoire, l'acide duodécylique peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l’acide duodécylique est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).
Sa constante cryoscopique est de 3,9°C•kg/mol.


En faisant fondre l'acide duodécylique avec la substance inconnue, en le laissant refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.
Dans l'industrie, l'acide duodécylique est utilisé comme intermédiaire et comme agent tensioactif.


Les applications industrielles de l'acide duodécylique et de ses dérivés comprennent l'acide gras en tant que composant des résines alkydes, des agents mouillants, un accélérateur et un adoucissant pour le caoutchouc, des détergents et des insecticides.
Le marché de consommation utilise l'acide duodécylique dans le nettoyage, l'ameublement et la production de produits de soins personnels.


En médecine, l’acide duodécylique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Utilisations et applications courantes de l'acide duodécylique : additif, acidifiants, intermédiaire chimique, lubrifiant, synthèse de substances, industries, production chimique, soins personnels et laboratoires.


L'acide duodécylique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.
L'acide duodécylique est autorisé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.


Les gens utilisent également l’acide duodécylique comme médicament.
Les gens utilisent l’acide duodécylique pour traiter des infections virales telles que la grippe, le rhume, l’herpès génital et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer une quelconque utilisation.


L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets d'acide duodécylique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.


Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage) et traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage du métal).


D'autres rejets dans l'environnement de l'acide duodécylique sont susceptibles de se produire à partir de : l'utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, produits en bois traités, textiles traités et tissu, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) et utilisation en intérieur dans des matériaux longue durée à taux de dégagement élevé (par exemple dégagement des tissus, textiles lors du lavage, enlèvement des peintures intérieures) .


L'acide duodécylique peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


L'acide duodécylique peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).


L'acide duodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide duodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide duodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide duodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide duodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


De plus, l’acide duodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.


L'acide duodécylique est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide duodécylique est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.
Dans l'industrie, l'acide duodécylique est utilisé comme intermédiaire et comme agent tensioactif.


Le marché de consommation utilise l'acide duodécylique dans le nettoyage, l'ameublement et la production de produits de soins personnels.
En médecine, l’acide duodécylique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
L'acide duodécylique est principalement utilisé dans la fabrication et la production de savons et autres produits cosmétiques ainsi que dans les laboratoires scientifiques.


L'acide duodécylique est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.
L'acide duodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide duodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.


L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide duodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide duodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.


L'acide duodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.
De plus, l’acide duodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.


L'acide duodécylique est utilisé comme antimousse ; GB 2760-86 prévoit les épices autorisées à utiliser ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide duodécylique est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.


Les types de tensioactifs de l'acide duodécylique sont répertoriés dans le tableau ci-joint de cet article.
Certains tensioactifs des dérivés de l'acide duodécylique et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).


Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide duodécylique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.
Compte tenu de leurs propriétés moussantes, les dérivés de l'acide laurique (acide h-duodécylique) sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.


L'acide duodécylique est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.
L'acide duodécylique peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide duodécylique est un léger irritant mais pas un sensibilisant, et certaines sources le citent comme comédogène.


L'acide duodécylique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.
L'acide duodécylique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.


L'acide duodécylique fonctionne comme un lubrifiant, un liant et un agent antimousse.
L'acide duodécylique est utilisé comme intermédiaire des cristaux liquides
L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


L'acide duodécylique est utilisé dans la préparation de cosmétiques, de savons, de résines alkydes et d'agents mouillants.
L'acide duodécylique est également utilisé pour mesurer la masse molaire d'une substance inconnue en abaissant le point de congélation.
L'acide duodécylique est également utilisé comme additif alimentaire et comme composant actif dans un traitement contre l'acné.


De plus, l’acide duodécylique est un substrat pour l’acylation de certaines protéines d’après les études murines.
L'acide duodécylique est généralement utilisé pour fabriquer des produits cosmétiques mais est également utilisé en laboratoire pour obtenir la masse molaire de substances.
L'acide duodécylique, bien que légèrement irritant pour les muqueuses, présente une très faible toxicité et est donc utilisé dans de nombreux savons et shampoings.


Le laurylsulfate de sodium est le composé dérivé de l'acide duodécylique le plus couramment utilisé à cette fin.
Parce que l'acide duodécylique a une queue d'hydrocarbure non polaire et une tête d'acide carboxylique polaire, il peut interagir avec des solvants polaires (le plus important étant l'eau) ainsi qu'avec des graisses, permettant à l'eau de dissoudre les graisses.


Cela explique la capacité des shampooings à éliminer la graisse des cheveux.
Une autre utilisation consiste à augmenter le métabolisme, ce qui proviendrait de l'activation par l'acide duodécylique de 20 % des hormones thyroïdiennes, qui autrement resteraient en sommeil.
Cela est dû à la libération par l'acide duodécylique d'enzymes dans le tractus intestinal qui activent la thyroïde.


Cela pourrait expliquer les propriétés métaboliques de l’huile de coco.
Parce que l'acide duodécylique est peu coûteux, a une longue durée de conservation et est non toxique et sans danger à manipuler, il est souvent utilisé dans les études en laboratoire sur la dépression du point de fusion.


L'acide duodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. Il peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.
L'acide duodécylique est largement utilisé dans les cosmétiques et les produits alimentaires.


Dans les applications pharmaceutiques, l'acide duodécylique a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide duodécylique est également utile pour stabiliser les émulsions huile dans l'eau.


L'acide duodécylique a également été évalué pour une utilisation dans les formulations en aérosol.
L'acide duodécylique est utilisé dans la production de produits de soins personnels via le sel laurate de sodium.
L'acide duodécylique est également étudié dans la recherche métabolique et foodomique pour son impact potentiel sur les maladies cardiovasculaires.


L'acide duodécylique a été utilisé comme réactif pour synthétiser des nanoparticules magnétiques MnFe2O4 par la méthode de croissance médiée par les graines.
L'acide duodécylique peut subir une estérification avec le 2-éthylhexanol en présence d'un catalyseur à base de zircone sulfatée pour former du 2-éthylhexanoldodécanoate, un biodiesel.
Comme beaucoup d’autres acides gras, l’acide duodécylique est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.


L'acide duodécylique est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l’acide duodécylique réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.


Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide duodécylique est utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, de détergents et de pesticides.
L'acide duodécylique est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.


-Utilisations de l'acide duodécylique dans le parfum :
L'acide duodécylique est utilisé dans les arômes de beurre et dans certains types d'arômes d'agrumes, principalement dans le citron.
La concentration d'acide duodécylique utilisée peut varier de 2 à 40 ppm, calculée sur le produit de consommation fini.


-Applications pharmaceutiques de l'acide duodécylique :
applications pharmaceutiques, il a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale (14) et de l'absorption intestinale.
L'acide duodécylique est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide duodécylique a également été évalué pour une utilisation dans les formulations en aérosol.



PRÉSENCE D'ACIDE DUODÉCYLIQUE :
L'acide duodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).

Sinon, l’acide duodécylique est relativement rare.
L'acide duodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Dans diverses plantes :
*Le palmier Attalea speciosa, une espèce populairement connue au Brésil sous le nom de babassu – 50% dans l'huile de babassu
*Attalea cohune, le palmier cohune (également arbre à pluie, palmier à huile américain, palmier corozo ou palmier manaca) – 46,5% dans l'huile de cohune
*Astrocaryum murumuru (Arecaceae) un palmier originaire d'Amazonie – 47,5% dans le « beurre de murumuru »
*Huile de coco 49%
*Pycnanthus kombo (muscade africaine)
*Virola surinamensis (muscade sauvage) 7,8–11,5 %
*Graines de palmier pêcher 10,4%
*Noix de bétel 9%
*Graine de palmier dattier 0,56–5,4 %
*Noix de macadamia 0,072–1,1 %
*Prune 0,35–0,38 %
*Graines de pastèque 0,33%
*Viorne opulus 0,24-0,33 %
*Citrullus lanatus (melon egusi)
*Fleur de citrouille 205 ppm, graines de citrouille 472 ppm
*Insecte
*Mouche soldat noire Hermetia illucens 30–50 mg/100 mg de graisse.



PARENTS ALTERNATIFS DE L'ACIDE DUODÉCYLIQUE :
*Acides dicarboxyliques et dérivés
*Acides carboxyliques
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE DUODÉCYLIQUE :
*Acide gras à chaîne moyenne
*Acide dicarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé organooxygéné
*Groupe carbonyle
*Composé aliphatique acyclique



TYPE DE COMPOSÉ D'ACIDE DUODÉCYLIQUE :
*Toxine animale
*Toxine cosmétique
*Toxine alimentaire
*Toxine industrielle/lieu de travail
*Métabolite
*Composé naturel
*Composé organique
*Plastifiant



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est un cristal incolore en forme d'aiguille.
L'acide duodécylique est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.



STABILITÉ ET CONDITIONS DE CONSERVATION DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est stable à des températures normales et doit être conservé dans un endroit frais et sec.



SOURCE ET PRÉPARATION DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est un acide carboxylique gras isolé des graisses ou des huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide duodécylique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



SOLUBILITÉ DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est soluble dans l'eau, le benzène, l'acétone, l'alcool, l'éther de pétrole, le diméthylsulfoxyde et le diméthylformamide.
L'acide duodécylique est légèrement soluble dans le chloroforme.



NOTES D'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est incompatible avec les bases, les agents oxydants et les agents réducteurs.



OÙ TROUVER L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les agents pathogènes tels que les bactéries, les virus et les levures.



PRÉSENCE D'ACIDE DUODÉCYLIQUE :
L'acide duodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme).
Sinon, l'acide duodécylique est relativement rare.
L'acide duodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).



SÉCURITÉ DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est largement utilisé dans les préparations cosmétiques, dans la fabrication d'additifs alimentaires et dans les formulations pharmaceutiques.
L'exposition générale à l'acide duodécylique se produit par la consommation d'aliments et par contact cutané avec des cosmétiques, des savons et des produits détergents.

L'exposition professionnelle peut provoquer une irritation locale des yeux, du nez, de la gorge et des voies respiratoires, bien que l'acide duodécylique soit considéré comme sûr et non irritant pour une utilisation dans les cosmétiques.
Aucun effet toxicologique n'a été observé lorsque l'acide duodécylique a été administré à des rats à raison de 35 % de leur alimentation pendant 2 ans.



TRIGLYCÉRIDES À CHAÎNE MOYENNE DE L'ACIDE DUODÉCYLIQUE :
Les triglycérides à chaîne moyenne, ou acides gras, comme l'acide duodécylique, se caractérisent par une structure chimique spécifique qui permet à votre organisme de les absorber en entier.

Cela les rend plus faciles à digérer : votre corps les traite comme des glucides et ils sont utilisés comme source d’énergie directe.
Comparés aux triglycérides à longue chaîne, le type présent dans d'autres graisses saturées, les MCT contiennent moins de calories par portion, environ 8,3 calories par gramme au lieu des 9 calories standard par gramme, selon un article paru dans "Nutrition Review".



MÉTHODES DE PRODUCTION DE L'ACIDE DUODÉCYLIQUE :
1. Les méthodes de production industrielle peuvent être regroupées en deux catégories :
* dérivés de la saponification ou de la décomposition à haute température et pression d'huiles et de graisses végétales naturelles ;
* séparé de l'acide gras synthétique.

Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide duodécylique.
Les huiles végétales naturelles utilisées pour produire l’acide duodécylique comprennent l’huile de noix de coco, l’huile de noyau de litsea cubeba, l’huile de palmiste et l’huile de graines de poivre de montagne.

D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide duodécylique.
Le distillat C12 résiduel issu de l'extraction de l'acide duodécylique, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide duodécylique avec un rendement supérieur à 86 %.

2. Dérivé de la séparation et de la purification de l'huile de noix de coco et d'autres huiles végétales.

3. L'acide duodécylique existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide duodécylique peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.
La teneur en acide duodécylique est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide duodécylique.



RÉACTIONS DE L'AIR ET DE L'EAU DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est insoluble dans l'eau.



VALEURS SEUILS D’ARÔME DE L’ACIDE DUODÉCYLIQUE :
Valeurs seuils d'arôme
Caractéristiques aromatiques à 1,0% : gras, crémeux, fromager, cireux de bougie avec une richesse semblable à celle d'un œuf



VALEURS SEUILS gustatives DE L’ACIDE DUODÉCYLIQUE :
Caractéristiques gustatives à 5 ppm : cireux, gras et huileux, semblable à du suif, crémeux et laiteux avec une sensation enrobante en bouche



ASPECTS NUTRITIONNELS ET MÉDICAUX DE L'ACIDE DUODÉCYLIQUE :
Bien que 95 % des triglycérides à chaîne moyenne soient absorbés par la veine porte, seulement 25 à 30 % de l'acide duodécylique y est absorbé.
L'acide duodécylique induit l'apoptose dans le cancer et favorise la prolifération des cellules normales en maintenant l'homéostasie rédox cellulaire.
L'acide duodécylique augmente davantage les lipoprotéines sériques totales que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL).

En conséquence, l'acide duodécylique a été caractérisé comme ayant « un effet plus favorable sur le HDL total que tout autre acide gras [examiné], saturé ou insaturé ».
En général, un rapport lipoprotéines sériques totales/HDL plus faible est en corrélation avec une diminution de l’incidence de l’athérosclérose.

Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/lipoprotéines sériques a révélé en 2003 que les effets nets de l'acide duodécylique sur les résultats des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de coco (qui contient près de la moitié de l’acide duodécylique) n’a pas non plus été concluante quant à ses effets sur l’incidence des maladies cardiovasculaires.



INCLUER L'ACIDE DUODÉCYLIQUE DANS VOTRE ALIMENTATION :
L'acide duodécylique peut être pris en complément, mais il est le plus souvent consommé dans l'huile de coco ou l'huile de palmiste.
L'acide duodécylique est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Selon le centre médical NYU Langone, l'huile de noix de coco et l'huile de palmiste contiennent jusqu'à 15 % de MCT, ainsi qu'un certain nombre d'autres graisses.
Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.

Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier ou une odeur grasse.
L'acide duodécylique est un constituant courant de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE DUODÉCYLIQUE :
Comme beaucoup d’autres acides gras, l’acide duodécylique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide duodécylique est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l'acide duodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.



PROFIL DE RÉACTIVITÉ DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.

Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.

De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide duodécylique pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.



MÉTHODES DE PRODUCTION DE L'ACIDE DUODÉCYLIQUE :
L'acide duodécylique est un acide carboxylique gras isolé des graisses ou des huiles végétales et animales.
Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide duodécylique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE DUODÉCYLIQUE :
Formule chimique : C10H18O4
Masse molaire : 202,250 g•mol−1
Densité : 1,209 g/cm3
Point de fusion : 131 à 134,5 °C (267,8 à 274,1 °F ; 404,1 à 407,6 K)
Point d'ébullition : 294,4 °C (561,9 °F ; 567,5 K) à 100 mmHg
Solubilité dans l'eau : 0,25 g/L
Acidité (pKa) : 4.720, 5.450
Poids moléculaire : 202,25
XLogP3 : 2.1
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4

Nombre de liaisons rotatives : 9
Masse exacte : 202.12050905
Masse monoisotopique : 202,12050905
Surface polaire topologique : 74,6 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 157
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
État physique : poudre
Couleur blanche
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/plage de fusion : 133 - 137 °C - allumé.
Point initial d'ébullition et intervalle d'ébullition : 294,5 °C à 133 hPa - lit.
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible

Point d'éclair : Non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau: 0,224 g/l à 20 °C - OCDE Ligne directrice 105
Coefficient de partage:
n-octanol/eau : log Pow : 1,5 à 23 °C
Pression de vapeur : 1 hPa à 183 °C
Densité : 1 210 g/cm3 à 20 °C

Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : aucune
Autres informations de sécurité : Aucune donnée disponible
Solubilité dans l'eau : 0,91 g/L
logP : 1,93
logP : 2,27
logS : -2,4
pKa (acide le plus fort) : 4,72

Charge physiologique : -2
Nombre d'accepteurs d'hydrogène : 4
Nombre de donneurs d'hydrogène : 2
Surface polaire : 74,6 Ų
Nombre de liaisons rotatives : 9
Réfractivité : 51,14 m³•mol⁻¹
Polarisabilité : 22,61 ų
Nombre de sonneries : 0
Biodisponibilité : Oui
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : non
Règle de type MDDR : non

Point de fusion : 133-137 °C (lit.)
Point d'ébullition : 294,5 °C/100 mmHg (lit.)
Densité : 1,21
pression de vapeur : 1 mm Hg ( 183 °C)
indice de réfraction : 1,422
Point d'éclair : 220 °C
Température de stockage : Conserver en dessous de +30°C.
solubilité : éthanol : 100 mg/mL
forme : poudre ou granulés
pka : 4,59, 5,59 (à 25 ℃ )
couleur : Blanc à blanc cassé
Solubilité dans l'eau : 1 g/L (20 ºC)
Merck : 14 8415

Numéro de référence : 1210591
Stabilité : Stable.
LogP : 1,5 à 23 ℃
Aspect : poudre granulaire blanche (est)
Dosage : 95,00 à 100,00
Répertorié par le Codex des produits chimiques alimentaires : Non
Point de fusion : 130,80 °C. @ 760,00 mmHg
Point d'ébullition : 364,00 à 365,00 °C. @ 760,00 mmHg
Point d'ébullition : 235,00 à 234,00 °C. @ 10,00 mmHg
Point d'éclair : 389,00 °F. TCC (198,30 °C.) (est)
logP (dont) : 1,706 (est)
Soluble dans : eau, 1000 mg/L à 20 °C (exp)
eau, 1420 mg/L à 25 °C (est)

Formule chimique : C12H24O2
Masse molaire : 200,322 g•mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier
Densité : 1,007 g/cm³ (24 °C),
0,8744 g/cm³ (41,5 °C),
0,8679 g/cm³ (50 °C)
Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)
Point d'ébullition : 297,9 °C (568,2 °F ; 571,0 K),
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg,
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg
Solubilité dans l'eau : 37 mg/L (0 °C), 55 mg/L (20 °C),
63 mg/L (30 °C), 72 mg/L (45 °C), 83 mg/L (100 °C)

Solubilité : Soluble dans les alcools, l'éther diéthylique,
phényles, haloalcanes, acétates
Solubilité dans le méthanol : 12,7 g/100 g (0 °C),
120 g/100 g (20 °C), 2 250 g/100 g (40 °C)
Solubilité dans l'acétone : 8,95 g/100 g (0 °C),
60,5 g/100 g (20 °C), 1 590 g/100 g (40 °C)
Solubilité dans l'acétate d'éthyle : 9,4 g/100 g (0 °C),
52 g/100 g (20°C), 1250 g/100 g (40°C)
Solubilité dans le toluène : 15,3 g/100 g (0 °C),
97 g/100 g (20°C), 1410 g/100 g (40°C)
log P : 4,6

Pression de vapeur : 2,13•10−6 kPa (25 °C),
0,42 kPa (150 °C),
6,67 kPa (210 °C)
Acidité (pKa) : 5,3 (20 °C)
Conductivité thermique : 0,442 W/m•K (solide),
0,1921 W/m•K (72,5 °C),
0,1748 W/m•K (106 °C)
Indice de réfraction (nD) : 1,423 (70 °C),
1,4183 (82 °C)
Viscosité : 6,88 cP (50 °C), 5,37 cP (60 °C)
Structure:
Structure cristalline : Monoclinique (forme α),
Triclinique, aP228 (forme γ)

Groupe spatial : P21/a, n° 14 (forme α), P1, n° 2 (forme γ)
Groupe de points : 2/m (forme α)[8], 1 (forme γ)[9]
Constante de réseau : a = 9,524 Å, b = 4,965 Å,
c = 35,39 Å (forme α),
α = 90°, β = 129,22°, γ = 90°
Thermochimie:
Capacité thermique (C) : 404,28 J/mol•K
Enthalpie standard de formation (ΔfH ⦵ 298) : −775,6 kJ/mol
Enthalpie standard de combustion (ΔcH ⦵ 298) : 7377 kJ/mol,
7425,8 kJ/mol (292 K)
Poids moléculaire : 200,32 g/mol
XLogP3 : 4,2
Nombre de donneurs de liaisons hydrogène : 1

Nombre d'accepteurs de liaison hydrogène : 2
Nombre de liaisons rotatives : 10
Masse exacte : 200,177630004 g/mol
Masse monoisotopique : 200,177630004 g/mol
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 14
Frais formels : 0
Complexité : 132
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0

Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Nom IUPAC : acide dodécanoïque
Nom traditionnel IUPAC : acide laurique
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,3178
Masse exacte : 200,177630012
SOURIRES : CCCCCCCCCCCC(O)=O

Formule chimique : C12H24O2
Poids moléculaire moyen : 200,3178
Poids moléculaire monoisotopique : 200,177630012
Nom IUPAC : acide dodécanoïque
Nom traditionnel : acide laurique
Numéro de registre CAS : 143-07-7
SOURIRES : CCCCCCCCCCCC(O)=O
Identifiant InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé InChI : POULHZVOKOAJMA-UHFFFAOYSA-N
Synonymes : acide n-dodécanoïque
Nom IUPAC : Acide dodécanoïque
SOURIRES canoniques : CCCCCCCCCCCC(=O)O
InChI: POULHZVOKOAJMA-UHFFFAOYSA-N

Clé InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Point d'ébullition : 225 °C 100 mmHg (lit.)
Point de fusion : 44-46 °C (lit.)
Point d'éclair : 156 ºC
Densité : 0,883 g/ml
Aspect : Liquide clair
Stockage : Température ambiante
CNo.Chaîne: C12:0
Dérivé composé : acide
Numéro CE : 205-582-1
Acide gras : Dodécanoïque (Laurique)
Codes de danger : Xi

Mentions de danger : Xi
Code SH : 2916399090
LogP : 3,99190
Numéro MDL : MFCD00002736
État physique : Solide
PSA : 37,3
Indice de réfraction : 1,4304
Description de sécurité : 37/39-26-39-36
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
Conditions de stockage : Conserver dans un récipient bien fermé.
Conserver dans un endroit frais, sec et bien ventilé, à l'écart des substances incompatibles.

Mentions de danger supplémentaires : H401-H318-H319
Symbole : GHS05, GHS07
Pression de vapeur : 1 mm Hg ( 121 °C)
Formule : C12H24O2
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
Poids moléculaire : 200,322 g/mol
SOURIRES : OC(CCCCCCCCCCC)=O
ÉCLABOUSSURE : éclaboussure10-0706-9000000000-b974e08e305014657f85
Source du spectre : HE-1982-0-0
Numéro CB : CB0357278
Formule moléculaire : C12H24O2
Structure de Lewis
Poids moléculaire : 200,32

Numéro MDL : MFCD00002736
Fichier MOL : 143-07-7.mol
Point de fusion : 44-46 °C (lit.)
Point d'ébullition : 225 °C/100 mmHg (lit.)
Densité : 0,883 g/mL à 25 °C (lit.)
Pression de vapeur : 1 mm Hg (121 °C)
Indice de réfraction : 1,4304
FEMA : 2614 | L'ACIDE LAURIQUE
Point d'éclair : >230 °F
Température de stockage : 2-8°C
Solubilité : 4,81 mg/L
Forme : Poudre cristalline de flocons
pKa : 4,92 (H2O, t =25,0) (Incertain)
Gravité spécifique : 0,883
Couleur blanche

Odeur : à 100,00 % d'huile de baie de coco grasse douce
Type d'odeur : grasse
Limite d'explosivité : 0,6 % (V)
Solubilité dans l'eau : insoluble
λmax : 207 nm (MeOH) (lit.)
Numéro JECFA : 111
Merck : 14 5384
Numéro de référence : 1099477
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants, les agents réducteurs.
InChIKey: POULHZVOKOAJMA-UHFFFAOYSA-N
LogP : 5

Constante de dissociation : 5,3 à 20°C
Substances ajoutées aux aliments (anciennement EAFUS) : ACIDE LAURIQUE
Référence de la base de données CAS : 143-07-7 (Référence de la base de données CAS)
Scores alimentaires de l'EWG : 1
FDA UNII : 1160N9NU9U
Référence chimique NIST : Acide dodécanoïque (143-07-7)
Système d'enregistrement des substances de l'EPA : Acide laurique (143-07-7)
Poids moléculaire : 200,32
Masse exacte : 200,32
Numéro de référence : 1099477
Numéro CE : 205-582-1
Code SH : 29159010

Caractéristiques
PSA : 37,3
XLogP3 : 4,2
Aspect : Poudre cristalline blanche de flocons
Densité : 0,883 g/cm³ à température : 20 °C
Point de fusion : 44,2 °C
Point d'ébullition : 298,9 °C
Point d'éclair : >230 °F
Indice de réfraction : 1,4304
Solubilité dans l'eau : H2O : insoluble
Conditions de stockage : Conserver à une température inférieure à +30°C
Pression de vapeur : 1 mm Hg (121 °C)
Toxicité : DL50 iv chez la souris : 131 ±5,7 mg/kg (Or, Wretlind)
Limite d'explosivité : 0,6 % (V)
Odeur : Caractéristique, comme l'huile de laurier
pKa : 5,3 (à 20 °C)



PREMIERS SECOURS DE L'ACIDE DUODÉCYLIQUE :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE DE L'ACIDE DUODÉCYLIQUE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Prendre à sec.
Éliminer correctement.



MESURES DE LUTTE CONTRE L'INCENDIE DE L'ACIDE DUODÉCYLIQUE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE DUODÉCYLIQUE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE DUODÉCYLIQUE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec



STABILITÉ et RÉACTIVITÉ de l'ACIDE DUODÉCYLIQUE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible


ACIDE DUODÉCYLIQUE
L'acide duodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.
L'acide duodécylique est l'acide gras le plus abondant présent dans l'huile de coco.
Les sels et esters de l’acide duodécylique sont connus comme lauréats d’un acide gras.

Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Formule moléculaire : C12H24O2
Masse molaire : 200,322 g·mol−1

Emery651, acide duodécylique (C12:0), acide laurique 98 %, yeuguisuan, acide laurostéaique, acide laurique 98-101 % (acidimétrique), acide laurique, pur, ACIDE LAURIQUE, 99,5+ %, ACIDE LAURIQUE, STANDARD POUR GC, LAURIQUE ACIDE 98+% FCC, ACIDE LAURIQUE 98+% NATUREL FCC, LauricAcid99%Min., LauricAcidPureC12H24O2, Acide laurique-méthyl-D3, acide laurique, acide dodécanoique, n-dodécanoïque, LAURICACID, RÉACTIF, ACIDE LAURIQUE (SG), ACIDE LAURIQUE FCC, ACIDE LAURIQUE, NATUREL & CACHER, ACIDE LAURIQUE, NATUREL & CACHER (POUDRE), Acide dodécanoïque, typiquement 99%, ACIDE N-DODÉCANOÏQUE, RARECHEM AL BO 0156, acidelaurique, Aliphat no. 4, AliphatNo.4, C-1297, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), Dodécansαure, acide dodécylique, acide dodécylique, acide duodécyclique, acide duodécylique, acide duodécylique, Emery 650, acide 1-dodécanoïque, LAURINSAEURE, acide laurique ,99,8+ %, acide laurique, 95 %, acide laurique, 99 %, acide dodécanoïque, généralement 99,5 %, NSC 5026, Palmac 99-12, ester laurylique de l'acide trichloroacétique, acide hendécane-1-carboxylique, acide laurique ≥ 98 % ( GC), AKOS 222-45, C12, ACIDE C12:0, ACIDE CARBOXYLIQUE C12, ACIDE LAUROSTÉARIQUE, ACIDE LAURIQUE, FEMA 2614, ACIDE DODÉCOÏQUE, ACIDE DODÉCANOÏQUE, acide 1-Undécanecarboxylique

L'acide duodécylique est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide duodécylique est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.

L'acide duodécylique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.
L'acide duodécylique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.

L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide duodécylique sont appelés lauréats.

L'acide duodécylique ou systématiquement, est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.

Les sels et esters de l’acide duodécylique sont connus comme lauréats d’un acide gras.
L'acide duodécylique est présent dans l'huile de noix de coco, de palme et de laurier.
Principalement utilisé dans la fabrication de cosmétiques et de savons. Acide duodécylique, acide gras cristallin que l'on trouve principalement dans l'huile de noix de coco et de laurier (utilisé pour fabriquer des savons, des produits cosmétiques, etc.). Acide gras cristallin présent sous forme de glycérides dans les graisses et les huiles naturelles (en particulier l'huile de noix de coco). et huile de palmiste)

L'acide duodécylique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide duodécylique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

L'acide duodécylique est utilisé pour traiter les infections virales, notamment la grippe (la grippe) ; grippe porcine; grippe aviaire; le rhume; boutons de fièvre, boutons de fièvre et herpès génital causés par le virus de l'herpès simplex (HSV) ; verrues génitales causées par le virus du papillome humain (VPH); et le VIH/SIDA.
L'acide duodécylique est également utilisé pour prévenir la transmission du VIH de la mère à l'enfant.

L'acide duodécylique est l'acide gras le plus abondant présent dans l'huile de coco.
L'acide duodécylique est également l'un des principaux constituants aromatiques du vin de riz chinois et du beurre de crème sucrée.
L'acide duodécylique est couramment utilisé dans les lubrifiants ainsi que dans les formulations d'enrobages comestibles.

L'acide duodécylique est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l’acide duodécylique seul (il est irritant et ne se trouve pas seul dans la nature), vous êtes plus susceptible d’obtenir de l’acide duodécylique sous forme d’huile de noix de coco ou de noix de coco fraîches.

Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable des bienfaits rapportés par l’acide duodécylique.
Étant donné que l’huile de coco contient bien plus que de l’acide duodécylique, il serait exagéré de lui attribuer tous les avantages de l’huile de coco.

Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide duodécylique.
Parmi les avantages, ils suggèrent que l’acide duodécylique pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.

Les effets des acides duodécyliques sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide duodécylique sont dus à la manière dont le corps utilise l’acide duodécylique.

La majorité de l'acide duodécylique est envoyée directement au foie, où l'acide duodécylique est converti en énergie plutôt que stocké sous forme de graisse.
Comparé aux autres graisses saturées, l’acide duodécylique contribue le moins au stockage des graisses.

Pour profiter des bienfaits topiques de l’acide duodécylique et de l’huile de coco, appliquez l’acide duodécylique directement sur votre peau.
Bien que cela ne soit pas recommandé aux personnes souffrant d'acné, les risques sont minimes lorsque l'acide duodécylique vient à bout de problèmes tels que l'hydratation de la peau et le psoriasis.

L'acide duodécylique est une graisse saturée.
L'acide duodécylique se trouve dans de nombreuses graisses végétales, notamment dans les huiles de noix de coco et de palmiste.
Les gens utilisent l’acide duodécylique comme médicament.

L'acide duodécylique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.
L'acide duodécylique est un composé potentiellement toxique.

L'acide duodécylique, également connu sous le nom d'acide dodécanoïque, est un acide gras saturé doté d'une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.

Les glycérides de l'acide duodécylique sont produits par une réaction d'estérification entre l'acide duodécylique et le glycérol créant une liaison covalente entre ces deux molécules.
Ils possèdent de fortes propriétés antibactériennes, notamment contre les bactéries pathogènes à Gram positif.
Les glycérides de l'acide duodécylique interfèrent avec la membrane cellulaire et perturbent les processus cellulaires vitaux des bactéries.

L'acide duodécylique, également connu sous le nom de dodécanoate, appartient à la classe des composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.

L'acide duodécylique est un composé naturel présent dans diverses graisses et huiles animales et végétales, en particulier l'huile de coco et l'huile de palmiste.
L'acide duodécylique est transporté dans tout le corps par les systèmes portes lymphatiques.

L'acide duodécylique ou systématiquement, est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide duodécylique sont appelés laurates.

L'acide duodécylique est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide duodécylique, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.

L'acide duodécylique se trouve dans de nombreuses graisses végétales, notamment dans les huiles de noix de coco et de palmiste.
Les gens utilisent l’acide duodécylique comme médicament.

L'acide duodécylique est un composé peu coûteux, non toxique et sûr à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide duodécylique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide duodécylique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.

D'autres utilisations de l'acide duodécylique comprennent le traitement de la bronchite, de la gonorrhée, des infections à levures, de la chlamydia, des infections intestinales causées par un parasite appelé Giardia lamblia et de la teigne.
Dans les aliments, l’acide duodécylique est utilisé comme shortening végétal.
Dans le secteur manufacturier, l’acide duodécylique est utilisé pour fabriquer du savon et du shampoing.

L'acide duodécylique et l'acide myristique sont des acides gras saturés.
Leurs noms formels sont respectivement l’acide duodécylique et l’acide tétradécanoïque.
Les deux sont des solides blancs très légèrement solubles dans l’eau.

Les esters d'acide duodécylique (principalement les triglycérides) se trouvent uniquement dans les graisses végétales, principalement dans le lait et l'huile de coco, l'huile de laurier et l'huile de palmiste.
En revanche, les triglycérides d'acide myristique sont présents dans les plantes et les animaux, notamment dans le beurre de muscade, l'huile de coco et le lait de mammifère.

Les acides gras ont mauvaise réputation car ils sont fortement associés à des taux de cholestérol sérique élevés chez l’homme.
Les acides laurique et myristique sont parmi les pires contrevenants ; par conséquent, de nombreuses organisations gouvernementales et de santé conseillent d’exclure de l’alimentation l’huile de coco et le lait, entre autres substances riches en graisses saturées.

Les glycérides de l'acide duodécylique suscitent de plus en plus d'intérêt dans la lutte contre les maladies virales.
Leur structure moléculaire les rend capables d’attaquer les virus enveloppés de graisse en détruisant leur enveloppe graisseuse.

Plusieurs essais in vitro révèlent que les effets antiviraux des glycérides de l'acide duodécylique surpassent ceux des autres MCFA.
À l'échelle mondiale, les glycérides de l'acide duodécylique sont utilisés pour supprimer l'impact négatif de la bronchite infectieuse (IB), de la maladie de Newcastle (ND), de la grippe aviaire (IA), de la maladie de Marek (MD) et d'autres.

Grâce aux multiples actions des glycérides de l’acide duodécylique, FRA C12 est un outil efficace dans les régimes sans antibiotiques.
On remarquera une réduction de l’utilisation d’antibiotiques curatifs ainsi qu’une amélioration de la santé et des performances des animaux grâce à l’utilisation de glycérides d’acide duodécylique.

L'acide duodécylique est une couche blanche légèrement soluble dans l'eau.
Les esters d'acide duodécylique (principalement les triglycérides) ne se trouvent que dans les huiles végétales, en particulier le lait et l'huile de coco, l'huile de laurier et l'huile de palmiste.
En revanche, les triglycérides d’acide myristique sont présents dans les plantes et les animaux, en particulier dans l’huile de muscade, l’huile de noix de coco et le lait de mammifère.

Les acides gras ont mauvaise réputation car ils sont fortement associés à des taux de cholestérol sérique élevés chez l’homme.
Les acides laurique et myristique sont parmi les pires contrevenants ;

L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, un acide duodécylique possède donc de nombreuses propriétés.
L'acide duodécylique est un solide huileux de couleur foncée, un solide huileux de couleur foncée et une huile foncée.

L'acide duodécylique et la monolaurine ont une activité antimicrobienne significative contre les bactéries à Gram positif et un certain nombre de champignons et de virus.
Aujourd’hui, il existe de nombreux produits commerciaux qui utilisent l’acide duodécylique et la monolaurine comme agents antimicrobiens.

En raison des différences significatives dans les propriétés de l'acide duodécylique par rapport aux acides gras à chaîne plus longue, ils sont généralement divisés en acides gras à chaîne moyenne couvrant C6 - C12 et en acides gras à chaîne longue couvrant C14 et plus.
L’huile de coco fait fureur dans les régimes de beauté et de bien-être naturels.

De nombreux blogs et sites de santé naturelle se présentent comme un produit miracle et savent tout faire pour soulager les gerçures.
Cependant, lorsque vous décomposez l’huile de noix de coco en parties actives d’acide duodécylique, les choses commencent à paraître moins miraculeuses et ressemblent davantage à de la science.
L’acide duodécylique fait partie de ces composants actifs.

L'acide duodécylique est un oléochimique polyvalent avec des applications dans tous les domaines, des plastiques aux soins personnels.
Présent dans de nombreuses plantes, dont le palmier et le palmier cohune, ainsi que dans l'huile de coco, les graines de palmier, les noix de bétel et les noix de macadamia, l'acide duodécylique est classé parmi les graisses saturées comportant une chaîne de 12 atomes de carbone.

Certains chercheurs pensent que l’acide duodécylique pourrait être plus sûr que les gras trans lorsqu’il est utilisé dans la préparation des aliments.
L'acide duodécylique est un solide blanc et poudreux qui présente une légère odeur rappelant l'huile de laurier ou le savon.

Comme la plupart des acides gras, l’acide duodécylique est non toxique, ce qui le rend sûr pour une utilisation dans un large éventail d��applications.
De plus, l’acide duodécylique est relativement peu coûteux, ce qui en fait un ingrédient populaire dans les processus de fabrication où le coût est un facteur clé.

L'acide duodécylique est un acide gras saturé.
Le nom officiel des acides duodécyliques est l’acide dodécanoïque.

L'acide duodécylique est un acide gras ou un lipide à chaîne moyenne et longue qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide duodécylique est souvent utilisé dans la recherche en laboratoire sur la dépression du point de fusion. Utilisé, peu coûteux, non toxique et sûr à utiliser.

L'acide duodécylique est un solide à température ambiante mais se dissout facilement dans l'eau bouillante. L'acide duodécylique liquide peut donc être traité avec une variété de solutés et utilisé pour déterminer leur masse moléculaire.
L'acide duodécylique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.

L'acide duodécylique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.
L'acide duodécylique fonctionne comme un lubrifiant, un liant et un agent antimousse.

L'acide duodécylique est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.

Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.

Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide duodécylique pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.

Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Des gaz et de la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.
Les acides carboxyliques, notamment en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), le dithionite (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais néanmoins de la chaleur.
Comme d’autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants puissants et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.

Certains tensioactifs des dérivés de l'acide duodécylique et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).
Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide duodécylique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.

L'acide duodécylique (C-12) est très courant dans la nature.
C'est un type de monoglycéride lorsque l'acide duodécylique pénètre dans le corps et est converti en monolaurine.
Monolaurine ; L'acide duodécylique antiviral, antimicrobien, antiprotozoaire et antifongique est une substance qui se distingue par les caractéristiques de l'acide duodécylique.

Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme les autres acides, ils catalysent souvent (augmentent la vitesse) des réactions chimiques.
L'acide duodécylique peut réagir avec des matières oxydantes.

L'acide duodécylique est un acide gras saturé avec une chaîne de 12 atomes de carbone, l'acide duodécylique possède donc de nombreuses propriétés des acides gras à chaîne moyenne, l'acide duodécylique est un solide gras foncé et un solide gras foncé et une huile foncée.
Les sels et les esters de l’acide duodécylique sont appelés lauréats.
La formule chimique des acides duodécyliques est CH3 (CH2) 1 (/ 0) COOH.

Méthodes de production de l’acide duodécylique :

Les méthodes de production industrielle de l’acide duodécylique peuvent être regroupées en deux catégories :
1) Dérivé de la saponification ou de la décomposition à haute température et pression d’huiles et de graisses végétales naturelles ;

2) Séparé de l'acide gras synthétique.
Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide duodécylique.

Les huiles végétales naturelles utilisées pour produire l’acide duodécylique comprennent l’huile de noix de coco, l’huile de noyau de litsea cubeba, l’huile de palmiste et l’huile de graines de poivre de montagne.
D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide duodécylique.
Le distillat C12 résiduel issu de l'extraction de l'acide duodécylique, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide duodécylique avec un rendement supérieur à 86 %.

Acide duodécylique dérivé de la séparation et de la purification de l'huile de coco et d'autres huiles végétales.

L'acide duodécylique existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide duodécylique peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.

La teneur en acide duodécylique est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide duodécylique.
L'acide duodécylique est un acide carboxylique gras isolé des graisses ou des huiles végétales et animales.

Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide duodécylique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.

Présence d’acide duodécylique :
L'acide duodécylique, un composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme), sinon l'acide duodécylique est relativement rare.
L'acide duodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

L'acide duodécylique est l'une de ces parties actives.
L'acide duodécylique est un acide gras ou un lipide à chaîne moyenne et longue qui représente environ la moitié des acides gras contenus dans l'huile de coco.

L'acide duodécylique est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
Monolaurine, bactérie, l'acide duodécylique est un agent antimicrobien capable de combattre les agents pathogènes tels que les virus et les levures.
Vous ne pouvez pas digérer l’acide duodécylique seul, car l’acide duodécylique est irritant et n’est pas présent seul dans la nature.

Vous êtes plus susceptible d’obtenir de l’acide duodécylique sous forme d’huile de noix de coco ou de noix de coco fraîche.
Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier exactement ce qui est responsable des bienfaits rapportés de l’huile.
Puisque l’huile de coco contient beaucoup plus que l’acide duodécylique, l’acide duodécylique serait trop long pour attribuer à l’acide duodécylique tous les bienfaits de l’huile de coco.

Pourtant, une analyse de 2015 suggérait que la plupart des bienfaits liés à l’huile de coco étaient directement attribués à l’acide duodécylique.
Ils suggèrent que l’acide duodécylique pourrait contribuer à la perte de poids et protéger contre la maladie d’Alzheimer, entre autres avantages.
Les effets sur le taux de cholestérol sanguin doivent encore être étudiés.

L'acide duodécylique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme). Sinon, l'acide duodécylique est relativement rare.
L'acide duodécylique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Comme beaucoup d’autres acides gras, l’acide duodécylique est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.
L'acide duodécylique est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l’acide duodécylique réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.

Applications de l’acide duodécylique :
L'acide duodécylique est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide duodécylique est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.

Dans l'industrie, l'acide duodécylique est utilisé comme intermédiaire et comme agent tensioactif.
Le marché de consommation utilise l'acide duodécylique dans le nettoyage, l'ameublement et la production de produits de soins personnels.

En médecine, l’acide duodécylique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Les utilisations de l'acide duodécylique comprennent les chlorures d'acide, les tensioactifs amphotères intermédiaires, les crèmes et lotions anti-âge, les antisudorifiques, le pain de savon, les bétaïnes, les nettoyants pour le corps, les cosmétiques, les déodorants, les émollients, les émulsifiants, les gommages exfoliants, les nettoyants pour le visage, les fonds de teint, les esters de glycérol, les soins capillaires, les cheveux. colorants, imidazolines, baume à lèvres, savon liquide pour les mains, lubrifiants, formulations de crèmes hydratantes, peroxydes organiques, sarcosinates, crème à raser, gels douche, produits de soins de la peau, etc.

Traitement des infections intestinales et de la teigne causées par le parasite.
L'acide duodécylique dans les aliments est utilisé comme abréviation végétale.

Dans le secteur manufacturier, l’acide duodécylique est utilisé pour fabriquer du savon et du shampoing.
On ne sait pas comment l'acide duodécylique agit en tant que médicament.
Certaines recherches suggèrent que l'acide duodécylique pourrait être une huile plus sûre que les gras trans dans les préparations alimentaires.

Applications pharmaceutiques de l’acide duodécylique :
L'acide duodécylique a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide duodécylique est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide duodécylique a également été évalué pour une utilisation dans les formulations en aérosol.

Utilisations de l’acide duodécylique :
Acide duodécylique Utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, détergents et pesticides
L'acide duodécylique est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.

L'acide duodécylique est utilisé comme antimousse ; GB 2760-86 prévoit les épices dont l'utilisation est autorisée ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide duodécylique est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.

Certains tensioactifs des dérivés de l'acide duodécylique et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).
Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide duodécylique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.

Utilisations par les consommateurs de l’acide duodécylique :
L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets dans l'environnement de l'acide duodécylique sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Produits de nettoyage et d'entretien de l'ameublement,
Composé de nettoyage,
Revêtements de sol,
Produits chimiques organiques industriels utilisés dans les produits commerciaux et de consommation,
Lubrifiants et graisses,
Produits de soins personnels.

Utilisations industrielles de l’acide duodécylique :
L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.
L'acide duodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.

L'acide duodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.

Produits commerciaux et industriels,
colorants,
Intermédiaires.

Utilisations généralisées de l’acide duodécylique par les professionnels :
L'acide duodécylique est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.
L'acide duodécylique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.

L'acide duodécylique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets dans l'environnement de l'acide duodécylique sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Utilisations biocides de l’acide duodécylique :
L'acide duodécylique est autorisé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.

Acide duodécylique pour les utilisations contre l'acné :
Parce que l’acide duodécylique a des propriétés antibactériennes, il a été démontré que l’acide duodécylique combat efficacement l’acné.
La bactérie Propionibacterium acids se trouve naturellement sur la peau.
Lorsqu’ils se multiplient, ils conduisent au développement de l’acné.

Les résultats d’une étude de 2009 ont révélé que l’acide duodécylique pouvait réduire l’inflammation et le nombre de bactéries présentes.
L'acide duodécylique a fonctionné encore mieux que le peroxyde de benzoyle, un traitement courant contre l'acné.
Une étude de 2016 a également reconfirmé les propriétés anti-acnéiques de l’acide duodécylique.

Cela ne signifie pas que vous devriez mettre de l’huile de coco sur votre acné.
Les chercheurs ont utilisé de l’acide duodécylique pur et ont suggéré que l’acide duodécylique pourrait à l’avenir être développé comme antibiotique pour l’acné.

Utilisations en laboratoire de l’acide duodécylique :
En laboratoire, l'acide duodécylique peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l’acide duodécylique est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).

La constante cryoscopique de l'acide duodécylique est de 3,9°C·kg/mol.
En faisant fondre l'acide duodécylique avec la substance inconnue, en laissant l'acide duodécylique refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.

Intermédiaires de cristaux liquides :
Compte tenu des propriétés moussantes de l'acide duodécylique, les dérivés de l'acide duodécylique sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.
L'acide duodécylique est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.

L'acide duodécylique peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide duodécylique est un léger irritant mais pas un sensibilisant, et certaines sources citent l'acide duodécylique comme comédogène.

L'acide duodécylique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.
L'acide duodécylique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.
L'acide duodécylique fonctionne comme un lubrifiant, un liant et un agent antimousse.

Autres utilisations de l’acide duodécylique :

Dans les plastiques de l'acide duodécylique :
Dans les applications de fabrication de plastiques, l'acide duodécylique sert d'intermédiaire, c'est-à-dire une substance formée au cours des étapes intermédiaires d'une réaction chimique entre les réactifs et le produit fini.

Dans les aliments et boissons contenant de l'acide duodécylique :
L’une des utilisations les plus courantes de l’acide duodécylique est celle de matière première pour les émulsifiants dans divers additifs alimentaires et boissons, en particulier dans la fabrication de shortening végétal.
La non-toxicité de l’acide duodécylique rend également l’acide duodécylique sans danger pour une utilisation dans la production alimentaire.

Dans les tensioactifs et esters de l'acide duodécylique :
Lorsqu'il est utilisé comme tensioactifs anioniques et non ioniques, l'acide duodécylique a la capacité de réduire la tension superficielle entre les liquides et les solides.

Dans les textiles d'acide duodécylique :
L'acide duodécylique fonctionne bien comme lubrifiant et agent de transformation dans les applications de fabrication textile, car l'acide duodécylique a la capacité d'aider l'eau à se mélanger à l'huile.

Dans les soins personnels de l'acide duodécylique :
L’une des utilisations les plus courantes de l’acide duodécylique est comme émulsifiant pour les crèmes et lotions pour le visage, car l’acide duodécylique possède une forte capacité à nettoyer la peau et les cheveux.
L’acide duodécylique est également facile à éliminer après utilisation.
Vous pouvez trouver de l’acide duodécylique dans de nombreux produits de soins personnels tels que les shampoings, les nettoyants pour le corps et les gels douche.

Dans le nettoyage de l’acide duodécylique :
Aide à garder une surface propre

Dans l'émulsifiant de l'acide duodécylique :
Favorise la formation de mélanges intimes entre liquides non miscibles en modifiant la tension interfaciale (eau et huile)

Dans le tensioactif de l'acide duodécylique :
Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lorsque l'acide duodécylique est utilisé

Régime avec de l'acide duodécylique :
L'acide duodécylique peut être pris en complément, mais l'acide duodécylique est le plus souvent consommé dans l'huile de coco ou l'huile de palmiste.
L'acide duodécylique est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.
Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.

Dans les savons et détergents à base d'acide duodécylique :
Lorsqu'il est utilisé comme base dans la production de savons liquides et transparents, l'acide duodécylique peut contrôler le niveau de mousse, ajouter des propriétés revitalisantes et améliorer la capacité de nettoyage globale.

En Médical de l’Acide Duodécylique :
L'acide duodécylique peut être trouvé dans une variété de médicaments utilisés pour traiter les infections virales, certaines formes de grippe, les boutons de fièvre, les boutons de fièvre, la bronchite, les infections à levures, la gonorrhée, l'herpès génital et bien d'autres.
Cependant, les preuves sont insuffisantes pour déterminer l’efficacité globale de l’acide duodécylique dans le traitement de ces affections.
Des recherches préliminaires indiquent également que l’acide duodécylique peut également aider au traitement de l’acné.

L'acide duodécylique est le principal acide de l'huile de noix de coco et de l'huile de palmiste et on pense qu'il possède des propriétés antimicrobiennes.
Les valeurs détectées de la concentration efficace demi-maximale (CE (50)) d'acide duodécylique sur la croissance de P. acnés, S. aureus et S. epidermidis indiquent que P. acnés est la plus sensible à l'acide duodécylique parmi ces bactéries.

De plus, l’acide duodécylique n’a pas induit de cytotoxicité pour les sébocytes humains.
Ces données mettent en évidence le potentiel de l’utilisation de l’acide duodécylique comme traitement alternatif pour l’antibiothérapie de l’acné vulgaire.
L'acide duodécylique est utilisé dans la fabrication de savons, de détergents, de cosmétiques et d'alcool laurylique.

Fabrication d'acide duodécylique :
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : fabrication de l'acide duodécylique.

Secteurs de transformation industrielle de l’acide duodécylique :
Toute autre fabrication de produits chimiques organiques de base,
Fabrication de tous autres produits et préparations chimiques,
Fabrication d'huiles lubrifiantes et de graisses pétrolières,
Fabrication de matières plastiques et de résines,
Fabrication de savons, de produits de nettoyage et de préparations pour toilettes,
Fabrication de colorants et pigments synthétiques,
Fabrication de textiles, de vêtements et de cuir.

Propriétés chimiques de l'acide duodécylique :
L'acide duodécylique est constitué de cristaux incolores en forme d'aiguilles.
L'acide duodécylique est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.

Comme beaucoup d’autres acides gras, l’acide duodécylique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide duodécylique est principalement utilisé pour la production de savons et de cosmétiques.
À ces fins, l'acide duodécylique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.

Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide duodécylique se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier.

L'acide duodécylique est un solide blanc avec une légère odeur d'huile de laurier
L'acide duodécylique a une odeur grasse.
L'acide duodécylique est un constituant courant de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux

Propriétés médicinales potentielles de l’acide duodécylique :
L'acide duodécylique augmente le cholestérol sérique total plus que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l'acide duodécylique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».

En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.
Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/cholestérol sérique a révélé en 2003 que les effets nets de l'acide duodécylique sur les résultats des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de noix de coco (qui contient près de la moitié de l’acide duodécylique) n’a pas non plus été concluante quant à ses effets sur le risque de maladies cardiovasculaires.

Formulation ou reconditionnement de l'acide duodécylique :
L'acide duodécylique est utilisé dans les produits suivants : polymères, régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir, produits de revêtement, charges, mastics, plâtres, pâte à modeler, peintures au doigt, encres et toners, cosmétiques et produits de soins personnels, lubrifiants et graisses. et les produits de traitement des textiles et les teintures.
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.

Stockage de l'acide duodécylique :
L'acide duodécylique est stable à des températures normales et doit être conservé dans un endroit frais et sec.
Éviter les sources d'inflammation et le contact avec des matériaux incompatibles.

Rejet d'acide duodécylique dans l'environnement :
Le rejet dans l'environnement de l'acide duodécylique peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un taux de libération élevé (par exemple, opérations de ponçage ou décapage de peinture par grenaillage) et traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage du métal).
D'autres rejets dans l'environnement de l'acide duodécylique sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, produits en bois traités, textiles traités et tissu, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)) et utilisation en intérieur dans des matériaux longue durée à taux de dégagement élevé (par exemple dégagement des tissus, textiles lors du lavage, enlèvement des peintures intérieures) .

L'acide duodécylique peut être trouvé dans des articles complexes, sans rejet prévu : véhicules et machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver).
L'acide duodécylique peut être trouvé dans les produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables), tissus, textiles et vêtements (par exemple vêtements, matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles) et le papier utilisé pour l'emballage (hors emballages alimentaires).

Identifiants de l'acide duodécylique :
Numéro CAS : 143-07-7
ChEBI : CHEBI :30805
ChEMBL : ChEMBL108766
ChemSpider : 3756
Carte d'information ECHA : 100.005.075
Numéro CE : 205-582-1
IUPHAR/BPS : 5534
KEGG : C02679
CID PubChem : 3893
UNII : 1160N9NU9U
Tableau de bord CompTox (EPA) : DTXSID5021590
InChI : InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé: POULHZVOKOAJMA-UHFFFAOYSA-N
InChI=1/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
Clé: POULHZVOKOAJMA-UHFFFAOYAP
SOURIRES : O=C(O)CCCCCCCCCCCC

Propriétés de l'acide duodécylique :
Formule chimique : C12H24O2
Masse molaire : 200,322 g·mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier

Densité:
1,007 g/cm3 (24 °C)
0,8744 g/cm3 (41,5 °C)
0,8679 g/cm3 (50 °C)

Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)
Point d'ébullition:
297,9 °C (568,2 °F ; 571,0 K)
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg

Solubilité dans l'eau:
37 mg/L (0 °C)
55 mg/L (20 °C)
63 mg/L (30 °C)
72 mg/L (45 °C)
83 mg/L (100 °C)

Solubilité : Soluble dans les alcools, l'éther diéthylique, les phényles, les haloalcanes, les acétates

Solubilité dans le méthanol :
12,7 g/100 g (0 °C)
120 g/100 g (20 °C)
2 250 g/100 g (40 °C)

Solubilité dans l'acétone :
8,95 g/100 g (0 °C)
60,5 g/100 g (20 °C)
1590 g/100 g (40 °C)

Solubilité dans l'acétate d'éthyle :
9,4 g/100 g (0 °C)
52 g/100 g (20°C)
1250 g/100 g (40°C)

Solubilité dans le toluène :
15,3 g/100 g (0 °C)
97 g/100 g (20°C)
1410 g/100 g (40°C)
journal P 4,6

La pression de vapeur:
2,13·10−6 kPa (25 °C)
0,42 kPa (150 °C)
6,67 kPa (210 °C)

Acidité (pKa) : 5,3 (20 °C)

Conductivité thermique:
0,442 W/m·K (solide)
0,1921 W/m·K (72,5 °C)
0,1748 W/m·K (106 °C)

Indice de réfraction (nD) :
1,423 (70 °C)
1,4183 (82 °C)

Viscosité:
6,88 CP (50 °C)
5,37 CP (60 °C)

Structure de l'acide duodécylique :

Structure en cristal:
Monoclinique (forme α)
Triclinique, aP228 (forme γ)

Groupe d'espace :
P21/a, n° 14 (forme α)
P1, n° 2 (forme γ)

Groupe de points :
2/m (forme α)
1 (forme γ)

Constante de réseau
a = 9,524 Å, b = 4,965 Å, c = 35,39 Å (forme α)
α = 90°, β = 129,22°, γ = 90°

Thermochimie de l'acide duodécylique :
Capacité thermique (C) : 404,28 J/mol·K
Enthalpie standard de formation (ΔfH⦵298) : −775,6 kJ/mol

Enthalpie standard de combustion (ΔcH⦵298) :
7377 kJ/mole
7425,8 kJ/mol (292 K)

Composés apparentés de l’acide duodécylique :
Laurate de glycéryle
Acide undécanoïque
Acide tridécanoïque
Dodécanol
Dodécanal
Laurylsulfate de sodium

Noms de l’acide duodécylique :

Noms des processus réglementaires :
Acide dodécanoïque
L'acide laurique
L'acide laurique
L'acide laurique
l'acide laurique

Noms traduits :
Acide laurique (ro)
Acide laurique (fr)
Acido laurico (le)
Aċidu lawriku (mt)
Ido laurico (pt)
Kwas laurynowy (pl)
Kyselina dodekanová (sk)
Acide laurique (non)
Lauriinhape (et)
Lauriinihapo (fi)
Laurinezuur (nl)
Laurinsav (hu)
Laurinska kiselina (heure)
Laurinsyra (sv)
Laurinsyre (da)
Laurinsäure (de)
Laurova Kyselina (cs)
Laurinskabe (lv)
Lavrinska kislina (sl)
Uro rugštis (lt)
Acide laurique (es)
Λαυρικό οξύ (el)
Додеканова киселина (bg)

Noms CAS :
Acide dodécanoïque

Noms IUPAC :
1-Dodécansäure
acide docécanoïque
ACIDE DODÉCANOÏQUE
Acide duodécylique
Acide dodécanoïque
acide dodécanoïque
L'acide laurique
L'acide laurique
l'acide laurique
L'acide laurique
L'acide laurique
l'acide laurique
Acide laurique
Laurinsäure
Acide n-dodécanoïque

Appellations commerciales:
ACIDE DODÉCANOÏQUE
KORTACIDE 1299/ 1298/ 1295
L'acide laurique
MASCID 1298
MASCID 1299
PALMAC 98-12
PALMAC 99-12
Palmata 1299
PALMERA
RADIACIDE 0653
SINAR-FA1299
Téfacide Laurique 98
UNIOLEO FA 1299

Autres identifiants :
143-07-7
203714-07-2
203714-07-2
7632-48-6
7632-48-6
8000-62-2
8000-62-2
8045-27-0
8045-27-0
ACIDE ÉRYTHORBIQUE
L'acide érythorbique est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme on.
L'acide érythorbique est largement utilisé comme conservateur et stabilisateur de couleur pour les aliments et les boissons.
L'acide érythorbique est un additif alimentaire d'origine végétale produit à partir de saccharose.

Numéro CAS : 89-65-6
Numéro CE : 201-928-0
Formule moléculaire : C6H8O6
Masse moléculaire : 176,13 g/mol

L'acide érythorbique est appliqué comme antioxydant dans l'industrie alimentaire.
L'acide érythorbique (acide érythorbique, acide D-araboascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C).

L'acide érythorbique est synthétisé par une réaction entre le 2-céto-D-gluconate de méthyle et le méthylate de sodium.
L'acide érythorbique peut également être synthétisé à partir de saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.
L'acide érythorbique est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.

Des essais cliniques ont été menés pour étudier les aspects de la valeur nutritionnelle de l'acide érythorbique.
Un de ces essais a étudié les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes.
Aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.

Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme conservateur dans les aliments destinés à être consommés frais (comme les ingrédients des bars à salade), l'utilisation de l'acide érythorbique comme conservateur alimentaire a augmenté.
L'acide érythorbique est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide érythorbique (acide D-érythorbique), produit à partir de sucres dérivés de différentes sources, telles que la betterave, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique est un stéréoisomère de l'acide ascorbique.

L'acide érythorbique est largement utilisé comme conservateur et stabilisateur de couleur pour les aliments et les boissons.
En tant qu'additif alimentaire d'origine végétale, l'acide érythorbique peut être considéré comme naturel.

L'acide érythorbique, anciennement appelé acide érythorbique et acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique est un additif alimentaire d'origine végétale produit à partir de saccharose.

L'acide érythorbique est largement utilisé comme antioxydant dans les aliments transformés.
L'utilisation de l'acide érythorbique comme conservateur alimentaire a augmenté.
L'acide érythorbique est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide isoascoribique, l'acide érythoribique est un produit naturel, additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique est un antioxydant important dans l'industrie alimentaire, qui peut conserver la couleur, la saveur naturelle des aliments et prolonger le stockage des aliments sans effets toxiques et secondaires.

L'acide érythorbique est utilisé dans la transformation de la charcuterie, les fruits surgelés, les légumes surgelés, les confitures et dans l'industrie des boissons telles que la bière, le vin de raisin, les boissons gazeuses, les jus de fruits et les thés aux fruits.
L'utilisation de l'acide érythorbique a considérablement augmenté depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation des sulfites comme conservateur dans les aliments à consommer frais (c'est-à-dire les ingrédients des bars à salade).

L'acide érythorbique est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme on.
L'acide érythorbique est un antioxydant largement utilisé.
L'acide érythorbique est principalement utilisé comme antioxydant (industriel et alimentaire), notamment dans l'industrie brassicole, et comme agent réducteur pour la photographie.

Acide érythorbique une poudre cristalline avec une odeur de sucre avec des poussières qui ont tendance à provoquer une légère irritation des yeux, de la peau, du nez et de la gorge.
L'acide érythorbique est utilisé comme conservateur dans les emballages alimentaires.

Le marché de l'acide érythorbique a gagné en popularité auprès de l'industrie de l'emballage alimentaire en raison de l'interdiction de l'utilisation de sulfites comme conservateur dans les aliments en conserve et surgelés, ce qui a entraîné une augmentation du marché de l'acide érythorbique.
L'acide érythorbique est non volatil et inflammable et est donc un produit populaire dans la conservation des aliments.

Outre l'utilisation d'un agent de conservation, l'acide érythorbique est également utilisé comme stabilisateur de couleur lors de la conservation des aliments.
L'acide érythorbique est également utilisé en petites quantités dans l'industrie pharmaceutique pour la préparation de divers types de médicaments.

L'acide érythorbique est courant et les consommateurs se demandent parfois si l'acide érythorbique est mauvais pour notre santé et quels sont les effets secondaires dans les aliments que nous mangeons.
Cependant, l'acide érythorbique est généralement considéré comme sûr et presque aucun risque pour la santé n'a été signalé.
Peut-être que certaines personnes sont allergiques ou sensibles à l'acide érythorbique.

L'acide érythorbique (syn: acide érythorbique, acide D-araboascorbique) est un stéréoisomère de l'acide ascorbique et a des applications technologiques similaires en tant qu'antioxydant soluble dans l'eau.
L'acide érythorbique était auparavant évalué sous le nom d'acide érythorbique par les sixième et dix-septième réunions du Comité.

Lors de la dernière évaluation, une DJA de 0-5 mg/kg pc a été attribuée, sur la base d'une étude à long terme chez le rat, et une monographie toxicologique a été préparée.
Le nom Acide érythorbique a été remplacé par Acide érythorbique conformément aux "Directives pour la désignation des titres des monographies de spécifications" adoptées à la trente-troisième réunion du Comité.

La sécurité des acides érythorbiques utilisés comme additif alimentaire a été approuvée par la Food and Drug Administration (FDA) des États-Unis, l'Autorité européenne de sécurité des aliments (EFSA), le Comité mixte FAO/OMS d'experts sur les additifs alimentaires (JECFA), ainsi que d'autres autorités.

L'acide érythorbique est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique est synthétisé par une réaction entre le 2-céto-D-gluconate de méthyle et le méthylate de sodium.

L'acide érythorbique peut également être synthétisé à partir de saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.
L'acide érythorbique est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.

Des essais cliniques ont été menés pour étudier les aspects de la valeur nutritionnelle de l'acide érythorbique.
Un de ces essais a étudié les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.
Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.

Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme conservateur dans les aliments destinés à être consommés frais (comme les ingrédients des bars à salade), l'utilisation de l'acide érythorbique comme conservateur alimentaire a augmenté.

L'acide érythorbique est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.
L'acide érythorbique a été synthétisé pour la première fois en 1933 par les chimistes allemands Kurt Maurer et Bruno Schiedt.

Applications de l'acide érythorbique :
Généralement, l'acide érythorbique est largement utilisé pour stabiliser la couleur, réduire les utilisations de nitrate et prévenir l'oxydation des produits carnés, des fruits et des légumes.
Pendant ce temps, l'acide érythorbique profite à notre corps en réduisant la formation de nitrosamine générée par l'apport de nitrate.

Applications pharmaceutiques de l'acide érythorbique :
L'acide érythorbique est un stéréoisomère de l'acide L-ascorbique et est utilisé comme antioxydant dans les aliments et les formulations pharmaceutiques orales.
L'acide érythorbique a environ 5% de l'activité de la vitamine C de l'acide L-ascorbique.

Fonctions et applications de l'acide érythorbique :
L'acide érythorbique est produit à l'état acide par l'érythorbate de sodium.
L'acide érythorbique a une forte action réductrice et a des effets sur la réduction de la pression sanguine, la diurèse, la génération de glycogène hépatique, l'excrétion de pigments, la détoxification du corps.

L'acide érythorbique est non toxique.
Les autres applications des acides érythorbiques sont familières à l'érythorbate de sodium.

L'érythorbate de sodium et l'acide érythorbique sont généralement reconnus comme les derniers produits verts de classe A à l'échelle internationale et sont devenus les produits rares tant au pays qu'à l'étranger.

L'acide érythorbique est un puissant activateur de l'absorption du fer. Le manque d'activité antiscorbutique des acides érythorbiques limite l'utilité de l'acide érythorbique dans les programmes de fortification en fer.
L'acide érythorbique peut jouer un rôle majeur dans l'amélioration de la biodisponibilité du fer dans les régimes alimentaires mixtes comprenant des aliments conservés avec de l'acide érythorbique.

Utilisations de l'acide érythorbique :
Acide érythorbique utilisé comme antioxydant (industriel et alimentaire), notamment dans l'industrie brassicole, agent réducteur en photographie.
L'acide érythorbique est un conservateur alimentaire qui est un puissant agent réducteur (accepteur d'oxygène) qui fonctionne de manière similaire aux antioxydants.

À l'état cristallin sec, l'acide érythorbique est non réactif, mais dans les solutions aqueuses, l'acide érythorbique réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui rend l'acide érythorbique précieux en tant qu'antioxydant.
Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air et le stockage doit se faire à des températures fraîches.

L'acide érythorbique a une solubilité de 43 g/100 ml d'eau à 25°c.
Une partie équivaut à une partie d'acide ascorbique et à une partie d'érythorbate de sodium.

L'acide érythorbique est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à 150–200 ppm.
L'acide érythorbique est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande saumurée à des niveaux de 0,05 %.

Généralement, l'acide érythorbique est largement utilisé pour stabiliser la couleur, réduire les utilisations de nitrate et prévenir l'oxydation des produits carnés, des fruits et des légumes.
Et donc maintenir la couleur et la saveur et prolonger leur durée de conservation.

Pendant ce temps, l'acide érythorbique profite à notre corps en réduisant la formation de nitrosamine générée par l'apport de nitrate.
L'acide érythorbique est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide érythorbique est principalement utilisé comme antioxydant (industriel et alimentaire), notamment dans l'industrie brassicole, et comme agent réducteur pour la photographie.
L'acide érythorbique est largement utilisé comme antioxydant dans les aliments transformés, les charcuteries et les légumes surgelés.

L'acide érythorbique est capable de remplacer les nitrates dans les applications de viande.
L'acide érythorbique est un conservateur alimentaire qui est un puissant agent réducteur (accepteur d'oxygène) qui fonctionne de manière similaire aux antioxydants.

À l'état cristallin sec, l'acide érythorbique est non réactif, mais dans les solutions aqueuses, l'acide érythorbique réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui rend l'acide érythorbique précieux en tant qu'antioxydant.
Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air et le stockage doit se faire à des températures fraîches.

L'acide érythorbique a une solubilité de 43 g/100 ml d'eau à 25°c. Une partie équivaut à une partie d'acide ascorbique et à une partie d'érythorbate de sodium.
L'acide érythorbique est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à 150–200 ppm.

L'acide érythorbique est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande saumurée à des niveaux de 0,05 %.
L'acide érythorbique est un stéréoisomère de l'acide L-ascorbique et est utilisé comme antioxydant dans les aliments et les formulations pharmaceutiques orales.
L'acide érythorbique a environ 5% de l'activité de la vitamine C de l'acide L-ascorbique.

Nourriture:
Les principales utilisations des acides érythorbiques sont dans les produits à base de viande, les fruits et légumes ainsi que dans les boissons non alcoolisées et la bière.

Produits carnés:
Les produits carnés séchés et conservés jouent un rôle important dans l'industrie de la viande.

Fournir une couleur rouge vif :
Afin d'atteindre l'objectif de conserver les produits carnés et de produire une couleur rouge vif, la méthode traditionnelle consiste à ajouter du nitrate qui peut interagir avec les amines du corps humain pour former une nitrosamine cancérigène, nocive pour notre santé.

Réduire les nitrosamines :
L'acide érythorbique peut réduire considérablement la production de nitrosamines si la combinaison utilise de l'acide érythorbique avec du nitrite.
Dans le même temps, l'acide érythorbique peut stabiliser la couleur de la viande.

L'acide érythorbique a été rapporté par Mintel GNDP que près de 5 000 produits sur près d'un million de produits vendus en Europe contiennent de l'acide érythorbique ou de l'érythorbate de sodium dans des produits à base de viande ou des produits contenant de la viande comme ingrédient (par exemple, pizza, plats de viande prêts à manger, viande- tartinade à base et pâtes fourrées).

L'acide érythorbique est un stéréoisomère de l'acide ascorbique.
L'acide érythorbique est largement utilisé comme conservateur et stabilisateur de couleur pour les aliments et les boissons.
En tant qu'additif alimentaire d'origine végétale, l'acide érythorbique peut être considéré comme naturel.

Transformation des fruits et légumes :
Les fruits et légumes frais peuvent facilement causer des problèmes de qualité lors de la conservation, tels que la croissance microbienne, le ramollissement, l'apesanteur et le brunissement dû aux fissures.

L'inhibiteur de brunissement traditionnel est le soufre, mais l'acide érythorbique peut causer plusieurs problèmes de santé tels que l'hypertension artérielle.
L'acide érythorbique ou l'érythorbate de sodium peut être utilisé pour conserver la fraîcheur et stabiliser la couleur des fruits et légumes en trempant ou en pulvérisant une solution d'acides érythorbiques sur la surface.

Boisson et bière :
L'acide érythorbique et le sel de sodium des acides érythorbiques peuvent être utilisés comme antioxydant dans les boissons, la bière, etc.

L'acide érythorbique peut éliminer la décoloration, l'odeur et la turbidité et améliorer le mauvais goût des boissons.
Dans la bière, l'acide érythorbique peut éliminer l'odeur de renfermé, améliorer la stabilité de la saveur et prolonger la durée de conservation de l'acide érythorbique.

Anciennement connu sous le nom d'acide érythorbique, l'acide érythorbique est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique est un additif alimentaire d'origine végétale produit à partir de saccharose.

L'acide érythorbique est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique est un antioxydant soluble dans l'eau, utilisé principalement comme ingrédient dans les boissons gazeuses.
L'acide érythorbique n'a pas de propriétés mutagènes ou cancérigènes connues et il n'a pas été démontré qu'il inhibe l'absorption de vitamines ou de minéraux.

Produits de beauté:
Selon la «base de données de la Commission européenne pour les informations sur les substances et ingrédients cosmétiques», l'acide érythorbique fonctionne comme un antioxydant dans les produits cosmétiques et de soins personnels.
L'acide érythorbique peut être trouvé dans les produits pour les cheveux et les ongles.

Domaines d'utilisation de l'acide érythorbique :
Antioxydants
Bacon
Saucisse
Viandes
Brassage
boisson non-alcoolisée
Boisson en Poudre
Jus de fruit
Glaces, Sauces aux fruits
Chewing-gum
Confiseries
Cuisson des aliments
Yaourt
Agent aromatisant stabilisateur de couleur
Conservateur
Nutritif
Complément alimentaire
Produits de beauté
Alimentation
Pharmaceutique

Utilisations autorisées de l'acide érythorbique :

Les aliments suivants peuvent contenir de l'acide érythorbique :
Produits de viande séchés et conservés
Poissons congelés et surgelés à peau rouge

Produits de la pêche en conserve et semi-conserve
Normes alimentaires Australie Nouvelle-Zélande
L'acide érythorbique est un ingrédient approuvé en Australie et en Nouvelle-Zélande avec le numéro de code 315.

L'acide érythorbique est facilement absorbé et métabolisé.
Après une dose orale de 500 mg d'acide érythorbique chez des sujets humains, les courbes de taux sanguins d'acide ascorbique et d'acide érythorbique ont montré une augmentation similaire.
Chez cinq sujets humains, une dose orale de 300 mg s'est avérée n'avoir aucun effet sur l'excrétion urinaire d'acide ascorbique.

L'acide érythorbique s'est avéré n'avoir aucun effet antagoniste sur l'action de l'acide ascorbique.
L'acide érythorbique (E315 ou acide érythorbique) est un cristal ou une poudre blanche à légèrement jaune.

L'acide érythorbique peut noircir lorsqu'il est exposé à la lumière.
L'acide érythorbique est soluble dans l'eau, l'alcool, la pyridine, les solvants oxygénés et légèrement soluble dans la glycérine.

Utilisations industrielles :
Classeur
Inhibiteurs de corrosion et agents antitartre
Non connu ou raisonnablement vérifiable
Autre précisez)
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Pigment
Régulateurs de processus
Agent réducteur
Agents de surface

Utilisations grand public :
Classeur
Catalyseur
Inhibiteurs de corrosion et agents antitartre
Non connu ou raisonnablement vérifiable
Autre précisez)
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Régulateurs de processus
Agent réducteur
Agents de surface

Effets secondaires possibles de l'acide érythorbique :
Bien que l'acide érythorbique soit généralement considéré comme un complément très sûr et efficace, il peut y avoir quelques effets secondaires mineurs.

Les effets secondaires peuvent :
Effets secondaires possibles à court terme
Maux de tête
Vertiges
Fatigue
Rinçage du corps
Hémolyse

Propriétés chimiques de l'acide érythorbique :
L'acide érythorbique se présente sous forme de cristaux ou de poudre de couleur blanche ou légèrement jaune.
L'acide érythorbique s'assombrit progressivement lors de l'exposition à la lumière.

Fabrication d'acide érythorbique :
L'acide érythorbique peut être produit par une réaction entre le 2-céto-D-gluconate de méthyle et l'acide sulfurique.

Généralement, le processus de fabrication de l'acide érythorbique comporte 5 étapes :
Production de 2-céto-D-gluconate de calcium : fermentation d'hydrolysat d'amidon de qualité alimentaire par Pseudomonas fluorescens avec du carbonate de calcium.
Acidifier le bouillon de fermentation ci-dessus pour obtenir de l'acide 2-céto-D-gluconique (2-KG).
Estérification 2-KG avec du méthanol dans des conditions acides pour donner du 2-céto-D-gluconate de méthyle.

La synthèse de l'érythorbate de sodium : chauffage de la suspension ci-dessus avec du bicarbonate de sodium ou du carbonate de sodium.
La réaction entre l'érythorbate de sodium et l'acide sulfurique.

Méthodes de fabrication de l'acide érythorbique :
L'acide érythorbique est synthétisé par la réaction entre le 2-céto-D-gluconate de méthyle et le méthylate de sodium.
L'acide érythorbique peut également être synthétisé à partir de saccharose et produit à partir de Penicillium spp.

L'acide érythorbique peut également être préparé en faisant réagir du 2-céto-D-gluconate avec du méthylate de sodium, synthétisé à partir de saccharose, ou produit naturellement par l'espèce Penicililum. L'érythorbate de sodium est préparé à partir de D-glucose par une combinaison de biosynthèse et de synthèse chimique via l'acide 2-céto-D-gluconique intermédiaire.

L'acide érythorbique est produit par la fermentation du D-glucose en acide 2-céto-D-gluconique par la bactérie Pseudomonas fluorescens.
Le produit de fermentation est estérifié et chauffé en solution basique pour donner de l'érythorbate de sodium.
Lors de l'acidification du sel dans une solution eau-méthanol, de l'acide érythorbique se forme.

Méthodes de production de l'acide érythorbique :
L'acide érythorbique est synthétisé par la réaction entre le 2-céto-D-gluconate de méthyle et le méthylate de sodium.
L'acide érythorbique peut également être synthétisé à partir de saccharose et produit à partir de Penicillium spp.

Production biotechnologique d'acide érythorbique :
Les levures et autres champignons synthétisent l'acide de sucre C5, l'acide D-érythroascorbique, qui partage des propriétés structurelles et physicochimiques avec Asc.
L'acide D-érythroascorbique remplit des fonctions protectrices similaires dans ces micro-organismes comme Asc dans les plantes et les animaux, y compris le piégeage des espèces réactives de l'oxygène.

La biosynthèse de l'acide D-érythroascorbique commence à partir du D-arabinose obtenu par le micro-organisme à partir de matériel végétal en décomposition.
Le D-arabinose, vraisemblablement sous forme isomère d'acide érythorbique 1,4-furanosidique, est oxydé par des déshydrogénases spécifiques du NAD(P)+ en D-arabinono-1,4-lactone, qui est ensuite oxydé en acide D-érythroascorbique par le D-arabinono -1,4-lactone oxydase.
Les cellules au repos de Saccharomyces cerevisiae peuvent synthétiser l'Asc à partir du L-galactose, du L-galactono-1,4-lactone ou du L-gulono-1,4-lactone via la voie naturellement utilisée pour l'acide D-érythroascorbique.

Méthodes de purification de l'acide érythorbique :
Cristalliser l'acide D(-)-érythorbique dans H2O, EtOH ou dioxane. est à 245 nm avec 7 500 (EtOH).
Acide érythorbique Utilisé dans divers aliments comme antioxydant soluble dans l'eau pour empêcher le changement (couleur, goût, parfum) des aliments dû à l'oxydation.

L'acide érythorbique se trouve dans les fruits de mer congelés, les produits de la pêche, la viande de bouillon, les saucisses de poisson, les fruits, les légumes, les cornichons, les boissons, les aliments pour animaux de compagnie, etc.
L'acide érythorbique est également utilisé comme absorbeur d'oxygène (gâteau éponge, confiserie), désoxygénant de chaudière, révélateur photographique, colorant capillaire et catalyseur de réaction dans la polymérisation de la résine.

Incompatibilités de l'acide érythorbique :
L'acide érythorbique est incompatible avec les métaux chimiquement actifs tels que l'aluminium, le cuivre, le magnésium et le zinc.
L'acide érythorbique est également incompatible avec les bases fortes et les agents oxydants forts.

L'acide érythorbique, un stéréoisomère de l'acide ascorbique aux propriétés physicochimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique ou érythorbate, anciennement connu sous le nom d'acide iso-ascorbique et d'acide D-arabo ascorbique, est un stéréoisomère de l'acide ascorbique.

Les propriétés chimiques des acides érythorbiques présentent de nombreuses similitudes avec Vc, mais en tant qu'antioxydant, l'acide érythorbique a l'avantage inimitable que Vc n'a pas :
Tout d'abord, l'acide érythorbique est supérieur à l'anti-oxydation que Vc, par conséquent, mélangé au Vc, l'acide érythorbique peut protéger efficacement les propriétés du composant Vc en améliorant les propriétés ont de très bons résultats, tout en protégeant la couleur Vc.
Deuxièmement, une sécurité plus élevée, aucun résidu dans le corps humain, participant au métabolisme après absorption par le corps humain, qui peut être partiellement transformé en Vc.

L'acide érythorbique, un épimère de l'acide L-ascorbique, est utilisé aux États-Unis comme additif alimentaire.
Des études ont été menées pour déterminer si l'ingestion d'acide érythorbique dans l'alimentation avait des effets bénéfiques ou néfastes sur les besoins humains en vitamine C.

Les jeunes femmes ont reçu des régimes alimentaires contenant des quantités contrôlées d'acide érythorbique et d'acide ascorbique.
Dans les évaluations pharmacocinétiques, l'acide érythorbique et l'acide ascorbique ont été rapidement absorbés avec peu d'interaction.

L'acide érythorbique est éliminé du corps plus rapidement que l'acide ascorbique. Certains sujets ont reçu des régimes carencés en vitamine C pendant des périodes < ou = 30 j.
Des apports croissants d'acide érythorbique ou des apports prolongés < ou = 1 g d'acide érythorbique/j n'ont pas indiqué d'interactions avec l'acide ascorbique.

La consommation d'acide érythorbique a entraîné la présence d'acide érythorbique dans les leucocytes mononucléaires.
Les concentrations d'acide ascorbique dans ces cellules n'étaient pas affectées par la présence d'acide érythorbique.

L'acide érythorbique a disparu rapidement de ces cellules avec l'arrêt des suppléments d'acide érythorbique.
L'ingestion prolongée d'acide érythrobique par les jeunes femmes n'a ni contrarié ni épargné leur statut en vitamine C.

Stockage de l'acide érythorbique :
L'acide érythorbique doit être conservé dans un récipient hermétique, à l'abri de la lumière, dans un endroit frais et sec.

Stabilité et réactivité de l'acide érythorbique :

Réactivité:

Ce qui suit s'applique en général aux substances et mélanges organiques inflammables :
En cas de répartition fine correspondante, un potentiel d'explosion de poussière peut généralement être supposé en cas de tourbillonnement.

Stabilité chimique:
L'acide érythorbique est chimiquement stable dans des conditions ambiantes standard (température ambiante).

Matériaux incompatibles :
Oxydants forts, Des bases fortes, Métaux chimiquement actifs, Aluminium, Zinc, Magnésium, Cuivre

Sécurité de l'acide érythorbique :
L'acide érythorbique est largement utilisé dans les applications alimentaires comme antioxydant.
L'acide érythorbique est également utilisé dans des applications pharmaceutiques orales comme antioxydant.

L'acide érythorbique est généralement considéré comme non toxique et non irritant lorsqu'il est utilisé comme excipient.
L'acide érythorbique est facilement métabolisé et n'affecte pas l'excrétion urinaire de l'acide ascorbique.
L'OMS a fixé une dose journalière acceptable d'acide érythorbique et de sel de sodium d'acide érythorbique dans les aliments jusqu'à 5 mg/kg de poids corporel.

Premiers soins de l'acide érythorbique :

Lentilles de contact:
Après le rinçage initial, retirez toutes les lentilles de contact et continuez à rincer pendant au moins 15 minutes.
Consulter un médecin si l'irritation persiste.

Contact avec la peau:
Laver immédiatement la zone affectée avec de grandes quantités d'eau et de savon.
Consulter un médecin si l'irritation persiste.

Inhalation:
Transporter à l'air frais, traiter de manière symptomatique.
Consulter un médecin si de la toux ou d'autres symptômes se développent.

Ingestion:
En cas d'ingestion, ne pas faire vomir.
Donner du lait ou de l'eau.

Ne portez rien à la bouche d'une personne inconsciente.
Appeler immédiatement un médecin ou un centre antipoison

Garanties (Personnel):
En cas de création excessive de poussière, porter un masque anti-poussière ou un respirateur pour maintenir l'exposition en dessous du niveau d'exposition autorisé pour les particules.
Porter un équipement de protection individuelle approprié.

Confinement initial :
Ramasser et placer dans des récipients fermés sécurisés.
Traiter ou éliminer les déchets conformément à toutes les exigences locales, étatiques/provinciales et nationales.
Ramassez et organisez l'élimination sans créer de poussière.

Procédure en cas de déversement important :
Éviter la génération de poussière.
Traiter ou éliminer les déchets conformément à toutes les exigences locales, étatiques/provinciales et nationales.

Procédure pour les petits déversements :
Ne pas balayer à sec.
Traiter ou éliminer les déchets conformément à toutes les exigences locales, étatiques/provinciales et nationales.

Manipulation (personnel):
Bien se laver les mains après manipulation.
Evitez le contact avec les yeux, la peau et les vêtements.
Éviter de respirer (poussière, vapeur, brouillard, gaz).

Manipulation (aspects physiques):
Conserver dans le contenant d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé, à l'écart des matières incompatibles.
Récipient sécurisé après chaque utilisation.

Précautions de stockage :
Garder au sec.

Contrôles techniques :
Les installations qui stockent ou utilisent ce produit doivent être équipées d'une douche oculaire et d'une douche de sécurité.
Une bonne ventilation générale devrait être suffisante pour contrôler les niveaux en suspension dans l'air.
Assurer une ventilation adéquate, en particulier dans les zones confinées.

Exigences en matière de protection des yeux/du visage :
Un programme de protection respiratoire conforme aux exigences osha 29 cfr 1910-134 et ansi z88-2 doit être suivi chaque fois que les conditions de travail justifient l'utilisation d'un respirateur.

Exigences de protection de la peau :
Le tablier est recommandé.
Porter des gants de protection pour minimiser la contamination de la peau.
Bien se laver les mains après manipulation.

Exigences en matière de protection respiratoire :
Si les concentrations dans l'air dépassent l'osha twa, un masque anti-poussière approuvé par le niosh est recommandé.

Identifiants de l'acide érythorbique :
Numéro CAS : 89-65-6
CHEBI : 51438
ChemSpider : 16736142
InfoCard ECHA : 100.001.753
Numéro E : E315 (antioxydants)
PubChem CID : 6981
UNII : 311332OII1
Tableau de bord CompTox (EPA) : DTXSID6026537
Formule chimique : C6H8O6
Masse molaire : 176,124 g·molâˆ'1
Densité : 0,704 g/cm3
Point de fusion : 164 à 172 °C (327 à 342 °F ; 437 à 445 K)

Formule empirique (notation Hill) : C6H8O6
Numéro CAS : 89-65-6
Poids moléculaire : 176,12
Belstein : 84271
Numéro CE : 201-928-0
Numéro MDL : MFCD00005378
ID de la substance PubChem : 24888398
NACRES : NA.22

CAS : 89-65-6
Formule moléculaire : C6H7NaO6
Poids moléculaire (g/mol) : 198,11
Numéro MDL : MFCD00005378
Clé InChI : IFVCRSPJFHGFCG-HXPAKLQESA-N
PubChem CID : 54675810
ChEBI:CHEBI:51438
Nom IUPAC : (2R)-2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-one
SOURIRE : [Na+].OC[C@H](O)C1OC(=O)[C-](O)C1=O

Propriétés de l'acide érythorbique :
Point d'ébullition : 227,71 °C (estimation approximative)
Densité : 1,3744 (estimation approximative)
Indice de réfraction : -17,5 ° (C=10, H2O)
Température de stockage : Conserver à 0-5 °C
Solubilité H2O : 0,1 g/mL, clair, incolore à très légèrement jaune
Forme : cristaux ou poudre cristalline
pka4.09±0.10(Prévu)
Couleur Blanc à légèrement jaune
Activité optique :[α]25/D 16,8 °, c = 2 dans H2O
Solubilité dans l'eau : 1 g/10 mL
Merck : 14,5126
BRN : 84271
Stabilité : stable. Combustible.
Incompatible : avec les métaux chimiquement actifs, l'aluminium, le zinc, le cuivre, le magnésium, les bases fortes, les oxydants forts.
InChIKey : CIWBSHSKHKDKBQ-JLAZNSOCSA-N

Aspect : Solide cristallin blanc à légèrement jaune qui fonce progressivement à l'exposition à la lumière.
Autres noms : acide D-érythorbique ; Acide D-araboascorbique
Numéro CAS : 89-65-6
Formule chimique : C6H8O6
Poids moléculaire : 176,13
PKa: L'acide érythorbique est un acide diprotique ayant des pKa de 11,34 et 4,04.
Solubilité
Dans l'eau : 40 g dans 100 mL d'eau à 25 °C.
Dans les solvants organiques : Soluble dans l'alcool, la pyridine ; modérément soluble dans l'acétone; légèrement soluble dans le glycérol
Numéro CAS : 89-65-6
EINECS, n° CE : 201-928-0
Code SH : 2932290090
Formule moléculaire : C6H8O6
Masse moléculaire : 176,13 g/mol

Niveau de qualité : 200
Dosage : 98 %
Forme : cristaux
Activité optique : [α]25/D âˆ'16,8 °, c = 2 dans H2O
mp : 169-172 °C (déc.) (lit.)
Chaîne SMILES : [H][C@@]1(OC(=O)C(O)=C1O)[C@H](O)CO
InChI : 1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5-/m1/ s1
Clé InChI : CIWBSHSKHKDKBQ-DUZGATOHSA-N

Poids moléculaire : 176,12 g/mol
XLogP3 : -1,6
Nombre de donneurs d'obligations hydrogène : 4
Nombre d'accepteurs de liaison hydrogène : 6
Nombre d'obligations rotatives : 2
Masse exacte : 176,03208797 g/mol
Masse monoisotopique : 176,03208797 g/mol
Superficie polaire topologique : 107Ų
Nombre d'atomes lourds : 12
Complexité : 232
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 2
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

Spécifications de l'acide érythorbique :
Forme : solide
Couleur blanche
Odeur : aucune
Point d'ébullition : nd c
Pression de vapeur : nd psia
Densité de vapeur : nd (air = 1)
Solubilité dans l'eau : 40 g/100 ml
Gravité spécifique : 1,65 (eau = 1)
Densité apparente : nd
Point de fusion/congélation : nd c
Ph: 5-6
% volatils : nd %

Identification : Passe le test
Aspect : Poudre cristalline blanche inodore.
Dosage : 99,0 - 100,5 %
Rotation Spécifique, [a ]25°/D°C : Entre -16.5° et -18.0°
Métaux lourds : 10 ppm maximum
Plomb : 5 ppm maximum
Arsenic : 3 ppm max
Résidu à l'allumage : > 0,3 % max
Perte au séchage : 0,4 % max
Emballage : 25 kg (55 lb) ou tel que requis par l'acheteur

Point de fusion : 169 °C à 172 °C (décomposition)
Odeur : Inodore
Quantité : 100 g
Indice Merck : 14,5126
Information sur la solubilité : Soluble dans l'alcool, la pyridine et l'eau.
Poids de la formule : 176,12
Pourcentage de pureté : 99 %
Forme Physique : Poudre
Nom chimique ou matériau : acide D-(-)-érythorbique

Produits connexes de l'acide érythorbique :
N,N-Diéthyl-2,2,2-trifluoroacétamide
Chlorhydrate de N,N-diméthylpipéridine-4-sulfonamide
Des-4-méthylènepipéridine Efinaconazole
2,3-Difluorophényl Efinaconazole Diol
3-isobutylaniline

Synonymes d'acide érythorbique :
Acide isoascorbique
Acide isoascorbique
Acide D-isoascorbique
89-65-6
Acide D-araboascorbique
Acide araboascorbique
Acide D-isoascorbique
Isovitamine C
2,3-didéhydro-D-érythro-hexono-1,4-lactone
Érycorbine
Néo-cébicure
UNII-311332OII1
Acide saccharosonique
Acide glucosaccharonique
MFCD00005378
(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H)-one
Acide D-érythro-Hex-2-énonique, g-lactone
Gamma-lactone d'acide D-érythro-hex-2-énonique
Acide D-(-)-isoascorbique
CHEBI:51438
(R)-5-((R)-1,2-dihydroxyéthyl)-3,4-dihydroxyfuran-2(5H)-one
ACIDE D-ASCORBIQUE, ISO
D-érythro-hex-2-énono-1,4-lactone
311332OII1
Mercate 5
Acide D(-)-isoascorbique, 98 %
Acide D-érythro-Hex-2-énonique, .gamma.-lactone
Acide érythroascorbique, D-
Numéro FEMA : 2410
FEMA n° 2410
CCRIS 6568
HSDB 584
Acide isoascorbique [NF]
Acide D-érythro-Hex-2-énonique, gamma-lactone
NSC 8117
Lactone d'acide D-érythro-3-oxohexonique
EINECS 201-928-0
Lactone d'acide D-érythro-3-cétohexonique
Lactone d'acide 3-oxohexonique, D-érythro-
BRN 0084271
Gamma-lactone d'acide 3-céto-D-érythro-hexonique
Acide hex-2-énonique gamma-lactone, D-érythro-
acide d-iso-ascorbique
1f9g
E315
Acide D-érythro-hex-2-énonique, gamma-lactone,
DSSTox_CID_6537
Acide D-(-)-araboascorbique
EC 201-928-0
DSSTox_RID_78143
Acide D-(???)-isoascorbique
DSSTox_GSID_26537
SCHEMBL18678
5-18-05-00026 (Référence du manuel Beilstein)
CHEMBL486293
SCHEMBL3700961
DTXSID6026537
Acide D-(-)-isoascorbique, 98 %
(2R)-2-[(1R)-1,2-dihydroxyéthyl]-4,5-dihydroxyfuran-3-one
HY-N7079
Tox21_201111
SBB017515
AKOS015856346
ZINC100006772
ZINC100057602
CAS-89-65-6
Acide D-érythro-hex-2-énoïque ??-lactone
NCGC00258663-01
Acide D-isoascorbique, >=99%, FCC, FG
O272
A0520
CS-0014152
C20364
Q424531
J-506944
7179C406-7CCF-4C07-9125-AA71E28FB983
(2R)-2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-one
(5R)-5-(1,2-dihydroxyéthyl)-3,4-dihydroxy-5-hydrofuran-2-one
Acide isoascorbique, norme de référence de la pharmacopée des États-Unis (USP)
(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H)-one (nom non préféré)
Acide isoascorbique
Acide D-araboascorbique
Acide araboascorbique
Acide D-isoascorbique
Isovitamine C
Acide D-isoascorbique
Érycorbine
Néo-cébicure
Acide saccharosonique
Mercate 5
Acide glucosaccharonique
Acide D-(-)-isoascorbique
Acide érythroascorbique, D-
Numéro féminin : 2410
Acide D-ascorbique, Iso
Fema n° 2410
Ccris 6568
Hsdb 584
Acide D-érythro-hex-2-énonique, Gamma-lactone
2,3-didéshydro-d-érythro-hexono-1,4-lactone
Unii-311332oii1
Chebi:51438
89-65-6
Nsc 8117
Lactone d'acide D-érythro-3-oxohexonique
EINECS 201-928-0
Lactone d'acide D-érythro-3-cétohexonique
Acide 3-oxohexonique Lactone, D-érythro-
Brn 0084271
E315
(5r)-5-[(1r)-1,2-dihydroxyéthyl]-3,4-dihydroxyfuran-2(5h)-one
Acide gamma-lactone 3-céto-d-érythro-hexonique
Acide D-érythro-hex-2-énonique, Gamma-lactone,
Acide hex-2-énonique Gamma-lactone, D-érythro-
Acide érythroascorbique
Acide D-érythro-hex-2-énoïque Gamma-lactone
Acide D-érythro-hex-2-énonique, .gamma.-lactone
Érythorbate
D-érythro-hex-1-énofuranos-3-ulose
Acide isoascorbique [nf]
1f9g
Ac1l1nqg
Dsstox_cid_6537
Dsstox_rid_78143
Dsstox_gsid_26537
Schembl18678
W241008_aldrich
856061_aldrich
Chembl486293
Schéma3700961
58320_fluka
Ciwbshskhkdkbq-duzgatohsa-n
Molport-003-937-345
7378-23-6 (sel chlorhydrate)
Tox21_201111
Ar-1i3651
D-érythro-hex-2-énono-1,4-lactone
Sbb017515
146-75-8 (sel de dichlorhydrate)
Akos015856346
311332oii1
Ls-2352
Rl05634
Cas-89-65-6
6381-77-7 (sel monochlorhydrate)
Ncgc00258663-01
Kb-49577
O272
Acide D-érythro-hex-2-énonique Gamma-lactone
A0520
C20364
5-18-05-00026 (référence du manuel beilstein)
(2r)-2-[(1r)-1,2-dihydroxyéthyl]-4,5-dihydroxyfuran-3-one
7179c406-7ccf-4c07-9125-aa71e28fb983
(5r)-5-(1,2-dihydroxyéthyl)-3,4-dihydroxy-5-hydrofuran-2-one
74242-57-2
Acide érythorbique
ACIDE ISOASCORBIQUE
1f9g
E315
Acide D-érythro-hex-2-énonique, gamma-lactone,
EC 201-928-0
SCHEMBL18678
ACIDE ÉRYTHORBIQUE [II]
5-18-05-00026 (Référence du manuel Beilstein)
ACIDE ÉRYTHORBIQUE [FCC]
ACIDE ISOASCORBIQUE [MI]
ACIDE ÉRYTHORBIQUE [FHFI]
ACIDE ÉRYTHORBIQUE [HSDB]
ACIDE ÉRYTHORBIQUE [INCI]
CHEMBL486293
DTXCID306537
N° SIN 315
SCHEMBL3700961
ACIDE ÉRYTHORBIQUE [MART.]
ACIDE ÉRYTHORBIQUE [USP-RS]
INS-315
Acide D-(-)-isoascorbique, 98 %
HY-N7079
Tox21_201111
AC8021
AKOS015856346
Acide D-érythro-hex-2-énoïque ß-lactone
CAS-89-65-6
Acide D-érythro-Hex-2-énonique, g-lactone
NCGC00258663-01
Gamma-lactone d'acide D-érythro-Hex-2-énoïque
Acide D-isoascorbique, >=99%, FCC, FG
A0520
CS-0014152
E-315
ACIDE ASCORBIQUE IMPURETÉ F [EP IMPURETÉ]
C20364
EN300-251979
A843272
Q424531
Acide D-isoascorbique 1000 microg/mL dans l'acétonitrile
J-506944
Z1255372411
7179C406-7CCF-4C07-9125-AA71E28FB983
Acide érythorbique, norme de référence de la pharmacopée des États-Unis (USP)
(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one
(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H)-one (acide D-isoascorbique)
ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE)
DESCRIPTION:

L'acide érythorbique (acide isascorbique, acide D-araboascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (acide isoascorbique) est synthétisé par une réaction entre le 2-céto-D-gluconate de méthyle et le méthylate de sodium.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium sélectionnées pour cette fonctionnalité.

Numéro CAS, 89-65-6
Numéro de la Communauté européenne (CE) : 201-928-0
Nom IUPAC : D-érythro-Hex-2-énono-1,4-lactone
Formule moléculaire : C6H8O6


SYNONYMES DE L'ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE) :
Acide D-araboascorbique, acide érythorbique, acide érythroascorbique, acide isoascorbique, acide isoascorbique, sel disodique, acide isoascorbique, sel monosodique, acide isascorbique, sel de sodium, érythorbate, acide érythorbique, acide isoascorbique, acide D-araboascorbique, 89-65-6 , Acide D-isoascorbique, acide araboascorbique, acide D-érythorbique, isovitamine C, acide D-(-)-isoascorbique, acide, acide glucosaccharonique, 2,3-didéhydro-D-érythro-hexono-1,4-lactone, FEMA No. 2410,(R)-5-((R)-1,2-dihydroxyéthyl)-3,4-dihydroxyfuran-2(5H)-one,Erycorbin,Neo-cebicure,D-érythro-Hex-2-enonic acide, .gamma.-lactone, acide D-érythro-hex-2-énonique gamma-lactone,DTXSID6026537,CHEBI:51438,(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4- dihydroxyfuran-2(5H)-one,ACIDE D-ASCORBIQUE, ISO,D-érythro-hex-2-énono-1,4-lactone,311332OII1,D(-)-Acide isoascorbique (acide érythorbique),(2R)- 2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-one, Mercate 5, acide érythroascorbique, D-, MFCD00005378, numéro FEMA : 2410, CCRIS 6568, HSDB 584, Acide érythorbique [NF], NSC 8117, lactone d'acide D-érythro-3-oxohexonique, EINECS 201-928-0, lactone d'acide D-érythro-3-cétohexonique, lactone d'acide 3-oxohexonique, D-érythro-, BRN 0084271, NSC-8117,3-Keto-D-erythro-hexonic acid gamma-lactone, Hex-2-enonic acid gamma-lactone, D-erythro-,(5R)-5-((1R)-1,2-DIHYDROXYETHYL) -3,4-DIHYDROXYFURAN-2(5H)-ONE,UNII-311332OII1,acide D-soascorbique,(5R)-5-[(1R)-1,2-Dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H )-un (acide D-isoascorbique); Impureté F de l'acide ascorbique ; Impureté d'ascorbate de sodium F, acide d-iso-ascorbique, ERYTHORBATE, ACIDE ISOASCORBIQUE, acide D-érythro-Hex-2-énonique, g-lactone, 1f9g, E315, acide D-érythro-hex-2-énonique, gamma- lactone,,EC 201-928-0,SCHEMBL18678,ACIDE ÉRYTHORBIQUE [II],5-18-05-00026 (référence du manuel Beilstein),ACIDE ÉRYTHORBIQUE [FCC],ACIDE ISOASCORBIQUE [MI],ACIDE ÉRYTHORBIQUE [FHFI],ACIDE ÉRYTHORBIQUE ACIDE [HSDB],ACIDE ÉRYTHORBIQUE [INCI],CHEMBL486293,DTXCID306537,INS NO.315,SCHEMBL3700961,ACIDE ÉRYTHORBIQUE [MART.],ACIDE ÉRYTHORBIQUE [USP-RS],INS-315,acide D-(-)-isoascorbique, 98%,HY-N7079,Tox21_201111,AC8021,AKOS015856346,acide D-érythro-hex-2-énoïque ?-lactone,CAS-89-65-6,NCGC00258663-01,acide D-érythro-Hex-2-énoïque gamma -lactone, acide D-isoascorbique, >=99%, FCC, FG,A0520,CS-0014152,E-315,NS00079026,D(-?)?-?Acide isoascorbique (acide érythorbique), IMPURITÉ D'ACIDE ASCORBIQUE F [EP IMPURETÉ],C20364,EN300-251979,A843272,Q424531,Acide D-isoascorbique 1000 microg/mL dans l'acétonitrile,J-506944,Z1255372411,7179C406-7CCF-4C07-9125-AA71E28FB983,Erythor acide bique, référence de la Pharmacopée des États-Unis (USP) Norme, (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one, (5R)-5-[(1R)-1,2 -Dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H)-one (acide D-isoascorbique),(5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfuran-2(5H )-one (nom non préféré)



L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.
L'un de ces essais a étudié les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou l'élimination de la vitamine C par l'organisme n'a été constaté.


Une étude ultérieure a révélé que l’acide érythorbique est un puissant activateur de l’absorption du fer non hémique.
Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme conservateur dans les aliments destinés à être consommés frais (comme les ingrédients des bars à salade), l'utilisation de l'acide érythorbique comme conservateur alimentaire a augmenté.

L'acide érythorbique (acide isoascorbique) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.
L'acide érythorbique (acide isoascorbique) a été synthétisé pour la première fois en 1933 par les chimistes allemands Kurt Maurer et Bruno Schiedt.

L'acide D-(-)-isoascorbique, également connu sous le nom d'acide érythorbique, est largement utilisé comme élément constitutif chiral en synthèse organique pour la préparation de divers composés chiraux.
L'acide érythorbique (acide isoascorbique) est également utilisé comme agent réducteur dans diverses réactions organiques.


L'acide érythorbique (acide isoascorbique) est un acide ascorbique.
L'acide érythorbique (acide isoascorbique) est un produit naturel présent dans Hypsizygus marmoreus, Grifola frondosa et d'autres organismes pour lesquels des données sont disponibles.


L'ascorbyl palmitate, l'ascorbyl dipalmitate et l'ascorbyl stéarate sont fabriqués à partir de vitamine C (acide ascorbique).
L'acide érythorbique (acide isoascorbique) et l'érythorbate de sodium sont des substances dont la structure est similaire à celle de la vitamine C et du sel de sodium de la vitamine C.
L'ascorbyl palmitate, l'ascorbyl dipalmitate et l'ascorbyl stéarate sont principalement utilisés dans les produits de maquillage.
L'acide érythorbique (acide isoascorbique) et l'érythorbate de sodium sont principalement utilisés dans les produits pour les cheveux et les ongles.

L'acide érythorbique (acide D-isoascorbique), produit à partir de sucres provenant de différentes sources, telles que la betterave, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.



APPLICATIONS DE L'ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE) :
L'acide D-(−)-isoascorbique peut être utilisé comme réactif dans la synthèse de divers composés chiraux tels que :
aminotriol énantiopur
(3R, 4S) -4-hydroxylasiodiplodine et D-mycinose
stéréoisomères énantiomériquement purs d'α,β-dihydroxy-aldéhydes ou d'acides



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE) :
Formule chimique, C6H8O6
Masse molaire, 176,124 g•mol−1
Densité, 0,704 g/cm3
Point de fusion, 164 à 172 °C (327 à 342 °F; 437 à 445 K) (se décompose)
Acidité (pKa), 2,1
Masse moléculaire
176,12 g/mole
Calculé par PubChem 2.2 (version PubChem 2021.10.14)
XLLogP3
-1,6
Calculé par XLogP3 3.0 (PubChem version 2021.10.14)
Nombre de donneurs de liaisons hydrogène
4
Calculé par Cactvs 3.4.8.18 (version PubChem 2021.10.14)
Nombre d'accepteurs de liaison hydrogène
6
Calculé par Cactvs 3.4.8.18 (version PubChem 2021.10.14)
Nombre de liaisons rotatives
2
Calculé par Cactvs 3.4.8.18 (version PubChem 2021.10.14)
Masse exacte
176,03208797 g/mole
Calculé par PubChem 2.2 (version PubChem 2021.10.14)
Masse monoisotopique
176,03208797 g/mole
Calculé par PubChem 2.2 (version PubChem 2021.10.14)
Surface polaire topologique
107Ų
Calculé par Cactvs 3.4.8.18 (version PubChem 2021.10.14)
Nombre d'atomes lourds
12
Calculé par PubChem
Charge formelle
0
Calculé par PubChem
Complexité
232
Calculé par Cactvs 3.4.8.18 (version PubChem 2021.10.14)
Nombre d'atomes isotopiques
0
Calculé par PubChem
Nombre de stéréocentres d'atomes défini
2
Calculé par PubChem
Nombre de stéréocentres d'atomes non défini
0
Calculé par PubChem
Nombre de stéréocentres de liaison définis
0
Calculé par PubChem
Nombre de stéréocentres de liaison non défini
0
Calculé par PubChem
Nombre d'unités liées de manière covalente
1
Calculé par PubChem
Le composé est canonisé
Oui
Niveau de qualité
200
Essai
98%
formulaire
cristaux
activité optique
[α]25/D −16,8°, c = 2 dans H2O
député
169-172 °C (déc.) (lit.)
Chaîne SOURIRE
[H][C@@]1(OC(=O)C(O)=C1O)[C@H](O)CO
InChI
1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5-/m1/s1
Clé InChI
CIWBSHSKHKDKBQ-DUZGATOHSA-N
Poids moléculaire, 176,12
Formule, C6H8O6
N° CAS : 89-65-6
Apparence, Solide
Couleur, blanc cassé à jaune clair
SOURIRES, O=C1C(O)=C(O)[C@]([C@H](O)CO)([H])O1
Classification des structures, autres
Source initiale, micro-organismesFlammulina velutipes
CAS, 89-65-6
Formule moléculaire, C6H7NaO6
Poids moléculaire (g/mol), 198,11
Numéro MDL, MFCD00005378
InChI Key, IFVCRSPJFHGFCG-HXPAKLQESA-NSAfficher plus
Synonyme, acide érythorbique, acide isoascorbique, acide d-araboascorbique, acide d-isoascorbique, acide araboascorbique, acide d-érythorbique, isovitamine c, néo-cebicure, acide saccharosonique, mercate 5Afficher plus
Numéro d'identification PubChem : 54675810
ChEBI, CHEBI:51438
Nom IUPAC, (2R)-2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-oneAfficher plus
SOURIRES, [Na+].OC[C@H](O)C1OC(=O)[C-](O)C1=O
Point de fusion, 169°C à 172°C (décomposition)
Odeur, Inodore
Quantité, 100 g
Indice Merck, 14,5126
Informations sur la solubilité, soluble dans l'alcool, la pyridine et l'eau.
Poids de formule, 176,12
Pourcentage de pureté, 99 %
Forme physique, poudre
Nom chimique ou matériau, Acide D-(-)-isoascorbique







INFORMATIONS DE SÉCURITÉ SUR L'ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE)
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du lieu de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Éliminer comme produit non utilisé.




ACIDE ÉRYTHORBIQUE (ACIDE ISOASCORBIQUE)
L'acide érythorbique (acide isoascorbique) est synthétisé par une réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.
L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (acide isoascorbique) est un cristal ou une poudre blanche à légèrement jaune.

Numéro CAS : 89-65-6
Formule moléculaire : C6H8O6
Poids moléculaire : 176,12
Numéro EINECS : 201-928-0

Acide érythorbique, Acide isoascorbique, 89-65-6, Acide D-arabocorbique, Acide D-isoascorbique, Acide araboscorbique, Acide D-érythorbique, Isovitamine C, Acide D-(-)-isoascorbique, Acide saccharosonique, Acide glucosaccharonique, 2,3-Didéhydro-D-érythro-hexono-1,4-lactone, FEMA n° 2410, (R)-5-((R)-1,2-dihydroxyéthyl)-3,4-dihydroxyfurane-2(5H)-one, Érycorbine, Néo-cébicure, Acide D-érythro-Hex-2-énonic, .gamma.-lactone, D-érythro-hex-2-énonique acide gamma-lactone, DTXSID6026537, CHEBI :51438, (5R)-5-[(1R)-1, 2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one, ACIDE D-ASCORBIQUE, ISO, D-érythro-hex-2-énono-1,4-lactone, 311332OII1, acide D(-)-isoascorbique (acide érythorbique), (2R)-2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-one, Mercate 5, acide érythroascorbique, D-, MFCD00005378, numéro FEMA : 2410, CCRIS 6568, HSDB 584, acide érythorbique [NF], NSC 8117, lactone d'acide D-érythro-3-oxohexonique, EINECS 201-928-0, lactone d'acide D-érythro-3-cétohanique, lactone d'acide 3-oxohexonique, D-érythro-, BRN 0084271, NSC-8117, acide 3-céto-D-érythro-hexonique, gamma-lactone de l'acide hex-2-énonic, D-érythro-, (5R)-5-((1R)-1,2-DIHYDROXYÉTHYL)-3,4-DIHYDROXYFURANE-2(5H)-ONE, UNII-311332OII1, acide D-soascorbique, (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one (acide D-isoascorbique) ; Impureté d'acide ascorbique F ; Impureté d'ascorbate de sodium F, acide d-iso-ascorbique, ÉRYTHORBATE, ACIDE ISOASCORBIQUE, ACIDE D-érythro-hex-2-énonique, g-lactone, 1f9g, E315, acide D-érythro-hex-2-énonique, gamma-lactone, EC 201-928-0, SCHEMBL18678, ACIDE ÉRYTHORBIQUE [II], 5-18-05-00026 (Référence du manuel Beilstein), ACIDE ÉRYTHORBIQUE [FCC], ACIDE ISOASCORBIQUE [MI], ACIDE ÉRYTHORBIQUE [FHFI], ACIDE ÉRYTHORBIQUE [HSDB], ACIDE ÉRYTHORBIQUE [INCI], CHEMBL486293, DTXCID306537, INS NO.315, SCHEMBL3700961, ACIDE ÉRYTHORBIQUE [MART.], ACIDE ÉRYTHORBIQUE [USP-RS], INS-315, Acide D-(-)-Isoascorbique, 98%, HY-N7079, Tox21_201111, AC8021, AKOS015856346, D-érythro-hex-2-énoïque acide ?-lactone, CAS-89-65-6, NCGC00258663-01, D-érythro-Hex-2-énoïque acide gamma-lactone, D-Acide isoascorbique, >=99%, FCC, FG, A0520, CS-0014152, E-315, NS00079026, D(- ?) ? -? Acide isoascorbique (acide érythorbique), IMPURETÉ D'ACIDE ASCORBIQUE F [IMPURETÉ EP], C20364, EN300-251979, A843272, Q424531, Acide D-isoascorbique 1000 microg/mL dans l'acétonitrile, J-506944, Z1255372411, 7179C406-7CCF-4C07-9125-AA71E28FB983, Acide érythorbique, Étalon de référence de la pharmacopée des États-Unis (USP), (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2,5-dihydrofurane-2-one, (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one (acide D-isoascorbique), (5R)-5-[(1R)-1,2-dihydroxyéthyl]- 3,4-dihydroxyfurane-2(5H)-one (nom non préféré).

L'acide érythorbique (acide isoascorbique) est largement utilisé comme élément constitutif chiral dans la synthèse organique pour la préparation de divers composés chiraux.
L'acide érythorbique (acide isoascorbique) est également utilisé comme agent réducteur dans diverses réactions organiques.
L'acide érythorbique (acide isoascorbique), anciennement connu sous le nom d'acide iso ascorbique et d'acide D-arabo ascorbique, est un stéréoisomère de l'acide ascorbique.

Les propriétés chimiques de l'acide érythorbique (acide isoascorbique) présentent de nombreuses similitudes avec Vc, mais en tant qu'antioxydant, il présente l'avantage inimitable que Vc n'a pas : Tout d'abord, il est supérieur à l'anti-oxydation que Vc, par conséquent, mélangé le Vc, il peut protéger efficacement les propriétés du composant Vc en améliorant les propriétés ont de très bons résultats, tout en protégeant la couleur Vc.
Deuxièmement, une sécurité plus élevée, aucun résidu dans le corps humain, participant au métabolisme après absorption par le corps humain, qui peut être partiellement transformé en Vc.
L'acide érythorbique (acide isoascorbique, acide D-araboascorbique) est un stéréoisomère de l'acide ascorbique.

L'acide érythorbique (acide isoascorbique), également connu sous le nom d'acide isoascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).
Bien que les deux composés aient des structures chimiques similaires, leur disposition spatiale des atomes diffère.
L'acide érythorbique (acide isoascorbique) est couramment utilisé comme additif alimentaire, principalement comme antioxydant.
L'acide érythorbique (acide isoascorbique) est antioxydant et ses propriétés le rendent utile dans diverses applications alimentaires et de boissons pour empêcher l'oxydation des ingrédients, en particulier dans les viandes, les fruits et les légumes transformés. L'acide érythorbique aide à maintenir la couleur, la saveur et la qualité globale des aliments en inhibant les effets néfastes de l'oxygène sur le produit.

L'acide érythorbique peut s'assombrir lorsqu'il est exposé à la lumière. Le E315 est soluble dans l'eau, l'alcool, la pyridine, les solvants oxygénés et légèrement soluble dans la glycérine.
Sinofi est un fournisseur et fabricant fiable d'acide érythorbique (acide isoascorbique) en Chine.
L'acide érythorbique (acide isoascorbique) est un solide blanc à jaune avec une odeur sucrée distinctive.

L'acide érythorbique (acide isoascorbique) se présente sous forme de cristaux granulaires.
L'acide érythorbique (acide isoascorbique) est soluble dans l'eau, l'alcool et la pyridine ; modérément soluble dans l'acétone et légèrement soluble dans le glycérol.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.

L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.
L'un de ces essais a examiné les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.

Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.
Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme agent de conservation dans les aliments destinés à être consommés frais (tels que les ingrédients des bars à salade), l'utilisation de l'acide érythorbique (acide isoascorbique) comme conservateur alimentaire a augmenté.
L'acide érythorbique (acide isoascorbique) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (acide isoascorbique), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (acide isoascorbique) sert d'antioxydant en piégeant les radicaux libres et en prévenant les dommages oxydatifs dans les aliments.

Cette propriété permet de prolonger la durée de conservation des produits en réduisant le taux de détérioration causé par l'exposition à l'air.
L'acide érythorbique (acide isoascorbique) est couramment utilisé dans l'industrie alimentaire, en particulier dans les viandes transformées telles que les saucisses, les hot-dogs et les charcuteries.
L'ajout d'acide érythorbique (acide isoascorbique) aide à maintenir la couleur de la viande et empêche la formation de nitrosamines, qui sont des composés potentiellement nocifs.

L'acide érythorbique (acide isoascorbique) agit également comme un agent réducteur, ce qui signifie qu'il peut réduire les niveaux de certains composés, tels que l'oxygène, qui peuvent contribuer à la dégradation de la qualité des aliments.
L'acide érythorbique (acide isoascorbique) a été approuvé par des organismes de réglementation tels que la Food and Drug Administration (FDA) des États-Unis et l'Autorité européenne de sécurité des aliments (EFSA) en tant qu'additif alimentaire sûr lorsqu'il est utilisé dans les limites spécifiées.
Alors que l'acide ascorbique (vitamine C) peut être dérivé de sources naturelles comme les agrumes, l'acide érythorbique (acide isoascorbique) est généralement produit synthétiquement par des processus chimiques.

L'acide érythorbique (acide isoascorbique) est inodore et insipide, ce qui en fait un additif idéal dans la transformation des aliments car il n'apporte pas de saveurs ou d'arômes indésirables au produit final.
La structure moléculaire de l'acide érythorbique est similaire à celle de l'acide ascorbique, la seule différence étant l'arrangement des atomes autour d'un atome de carbone spécifique.
Cette différence de structure se traduit par des propriétés et des fonctions différentes pour ces deux composés.

L'acide érythorbique (acide isoascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C), peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson avec le numéro d'additif alimentaire européen E315.
Le mécanisme antioxydant de l'acide érythorbique (acide isoascorbique) (identique à l'érythorbate de sodium et à l'acide ascorbique) est un piégeur d'oxygène qui réagit avec l'oxygène pour réduire la teneur en oxygène des aliments.
L'acide érythorbique (acide isoascorbique) est facilement absorbé et métabolisé.

L'acide érythorbique (acide isoascorbique) et le stéarate d'ascorbyle sont fabriqués à partir de vitamine C (acide ascorbique).
L'acide érythorbique (acide isoascorbique) et l'érythorbate de sodium sont des substances dont la structure est similaire à celle de la vitamine C et du sel de sodium de la vitamine C.
L'acide érythorbique (acide isoascorbique), le dipalmitate d'ascorbyle et le stéarate d'ascorbyle sont principalement utilisés dans les produits de maquillage.

L'acide érythorbique (acide isoascorbique) et l'érythorbate de sodium sont principalement utilisés dans les produits pour les cheveux et les ongles.
L'acide érythorbique (acide isoascorbique) est un produit naturel, additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (acide isoascorbique) est un antioxydant important dans l'industrie alimentaire, qui peut conserver la couleur, la saveur naturelle des aliments et prolonger le stockage des aliments sans effets toxiques et secondaires.

L'acide érythorbique (acide isoascorbique) est utilisé dans la transformation de la charcuterie, des fruits surgelés, des légumes surgelés, des confitures et dans l'industrie des boissons telles que la bière, le vin de raisin, les boissons gazeuses, les jus de fruits et les thés aux fruits.
L'utilisation de l'acide érythorbique (acide isoascorbique) a considérablement augmenté depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme conservateur dans les aliments destinés à être consommés frais.
L'acide érythorbique (acide isoascorbique, acide d-araboascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C).

L'acide érythorbique (acide isoascorbique) est synthétisé par une réaction entre le méthyl 2-céto-d-gluconate et le méthoxyde de sodium.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.
L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.

L'acide érythorbique (acide isoascorbique) est un additif alimentaire de désignation E315, c'est un stéréoisomère de l'acide ascorbique (vitamine C) qui peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson.
L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (acide isoascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme sur.

L'acide érythorbique (acide isoascorbique) est un antioxydant largement utilisé.
L'acide érythorbique (acide isoascorbique) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.
L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.

L'acide érythorbique (acide isoascorbique) est largement utilisé comme conservateur et stabilisateur de couleur pour les aliments et les boissons.
En tant qu'additif alimentaire d'origine végétale, il peut être considéré comme naturel.
L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.

L'acide érythorbique (acide isoascorbique) est utilisé comme antioxydant alimentaire.
L'acide érythorbique (acide isoascorbique) se présente sous forme de cristaux granuleux brillants.
L'acide érythorbique (acide isoascorbique) est soluble dans l'eau, l'alcool et la pyridine, modérément soluble dans l'acétone et légèrement soluble dans le glycérol.

L'acide érythorbique (acide isoascorbique) est un sous-produit de l'acide ascorbique et est principalement utilisé comme conservateur des fruits et légumes.
L'acide érythorbique (acide isoascorbique) est produit à l'état acide par l'érythorbate de sodium.
L'acide érythorbique (acide isoascorbique) a une forte action réductrice et a des effets sur la réduction de la pression sanguine, la diurèse, la génération de glycogène hépatique, l'excrétion de pigments, la détoxification du corps.

L'acide érythorbique (acide isoascorbique) n'est pas toxique.
Les autres applications de l'acide érythorbique (acide isoascorbique) sont familières à l'érythorbate de sodium.
L'érythorbate de sodium et l'acide érythorbique (acide isoascorbique) sont généralement reconnus comme les derniers produits verts de classe A à l'échelle internationale et sont devenus les produits de base en pénurie à la fois au pays et à l'étranger.

L'acide érythorbique (acide isoascorbique) peut être produit par une réaction entre le méthyl 2-céto-D-gluconate et l'acide sulfurique.
Production de 2-céto-D-gluconate de calcium : fermentation d'hydrolysat d'amidon de qualité alimentaire par Pseudomonas fluorescens avec du carbonate de calcium.
Acidifiez le bouillon de fermentation ci-dessus pour obtenir de l'acide 2-céto-D-gluconique (2 kg).

Estérification de 2 kg avec du méthanol dans des conditions acides pour obtenir du méthyl 2-céto-D-gluconate.
La synthèse de l'érythorbate de sodium : chauffer la suspension ci-dessus avec du bicarbonate de sodium ou du carbonate de sodium.
Réaction entre l'érythorbate de sodium et l'acide sulfurique.

L'acide érythorbique (acide isoascorbique) est synthétisé par la réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose et produit à partir de Penicillium spp.
L'acide érythorbique (acide isoascorbique), anciennement connu sous le nom d'acide isoascorbique et d'acide D-arabo-ascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).

L'acide érythorbique (acide isoascorbique) est un additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (acide isoascorbique) est souvent utilisé pour conserver les produits frais ainsi que la charcuterie et les légumes surgelés.
L'acide érythorbique (acide isoascorbique) est l'un des additifs alimentaires et ingrédients populaires dans la plupart des pays.

L'acide érythorbique (acide isoascorbique) ou érythorbate, anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique.
L'acide érythorbique (acide isoascorbique), anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (acide isoascorbique) est un additif alimentaire d'origine végétale produit à partir de saccharose.

L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.
L'un de ces essais a examiné les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.

Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.
L'acide érythorbique (acide isoascorbique) ou érythorbate, anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique.
L'acide érythorbique (acide isoascorbique) est un additif alimentaire d'origine végétale produit à partir de saccharose.

L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.
L'un de ces essais a examiné les effets de l'acide érythorbique (acide isoascorbique) sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.

Une étude ultérieure a révélé que l'acide érythorbique (acide isoascorbique) est un puissant activateur de l'absorption du fer non hémique.
L'acide érythorbique (acide isoascorbique), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.

L'acide érythorbique (acide isoascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme sur.
L'acide érythorbique (acide isoascorbique) est un antioxydant largement utilisé.
L'acide érythorbique (acide isoascorbique) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.

Point de fusion : 169-172 °C (déc.) (lit.)
Point d'ébullition : 227,71 °C (estimation approximative)
alpha : -17.25 º (c=10, H2O 25 ºC)
Densité : 1,3744 (estimation approximative)
pression de vapeur : 0Pa à 25°C
indice de réfraction : -17,5° (C=10, H2O)
FEMA : 2410 | ACIDE ÉRYTHROBIQUE
température de stockage : 2-8°C
solubilité : H2O : 0,1 g/mL, limpide, incolore à très faiblement jaune
pka : 4,09±0,10 (prédit)
forme : cristaux ou poudre cristalline
couleur : blanc à légèrement jaune
Odeur : inodore
activité optique : [α]25/D 16,8°, c = 2 en H2O
Solubilité dans l'eau : 1 g/10 ml
Merck : 14,5126
Numéro BRN : 84271
Stabilité : Stable. Combustible. Incompatible avec les métaux chimiquement actifs, l'aluminium, le zinc, le cuivre, le magnésium, les bases fortes, les agents oxydants puissants.
InChIKey : CIWBSHSKHKDKBQ-JLAZNSOCSA-N
LogP : -1,69 à 25°C

L'acide érythorbique (acide isoascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (acide isoascorbique) est synthétisé par une réaction entre le méthyl 2-céto-d-gluconate et le méthoxyde de sodium.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.

L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (acide isoascorbique), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (acide isoascorbique) est un acide ascorbique.

L'acide érythorbique (acide isoascorbique) est synthétisé par la réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.
L'acide érythorbique (acide isoascorbique) peut également être synthétisé à partir du saccharose et produit à partir de Penicillium spp.
Les levures et autres champignons synthétisent l'acide de sucre C5 acide érythorbique (acide isoascorbique) qui partage des propriétés structurelles et physico-chimiques avec l'Asc.

L'acide érythorbique (acide isoascorbique) remplit des fonctions protectrices similaires à celles de l'Asc chez les plantes et les animaux, y compris le piégeage des espèces réactives de l'oxygène.
La biosynthèse de l'acide érythorbique (acide isoascorbique) commence à partir de la D-arabinose obtenue par le micro-organisme à partir de matériel végétal en décomposition.
L'acide érythorbique (acide isoascorbique), vraisemblablement sous sa forme isomérique 1,4-furanosidique, est oxydé par des déshydrogénases spécifiques au NAD(P)+ en D-arabinono-1,4-lactone, qui est ensuite oxydé en acide D-érythroascorbique par la D-arabinono-1,4-lactone oxydase.

Les cellules au repos de Saccharomyces cerevisiae peuvent synthétiser l'Asc à partir du L-galactose, du L-galactono-1,4-lactone ou du L-gulono-1,4-lactone via la voie naturellement utilisée pour l'acide D-érythroascorbique.
L'acide érythorbique (acide isoascorbique) est incompatible avec les métaux chimiquement actifs tels que l'aluminium, le cuivre, le magnésium et le zinc.
L'acide érythorbique (acide isoascorbique) est également incompatible avec les bases fortes et les agents oxydants forts.

L'un de ces essais a examiné les effets de l'acide érythorbique (acide isoascorbique) sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.
Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.
Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme agent de conservation dans les aliments destinés à être consommés frais (tels que les ingrédients des bars à salade), l'utilisation de l'acide érythorbique (acide isoascorbique) comme conservateur alimentaire a augmenté.

L'acide érythorbique (acide isoascorbique) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.
L'acide érythorbique (acide isoascorbique) a été synthétisé pour la première fois en 1933 par les chimistes allemands Kurt Maurer et Bruno Schiedt.
L'acide érythorbique (acide isoascorbique) et son sel de sodium peuvent être utilisés comme antioxydant dans les boissons, la bière, etc.

L'acide érythorbique (acide isoascorbique) peut éliminer la décoloration, l'odeur et la turbidité, et améliorer le mauvais goût des boissons.
Dans la bière, l'acide érythorbique (acide isoascorbique) peut éliminer l'odeur de renfermé, améliorer la stabilité de la saveur et prolonger sa durée de conservation.
L'acide érythorbique (acide isoascorbique) est un sel de sodium dérivé de l'acide ascorbique.

Fonctionne comme un donneur d'électrons, l'acide érythorbique (acide isoascorbique) participe à diverses réactions biochimiques et s'est avéré avoir des effets physiologiques.
De plus, il sert de système modèle précieux pour l'étude de l'acide ascorbique et de l'acide p-hydroxybenzoïque.
La méthode analytique pour déterminer ces composés implique la spectroscopie d'impédance électrochimique.

L'acide érythorbique (acide isoascorbique) est utilisé comme antioxydant, notamment dans l'industrie brassicole, ainsi que comme agent réducteur en photographie.
De plus, il sert d'additif alimentaire, fonctionnant comme un agent antimicrobien et antioxydant.
L'acide érythorbique (acide isoascorbique) ou érythorbate, anciennement connu sous le nom d'acide iso ascorbique et d'acide D-arabo ascorbique, est un stéréoisomère de l'acide ascorbique.

Production à partir de glucose par Penicillium sous-espèce Antioxydant pour les aliments et les boissons gazeuses.
Ingrédient aromatisant ; colorant conservateur/antioxydant dans les fruits et les produits carnés L'acide érythorbique, anciennement connu sous le nom d'acide isoascorbique et d'acide érythorbique (acide isoascorbique), est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (acide isoascorbique) est un additif alimentaire d'origine végétale produit à partir de saccharose.

L'acide érythorbique (acide isoascorbique) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (acide isoascorbique) est un additif alimentaire de désignation E315, c'est un stéréoisomère de l'acide ascorbique (vitamine C) qui peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson.
L'acide érythorbique (acide isoascorbique), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.

L'acide érythorbique (acide isoascorbique) est parfois utilisé en combinaison avec d'autres antioxydants, tels que l'acide citrique ou l'acide ascorbique, pour créer un effet synergique.
Cette combinaison peut améliorer l'activité antioxydante globale et l'efficacité dans la préservation de la qualité des produits alimentaires.
En plus d'empêcher le brunissement des fruits et de maintenir la couleur des viandes, l'acide érythorbique est également utilisé comme stabilisateur de couleur dans diverses applications alimentaires et de boissons.

L'acide érythorbique (acide isoascorbique) aide à prévenir les changements de couleur qui peuvent se produire en raison de l'exposition à l'air, à la lumière ou à d'autres facteurs externes.
L'acide érythorbique (acide isoascorbique) est utilisé dans la production de certaines boissons, telles que les jus de fruits et les boissons gazeuses, pour prévenir la dégradation de la couleur et maintenir la fraîcheur du produit.
Les propriétés antioxydantes de l'acide érythorbique le rendent précieux pour préserver la qualité des conserves.

L'acide érythorbique (acide isoascorbique) aide à prévenir l'oxydation de certains composants des aliments en conserve, assurant ainsi une durée de conservation plus longue.
L'acide érythorbique (acide isoascorbique) est soluble dans l'eau, ce qui le rend facile à incorporer dans une variété de formulations d'aliments et de boissons.
La solubilité de l'acide érythorbique (acide isoascorbique) permet une distribution uniforme dans les produits liquides.

Bien que l'acide érythorbique (acide isoascorbique) soit généralement reconnu comme sûr, certaines personnes peuvent être sensibles à certains additifs alimentaires.
Dans de rares cas, les personnes ayant des sensibilités ou des allergies spécifiques peuvent avoir des effets indésirables.

L'acide érythorbique (acide isoascorbique) est essentiel pour que les fabricants fournissent un étiquetage précis, et les consommateurs ayant des sensibilités connues doivent être prudents lorsqu'ils consomment des produits contenant de l'acide érythorbique.
L'utilisation de l'acide érythorbique (acide isoascorbique) dans les aliments est approuvée par le Codex Alimentarius, un ensemble international de normes alimentaires établies par l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO) et l'Organisation mondiale de la santé (OMS).

Utilise:
L'acide érythorbique (acide isoascorbique) est utilisé comme additif alimentaire comme agent antimicrobien et antioxydant.
L'acide érythorbique (acide isoascorbique) est un conservateur alimentaire qui est un agent réducteur puissant (acceptant l'oxygène) qui fonctionne de la même manière que les antioxydants.
À l'état cristallin sec, il n'est pas réactif, mais dans les solutions aqueuses, il réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui le rend précieux en tant qu'antioxydant.

Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air, et le stockage doit se faire à des températures fraîches.
L'acide érythorbique (acide isoascorbique) a une solubilité de 43 g/100 ml d'eau à 25°c.
Une partie équivaut à une partie d'acide ascorbique et équivaut à une partie d'érythorbate de sodium.

L'acide érythorbique (acide isoascorbique) est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à une concentration de 150 à 200 ppm.
L'acide érythorbique (acide isoascorbique) est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande séchée à des niveaux de 0,05%.
Généralement, l'acide érythorbique (acide isoascorbique) est largement utilisé pour stabiliser la couleur, réduire les utilisations de nitrate et prévenir l'oxydation dans les produits carnés, les fruits et les légumes.

Et donc maintenir la couleur et la saveur et prolonger leur durée de conservation.
Pendant ce temps, l'acide érythorbique (acide isoascorbique) profite à notre corps en réduisant la formation de nitrosamine qui est générée par l'apport de nitrate.
L'acide érythorbique (acide isoascorbique) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide érythorbique (acide isoascorbique) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.
L'acide érythorbique (acide isoascorbique) est largement utilisé comme antioxydant dans les aliments transformés, les charcuteries et les légumes surgelés.
L'acide érythorbique (acide isoascorbique) est capable de remplacer les nitrates dans les applications de viande.

L'acide érythorbique (acide isoascorbique) est un conservateur alimentaire qui est un agent réducteur puissant (acceptant l'oxygène) qui fonctionne de la même manière que les antioxydants.
À l'état cristallin sec, l'acide érythorbique n'est pas réactif, mais dans les solutions aqueuses, il réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui le rend précieux en tant qu'antioxydant.
Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air, et le stockage doit se faire à des températures fraîches.

L'acide érythorbique (acide isoascorbique) a une solubilité de 43 g/100 ml d'eau à 25°c. Une partie équivaut à une partie d'acide ascorbique et équivaut à une partie d'érythorbate de sodium.
L'acide érythorbique (acide isoascorbique) est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à une concentration de 150 à 200 ppm.
L'acide érythorbique (acide isoascorbique) est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande séchée à des niveaux de 0,05%.

L'acide érythorbique (acide isoascorbique) est un stéréoisomère de l'acide L-ascorbique et est utilisé comme antioxydant dans les aliments et les formulations pharmaceutiques orales.
L'acide érythorbique (acide isoascorbique) a environ 5% de l'activité de la vitamine C de l'acide L-ascorbique.
L'acide érythorbique (acide isoascorbique) est utilisé comme antioxydant en particulier dans l'industrie brassicole, agent réducteur en photographie.

L'acide érythorbique (acide isoascorbique) est également utilisé dans l'industrie alimentaire, comme additif alimentaire.
L'acide érythorbique (acide isoascorbique) et son sel de sodium sont largement utilisés.
L'acide érythorbique (acide isoascorbique) a été utilisé comme antioxydant alimentaire et utilisé pour prévenir le brunissement du poisson, de la viande, des légumes, des jus de fruits, etc.

L'acide érythorbique (acide isoascorbique) est un nouveau type d'antioxydant, d'antiseptique et d'agent antistaling alimentaire, qui peut réduire efficacement l'oxydation des aliments, empêcher leur couleur, leur arôme et leur goût de s'estomper, et il peut également inhiber la formation de nitrite d'ammonium cancérigène dans les aliments.
À l'heure actuelle, l'acide érythorbique (acide isoascorbique) a été largement utilisé dans des aliments tels que la viande, les légumes, les fruits, le vin, les boissons, les aliments en conserve et le thé.
En plus d'être utilisé dans les antioxydants alimentaires, les aides à la couleur et les conservateurs de Chemicalbook, il a également des applications importantes en médecine et en hygiène, dans les industries chimiques quotidiennes, etc.

En médecine, l'acide érythorbique (acide isoascorbique) a pour effets d'abaisser la pression artérielle, de diurèse, de production de glycogène hépatique, d'excrétion de pigments, de détoxification, etc.
L'acide érythorbique (acide isoascorbique) peut être utilisé pour l'imagerie du foie et de la vésicule biliaire ou l'imagerie osseuse et le traitement des calculs rénaux ; Dans l'industrie chimique, l'acide érythorbique peut stabiliser les réactions chimiques et faciliter les réactions.
L'acide érythorbique (acide isoascorbique) peut être utilisé comme stabilisant pour les matières premières chimiques et comme électrolyte dans l'électrolyse et la galvanoplastie.

L'acide érythorbique (acide isoascorbique) est largement utilisé comme antioxydant pour empêcher l'oxydation des composants alimentaires.
L'acide érythorbique (acide isoascorbique) aide à prolonger la durée de conservation de divers produits alimentaires en inhibant la détérioration causée par l'exposition à l'oxygène.
L'acide érythorbique (acide isoascorbique) est couramment utilisé dans la transformation des viandes, telles que les saucisses, le bacon et les charcuteries, pour maintenir la couleur naturelle de la viande.

L'acide érythorbique (acide isoascorbique) aide à prévenir le brunissement indésirable qui peut se produire pendant le traitement et le stockage.
L'acide érythorbique (acide isoascorbique) peut inhiber la formation de nitrosamines, qui sont des composés potentiellement nocifs qui peuvent survenir lors de la transformation des charcuteries.
Cette propriété contribue à la sécurité des produits carnés transformés.

L'acide érythorbique (acide isoascorbique) est utilisé pour préserver la couleur des fruits et légumes dans divers produits alimentaires transformés, notamment les fruits en conserve, les confitures et les jus de fruits.
L'acide érythorbique (acide isoascorbique) est utilisé dans la production de certaines boissons, en particulier les jus de fruits et les boissons gazeuses, pour prévenir les changements de couleur et maintenir la fraîcheur du produit.
L'acide érythorbique (acide isoascorbique) est souvent utilisé en combinaison avec d'autres antioxydants, tels que l'acide citrique ou l'acide ascorbique, pour améliorer l'activité antioxydante globale des produits alimentaires.

L'acide érythorbique (acide isoascorbique) aide à prévenir l'oxydation des conserves, garantissant ainsi le maintien de la qualité des produits sur une période prolongée.
L'acide érythorbique (acide isoascorbique) est utilisé dans certains produits de boulangerie pour préserver la couleur et la qualité des ingrédients, en particulier ceux sensibles à l'oxydation.
Dans les applications de boulangerie, l'acide érythorbique (acide isoascorbique) peut être ajouté aux formulations de pâte pour améliorer les propriétés rhéologiques, influençant l'élasticité et les caractéristiques de manipulation de la pâte.

Dans l'industrie de la boulangerie, l'acide érythorbique (acide isoascorbique) est parfois utilisé comme améliorateur de farine.
L'acide érythorbique (acide isoascorbique) peut améliorer les performances de certains systèmes de pâte en améliorant la résistance et l'élasticité de la pâte.
L'acide érythorbique (acide isoascorbique) peut fonctionner comme un relaxant de pâte dans certaines applications de boulangerie, rendant la pâte plus facile à gérer et améliorant ses caractéristiques de traitement.

L'acide érythorbique (acide isoascorbique) peut agir comme acidifiant dans certains produits alimentaires et boissons, donnant un goût aigre et contribuant au profil de saveur global.
L'acide érythorbique (acide isoascorbique) est utilisé pour prévenir le brunissement et l'oxydation des vins blancs.
L'acide érythorbique (acide isoascorbique) aide à maintenir la couleur et la fraîcheur du vin.

L'acide érythorbique (acide isoascorbique) a été utilisé comme agent réducteur dans les solutions de développement photographique, jouant un rôle dans le développement des films et des tirages.
Dans certaines applications, l'acide érythorbique (acide isoascorbique) est utilisé comme une alternative moins coûteuse à l'acide ascorbique (vitamine C) tout en offrant des effets antioxydants similaires.
L'acide érythorbique (acide isoascorbique) peut être utilisé dans certains produits cosmétiques et de soins personnels pour ses propriétés antioxydantes, aidant à maintenir la stabilité de certaines formulations.

Profil d'innocuité :
L'acide érythorbique (acide isoascorbique) est largement utilisé dans les applications alimentaires en tant qu'antioxydant.
L'acide érythorbique (acide isoascorbique) est également utilisé dans les applications pharmaceutiques orales en tant qu'antioxydant.
L'acide érythorbique (acide isoascorbique) est généralement considéré comme non toxique et non irritant lorsqu'il est utilisé comme excipient.

L'acide érythorbique (acide isoascorbique) est facilement métabolisé et n'affecte pas l'excrétion urinaire de l'acide ascorbique.
L'OMS a fixé un apport quotidien acceptable d'acide érythorbique (acide isoascorbique) et de son sel de sodium dans les aliments à un maximum de 5 mg/kg de poids corporel.
Sous sa forme concentrée, l'acide érythorbique (acide isoascorbique) peut provoquer une irritation de la peau et des yeux.

L'inhalation de poussières ou de vapeurs d'acide érythorbique (acide isoascorbique) peut provoquer une irritation des voies respiratoires.
Une ventilation adéquate doit être assurée dans les zones où il est manipulé sous forme de poudre ou en suspension dans l'air.
Bien que rare, certaines personnes peuvent être sensibles ou allergiques à l'acide érythorbique (acide isoascorbique).

Cela peut entraîner des réactions indésirables lors de l'exposition, telles que des éruptions cutanées ou des problèmes respiratoires.
Il est important que l'acide érythorbique (acide isoascorbique) soit prudent pour les personnes ayant des sensibilités connues et que les fabricants fournissent un étiquetage précis.
ACIDE ÉRYTHORBIQUE (E315)
L'acide érythorbique (E315) est synthétisé par une réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.
L'acide érythorbique (E315) est largement utilisé comme élément constitutif chiral en synthèse organique pour la préparation de divers composés chiraux.
L'acide érythorbique (E315) est également utilisé comme agent réducteur dans diverses réactions organiques.

Numéro CAS : 89-65-6
Formule moléculaire : C6H8O6
Poids moléculaire : 176,12
Numéro EINECS : 201-928-0

Acide érythorbique, Acide isoascorbique, 89-65-6, Acide D-arabocorbique, Acide D-isoascorbique, Acide araboscorbique, Acide D-érythorbique, Isovitamine C, Acide D-(-)-isoascorbique, Acide saccharosonique, Acide glucosaccharonique, 2,3-Didéhydro-D-érythro-hexono-1,4-lactone, FEMA n° 2410, (R)-5-((R)-1,2-dihydroxyéthyl)-3,4-dihydroxyfurane-2(5H)-one, Érycorbine, Néo-cébicure, Acide D-érythro-Hex-2-énonic, .gamma.-lactone, D-érythro-hex-2-énonique acide gamma-lactone, DTXSID6026537, CHEBI :51438, (5R)-5-[(1R)-1, 2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one, ACIDE D-ASCORBIQUE, ISO, D-érythro-hex-2-énono-1,4-lactone, 311332OII1, acide D(-)-isoascorbique (acide érythorbique), (2R)-2-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2H-furan-5-one, Mercate 5, acide érythroascorbique, D-, MFCD00005378, numéro FEMA : 2410, CCRIS 6568, HSDB 584, acide érythorbique [NF], NSC 8117, lactone d'acide D-érythro-3-oxohexonique, EINECS 201-928-0, lactone d'acide D-érythro-3-cétohanique, lactone d'acide 3-oxohexonique, D-érythro-, BRN 0084271, NSC-8117, acide 3-céto-D-érythro-hexonique, gamma-lactone de l'acide hex-2-énonic, D-érythro-, (5R)-5-((1R)-1,2-DIHYDROXYÉTHYL)-3,4-DIHYDROXYFURANE-2(5H)-ONE, UNII-311332OII1, acide D-soascorbique, (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one (acide D-isoascorbique) ; Impureté d'acide ascorbique F ; Impureté d'ascorbate de sodium F, acide d-iso-ascorbique, ÉRYTHORBATE, ACIDE ISOASCORBIQUE, ACIDE D-érythro-hex-2-énonique, g-lactone, 1f9g, E315, acide D-érythro-hex-2-énonique, gamma-lactone, EC 201-928-0, SCHEMBL18678, ACIDE ÉRYTHORBIQUE [II], 5-18-05-00026 (Référence du manuel Beilstein), ACIDE ÉRYTHORBIQUE [FCC], ACIDE ISOASCORBIQUE [MI], ACIDE ÉRYTHORBIQUE [FHFI], ACIDE ÉRYTHORBIQUE [HSDB], ACIDE ÉRYTHORBIQUE [INCI], CHEMBL486293, DTXCID306537, INS NO.315, SCHEMBL3700961, ACIDE ÉRYTHORBIQUE [MART.], ACIDE ÉRYTHORBIQUE [USP-RS], INS-315, Acide D-(-)-Isoascorbique, 98%, HY-N7079, Tox21_201111, AC8021, AKOS015856346, D-érythro-hex-2-énoïque acide ?-lactone, CAS-89-65-6, NCGC00258663-01, D-érythro-Hex-2-énoïque acide gamma-lactone, D-Acide isoascorbique, >=99%, FCC, FG, A0520, CS-0014152, E-315, NS00079026, D(- ?) ? -? Acide isoascorbique (acide érythorbique), IMPURETÉ D'ACIDE ASCORBIQUE F [IMPURETÉ EP], C20364, EN300-251979, A843272, Q424531, Acide D-isoascorbique 1000 microg/mL dans l'acétonitrile, J-506944, Z1255372411, 7179C406-7CCF-4C07-9125-AA71E28FB983, Acide érythorbique, Étalon de référence de la pharmacopée des États-Unis (USP), (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxy-2,5-dihydrofurane-2-one, (5R)-5-[(1R)-1,2-dihydroxyéthyl]-3,4-dihydroxyfurane-2(5H)-one (acide D-isoascorbique), (5R)-5-[(1R)-1,2-dihydroxyéthyl]- 3,4-dihydroxyfurane-2(5H)-one (nom non préféré).

L'acide érythorbique (E315), anciennement connu sous le nom d'acide iso ascorbique et d'acide D-arabo ascorbique, est un stéréoisomère de l'acide ascorbique.
Les propriétés chimiques de l'acide érythorbique (E315) présentent de nombreuses similitudes avec Vc, mais en tant qu'antioxydant, il présente l'avantage inimitable que Vc n'a pas : Tout d'abord, il est supérieur à l'anti-oxydation que le Vc, par conséquent, mélangé le Vc, il peut protéger efficacement les propriétés du composant Vc en améliorant les propriétés ont de très bons résultats, tout en protégeant la couleur Vc.
L'acide érythorbique peut s'assombrir lorsqu'il est exposé à la lumière. Le E315 est soluble dans l'eau, l'alcool, la pyridine, les solvants oxygénés et légèrement soluble dans la glycérine.

Sinofi est un fournisseur et fabricant fiable d'acide érythorbique (E315) en Chine.
L'acide érythorbique (E315) est un solide blanc à jaune avec une odeur sucrée distinctive.
L'acide érythorbique (E315) se présente sous forme de cristaux granulaires.

L'acide érythorbique (E315) est soluble dans l'eau, l'alcool et la pyridine ; modérément soluble dans l'acétone et légèrement soluble dans le glycérol.
L'acide érythorbique (E315) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.
L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.

Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.
L'un de ces essais a examiné les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.
Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.

Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme agent de conservation dans les aliments destinés à être consommés frais (tels que les ingrédients des bars à salade), l'utilisation de l'acide érythorbique (E315) comme conservateur alimentaire a augmenté.
L'acide érythorbique (E315) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.
L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.

L'acide érythorbique (E315), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (E315) sert d'antioxydant en piégeant les radicaux libres et en prévenant les dommages oxydatifs dans les aliments.
Cette propriété permet de prolonger la durée de conservation des produits en réduisant le taux de détérioration causé par l'exposition à l'air.

L'acide érythorbique (E315) est couramment utilisé dans l'industrie alimentaire, en particulier dans les viandes transformées telles que les saucisses, les hot-dogs et les charcuteries.
L'ajout d'acide érythorbique (E315) aide à maintenir la couleur de la viande et empêche la formation de nitrosamines, qui sont des composés potentiellement nocifs.
L'acide érythorbique (E315) agit également comme un agent réducteur, ce qui signifie qu'il peut réduire les niveaux de certains composés, tels que l'oxygène, qui peuvent contribuer à la dégradation de la qualité des aliments.

L'acide érythorbique (E315) a été approuvé par des organismes de réglementation tels que la Food and Drug Administration (FDA) des États-Unis et l'Autorité européenne de sécurité des aliments (EFSA) en tant qu'additif alimentaire sûr lorsqu'il est utilisé dans des limites spécifiées.
Alors que l'acide ascorbique (vitamine C) peut être dérivé de sources naturelles comme les agrumes, l'acide érythorbique (E315) est généralement produit synthétiquement par des processus chimiques.
Deuxièmement, une sécurité plus élevée, aucun résidu dans le corps humain, participant au métabolisme après absorption par le corps humain, qui peut être partiellement transformé en Vc.

L'acide érythorbique (acide isoascorbique, acide D-araboascorbique) est un stéréoisomère de l'acide ascorbique.
L'acide érythorbique (E315), également connu sous le nom d'acide isoascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).
Bien que les deux composés aient des structures chimiques similaires, leur disposition spatiale des atomes diffère.

L'acide érythorbique (E315) est couramment utilisé comme additif alimentaire, principalement comme antioxydant.
L'acide érythorbique (E315) est antioxydant et ses propriétés le rendent utile dans diverses applications alimentaires et de boissons pour empêcher l'oxydation des ingrédients, en particulier dans les viandes, les fruits et les légumes transformés.
L'acide érythorbique (E315) aide à maintenir la couleur, la saveur et la qualité globale des aliments en inhibant les effets néfastes de l'oxygène sur le produit.

L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (E315) est un cristal ou une poudre blanche à légèrement jaune.
L'acide érythorbique (E315) est inodore et insipide, ce qui en fait un additif idéal dans la transformation des aliments car il n'apporte pas de saveurs ou d'arômes indésirables au produit final.

La structure moléculaire de l'acide érythorbique est similaire à celle de l'acide ascorbique, la seule différence étant l'arrangement des atomes autour d'un atome de carbone spécifique.
Cette différence de structure se traduit par des propriétés et des fonctions différentes pour ces deux composés.
L'acide érythorbique (E315) est un stéréoisomère de l'acide ascorbique (vitamine C), peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson avec le numéro d'additif alimentaire européen E315.

Le mécanisme antioxydant de l'acide érythorbique (E315) (identique à l'érythorbate de sodium et à l'acide ascorbique) est un piégeur d'oxygène qui réagit avec l'oxygène pour réduire la teneur en oxygène des aliments.
L'acide érythorbique (E315) est utilisé dans la transformation de la charcuterie, des fruits surgelés, des légumes surgelés, des confitures et dans l'industrie des boissons telles que la bière, le vin de raisin, les boissons gazeuses, les jus de fruits et les thés aux fruits.
L'utilisation de l'acide érythorbique (E315) a considérablement augmenté depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme conservateur dans les aliments destinés à être consommés frais.

L'acide érythorbique (acide isoascorbique, acide d-araboascorbique) est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (E315) est synthétisé par une réaction entre le méthyl 2-céto-d-gluconate et le méthoxyde de sodium.
L'acide érythorbique (E315) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.

L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (E315) est un additif alimentaire de désignation E315, c'est un stéréoisomère de l'acide ascorbique (vitamine C) qui peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson.
L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.

L'acide érythorbique (E315) est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme sur.
L'acide érythorbique (E315) est un antioxydant largement utilisé.
L'acide érythorbique (E315) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.

L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (E315) est largement utilisé comme conservateur et stabilisateur de couleur pour les aliments et les boissons.
En tant qu'additif alimentaire d'origine végétale, il peut être considéré comme naturel.

L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (E315) est utilisé comme antioxydant alimentaire.
L'acide érythorbique (E315) se présente sous forme de cristaux granuleux brillants.

L'acide érythorbique (E315) est soluble dans l'eau, l'alcool et la pyridine, modérément soluble dans l'acétone et légèrement soluble dans le glycérol.
L'acide érythorbique (E315) est un sous-produit de l'acide ascorbique et est principalement utilisé comme conservateur des fruits et légumes.
L'acide érythorbique (E315) est produit à l'état acide par l'érythorbate de sodium.

L'acide érythorbique (E315) a une forte action réductrice et a des effets sur la réduction de la pression sanguine, la diurèse, la génération de glycogène hépatique, l'excrétion de pigments, la détoxification du corps.
L'acide érythorbique (E315) n'est pas toxique.
Les autres applications de l'acide érythorbique (E315) sont familières à l'érythorbate de sodium.

L'érythorbate de sodium et l'acide érythorbique (E315) sont généralement reconnus comme les derniers produits verts de classe A à l'échelle internationale et sont devenus les produits de base en pénurie à la fois au pays et à l'étranger.
L'acide érythorbique (E315) peut être produit par une réaction entre le méthyl 2-céto-D-gluconate et l'acide sulfurique.
Production de 2-céto-D-gluconate de calcium : fermentation d'hydrolysat d'amidon de qualité alimentaire par Pseudomonas fluorescens avec du carbonate de calcium.

Acidifiez le bouillon de fermentation ci-dessus pour obtenir de l'acide 2-céto-D-gluconique (2 kg).
Estérification de 2 kg avec du méthanol dans des conditions acides pour obtenir du méthyl 2-céto-D-gluconate.
La synthèse de l'érythorbate de sodium : chauffer la suspension ci-dessus avec du bicarbonate de sodium ou du carbonate de sodium.

Réaction entre l'érythorbate de sodium et l'acide sulfurique.
L'acide érythorbique (E315) est synthétisé par la réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.
L'acide érythorbique (E315) peut également être synthétisé à partir du saccharose et produit à partir de Penicillium spp.

L'acide érythorbique (E315), anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).
L'acide érythorbique (E315) est un additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (E315) est souvent utilisé pour conserver les produits frais ainsi que la charcuterie et les légumes surgelés.

L'acide érythorbique (E315) est l'un des additifs alimentaires et ingrédients les plus populaires dans la plupart des pays.
L'acide érythorbique (E315) ou érythorbate, anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique.
L'acide érythorbique (E315), anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique (vitamine C).

L'acide érythorbique (E315) est un additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.

L'un de ces essais a examiné les effets de l'acide érythorbique sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.
Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.
L'acide érythorbique (E315) ou érythorbate, anciennement connu sous le nom d'acide isoascorbique et d'acide D-araboascorbique, est un stéréoisomère de l'acide ascorbique.

L'acide érythorbique (E315) est un additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
Des essais cliniques ont été menés pour étudier certains aspects de la valeur nutritionnelle de l'acide érythorbique.

L'un de ces essais a examiné les effets de l'acide érythorbique (E315) sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.
Une étude ultérieure a révélé que l'acide érythorbique (E315) est un puissant activateur de l'absorption du fer non hémique.
L'acide érythorbique (E315), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.

L'acide érythorbique (E315) est un stéréoisomère de l'acide ascorbique (vitamine C) sous la forme sur.
L'acide érythorbique (E315) est un antioxydant largement utilisé.
L'acide érythorbique (E315) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.

L'acide érythorbique (E315) est facilement absorbé et métabolisé.
L'acide érythorbique (E315) et le stéarate d'ascorbyle sont fabriqués à partir de vitamine C (acide ascorbique).
L'acide érythorbique (E315) et l'érythorbate de sodium sont des substances dont la structure est similaire à celle de la vitamine C et du sel de sodium de la vitamine C.

L'acide érythorbique (E315), le dipalmitate d'ascorbyle et le stéarate d'ascorbyle sont principalement utilisés dans les produits de maquillage.
L'acide érythorbique (E315) et l'érythorbate de sodium sont principalement utilisés dans les produits pour les cheveux et les ongles.

L'acide érythorbique (E315) est un produit naturel, additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (E315) est un antioxydant important dans l'industrie alimentaire, qui peut conserver la couleur, la saveur naturelle des aliments et prolonger le stockage des aliments sans effets toxiques et secondaires.

Point de fusion : 169-172 °C (déc.) (lit.)
Point d'ébullition : 227,71 °C (estimation approximative)
alpha : -17.25 º (c=10, H2O 25 ºC)
Densité : 1,3744 (estimation approximative)
pression de vapeur : 0Pa à 25°C
indice de réfraction : -17,5° (C=10, H2O)
FEMA : 2410 | ACIDE ÉRYTHROBIQUE
température de stockage : 2-8°C
solubilité : H2O : 0,1 g/mL, limpide, incolore à très faiblement jaune
pka : 4,09±0,10 (prédit)
forme : cristaux ou poudre cristalline
couleur : blanc à légèrement jaune
Odeur : inodore
activité optique : [α]25/D 16,8°, c = 2 en H2O
Solubilité dans l'eau : 1 g/10 ml
Merck : 14,5126
Numéro BRN : 84271
Stabilité : Stable. Combustible. Incompatible avec les métaux chimiquement actifs, l'aluminium, le zinc, le cuivre, le magnésium, les bases fortes, les agents oxydants puissants.
InChIKey : CIWBSHSKHKDKBQ-JLAZNSOCSA-N
LogP : -1,69 à 25°C

L'acide érythorbique (E315) est un additif alimentaire d'origine végétale produit à partir de saccharose.
L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (E315) est un additif alimentaire de désignation E315, c'est un stéréoisomère de l'acide ascorbique (vitamine C) qui peut être utilisé comme antioxydant, conservateur et stabilisateur de couleur dans les produits transformés à base de viande et de poisson.

L'acide érythorbique (E315), un stéréoisomère de l'acide ascorbique aux propriétés physico-chimiques similaires, est largement utilisé comme antioxydant dans les aliments transformés.
L'acide érythorbique (E315) est parfois utilisé en combinaison avec d'autres antioxydants, tels que l'acide citrique ou l'acide ascorbique, pour créer un effet synergique.
Cette combinaison peut améliorer l'activité antioxydante globale et l'efficacité dans la préservation de la qualité des produits alimentaires.

En plus d'empêcher le brunissement des fruits et de maintenir la couleur des viandes, l'acide érythorbique est également utilisé comme stabilisateur de couleur dans diverses applications alimentaires et de boissons.
L'acide érythorbique (E315) aide à prévenir les changements de couleur qui peuvent se produire en raison de l'exposition à l'air, à la lumière ou à d'autres facteurs externes.
L'acide érythorbique (E315) est utilisé dans la production de certaines boissons, telles que les jus de fruits et les boissons gazeuses, pour prévenir la dégradation de la couleur et maintenir la fraîcheur du produit.

Les propriétés antioxydantes de l'acide érythorbique le rendent précieux pour préserver la qualité des conserves.
L'acide érythorbique (E315) aide à prévenir l'oxydation de certains composants des aliments en conserve, assurant ainsi une durée de conservation plus longue.
L'acide érythorbique (E315) est soluble dans l'eau, ce qui le rend facile à incorporer dans une variété de formulations d'aliments et de boissons.

La solubilité de l'acide érythorbique (E315) permet une distribution uniforme dans les produits liquides.
Bien que l'acide érythorbique (E315) soit généralement reconnu comme sûr, certaines personnes peuvent être sensibles à certains additifs alimentaires.
Dans de rares cas, les personnes ayant des sensibilités ou des allergies spécifiques peuvent avoir des effets indésirables.

L'acide érythorbique (E315) est essentiel pour que les fabricants fournissent un étiquetage précis, et les consommateurs ayant des sensibilités connues doivent être prudents lorsqu'ils consomment des produits contenant de l'acide érythorbique.
L'utilisation de l'acide érythorbique (E315) dans les aliments est approuvée par le Codex Alimentarius, un ensemble international de normes alimentaires établies par l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO) et l'Organisation mondiale de la santé (OMS).
L'acide érythorbique (E315) est un stéréoisomère de l'acide ascorbique (vitamine C).

L'acide érythorbique (E315) est synthétisé par une réaction entre le méthyl 2-céto-d-gluconate et le méthoxyde de sodium.
L'acide érythorbique (E315) peut également être synthétisé à partir du saccharose ou par des souches de Penicillium qui ont été sélectionnées pour cette caractéristique.
L'acide érythorbique (E315) est désigné par le numéro E E315 et est largement utilisé comme antioxydant dans les aliments transformés.

L'acide érythorbique (E315), produit à partir de sucres dérivés de différentes sources, telles que les betteraves, la canne à sucre et le maïs, est un additif alimentaire utilisé principalement dans les viandes, la volaille et les boissons gazeuses.
L'acide érythorbique (E315) est un acide ascorbique.
L'acide érythorbique (E315) est synthétisé par la réaction entre le méthyl 2-céto-D-gluconate et le méthoxyde de sodium.

L'acide érythorbique (E315) peut également être synthétisé à partir du saccharose et produit à partir de Penicillium spp.
Les levures et autres champignons synthétisent l'acide glycémique C5 acide érythorbique (E315) qui partage des propriétés structurelles et physico-chimiques avec l'Asc.
L'acide érythorbique (E315) remplit des fonctions protectrices similaires à celles de l'Asc chez les plantes et les animaux, y compris le piégeage des espèces réactives de l'oxygène.

La biosynthèse de l'acide érythorbique (E315) commence à partir de la D-arabinose obtenue par le micro-organisme à partir de matériel végétal en décomposition.
L'acide érythorbique (E315), vraisemblablement sous sa forme isomérique 1,4-furanosidique, est oxydé par des déshydrogénases spécifiques au NAD(P)+ en D-arabinono-1,4-lactone, qui est ensuite oxydé en acide D érythroascorbique par la D-arabinono-1,4-lactone oxydase.
Les cellules au repos de Saccharomyces cerevisiae peuvent synthétiser l'Asc à partir du L-galactose, du L-galactono-1,4-lactone ou du L-gulono-1,4-lactone via la voie naturellement utilisée pour l'acide D-érythroascorbique.

L'acide érythorbique (E315) est incompatible avec les métaux chimiquement actifs tels que l'aluminium, le cuivre, le magnésium et le zinc.
L'acide érythorbique (E315) est également incompatible avec les bases fortes et les agents oxydants forts.
L'un de ces essais a examiné les effets de l'acide érythorbique (E315) sur le métabolisme de la vitamine C chez les jeunes femmes ; aucun effet sur l'absorption ou la clairance de la vitamine C par l'organisme n'a été constaté.

Une étude ultérieure a révélé que l'acide érythorbique est un puissant activateur de l'absorption du fer non hémique.
Depuis que la Food and Drug Administration des États-Unis a interdit l'utilisation de sulfites comme agent de conservation dans les aliments destinés à être consommés frais (tels que les ingrédients des bars à salade), l'utilisation de l'acide érythorbique (E315) comme conservateur alimentaire a augmenté.
L'acide érythorbique (E315) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.

L'acide érythorbique (E315) a été synthétisé pour la première fois en 1933 par les chimistes allemands Kurt Maurer et Bruno Schiedt.
L'acide érythorbique (E315) et son sel de sodium peuvent être utilisés comme antioxydant dans les boissons, la bière, etc.
L'acide érythorbique (E315) peut éliminer la décoloration, l'odeur et la turbidité, et améliorer le mauvais goût des boissons.

Dans la bière, l'acide érythorbique (E315) peut éliminer l'odeur de renfermé, améliorer la stabilité de la saveur et prolonger sa durée de conservation.
L'acide érythorbique (E315) est un sel de sodium dérivé de l'acide ascorbique.
Fonctionne comme un donneur d'électrons, l'acide érythorbique (E315) participe à diverses réactions biochimiques et s'est avéré avoir des effets physiologiques.

De plus, l'acide érythorbique (E315) sert de système modèle précieux pour l'étude de l'acide ascorbique et de l'acide p-hydroxybenzoïque.
La méthode analytique pour déterminer ces composés implique la spectroscopie d'impédance électrochimique.
L'acide érythorbique (E315) est utilisé comme antioxydant, en particulier dans l'industrie brassicole, ainsi que comme agent réducteur en photographie.

De plus, il sert d'additif alimentaire, fonctionnant comme un agent antimicrobien et antioxydant.
L'acide érythorbique (E315) ou érythorbate, anciennement connu sous le nom d'acide iso ascorbique et d'acide D-arabo ascorbique, est un stéréoisomère de l'acide ascorbique.

Utilise:
L'acide érythorbique (E315) est largement utilisé comme antioxydant pour empêcher l'oxydation des composants alimentaires.
L'acide érythorbique (E315) aide à prolonger la durée de conservation de divers produits alimentaires en inhibant la détérioration causée par l'exposition à l'oxygène.
L'acide érythorbique (E315) est couramment utilisé dans la transformation des viandes, telles que les saucisses, le bacon et les charcuteries, pour maintenir la couleur naturelle de la viande.

L'acide érythorbique (E315) aide à prévenir le brunissement indésirable qui peut se produire pendant le traitement et le stockage.
L'acide érythorbique (E315) peut inhiber la formation de nitrosamines, qui sont des composés potentiellement nocifs qui peuvent survenir lors de la transformation de la charcuterie.
Cette propriété contribue à la sécurité des produits carnés transformés.

L'acide érythorbique (E315) est utilisé pour préserver la couleur des fruits et légumes dans divers produits alimentaires transformés, notamment les fruits en conserve, les confitures et les jus de fruits.
L'acide érythorbique (E315) est utilisé dans la production de certaines boissons, en particulier les jus de fruits et les boissons gazeuses, pour prévenir les changements de couleur et maintenir la fraîcheur du produit.
L'acide érythorbique (E315) est souvent utilisé en combinaison avec d'autres antioxydants, tels que l'acide citrique ou l'acide ascorbique, pour améliorer l'activité antioxydante globale des produits alimentaires.

L'acide érythorbique (E315) aide à prévenir l'oxydation des conserves, garantissant ainsi le maintien de la qualité des produits sur une période prolongée.
L'acide érythorbique (E315) est utilisé dans certains produits de boulangerie pour préserver la couleur et la qualité des ingrédients, en particulier ceux sensibles à l'oxydation.
L'acide érythorbique (E315) est utilisé comme additif alimentaire comme agent antimicrobien et antioxydant.

L'acide érythorbique (E315) est un conservateur alimentaire qui est un puissant agent réducteur (acceptant l'oxygène) qui fonctionne de la même manière que les antioxydants.
À l'état cristallin sec, il n'est pas réactif, mais dans les solutions aqueuses, il réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui le rend précieux en tant qu'antioxydant.
Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air, et le stockage doit se faire à des températures fraîches.

L'acide érythorbique (E315) a une solubilité de 43 g/100 ml d'eau à 25°c.
Une partie équivaut à une partie d'acide ascorbique et équivaut à une partie d'érythorbate de sodium.
L'acide érythorbique (E315) est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à une concentration de 150 à 200 ppm.

L'acide érythorbique (E315) est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande séchée à des niveaux de 0,05%.
Dans l'industrie de la boulangerie, l'acide érythorbique (E315) est parfois utilisé comme améliorant de farine.
L'acide érythorbique (E315) peut améliorer les performances de certains systèmes de pâte en améliorant la résistance et l'élasticité de la pâte.

L'acide érythorbique (E315) peut fonctionner comme un relaxant de pâte dans certaines applications de boulangerie, rendant la pâte plus maniable et améliorant ses caractéristiques de traitement.
L'acide érythorbique (E315) peut agir comme acidifiant dans certains produits alimentaires et boissons, donnant un goût aigre et contribuant au profil de saveur global.
L'acide érythorbique (E315) est utilisé pour prévenir le brunissement et l'oxydation des vins blancs.

L'acide érythorbique (E315) aide à maintenir la couleur et la fraîcheur du vin.
L'acide érythorbique (E315) a été utilisé comme agent réducteur dans les solutions de développement photographique, jouant un rôle dans le développement des films et des tirages.
Dans certaines applications, l'acide érythorbique (E315) est utilisé comme une alternative moins coûteuse à l'acide ascorbique (vitamine C) tout en offrant des effets antioxydants similaires.

L'acide érythorbique (E315) peut être utilisé dans certains produits cosmétiques et de soins personnels pour ses propriétés antioxydantes, aidant à maintenir la stabilité de certaines formulations.
Généralement, l'acide érythorbique (E315) est largement utilisé pour stabiliser la couleur, réduire les utilisations de nitrate et prévenir l'oxydation des produits carnés, des fruits et des légumes.
Et donc maintenir la couleur et la saveur et prolonger leur durée de conservation.

Pendant ce temps, l'acide érythorbique (E315) profite à notre corps en réduisant la formation de nitrosamine qui est générée par l'apport de nitrate.
L'acide érythorbique (E315) est également utilisé comme conservateur dans les charcuteries et les légumes surgelés.
L'acide érythorbique (E315) est principalement utilisé comme antioxydant (industriel et alimentaire), en particulier dans l'industrie brassicole, et comme agent réducteur pour la photographie.

L'acide érythorbique (E315) est largement utilisé comme antioxydant dans les aliments transformés, les charcuteries et les légumes surgelés.
L'acide érythorbique (E315) est capable de remplacer les nitrates dans les applications de viande.
L'acide érythorbique (E315) est un conservateur alimentaire qui est un puissant agent réducteur (acceptant l'oxygène) qui fonctionne de la même manière que les antioxydants.

À l'état cristallin sec, l'acide érythorbique n'est pas réactif, mais dans les solutions aqueuses, il réagit facilement avec l'oxygène atmosphérique et d'autres agents oxydants, ce qui le rend précieux en tant qu'antioxydant.
Pendant la préparation, la dissolution et le mélange doivent incorporer une quantité minimale d'air, et le stockage doit se faire à des températures fraîches.
L'acide érythorbique (E315) a une solubilité de 43 g/100 ml d'eau à 25°c. Une partie équivaut à une partie d'acide ascorbique et équivaut à une partie d'érythorbate de sodium.

L'acide érythorbique (E315) est utilisé pour contrôler la détérioration oxydative de la couleur et de la saveur des fruits à une concentration de 150 à 200 ppm.
L'acide érythorbique (E315) est utilisé dans la salaison de la viande pour accélérer et contrôler la réaction de salaison des nitrites et prolonger la couleur de la viande séchée à des niveaux de 0,05%.
L'acide érythorbique (E315) est un stéréoisomère de l'acide L-ascorbique et est utilisé comme antioxydant dans les aliments et les formulations pharmaceutiques orales.

L'acide érythorbique (E315) a environ 5% de l'activité de la vitamine C de l'acide L-ascorbique.
L'acide érythorbique (E315) est utilisé comme antioxydant en particulier dans l'industrie brassicole, agent réducteur en photographie.
L'acide érythorbique (E315) est également utilisé dans l'industrie alimentaire, comme additif alimentaire.

L'acide érythorbique (E315) et son sel de sodium sont largement utilisés.
L'acide érythorbique (E315) a été utilisé comme antioxydant alimentaire et utilisé pour prévenir le brunissement du poisson, de la viande, des légumes, des jus de fruits, etc.
L'acide érythorbique (E315) est un nouveau type d'antioxydant, d'antiseptique et d'agent antistaling alimentaire, qui peut réduire efficacement l'oxydation des aliments, empêcher leur couleur, leur arôme et leur goût de s'estomper, et il peut également inhiber la formation de nitrite d'ammonium cancérigène dans les aliments.

À l'heure actuelle, l'acide érythorbique (E315) a été largement utilisé dans des aliments tels que la viande, les légumes, les fruits, le vin, les boissons, les aliments en conserve et le thé.
En plus d'être utilisé dans les antioxydants alimentaires, les aides à la couleur et les conservateurs de Chemicalbook, il a également des applications importantes en médecine et en hygiène, dans les industries chimiques quotidiennes, etc.
En médecine, l'acide érythorbique (E315) a pour effets d'abaisser la pression artérielle, la diurèse, la production hépatique de glycogène, l'excrétion pigmentaire, la détoxification, etc.

L'acide érythorbique (E315) peut être utilisé pour l'imagerie du foie et de la vésicule biliaire ou l'imagerie osseuse et le traitement des calculs rénaux ; Dans l'industrie chimique, l'acide érythorbique peut stabiliser les réactions chimiques et faciliter les réactions.
L'acide érythorbique (E315) peut être utilisé comme stabilisateur pour les matières premières chimiques et comme électrolyte dans l'électrolyse et la galvanoplastie.

Profil d'innocuité :
L'acide érythorbique (E315) est facilement métabolisé et n'affecte pas l'excrétion urinaire de l'acide ascorbique.
L'OMS a fixé une dose journalière acceptable d'acide érythorbique (E315) et de son sel de sodium dans les aliments à 5 mg/kg de poids corporel.
Sous sa forme concentrée, l'acide érythorbique (E315) peut provoquer une irritation de la peau et des yeux.

L'inhalation de poussières ou de vapeurs d'acide érythorbique (E315) peut provoquer une irritation des voies respiratoires.
Une ventilation adéquate doit être assurée dans les zones où il est manipulé sous forme de poudre ou en suspension dans l'air.
Bien que rare, certaines personnes peuvent être sensibles ou allergiques à l'acide érythorbique (E315).

Cela peut entraîner des réactions indésirables lors de l'exposition, telles que des éruptions cutanées ou des problèmes respiratoires.
Il est important que l'acide érythorbique (E315) soit prudent pour les personnes ayant des sensibilités connues et que les fabricants fournissent un étiquetage précis.
L'acide érythorbique (E315) est largement utilisé dans les applications alimentaires en tant qu'antioxydant.

L'acide érythorbique (E315) est également utilisé dans les applications pharmaceutiques orales en tant qu'antioxydant.
L'acide érythorbique (E315) est généralement considéré comme non toxique et non irritant lorsqu'il est utilisé comme excipient.

ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA)
L'acide éthylènediaminetétraacétique (EDTA) est un solide cristallin incolore.
L'acide éthylènediaminetétraacétique (EDTA) est légèrement soluble dans l'eau.


Numéro CAS : 60-00-4 (acide libre)
6381-92-6 (sel disodique dihydraté)
Numéro CE : 200-449-4
Numéro MDL : MFCD00003541
Formule linéaire : (HO2CCH2)2NCH2CH2N(CH2CO2H)2
Formule moléculaire : C10H16N2O8



SYNONYMES :
(Éthylènedinitrilo) Acide tétraacétique, EDTA, Edathamil, éthylènedinitrilotetraacétique, Edathamil, acide éthylènenitrilo), acide tétraacétique, éthylèneditrilotetraacétique Acide EDTA, acide versène, Endrate, Cheelox, nettoyant Gluma, Sequestrene aa, acide séquestre, acide Warkeelate, Komplexon ii, acide tétrine, Quastal Special, Metaquest A, Trilon bw, Titriplex II, acide Hamp-ène, acide Cheelox BF, Trilon BS, Celon A, Celon ATH, Chelest 3A, Questex 4H, acide (éthylènedinitrilo)tétraacétique, Chemcolox 340, acide Universne, EDTA (agent chélateur), Dissolvine E, Vinkeil 100, acide Nullapon B, acide Nullapon bf, acide Nervanaid B, Acide Perma kleer 50, Clewat TAA, Acide éthylènedinitrilotétraacétique, Acide edetique, Acido edetico, Acidum edeticum, Caswell No. 438, Versenate, ICRF 185, Versénate de calcium disodique, Acide éthylènediamine-N, N, N', N'-tétraacétique acide, SEQ 100, YD 30, Disodium EDTA, CCRIS 946, Chelaton 3, Ethylenebis(iminodiacetic acid), HSDB 809, Acide éthylènediaminetétracetique, ETHYLENEDIAMINE TETRAACETIC ACID, Cheladrate, Edetate calcium, Edetate disodium, Acide edetique [INN-French], Acido edetico [DCI-espagnol], Acidum edeticum [DCI-latin], acide acétique, (éthylènedinitrilo)tétra-, EPA Pesticide Chemical Code 039101, Ethylenediaminetetraacetate, Kyselina éthylènediamintetraoctova, Tricon bw, Acid, Edetic, AI3-17181, H4edta, 3, Acide 6-diazaoctanedioïque, 3,6-bis(carboxyméthyl)-, Glycine, N,N'-1,2-éthanediylbis[N-(carboxyméthyl)-, 470462-56-7, EINECS 200-449-4, UNII- 9G34HU7RV0, Édétate, BRN 1716295, Edta disodique, Versène-13C4, 9G34HU7RV0, Édétate disodique, Versène disodique, Endrate disodique, Versénate de sodium, Sel disodique de l'acide édétique, Kyselina éthylènediamintetraoctova [tchèque], Acide acétique, 2,2',2'' ,2'''-(1,2-éthanediyldinitrilo)tétrakis-, Acide éthylènediaminetétracétique [français], édétate disodique dihydraté, DTXSID6022977, Metaquest B, N,N'-1,2-Ethanediylbis(N-(carboxyméthyl)glycine), CHEBI : 42191, acide éthylène diamine tétraacétique, Kiresuto B, Chelaplex III, Diso-Tate, Titriplex III, acide 2-[2-[bis(carboxyméthyl)amino]éthyl-(carboxyméthyl)amino]acétique, Chelaton III, Glycine, N ,N'-1,2-éthanediylbis(N-(carboxyméthyl)-, N,N'-1,2-Éthane diylbis-(N-(carboxyméthyl)glycine), Versène NA, Triplex III, Versénate disodique, Edathamil disodique, Trilon BD, Versène Na2, séquestrène disodique, tétracémate disodique, sel disodique EDTA, MFCD00003541, EDTA, ion(4-), CHEMBL858, Séquestrène sodique 2, 2,2',2'',2'''-(éthane-1 acide ,2-diylbis(azanetriyl))tétraacétique, acide 2-({2-[bis(carboxyméthyl)amino]éthyl}(carboxyméthyl)amino)acétique, {[-(BIS-CARBOXYMETHYL-AMINO)-ETHYL]-CARBOXYMETHYL- ACIDE AMINO}-ACÉTIQUE, sel disodique d'EDTA, acide éthylènediamine tétracétique, DTXCID902977, cristaux Perma Kleer Di, acide (éthylènedinitrilo)tétraacétique, ion (4-), versénate de calcium disodique (TN), acide éthylène-diamine tétraacétique, 2,2 Acide ',2'',2'''-(éthane-1,2-diyldinitrilo)tétraacétique, EC 200-449-4, 4-04-00-02449 (référence du manuel Beilstein), EDT, sel disodique de l'acide éthylènediaminetétraacétique, Edétate de calcium disodique (USP), Sequestrene Na2, Trilon B, Selekton B2, éthylènediaminetétraacétate disodique, acide (éthane-1,2-diyldinitrilo)tétraacétique, ACIDE EDETIQUE (II), ACIDE EDETIQUE [II], Perma kleer 50 cristaux de sel disodique, (éthylènedinitrilo)tétraacétate de disodium, acide éthylènediaminetétraacétique disodique, ACIDE EDETIQUE (MART.), ACIDE EDETIQUE [MART.], CaEDTA, N,N'-1,2-éthanediylbis[N-(carboxyméthyl)glycine], CBC 50152966, DR- 16133, Ethylènediaminetétraacétate, sel disodique, ACIDE EDETIQUE (USP-RS), ACIDE EDETIQUE [USP-RS], ANTICOAGULANT ACIDE ETHYLENEDIAMINE TETRAACETIC, Diacide disodique éthylènediaminetétraacétate, D'Edta disodique, Acide disodique (éthylènedinitrilo)tétraacétique, 2,2',2 '',2'''-(éthane-1,2-diyldinitrilo)tétraacétate, dihydrogène éthylènediaminetétraacétate disodique, acide éthylènediaminetétraacétique, sel disodique, ANTICOAGULANT ACIDE ÉTHYLÈNEDIAMINE TÉTRAACÉTIQUE (EDTA), éthylènediamine disodique-N,N,N',N'- tétraacétate, ACIDE EDETIC (MONOGRAPHIE EP), ACIDE EDETIC [MONOGRAPHIE EP], Dihydrogène disodique (éthylènedinitrilo) tétraacétate, 139-33-3, C10H16N2O8, NSC2760, NCGC00159485-02, 6381-92-6, edta disodique, Edetic, Edetic acide [INN:BAN:NF], acide ((-(bis-carboxyméthyl-amino)-éthyl)-carboxyméthyl-amino)-acétique, acide (éthylènediaminetétraacétique, sel disodique, acide versénique, acide, éthylènediaminetétraacétique, ([2 Acide -(Bis-carboxyméthyl-amino)-éthyl]-carboxyméthyl-amino)-acétique, acide {[2-(Bis-carboxyméthyl-amino)-éthyl]-carboxyméthyl-amino}-acétique, 2-(2-[bis Acide (carboxyméthyl)amino]éthylamino)acétique, édétate de calcium disodique (JAN), acide éthylènediamine tétra-acétique, Techrun DO, acide, éthylèneditrilotétraacétique, EDTA, anhydre, Zonon AO, EDTA, acide libre, EDTA, base libre, ACIDE ACÉTIQUE, (ETHYLENEDINITRILO)TETRA-, SEL DISODIQUE, acide versène (TN), acide éthylènediaminetétraacétique (edta), Caswell No 438, Glycine, N,N'-1,2-éthanediylbis(N-(carboxyméthyl))-, acide éthylènediamine-tétraacétique (EDTA), Acroma DH 700, Spectrum_001018, Acide édétique (NF/INN), EDTA [VANDF], Spectrum2_000003, Spectrum3_000412, Spectrum4_000531, Spectrum5_000955, EDTA [INCI], Acide édétique [BAN:INN], ACIDE EDETIC [INN], EDTA [MI], ACIDE EDETIQUE [HSDB], EDTA, qualité ACS anhydre, acide éthylènediaminetétracétique, BSPBio_001964, acide diaminoéthanetétra-acétique, KBioGR_001161, KBioSS_001498, acide éthylènediaminetétraacétique, MLS001249457, BIDD:ER0565, DivK1c_00 0777, ACIDE EDÉTIQUE [OMS-DD] , SPBio_000005, acide éthylènediamine-tétraacétique, CHEBI:4735, KBio1_000777, KBio2_001498, KBio2_004066, KBio2_006634, KBio3_001184, acide (éthylènediaminetétraacétique, acide éthylènediamine tétraacétique, éthylène di acide amine tétraacétique, NINDS_000777, acide (éthylènedinitrilo) tétraacétique, CS-B1827, HY-Y0682, STR08855, Tox21_202736, BDBM50330325, HB5135, s6350, AKOS001574475, Glycine, (N,N'-1,2-éthanediylbis(N-(carboxyméthyl)-, étiqueté au carbone-14, (éthane- 1,2-diyldinitrilo)tétraacétate, DB00974, CAS-60-00-4, IDI1_000777, USEPA/OPP Code pesticide : 039101, ÉTHYLÈNE BIS (ACIDE IMINODIACÉTIQUE), NCGC00159485-03, NCGC00159485-04, NCGC00260284-01, 688 -55 -1, AC-10615, SMR000058776, SBI-0051360.P003, E0084, Acide éthylènediaminetétraacétique, 2Na (EDTA), Acide éthylènediaminetétraacétique, LR, >=98%, NS00003929, EN300-71613, C00284, D00052, éthylène-N ,N '-biscarboxyméthyl-N,N'-diglycine, acide éthylènediaminetétraacétique, pa, 98,0 %, AB00053468_03, acide éthylènediaminetétraacétique, >=98,0 % (KT), A832566, N,N'-1,2-Ethanediylbis(N-carboxyméthyl)- glycine, N,N'-1,2-Éthanediylbis[N-(carboxyméthyl)]glycine, N,N-1,2-Éthanediylbis[N-(carboxyméthyl)]glycine, Q408032, SR-01000883946, solution de sel de sodium d'acide éthylènediaminetétraacétique , acide éthylènediaminetétraacétique, réactif de culture cellulaire, J-610078, N, N-1,2-éthanediylbis(N-(Carboxyméthyl)Glycine), SR-01000883946-1, acide 3,6-diazooctanedioïque, 3,6-bis(Carboxyméthyl )-, 37C3C5E7-D921-445F-82D6-FEBF1AE5AEF5, acide éthylènediaminetétraacétique, qualité électrophorèse, Glycine, N, N'-1,2-Ethanediylbis-N-(Carboxymethyl), Z2588038976, acide éthylènediaminetétraacétique, BioUltra, >=99,0 % ( KT), acide éthylènediaminetétraacétique, base de métaux traces à 99,995 %, acide éthylènediaminetétraacétique, qualité spéciale SAJ, >=99,0 %, acide éthylènediaminetétraacétique, qualité réactif Vetec(TM), 98 %, [{2-[bis(carboxyméthyl)amino]éthyl} acide (carboxyméthyl)amino]acétique, sel disodique d'edta, décalcifiant cal-ex, solution tampon, pH 10,00, diéthylènediamine tétraacétate de sodium dihydraté, acide éthylènediamine tétraacétique, sel disodique dihydraté, acide éthylènediamine tétraacétique, sel disodique, solution standard, diéthylènediamine de sodium solution étalon de tétraacétate, acide éthylènedinitrilotétraacétique disodique, dihydraté, réactif, acide édétique, N,N'-1,2-éthane diylbis-(N-(carboxyméthyl)glycine), acide diaminoéthanetétra-acétique, glycine, N,N'-1 ,2-éthanediylbis[N-(carboxyméthyl)-, acide acétique, (éthylènedinitrilo)tétra-, acide éthylènediaminetétracétique, Celon A, Celon ATH, Cheelox, acide Cheelox BF, Chemcolox 340, Complexon II, acide 3,6-diazaoctanedioïque, 3 ,6-bis(carboxyméthyl)-, Edathamil, Edta, acide Edta, Endrate, acide éthylènediamine-N,N,N',N'-tétraacétique, acide éthylènedinitrilotétraacétique, acide hamp-ène, Havidote, Komplexon ii, Kyselina éthylènediaminetetraoctova, Metaquest A, acide Nervanaid B, acide Nullapon B, acide Nullapon BF, acide Perma kleer 50, Questex 4H, SEQ 100, Sequestrene AA, acide séquestre, Sequestrol, acide tétrine, Titriplex, Tricon bw, Trilon BW, Versene, acide versène, Vinkeil 100, acide Warkeelate, acide (éthylèneditrilo)tétraacétique, EDTA, base libre, EDTA, acide libre, Trilon BS, acide ([2-(Bis-carboxyméthyl-amino)-éthyl]-carboxyméthyl-amino)-acétique, Titriplex II, YD 30, Quastal Special, Acide acétique, 2,2',2'',2'''-(1,2-éthanediyldinitrilo)tetrakis-, Gluma Cleanser, EDTA (agent chélateur), Chelest 3A, ICRF 185, 2, Acide 2',2'',2'''-(Éthane-1,2-diyldinitrilo)tétraacétique, Dissolvine Z, Acide 2-({2-[bis(carboxyméthyl)amino]éthyl}(carboxyméthyl)amino)acétique, Acide diaminoéthane-tétraacétique, acide édétique, acide éthylènedinitrilo-tétraacétique, versène, EDTA, 2,2'',2'''',2''''''-(éthane-1,2-diylbis(azanetriyl))tétraacétique acide, acide éthylènediaminetétraacétique, BioUltra, anhydre, >=99 % (titrage), Glycine, N,N'-1, {2-éthanediylbis[N-(carboxyméthyl)-,} sel disodique, {[2-(Bis-carboxyméthyl Acide -amino)-éthyl]-carboxyméthyl-amino}-acétique (EDTA), 2-[2-[bis(2-hydroxy-2-oxoéthyl)amino]éthyl-(2-hydroxy-2-oxoéthyl)amino]éthanoïque acide, acide éthylènediaminetétraacétique, anhydre, fluide, Redi-Dri(TM), >=98 %, point d'exclamation inversé éthylènediamine-N,N,N, point d'exclamation inversé N -acide tétraacétique-13C4 (étiquettes | A), Acide éthylènediaminetétraacétique, anhydre, cristallin, BioReagent, adapté à la culture cellulaire, Acide éthylènediaminetétraacétique, anhydre, fluide, poudre, Redi-Dri(TM), réactif ACS, 99,4-100,6 %, InChI=1/C10H16N2O8/c13-7( 14)3-11(4-8(15)16)1-2-12(5-9(17)18)6-10(19)20/h1-6H2,(H,13,14)(H, 15,16)(H,17,18)(H,19,20, N,N′-(Éthane-1,2-diyl)bis[N-(carboxyméthyl)glycine], 2,2′,2′′ Acide ,2''-(Éthane-1,2-diyldinitrilo)tétraacétique, Acide éthylènediaminetétraacétique, Acide diaminoéthane-tétraacétique,



L'acide éthylènediaminetétraacétique (EDTA) est un solide cristallin incolore.
L'acide éthylènediaminetétraacétique (EDTA) est légèrement soluble dans l'eau.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans l'analyse chimique, pour fabriquer des détergents et des produits de nettoyage, et pour de nombreuses autres utilisations.


L'acide éthylènediaminetétraacétique (EDTA) est un acide tétracarboxylique, un dérivé de l'éthylènediamine et un acide polyaminocarboxylique.
L'acide éthylènediaminetétraacétique (EDTA) joue un rôle d'antidote, de géroprotecteur, de chélateur, de chélateur du cuivre et d'anticoagulant.
L'acide éthylènediaminetétraacétique (EDTA) est un acide conjugué d'un EDTA(2-).


L'acide éthylènediaminetétraacétique (EDTA) est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 1 000 tonnes par an.
L'acide éthylènediaminetétraacétique (EDTA) est l'abréviation couramment utilisée pour l'acide (éthylènediaminetétraacétique) (également appelé acide éthylènediaminetétraacétique ou acide édétique).


Le sel disodique de l'acide éthylènediaminetétraacétique (EDTA) est la forme la plus couramment utilisée de cet agent complexant organique polyvalent, qui est utilisé pour la détermination de nombreux ions métalliques soit par titrage direct, soit par titrage inverse.
L'ajustement des conditions de réaction, soit en contrôlant le pH, soit en utilisant des agents masquants, et la sélection de l'indicateur approprié permettent de déterminer une grande variété d'ions métalliques à l'aide de l'acide éthylènediaminetétraacétique (EDTA).


L'acide éthylènediaminetétraacétique (EDTA) possède une structure moléculaire en forme de griffe qui se lie aux métaux lourds et à d'autres toxines.
L'acide éthylènediaminetétraacétique (EDTA), d'après sa propre abréviation, est un acide aminopolycarboxylique de formule [CH2N(CH2CO2H)2]2.
Ce solide blanc insoluble dans l'eau, l'acide éthylènediaminetétraacétique (EDTA), est largement utilisé pour se lier aux ions fer (Fe2+/Fe3+) et calcium (Ca2+), formant des complexes solubles dans l'eau même à pH neutre.


L'acide éthylènediaminetétraacétique (EDTA) est un chélateur de plomb et un anticoagulant.
Le mécanisme d’action de l’acide éthylènediaminetétraacétique (EDTA) est une activité chélatrice du plomb et une activité chélatrice du calcium.
L'effet physiologique de l'acide éthylènediaminetétraacétique (EDTA) se fait par une diminution de l'activité du facteur de coagulation.


L'acide éthylènediaminetétraacétique (EDTA) est un produit naturel présent dans Perilla frutescens, Apis cerana et d'autres organismes pour lesquels des données sont disponibles.
L'acide éthylènediaminetétraacétique (EDTA) est une poudre cristalline blanche, inodore et incolore, avec un point de fusion de 240 °C auquel elle se décompose.
L'acide éthylènediaminetétraacétique (EDTA) est insoluble dans l'eau froide, l'alcool et les solvants organiques généraux, légèrement soluble dans l'eau, soluble dans l'hydroxyde de sodium, le carbonate de sodium et la solution d'ammoniaque, soluble dans l'eau bouillante.


Les sels de métaux alcalins sont solubles dans l'eau.
L'acide éthylènediaminetétraacétique (EDTA) est un agent complexant important.
L'acide éthylènediaminetétraacétique (EDTA) est un composé organique de formule chimique C10H16N2O8 et se présente sous la forme d'une poudre blanche à température et pression normales.


L'acide éthylènediaminetétraacétique (EDTA) est un agent chélateur qui peut se lier au Mg2+, au Ca2+, au Mn2+, au Fe2+ et à d'autres ions métalliques divalents.
Le Mg2+ est souvent utilisé comme inhibiteur des nucléases et des protéases car la plupart des nucléases et certaines protéases nécessitent du Mg2+.
L'acide éthylènediaminetétraacétique (EDTA) est également connu pour inhiber une gamme de métallopeptidases, la méthode d'inhibition se fait via la chélation de l'ion métallique nécessaire à l'activité catalytique.


L'acide éthylènediaminetétraacétique (EDTA) peut également être utilisé pour tester la biodisponibilité des métaux lourds dans les sédiments.
L'acide éthylènediaminetétraacétique (EDTA), sel disodique, dihydraté (Na2EDTA•2H2O), est un chélateur de cations métalliques divalents.
L'acide éthylènediaminetétraacétique (EDTA) convient aux applications de biochimie ou de biologie moléculaire.


L'acide éthylènediaminetétraacétique (EDTA) est une sorte d'agent chélateur de métaux (se lie aux cations métalliques bivalents et trivalents, y compris le calcium).
L'acide éthylènediaminetétraacétique (EDTA) a des activités antibactériennes, anti-inflammatoires, antioxydantes, anti-hypercalcémie et anticoagulantes.
L'acide éthylènediaminetétraacétique (EDTA) est un agent chélateur courant, ce qui signifie qu'il se lie fortement aux ions métalliques pour former des composés stables et solubles dans l'eau.
Cette fonction se prête à des applications généralisées.



UTILISATIONS et APPLICATIONS de l’ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les produits suivants : engrais et régulateurs de pH et produits de traitement de l'eau.
Le rejet dans l'environnement de l'acide éthylènediaminetétraacétique (EDTA) peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les produits suivants : régulateurs de pH et produits de traitement de l'eau.


L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les domaines suivants : exploitation minière, recherche et développement scientifique et services de santé.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé pour la fabrication de : et de produits chimiques.
L'acide éthylènediaminetétraacétique (EDTA) est également utilisé comme anticoagulant pour les échantillons de sang et est utilisé comme traitement du saturnisme.


Le rejet dans l'environnement de l'acide éthylènediaminetétraacétique (EDTA) peut survenir lors d'une utilisation industrielle : comme adjuvant technologique, dans les adjuvants technologiques sur les sites industriels, dans la production d'articles et de substances dans des systèmes fermés avec un rejet minimal.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les produits suivants : les engrais.


D'autres rejets dans l'environnement d'acide éthylènediaminetétraacétique (EDTA) sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur dans des espaces clos. systèmes avec rejet minimal (par exemple liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile) et utilisation en extérieur dans des systèmes fermés avec rejet minimal (par exemple liquides hydrauliques dans la suspension automobile, lubrifiants dans l'huile moteur et liquides de freinage).


Le rejet dans l'environnement de l'acide éthylènediaminetétraacétique (EDTA) peut survenir lors d'une utilisation industrielle : fabrication de la substance et formulation de mélanges.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.


L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, cirages et cires, biocides (par exemple désinfectants, produits antiparasitaires), adhésifs et produits d'étanchéité, mastics, plâtres, pâte à modeler, produits non métalliques. -produits de traitement de surface, produits photochimiques, produits de traitement de l'air, produits de traitement de surface métallique et produits de traitement textile et colorants.


D'autres rejets dans l'environnement d'acide éthylènediaminetétraacétique (EDTA) sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur dans des espaces clos. systèmes avec rejet minimal (par exemple liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile), utilisation en extérieur dans des systèmes fermés avec rejet minimal (par exemple liquides hydrauliques dans la suspension automobile, lubrifiants dans l'huile moteur et liquides de freinage), utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple, matériaux de construction et matériaux de construction en métal, en bois et en plastique), utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, papier et produits en carton, équipements électroniques), utilisation en intérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple libération des tissus, textiles lors du lavage, enlèvement des peintures intérieures) et utilisation en extérieur dans des matériaux à longue durée de vie à taux de libération élevé (par exemple pneus, traités produits en bois, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)).


D'autres rejets dans l'environnement d'acide éthylènediaminetétraacétique (EDTA) sont susceptibles de se produire dans les cas suivants : utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, papier et produits en carton, équipements électroniques), utilisation en intérieur dans des matériaux à longue durée de vie avec un taux de libération élevé (par exemple, libération des tissus, des textiles lors du lavage, enlèvement des peintures intérieures) et utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple, métal, bois). et construction et matériaux de construction en plastique).


L'acide éthylènediaminetétraacétique (EDTA) peut être trouvé dans des articles complexes, sans rejet prévu : véhicules, machines, appareils mécaniques et produits électriques/électroniques (par exemple ordinateurs, appareils photo, lampes, réfrigérateurs, machines à laver) et piles et accumulateurs électriques.
L'acide éthylènediaminetétraacétique (EDTA) est destiné à être libéré par : les matériaux d'emballage des pièces métalliques (libérant des inhibiteurs de graisse/corrosion).


L'acide éthylènediaminetétraacétique (EDTA) peut être trouvé dans les produits dont les matériaux sont à base de : pierre, plâtre, ciment, verre ou céramique (par exemple vaisselle, casseroles/poêles, récipients de stockage de nourriture, matériaux de construction et d'isolation), tissus, textiles et vêtements (par exemple vêtements). , matelas, rideaux ou tapis, jouets textiles), cuir (par exemple gants, chaussures, sacs à main, meubles), métal (par exemple couverts, casseroles, jouets, bijoux), papier (par exemple mouchoirs, produits d'hygiène féminine, couches, livres, magazines, papier peint), le caoutchouc (par exemple les pneus, les chaussures, les jouets), le bois (par exemple les sols, les meubles, les jouets) et le plastique (par exemple les emballages et le stockage des aliments, les jouets, les téléphones portables). L'acide éthylènediaminetétraacétique (EDTA) est destiné à être libéré par les produits parfumés : vêtements, gommes à effacer, jouets, produits en papier et CD.


L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les domaines suivants : agriculture, foresterie et pêche et formulation de mélanges et/ou reconditionnement.
Le rejet dans l'environnement de l'acide éthylènediaminetétraacétique (EDTA) peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels, dans la production d'articles, comme auxiliaire technologique, et de substances dans des systèmes fermés avec un rejet minimal.


D'autres rejets dans l'environnement d'acide éthylènediaminetétraacétique (EDTA) sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur dans des espaces clos. systèmes avec rejet minimal (par exemple liquides de refroidissement dans les réfrigérateurs, radiateurs électriques à base d'huile) et utilisation en extérieur dans des systèmes fermés avec rejet minimal (par exemple liquides hydrauliques dans la suspension automobile, lubrifiants dans l'huile moteur et liquides de freinage).


L'acide éthylènediaminetétraacétique (EDTA) est un agent chélateur (agents chélateurs) qui séquestre une variété de cations polyvalents.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans la fabrication pharmaceutique et comme additif alimentaire.
L'acide éthylènediaminetétraacétique (EDTA) est la forme acide de l'édétate, un agent chélateur aux propriétés anti-hypercalcémiques et anticoagulantes.


L'acide éthylènediaminetétraacétique (EDTA) lie le calcium et les ions de métaux lourds, formant des complexes stables solubles qui sont facilement excrétés par les reins.
Cela entraîne une diminution des taux de calcium sérique.
L'acide éthylènediaminetétraacétique (EDTA) est également utilisé comme anticoagulant pour les échantillons de sang et est utilisé comme traitement du saturnisme.


La thérapie par chélation est un traitement qui implique l'administration intraveineuse (IV) répétée d'une solution chimique d'acide éthylènediaminetétraacétique (EDTA).
L'acide éthylènediaminetétraacétique (EDTA) est utilisé pour traiter l'intoxication aiguë et chronique au plomb en éliminant les toxines (y compris les métaux lourds tels que le plomb, le cadmium et le mercure) de la circulation sanguine.


Le mot « chélate » vient de la racine grecque chele, qui signifie « griffer ».
La Food and Drug Administration (FDA) des États-Unis a approuvé le traitement par chélation à l'acide éthylènediaminetétraacétique (EDTA) comme traitement de l'empoisonnement au plomb et aux métaux lourds.


L'acide éthylènediaminetétraacétique (EDTA) est également utilisé comme traitement d'urgence pour l'hypercalcémie (taux excessifs de calcium) et pour le contrôle des arythmies ventriculaires (rythmes cardiaques anormaux) associées à la toxicité digitalique.
L'acide éthylènediaminetétraacétique (EDTA) est un médicament utilisé dans la gestion et le traitement de la toxicité des métaux lourds.


L’acide éthylènediaminetétraacétique (EDTA) appartient à la classe des médicaments chélateurs.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les textiles et le papier.
Dans l'industrie, l'acide éthylènediaminetétraacétique (EDTA) est principalement utilisé pour séquestrer (lier ou confiner) les ions métalliques en solution aqueuse.


Dans l'industrie textile, l'acide éthylènediaminetétraacétique (EDTA) empêche les impuretés des ions métalliques de modifier les couleurs des produits teints.
Dans l'industrie des pâtes et papiers, l'acide éthylènediaminetétraacétique (EDTA) inhibe la capacité des ions métalliques, en particulier le Mn2+, à catalyser la dismutation du peroxyde d'hydrogène, utilisé dans le blanchiment sans chlore.


Aliments : De la même manière, l'acide éthylènediaminetétraacétique (EDTA) est ajouté à certains aliments comme conservateur ou stabilisant pour empêcher la décoloration catalytique oxydative, qui est catalysée par les ions métalliques.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé contre le saturnisme et la toxicité des métaux lourds.


La thérapie par chélation à l'acide éthylènediaminetétraacétique (EDTA) est le traitement médicalement accepté contre le saturnisme.
Injecté par voie intraveineuse et une fois dans la circulation sanguine, l'acide éthylènediaminetétraacétique (EDTA) piège le plomb et d'autres métaux, formant un composé que l'organisme peut éliminer dans l'urine.


Le processus prend généralement 1 à 3 heures.
Les autres intoxications aux métaux lourds traitées par chélation comprennent le mercure, l'arsenic, l'aluminium, le chrome, le cobalt, le manganèse, le nickel, le sélénium, le zinc, l'étain et le thallium.


Des agents chélateurs autres que l’acide éthylènediaminetétraacétique (EDTA) sont également utilisés pour éliminer plusieurs de ces substances de la circulation sanguine.
L'acide éthylènediaminetétraacétique (EDTA) est ainsi utilisé pour dissoudre le tartre contenant du Fe et du Ca ainsi que pour délivrer des ions fer dans des conditions où ses oxydes sont insolubles.


L'acide éthylènediaminetétraacétique (EDTA) est disponible sous plusieurs sels, notamment l'EDTA disodique, l'édétate de sodium et de calcium et l'EDTA tétrasodique, mais ceux-ci fonctionnent tous de la même manière.
Collyres : L'acide éthylènediaminetétraacétique (EDTA) sert de conservateur (généralement pour renforcer l'action d'un autre conservateur tel que le chlorure de benzalkonium ou le thiomersal) dans les préparations oculaires et les collyres.


Cosmétiques : dans les shampooings, les nettoyants et autres produits de soins personnels, les sels d'acide éthylènediaminetétraacétique (EDTA) sont utilisés comme agent séquestrant pour améliorer leur stabilité dans l'air.
L'acide éthylènediaminetétraacétique (EDTA) est largement utilisé et peut être utilisé pour le traitement de matériaux photographiques couleur, le bain de fixation d'eau de Javel, les auxiliaires de teinture, les auxiliaires de traitement des textiles, les détergents, les stabilisants, le caoutchouc synthétique et les initiateurs de polymérisation.


L'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les formulations agricoles, le blanchiment (pâte), le nettoyage (surface dure), le nettoyage (industriel), le nettoyage (institutionnel), le nettoyage (métal), le nettoyage (offshore), les fluides de forage/achèvement,
Nettoyage industriel, nettoyage offshore, champs pétrolifères, photographie et textile.


L'acide éthylènediaminetétraacétique (EDTA) est principalement utilisé dans l'agriculture, le traitement de l'eau, les industries des pâtes et papiers et également dans la fabrication de nettoyants et de détergents.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé comme agent chélateur pour lier ou capturer des traces de fer, de cuivre, de manganèse, de calcium et d'autres métaux présents naturellement dans de nombreux matériaux.


Ces métaux naturels peuvent provoquer une dégradation chimique, une décoloration, du tartre, une instabilité, un rancissement, des performances de nettoyage inefficaces et d'autres problèmes.
Dans les industries métallurgiques, l'acide éthylènediaminetétraacétique (EDTA) est utilisé pour la préparation des surfaces, le nettoyage des métaux, le placage des métaux et dans les fluides de travail des métaux.


Dans les produits de nettoyage, l'acide éthylènediaminetétraacétique (EDTA) est utilisé pour éliminer le tartre de l'eau dure, le film de savon et le tartre inorganique.
L'acide éthylènediaminetétraacétique (EDTA) est couramment utilisé dans une grande variété de produits et de formulations de nettoyage, notamment les nettoyants pour surfaces dures, les détergents à lessive, les nettoyants bactéricides, les lave-véhicules, etc.


L'acide éthylènediaminetétraacétique (EDTA) trouve de nombreuses utilisations spécialisées dans les laboratoires biomédicaux, notamment en ophtalmologie vétérinaire, comme anticollagénase pour prévenir l'aggravation des ulcères cornéens chez les animaux.
Dans la culture tissulaire, l'acide éthylènediaminetétraacétique (EDTA) est utilisé comme agent chélateur qui se lie au calcium et empêche la jonction des cadhérines entre les cellules, empêchant ainsi l'agglutination des cellules cultivées en suspension liquide ou le détachement des cellules adhérentes pour le passage.


En histopathologie, l'acide éthylènediaminetétraacétique (EDTA) peut être utilisé comme agent décalcifiant permettant de couper des coupes à l'aide d'un microtome une fois l'échantillon de tissu déminéralisé.
L'acide éthylènediaminetétraacétique (EDTA) est également utilisé pour éliminer les matières brutes (métaux corrodés) des barres de combustible dans les réacteurs nucléaires.


L'acide éthylènediaminetétraacétique (EDTA) est une diamine substituée largement utilisée dans les applications domestiques et industrielles.
L'acide éthylènediaminetétraacétique (EDTA) chélate les cations divalents métalliques, tels que le calcium, le magnésium, le zinc, le cuivre et le manganèse, pour former des complexes métal-EDTA.


L'acide éthylènediaminetétraacétique (EDTA) convient aux produits de nettoyage et aux formulations de détergents.
Dans l'industrie du papier et de la pâte à papier, l'acide éthylènediaminetétraacétique (EDTA) réduit les effets néfastes des ions métalliques sur le blanchiment.
En tant qu'agent antibactérien, l'acide éthylènediaminetétraacétique (EDTA) peut éliminer les cations divalents calcium et magnésium dans la membrane externe et provoquer la perte du lipopolysaccharide membranaire, rendant les bactéries sensibles aux bactéricides.


L'acide éthylènediaminetétraacétique libre (EDTA) a un effet néfaste sur la reproduction et le développement des mammifères.
L'acide éthylènediaminetétraacétique (EDTA) peut séquestrer les ions dans les sédiments qui provoquent l'athérosclérose, le cancer et les maladies cardiaques.
L'acide éthylènediaminetétraacétique (EDTA) réduit les réactions des radicaux libres et les processus d'oxydation, ce qui aide à surmonter les dommages à la membrane cellulaire.


L'acide éthylènediaminetétraacétique (EDTA) peut se lier au calcium et réduire le risque de développer une hypercalcémie chez les patients cancéreux.
La méthode de gradient transmembranaire d'acide éthylènediaminetétraacétique (EDTA) facilite l'administration du médicament, améliorant ainsi la rétention du médicament et les effets thérapeutiques et réduisant les niveaux de cytotoxicité.


L'acide éthylènediaminetétraacétique (EDTA) a un large éventail d'utilisations.
L'acide éthylènediaminetétraacétique (EDTA) peut être utilisé comme solution fixatrice de blanchiment pour le traitement de lavage des matériaux sensibles à la couleur, comme aide à la teinture, comme aide au traitement des fibres, comme additif cosmétique, comme anticoagulant sanguin, comme détergent, comme stabilisant et comme initiateur de polymérisation du caoutchouc synthétique.


L'acide éthylènediaminetétraacétique (EDTA) peut former des complexes hydrosolubles stables avec les métaux alcalino-terreux, les éléments des terres rares et les métaux de transition.
Outre le sodium, il existe des sels d'ammonium et divers sels de fer, de magnésium, de calcium, de cuivre, de manganèse, de zinc, de cobalt et d'aluminium, qui ont tous des utilisations différentes.


De plus, l’acide éthylènediaminetétraacétique (EDTA) peut également être utilisé pour permettre l’excrétion rapide de métaux radioactifs nocifs du corps afin de jouer un rôle de détoxification.
L'acide éthylènediaminetétraacétique (EDTA) est également un agent de traitement de l'eau.


L'acide éthylènediaminetétraacétique (EDTA) est également un indicateur important, mais il est utilisé pour titrer des métaux tels que le nickel et le cuivre.
Lorsqu'il est utilisé, l'acide éthylènediaminetétraacétique (EDTA) doit être utilisé avec de l'ammoniac pour jouer le rôle d'indicateur.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé pour l'anticoagulation in vitro du sang.


L'acide éthylènediaminetétraacétique (EDTA) est un additif anticoagulant destiné aux analyses sanguines cliniques.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé pour le prétraitement (anticoagulation) des échantillons de sang lors du prélèvement et des tests cliniques de sang.
L'acide éthylènediaminetétraacétique (EDTA) est hautement soluble et anticoagulant rapide.


L'acide éthylènediaminetétraacétique (EDTA) est principalement utilisé pour lier les ions métalliques dans une solution aqueuse, ce qui rend l'EDTA utile dans une grande variété d'utilisations en tant qu'agent chélateur.
L'acide éthylènediaminetétraacétique (EDTA) est largement utilisé pour dissoudre le calcaire.


Dans les shampooings, nettoyants et autres produits de soins personnels, les sels d’acide éthylènediaminetétraacétique (EDTA) sont utilisés comme stabilisants.
L'acide éthylènediaminetétraacétique (EDTA) est ajouté à certains aliments comme conservateur ou stabilisant pour empêcher la décoloration catalytique oxydative, qui est catalysée par les ions métalliques.


Dans l'industrie des pâtes et papiers, l'acide éthylènediaminetétraacétique (EDTA) inhibe la capacité des ions métalliques, en particulier le Mn2+, à catalyser la dismutation du peroxyde d'hydrogène, utilisé dans le « blanchiment sans chlore ».
L'acide éthylènediaminetétraacétique (EDTA) diminue les dommages oxydatifs catalysés par les ions métalliques sur les protéines et permet le maintien d'un environnement réducteur pendant la purification des protéines.


L'acide éthylènediaminetétraacétique (EDTA) peut soulager la fibrose hépatique.
L'acide éthylènediaminetétraacétique (EDTA) peut être utilisé pour la recherche sur les maladies coronariennes et les maladies du système neural.
L'acide éthylènediaminetétraacétique (EDTA) peut également être utilisé pour supprimer l'inhibition des ions de métaux lourds sur les enzymes.


L'agent chélateur, l'acide éthylènediaminetétraacétique (EDTA), est utilisé dans de nombreux tampons enzymatiques et à des concentrations plus élevées, comme inactivateur d'enzymes.
Utilisations détergentes de l'acide éthylènediaminetétraacétique (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) peut être utilisé comme composant tampon de marquage pour le lavage pendant la lyse cellulaire {155}.


Suppléments : L'acide éthylènediaminetétraacétique (EDTA) est utilisé comme supplément pour le milieu de culture synthétique du liquide tubaire 1 (SOFC1) pour la culture d'embryons.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé comme agent complexant pour de nombreux cations.
L'acide éthylènediaminetétraacétique (EDTA) prévient les impuretés des ions métalliques et est utilisé pour éliminer l'excès de fer du corps.


L'acide éthylènediaminetétraacétique (EDTA) agit comme agent séquestrant dans les produits cosmétiques.
L'acide éthylènediaminetétraacétique (EDTA) est utilisé comme agent complexant pour de nombreux cations.
L'acide éthylènediaminetétraacétique (EDTA) prévient les impuretés des ions métalliques et est utilisé pour éliminer l'excès de fer du corps.


L'acide éthylènediaminetétraacétique (EDTA) agit comme agent séquestrant dans les produits cosmétiques.
Par exemple, l'acide éthylènediaminetétraacétique (EDTA) peut être ajouté comme stabilisant aux aliments ou aux produits cosmétiques afin de séquestrer les ions métalliques qui autrement agiraient comme catalyseurs vers la production de produits nocifs ou indésirables (par exemple décoloration, cancérigènes).


Dans d’autres cas, l’acide éthylènediaminetétraacétique (EDTA) peut améliorer la solubilité de métaux autrement insolubles ; par exemple, dans les applications agricoles, l'EDTA peut améliorer la biodisponibilité du fer pour les plantes.
L'acide éthylènediaminetétraacétique (EDTA) a également été utilisé pour le traitement par chélation, pour traiter l'empoisonnement aux métaux lourds.


Les produits à base d'acide éthylènediaminetétraacétique (EDTA) sont utilisés pour les cheveux, la peau, la chélation, l'endodontie, dans les aliments, les soins de la peau, les shampoings et la dentisterie.
L’acide éthylènediaminetétraacétique (EDTA) est un agent chélateur représentatif.
L'acide éthylènediaminetétraacétique (EDTA) est un agent complexant important.


-Utilisations d'analyse de tri cellulaire de l'acide éthylènediaminetétraacétique (EDTA) :
Premièrement, l’acide éthylènediaminetétraacétique (EDTA) est utilisé en suspension unicellulaire de cellules dendritiques de la rate pour le tri des cellules par billes magnétiques.
Deuxièmement, incubez les cellules EpCAM + et les anticorps marqués FITC pour l’analyse du tri cellulaire.


-Les applications de l'acide éthylènediaminetétraacétique (EDTA) ont été rapportées comme suit :
Utilisations d'agent complexant de l'acide éthylènediaminetétraacétique (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) est un chélateur d'or hydrophile qui convertit les ions métalliques en complexes métalliques cyclisés inactifs.
Par conséquent, l’acide éthylènediaminetétraacétique (EDTA) peut être utilisé dans l’industrie pour résoudre les polluants métalliques.


-Utilisations d'anticoagulants sanguins de l'acide éthylènediaminetétraacétique (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) ne peut pas être absorbé par le tractus gastro-intestinal.
L’injection intraveineuse de sodium EDTA provoque des contractions hypocalcémiques des mains et des pieds.

L'acide éthylènediaminetétraacétique (EDTA) est couramment utilisé pour les diagnostics plasmatiques ou moléculaires et pour la chélation du calcium.
L'acide éthylènediaminetétraacétique (EDTA) peut être utilisé comme anticoagulant dans la numération globulaire et l'analyse de la morphologie cellulaire.


-Les autres applications clés de l'acide éthylènediaminetétraacétique (EDTA) comprennent :
*En photographie comme agent de blanchiment dans le traitement des films photographiques.
*Dans la fabrication du papier, pour maximiser l'efficacité du blanchiment pendant la réduction en pâte, empêcher le retour de la luminosité et protéger l'efficacité du blanchiment.
*Dans Élimination et prévention du tartre - pour nettoyer le calcium et d'autres types de tartre des chaudières, des évaporateurs, des échangeurs de chaleur, des tissus filtrants et des bouilloires à revêtement de verre.
*Traitement de l'eau - pour contrôler la dureté de l'eau et les ions calcium et magnésium formant du tartre et pour empêcher la formation de tartre.


-Applications en laboratoire de l'acide éthylènediaminetétraacétique (EDTA) :
En laboratoire, l'acide éthylènediaminetétraacétique (EDTA) est largement utilisé pour éliminer les ions métalliques : en biochimie et en biologie moléculaire, la déplétion ionique est couramment utilisée pour désactiver les enzymes dépendantes des métaux, soit pour tester leur réactivité, soit pour supprimer les dommages causés à l'ADN, aux protéines. , et les polysaccharides.

L'acide éthylènediaminetétraacétique (EDTA) agit également comme un inhibiteur sélectif contre les enzymes hydrolysant le dNTP (Taq polymérase, dUTPase, MutT), l'arginase hépatique et la peroxydase de raifort indépendamment de la chélation des ions métalliques.

Ces résultats incitent à repenser l’utilisation de l’acide éthylènediaminetétraacétique (EDTA) en tant que piégeur d’ions métalliques biochimiquement inactif dans les expériences enzymatiques.

En chimie analytique, l'acide éthylènediaminetétraacétique (EDTA) est utilisé dans les titrages complexométriques et l'analyse de la dureté de l'eau ou comme agent masquant pour séquestrer les ions métalliques qui interféreraient avec les analyses.


-Utilisations d'adoucisseur d'eau à base d'acide éthylènediaminetétraacétique (EDTA) :
La réduction de la dureté de l'eau dans les applications de blanchisserie et la dissolution du tartre dans les chaudières reposent toutes deux sur l'acide éthylènediaminetétraacétique (EDTA) et des complexants associés pour lier le Ca2+, le Mg2+, ainsi que d'autres ions métalliques.

Une fois liés à l'acide éthylènediaminetétraacétique (EDTA), ces complexes métalliques sont moins susceptibles de former des précipités ou d'interférer avec l'action des savons et des détergents.
Pour des raisons similaires, les solutions de nettoyage contiennent souvent de l'acide éthylènediaminetétraacétique (EDTA).

De la même manière, l'acide éthylènediaminetétraacétique (EDTA) est utilisé dans l'industrie du ciment pour la détermination de la chaux libre et de la magnésie libre dans le ciment et les clinkers.
La solubilisation des ions Fe3+ à un pH proche ou inférieur à un pH proche du neutre peut être réalisée en utilisant de l'acide éthylènediaminetétraacétique (EDTA).

Cette propriété est utile en agriculture, notamment en culture hydroponique. Cependant, étant donné la dépendance au pH de la formation du ligand, l’acide éthylènediaminetétraacétique (EDTA) n’est pas utile pour améliorer la solubilité du fer dans les sols au-dessus de la neutralité.
Sinon, à un pH presque neutre et supérieur, le fer (III) forme des sels insolubles, qui sont moins biodisponibles pour les espèces végétales sensibles.


-Utilisations de gommage de l'acide éthylènediaminetétraacétique (EDTA) :
L'eau [Fe (EDTA)]− est utilisée pour éliminer (« lavage ») le sulfure d'hydrogène des flux de gaz.
Cette conversion est obtenue en oxydant le sulfure d'hydrogène en soufre élémentaire, qui est non volatil :
2 [Fe(EDTA)]− + H2S → 2 [Fe(EDTA)]2− + S + 2 H+

Dans cette application, le centre fer(III) est réduit en son dérivé fer(II), qui peut ensuite être réoxydé par l'air.
De la même manière, les oxydes d'azote sont éliminés des flux gazeux à l'aide de [Fe(EDTA)]2−.
Les propriétés oxydantes du [Fe(EDTA)]− sont également exploitées en photographie, où il est utilisé pour solubiliser les particules d'argent.


-Utilisations d'analyse de l'acide éthylènediaminetétraacétique (EDTA) :
Dans le cadre du diagnostic médical et des tests de fonctionnement des organes (ici, test de la fonction rénale), le complexe de chrome (III) [Cr(EDTA)]− (sous forme de chrome 51 radioactif (51Cr)) est administré par voie intraveineuse et sa filtration dans l'urine est surveillée.

Cette méthode est utile pour évaluer le débit de filtration glomérulaire (DFG) en médecine nucléaire.
L’acide éthylènediaminetétraacétique (EDTA) est largement utilisé dans l’analyse du sang.
L'acide éthylènediaminetétraacétique (EDTA) est un anticoagulant pour les échantillons de sang destinés aux CBC/FBC, où l'EDTA chélate le calcium présent dans l'échantillon de sang, arrêtant le processus de coagulation et préservant la morphologie des cellules sanguines.

Les tubes contenant de l'acide éthylènediaminetétraacétique (EDTA) sont marqués d'un capuchon lavande (violet) ou rose.
L'acide éthylènediaminetétraacétique (EDTA) se trouve également dans les tubes à bouchon beige pour les tests de plomb et peut être utilisé dans les tubes à bouchon bleu royal pour les tests de métaux traces.
L'acide éthylènediaminetétraacétique (EDTA) est un dispersant visqueux et s'est révélé très efficace pour réduire la croissance bactérienne lors de l'implantation de lentilles intraoculaires (LIO).


-Utilisations en médecine alternative de l’acide éthylènediaminetétraacétique (EDTA) :
Certains praticiens alternatifs pensent que l'acide éthylènediaminetétraacétique (EDTA) agit comme un antioxydant, empêchant les radicaux libres de blesser les parois des vaisseaux sanguins, réduisant ainsi l'athérosclérose.
Ces idées ne sont pas étayées par des études scientifiques et semblent contredire certains principes actuellement acceptés.
La FDA américaine ne l'a pas approuvé pour le traitement de l'athérosclérose.


-Utilisations par chromatographie par échange d'ions de l'acide éthylènediaminetétraacétique (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) a été utilisé dans la séparation des métaux lanthanides par chromatographie par échange d'ions.
Mis au point par FH Spedding et al. en 1954, la méthode s'appuie sur l'augmentation constante de la constante de stabilité des complexes de lanthanide acide éthylènediaminetétraacétique (EDTA) avec numéro atomique.

En utilisant des billes de polystyrène sulfoné et du Cu2+ comme ion de retenue, l'acide éthylènediaminetétraacétique (EDTA) fait migrer les lanthanides vers le bas de la colonne de résine tout en se séparant en bandes de lanthanides purs.
Les lanthanides éluent par ordre de numéro atomique décroissant.

En raison du coût de cette méthode, par rapport à l'extraction par solvant à contre-courant, l'échange d'ions est désormais utilisé uniquement pour obtenir les puretés de lanthanides les plus élevées (généralement supérieures à 99,99 %).


-Utilisations médicales de l'acide éthylènediaminetétraacétique (EDTA) :
L'édétate de sodium et de calcium, un dérivé de l'acide éthylènediaminetétraacétique (EDTA), est utilisé pour lier les ions métalliques dans la pratique de la thérapie par chélation, par exemple pour traiter l'empoisonnement au mercure et au plomb.

L'acide éthylènediaminetétraacétique (EDTA) est utilisé de la même manière pour éliminer l'excès de fer du corps.
Cette thérapie est utilisée pour traiter la complication des transfusions sanguines répétées, comme elle serait appliquée pour traiter la thalassémie.


-Utilisations en dentisterie de l'acide éthylènediaminetétraacétique (EDTA) :
Les dentistes et les endodontistes utilisent des solutions d'acide éthylènediaminetétraacétique (EDTA) pour éliminer les débris inorganiques (couche de frottis) et lubrifier les canaux radiculaires en endodontie.

Cette procédure aide à préparer les canaux radiculaires pour l’obturation.
De plus, les solutions d'acide éthylènediaminetétraacétique (EDTA) additionnées d'un tensioactif détendent les calcifications à l'intérieur d'un canal radiculaire et permettent l'instrumentation (mise en forme du canal) et facilitent l'avancement apical d'une lime dans un canal radiculaire serré ou calcifié vers l'apex.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
Les noms chimiques de l’acide éthylènediaminetétraacétique comprennent l’acide éthylènediamine tétraacétique, l’acide (éthylènediaminetétraacétique), l’acide édétique et l’EDTA.
L'EDTA est une poudre blanche, soluble dans une solution d'hydroxyde de sodium, de carbonate de sodium et d'ammoniaque, et dans 160 parties d'eau bouillante, et légèrement soluble dans l'eau froide, insoluble dans l'éthanol et les solvants organiques généraux.
Il peut former des complexes hydrosolubles extrêmement stables avec des métaux alcalins, des éléments de terres rares et des métaux de transition.
L'EDTA se décompose au-dessus de son point de fusion de 240°C.



SOLUBILITÉ DE L'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) est soluble dans l'hydroxyde de sodium, le carbonate de sodium, la solution d'ammoniaque, l'acide et les solvants organiques courants.
L'acide éthylènediaminetétraacétique (EDTA) est légèrement soluble dans l'eau.



PROPRIÉTÉS PHYSIQUES ET CHIMIQUES DE L'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
L'acide éthylènediaminetétraacétique (EDTA) est utilisé en poudre cristalline blanche, inodore, insipide et incolore, point de fusion 250 ℃ (décomposition).
L'acide éthylènediaminetétraacétique (EDTA) est insoluble dans l'éthanol et les solvants organiques généraux, légèrement soluble dans l'eau froide, soluble dans les solutions aqueuses d'hydroxyde de sodium, de carbonate de sodium et d'ammoniac.

L'acide éthylènediaminetétraacétique (EDTA) peut se dissoudre dans plus de 5 % de l'acide inorganique, peut également se dissoudre dans l'ammoniac et 160 parties d'eau bouillante.
Les sels de métaux alcalins de l’acide éthylènediaminetétraacétique (EDTA) sont solubles dans l’eau.



Molarité de l'acide éthylènediaminetétraacétique (EDTA) :
La molarité est mieux utilisée pour exprimer la concentration d'acide éthylènediaminetétraacétique (EDTA), car la réaction implique la complexation d'un ion métallique par une molécule ou un ion d'EDTA, que la forme acide libre de l'EDTA ou l'un de ses sels de sodium les plus solubles soit utilisée.
La réaction générale impliquant le sel disodique est :

EDTA2- + Mn+ → [EDTA-M]+n-2
où M = Ca, Mg, Cd, Mn, Ni, Al, Zn, Bi, Co, Cu ou autre ion métallique

Un indicateur est ajouté qui forme un complexe coloré avec une partie de l'ion métallique étant déterminé.
Lorsque le point final est atteint, tous les ions métalliques libres ont été complexés par l’acide éthylènediaminetétraacétique (EDTA).
Le dernier ajout d’acide éthylènediaminetétraacétique (EDTA) élimine ensuite l’ion métallique de son complexe avec l’indicateur, produisant un changement de couleur.

La force relative du complexe acide éthylènediaminetétraacétique (EDTA)-ion métallique par rapport à celle du complexe indicateur-ion métallique détermine si un titrage direct ou un titrage inverse est applicable.

L'acide éthylènediaminetétraacétique (EDTA) est le plus couramment utilisé pour déterminer la dureté (c'est-à-dire les ions calcium et magnésium) de l'eau, où le pH doit être d'environ 10 et est généralement contrôlé en ajoutant un tampon tel que le tampon de dureté de l'eau.

L'indicateur de dureté de l'eau (Eriochrome Black T), Eriochrome Blue Black R, Calmagite et Murexide sont utilisés pour les déterminations de dureté ou de calcium à l'aide de l'acide éthylènediaminetétraacétique (EDTA).



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
Numéro CAS : 60-00-4
Poids moléculaire : 292,24
Beilstein: 1716295
Numéro CE : 200-449-4
Numéro MDL : MFCD00003541
État physique : Poudre
Couleur blanche
Odeur : Inodore
Point de fusion/point de congélation : Point/intervalle de fusion : 250 °C - déc.
Point d'ébullition initial et plage d'ébullition : Aucune donnée disponible
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : non applicable
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : > 220 °C

pH : 2,5 à 10 g/l à 23 °C
Viscosité:
Viscosité cinématique : Aucune donnée disponible
Viscosité dynamique : Aucune donnée disponible
Hydrosolubilité : 0,4 g/l à 20 °C
Coefficient de partage (n-octanol/eau) : Aucune donnée disponible
Pression de vapeur : Aucune donnée disponible
Densité : 1,46 g/cm³ à 20 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés oxydantes : Aucune
Autres informations de sécurité :
Constante de dissociation : 8,85 - 10,44 à 20 °C
Poids moléculaire : 292,24 g/mol

XLogP3-AA : -5,9
Nombre de donneurs de liaisons hydrogène : 4
Nombre d'accepteurs de liaison hydrogène : 10
Nombre de liaisons rotatives : 11
Masse exacte : 292,09066547 g/mol
Masse monoisotopique : 292,09066547 g/mol
Surface polaire topologique : 156 Å ²
Nombre d'atomes lourds : 20
Frais formels : 0
Complexité : 316
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
N° CAS 60-00-4
CE N° 200-449-4
Formule : (HO2CCH2)2NCH2CH2N(CH2CO2H)2
Poids moléculaire : 292,24
Aspect : solide cristallin blanc.
Densité relative : 0,86 g/cm3
Point de fusion : 220 C (428 F)
Solubilité : Très légèrement soluble dans l’eau froide.
pH (1%) : 2,5
Formule chimique : C10H16N2O8
Masse molaire: 292,244 g•mol⁻¹
Aspect : Cristaux incolores
Densité : 0,860 g cm⁻³ (à 20 °C)
Journal P : -0,836
Acidité (pKa) : 2,0, 2,7, 6,16, 10,26

Thermochimie:
Enthalpie standard de formation (ΔfH ⦵ 298) : -1 765,4 à -1 758,0 kJ mol⁻¹
Enthalpie standard de combustion (ΔcH ⦵ 298) : -4461,7 à -4454,5 kJ mol⁻¹
Numéro CAS : 65501-24-8
Emballage: 500g/bouteille
Aspect : Poudre de cristal blanche
Propriétés chimiques : Inodore, soluble dans l’eau, facile à absorber l’humidité
Poids moléculaire : 442,56
Valeur pH : 7,3 ± 1 (solution aqueuse à 5 %, g/ml)
Solubilité dans l'eau : ≥60 % (g/ml, 25 ℃ )
Période de validité : 3 ans
Conditions de stockage : Sec et scellé à température ambiante.



PREMIERS SECOURS de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Description des premiers secours :
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Supprimez (abattez) les gaz/vapeurs/brouillards avec un jet d'eau pulvérisée.
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre de type P2
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ACIDE ÉTHYLÈNEDIAMINETÉTRAACÉTIQUE (EDTA) :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible


ACIDE ÉTHYLHEXANOÏQUE

L'acide éthylhexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
L'acide éthylhexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.
L'acide éthylhexanoïque est une huile visqueuse incolore.

CAS : 149-57-5
FM : C8H16O2
MW : 144,21
EINECS : 205-743-6

L'acide éthylhexanoïque est fourni sous forme de mélange racémique.
L'acide éthylhexanoïque forme des composés avec des cations métalliques qui ont une stœchiométrie sous forme d'acétates métalliques.
Ces complexes d'éthylhexanoate sont utilisés en synthèse chimique organique et industrielle.
Ils fonctionnent comme catalyseurs dans les polymérisations ainsi que pour les réactions d'oxydation en tant qu'« agents de séchage d'huile ».
Ils sont hautement solubles dans les solvants non polaires.
Ces complexes métalliques sont souvent décrits comme des sels.
Ce ne sont cependant pas des complexes de coordination ioniques mais de charge neutre.
Leurs structures s'apparentent aux acétates correspondants.

L'acide éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide éthylhexanoïque brûle, mais l'acide 2-éthylhexanoïque peut nécessiter un certain effort pour s'enflammer. L'acide éthylhexanoïque est légèrement soluble dans l'eau.
L'acide éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide éthylhexanoïque est un acide gras à chaîne ramifiée.

L'acide éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide éthylhexanoïque brûle, mais l'acide 2-éthylhexanoïque peut nécessiter un certain effort pour s'enflammer. L'acide éthylhexanoïque est légèrement soluble dans l'eau.
L'acide éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.
L'acide éthylhexanoïque est un liquide incolore à jaune clair avec une légère odeur.
L'acide éthylhexanoïque brûle, même s'il faudra peut-être un certain effort pour s'enflammer.
L'acide éthylhexanoïque est légèrement soluble dans l'eau.
L'acide éthylhexanoïque est corrosif pour les métaux et les tissus.
L'acide éthylhexanoïque est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.

L'acide éthylhexanoïque, également appelé 2-EHA, est un composé organique couramment utilisé, principalement pour fabriquer des sous-produits métalliques lipophiles pouvant se dissoudre dans des solvants organiques non ioniques.
L'acide éthylhexanoïque est un acide carboxylique de formule C8H16O2 avec un point d'ébullition généralement élevé et une odeur douce.

L'acide éthylhexanoïque est une huile visqueuse et incolore avec une classe carboxylique présente sur une chaîne carbonée C8 et n'est pas miscible dans l'eau.
L'acide éthylhexanoïque peut être utilisé comme substitut à l'acide naphténique dans certaines applications.
Industriellement, l'acide éthylhexanoïque est fabriqué à partir de propylène, souvent généré à partir de combustibles fossiles et d'autres sources renouvelables.
En d’autres termes, l’acide éthylhexanoïque peut être fabriqué plus efficacement que l’acide naphténique.

L'acide éthylhexanoïque produit des composés métalliques qui subissent une stœchiométrie sous forme d'acétates métalliques.
Dans la plupart des cas, les dérivés de l’acide éthylhexanoïque sont utilisés dans des applications chimiques industrielles et organiques.
Les complexes d'hexanoate d'éthyle servent également de catalyseurs dans les réactions d'oxydation et de polymérisation (comme agents de séchage d'huile).
En tant qu'intermédiaire chimique polyvalent, l'acide éthylhexanoïque a de multiples applications, dont les suivantes.
L’acide éthylhexanoïque est un composé organique liquide incolore à jaune clair.
L'acide éthylhexanoïque est largement utilisé dans la préparation de dérivés métalliques solubles dans les solvants organiques non polaires.
L'acide carboxylique hautement toxique et combustible est utilisé pour fabriquer des séchoirs à peinture et des plastifiants.

Le composé organique liquide a une légère odeur, est très corrosif pour les métaux et les tissus et combustible, mais difficile à enflammer.
L'acide éthylhexanoïque est utilisé dans la fabrication d'adhésifs et de produits chimiques d'étanchéité, d'inhibiteurs de corrosion et d'agents antitartre, d'intermédiaires, de lubrifiants et d'additifs pour lubrifiants, d'additifs pour peintures et revêtements et de régulateurs de processus.

L'acide éthylhexanoïque est un agent augmentant la viscosité utilisé dans la production de polymères à haute viscosité.
L'acide éthylhexanoïque est un sel carboxylate d'acide éthylhexanoïque et de zinc.
La réaction de l'éthylhexane avec l'oxyde de zirconium produit un liquide visqueux avec une forte activité de polymérisation cationique.
L'acide éthylhexanoïque réagit avec l'éther diphénylique et les hydrocarbures aromatiques pour former des produits solides.
La réaction avec le stéarate de calcium, un ester du glycérol, entraîne la formation de particules insolubles dans l'eau mais solubles dans les solvants organiques.
L'acide éthylhexanoïque réagit également avec l'éthylène diamine pour former du myristate de méthyle, pour lequel des données cinétiques sont disponibles pour l'acide éthylhexanoïque.

Propriétés chimiques de l'acide éthylhexanoïque
Point de fusion : -59 °C
Point d'ébullition : 228 °C(lit.)
Densité : 0,906
Densité de vapeur : 4,98 (vs air)
Pression de vapeur : <0,01 mm Hg (20 °C)
Indice de réfraction : n20/D 1,425 (lit.)
Fp : 230 °F
Température de stockage : Conserver en dessous de +30°C.
Solubilité : 1,4 g/l
Forme : Liquide
Pka : pK1 : 4,895 (25 °C)
Couleur: Clair
PH : 3 (1,4 g/l, H2O, 20 ℃)
Odeur : Légère odeur
Plage de pH : 3 à 1,4 g/l à 20 °C
Limite explosive : 1,04 %, 135 °F
Solubilité dans l'eau : 2 g/L (20 ºC)
Numéro de référence : 1750468
Limites d'exposition ACGIH : TWA 5 mg/m3
Stabilité : Stable. Combustible. Incompatible avec les agents oxydants forts, les agents réducteurs, les bases.
InChIKey : OBETXYAYXDNJHR-UHFFFAOYSA-N
LogP : 2,7 à 25℃
Référence de la base de données CAS : 149-57-5 (référence de la base de données CAS)
Référence chimique NIST : Acide éthylhexanoïque (149-57-5)
Système d'enregistrement des substances de l'EPA : Acide éthylhexanoïque (149-57-5)

Les usages
Siccatifs pour peintures et vernis (sels métalliques).
Les éthylhexoates de métaux légers sont utilisés pour convertir certaines huiles minérales en graisses.
Les esters de l'acide éthylhexanoïque sont utilisés comme plastifiants.
L'acide éthylhexanoïque est utilisé dans la préparation de dérivés métalliques, qui agissent comme catalyseur dans les réactions de polymérisation.
Par exemple, l’acide éthylhexanoïque d’étain est utilisé dans la fabrication de l’acide poly(lactique-co-glycolique).
L'acide éthylhexanoïque est également utilisé comme stabilisant pour les chlorures de polyvinyle.
L'acide éthylhexanoïque est également impliqué dans l'extraction par solvant et la granulation des colorants.
De plus, l'acide éthylhexanoïque est utilisé pour préparer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.
De plus, l’acide éthylhexanoïque sert de catalyseur pour le moussage du polyuréthane.

L'acide éthylhexanoïque peut être utilisé :
En tant que réactif dans l'estérification, l'alcynylation décarboxylative et la préparation d'alkylcoumarines via des réactions de couplage décarboxylatives.
Dans le milieu organocatalytique pour la préparation de diverses 3,4-dihydropyrimidin-2(1H)-ones/thiones par réaction de Biginelli.

Automobile
L'acide éthylhexanoïque est utilisé pour produire des inhibiteurs de corrosion pour les lubrifiants et les liquides de refroidissement automobiles.
L'acide éthylhexanoïque sert également de produit de préservation du bois et fabrique des additifs lubrifiants ainsi que des lubrifiants synthétiques.
L'acide éthylhexanoïque est également utilisé dans la production de stabilisants thermiques pour PVC, de plastifiants pour films PVB, de savons métalliques pour siccatifs de peinture et d'autres produits chimiques.

Lubrifiants
L'acide éthylhexanoïque est couramment utilisé dans les esters des plastifiants en film de polyvinylbutyral (PVB) et comme matière première pour les polyesters appliqués dans les huiles synthétiques.
Les sels métalliques de l’acide éthylhexanoïque sont utilisés pour préparer des additifs pour lubrifiants synthétiques utilisés dans diverses applications de lubrifiants industriels.

Revêtements
L'acide éthylhexanoïque est largement utilisé dans les applications de revêtement pour améliorer les performances et la résistance.
L'acide éthylhexanoïque produit des résines alkydes qui aident à améliorer la résistance au jaunissement mieux que les acides gras ordinaires.
L'acide éthylhexanoïque est idéal pour la cuisson des émaux et des revêtements à 2 composants.
L'acide éthylhexanoïque peut également être utilisé dans d'autres applications, notamment comme catalyseur pour le polyuréthane, les produits de préservation du bois et les produits pharmaceutiques.

Produits de beauté
Les produits chimiques contenus dans l’acide éthylhexanoïque auraient un usage cosmétique pour produire des émollients et des revitalisants pour la peau.
L'acide éthylhexanoïque est largement utilisé dans les produits de soins capillaires, les crèmes pour les mains, les crèmes pour le visage, les lotions pour le corps et les produits de maquillage comme le fond de teint, le correcteur et les produits de soins capillaires.

Plastiques
L'acide éthylhexanoïque est également utilisé dans la fabrication de stabilisants en polychlorure de vinyle (PVC) et de plastifiants en polyvinylbutyral (PVB) sous forme de sels métalliques.
L'acide éthylhexanoïque réagit avec des composants métalliques comme le manganèse et le cobalt pour produire des dérivés de sels métalliques.

Production
L'acide éthylhexanoïque est produit industriellement à partir de propylène, qui est hydroformylé pour donner du butyraldéhyde.
La condensation aldolique de l'aldéhyde donne de l'acide éthylhexanoïque, qui est hydrogéné en 2-éthylhexanal.
L'oxydation de cet aldéhyde donne l'acide carboxylique.

Profil de réactivité
L'acide éthylhexanoïque est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.
Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques contenant six atomes de carbone ou moins sont librement ou modérément solubles dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l’eau.

L'acide carboxylique soluble se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.
Le pH des solutions d'acides carboxyliques est donc inférieur à 7,0.
De nombreux acides carboxyliques insolubles réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide éthylhexanoïque pour corroder ou dissoudre les pièces et les conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.
Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Des gaz et de la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.
Les acides carboxyliques, notamment en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais néanmoins de la chaleur.
Comme d’autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants puissants et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.
Une grande variété de produits est possible.
Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme les autres acides, ils catalysent souvent (augmentent la vitesse) des réactions chimiques.

Synonymes
ACIDE 2-ÉTHYLHEXANOÏQUE
149-57-5
Acide 2-éthylcaproïque
Acide hexanoïque, 2-éthyl-
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 3-heptanecarboxylique
Acide éthylhexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthyl hexanoïque
Acide alpha-éthylcaproïque
2-éthylhexansaure
Acide 2-éthyl-hexanoïque
125804-07-1
Acide éthylhexanoïque, 2-
2 ACIDE ÉTHYLHEXANOÏQUE
CCRIS 3348
HSDB 5649
acide alpha-éthylcaproïque
Kyselina 2-éthylkapronova [tchèque]
NSC 8881
Kyselina 2-éthylkapronova
EINECS205-743-6
Acide .alpha.-éthylcaproïque
Acide 2-éthyl-1-hexanoïque
UNII-01MU2J7VVZ
Kyselina heptan-3-karboxylova [tchèque]
BRN1750468
01MU2J7VVZ
Kyselina heptan-3-karboxylova
AI3-01371
ACIDE 2-ÉTHYLHEXOIQUE,AR
61788-37-2
DTXSID9025293
CHEBI:89058
Acide hexanoïque, 2-éthyl-, (-)-
NSC-8881
EINECS262-971-9
acide 2-éthylhexanoïque
CE 205-743-6
DTXCID805293
Acide 2-éthylhexanoïque, >=99 %
C8H16O2.1/2Cu
Acide 2-éthylhexanoïque, étalon analytique
CAS-149-57-5
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
Acide hexanoïque, 2-éthyl-, sel de cuivre (2++)
MFCD00002675
Acide 2-éthylcapronique
Acide 2-éthyl-hexonique
Acide alpha-éthylhexanoïque
EHO (code CHRIS)
Acide .alpha.-éthylhexanoïque
SCHEMBL25800
Acide 2-éthylhexanoïque, 99 %
MLS002415695
Acide 2-éthylhexanoïque, inhalable
CHEMBL1162485
WLN : QVY4 et 2
NSC8881
HMS2267F21
CS-CY-00011
STR05759
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Tox21_201406
Tox21_300108
LMFA01020087
LS-869
AKOS009031416
AT29893
CS-W016381
SB44987
SB44994
Ester 2-éthyl-tridécylique de l'acide hexanoïque
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
SMR001252268
Ester 2-éthyl-, tridécylique de l'acide hexanoïque
E0120
FT-0612273
FT-0654390
EN300-20410
Q209384
Acide éthylhexanoïque, 2- ; (Acide butyléthylacétique)
W-109079
Azilsartan K Médoxomil Impureté-7 (impuretés 2-EHA)
F0001-0703
Z104478072
18FEB650-7573-4EA0-B0CD-9D8BED766547
Acide 2-éthylhexanoïque, étalon secondaire pharmaceutique ; Matériel de référence certifié
ACIDE ÉTHYLHEXANOÏQUE
L'acide éthylhexanoïque est un liquide incolore à jaune clair avec une odeur piquante.
De plus, l'acide éthylhexanoïque est couramment utilisé dans la production de divers produits chimiques, notamment des plastifiants et des lubrifiants.
L'acide éthylhexanoïque peut être nocif s'il est ingéré ou inhalé, et des précautions de sécurité appropriées doivent être prises lors de sa manipulation.


Numéro CAS : 2396-84-1
Numéro CE : 205-743-6
Formule chimique : C8H16O2
Masse molaire : 144,214 g·mol−1
Aspect : Liquide incolore



APPLICATIONS


L'acide éthylhexanoïque est utilisé comme intermédiaire chimique pour de nombreux produits.
De plus, l'acide éthylhexanoïque est utilisé dans les résines alkydes.

L'acide éthylhexanoïque est utilisé au milieu des années 1980 comme agent de préservation du bois pour remplacer les chlorophénols.
De plus, l'acide éthylhexanoïque est utilisé pour fabriquer des plastifiants, des lubrifiants, des détergents, des aides à la flottation, des inhibiteurs de corrosion et des résines alkydes.

L'acide éthylhexanoïque est également utilisé comme co-solvant et antimousse dans les pesticides, comme ingrédient actif dans le produit de préservation du bois Sinesto B (non utilisé aux États-Unis), dans les séchoirs à peinture, les stabilisants thermiques pour le PVC et comme catalyseur pour la mousse de polyuréthane, extraction par solvant et granulation de colorant.
De plus, l'acide éthylhexanoïque ne se trouve dans aucun produit pesticide enregistré aux États-Unis.


Utilisations industrielles de l'acide éthylhexanoïque :

Agents anti-adhésifs
Un inhibiteur de corrosion
Inhibiteurs de corrosion et agents antitartre
Intermédiaire
Intermédiaires
Lubrifiants et additifs pour lubrifiants
Agent lubrifiant
Non connu ou raisonnablement vérifiable
Autre
Autre précisez)
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Régulateurs de processus
Auxiliaires technologiques, non répertoriés ailleurs
Propulseurs et agents gonflants
Solvant


L'acide éthylhexanoïque est utilisé dans la production de plastifiants pour améliorer la flexibilité et la durabilité des plastiques.
De plus, l'acide éthylhexanoïque est un élément constitutif de la production de revêtements, tels que les résines et les polyuréthanes.

L'acide éthylhexanoïque est utilisé dans les fluides de travail des métaux pour refroidir et lubrifier les machines de travail des métaux.
De plus, l'acide éthylhexanoïque est utilisé dans la production de lubrifiants pour réduire la friction et l'usure entre deux surfaces.
L'acide éthylhexanoïque est une matière première dans la production de produits pharmaceutiques, tels que les antibiotiques et les anti-inflammatoires.

L'acide éthylhexanoïque est utilisé dans la production de divers intermédiaires chimiques pour un traitement ultérieur.
En outre, l'acide éthylhexanoïque est utilisé dans la production de stabilisants thermiques pour les applications PVC.

L'acide éthylhexanoïque est utilisé dans la production d'additifs pour carburants afin d'améliorer le rendement énergétique et de réduire les émissions.
De plus, l'acide éthylhexanoïque est utilisé comme précurseur dans la synthèse de divers catalyseurs pour accélérer les réactions chimiques.

L'acide éthylhexanoïque est utilisé comme solvant dans la production de divers produits chimiques et matériaux.
De plus, l'acide éthylhexanoïque est utilisé dans la production de produits agrochimiques, tels que des herbicides, des fongicides et des insecticides, pour protéger les cultures contre les ravageurs et les maladies.


Voici quelques applications supplémentaires de l'acide éthylhexanoïque :

Séchoirs à peinture :

L'acide éthylhexanoïque est utilisé comme siccatif pour peinture, ce qui accélère le processus de séchage des peintures et des vernis.

Adhésifs :

L'acide éthylhexanoïque est utilisé comme matière première dans la production de divers adhésifs, tels que les adhésifs sensibles à la pression et les adhésifs thermofusibles.

Inhibiteurs de corrosion:

L'acide éthylhexanoïque est utilisé comme composant dans la formulation d'inhibiteurs de corrosion, qui protègent les métaux de la corrosion.

Additifs de résine :

L'acide éthylhexanoïque est utilisé comme additif de résine dans la production de résines polyester et alkyde, qui trouvent une utilisation dans les revêtements, les adhésifs et les plastiques.

Tensioactifs :

L'acide éthylhexanoïque est utilisé dans la production de tensioactifs, qui sont utilisés pour modifier la tension superficielle des liquides, améliorant ainsi leurs propriétés de mouillage et d'étalement.

Parfums :

L'acide éthylhexanoïque est utilisé comme ingrédient de parfum dans la production de parfums et d'autres produits parfumés.

Auxiliaires textiles :

L'acide éthylhexanoïque est utilisé dans la production d'auxiliaires textiles, qui sont utilisés pour améliorer les performances des produits textiles, tels que les teintures, les finitions et les revêtements.

Sels métalliques :

L'acide éthylhexanoïque est utilisé pour produire des sels métalliques, qui trouvent une utilisation dans diverses applications, telles que les encres, les pigments et les catalyseurs.

Additifs caoutchouc :

L'acide éthylhexanoïque est utilisé comme additif de caoutchouc dans la production de caoutchoucs synthétiques, qui trouvent une utilisation dans divers produits, tels que les pneus, les tuyaux et les joints.

Plastifiants :

L'acide éthylhexanoïque est un composant clé dans la production de plastifiants sans phtalates, qui sont utilisés dans la production de matériaux d'emballage alimentaire et de dispositifs médicaux.

Revêtements :

L'acide éthylhexanoïque est utilisé comme réactif dans la production de résines acryliques, qui trouvent une utilisation dans la production de peintures, de revêtements et d'adhésifs.

Fluides pour le travail des métaux :

L'acide éthylhexanoïque est un composant courant dans les fluides de travail des métaux en raison de ses excellentes propriétés lubrifiantes et de refroidissement.

Lubrifiants :

L'acide éthylhexanoïque est utilisé comme désactivateur de métaux dans les lubrifiants pour empêcher l'oxydation et améliorer leurs performances à haute température.

Médicaments:

L'acide éthylhexanoïque est utilisé comme élément de base chiral dans la synthèse de divers médicaments, tels que le médicament anti-inflammatoire Naproxen.

Intermédiaires chimiques :

L'acide éthylhexanoïque est utilisé comme intermédiaire clé dans la synthèse de divers produits chimiques, tels que les parfums, les arômes et les tensioactifs.

Stabilisateurs thermiques :

L'acide éthylhexanoïque est utilisé dans la production de stabilisants thermiques pour les applications PVC afin d'empêcher la dégradation et de prolonger la durée de vie du matériau.

Additifs carburant :

L'acide éthylhexanoïque est utilisé comme composant dans la production d'additifs pour carburant, tels que les boosters d'octane, qui améliorent les performances et l'efficacité des moteurs à essence.

Catalyseurs :

L'acide éthylhexanoïque est utilisé comme précurseur dans la synthèse de divers catalyseurs, tels que les carboxylates d'étain et de zinc, qui trouvent une utilisation dans diverses réactions chimiques.

Solvants :

L'acide éthylhexanoïque est utilisé comme solvant dans la production de divers produits chimiques, tels que les résines, les revêtements et les adhésifs.

Produits agrochimiques :

L'acide éthylhexanoïque est utilisé comme composant clé dans la production d'herbicides, de fongicides et d'insecticides pour protéger les cultures contre les ravageurs et les maladies.


Dans l'ensemble, l'acide éthylhexanoïque est un produit chimique polyvalent qui trouve une utilisation dans diverses applications dans différentes industries, grâce à ses propriétés uniques et sa polyvalence.


L'acide éthylhexanoïque n'est pas couramment utilisé dans les produits de consommation, car il s'agit principalement d'un produit chimique industriel avec une large gamme d'applications industrielles.
Cependant, l'acide éthylhexanoïque peut être utilisé comme matière première dans la production de certains produits de consommation, tels que les revêtements, les adhésifs et les plastiques.

De plus, certaines applications de niche, telles que l'utilisation de l'acide éthylhexanoïque en tant que composant de certains parfums, peuvent avoir des utilisations grand public.
Dans l'ensemble, l'utilisation de l'acide éthylhexanoïque est plus courante dans les milieux industriels et commerciaux que dans les produits de consommation.


L'acide éthylhexanoïque a diverses applications industrielles, telles que :

Liquide de refroidissement dans l'automobile
Lubrifiant synthétique
Agent mouillant
Co-solvant
Séchage des peintures
Agent anti-mousse dans les pesticides


L'acide éthylhexanoïque est utilisé comme lubrifiant synthétique en raison de sa capacité à réduire la friction et l'usure entre les pièces mobiles.
De plus, l'acide éthylhexanoïque est couramment utilisé comme agent de séchage dans les peintures et les revêtements pour accélérer le processus de séchage et améliorer la formation du film.

En tant que liquide de refroidissement dans les applications automobiles, l'acide éthylhexanoïque aide à dissiper la chaleur et à prévenir les dommages au moteur dus à la surchauffe.
L'acide éthylhexanoïque est utilisé comme agent antimousse dans les pesticides pour réduire la formation de mousse lors de l'application et améliorer l'efficacité.

Dans le travail des métaux, l'acide éthylhexanoïque est utilisé comme inhibiteur de corrosion pour protéger contre la rouille et d'autres formes de corrosion.
L'acide éthylhexanoïque est utilisé comme agent mouillant pour réduire la tension superficielle des liquides et améliorer leur capacité à s'étaler et à pénétrer les surfaces.



DESCRIPTION


L'acide éthylhexanoïque est le composé organique de formule CH3(CH2)3CH(C2H5)CO2H.
De plus, l'acide éthylhexanoïque est un acide carboxylique largement utilisé pour préparer des dérivés métalliques lipophiles solubles dans les solvants organiques non polaires.

L'acide éthylhexanoïque est une huile visqueuse incolore.
De plus, l'acide éthylhexanoïque est fourni sous forme de mélange racémique.
L'acide 2-éthylhexanoïque est un acide gras à chaîne ramifiée.

L'acide éthylhexanoïque est un liquide incolore avec une odeur piquante.
Ainsi, l'acide éthylhexanoïque est soluble dans l'alcool, l'acétone et l'éther.

L'acide éthylhexanoïque est un acide carboxylique de formule chimique C8H16O2.
De plus, l'acide éthylhexanoïque est un liquide incolore à odeur rance et soluble dans l'eau, l'éthanol et l'éther.
Il est également connu sous le nom d'acide 2-éthylhexanoïque ou 2-EHA.

L'acide éthylhexanoïque est principalement utilisé comme matière première pour la production de divers produits chimiques et matériaux tels que les lubrifiants synthétiques, les plastifiants et les revêtements.
De plus, l'acide éthylhexanoïque a également des applications dans les industries pharmaceutique et alimentaire.

L'acide éthylhexanoïque est un produit naturel trouvé dans Vitis vinifera et Artemisia arborescens avec des données disponibles.
De plus, l'acide éthylhexanoïque est un liquide incolore avec une odeur piquante.
L'acide éthylhexanoïque est un acide carboxylique qui appartient à la famille des acides gras.

L'acide éthylhexanoïque est soluble dans l'eau, l'alcool et l'éther.
De plus, l'acide éthylhexanoïque a une large gamme d'applications industrielles.

L'acide éthylhexanoïque est utilisé comme lubrifiant synthétique et comme agent de séchage dans les peintures.
De plus, l'acide éthylhexanoïque est également utilisé comme liquide de refroidissement dans les applications automobiles et comme agent anti-mousse dans les pesticides.

L'acide éthylhexanoïque est produit par oxydation de l'octanol ou par hydroformylation du butadiène.
De plus, l'acide éthylhexanoïque se trouve également naturellement dans la sueur humaine et dans le lait maternel.



PROPRIÉTÉS


Poids moléculaire : 144,21
XLogP3 : 2,6
Nombre de donneurs d'obligations hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 5
Masse exacte : 144.115029749
Masse monoisotopique : 144,115029749
Surface polaire topologique : 37,3 Å ²
Nombre d'atomes lourds : 10
Charge formelle : 0
Complexité : 99,4
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui
Point d'ébullition : 226 - 229 °C (1013 hPa)
Densité : 0,91 g/cm3 (20 °C)
Limite d'explosivité : 0,9 - 6,7 %(V)
Point d'éclair : 114 °C
Température d'inflammation : 310 °C
Point de fusion : -59 °C
Valeur pH : 3 (1,4 g/l, H ₂ O, 20 °C)
Pression de vapeur : <0,01 hPa (20 °C)
Solubilité : 1,4 g/l



PREMIERS SECOURS


Contact avec la peau:

Si l'acide éthylhexanoïque entre en contact avec la peau, retirez immédiatement tout vêtement contaminé et lavez soigneusement la zone affectée avec de l'eau et du savon pendant au moins 15 minutes.
Consulter un médecin si l'irritation cutanée, la rougeur ou la douleur persistent.


Lentilles de contact:

Si l'acide éthylhexanoïque entre en contact avec les yeux, rincez l'œil affecté avec de l'eau pendant au moins 15 minutes, en soulevant occasionnellement les paupières supérieures et inférieures.
Consultez immédiatement un médecin.


Inhalation:

Si l'acide éthylhexanoïque est inhalé, amenez immédiatement la personne affectée à l'air frais.
Si la personne ne respire pas, pratiquer la respiration artificielle.
Consulter un médecin si la personne éprouve des difficultés à respirer, à tousser ou à avoir une respiration sifflante.


Ingestion:

En cas d'ingestion d'acide éthylhexanoïque, ne pas faire vomir.
Rincer la bouche avec de l'eau et boire beaucoup d'eau pour diluer l'acide.
Consultez immédiatement un médecin.


Équipement de protection individuelle:

Portez toujours un équipement de protection individuelle lors de la manipulation de l'acide éthylhexanoïque, y compris des gants, des lunettes et une blouse de laboratoire ou des vêtements de protection.


Intervention en cas de déversement :

En cas de déversement, isoler la zone et éloigner le personnel non autorisé.
Porter un équipement de protection individuelle et contenir le déversement avec un matériau absorbant.
Recueillir le matériel contaminé et l'éliminer conformément aux réglementations locales.


Il est important de noter que l'acide éthylhexanoïque peut provoquer une grave irritation de la peau et des yeux et peut être nocif s'il est inhalé ou ingéré.
Consulter immédiatement un médecin en cas d'exposition.



MANIPULATION ET STOCKAGE


L'acide éthylhexanoïque doit être stocké dans un endroit frais, sec et bien ventilé, à l'abri de la lumière directe du soleil et des sources de chaleur ou d'inflammation.
De plus, l'acide éthylhexanoïque doit être conservé dans un récipient hermétiquement fermé et manipulé uniquement sous une hotte ou avec un équipement de protection individuelle approprié.
L'acide éthylhexanoïque doit être stocké séparément des matériaux incompatibles tels que les oxydants puissants, les acides et les bases.

Les conteneurs d'acide éthylhexanoïque doivent être étiquetés avec les avertissements de danger et les instructions de manipulation appropriés.
Lors de la manipulation de l'acide éthylhexanoïque, un équipement de protection individuelle approprié doit être porté, y compris des gants, des lunettes de sécurité et une blouse ou un tablier de laboratoire.

En cas de contact avec la peau ou les yeux, rincer immédiatement la zone touchée à grande eau pendant au moins 15 minutes et consulter un médecin.
En cas d'ingestion d'acide éthylhexanoïque, ne pas faire vomir et consulter immédiatement un médecin.

Les déversements d'acide éthylhexanoïque doivent être nettoyés immédiatement à l'aide de matériaux absorbants et d'un équipement de protection approprié.
L'élimination de l'acide éthylhexanoïque doit être effectuée conformément aux réglementations locales, nationales et fédérales et ne doit pas être jetée dans les ordures ménagères ou dans les égouts.

L'acide éthylhexanoïque doit être tenu à l'écart des enfants et du personnel non autorisé, et ne doit être manipulé que par des professionnels formés qui connaissent les risques et les procédures de manipulation appropriées.



SYNONYMES


ACIDE 2-ÉTHYLHEXANOÏQUE
149-57-5
Acide 2-éthylcaproïque
Acide hexanoïque, 2-éthyl-
Acide éthylhexanoïque
Acide éthylhexoïque
Acide 2-éthylhexoïque
Acide butyléthylacétique
Acide 2-butylbutanoïque
Acide 3-heptanecarboxylique
Acide éthylhexanoïque
Acide 2-éthyl-hexoïque
Acide 2-éthylhexanoïque
Acide alpha-éthylcaproïque
Acide 2-éthyl-hexanoïque
Acide éthylhexanoïque, 2-
2 ACIDE ÉTHYL-HEXANOÏQUE
acide alpha-éthyl caproïque
Acide .alpha.-éthylcaproïque
Acide 2-éthyl-1-hexanoïque
ACIDE (+/-)-2-ÉTHYLHEXANOÏQUE
01MU2J7VVZ
ACIDE 2-ÉTHYL HEXOÏQUE, AR
61788-37-2
CHEBI:89058
NSC-8881
Acide 2-éthylhexanoïque
2-Ethylhexansaeure
Acide 2-éthylhexanoïque, >=99%
Acide 2-éthylhexanoïque, étalon analytique
CAS-149-57-5
CCRIS 3348
HSDB 5649
Kyselina 2-éthylkapronova [Tchèque]
NSC 8881
Kyselina 2-éthylkapronova
EINECS 205-743-6
UNII-01MU2J7VVZ
Kyselina heptan-3-karboxylova [Tchèque]
BRN 1750468
Kyselina heptan-3-karboxylova
AI3-01371
Acide hexanoïque, 2-éthyl-, (-)-
EINECS 262-971-9
MFCD00002675
Acide 2-éthylcapronique
Acide 2-éthyl-hexonique
Acide alpha-éthylhexanoïque
Acide .alpha.-éthylhexanoïque
CE 205-743-6
SCHEMBL25800
Acide 2-éthylhexanoïque, 99 %
MLS002415695
CHEMBL1162485
DTXSID9025293
WLN : QVY4 & 2
NSC8881
HMS2267F21
STR05759
ACIDE 2-ÉTHYLHEXANOÏQUE [HSDB]
Tox21_201406
Tox21_300108
LMFA01020087
AKOS009031416
AT29893
CS-W016381
SB44987
SB44994
Acide hexanoïque, 2-éthyl-, ester tridécylique
NCGC00091324-01
NCGC00091324-02
NCGC00091324-03
NCGC00253985-01
NCGC00258957-01
SMR001252268
E0120
Acide 2-éthylhexanoïque
Acide 2-éthylcaproïque
Acide isooctanoïque
Acide octanoïque, 2-éthyl-
Acide 2-éthylhexoïque
Acide éthylhexoïque
FT-0612273
FT-0654390
EN300-20410
Q209384
W-109079
F0001-0703
Z104478072
18FEB650-7573-4EA0-B0CD-9D8BED766547
Acide 2-éthylhexanoïque, étalon secondaire pharmaceutique ; Matériau de référence certifié
ACIDE FÉRULIQUE
L'acide férulique est un solide jaune pâle, Il appartient à la famille des acides hydroxycinnamiques.
L'acide férulique est un phytochimique phénolique abondant présent dans les composants de la paroi cellulaire végétale.
Les sources naturelles d'acide férulique sont les feuilles et les graines de nombreuses plantes, telles que les céréales, le café, les pommes, les artichauts, les arachides, les oranges, les ananas et le vin.

Numéro CAS: 1135-24-6
Formule moléculaire: C10H10O4
Poids moléculaire: 194.18
Numéro EINECS: 214-490-0

L'acide férulique est largement présent dans les plantes, en particulier dans l'artichaut, l'aubergine et le son de maïs.
En outre, l'acide férulique est également présent dans une variété de plantes médicinales chinoises, telles que l'angélique, le dôme, l'agripaume, le ganoderma lucidum des neiges et ainsi de suite.
L'acide férulique est un acide hydroxycinnamique, est un composé organique de formule (CH3O)HOC6H3CH=CHCO2H.
Le nom est dérivé du genre Ferula, en référence au fenouil géant (Ferula communis).

Classé comme phytochimique phénolique, l'acide férulique est un solide de couleur ambre.
Les esters de l'acide férulique se trouvent dans les parois cellulaires des plantes, liés de manière covalente à l'hémicellulose comme les arabinoxylanes.
L'acide férulique est biosynthétisé dans les plantes à partir de l'acide caféique par l'action de l'enzyme caféate O-méthyltransférase.

L'acide férulique est un composé organique naturel qui appartient au groupe des acides hydroxycinnamiques.
L'acide férulique se trouve dans diverses plantes, en particulier dans les graines et les parois cellulaires, où il joue un rôle dans les mécanismes de défense des plantes.
L'acide férulique est connu pour ses propriétés antioxydantes et de protection UV, et il a attiré une attention significative dans les industries des soins de la peau et des cosmétiques en raison de ses avantages potentiels pour la peau humaine.

L'acide férulique est une sorte d'acide phénolique extrait de la résine de ferula asafetida.
Ferula asafetida est une sorte d'herbe vivace Ombellifères avec une forte odeur d'ail et vivant dans des zones sablonneuses.
L'acide férulique est principalement produit au Xinjiang. Au stade naissant, il n'y a que des feuilles racines.

L'acide férulique se trouve naturellement dans une variété de plantes, y compris le son et le bambou, et il est souvent utilisé comme antioxydant dans les produits de soin de la peau.
L'acide férulique, avec l'acide dihydroférulique, est un composant de la lignocellulose, servant à réticuler la lignine et les polysaccharides, conférant ainsi une rigidité aux parois cellulaires.

L'acide férulique est un intermédiaire dans la synthèse des monolignols, les monomères de la lignine, et est également utilisé pour la synthèse des lignanes.
L'acide férulique est une poudre cristalline jaune clair.
L'acide férulique est légèrement soluble dans l'eau froide; soluble dans l'eau chaude, avec une faible stabilité en solution aqueuse; facilement décomposé lorsqu'il rencontre la lumière; soluble dans l'éthanol et l'acétate d'éthyle; légèrement soluble dans l'éther; insoluble dans le benzène et l'éther de pétrole.

L'acide férulique est un puissant antioxydant, ce qui signifie qu'il aide à neutraliser les radicaux libres nocifs qui peuvent endommager les cellules et contribuer au vieillissement prématuré, aux dommages cutanés et à d'autres problèmes de santé.
Lorsqu'il est combiné avec d'autres antioxydants comme les vitamines C et E, il a été démontré que l'acide férulique améliore les effets protecteurs contre les rayons UV du soleil.
L'acide férulique en fait un ingrédient populaire dans les produits de soins de la peau conçus pour protéger la peau des dommages du soleil.

L'acide férulique peut potentiellement aider à uniformiser le teint de la peau et à réduire l'apparence de l'hyperpigmentation, comme les taches de vieillesse et les taches solaires, en inhibant la production de mélanine.
Certaines études suggèrent que l'acide férulique peut favoriser la production de collagène, une protéine qui donne à la peau sa structure et son élasticité.
Cela peut contribuer à une apparence plus jeune et ferme.

L'acide férulique a montré des propriétés anti-inflammatoires qui peuvent être bénéfiques pour apaiser et calmer les peaux irritées ou sensibles.
L'acide férulique est connu pour améliorer la stabilité de certaines vitamines, en particulier la vitamine C.
Lorsqu'il est combiné avec de la vitamine C, il aide à prévenir l'oxydation et la dégradation, permettant au produit de rester efficace plus longtemps.

En raison de ses diverses propriétés bénéfiques, l'acide férulique est souvent inclus dans les sérums, les hydratants, les écrans solaires et autres produits de soin de la peau ciblant l'anti-âge, la protection et la santé globale de la peau.
L'acide férulique est un acide aromatique largement présenté dans le règne végétal et est le composant de la subérine.
Sa quantité est très faible présentée chez les plantes à l'état libre mais avec sa forme principale en formant l'état lié avec des oligosaccharides, des polyamines, des lipides et des polysaccharides.

L'acide férulique a de nombreuses fonctions de santé, telles que le piégeage des radicaux libres, anti-thrombotique, anti-inflammatoire, anti-tumoral, la prévention et le traitement de l'hypertension, des maladies cardiaques et l'activité accrue des spermatozoïdes, etc.
L'acide férulique a une faible toxicité et est facile à métaboliser par l'homme.
Il peut être utilisé comme conservateur alimentaire et a un large éventail d'applications dans le domaine de l'alimentation et des médicaments.

L'acide férulique peut être obtenu par synthèse chimique et extraction.
Le laboratoire dissout la vanilline, l'acide malonique et la pipéridine dans la pyridine pour une réaction de trois semaines, après quoi avec la précipitation de l'acide chlorhydrique, vous pouvez obtenir de l'acide férulique.

L'acide férulique est un dérivé de l'acide cinnamique de formule moléculaire C10H10O4.
En 1886, Hlasiwetz Barth, un autrichien, isola l'acide 3-méthoxy-4-hydroxycinnamique du genre Ferula foetida pour la détermination de la structure.
L'acide férulique avec l'acide dihydroférulique est un composant des lignocelluloses, conférant une rigidité de la paroi cellulaire par réticulation de la lignine et des polysaccharides.

L'acide férulique se trouve couramment dans les graines de plantes telles que le riz, le blé et l'avoine.
En outre, l'acide férulique a montré un rôle biochimique dans l'inhibition de la germination des graines, l'inhibition de l'acide indole-acétique et de l'enzyme, l'inhibition de l'activité de décarboxylation et d'autres effets protecteurs sur les micro-organismes et les animaux domestiques.
La synthèse de l'acide férulique a été établie par Dutt en 1935 lorsque l'acide férulique a été utilisé comme précurseur dans la fabrication de la vanilline et de l'acide malonique.

Il existe un grand nombre d'études documentées sur les propriétés biomédicales de l'acide férulique telles que l'activité antioxydante, la capacité d'absorption des UV et son effet de la lignine en tant que précurseur dans la voie métabolique des plantes.
L'acide férulique, étant très abondant, est en effet difficile à synthétiser, Oryza Oil & Fat Chemical a développé avec succès une méthode efficace pour extraire l'acide férulique du son de riz et adaptée aux applications dans le domaine de la santé et de la beauté.

Point de fusion : 168-172 °C (lit.)
Point d'ébullition : 250,62°C (estimation approximative)
Densité: 1.316 (20.0000 °C)
pression de vapeur: 0Pa à 25°C
Indice de réfraction : 1,5168 (estimation)
température de stockage: 2-8 °C
solubilité: DMSO (légèrement), méthanol (légèrement)
pka: 4.58±0.10 (prédit)
Forme: Poudre
Couleur: Légèrement jaune
Solubilité dans l'eau : soluble
InChIKey: KSEBMYQBYZTDHS-HWKANZROSA-N
LogP: 1.51

L'acide férulique, alias acide hydroxycinnamique, est un puissant antioxydant qui neutralise les dommages causés par les radicaux libres par la pollution, la lumière ultraviolette ou le rayonnement infrarouge, qui accélèrent tous le vieillissement cutané.
L'acide férulique se trouve dans la paroi cellulaire de plantes comme l'avoine, le riz brun, les arachides et les oranges, mais Levin dit que vous en entendez généralement parler associé aux pommes.
Naturellement, l'acide férulique est dérivé botaniquement, mais il peut être créé dans un laboratoire pour le contrôle de la qualité, la cohérence et la sécurité des consommateurs.

L'acide férulique se présente principalement sous forme liquide et peut être trouvé dans les sérums, mais peut également être sous forme de crème lorsqu'il est emballé dans une pompe.
L'acide férulique peut inhiber de manière compétitive l'activité de la mévalonate-5-pyrophosphate déshydrogénase du foie, inhibant la synthèse du cholestérol dans le foie, afin d'atteindre le but d'abaisser la pression artérielle.

L'acide férulique est naturellement présent dans une variété d'aliments à base de plantes, y compris les grains entiers, les graines (comme le son de riz et le germe de blé), les fruits (comme les oranges et les pommes) et les légumes (comme les épinards et les tomates).
Les propriétés antioxydantes de l'acide férulique sont également utilisées dans l'industrie alimentaire comme conservateur naturel pour prévenir la détérioration oxydative et prolonger la durée de conservation de divers produits.

Au-delà des soins de la peau, l'acide férulique a été étudié pour ses bienfaits potentiels sur la santé.
L'acide férulique a été associé à des effets anti-inflammatoires et peut jouer un rôle dans la promotion de la santé cardiaque et la réduction du risque de certaines maladies chroniques.
Les propriétés antioxydantes et protectrices de l'acide férulique peuvent également s'étendre aux produits de soins capillaires.

L'acide férulique peut être inclus dans les shampooings, les revitalisants et les sérums pour aider à protéger les cheveux contre les facteurs de stress et les dommages environnementaux.
L'acide férulique a fait l'objet de nombreuses études scientifiques sur ses avantages potentiels pour la santé de la peau, la protection solaire et le bien-être général.
Des recherches sont en cours pour mieux comprendre ses mécanismes d'action et ses applications potentielles.

L'acide férulique peut être dérivé de sources naturelles, telles que des extraits de plantes, ou il peut être synthétisé pour une utilisation dans les soins de la peau et les produits cosmétiques.
Les sources naturelles sont souvent préférées en raison de leur potentiel à contenir d'autres composés bénéfiques.
L'acide férulique, comme d'autres antioxydants, peut être sensible à la lumière et à l'air, ce qui peut le dégrader avec le temps.

L'acide férulique est également exploré pour des applications médicales potentielles, telles que la cicatrisation des plaies, les traitements anti-inflammatoires et même comme adjuvant possible dans les thérapies contre le cancer.
Cependant, ces domaines de recherche en sont encore à leurs débuts.
L'acide férulique présente un spectre antibactérien plus large.

L'acide férulique a été trouvé que l'acide férulique est capable d'inhiber les bactéries pathogènes telles que Shigella sonnei, Klebsiella pneumoniae, Enterobacter, Escherichia coli, Citrobacter, Pseudomonas aeruginosa et 11 types de micro-organismes qui causent la corruption des aliments.
L'acide férulique a divers effets d'inhibition de l'agrégation plaquettaire, expectorant et inhibition de Mycobacterium tuberculosis et ainsi de suite.

L'acide cliniquement férulique est principalement appliqué au traitement adjuvant de divers types de maladies vasculaires telles que l'athérosclérose, les maladies coronariennes, les maladies cérébrovasculaires, rénales, l'hypertension pulmonaire, les maladies vasculaires diabétiques et la vascularite, ainsi que la neutropénie et la thrombocytopénie.
L'acide férulique peut être utilisé pour traiter la migraine et les céphalées vasculaires.

En tant que médicament d'amélioration des leucocytes, ce médicament a également une fonction hématopoïétique améliorée.
Par conséquent, l'acide férulique peut également être pour le traitement de la leucopénie et de la thrombocytopénie.
L'acide férulique est un composé antioxydant dans les cellules végétales.

Les fabricants ajoutent de l'acide férulique à certains produits de soins de la peau pour aider à réduire l'inflammation et les signes du vieillissement et même le teint de la peau.
L'acide férulique (FA) est une friandise qui peut être trouvée naturellement dans les parois cellulaires des plantes.
Il y en a beaucoup, en particulier dans le son des graminées telles que le riz, le blé et l'avoine.

L'acide férulique doit sa renommée à une recherche de 2005 qui a découvert que l'ajout de 0,5% d'AF à une solution de vitamine C + 1% de vitamine E à 15% stabilise non seulement la très instable divaish Vit C, mais double également les capacités de photoprotection de la formule.
Les molécules chimiquement réactives connues sous le nom de radicaux libres sont produites en tant que sous-produits de processus biochimiques normaux.

L'acide férulique est excellent pour neutraliser les radicaux libres, en particulier les radicaux libres connus sous le nom de « superoxyde », « radical hydroxyle » et « oxyde nitrique ».
L'acide férulique agit également en synergie avec d'autres antioxydants pour augmenter leur efficacité.
Fait intéressant, l'activité antioxydante de l'acide férulique est stimulée par l'exposition à la lumière UV, ce qui indique qu'il peut être utile pour protéger la peau contre les dommages du soleil.

Utilise
L'acide férulique peut être utilisé comme conservateur alimentaire et une sorte de produits chimiques organiques.
L'acide férulique peut être utilisé comme intermédiaire de l'acide cinametique. Il peut également être utilisé comme conservateur alimentaire.
L'acide férulique peut également être appliqué aux études biochimiques.

L'acide férulique est un antioxydant d'origine végétale et un piégeur de radicaux libres, il protège la peau contre les rougeurs induites par uVB.
Lorsqu'il est incorporé dans des formules contenant de l'acide ascorbique et du tocophérol, l'acide férulique peut améliorer leur stabilité et doubler les capacités de photoprotection offertes par la formulation.
Dans les études cliniques, l'acide férulique présente de bonnes capacités de perméation à travers la couche cornée, ce qui peut être attribué à ses propriétés lipophiles.

L'acide férulique est disponible sous forme supplémentaire et dans le cadre de sérums anti-âge.
L'acide férulique est principalement utilisé pour combattre les radicaux libres, qui jouent un rôle dans les problèmes de peau liés à l'âge, y compris les taches de vieillesse et les rides.
L'acide férulique est couramment utilisé dans les produits de soin de la peau pour ses bienfaits antioxydants.

L'acide férulique est souvent inclus dans les sérums, les hydratants et les écrans solaires pour fournir une protection contre les facteurs de stress environnementaux, les rayons UV et les radicaux libres qui peuvent entraîner un vieillissement prématuré, une hyperpigmentation et d'autres problèmes de peau.
En raison de sa capacité à neutraliser les radicaux libres et à favoriser la production de collagène, l'acide férulique est inclus dans de nombreux produits de soin anti-âge.

L'acide férulique aide à réduire l'apparence des ridules, des rides et du relâchement cutané.
Lorsqu'il est combiné avec les vitamines C et E, l'acide férulique peut améliorer la protection UV fournie par les écrans solaires.
Cette combinaison aide à prévenir les dommages cutanés induits par le soleil, y compris les coups de soleil et les photodommages à long terme.

La capacité de l'acide férulique à inhiber la production de mélanine peut contribuer à un teint plus uniforme et à une hyperpigmentation réduite, ce qui en fait un ingrédient populaire dans les produits conçus pour traiter les taches solaires, les taches de vieillesse et le mélasma.
Les propriétés antioxydantes de l'acide férulique peuvent également être bénéfiques pour la santé des cheveux.

L'acide férulique est utilisé dans les produits de soins capillaires comme les shampooings, les revitalisants et les traitements sans rinçage pour protéger les cheveux contre les dommages causés par les facteurs environnementaux et les outils de coiffage.
Les propriétés anti-inflammatoires de l'acide férulique ont conduit à son exploration dans la cicatrisation des plaies et la réparation des tissus.

L'acide férulique peut être utilisé dans les formulations topiques pour les coupures mineures, les brûlures et les irritations cutanées.
L'acide férulique peut être trouvé dans divers produits cosmétiques, y compris les fonds de teint, les apprêts et les sprays de maquillage.
Ses propriétés antioxydantes peuvent aider à protéger la peau du stress oxydatif causé par l'application du maquillage et l'usure.

Des suppléments d'acide férulique sont disponibles pour ceux qui cherchent à augmenter leur apport en antioxydants.
Ces suppléments sont souvent commercialisés pour des avantages globaux pour la santé et le bien-être.
L'acide férulique est naturellement présent dans divers aliments et agit comme antioxydant et conservateur naturel.

L'acide férulique est utilisé dans l'industrie alimentaire pour prévenir l'oxydation et prolonger la durée de conservation des produits.
Au-delà des soins de la peau et des cosmétiques, l'acide férulique est étudié pour ses bienfaits potentiels sur la santé dans le domaine médical.
Des recherches sont en cours pour explorer son rôle potentiel dans des conditions telles que l'inflammation, la santé cardiaque et le traitement du cancer.

Dans le règne végétal, l'acide férulique agit comme un écran solaire naturel, absorbant les rayons UV et protégeant les tissus végétaux contre les dommages.
L'acide férulique est également disponible comme supplément destiné à un usage quotidien.
Certaines études suggèrent que l'acide férulique peut être utile pour les personnes atteintes de diabète et d'hypertension pulmonaire.

L'acide férulique est souvent utilisé en combinaison avec d'autres antioxydants, tels que la vitamine C (acide ascorbique) et la vitamine E (tocophérol), pour créer un effet synergique.
Cette combinaison améliore les propriétés antioxydantes et photoprotectrices globales de la formulation.
Les suppléments d'acide férulique sont disponibles sous forme de capsules ou de comprimés.

L'acide férulique est étudié pour ses avantages potentiels pour la santé au-delà des soins de la peau.
L'acide férulique est étudié pour ses propriétés anti-inflammatoires, neuroprotectrices et anticancéreuses.
Des recherches sont en cours pour comprendre comment l'acide férulique peut être utilisé dans la prévention et la gestion de divers problèmes de santé.

L'acide férulique peut être ajouté aux aliments et aux boissons en tant qu'antioxydant naturel.
L'acide férulique est utilisé pour améliorer la stabilité des produits, améliorer leur couleur et prolonger leur durée de conservation.

Les propriétés antioxydantes de l'acide férulique peuvent contribuer à la préservation des formulations cosmétiques en ralentissant l'oxydation des ingrédients.
Cela peut aider à maintenir l'efficacité et la stabilité du produit.

En agriculture, l'acide férulique peut être utilisé comme facteur de croissance pour les plantes.
Il a été démontré que l'acide férulique améliore la croissance de certaines cultures en améliorant l'absorption des nutriments et en offrant une protection contre les facteurs de stress environnementaux.
L'acide férulique a été exploré comme colorant naturel dans diverses industries, y compris les textiles.

Les propriétés antioxydantes des acides féruliques peuvent contribuer à la stabilité de la couleur et à la longévité.
L'acide férulique fait l'objet de recherches pour des applications potentielles dans les systèmes d'administration de médicaments et en tant que composant dans les formulations pharmaceutiques en raison de ses propriétés bioactives.

L'acide férulique peut être trouvé dans certaines huiles essentielles en raison de sa présence dans certaines sources végétales.
Les huiles essentielles contenant de l'acide férulique sont parfois utilisées en aromathérapie pour leurs bienfaits potentiels pour la santé.

L'acide férulique est parfois ajouté aux aliments fonctionnels, qui sont conçus pour fournir des avantages spécifiques pour la santé au-delà de la nutrition de base.
Ces aliments peuvent inclure des céréales, des boissons et des collations enrichies.
Dans les textiles, l'acide férulique a été étudié comme agent potentiel pour la production de tissus résistants aux plis par réticulation des fibres de cellulose.

Sécurité
Bien que les réactions allergiques à l'acide férulique soient rares, les personnes allergiques connues à certaines plantes ou composés doivent faire preuve de prudence.
C'est une bonne pratique d'effectuer un test épicutané avant d'utiliser des produits contenant de l'acide férulique, surtout si vous avez des antécédents de sensibilités cutanées ou d'allergies.

Certaines études suggèrent que des concentrations élevées d'acide férulique en combinaison avec l'exposition au soleil pourraient augmenter la photosensibilité de la peau.
Cela signifie que lorsqu'elle est exposée au soleil, la peau traitée avec de fortes concentrations d'acide férulique pourrait potentiellement être plus sujette aux coups de soleil.
Cependant, les concentrations utilisées dans la plupart des produits de soin de la peau sont généralement dans les plages de sécurité.

Dans certains cas, les personnes ayant la peau très sensible peuvent éprouver une légère irritation lors de l'utilisation de produits contenant de l'acide férulique.
Ceci est plus susceptible de se produire lors de l'utilisation de concentrations élevées ou en combinaison avec d'autres ingrédients actifs.
Lorsqu'il est pris comme complément alimentaire, l'acide férulique est généralement considéré comme sûr pour la plupart des gens.

L'acide férulique est conseillé de consulter un professionnel de la santé avant de l'ajouter à votre régime, surtout si vous avez des problèmes de santé sous-jacents ou si vous prenez d'autres médicaments.
Bien qu'il existe peu de recherches sur l'innocuité de l'acide férulique pendant la grossesse et l'allaitement, il est généralement recommandé de faire preuve de prudence et de consulter un fournisseur de soins de santé avant d'utiliser des produits contenant de l'acide férulique pendant ces périodes.

Synonymes
acide férulique
acide transférulique
1135-24-6
537-98-4
Acide 4-hydroxy-3-méthoxycinnamique
acide trans-4-hydroxy-3-méthoxycinnamique
Acide 3-(4-hydroxy-3-méthoxyphényl)acrylique
Acide (E)-férulique
Acide conifère
férulé
3-(4-hydroxy-3-méthoxyphényl)-2-propénoïque
Acide férulique trans-
Acide 3-(4-hydroxy-3-méthoxyphényl)-2-propénoïque
Acide (E)-3-(4-hydroxy-3-méthoxyphényl)-2-propénoïque
4-hydroxy-3-méthoxyacide cinnamique
Acide 3-méthoxy-4-hydroxycinnamique
Acide fumalique
Acide (2E)-3-(4-hydroxy-3-méthoxyphényl)prop-2-énoïque
4-hydroxy-3-méthoxycinamique (E)-
Acide (E)-4-hydroxy-3-méthoxycinnamique
UNII-AVM951ZWST
Acide (E)-4'-hydroxy-3'-méthoxycinnamique
3-(4-hydroxy-3-méthoxyphényl)-propénoïque, (2E)-propénoïque
AVM951ZWST
Acide 4-hydroxy-3-méthoxy cinnamique
isomère (E) de l'acide férulique
EINECS 208-679-7
4-hydroxy-3-méthoxycinamique trans-
MFCD00004400
3-(4-hydroxy-3-méthoxyphényl)-propénoïque, (E)-propénoïque
Acide (E)-3-(4-hydroxy-3-méthoxyphényl)acrylique
CCRIS 3256
CCRIS 7127
CIS-FERULICACID
CHEBI:17620
HSDB 7663
NSC 2821
NSC-2821
EINECS 214-490-0
NSC 51986
NSC-51986
Acide (2E)-3-(4-hydroxy-3-méthoxyphényl)acrylique
NSC 674320
Acide (E)-3-(4-hydroxy-3-méthoxyphényl)prop-2-énoïque
Acide fumalique (acide férulique)
4-hydroxy-3-méthoxycinnamate
Acide (2E)-3-(4-hydroxy-3-méthoxyphényl)-2-propénoïque
Acide (E)-3-(4-hydroxy-3-méthoxy-phényl)prop-2-énoïque
CHEMBL32749
CCRIS 7575
Acide 3-(4-hydroxy-3-méthoxyphényl)propénoïque
C10H10O4
NSC2821
3-Méthoxy-4-hydroxy-trans-cinnamate
NSC-674320
97274-61-8
Acide 3-méthoxy-4-hydroxy-trans-cinnamique
(E)-Ferulate
Acide transférulique (purifié par sublimation)
ACIDE 4-HYDROXY-3-MÉTHOXY-D3-CINNAMIQUE
ACIDE FÉRULIQUE (USP-RS)
ACIDE FÉRULIQUE [USP-RS]
ACIDE CINNNAMIQUE,4-HYDROXY,3-MÉTHOXY FÉRULIQUE
Acide caféique 3-méthyl éther
SMR000112202
Acide 3-(4-hydroxy-3-méthoxyphényl)prop-2-énoïque
DTXSID5040673
Ferulasaure
Ferulicacide
Acide 4-hydroxy-3-méthoxy cinnammique
trans-Ferulate
(E)-3-(4-hydroxy-3-méthoxyphényl)-2-propénoate
trans-FerulicAcid
Acide férulique, E-
Acide férulique (FA)
Acide (E)-conifère
trans-4-hydroxy-3-méthoxycinnamicacide
Acide férulique (M5)
Acide férulique ,(S)
ACIDE FÉRULIQUE
Spectrum5_000554
bmse000459
bmse000587
bmse010211
D03SLR
ACIDE FÉRULIQUE [MI]
acide trans-férulique, 99 %
ACIDE FÉRULIQUE [HSDB]
ACIDE FÉRULIQUE [INCI]
SCHEMBL15673
BSPBio_003168
MLS001066385
MLS001332483
MLS001332484
MLS002207079
MLS006011435
SPECTRUM1501017
acide transférulique >=99 %
ACIDE FÉRULIQUE [OMS-JJ]
DTXCID3020673
DTXSID70892035
HMS1921D05
HMS2269P04
(E)-4-hydroxy-3-méthoxycinnamate
trans-4-hydroxy-3-méthoxycinnamate
BCP21231
BCP21789
HY-N0060
NSC51986
STR00961
(E)-4-hydroxy-3-méthoxy-Cinnamate
ACIDE TRANSFÉRULIQUE [OMS-JJ]
Acide (E)-hydroxy-3-méthoxycinnamique
AC7905
BBL010345
BDBM50214744
GCC-38860
S2300
STK801551
Acide 4-hydroxy-3-méthoxycinnamique
AKOS000263735
AC-7965
BCP9000163
DB07767
PS-3435
SDCCGMLS-0066667. P001
acide trans-3-méthoxy-4-hydroxycinnamique
Acide (E)-4-hydroxy-3-méthoxy-cinnamique
3-(4-hydroxy-3-méthoxyphényl)propénoate
Acide 4-hydroxy-3-méthoxycinnamique, trans
NCGC00094889-01
NCGC00094889-02
NCGC00094889-03
NCGC00094889-04
AC-10321
BS-17543
LS-54115
SMR004703246
AM20060784
CS-0007108
F1257
N° H0267
SW219616-1
EN300-16798
C01494
Acide trans-3-(4-hydroxy-3-méthoxyphényl)acrylique
A829775
ACIDE FÉRULIQUE (CONSTITUANT DE L'ACTÉE À GRAPPES NOIRES)
Q417362
SR-01000765539
(2E)-3-(4-hydroxy-3-méthoxyphényl)-2-propénoate
Acide (E)-3-(4-hydroxy-3-méthoxyphényl)prop-2-énoïque
J-002980
SR-01000765539-3
Z56782558
Acide (E)-3-(3-méthoxy-4-oxydanyl-phényl)prop-2-énoïque
ACIDE FÉRULIQUE (CONSTITUANT DE L'ACTÉE À GRAPPES NOIRES) [DSC]
055E203F-B305-4B7F-8CE7-F9C0C03AB609
3986A1BE-A670-4B06-833B-E17253079FD8
Acide férulique, norme de référence de la Pharmacopée européenne (EP)
acide trans-férulique, matériau de référence certifié, TraceCERT(R)
Diéthyl2-(acétamido)-2-(2-(bromométhyl)-5-nitrobenzyl)malonate
Acide férulique, norme de référence de la pharmacopée des États-Unis (USP)
acide transférulique, substance matricielle pour MALDI-MS, >=99,0 % (CLHP)
Acide férulique, étalon pharmaceutique secondaire; Matériau de référence certifié
831-85-6
ACIDE FORMIQUE

L'acide formique, également connu sous le nom d'acide méthanoïque, est un composé chimique de formule HCOOH.
L'acide formique est l'acide carboxylique le plus simple et est composé d'un groupe carboxyle (COOH) attaché à un atome d'hydrogène.
L'acide formique est naturellement présent dans certaines plantes et est également produit synthétiquement pour diverses applications industrielles.
L'acide formique est un liquide incolore avec une odeur piquante et piquante.

Numéro CAS : 64-18-6
Numéro CE : 200-579-1



APPLICATIONS


L'acide formique est largement utilisé dans l'agriculture comme agent de conservation des aliments pour animaux et pour améliorer la qualité des aliments pour animaux.
L'acide formique trouve une application dans l'industrie chimique en tant que matière première pour la production de divers produits chimiques, notamment des produits pharmaceutiques, des colorants et des pesticides.
Dans l'industrie du cuir, l'acide formique est utilisé pendant le processus de tannage pour éliminer les poils et autres impuretés des peaux.

L'industrie textile utilise l'acide formique comme régulateur de pH et fixateur de colorant dans la teinture et l'impression des tissus.
L'acide formique agit comme coagulant dans l'industrie du caoutchouc, aidant à la production de caoutchouc latex.
L'acide formique se trouve dans les agents de nettoyage en tant que désinfectant, agent antimicrobien et ajusteur de pH.

L'acide formique est utilisé comme conservateur dans les produits de soins personnels, les cosmétiques et les formulations de nettoyage.
L'acide formique est utilisé dans les bains de galvanoplastie comme acidifiant et ajusteur de pH.
L'industrie pétrolière et gazière utilise l'acide formique pour acidifier les puits, améliorant ainsi la production de pétrole en éliminant les dommages à la formation.

L'acide formique agit comme un biocide dans les applications de traitement de l'eau, contrôlant la croissance microbienne.
L'acide formique est utilisé dans la synthèse d'intermédiaires pharmaceutiques et d'ingrédients pharmaceutiques actifs (API).
En chimie analytique, il sert de solvant et de réactif dans diverses techniques, telles que la chromatographie liquide à haute performance (HPLC).

L'acide formique peut être utilisé comme répulsif pour animaux pour dissuader les parasites et les animaux indésirables.
L'acide formique est utilisé pour le détartrage et le nettoyage des équipements industriels, en particulier dans les applications impliquant des gisements minéraux.
L'acide formique est utilisé comme ajusteur de pH dans diverses applications, notamment les produits de soins personnels, les solutions de laboratoire et les procédés industriels.
L'acide formique trouve une application dans le traitement des eaux usées pour contrôler le pH et éliminer les métaux lourds.
Dans l'industrie alimentaire, il est utilisé comme conservateur et acidifiant dans certains produits alimentaires et la transformation des aliments.

Les apiculteurs utilisent l'acide formique dans certains traitements pour lutter contre les varroas dans les ruches.
L'acide formique peut être utilisé dans les formulations de préservation du bois pour protéger contre la pourriture et la croissance fongique.
L'acide formique est utilisé dans la production d'adhésifs et de produits d'étanchéité en tant qu'ajusteur de pH et catalyseur.

L'acide formique est utilisé pour le nettoyage des métaux, la préparation des surfaces et la passivation des métaux.
Dans les milieux médicaux et de laboratoire, l'acide formique peut être utilisé comme désinfectant.
L'acide formique trouve une application dans le traitement des matériaux à base de cellulose, tels que le papier et les textiles.

L'acide formique est utilisé pour le durcissement du béton et du ciment dans l'industrie de la construction.
L'acide formique est exploré en tant que combustible potentiel pour les applications de piles à combustible en raison de sa densité d'énergie élevée et de sa facilité de stockage.

L'acide formique est utilisé dans la production d'articles en cuir, tels que des chaussures, des ceintures et des sacs.
L'acide formique trouve une application dans la fabrication de fibres synthétiques, y compris le nylon et le polyester.

L'acide formique est utilisé dans la production de mousses de caoutchouc et de plastique, telles que celles utilisées dans les matériaux d'isolation.
L'acide formique est utilisé dans la production d'adhésifs et d'agents de liaison pour diverses applications.
L'acide formique est utilisé dans l'industrie pétrolière pour la stimulation des puits de pétrole et les opérations d'acidification.

L'acide formique sert d'agent réducteur dans les réactions chimiques, en particulier dans la synthèse de produits pharmaceutiques et de chimie fine.
L'acide formique est utilisé dans la production de détergents et de produits de nettoyage en tant qu'ajusteur de pH et détachant.
L'acide formique peut être utilisé comme pesticide en agriculture pour lutter contre les ravageurs et les insectes.

L'acide formique est utilisé dans la formulation d'inhibiteurs de corrosion pour la protection des métaux.
L'acide formique est utilisé dans la production d'arômes et de parfums pour les industries alimentaires et cosmétiques.

Dans l'industrie automobile, l'acide formique trouve une application comme additif dans les formulations de liquide de refroidissement.
L'acide formique est utilisé comme mordant dans la teinture des textiles pour améliorer la solidité des couleurs et la fixation des colorants.

L'acide formique est utilisé dans la production d'édulcorants artificiels, tels que la saccharine sodique.
L'acide formique peut être utilisé comme ajusteur de pH dans les piscines et les applications de traitement de l'eau.
L'acide formique est utilisé dans la conservation des spécimens biologiques et des échantillons de tissus.

L'acide formique trouve une application comme agent de détartrage pour éliminer les dépôts minéraux des appareils électroménagers et des équipements industriels.
Dans l'industrie de la photographie, l'acide formique peut être utilisé comme agent de développement pour les films noir et blanc.
L'acide formique est utilisé comme agent de nettoyage pour les circuits imprimés et les composants électroniques.

L'acide formique peut être utilisé comme acidifiant et conservateur alimentaire dans les industries de la bière et du vin.
L'acide formique est utilisé dans la production de sels métalliques, tels que les formiates, qui ont diverses applications industrielles.
L'acide formique est utilisé dans la synthèse de certains polymères et résines pour revêtements et adhésifs.
Dans l'industrie du papier, il peut être utilisé comme additif de résistance du papier pour améliorer les propriétés du papier.

L'acide formique est utilisé comme catalyseur dans les réactions chimiques, en particulier dans la production d'esters et d'amides.
L'acide formique est utilisé comme ajusteur de pH et agent tampon dans les formulations cosmétiques.
L'acide formique trouve une application dans la production d'additifs pour carburants, tels que les carburants oxygénés et le biodiesel.


L'acide formique a une variété d'applications dans différentes industries.
Voici quelques applications courantes de l'acide formique :

Agriculture:
L'acide formique est utilisé comme agent de conservation des aliments pour animaux et comme traitement des aliments pour animaux afin d'inhiber la croissance des bactéries et d'améliorer la qualité des aliments.

Industrie chimique:
L'acide formique sert de matière première pour la production de divers produits chimiques, notamment des produits pharmaceutiques, des colorants et des pesticides.

Industrie du cuir :
L'acide formique est utilisé dans le processus de tannage du cuir pour éliminer les poils et autres impuretés des peaux d'animaux.

Industrie textile:
L'acide formique est utilisé comme régulateur de pH et fixateur de colorant dans la teinture et l'impression des textiles.

Industrie du caoutchouc :
L'acide formique agit comme coagulant dans la production de caoutchouc latex, facilitant la formation de particules de caoutchouc.

Agents de nettoyage :
L'acide formique se trouve dans certains produits de nettoyage en tant que désinfectant, agent antibactérien et ajusteur de pH.

Conservateurs :
L'acide formique est utilisé comme conservateur dans certains produits de soins personnels, cosmétiques et formulations de nettoyage.

Galvanoplastie :
L'acide formique est utilisé dans les bains de galvanoplastie comme acidifiant et ajusteur de pH.

Industrie du pétrole et du gaz:
L'acide formique peut être utilisé pour acidifier les puits de pétrole afin d'éliminer les dommages à la formation et d'améliorer la production de pétrole.

Biocides :
L'acide formique est utilisé comme biocide dans les applications de traitement de l'eau pour contrôler la croissance microbienne.

Médicaments:
L'acide formique est utilisé dans la synthèse d'intermédiaires pharmaceutiques et d'ingrédients pharmaceutiques actifs (API).

Chimie analytique:
L'acide formique est utilisé comme solvant et réactif dans diverses techniques analytiques, telles que la chromatographie liquide à haute performance (HPLC).

Répulsifs pour animaux :
L'acide formique peut être utilisé comme répulsif pour animaux pour dissuader les parasites et les animaux indésirables.

Nettoyage et détartrage :
L'acide formique est utilisé pour le détartrage et le nettoyage des équipements industriels, en particulier dans les applications impliquant des gisements minéraux.

Régulation pH :
L'acide formique est utilisé comme ajusteur de pH dans diverses applications, notamment les produits de soins personnels, les solutions de laboratoire et les procédés industriels.

Applications environnementales :
L'acide formique peut être utilisé pour le traitement des eaux usées afin de contrôler le pH et d'éliminer les métaux lourds.

Industrie alimentaire:
Dans certains cas, l'acide formique est utilisé comme agent de conservation et acidifiant dans les produits alimentaires et la transformation des aliments.

Apiculture:
L'acide formique est utilisé dans certains traitements pour lutter contre les varroas dans les ruches.

Préservation du bois :
L'acide formique peut être utilisé dans les formulations de préservation du bois pour protéger contre la pourriture et la croissance fongique.

Industrie des adhésifs :
L'acide formique est utilisé dans la production d'adhésifs et de produits d'étanchéité en tant qu'ajusteur de pH et catalyseur.

Traitement des métaux :
L'acide formique est utilisé pour le nettoyage des métaux, la préparation des surfaces et la passivation des métaux.

Désinfection:
L'acide formique peut être utilisé comme désinfectant dans les milieux médicaux et de laboratoire.

Matériaux cellulosiques :
L'acide formique est utilisé dans le traitement des matériaux à base de cellulose, tels que le papier et les textiles.

Industrie de construction:
L'acide formique est utilisé pour les applications de durcissement du béton et du ciment.

Réservoirs de carburant:
L'acide formique est exploré en tant que combustible potentiel pour les applications de piles à combustible en raison de sa densité d'énergie élevée et de sa facilité de stockage.



DESCRIPTION


L'acide formique, également connu sous le nom d'acide méthanoïque, est un composé chimique de formule HCOOH.
L'acide formique est l'acide carboxylique le plus simple et est composé d'un groupe carboxyle (COOH) attaché à un atome d'hydrogène.
L'acide formique est naturellement présent dans certaines plantes et est également produit synthétiquement pour diverses applications industrielles.


L'acide formique est un liquide incolore avec une odeur piquante et piquante.
L'acide formique est l'acide carboxylique le plus simple, constitué d'un groupe carboxyle (COOH) attaché à un atome d'hydrogène.
L'acide formique a une formule moléculaire de HCOOH et un poids moléculaire de 46,03 grammes/mol.

L'acide formique est très soluble dans l'eau et dans de nombreux solvants organiques.
La densité de l'acide formique est de 1,22 g/cm³.
L'acide formique a un point de fusion de 8,4 ° C (47,1 ° F) et un point d'ébullition de 100,8 ° C (213,4 ° F).

L'acide formique est un composé volatil avec une pression de vapeur de 44 mmHg à 20 °C.
Il est classé comme substance acide, avec un pH inférieur à 7.
L'odeur de l'acide formique peut être décrite comme forte, semblable à du vinaigre ou rappelant les piqûres de fourmis.

L'acide formique est hautement réactif et peut agir à la fois comme acide et agent réducteur.
L'acide formique peut corroder ou graver les métaux et provoquer des brûlures au contact de la peau et des yeux.
L'acide formique est naturellement présent dans certaines plantes et certains animaux et est également produit par synthèse à des fins industrielles.
En agriculture, l'acide formique est utilisé comme conservateur alimentaire et dans le traitement des aliments pour animaux.

L'industrie chimique utilise l'acide formique comme matière première dans la production de divers produits chimiques, notamment des colorants et des produits pharmaceutiques.
Dans l'industrie du cuir, il est utilisé dans le processus de tannage pour éliminer les poils et les impuretés des peaux.
L'acide formique est utilisé dans l'industrie textile comme régulateur de pH et fixateur pour les teintures textiles.

L'acide formique agit comme coagulant dans la production de caoutchouc latex dans l'industrie du caoutchouc.
Certains produits de nettoyage contiennent de l'acide formique comme désinfectant et agent antimicrobien.

L'acide formique est utilisé comme conservateur dans certains produits de soins personnels et cosmétiques.
L'acide formique est couramment utilisé comme réactif en laboratoire et en recherche pour diverses réactions chimiques.

L'acide formique peut servir de solvant pour certaines substances en raison de sa miscibilité avec l'eau et les solvants organiques.
L'acide formique est utilisé dans certaines formulations d'antigel pour abaisser le point de congélation des liquides.
L'acide formique est considéré comme un combustible prometteur pour les applications de piles à combustible en raison de sa densité d'énergie élevée et de sa commodité de stockage.

Lorsqu'il est manipulé, l'acide formique nécessite un équipement de protection approprié et le respect des consignes de sécurité en raison de sa nature corrosive.
Les propriétés uniques et les applications polyvalentes de l'acide formique en font un produit chimique important dans plusieurs industries, allant de l'agriculture à la fabrication textile et au-delà.



PROPRIÉTÉS


Formule chimique : HCOOH
Poids moléculaire : 46,03 g/mol
État physique : Liquide incolore
Odeur : Odeur piquante et âcre
Densité : 1,22 g/cm³
Point de fusion : 8,4 °C (46,1 °F)
Point d'ébullition : 100,8 °C (213,4 °F)
Solubilité : Soluble dans l'eau, l'éthanol, l'éther, l'acétone et d'autres solvants organiques
Pression de vapeur : 44 mmHg à 20 °C (68 °F)
Point d'éclair : 69 °C (156 °F)
Température d'auto-inflammation : 605 °C (1121 °F)
Viscosité : 1,46 cP à 20 °C (68 °F)
pH : Fortement acide (pKa = 3,77)
Structure moléculaire: Il se compose d'un groupe acide carboxylique (COOH) attaché à un atome d'hydrogène.
Réactivité : C'est un composé hautement réactif, capable de participer à diverses réactions chimiques.
Hygroscopicité : L'acide formique a des propriétés hygroscopiques, absorbant l'humidité du milieu environnant.
Miscibilité : Il est miscible avec de nombreux solvants organiques et peut former des solutions homogènes.
Corrosivité : L'acide formique est corrosif pour les métaux, en particulier sous forme concentrée.
Stabilité : Il est relativement stable dans des conditions normales, mais peut se décomposer en cas d'exposition à la chaleur ou à la lumière.
Toxicité : L'acide formique est toxique et peut causer de graves irritations, des brûlures et des dommages aux organismes vivants.



PREMIERS SECOURS


Inhalation:

Déplacez la personne affectée à l'air frais et assurez-vous qu'elle se trouve dans un endroit bien ventilé.
Si la respiration est difficile, fournir de l'oxygène si disponible et consulter immédiatement un médecin.
Si la personne ne respire pas, pratiquer la respiration artificielle, de préférence à l'aide d'un appareil mécanique.


Contact avec la peau:

Retirer les vêtements contaminés et rincer immédiatement la peau affectée avec beaucoup d'eau pendant au moins 15 minutes.
Lavez délicatement la zone affectée avec un savon doux et de l'eau.
Consulter un médecin en cas d'irritation, de rougeur ou de brûlure de la peau.
Évitez d'appliquer des crèmes ou des onguents sans avis médical.


Lentilles de contact:

Rincer abondamment les yeux à l'eau courante pendant au moins 15 minutes en maintenant les paupières ouvertes.
Retirer les lentilles de contact, le cas échéant, après quelques minutes de rinçage.
Consulter immédiatement un médecin, même si l'irritation initiale est légère ou absente.
Protégez l'œil non affecté pendant le transport vers les établissements médicaux.


Ingestion:

NE PAS faire vomir à moins d'y être invité par des professionnels de la santé.
Rincer soigneusement la bouche avec de l'eau, mais ne pas l'avaler.

Si une grande quantité d'acide formique a été ingérée ou si la personne présente des symptômes graves, consultez immédiatement un médecin.
Fournir au personnel médical toutes les informations pertinentes, y compris la quantité ingérée et le temps d'exposition.


Mesures générales :

Retirer la personne de la zone contaminée pour éviter une nouvelle exposition.
Retirer les vêtements contaminés en prenant soin de ne pas répandre le produit chimique dans les zones non touchées.
Rincez soigneusement tout vêtement contaminé avant de le réutiliser ou jetez-le en toute sécurité.

Si la personne présente des signes de brûlures chimiques, protégez la zone touchée en la recouvrant légèrement d'un pansement ou d'un chiffon stérile antiadhésif.
Fournir des soins de soutien au besoin, tels que le maintien des voies respiratoires, la respiration et la circulation.
N'administrez aucun médicament à moins d'y être invité par des professionnels de la santé.



MANIPULATION ET STOCKAGE


Manutention:

Protection personnelle:
Portez toujours un équipement de protection individuelle (EPI) approprié lors de la manipulation de l'acide formique, y compris des gants résistant aux produits chimiques, des lunettes de sécurité et une blouse de laboratoire ou des vêtements de protection.
Envisagez d'utiliser un tablier et un écran facial résistants aux produits chimiques pour une protection supplémentaire, en particulier lorsque vous manipulez de grandes quantités ou travaillez avec des solutions concentrées.
Assurer une bonne ventilation dans la zone de travail pour minimiser l'inhalation de vapeurs.

Pratiques de manipulation sécuritaire :
Manipulez l'acide formique dans un endroit bien aéré ou sous une ventilation locale pour éviter l'accumulation de vapeurs.
Éviter tout contact avec la peau, les yeux et les vêtements.
En cas de contact, suivez les mesures de premiers secours fournies et retirez immédiatement les vêtements contaminés.
Utilisez des outils appropriés, tels que des récipients et des pompes résistants aux produits chimiques, pour transférer ou distribuer l'acide formique.

Ne pas manger, boire ou fumer lors de la manipulation de l'acide formique, car il est toxique en cas d'ingestion.
Éviter d'inhaler les vapeurs en gardant le récipient fermé lorsqu'il n'est pas utilisé et en utilisant une hotte ou une protection respiratoire appropriée si nécessaire.
Ne mélangez pas l'acide formique avec d'autres produits chimiques sans connaissances et conseils appropriés, car des réactions dangereuses peuvent se produire.

Intervention en cas de déversement et de fuite :
En cas de déversement ou de fuite, restreindre l'accès à la zone et s'assurer que l'équipement de protection individuelle approprié est porté.
Absorber les petits déversements avec un matériau absorbant approprié, tel que la vermiculite ou le sable, et le transférer dans un récipient approprié pour l'élimination.

Pour les déversements plus importants, contenir le déversement en construisant une barrière avec des sacs de sable ou des barrages absorbants pour empêcher une propagation supplémentaire.
Avertissez les autorités compétentes et suivez les réglementations locales pour un nettoyage et une élimination appropriés de l'acide formique renversé.


Stockage:

Conditions de stockage:
Stockez l'acide formique dans un endroit frais, sec et bien ventilé, à l'écart des sources de chaleur, d'inflammation et de la lumière directe du soleil.
Gardez les contenants hermétiquement fermés et droits pour éviter les fuites ou les déversements.
Stockez l'acide formique à l'écart des matériaux incompatibles, tels que les oxydants forts et les bases, pour éviter les réactions dangereuses.
Séparez l'acide formique des substances inflammables et des produits chimiques réactifs pour minimiser le risque d'incendie ou de réactions chimiques.

Conteneurs de stockage :
Utilisez des récipients appropriés pour stocker l'acide formique, tels que des récipients en polyéthylène haute densité (HDPE) ou en verre.
Assurez-vous que les conteneurs sont étiquetés avec le nom de la substance, les avertissements de danger et les informations de sécurité appropriées.
Vérifiez régulièrement les conteneurs pour détecter tout signe de dommage ou de détérioration et remplacez-les si nécessaire.

Manutention de Fûts et Conteneurs :
Lors de la manipulation de grandes quantités d'acide formique stocké dans des fûts ou des conteneurs, utiliser un équipement de manutention approprié, tel que des chariots à fûts ou des chariots élévateurs.
Prenez des précautions pour éviter les déversements, les fuites ou les perforations pendant le transport et le stockage des fûts ou des conteneurs.
Suivez les réglementations locales pour la manipulation, le stockage et l'élimination appropriés des conteneurs vides.



SYNONYMES


Acide méthanoïque
Acide hydrogénocarboxylique
Acide aminé
Acide formylique
HCOOH (sa formule chimique)
Piqûre de fourmi
Acide de fourmi
Alcool formylique
Acide oxocarbinique
Formol
Hydroxy(oxo)méthane
HCO2H (sa formule condensée)
Acide formique (en français)
Ameisensäure (en allemand)
Ácido fórmico (en espagnol)
Acidum formicum (en latin)
Acidum méthanoïque
Acide carbonique
Acide hydroxyméthanoïque
Alcool méthylique
E236 (son numéro d'additif alimentaire européen)
RCOOH (formule générique d'acide carboxylique)
EINECS 200-579-1 (numéro de l'inventaire européen des substances chimiques commerciales existantes)
FEMA 2487 (numéro de l'association des fabricants d'arômes et d'extraits)
NSC 8957 (identifiant de l'Institut national du cancer)
HCO2OH
Acide formylique (en français)
Acide aminocarboxylique
Acide carboxylique C1
Acide éthanoique
formiate d'hydrogène
Méthanoate
Acide formique méthylique
Oxométhanol
RC(O)OH (formule générique d'acide carboxylique)
UN 1779 (numéro d'identification des Nations Unies)
Formolène
Alcoolate formylique
Méthanoate d'hydrogène
Hydroxy(oxo)méthanol
Alcool oxométhylique
Oxyméthanol
RC(O)OH (formule générique d'acide carboxylique)
Solution d'acide méthanoïque
Formiate de méthyle
Acide monocarboxylique
R-COOH (formule générique d'acide carboxylique)
RCO2H (formule générique d'acide carboxylique)
Carboxyméthanol
Acide carboxylique (acide méthanoïque)
Acide de fourmis
Acide carbonique
Formiate d'éthyle
Formaté
Alcool formique
HCO2H (nom systématique)
Carboxylate d'hydrogène
Radical hydroxy(oxo)méthyle
Carboxylate de méthyle
Alcool méthanoïque
Solution d'acide méthanoïque
Acide méthylique
R-COOH (formule générique d'acide carboxylique)
Acidum formicum concentré
Ameisengeist (en allemand)
Vinaigre de fourmi
Solution d'acide éthanoïque
HCOOH (formule chimique)
Méthanoate d'hydrogène
Sel d'acide méthanoïque
RC(O)OH (formule générique d'acide carboxylique)
Acidum formicum dilutum
Solution d'acide formylique
HCO2H (abréviation IUPAC)
Mierenzuur (en néerlandais)
ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE
DESCRIPTION:
L'acide fumarique de qualité alimentaire est un composé organique de formule HO2CCH=CHCO2H.
L’acide fumarique, un solide blanc, est largement répandu dans la nature.
L'acide fumarique de qualité alimentaire a un goût de fruit et a été utilisé comme additif alimentaire.

Numéro CAS, 110-17-8
Numéro CE, 203-743-0


SYNONYMES DE QUALITÉ ALIMENTAIRE D'ACIDE FUMARIQUE :
Acide fumarique, acide trans-1,2-éthylènedicarboxylique, acide 2-butènedioïque, acide trans-butènedioïque, acide allomaléique, acide bolétique, acide donitique, acide lichénique


Son numéro E est E297.
Les sels et esters sont appelés fumarates.
Fumarate peut également désigner l'ion C4H2O2−4 (en solution).
L'acide fumarique de qualité alimentaire est l'isomère trans de l'acide butènedioïque, tandis que l'acide maléique est l'isomère cis.

Acide fumarique de qualité alimentaire, l'acide alimentaire biologique le plus puissant couramment utilisé comme agent aromatisant et agent de contrôle du pH.
L'acide fumarique de qualité alimentaire fournit plus d'acidité que d'autres acidulants, par exemple l'acide citrique (E330) et l'acide malique (E296) dans les aliments.
Le numéro européen d’additif alimentaire est E297.

La formule chimique C4H4O4 est un composé de la catégorie de l'acide trans-butène dioïque, des acides carboxyliques insaturés avec des cristaux en forme de petits prismes de formule ouverte HO2CCH = CHCO2H.
L'acide fumarique de qualité alimentaire est également appelé acide éthylène dicarboxylique.

L'acide fumarique codé E297, présent dans la plupart des légumes et fruits, est un acide naturel.
L'acide fumarique de qualité alimentaire se trouve généralement dans les champignons et le foie.

L'acide fumarique de qualité alimentaire est l'isomère (cis-) de l'acide matureique.
Granule blanc inodore ou poudre cristalline.
Moins soluble dans l'eau et l'éther, soluble dans l'alcool et très peu soluble dans le chloroforme.




PRODUCTION ET RÉACTIONS D'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
La production commerciale est réalisée par fermentation du sucre et synthèse chimique.
Le feomidium peut être produit par des réactions secondaires dans des conditions et températures appropriées.
Les sels et les esters sont appelés fumarates.
Suite à l'hydratation de l'acide formique, une conversion en acide malique est observée.


BIOSYNTHÈSE ET OCCURRENCE DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
Il est produit dans les organismes eucaryotes à partir du succinate du complexe 2 de la chaîne de transport d'électrons via l'enzyme succinate déshydrogénase.
L'acide fumarique se trouve dans la fumeterre (Fumaria officinalis), les champignons bolets (en particulier Boletus fomentarius var. pseudo-igniarius), le lichen et la mousse d'Islande.

Le fumarate est un intermédiaire du cycle de l'acide citrique utilisé par les cellules pour produire de l'énergie sous forme d'adénosine triphosphate (ATP) à partir des aliments.
L'acide fumarique de qualité alimentaire est formé par l'oxydation du succinate par l'enzyme succinate déshydrogénase.

Le fumarate est ensuite converti par l'enzyme fumarase en malate.
La peau humaine produit naturellement de l'acide fumarique lorsqu'elle est exposée au soleil.
Le fumarate est également un produit du cycle de l'urée.



UTILISATIONS DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :

Il est largement admis que l'acide fumarique de qualité alimentaire inhibe efficacement la fermentation malolactique : la bibliographie existante le décrit comme étant efficace pour prévenir son apparition microbiologique et pour la bloquer une fois qu'elle a déjà commencé.
Tous ces aspects intéressants le rendent adapté à toutes les vinifications nécessitant une maîtrise du soufre.
Il est par exemple idéal pour élaborer des fonds de vins effervescents, mais aussi pour élaborer de bons vins blancs, rosés ou rouges, pour ceux qui recherchent le goût agréable qu'offre l'acidité malique.

Dosé selon les recommandations, il provoque une diminution du pH d'environ 1 à 2 dixièmes, selon le pouvoir tampon du vin, et augmente l'acidité totale par rapport à ce qui se passerait si de l'acide tartrique était ajouté.
Cependant, selon la législation en vigueur, il n'est pas classé comme acidifiant, ce qui signifie qu'il peut être utilisé même s'il n'est pas inscrit dans le registre correspondant.

L'effet de l'acide fumarique alimentaire persiste aussi longtemps que la molécule est présente dans le milieu : par exemple, il a été observé qu'il dure plusieurs mois lorsqu'il est ajouté au vin une fois le processus de fermentation terminé, lors du raffinage sans activité de Saccharomyces cerevisiae.
Avant d'utiliser l'acide fumarique alimentaire, des tests d'orientation doivent être effectués en laboratoire afin de pouvoir prédire ses effets sur l'équilibre sensoriel du vin.
L'acide fumarique de qualité alimentaire est le complément idéal des lignes de production de vin pour élaborer des vins sans dioxyde de soufre ajouté.

Nourriture:
L'acide fumarique est utilisé comme acidulant alimentaire depuis 1946.
L'acide fumarique de qualité alimentaire est approuvé pour une utilisation comme additif alimentaire dans l'UE[6], aux États-Unis[7], en Australie et en Nouvelle-Zélande.
En tant qu'additif alimentaire, il est utilisé comme régulateur d'acidité et peut être désigné par le numéro E E297.

L'acide fumarique de qualité alimentaire est généralement utilisé dans les boissons et les levures chimiques pour lesquelles des exigences de pureté sont imposées.
L'acide fumarique est utilisé dans la fabrication des tortillas de blé comme conservateur alimentaire et comme acide dans le levain.
L'acide fumarique de qualité alimentaire est généralement utilisé comme substitut de l'acide tartrique et occasionnellement à la place de l'acide citrique, à raison de 1 g d'acide fumarique pour environ 1,5 g d'acide citrique, afin d'ajouter de l'acidité, de la même manière que l'acide malique. l'acide est utilisé.

En plus d'être un composant de certains arômes artificiels de vinaigre, tels que les chips aromatisées au « sel et vinaigre »,[10] il est également utilisé comme coagulant dans les mélanges à pudding sur la cuisinière.
Le Comité scientifique de la Commission européenne sur l'alimentation animale, qui fait partie de la DG Santé, a constaté en 2014 que l'acide fumarique est « pratiquement non toxique », mais que des doses élevées sont probablement néphrotoxiques après une utilisation à long terme.


L'acide fumarique est utilisé dans la production d'aliments en poudre car il présente une faible rétention d'humidité dans ce secteur.
Il peut être utilisé comme régulateur d’acidité sans modifier le goût des aliments.
Les jus de fruits, les desserts gélatineux, les systèmes de biscuits réfrigérés, les vins, les aliments verts et le benzoate de sodium sont utilisés comme conservateurs, tandis que l'acide fumarique est préféré pour réguler l'acidité.

Dans les pains de seigle et de pâte au levain, la densité aromatique peut être ajustée avec de l'acide fumarique au stade du mélange sec.
L'acide fumarique de qualité alimentaire est utilisé pour améliorer la structure des pores des aliments de type muffin.
L'acide fumarique de qualité alimentaire est utilisé pour prolonger la durée de vie des confiseries car le taux d'absorption de l'humidité est très faible.

L'acide fumarique de qualité alimentaire est également utilisé comme anti-agglomérant.
L'acide fumarique de qualité alimentaire est utilisé dans la peinture et les encres à séchage rapide.

Santé:
Il a été observé que le fumarate de diméthyle diminuait la progression du handicap dans la multisclérose après certains stades.

Médecine:
L'acide fumarique a été développé comme médicament pour traiter le psoriasis, une maladie auto-immune, dans les années 1950 en Allemagne sous la forme d'un comprimé contenant 3 esters, principalement du fumarate de diméthyle, et commercialisé sous le nom de Fumaderm par Biogen Idec en Europe.
Biogen développera plus tard le principal ester, le fumarate de diméthyle, comme traitement de la sclérose en plaques.

Chez les patients atteints de sclérose en plaques rémittente, l'ester diméthylfumarate (BG-12, Biogen) a réduit de manière significative la progression des rechutes et du handicap dans un essai de phase 3.
L'acide fumarique de qualité alimentaire active la voie de réponse antioxydante Nrf2, la principale défense cellulaire contre les effets cytotoxiques du stress oxydatif.
Autres utilisations:
L'acide fumarique est utilisé dans la fabrication de résines polyester et d'alcools polyhydriques et comme mordant pour les colorants.
Lorsque de l'acide fumarique est ajouté à leur alimentation, les agneaux produisent jusqu'à 70 % de méthane en moins pendant la digestion.[13]


SYNTHÈSE D'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
L'acide fumarique est produit sur la base de l'isomérisation catalytique de l'acide maléique dans des solutions aqueuses à faible pH.
L'acide fumarique de qualité alimentaire précipite à partir de la solution réactionnelle.
L'acide maléique est accessible en grands volumes en tant que produit d'hydrolyse de l'anhydride maléique, produit par oxydation catalytique du benzène ou du butane.


VOIES HISTORIQUES ET DE LABORATOIRE D'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
L'acide fumarique a d'abord été préparé à partir d'acide succinique.
Une synthèse traditionnelle implique l'oxydation du furfural (issu de la transformation du maïs) à l'aide de chlorate en présence d'un catalyseur à base de vanadium.

RÉACTIONS DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
Les propriétés chimiques de l’acide fumarique peuvent être anticipées à partir des groupes fonctionnels qui le composent.
Cet acide faible forme un diester, il subit une bromation à travers la double liaison[16] et c'est un bon diénophile.


PROPRIÉTÉS DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
Apparence:
L'acide fumarique de qualité alimentaire est une poudre ou un granulé cristallin blanc ou presque blanc avec une acidité propre et persistante avec sécheresse.
L'acidité est environ 1,5 fois supérieure à celle de l'acide citrique.

PKa :
L'acide fumarique est un acide organique faible contenant deux groupes fonctionnels acide carboxylique et, par conséquent, il a deux valeurs PKa, PKa1 = 3,03 et PKa2 = 4,44.
Sa valeur PKa1 et PKa2 est supérieure à celle de l’acide citrate et de l’acide malique.

PH :
L'acide fumarique est un acide dicarbonique insaturé et il possède 2 équations d'équilibre de dissociation.
Sa valeur PH est de 2,03 à la concentration de 100 mM (0,1mol/L).

Calcul de la valeur PH :
La méthode pour calculer son PH est la même que celle de l’acide malique.
L'acide fumarique de qualité alimentaire est un acide relativement fort et possède une forte propriété tampon pour maintenir le pH de la solution aqueuse à environ 3,0, ce qui est important pour les conservateurs qui fonctionnent autour de pH 3,0.
L'acide fumarique aide à stabiliser le pH d'une boisson à base de jus de fruit, ce qui rend la couleur et la saveur stables.
C'est pourquoi il est souvent utilisé avec des conservateurs tels que le benzoate de sodium (E211).


Solubilité:
Dans l'eau:
L'acide fumarique de qualité alimentaire a une solubilité de 0,5 % (0,5 g/100 ml) à 20°C dans l'eau tandis que les acides citrique, malique et tartrique sont tous très solubles dans l'eau.
Le caractère hydrophobe de l’acide fumarique en fait un agent antimicrobien efficace car il peut perturber l’activité microbienne en interagissant avec les matières lipidiques de la paroi cellulaire microbienne.

Dans les solvants organiques :
Soluble dans l'alcool, légèrement soluble dans les huiles. Légèrement soluble dans l'acétone avec une solubilité de 1,29 g/100 g à 20°C. (7)


AVANTAGES DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
Traitement du psoriasis :
En raison de leur mauvaise absorption après prise orale, les esters de l'acide fumarique, tels que le fumarate de monoéthyle (MEF) et le fumarate de diméthyle (DMF), sont utilisés pour le traitement du psoriasis.
Cependant, plusieurs effets secondaires sont survenus dans les études réalisées entre 1990 et 1998. Dont (8) :
• Rinçage
• Diarrhée
• Rétention rénale
• Une élévation réversible des transaminases, une lymphopénie et une éosinophilie.
• Troubles gastro-intestinaux, légers maux d'estomac, augmentation de la fréquence des défécations et du ténesme, jusqu'aux crampes d'estomac, tympanites et diarrhée.


UTILISATIONS DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
L'acide fumarique est l'acide alimentaire biologique le plus puissant.
L'acide fumarique de qualité alimentaire est utilisé comme agent aromatisant pour son goût acidulé et comme agent antimicrobien pour sa caractéristique hydrophobe.
Généralement, il est utilisé dans l’industrie alimentaire, des boissons, de la nutrition animale, des cosmétiques et de l’industrie pharmaceutique.


Nourriture:
Comparé à d’autres acidulants comme l’acide citrique, l’acide fumarique peut être utilisé dans les produits mélangés secs car il est non hygroscopique et n’absorbe pas l’humidité.
Cet avantage empêche les produits mélangés à sec de s’agglutiner ou de durcir pendant le stockage.
Dans les boissons, l'acide fumarique fonctionne comme un agent de contrôle du pH et rehausse la saveur.


Outre cette application de boisson, on peut également trouver les produits alimentaires suivants qui en contiennent et ses autres fonctions (9) :
Boulangerie et tortillas : comme acide levant dans l'agent levant et agit également comme agent aromatisant pour les produits de boulangerie salés.
Confiseries et desserts : agent non hygroscopique.
Chewing-gum : dissolution lente et propriété d'hydrophobicité, prolonge l'acidité en bouche pour rehausser la saveur du chewing-gum.


Produits de beauté:
Selon la « Base de données de la Commission européenne pour les informations sur les substances et ingrédients cosmétiques », il agit comme un tampon dans les produits cosmétiques et de soins personnels.



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE

Formule chimique, C4H4O4
Masse molaire, 116,072 g•mol−1
Apparence, solide blanc
Densité, 1,635 g/cm3
Point de fusion, 287 °C (549 °F; 560 K) (se décompose)[2]
Solubilité dans l'eau, 4,9 g/L à 20 °C[1]
Acidité (pKa), pka1 = 3,03, pka2 = 4,44 (15 °C, isomère cis)
Susceptibilité magnétique (χ), −49,11•10−6 cm3/mol
Moment dipolaire, non nul
Autres noms, acide bolétiqueAcide allomaléiqueAcide trans-butènedioïqueAcide trans-1,2-éthylènedicarboxylique
Numéro CAS, 110-17-8
Formule chimique, C4H4O4
Poids moléculaire, 116,072
Point de fusion, 287 °C
Point d'ébullition, 156 °C
Numéro CAS : 110-17-8
ChemSpider : 10197150
UNII : 88XHZ13131
Numéro CE : 203-743-0
Banque de médicaments : DB04299
KEGG : C00122
Chebi : 18012
CHEMBL503160
Code ATC : D05AX01
Formule moléculaire : C4H4O4
Masse molaire : 116,07 g/mol
Aspect : Solide blanc
Densité : 1,635 g/cm3, solide
Point de fusion : 287°C
Solubilité dans l'eau : 0,63 g / 100 mL
Acide (pKa) : pka1 = 3,03, pka2 = 4,44
Classification UE : Irritant (Xi)
Phrases R : R36
Phrases S : (S2) S26
Autres noms : Acide trans-butènedioïque
ASPECT, POUDRE DE CRISTAL BLANCHE
CONTENU, 99,5 %-100,5 %
POINT DE FUSION, 294-300
ARSENIC mg/kg, ≤3
MÉTAUX LOURDS (COMME Pb), ≤10 ppm
ACIDE MALÉIQUE %, ≤0,10%
RÉSIDUS À L'INFLAMMATION, ≤0,10%
HUMIDITÉ, ≤0,5%
Point de fusion, 298-300 °C (subl.)(lit.)
Point d'ébullition, 137,07°C (estimation approximative)
densité , 1,62
pression de vapeur , 1,7 mm Hg ( 165 °C)
FEMA, 2488 | L'ACIDE FUMARIQUE
indice de réfraction, 1,5260 (estimation)
Fp, 230 °C
température de stockage. , Conserver à une température inférieure à +30°C.
solubilité, éthanol à 95 % : soluble 0,46 g/10 mL, clair, incolore
forme, poudre cristalline fine
pka, 3,02, 4,38 (à 25ºC)
Couleur blanche
PH, 2,1 (4,9 g/l, H2O, 20 ºC)
limite d'explosivité, 40 %
Solubilité dans l'eau, 0,63 g/100 ml (25 ºC)
Numéro JECFA, 618
Merck, 14,4287
BRN, 605763
Stabilité : , Stable à température ambiante. Se décompose vers 230 C. Incompatible avec les oxydants forts, les bases, les agents réducteurs. Combustible.
InChIKey, VZCYOOQTPOCHFL-OWOJBTEDSA-N
Référence de la base de données CAS, 110-17-8 (Référence de la base de données CAS)
Référence chimique NIST, acide fumarique (110-17-8)
Système d'enregistrement des substances de l'EPA, acide fumarique (110-17-8)



QUESTIONS ET RÉPONSES SUR L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE
QU'EST-CE QUE L'ACIDE FUMARIQUE ? :
L'acide fumarique de qualité alimentaire est un acide organique faible (un acide dicarboxylique) fabriqué commercialement à partir d'acide maléique et de formule chimique C4H4O4.
L'acide fumarique de qualité alimentaire est un précurseur pour la production d'autres acides, comme l'acide L-aspartique et l'acide L-malique.
Le fumarate, le citrate et le malate sont tous des intermédiaires du cycle de l'acide tricarboxylique ou cycle KREBS pour produire de l'énergie sous forme d'ATP chez nos humains et la plupart des cellules vivantes.


Quelles sont les sources naturelles ?
L'acide fumarique de qualité alimentaire peut être naturellement trouvé dans la fumeterre, les cèpes, le lichen et la mousse d'Islande.
En outre, l'acide fumarique de qualité alimentaire est présent dans les fruits comme la pomme et la pastèque.
Généralement, on le trouve moins dans la plupart des fruits que deux autres acidulants, l'acide citrique et l'acide malique.


Comment est-ce fait?:
L'acide fumarique peut être produit par isomérisation de l'acide maléique ou par fermentation du glucose.
Voici les deux procédés de fabrication :

1. Isomérisation de l’acide maléique :
Généralement, la production est synthétisée chimiquement à partir de l'isomérisation de l'acide maléique, qui est l'hydrolyse de l'anhydride maléique.
L'anhydride maléique est l'homologue cis de l'acide fumarique.
L'acide fumarique de qualité alimentaire est fabriqué à partir de butane, le butène ou le benzène provenant du pétrole sont les matières premières.

2. Fermentation du sucre :
Fermentation par les espèces Rhizopus en utilisant du glucose ou d'autres substrats glucidiques.
INFORMATIONS DE SÉCURITÉ SUR L'ACIDE FUMARIQUE DE QUALITÉ ALIMENTAIRE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



ACIDE FUMARIQUE E297
DESCRIPTION:
L'acide fumarique E297 est un composé organique de formule HO2CCH=CHCO2H.
L’acide fumarique, un solide blanc, est largement répandu dans la nature.
L'acide fumarique E297 a un goût fruité et a été utilisé comme additif alimentaire.

Numéro CAS, 110-17-8
Numéro CE, 203-743-0


SYNONYMES DE L'ACIDE FUMARIQUE E297 :
Acide fumarique, acide trans-1,2-éthylènedicarboxylique, acide 2-butènedioïque, acide trans-butènedioïque, acide allomaléique, acide bolétique, acide donitique, acide lichénique


Son numéro E est E297.
Les sels et esters sont appelés fumarates.
Fumarate peut également désigner l'ion C4H2O2−4 (en solution).
L'acide fumarique E297 est l'isomère trans de l'acide butènedioïque, tandis que l'acide maléique est l'isomère cis.

Acide fumarique E297, l'acide alimentaire biologique le plus puissant couramment utilisé comme agent aromatisant et agent de contrôle du pH.
L'acide fumarique E297 apporte plus d'acidité que d'autres acidulants, par exemple l'acide citrique (E330) et l'acide malique (E296) dans les aliments.
Le numéro européen d’additif alimentaire est E297.

La formule chimique C4H4O4 est un composé de la catégorie de l'acide trans-butène dioïque, des acides carboxyliques insaturés avec des cristaux en forme de petits prismes de formule ouverte HO2CCH = CHCO2H.
L'acide fumarique E297 est également appelé acide éthylène dicarboxylique.

L'acide fumarique codé E297, présent dans la plupart des légumes et fruits, est un acide naturel.
L'acide fumarique E297 se trouve généralement dans les champignons et le foie.

L'acide fumarique E297 est l'isomère (cis-) de l'acide matureique.
Granule blanc inodore ou poudre cristalline.
Moins soluble dans l'eau et l'éther, soluble dans l'alcool et très peu soluble dans le chloroforme.




PRODUCTION ET RÉACTIONS DE L'ACIDE FUMARIQUE E297 :
La production commerciale est réalisée par fermentation du sucre et synthèse chimique.
Le feomidium peut être produit par des réactions secondaires dans des conditions et températures appropriées.
Les sels et les esters sont appelés fumarates.
Suite à l'hydratation de l'acide formique, une conversion en acide malique est observée.


BIOSYNTHÈSE ET OCCURRENCE DE L'ACIDE FUMARIQUE E297 :
Il est produit dans les organismes eucaryotes à partir du succinate du complexe 2 de la chaîne de transport d'électrons via l'enzyme succinate déshydrogénase.
L'acide fumarique se trouve dans la fumeterre (Fumaria officinalis), les champignons bolets (en particulier Boletus fomentarius var. pseudo-igniarius), le lichen et la mousse d'Islande.

Le fumarate est un intermédiaire du cycle de l'acide citrique utilisé par les cellules pour produire de l'énergie sous forme d'adénosine triphosphate (ATP) à partir des aliments.
L'acide fumarique E297 est formé par l'oxydation du succinate par l'enzyme succinate déshydrogénase.

Le fumarate est ensuite converti par l'enzyme fumarase en malate.
La peau humaine produit naturellement de l'acide fumarique lorsqu'elle est exposée au soleil.
Le fumarate est également un produit du cycle de l'urée.



UTILISATIONS DE L'ACIDE FUMARIQUE E297 :

L'acide fumarique E297 est largement considéré comme inhibant efficacement la fermentation malolactique : la bibliographie existante le décrit comme étant efficace pour prévenir son apparition microbiologique et pour la bloquer une fois qu'elle a déjà commencé.
Tous ces aspects intéressants le rendent adapté à toutes les vinifications nécessitant une maîtrise du soufre.
Il est par exemple idéal pour élaborer des fonds de vins effervescents, mais aussi pour élaborer de bons vins blancs, rosés ou rouges, pour ceux qui recherchent le goût agréable qu'offre l'acidité malique.

Dosé selon les recommandations, il provoque une diminution du pH d'environ 1 à 2 dixièmes, selon le pouvoir tampon du vin, et augmente l'acidité totale par rapport à ce qui se passerait si de l'acide tartrique était ajouté.
Cependant, selon la législation en vigueur, il n'est pas classé comme acidifiant, ce qui signifie qu'il peut être utilisé même s'il n'est pas inscrit dans le registre correspondant.

L'effet de l'acide fumarique E297 persiste aussi longtemps que la molécule est présente dans le milieu : par exemple, il a été observé qu'il dure plusieurs mois lorsqu'il est ajouté au vin une fois le processus de fermentation terminé, lors du raffinage sans activité de Saccharomyces cerevisiae.
Avant d'utiliser l'acide fumarique E297, des tests d'orientation doivent être effectués en laboratoire afin de pouvoir prédire ses effets sur l'équilibre sensoriel du vin.
L'acide fumarique E297 est le complément idéal des lignes de production de vin pour l'élaboration de vins sans dioxyde de soufre ajouté.

Nourriture:
L'acide fumarique est utilisé comme acidulant alimentaire depuis 1946.
L'acide fumarique E297 est approuvé pour une utilisation comme additif alimentaire dans l'UE[6], aux États-Unis[7], en Australie et en Nouvelle-Zélande.
En tant qu'additif alimentaire, il est utilisé comme régulateur d'acidité et peut être désigné par le numéro E E297.

L'acide fumarique E297 est généralement utilisé dans les boissons et les levures chimiques pour lesquelles des exigences de pureté sont imposées.
L'acide fumarique est utilisé dans la fabrication des tortillas de blé comme conservateur alimentaire et comme acide dans le levain.
L'acide fumarique E297 est généralement utilisé comme substitut de l'acide tartrique et occasionnellement à la place de l'acide citrique, à raison de 1 g d'acide fumarique pour environ 1,5 g d'acide citrique, afin d'ajouter de l'acidité, de la même manière que l'acide malique. est utilisé.

En plus d'être un composant de certains arômes artificiels de vinaigre, tels que les chips aromatisées au « sel et vinaigre »,[10] il est également utilisé comme coagulant dans les mélanges à pudding sur la cuisinière.
Le Comité scientifique de la Commission européenne sur l'alimentation animale, qui fait partie de la DG Santé, a constaté en 2014 que l'acide fumarique est « pratiquement non toxique », mais que des doses élevées sont probablement néphrotoxiques après une utilisation à long terme.


L'acide fumarique est utilisé dans la production d'aliments en poudre car il présente une faible rétention d'humidité dans ce secteur.
Il peut être utilisé comme régulateur d’acidité sans modifier le goût des aliments.
Les jus de fruits, les desserts gélatineux, les systèmes de biscuits réfrigérés, les vins, les aliments verts et le benzoate de sodium sont utilisés comme conservateurs, tandis que l'acide fumarique est préféré pour réguler l'acidité.

Dans les pains de seigle et de pâte au levain, la densité aromatique peut être ajustée avec de l'acide fumarique au stade du mélange sec.
L'acide fumarique E297 est utilisé pour améliorer la structure des pores des aliments de type muffin.
L'acide fumarique E297 est utilisé pour prolonger la durée de vie des confiseries car le taux d'absorption d'humidité est très faible.

L'acide fumarique E297 est également utilisé comme anti-agglomérant.
L'acide fumarique E297 est utilisé dans les peintures et les encres à séchage rapide.

Santé :
Il a été observé que le fumarate de diméthyle diminuait la progression du handicap dans la multisclérose après certains stades.

Médecine:
L'acide fumarique a été développé comme médicament pour traiter le psoriasis, une maladie auto-immune, dans les années 1950 en Allemagne sous la forme d'un comprimé contenant 3 esters, principalement du fumarate de diméthyle, et commercialisé sous le nom de Fumaderm par Biogen Idec en Europe.
Biogen développera plus tard le principal ester, le fumarate de diméthyle, comme traitement de la sclérose en plaques.

Chez les patients atteints de sclérose en plaques rémittente, l'ester diméthylfumarate (BG-12, Biogen) a réduit de manière significative la progression des rechutes et du handicap dans un essai de phase 3.
L'acide fumarique E297 active la voie de réponse antioxydante Nrf2, la principale défense cellulaire contre les effets cytotoxiques du stress oxydatif.
Autres utilisations:
L'acide fumarique est utilisé dans la fabrication de résines polyester et d'alcools polyhydriques et comme mordant pour les colorants.
Lorsque de l'acide fumarique est ajouté à leur alimentation, les agneaux produisent jusqu'à 70 % de méthane en moins pendant la digestion.[13]


SYNTHÈSE DE L'ACIDE FUMARIQUE E297 :
L'acide fumarique est produit sur la base de l'isomérisation catalytique de l'acide maléique dans des solutions aqueuses à faible pH.
L'acide fumarique E297 précipite à partir de la solution réactionnelle.
L'acide maléique est accessible en grands volumes en tant que produit d'hydrolyse de l'anhydride maléique, produit par oxydation catalytique du benzène ou du butane.


VOIES HISTORIQUES ET DE LABORATOIRE DE L'ACIDE FUMARIQUE E297 :
L'acide fumarique a d'abord été préparé à partir d'acide succinique.
Une synthèse traditionnelle implique l'oxydation du furfural (issu de la transformation du maïs) à l'aide de chlorate en présence d'un catalyseur à base de vanadium.

RÉACTIONS DE L'ACIDE FUMARIQUE E297 :
Les propriétés chimiques de l’acide fumarique peuvent être anticipées à partir des groupes fonctionnels qui le composent.
Cet acide faible forme un diester, il subit une bromation à travers la double liaison[16] et c'est un bon diénophile.


PROPRIÉTÉS DE L'ACIDE FUMARIQUE E297 :
Apparence:
L'acide fumarique E297 est une poudre ou un granulé cristallin blanc ou presque blanc avec une acidité propre et persistante avec sécheresse.
L'acidité est environ 1,5 fois supérieure à celle de l'acide citrique.

PKa :
L'acide fumarique est un acide organique faible contenant deux groupes fonctionnels acide carboxylique et, par conséquent, il a deux valeurs PKa, PKa1 = 3,03 et PKa2 = 4,44.
Sa valeur PKa1 et PKa2 est supérieure à celle de l’acide citrate et de l’acide malique.

PH :
L'acide fumarique est un acide dicarbonique insaturé et il possède 2 équations d'équilibre de dissociation.
Sa valeur PH est de 2,03 à la concentration de 100 mM (0,1mol/L).

Calcul de la valeur PH :
La méthode pour calculer son PH est la même que celle de l’acide malique.
L'acide fumarique E297 est un acide relativement fort et possède une forte propriété tampon pour maintenir le pH de la solution aqueuse à environ 3,0, ce qui est important pour les conservateurs qui fonctionnent autour de pH 3,0.
L'acide fumarique aide à stabiliser le pH d'une boisson à base de jus de fruit, ce qui rend la couleur et la saveur stables.
C'est pourquoi il est souvent utilisé avec des conservateurs tels que le benzoate de sodium (E211).


Solubilité:
Dans l'eau:
L'acide fumarique E297 a une solubilité de 0,5% (0,5g/100ml) à 20°C dans l'eau tandis que les acides citrique, malique et tartrique sont tous très solubles dans l'eau.
Le caractère hydrophobe de l’acide fumarique en fait un agent antimicrobien efficace car il peut perturber l’activité microbienne en interagissant avec les matières lipidiques de la paroi cellulaire microbienne.

Dans les solvants organiques :
Soluble dans l'alcool, légèrement soluble dans les huiles. Légèrement soluble dans l'acétone avec une solubilité de 1,29 g/100 g à 20°C. (7)


BIENFAITS DE L'ACIDE FUMARIQUE E297 :
Traitement du psoriasis :
En raison de leur mauvaise absorption après prise orale, les esters de l'acide fumarique, tels que le fumarate de monoéthyle (MEF) et le fumarate de diméthyle (DMF), sont utilisés pour le traitement du psoriasis.
Cependant, plusieurs effets secondaires sont survenus dans les études réalisées entre 1990 et 1998. Dont (8) :
• Rinçage
• Diarrhée
• Rétention rénale
• Une élévation réversible des transaminases, une lymphocytopénie et une éosinophilie.
• Troubles gastro-intestinaux, légers maux d'estomac, augmentation de la fréquence des défécations et du ténesme, jusqu'aux crampes d'estomac, tympanites et diarrhée.


UTILISATIONS DE L'ACIDE FUMARIQUE E297 :
L'acide fumarique est l'acide alimentaire biologique le plus puissant.
L'acide fumarique E297 est utilisé comme agent aromatisant pour son goût acidulé et comme agent antimicrobien pour son caractère hydrophobe.
Généralement, il est utilisé dans l’industrie alimentaire, des boissons, de la nutrition animale, des cosmétiques et de l’industrie pharmaceutique.


Nourriture:
Comparé à d’autres acidulants comme l’acide citrique, l’acide fumarique peut être utilisé dans les produits mélangés secs car il est non hygroscopique et n’absorbe pas l’humidité.
Cet avantage empêche les produits mélangés à sec de s’agglutiner ou de durcir pendant le stockage.
Dans les boissons, l'acide fumarique fonctionne comme un agent de contrôle du pH et rehausse la saveur.


Outre cette application de boisson, on peut également trouver les produits alimentaires suivants qui en contiennent et ses autres fonctions (9) :
Boulangerie et tortillas : comme acide levant dans l'agent levant et agit également comme agent aromatisant pour les produits de boulangerie salés.
Confiseries et desserts : agent non hygroscopique.
Chewing-gum : dissolution lente et propriété d'hydrophobicité, prolonge l'acidité en bouche pour rehausser la saveur du chewing-gum.


Produits de beauté:
Selon la « Base de données de la Commission européenne pour les informations sur les substances et ingrédients cosmétiques », il agit comme un tampon dans les produits cosmétiques et de soins personnels.



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE FUMARIQUE E297

Formule chimique, C4H4O4
Masse molaire, 116,072 g•mol−1
Apparence, solide blanc
Densité, 1,635 g/cm3
Point de fusion, 287 °C (549 °F; 560 K) (se décompose)[2]
Solubilité dans l'eau, 4,9 g/L à 20 °C[1]
Acidité (pKa), pka1 = 3,03, pka2 = 4,44 (15 °C, isomère cis)
Susceptibilité magnétique (χ), −49,11•10−6 cm3/mol
Moment dipolaire, non nul
Autres noms, acide bolétiqueAcide allomaléiqueAcide trans-butènedioïqueAcide trans-1,2-éthylènedicarboxylique
Numéro CAS, 110-17-8
Formule chimique, C4H4O4
Poids moléculaire, 116,072
Point de fusion, 287 °C
Point d'ébullition, 156 °C
Numéro CAS : 110-17-8
ChemSpider : 10197150
UNII : 88XHZ13131
Numéro CE : 203-743-0
DrugBank : DB04299
KEGG : C00122
Chebi : 18012
CHEMBL503160
Code ATC : D05AX01
Formule moléculaire : C4H4O4
Masse molaire : 116,07 g/mol
Aspect : Blanc solide
Densité : 1,635 g/cm3, solide
Point de fusion : 287°C
Solubilité dans l'eau : 0,63 g/100 mL
Acide (pKa) : pka1 = 3,03, pka2 = 4,44
Classification UE : Irritant (Xi)
Phrases R : R36
S- phrases : (S2) S26
Autres noms : Acide trans-butènedioïque
ASPECT, POUDRE DE CRISTAL BLANCHE
CONTENU, 99,5 %-100,5 %
POINT DE FUSION, 294-300
ARSENIC mg/kg, ≤3
MÉTAUX LOURDS (COMME Pb), ≤10 ppm
ACIDE MALÉIQUE %, ≤0,10%
RÉSIDUS À L'INFLAMMATION, ≤0,10%
HUMIDITÉ, ≤0,5%
Point de fusion, 298-300 °C (subl.)(lit.)
Point d'ébullition, 137,07°C (estimation approximative)
densité , 1,62
pression de vapeur , 1,7 mm Hg ( 165 °C)
FEMA, 2488 | L'ACIDE FUMARIQUE
indice de réfraction, 1,5260 (estimation)
Fp, 230 °C
température de stockage. , Conserver à une température inférieure à +30°C.
solubilité, éthanol à 95 % : soluble 0,46 g/10 mL, clair, incolore
forme, poudre cristalline fine
pka, 3,02, 4,38 (à 25ºC)
Couleur blanche
PH, 2,1 (4,9 g/l, H2O, 20 ºC)
limite d'explosivité, 40 %
Solubilité dans l'eau, 0,63 g/100 ml (25 ºC)
Numéro JECFA, 618
Merck, 14,4287
BRN, 605763
Stabilité : , Stable à température ambiante. Se décompose vers 230 C. Incompatible avec les oxydants forts, les bases, les agents réducteurs. Combustible.
InChIKey, VZCYOOQTPOCHFL-OWOJBTEDSA-N
Référence de la base de données CAS, 110-17-8 (Référence de la base de données CAS)
Référence chimique NIST, acide fumarique (110-17-8)
Système d'enregistrement des substances de l'EPA, acide fumarique (110-17-8)



QUESTIONS ET RÉPONSES SUR L'ACIDE FUMARIQUE E297
QU'EST-CE QUE L'ACIDE FUMARIQUE ? :
L'acide fumarique E297 est un acide organique faible (un acide dicarboxylique) fabriqué commercialement à partir d'acide maléique et de formule chimique C4H4O4.
L'acide fumarique E297 est un précurseur pour la production d'autres acides, comme l'acide L-aspartique et l'acide L-malique.
Le fumarate, le citrate et le malate sont tous des intermédiaires du cycle de l'acide tricarboxylique ou cycle KREBS pour produire de l'énergie sous forme d'ATP chez nos humains et la plupart des cellules vivantes.


Quelles sont les sources naturelles ?
L'acide fumarique E297 se trouve naturellement dans les fumeterres, les bolets, le lichen et la mousse d'Islande.
De plus, l'acide fumarique E297 est présent dans les fruits comme la pomme et la pastèque.
Généralement, on le trouve moins dans la plupart des fruits que deux autres acidulants, l'acide citrique et l'acide malique.


Comment est-ce fait?:
L'acide fumarique peut être produit par isomérisation de l'acide maléique ou par fermentation du glucose.
Voici les deux procédés de fabrication :

1. Isomérisation de l’acide maléique :
Généralement, la production est synthétisée chimiquement à partir de l'isomérisation de l'acide maléique, qui est l'hydrolyse de l'anhydride maléique.
L'anhydride maléique est l'homologue cis de l'acide fumarique.
L'acide fumarique E297 est fabriqué à partir de butane, le butène ou le benzène provenant du pétrole sont les matières premières.

2. Fermentation du sucre :
Fermentation par les espèces Rhizopus en utilisant du glucose ou d'autres substrats glucidiques.
INFORMATIONS DE SÉCURITÉ CONCERNANT L'ACIDE FUMARIQUE E297 :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé


ACIDE GLUCONIQUE
DESCRIPTION:
L'acide gluconique est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4COOH.
L'acide gluconique est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.

Numéro CAS : 526-95-4
Numéro CE : 208-401-4
Nom IUPAC : Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Formule moléculaire : C6H12O7

En solution aqueuse à pH neutre, l'acide gluconique forme l'ion gluconate.
Les sels de l'acide gluconique sont appelés « gluconates ».
L'acide gluconique, les sels de gluconate et les esters de gluconate sont largement présents dans la nature car ces espèces proviennent de l'oxydation du glucose.
Certains médicaments sont injectés sous forme de gluconates.


L'acide gluconique est un acide organique doux, ni caustique, ni corrosif et doté d'un excellent pouvoir séquestrant.
Non toxique et facilement biodégradable (98 % après 2 jours), il est naturellement présent dans les plantes, les fruits et d'autres aliments comme le vin (jusqu'à 0,25 %) et le miel (jusqu'à 1 %).
L'acide gluconique est préparé par fermentation du glucose, ce qui produit la forme physiologique D.

Dans toutes les recettes où l'acide gluconique est utilisé avec de l'hydroxyde de sodium, nous recommandons l'utilisation directe du gluconate de sodium, du sel de sodium sec de l'acide gluconique ou du produit spécial NAGLUSOL®.
L'acide gluconique a des propriétés polyvalentes en étant un acide polyhydroxycarboxylique, avec des groupes hydroxyle et carboxyle qui peuvent réagir.


Les solutions concentrées d'acide gluconique contiennent de la lactone (GdL), l'ester cyclique neutre, moins soluble au froid et ne possédant pas de véritables propriétés acides.
Environ 5 % de GdL sont présents dans la solution d’acide gluconique à 50 % à température ambiante.

La propriété exceptionnelle de l’acide gluconique est son excellent pouvoir chélateur, en particulier dans les solutions alcalines et alcalines concentrées.
À cet égard, il surpasse tous les autres agents chélateurs, tels que l'EDTA, le NTA et les composés apparentés.
Le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds sont fermement chélatés dans une solution alcaline et masqués de manière à éliminer leurs interférences.

L'acide gluconique est stable au point d'ébullition même des solutions alcalines concentrées.
Cependant, il se dégrade facilement et totalement dans les stations d'épuration (98 % après 2 jours).


L'acide gluconique est un acide gluconique ayant une configuration D.
L'acide gluconique joue un rôle de chélateur et de métabolite du pénicillium.
L'acide gluconique est un acide conjugué d'un D-gluconate.

L'acide gluconique est un énantiomère d'un acide L-gluconique.
On le trouve couramment dans les sels contenant du sodium et du calcium.

L'acide gluconique ou gluconate est utilisé pour maintenir l'équilibre cation-anion sur les solutions électrolytiques.
L'acide gluconique est un métabolite présent ou produit par Escherichia coli (souche K12, MG1655).

L'acide gluconique est un composé inorganique qui se trouve être les 16 stéréoisomères de l'acide 2,3,4,5,6-penta-hydroxyhexanoïque.
L'acide gluconique se trouve facilement dans le miel, les plantes et le vin.
L'acide gluconique est produit par l'oxydation du premier carbone du glucose aux propriétés antiseptiques et chélatrices.

L'acide gluconique 50 % est composé d'un équilibre entre l'acide libre et les deux lactones.
Cet équilibre est affecté par la concentration et la température du mélange.
Une concentration élevée de delta-lactone favorisera le passage de l'équilibre à la formation de gamma-lactone et vice versa.

Une température basse favorise la formation de glucono-delta-lactone tandis que des températures élevées augmenteront la formation de glucono-gamma-lactone.
Dans des conditions normales, l'acide gluconique PMP 50 % présente un équilibre stable contribuant à sa couleur claire à jaune clair avec un faible niveau de corrosivité et de toxicité.


L'acide gluconique est un acide organique au goût doux, ni caustique ni corrosif et doté d'une excellente capacité complexante.
L'acide gluconique est présent naturellement dans les plantes et les aliments, est non toxique et est pleinement utilisé dans l'organisme, comme un glucide.
L'acide gluconique est produit commercialement par une fermentation oxydative aérobie du glucose, par laquelle la forme physiologique D est produite.



STRUCTURE CHIMIQUE DE L'ACIDE GLUCONIQUE :
La structure chimique de l'acide gluconique est constituée d'une chaîne à six carbones, avec cinq groupes hydroxyle positionnés de la même manière que dans la forme à chaîne ouverte du glucose, se terminant par un groupe acide carboxylique.
En solution aqueuse, l'acide gluconique existe en équilibre avec l'ester cyclique glucono delta-lactone.

Formule développée de l'acide gluconique :
La structure de l'acide gluconique comprend 6 chaînes carbonées ainsi que 5 groupes hydroxyles placés dans le format général à chaîne ouverte du glucose, se terminant par le groupe acide carboxylique.
L'acide gluconique existe à l'état d'équilibre à l'état aqueux en présence d'ester cyclique glucono delta-lactone.



PRODUCTION D'ACIDE GLUCONIQUE :
La préparation d'acide gluconique a été rapportée pour la première fois par Hlasiwetz et Habermann en 1870 et impliquait l'oxydation chimique du glucose.
En 1880, Boutroux préparait et isolait l'acide gluconique en utilisant la fermentation du glucose.

Les méthodes contemporaines de production d'acide gluconique utilisent des variations d'oxydation du glucose (ou d'un autre substrat contenant des glucides) par fermentation ou catalyse par métaux nobles.



PRÉSENCE ET UTILISATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique est naturellement présent dans les fruits, le miel et le vin.
En tant qu'additif alimentaire (E574), l'acide gluconique est désormais connu comme régulateur d'acidité.

L'anion gluconate chélate Ca2+, Fe2+, K+, Al3+ et d'autres métaux, notamment les lanthanides et les actinides.
L'acide gluconique est également utilisé dans les produits de nettoyage, où il dissout les dépôts minéraux, notamment en solution alcaline.

Des injections de gluconate de zinc sont utilisées pour stériliser les chiens mâles.
Le gluconate est également utilisé dans le bâtiment et la construction comme adjuvant pour le béton (retardateur) pour ralentir les réactions d'hydratation du ciment et pour retarder le temps de prise du ciment.
L'acide gluconique permet de poser le béton plus longtemps, ou de répartir la chaleur d'hydratation du ciment sur une plus longue période pour éviter une température trop élevée et les fissures qui en résultent.

Les retardateurs sont mélangés au béton lorsque les températures sont élevées ou pour couler des dalles de béton de grande taille et épaisses en couches successives et suffisamment bien mélangées.
La solution aqueuse d’acide gluconique trouve une application comme milieu de synthèse organique.


Médecine:
En médecine, le gluconate est le plus souvent utilisé comme support biologiquement neutre de Zn2+, Ca2+, Cu2+, Fe2+ et K+ pour traiter le déséquilibre électrolytique.
Le gluconate de calcium, sous forme de gel, est utilisé pour traiter les brûlures dues à l'acide fluorhydrique ; des injections de gluconate de calcium peuvent être utilisées dans les cas plus graves afin d'éviter la nécrose des tissus profonds, ainsi que pour traiter l'hypocalcémie chez les patients hospitalisés.

Le gluconate est également un électrolyte présent dans certaines solutions, comme le « plasmalyte a », utilisé pour la réanimation liquidienne intraveineuse.
Le gluconate de quinine est un sel d'acide gluconique et de quinine, utilisé en injection intramusculaire dans le traitement du paludisme.
Des injections de gluconate ferreux ont été proposées dans le passé pour traiter l'anémie


L'acide gluconique est utilisé pour le nettoyage industriel, la stabilisation de l'eau de Javel textile, le traitement de l'aluminium et comme agent chélateur dans le retardateur de prise du ciment.
L'acide gluconique est également utilisé pour le traitement des surfaces métalliques, les produits de nettoyage, les produits de soins personnels, les produits pharmaceutiques et comme additif alimentaire.
Le gluconate de calcium est utilisé dans le traitement des patients souffrant d'hypocalcémie et son gel est utilisé dans le traitement des brûlures dues à l'acide fluorhydrique.

Le gluconate de quinine, un sel d'acide gluconique et de quinine, est utilisé dans le traitement du paludisme.
Des injections de gluconate ferreux, ou gluconate de fer (II), ont été proposées dans le passé pour traiter l'anémie, due à une carence en fer.
La solution aqueuse d'acide gluconique est utilisée comme milieu de synthèse organique.


SPÉCIFICATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique de qualité technique est fourni sous forme de solution aqueuse à 50 % dans l'eau.

L'acide gluconique de qualité alimentaire est fourni conformément aux dernières exigences du règlement (UE) n° 231/2012 de la Commission.
L'acide gluconique de qualité alimentaire est proposé sous forme de solution aqueuse à 50 %.

L'acide gluconique est disponible sous forme liquide sous forme de solution aqueuse à 50 %.

L'acide gluconique est fourni en vrac, dans des récipients pour vrac (IBC) d'un poids net de 1 250 kg (1 000 kg net pour la solution à 50 %) et en fûts d'un poids net de 250 kg.
D'autres types de conditionnement sont disponibles sur demande.


PROPRIÉTÉS DE L'ACIDE GLUCONIQUE :
L'acide gluconique est non toxique
L'acide gluconique est facilement biodégradable (98 % après 2 jours)
Goût doux

L'acide gluconique est l'acide organique le moins corrosif
L'acide gluconique est les fonctions principales
L'acide gluconique est un excellent agent chélateur


APPLICATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique a des propriétés polyvalentes en étant un acide polyhydroxycarboxylique, avec des groupes hydroxyle et carboxyle qui peuvent réagir.

Les solutions concentrées d'acide gluconique contiennent de la lactone (GDL), l'ester cyclique neutre, moins soluble au froid et ne possédant pas de véritables propriétés acides.
Environ 5 % de GdL sont présents dans la solution d’acide gluconique à 50 % à température ambiante.

La propriété exceptionnelle de l’acide gluconique est son excellent pouvoir chélateur, en particulier dans les solutions alcalines et alcalines concentrées.
À cet égard, il surpasse tous les autres agents chélateurs, tels que l'EDTA, le NTA et les composés apparentés.
Le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds sont fermement chélatés dans une solution alcaline et masqués de manière à éliminer leurs interférences.

L'acide gluconique est stable au point d'ébullition même des solutions alcalines concentrées.
Cependant, il se dégrade facilement et totalement dans les stations d'épuration (98% après 2 jours)


PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DU GLUCONATE :
Formule chimique C6H12O7
Masse molaire 196,155 g•mol−1
Aspect Cristaux incolores
Point de fusion 131 °C (268 °F; 404 K)
Solubilité dans l'eau 316 g/L
Acidité (pKa) 3,86
Masse moléculaire
196,16 g/mole
XLogP3-AA
-3.4
Nombre de donneurs de liaisons hydrogène
6
Nombre d'accepteurs de liaison hydrogène
7
Nombre de liaisons rotatives
5
Masse exacte
196,05830272 g/mole
Masse monoisotopique
196,05830272 g/mole
Surface polaire topologique
138 Ų _
Nombre d'atomes lourds
13
Charge formelle
0
Complexité
170
Nombre d'atomes isotopiques
0
Nombre de stéréocentres d'atomes défini
4
Nombre de stéréocentres d'atomes non défini
0
Nombre de stéréocentres de liaison définis
0
Nombre de stéréocentres de liaison non défini
0
Nombre d'unités liées de manière covalente
1
Le composé est canonisé
Oui
Point d'ébullition 105 - 106 °C (1013 hPa)
Densité 1,24 g/cm3 (20 °C)
Valeur pH 2,2 (500 g/l, H₂O, 20 °C)
Dosage (acidimétrique) 48,0 - 52,0 %
Densité (d 20 °C/ 4 °C) 1,229 - 1,245



INFORMATIONS DE SÉCURITÉ SUR L'ACIDE GLUCONIQUE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



SYNONYMES D'ACIDE GLUCONIQUE :
gluconate de bore
D-gluconate
Acide D-gluconique
acide dextronique
gluconate
acide gluconique
acide gluconique, (113) marqué à l'indium
acide gluconique, marqué au (14)C
acide gluconique, (159) sel marqué au dysprosium
acide gluconique, sel (99) de technécium (5+)
acide gluconique, marqué au 1-(14)C
acide gluconique, marqué au 6-(14)C
acide gluconique, sel d'aluminium (3:1)
acide gluconique, sel d'ammonium
acide gluconique, sel de calcium
acide gluconique, sel de césium(+3)
acide gluconique, sel de cobalt (2:1)
acide gluconique, sel de cuivre
acide gluconique, sel de Fe(+2), dihydraté
acide gluconique, sel de lanthane(+3)
acide gluconique, sel de magnésium (2:1)
acide gluconique, sel de manganèse (2:1)
acide gluconique, sel de monolithium
acide gluconique, sel monopotassique
acide gluconique, sel monosodique
acide gluconique, sel de potassium
acide gluconique, sel de sodium
acide gluconique, sel de strontium (2:1)
acide gluconique, sel d'étain(+2)
acide gluconique, sel de zinc
gluconate de lithium
magnérot
gluconate de magnésium
acide maltonique
gluconate de manganèse
acide pentahydroxycaproïque
gluconate de sodium
gluconate de zinc
acide gluconique
Acide D-gluconique
526-95-4
acide dextronique
acide maltonique
Acide glycogénique
Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Glosanto
Acide pentahydroxycaproïque
gluconate
Acide gluconique, D-
Acide D-gluco-hexonique
Acide glycolique
Acide gluconique (VAN)
133-42-6
HSDB 487
D-Gluconsaeure
D-Glukonsaeure
BRN1726055
EINECS208-401-4
UNII-R4R8J0Q44B
NSC 77381
R4R8J0Q44B
DTXSID8027169
CHEBI:33198
Acide 2,3,4,5,6-pentahydroxyhexanoïque
GLUCONAL GA-50
Acide hexonique
DTXCID307169
SIN N° 574
DTXSID8042000
INS-574
CE 208-401-4
4-03-00-01255 (référence du manuel Beilstein)
Dextronate
Glycogénate
Glyconate
Maltonate
NSC-77381
157663-13-3
C6H12O7
F-574
124423-64-9
GCO
ACIDE GLUCONIQUE (MART.)
ACIDE GLUCONIQUE [MART.]
GLUCONATE D'AMMONIUM
2,3,4,5,6-pentahydroxyhexanoate
19222-41-4
NSC77381
gluconate de sodium
C6-H12-O7
acide cétogluconique
Acide D-gluconique
Acide D-?Gluconique
Pentahydroxycaproate
SCHEMBL971
bmse000084
ACIDE GLUCONIQUE [IM]
Code des pesticides : 000104
ACIDE GLUCONIQUE [HSDB]
ACIDE GLUCONIQUE [INCI]
ACIDE GLUCONIQUE [VANDF]
CHEMBL464345
Acide D-gluconique 50% dans l'eau
ACIDE GLUCONIQUE [OMS-DD]
CHEBI:24266
RGHNJXZEOKUKBD-SQOUGZDYSA-N
DTXCID201012074
Acide gluconique (contient de la gluconolactone)
HY-Y0569
2,3,4,5,6-pentahydroxy-hexanoate
Gluconate de calcium (acide D-gluconique)
Tox21_202745
MFCD00004240
s3595
Acide 2,3,4,5,6-pentahydroxycaproïque
AKOS015895892
DB13180
Acide 2,3,4,5,6-pentahydroxy-hexanoïque
Acide gluconique (contient de la gluconolactone)
NCGC00260293-01
CAS-526-95-4
E574
LS-71436
CS-0015343
G0036
Solution d'acide 2,3,4,5,6-pentahydroxycaproïque
C00257
D70789
EN300-7392806
Q407569
W-109086
6E52B5FC-5676-4139-977A-4D643EDDB159



ACIDE GLUCONIQUE
DESCRIPTION:
L'acide gluconique est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4COOH.
L'acide gluconique est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.

Numéro CAS : 526-95-4
Numéro CE : 208-401-4
Nom IUPAC : Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Formule moléculaire : C6H12O7

En solution aqueuse à pH neutre, l'acide gluconique forme l'ion gluconate.
Les sels de l'acide gluconique sont appelés « gluconates ».
L'acide gluconique, les sels de gluconate et les esters de gluconate sont largement présents dans la nature car ces espèces proviennent de l'oxydation du glucose.
Certains médicaments sont injectés sous forme de gluconates.


L'acide gluconique est un acide organique doux, ni caustique, ni corrosif et doté d'un excellent pouvoir séquestrant.
Non toxique et facilement biodégradable (98 % après 2 jours), il est naturellement présent dans les plantes, les fruits et d'autres aliments comme le vin (jusqu'à 0,25 %) et le miel (jusqu'à 1 %).
L'acide gluconique est préparé par fermentation du glucose, ce qui produit la forme physiologique D.

Dans toutes les recettes où l'acide gluconique est utilisé avec de l'hydroxyde de sodium, nous recommandons l'utilisation directe du gluconate de sodium, du sel de sodium sec de l'acide gluconique ou du produit spécial NAGLUSOL®.
L'acide gluconique a des propriétés polyvalentes en étant un acide polyhydroxycarboxylique, avec des groupes hydroxyle et carboxyle qui peuvent réagir.


Les solutions concentrées d'acide gluconique contiennent de la lactone (GdL), l'ester cyclique neutre, moins soluble au froid et ne possédant pas de véritables propriétés acides.
Environ 5 % de GdL sont présents dans la solution d’acide gluconique à 50 % à température ambiante.

La propriété exceptionnelle de l’acide gluconique est son excellent pouvoir chélateur, en particulier dans les solutions alcalines et alcalines concentrées.
À cet égard, il surpasse tous les autres agents chélateurs, tels que l'EDTA, le NTA et les composés apparentés.
Le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds sont fermement chélatés dans une solution alcaline et masqués de manière à éliminer leurs interférences.

L'acide gluconique est stable au point d'ébullition même des solutions alcalines concentrées.
Cependant, il se dégrade facilement et totalement dans les stations d'épuration (98 % après 2 jours).


L'acide gluconique est un acide gluconique ayant une configuration D.
L'acide gluconique joue un rôle de chélateur et de métabolite du pénicillium.
L'acide gluconique est un acide conjugué d'un D-gluconate.

L'acide gluconique est un énantiomère d'un acide L-gluconique.
On le trouve couramment dans les sels contenant du sodium et du calcium.

L'acide gluconique ou gluconate est utilisé pour maintenir l'équilibre cation-anion sur les solutions électrolytiques.
L'acide gluconique est un métabolite présent ou produit par Escherichia coli (souche K12, MG1655).

L'acide gluconique est un composé inorganique qui se trouve être les 16 stéréoisomères de l'acide 2,3,4,5,6-penta-hydroxyhexanoïque.
L'acide gluconique se trouve facilement dans le miel, les plantes et le vin.
L'acide gluconique est produit par l'oxydation du premier carbone du glucose aux propriétés antiseptiques et chélatrices.

L'acide gluconique 50 % est composé d'un équilibre entre l'acide libre et les deux lactones.
Cet équilibre est affecté par la concentration et la température du mélange.
Une concentration élevée de delta-lactone favorisera le passage de l'équilibre à la formation de gamma-lactone et vice versa.

Une température basse favorise la formation de glucono-delta-lactone tandis que des températures élevées augmenteront la formation de glucono-gamma-lactone.
Dans des conditions normales, l'acide gluconique PMP 50 % présente un équilibre stable contribuant à sa couleur claire à jaune clair avec un faible niveau de corrosivité et de toxicité.


L'acide gluconique est un acide organique au goût doux, ni caustique ni corrosif et doté d'une excellente capacité complexante.
L'acide gluconique est présent naturellement dans les plantes et les aliments, est non toxique et est pleinement utilisé dans l'organisme, comme un glucide.
L'acide gluconique est produit commercialement par une fermentation oxydative aérobie du glucose, par laquelle la forme physiologique D est produite.



STRUCTURE CHIMIQUE DE L'ACIDE GLUCONIQUE :
La structure chimique de l'acide gluconique est constituée d'une chaîne à six carbones, avec cinq groupes hydroxyle positionnés de la même manière que dans la forme à chaîne ouverte du glucose, se terminant par un groupe acide carboxylique.
En solution aqueuse, l'acide gluconique existe en équilibre avec l'ester cyclique glucono delta-lactone.

Formule développée de l'acide gluconique :
La structure de l'acide gluconique comprend 6 chaînes carbonées ainsi que 5 groupes hydroxyles placés dans le format général à chaîne ouverte du glucose, se terminant par le groupe acide carboxylique.
L'acide gluconique existe à l'état d'équilibre à l'état aqueux en présence d'ester cyclique glucono delta-lactone.



PRODUCTION D'ACIDE GLUCONIQUE :
La préparation d'acide gluconique a été rapportée pour la première fois par Hlasiwetz et Habermann en 1870 et impliquait l'oxydation chimique du glucose.
En 1880, Boutroux préparait et isolait l'acide gluconique en utilisant la fermentation du glucose.

Les méthodes contemporaines de production d'acide gluconique utilisent des variations d'oxydation du glucose (ou d'un autre substrat contenant des glucides) par fermentation ou catalyse par métaux nobles.



PRÉSENCE ET UTILISATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique est naturellement présent dans les fruits, le miel et le vin.
En tant qu'additif alimentaire (E574), l'acide gluconique est désormais connu comme régulateur d'acidité.

L'anion gluconate chélate Ca2+, Fe2+, K+, Al3+ et d'autres métaux, notamment les lanthanides et les actinides.
L'acide gluconique est également utilisé dans les produits de nettoyage, où il dissout les dépôts minéraux, notamment en solution alcaline.

Des injections de gluconate de zinc sont utilisées pour stériliser les chiens mâles.
Le gluconate est également utilisé dans le bâtiment et la construction comme adjuvant pour le béton (retardateur) pour ralentir les réactions d'hydratation du ciment et pour retarder le temps de prise du ciment.
L'acide gluconique permet de poser le béton plus longtemps, ou de répartir la chaleur d'hydratation du ciment sur une plus longue période pour éviter une température trop élevée et les fissures qui en résultent.

Les retardateurs sont mélangés au béton lorsque les températures sont élevées ou pour couler des dalles de béton de grande taille et épaisses en couches successives et suffisamment bien mélangées.
La solution aqueuse d’acide gluconique trouve une application comme milieu de synthèse organique.


Médecine:
En médecine, le gluconate est le plus souvent utilisé comme support biologiquement neutre de Zn2+, Ca2+, Cu2+, Fe2+ et K+ pour traiter le déséquilibre électrolytique.
Le gluconate de calcium, sous forme de gel, est utilisé pour traiter les brûlures dues à l'acide fluorhydrique ; des injections de gluconate de calcium peuvent être utilisées dans les cas plus graves afin d'éviter la nécrose des tissus profonds, ainsi que pour traiter l'hypocalcémie chez les patients hospitalisés.

Le gluconate est également un électrolyte présent dans certaines solutions, comme le « plasmalyte a », utilisé pour la réanimation liquidienne intraveineuse.
Le gluconate de quinine est un sel d'acide gluconique et de quinine, utilisé en injection intramusculaire dans le traitement du paludisme.
Des injections de gluconate ferreux ont été proposées dans le passé pour traiter l'anémie


L'acide gluconique est utilisé pour le nettoyage industriel, la stabilisation de l'eau de Javel textile, le traitement de l'aluminium et comme agent chélateur dans le retardateur de prise du ciment.
L'acide gluconique est également utilisé pour le traitement des surfaces métalliques, les produits de nettoyage, les produits de soins personnels, les produits pharmaceutiques et comme additif alimentaire.
Le gluconate de calcium est utilisé dans le traitement des patients souffrant d'hypocalcémie et son gel est utilisé dans le traitement des brûlures dues à l'acide fluorhydrique.

Le gluconate de quinine, un sel d'acide gluconique et de quinine, est utilisé dans le traitement du paludisme.
Des injections de gluconate ferreux, ou gluconate de fer (II), ont été proposées dans le passé pour traiter l'anémie, due à une carence en fer.
La solution aqueuse d'acide gluconique est utilisée comme milieu de synthèse organique.


SPÉCIFICATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique de qualité technique est fourni sous forme de solution aqueuse à 50 % dans l'eau.

L'acide gluconique de qualité alimentaire est fourni conformément aux dernières exigences du règlement (UE) n° 231/2012 de la Commission.
L'acide gluconique de qualité alimentaire est proposé sous forme de solution aqueuse à 50 %.

L'acide gluconique est disponible sous forme liquide sous forme de solution aqueuse à 50 %.

L'acide gluconique est fourni en vrac, dans des récipients pour vrac (IBC) d'un poids net de 1 250 kg (1 000 kg net pour la solution à 50 %) et en fûts d'un poids net de 250 kg.
D'autres types de conditionnement sont disponibles sur demande.


PROPRIÉTÉS DE L'ACIDE GLUCONIQUE :
L'acide gluconique est non toxique
L'acide gluconique est facilement biodégradable (98 % après 2 jours)
Goût doux

L'acide gluconique est l'acide organique le moins corrosif
L'acide gluconique est les fonctions principales
L'acide gluconique est un excellent agent chélateur


APPLICATIONS DE L'ACIDE GLUCONIQUE :
L'acide gluconique a des propriétés polyvalentes en étant un acide polyhydroxycarboxylique, avec des groupes hydroxyle et carboxyle qui peuvent réagir.

Les solutions concentrées d'acide gluconique contiennent de la lactone (GDL), l'ester cyclique neutre, moins soluble au froid et ne possédant pas de véritables propriétés acides.
Environ 5 % de GdL sont présents dans la solution d’acide gluconique à 50 % à température ambiante.

La propriété exceptionnelle de l’acide gluconique est son excellent pouvoir chélateur, en particulier dans les solutions alcalines et alcalines concentrées.
À cet égard, il surpasse tous les autres agents chélateurs, tels que l'EDTA, le NTA et les composés apparentés.
Le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds sont fermement chélatés dans une solution alcaline et masqués de manière à éliminer leurs interférences.

L'acide gluconique est stable au point d'ébullition même des solutions alcalines concentrées.
Cependant, il se dégrade facilement et totalement dans les stations d'épuration (98% après 2 jours)


PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DU GLUCONATE :
Formule chimique C6H12O7
Masse molaire 196,155 g•mol−1
Aspect Cristaux incolores
Point de fusion 131 °C (268 °F; 404 K)
Solubilité dans l'eau 316 g/L
Acidité (pKa) 3,86
Masse moléculaire
196,16 g/mole
XLogP3-AA
-3.4
Nombre de donneurs de liaisons hydrogène
6
Nombre d'accepteurs de liaison hydrogène
7
Nombre de liaisons rotatives
5
Masse exacte
196,05830272 g/mole
Masse monoisotopique
196,05830272 g/mole
Surface polaire topologique
138 Ų _
Nombre d'atomes lourds
13
Charge formelle
0
Complexité
170
Nombre d'atomes isotopiques
0
Nombre de stéréocentres d'atomes défini
4
Nombre de stéréocentres d'atomes non défini
0
Nombre de stéréocentres de liaison définis
0
Nombre de stéréocentres de liaison non défini
0
Nombre d'unités liées de manière covalente
1
Le composé est canonisé
Oui
Point d'ébullition 105 - 106 °C (1013 hPa)
Densité 1,24 g/cm3 (20 °C)
Valeur pH 2,2 (500 g/l, H₂O, 20 °C)
Dosage (acidimétrique) 48,0 - 52,0 %
Densité (d 20 °C/ 4 °C) 1,229 - 1,245



INFORMATIONS DE SÉCURITÉ SUR L'ACIDE GLUCONIQUE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



SYNONYMES D'ACIDE GLUCONIQUE :
gluconate de bore
D-gluconate
Acide D-gluconique
acide dextronique
gluconate
acide gluconique
acide gluconique, (113) marqué à l'indium
acide gluconique, marqué au (14)C
acide gluconique, (159) sel marqué au dysprosium
acide gluconique, sel (99) de technécium (5+)
acide gluconique, marqué au 1-(14)C
acide gluconique, marqué au 6-(14)C
acide gluconique, sel d'aluminium (3:1)
acide gluconique, sel d'ammonium
acide gluconique, sel de calcium
acide gluconique, sel de césium(+3)
acide gluconique, sel de cobalt (2:1)
acide gluconique, sel de cuivre
acide gluconique, sel de Fe(+2), dihydraté
acide gluconique, sel de lanthane(+3)
acide gluconique, sel de magnésium (2:1)
acide gluconique, sel de manganèse (2:1)
acide gluconique, sel de monolithium
acide gluconique, sel monopotassique
acide gluconique, sel monosodique
acide gluconique, sel de potassium
acide gluconique, sel de sodium
acide gluconique, sel de strontium (2:1)
acide gluconique, sel d'étain(+2)
acide gluconique, sel de zinc
gluconate de lithium
magnérot
gluconate de magnésium
acide maltonique
gluconate de manganèse
acide pentahydroxycaproïque
gluconate de sodium
gluconate de zinc
acide gluconique
Acide D-gluconique
526-95-4
acide dextronique
acide maltonique
Acide glycogénique
Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Glosanto
Acide pentahydroxycaproïque
gluconate
Acide gluconique, D-
Acide D-gluco-hexonique
Acide glycolique
Acide gluconique (VAN)
133-42-6
HSDB 487
D-Gluconsaeure
D-Glukonsaeure
BRN1726055
EINECS208-401-4
UNII-R4R8J0Q44B
NSC 77381
R4R8J0Q44B
DTXSID8027169
CHEBI:33198
Acide 2,3,4,5,6-pentahydroxyhexanoïque
GLUCONAL GA-50
Acide hexonique
DTXCID307169
SIN N° 574
DTXSID8042000
INS-574
CE 208-401-4
4-03-00-01255 (référence du manuel Beilstein)
Dextronate
Glycogénate
Glyconate
Maltonate
NSC-77381
157663-13-3
C6H12O7
F-574
124423-64-9
GCO
ACIDE GLUCONIQUE (MART.)
ACIDE GLUCONIQUE [MART.]
GLUCONATE D'AMMONIUM
2,3,4,5,6-pentahydroxyhexanoate
19222-41-4
NSC77381
gluconate de sodium
C6-H12-O7
acide cétogluconique
Acide D-gluconique
Acide D-?Gluconique
Pentahydroxycaproate
SCHEMBL971
bmse000084
ACIDE GLUCONIQUE [IM]
Code des pesticides : 000104
ACIDE GLUCONIQUE [HSDB]
ACIDE GLUCONIQUE [INCI]
ACIDE GLUCONIQUE [VANDF]
CHEMBL464345
Acide D-gluconique 50% dans l'eau
ACIDE GLUCONIQUE [OMS-DD]
CHEBI:24266
RGHNJXZEOKUKBD-SQOUGZDYSA-N
DTXCID201012074
Acide gluconique (contient de la gluconolactone)
HY-Y0569
2,3,4,5,6-pentahydroxy-hexanoate
Gluconate de calcium (acide D-gluconique)
Tox21_202745
MFCD00004240
s3595
Acide 2,3,4,5,6-pentahydroxycaproïque
AKOS015895892
DB13180
Acide 2,3,4,5,6-pentahydroxy-hexanoïque
Acide gluconique (contient de la gluconolactone)
NCGC00260293-01
CAS-526-95-4
E574
LS-71436
CS-0015343
G0036
Solution d'acide 2,3,4,5,6-pentahydroxycaproïque
C00257
D70789
EN300-7392806
Q407569
W-109086
6E52B5FC-5676-4139-977A-4D643EDDB159




ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE)
L'acide gluconique (acide Dextronic) est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.
L'acide gluconique (acide Dextronic) est un acide de fruit autorisé comme additif alimentaire sous le numéro E 574 en Europe.
L'acide gluconique (acide Dextronique) est produit à partir du glucose par oxydation en C1 de la molécule de glucose.


Numéro CAS : 526-95-4 (D)
133-42-6 (racémate)
Numéro CE : 208-401-4
Numéro MDL : MFCD00004240
Formule moléculaire : C6H12O7



SYNONYMES :
acide gluconique, acide D-gluconique, 526-95-4, acide dextronique, acide maltonique, acide glycogénique, acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque, Glosanto, acide pentahydroxycaproïque , gluconate, Acide gluconique (VAN), 133-42-6, HSDB 487, D-Gluconsaeure, D-Glukonsaeure, BRN 1726055, EINECS 208-401-4, UNII-R4R8J0Q44B, NSC 77381, R4R8J0Q44B, DTXSID8027169, CHEBI : 33198 , Acide 2,3,4,5,6-pentahydroxyhexanoïque, GLUCONAL GA-50, acide hexonique, DTXCID307169, SIN NO.574, DTXSID8042000, INS-574, EC 208-401-4, 4-03-00-01255 ( Référence du manuel Beilstein), Dextronate, Glycogénate, Glyconate, Maltonate, NSC-77381, 157663-13-3, E-574, 124423-64-9, GCO, ACIDE GLUCONIQUE (MART.), ACIDE GLUCONIQUE [MART.], AMMONIUM GLUCONATE, 2,3,4,5,6-pentahydroxyhexanoate, 19222-41-4, NSC77381, gluconate de sodium, acide cétogluconique, acide D-?Gluconique, pentahydroxycaproate, SCHEMBL971, bmse000084, ACIDE GLUCONIQUE [MI], Code du pesticide : 000104, ACIDE GLUCONIQUE [HSDB], ACIDE GLUCONIQUE [INCI], ACIDE GLUCONIQUE [VANDF], CHEMBL464345, Acide D-gluconique 50% dans l'eau, ACIDE GLUCONIQUE [WHO-DD], CHEBI:24266, DTXCID201012074, Acide D-gluconique ( 50 % dans l'eau), acide gluconique (contient de la gluconolactone), HY-Y0569, 2,3,4,5,6-pentahydroxy-hexanoate, Tox21_202745, MFCD00004240, s3595, acide 2,3,4,5,6-pentahydroxycaproïque, AKOS015895892, DB13180, acide 2,3,4,5,6-pentahydroxy-hexanoïque, ACIDE GLUCONIQUE (50 % DANS L'EAU), NCGC00260293-01, CAS-526-95-4, E574, CS-0015343, G0036, NS00008847, 2, Solution d'acide 3,4,5,6-pentahydroxycaproïque, C00257, D70789, EN300-7392806, Q407569, W-109086, 6E52B5FC-5676-4139-977A-4D643EDDB159, acide d-gluconique, nom IUPAC systématique (2R, 3S, 4R ,5R)- Acide 2,3,4,5,6-pentahydroxyhexanoïque, acide dextronique, acide D-gluconique, acide dextronique, acide pentahydroxycaproïque, 2,3,4,5,6-pentahydroxy-hexanoate, 2,3,4 Acide ,5,6-pentahydroxy-hexanoïque, 2,3,4,5,6-pentahydroxyhexanoate, acide 2,3,4,5,6-pentahydroxyhexanoïque, aldonate, acide aldonique, D-gluco-hexonate, D-gluco- acide hexonique, D-Gluconate, Acide D-gluconique, D-Gluconsaeure, D-Glukonsaeure, Dextronate, Acide dextronique, GCO, Glosanto, Gluconate, Acide gluconique, Glycogénate, Acide glycogénique, Glyconate, Acide glycolique, Hexonate, Acide hexonique, Maltonate , Acide maltonique, Pentahydroxycaproate, Acide pentahydroxycaproïque, Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque, Acide D-Gluco-hexonique, D-Gluconsaeure, D-Glukonsaeure, Acide Dextronique, Acide glycogénique, acide hexonique, acide maltonique, D-Gluconate, (2R,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanoate, D-Gluco-hexonate, Dextronate, Glycogénate, Hexonate, Maltonate, D -Acide gluconique, Gluconate, 2,3,4,5,6-pentahydroxy-hexanoate, acide 2,3,4,5,6-pentahydroxy-hexanoïque, 2,3,4,5,6-pentahydroxyhexanoate, 2,3 Acide ,4,5,6-pentahydroxyhexanoïque, GCO, Glosanto, Glyconate, Acide glycolique, Pentahydroxycaproate, Acide pentahydroxycaproïque, Gluconate de bore, Acide gluconique (113) marqué à l'indium, Sel de calcium de l'acide gluconique, Sel de césium (+3) de l'acide gluconique, Sel d'acide gluconique de lanthane (+3), sel de sodium d'acide gluconique, sel de strontium d'acide gluconique (2: 1), magnérot, gluconate de manganèse, gluconate de sodium, gluconate de zinc, acide gluconique (159), sel marqué au dysprosium, acide gluconique d'aluminium (3 :1) sel, sel d'ammonium de l'acide gluconique, sel de magnésium de l'acide gluconique (2:1), acide gluconique marqué au 14C, acide gluconique marqué au 1-(14)C, acide gluconique marqué au 6-(14)C , Sel de cobalt de l'acide gluconique (2:1), sel de cuivre de l'acide gluconique, sel de manganèse de l'acide gluconique (2:1), sel de potassium de l'acide gluconique, sel d'étain (+2) de l'acide gluconique, sel de zinc de l'acide gluconique, gluconate de lithium, gluconate de magnésium , Sel de technécium (5+) de l'acide gluconique (99), sel de l'acide gluconique fe(+2) dihydraté, sel monolithique de l'acide gluconique, sel monopotassique de l'acide gluconique, sel monosodique de l'acide gluconique, gluconique, (2R, 3S, 4R, 5R) - Acide 2,3,4,5,6-pentahydroxyhexanoïque, acide hexonique, acide glycolique, solution d'acide D-gluconique, GLUCONIC ACI, d-gluconicaci, acide 2,3,4,5,6-pentahydroxyhexanoïque, glosanto, NSC 77381, Acide D-gluconique, acide gluconique, D-, acide gluconique, acide maltonique, acide dextronique, acide glycolique, acide glycogénique, acide pentahydroxycaproïque, NSC 77381, Gluconal GA-50, Sour Oligo, 723724-74-1, 887830-55- 9, 880385-91-1, solution d'acide D-gluconique, acide dextronique, gluconal GA-50, acide gluconique, acide glycogénique, acide glycolique, acide maltonique, acide pentahydroxycaproïque, (2R, 3S, 4R, 5R) -2,3 Acide ,4,5,6-pentahydroxyhexanoïque, acide D-gluconique, acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque, acide dextronique, acide D-gluconique, acide gluconique, D -, Acide 2,3,4,5,6-pentahydroxyhexanoïque, Acide dextronique, Acide glycogénique, Acide glycolique, Acide maltonique, Acide pentahydroxycaproïque, NSC 77381



L'acide gluconique (acide Dextronic) est librement soluble dans l'eau avec une solubilité de 100 g/100 ml à 25°C.
L'acide gluconique (acide Dextronic) est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4COOH.
L'acide gluconique (acide Dextronic) est légèrement soluble dans l'alcool, insoluble dans l'éther et la plupart des autres solvants organiques.


L'acide gluconique (acide Dextronique) est l'acide carboxylique par oxydation aux propriétés antiseptiques et chélatrices.
L'acide gluconique (acide Dextronic) est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4COOH.
L'acide gluconique (acide Dextronic) est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.


L'acide gluconique (acide Dextronic) est un acide de fruit autorisé comme additif alimentaire sous le numéro E 574 en Europe.
L'acide gluconique (acide Dextronique) est produit à partir du glucose par oxydation en C1 de la molécule de glucose.
Aujourd’hui, l’acide gluconique (acide Dextronic) est presque exclusivement produit de manière biotechnologique à partir de cultures d’Aspergillus niger.


Les sels de l'acide gluconique (acide dextronique) sont appelés gluconates.
L'acide gluconique (acide Dextronic) est soluble dans l'eau et s'hydrolyse spontanément en acide gluconique et abaisse le pH de manière homogène.
L'acide gluconique (acide Dextronique) est naturellement présent en petites quantités dans le miel et le vin.


Divers thés peuvent également contenir de l'acide gluconique (acide dextronique).
L'acide gluconique (acide dextronique) ou acide pentahydroxyhexanoïque de formule chimique C6H12O7 a été découvert en 1870 par Hlasiwetz et Habermann.
L'acide gluconique (acide Dextronique) est l'acide carboxylique formé par l'oxydation du premier atome de carbone du glucose en présence d'eau bromée.


Dans un simple processus de déshydrogénation impliquant la glucose oxydase, l’acide gluconique (acide Dextronique) est produit à partir du glucose.
L'acide gluconique (acide Dextronique), présent en grande quantité dans les plantes, le miel et le vin, peut être fabriqué à l'aide d'un processus de fermentation fongique dans un cadre commercial.


L'acide gluconique (acide Dextronique) est un composé inorganique qui se trouve être les 16 stéréoisomères de l'acide 2,3,4,5,6-penta-hydroxyhexanoïque.
L'acide gluconique (acide Dextronique) se trouve facilement dans le miel, les plantes et le vin.
L'acide gluconique (acide Dextronique) est produit par l'oxydation du premier carbone du glucose aux propriétés antiseptiques et chélatrices.


L'acide gluconique (acide Dextronique) est un composé organique également appelé acide Dextronique et est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.
Son nom IUPAC est Acide gluconique (acide dextronique) et sa formule moléculaire est C6H12O7.


L'acide gluconique (acide Dextronique) est un composé non toxique que l'on retrouve dans le miel, le vin, les fruits, etc.
L'acide gluconique (acide Dextronic) se présente sous la forme d'un liquide incolore à jaune clair, clair et sirupeux et a un goût acide doux.
L'acide gluconique (acide Dextronic) est très soluble dans l'eau, légèrement soluble dans l'alcool et insoluble dans l'éther et de nombreux autres solvants organiques.


L'acide gluconique (acide dextronique) a été découvert pour la première fois par Hlasiwetz et Habermann en 1870, grâce à l'oxydation chimique du glucose.
En présence de l'ester cyclique glucono-delta-lactone, l'acide gluconique (acide dextronique) existe en équilibre dans une solution aqueuse.
Les sels de l'acide gluconique (acide Dextronique) sont appelés gluconates, où un ion gluconate est formé par l'acide gluconique dans une solution aqueuse à pH neutre.


L'acide gluconique (acide dextronique), les sels de gluconate et les esters de gluconate sont abondants dans la nature car ils peuvent être produits par l'oxydation du glucose.
Dans une solution alcaline, l'anion gluconate chélate Ca2+, Fe2+, Al3+ et d'autres métaux, notamment les lanthanides et les actinides.
L'acide gluconique (acide Dextronique) est un acide organique cristallin soluble obtenu par oxydation du glucose (à l'aide de moisissures spécifiques).


L'acide gluconique (acide Dextronic) est utilisé dans les décapants pour peinture.
L'acide gluconique (acide Dextronique) est un acide hydroxycarboxylique optiquement actif, CH2(OH)(CHOH)4COOH.
L'acide gluconique (acide Dextronique) est l'acide carboxylique correspondant à l'aldosesucre glucose, et peut être fabriqué par l'action de certaines moisissures.


L'acide gluconique (acide Dextronique) est ininflammable.
L'acide gluconique (acide Dextronique) appartient à la classe de composés organiques appelés acides de sucre et dérivés.
Les acides de sucre et leurs dérivés sont des composés contenant une unité saccharidique qui porte un groupe acide carboxylique.


L'acide gluconique (acide Dextronique) se présente sous la forme d'une solution blanche jaune pâle, avec une acidité de 50 % minimum.
L'acide gluconique (acide Dextronic) est utilisé dans les formulations, ainsi que dans les industries du textile, du papier et des engrais.
L'acide gluconique (acide dextronique) (également connu sous le nom de gluconate) est un composé organique largement répandu dans la nature et résultant de l'oxydation du glucose.


L'acide gluconique (acide Dextronique) se trouve naturellement dans les fruits, le miel et le vin.
L'acide gluconique (acide Dextronic) est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4COOH.
L'acide gluconique (acide Dextronique) est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.


En solution aqueuse à pH neutre, l'acide gluconique (acide dextronique) forme l'ion gluconate.
Les sels de l'acide gluconique sont appelés « gluconates ».
L'acide gluconique (acide dextronique), les sels de gluconate et les esters de gluconate sont largement présents dans la nature car ces espèces proviennent de l'oxydation du glucose.


Certains médicaments sont injectés sous forme de gluconates.
L'acide gluconique (acide Dextronique) est une solution jaune clair à jaune brunâtre.
L'acide gluconique (acide Dextronic) est un acide carboxylique organique naturel.


En solution alcaline, l'acide gluconique (acide Dextronique) est un puissant agent chélateur des anions de métaux lourds.
L'acide gluconique (acide dextronique), également connu sous le nom d'acide D-gluconique, D-gluconate ou acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque (également appelé acide dextronique), est le Forme oxydée en C1 du D-glucose où le groupe aldéhyde s'est oxydé en acide carboxylique correspondant.


L'acide gluconique (acide Dextronique) appartient à la classe de composés organiques appelés acides de sucre et dérivés.
Les acides de sucre et leurs dérivés sont des composés contenant une unité saccharidique qui porte un groupe acide carboxylique.
En solution aqueuse, l'acide gluconique (acide dextronique) existe en équilibre avec l'ester cyclique glucono delta-lactone.


L'acide gluconique (acide Dextronique) est naturellement présent dans les fruits, le miel, le thé kombucha et le vin.
Les sels de l'acide gluconique (acide dextronique) sont appelés « gluconates ».
L'acide gluconique (acide dextronique), les sels de gluconate et les esters de gluconate sont largement présents dans la nature car ces espèces proviennent de l'oxydation du glucose.


L'acide gluconique (acide dextronique) existe dans toutes les espèces vivantes, allant des bactéries aux plantes en passant par les humains.
Le métabolisme du gluconate est bien caractérisé chez les procaryotes où l'on sait que l'acide gluconique (acide dextronique) est dégradé suite à la phosphorylation par la gluconokinase.


Une activité glucokinase a également été détectée chez les mammifères, y compris les humains.
L'acide gluconique (acide Dextronique) est produit dans la voie de dérivation du gluconate.
Dans le shunt du gluconate, le glucose est oxydé par la glucose déshydrogénase (également appelée glucose oxydase) pour fournir du gluconate, la forme sous laquelle l'acide gluconique (acide dextronique) est présent au pH physiologique.


Par la suite, le gluconate est phosphorylé par l'action de la gluconate kinase pour produire du 6-phosphogluconate, qui est le deuxième intermédiaire de la voie du pentose phosphate.
Ce shunt du gluconate se retrouve principalement dans les plantes, les algues, les cyanobactéries et certaines bactéries, qui utilisent toutes la voie Entner-Doudoroff pour dégrader le glucose ou le gluconate ; cela génère du 2-céto-3-désoxygluconate-6-phosphate, qui est ensuite clivé pour générer du pyruvate et du glycéraldéhyde 3-phosphate.


Les activités de glucose déshydrogénase et de gluconate kinase sont également présentes chez les mammifères, les levures à fission et les mouches.
L’acide gluconique (acide Dextronique) s’est avéré être un métabolite d’Aspergillus.
L'acide gluconique (acide Dextronic) est un solide blanc avec une faible odeur d'ammoniac.


L'acide gluconique (acide Dextronique) coule et se mélange à l'eau.
L'acide gluconique (acide Dextronic) est un acide gluconique ayant une configuration D.
L'acide gluconique (acide Dextronic) joue un rôle de chélateur et de métabolite du Penicillium.


L'acide gluconique (acide Dextronique) est un acide conjugué d'un D-gluconate.
L'acide gluconique (acide Dextronic) est un énantiomère d'un acide L-gluconique.
L'acide gluconique (acide dextronique) se trouve couramment dans les sels contenant du sodium et du calcium.


L'acide gluconique (acide Dextronique) est un métabolite présent ou produit par Escherichia coli.
L'acide gluconique (acide Dextronic) est un produit naturel présent dans Ascochyta medicaginicola, Tricholoma Robustum et d'autres organismes pour lesquels des données sont disponibles.
L'acide gluconique (acide Dextronique) est l'acide carboxylique formé par l'oxydation du premier carbone du glucose aux propriétés antiseptiques et chélatrices.


L'acide gluconique (acide dextronique), présent en abondance dans les plantes, le miel et le vin, peut être préparé commercialement par un processus de fermentation fongique.
L'acide gluconique (acide Dextronic) contient une structure d'ester cyclique glucono delta lactone, qui chélate les ions métalliques et forme des complexes très stables.
En solution alcaline, l'acide gluconique (acide Dextronique) présente de fortes activités chélatrices envers les anions, c'est-à-dire le calcium, le fer, l'aluminium, le cuivre et d'autres métaux lourds.


L'acide gluconique (acide dextronique) est un métabolite présent ou produit par Saccharomyces cerevisiae.
L'acide gluconique (acide Dextronic) est un composé organique de formule moléculaire C6H12O7 et de formule développée condensée HOCH2(CHOH)4CO2H.
Un solide blanc, l'acide gluconique (acide dextronique) forme l'anion gluconate en solution aqueuse neutre.


Les sels de l'acide gluconique (acide dextronique) sont appelés « gluconates ».
L'acide gluconique (acide dextronique), les sels de gluconate et les esters de gluconate sont largement présents dans la nature car ces espèces proviennent de l'oxydation du glucose.
Certains médicaments sont injectés sous forme de gluconates.



UTILISATIONS et APPLICATIONS de l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronic) est principalement utilisé pour ses propriétés levantes et acidifiantes dans les aliments ; agents chélateurs et parfumants dans les produits cosmétiques.
L'acide gluconique (acide Dextronic) peut être utilisé à des fins industrielles pour chélater les métaux lourds.
L'acide gluconique (acide Dextronic) est utilisé pour maintenir l'équilibre cation-anion sur les solutions électrolytiques.


L'acide gluconique (acide Dextronique) et ses dérivés peuvent être utilisés dans la formulation de produits pharmaceutiques, cosmétiques et alimentaires comme additifs ou sels tampons.
Acide primaire dans le miel ; L'acide gluconique (acide Dextronic) est utilisé dans les produits pharmaceutiques et alimentaires, pour le nettoyage et le décapage des métaux, comme séquestrant, dans les décapants pour peinture et dans les produits antirouille alcalins.


L'acide gluconique (acide Dextronic) est utilisé comme agent chélateur, nettoyant pour bouteilles à haute alcalinité et dissolvant de finition.
L'acide gluconique (acide Dextronic) est utilisé dans les industries du tannage et du textile.
L'acide gluconique (acide Dextronic) est utilisé comme intermédiaire important dans le métabolisme des glucides chez les mammifères.


L'acide gluconique (acide Dextronic) est utilisé pour le nettoyage industriel, le traitement des surfaces métalliques, la stabilisation des agents de blanchiment des textiles, le traitement de l'aluminium et comme agent chélateur dans les retardateurs de prise du ciment, les produits de nettoyage, les produits de soins personnels, les produits pharmaceutiques et les aliments.
L'acide gluconique (acide Dextronique) est utilisé comme additif alimentaire, il agit comme régulateur d'acidité.


L'acide gluconique (acide Dextronic) est utilisé dans les formulations de nettoyage des métaux pour éliminer la rouille et les taches (dépôts minéraux) sur les surfaces métalliques.
L'acide gluconique (acide Dextronic) est utilisé dans les dégraissants pour métaux haute performance.
L'acide gluconique (acide Dextronic) est utilisé dans les industries textiles comme stabilisant pour les bains de teinture et les bains de blanchiment.


L'acide gluconique (acide Dextronic) est utilisé dans les processus de tannage et de teinture du cuir.
L'acide gluconique (acide Dextronic) est mélangé dans les adjuvants de mortier et de béton comme retardateur et plastifiant.
Utilisations cosmétiques de l'acide gluconique (acide Dextronique) : L'acide gluconique (acide Dextronique) peut être utilisé comme agent chélateur et parfumant dans les produits cosmétiques et de soins personnels.


L'acide gluconique (acide dextronique) ainsi que ses sels sont parfaitement absorbés dans l'intestin, sont presque non toxiques et sont utilisés dans la technologie alimentaire, la médecine (gluconate de sodium, de potassium et de calcium) et l'industrie (agents de bronzage).
La consommation de grandes quantités d’acide gluconique (acide dextronique) peut provoquer des diarrhées.


L'acide gluconique (acide dextronique) et ses sels, le sodium (E 576), le potassium (E 577), le gluconate de calcium (E 578) sont utilisés dans les aliments comme régulateurs artificiels de l'acidité et comme stabilisants.
L'acide gluconique (acide Dextronic) est utilisé dans les desserts, les produits à base de fruits et légumes et les boissons gazeuses.


L'acide gluconique (acide Dextronique) est présent naturellement dans les fruits, le miel et le vin et est utilisé comme additif alimentaire et régulateur d'acidité.
L'acide gluconique (acide Dextronic) est également utilisé dans les produits de nettoyage où il aide à nettoyer les dépôts minéraux.
L'acide gluconique (acide Dextronic) est un agent chélateur puissant, en particulier en solution alcaline.


L'acide gluconique (acide Dextronique) chélate les anions du calcium, du fer, de l'aluminium, du cuivre et d'autres métaux lourds.
La Glucono delta lactone est un ester cyclique de l'acide gluconique (acide dextronique).
L'acide gluconique (acide Dextronic) est utilisé dans la préparation de gels à froid et d'hydrogels.


L'acide gluconique (acide Dextronic) est utilisé pour le nettoyage industriel, la stabilisation de l'eau de Javel textile, le traitement de l'aluminium et comme agent chélateur dans le retardement de la prise du ciment.
L'acide gluconique (acide Dextronic) est également utilisé pour le traitement des surfaces métalliques, les produits de nettoyage, les produits de soins personnels, les produits pharmaceutiques et comme additif alimentaire.


Le gluconate de calcium est utilisé dans le traitement des patients souffrant d'hypocalcémie et son gel est utilisé dans le traitement des brûlures dues à l'acide fluorhydrique.
Le gluconate de quinine qui est un sel d'acide gluconique (acide dextronique) et de quinine est utilisé dans le traitement du paludisme.
Des injections de gluconate ferreux, ou gluconate de fer (II), ont été proposées dans le passé pour traiter l'anémie, due à une carence en fer.


La solution aqueuse d’acide gluconique (acide dextronique) est utilisée comme milieu de synthèse organique.
L'acide gluconique (acide Dextronique) est un produit chimique utilisé dans les études des voies glycolytiques.
L'acide gluconique (acide Dextronique) est un acidulant qui est un acide organique doux qui est la forme hydrolysée de la glucono-delta-lactone.


L'acide gluconique (acide Dextronique) est préparé par la fermentation du dextrose, ce qui produit la forme physiologique D.
L'acide gluconique (acide Dextronique) est soluble dans l'eau avec une solubilité de 100 g/100 ml à 20°c.
L'acide gluconique (acide Dextronic) a un goût doux et à 1 % a un pH de 2,8.


L'acide gluconique (acide Dextronic) fonctionne comme un antioxydant et améliore la fonction d'autres antioxydants.
Dans les boissons, les sirops et le vin, l'acide gluconique (acide dextronique) peut éliminer les turbidités calciques.
L'acide gluconique (acide Dextronic) est utilisé comme composant levant dans les préparations à gâteaux et comme composant acide dans les desserts secs et les mélanges secs pour boissons.


L'acide gluconique (acide Dextronique) est naturellement présent dans les fruits, le miel et le vin.
En tant qu'additif alimentaire, l'acide gluconique (acide dextronique) est un régulateur d'acidité.
L'acide gluconique (acide Dextronic) est également utilisé dans les produits de nettoyage.


L'acide gluconique (acide Dextronic) peut également être utilisé comme additif alimentaire pour réguler l'acidité et comme agent nettoyant dans une solution alcaline.
Le sel de calcium de l'acide gluconique (acide dextronique), le gluconate de calcium, peut être utilisé pour traiter les brûlures causées par l'acide fluorhydrique et éviter la nécrose des tissus profonds ainsi que pour traiter l'empoisonnement au vérapamil et l'hypocalcémie chez les patients hospitalisés.


Certains sels d'acide gluconique (acide dextronique) peuvent également être utilisés pour traiter le paludisme (gluconate de quinidine) et l'anémie (gluconate ferreux).
En microbiologie, l'acide gluconique (acide dextronique) est une source de carbone courante qui peut être complétée par le milieu de croissance cellulaire.
L'acide gluconique (acide Dextronique) et ses dérivés sont utilisés dans les produits pharmaceutiques, cosmétiques, solutions de nettoyage et produits alimentaires.


L'acide gluconique (acide Dextronique) a de nombreuses utilisations industrielles.
L'acide gluconique (acide Dextronic) est utilisé comme médicament dans le cadre de la supplémentation en électrolytes dans la nutrition parentérale totale.
L'acide gluconique (acide Dextronic) est également utilisé dans les produits de nettoyage où il aide à nettoyer les dépôts minéraux.


L'acide gluconique (acide Dextronic) est utilisé pour maintenir l'équilibre cation-anion sur les solutions électrolytiques.
Chez l'homme, l'acide gluconique (acide Dextronique) est impliqué dans le trouble métabolique appelé déficit en transaldolase.
L'acide gluconique (acide Dextronique) est présent naturellement dans les fruits, le miel et le vin et est utilisé comme additif alimentaire et régulateur d'acidité.


-Utilisations industrielles de l'acide gluconique (acide dextronique) :
Le pouvoir de chélation des métaux lourds est plus fort que celui de l’EDTA, comme la chélation du calcium, du fer, du cuivre et de l’aluminium dans des conditions alcalines.
Cette propriété peut être utilisée dans les détergents, la galvanoplastie, les textiles, etc.


-Utilisations alimentaires de l'acide gluconique (acide dextronique) :
Les aliments suivants peuvent contenir de l'acide gluconique (acide dextronique) :
*Produits de boulangerie : comme acide levant dans un agent levant pour augmenter le volume de la pâte en produisant du gaz par réaction avec le bicarbonate de soude.

*Produits laitiers : comme agent chélateur et préviennent les calculs de lait.
Certains aliments et boissons : comme régulateur d'acidité pour conférer un acide organique doux et ajuster le niveau de pH, ainsi que comme conservateur et agent antifongique.
De plus, l'acide gluconique (acide Dextronic) peut être utilisé pour nettoyer les canettes en aluminium.


-Utilisations en Nutrition Animale de l'Acide Gluconique (Acide Dextronique) :
L'acide gluconique (acide Dextronic) fonctionne comme un acide faible dans l'alimentation des porcelets, des volailles et de l'aquaculture pour réconforter la digestion et favoriser la croissance, ainsi que pour augmenter la production d'acide butyrique et de SCFA (acide gras à chaîne courte).


-Utilisations médicales de l'acide gluconique (acide dextronique) :
En médecine, le gluconate est le plus souvent utilisé comme support biologiquement neutre de Zn2+, Ca2+, Cu2+, Fe2+ et K+ pour traiter le déséquilibre électrolytique.
Le gluconate de calcium, sous forme de gel, est utilisé pour traiter les brûlures dues à l'acide fluorhydrique ; des injections de gluconate de calcium peuvent être utilisées dans les cas plus graves afin d'éviter la nécrose des tissus profonds, ainsi que pour traiter l'hypocalcémie chez les patients hospitalisés.

Le gluconate est également un électrolyte présent dans certaines solutions, comme le « plasmalyte a », utilisé pour la réanimation liquidienne intraveineuse.
Le gluconate de quinine est un sel d'acide gluconique (acide dextronique) et de quinine, utilisé en injection intramusculaire dans le traitement du paludisme.
Des injections de gluconate ferreux ont été proposées dans le passé pour traiter l'anémie.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronic) est un sucre acide composé de cristaux blancs au goût acide de lait.
Dans les solutions aqueuses, l'acide gluconique (acide dextronique) est en équilibre avec les gamma- et delta-gluconolactones.

L'acide gluconique (acide Dextronique) est préparé par oxydation enzymatique du glucose et les souches de micro-organismes utilisés pour fournir l'action enzymatique sont non pathogènes et non toxicogènes pour l'homme ou d'autres animaux.
L'acide gluconique (acide Dextronic) est utilisé comme composant des formulations de rinçage des bouteilles, à des niveaux ne dépassant pas les bonnes pratiques de fabrication.



PROPRIÉTÉS PHYSIQUES DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
La structure chimique de l'acide gluconique (acide dextronique) consiste en une chaîne à six carbones avec cinq groupes hydroxyle se terminant par un groupe acide carboxylique.
En solution aqueuse, l'acide gluconique (acide dextronique) existe en équilibre avec l'ester cyclique glucono delta-lactone.



PKa & PH DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est un acide carboxylique faible avec une constante de dissociation pKa 3,6.
L'acide gluconique (acide dextronique) dissocie un proton et un ion gluconate (conjugaison).
La solution aqueuse d'acide gluconique (acide Dextronic) a un pH neutre.



PROPRIÉTÉS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
La qualité alimentaire de l'acide gluconique (acide Dextronic) est généralement une solution à 50 % dans de l'eau de couleur incolore à jaune clair et contient environ 5 % de glucono delta-lactone à température ambiante.
Comme en solution aqueuse, l'acide gluconique (acide dextronique) existe en équilibre stable avec l'ester cyclique – GDL (glucono delta-lactone).



PARENTS ALTERNATIFS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
*Hydroxyacides à chaîne moyenne et dérivés
*Acides gras à chaîne moyenne
*Acides gras hydroxylés
*Acides bêta-hydroxy et dérivés
*Monosaccharides
*Acides alpha-hydroxy et dérivés
*Alcools secondaires
*Polyols
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Alcools primaires
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
*Acide_gluconique
*Hydroxyacide à chaîne moyenne
*Acide gras à chaîne moyenne
*Acide bêta-hydroxy
*Acide gras hydroxy
*Acide alpha-hydroxy
*Acyle gras
*Acide gras
*Hydroxyacide
*Monosaccharide
*Alcool secondaire
*Dérivé de l'acide carboxylique
*Acide carboxylique
*Polyol
*Acide monocarboxylique ou dérivés
*Alcool
*Groupe carbonyle
*Alcool primaire
*Oxyde organique
*Dérivé d'hydrocarbure
*Composé aliphatique acyclique



PRODUCTION BIOTECHNOLOGIQUE D'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
Actuellement, l’acide gluconique (acide Dextronic) est produit commercialement par des cultures submergées d’Aspergillus niger en utilisant le glucose comme substrat.
La concentration en acide gluconique (acide Dextronique) et les rendements du produit dépendent des conditions de fermentation.
Pour une production optimale d'acide gluconique, des concentrations élevées de glucose (110 à 250 gL-1), de faibles concentrations d'azote et de phosphore dans le milieu, une limitation des concentrations d'ions métalliques, une valeur de pH comprise entre 4,5 et 6,5 et des taux d'aération élevés. pour l'approvisionnement en oxygène sont nécessaires.

De nombreuses recherches ont été menées pour trouver de nouvelles façons de produire à moindre coût.
Différents micro-organismes ont été étudiés (par exemple G. oxydans, Z. mobilis, A. méthanolicous et P. fluorescence).
Par ailleurs, de nouvelles souches microbiennes ont été développées par mutagenèse ou génie génétique.

De plus, le processus de fermentation et la récupération ont été optimisés.
De nouveaux substrats peu coûteux (par exemple la fécule de maïs, le moût de raisin ou de banane, les figues et le lactosérum de fromage) ont été testés.
Un exemple d'un nouveau procédé de production efficace d'acide gluconique est la culture d'Aureobasidium pullulans poussant sur du glucose.

En utilisant un procédé continu avec rétention de biomasse par filtration croisée, une concentration de produit de 375 gL-1, un rendement de 0,83 g d'acide gluconique par gramme de glucose et une productivité de 17 gL-1.h-1 ont pu être atteints à une temps de séjour de 22 h.
Dans ce processus, 100 % du glucose est converti.
Ce procédé pourrait être intéressant pour des applications industrielles.



STRUCTURE DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est un composé organique qui a une formule moléculaire de C6H12O7 et la formule développée condensée HOCH2(CHOH)4COOH.
La figure ci-dessous est la structure de l'acide gluconique (acide dextronique), où l'on peut observer qu'il est constitué d'une chaîne à 6 carbones, avec 5 groupes hydroxyles placés de la même manière que dans la forme ouverte du glucose, se terminant par le groupe acide carboxylique.



PRÉPARATION DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
À l'heure actuelle, l'acide gluconique (acide Dextronic) est synthétisé en quantités commerciales par l'oxydation fermentaire du groupe aldéhyde dans le glucose du maïs, réalisée par Aspergillus niger, Aspergillus fumaricus, Aspergillus acétique, Penicillium chryrosogenum et d'autres pencillia.
L'acide gluconique (acide dextronique) et le sorbitol sont formés par la réaction de Cannizaro sur le glucose, dans des conditions alcalines.

L'acide gluconique (acide Dextronique) peut également être préparé à partir de l'oxydation électrolytique du glucose en milieu alcalin.
L'acide gluconique (acide Dextronique) peut également être préparé par oxydation chimique du glucose par une solution d'hypochlorite ou d'hypobromite, ou par oxydation directe du glucose en présence du catalyseur au palladium.

L'acide gluconique (acide Dextronique) est un composé non toxique que l'on retrouve naturellement dans le miel, le vin, les fruits, etc.
L'acide gluconique (acide Dextronique) est un acide carboxylique qui peut être formé par l'oxydation du premier carbone du glucose ayant des propriétés antiseptiques et chélatrices.

L'acide gluconique (acide Dextronique) peut également être synthétisé par hydrolyse de l'α-D-glucose avec un mélange de bromure et d'acide sulfurique.
L'acide gluconique (acide Dextronique) peut également être préparé par irradiation gamma du D-glucose.
L'acide gluconique (acide Dextronique) est produit par oxydation du glucose en présence d'eau bromée.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
Le gluconate de calcium est formé par la neutralisation de l'acide gluconique (acide dextronique) avec de la chaux ou du carbonate de calcium.
En chauffant du carbonate ferreux avec la quantité appropriée d'acide gluconique (acide dextronique) dans une solution aqueuse, du gluconate ferreux ou du gluconate de fer (II) peut être produit.
L'acide gluconique (acide dextronique) se convertit partiellement en un mélange d'équilibre avec la gamma et le delta gluconolactone dans l'eau.



PRÉSENCE D'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est naturellement présent dans les fruits, le miel, le thé kombucha et le vin.
En tant qu'additif alimentaire ( E574 ), l'acide gluconique (acide Dextronique) est un régulateur d'acidité.
L'acide gluconique (acide Dextronic) est également utilisé dans les produits de nettoyage où il dissout les dépôts minéraux notamment en solution alcaline.

L'anion gluconate chélate Ca2+, Fe2+, Al3+ et d'autres métaux.
En 1929, Horace Terhune Herrick développa un procédé de production de sel par fermentation.
Le gluconate de calcium, sous forme de gel, est utilisé pour traiter les brûlures dues à l'acide fluorhydrique ; des injections de gluconate de calcium peuvent être utilisées dans les cas plus graves afin d'éviter la nécrose des tissus profonds.

Le gluconate de quinine est un sel entre l'acide gluconique et la quinine, utilisé en injection intramusculaire dans le traitement du paludisme.
Des injections de gluconate de zinc sont utilisées pour stériliser les chiens mâles.
Des injections de gluconate de fer ont été proposées dans le passé pour traiter l'anémie.



FORMULE STRUCTURELLE DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
La structure de l'acide gluconique (acide dextronique) comprend 6 chaînes carbonées ainsi que 5 groupes hydroxyles placés dans le format général à chaîne ouverte du glucose, se terminant par le groupe acide carboxylique.
L'acide gluconique (acide dextronique) existe à l'état d'équilibre à l'état aqueux en présence d'ester cyclique glucono delta-lactone.
La formule développée de l'acide gluconique (acide dextronique) est celle indiquée ci-dessous dans l'image.

L'acide gluconique (acide Dextronic), un acide organique doux dérivé du sucre, principalement utilisé comme régulateur d'acidité et agent chélateur dans les aliments avec le numéro d'additif alimentaire européen E574.
L'acide gluconique (acide Dextronic) est également utilisé pour produire des gluconates (E576, 577, 578, 579, 585) et de la glucono delta-lactone (E575) destinés à être utilisés dans différentes applications alimentaires et dans d'autres domaines.



SOURCES NATURELLES D'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est naturellement présent dans les fruits, le vin, le miel, le riz, la viande et dans la fermentation du kombucha.



COMMENT EST FABRIQUÉ L’ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) ?
Généralement, l'acide gluconique (acide Dextronic) est produit par oxydation du D-glucose (dérivé de l'hydrolyse de l'amidon) avec différents procédés de fabrication :
*Eau bromée
*Microorganismes, tels que Aspergillus niger et Acetobactor suboxydans
*Enzymes dérivées de micro-organismes



QUE SONT LES GLUCONATES ?
Les gluconates font généralement référence aux sels d'acide gluconique (acide dextronique) qui sont généralement fabriqués à partir de la réaction entre l'acide gluconique (acide dextronique) et les sels de carbonate métallique correspondants.
Voici six types courants de gluconates et leurs utilisations/fonctions dans les aliments :

*Gluconate de calcium : fonctionne comme agent raffermissant, aide à la formulation, séquestrant, stabilisant ou épaississant et texturant qui peut être utilisé dans les produits de boulangerie, les produits laitiers, les gélatines, les puddings et les substituts du sucre.
*Gluconate de sodium : un séquestrant.
*Gluconate de cuivre : agit comme un supplément nutritionnel et un synergiste, peut être utilisé dans les préparations pour nourrissons.
*Gluconate ferreux : un supplément nutritif qui peut être utilisé dans les préparations pour nourrissons, peut également servir de colorant alimentaire.
*Gluconate de manganèse : un supplément nutritif qui peut être utilisé dans les produits de boulangerie, les produits laitiers et carnés, les produits à base de volaille et les préparations pour nourrissons.
*Gluconate de zinc : nutriment.



QUELS SONT LES BIENFAITS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) POUR LA SANTÉ ?
Prévention des calculs urinaires : une première étude a montré que l'acide gluconique (acide dextronique) peut prévenir les calculs urinaires.
Promotion de l'activité de la microflore intestinale : une étude menée sur des porcelets a montré que l'acide gluconique (acide dextronique) avait un effet positif sur la microflore intestinale et pouvait améliorer la croissance des porcelets.



FORMULE D'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique), un composé organique connu sous le nom d'acide Dextronique, est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.
La formule moléculaire de l'acide gluconique (acide dextronique) est C6H12O7 et sa formule développée condensée est HOCH2(CHOH)4COOH.



STRUCTURE DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
La structure de l’acide gluconique (acide dextronique) est illustrée dans l’image ci-dessus.
L'acide gluconique (acide Dextronique) a une chaîne à 6 carbones, cinq groupes hydroxyle disposés de la même manière que sous la forme à chaîne ouverte du glucose et un groupe acide carboxylique à l'extrémité.



STRUCTURE CHIMIQUE DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
La structure chimique de l'acide gluconique (acide Dextronique) est constituée d'une chaîne à six carbones, avec cinq groupes hydroxyle positionnés de la même manière que dans la forme à chaîne ouverte du glucose, se terminant par un groupe acide carboxylique.
L'acide gluconique (acide Dextronic) est l'un des 16 stéréoisomères de l'acide 2,3,4,5,6-pentahydroxyhexanoïque.



PRODUCTION D'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est généralement produit par l'oxydation aérobie du glucose en présence de l'enzyme glucose oxydase.
La conversion produit de la gluconolactone et du peroxyde d'hydrogène.
La lactone s'hydrolyse spontanément en acide gluconique (acide dextronique) dans l'eau.

C6H12O6 + O2 → C6H10O6 + H2O2
C6H10O6 + H2O → C6H12O7
Variations de l'oxydation du glucose (ou d'un autre substrat contenant des glucides) par fermentation ou catalyse par métaux nobles.

L'acide gluconique (acide Dextronique) a été préparé pour la première fois par Hlasiwetz et Habermann en 1870 et impliquait l'oxydation chimique du glucose.
En 1880, Boutroux prépara et isola l'acide gluconique (acide dextronique) en utilisant la fermentation du glucose.



PRÉSENCE ET UTILISATIONS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
L'acide gluconique (acide Dextronique) est naturellement présent dans les fruits, le miel et le vin.
En tant qu'additif alimentaire (E574), l'acide gluconique (acide Dextronique) est désormais connu comme régulateur d'acidité.

L'anion gluconate chélate Ca2+, Fe2+, K+, Al3+ et d'autres métaux, notamment les lanthanides et les actinides.
L'acide gluconique (acide Dextronique) est également utilisé dans les produits de nettoyage, où il dissout les dépôts minéraux, notamment en solution alcaline.
Des injections de gluconate de zinc sont utilisées pour stériliser les chiens mâles.

Le gluconate est également utilisé dans le bâtiment et la construction comme adjuvant pour le béton (retardateur) pour ralentir les réactions d'hydratation du ciment et pour retarder le temps de prise du ciment.
Il permet de poser le béton plus longtemps, ou de répartir la chaleur d'hydratation du ciment sur une plus longue période pour éviter une température trop élevée et la fissuration qui en résulte.

Les retardateurs sont mélangés au béton lorsque les températures sont élevées ou pour couler des dalles de béton de grande taille et épaisses en couches successives et suffisamment bien mélangées.
L'acide gluconique (acide Dextronique) trouve une application comme milieu de synthèse organique.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
Poids moléculaire : 196,16 g/mol
XLogP3-AA : -3,4
Nombre de donneurs de liaisons hydrogène : 6
Nombre d'accepteurs de liaison hydrogène : 7
Nombre de liaisons rotatives : 5
Masse exacte : 196,05830272 g/mol
Masse monoisotopique : 196,05830272 g/mol
Surface polaire topologique : 138 Å ²
Nombre d'atomes lourds : 13
Frais formels : 0
Complexité : 170
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 4
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1

Le composé est canonisé : oui
Formule chimique : C6H12O7
Masse molaire : 196,155 g·mol−1
Aspect : Cristaux incolores
Point de fusion : 131 °C (268 °F ; 404 K)
Solubilité dans l'eau : 316 g/L
Acidité (pKa) : 3,86
Couleur : Blanc à jaune
Beilstein: 03 542
Indice Merck : 15, 4492
Poids de la formule : 196,16
Pourcentage de pureté : 49 à 55 % (Titrimétrie autre)
Densité : 1,23 g/mL
Forme physique : cristaux ou poudre cristalline
Gravité spécifique : 1,22 à 1,25 (20°C)
Nom chimique ou matériau : Acide gluconique

État physique : Liquide
Couleur : Marron clair
Odeur : Légèrement aigre
Point de fusion/point de congélation : Non disponible
Point d'ébullition initial et plage d'ébullition : 105 - 106 °C à 1,013 hPa
Inflammabilité (solide, gaz) : Non disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Non disponible
Point d'éclair : Non disponible
Température d'auto-inflammation : Non disponible
Température de décomposition : distillable à l'état non décomposé à pression normale
pH : 2,2 à 500 g/l à 20 °C
Viscosité : Non disponible
Solubilité dans l'eau à 20 °C : Soluble
Coefficient de partage : n-octanol/eau - Non disponible
Pression de vapeur : Non disponible
Densité : 1,24 g/cm3 à 20 °C

Densité relative : Non disponible
Densité de vapeur relative : Non disponible
Caractéristiques des particules : Non disponible
Propriétés explosives : Non classé comme explosif
Propriétés oxydantes : Aucune
Autres informations de sécurité : Non disponible
Poids moléculaire : 194,13900 g/mol
Formule moléculaire : C6H10O7
Pureté : 95 %
Solubilité : Eau, 1e+006 mg/L à 25 °C (estimée)
Dosage : 0,98
EINECS : 209-401-7
Qualité : qualité industrielle
Formule chimique : C6H12O7
Poids moléculaire moyen : 196,1553 g/mol
Poids moléculaire monoisotopique : 196,058302738 g/mol

Nom IUPAC : Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Nom traditionnel : Gluconate
Numéro de registre CAS : 526-95-4
SOURIRES : OCC@@HC@@HC@HC@@HC(O)=O
Identifiant InChI : InChI=1S/C6H12O7/c7-1-2(8)3(9)4(10)5(11)6(12)13/h2-5,7-11H,1H2,(H,12, 13)/t2-,3-,4+,5-/m1/s1
Clé InChI : RGHNJXZEOKUKBD-SQOUGZDYSA-N
Point de fusion : 15 °C
Point d'ébullition : 102 °C
Alpha : D20 -6,7° (c = 1)
Densité : 1,23
Indice de réfraction : 1,4161
Température de stockage : Conserver en dessous de +30°C
Solubilité : DMSO (légèrement), méthanol (légèrement), eau
Forme : poudre cristalline ou cristaux

pKa : pK (25°) 3,60
Couleur : Blanc à jaune clair
Gravité spécifique : 1,234
Odeur : commerciale 50 aq. solen. lt. ambre, légère odeur de vinaigre
Activité optique : [α]/D +9,0 à 15,5°
Solubilité dans l'eau : Soluble dans l'eau
Aspect : Cristaux incolores
Goût : Goût légèrement acide
Masse molaire : 196,155 g/mol
Nom IUPAC : Acide D-gluconique
Nom systématique IUPAC : Acide (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoïque
Formule chimique : C6H12O7
Référence de la base de données CAS : 526-95-4
Système d'enregistrement des substances de l'EPA : Acide D-gluconique (526-95-4)
Nombre de donneurs de liaisons hydrogène : 6
Nombre d'accepteurs de liaison hydrogène : 7
Nombre de liaisons rotatives : 5
PSA : 138,45000

XLogP3 : -3,4
Aspect : Le gluconate d'ammonium est un solide blanc avec une faible odeur d'ammoniaque.
Densité : 1,24 g/cm3 à température : 25 °C
Point d'ébullition : 102 ºC
Point d'éclair : 375,2 ºC
Indice de réfraction : 1,4161
Solubilité dans l'eau : Solubilité dans l'eau, g/100 ml à 25°C : 100 (bonne)
Conditions de stockage : Conserver à température ambiante.
Forme moléculaire : C6H12O7
Aspect : Solution claire, incolore à jaune pâle
Mol. Poids : 196,16
Stockage : 2-8°C Réfrigérateur
Conditions d'expédition : ambiante
Applications : NA



PREMIERS SECOURS DE L'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Description des premiers secours :
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
Consulter un médecin en cas de malaise.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant et neutralisant.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,40 mm
Temps de passage : > 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de passage : > 30 min
*Protection respiratoire:
Non requis.
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et CONSERVATION de l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Température de stockage recommandée, voir l'étiquette du produit.



STABILITÉ et RÉACTIVITÉ de l'ACIDE GLUCONIQUE (ACIDE DEXTRONIQUE) :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Conditions à éviter :
Pas d'information disponible
-Matériaux incompatibles :
Pas de données disponibles


ACIDE GLUTAMIQUE
L'acide glutamique est l'un des 20 à 22 acides aminés protéinogènes et ses codons sont GAA et GAG.
L'acide glutamique est un acide aminé non essentiel.
Les anions carboxylates et les sels de l'acide glutamique sont appelés glutamates.

CAS : 6899-05-4
FM : C5H9NO4
MW : 147,13

L'acide glutamique est une forme optiquement active d'acide glutamique ayant une configuration L.
L'acide glutamique joue un rôle de nutraceutique, de micronutriment, de métabolite d'Escherichia coli, de métabolite de souris, d'inducteur de ferroptose et de neurotransmetteur.
L'acide glutamique est un acide aminé de la famille des glutamines, un acide aminé protéinogène, un acide glutamique et un acide L-alpha-aminé.
L'acide glutamique est un acide conjugué d'un L-glutamate (1-).
L'acide glutamique est un énantiomère d'un acide D-glutamique.
L'acide glutamique est un acide aminé utilisé pour former des protéines.
Dans l’organisme, l’acide glutamique se transforme en glutamate.
Il s’agit d’un produit chimique qui aide les cellules nerveuses du cerveau à envoyer et à recevoir des informations provenant d’autres cellules.

L'acide glutamique peut être impliqué dans l'apprentissage et la mémoire.
L'acide glutamique peut aider les personnes souffrant d'hypochlorhydrie (faible acide gastrique) ou d'achlorhydrie (pas d'acide gastrique).
En neurosciences, l’acide glutamique est un neurotransmetteur important qui joue un rôle clé dans la potentialisation à long terme et est important pour l’apprentissage et la mémoire.
L'acide glutamique est un acide alpha-aminé qui est l'acide glutarique portant un seul substituant aminé en position 2.
L'acide glutamique joue un rôle de métabolite fondamental.
L'acide glutamique est un acide alpha-aminé et un acide aminé polaire.
L'acide glutamique contient un groupe 2-carboxyéthyle.
L'acide glutamique est un acide conjugué d'un glutamate (1-).

L'acide glutamique est un acide α-aminé utilisé par presque tous les êtres vivants dans la biosynthèse des protéines.
L'acide glutamique est un nutriment non essentiel pour l'homme, ce qui signifie que le corps humain peut en synthétiser suffisamment pour son utilisation.
L'acide glutamique est également le neurotransmetteur excitateur le plus abondant dans le système nerveux des vertébrés.
L'acide glutamique sert de précurseur à la synthèse de l'acide gamma-aminobutyrique inhibiteur (GABA) dans les neurones GABAergiques.

La formule moléculaire de l'acide glutamique est C5H9NO4.
L'acide glutamique existe sous trois formes optiquement isomères ; la forme L dextrogyre est généralement obtenue par hydrolyse du gluten ou à partir des eaux usées de fabrication du sucre de betterave ou par fermentation.
La structure moléculaire de l'acide glutamique pourrait être idéalisée comme HOOC−CH(NH2)−(CH2)2−COOH, avec deux groupes carboxyle −COOH et un groupe amino −NH2.
Cependant, à l'état solide et dans les solutions aqueuses légèrement acides, la molécule prend une structure zwitterion électriquement neutre -OOC−CH(NH+3)−(CH2)2−COOH.
L'acide glutamique est codé par les codons GAA ou GAG.

L'acide peut perdre un proton de son deuxième groupe carboxyle pour former la base conjuguée, l'anion simple négatif glutamate −OOC−CH(NH+3)−(CH2)2−COO−.
Cette forme du composé est répandue dans les solutions neutres.
Le neurotransmetteur glutamate joue le rôle principal dans l’activation neuronale.
Cet anion crée la saveur umami savoureuse des aliments et se trouve dans les arômes glutamate tels que le MSG.
En Europe, l'acide glutamique est classé comme additif alimentaire E620.
Dans les solutions hautement alcalines, l'anion doublement négatif −OOC−CH(NH2)−(CH2)2−COO− prévaut.
Le radical correspondant au glutamate est appelé glutamyl.

L'acide glutamique, également connu sous le nom d'acide L-glutamique ou de glutamate, du nom de son anion, est un acide alpha-aminé.
Ce sont des acides aminés dans lesquels le groupe amino est attaché à l’atome de carbone immédiatement adjacent au groupe carboxylate (carbone alpha).
Les acides aminés sont des composés organiques qui contiennent des groupes fonctionnels amino (-NH2) et carboxyle (-COOH), ainsi qu'une chaîne latérale (groupe R) spécifique à chaque acide aminé.
L'acide glutamique est l'un des 20 acides aminés protéinogènes, c'est-à-dire les acides aminés utilisés dans la biosynthèse des protéines.
L'acide glutamique se trouve dans tous les organismes, des bactéries aux plantes en passant par les animaux.

L’acide glutamique est classé comme un acide aminé aliphatique acide, chargé (au pH physiologique). Chez l'homme, l'acide glutamique est un acide aminé non essentiel et peut être synthétisé via l'alanine ou l'acide aspartique via l'alpha-cétoglutarate et l'action de diverses transaminases.
L'acide glutamique joue également un rôle important dans l'élimination par l'organisme de l'excès ou des déchets d'azote.
L'acide glutamique subit une désamination, une réaction oxydative catalysée par la glutamate déshydrogénase conduisant à l'alpha-cétoglutarate.
À bien des égards, l’acide glutamique est une molécule clé du métabolisme cellulaire.
L'acide glutamique est le neurotransmetteur excitateur rapide le plus abondant dans le système nerveux des mammifères.
Au niveau des synapses chimiques, l'acide glutamique est stocké dans des vésicules.

L'influx nerveux déclenche la libération d'acide glutamique par la cellule pré-synaptique.
Dans la cellule post-synaptique opposée, les récepteurs du glutamate, tels que le récepteur NMDA, se lient au glutamate et sont activés.
En raison de son rôle dans la plasticité synaptique, l’acide glutamique est impliqué dans les fonctions cognitives telles que l’apprentissage et la mémoire dans le cerveau.
Les transporteurs d'acide glutamique se trouvent dans les membranes neuronales et gliales.
Ils éliminent rapidement le glutamate de l'espace extracellulaire.
En cas de lésion ou de maladie cérébrale, ils peuvent agir en sens inverse et un excès de glutamate peut s’accumuler à l’extérieur des cellules.
Ce processus amène les ions calcium à pénétrer dans les cellules via les canaux des récepteurs NMDA, entraînant des lésions neuronales et éventuellement la mort cellulaire, et est appelé excitotoxicité.

Les mécanismes de mort cellulaire comprennent : Les dommages aux mitochondries dus à un Ca2+ intracellulaire excessivement élevé. Promotion des facteurs de transcription médiée par Glu/Ca2+ pour les gènes pro-apoptotiques, ou régulation négative des facteurs de transcription pour les gènes anti-apoptotiques.
L'excitotoxicité due à l'acide glutamique se produit dans le cadre de la cascade ischémique et est associée aux accidents vasculaires cérébraux et à des maladies telles que la sclérose latérale amyotrophique, le lathyrisme et la maladie d'Alzheimer.
L'acide glutamique a été impliqué dans les crises d'épilepsie.
La microinjection d'acide glutamique dans les neurones produit une dépolarisation spontanée à environ une seconde d'intervalle, et ce schéma de déclenchement est similaire à ce que l'on appelle le changement de polarisation paroxystique dans les crises d'épilepsie.
Ce changement dans le potentiel membranaire au repos au niveau des foyers de crise pourrait provoquer une ouverture spontanée des canaux calciques activés par la tension, conduisant à la libération d'acide glutamique et à une dépolarisation supplémentaire.

L'acide glutamique a été découvert en 1866 lorsqu'il était extrait du gluten de blé (d'où son nom).
Le glutamate joue un rôle important en tant qu’additif alimentaire et agent aromatisant alimentaire.
En 1908, le chercheur japonais Kikunae Ikeda a identifié les cristaux bruns laissés après l'évaporation d'une grande quantité de bouillon de kombu (une soupe japonaise) comme étant de l'acide glutamique.
Ces cristaux, une fois dégustés, reproduisaient une saveur salée et savoureuse détectée dans de nombreux aliments, notamment dans les algues.
Le professeur Ikeda a appelé cette saveur umami.
Il a ensuite breveté une méthode de production en masse d'un sel cristallin d'acide glutamique, le glutamate monosodique.

Propriétés chimiques
Le groupe fonctionnel acide carboxylique à chaîne latérale a un pKa de 4,1 et existe donc presque entièrement sous sa forme carboxylate déprotoné chargé négativement à des valeurs de pH supérieures à 4,1 ; par conséquent, il est chargé négativement à un pH physiologique allant de 7,35 à 7,45.

Les usages
L'acide glutamique est un liant hydratant et un antioxydant. L'acide glutamique est un acide aminé fabriqué par fermentation, généralement à partir d'une protéine végétale.
L'acide glutamique est un acide aminé qui est une poudre cristalline blanche légèrement soluble dans l'eau.
L'acide glutamique est du glutamate monosodique (msg) qui agit comme exhausteur de goût dans les viandes.
L’acide glutamique est également un nutriment, un complément alimentaire et un substitut au sel.

Métabolisme
L'acide glutamique est un composé clé du métabolisme cellulaire.
Chez l’homme, les protéines alimentaires sont décomposées par digestion en acides aminés, qui servent de carburant métabolique pour d’autres rôles fonctionnels dans l’organisme.
Un processus clé dans la dégradation des acides aminés est la transamination, dans laquelle le groupe amino d'un acide aminé est transféré à un α-cétoacide, généralement catalysé par une transaminase.

Neurotransmetteur
L'acide glutamique est le neurotransmetteur excitateur le plus abondant dans le système nerveux des vertébrés.
Au niveau des synapses chimiques, le glutamate est stocké dans des vésicules.
L'influx nerveux déclenche la libération d'acide glutamique par la cellule pré-synaptique.
Dans la cellule post-synaptique opposée, les récepteurs de l'acide glutamique, tels que le récepteur NMDA, se lient au glutamate et sont activés.
En raison de son rôle dans la plasticité synaptique, le glutamate est impliqué dans les fonctions cognitives comme l’apprentissage et la mémoire du cerveau.
La forme de plasticité connue sous le nom de potentialisation à long terme se produit au niveau des synapses glutamatergiques de l'hippocampe, du néocortex et d'autres parties du cerveau.
L'acide glutamique fonctionne non seulement comme un émetteur point à point, mais également par le biais d'une diaphonie synaptique de débordement entre les synapses dans laquelle la sommation du glutamate libéré par une synapse voisine crée une signalisation extrasynaptique/une transmission de volume.
Les transporteurs d'acide glutamique se trouvent dans les membranes neuronales et gliales.
Ils éliminent rapidement le glutamate de l'espace extracellulaire.
En cas de lésion ou de maladie cérébrale, ils peuvent agir à l’envers et un excès de glutamate peut s’accumuler à l’extérieur des cellules.
Ce processus amène les ions calcium à pénétrer dans les cellules via les canaux des récepteurs NMDA, entraînant des lésions neuronales et éventuellement la mort cellulaire, et est appelé excitotoxicité.

Circuits de signalisation glutamatergiques non synaptiques du cerveau
Il a été démontré que le glutamate extracellulaire dans le cerveau de la drosophile régule le regroupement des récepteurs post-synaptiques du glutamate, via un processus impliquant la désensibilisation des récepteurs.
Un gène exprimé dans les cellules gliales transporte activement le glutamate dans l’espace extracellulaire, tandis que, dans les récepteurs métabotropiques du glutamate du groupe II stimulant le noyau accumbens, ce gène s’est avéré réduire les niveaux de glutamate extracellulaire.
Cela soulève la possibilité que ce glutamate extracellulaire joue un rôle « de type endocrinien » dans le cadre d’un système homéostatique plus vaste.

exhausteur de goût
L'acide glutamique, étant un constituant des protéines, est présent dans tous les aliments contenant des protéines, mais il ne peut être goûté que lorsque l'acide glutamique est présent sous une forme non liée.
Des quantités importantes d'acide glutamique libre sont présentes dans une grande variété d'aliments, notamment le fromage et la sauce soja, et sont responsables de l'umami, l'un des cinq goûts fondamentaux du sens du goût humain.
L'acide glutamique est souvent utilisé comme additif alimentaire et exhausteur de goût sous la forme de son sel, connu sous le nom de glutamate monosodique (MSG).

Nutritif
Toutes les viandes, volailles, poissons, œufs, produits laitiers et kombu sont d’excellentes sources d’acide glutamique.
Certains aliments végétaux riches en protéines servent également de sources.
Trente à 35 % des protéines du blé sont de l’acide glutamique.
Quatre-vingt-quinze pour cent du glutamate alimentaire est métabolisé par les cellules intestinales lors d’un premier passage.

Croissance des plantes
Auxigro est une préparation pour la croissance des plantes qui contient 30 % d'acide glutamique.

Spectroscopie RMN
Ces dernières années, de nombreuses recherches ont été menées sur l’utilisation des RDC en spectroscopie RMN.
Un dérivé de l'acide glutamique, le poly-γ-benzyl-L-glutamate (PBLG), est souvent utilisé comme milieu d'alignement pour contrôler l'ampleur des interactions dipolaires observées.

Pharmacologie
Le médicament phencyclidine (plus communément appelé PCP) antagoniste l'acide glutamique de manière non compétitive au niveau du récepteur NMDA.
Pour les mêmes raisons, le dextrométhorphane et la kétamine ont également de forts effets dissociatifs et hallucinogènes.
L'acide glutamique ne traverse pas facilement la barrière hémato-encéphalique, mais est transporté par un système de transport à haute affinité.
L'acide glutamique peut également être converti en glutamine.

Synonymes
Acide L-glutamique
ACIDE GLUTAMIQUE
56-86-0
L-glutamate
Acide (2S)-2-aminopentanedioïque
Acide (S) -2-aminopentanedioïque
Glutamidex
Glutaminol
H-Glu-OH
glutacide
Aciglut
acide glutamique
Acide L-glutaminique
Glutamicol
Glutaton
(S)-Acide glutamique
Glusat
L-glu
Acide L-(+)-glutamique
D-Glutamiensuur
acide alpha-aminoglutarique
Acide glutamique, L-
Acide glutamicum
(S)-(+)-Acide glutamique
Acide glutamique
Acide 2-aminoglutarique
Acide glutaminicum
Acide L-2-aminoglutarique
Acide 1-aminopropane-1,3-dicarboxylique
25513-46-6
Acide glutamique
FEMA n° 3285
Acide L-alpha-aminoglutarique
Acide glutamique (H-3)
Glutamate, L-
Acide alpha-glutamique
surabondance
glutamate
Acide glutamique (VAN)
Acide a-glutamique
L-Glutamine
Acide glutamique, (S)-
Acide glutaminique (VAN)
CCRIS 7314
L-acide glutamique
Acide pentanédioïque, 2-amino-, (S)-
glu
Acide a-aminoglutarique
Acide glutamique [USAN:INN]
AI3-18472
Acide L-a-aminoglutarique
Acide glutamique [INN-Français]
Acido glutamico [INN-espagnol]
Acidum glutamicum [INN-Latin]
Code chimique des pesticides EPA 374350
NSC 143503
Acide alpha-aminoglutarique (VAN)
Acide glutamique (acide L-glutamique)
Acide 2-aminopentanedioïque, (S)-
acide aminoglutarique
EINECS200-293-7
Acide L-2-amino-pentanedioïque
UNII-3KX376GY7L
3KX376GY7L
SIN N° 620
DTXSID5020659
CHEBI:16015
Acide gamma-L-glutamique
INS-620
Acide L-glutamique (9CI)
C5H9NO4
NSC-143503
Acide L(+)-glutamique
E620
Acide glutamique, L-, peptides
DTXCID30659
HSDB 490
E 620
E-620
CE 200-293-7
Glutamate de sodium (acide L-glutamique)
NCGC00024502-03
Acide L-glutamique (JAN)
ACIDE (S)-2-AMINO-1,5-PENTANEDIOIQUE
Acide L-glutamique-13C5
ACIDE L-GLUTAMIQUE [JAN]
Acido glutamico (INN-espagnol)
Acidum glutamicum (INN-Latin)
(2S)-2-aminopentanedioate
l acide glutamique
ACIDE GLUTAMIQUE (MONOGRAPHIE EP)
ACIDE GLUTAMIQUE [MONOGRAPHIE EP]
Acide .alpha.-glutamique
IMPURETÉ ALANINE B (IMPURETÉ EP)
IMPURETÉ ALANINE B [IMPURETÉ EP]
6899-05-4
gt
Acide 2-amino-pentanedioïque
IMPURETÉ B D'ACÉTATE DE LYSINE (IMPURETÉ EP)
IMPURETÉ B ACÉTATE DE LYSINE [IMPURETÉ EP]
Acide 1-amino-propane-1,3-dicarboxylique
ACIDE GLUTAMIQUE [USAN]
55443-55-5
MFCD00002634
aminoglutarate
Gulutamine
alpha-glutamate
a-Glutamate
L-gluatmate
a-Aminoglutarate
Acide L-glutamique
NSC143503
Acide L-glutamique
2-Aminoglutarate
Glutamate, L
1 piedj
1xff
(S)-glutamate
Acide glutamique, L
L-a-Aminoglutarate
alpha-Aminoglutarate
Gulutamine (USP)
Acide (L)-glutamique
H-Glu
L-Glutamique,(S)
L-(+)-Glutamate
L-alpha-Aminoglutarate
Acide glutamique (USP)
Tocris-0218
Acide [3h]-l-glutamique
1ii5
Acide polyglutamique (PGA)
Acide (+)-L-glutamique
(S)-(+)-Glutamate
(S)-Glu
L-[14C(U)]glutamate
(S)-2-Aminopentanedioate
Biomol-NT_000170
D00ENY
ACIDE GLUTAMIQUE [IM]
Acide L-glutamique (JP17)
SCHEMBL2202
ACIDE GLUTAMIQUE [DCI]
Acide L-glutamique, 98,5%
Lopac0_000529
Acide S)-2-aminopentanedioïque
ACIDE GLUTAMIQUE [INCI]
ACIDE GLUTAMIQUE [VANDF]
ACIDE L-GLUTAMIQUE [FCC]
BPBio1_001132
CHEMBL575060
GTPL1369
ACIDE GLUTAMIQUE [USP-RS]
GLUTAACIDE MICRO [QUI-DD]
ACIDE L-GLUTAMIQUE [FHFI]
Acide L-glutamique, 99 %, FCC
BDBM17657
CHEBI:53374
Acide glutamique, L-(7CI,8CI)
1-Aminopropane-1,3-dicarboxylate
(C5-H9-N-O4)x-
Acide glutamique, L- (7CI,8CI)
Acide L (+)-glutamique, forme alpha
1-amino-propane-1,3-dicarboxylate
138-16-9
Acide L-glutamique, source non animale
Acide pentanédioïque, 2-amino-, (S)
Tox21_113053
HB0383
HSCI1_000269
PDSP1_000128
PDSP1_001539
PDSP2_000127
PDSP2_001523
s6266
AKOS006238837
AKOS015854087
AM81690
GCC-204619
DB00142
LS-2330
SDCCGSBI-0050512.P002
CAS-56-86-0
NCGC00024502-01
NCGC00024502-02
NCGC00024502-04
NCGC00024502-07
Acide (2S)-2-aminopentanedioïque ; H-Glu-OH
AC-11294
DS-13284
HY-14608
LS-71885
Acide (S)-1-Aminopropane-1,3-dicarboxylique
Acide (S)-1-Aminopropane-1,3-dicarboxylique
CS-0003473
G0059
EN300-52632
Acide L-glutamique, BioUltra, >=99,5% (NT)
Acide L-glutamique, testé selon Ph.Eur.
C00025
D00007
Acide L-glutamique, NIST(R)RM 8573, USGS40
M02979
M03872
Acide glutamique, L- ; ((S)-(+)-Acide glutamique)
Acide L-glutamique, qualité spéciale JIS, >=99,0 %
Acide L-glutamique, NIST(R) RM 8574, USGS41
A831210
Acide glutamique, L- ; ((S)-(+)-Acide glutamique)
SR-01000597730
J-502415
Acide L-glutamique, ReagentPlus(R), >=99 % (HPLC)
Acide L-glutamique, qualité réactif Vetec(TM), >=99 %
SR-01000597730-1
Acide L-glutamique, >=99 %, FCC, source naturelle, FG
Q26995161
F8889-8668
Z756440052
27322E29-9696-49C1-B541-86BEF72DE2F3
Acide glutamique, étalon de référence de la Pharmacopée européenne (EP)
Acide L-glutamique, matériau de référence certifié, TraceCERT(R)
Acide glutamique, étalon de référence de la Pharmacopée des États-Unis (USP)
L'acide L-glutamique, d'origine non animale, répond aux spécifications des tests EP, adapté à la culture cellulaire, 98,5 à 100,5 %
ACIDE GLUTARIQUE
L'acide glutarique est un acide dicarboxylique linéaire.
Lors de l'exposition aux rayons X, les cristaux d'acide glutarique génèrent deux radicaux libres stables.
L'acide glutarique se forme comme intermédiaire lors du catabolisme de la lysine chez les mammifères.

Numéro CAS : 110-94-1
Numéro CE : 203-817-2
Formule chimique : C5H8O4
Masse molaire : 132,12 g/mol

ACIDE GLUTARIQUE, acide pentanedioïque, 110-94-1, acide 1,5-pentanedioïque, glutarate, acide 1,3-propanedicarboxylique, acide pentandioïque, acide n-pyrotartrique, acide propane-1,3-dicarboxylique, UNII-H849F7N00B, CHEBI :17859, MFCD00004410, Acides carboxyliques, C6-18 et C5-15-di-, NSC9238, H849F7N00B, DSSTox_CID_1654, DSSTox_RID_76266, DSSTox_GSID_21654, CAS-110-94-1, HSDB 5542, NSC 9238, E INECS 203-817-2, BRN 1209725, Glutarsaeure, Pentandioate, AI3-24247, 1czc, 1,5-Pentanedioate, Acide glutarique, 99%, 4lh3, 1,3-Propanedicarboxylate, WLN : QV3VQ, (C4-C6) Acides dibasiques, pentanedioate ; Acide glutarique, bmse000406, Acide glutarique et anhydride, SCHEMBL7414, 4-02-00-01934, Acide pentanedioïque Acide glutarique, Acides carboxyliques, di-, C4-6, CHEMBL1162495, DTXSID2021654, ZINC388706, NSC-9238, Tox21_202448, Tox2 1_302871, BDBM50485550, s3152, AKOS000118800, CS-W009536, DB03553, HY-W008820, LS41863, MCULE-4286022994, NCGC00249226-01, NCGC00256456-01, NCGC00259997-01, 68937-69-9, AS-13132, BP-21143, H402, SY029948, FT- 0605446, G0069, G0245, C00489, D70283, A802271, Q409622, acide glutarique (env. 50% dans l'eau, env. 4,3mol/L), J-011915, Q-201163, Z57127454, 78FA13BF-E0C0-4EFC-948C-534CF45044E3, F2191-0242, acide glutarique, matériau de référence certifié, TraceCERT(R), acide glutarique, 1,3-Propanedicarboxylate , 1,5-pentanedioate, acide 1,5-pentanedioïque, 110-94-1, 1209725, 203-817-2, Acide glutarique, Glutarsäure, hydrogén glutarate, MFCD00004410, acide n-Pyrotartarique, acide pentanedioïque, 1, ACIDE 3-PROPANÉDICARBOXYLIQUE, 111-16-0, 154184-99-3, 19136-99-3, 203-817-2MFCD00004410, 271-678-5, 273-081-5, 4-02-00-01934, 43087 -19-0, 68603-87-2, 68937-69-9, 8065-59-6, acide glutarique (acide pentanedioïque), acide glutarique, réactif, Gua, hydron, Pentandioate, acide Pentandioïque, pentanedioate, Pentanedioïque-2, Acide 2,4,4-d4, acide pentanedioïque-3,3-d2, acide pentanedioïque-d6, acide propane-1,3-dicarboxylique, acide propane-1,3-dicarboxylique|Acide pentanedioïque, acide glutarique, WLN : QV3VQ

L'acide glutarique (acide pentanedioïque) est un acide dicarboxylique linéaire.
L'acide glutarique a été préparé en oxydant le cyclopentane, le cyclopentanol et la cyclopentanone.

L'acide glutarique est un acide pentanedioïque.
Lors de l'exposition aux rayons X, les cristaux d'acide glutarique génèrent deux radicaux libres stables.

Ces radicaux libres ont été étudiés par la technique de double résonance nucléaire électronique (ENDOR).
La présence d'acide glutarique dans l'urine et le plasma est un indicateur de l'acidurie glutarique de type I (GA-I).

L'acide glutarique se forme comme intermédiaire lors du catabolisme de la lysine chez les mammifères.
Les spectres de résonance de spin électronique du radical (CO2H)CH2CH2CH(CO2H formé dans le cristal d'acide glutarique après γ-irradiation resteraient piégés dans l'acide glutarique.
Le polymorphisme des co-cristaux de glycine-acide glutarique a été étudié par diffraction des rayons X sur monocristal et spectroscopie Raman.

L'acide glutarique est un simple acide dicarboxylique linéaire à cinq carbones.
L'acide glutarique est produit naturellement dans l'organisme lors du métabolisme de certains acides aminés, dont la lysine et le tryptophane.

L'acide glutarique peut provoquer une irritation de la peau et des yeux.
Lorsqu’il est présent à des niveaux suffisamment élevés, l’acide glutarique peut agir comme acidogène et métabotoxine.

Un acidogène est un composé acide qui induit une acidose, qui a de multiples effets néfastes sur de nombreux systèmes organiques.
Une métabotoxine est un métabolite produit de manière endogène qui provoque des effets néfastes sur la santé à des niveaux chroniquement élevés.

Des niveaux chroniquement élevés d'acide glutarique sont associés à au moins trois erreurs innées du métabolisme, notamment l'acidurie glutarique de type I, le déficit en malonyl-CoA décarboxylase et l'acidurie glutarique de type III.
L'acidurie glutarique de type I (acidémie glutarique de type I, déficit en glutaryl-CoA déshydrogénase, GA1 ou GAT1) est une maladie héréditaire dans laquelle l'organisme est incapable de décomposer complètement les acides aminés lysine, hydroxylysine et tryptophane en raison d'un déficit en mitochondries. glutaryl-CoA déshydrogénase (EC 1.3.99.7, GCDH).

Des niveaux excessifs de leurs produits de dégradation intermédiaires (par exemple acide glutarique, glutaryl-CoA, acide 3-hydroxyglutarique, acide glutaconique) peuvent s'accumuler et causer des dommages au cerveau (ainsi qu'à d'autres organes).
Les bébés atteints d'acidémie glutarique de type I naissent souvent avec une tête inhabituellement grosse (macrocéphalie).

La macrocéphalie fait partie des premiers signes de GA1.
GA1 provoque également une carence secondaire en carnitine car l'acide glutarique, comme d'autres acides organiques, est détoxifié par la carnitine.

Des niveaux anormalement élevés d’acides organiques dans le sang (acidémie organique), l’urine (acidurie organique), le cerveau et d’autres tissus conduisent à une acidose métabolique générale.
L'acidose survient généralement lorsque le pH artériel tombe en dessous de 7,35.

Chez les nourrissons atteints d'acidose, les premiers symptômes comprennent une mauvaise alimentation, des vomissements, une perte d'appétit, un faible tonus musculaire (hypotonie) et un manque d'énergie (léthargie).
Ceux-ci peuvent évoluer vers des anomalies cardiaques, hépatiques et rénales, des convulsions, un coma et éventuellement la mort.

Ce sont également les symptômes caractéristiques de l’acidurie glutarique non traitée.
De nombreux enfants atteints d’acidémie organique souffrent d’une déficience intellectuelle ou d’un retard de développement.

Chez l'adulte, l'acidose ou acidémie se caractérise par des maux de tête, de la confusion, une sensation de fatigue, des tremblements, de la somnolence et des convulsions.
Le traitement de l'acidurie glutarique repose principalement sur la restriction de l'apport en lysine, la supplémentation en carnitine et une intensification du traitement lors de maladies intercurrentes.

Le principe majeur du traitement diététique est de réduire la production d'acide glutarique et d'acide 3-hydroxyglutarique par restriction des protéines naturelles en général et de la lysine en particulier.
L'acide glutarique a également été trouvé dans Escherichia

L'acide glutarique est un acide alpha, oméga-dicarboxylique qui contient un acide dicarboxylique linéaire simple à 5 carbones (HO2Câˆ'Râˆ'CO2H).
La formule moléculaire ou chimique de l'acide glutarique est C5H8O4.

Lorsque l’acide pentanedioïque est présent en grande quantité, l’acide glutarique agit comme métabotoxine et comme acidogène.
L'acide glutarique peut être synthétisé par le processus suivant

L'ouverture du cycle de la butyrolactone (C4H6O2) avec du cyanure de potassium (KCN) pour produire du carboxylate-nitrile de potassium.
L'acide glutarique est ensuite hydrolysé en diacide.

Le dihydropyrane oxydant produira de l’acide glutarique.
L'acide glutarique peut également être synthétisé en traitant le 1,3-dibromopropane avec du cyanure de potassium ou de sodium pour produire du dinitrile.
De plus, l'acide glutarique est hydrolysé pour obtenir de l'acide glutarique.

L'acide glutarique est utilisé comme matière première pour la synthèse organique, l'intermédiaire pharmaceutique et la résine synthétique.
L'acide glutarique sert de précurseur dans la production de polyester polyols, de polyamides, de plastifiants esters et d'inhibiteurs de corrosion.

L'acide glutarique est utile pour diminuer l'élasticité des polymères et dans la synthèse des tensioactifs et des composés de finition des métaux.
L'acide glutarique agit comme intermédiaire lors du catabolisme de la lysine chez les mammifères.

L'acide glutarique, également connu sous le nom de 1,5-pentanedioate ou acide pentanedioïque, appartient à la classe de composés organiques appelés acides dicarboxyliques et dérivés.
Ce sont des composés organiques contenant exactement deux groupes acide carboxylique.

L'acide glutarique existe dans tous les organismes vivants, des bactéries aux humains.
L'acide glutarique est un composé au goût inodore.

L'acide glutarique a été détecté, mais non quantifié, dans plusieurs aliments différents, tels que les eddoes (Colocasia antiquorum), les pitangas (Eugenia uniflora), les quenouilles à feuilles étroites (Typha angustifolia), les feuilles de chicorée (Cichorium intybus var. foliosum) et les pommes cirées ( Eugénie javanica).
Cela pourrait faire de l’acide glutarique un biomarqueur potentiel pour la consommation de ces aliments.
L'acide glutarique, chez l'homme, s'est avéré associé à plusieurs maladies telles que l'œsophagite à éosinophiles et le syndrome du côlon irritable ; l'acide glutarique a également été associé à plusieurs troubles métaboliques innés, notamment l'acidurie glutarique I, le déficit en 3-hydroxy-3-méthylglutaryl-coa lyase et le déficit en acyl-coa déshydrogénase à chaîne courte.

L'acide glutarique est un phosphate dinucléotide qui existe sous deux formes : la forme alpha, qui a une température de transition de phase élevée et est insoluble dans l'eau ; et la forme bêta, qui a une faible température de transition de phase et est soluble dans l'eau.
L'acide glutarique peut être utilisé comme réactif analytique pour identifier le type de nucléotides présents dans les échantillons.

L'acide glutarique peut également être utilisé comme solvant expérimental pour d'autres composés non solubles dans l'eau.
La toxicité de l'acide glutarique a été étudiée de manière approfondie et s'est révélée faible.

Ce composé ne semble pas avoir d'effets néfastes sur la santé humaine ou animale à des doses allant jusqu'à 1 g/kg de poids corporel.
Il a été démontré que l'acide glutarique possède des propriétés anti-infectieuses en inhibant la croissance des bactéries, des champignons et des virus.
L'efficacité de l'acide glutarique contre les maladies infectieuses semble dépendre de la capacité de l'acide glutarique à bloquer la synthèse des protéines en inhibant des enzymes telles que la glutathion réductase.

L'acide glutarique est le composé organique de formule C3H6 (COOH).
Bien que les acides dicarboxyliques « linéaires » apparentés, les acides adipique et succinique, ne soient solubles dans l'eau qu'à quelques pour cent à température ambiante, la solubilité dans l'eau de l'acide glutarique est supérieure à 50 % (p/p).

Description physique de l’acide glutarique :
L'acide glutarique apparaît sous forme de cristaux incolores ou de solide blanc.

Applications de l’acide glutarique :
L'acide glutarique peut être utilisé comme réactif de départ dans la synthèse de l'anhydride glutarique.
L'acide glutarique peut être utilisé pour les études suivantes :

Complexation avec DL-lysine.
Il a été rapporté que les complexes possèdent des ions lysinium zwitterioniques (chargés positivement) et des ions semi-glutarate (chargés négativement).

Synthèse de complexes avec la L-arginine et la L-histidine.
Préparation de co-cristaux de glycine-acide glutarique.
Des études de transition de phase de ces cocristaux ont été rapportées par diffraction des rayons X sur monocristal, spectroscopie Raman polarisée et calorimétrie différentielle à balayage.

L'acide glutarique est utilisé comme matière première pour la synthèse organique, l'intermédiaire pharmaceutique et la résine synthétique.
L'acide glutarique sert de précurseur dans la production de polyester polyols, de polyamides, de plastifiants esters et d'inhibiteurs de corrosion.

L'acide glutarique est utile pour diminuer l'élasticité des polymères et dans la synthèse des tensioactifs et des composés de finition des métaux.
L'acide glutarique agit comme intermédiaire lors du catabolisme de la lysine chez les mammifères.

Utilisations de l'acide glutarique :
Nous préparons du 1, 5-pentanediol qui est un plastifiant courant et un précurseur des polyesters par hydrogénation de l'acide glutamique et des dérivés de l'acide glutarique.
De plus, nous utilisons l'acide glutarique lui-même dans la production de polymères tels que les polyamides et les polyols.

De plus, le nombre impair de l’atome de carbone, soit 5, est très utile pour diminuer l’élasticité du polymère.
De plus, on obtient de l'acide uvitonique par l'action de l'ammoniac sur l'acide glutarique.

L'hydrogénation de l'acide glutarique et des dérivés de l'acide glutarique produit des plastifiants.
Utilisé pour produire de nombreux polymères tels que les polyesters, les polyamides.

Le 1,5-pentanediol, un plastifiant courant et précurseur des polyesters, est fabriqué par hydrogénation de l'acide glutarique et des dérivés de l'acide glutarique.
L'acide glutarique lui-même a été utilisé dans la production de polymères tels que les polyesters polyols et les polyamides.

Le nombre impair d'atomes de carbone (c'est-à-dire 5) est utile pour diminuer l'élasticité du polymère.
L'acide uvitonique est obtenu par action de l'ammoniac sur l'acide glutarique.
Le pyrogallol peut être produit à partir du diester glutarique.

Utilisations industrielles :
Adsorbants et absorbants
Inhibiteurs de corrosion et agents antitartre
Intermédiaires
Plastifiants
Auxiliaires technologiques, non répertoriés ailleurs

Utilisations par les consommateurs :
Adhésifs et mastics
Produits de traitement de l'eau

Autres utilisations:
Mise en mémoire tampon
Arôme
Auxiliaire technologique non spécifié ailleurs
Auxiliaires technologiques et additifs

Formule et structure de l'acide glutarique :
La formule chimique de l'acide glutarique est C3H6(COOH)2.
L'acide glutarique est un acide alpha, oméga-dicarboxylique qui contient un acide dicarboxylique linéaire à cinq carbones.

De plus, l’acide glutarique joue un rôle de métabolite humain et de métabolite de Daphnia Magna.
De plus, l'acide glutarique est l'acide conjugué du glutarate (1-) et du glutamate.
Le poids moléculaire de l'acide glutarique est de 132,12 g/mol.

Biochimie de l'acide glutarique :
L'acide glutarique est produit naturellement dans l'organisme lors du métabolisme de certains acides aminés, dont la lysine et le tryptophane.
Des défauts dans cette voie métabolique peuvent conduire à un trouble appelé acidurie glutarique, dans lequel des sous-produits toxiques s’accumulent et peuvent provoquer une encéphalopathie grave.

Naturellement, le corps produit de l’acide glutarique lors du métabolisme de certains acides aminés, dont le tryptophane et la lysine.
De plus, des défauts dans cette voie métabolique peuvent conduire à un trouble appelé acidurie glutarique, dans lequel des sous-produits toxiques s’accumulent et peuvent provoquer une encéphalopathie grave.

Pharmacologie et biochimie de l'acide glutarique :

Informations sur les métabolites humains :

Emplacements des tissus :
Placenta
Prostate

Emplacements cellulaires :
Cytoplasme

Propriétés de l'acide glutarique :
L'acide glutarique apparaît sous la forme d'un cristal incolore ou d'un solide blanc.
De plus, le point d'ébullition de l'acide glutarique est de 303 °C ou 200 °C à 20 mmHg.

D’un autre côté, le point de fusion de l’acide glutarique se situe entre 97,5 et 98 °C.
Alors que les acides dicarboxyliques « linéaires » correspondants, les acides adipique et succinique ne sont solubles dans l'eau qu'à quelques pour cent à température ambiante.

Cependant, l'acide glutarique est soluble dans l'eau et librement soluble dans l'alcool absolu, l'éther, le benzène, le chloroforme et l'acide sulfurique.
En revanche, l’acide glutarique est légèrement soluble dans l’éther de pétrole.
L'acide glutarique a une densité de 1,4 g/cm3.

Production d'acide glutarique :
L'acide glutarique peut être préparé par ouverture de cycle de butyrolactone avec du cyanure de potassium pour donner le mélange carboxylate de potassium-nitrile qui est hydrolysé en diacide.
Alternativement, l'hydrolyse, suivie d'une oxydation du dihydropyranne, donne de l'acide glutarique.
L'acide glutarique peut également être préparé en faisant réagir du 1,3-dibromopropane avec du cyanure de sodium ou de potassium pour obtenir le dinitrile, suivi d'une hydrolyse.

Nous pouvons produire de l'acide glutarique par l'ouverture du cycle de la butyrolactone avec du cyanure de potassium pour fournir le mélange carboxylate de potassium-nitrile qui est hydrolysé en diacide.

Une méthode alternative est une hydrolyse suivie d’une oxydation du dihydropyrane qui donne de l’acide glutarique.
On peut également préparer en faisant réagir du 1,3-dibromopropane avec du cyanure de sodium ou de potassium pour acquérir le dinitrile suivi d'une hydrolyse.

Méthodes de fabrication de l’acide glutarique :
Fabriqué à partir de cyclopentanone par fission oxydative de cycle avec de l'acide nitrique chaud à 50 % en présence de cyanure de vanadium.
Préparation du laboratoire par hydrolyse acide du cyanure de triméthylène ou de l'ester méthylènedimalonique.

Oxydation de la cyclopentanone avec de l'acide nitrique à 50 % en présence de pentoxyde de vanadium ou avec de l'air en présence d'un catalyseur ; sous-produit de la production d'acide adipique à partir du cyclohexane par oxydation avec de l'air et de l'acide nitrique

Informations générales sur la fabrication de l'acide glutarique :

Secteurs de transformation de l'industrie :
Toute autre fabrication de produits chimiques organiques de base
Fabrication de matières plastiques et de résines
Utilitaires

15 000 m3/h de gaz d'échappement contenant 10 à 15 % de dioxyde de soufre et 0,5 à 2 mg h2s/m3 sont lavés dans 4 colonnes remplies successives à 35 °C avec 40 à 55 m3/h d'acide glutarique aqueux à 30 %.
Une composition destinée à neutraliser ou à détruire un virus sensible sur un tissu infecté d'un mammifère vivant contient une concentration efficace d'acide glutarique dans un véhicule pharmaceutique ainsi que du papier ou du tissu enduit ou imprégné du virucide.
L'acide glutarique peut être un précurseur essentiel dans la biosynthèse de la biotine par une espèce d'agrobactérie.

Solubilité de l'acide glutarique :
Soluble dans l'eau, l'alcool, le benzène et le chloroforme.
Légèrement soluble dans l'éther de pétrole.

Profil de réactivité de l'acide glutarique :
Glutarıc Acıd est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.

Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.

La neutralisation entre un acide et une base produit de l'eau et un sel.
Les acides carboxyliques contenant six atomes de carbone ou moins sont librement ou modérément solubles dans l'eau ; ceux qui contiennent plus de six carbones sont légèrement solubles dans l’eau.

L'acide carboxylique soluble se dissocie dans une certaine mesure dans l'eau pour produire des ions hydrogène.
Le pH des solutions d'acides carboxyliques est donc inférieur à 7,0.

De nombreux acides carboxyliques insolubles réagissent rapidement avec des solutions aqueuses contenant une base chimique et se dissolvent lorsque la neutralisation génère un sel soluble.
Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.

De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide glutarique pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.

Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Des gaz et de la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.

Les acides carboxyliques, notamment en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), les dithionites (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.
Leur réaction avec les carbonates et bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais néanmoins de la chaleur.

Comme d’autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants puissants et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.

Une grande variété de produits est possible.
Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme les autres acides, ils catalysent souvent (augmentent la vitesse des) réactions chimiques. Ce composé réagit avec les bases, les agents oxydants et les agents réducteurs.

Sécurité de l'acide glutarique :
L'acide glutarique peut provoquer une irritation de la peau et des yeux.
Les dangers aigus incluent le fait que ce composé peut être nocif par ingestion, inhalation ou absorption cutanée.

Premiers soins de l'acide glutarique :

YEUX:
Vérifiez d’abord si la victime porte des lentilles de contact et retirez-les si elles sont présentes.
Rincer les yeux de la victime avec de l'eau ou une solution saline normale pendant 20 à 30 minutes tout en appelant simultanément un hôpital ou un centre antipoison.

Ne mettez aucune pommade, huile ou médicament dans les yeux de la victime sans instructions spécifiques d'un médecin.
Transporter IMMÉDIATEMENT la victime après avoir rincé les yeux vers un hôpital même si aucun symptôme (tel qu'une rougeur ou une irritation) ne se développe.

PEAU:
Inonder IMMÉDIATEMENT la peau affectée avec de l'eau tout en retirant et en isolant tous les vêtements contaminés.
Lavez soigneusement toutes les zones cutanées affectées avec de l’eau et du savon.
Si des symptômes tels qu'une rougeur ou une irritation apparaissent, appelez IMMÉDIATEMENT un médecin et soyez prêt à transporter la victime à l'hôpital pour y être soignée.

INHALATION:
Quitter IMMÉDIATEMENT la zone contaminée ; prenez de grandes respirations d'air frais.
Si des symptômes (tels qu'une respiration sifflante, de la toux, un essoufflement ou une sensation de brûlure dans la bouche, la gorge ou la poitrine) apparaissent, appelez un médecin et soyez prêt à transporter la victime à l'hôpital.

Fournir une protection respiratoire appropriée aux sauveteurs entrant dans une atmosphère inconnue.
Dans la mesure du possible, un appareil respiratoire autonome (ARA) doit être utilisé ; s'il n'est pas disponible, utilisez un niveau de protection supérieur ou égal à celui conseillé sous Vêtements de protection.

INGESTION:
NE PAS PROVOQUER DE VOMISSEMENTS.
Si la victime est consciente et ne convulse pas, donnez-lui 1 ou 2 verres d'eau pour diluer le produit chimique et appelez IMMÉDIATEMENT un hôpital ou un centre antipoison.

Soyez prêt à transporter la victime à l'hôpital si un médecin vous le conseille.
Si la victime a des convulsions ou est inconsciente, ne rien administrer par voie orale, s'assurer que les voies respiratoires de la victime sont ouvertes et la coucher sur le côté, la tête plus basse que le corps.

NE PAS PROVOQUER DE VOMISSEMENTS.
Transporter IMMÉDIATEMENT la victime à l'hôpital.

Lutte contre l'incendie de l'acide glutarique :
Les incendies impliquant ce matériau peuvent être maîtrisés avec un extincteur à poudre chimique, au dioxyde de carbone ou au halon.
Un jet d’eau peut également être utilisé.

Élimination des déversements d’acide glutarique :
Balayer la substance déversée dans des récipients couverts.
Le cas échéant, humidifiez d’abord pour éviter la poussière.
Puis laver abondamment à l'eau.

Manipulation et stockage de l’acide glutarique :

Intervention en cas de déversement sans incendie :

PETITS DÉVERSEMENTS ET FUITES :
Si vous renversez ce produit chimique, vous devez humidifier le matériau solide déversé avec de l'eau, puis transférer le matériau humidifié dans un récipient approprié.
Utilisez du papier absorbant imbibé d’eau pour ramasser tout matériau restant.

Scellez vos vêtements contaminés et le papier absorbant dans un sac en plastique étanche à la vapeur pour une éventuelle élimination.
Lavez toutes les surfaces contaminées avec une solution d’eau et de savon.
Ne rentrez pas dans la zone contaminée tant que l'agent de sécurité (ou toute autre personne responsable) n'a pas vérifié que la zone a été correctement nettoyée.

PRÉCAUTIONS DE STOCKAGE :
Vous devez conserver ce produit chimique à température ambiante et garder l’acide glutarique à l’écart des matériaux oxydants.

Stockage sûr de l'acide glutarique :
Séparé des bases.

Risques pour la santé et la sécurité de l’acide glutarique :
L'acide glutarique peut provoquer une irritation des yeux, des voies respiratoires et de la peau.
Le composé a des effets aigus/chroniques, car l'acide glutarique est nocif par inhalation, ingestion ou absorption cutanée.

De plus, lorsqu'il est chauffé jusqu'à décomposition, l'acide glutarique peut émettre une fumée âcre, des vapeurs toxiques de dioxyde de carbone et de monoxyde de carbone, ainsi que des fumées irritantes.
Si quelqu'un inhale de l'acide glutarique, l'acide glutarique peut également provoquer des maux de gorge et de la toux. L'acide glutarique touche la peau ou les yeux, puis l'acide glutarique provoque des rougeurs et des douleurs dans la région.
L'ingestion d'acide glutarique peut provoquer des douleurs abdominales.

Identifiants de l'acide glutarique :
Numéro CAS : 110-94-1
ChEBI : CHEBI :17859
ChEMBL : ChEMBL1162495
ChemSpider : 723
Banque de médicaments : DB03553
Carte d'information ECHA : 100.003.471
Numéro CE : 203-817-2
KEGG : C00489
Numéro client PubChem : 743
UNII : H849F7N00B
Tableau de bord CompTox (EPA) : DTXSID2021654
InChI :
InChI=1S/C5H8O4/c6-4(7)2-1-3-5(8)9/h1-3H2,(H,6,7)(H,8,9) vérifier
Clé : chèque JFCQEDHGNNZCLN-UHFFFAOYSA-N
InChI=1/C5H8O4/c6-4(7)2-1-3-5(8)9/h1-3H2,(H,6,7)(H,8,9)
Clé : JFCQEDHGNNZCLN-UHFFFAOYAU
SOURIRES : C(CC(=O)O)CC(=O)O

Propriétés de l'acide glutarique :
Formule chimique : C5H8O4
Masse molaire : 132,12 g/mol
Point de fusion : 95 à 98 °C (203 à 208 °F ; 368 à 371 K)
Point d'ébullition : 200 °C (392 °F ; 473 K) /20 mmHg

Poids moléculaire : 132,11
XLogP3 : -0,3
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 4
Nombre de liaisons rotatives : 4
Masse exacte : 132,04225873
Masse monoisotopique : 132,04225873
Superficie polaire topologique : 74,6 â " ²
Nombre d'atomes lourds : 9
Complexité : 104
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui

Informations physicochimiques de l'acide glutarique :
Point d'ébullition : 302 - 304 °C (1013 hPa) (décomposition lente)
Densité : 1,429 g/cm3 (15°C)
Point de fusion : 97,5 - 98 °C
Pression de vapeur : 0,022 hPa (18,5 °C)
Solubilité : 640 g/l

Spécifications de l’acide glutarique :
Dosage (acidimétrique): ≥ 99,0 %(m)
Plage de fusion (valeur inférieure) : ≤ 95 °C
Plage de fusion (valeur supérieure) : ≤ 99 °C
Identité (IR) : conforme

Noms de l’acide glutarique :

Nom IUPAC préféré de l’acide glutarique :
Acide pentanédioïque

Autres noms de l’acide glutarique :
Acide glutarique
Acide propane-1,3-dicarboxylique
Acide 1,3-propanedicarboxylique
Acide pentanédioïque
Acide n-pyrotartrique
ACIDE GLYCOLIQUE
L'acide glycolique (ou acide hydroxyacétique ; formule chimique HOCH2CO2H) est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
Il est utilisé dans divers produits de soins de la peau.
L'acide glycolique est répandu dans la nature.
Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester d'acide glycolique.

CAS : 79-14-1
FM : C2H4O3
MW : 76,05
EINECS : 201-180-5

La solution d’acide glycolique est une solution utile d’acide.
L'acide glycolique est un intermédiaire utile pour la synthèse.
L'utilisation de synthèse la plus utile est l'estérification par oxydation-réduction et la polymérisation à longue chaîne.
L'acide glycolique est utilisé comme monomère pour créer du PLGA et d'autres copolymères biocompatibles.
L'acide glycolique est souvent utile pour la teinture et le bronzage, et est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour l'encre et la peinture.
L'acide glycolique est métabolisé par les cellules in vitro pour devenir de l'acide oxalique qui tue les cellules.
L'acide glycolique est synthétisé de nombreuses façons, mais il est souvent isolé de la canne à sucre, des ananas et d'autres fruits au goût acide.

Le nom « acide glycolique » a été inventé en 1848 par le chimiste français Auguste Laurent (1807-1853).
Il a proposé que l'acide aminé glycine, alors appelé glycocolle, pourrait être l'amine d'un acide hypothétique, qu'il a appelé « acide glycolique » (acide glycolique).
L'acide glycolique a été préparé pour la première fois en 1851 par le chimiste allemand Adolph Strecker (1822-1871) et le chimiste russe Nikolai Nikolaevich Sokolov (1826-1877).
Ils ont produit de l'acide glycolique en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote pour former un ester d'acide benzoïque et d'acide glycolique (C6H5C(=O)OCH2COOH), qu'ils ont appelé « acide benzoglycolique » (Benzoglycolsäure ; également acide benzoylglycolique).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide glycolique (Glykolsäure).

L'acide glycolique est un type d'acide alpha-hydroxy (AHA).
Les acides alpha-hydroxy sont des acides naturels présents dans les aliments.
L'acide glycolique provient de la canne à sucre.
Les acides alpha-hydroxy comme l’acide glycolique agissent en éliminant les couches supérieures des cellules mortes de la peau.
L’acide glycolique semble également aider à inverser les dommages cutanés causés par le soleil.
Les gens utilisent l’acide glycolique pour traiter l’acné, le vieillissement cutané, les taches foncées sur le visage et les cicatrices d’acné.
L'acide glycolique est également utilisé pour traiter les vergetures et d'autres affections, mais il n'existe aucune preuve scientifique solide pour étayer ces autres utilisations.

L'acide glycolique est un ingrédient courant dans de nombreux produits de soins de la peau en vente libre et professionnels, en particulier les produits anti-âge.
L'acide glycolique soutient également la production de collagène, protège la peau contre les dommages causés par le soleil et empêche les pores de se boucher.

Propriétés chimiques
Point de fusion : 75-80 °C (lit.)
Point d'ébullition : 112 °C
Densité : 1,25 g/mL à 25 °C
Pression de vapeur : 10,8 hPa (80 °C)
Indice de réfraction : n20/D 1,424
Fp : 112°C
Température de stockage : Conserver en dessous de +30°C.
Solubilité : H2O : 0,1 g/mL, clair
Pka : 3,83 (à 25 ℃)
Formulaire : Solution
Couleur Blanc à blanc cassé
PH : 2 (50 g/l, H2O, 20 ℃)
Odeur : à 100,00 %. inodore, beurré très doux
Type d'odeur : beurrée
Solubilité dans l'eau : SOLUBLE
Sensible : Hygroscopique
Merck : 14 4498
Numéro de référence : 1209322
Stabilité : Stable. Incompatible avec les bases, les agents oxydants et les agents réducteurs.
InChIKey : AEMRFAOFKBGASW-UHFFFAOYSA-N
LogP : -1,07 à 20 ℃

Les usages
Acné
L'application d'acide glycolique sur la peau semble aider à réduire l'acné chez les personnes de 12 ans et plus souffrant d'acné légère à modérée.
Vieillissement de la peau
L'application d'acide glycolique sur la peau semble réduire les rides et autres signes du vieillissement et des dommages causés par le soleil.
Cicatrices d'acné.
L'application d'acide glycolique sur la peau, seul ou en association avec le microneedling, semble réduire les cicatrices d'acné.
Mélasma
L'application d'acide glycolique sur la peau, seul ou en association avec d'autres traitements, semble réduire les mélasmas de type mixte et épidermique. Mais cela ne semble pas aider le mélasma de type cutané, qui se produit dans une couche plus profonde de la peau.

L'acide glycolique est l'alpha-hydroxyacide (AHA) le plus simple. C'est également l'AHA qui, selon les scientifiques et les formulateurs, possède un plus grand potentiel de pénétration, en grande partie en raison de son poids moléculaire plus faible.
L'acide glycolique est légèrement irritant pour la peau et les muqueuses si la formulation contient une concentration élevée d'acide glycolique et/ou un pH faible.
L'acide glycolique s'avère bénéfique pour les peaux à tendance acnéique car il aide à garder les pores débarrassés de l'excès de kératinocytes.
L'acide glycolique est également utilisé pour atténuer les signes de taches de vieillesse, ainsi que la kératose actinique.
Cependant, l'acide glycolique est le plus couramment utilisé dans les cosmétiques anti-âge en raison de ses capacités hydratantes et normalisantes pour la peau, conduisant à une réduction de l'apparence des rides et des ridules.
Quel que soit le type de peau G, l'utilisation d'acide glycolique à 70 % est associée à une peau plus douce, plus lisse, plus saine et d'apparence plus jeune.
L'acide glycolique se trouve naturellement dans la canne à sucre, mais les versions synthétiques sont le plus souvent utilisées dans les formulations cosmétiques.

Préparation
Il existe différentes méthodes de préparation pour synthétiser l’acide glycolique.
Cependant, la méthode la plus courante est la réaction catalysée du formaldéhyde avec le gaz de synthèse, qui coûte moins cher.
L'acide glycolique peut être préparé lorsque l'acide chloroacétique réagit avec l'hydroxyde de sodium et subit une réacidification.
La réduction électrolytique de l’acide oxalique pourrait également synthétiser ce composé.
L'acide glycolique peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique peut être préparé en hydrolysant la cyanhydrine dérivée du formaldéhyde.

Synonymes
Acide acétique, 2-hydroxy-
AKOS BBS-00004277
ACIDE 2-HYDROXYACÉTIQUE
ACIDE GLYCOLIQUE, HAUTE PURETÉ, SOLU TION À 70 % EN POIDS DANS L'EAU
ACIDE GLYCOLIQUE REAGENTPLUS(TM) 99%
SOLUTION D'ACIDE GLYCOLIQUE, ~55% DANS L'EAU
ACIDE GLYCOLIQUE, TECH., 70 WT. % SOLUTION DANS L'EAU
ACIDE GLYCOLIQUE SIGMAULTRA
Solution d'acide glycolique env. 57%
Acide glycolique (acide hydroxyacétique)
Acide glycolique, solution 67-70% dans l'eau
Acide glycolique70% (dans l'eau) pour la synthèse
Acide glycolique, solution à 70 %
Acide glycolique, 98 %
ACIDE GLYCOLIQUE POUR SYNTHÈSE 250 G
ACIDE GLYCOLIQUE POUR SYNTHÈSE 100 G
ACIDE GLYCOLIQUE POUR ANALYSE EMSURE
ACIDE GLYCOLIQUE POUR SYNTHÈSE 1 KG
Solution d'acide glycolique de haute pureté, 70 en poids. % dans H2O
RARECHEM AL BO 0466
Acide glycolique, 67% dans l'eau
GLYCOLICACIDE,CRISTAL,REACTIF
CHC-22
GLYCOLAT
Glycolsure
ACIDE GLYCOLIQUE : SOLUTION AQUEUSE À 70%
Acide glycolique, environ 67% aq. solen.
Acide glycolique (environ 70 % dans l'eau, environ 12 mol/L)
Acide glycolique 70% (garde cosmétique)
Acide glycolique 70% (qualité industrielle)
Acide glycolique >=97,0% (T)
Acide glycolique ReagentPlus(R), 99 %
Solution d'acide glycolique de qualité technique, 70 en poids. % dans H2O
Acide glycolique de qualité réactif Vetec(TM), 98 %
ACIDE GLYCOLIQUE, BIOXTRA, >=98,0%&
Acide glycolique, anhydre, fluide
Acide glycolique, 70% dans l'eau
LGB-GA
Acide hydroxy-acétique dans l'eau
glycolique
acide glycolique, solution
HOCH2COOH
hydroxy-acétiques
Kyselina Glyckolova
Kyselina hydroxyoctova
kyselinaglycolova
kyselinahydroxyoctova
NORME IC GLYCOLATE
ACIDE GLYCOLIQUE
ACIDE GLYCOLIQUE
ACIDE HYDROXYACÉTIQUE
ACIDE HYDROXYÉTHANOÏQUE
ACIDE GLYCOLIQUE 70% QUALITÉ TECHNIQUE
ACIDE GLYCOLIQUE 99%, POUDRE
Acide glycolique, 70 %, haute pureté
Acide glycolique, 70 %, technique
Acide glycolique, 99% 100GR
Acide glycolique, 99% 25GR
ACIDE GLYCOLIQUE
L'acide glycolique est un type d'acide alpha-hydroxylé (AHA) couramment utilisé dans les produits de soin de la peau et les traitements cosmétiques.
L'acide glycolique est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
L'acide glycolique est un cristal déliquescent qui se produit naturellement en tant que composant de la canne à sucre.

Numéro CAS : 79-14-1
Formule moléculaire : C2H4O3
Poids moléculaire : 76.05
Numéro EINECS : 201-180-5

L'acide glycolique est dérivé de la canne à sucre et appartient à une famille d'acides naturels connus pour leurs propriétés exfoliantes et renouvelantes pour la peau.
L'acide glycolique est le plus petit acide alpha-hydroxylé (AHA).
L'acide glycolique est principalement complété à divers produits de soins de la peau pour améliorer l'apparence et la texture de la peau.

L'acide glycolique peut également être utilisé comme agent aromatisant dans la transformation des aliments et comme agent de soins de la peau dans l'industrie pharmaceutique.
L'acide glycolique peut également être ajouté dans les polymères d'émulsion, les solvants et les additifs d'encre pour améliorer les propriétés d'écoulement et conférer de la brillance.
De plus, l'acide glycolique est un intermédiaire utile pour la synthèse organique, y compris la réduction oxydative, l'estérification et la polymérisation à longue chaîne.

L'acide glycolique peut également réduire les rides, les cicatrices d'acné et l'hyperpigmentation. Dans l'industrie textile, il peut être utilisé comme agent de teinture et de tannage.
L'acide glycolique, CH20HCOOH, est composé de folioles déliquescentes incolores qui se décomposent à environ 78 ° C (172 OF).
L'acide glycolique est également connu sous le nom d'acide 2-hydroxyéthanoïque, et son nom IUPAC est acide glycolique.

L'acide glycolique est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique où le groupe méthyle a été hydroxylé.
L'acide glycolique est un acide alpha-hydroxylé qui possède des propriétés antibactériennes, antioxydantes, kératolytiques et anti-inflammatoires.
L'acide glycolique est soluble dans l'eau, l'alcool et l'éther.

L'acide glycolique est utilisé dans la teinture, le tannage, l'électropolissage et dans les denrées alimentaires.
L'acide glycolique est fonctionnellement lié à l'acide acétique et est légèrement plus fort que lui.
Les sels ou esters de l'acide glycolique sont appelés glycolates.
L'acide glycolique est répandu dans la nature et peut être séparé des sources naturelles comme la canne à sucre, la betterave à sucre, l'ananas, le cantaloup et les raisins non mûrs.

L'acide glycolique est produit en oxydant le glycol avec de l'acide nitrique dilué.
L'acide glycolique est utilisé dans divers produits de soins de la peau.
L'acide glycolique est utilisé dans le traitement et la teinture des textiles et du cuir.

L'acide glycolique est également utilisé pour le nettoyage, le polissage et le brasage des métaux.
L'acide glycolique est un solide cristallin incolore, inodore et hygroscopique de formule chimique C2H4O3.
L'acide glycolique est répandu dans la nature.

Un glycolate (parfois orthographié « glycollate ») est un sel ou un ester de l'acide glycolique.
L'acide glycolique, ou acide glycolique, est un acide faible.
L'acide glycolique est vendu dans le commerce sous forme de solution à 70%.

L'acide glycolique est largement utilisé dans l'industrie des soins de la peau et des cosmétiques en raison de sa capacité à exfolier la peau, à favoriser le renouvellement cellulaire de la peau et à améliorer la texture et l'apparence générales de la peau.
L'acide glycolique, également connu sous le nom de 2-hydroxyacétate ou glycolate, appartient à la classe des composés organiques appelés acides alpha-hydroxylés et dérivés.

Ce sont des composés organiques contenant un acide carboxylique substitué par un groupe hydroxyle sur le carbone adjacent.
Cela pourrait faire de l'acide glycolique un biomarqueur potentiel pour la consommation de ces aliments.
Une fois appliqué, l'acide glycolique réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent les cellules mortes de la peau ensemble.

L'acide glycolique est un composé potentiellement toxique.
L'acide glycolique est légèrement plus fort que l'acide acétique en raison du pouvoir de retrait des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques formant des complexes de coordination.

Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont significativement plus forts que les complexes avec d'autres acides carboxyliques.
L'acide glycolique, en ce qui concerne les humains, s'est avéré être associé à plusieurs maladies telles que la résection transurétrale de la prostate et l'atrésie biliaire ; L'acide glycolique a également été lié à plusieurs troubles métaboliques innés, notamment l'acidémie glutarique de type 2, l'acidurie glycolique et l'acidurie d-2-hydroxyglutarique.

L'acide glycolique et l'acide oxalique, ainsi que l'excès d'acide lactique, sont responsables de l'acidose métabolique de l'espace anionique.
L'acide glycolique existe chez toutes les espèces vivantes, des bactéries aux humains.
Chez l'homme, l'acide glycolique est impliqué dans la voie du métabolisme de la rosiglitazone.

En dehors du corps humain, l'acide glycolique a été détecté, mais non quantifié dans, plusieurs aliments différents, tels que les aigrdocks, les sauges d'ananapple, les céleri-raves, les clous de girofle et la feijoa.
L'acide glycolique est un composé basique extrêmement faible (essentiellement neutre) (basé sur son pKa).
L'acide glycolique agit en décomposant les liaisons entre les cellules mortes de la peau à la surface de la peau, ce qui leur permet d'être éliminées plus facilement.

Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.
L'acide glycolique traite les problèmes de peau en exfoliant les cellules mortes de la peau qui s'accumulent à la surface de l'épiderme et contribuent à une peau terne, décolorée et inégale.
L'acide glycolique peut rendre la peau plus sensible au soleil, donc toujours utiliser un écran solaire et des vêtements de protection avant de sortir.

Les plantes produisent de l'acide glycolique pendant la photorespiration.
L'acide glycolique est recyclé par conversion en glycine dans les peroxysomes et en acide tartronique semialdéhyde dans les chloroplastes.
Les effets secondaires courants de l'acide glycolique comprennent la peau sèche, l'érythème (rougeur de la peau), la sensation de brûlure, les démangeaisons, l'irritation de la peau et les éruptions cutanées.

L'acide glycolique est le plus petit acide alpha-hydroxylé (AHA).
Ce solide cristallin incolore, inodore et hygroscopique est très soluble dans l'eau.
En raison de son excellente capacité à pénétrer la peau, l'acide glycolique est souvent utilisé dans les produits de soins de la peau, le plus souvent comme peeling chimique.

L'acide glycolique peut réduire les rides, les cicatrices d'acné et l'hyperpigmentation et améliorer de nombreuses autres affections cutanées, notamment la kératose actinique, l'hyperkératose et la kératose séborrhéique.
Des doses aiguës d'acide glycolique sur la peau ou les yeux entraînent des effets locaux typiques d'un acide fort (par exemple, irritation cutanée et oculaire).
Le glycolate est une néphrotoxine s'il est consommé par voie orale.

Une néphrotoxine est un composé qui cause des dommages aux reins et aux tissus rénaux.
La toxicité rénale de l'acide glycolique est due à son métabolisme en acide oxalique.
L'acide glycolique et l'acide oxalique, ainsi que l'excès d'acide lactique, sont responsables de l'acidose métabolique de l'espace anionique.

L'acide oxalique précipite facilement avec le calcium pour former des cristaux d'oxalate de calcium insolubles.
Une fois appliqué, l'acide glycolique réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent les cellules mortes de la peau ensemble.
Cela permet à la peau externe de se dissoudre, révélant la peau sous-jacente.

On pense que l'acide glycolique est dû à la réduction des concentrations d'ions calcium dans l'épiderme et à l'élimination des ions calcium des adhérences cellulaires, conduisant à la desquamation.
Les lésions des tissus rénaux sont causées par le dépôt généralisé de cristaux d'oxalate et les effets toxiques de l'acide glycolique.

L'acide glycolique présente une certaine toxicité par inhalation et peut causer des dommages respiratoires, au thymus et au foie s'il est présent à des niveaux très élevés sur de longues périodes.
L'acide glycolique est utilisé dans l'industrie textile comme agent de teinture et de bronzage dans la transformation des aliments comme agent aromatisant et conservateur, et dans l'industrie pharmaceutique comme agent de soin de la peau.

L'acide glycolique est également utilisé dans les adhésifs et les plastiques.
L'acide glycolique est souvent inclus dans les polymères d'émulsion, les solvants et les additifs pour l'encre et la peinture afin d'améliorer les propriétés d'écoulement et de conférer de la brillance.
L'acide glycolique est utilisé dans les produits de traitement de surface qui augmentent le coefficient de frottement sur les carreaux.

L'acide glycolique est un inhibiteur connu de la tyrosinase.
Cela peut supprimer la formation de mélanine et conduire à un éclaircissement de la couleur de la peau.
Ce processus peut aider à résoudre divers problèmes de peau, notamment l'acné, les rides et ridules, l'hyperpigmentation et le teint inégal.

L'acide glycolique est l'ingrédient actif du liquide d'entretien ménager.
En raison de sa capacité à pénétrer la peau, l'acide glycolique trouve des applications dans les produits de soins de la peau, le plus souvent comme peeling chimique.
Les peelings de force médicale peuvent avoir un pH aussi bas que 0,6 (assez fort pour kératolyser complètement l'épiderme), tandis que les acidités pour les peelings à domicile peuvent être aussi faibles que 2,5.

Le procédé convertit le glycolate en glycérate sans utiliser la voie conventionnelle BASS6 et PLGG1.
L'acide glycolique agit en accélérant le renouvellement cellulaire Il aide à dissoudre les liens qui maintiennent les cellules de la peau ensemble, permettant aux cellules mortes de la peau de se détacher plus rapidement qu'elles ne le feraient seules.
L'acide glycolique stimule également votre peau à créer plus de collagène.

Le collagène est la protéine qui donne à la peau sa fermeté, son rebondissement et son élasticité.
L'acide glycolique est un traitement incroyablement populaire en raison des nombreux avantages qu'il a pour la peau.
L'acide glycolique a des propriétés efficaces de renouvellement de la peau, il est donc souvent utilisé dans les produits anti-âge.

L'acide glycolique peut aider à lisser les rides fines et améliorer le tonus et la texture de la peau.
L'acide glycolique est un acide alpha-hydroxylé soluble dans l'eau (AHA) dérivé de la canne à sucre.
L'acide glycolique est l'un des acides alphahydroxylés les plus connus et les plus utilisés dans l'industrie des soins de la peau.

L'acide glycolique repulpe la peau et aide à augmenter les niveaux d'hydratation.
L'acide glycolique offre une solubilité beaucoup plus grande que les fluorures de silice ou l'acide hydrofluosilicique.
Les systèmes d'énergie électrochimique permettent des concentrations plus élevées d'acide en solution que l'acide citrique pour une plus grande efficacité de neutralisation tout en évitant les problèmes de salage ou de décoloration de la rouille.

L'acide glycolique atteint un pH final de 5-6 plus rapidement que les fluorures de silice, en particulier à des températures de lavage plus basses.
Une solubilité élevée signifie une moindre possibilité de tissu endommagé, même s'il est repassé pendant qu'il est mouillé.
L'acide glycolique remplit de nombreux rôles dans un large éventail d'industries, grâce à sa faible odeur et toxicité, sa biodégradabilité, sa composition sans phosphate et sa capacité à chélater les sels métalliques.

Un glycolate ou glycollate est un sel ou un ester de l'acide glycolique.
(C6H5C(=O)OCH2COOH), qu'ils appelaient « acide benzoglycolique » (Benzoglykolsäure ; également acide benzoylglycolique).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide glycolique.

L'acide glycolique peut être synthétisé de différentes manières. Les approches prédominantes utilisent une réaction catalysée du formaldéhyde avec le gaz de synthèse (carbonylation du formaldéhyde), pour son faible coût.
L'acide glycolique est également préparé par réaction de l'acide chloroacétique avec l'hydroxyde de sodium suivie d'une réacidification.

L'acide glycolique liquide ne s'accumule pas pendant le stockage et mesure facilement hors de l'équipement de distribution automatique.
Une fois appliqué, l'acide glycolique réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent les cellules mortes de la peau ensemble.
Cela permet à la couche cornée d'être exfoliée, exposant ainsi les cellules vivantes de la peau.

L'acide glycolique est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions, y compris : oxydo-réduction, estérification et polymérisation à longue chaîne.
Les autres acides alpha-hydroxylés comprennent l'acide lactique, l'acide malique, l'acide tartrique et l'acide citrique.
L'acide glycolique a les molécules de plus petite taille de tous les acides alpha-hydroxylés En raison de ces molécules super minuscules, l'acide glycolique peut facilement pénétrer dans la peau.

Cela permet à l'acide glycolique d'exfolier la peau plus efficacement que les autres AHA.
L'acide glycolique est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).
Sur le plan commercial, les dérivés importants comprennent les esters méthyliques et éthyliques qui sont facilement distillables (points d'ébullition 147–149 °C et 158–159 °C, respectivement), contrairement à l'acide parent.

L'ester butyle (b.p. 178–186 °C) est un composant de certains vernis, étant souhaitable car il est non volatile et possède de bonnes propriétés dissolvantes.
De nombreuses plantes fabriquent de l'acide glycolique pendant la photorespiration.
Le rôle des acides glycoliques consomme des quantités importantes d'énergie.

L'acide glycolique pénètre efficacement dans la peau en raison de sa petite taille moléculaire, aidant à éliminer les cellules mortes de la peau et les débris de la surface.
Cela peut conduire à un teint plus lisse et plus lumineux.
L'utilisation de l'acide glycolique dans les produits de soins de la peau est associée à plusieurs avantages, notamment la réduction de l'apparence des rides et ridules, l'amélioration de la texture de la peau, la minimisation de l'apparence des pores et la décoloration de l'hyperpigmentation et des cicatrices d'acné.

La concentration d'acide glycolique dans ces produits peut varier, des concentrations plus élevées étant généralement disponibles dans les traitements professionnels.
Bien que l'acide glycolique puisse être bénéfique pour de nombreux types de peau, il peut ne pas convenir à tout le monde, en particulier à ceux qui ont une peau très sensible ou réactive.
En 2017, des chercheurs ont annoncé un processus qui utilise une nouvelle protéine pour réduire la consommation / perte d'énergie et empêcher les plantes de libérer de l'ammoniac nocif.

D'autres méthodes, peu visiblement utilisées, comprennent l'hydrogénation de l'acide oxalique et l'hydrolyse de la cyanohydrine dérivée du formaldéhyde.
Certains des acides glycoliques d'aujourd'hui sont sans acide formique.
Lorsque vous utilisez des produits contenant de l'acide glycolique, il est important d'utiliser régulièrement un écran solaire, car l'acide glycolique peut augmenter la sensibilité de la peau au soleil.

La protection solaire aide à prévenir les coups de soleil et d'autres dommages cutanés.
L'acide glycolique peut être trouvé dans une gamme de produits de soin de la peau, y compris les nettoyants, les toniques, les sérums et les crèmes.
L'acide glycolique peut être isolé à partir de sources naturelles, telles que la canne à sucre, la betterave à sucre, l'ananas, le cantaloup et les raisins non mûrs.

L'acide glycolique peut être utilisé dans le cadre d'un régime de traitement de l'acné.
L'acide glycolique aide à désobstruer les pores, à réduire la formation de comédons (points noirs et points blancs) et à favoriser l'excrétion des cellules mortes de la peau qui peuvent contribuer à l'acné.
Les dermatologues utilisent souvent l'acide glycolique dans les peelings chimiques, qui sont des procédures cosmétiques conçues pour améliorer l'apparence de la peau.

L'acide glycolique est un composé organique simple avec un groupe hydroxyle (-OH) et un groupe acide carboxylique (-COOH) sur des atomes de carbone adjacents dans sa structure chimique.
Cela lui donne ses propriétés acides.
L'acide glycolique est connu pour ses propriétés exfoliantes.

Point de fusion : 75-80 °C (lit.)
Point d'ébullition : 112 °C
Densité : 1,25 g/mL à 25 °C
pression de vapeur : 10,8 hPa (80 °C)
indice de réfraction : n20 / D 1.424
Point d'éclair : 112 °C
température de stockage : Conserver à une température inférieure à +30°C.
solubilité : H2O : 0,1 g/mL, clair
pka : 3.83(à 25°C)
Formulaire : Solution
couleur : blanc à blanc cassé
PH : 2 (50g/l, H2O, 20°C)
Odeur : à 100,00 %. inodore très doux beurre
Type d'odeur : beurré
Viscosité : 6.149mm2 / s
Solubilité dans l'eau : SOLUBLE
Sensible : Hygroscopique
Merck : 14 4498
BRN : 1209322
Stabilité : Stable. Incompatible avec les bases, les agents oxydants et les agents réducteurs.
InChIKey : AEMRFAOFKBGASW-UHFFFAOYSA-N
LogP : -1.07 à 20°C
Additifs indirects utilisés dans les substances en contact avec les aliments : acide glycolique
FDA 21 CFR : 175.105

L'acide glycolique est un acide alpha-hydroxylé (AHA).
Le mot acide peut effrayer, mais l'acide glycolique vient généralement en concentrations plus faibles pour un usage à la maison.

L'acide glycolique agit comme un exfoliant pour retourner les cellules mortes de la peau et révéler de nouvelles cellules cutanées.
L'acide glycolique est également l'un des plus petits AHA, ce qui signifie qu'il peut pénétrer profondément pour donner les meilleurs résultats.
L'acide glycolique peut être synthétisé de différentes manières.

Les approches prédominantes utilisent une réaction catalysée du formaldéhyde avec le gaz de synthèse (carbonylation du formaldéhyde), pour son faible coût.
L'acide glycolique est également préparé par réaction de l'acide chloroacétique avec l'hydroxyde de sodium suivie d'une réacidification.
L'acide glycolique peut également être préparé à l'aide d'un processus biochimique enzymatique qui peut nécessiter moins d'énergie.

Pour des traitements plus forts, l'acide glycolique est également utilisé dans les peelings chimiques disponibles au salon ou au cabinet du dermatologue.
Des peelings à l'acide glycolique légers jusqu'à 30% de force peuvent être effectués par une esthéticienne au salon ou au spa de la peau.
D'autres méthodes, peu visiblement utilisées, comprennent l'hydrogénation de l'acide oxalique et l'hydrolyse de la cyanohydrine dérivée du formaldéhyde.

Certains des acides glycoliques d'aujourd'hui sont sans acide formique.
Des peelings plus forts allant jusqu'à 70% peuvent être obtenus au cabinet de dermatologie.
Les produits de soin de la peau contiennent d'autres ingrédients soigneusement choisis pour donner un résultat final spécifique.

Le traitement à l'acide glycolique que vous choisissez dépend beaucoup du type de peau et des objectifs finaux.
L'acide glycolique peut être isolé à partir de sources naturelles, telles que la canne à sucre, la betterave à sucre, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique est essentiel pour tester l'épicutané et introduire progressivement des produits contenant de l'acide glycolique dans votre routine de soins de la peau pour surveiller la réaction de votre peau.

L'utilisation de faibles concentrations d'acide glycolique sur de longues périodes de temps crée un effet cumulatif ; La peau sera plus belle plus longue à l'utilisation.
Pour traiter des problèmes de peau spécifiques tels que les dommages visibles du soleil, les taches brunes ou les marques d'acné, les ridules et ridules plus profondes, ou pour une amélioration marquée de la peau rapidement, un peeling professionnel est une bonne option.

Mais parce que les peelings fournissent un pourcentage plus élevé d'acide glycolique que les produits d'utilisation quotidienne, ils seront plus irritants et auront un plus grand risque d'effets secondaires.
Malheureusement, la grande majorité des produits de soin de la peau indiquent simplement le pourcentage d'acide glycolique utilisé.
Ils ne sont pas tenus d'énumérer le pH, de sorte qu'il peut être difficile de comparer les produits pommes à pommes.

Les produits en vente libre à base d'acide glycolique et les peelings professionnels existent depuis longtemps et ont fait leurs preuves en toute sécurité et efficacité.
L'acide glycolique est conseillé de consulter un dermatologue ou un professionnel des soins de la peau.
Lors du choix d'un traitement à l'acide glycolique, le pourcentage d'acide glycolique n'est qu'un facteur.

Un produit plus acide fournira un traitement plus fort et plus efficace qu'un produit moins acide, quel que soit le pourcentage d'acide glycolique.
Ainsi, un produit contenant un faible pourcentage d'acide glycolique mais avec un pH plus faible (c'est-à-dire plus acide) sera plus efficace qu'un produit à pourcentage élevé mais à faible acidité.

L'acide glycolique peut être utilisé dans une routine de soins de la peau : comme nettoyant pour le visage, comme toner et comme masque.
L'acide glycolique se trouve dans certaines cultures sucrières.
L'acide glycolique est l'un des acides alpha-hydroxylés les plus connus et les plus utilisés dans l'industrie des soins de la peau.

L'acide glycolique est légèrement plus fort que l'acide acétique en raison du pouvoir de retrait des électrons du groupe hydroxyle terminal.
L'acide glycolique est le plus petit acide α-hydroxylé (AHA).
Le groupe carboxylate peut se coordonner avec des ions métalliques formant des complexes de coordination.

Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont significativement plus forts que les complexes avec d'autres acides carboxyliques.
Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.

L'acide glycolique améliore les processus de nettoyage et de détartrage dans les champs pétrolifères et les applications de raffinage du pétrole.
Cet acide fournit également un complexant métallique sous une forme biodégradable sans ajouter de demande biologique ou chimique indésirable en oxygène aux produits formulés.
La réactivité plus lente de l'acide glycolique par rapport aux acides minéraux aide à la finition acide lors de l'achèvement du puits.

Le dessalage du pétrole brut, l'acidification des puits et les boues de forage synthétiques dépendent également de l'acide glycolique.
Ce solide cristallin incolore, inodore et hygroscopique est très soluble dans l'eau.
La plupart des types de peau peuvent les utiliser sans trop de problèmes.

Ceux-ci ne sont pas aussi irritants que les traitements à l'acide glycolique au leaveon et permettent à la peau de développer une tolérance sans (espérons-le) trop d'irritation.
Alors que l'acide glycolique est un merveilleux ingrédient de soin de la peau.

Les produits à base d'acide glycolique à usage domestique ont généralement des concentrations plus faibles (généralement de 5% à 20%), tandis que les traitements professionnels peuvent utiliser des concentrations plus élevées (jusqu'à 70% ou plus).
Bien que l'acide glycolique puisse être très efficace, il peut également causer des effets secondaires, surtout s'il est utilisé de manière incorrecte ou à des concentrations élevées.

Les personnes atteintes de certaines affections cutanées, telles que l'eczéma, la rosacée ou les plaies ouvertes, doivent faire preuve de prudence lors de l'utilisation de produits à base d'acide glycolique, car cela peut exacerber ces conditions.
L'acide glycolique est conseillé de consulter un professionnel de la santé avant d'utiliser dans de tels cas.
Avant d'utiliser tout nouveau produit de soin de la peau contenant de l'acide glycolique, il est recommandé d'effectuer un test épicutané.

Appliquez une petite quantité du produit sur une zone discrète de la peau (comme l'intérieur de l'avant-bras) et attendez de voir si des effets indésirables se produisent avant de l'appliquer sur le visage ou une zone plus grande de la peau.
Les résultats peuvent ne pas être immédiats et il peut s'écouler plusieurs semaines avant de remarquer des changements importants.

Les effets secondaires potentiels comprennent la rougeur, l'irritation, la desquamation et la sécheresse.
Ces effets secondaires sont généralement temporaires et peuvent être minimisés en suivant les instructions du produit et en utilisant des hydratants au besoin.
L'acide glycolique est souvent combiné avec d'autres ingrédients de soins de la peau tels que l'acide hyaluronique, les antioxydants et les peptides pour améliorer ses avantages et minimiser l'irritation potentielle.

Ces combinaisons peuvent être trouvées dans divers produits de soins de la peau pour répondre à des problèmes de peau spécifiques.
Le niveau de pH des produits à base d'acide glycolique est un facteur important de leur efficacité.
Des niveaux de pH plus bas (plus acide) peuvent améliorer les propriétés exfoliantes de l'acide glycolique.

De nombreux produits à base d'acide glycolique sont formulés à un pH optimal pour maximiser leurs effets exfoliants.
L'acide glycolique est souvent inclus dans les routines de soins de la peau anti-âge, car il peut aider à stimuler la production de collagène dans la peau, ce qui améliore l'élasticité et réduit l'apparence des rides et ridules au fil du temps.

Les traitements professionnels sont effectués par des dermatologues ou des professionnels agréés des soins de la peau.
Lorsque vous incorporez de l'acide glycolique dans votre routine de soins de la peau, il est important de commencer lentement et d'augmenter progressivement l'utilisation pour permettre à la peau de s'acclimater.

Histoire de l'acide glycolique :
Le nom « acide glycolique » a été inventé en 1848 par le chimiste français Auguste Laurent (1807-1853).
Il a proposé que l'acide aminé glycine – qui s'appelait alors glycocolle – pourrait être l'amine d'un acide hypothétique, qu'il a appelé « acide glycolique » (acide glycolique).

L'acide glycolique a été préparé pour la première fois en 1851 par le chimiste allemand Adolph Strecker (1822-1871) et le chimiste russe Nikolai Nikolaevich Sokolov (1826-1877).
Ils l'ont produit en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote pour former un ester d'acide benzoïque et d'acide glycolique (C6H5C (= O)OCH2COOH), qu'ils ont appelé « acide benzoglycolique » (Benzoglykolsäure ; également acide benzoylglycolique).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide glycolique (Glykolsäure).

Utilise
L'acide glycolique agit en dissolvant le ciment cellulaire interne responsable de la kératinisation anormale, facilitant la desquamation des cellules mortes de la peau.
L'acide glycolique est également l'AHA qui, selon les scientifiques et les formulateurs, a un plus grand potentiel de pénétration en grande partie en raison de son poids moléculaire plus petit.
L'acide glycolique est légèrement irritant pour la peau et les muqueuses si la formulation contient une concentration élevée d'acide glycolique et / ou un pH bas.

L'acide glycolique s'avère bénéfique pour les peaux sujettes à l'acné car il aide à garder les pores exempts de kératinocytes en excès.
L'acide glycolique se trouve naturellement dans la canne à sucre, mais les versions synthétiques sont le plus souvent utilisées dans les formulations cosmétiques.
L'acide glycolique est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions, y compris : oxydo-réduction, estérification et polymérisation à longue chaîne.

L'acide glycolique est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).
L'acide glycolique améliore également l'hydratation de la peau en augmentant l'absorption de l'humidité ainsi que la capacité de la peau à lier l'eau.
L'acide glycolique est également utilisé pour diminuer les signes des taches de vieillesse, ainsi que la kératose actinique.

Cependant, l'acide glycolique est le plus couramment utilisé dans les cosmétiques anti-âge en raison de ses capacités hydratantes, hydratantes et normalisantes de la peau, conduisant à une réduction de l'apparence des rides et ridules.
Sur le plan commercial, les dérivés importants comprennent les esters méthyliques et éthyliques qui sont facilement distillables (points d'ébullition 147–149 °C et 158–159 °C, respectivement), contrairement à l'acide parent.

L'ester butyle est un composant de certains vernis, étant souhaitable car il est non volatil et possède de bonnes propriétés dissolvantes.
L'acide glycolique peut être utilisé avec les acides chlorhydrique ou sulfamique pour prévenir la précipitation du fer lors des opérations de nettoyage ou des inondations d'eau.
Quel que soit le type de peau G, l'utilisation de l'acide glycolique est associée à une peau plus douce, plus lisse, plus saine et d'apparence plus jeune.

Cela se produit dans le ciment cellulaire par une activation de l'acide glycolique et de la propre teneur en acide hyaluronique de la peau.
L'acide glycolique élimine également efficacement les dépôts nocifs tout en minimisant les dommages causés par la corrosion aux systèmes en acier ou en cuivre.
L'acide glycolique réagit plus lentement et pénètre donc plus profondément dans les formations avant de réagir complètement.

Cette caractéristique conduit à un trou de ver amélioré, car l'acide glycolique dissout la quantité équivalente de carbonate de calcium (CaCO₃) sous forme d'acide chlorhydrique sans la corrosion qui en résulte.
L'une des principales utilisations de l'acide glycolique dans les soins de la peau est comme exfoliant.
L'acide glycolique aide à éliminer les cellules mortes de la peau de la surface de la peau, ce qui donne un teint plus lisse et plus radieux.

L'acide glycolique est utilisé pour traiter l'acné en débouchant les pores, en réduisant la formation de comédons (points noirs et points blancs) et en favorisant l'excrétion des cellules mortes de la peau qui peuvent contribuer à l'acné.
En plus des produits en vente libre, les dermatologues et les professionnels des soins de la peau utilisent souvent l'acide glycolique sous des formes plus concentrées pour les traitements en cabinet comme les peelings chimiques et la microdermabrasion.
Ces traitements peuvent fournir des résultats plus immédiats et spectaculaires, mais nécessitent une surveillance professionnelle.

L'acide hyaluronique est connu pour retenir une quantité impressionnante d'humidité et cette capacité est renforcée par l'acide glycolique.
En conséquence, la capacité de la peau à augmenter sa teneur en humidité est augmentée.
L'acide glycolique est l'alpha-hydroxyacide (AHA) le plus simple.

L'acide glycolique est utilisé dans l'industrie textile comme agent de teinture et de tannage.
Dans la transformation des textiles, du cuir et des métaux ; dans le contrôle du pH, et partout où un acide organique bon marché est nécessaire, par exemple dans la fabrication d'adhésifs, dans l'éclaircissement du cuivre, le nettoyage par décontamination, la teinture, la galvanoplastie, le décapage, le nettoyage et le broyage chimique des métaux.
L'acide glycolique est utilisé comme intermédiaire dans la synthèse organique et plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.

L'acide glycolique est utilisé comme monomère dans la préparation de l'acide poly(lactique-co-glycolique) (PLGA).
L'acide glycolique réagit avec l'acide lactique pour former PLGA en utilisant la copolymérisation à ouverture de cycle.
L'acide glycolique est couramment utilisé dans les produits anti-âge pour stimuler la production de collagène, ce qui peut améliorer l'élasticité de la peau et réduire l'apparence des rides et ridules.

L'acide glycolique peut aider à estomper les taches brunes, les taches solaires et l'hyperpigmentation post-inflammatoire en favorisant un teint uniforme.
L'acide glycolique peut améliorer la texture de la peau, la rendant plus lisse et plus jeune.
L'acide glycolique peut minimiser l'apparence des pores dilatés.

L'acide glycolique est utilisé dans les peelings chimiques, à la fois à la maison et dans les cabinets de dermatologues ou les cliniques de soins de la peau.
Les peelings chimiques à l'acide glycolique peuvent être adaptés pour traiter divers problèmes de peau, y compris les rides, le teint inégal et les cicatrices d'acné.
L'acide polyglycolique (PGA) est préparé à partir du monomère acide glycolique par polycondensation ou polymérisation à ouverture de cycle.

L'acide glycolique est largement utilisé dans les produits de soins de la peau comme exfoliant et kératolytique.
L'acide glycolique est utilisé dans l'industrie textile comme agent de teinture et de tannage.
Ces peelings impliquent l'application d'une concentration plus élevée d'acide glycolique sur la peau, suivie d'une exfoliation et d'un rajeunissement de la peau.

Bien que l'acide glycolique soit généralement associé aux soins de la peau du visage, il peut également être utilisé sur d'autres parties du corps pour traiter des problèmes tels que la kératose pilaire, la peau rugueuse des coudes et des genoux et l'acné corporelle.
L'acide glycolique peut être utilisé pour ajuster le niveau de pH du produit.
Cela peut aider à optimiser l'efficacité d'autres ingrédients actifs.

L'acide glycolique peut également agir comme un humectant, ce qui signifie qu'il peut attirer et retenir l'humidité dans la peau, ce qui est bénéfique pour les personnes ayant la peau sèche ou déshydratée.
Cependant, il est essentiel d'utiliser des hydratants avec des produits à base d'acide glycolique pour éviter une sécheresse excessive.
Dans les applications industrielles et domestiques, l'acide glycolique est parfois utilisé pour éliminer les taches et les dépôts de tartre, tels que ceux causés par l'eau dure, la rouille ou l'accumulation de minéraux.

Lorsque vous utilisez des produits contenant de l'acide glycolique dans votre routine de soins de la peau, soyez prudent avant de les mélanger avec d'autres ingrédients actifs, en particulier des acides forts comme l'acide salicylique ou la vitamine C.
La combinaison de certains ingrédients actifs peut entraîner une irritation de la peau ou réduire l'efficacité, il est donc conseillé de consulter un professionnel des soins de la peau pour obtenir des conseils.
En médecine, l'acide glycolique a été utilisé dans les produits de soins des plaies pour aider à favoriser la guérison des coupures mineures, des abrasions et des incisions chirurgicales.

L'acide glycolique peut être utilisé pour gérer la kératose pilaire, une affection cutanée courante caractérisée par de petites bosses rugueuses sur la peau, souvent trouvées sur les bras et les cuisses.
Certains produits en vente libre contenant de l'acide glycolique sont utilisés pour adoucir et aider à éliminer les callosités et les cors sur les pieds.
Dans certains produits de soins capillaires, l'acide glycolique peut être inclus pour aider à exfolier le cuir chevelu, éliminer l'accumulation de produit et améliorer la texture des cheveux.

L'acide glycolique peut aider à réparer la peau endommagée par le soleil en favorisant l'excrétion des cellules cutanées endommagées et en stimulant la production d'une peau plus saine et plus jeune.
L'acide glycolique est souvent utilisé dans les produits conçus pour les peaux endommagées par le soleil ou vieillissantes.
L'acide glycolique peut être utilisé pour prévenir et traiter les poils incarnés, en particulier dans les zones sujettes aux bosses de rasoir et aux irritations, telles que la barbe chez les hommes.

L'acide glycolique est parfois combiné avec d'autres ingrédients de soins de la peau comme l'acide salicylique, l'acide hyaluronique et le rétinol pour créer des produits de soin de la peau plus complets qui répondent à de multiples préoccupations, telles que l'acné, le vieillissement et l'hydratation.
L'acide glycolique est utilisé dans le traitement des textiles, du cuir et des métaux.

L'acide glycolique est utilisé comme intermédiaire dans la synthèse organique et plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique (acide glycolique) réduit la cohésion des corénocytes et l'épaississement de la couche de cornée où une accumulation excessive de cellules mortes de la peau peut être associée à de nombreux problèmes de peau courants, tels que l'acné, la peau sèche et sévèrement sèche et les rides.

Profil d'innocuité :
L'acide glycolique peut causer une irritation de la peau, en particulier chez les personnes ayant la peau sensible.
Cela peut se manifester par des rougeurs, des brûlures, des démangeaisons ou des picotements.
Il est essentiel d'effectuer un test épicutané avant d'utiliser des produits à base d'acide glycolique.

L'acide glycolique peut rendre la peau plus sensible aux rayons ultraviolets (UV) du soleil.
Cette sensibilité accrue peut entraîner un risque plus élevé de coups de soleil et de lésions cutanées.
Il est essentiel d'utiliser un écran solaire et des vêtements de protection lors de l'utilisation de produits à base d'acide glycolique et d'éviter une exposition excessive au soleil.

En tant qu'exfoliant, l'acide glycolique peut provoquer une sécheresse et une desquamation, en particulier lorsqu'il est utilisé à des concentrations élevées ou trop fréquemment.
Cela peut être géré en utilisant des hydratants et en réduisant la fréquence d'application de l'acide glycolique.

Bien que rare, certaines personnes peuvent être allergiques ou hypersensibles à l'acide glycolique, entraînant des réactions cutanées plus graves.
Dans les cas où des concentrations élevées d'acide glycolique sont utilisées sans supervision appropriée ou de manière inappropriée, des brûlures chimiques peuvent survenir.
Ceci est plus fréquent dans les traitements professionnels comme les peelings chimiques et ne devrait être administré que par des professionnels formés.

Synonymes
acide glycolique
Acide 2-glycolique
Acide glycolique
79-14-1
Acide glycollique
Acide hydroxyéthanoïque
Acide acétique, hydroxy-
glycolate
Polyglycolide
Caswell n° 470
Kyselina glykolova
acide alpha-glycolique
Kyselina hydroxyoctova
Acide 2-hydroxyéthanoïque
HOCH2COOH
Code chimique des pesticides de l'EPA 000101
HSDB 5227
NSC 166
Kyselina glykolova [Tchèque]
(IA3-15362)
Kyselina hydroxyoctova [Tchèque]
C2H4O3
Glycocide
GlyPure
BRN 1209322
NSC-166
2-hydroxyacétique
EINECS 201-180-5
UNII-0WT12SX38S
MFCD00004312
GlyPure 70
0WT12SX38S
CCRIS 9474
DTXSID0025363
CHEBI :17497
Acide glycolique-13C2
Acide alpha.-glycolique
GLYCOLLATE
DTXCID105363
NSC166
CE 201-180-5
4-03-00-00571 (Référence du manuel Beilstein)
ACIDE GLYCOLIQUE-2,2-D2
GOA
Acide glycolique (MART.)
Acide glycolique [MART.]
C2H3O3-
glycolicacide
Étalon de glycolate : C2H3O3- @ 1000 microg / mL dans H2O
Hydroxyéthanoate
a-hydroxyacétate
acide hydroxy-acétique
Acide 2-hydroxyacétique
alpha-hydroxyacétate
Acide a-glycolique
Acide 2-hydroxyacétique
Acide 2-hydroxyacétique
Acide 2-hydroxyléthanoique
HO-CH2-COOH
Solution d'acide glycolique
bmse000245
WLN : QV1Q
Acide glycolique [MI]
Acide glycolique (7CI,8CI)
Acide glycolique [INCI]
Acide glycolique [VANDF]
Acide glycolique, p.a., 98%
Acide acétique, hydroxy- (9CI)
CHEMBL252557
Acide glycolique [OMS-DD]
Acide glycolique, Cristal, Réactif
Acide glycolique [HSDB]
BCP28762
Acide glycolique, >=97,0 % (T)
STR00936
Tox21_301298
S6272
STL197955
AKOS000118921
Acide glycolique, ReagentPlus(R), 99%
CS-W016683
DB03085
HY-W015967
SB83760
CAS-79-14-1
Code de pesticide USEPA/OPP : 000101
NCGC00160612-01
NCGC00160612-02
NCGC00257533-01
FT-0612572
FT-0669047
G0110
G0196
Acide glycolique 100 microg/mL dans l'acétonitrile
EN300-19242
Acide glycolique, grade spécial SAJ, >=98,0 %
C00160
N° C03547
D78078
Acide glycolique, qualité du réactif Vetec(MC), 98 %
Acide glycolique ; ACIDE HYDROXYÉTHANOÏQUE
Acide glycolique, BioXtra, >=98,0 % (titrage)
Q409373
J-509661
F2191-0224
Acide glycolique ; Acide hydroxyéthanoïque ; Acide glycollique
Z104473274
287EB351-FF9F-4A67-B4B9-D626406C9B13
Acide glycolique, matériau de référence certifié, TraceCERT(R)
InChI=1/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5
Acide glycolique, anhydre, à écoulement libre, Redi-Dri(MC), ReagentPlus(R), 99 %
Acide glycolique, étalon pharmaceutique secondaire ; Matériau de référence certifié
O7Z

ACIDE GLYCOLIQUE (ACIDE HYDROXYACÉTIQUE)
L'acide glycolique, également connu sous le nom d'acide hydroxyacétique, est un type d'acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique (acide hydroxyacétique) est le membre le plus petit et le plus simple de la famille des acides alpha-hydroxy.
La structure moléculaire de l'acide glycolique (acide hydroxyacétique) se compose de deux atomes de carbone, quatre atomes d'hydrogène et trois atomes d'oxygène.

Numéro CAS : 79-14-1
Numéro CE : 201-180-5

Acide glycolique, acide hydroxyacétique, acide hydroxyéthanoïque, acide alpha-hydroxyacétique, acide 2-hydroxyéthanoïque, acide glycolique, acide hydroacétique, acide alpha-hydroxyéthanoïque, acide 2-hydroxyacétique, acide hydroxyacétique, acidum hydroxyaceticum, acide glycolique, acidum glycolicum, AHA, EGHPA , acide alpha-hydroxy-acétique, acide hydroxy-acétique, acide hydroxyéthanoïque, hydroxyéthanoate, solution d'acide glycolique, acide glycolique USP, acide glycolique FCC, acide glycolique de qualité cosmétique, acide glycolique de qualité pharmaceutique, acide glycolique de qualité technique, acide glycolique de haute pureté, acide glycolique 70%, acide glycolique 99%, acide glycolique 90%, acide glycolique 80%, acide glycolique 30%, acide glycolique 10%, acide glycolique 50%, acide glycolique 60%, lotion à l'acide glycolique, crème à l'acide glycolique, acide glycolique gel, peeling à l'acide glycolique, tonique à l'acide glycolique, nettoyant à l'acide glycolique, sérum à l'acide glycolique, hydratant à l'acide glycolique, exfoliant à l'acide glycolique, peeling chimique à l'acide glycolique, soin de la peau à l'acide glycolique, anti-âge à l'acide glycolique, éclaircissant à l'acide glycolique, rajeunissant à l'acide glycolique, resurfaçage à l'acide glycolique, traitement de l'acné à l'acide glycolique, réduction des rides à l'acide glycolique, affinage des pores à l'acide glycolique, exfoliation chimique à l'acide glycolique, acide alpha-hydroxy acide glycolique, source naturelle d'acide glycolique, acide glycolique dérivé de la canne à sucre, acide glycolique d'origine végétale, acide glycolique de fruit .



APPLICATIONS


L'acide glycolique (acide hydroxyacétique) est largement utilisé dans les formulations de soins de la peau, en particulier dans les peelings chimiques destinés aux traitements professionnels de la peau.
L'acide glycolique (acide hydroxyacétique) joue un rôle clé dans les nettoyants exfoliants, aidant à éliminer les cellules mortes de la peau et favorisant un teint plus lumineux.
L'acide glycolique (acide hydroxyacétique) est un ingrédient courant dans les toniques, aidant à équilibrer les niveaux de pH de la peau et à affiner la texture de la peau.

L'acide glycolique (acide hydroxyacétique) se trouve dans les sérums anti-âge, contribuant à la réduction des rides et ridules.
L'acide glycolique est efficace pour lutter contre l'hyperpigmentation, ce qui en fait un composant précieux dans les produits éclaircissants pour la peau.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les formulations anti-acnéiques, aidant à désobstruer les pores et à prévenir les éruptions cutanées.

L'acide glycolique (acide hydroxyacétique) est un choix populaire dans les hydratants pour ses propriétés humectantes, favorisant l'hydratation de la peau.
L'acide glycolique (acide hydroxyacétique) est souvent incorporé dans les crèmes de nuit, favorisant le renouvellement cutané pendant la nuit.

L'acide glycolique (acide hydroxyacétique) est présent dans divers masques, procurant un effet exfoliant pour rehausser l'éclat de la peau.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les traitements localisés pour une application ciblée sur les zones présentant des problèmes cutanés spécifiques.
L'acide glycolique (acide hydroxyacétique) est un composant des lotions pour le corps, contribuant à rendre la peau plus lisse et plus douce.

L'acide glycolique (acide hydroxyacétique) est utilisé dans les crèmes pour les pieds et les gommages exfoliants pour traiter la texture rugueuse de la peau.
L'acide glycolique (acide hydroxyacétique) est inclus dans les crèmes pour les mains pour ses propriétés régénérantes et hydratantes pour la peau.

L'acide glycolique (acide hydroxyacétique) est un ingrédient courant dans les traitements pour les lèvres, aidant au maintien de lèvres douces et souples.
L'acide glycolique (acide hydroxyacétique) se trouve dans les écrans solaires pour améliorer l'efficacité globale de la protection solaire.

L'acide glycolique (acide hydroxyacétique) est un composant clé des lingettes de soin de la peau, offrant une solution d'exfoliation pratique et rapide.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les produits de soins intimes pour une exfoliation douce des zones sensibles.
L'acide glycolique (acide hydroxyacétique) est présent dans les produits de soins capillaires, favorisant la santé du cuir chevelu et maintenant un environnement propre et équilibré.

L'acide glycolique (acide hydroxyacétique) est inclus dans les déodorants pour ses bienfaits potentiels sur la peau.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les crèmes pour les yeux pour traiter les signes du vieillissement autour de la zone délicate des yeux.
L'acide glycolique (acide hydroxyacétique) se trouve dans les brumes pour le visage, offrant un coup de pouce rafraîchissant avec des bienfaits supplémentaires pour la peau.

L'acide glycolique (acide hydroxyacétique) est un composant précieux des sérums conçus pour cibler des problèmes spécifiques de soins de la peau.
L'acide glycolique (acide hydroxyacétique) est utilisé en combinaison avec d'autres ingrédients dans les produits de soin multifonctionnels.

L'acide glycolique (acide hydroxyacétique) est présent dans des tampons pré-imbibés pour une application pratique et contrôlée.
L'acide glycolique (acide hydroxyacétique) est un ingrédient polyvalent qui contribue à l'efficacité d'une large gamme de formulations de soins de la peau.

L'acide glycolique (acide hydroxyacétique) est couramment utilisé dans les traitements exfoliants sans rinçage, tels que les sérums et les crèmes, pour le renouvellement cutané à long terme.
L'acide glycolique (acide hydroxyacétique) est un élément de base des exfoliants chimiques, contribuant à l'amélioration de la texture globale de la peau.
L'acide glycolique (acide hydroxyacétique) est présent dans les gels contre l'acné, offrant un traitement ciblé contre les imperfections et les éruptions cutanées.

L'acide glycolique (acide hydroxyacétique) se trouve dans les masques de nuit, offrant une exfoliation et une hydratation soutenues pendant que la peau se repose.
L'acide glycolique (acide hydroxyacétique) est utilisé en combinaison avec d'autres acides alpha-hydroxy pour des effets exfoliants améliorés.

L'acide glycolique (acide hydroxyacétique) est un composant clé des peelings du visage, aidant à répondre aux problèmes cutanés plus intenses.
L'acide glycolique (acide hydroxyacétique) est inclus dans les nettoyants pour le corps, offrant une exfoliation complète du corps et un renouvellement de la peau.

L'acide glycolique (acide hydroxyacétique) est souvent utilisé dans les shampooings antipelliculaires pour ses bienfaits potentiels sur le cuir chevelu.
L'acide glycolique (acide hydroxyacétique) se trouve dans les désinfectants pour les mains, contribuant à la fois à la désinfection et au conditionnement de la peau.
L'acide glycolique (acide hydroxyacétique) est inclus dans les peelings et les masques pour les pieds, ciblant les zones calleuses pour des pieds plus lisses.

L'acide glycolique (acide hydroxyacétique) est présent dans les crèmes pour cuticules, aidant au maintien d'ongles sains et de la peau environnante.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les formulations réduisant les cicatrices pour ses propriétés de renouvellement de la peau.

L'acide glycolique (acide hydroxyacétique) est couramment ajouté aux gommages corporels pour un traitement corporel exfoliant et revitalisant.
L'acide glycolique (acide hydroxyacétique) se trouve dans les nettoyants et nettoyants intimes, contribuant à une exfoliation douce des zones sensibles.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les produits de soin après tatouage, favorisant la cicatrisation de la peau et réduisant les irritations.

L'acide glycolique (acide hydroxyacétique) est présent dans les crèmes éclaircissantes pour les aisselles, contribuant à un teint plus uniforme.
L'acide glycolique est utilisé en association avec des rétinoïdes pour un effet synergique dans les formulations anti-âge.

L'acide glycolique (acide hydroxyacétique) est ajouté aux démaquillants pour sa capacité à dissoudre le maquillage et à rafraîchir la peau.
L'acide glycolique (acide hydroxyacétique) se trouve dans les gommages pour les lèvres, offrant une exfoliation douce pour des lèvres plus lisses.

L'acide glycolique (acide hydroxyacétique) est utilisé dans les traitements exfoliants du cuir chevelu, luttant contre les pellicules et favorisant un cuir chevelu sain.
L'acide glycolique (acide hydroxyacétique) est présent dans les formulations de protection solaire, aidant à prévenir les dommages induits par le soleil.

L'acide glycolique (acide hydroxyacétique) est ajouté aux huiles pour cuticules pour un soin et une nutrition ciblés.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les crèmes contre les vergetures, contribuant à améliorer l'élasticité de la peau.
Il est présent dans les peelings pour les mains pour un traitement de rajeunissement des mains plus intensif.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les nettoyants pour son exfoliation quotidienne efficace mais douce.

L'acide glycolique est un ingrédient courant dans les nettoyants quotidiens pour le visage, offrant une exfoliation douce dans les soins de routine de la peau.
Il est inclus dans les formulations d’eau micellaire, offrant une solution démaquillante rafraîchissante et efficace.
L'acide glycolique est utilisé dans les baumes à lèvres pour maintenir des lèvres douces et lisses, avec des bienfaits exfoliants supplémentaires.

Cet acide se trouve dans les shampooings clarifiants, aidant à éliminer l’accumulation de produit sur les cheveux et le cuir chevelu.
L'acide glycolique est présent dans les crèmes anti-âge pour les yeux, ciblant les rides et ridules de la zone délicate des yeux.
Il est utilisé dans les lotions pour le corps pour traiter la peau rugueuse des coudes, des genoux et d'autres zones.

L'acide glycolique est couramment inclus dans les crèmes anti-cellulite, contribuant à la fermeté et au tonus de la peau.
On le retrouve dans les masques purifiants pour la peau, aidant à détoxifier et revitaliser la peau.
L'acide glycolique est utilisé dans les tampons exfoliants à domicile pour un processus d'exfoliation pratique et contrôlé.
Cet acide est présent dans les correcteurs de taches brunes, aidant à réduire l’apparence de l’hyperpigmentation.

L'acide glycolique est ajouté aux bases de soin pour une application plus douce du maquillage et une meilleure tenue.
Il est utilisé dans les baumes à cuticules pour maintenir des cuticules saines et conditionnées.

L'acide glycolique (acide hydroxyacétique) se trouve dans les gommages du cuir chevelu, favorisant un environnement sain du cuir chevelu et la croissance des cheveux.
L'acide glycolique (acide hydroxyacétique) est inclus dans les poudres pour le visage pour ses propriétés absorbant l'huile et lissantes pour la peau.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les baumes et crèmes pour les pieds pour une solution complète de soin des pieds.

L'acide glycolique (acide hydroxyacétique) se trouve couramment dans les nettoyants exfoliants pour le corps, offrant une expérience de nettoyage et de renouvellement complet.
L'acide glycolique (acide hydroxyacétique) est présent dans les traitements intensifs de nuit, offrant une exfoliation et une hydratation concentrées.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les patchs anti-imperfections pour le traitement ciblé des taches d'acné individuelles.

L'acide glycolique (acide hydroxyacétique) se trouve dans les adoucisseurs de cuticules, aidant à éliminer en douceur l'accumulation de cuticules.
L'acide glycolique (acide hydroxyacétique) est ajouté aux sérums du cuir chevelu pour un traitement sans rinçage destiné à lutter contre la desquamation et la sécheresse.
L'acide glycolique (acide hydroxyacétique) est utilisé dans les sérums corporels pour un effet global de renouvellement et d'éclaircissement de la peau.
L'acide glycolique (acide hydroxyacétique) se trouve couramment dans les lotions post-épilation, aidant à apaiser et à prévenir les poils incarnés.

L'acide glycolique (acide hydroxyacétique) est utilisé dans les bâtonnets de soins de la peau pour une solution d'exfoliation pratique et portable.
L'acide glycolique (acide hydroxyacétique) est inclus dans les brosses exfoliantes du cuir chevelu pour une combinaison d'exfoliation physique et chimique.
L'acide glycolique (acide hydroxyacétique) se trouve dans les brumes rafraîchissantes pour le visage, offrant une hydratation en déplacement avec des bienfaits supplémentaires pour la peau.



DESCRIPTION


L'acide glycolique, également connu sous le nom d'acide hydroxyacétique, est un type d'acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique (acide hydroxyacétique) est le membre le plus petit et le plus simple de la famille des acides alpha-hydroxy.
La structure moléculaire de l'acide glycolique (acide hydroxyacétique) se compose de deux atomes de carbone, quatre atomes d'hydrogène et trois atomes d'oxygène.

L'acide glycolique (acide hydroxyacétique) est un acide alpha-hydroxy hydrosoluble dérivé de sources naturelles telles que la canne à sucre.
L'acide glycolique (acide hydroxyacétique) est reconnu pour ses puissantes propriétés exfoliantes dans les soins de la peau.
En tant qu'ingrédient de soin de la peau, l'acide glycolique est largement utilisé pour favoriser le renouvellement de la peau et améliorer sa texture.

L'acide glycolique (acide hydroxyacétique) agit en éliminant en douceur les cellules mortes de la peau, révélant un teint plus lisse et plus éclatant.
L'acide glycolique (acide hydroxyacétique) a une petite taille moléculaire, lui permettant de pénétrer efficacement dans la peau.
L'acide glycolique (acide hydroxyacétique) est souvent utilisé dans les peelings chimiques, offrant une exfoliation contrôlée pour divers problèmes de peau.

L'acide glycolique (acide hydroxyacétique) stimule la production de collagène, contribuant ainsi à améliorer l'élasticité et la fermeté de la peau.
L'acide glycolique (acide hydroxyacétique) est connu pour traiter l'hyperpigmentation, réduisant l'apparence des taches brunes et de la décoloration.

L'acide glycolique (acide hydroxyacétique) aide à désobstruer les pores, ce qui le rend efficace dans le traitement de l'acné et la prévention des éruptions cutanées.
L'acide glycolique (acide hydroxyacétique) facilite l'absorption d'autres ingrédients de soin de la peau, améliorant ainsi leur efficacité.

L'acide glycolique (acide hydroxyacétique) convient à différents types de peau, mais des tests cutanés sont recommandés pour les peaux sensibles.
L'acide glycolique (acide hydroxyacétique) est un composant clé des formulations anti-âge, minimisant l'apparence des rides et ridules.
L'acide glycolique (acide hydroxyacétique) peut augmenter temporairement la sensibilité de la peau au soleil, soulignant l'importance de la protection solaire.

L'utilisation régulière d'acide glycolique peut contribuer à un teint plus uniforme et à une réduction de la taille des pores.
L'acide glycolique (acide hydroxyacétique) offre une alternative d'exfoliation chimique aux gommages physiques, particulièrement bénéfique pour les peaux sensibles.
L'acide glycolique (acide hydroxyacétique) se trouve dans divers produits de soins de la peau, notamment les nettoyants, les toniques, les sérums et les crèmes.

L'acide glycolique (acide hydroxyacétique) a des propriétés humectantes, attirant et retenant l'humidité pour une peau hydratée et souple.
L'acide glycolique (acide hydroxyacétique) peut provoquer une sensation de picotement lors de l'application, ce qui est normal et disparaît généralement.
L'acide glycolique (acide hydroxyacétique) est utilisé à des concentrations plus faibles pour les routines quotidiennes de soins de la peau et à des concentrations plus élevées pour les traitements professionnels.
L'acide glycolique (acide hydroxyacétique) améliore le renouvellement des cellules de la peau, favorisant une apparence jeune et revitalisée.

L'acide glycolique (acide hydroxyacétique) est polyvalent et traite à la fois les signes du vieillissement et les problèmes cutanés courants en un seul ingrédient.
L'acide glycolique (acide hydroxyacétique) est un choix bien établi pour les personnes recherchant une exfoliation chimique efficace.
L'utilisation régulière d'acide glycolique peut contribuer à une texture de peau plus raffinée et plus lisse au fil du temps.
L'acide glycolique (acide hydroxyacétique) est essentiel pour suivre les instructions et les recommandations du produit afin d'éviter une exfoliation excessive.
L'acide glycolique (acide hydroxyacétique) est réputé pour sa capacité à transformer la surface de la peau, ce qui en fait un incontournable de nombreuses routines de soins de la peau.



PROPRIÉTÉS


Nom chimique : Acide glycolique
Formule chimique : C₂H₄O₃ _ _
Poids moléculaire : environ 76,05 g/mol
Forme physique : Liquide clair et incolore ou solide cristallin blanc (dépend de la concentration)
Odeur : Inodore ou une légère odeur caractéristique
Solubilité : Très soluble dans l’eau et miscible avec les solvants organiques courants
pH : Acide ; généralement autour de 3,5 en solution
Hygroscopique : Peut absorber l'humidité de l'air
Point de fusion : se décompose avant de fondre ; généralement non applicable
Point d'ébullition : se décompose avant d'ébullition sous pression atmosphérique standard
Densité : Dépend de la concentration et de la forme ; typiquement autour de 1,27 g/cm³ pour le liquide pur
Viscosité : Faible viscosité sous forme liquide
Indice de réfraction : Dépend de la concentration ; varie généralement de 1,42 à 1,45
Stabilité : Stable dans des conditions normales de stockage ; peut se dégrader sous une chaleur extrême ou une exposition à la lumière
Compatibilité : Compatible avec l’eau et une variété d’ingrédients cosmétiques et pharmaceutiques
Sécurité : Généralement reconnu comme étant sans danger pour une utilisation dans les soins de la peau dans les concentrations spécifiées
Biodégradabilité : Considéré comme biodégradable
Stabilité de stockage : Conserver dans un endroit frais et sec ; protéger des rayons directs du soleil
Gravité spécifique : Dépend de la concentration et de la forme ; varie généralement de 1,26 à 1,29 pour le liquide
Point d'éclair : Non applicable ; ne présente pas d'inflammabilité significative
Produits de décomposition dangereux : Peut produire du monoxyde de carbone et du dioxyde de carbone lors de la décomposition.
Miscibilité : Miscible avec l'eau et divers solvants organiques
Tension superficielle : Dépend de la concentration et de la forme ; généralement inférieur à l'eau
Rotation optique : ne s'applique généralement pas à l'acide glycolique
Pouvoir irritant : Peut provoquer une irritation à des concentrations élevées ; test cutané recommandé pour les peaux sensibles



PREMIERS SECOURS


Inhalation:

Si des vapeurs d'acide glycolique sont inhalées et qu'une irritation respiratoire se produit, déplacez la personne affectée vers un endroit avec de l'air frais.
Si les difficultés respiratoires persistent, consultez immédiatement un médecin.
Administrer la respiration artificielle si la personne ne respire pas.


Contact avec la peau:

En cas de contact cutané avec de l'acide glycolique concentré, retirer immédiatement les vêtements contaminés.
Rincer la peau affectée avec beaucoup d'eau pendant au moins 15 minutes, en assurant un rinçage complet.
Si une irritation ou une rougeur apparaît et persiste, consulter un médecin.
Laver les vêtements contaminés avant de les réutiliser.


Lentilles de contact:

En cas de contact avec les yeux, rincer doucement les yeux avec de l'eau tiède pendant au moins 15 minutes, en maintenant les paupières ouvertes.
Consulter immédiatement un médecin si l'irritation ou la rougeur persiste.
Retirez les lentilles de contact, si elles sont présentes et faciles à faire, après le rinçage initial, et continuez à rincer.


Ingestion:

Si de l'acide glycolique est avalé et que la personne est consciente, rincer abondamment la bouche avec de l'eau.
Ne pas faire vomir sauf indication contraire du personnel médical.
Consulter immédiatement un médecin ou contacter un centre antipoison.


Conseils généraux :

Fournir au personnel médical des informations sur le produit spécifique à base d'acide glycolique impliqué, y compris sa concentration.
Si les symptômes persistent ou si vous avez des inquiétudes quant au bien-être de la personne, consultez rapidement un médecin.
Suivez toutes les recommandations et précautions décrites dans la fiche de données de sécurité (FDS) fournie par le fabricant.



MANIPULATION ET STOCKAGE


Manutention:

Protection personnelle:
Portez un équipement de protection individuelle (EPI) approprié, y compris des gants et des lunettes de sécurité, pour minimiser le contact avec la peau et l'exposition oculaire.
Utilisez une blouse de laboratoire ou des vêtements de protection pour couvrir la peau exposée.

Ventilation:
Travaillez dans un endroit bien ventilé pour éviter l'accumulation de fumées ou de vapeurs.
Si vous travaillez avec des solutions concentrées, utilisez une ventilation par aspiration locale ou des sorbonnes.

Évitement de contact :
Évitez le contact direct avec la peau.
En cas de contact, suivez les mesures de premiers secours et lavez soigneusement la zone touchée avec de l'eau.

Précautions d'inhalation :
Si vous travaillez avec des formes en poudre, évitez d'inhaler la poussière.
Utiliser une protection respiratoire si nécessaire.

Pratiques d'hygiène :
Adoptez une bonne hygiène personnelle, notamment en vous lavant soigneusement les mains après avoir manipulé de l'acide glycolique.
Changez rapidement les vêtements contaminés.

Mesures préventives:
Mettre en œuvre des mesures pour éviter la génération d'aérosols ou de poussières lors de la manipulation.
Utilisez des outils, tels que des pipettes ou des systèmes de distribution, pour minimiser les déversements.

La stabilité au stockage:
Conservez l'acide glycolique dans un endroit frais et sec, à l'abri de la lumière directe du soleil et des sources de chaleur.
Gardez les récipients bien fermés lorsqu'ils ne sont pas utilisés pour éviter la contamination et la pénétration d'humidité.

Contrôle de la température:
Suivez la température de stockage recommandée fournie par le fabricant.
Évitez l'exposition à des températures extrêmes.

Compatibilité des conteneurs :
Utilisez des récipients fabriqués dans des matériaux compatibles avec l'acide glycolique, comme le verre ou le polyéthylène haute densité (PEHD).
Vérifiez régulièrement l’intégrité du conteneur.

Étiquetage :
Étiquetez clairement les contenants avec le nom du produit, la concentration, les instructions de manipulation et les informations de sécurité.
Marquez les conteneurs avec les symboles de danger appropriés.

Ségrégation:
Séparez l’acide glycolique des substances incompatibles, y compris les bases fortes et les agents oxydants.


Stockage:

Accessibilité:
Conservez l'acide glycolique dans un endroit facilement accessible au personnel autorisé et aux intervenants d'urgence.
Assurer un étiquetage clair pour l’identification d’urgence.

Surveillance:
Surveillez régulièrement les conditions de stockage pour garantir le respect des directives recommandées.
Inspectez les conteneurs pour détecter tout signe de dommage ou de fuite.

Restrictions :
Respectez toutes les restrictions ou recommandations de stockage spécifiques fournies par le fabricant ou les directives réglementaires.

Équipement d'urgence:
Assurer la disponibilité d’équipements d’urgence, tels que des douches oculaires et des douches de sécurité, à proximité de la zone de stockage.

Intervention en cas de déversement :
Ayez à portée de main le matériel d’intervention en cas de déversement approprié, tel que des matériaux absorbants et des agents neutralisants.
Suivre les procédures établies d'intervention en cas de déversement.



ACIDE GLYCOLIQUE (C2H4O3)
DESCRIPTION:

L'acide glycolique (C2H4O3) est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé.
L'acide glycolique (C2H4O3) joue un rôle de métabolite et de médicament kératolytique.
L'acide glycolique (C2H4O3) est un acide 2-hydroxy monocarboxylique et un alcool primaire.

CAS : 111389-68-5
Numéro de la Communauté européenne (CE) : 693-711-6
Nom IUPAC : acide 2-hydroxyacétique
Formule moléculaire : C2H4O3


SYNONYMES DE L'ACIDE GLYCOLIQUE (C2H4O3) :
Acide glycolique-13C2,111389-68-5,Glycocide-13C2,DTXSID00440240,HY-W778203,CS-0855064,Acide glycolique-13C2, 99 atomes % 13C, 97 % (CP),1209322 [Beilstein],201-180- 5 [EINECS],2-Hydroxyethanoïque acid,79-14-1 [RN],Acide acétique, 2-hydroxy- [ACD/Index Name],Acide glycol [Français] [ACD/IUPAC Name],Acide hydroxyacétique [Français] Acide,a-hydroxyacétique, Acide glycolique [Nom ACD/IUPAC], Acide glycolique [Wiki], Glycolsäure [Allemand], Hydroxyessigsäure [Allemand] [Nom ACD/IUPAC], Kyselina glykolova [tchèque], Kyselina hydroxyoctova [tchèque], QV1Q [WLN],102962-28-7 [RN],acide 1-hydroxy-éthanoïque,26009-03-0 [RN],2-oxonioacétate,4-03-00-00571 (Référence du manuel Beilstein) [Beilstein],75502 -10-2 [RN], EDO, GLV, Glycocide, Acide glycolique, Acide glyoxylique [Wiki], GOA, HOCH2COOH, Acide hydroxy-acétique, Acide hydroxyéthanoïque, Kyselina glykolova, MFCD00868116 [numéro MDL], MLT, STR00936, TAR, WLN : QV1Q, acide α-hydroxyacétique, acide α-hydroxyacétique, 乙醇酸 [chinois]





L'acide glycolique (C2H4O3) est fonctionnellement lié à un acide acétique.
L'acide glycolique (C2H4O3) est un acide conjugué d'un glycolate.
L'acide glycolique est un métabolite présent ou produit par Escherichia coli


L'acide glycolique (ou acide hydroxyacétique) est le plus petit acide alpha-hydroxy (AHA).
Ce solide cristallin incolore, inodore et hygroscopique est hautement soluble dans l’eau.
En raison de son excellente capacité à pénétrer dans la peau, l’acide glycolique trouve des applications dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique.

L'acide glycolique (C2H4O3) peut réduire les rides, les cicatrices d'acné, l'hyperpigmentation et améliorer de nombreuses autres affections cutanées, notamment la kératose actinique, l'hyperkératose et la kératose séborrhéique.
Une fois appliqué, l'acide glycolique (C2H4O3) réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.
Cela permet à la peau externe de se dissoudre, révélant la peau sous-jacente.


L'acide glycolique (C2H4O3) est un composé corrosif, hygroscopique et soluble dans l'eau et le plus petit acide alpha-hydroxy.
Disponible en différentes quantités, l'acide glycolique (C2H4O3) est utilisé comme agent de teinture et de tannage, agent aromatisant et conservateur, intermédiaire de synthèse organique, etc.

L'acide glycolique (ou acide hydroxyacétique ; formule chimique HOCH2CO2H) est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
L'acide glycolique (C2H4O3) est utilisé dans divers produits de soins de la peau.
L'acide glycolique est répandu dans la nature.
Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester d'acide glycolique.



L'acide glycolique (solution à 70 % dans l'eau) de qualité spéciale est un composé organique de haute qualité largement utilisé dans diverses industries, notamment les cosmétiques, les produits pharmaceutiques et la recherche chimique.
C'est un liquide incolore et inodore très soluble dans l'eau.
Cette solution d'acide glycolique de qualité spéciale est composée de 70 % d'acide glycolique dissous dans l'eau, garantissant une pureté et une qualité élevées pour diverses applications.

L'acide glycolique (C2H4O3) est une solution d'acide glycolique de qualité spéciale
Acide glycolique (C2H4O3) Se compose de 70 % d'acide glycolique dissous dans l'eau.
L'acide glycolique (C2H4O3) a une pureté et une qualité élevées, adapté à diverses applications

L'acide glycolique (C2H4O3) est un liquide incolore et inodore
L'acide glycolique (C2H4O3) a une solubilité élevée dans l'eau





HISTOIRE DE L'ACIDE GLYCOLIQUE (C2H4O3) :
Le nom « acide glycolique » a été inventé en 1848 par le chimiste français Auguste Laurent (1807-1853).
Il a proposé que l'acide aminé glycine, alors appelé glycocolle, pourrait être l'amine d'un acide hypothétique, qu'il a appelé « acide glycolique » (acide glycolique).


L'acide glycolique (C2H4O3) a été préparé pour la première fois en 1851 par le chimiste allemand Adolph Strecker (1822-1871) et le chimiste russe Nikolai Nikolaevich Sokolov (1826-1877).
Ils l'ont produit en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote pour former un ester d'acide benzoïque et d'acide glycolique (C6H5C(=O)OCH2COOH), qu'ils ont appelé « acide benzoglycolique » (Benzoglycolsäure ; également acide benzoylglycolique).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide glycolique (Glykolsäure).


PRÉPARATION DE L'ACIDE GLYCOLIQUE (C2H4O3) :
L'acide glycolique (C2H4O3) peut être synthétisé de différentes manières.
Les approches prédominantes utilisent une réaction catalysée du formaldéhyde avec du gaz de synthèse (carbonylation du formaldéhyde), pour son faible coût.
L'acide glycolique (C2H4O3) est également préparé par la réaction de l'acide chloroacétique avec de l'hydroxyde de sodium suivie d'une réacidification.

D'autres méthodes, peu utilisées, comprennent l'hydrogénation de l'acide oxalique et l'hydrolyse de la cyanhydrine dérivée du formaldéhyde.
Certains des acides glycoliques actuels ne contiennent pas d'acide formique.
L'acide glycolique peut être isolé de sources naturelles, telles que la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique peut également être préparé à l'aide d'un processus biochimique enzymatique pouvant nécessiter moins d'énergie.


PROPRIÉTÉS DE L'ACIDE GLYCOLIQUE (C2H4O3) :
L'acide glycolique est légèrement plus fort que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques, formant des complexes de coordination.
Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.

Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.

APPLICATIONS DE L'ACIDE GLYCOLIQUE (C2H4O3) :
L'acide glycolique est utilisé dans l'industrie textile comme agent de teinture et de tannage.

SYNTHÈSE ORGANIQUE :
L'acide glycolique est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions comprenant : l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique (C2H4O3) est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).

Sur le plan commercial, les dérivés importants comprennent les esters méthyliques (CAS# 96-35-5) et éthyliques (CAS# 623-50-7) qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.
L'ester butylique (point d'ébullition 178-186 °C) est un composant de certains vernis, souhaitable car il est non volatil et possède de bonnes propriétés de dissolution.


PRÉSENCE D'ACIDE GLYCOLIQUE (C2H4O3) :
Les plantes produisent de l'acide glycolique lors de la photorespiration.
L'acide glycolique (C2H4O3) est recyclé par conversion en glycine dans les peroxysomes et en acide tartronique semi-aldéhyde dans les chloroplastes.

La photorespiration étant une réaction secondaire inutile à la photosynthèse, de nombreux efforts ont été consacrés à la suppression de sa formation.
Un processus convertit le glycolate en glycérate sans utiliser la voie conventionnelle BASS6 et PLGG1 ; voir la voie du glycérate



PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACIDE GLYCOLIQUE (C2H4O3) :

Masse moléculaire
78,037 g/mole
XLLogP3
-1.1
Nombre de donneurs de liaisons hydrogène
2
Nombre d'accepteurs de liaison hydrogène
3
Nombre de liaisons rotatives
1
Masse exacte
78,02275366 g/mole
Masse monoisotopique
78,02275366 g/mole
Surface polaire topologique
57,5Ų
Nombre d'atomes lourds
5
Charge formelle
0
Complexité
40.2
Nombre d'atomes isotopiques
2
Nombre de stéréocentres d'atomes défini
0
Nombre de stéréocentres d'atomes non défini
0
Nombre de stéréocentres de liaison définis
0
Nombre de stéréocentres de liaison non défini
0
Nombre d'unités liées de manière covalente
1
Le composé est canonisé
Oui
Formule chimique, C2H4O3
Masse molaire, 76,05 g/mol
Aspect, poudre blanche ou cristaux incolores
Densité, 1,49 g/cm3[1]
Point de fusion, 75 °C (167 °F; 348 K)
Point d'ébullition, se décompose
Solubilité dans l'eau, solution à 70 %
Solubilité dans d'autres solvants, alcools, acétone,
acide acétique et
acétate d'éthyle[2]
logP, −1,05[3]
Acidité (pKa), 3,83



INFORMATIONS DE SÉCURITÉ SUR L'ACIDE GLYCOLIQUE (C2H4O3) :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé



ACIDE GLYCOLIQUE 70 %
L'acide glycolique à 70 % est un acide alpha-hydroxy naturel.
L'acide glycolique 70% est destiné au peeling chimique professionnel.
L'acide glycolique à 70 % est une substance hautement concentrée qui doit être diluée avant utilisation sur la peau.


Numéro CAS : 79-14-1
Numéro CE : 201-180-5
Numéro MDL : MFCD00004312
Formule moléculaire : C2H4O3 / HOCH2COOH



acide glycolique, acide 2-hydroxyacétique, acide hydroxyacétique, 79-14-1, acide hydroxyéthanoïque, acide glycolique, acide acétique, hydroxy-, glycolate, polyglycolide, Caswell n° 470, acide 2-hydroxyéthanoïque, HOCH2COOH, acide alpha-hydroxyacétique, Acide acétique, 2-hydroxy-, Code chimique des pesticides EPA 000101, HSDB 5227, NSC 166, Glycocide, GlyPure, BRN 1209322, NSC-166, EINECS 201-180-5, UNII-0WT12SX38S, MFCD00004312, GlyPure 70, 0WT12SX38S, CC RIS 9474, DTXSID0025363, CHEBI:17497, acide hydroxyacétique-13C2, acide .alpha.-hydroxyacétique, GLYCOLLATE, DTXCID105363, NSC166, EC 201-180-5, 4-03-00-00571 (référence du manuel Beilstein), GOA, ACIDE GLYCOLIQUE (MART.), ACIDE GLYCOLIQUE [MART.], C2H3O3-, acide glycolique, C2H4O3, Glycolate Standard : C2H3O3- @ 1000 microg/mL dans H2O,
Hydroxyéthanoate, a-hydroxyacétate, OceanBlu Barrier, OceanBlu Pre-Post, acide hydroxyacétique, acide 2-hydroxyacétique, alpha-hydroxyacétate, acide a-hydroxyacétique, acide 2-hydroxyacétique, acide 2-hydroxyacétique, acide 2-hydroxyléthanoïque , HO-CH2-COOH, solution d'acide hydroxyacétique, bmse000245, WLN : QV1Q,
ACIDE GLYCOLIQUE [MI], Acide glycolique (7CI,8CI), ACIDE GLYCOLIQUE [INCI], ACIDE GLYCOLIQUE [VANDF], Acide glycolique, pa, 98%, pari 30% Peel à l'acide glycolique, pari 70% Peel à l'acide glycolique, Acide acétique , hydroxy- (9CI), CHEMBL252557, ACIDE GLYCOLIQUE [WHO-DD], acide glycolique, cristal, réactif, ACIDE HYDROXYACÉTIQUE [HSDB],
BCP28762, Acide glycolique, >=97,0 % (T), STR00936, Tox21_301298, s6272, AKOS000118921, Acide glycolique, ReagentPlus(R), 99 %, CS-W016683, DB03085, HY-W015967, SB83760, CAS-79-14- 1, Code des pesticides USEPA/OPP : 000101, NCGC00160612-01, NCGC00160612-02, NCGC00257533-01, FT-0612572, FT-0669047, G0110, G0196, acide glycolique 100 microg/mL dans acétonitrile, EN300-192. 42, acide glycolique, Qualité spéciale SAJ, >=98,0 %, C00160, C03547, D78078, acide glycolique, qualité réactif Vetec(TM), 98 %, ACIDE HYDROXYACÉTIQUE ; ACIDE HYDROXYÉTHANOÏQUE, Acide glycolique, BioXtra, >=98,0 % (titration), Q409373, J-509661, F2191-0224, Acide hydroxyacétique ; Acide hydroxyéthanoïque ; Acide glycolique, Z104473274, 287EB351-FF9F-4A67-B4B9-D626406C9B13, Acide glycolique, matériau de référence certifié, TraceCERT(R), Acide glycolique, anhydre, fluide, Redi-Dri(TM), ReagentPlus(R), 99 % , Acide glycolique, étalon secondaire pharmaceutique ; Matériel de référence certifié
O7Z, Acide hydroxyacétique, Acide glycolique, 2-Hydroxyacétate, Acide 2-Hydroxyacétique, A-Hydroxyacétate, Acide A-Hydroxyacétique, Alpha-Hydroxyacétate, Acide alpha-hydroxyacétique, Glycocide, Glycolate, Acide glycolique, Glycolate, Acide glycolique, GlyPure, GlyPure 70, Hydroxyacétate, Acide hydroxyacétique, Hydroxyéthanoate, Acide hydroxyéthanoïque, Glycolate de sodium, Acide glycolique de sodium, α-Hydroxyacétate, Acide α-Hydroxyacétique, 2-Hydroxycarboxylate, Acide 2-Hydroxycarboxylique, 2-Hydroxyacétate, Acide 2-Hydroxyacétique, 2- Hydroxyéthanoate, acide 2-hydroxyéthanoïque, a-hydroxyacétate, acide a-hydroxyacétique, acide acétique, 2-hydroxy-, acide acétique, hydroxy- (9CI), acide glycolique, acide hydroxyacétique, acide acétique, hydroxy-, acidehydroxyacétique, acide hydroxyacétique, glycolique, AHA
ACIDE 2-HYDROXYACÉTIQUE, GLYCOLATE, glycolique, ACIDE HYDROXYACÉTIQUE, HOCH2COOH, ACIDE GLYCOLIQUE, Acide glycolique 70%, ACIDE GLYCOLIQUE SIGMAULTRA, glycolate (hydroxyacétate), ACIDE GLYCOLIQUE, HAUTE PURETÉ, 70% EN POIDS SOLU TION DANS L'EAU,



L'acide glycolique à 70 % est formulé pour l'exfoliation de la peau et vise à traiter l'apparence des taches de vieillesse et un teint irrégulier.
L'acide glycolique à 70 % est un constituant du jus de canne à sucre
L'acide glycolique à 70 % est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé.


L'acide glycolique à 70 % joue un rôle de métabolite et de médicament kératolytique.
L'acide glycolique à 70 % est un acide alpha-hydroxy ; utilisé dans les peelings chimiques et les produits anti-âge pour la peau.
L'acide glycolique 70 % est un type d'acide alpha-hydroxy (AHA). Les acides alpha-hydroxy sont des acides naturels présents dans les aliments.


L'acide glycolique à 70 % provient de la canne à sucre.
Ne confondez pas l'acide glycolique à 70 % avec d'autres acides alpha-hydroxy, notamment l'acide citrique, l'acide lactique, l'acide malique et l'acide tartrique.
Ce ne sont pas les mêmes.


L'acide glycolique 70 % est une substance organique de formule chimique C2H4O3.
L'acide glycolique à 70 % est un ingrédient reconnu souvent incorporé dans diverses formulations de soins de la peau.
L'acide glycolique à 70 % est un cristal incolore et facilement déliquescent.


L'acide glycolique à 70 % est soluble dans l'eau, le méthanol, l'éthanol, l'acétate d'éthyle et d'autres solvants organiques, légèrement soluble dans l'éther, insoluble dans les hydrocarbures.
L'acide glycolique 70 % a la dualité alcool et acide et se décompose lorsqu'il est chauffé jusqu'au point d'ébullition.
L'acide glycolique 70 % est l'un des composés organiques les plus simples, utilisé à grande échelle dans la cosmétologie contemporaine et dans l'industrie chimique.


En effet, cet hydracide possède de nombreuses propriétés précieuses.
Acide Glycolique 70 % en cosmétique : un glycol régénérant pour le visage et le corps.
Les industriels et les pharmaciens ont découvert depuis longtemps que l'acide glycolique à 70 % valait la peine d'être utilisé sur le visage et la peau.


Ce sont des ingrédients de crèmes, après-shampoings, shampoings, pommades et toniques ainsi que des additifs dans les gels lavants, les produits exfoliants, etc.
Les acides AHA (alpha-hydroxyacides) couvrent différents types d’acides populaires que nous utilisons quotidiennement.
Les exemples incluent l’acide citrique, lactique ou malique.


Les AHA couvrent également l'acide glycolique 70 %.
L'acide glycolique 70% est destiné au peeling chimique professionnel.
L'acide glycolique à 70 % est un solide qui absorbe parfaitement les molécules d'eau de l'environnement.


Il existe plusieurs noms désignant l'acide glycolique 70 % : son nom chimique est acide 2-hydroxyéthanoïque.
Ce nom a été introduit par l'Union internationale de chimie pure et appliquée (UICPA) pour faciliter l'identification de cette substance sur un marché mondial.


Le composé d'acide glycolique à 70 % peut également être trouvé sous les noms suivants : acide hydroxyacétique, acide alpha-hydroxyacétique, acide hydroxyéthanoïque.
L'acide glycolique à 70 % est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé.
L'acide glycolique à 70 % joue un rôle de métabolite et de médicament kératolytique.


L'acide glycolique 70 % est un acide 2-hydroxy monocarboxylique et un alcool primaire.
L'acide glycolique à 70 % est fonctionnellement lié à un acide acétique.
L'acide glycolique à 70 % est un acide conjugué d'un glycolate.


L'acide glycolique à 70 % est un métabolite présent ou produit par Escherichia coli.
L'acide glycolique à 70 % est le plus petit acide alpha-hydroxy (AHA).
Ce solide cristallin incolore, inodore et hygroscopique, l'acide glycolique à 70 %, est hautement soluble dans l'eau.


En raison de son excellente capacité à pénétrer dans la peau, l'acide glycolique à 70 % trouve des applications dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique.
L'acide glycolique à 70 % peut réduire les rides, les cicatrices d'acné, l'hyperpigmentation et améliorer de nombreuses autres affections cutanées, notamment la kératose actinique, l'hyperkératose et la kératose séborrhéique.


Une fois appliqué, l'Acide Glycolique 70 % réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.
Cela permet à la peau externe de se dissoudre, révélant la peau sous-jacente.


L'acide glycolique à 70 % est une substance hautement concentrée qui doit être diluée avant utilisation sur la peau.
L'acide glycolique à 70 % est un acide alpha-hydroxy naturel.
L'acide glycolique à 70 % est le seul acide hydroxyacétique produit dans le pays.


L'acide glycolique à 70 % est fourni dans une solution à 70 % sans chlorure, ce qui entraîne une faible corrosivité, ce qui le rend idéal pour une gamme polyvalente d'applications de nettoyage et industrielles.
L'acide glycolique à 70 % est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.


L'acide glycolique à 70 %, également connu sous le nom d'acide hydroxyacétique, est l'un des acides alpha-hydroxy (AHA).
Ces acides sont naturellement présents dans les fruits, la canne à sucre et le lait.
Lorsqu'il est utilisé localement, l'acide glycolique à 70 % peut aider à éliminer les cellules mortes de la peau, contribuant ainsi à renouveler la peau.


L'acide glycolique à 70 % est un acide organique de la famille des acides alpha-hydroxycarboxyliques naturellement présent dans la canne à sucre, les betteraves, les raisins et les fruits.
L'acide glycolique à 70 % est le premier membre de la série des acides alpha-hydroxycarboxyliques, ce qui signifie qu'il s'agit de l'une des plus petites molécules organiques possédant à la fois une fonctionnalité acide et alcoolique.


L'acide glycolique à 70 % est le plus petit acide α-hydroxy (AHA).
Ce solide cristallin incolore, inodore et hygroscopique, l'acide glycolique à 70 %, est hautement soluble dans l'eau.
Un formulaire de solution aqueuse est également disponible.


L'acide glycolique à 70 % est légèrement plus puissant que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques formant des complexes de coordination.
Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.


Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.
L'acide glycolique à 70 % est le plus petit acide α-hydroxy (AHA).
L'acide glycolique à 70 % se présente sous la forme d'un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau et les solvants associés.


L'acide glycolique 70 % est un exfoliant.
L'acide glycolique à 70 % élimine les cellules mortes de la peau et révèle les couches plus récentes et plus brillantes en dessous. C'est le plus petit, le plus simple et le plus soluble des acides alpha-hydroxy en raison de son faible poids moléculaire, ce qui le rend particulièrement efficace dans les exfoliants et les peelings chimiques.


L'acide glycolique à 70 % est associé aux cultures sucrières et est isolé de la canne à sucre, de la betterave sucrière, de l'ananas, du cantaloup et des raisins non mûrs.
L'acide glycolique à 70 % est le premier membre de la série des acides alpha-hydroxycarboxyliques, ce qui signifie qu'il s'agit de l'une des plus petites molécules organiques possédant à la fois une fonctionnalité acide et alcoolique.


L'acide glycolique à 70 % est soluble dans l'eau, l'alcool et l'éther.
L'acide glycolique à 70 % est le plus petit acide alpha-hydroxy (AHA).
L'acide glycolique à 70 % est principalement complété par divers produits de soins de la peau pour améliorer l'apparence et la texture de la peau.


L'acide glycolique à 70 % peut également réduire les rides, les cicatrices d'acné et l'hyperpigmentation.
L'acide glycolique à 70 % est un solide cristallin incolore, inodore et hygroscopique de formule chimique C2H4O3.
L'acide glycolique à 70 % est également connu sous le nom d'acide hydroacétique ou d'acide 2-hydroxyéthanoïque, et son nom IUPAC est acide hydroxyacétique.


L'acide glycolique à 70 % est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé.
L'acide glycolique à 70 % est un acide alpha-hydroxy qui possède des propriétés antibactériennes, antioxydantes, kératolytiques et anti-inflammatoires.
L'acide glycolique à 70 % est fonctionnellement lié à l'acide acétique et est légèrement plus fort que lui.


Les sels ou esters de l'acide glycolique sont appelés glycolates.
L'acide glycolique à 70 % est répandu dans la nature et peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique 70 % est un indispensable de la routine.


L'acide glycolique à 70 % se trouve parmi nos produits de beauté exfoliants et anti-rides – ce n'est pas nouveau, mais cela ne veut pas dire qu'il ne mérite pas d'être salué pour être une foutue puissance.
L'acide glycolique à 70 % peut améliorer la texture et l'apparence de la peau, exfolier les couches supérieures de l'épiderme et réduire l'apparence des rides, des cicatrices, de l'hyperpigmentation et de diverses autres affections cutanées.


L'acide glycolique à 70 % est un acide alpha-hydroxy (ou AHA) d'origine naturelle.
L'acide glycolique à 70 % est un AHA, alias acide alpha-hydroxy.
Certains autres acides qui relèvent de l’acide glycolique à 70 % comprennent les acides lactique et citrique.


L'acide glycolique à 70 % est généralement dérivé de sources naturelles ; lactique du lait, citrique des agrumes et glycolique de la canne à sucre, de l'ananas, du cantaloup ou des raisins non mûrs.
L'acide glycolique à 70 % est non seulement bénéfique lorsqu'il est appliqué localement, mais en raison de sa taille moléculaire (toute petite), il est très efficace pour pénétrer sous la peau et fournir également un effort supplémentaire de l'intérieur.


Vous trouverez généralement de l'acide glycolique à 70 % dans vos nettoyants, toniques, exfoliants et produits stimulant le collagène.
L'acide glycolique 70 % est un acide α-hydroxy.
Les solutions d'acide glycolique à 70 % ayant une concentration de 70 % et un pH compris entre 0,08 et 2,75 sont largement utilisées comme agents de pelage chimique superficiel.


Différents oligomères ou polymères d'acide lactique et/ou glycolique à 70 % (faible poids moléculaire) ont été préparés.
L'acide glycolique à 70 % peut être déterminé via des biocapteurs à chimiluminescence par injection de flux couplés à des tissus végétaux, qui peuvent être utilisés à la fois comme biocapteur à base de tissus végétaux et comme capteur de flux par chimiluminescence.


L'acide glycolique à 70 % est un acide alpha-hydroxy (ou AHA) d'origine naturelle.
L'acide glycolique à 70 % est un type d'acide alpha-hydroxy (AHA) fabriqué à partir de canne à sucre qui peut agir comme un agent liant l'eau.
Le glycolique est le type d'acide alpha-hydroxy le plus recherché et le plus acheté sur le marché, dont tous les effets sont étayés par des études.


L'acide glycolique à 70 % est soluble dans l'eau et est naturellement présent dans la canne à sucre, la betterave sucrière et l'ananas.
Acide glycolique 70 % de sensibilité solaire : Tous les AHA, y compris l'acide glycolique, augmentent la photosensibilité de la peau, vous devez donc porter un écran solaire si vous prévoyez d'utiliser un AHA.


Acide glycolique 70 % ; La formule chimique C2H4O3 (également écrite sous la forme HOCH2CO2H) est le plus petit acide α-hydroxy (AHA).
L'acide glycolique à 70 % est le plus petit acide alpha-hydroxy.
La solution d’acide glycolique à 70 % est une solution d’acide utile.


L'acide glycolique à 70 % est un intermédiaire utile pour la synthèse.
L'utilisation de synthèse la plus utile est l'estérification par oxydation-réduction et la polymérisation à longue chaîne.
L'acide glycolique à 70 %, également connu sous le nom de 2-hydroxyacétate ou glycolate, appartient à la classe des composés organiques appelés acides alpha-hydroxy et dérivés.


Ce sont des composés organiques contenant un acide carboxylique substitué par un groupe hydroxyle sur le carbone adjacent.
L'acide glycolique à 70 % est un composé basique extrêmement faible (essentiellement neutre) (sur la base de son pKa).
L'acide glycolique à 70 % existe dans toutes les espèces vivantes, allant des bactéries à l'homme.


Chez l'homme, l'acide glycolique à 70 % est impliqué dans la voie métabolique de la rosiglitazone.
En dehors du corps humain, l'acide glycolique à 70 % a été détecté, mais non quantifié, dans plusieurs aliments différents, tels que le levain, la sauge ananas, le céleri-rave, le clou de girofle et la feijoa.


Les avantages de l'acide glycolique à 70 % comprennent une exfoliation puissante pour une meilleure texture de la peau, une réduction des cicatrices cutanées, des taches, des rides et ridules de surface.
L'acide glycolique à 70 % est hautement soluble dans l'eau et soluble dans les alcools, l'acétone, l'acide acétique et l'acétate d'éthyle.
Cela pourrait faire de l’acide glycolique 70 % un biomarqueur potentiel pour la consommation de ces aliments.


Une fois appliqué, l'Acide Glycolique 70 % réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.
L'acide glycolique à 70 % est un composé potentiellement toxique.


L'acide glycolique à 70 %, chez l'homme, s'est avéré associé à plusieurs maladies telles que la résection transurétrale de la prostate et l'atrésie des voies biliaires ; L'acide glycolique a également été associé à plusieurs troubles métaboliques innés, notamment l'acidémie glutarique de type 2, l'acidurie glycolique et l'acidurie d-2-hydroxyglutarique.


L'acide glycolique à 70 % et l'acide oxalique, ainsi que l'excès d'acide lactique, sont responsables de l'acidose métabolique du trou anionique.
L'acide glycolique à 70 %, également connu sous le nom de 2-hydroxyacétate ou glycolate, appartient à la classe des composés organiques appelés acides alpha-hydroxy et dérivés.
Ce sont des composés organiques contenant un acide carboxylique substitué par un groupe hydroxyle sur le carbone adjacent.


L'acide glycolique à 70 % est un composé basique extrêmement faible (essentiellement neutre) (sur la base de son pKa).
L'acide glycolique à 70 % existe dans toutes les espèces vivantes, allant des bactéries à l'homme.
L'acide glycolique 70 %, le plus connu des acides de fruits, est l'acide α-hydroxy le plus utilisé dans les produits cosmétiques.


Acide glycolique 70 % ; La formule chimique C2H4O3 (également écrite sous la forme HOCH2CO2H) est le plus petit acide α-hydroxy (AHA).
Ce solide cristallin incolore, inodore et hygroscopique, l'acide glycolique à 70 %, est hautement soluble dans l'eau.
Le réactif acide glycolique 70 % 99 % cristaux est une forme très pure d'acide glycolique couramment utilisée dans diverses industries, notamment les cosmétiques, les produits pharmaceutiques et la fabrication de produits chimiques.


L'acide glycolique à 70 % est connu pour sa capacité à exfolier et à améliorer la texture de la peau, ce qui en fait un ingrédient populaire dans les produits de soin de la peau.
L'Acide Glycolique 70 % a la capacité d'éliminer les cellules mortes de la surface de l'épiderme, de favoriser son hydratation et d'améliorer de manière générale la texture et l'apparence de l'épiderme.



UTILISATIONS et APPLICATIONS de l'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est souvent utilisé pour traiter les cicatrices, l'acné, la décoloration de la peau, l'hyperpigmentation, le teint terne, la texture rugueuse et les signes du vieillissement, comme les rides et ridules.
L'acide glycolique à 70 % stimule les fibroblastes du derme pour produire des quantités accrues de collagène.


L'acide glycolique à 70 % n'est pas seulement un ingrédient populaire dans les produits de soin de la peau, il est également utilisé dans l'industrie textile et dans la transformation des aliments comme agent aromatisant et conservateur.
L'Acide Glycolique 70 % est utilisé dans les soins du visage (produits exfoliants, peelings, crèmes et lotions purifiantes, gels nettoyants, masques éclat, crèmes contour des yeux, soins anti-imperfections, crèmes à barbe, soins unifiants).


L'Acide Glycolique 70 % est utilisé pour les soins du corps (laits corporels, gels douche).
L'Acide Glycolique 70 % est utilisé en soins capillaires (shampooings antipelliculaires, masques capillaires purifiants).
Les acides alpha-hydroxy comme l’acide glycolique à 70 % agissent en éliminant les couches supérieures des cellules mortes de la peau.


L'acide glycolique à 70 % semble également aider à inverser les dommages causés par le soleil sur la peau.
Les gens utilisent l’acide glycolique à 70 % pour traiter l’acné, le vieillissement cutané, les taches foncées sur le visage et les cicatrices d’acné.
L'acide glycolique à 70 % est également utilisé pour traiter les vergetures et d'autres affections, mais il n'existe aucune preuve scientifique solide pour étayer ces autres utilisations.


Utilisations de l'acide glycolique 70 % : nettoyants acides, nettoyants pour béton, transformation des aliments, nettoyants pour surfaces dures, teinture et tannage du cuir, raffinage du pétrole, textile et traitement de l'eau.
L'acide glycolique à 70 % peut être utilisé dans les nettoyants pour le corps, les nettoyants pour le visage, les crèmes exfoliantes, les sérums, les toniques et plus encore.


L'acide glycolique à 70 % est un acide alpha-hydroxy dérivé de la canne à sucre.
L'acide glycolique à 70 % est l'un des actifs anti-âge les plus appréciés.
Sa petite structure moléculaire – l'acide glycolique à 70 % possède la plus petite molécule de tous les acides alpha-hydroxy – permet la pénétration dans les cellules de la peau.


L'acide glycolique à 70 % brise les liaisons entre les kératinocytes de la couche cornée et affaiblit les propriétés de liaison des lipides qui retiennent les cellules mortes de la peau, les éliminant ainsi.
Il en résulte une exfoliation immédiate et intense de la couche cornée et une régénération cellulaire simultanée.


L'utilisation systématique de concentrations élevées d'Acide Glycolique 70 % interagit avec les récepteurs des fibroblastes, stimulant ainsi significativement la production de matériel intercellulaire (collagène, élastine, fibronectine, acide hyaluronique).
La peau est ainsi rajeunie et régénérée.


La concentration à 70% en acide glycolique, associée au pH, entraînent des actions et des indications ciblées.
L'Acide Glycolique 70 % est utilisé pour évaluer l'efficacité du traitement par peeling glycolique pour tous les types d'acné.
L'acide glycolique à 70 % est utilisé dans la synthèse fine des médicaments et comme matière première en cosmétique et en synthèse organique.


L'acide glycolique à 70 % peut être utilisé comme exfoliant s'il est correctement concentré à 5 %.
L'acide glycolique à 70 % peut aider à éliminer les peaux mortes et à renouveler la peau en surface, améliorant ainsi les signes visibles du vieillissement, tels que le teint irrégulier, les dommages causés par le soleil, les ridules, la peau rugueuse ou inégale, et réduisant considérablement la taille des rides.


Pour obtenir tous ces bienfaits, vous aurez besoin d'un exfoliant sans rinçage AHA composé de 5 à 10 % d'acide glycolique à 70 % formulé à un pH de 3 à 4, puis le produit doit être soigneusement rincé.
Peeling chimique à 70 % d'acide glycolique, idéal pour les peaux normales à mixtes et/ou vieillissantes.


L'acide glycolique à 70 % est mieux utilisé dans les climats humides.
Acide glycolique en concentration à 70% pour une exfoliation chimique immédiate et puissante, adaptée à tous les types de peau.
Utilisations textiles de l'acide glycolique à 70 % : En plus des produits contre l'acné à l'acide glycolique à 70 %, ce produit chimique est un excellent produit pour l'industrie textile, où il est utilisé à des fins de teinture et de bronzage.


Alimentation : L’un des principaux avantages de l’acide glycolique à 70 % est qu’il agit comme exhausteur de goût et conservateur alimentaire.
L'acide glycolique à 70 % est utilisé dans le traitement des textiles, du cuir et des métaux ; dans le contrôle du pH et partout où un acide organique bon marché est nécessaire, par exemple dans la fabrication d'adhésifs, dans l'avivage du cuivre, le nettoyage par décontamination, la teinture, la galvanoplastie, le décapage, le nettoyage et le broyage chimique des métaux.


L'acide glycolique à 70 % offre un renouvellement et une régénération cutanée tout en réduisant l'apparence des rides, des cicatrices d'acné superficielles et des décolorations.
L'acide glycolique à 70 % réduit la cohésion des corénocytes et l'épaississement de la couche cornée où une accumulation excessive de cellules mortes de la peau peut être associée à de nombreux problèmes de peau courants, tels que l'acné, la peau sèche et très sèche et les rides.


L'Acide Glycolique 70 % agit en dissolvant le ciment cellulaire interne responsable d'une kératinisation anormale, facilitant l'élimination des cellules mortes de la peau.
L'acide glycolique à 70 % améliore également l'hydratation de la peau en améliorant l'absorption de l'humidité et en augmentant la capacité de la peau à retenir l'eau.
Cela se produit dans le ciment cellulaire grâce à une activation de l'acide glycolique à 70 % et de l'acide hyaluronique contenu dans la peau.


L'acide hyaluronique est connu pour retenir une quantité impressionnante d'humidité et cette capacité est renforcée par l'acide glycolique à 70 %.
En conséquence, la capacité de la peau à augmenter la teneur en humidité de l'acide glycolique à 70 % est augmentée.
L'acide glycolique à 70 % est l'alpha-hydroxyacide (AHA) le plus simple.


L'acide glycolique à 70 % est également l'AHA qui, selon les scientifiques et les formulateurs, possède un plus grand potentiel de pénétration, en grande partie en raison de son poids moléculaire plus faible.
L'Acide Glycolique 70 % s'utilise sur la peau à une concentration idéale de 5%, maximum 10%.
L'acide glycolique 70 % est légèrement irritant pour la peau et les muqueuses si la formulation contient une concentration élevée d'acide glycolique et/ou un pH faible.


L'acide glycolique à 70 % s'avère bénéfique pour les peaux à tendance acnéique car il aide à garder les pores débarrassés de l'excès de kératinocytes.
L'Acide Glycolique 70 % est également utilisé pour atténuer les signes des taches de vieillesse, ainsi que la kératose actinique.
Cependant, l'acide glycolique à 70 % est le plus couramment utilisé dans les cosmétiques anti-âge en raison de ses capacités hydratantes et normalisantes pour la peau, conduisant à une réduction de l'apparence des rides et des ridules.


Quel que soit le type de peau G, l'utilisation d'acide glycolique à 70 % est associée à une peau plus douce, plus lisse, plus saine et d'apparence plus jeune.
L'acide glycolique à 70 % est naturellement présent dans la canne à sucre mais les versions synthétiques sont le plus souvent utilisées dans les formulations cosmétiques.
L'acide glycolique à 70 % est également une excellente alternative aux acides toxiques et à faible pénétration tels que les acides sulfurique, phosphorique et sulfamique dans les nettoyants, les produits chimiques de traitement de l'eau et les applications O&G.


L'acide glycolique à 70 % provient de la famille des acides AHA et est essentiellement un exfoliant.
Les formulations à base de cet acide sont également utilisées dans les instituts de beauté dans le cadre de soins rajeunissants.
L'acide glycolique à 70 % est utilisé dans l'industrie textile comme agent de teinture et de tannage.


Les concentrés de nettoyage et de lavage à l'acide glycolique à 70 % éliminent rapidement la saleté et les microbes de différentes surfaces.
C'est pourquoi ils sont largement utilisés dans les habitations privées, les installations industrielles et les établissements publics.
L'acide glycolique 70 % est également recherché par les entités des secteurs de l'alimentation, de la logistique et de la restauration.


L'acide glycolique à 70 % peut également être trouvé dans les écoles et les jardins d'enfants.
L'acide glycolique à 70 % agit en dissolvant le sébum à la surface de la peau, qui lie les cellules mortes à la peau.
En plus d'éclaircir magnifiquement votre peau, l'acide glycolique à 70 % abaissera également le pH de votre peau, ce qui aide à combattre l'acné.


En éliminant les cellules mortes, l'Acide Glycolique 70 % relancera la production de nouvelles.
L'acide glycolique à 70 % est préféré de nos jours en raison de sa vitesse d'action élevée, de ses performances d'élimination du tartre, de sa moindre corrosivité, de sa biodégradabilité et de son flux de déchets moins dangereux.


Utilisations de l'acide glycolique à 70 % dans les produits personnels et de soins de la peau : crèmes anti-âge, traitements contre l'acné, gommages exfoliants, après-shampooings et autres produits de soins capillaires.
Utilisations de l'acide glycolique à 70 % dans les produits de nettoyage ménagers, institutionnels et industriels : nettoyants pour surfaces dures, nettoyants pour métaux, nettoyants pour cuvettes de toilettes et détergents à lessive.


Applications de traitement de l'eau de l'acide glycolique 70 % : produits chimiques de nettoyage de chaudière, solutions de stimulation de puits et produits de nettoyage de processus.
Utilisations de l'acide glycolique à 70 % pour le traitement des surfaces électroniques et métalliques : produits chimiques de gravure, flux de circuits imprimés, produits chimiques d'électropolissage et préparations de surfaces métalliques.


Applications pétrolières et gazières de l'acide glycolique à 70 % : produits chimiques de forage pétrolier, stimulation de puits, détartrants en milieu et en aval et détartrants de processus généraux.
L'acide glycolique à 70 % est utilisé pour la synthèse organique, etc.
Industries : Adhésifs | Bâtiment et construction | Produits chimiques d'entretien | Énergie | Encres | Entretien, réparation, révision | Transformation et fabrication des métaux | Transport | Traitement de l'eau


L'acide glycolique à 70 % augmente également l'absorption des cosmétiques par la peau et élimine les taches pigmentaires.
L'acide glycolique à 70 % est utilisé dans divers produits de soins de la peau.
L'acide glycolique à 70 % est répandu dans la nature.


Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester d'acide glycolique à 70 %.
Nettoyage : L'acide glycolique à 70 % et l'acide hydroxyacétique sont d'excellents agents de nettoyage pour des surfaces telles que le béton et le métal.
Adhésifs : L'acide glycolique à 70 % est couramment utilisé dans divers adhésifs et plastiques.


L'acide glycolique à 70 % a un effet blanchissant et activateur significatif, peut favoriser le métabolisme cellulaire, éliminer les peaux mortes et dissoudre la cutine.
L'acide glycolique à 70 % est un acide alpha-hydroxy naturel.
Disponible en différentes quantités, l'Acide Glycolique 70 % est utilisé comme agent de teinture et de tannage, comme agent aromatisant et conservateur, comme intermédiaire de synthèse organique, etc.


L'acide glycolique à 70 % est le plus couramment utilisé pour l'hyperpigmentation, les ridules et l'acné.
L'acide glycolique à 70 % se retrouve principalement dans les produits exfoliants (peelings), ou dans les crèmes et lotions mais à une concentration bien plus faible. L'acide glycolique 70 % est obtenu par synthèse.


L'acide glycolique 70 % est un acide et ne doit jamais être utilisé non dilué.
La couleur de l'acide glycolique à 70 % peut varier de complètement transparente à une couleur transparente jaune clair.
L'acide glycolique à 70 % fait partie de la famille des acides alpha-hydroxy (AHA) et constitue la plus petite molécule d'AHA, lui permettant de pénétrer plus profondément dans la peau.


L'acide glycolique à 70 % peut adoucir la peau, la rendre douce, lisse, délicate, élastique et brillante.
L'acide glycolique à 70 % peut être utilisé comme synergiste des produits contre les taches de rousseur, les rides et l'acné pour promouvoir et augmenter l'efficacité des produits.
L'acide glycolique 70 % est une matière première pour la synthèse organique et peut être utilisé pour produire de l'éthylène glycol.


L'acide glycolique à 70 % peut également être utilisé comme réactif d'analyse chimique.
L'acide glycolique à 70 % peut être utilisé comme agent de nettoyage, qui a une faible corrosivité pour les matériaux et ne précipitera pas le fer acide organique pendant le nettoyage.
L'acide glycolique à 70 % peut être utilisé dans l'industrie de la synthèse organique et de l'impression et de la teinture.


L'acide glycolique à 70 % peut être utilisé pour la stérilisation du savon.
L'acide glycolique à 70 % peut être utilisé comme agent complexant pour le placage autocatalytique au nickel afin d'améliorer la qualité du revêtement, et peut également être utilisé comme additif pour d'autres galvanoplasties ou placages autocatalytiques.


L'acide glycolique à 70 % est couramment utilisé comme tonique et peeling chimique à des concentrations d'environ 10 % pour un usage domestique et de 20 à 80 % pour une utilisation par un dermatologue.
L'acide glycolique à 70 % est utilisé pour les peelings, crèmes, lotions, masques, nettoyants.
L'acide glycolique à 70 % est classé comme ingrédient avancé pour les soins de la peau et ne doit pas être utilisé à moins que vous ne compreniez l'utilisation et les applications de l'acide glycolique.


Le glycolique est un ingrédient communément connu sur le marché des soins personnels et des cosmétiques et l'acide glycolique à 70 % est également largement utilisé dans plusieurs applications de nettoyage domestique et industriel.
L'acide glycolique à 70 % est couramment utilisé dans le broyage chimique, le nettoyage et le polissage des métaux, ainsi que dans les solutions de décapage du cuivre. L'acide glycolique à 70 % est également utilisé dans l'industrie cosmétique dans les peelings cutanés.


L'acide glycolique à 70 % est un alpha-hydroxy naturel. L'acide glycolique à 70 % est très utile dans les produits exfoliants comme le peeling à l'acide alpha-hydroxy, ou dans les crèmes et lotions à une concentration plus faible pour un peeling à base d'acide plus doux.
L'acide glycolique à 70 % est largement utilisé pour rajeunir la peau en favorisant l'excrétion des vieilles cellules superficielles de la peau.


L'acide glycolique à 70 % est utilisé dans l'industrie textile comme agent de teinture et de bronzage, dans l'industrie alimentaire comme agent aromatisant et comme conservateur, et dans l'industrie pharmaceutique comme agent de soin de la peau.
En raison de l'acidité de l'acide glycolique à 70 %, le produit final doit être testé pour vérifier son pH.


L'acide glycolique à 70 % est utilisé dans diverses crèmes, sérums, lotions, hydratants, nettoyants et toniques conçus pour réduire les signes du vieillissement, dans les soins capillaires, notamment les shampoings, les shampoings hydratants, les revitalisants, les revitalisants sans rinçage et les produits tout-en-un pour le corps. nettoyants pour cheveux pour hommes et dans les vernis à ongles, les revitalisants pour les ongles et les revitalisants pour les cuticules.


L'Acide Glycolique 70 % possède des propriétés lissantes et adoucissantes.
L'acide glycolique à 70 % est également utilisé dans les adhésifs et les plastiques.
L'acide glycolique à 70 % est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour l'encre et la peinture afin d'améliorer les propriétés d'écoulement et de conférer du brillant.


L'acide glycolique à 70 % est utilisé dans les produits de traitement de surface qui augmentent le coefficient de friction des sols carrelés.
L'acide glycolique à 70 % est l'ingrédient actif du liquide nettoyant ménager Pine-Sol.
Dans l'industrie textile, l'acide glycolique à 70 % peut être utilisé comme agent de teinture et de bronzage.


L'acide glycolique à 70 % peut également être utilisé comme agent aromatisant dans la transformation des aliments et comme agent de soin de la peau dans l'industrie pharmaceutique.
L'acide glycolique à 70 % peut également être ajouté aux polymères en émulsion, aux solvants et aux additifs d'encre pour améliorer les propriétés d'écoulement et conférer de la brillance.
De plus, l'acide glycolique à 70 % est un intermédiaire utile pour la synthèse organique, notamment l'oxydative-réduction, l'estérification et la polymérisation à longue chaîne.


L'acide glycolique à 70 % offre des avantages tels qu'une apparence saine, de la brillance, un toucher soyeux et moins de desquamation.
L'acide glycolique à 70 % offre des avantages tels que la biodégradabilité, la compatibilité avec d'autres composés et ingrédients et moins de risques de traces d'impuretés.
En raison de son excellente capacité à pénétrer dans la peau, l'acide glycolique à 70 % trouve des applications dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique effectué par un dermatologue à des concentrations de 20 à 80 % ou de kits à domicile à des concentrations inférieures de 10 %.


L'acide glycolique 70 % est utilisé pour améliorer l'apparence et la texture de la peau.
L'acide glycolique à 70 % peut réduire les rides, les cicatrices d'acné, l'hyperpigmentation et améliorer de nombreuses autres affections cutanées.
Une fois appliqué, l'Acide Glycolique 70 % réagit avec la couche supérieure de l'épiderme, affaiblissant les propriétés de liaison des lipides qui maintiennent ensemble les cellules mortes de la peau.


Cela permet à la peau externe de « se dissoudre », révélant la peau sous-jacente.
L'acide glycolique à 70 % est également un intermédiaire utile pour la synthèse organique, dans une gamme de réactions comprenant : l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.


L'acide glycolique à 70 % est un type d'acide alpha-hydroxy (AHA) couramment utilisé dans les soins de la peau. Il a la capacité d'exfolier la peau et d'améliorer sa texture en augmentant le renouvellement cellulaire et en stimulant la production de collagène.
L'acide glycolique à 70 % est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).


Entre autres utilisations, l'acide glycolique à 70 % trouve un emploi dans l'industrie textile comme agent de teinture et de tannage, dans la transformation des aliments comme agent aromatisant et comme conservateur.
L'acide glycolique à 70 % est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour l'encre et la peinture afin d'améliorer les propriétés d'écoulement et de conférer du brillant.


L'acide glycolique à 70 % est utilisé dans l'industrie textile comme agent de teinture et de tannage.
L'acide glycolique à 70 % agit sur la première couche de la peau, en relâchant les liens entre les cellules, permettant ainsi aux vieilles cellules mortes de la peau de se détacher.
Cela revitalise et stimule la production de nouvelles cellules saines, révélant une peau plus fraîche et plus lumineuse en dessous.


L'acide glycolique à 70 % est largement utilisé dans les produits de soins de la peau comme exfoliant et kératolytique.
L'acide glycolique à 70 % est utilisé dans l'industrie textile comme agent de teinture et de tannage.
L'acide glycolique à 70 % est utilisé dans le traitement des textiles, du cuir et des métaux.


L'acide glycolique à 70 % était autrefois le plus couramment utilisé comme peeling chimique par les dermatologues, car parmi tous les AHA, l'acide glycolique a le poids moléculaire le plus bas, ce qui signifie qu'il a la capacité de pénétrer dans la peau encore plus profondément que la plupart des autres AHA, ce qui le rend plus efficace. efficace pour réduire les rides, les cicatrices d’acné, l’hyperpigmentation et améliorer d’autres affections cutanées.


L'acide glycolique à 70 % est utilisé pour les peelings, crèmes, lotions, masques, nettoyants.
En raison de l'acidité de l'acide glycolique à 70 %, le produit final doit être testé pour vérifier son pH.
La plage de pH optimale de l'acide glycolique à 70 % est comprise entre 3,5 et 5,0.


Certains produits en vente libre, après avoir ajouté de l'acide glycolique à 70 %, se sépareront en raison du faible pH et devront être stabilisés.
L'acide glycolique à 70 % a été utilisé dans la préparation du copolymère PLGA-PEG-PLGA (PLGA = poly(lactique/glycolique, PEG = polyéthylène glycol).
L'acide glycolique à 70 % est utilisé comme monomère pour créer du PLGA et d'autres copolymères biocompatibles.


L'acide glycolique à 70 % est souvent utile pour la teinture et le bronzage, et est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour l'encre et la peinture.
L'acide glycolique à 70 % est métabolisé par les cellules in vitro pour devenir de l'acide oxalique qui tue les cellules.
L'acide glycolique 70 % est un acide alpha-hydroxy (AHA) obtenu à partir de la canne à sucre. En raison de sa petite taille, il a un plus grand pouvoir de pénétration, donc un meilleur pelage.


En raison de son excellente capacité à pénétrer dans la peau, l'acide glycolique à 70 % est souvent utilisé dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique.
L'acide glycolique à 70 % est un inhibiteur de la tyrosinase, supprimant la formation de mélanine et conduisant à un éclaircissement de la couleur de la peau.
L'acide glycolique à 70 % est l'AHA naturel le plus couramment utilisé (= acide alpha-hydroxy).


L'acide glycolique à 70 % est utilisé comme intermédiaire dans la synthèse organique et dans plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique à 70 % est extrait de la canne à sucre, du raisin et des feuilles de vigne.


Le niveau d'utilisation typique de l'acide glycolique à 70 % se situe entre 1 et 20 % (concentration finale de l'acide glycolique).
Pour réaliser un peeling à 10 % d'AHA, utilisez environ 14,5 % d'acide glycolique à 70 %, pour un peeling à 5 % d'AHA, utilisez environ 7,2 %.
Pour un usage domestique, l'Acide Glycolique 70 % n'est pas recommandé pour réaliser des peelings AHA supérieurs à 20 % (équivalent à environ 28,5 % d'acide glycolique).


L'acide glycolique à 70 % est utilisé pour l'éclaircissement de la peau, l'hydratation de la peau, le blanchiment de la peau, le lissage de la peau, l'élimination de la pigmentation, l'équité, l'anti-âge, la nutrition et l'hydratation, l'anti-acné et les boutons, l'élimination des points noirs.
De plus, l'acide glycolique à 70 % est utilisé dans la production de divers produits chimiques, tels que des polymères et des esters, et comme ajusteur de pH dans diverses formulations.


Sa grande pureté et son efficacité font de l'Acide Glycolique 70 % un outil précieux dans de nombreuses applications.
L'acide glycolique à 70 % est synthétisé de nombreuses façons, mais est souvent isolé de la canne à sucre, des ananas et d'autres fruits au goût acide.
L'acide glycolique à 70 % est le plus petit acide alpha-hydroxy (AHA).


Sous sa forme pure, l'acide glycolique 70 % est un solide cristallin incolore.
En raison de son excellente capacité à pénétrer dans la peau, l'acide glycolique à 70 % trouve des applications dans les produits de soins de la peau, le plus souvent sous forme de peeling chimique.
L'acide glycolique à 70 % est également utilisé pour le détatouage.
Dans E coli, l'acide glycolique à 70 % est impliqué dans le métabolisme du glyoxylate et du dicarboxylate.


-Applications de l'acide glycolique 70 %
Les pharmacies ou magasins de produits chimiques ménagers proposent aujourd'hui différents types d'agents et de formulations contenant de l'acide glycolique à 70 %.
Leur application est très large.

L'acide hydroxyacétique est un composant de :
*concentrés conçus pour le nettoyage des carreaux en grès, des joints et des surfaces poreuses,
*préparations spécialisées pour le lavage et la stérilisation des cuves, citernes, *lignes de production ou équipements en contact avec les aliments,
*liquides utilisés pour le nettoyage des sanitaires publics.


-Utilisations de soins de la peau de l'acide glycolique 70 % :
Les dermatologues utilisent couramment l'acide glycolique à 70 % pour le traitement de l'acné et d'autres affections cutanées.
Les produits de soins de la peau à l'acide glycolique à 70 % sont conçus pour pénétrer en toute sécurité dans la peau afin d'exfolier la peau, de réduire les cicatrices d'acné et de réduire les rides.



FONCTIONS DE L'ACIDE GLYCOLIQUE 70 % :
*La solution à 70 % peut être utilisée comme agent de nettoyage.
*Le cristal à 99,5 % peut être utilisé dans la synthèse fine de médicaments.
*L'acide glycolique à 70 % est utilisé comme ingrédient dans les cosmétiques, les adhésifs, les séparateurs d'émulsion de pétrole, les pâtes à souder et les revêtements.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique 70 %, CH20HCOOH, également appelé acide hydroxyacétique, est composé de folioles déliquescentes incolores qui se décomposent à environ 78°C (172 OF).
L'acide glycolique à 70 % est soluble dans l'eau, l'alcool et l'éther.
L'acide glycolique à 70 % est utilisé dans la teinture, le tannage, l'électropolissage et dans l'alimentation.
L'acide glycolique à 70 % est produit en oxydant le glycol avec de l'acide nitrique dilué.



AVANTAGE CLÉ/EFFET PRINCIPAL DE L'ACIDE GLYCOLIQUE 70 % :
*Stimule efficacement la régénération de la peau
*Améliore le système immunitaire de la peau
*Nettoie efficacement les pores obstrués
*Donne à la peau fermeté et élasticité



METHODE DE PRODUCTION DE L'ACIDE GLYCOLIQUE 70 % :
Les marchés cosmétiques et chimiques contemporains seraient difficiles à imaginer sans des substances telles que les AHA, dont l'acide glycolique à 70 %. De quoi est composé ce produit semi-fini ?
Pendant des décennies, diverses méthodes de production d'acide glycolique à 70 % ont été développées.

L'acide glycolique 70 % peut être obtenu, par exemple, par :
Réaction d'un dérivé de l'acide acétique (chloroacétique) avec l'hydroxyde de sodium (NaOH), qui est une base forte.
Évidemment, l’Acide Glycolique 70 % ne sera pas produit immédiatement.

La production d'acide glycolique à 70 % n'est possible que si l'environnement des deux ingrédients réactifs est acidifié.
Une réaction du formaldéhyde avec de l'eau gazeuse (c'est l'une des méthodes les plus populaires de production de masse d'acide glycolique à 70 % ; cependant, l'acquisition du produit semi-fini avec cette méthode génère beaucoup de déchets).



FORMULES CHIMIQUES ET STRUCTURELLES D'ACIDE GLYCOLIQUE 70 % :
La formule développée de l'acide glycolique à 70 % est la suivante : HOCH2COOH.
La formule moléculaire de l'Acide Glycolique 70 % est : C2H4O3.
Les deux formules indiquent que l'acide glycolique à 70 % contient à la fois des groupes carboxyle et hydroxyle, typiques des acides alpha-hydroxyles.



PRÉSENCE D'ACIDE GLYCOLIQUE 70 % :
Les plantes produisent de l'acide glycolique à 70 % lors de la photorespiration.
L'acide glycolique à 70 % est recyclé par conversion en glycine au sein des peroxysomes et en acide tartronique semi-aldéhyde au sein des chloroplastes.



COMMENT RECONNAÎTRE L'ACIDE GLYCOLIQUE 70 % ?
Les caractéristiques de cet Acide Glycolique 70 % sont les suivantes : c'est un solide se présentant sous la forme d'une poudre blanche ou transparente, cristalline et inodore.
L'acide glycolique 70 % se décompose à 100°C et fond à 80°C.
On suppose que l'acide glycolique 70 % a une densité de 1,49 g/cm³ à environ 25°C.



MODE D'EMPLOI DE L'ACIDE GLYCOLIQUE 70 % :
L'Acide Glycolique 70 % est réservé à un usage professionnel.
L'Acide Glycolique 70 % est un acide très fort destiné à être utilisé par les professionnels.
Appliquer 2 ml sur une peau propre et sèche et rincer à l'eau froide dans les 30 secondes.
Appliquez ensuite une solution neutralisante ou une crème hydratante apaisante sur la peau et maintenez l'hydratation.
Acide Glycolique à 70 %. Il est impératif d'appliquer une crème solaire après avoir utilisé le peeling pour protéger la peau fraîchement exfoliée de l'exposition aux UV.



QU'EST-CE QUI D'AUTRE DISTINGUE L'ACIDE GLYCOLIQUE 70 % ?
La solubilité dans l'eau de l'Acide Glycolique 70 % est très bonne et dépend largement de la température du liquide : plus elle est élevée, mieux la poudre se dissoudra pour former une solution.
L'acide glycolique 70 % peut également être dissous dans des alcools : éthanol, méthanol ou acétone.
L'acide glycolique à 70 % réagit avec l'aluminium et les oxydants, ce qui peut même provoquer une inflammation.



AVIS DE L'ACIDE GLYCOLIQUE 70 % :
Les consommateurs contemporains recherchent des produits chimiques éprouvés et de haute qualité, qui produisent des effets rapides et ne provoquent pas d'allergies.
Les gens sont de plus en plus désireux de choisir l’acide glycolique naturel à 70 % et d’utiliser des cosmétiques et des produits chimiques contenant cet ingrédient.
L'Acide Glycolique 70 %, destiné à un usage professionnel, est mondialement reconnu comme substitut à de nombreux autres acides produits artificiellement.
Les installations industrielles utilisent par exemple du C2H4O3 à la place de l'acide glycolique à 70 % qui, une fois utilisé, se transforme en déchet hautement toxique et dangereux.



POURQUOI L'ACIDE GLYCOLIQUE 70 % EST-IL DE PLUS EN PLUS POPULAIRE ?
Les effets de l'acide glycolique 70 % peuvent être constatés en quelques jours.
Grâce à cet Acide Glycolique à 70 %, l'épiderme se régénère plus rapidement et retrouve sa couleur et sa souplesse naturelles.
L'acide glycolique à 70 % peut également être utilisé contre les décolorations, les affections inflammatoires et les cicatrices.
Parmi les ingrédients cosmétiques, on le retrouve sous le nom INCI Glycolic Acid 70 %.



HISTORIQUE DE L'ACIDE GLYCOLIQUE 70 % :
Le nom « Acide Glycolique 70 % » a été inventé en 1848 par le chimiste français Auguste Laurent (1807-1853).
Il a proposé que l'acide aminé glycine, alors appelé glycocolle, pourrait être l'amine d'un acide hypothétique, qu'il a appelé « acide glycolique à 70 % » (acide glycolique).

L'acide glycolique à 70 % a été préparé pour la première fois en 1851 par le chimiste allemand Adolph Strecker (1822-1871) et le chimiste russe Nikolai Nikolaevich Sokolov (1826-1877).
Ils l'ont produit en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote pour former un ester d'acide benzoïque et d'acide glycolique à 70 % (C6H5C(=O)OCH2COOH), qu'ils ont appelé « acide benzoglycolique » (Benzoglycolsäure ; également acide benzoylglycolique).
Ils ont fait bouillir l'ester pendant des jours avec de l'acide sulfurique dilué, obtenant ainsi de l'acide benzoïque et de l'acide glycolique à 70 % (Glykolsäure).



COMMENT UTILISER L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est de l'acide glycolique dissous dans l'eau en remuant continuellement.
Ajoutez des conservateurs à la solution.
Ajustez le pH pour éviter que la solution ne devienne instable.



BIENFAITS DE L'ACIDE GLYCOLIQUE 70 % :
*L'acide glycolique à 70 % peut réduire l'apparence des ridules, de la pigmentation irrégulière, des taches de vieillesse et diminuer les pores dilatés.
*L'acide glycolique à 70 % est très utile dans les produits exfoliants comme le peeling à base d'acide alpha-hydroxy, ou dans les crèmes et lotions à faible concentration pour un peeling à base d'acide plus doux.
*L'acide glycolique à 70 % est largement utilisé pour rajeunir la peau en favorisant l'excrétion des vieilles cellules superficielles de la peau.



PRÉPARATION DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique 70 % peut être synthétisé de différentes manières.
Les approches prédominantes utilisent une réaction catalysée du formaldéhyde avec du gaz de synthèse (carbonylation du formaldéhyde), pour son faible coût.
L'acide glycolique à 70 % est également préparé par la réaction de l'acide chloroacétique avec de l'hydroxyde de sodium suivie d'une réacidification.

D'autres méthodes, peu utilisées, comprennent l'hydrogénation de l'acide oxalique et l'hydrolyse de la cyanhydrine dérivée du formaldéhyde.
Certains des acides glycoliques à 70 % actuels ne contiennent pas d'acide formique.
L'acide glycolique à 70 % peut être isolé de sources naturelles, telles que la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique à 70 % peut également être préparé à l'aide d'un procédé biochimique enzymatique qui peut nécessiter moins d'énergie.



PROPRIÉTÉS DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est légèrement plus puissant que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques, formant des complexes de coordination.
Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.
Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte du proton de l'acide glycolique à 70 %.



PRÉPARATION DE L'ACIDE GLYCOLIQUE 70 % :
Il existe différentes méthodes de préparation pour synthétiser l'Acide Glycolique 70 %.
Cependant, la méthode la plus courante est la réaction catalysée du formaldéhyde avec le gaz de synthèse, qui coûte moins cher.

L'acide glycolique à 70 % peut être préparé lorsque l'acide chloroacétique réagit avec l'hydroxyde de sodium et subit une réacidification. La réduction électrolytique de l’acide oxalique pourrait également synthétiser ce composé.
L'acide glycolique à 70 % peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique à 70 % peut être préparé en hydrolysant la cyanhydrine dérivée du formaldéhyde.



BIENFAITS DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % résout les problèmes de peau en exfoliant les cellules mortes de la peau qui s'accumulent à la surface de l'épiderme et contribuent à une peau terne, décolorée et inégale.



SYNTHÈSE ORGANIQUE D'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions comprenant : l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique à 70 % est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).

Sur le plan commercial, les dérivés importants comprennent les esters méthyliques (CAS# 96-35-5) et éthyliques (CAS# 623-50-7) qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.
L'ester butylique (point d'ébullition 178-186 °C) est un composant de certains vernis, souhaitable car il est non volatil et possède de bonnes propriétés de dissolution.



PARENTS ALTERNATIFS D'ACIDE GLYCOLIQUE 70 % :
*Acides monocarboxyliques et dérivés
*Acides carboxyliques
*Alcools primaires
*Oxydes organiques
*Dérivés d'hydrocarbures
*Composés carbonylés



SUBSTITUANTS DE L'ACIDE GLYCOLIQUE 70 % :
*Acide alpha-hydroxy
*Acide monocarboxylique ou dérivés
*Acide carboxylique
*Dérivé de l'acide carboxylique
*Composé organique de l'oxygène
*Oxyde organique
*Dérivé d'hydrocarbure
*Alcool primaire
*Composé organooxygéné
*Groupe carbonyle
*Alcool
*Composé aliphatique acyclique



PRÉPARATION DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est isolé de sources naturelles et est disponible à peu de frais.
L'acide glycolique à 70 % peut être préparé par réaction de l'acide chloroacétique avec de l'hydroxyde de sodium suivie d'une réacidification.
L'acide glycolique à 70 % peut également être préparé à l'aide d'un processus biochimique enzymatique qui produit moins d'impuretés par rapport à la synthèse chimique traditionnelle, nécessite moins d'énergie dans la production et produit moins de coproduits.



PROPRIÉTÉS CHIMIQUES DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est utilisé comme intermédiaire dans la synthèse organique et dans plusieurs réactions, telles que l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique à 70 % est utilisé comme monomère dans la préparation de l'acide poly(lactique-co-glycolique) (PLGA).
L'acide glycolique à 70 % réagit avec l'acide lactique pour former du PLGA par copolymérisation par ouverture de cycle.
L'acide polyglycolique (PGA) est préparé à partir du monomère acide glycolique à 70 % par polycondensation ou polymérisation par ouverture de cycle.



LES BIENFAITS DE L'ACIDE GLYCOLIQUE 70 % :
Exfolie les cellules mortes de la peau pour révéler une peau plus douce et plus lisse
- L'acide glycolique à 70 % agit en desserrant la liaison entre les cellules mortes de la peau, leur permettant ainsi de se détacher.

Réduit l'acné :
- en favorisant la desquamation ou la desquamation des cellules à la surface de la peau et en tapissant les pores, l'Acide Glycolique 70 % prévient la formation de pores obstrués ; il possède également des propriétés antibactériennes et anti-inflammatoires.

Stimule la production de collagène de l’intérieur :
- L'acide glycolique à 70 % agit sur les couches profondes de la peau pour stimuler la production de collagène.
Vous remarquerez une peau lisse presque immédiatement, mais l'acide glycolique à 70 % peut prendre un tout petit peu de temps pour remarquer une amélioration de ces rides et ridules.



PRÉPARATION DE L'ACIDE GLYCOLIQUE 70 % :
Il existe différentes méthodes de préparation pour synthétiser l'Acide Glycolique 70 %.
Cependant, la méthode la plus courante est la réaction catalysée du formaldéhyde avec le gaz de synthèse, qui coûte moins cher.
L'acide glycolique à 70 % peut être produit lorsque l'acide chloroacétique réagit avec l'hydroxyde de sodium puis subit une réacidification.

L'acide glycolique 70 % peut également être synthétisé par réduction électrolytique de l'acide oxalique.
L'acide glycolique à 70 % peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique à 70 % peut être préparé en hydrolysant la cyanhydrine dérivée du formaldéhyde.



ACIDE CHIMIQUE, GLYCOLIQUE 70 % :
L'acide glycolique 70 %, en raison de son groupe OH, réagit avec les halogénures d'hydrogène, tels que le chlorure d'hydrogène, pour donner leur acide monohaloacétique respectif, en l'occurrence l'acide chloroacétique.
L'acide glycolique à 70 % est légèrement plus puissant que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.

Le groupe carboxylate peut se coordonner avec des ions métalliques formant des complexes de coordination.
Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.
Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.



ACIDE PHYSIQUE, GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est un solide incolore, très soluble dans l'eau.
L'acide glycolique à 70 % est inodore.



BIENFAITS DE L'ACIDE GLYCOLIQUE 70 % :
*L'acide glycolique à 70 % peut réduire l'apparence des ridules, de la pigmentation irrégulière, des taches de vieillesse et diminuer les pores dilatés.
*L'acide glycolique à 70 % est très utile dans les produits exfoliants comme le peeling à base d'acide alpha-hydroxy, ou dans les crèmes et lotions à faible concentration pour un peeling à base d'acide plus doux.
*L'acide glycolique à 70 % est largement utilisé pour rajeunir la peau en favorisant l'excrétion des vieilles cellules superficielles de la peau.



PRÉPARATION DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est souvent préparé par réaction de l'acide chloroacétique avec de l'hydroxyde de sodium, suivie d'une réacidification.
Cl-CH2COOH + 2 NaOH → OH-CH2COONa + NaCl + H2O
OH-CH2COONa + HCl → OH-CH2COOH + NaCl

Une autre voie implique la réaction du cyanure de potassium avec le formaldéhyde.
Le glycolate de potassium obtenu est traité avec de l'acide et purifié.
L'acide glycolique à 70 % a été historiquement préparé pour la première fois en traitant l'acide hippurique avec de l'acide nitrique et du dioxyde d'azote.

Cela forme un ester d'acide benzoïque et d'acide glycolique à 70 %, qui est hydrolysé en acide glycolique en le faisant bouillir dans de l'acide sulfurique.
L'hydrogénation de l'acide oxalique est une autre voie.
L'acide glycolique à 70 % peut être isolé de sources naturelles, telles que la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.



INCORPORATION DE L'ACIDE GLYCOLIQUE À 70 % DANS VOTRE RÉGIME QUOTIDIEN
Tous les types de peau peuvent tolérer l'utilisation de l'acide glycolique à 70 % ; il convient mieux aux peaux grasses ou à tendance acnéique



FAITS SCIENTIFIQUES DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique 70 % et l'acide lactique sont des acides alpha-hydroxy (AHA).
Ils peuvent être naturels ou synthétiques.
On les trouve souvent dans des produits destinés à améliorer l’apparence générale de la peau.
L'acide glycolique à 70 % est le plus largement utilisé du groupe et est généralement fabriqué à partir de canne à sucre.
L'acide lactique, dérivé principalement du lait, remonte à Cléopâtre, qui aurait utilisé du lait aigre sur sa peau.



QU'EST-CE QUE L'ACIDE GLYCOLIQUE 70 % ?
L'acide glycolique et l'acide lactique sont des acides organiques naturels également connus sous le nom d'acides alpha-hydroxy ou AHA.
Les sels d'Acide Glycolique 70 % (Glycolate d'Ammonium, Glycolate de Sodium), les sels d'Acide Lactique (Lactate d'Ammonium, Lactate de Calcium, Potassiu
Lactate, Lactate de sodium, TEA-Lactate) et les esters de l'acide lactique (Lactate de méthyle, Lactate d'éthyle, Lactate de butyle, Lactate de lauryle, Lactate de myristyle, Lactate de cétyle) peuvent également être utilisés dans les cosmétiques et les produits de soins personnels.
Dans les cosmétiques et les produits de soins personnels, ces ingrédients sont utilisés dans la formulation de crèmes hydratantes, de produits nettoyants et d’autres produits de soins de la peau, ainsi que dans le maquillage, les shampooings, les teintures et colorations capillaires et autres produits de soins capillaires.



ACIDE GLYCOLIQUE 70 % VS. ACIDES INORGANIQUES :
L'acide glycolique à 70 % a remplacé les acides minéraux dans de multiples applications pour éviter la corrosivité et la toxicité élevées des acides inorganiques forts.
L'acide glycolique à 70 % est couramment utilisé dans les nettoyants pour béton et maçonnerie, remplaçant la longue histoire chlorhydrique dans cette application.
La pénétration élevée et les dommages limités aux surfaces métalliques et aux plates-formes des camions font de l'acide glycolique 70 % une meilleure option que les acides minéraux dans de telles applications.



ACIDE GLYCOLIQUE 70 % VS. ACIDES ORGANIQUES:
L'acide glycolique à 70 % contient la plus petite molécule de la famille des acides alpha-hydroxy (AHA), il offre donc une pénétration plus profonde et agit plus rapidement que les autres acides organiques, notamment les acides lactique, citrique et maléique.

L'acide glycolique à 70 % est également préféré à de nombreux acides bêta-hydroxy (BHA), car il améliore l'hydratation de la peau et réduit les signes visibles des dommages causés par le soleil et des rides dues au vieillissement.
L'acide glycolique à 70 % est un excellent choix pour remplacer les acides citrique, formique et acétique dans les applications industrielles en raison de son efficacité de détartrage rapide combinée à ses performances de chélation supérieures.



PROFIL CHIMIQUE DE L'ACIDE GLYCOLIQUE 70 % :
L'acide glycolique à 70 % est un acide vert facilement biodégradable, sans COV et moins corrosif que les acides inorganiques et de nombreux autres acides organiques.



ACIDE GLYCOLIQUE BIODÉGRADABLE 70 % : AVIS ET BIENFAITS :
De nombreux fabricants estiment que l'acide glycolique en poudre à 70 %, dérivé de sources naturelles, constitue une excellente alternative aux produits chimiques agressifs.
L'acide glycolique 70 % a un domaine d'application très large ; lorsqu'il est utilisé dans des proportions et des conditions appropriées, il n'est pas nocif pour l'homme ou l'environnement.

De plus, l'acide glycolique biodégradable à 70 % pour le visage, ou un liquide nettoyant contenant cet ingrédient, n'augmentent pas la quantité de déchets toxiques.
Ils sont uniquement constitués de matières premières d'origine naturelle, qui se décomposent rapidement sous l'influence des micro-organismes.
Les déchets végétaux restant après la production peuvent être transformés, par exemple, en compost sans occuper d'espace supplémentaire pour les décharges.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACIDE GLYCOLIQUE 70 % :
Aspect : Solution jaune clair à ambre clair
Titrage avec NaOH : 65 à 72 % p/p
CG : ≥94 %
Excès énantiomérique : ≥97,5 % (GC)
Point de fusion : 10,0°C
Point d'ébullition : 113,0 °C
Couleur jaune
Formule linéaire : CH2OHCOOH
Poids de la formule : 76,04
Pourcentage de pureté : 70 %
Densité : 1,2700 g/mL
Forme physique : solution
Gravité spécifique : 1,27

Nom chimique ou matériau : Acide glycolique, 70 % dans l'eau
Poids moléculaire : 76,05 g/mol
XLogP3 : -1,1
Nombre de donneurs de liaisons hydrogène : 2
Nombre d'accepteurs de liaison hydrogène : 3
Nombre de liaisons rotatives : 1
Masse exacte : 76,016043985 g/mol
Masse monoisotopique : 76,016043985 g/mol
Surface polaire topologique : 57,5 Å ²
Nombre d'atomes lourds : 5
Frais formels : 0
Complexité : 40,2
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0

Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Point d'ébullition : 112 °C (1013 hPa)
Densité : 1,26 g/cm3 (20 °C)
Point de fusion : 10 °C
Valeur pH : 0,5 (700 g/l, H₂O, 20 °C)
Pression de vapeur : 27,5 hPa (25 °C)
Couleur : liquide incolore
Dosage (acidimétrique) : 69,0 - 74,0 %
Densité : (d 20 °C/ 4 °C) 1,260 - 1,280
Métaux lourds (en Pb) : ≤ 3 ppm
Indice de réfraction (n 20°/D) : 1,410 - 1,415
Valeur pH : 0,0 - 1,0

Formule chimique : C2H4O3
Masse molaire : 76,05 g/mol
Aspect : Poudre blanche ou cristaux incolores
Densité : 1,49 g/cm3
Point de fusion : 75 °C (167 °F ; 348 K)
Point d'ébullition : se décompose
Solubilité dans l'eau : solution à 70 %
Solubilité dans d'autres solvants : Alcools, acétone,
acide acétique et acétate d'éthyle
log P : −1,05
Acidité (pKa) : 3,83

État physique : liquide
Couleur : Aucune donnée disponible
Odeur : Aucune donnée disponible
Point de fusion/point de congélation :
Point/intervalle de fusion : 10 °C
Point d'ébullition initial et intervalle d'ébullition 112 °C
Inflammabilité (solide, gaz) : Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Aucune donnée disponible
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible

Viscosité
Viscosité, cinématique: Aucune donnée disponible
Viscosité, dynamique: Aucune donnée disponible
Solubilité dans l'eau : Aucune donnée disponible
Coefficient de partage : n-octanol/eau : Aucune donnée disponible
Pression de vapeur : Aucune donnée disponible
Densité : 1,25 g/mL à 25 °C
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Non classé comme explosif.
Propriétés oxydantes : aucune

Autres informations de sécurité : Aucune donnée disponible
Nom du produit : Acide Glycolique
Autre nom : Acide hydroxyacétique
EINECS : 201-180-5
Point d'ébullition : 112 °C
Pureté : 99 % de cristal blanc ; Solution jaunâtre à 70 %
Échantillon : gratuit
Numéro CAS : 79-14-1
Numéro CE : 201-180-5
Formule de Hill : C₂H₄O₃
Formule chimique : HOCH₂COOH
Masse molaire : 76,05 g/mol

Code SH : 2918 19 98
Point d'ébullition : 100 °C (décomposition)
Densité : 1,49 g/cm3 (25 °C)
Point d'éclair : >300 °C (décomposition)
Point de fusion : 78 - 80 °C
Valeur pH : 2 (50 g/l, H₂O, 20 °C)
Pression de vapeur : 0,00093 hPa (25 °C)
Densité apparente : 600 kg/m3
Point de fusion : 75-80 °C (lit.)
Point d'ébullition : 112 °C
Densité : 1,25 g/mL à 25 °C
pression de vapeur : 10,8 hPa (80 °C)

indice de réfraction : n20/D 1,424
Point d'éclair : 112°C
Température de stockage : Conserver en dessous de +30°C.
solubilité : H2O : 0,1 g/mL, clair
pka : 3,83 (à 25 ℃ )
formulaire : Solution
couleur : Blanc à blanc cassé
PH : 2 (50 g/l, H2O, 20 ℃ )
Odeur : à 100,00 %. inodore, beurré très doux
Type d'odeur : beurrée
Viscosité : 6,149 mm2/s

Solubilité dans l'eau : SOLUBLE
Sensible : Hygroscopique
Merck : 14 4498
Numéro de référence : 1209322
Stabilité : Stable.
Incompatible avec les bases, les agents oxydants et les agents réducteurs.
InChIKey : AEMRFAOFKBGASW-UHFFFAOYSA-N
LogP : -1,07 à 20 ℃
Additifs indirects utilisés dans les substances en contact avec les aliments : ACIDE GLYCOLIQUE
FDA 21 CFR : 175.105
Référence de la base de données CAS : 79-14-1 (référence de la base de données CAS)
Scores alimentaires de l'EWG : 1-4
Dictionnaire NCI des termes sur le cancer : acide glycolique
FDA UNII : 0WT12SX38S
Référence chimique NIST : Acide acétique, hydroxy-(79-14-1)

Système d'enregistrement des substances de l'EPA : Acide glycolique (79-14-1)
Loi sur la liberté d'information sur les pesticides (FOIA) : acide glycolique
Point de fusion : 10,0°C
Point d'ébullition : 113,0°C
Couleur jaune
Formule linéaire : CH2OHCOOH
Poids de la formule : 76,04
Pourcentage de pureté : 70 %
Densité : 1,2700 g/mL
Forme physique : solution
Gravité spécifique : 1,27
Nom chimique ou matériau : Acide glycolique, 70 % dans l'eau

Formule chimique : C2H4O3
Poids : Moyenne : 76,0514
Monoisotopique : 76.016043994
Clé InChI : AEMRFAOFKBGASW-UHFFFAOYSA-N
InChI : InChI=1S/C2H4O3/c3-1-2(4)5/h3H,1H2,(H,4,5)
Numéro CAS : 79-14-1
Nom IUPAC : acide 2-hydroxyacétique
Nom traditionnel IUPAC : acide glycolique
SOURIRES : OCC(O)=O
Solubilité dans l'eau : 608 g/L
logP : -1
logP : -1
logS : 0,9

pKa (acide le plus fort) : 3,53
pKa (Base la plus forte) : -3,6
Charge physiologique : -1
Nombre d'accepteurs d'hydrogène : 3
Nombre de donneurs d'hydrogène : 2
Surface polaire : 57,53 Ų
Nombre de liaisons rotatives : 1
Réfractivité : 14,35 m³•mol⁻¹
Polarisabilité : 6,2 ų
Nombre de sonneries : 0
Biodisponibilité : 1
Règle de cinq : Oui
Filtre Ghose: Oui
Règle de Veber : Oui
Règle de type MDDR : Oui



PREMIERS SECOURS ACIDE GLYCOLIQUE 70 % :
-Description des premiers secours :
*Conseils généraux :
Les secouristes doivent se protéger.
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
Appelez un médecin.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec de l'eau/une douche.
Appelez immédiatement un médecin.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez immédiatement un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire de l'eau à la victime (deux verres au maximum).
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires :
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ACIDE GLYCOLIQUE 70 % :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Ramasser avec un matériau absorbant les liquides.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACIDE GLYCOLIQUE 70 % :
-Moyens d'extinction:
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE à l'ACIDE GLYCOLIQUE 70 % :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de sécurité bien ajustées
*Protection de la peau :
requis
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Type de filtre ABEK
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACIDE GLYCOLIQUE 70 % :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
*Classe de stockage :
Classe de stockage (TRGS 510) : 8B : Incombustible,



STABILITÉ et RÉACTIVITÉ de l'ACIDE GLYCOLIQUE 70 % :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles
-Conditions à éviter :
Pas d'information disponible




ACIDE GLYCOLIQUE 70%
L'acide glycolique à 70 % est une solution d'acide glycolique dans l'eau, où la concentration en acide glycolique est de 70 %.
L'acide glycolique lui-même est un acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique à 70 % est dérivé de sources naturelles, comme la canne à sucre, et est connu pour ses propriétés exfoliantes.

Numéro CAS : 79-14-1
Numéro CE : 201-180-5

Acide glycolique, acide hydroxyacétique, acide hydroxyéthanoïque, acide alpha-hydroxyacétique, acide 2-hydroxyéthanoïque, acide glycolique, acide hydroacétique, acide alpha-hydroxyéthanoïque, acide 2-hydroxyacétique, acide hydroxyacétique, acidum hydroxyaceticum, acide glycolique, acidum glycolicum, AHA, EGHPA , acide alpha-hydroxy-acétique, acide hydroxy-acétique, acide hydroxyéthanoïque, hydroxyéthanoate, solution d'acide glycolique, acide glycolique USP, acide glycolique FCC, acide glycolique de qualité cosmétique, acide glycolique de qualité pharmaceutique, acide glycolique de qualité technique, acide glycolique de haute pureté, acide glycolique 70%, acide glycolique 99%, acide glycolique 90%, acide glycolique 80%, acide glycolique 30%, acide glycolique 10%, acide glycolique 50%, acide glycolique 60%, lotion à l'acide glycolique, crème à l'acide glycolique, acide glycolique gel, peeling à l'acide glycolique, tonique à l'acide glycolique, nettoyant à l'acide glycolique, sérum à l'acide glycolique, hydratant à l'acide glycolique, exfoliant à l'acide glycolique, peeling chimique à l'acide glycolique, soin de la peau à l'acide glycolique, anti-âge à l'acide glycolique, éclaircissant à l'acide glycolique, rajeunissant à l'acide glycolique, resurfaçage à l'acide glycolique, traitement de l'acné à l'acide glycolique, réduction des rides à l'acide glycolique, affinage des pores à l'acide glycolique, exfoliation chimique à l'acide glycolique, acide alpha-hydroxy acide glycolique, source naturelle d'acide glycolique, acide glycolique dérivé de la canne à sucre, acide glycolique d'origine végétale, acide glycolique de fruit .



APPLICATIONS


L'acide glycolique à 70 % trouve une application étendue dans les peelings chimiques, offrant une exfoliation contrôlée pour le rajeunissement de la peau.
L'acide glycolique à 70 % est un ingrédient clé des nettoyants exfoliants, aidant à éliminer les cellules mortes de la peau pour un teint plus lumineux.
L'acide glycolique à 70 % est généralement présent dans les toniques, aidant à équilibrer les niveaux de pH de la peau et à affiner la texture.

Dans les sérums anti-âge, l'acide glycolique contribue à réduire les rides et ridules pour une apparence plus jeune.
Efficace pour lutter contre l’hyperpigmentation, c’est un composant précieux des produits éclaircissants pour la peau.

Les formulations anti-acnéiques contiennent souvent de l’acide glycolique pour désobstruer les pores et prévenir les éruptions cutanées.
L'acide glycolique à 70 % est présent dans les crèmes hydratantes, utilisant ses propriétés humectantes pour l'hydratation de la peau.
Les masques de nuit à l'acide glycolique offrent une exfoliation et une hydratation soutenues pendant la période de restauration de la peau.
Les correcteurs de taches brunes contiennent souvent de l'acide glycolique pour cibler et réduire l'hyperpigmentation.

Les baumes et traitements pour les lèvres utilisent de l'acide glycolique pour une exfoliation douce afin de maintenir des lèvres douces et lisses.
L'acide glycolique à 70 % contribue à clarifier les shampooings, en aidant à éliminer l'accumulation de produit sur les cheveux et le cuir chevelu.
L'acide glycolique à 70 % est utilisé dans les shampooings antipelliculaires pour ses bienfaits potentiels sur le cuir chevelu.
L'acide glycolique à 70 % est un ingrédient courant dans les crèmes pour les yeux, qui traite les signes du vieillissement dans la zone délicate des yeux.

Présent dans les lotions pour le corps, l'acide glycolique à 70 % contribue à rendre la peau plus lisse et plus douce sur diverses parties du corps.
Dans les gommages corporels, l'acide glycolique 70 % offre un traitement exfoliant intégral pour le renouvellement de la peau.
L'acide glycolique à 70 % est utilisé dans les masques pour le visage pour un effet exfoliant supplémentaire, favorisant un teint revitalisé.
Les masques purifiants pour la peau contiennent souvent de l'acide glycolique pour détoxifier et revitaliser la peau.

L'acide glycolique à 70 % est un composant des bases pour le visage, créant une toile plus lisse pour l'application du maquillage.
Les produits de soins intimes peuvent contenir de l'acide glycolique pour une exfoliation douce des zones sensibles.
Les produits de soins capillaires contiennent de l'acide glycolique pour la santé du cuir chevelu, favorisant un environnement propre et équilibré.
L'acide glycolique à 70 % est présent dans les crèmes solaires, améliorant ainsi l'efficacité globale de la protection solaire.
Il est utilisé dans les lingettes de soin de la peau, offrant une solution d’exfoliation pratique et rapide.

L'acide glycolique à 70 % est inclus dans les sérums pour le cuir chevelu, favorisant un environnement sain du cuir chevelu et la croissance des cheveux.
Les traitements exfoliants du cuir chevelu utilisent de l’acide glycolique pour lutter contre les pellicules et favoriser un cuir chevelu sain.
Les brumes rafraîchissantes pour le visage contiennent souvent de l’acide glycolique, offrant une hydratation en déplacement avec des bienfaits supplémentaires pour la peau.

L'acide glycolique à 70 % est un ingrédient clé des sérums exfoliants, offrant un traitement quotidien pour une peau plus lisse et plus éclatante.
L'acide glycolique à 70 % est couramment utilisé dans les crèmes pour les pieds et les gommages exfoliants pour traiter la texture rugueuse de la peau des pieds.
L'acide glycolique à 70% est présent dans les crèmes pour les mains, contribuant au rajeunissement de la peau des mains.

Dans les gommages pour les lèvres, l'acide glycolique à 70 % offre une exfoliation douce pour des lèvres plus douces et plus lisses.
L'acide glycolique à 70 % est utilisé dans les brumes pour le visage, fournissant un spritz rafraîchissant et hydratant avec des bienfaits supplémentaires pour la peau.
L'acide glycolique à 70 % est un composant précieux des sérums conçus pour cibler des problèmes de peau spécifiques tels que les taches brunes ou le teint irrégulier.
L'acide glycolique à 70 % est inclus dans les tampons pré-imbibés pour une exfoliation pratique et contrôlée.

L'acide glycolique à 70 % est couramment présent dans les lotions post-épilation, aidant à apaiser la peau et à prévenir les poils incarnés.
L'acide glycolique à 70 % est utilisé dans les lavages et nettoyants intimes, offrant une exfoliation douce pour les zones sensibles.
L'acide glycolique à 70 % est présent dans les poudres pour le visage, contribuant aux propriétés d'absorption du sébum et de lissage de la peau.

Présent dans les peelings du visage, l’acide glycolique offre des soins intensifs de renouvellement cutané.
L'acide glycolique à 70 % est un composant des huiles pour cuticules, contribuant aux soins et à la nutrition ciblés pour des ongles sains.
L'acide glycolique à 70 % est utilisé dans les produits de soin après tatouage, aidant à la cicatrisation de la peau et réduisant les irritations.

Dans les crèmes anti-cellulite, il contribue à la fermeté et à la tonicité de la peau pour un aspect plus lisse.
L'acide glycolique est présent dans les crèmes contre les vergetures, favorisant une meilleure élasticité de la peau.

L'acide glycolique à 70 % est utilisé dans les masques pour les yeux, qui traitent les signes de fatigue et les ridules autour des yeux.
L'acide glycolique à 70 % se trouve couramment dans les nettoyants pour le corps, offrant une exfoliation complète du corps pour une peau renouvelée.
L'acide glycolique à 70 % est inclus dans les traitements localisés pour une application ciblée sur des zones spécifiques présentant des problèmes de soin de la peau.

L'acide glycolique à 70 % est un composant des brosses exfoliantes du cuir chevelu, offrant une combinaison d'exfoliation physique et chimique.
Présent dans les sérums corporels, il contribue à un effet global régénérant et éclaircissant de la peau.

L'acide glycolique à 70 % est utilisé dans les nettoyants pour le visage, offrant une exfoliation quotidienne pour un teint clair et rafraîchi.
L'acide glycolique à 70 % est présent dans les crèmes éclaircissantes pour les aisselles, contribuant à un teint plus uniforme.

L'acide glycolique à 70 % est couramment utilisé dans les gels rafraîchissants pour les yeux pour un effet rafraîchissant et dégonflant.
L'acide glycolique à 70 % est inclus dans les adoucissants pour cuticules, aidant à éliminer en douceur l'accumulation de cuticules.

L'acide glycolique à 70 % se trouve dans les patchs pour le visage, offrant un traitement ciblé pour des problèmes de peau spécifiques.

L'acide glycolique à 70 % est présent dans les patchs de traitement localisé pour un soin ciblé des imperfections d'acné individuelles.
L'acide glycolique à 70 % est couramment utilisé dans les formulations d'eau micellaire, offrant une solution de démaquillage douce et efficace.

L'acide glycolique à 70 % est présent dans les traitements exfoliants du cuir chevelu, traitant des desquamations et favorisant un cuir chevelu sain.
Dans les bases pour le visage, l'acide glycolique à 70 % contribue à une surface cutanée plus lisse pour une meilleure application du maquillage.

L'acide glycolique à 70 % est utilisé dans les gommages du cuir chevelu pour une exfoliation en profondeur et le maintien d'un cuir chevelu sain.
L'acide glycolique à 70 % est présent dans les soins exfoliants sans rinçage, tels que les sérums et les crèmes, pour un renouvellement cutané à long terme.
L'acide glycolique à 70 % est couramment utilisé dans les peelings et les masques pour les pieds, ciblant les zones calleuses pour des pieds plus lisses.
L'acide glycolique à 70 % est ajouté aux crèmes pour cuticules, contribuant au maintien d'ongles sains et de la peau environnante.

Dans les masques de nuit, l'acide glycolique à 70 % offre une exfoliation et une hydratation soutenues pendant que la peau se repose.
L'acide glycolique à 70 % se trouve dans les désinfectants pour les mains, contribuant à la fois à la désinfection et au conditionnement de la peau.
L'acide glycolique à 70 % est utilisé dans les lavages et nettoyants intimes, offrant une exfoliation douce des zones sensibles.

L'acide glycolique à 70 % est présent dans les produits de soin après tatouage, favorisant la cicatrisation de la peau et réduisant les irritations.
L'acide glycolique à 70 % est utilisé en combinaison avec d'autres acides alpha-hydroxy pour des effets exfoliants améliorés.

L'acide glycolique à 70 % est un composant clé des peelings du visage, qui répond aux problèmes cutanés les plus intenses.
L'acide glycolique à 70 % se trouve dans les gels anti-acné, offrant un traitement ciblé contre les imperfections et les éruptions cutanées.

L'acide glycolique 70% est utilisé dans les shampoings antipelliculaires pour ses potentiels bienfaits sur le cuir chevelu.
L'acide glycolique 70% est ajouté aux démaquillants pour sa capacité à dissoudre le maquillage et à rafraîchir la peau.
L'acide glycolique à 70 % est utilisé en association avec des rétinoïdes pour un effet synergique dans les formulations anti-âge.

L'acide glycolique à 70 % est présent dans les gommages pour les lèvres, offrant une exfoliation douce pour des lèvres plus lisses.
L'acide glycolique à 70 % se trouve dans les formulations de protection solaire, aidant à prévenir les dommages induits par le soleil.
L'acide glycolique à 70 % est utilisé dans les huiles pour cuticules pour des soins et une nutrition ciblés.

L'acide glycolique à 70 % est utilisé dans les crèmes contre les vergetures, contribuant à améliorer l'élasticité de la peau.
L'acide glycolique à 70 % est présent dans les peelings pour les mains pour un traitement de rajeunissement des mains plus intensif.

L'acide glycolique à 70 % est utilisé dans les nettoyants pour son exfoliation quotidienne efficace mais douce.
Dans les traitements exfoliants du cuir chevelu, il combat les pellicules et favorise un environnement sain pour le cuir chevelu.



DESCRIPTION


L'acide glycolique à 70 % est une solution d'acide glycolique dans l'eau, où la concentration en acide glycolique est de 70 %.
L'acide glycolique lui-même est un acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique à 70 % est dérivé de sources naturelles, comme la canne à sucre, et est connu pour ses propriétés exfoliantes.

Dans les soins de la peau, l’acide glycolique est largement utilisé pour sa capacité à favoriser le renouvellement cutané, à améliorer la texture et à répondre à divers problèmes cutanés.
La concentration de 70 % indique une résistance relativement élevée, et les solutions avec cette concentration sont souvent utilisées dans des environnements professionnels, tels que les cabinets de dermatologues ou les cliniques de soins de la peau, pour les peelings chimiques et les traitements cutanés plus intensifs.

L'acide glycolique 70% est un liquide incolore et inodore doté de propriétés chimiques notables.
L'acide glycolique à 70 % appartient à la famille des acides alpha-hydroxy et est dérivé de sources naturelles comme la canne à sucre.
Connu pour sa solubilité dans l’eau, l’acide glycolique est souvent utilisé dans les formulations de soins de la peau.
L'acide glycolique 70% est reconnu pour ses puissants effets exfoliants sur la peau.

De petite taille moléculaire, l'acide glycolique pénètre efficacement dans la peau, favorisant son renouvellement.
Souvent présent dans les peelings chimiques, il offre une exfoliation contrôlée pour divers problèmes de peau.
L'acide glycolique à 70 % stimule la production de collagène, contribuant ainsi à améliorer l'élasticité de la peau.
Efficace pour lutter contre l’hyperpigmentation, il réduit l’apparence des taches brunes.

L'acide glycolique à 70 % est précieux pour désobstruer les pores, ce qui le rend bénéfique pour les peaux à tendance acnéique.
Présent dans divers produits de soin de la peau, l’acide glycolique améliore l’absorption d’autres ingrédients.
L'acide glycolique à 70 % convient à différents types de peau, bien que des tests cutanés soient recommandés pour la sensibilité.

Composant clé des formulations anti-âge, l'acide glycolique minimise les rides et ridules.
Tout en favorisant le renouvellement cutané, il peut augmenter temporairement la sensibilité au soleil.
Une utilisation régulière contribue à un teint plus uniforme et à une réduction de la taille des pores.
L'acide glycolique 70% constitue une alternative aux gommages physiques, notamment pour les peaux sensibles.

Largement utilisé dans les exfoliants chimiques, l'acide glycolique 70 % permet d'obtenir un grain de peau plus lisse dans le temps.
Célébré pour sa capacité à transformer la surface de la peau, c'est un incontournable des routines de soins de la peau.
Les propriétés humectantes rendent l’acide glycolique efficace pour attirer et retenir l’humidité.

Les utilisateurs peuvent ressentir une sensation de picotement lors de l'application, se normalisant avec le temps.
Adapté à différentes concentrations, il est utilisé aussi bien dans la routine quotidienne que dans les traitements professionnels.
L'acide glycolique à 70 % offre une exfoliation chimique, contribuant à une apparence jeune et revitalisée.
Choix répandu dans les produits éclaircissants, il rajeunit la peau pour un éclat radieux.

Sa polyvalence s’étend au traitement des signes courants du vieillissement et de divers problèmes cutanés.
Une utilisation régulière conduit à une texture de peau affinée et plus lisse, résultat d'un renouvellement cellulaire amélioré.
Largement célébré dans l’industrie des soins de la peau, l’acide glycolique reste un incontournable pour une exfoliation chimique efficace.



PROPRIÉTÉS


Nom chimique : Acide glycolique
Formule chimique : C₂H₄O₃ _ _
Poids moléculaire : environ 76,05 g/mol
Forme physique : Liquide clair et incolore ou solide cristallin blanc (dépend de la concentration)
Odeur : Inodore ou une légère odeur caractéristique
Solubilité : Très soluble dans l’eau et miscible avec les solvants organiques courants
pH : Acide ; généralement autour de 3,5 en solution
Hygroscopique : Peut absorber l'humidité de l'air
Point de fusion : se décompose avant de fondre ; généralement non applicable
Point d'ébullition : se décompose avant d'ébullition sous pression atmosphérique standard
Densité : Dépend de la concentration et de la forme ; typiquement autour de 1,27 g/cm³ pour le liquide pur
Viscosité : Faible viscosité sous forme liquide
Indice de réfraction : Dépend de la concentration ; varie généralement de 1,42 à 1,45
Stabilité : Stable dans des conditions normales de stockage ; peut se dégrader sous une chaleur extrême ou une exposition à la lumière
Compatibilité : Compatible avec l’eau et une variété d’ingrédients cosmétiques et pharmaceutiques
Sécurité : Généralement reconnu comme étant sans danger pour une utilisation dans les soins de la peau dans les concentrations spécifiées
Biodégradabilité : Considéré comme biodégradable
Stabilité de stockage : Conserver dans un endroit frais et sec ; protéger des rayons directs du soleil
Gravité spécifique : Dépend de la concentration et de la forme ; varie généralement de 1,26 à 1,29 pour le liquide
Point d'éclair : Non applicable ; ne présente pas d'inflammabilité significative
Produits de décomposition dangereux : Peut produire du monoxyde de carbone et du dioxyde de carbone lors de la décomposition.
Miscibilité : Miscible avec l'eau et divers solvants organiques
Tension superficielle : Dépend de la concentration et de la forme ; généralement inférieur à l'eau



PREMIERS SECOURS


Inhalation:

Si des vapeurs d'acide glycolique sont inhalées et qu'une irritation respiratoire se produit, déplacez la personne affectée vers un endroit avec de l'air frais.
Si les difficultés respiratoires persistent, consultez immédiatement un médecin.
Administrer la respiration artificielle si la personne ne respire pas.
Fournir de l’oxygène si du personnel qualifié est disponible.


Contact avec la peau:

En cas de contact cutané avec de l'acide glycolique concentré, retirer immédiatement les vêtements contaminés.
Rincer la peau affectée avec beaucoup d'eau pendant au moins 15 minutes, en assurant un rinçage complet.
Si une irritation ou une rougeur apparaît et persiste, consulter un médecin.
Laver les vêtements contaminés avant de les réutiliser.
Appliquer un agent neutralisant s'il est disponible et approuvé pour une utilisation avec l'acide glycolique.


Lentilles de contact:

En cas de contact avec les yeux, rincer doucement les yeux avec de l'eau tiède pendant au moins 15 minutes, en maintenant les paupières ouvertes.
Consulter immédiatement un médecin si l'irritation ou la rougeur persiste.
Retirez les lentilles de contact, si elles sont présentes et faciles à faire, après le rinçage initial, et continuez à rincer.
Utilisez une station de lavage des yeux si disponible.


Ingestion:

Si de l'acide glycolique est avalé et que la personne est consciente, rincer abondamment la bouche avec de l'eau.
Ne pas faire vomir sauf indication contraire du personnel médical.
Consulter immédiatement un médecin ou contacter un centre antipoison.
Fournir des informations sur le produit acide glycolique spécifique ingéré, y compris sa concentration.


Conseils généraux :

Fournir au personnel médical des informations sur le produit spécifique à base d'acide glycolique impliqué, y compris sa concentration.
Si les symptômes persistent ou si vous avez des inquiétudes quant au bien-être de la personne, consultez rapidement un médecin.
Suivez toutes les recommandations et précautions décrites dans la fiche de données de sécurité (FDS) fournie par le fabricant.
Gardez le récipient ou l'étiquette du produit accessible pour fournir les informations nécessaires au personnel médical.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle (EPI) :
Portez un EPI approprié, notamment des gants résistant aux produits chimiques, des lunettes de sécurité ou un écran facial, ainsi qu'une blouse de laboratoire ou des vêtements de protection.
Utilisez un respirateur approuvé par le NIOSH s'il existe un risque d'exposition par inhalation de vapeurs ou d'aérosols.

Ventilation:
Travaillez dans un endroit bien ventilé, de préférence sous une hotte ou avec une ventilation par aspiration locale.
Eviter l'inhalation de vapeurs ou de brouillards.

Évitez les contacts :
Minimiser le contact avec la peau en portant des gants appropriés.
Évitez tout contact visuel ; utilisez des lunettes de sécurité ou un écran facial lors de la manipulation.

Précautions d'emploi:
Utilisez des outils comme des pipettes ou des systèmes de distribution pour minimiser les déversements.
Manipuler avec précaution pour éviter les éclaboussures ou la formation d'aérosols.

Pratiques d'hygiène :
Se laver soigneusement les mains après avoir manipulé de l'acide glycolique.
Changez rapidement les vêtements contaminés.

Mesures préventives:
Mettre en œuvre des mesures pour éviter la génération d'aérosols ou de poussières lors de la manipulation.
Utiliser des systèmes ou des conteneurs fermés lorsque cela est possible.

PREMIERS SECOURS:
Assurer la disponibilité de douches oculaires d’urgence et de douches de sécurité à proximité.


Stockage:

Zone de stockage:
Conservez l'acide glycolique dans un endroit frais, sec et bien ventilé.
Tenir à l'écart des matériaux incompatibles et des sources de chaleur.

Contrôle de la température:
Suivez la température de stockage recommandée fournie par le fabricant.
Évitez l'exposition à des températures extrêmes.

Compatibilité des conteneurs :
Utilisez des récipients fabriqués dans des matériaux compatibles avec l'acide glycolique, comme le verre ou le polyéthylène haute densité (PEHD).
Vérifiez régulièrement l’intégrité du conteneur.

Étiquetage :
Étiquetez clairement les contenants avec le nom du produit, la concentration, les instructions de manipulation et les informations de sécurité.
Marquez les conteneurs avec les symboles de danger appropriés.

Ségrégation:
Séparez l’acide glycolique des substances incompatibles, y compris les bases fortes et les agents oxydants.
Conserver à l’écart des aliments et des boissons.

Accessibilité:
Assurez-vous que la zone de stockage est facilement accessible au personnel autorisé et aux intervenants d’urgence.
Marquez clairement les sorties de secours et les voies d’évacuation.

Surveillance:
Inspectez régulièrement les conditions de stockage pour garantir le respect des directives recommandées.
Vérifiez les signes de fuite ou de dommages aux conteneurs.

Équipement d'urgence:
Assurer la disponibilité d’équipements d’urgence, tels que des kits d’intervention en cas de déversement et des extincteurs.
Former le personnel à l'utilisation appropriée des équipements d'urgence.

Intervention en cas de déversement :
Ayez à portée de main du matériel d’intervention en cas de déversement, notamment des matériaux absorbants et des agents neutralisants.
Suivre les procédures établies d'intervention en cas de déversement.

Documentation:
Tenir des registres précis de l’inventaire de l’acide glycolique, y compris les dates de réception et d’utilisation.
ACIDE GLYCOLIQUE 70%


L'acide glycolique à 70 % est une solution d'acide glycolique dans l'eau, où la concentration en acide glycolique est de 70 %.
L'acide glycolique lui-même est un acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique à 70 % est dérivé de sources naturelles, comme la canne à sucre, et est connu pour ses propriétés exfoliantes.

Numéro CAS : 79-14-1
Numéro CE : 201-180-5

Acide glycolique, acide hydroxyacétique, acide hydroxyéthanoïque, acide alpha-hydroxyacétique, acide 2-hydroxyéthanoïque, acide glycolique, acide hydroacétique, acide alpha-hydroxyéthanoïque, acide 2-hydroxyacétique, acide hydroxyacétique, acidum hydroxyaceticum, acide glycolique, acidum glycolicum, AHA, EGHPA , acide alpha-hydroxy-acétique, acide hydroxy-acétique, acide hydroxyéthanoïque, hydroxyéthanoate, solution d'acide glycolique, acide glycolique USP, acide glycolique FCC, acide glycolique de qualité cosmétique, acide glycolique de qualité pharmaceutique, acide glycolique de qualité technique, acide glycolique de haute pureté, acide glycolique 70%, acide glycolique 99%, acide glycolique 90%, acide glycolique 80%, acide glycolique 30%, acide glycolique 10%, acide glycolique 50%, acide glycolique 60%, lotion à l'acide glycolique, crème à l'acide glycolique, acide glycolique gel, peeling à l'acide glycolique, tonique à l'acide glycolique, nettoyant à l'acide glycolique, sérum à l'acide glycolique, hydratant à l'acide glycolique, exfoliant à l'acide glycolique, peeling chimique à l'acide glycolique, soin de la peau à l'acide glycolique, anti-âge à l'acide glycolique, éclaircissant à l'acide glycolique, rajeunissant à l'acide glycolique, resurfaçage à l'acide glycolique, traitement de l'acné à l'acide glycolique, réduction des rides à l'acide glycolique, affinage des pores à l'acide glycolique, exfoliation chimique à l'acide glycolique, acide alpha-hydroxy acide glycolique, source naturelle d'acide glycolique, acide glycolique dérivé de la canne à sucre, acide glycolique d'origine végétale, acide glycolique de fruit .



APPLICATIONS


L'acide glycolique à 70 % trouve une application étendue dans les peelings chimiques, offrant une exfoliation contrôlée pour le rajeunissement de la peau.
L'acide glycolique à 70 % est un ingrédient clé des nettoyants exfoliants, aidant à éliminer les cellules mortes de la peau pour un teint plus lumineux.
L'acide glycolique à 70 % est généralement présent dans les toniques, aidant à équilibrer les niveaux de pH de la peau et à affiner la texture.

Dans les sérums anti-âge, l'acide glycolique contribue à réduire les rides et ridules pour une apparence plus jeune.
Efficace pour lutter contre l’hyperpigmentation, c’est un composant précieux des produits éclaircissants pour la peau.

Les formulations anti-acnéiques contiennent souvent de l’acide glycolique pour désobstruer les pores et prévenir les éruptions cutanées.
L'acide glycolique à 70 % est présent dans les crèmes hydratantes, utilisant ses propriétés humectantes pour l'hydratation de la peau.
Les masques de nuit à l'acide glycolique offrent une exfoliation et une hydratation soutenues pendant la période de restauration de la peau.
Les correcteurs de taches brunes contiennent souvent de l'acide glycolique pour cibler et réduire l'hyperpigmentation.

Les baumes et traitements pour les lèvres utilisent de l'acide glycolique pour une exfoliation douce afin de maintenir des lèvres douces et lisses.
L'acide glycolique à 70 % contribue à clarifier les shampooings, en aidant à éliminer l'accumulation de produit sur les cheveux et le cuir chevelu.
L'acide glycolique à 70 % est utilisé dans les shampooings antipelliculaires pour ses bienfaits potentiels sur le cuir chevelu.
L'acide glycolique à 70 % est un ingrédient courant dans les crèmes pour les yeux, qui traite les signes du vieillissement dans la zone délicate des yeux.

Présent dans les lotions pour le corps, l'acide glycolique à 70 % contribue à rendre la peau plus lisse et plus douce sur diverses parties du corps.
Dans les gommages corporels, l'acide glycolique 70 % offre un traitement exfoliant intégral pour le renouvellement de la peau.
L'acide glycolique à 70 % est utilisé dans les masques pour le visage pour un effet exfoliant supplémentaire, favorisant un teint revitalisé.
Les masques purifiants pour la peau contiennent souvent de l'acide glycolique pour détoxifier et revitaliser la peau.

L'acide glycolique à 70 % est un composant des bases pour le visage, créant une toile plus lisse pour l'application du maquillage.
Les produits de soins intimes peuvent contenir de l'acide glycolique pour une exfoliation douce des zones sensibles.
Les produits de soins capillaires contiennent de l'acide glycolique pour la santé du cuir chevelu, favorisant un environnement propre et équilibré.
L'acide glycolique à 70 % est présent dans les crèmes solaires, améliorant ainsi l'efficacité globale de la protection solaire.
Il est utilisé dans les lingettes de soin de la peau, offrant une solution d’exfoliation pratique et rapide.

L'acide glycolique à 70 % est inclus dans les sérums pour le cuir chevelu, favorisant un environnement sain du cuir chevelu et la croissance des cheveux.
Les traitements exfoliants du cuir chevelu utilisent de l’acide glycolique pour lutter contre les pellicules et favoriser un cuir chevelu sain.
Les brumes rafraîchissantes pour le visage contiennent souvent de l’acide glycolique, offrant une hydratation en déplacement avec des bienfaits supplémentaires pour la peau.

L'acide glycolique à 70 % est un ingrédient clé des sérums exfoliants, offrant un traitement quotidien pour une peau plus lisse et plus éclatante.
L'acide glycolique à 70 % est couramment utilisé dans les crèmes pour les pieds et les gommages exfoliants pour traiter la texture rugueuse de la peau des pieds.
L'acide glycolique à 70% est présent dans les crèmes pour les mains, contribuant au rajeunissement de la peau des mains.

Dans les gommages pour les lèvres, l'acide glycolique à 70 % offre une exfoliation douce pour des lèvres plus douces et plus lisses.
L'acide glycolique à 70 % est utilisé dans les brumes pour le visage, fournissant un spritz rafraîchissant et hydratant avec des bienfaits supplémentaires pour la peau.
L'acide glycolique à 70 % est un composant précieux des sérums conçus pour cibler des problèmes de peau spécifiques tels que les taches brunes ou le teint irrégulier.
L'acide glycolique à 70 % est inclus dans les tampons pré-imbibés pour une exfoliation pratique et contrôlée.

L'acide glycolique à 70 % est couramment présent dans les lotions post-épilation, aidant à apaiser la peau et à prévenir les poils incarnés.
L'acide glycolique à 70 % est utilisé dans les lavages et nettoyants intimes, offrant une exfoliation douce pour les zones sensibles.
L'acide glycolique à 70 % est présent dans les poudres pour le visage, contribuant aux propriétés d'absorption du sébum et de lissage de la peau.

Présent dans les peelings du visage, l’acide glycolique offre des soins intensifs de renouvellement cutané.
L'acide glycolique à 70 % est un composant des huiles pour cuticules, contribuant aux soins et à la nutrition ciblés pour des ongles sains.
L'acide glycolique à 70 % est utilisé dans les produits de soin après tatouage, aidant à la cicatrisation de la peau et réduisant les irritations.

Dans les crèmes anti-cellulite, il contribue à la fermeté et à la tonicité de la peau pour un aspect plus lisse.
L'acide glycolique est présent dans les crèmes contre les vergetures, favorisant une meilleure élasticité de la peau.

L'acide glycolique à 70 % est utilisé dans les masques pour les yeux, qui traitent les signes de fatigue et les ridules autour des yeux.
L'acide glycolique à 70 % se trouve couramment dans les nettoyants pour le corps, offrant une exfoliation complète du corps pour une peau renouvelée.
L'acide glycolique à 70 % est inclus dans les traitements localisés pour une application ciblée sur des zones spécifiques présentant des problèmes de soin de la peau.

L'acide glycolique à 70 % est un composant des brosses exfoliantes du cuir chevelu, offrant une combinaison d'exfoliation physique et chimique.
Présent dans les sérums corporels, il contribue à un effet global régénérant et éclaircissant de la peau.

L'acide glycolique à 70 % est utilisé dans les nettoyants pour le visage, offrant une exfoliation quotidienne pour un teint clair et rafraîchi.
L'acide glycolique à 70 % est présent dans les crèmes éclaircissantes pour les aisselles, contribuant à un teint plus uniforme.

L'acide glycolique à 70 % est couramment utilisé dans les gels rafraîchissants pour les yeux pour un effet rafraîchissant et dégonflant.
L'acide glycolique à 70 % est inclus dans les adoucissants pour cuticules, aidant à éliminer en douceur l'accumulation de cuticules.

L'acide glycolique à 70 % se trouve dans les patchs pour le visage, offrant un traitement ciblé pour des problèmes de peau spécifiques.

L'acide glycolique à 70 % est présent dans les patchs de traitement localisé pour un soin ciblé des imperfections d'acné individuelles.
L'acide glycolique à 70 % est couramment utilisé dans les formulations d'eau micellaire, offrant une solution de démaquillage douce et efficace.

L'acide glycolique à 70 % est présent dans les traitements exfoliants du cuir chevelu, traitant des desquamations et favorisant un cuir chevelu sain.
Dans les bases pour le visage, l'acide glycolique à 70 % contribue à une surface cutanée plus lisse pour une meilleure application du maquillage.

L'acide glycolique à 70 % est utilisé dans les gommages du cuir chevelu pour une exfoliation en profondeur et le maintien d'un cuir chevelu sain.
L'acide glycolique à 70 % est présent dans les soins exfoliants sans rinçage, tels que les sérums et les crèmes, pour un renouvellement cutané à long terme.
L'acide glycolique à 70 % est couramment utilisé dans les peelings et les masques pour les pieds, ciblant les zones calleuses pour des pieds plus lisses.
L'acide glycolique à 70 % est ajouté aux crèmes pour cuticules, contribuant au maintien d'ongles sains et de la peau environnante.

Dans les masques de nuit, l'acide glycolique à 70 % offre une exfoliation et une hydratation soutenues pendant que la peau se repose.
L'acide glycolique à 70 % se trouve dans les désinfectants pour les mains, contribuant à la fois à la désinfection et au conditionnement de la peau.
L'acide glycolique à 70 % est utilisé dans les lavages et nettoyants intimes, offrant une exfoliation douce des zones sensibles.

L'acide glycolique à 70 % est présent dans les produits de soin après tatouage, favorisant la cicatrisation de la peau et réduisant les irritations.
L'acide glycolique à 70 % est utilisé en combinaison avec d'autres acides alpha-hydroxy pour des effets exfoliants améliorés.

L'acide glycolique à 70 % est un composant clé des peelings du visage, qui répond aux problèmes cutanés les plus intenses.
L'acide glycolique à 70 % se trouve dans les gels anti-acné, offrant un traitement ciblé contre les imperfections et les éruptions cutanées.

L'acide glycolique 70% est utilisé dans les shampoings antipelliculaires pour ses potentiels bienfaits sur le cuir chevelu.
L'acide glycolique 70% est ajouté aux démaquillants pour sa capacité à dissoudre le maquillage et à rafraîchir la peau.
L'acide glycolique à 70 % est utilisé en association avec des rétinoïdes pour un effet synergique dans les formulations anti-âge.

L'acide glycolique à 70 % est présent dans les gommages pour les lèvres, offrant une exfoliation douce pour des lèvres plus lisses.
L'acide glycolique à 70 % se trouve dans les formulations de protection solaire, aidant à prévenir les dommages induits par le soleil.
L'acide glycolique à 70 % est utilisé dans les huiles pour cuticules pour des soins et une nutrition ciblés.

L'acide glycolique à 70 % est utilisé dans les crèmes contre les vergetures, contribuant à améliorer l'élasticité de la peau.
L'acide glycolique à 70 % est présent dans les peelings pour les mains pour un traitement de rajeunissement des mains plus intensif.

L'acide glycolique à 70 % est utilisé dans les nettoyants pour son exfoliation quotidienne efficace mais douce.
Dans les traitements exfoliants du cuir chevelu, il combat les pellicules et favorise un environnement sain pour le cuir chevelu.



DESCRIPTION


L'acide glycolique à 70 % est une solution d'acide glycolique dans l'eau, où la concentration en acide glycolique est de 70 %.
L'acide glycolique lui-même est un acide alpha-hydroxy (AHA) de formule chimique C ₂ H ₄ O ₃ .
L'acide glycolique à 70 % est dérivé de sources naturelles, comme la canne à sucre, et est connu pour ses propriétés exfoliantes.

Dans les soins de la peau, l’acide glycolique est largement utilisé pour sa capacité à favoriser le renouvellement cutané, à améliorer la texture et à répondre à divers problèmes cutanés.
La concentration de 70 % indique une résistance relativement élevée, et les solutions avec cette concentration sont souvent utilisées dans des environnements professionnels, tels que les cabinets de dermatologues ou les cliniques de soins de la peau, pour les peelings chimiques et les traitements cutanés plus intensifs.

L'acide glycolique 70% est un liquide incolore et inodore doté de propriétés chimiques notables.
L'acide glycolique à 70 % appartient à la famille des acides alpha-hydroxy et est dérivé de sources naturelles comme la canne à sucre.
Connu pour sa solubilité dans l’eau, l’acide glycolique est souvent utilisé dans les formulations de soins de la peau.
L'acide glycolique 70% est reconnu pour ses puissants effets exfoliants sur la peau.

De petite taille moléculaire, l'acide glycolique pénètre efficacement dans la peau, favorisant son renouvellement.
Souvent présent dans les peelings chimiques, il offre une exfoliation contrôlée pour divers problèmes de peau.
L'acide glycolique à 70 % stimule la production de collagène, contribuant ainsi à améliorer l'élasticité de la peau.
Efficace pour lutter contre l’hyperpigmentation, il réduit l’apparence des taches brunes.

L'acide glycolique à 70 % est précieux pour désobstruer les pores, ce qui le rend bénéfique pour les peaux à tendance acnéique.
Présent dans divers produits de soin de la peau, l’acide glycolique améliore l’absorption d’autres ingrédients.
L'acide glycolique à 70 % convient à différents types de peau, bien que des tests cutanés soient recommandés pour la sensibilité.

Composant clé des formulations anti-âge, l'acide glycolique minimise les rides et ridules.
Tout en favorisant le renouvellement cutané, il peut augmenter temporairement la sensibilité au soleil.
Une utilisation régulière contribue à un teint plus uniforme et à une réduction de la taille des pores.
L'acide glycolique 70% constitue une alternative aux gommages physiques, notamment pour les peaux sensibles.

Largement utilisé dans les exfoliants chimiques, l'acide glycolique 70 % permet d'obtenir un grain de peau plus lisse dans le temps.
Célébré pour sa capacité à transformer la surface de la peau, c'est un incontournable des routines de soins de la peau.
Les propriétés humectantes rendent l’acide glycolique efficace pour attirer et retenir l’humidité.

Les utilisateurs peuvent ressentir une sensation de picotement lors de l'application, se normalisant avec le temps.
Adapté à différentes concentrations, il est utilisé aussi bien dans la routine quotidienne que dans les traitements professionnels.
L'acide glycolique à 70 % offre une exfoliation chimique, contribuant à une apparence jeune et revitalisée.
Choix répandu dans les produits éclaircissants, il rajeunit la peau pour un éclat radieux.

Sa polyvalence s’étend au traitement des signes courants du vieillissement et de divers problèmes cutanés.
Une utilisation régulière conduit à une texture de peau affinée et plus lisse, résultat d'un renouvellement cellulaire amélioré.
Largement célébré dans l’industrie des soins de la peau, l’acide glycolique reste un incontournable pour une exfoliation chimique efficace.



PROPRIÉTÉS


Nom chimique : Acide glycolique
Formule chimique : C₂H₄O₃ _ _
Poids moléculaire : environ 76,05 g/mol
Forme physique : Liquide clair et incolore ou solide cristallin blanc (dépend de la concentration)
Odeur : Inodore ou une légère odeur caractéristique
Solubilité : Très soluble dans l’eau et miscible avec les solvants organiques courants
pH : Acide ; généralement autour de 3,5 en solution
Hygroscopique : Peut absorber l'humidité de l'air
Point de fusion : se décompose avant de fondre ; généralement non applicable
Point d'ébullition : se décompose avant d'ébullition sous pression atmosphérique standard
Densité : Dépend de la concentration et de la forme ; typiquement autour de 1,27 g/cm³ pour le liquide pur
Viscosité : Faible viscosité sous forme liquide
Indice de réfraction : Dépend de la concentration ; varie généralement de 1,42 à 1,45
Stabilité : Stable dans des conditions normales de stockage ; peut se dégrader sous une chaleur extrême ou une exposition à la lumière
Compatibilité : Compatible avec l’eau et une variété d’ingrédients cosmétiques et pharmaceutiques
Sécurité : Généralement reconnu comme étant sans danger pour une utilisation dans les soins de la peau dans les concentrations spécifiées
Biodégradabilité : Considéré comme biodégradable
Stabilité de stockage : Conserver dans un endroit frais et sec ; protéger des rayons directs du soleil
Gravité spécifique : Dépend de la concentration et de la forme ; varie généralement de 1,26 à 1,29 pour le liquide
Point d'éclair : Non applicable ; ne présente pas d'inflammabilité significative
Produits de décomposition dangereux : Peut produire du monoxyde de carbone et du dioxyde de carbone lors de la décomposition.
Miscibilité : Miscible avec l'eau et divers solvants organiques
Tension superficielle : Dépend de la concentration et de la forme ; généralement inférieur à l'eau



PREMIERS SECOURS


Inhalation:

Si des vapeurs d'acide glycolique sont inhalées et qu'une irritation respiratoire se produit, déplacez la personne affectée vers un endroit avec de l'air frais.
Si les difficultés respiratoires persistent, consultez immédiatement un médecin.
Administrer la respiration artificielle si la personne ne respire pas.
Fournir de l’oxygène si du personnel qualifié est disponible.


Contact avec la peau:

En cas de contact cutané avec de l'acide glycolique concentré, retirer immédiatement les vêtements contaminés.
Rincer la peau affectée avec beaucoup d'eau pendant au moins 15 minutes, en assurant un rinçage complet.
Si une irritation ou une rougeur apparaît et persiste, consulter un médecin.
Laver les vêtements contaminés avant de les réutiliser.
Appliquer un agent neutralisant s'il est disponible et approuvé pour une utilisation avec l'acide glycolique.


Lentilles de contact:

En cas de contact avec les yeux, rincer doucement les yeux avec de l'eau tiède pendant au moins 15 minutes, en maintenant les paupières ouvertes.
Consulter immédiatement un médecin si l'irritation ou la rougeur persiste.
Retirez les lentilles de contact, si elles sont présentes et faciles à faire, après le rinçage initial, et continuez à rincer.
Utilisez une station de lavage des yeux si disponible.


Ingestion:

Si de l'acide glycolique est avalé et que la personne est consciente, rincer abondamment la bouche avec de l'eau.
Ne pas faire vomir sauf indication contraire du personnel médical.
Consulter immédiatement un médecin ou contacter un centre antipoison.
Fournir des informations sur le produit acide glycolique spécifique ingéré, y compris sa concentration.


Conseils généraux :

Fournir au personnel médical des informations sur le produit spécifique à base d'acide glycolique impliqué, y compris sa concentration.
Si les symptômes persistent ou si vous avez des inquiétudes quant au bien-être de la personne, consultez rapidement un médecin.
Suivez toutes les recommandations et précautions décrites dans la fiche de données de sécurité (FDS) fournie par le fabricant.
Gardez le récipient ou l'étiquette du produit accessible pour fournir les informations nécessaires au personnel médical.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle (EPI) :
Portez un EPI approprié, notamment des gants résistant aux produits chimiques, des lunettes de sécurité ou un écran facial, ainsi qu'une blouse de laboratoire ou des vêtements de protection.
Utilisez un respirateur approuvé par le NIOSH s'il existe un risque d'exposition par inhalation de vapeurs ou d'aérosols.

Ventilation:
Travaillez dans un endroit bien ventilé, de préférence sous une hotte ou avec une ventilation par aspiration locale.
Eviter l'inhalation de vapeurs ou de brouillards.

Évitez les contacts :
Minimiser le contact avec la peau en portant des gants appropriés.
Évitez tout contact visuel ; utilisez des lunettes de sécurité ou un écran facial lors de la manipulation.

Précautions d'emploi:
Utilisez des outils comme des pipettes ou des systèmes de distribution pour minimiser les déversements.
Manipuler avec précaution pour éviter les éclaboussures ou la formation d'aérosols.

Pratiques d'hygiène :
Se laver soigneusement les mains après avoir manipulé de l'acide glycolique.
Changez rapidement les vêtements contaminés.

Mesures préventives:
Mettre en œuvre des mesures pour éviter la génération d'aérosols ou de poussières lors de la manipulation.
Utiliser des systèmes ou des conteneurs fermés lorsque cela est possible.

PREMIERS SECOURS:
Assurer la disponibilité de douches oculaires d’urgence et de douches de sécurité à proximité.


Stockage:

Zone de stockage:
Conservez l'acide glycolique dans un endroit frais, sec et bien ventilé.
Tenir à l'écart des matériaux incompatibles et des sources de chaleur.

Contrôle de la température:
Suivez la température de stockage recommandée fournie par le fabricant.
Évitez l'exposition à des températures extrêmes.

Compatibilité des conteneurs :
Utilisez des récipients fabriqués dans des matériaux compatibles avec l'acide glycolique, comme le verre ou le polyéthylène haute densité (PEHD).
Vérifiez régulièrement l’intégrité du conteneur.

Étiquetage :
Étiquetez clairement les contenants avec le nom du produit, la concentration, les instructions de manipulation et les informations de sécurité.
Marquez les conteneurs avec les symboles de danger appropriés.

Ségrégation:
Séparez l’acide glycolique des substances incompatibles, y compris les bases fortes et les agents oxydants.
Conserver à l’écart des aliments et des boissons.

Accessibilité:
Assurez-vous que la zone de stockage est facilement accessible au personnel autorisé et aux intervenants d’urgence.
Marquez clairement les sorties de secours et les voies d’évacuation.

Surveillance:
Inspectez régulièrement les conditions de stockage pour garantir le respect des directives recommandées.
Vérifiez les signes de fuite ou de dommages aux conteneurs.

Équipement d'urgence:
Assurer la disponibilité d’équipements d’urgence, tels que des kits d’intervention en cas de déversement et des extincteurs.
Former le personnel à l'utilisation appropriée des équipements d'urgence.

Intervention en cas de déversement :
Ayez à portée de main du matériel d’intervention en cas de déversement, notamment des matériaux absorbants et des agents neutralisants.
Suivre les procédures établies d'intervention en cas de déversement.

Documentation:
Tenir des registres précis de l’inventaire de l’acide glycolique, y compris les dates de réception et d’utilisation.
ACIDE GLYCOLIQUE 70%
L'acide glycolique 70 % est le plus petit acide alpha-hydroxy (AHA).
L'acide glycolique à 70 % est principalement complété par divers produits de soins de la peau pour améliorer l'apparence et la texture de la peau.
L'acide glycolique à 70 % peut également réduire les rides, les cicatrices d'acné et l'hyperpigmentation. Dans l’industrie textile, il peut être utilisé comme agent de teinture et de tannage.

CAS : 79-14-1
FM : C2H4O3
MW : 76,05
EINECS : 201-180-5

L'acide glycolique à 70 % peut également être utilisé comme agent aromatisant dans la transformation des aliments et comme agent de soin de la peau dans l'industrie pharmaceutique.
L'acide glycolique à 70 % peut également être ajouté aux polymères en émulsion, aux solvants et aux additifs d'encre pour améliorer les propriétés d'écoulement et conférer de la brillance.
De plus, l'acide glycolique à 70 % est un intermédiaire utile pour la synthèse organique, notamment l'oxydative-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique (ou acide hydroxyacétique ; formule chimique HOCH2CO2H) est un solide cristallin incolore, inodore et hygroscopique, hautement soluble dans l'eau.
L'acide glycolique à 70 % est utilisé dans divers produits de soins de la peau. L'acide glycolique est répandu dans la nature.
Un glycolate (parfois orthographié « glycolate ») est un sel ou un ester d'acide glycolique.

L'acide glycolique est un acide 2-hydroxy monocarboxylique qui est de l'acide acétique dont le groupe méthyle a été hydroxylé. Il joue un rôle de métabolite et de médicament kératolytique.
L'acide glycolique 70 % est un acide 2-hydroxy monocarboxylique et un alcool primaire.
L'acide glycolique à 70 % est fonctionnellement lié à un acide acétique. C'est un acide conjugué d'un glycolate.
L'acide glycolique (acide hydroxyacétique) est un acide α-hydroxy.
Les solutions d'acide glycolique ayant une concentration de 70 % et un pH compris entre 0,08 et 2,75 sont largement utilisées comme agents de pelage chimique superficiel.
Différents oligomères ou polymères d'acide lactique et/ou glycolique (faible poids moléculaire) ont été préparés.
L'acide glycolique peut être déterminé via des biocapteurs à chimiluminescence par injection de flux couplés à des tissus végétaux, qui peuvent être utilisés à la fois comme biocapteur à base de tissus végétaux et comme capteur de flux par chimiluminescence.

Propriétés chimiques
Point de fusion : 75-80 °C (lit.)
Point d'ébullition : 112 °C
Densité : 1,25 g/mL à 25 °C
Pression de vapeur : 10,8 hPa (80 °C)
Indice de réfraction : n20/D 1,424
Fp : 112°C
Température de stockage : Conserver en dessous de +30°C.
Solubilité : H2O : 0,1 g/mL, clair
Pka : 3,83 (à 25 ℃)
Formulaire : Solution
Couleur Blanc à blanc cassé
PH : 2 (50 g/l, H2O, 20 ℃)
Odeur : à 100,00 %. inodore, beurré très doux
Type d'odeur : beurrée
Solubilité dans l'eau : SOLUBLE
Sensible : Hygroscopique
Merck : 14 4498
Numéro de référence : 1209322
Stabilité : Stable. Incompatible avec les bases, les agents oxydants et les agents réducteurs.
InChIKey : AEMRFAOFKBGASW-UHFFFAOYSA-N
LogP : -1,07 à 20 ℃

Les usages
Dans la transformation des textiles, du cuir et des métaux ; dans le contrôle du pH et partout où un acide organique bon marché est nécessaire, par ex. dans la fabrication d'adhésifs, dans l'avivage du cuivre, le nettoyage par décontamination, la teinture, la galvanoplastie, le décapage, le nettoyage et le broyage chimique des métaux.

L'acide glycolique à 70 % réduit la cohésion des corénocytes et l'épaississement de la couche cornée où une accumulation excessive de cellules mortes de la peau peut être associée à de nombreux problèmes de peau courants, tels que l'acné, la peau sèche et très sèche et les rides.
L'Acide Glycolique 70% agit en dissolvant le ciment cellulaire interne responsable d'une kératinisation anormale, facilitant l'élimination des cellules mortes de la peau.
L'acide glycolique à 70 % améliore également l'hydratation de la peau en améliorant l'absorption de l'humidité et en augmentant la capacité de la peau à retenir l'eau.
Cela se produit dans le ciment cellulaire grâce à une activation de l’acide glycolique à 70 % et de l’acide hyaluronique de la peau.
L'acide hyaluronique est connu pour retenir une quantité impressionnante d'humidité et cette capacité est renforcée par l'acide glycolique à 70 %.
En conséquence, la capacité de la peau à augmenter son taux d’hydratation est augmentée.

L'acide glycolique à 70 % est un composé chimique utilisé dans le traitement de certaines affections cutanées, comme l'acné.
Il est également utilisé comme ingrédient actif dans certains peelings du visage.
Il a été démontré que l'acide glycolique à 70 % a des effets bénéfiques sur les maladies auto-immunes en inhibant la production de glycoprotéines et d'enzymes impliquées dans l'inflammation.
L'acide glycolique à 70 % a été largement étudié comme traitement potentiel pour les patients gériatriques atteints de démence liée à la dépression ou de la maladie d'Alzheimer.
L'acide glycolique à 70 % peut être appliqué localement sur la peau ou pris par voie orale comme médicament.
Le mécanisme d'action n'est pas bien compris, mais il pourrait impliquer l'inhibition de la dapagliflozine, qui améliore l'activité de la glycogène synthase kinase 3β (GSK3β) et empêche la phosphorylation et l'activation de la glycogène synthase (GS).
Il a été démontré que l'acide glycolique à 70 % inhibe le potentiel de la membrane mitochondriale et augmente la physiologie cellulaire en augmentant la synthèse d'ATP.

Préparation
Il existe différentes méthodes de préparation pour synthétiser l'Acide Glycolique 70%.
Cependant, la méthode la plus courante est la réaction catalysée du formaldéhyde avec le gaz de synthèse, qui coûte moins cher.
L'acide glycolique à 70 % peut être préparé lorsque l'acide chloroacétique réagit avec l'hydroxyde de sodium et subit une réacidification.
La réduction électrolytique de l’acide oxalique pourrait également synthétiser ce composé.
L'acide glycolique peut être séparé de sources naturelles comme la canne à sucre, la betterave sucrière, l'ananas, le cantaloup et les raisins non mûrs.
L'acide glycolique à 70 % peut être préparé en hydrolysant la cyanhydrine dérivée du formaldéhyde.

Propriétés
L'acide glycolique à 70 % est légèrement plus puissant que l'acide acétique en raison du pouvoir d'attraction des électrons du groupe hydroxyle terminal.
Le groupe carboxylate peut se coordonner avec des ions métalliques, formant des complexes de coordination.
Il convient de noter en particulier les complexes avec Pb2+ et Cu2+ qui sont nettement plus puissants que les complexes avec d'autres acides carboxyliques.
Cela indique que le groupe hydroxyle est impliqué dans la formation de complexes, éventuellement avec la perte de son proton.

Applications
L'acide glycolique à 70 % est utilisé dans l'industrie textile comme agent de teinture et de tannage.
L'acide glycolique est utilisé dans l'industrie textile comme agent de teinture et de bronzage, dans la transformation des aliments comme agent aromatisant et comme conservateur, et dans l'industrie pharmaceutique comme agent de soin de la peau.
L'acide glycolique est également utilisé dans les adhésifs et les plastiques.
L'acide glycolique est souvent inclus dans les polymères en émulsion, les solvants et les additifs pour l'encre et la peinture afin d'améliorer les propriétés d'écoulement et de conférer du brillant.
L'acide glycolique est utilisé dans les produits de traitement de surface qui augmentent le coefficient de friction des revêtements de sol carrelés.

Synthèse organique
L'acide glycolique à 70 % est un intermédiaire utile pour la synthèse organique, dans une gamme de réactions, notamment l'oxydo-réduction, l'estérification et la polymérisation à longue chaîne.
L'acide glycolique à 70 % est utilisé comme monomère dans la préparation de l'acide polyglycolique et d'autres copolymères biocompatibles (par exemple PLGA).
Sur le plan commercial, les dérivés importants comprennent les esters méthyliques (CAS# 96-35-5) et éthyliques (CAS# 623-50-7) qui sont facilement distillables (points d'ébullition 147-149 °C et 158-159 °C, respectivement), contrairement à l'acide parent.
L'ester butylique (point d'ébullition 178-186 °C) est un composant de certains vernis, ce qui est souhaitable car l'acide glycolique à 70 % est non volatil et possède de bonnes propriétés de dissolution.

Synonymes
Acide acétique, 2-hydroxy-
AKOS BBS-00004277
ACIDE 2-HYDROXYACÉTIQUE
ACIDE GLYCOLIQUE, HAUTE PURETÉ, SOLU TION À 70 % EN POIDS DANS L'EAU
ACIDE GLYCOLIQUE REAGENTPLUS(TM) 99%
SOLUTION D'ACIDE GLYCOLIQUE, ~55% DANS L'EAU
ACIDE GLYCOLIQUE, TECH., 70 WT. % SOLUTION DANS L'EAU
ACIDE GLYCOLIQUE SIGMAULTRA
Solution d'acide glycolique env. 57%
Acide glycolique (acide hydroxyacétique)
Acide glycolique, solution 67-70% dans l'eau
Acide glycolique70% (dans l'eau) pour la synthèse
Acide glycolique, solution à 70 %
Acide glycolique, 98 %
ACIDE GLYCOLIQUE POUR SYNTHÈSE 250 G
ACIDE GLYCOLIQUE POUR SYNTHÈSE 100 G
ACIDE GLYCOLIQUE POUR ANALYSE EMSURE
ACIDE GLYCOLIQUE POUR SYNTHÈSE 1 KG
Solution d'acide glycolique de haute pureté, 70 en poids. % dans H2O
RARECHEM AL BO 0466
Acide glycolique, 67% dans l'eau
GLYCOLICACIDE,CRISTAL,REACTIF
CHC-22
GLYCOLAT
Glycolsure
ACIDE GLYCOLIQUE : SOLUTION AQUEUSE À 70%
Acide glycolique, environ 67% aq. solen.
Acide glycolique (environ 70 % dans l'eau, environ 12 mol/L)
Acide glycolique 70% (garde cosmétique)
Acide glycolique 70% (qualité industrielle)
Acide glycolique >=97,0% (T)
Acide glycolique ReagentPlus(R), 99 %
Solution d'acide glycolique de qualité technique, 70 en poids. % dans H2O
Acide glycolique de qualité réactif Vetec(TM), 98 %
ACIDE GLYCOLIQUE, BIOXTRA, >=98,0%&
Acide glycolique, anhydre, fluide
Acide glycolique, 70% dans l'eau
LGB-GA
Acide hydroxy-acétique dans l'eau
glycolique
acide glycolique, solution
HOCH2COOH
hydroxy-acétiques
Kyselina Glyckolova
Kyselina hydroxyoctova
kyselinaglycolova
kyselinahydroxyoctova
NORME IC GLYCOLATE
ACIDE GLYCOLIQUE
ACIDE GLYCOLIQUE
ACIDE HYDROXYACÉTIQUE
ACIDE HYDROXYÉTHANOÏQUE
ACIDE GLYCOLIQUE 70% QUALITÉ TECHNIQUE
ACIDE GLYCOLIQUE 99%, POUDRE
Acide glycolique, 70 %, haute pureté
Acide glycolique, 70 %, technique
Acide glycolique, 99% 100GR
Acide glycolique, 99% 25GR
ACIDE GLYCOLIQUE 99 %


L'acide glycolique, d'une pureté de 99 %, est un composé organique incolore, inodore et hautement soluble dans l'eau.
L'acide glycolique à 99 % est le plus petit acide α-hydroxy (AHA) et est dérivé de la canne à sucre, bien qu'il puisse également être synthétisé.
L'acide glycolique à 99 % est un constituant naturel du jus de canne à sucre et est couramment utilisé dans divers produits de soin de la peau, notamment dans les peelings chimiques et les traitements exfoliants.

Numéro CAS : 79-14-1
Numéro CE : 201-180-5

Synonymes : Acide hydroxyacétique, acide hydroacétique, acide hydroxyéthanoïque, acide 2-hydroxyacétique, acide α-hydroxyacétique, hydroxyéthanoate, acide hydroxyéthanoate, acide 2-hydroxyéthanoïque, acide glycolique, acide glycolique 70%, acide glycolique 80%, acide glycolique 99%, Eucerin , Glypure, acide hydroxyacétique, acide alpha-hydroxyacétique, acide alpha-hydroxyéthanoïque, alpha-hydroxyéthanoate, érythromycine-EC, goudron de poisson, acide glycolique, Glykolsäure, acide glycolide, Hcooh cooh, acide hydroxacétone carboxylique, acide hydroxyacétique, solution d'acide hydroxyacétique , Rezamid, acide alphahydroxyacétique, acide chloracétone carboxylique, acide glycolique, acide hydroxyacétique, acide hydroxyacétonecarboxylique, acide alphahydroxyéthanoïque, CCRIS 436, EINECS 201-180-5, solution d'acide glycolique, NSC 22657, 2-hydroxyéthanoate, acide 2-hydroxyéthanoïque, acide acétique , hydroxy-, Acide glycolique, Acido glicolico, Acido glicolico [italien], Acide glycolique [français], Acide glycolique [JAN], Acide glycolique, solution, Acide glycolique, 98 %, Acide glycolique, 99 %, Acide glycolique, 70 % , Acide glycolique, 80%, Acide glycolique, 10%, Acide glycolique, 15%, Acide glycolique, 20%, Acide glycolique, 30%, Acide glycolique, 40%, Acide glycolique, 50%, Acide glycolique, 60%, Glycolique acide, 65 %, Acide glycolique, 75 %, Acide glycolique, 85 %, Acide glycolique, 90 %, Acide glycolique, 95 %, Acide glycolique, 100 %, Acide glycolique, sel de sodium et Acide glycolique, sel d'ammonium



APPLICATIONS


L'acide glycolique à 99 % est largement utilisé dans les produits de soin de la peau tels que les nettoyants, les toniques et les sérums.
L'acide glycolique à 99 % est un ingrédient clé des peelings chimiques, utilisés pour exfolier la peau et améliorer son apparence.
L'acide glycolique à 99 % est efficace pour traiter l'acné en désobstruant les pores et en réduisant l'inflammation.

L'acide glycolique à 99 % aide à atténuer l'hyperpigmentation, les taches brunes et les cicatrices d'acné, conduisant à un teint plus uniforme.
L'acide glycolique à 99 % favorise la production de collagène, contribuant ainsi à réduire l'apparence des rides et ridules.

L'acide glycolique à 99 % peut améliorer la texture et la douceur de la peau en éliminant les cellules mortes de la peau.
L'acide glycolique à 99 % est utilisé dans les produits anti-âge pour rajeunir la peau et réduire les signes de l'âge.

L'acide glycolique à 99 % est efficace dans le traitement de la kératose pilaire, une affection cutanée courante caractérisée par une peau rugueuse et bosselée.
L'acide glycolique à 99 % est utilisé dans les lotions et crèmes pour le corps pour exfolier et adoucir la peau rugueuse du corps.

L'acide glycolique à 99 % contribue à éclaircir la peau terne et à lui donner un éclat radieux.
L'acide glycolique à 99 % est utilisé dans les crèmes pour les pieds et les soins exfoliants pour adoucir et lisser la peau rugueuse et calleuse des pieds.
L'acide glycolique à 99 % est utilisé dans les produits de soins capillaires pour exfolier le cuir chevelu et favoriser une croissance saine des cheveux.
L'acide glycolique à 99 % est utilisé dans les soins des ongles pour exfolier et adoucir les cuticules.

L'acide glycolique à 99 % est utilisé dans les produits d'épilation chimique pour affaiblir le follicule pileux et ralentir la pousse des poils.
L'acide glycolique à 99 % est utilisé dans les produits de soin des plaies pour favoriser la cicatrisation des plaies et réduire les cicatrices.
L'acide glycolique à 99 % est utilisé dans les produits de soins bucco-dentaires tels que le dentifrice et le bain de bouche pour exfolier et éclaircir les dents.

L'acide glycolique à 99 % est utilisé dans les formulations de protection solaire pour améliorer la pénétration des filtres UV et renforcer leur efficacité.
L'acide glycolique 99 % est utilisé dans les formulations cosmétiques pour ajuster le pH et améliorer la stabilité du produit.
L'acide glycolique à 99 % est utilisé dans les produits d'entretien ménager pour éliminer les dépôts minéraux et les résidus de savon.

L'acide glycolique à 99 % est utilisé dans la fabrication textile pour éliminer les agents d'encollage et améliorer la pénétration des colorants.
L'acide glycolique à 99 % est utilisé dans le tannage du cuir pour éliminer les poils et les impuretés des peaux.
L'acide glycolique à 99 % est utilisé dans les processus industriels tels que le nettoyage et la gravure des métaux.
L'acide glycolique à 99 % est utilisé en agriculture comme amendement du sol et ajusteur de pH.

L'acide glycolique à 99 % est utilisé dans le traitement de l'eau pour éliminer les ions métalliques et améliorer la qualité de l'eau.
L'acide glycolique à 99 % a un large éventail d'applications dans diverses industries en raison de ses propriétés exfoliantes, éclaircissantes et ajustatrices du pH.

L'acide glycolique à 99 % est utilisé dans les formulations pharmaceutiques comme ajusteur et stabilisant du pH.
L'acide glycolique à 99 % est utilisé dans la production de crèmes et de pommades topiques pour traiter les affections cutanées telles que le psoriasis et l'eczéma.
L'acide glycolique à 99 % est utilisé dans les produits de soin des plaies pour éliminer les tissus morts et favoriser la cicatrisation des plaies.

L'acide glycolique à 99 % est utilisé en médecine vétérinaire pour traiter les affections cutanées des animaux.
L'acide glycolique à 99 % est utilisé dans la production de produits de soins capillaires tels que des shampooings et des revitalisants pour améliorer la santé du cuir chevelu et la texture des cheveux.

L'acide glycolique à 99 % est utilisé dans les teintures et les décolorants capillaires pour améliorer la pénétration de la couleur et éliminer les pigments de la tige capillaire.
L'acide glycolique à 99 % est utilisé dans l'industrie alimentaire comme régulateur d'acidité et exhausteur de goût.

L'acide glycolique à 99 % est utilisé dans la production de boissons telles que les jus de fruits et les sodas pour ajuster le pH et améliorer la stabilité de la saveur.
L'acide glycolique à 99 % est utilisé dans la fabrication de produits de confiserie tels que les bonbons et les chewing-gums pour empêcher la cristallisation et améliorer la texture.

L'acide glycolique à 99 % est utilisé dans l'industrie laitière comme conservateur et stabilisant dans les produits laitiers tels que le yaourt et le fromage.
L'acide glycolique à 99 % est utilisé dans la production d'aliments transformés tels que les fruits et légumes en conserve pour maintenir la fraîcheur et prolonger la durée de conservation.

L'acide glycolique à 99 % est utilisé dans la production de produits pharmaceutiques tels que des antiacides et des laxatifs pour améliorer l'absorption et l'efficacité des médicaments.
L'acide glycolique à 99 % est utilisé dans l'industrie textile pour la teinture et l'ennoblissement des tissus.

L'acide glycolique à 99 % est utilisé dans la production de produits d'entretien ménager tels que les nettoyants pour cuvettes de toilettes et les nettoyants pour joints de carrelage pour éliminer les résidus de savon et les dépôts minéraux.
L'acide glycolique à 99 % est utilisé dans l'industrie automobile pour nettoyer et dégraisser les pièces du moteur.
L'acide glycolique à 99 % est utilisé dans l'industrie métallurgique pour éliminer la rouille et le tartre des surfaces métalliques.
L'acide glycolique à 99 % est utilisé dans l'industrie de la construction pour nettoyer et décaper les surfaces en béton.

L'acide glycolique à 99 % est utilisé dans l'industrie pétrolière et gazière pour éliminer le tartre et la corrosion des pipelines et des équipements.
L'acide glycolique à 99 % est utilisé dans l'industrie des pâtes et papiers pour éliminer l'encre et la poix de la pâte à papier.
L'acide glycolique à 99 % est utilisé dans l'industrie électronique pour nettoyer les circuits imprimés et éliminer les résidus de flux de soudure.

L'acide glycolique à 99 % est utilisé dans l'industrie cosmétique pour formuler des soins exfoliants et des sérums anti-âge.
L'acide glycolique à 99 % est utilisé dans l'industrie pharmaceutique pour la formulation de médicaments topiques et oraux.
L'acide glycolique à 99 % est utilisé dans l'industrie agricole pour l'amendement des sols et l'absorption des nutriments par les plantes.

L'acide glycolique à 99 % est utilisé dans l'industrie du traitement de l'eau pour éliminer les métaux lourds et les contaminants organiques de l'eau.
L'acide glycolique a un large éventail d'applications dans plusieurs industries, ce qui en fait un composé polyvalent et précieux dans divers domaines.

L'acide glycolique à 99 % est également utilisé dans les formulations topiques telles que les crèmes, les sérums et les nettoyants.
L'acide glycolique à 99 % peut provoquer une sensation de picotement ou de picotement lorsqu'il est appliqué sur la peau, en particulier à des concentrations plus élevées.

L'acide glycolique à 99 % est important d'utiliser un écran solaire lorsque vous utilisez des produits contenant de l'acide glycolique, car il peut augmenter la sensibilité de la peau au soleil.
L'acide glycolique à 99 % est utilisé en dermatologie pour traiter diverses affections cutanées, notamment l'acné, l'hyperpigmentation et la kératose pilaire.
L'acide glycolique à 99 % peut également aider à améliorer l'absorption d'autres ingrédients de soin de la peau.

L'acide glycolique à 99 % est souvent associé à d'autres AHA, BHA (acides bêta-hydroxy) et antioxydants dans les formulations de soins de la peau.
En plus de ses applications en soins de la peau, l'acide glycolique est utilisé dans la synthèse chimique, la teinture des textiles et le tannage du cuir.
L'acide glycolique à 99 % est également utilisé dans les produits de nettoyage industriels et comme ajusteur de pH dans diverses formulations.

L'acide glycolique à 99 % peut interagir avec certains médicaments et doit être utilisé avec prudence chez les personnes ayant une peau sensible ou des affections cutanées.
L'acide glycolique à 99 % est important de suivre les instructions du produit et de consulter un professionnel de la santé en cas d'irritation ou d'effets indésirables.
L'acide glycolique à 99 % doit être conservé dans un endroit frais et sec, à l'abri de la lumière directe du soleil et des sources de chaleur.

Des précautions de manipulation appropriées, y compris l'utilisation de gants et de lunettes, doivent être suivies lorsque vous travaillez avec des solutions concentrées d'acide glycolique.
L'acide glycolique à 99 % est un composé polyvalent avec de nombreuses applications dans les soins de la peau, les cosmétiques et diverses industries.



DESCRIPTION


L'acide glycolique, d'une pureté de 99 %, est un composé organique incolore, inodore et hautement soluble dans l'eau.
L'acide glycolique à 99 % est le plus petit acide α-hydroxy (AHA) et est dérivé de la canne à sucre, bien qu'il puisse également être synthétisé.
L'acide glycolique à 99 % est un constituant naturel du jus de canne à sucre et est couramment utilisé dans divers produits de soin de la peau, notamment dans les peelings chimiques et les traitements exfoliants.

Sous sa forme pure, l'acide glycolique apparaît sous forme de solide cristallin à température ambiante.
L'acide glycolique à 99 % est très acide, avec un pH allant généralement de 0,5 à 2,5 dans les solutions aqueuses.
Cette acidité contribue à sa capacité à exfolier la peau en relâchant les liens entre les cellules mortes de la peau, en favorisant le renouvellement cellulaire et en révélant une peau plus lisse et plus lumineuse en dessous.

L'acide glycolique à 99 % est connu pour sa capacité à améliorer la texture de la peau, à réduire l'apparence des rides et des ridules et à répondre à des problèmes tels que l'acné, l'hyperpigmentation et un teint irrégulier.
L'acide glycolique à 99 % est également utilisé dans le traitement de certaines affections dermatologiques, notamment les cicatrices d'acné, le mélasma et la kératose pilaire.

En plus de ses applications en soins de la peau, l'acide glycolique est utilisé dans divers processus industriels, tels que la teinture des textiles et le tannage du cuir.
L'acide glycolique à 99 % est également utilisé dans la formulation de produits d'entretien ménager et de nettoyants industriels en raison de sa capacité à dissoudre les dépôts minéraux et à éliminer les taches d'eau dure.

Comme pour tout produit chimique, il est important de manipuler l’acide glycolique avec précaution, en suivant les précautions de sécurité et les procédures de manipulation appropriées.
Des équipements de protection tels que des gants et des lunettes doivent être portés lorsque vous travaillez avec des solutions concentrées d'acide glycolique, et les déversements doivent être rapidement nettoyés pour éviter toute irritation de la peau ou des yeux.

L'acide glycolique à 99 % est un petit composé organique de formule chimique C2H4O3.
L'acide glycolique à 99 % est le plus petit acide α-hydroxy (AHA) et est dérivé de la canne à sucre.

Ce liquide incolore et inodore est très soluble dans l'eau.
L'acide glycolique à 99 % a un poids moléculaire d'environ 76,05 g/mol.

L'acide glycolique à 99 % est classé comme hydroxyacide en raison de ses groupes fonctionnels hydroxyle (OH) et carboxyle (COOH).
L'acide glycolique à 99 % a une valeur pKa d'environ 3,83 à 25°C.

L'acide glycolique à 99 % est considéré comme un acide faible, mais il peut néanmoins provoquer des irritations cutanées et des brûlures chimiques à des concentrations élevées.
L'acide glycolique à 99 % est couramment utilisé dans les produits de soin pour ses propriétés exfoliantes.
L'acide glycolique à 99 % pénètre facilement dans la peau grâce à sa petite taille moléculaire.

L'acide glycolique agit en relâchant les liens entre les cellules mortes de la peau, favorisant leur chute et révélant une peau plus lisse et plus lumineuse en dessous.
L'acide glycolique à 99 % peut aider à améliorer la texture de la peau, à réduire l'apparence des rides et des ridules et à uniformiser le teint.
L'acide glycolique à 99 % est souvent utilisé dans les peelings chimiques, qui sont des traitements cosmétiques qui éliminent les couches supérieures de la peau.



PROPRIÉTÉS


Propriétés physiques:

Aspect : Liquide incolore à jaune clair ou solide cristallin blanc.
Odeur : Inodore ou légèrement acide.
Goût : Goût aigre et acide.
Point de fusion : Environ 75-80°C (167-176°F) pour la forme solide.
Point d'ébullition : environ 165-168°C (329-334°F) à 760 mmHg.
Densité : Environ 1,49 g/cm³ (pour la forme liquide).
Solubilité : Très soluble dans l’eau et l’éthanol ; légèrement soluble dans l'acétone et l'éther.
pH : Généralement acide, avec une plage de pH d'environ 0,5 à 2,5 dans les solutions aqueuses.
Poids moléculaire : environ 76,05 g/mol.
Indice de réfraction : environ 1,424 à 20°C.
Viscosité : Viscosité relativement faible pour la forme liquide.
Inflammabilité : Non considéré comme inflammable, mais peut contribuer à l'inflammabilité d'autres matériaux.
Hygroscopique : Absorbe l’humidité de l’air, surtout dans des conditions humides.
Stabilité : Stable dans des conditions normales, mais peut se dégrader lors d'une exposition à la chaleur, à la lumière ou à l'air.


Propriétés chimiques:

Formule chimique : C2H4O3.
Groupes fonctionnels : contient un groupe hydroxyle (-OH) et un groupe carboxyle (-COOH).
Acidité : L'acide glycolique est un acide carboxylique, ce qui signifie qu'il peut donner un proton (H+) dans les solutions aqueuses.
Valeur pKa : environ 3,83 à 25 °C, indiquant sa force acide.
Ionisation : ionise partiellement dans les solutions aqueuses pour former des ions glycolate (CH2OHCOO-) et des ions hydronium (H3O+).
Liaison hydrogène : forme des liaisons hydrogène avec les molécules d’eau et d’autres solvants polaires.
Isomérie : existe sous la forme d'un seul isomère structurel sans isomères géométriques ou optiques.
Réactivité : Peut subir diverses réactions chimiques, notamment l'estérification, la saponification et l'oxydation.
Décomposition : Peut se décomposer sous l'effet de la chaleur, produisant du dioxyde de carbone, de l'eau et d'autres produits de décomposition.
Biodégradabilité : L'acide glycolique est biodégradable dans des conditions aérobies, se décomposant en dioxyde de carbone et en eau.



PREMIERS SECOURS


Inhalation:

Si des vapeurs d'acide glycolique sont inhalées, emmenez immédiatement la personne affectée à l'air frais.
Aidez la personne à trouver une position confortable et encouragez-la à respirer profondément.
Si les difficultés respiratoires persistent ou si la personne est inconsciente, consulter immédiatement un médecin.
Fournir un soutien en oxygène si disponible et formé pour le faire.
Gardez la personne affectée au chaud et à l'aise.


Contact avec la peau:

Si l'acide glycolique entre en contact avec la peau, retirez immédiatement les vêtements contaminés et rincez la zone affectée avec beaucoup d'eau pendant au moins 15 minutes.
Utilisez du savon doux et de l'eau tiède pour laver soigneusement la peau et éliminer tout résidu restant.
Consulter un médecin en cas d'irritation, de rougeur ou de brûlures chimiques.
Évitez d'utiliser des crèmes, des pommades ou des lotions, sauf avis contraire du personnel médical.


Lentilles de contact:

En cas de contact avec l'acide glycolique, rincer immédiatement les yeux à grande eau courante pendant au moins 15 minutes, en maintenant les paupières ouvertes pour assurer un rinçage complet.
Retirez les lentilles de contact le cas échéant et continuez à rincer.
Consultez immédiatement un médecin, même si les symptômes semblent mineurs.
Fournir des informations pertinentes sur l’exposition au personnel médical.


Ingestion:

Si l'acide glycolique est ingéré accidentellement et que la personne est consciente, ne pas faire vomir sauf indication contraire du personnel médical.
Rincer abondamment la bouche avec de l'eau pour éliminer toute substance restante.
Ne rien donner à boire si la personne est inconsciente ou présente des convulsions.
Consulter immédiatement un médecin et fournir des informations sur la quantité ingérée et la durée de l'exposition.


Premiers secours généraux :

Rassurez la personne concernée et gardez-la calme.
Surveillez les signes vitaux tels que le pouls, la respiration et le niveau de conscience.
Gardez la personne concernée au chaud et à l'aise en attendant une assistance médicale.
Si des soins médicaux sont nécessaires, fournissez les fiches de données de sécurité (FDS) ou les informations sur le produit pertinentes aux professionnels de la santé.
N’administrer aucun médicament sauf indication contraire du personnel médical.


Précautions supplémentaires :

Portez un équipement de protection individuelle (EPI) approprié tel que des gants, des lunettes et des vêtements de protection lorsque vous prodiguez les premiers soins.
Évitez tout contact direct avec l'acide glycolique pour éviter une exposition secondaire.
Suivez les protocoles établis sur le lieu de travail pour gérer les expositions chimiques et les urgences.
Signalez l’incident aux autorités compétentes et effectuez le suivi en respectant toute documentation ou exigence de rapport nécessaire.



MANIPULATION ET STOCKAGE


Équipement de protection individuelle (EPI) :
Portez un EPI approprié, y compris des gants résistant aux produits chimiques, des lunettes de sécurité et des vêtements de protection, lors de la manipulation de l'acide glycolique pour éviter tout contact avec la peau et les yeux.
Utilisez une protection respiratoire, telle qu'un respirateur approuvé par le NIOSH, si vous manipulez de l'acide glycolique dans des zones mal ventilées ou lors d'activités pouvant générer de la poussière ou des vapeurs.

Ventilation:
Manipulez l'acide glycolique dans des zones bien ventilées ou sous une ventilation par aspiration locale pour minimiser l'exposition par inhalation.
Utilisez des sorbonnes ou des systèmes d'échappement locaux pour capter les vapeurs en suspension dans l'air et empêcher leur accumulation dans la zone de travail.

Précautions d'emploi:
Évitez tout contact avec la peau, les yeux et les vêtements. Lavez immédiatement tout déversement ou éclaboussure avec de l'eau.
Utilisez des outils et des équipements anti-étincelles pour minimiser le risque d'inflammation, car l'acide glycolique est inflammable.
Ne pas manger, boire ou fumer pendant la manipulation de l'acide glycolique et se laver soigneusement les mains après manipulation.

Compatibilité de stockage :
Conservez l'acide glycolique dans un endroit frais, sec et bien ventilé, à l'écart des sources de chaleur, de la lumière directe du soleil et des matériaux incompatibles.
Gardez les récipients bien fermés lorsqu'ils ne sont pas utilisés pour éviter l'absorption d'humidité et la contamination.
Conservez l’acide glycolique à l’écart des agents oxydants forts, des bases et des métaux réactifs pour éviter les réactions chimiques ou la dégradation.

Procédures en cas de déversement et de fuite :
En cas de déversement ou de fuite, contenir le déversement à l'aide de matériaux absorbants et empêcher sa propagation.
Neutralisez les petits déversements avec une solution diluée de bicarbonate de sodium ou un autre agent neutralisant approprié.
Éliminer les matériaux contaminés conformément aux réglementations et directives locales.


Stockage:

Conditions de stockage:
Conservez l'acide glycolique dans des récipients fabriqués à partir de matériaux compatibles tels que le polyéthylène ou le verre.
Étiquetez les conteneurs de stockage avec le nom chimique, la concentration et la date de réception.
Gardez les zones de stockage propres et bien organisées pour éviter les déversements accidentels ou la contamination.

Contrôle de la température:
Maintenir les températures de stockage entre 15°C et 25°C (59°F et 77°F) pour éviter la dégradation ou la cristallisation de l'acide glycolique.
Évitez l'exposition à des températures extrêmes, car l'acide glycolique peut geler ou se solidifier à basse température et se décomposer à haute température.

Gestion de l'inventaire:
Tenez des registres précis de l’inventaire de l’acide glycolique, y compris les quantités, les numéros de lot et les dates de péremption.
Effectuez une rotation des stocks si nécessaire pour garantir que les lots plus anciens sont utilisés avant les plus récents afin de minimiser le risque d'expiration ou de dégradation.

Mesures de sécurité:
Limiter l'accès aux zones de stockage de l'acide glycolique au personnel autorisé formé aux procédures de manipulation appropriées.
Mettez en œuvre des mesures de sécurité telles que des verrous ou des contrôles d'accès pour empêcher tout accès non autorisé ou toute altération des conteneurs ou des stocks d'acide glycolique.

Préparation aux urgences:
Gardez les matériaux de confinement des déversements, les absorbants et les EPI à portée de main à proximité des zones de stockage d'acide glycolique.
Élaborer et réviser régulièrement les procédures d'intervention d'urgence en cas de déversements, de fuites ou d'autres incidents impliquant de l'acide glycolique.
ACIDE GLYOXYLIQUE ( Glyoxylic acid)
Acide 2-aminoéthanesulfinique; N° CAS : 300-84-5; Hypotaurine; Nom INCI : AMINOETHANESULFINIC ACID. Nom chimique : Ethanesulfinic acid, 2-amino-. Ses fonctions (INCI): Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène. 2-amino-Ethanesulfinic acid; 2-Aminoethanesulfinic acid ; 2-Aminoethansulfinsäure [German] ; 2-Aminoethylsulfinate; 2-Aminoethylsulfinic acid; 300-84-5 [RN]; Acide 2-aminoéthanesulfinique [French] ; Ethanesulfinic acid, 2-amino- ; Hypotaurine; MFCD00038197; 2-amino-Ethanesulfinate 2-Aminoethanesulfinate ; Cystaminesulfinate; Cystaminesulfinic acid; 2-aminoethane-1-sulfinic acid; 2-aminoethanesulfinicacid; 2-azaniumylethane-1-sulfinate; 2-azaniumylethanesulfinate; 2-mmonioethane-1-sulfinate; hypotaurine zwitterion; Hypotaurine; 2-Aminoethylsulfinic acid; 2-Amino-ethanesulfinic acid; Lopac0_000573. Product Uses3,4 2-Amino-2-ethyl-1,3-propanediol is useful in a variety of applications, such as: Paints – as a dispersant for pigments, offering improved flow characteristics, stable pH values, low odor, and improved color; Additives – to control alkalinity and the release of excess formaldehyde in certain industrial situations, such as metal-working fluids; A chemical intermediate – to produce fatty acid emulsifiers (several industrial applications), oxazoline chemicals (surface-active compounds) and oxazolidine (cross-linkers in thermosetresins)
ACIDE GLYOXYLIQUE (ACIDE OXOACÉTIQUE)
L'acide glyoxylique (acide oxoacétique) est un composé organique. Avec l'acide acétique, l'acide glycolique et l'acide oxalique, l'acide glyoxylique est l'un des acides carboxyliques C2.
L'acide glyoxylique (acide oxoacétique) est un intermédiaire du cycle du glyoxylate, qui permet à certains organismes de convertir les acides gras en glucides.
Les ions acide glyoxylique (acide oxoacétique) dans le bain de placage n'ont pas de pression de vapeur et ont montré un bon pouvoir réducteur dans le placage de cuivre autocatalytique.

Numéro CAS : 298-12-4
Formule moléculaire : C2H2O3
Poids moléculaire : 74,04
Numéro EINECS : 206-058-5

Acide glyoxylique, acide 2-oxoacétique, acide glyoxalique, acide oxoacétique, acide oxoéthanoïque, acide formylformique, acide acétique, oxo-, acide oxalaldéhydique, acide alpha-cétoacétique, acide oxaldéhydique, acide formique, formyl-, acide acétique, 2-oxo-, glyoxalate, Kyselina glyoxylova, NSC 27785, CCRIS 1455, HSDB 5559, 563-96-2, .alpha.-acide cétoacétique, JQ39C92HH6, CHEBI :16891, glyox, oxoacétate, NSC27785, MFCD00006958, NSC-27785, 2-OxoaceticAcid, acide glyoxalique livre 50% dans la livre d'eau (c), NSC 27785 ; Acide formylformique ; Acide oxalaldéhydique, Kyselina glyoxylova [tchèque], acide alpha-cétoacétique, GLV, OCHCOOH, EINECS 206-058-5, BRN 0741891, UNII-JQ39C92HH6, formylformiate, glyoxalsaeure, glyoxylsaeure, oxalaldéhydate, oxoéthanoate, acide glyoxilique, a-cétoacétate, C2H2O3, alpha-cétoacétate, 2-oxoacétate, acide (oxo)acétique, acide a-cétoacétique, acide acétique, oxo, acide formique, formyle, acide glyoxylique 50%, OHCCO2H, acide glyoxylique (8CI), acide glyoxylique anhydre, WLN : VHVQ, dioxyméthylène formaldéhyde, EC 206-058-5, GLYOXYLIQUE ACIDE [MI], Acide acétique, oxo- (9CI), GLYOXALATE ; GLYOXYLATE, 4-03-00-01489 (Beilstein Handbook Reference), ACIDE GLYOXYLIQUE [HSDB], ACIDE GLYOXYLIQUE [INCI], Acide glyoxylique, 50 % dans l'eau, CHEMBL1162545, DTXSID5021594, ACIDE GLYOXYLIQUE [OMS-DD], BDBM19472, Acide glyoxylique (50 % dans l'eau), AMY40947, STR06186, Acide glyoxylique, 50 % p/p aq. soln, AKOS005367012, CS-W019807, DB04343, HY-79494, ALLANTOÏNE IMPURETÉ A [IMPURETÉ EP], ACIDE 2-OXOACÉTIQUE (50 % DANS L'EAU), G0366, NS00003540, EN300-20485, C00048, D70821, Q413552, W-105518, F2191-0150, 0ADD8E81-5E77-4171-9241-E74AC05D4C8D

L'acide glyoxylique (acide oxoacétique) est un intermédiaire du cycle du glyoxylate, qui permet aux organismes, tels que les bactéries, les champignons et les plantes, de convertir les acides gras en glucides.
La structure de l'acide glyoxylique (acide oxoacétique) est montrée comme ayant un groupe fonctionnel aldéhyde.
L'aldéhyde n'est qu'un composant mineur de la forme la plus répandue dans certaines situations.

Par conséquent, l'acide glyoxylique (acide oxoacétique) peut remplacer le formaldéhyde et éliminer les problèmes de santé et d'environnement résultant de la génération des fumées (aperçu de la recherche).
L'acide glyoxylique (acide oxoacétique), de formule chimique C2H2O3 et portant le numéro d'enregistrement CAS 298-12-4, est un composé connu pour ses applications polyvalentes dans diverses industries.
La base conjuguée de l'acide glyoxylique (acide oxoacétique) est connue sous le nom de glyoxylate.

Ce liquide incolore, également appelé acide glyoxylique (acide oxoacétique), est caractérisé par son groupe fonctionnel acide carboxylique.
L'acide glyoxylique (acide oxoacétique) est couramment utilisé comme précurseur dans la synthèse de divers produits chimiques, notamment des produits pharmaceutiques, des produits agrochimiques et des colorants.
L'acide glyoxylique (acide oxoacétique) est également utilisé comme agent réducteur et catalyseur dans diverses réactions chimiques.

De plus, l'acide glyoxylique (acide oxoacétique) trouve des applications dans la production de résines, de plastiques et d'adhésifs.
Grâce à son large éventail d'utilisations, l'acide glyoxylique (acide oxoacétique) joue un rôle crucial dans le développement de nombreux produits et procédés dans différents secteurs.
L'acide glyoxylique (acide oxoacétique) est un composé organique. ,

Avec l'acide acétique, l'acide glycolique et l'acide oxalique, l'acide glyoxylique est l'un des acides carboxyliques C2.
L'acide glyoxylique (acide oxoacétique) est un solide incolore qui se produit naturellement et qui est utile industriellement.
L'acide glyoxylique (acide oxoacétique) est un composé organique qui est à la fois un aldéhyde et un acide carboxylique.

L'acide glyoxylique (acide oxoacétique) est un intermédiaire du cycle du glyoxylate, qui permet à certains organismes de convertir les acides gras en glucides.
La base conjuguée de l'acide glyoxylique (acide oxoacétique) est connue sous le nom de glyoxylate.
L'acide glyoxylique (acide oxoacétique) est un intermédiaire du cycle du glyoxylate, qui permet aux organismes, tels que les bactéries, les champignons et les plantes, de convertir les acides gras en
Glucides.

L'acide glyoxylique (acide oxoacétique) est le sous-produit du processus d'amidation dans la biosynthèse de plusieurs peptides amidés.
Le cycle du glyoxylate est une voie métabolique qui se produit dans les plantes et dans plusieurs micro-organismes, tels que E. coli et la levure.
L'acide glyoxylique (acide oxoacétique) sert d'élément de base polyvalent dans la synthèse organique, où il est utilisé dans la production de divers produits chimiques, pharmaceutiques et agrochimiques.

L'acide glyoxylique (acide oxoacétique) est utilisé comme agent de blanchiment et de fixation dans le traitement des textiles, en particulier pour la teinture et l'impression des textiles.
L'acide glyoxylique (acide oxoacétique) est utilisé dans certaines formulations cosmétiques, telles que les produits de lissage des cheveux, où il agit comme un texturant ou un agent de liaison.
L'acide glyoxylique (acide oxoacétique) est utilisé dans le développement de solutions pour fixer des images photographiques sur papier ou film.

L'acide glyoxylique (acide oxoacétique) est utilisé dans la recherche et la fabrication pharmaceutiques, y compris la synthèse de certains intermédiaires médicamenteux et ingrédients pharmaceutiques actifs.
L'acide glyoxylique (acide oxoacétique) trouve une application dans la production d'herbicides, de fongicides et d'insecticides.
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans l'industrie alimentaire comme agent aromatisant ou comme précurseur dans la synthèse d'additifs alimentaires.

L'acide glyoxylique (acide oxoacétique) est utilisé comme réactif dans diverses expériences de laboratoire et analyses chimiques.
L'acide glyoxylique (acide oxoacétique) est parfois utilisé dans les procédés de traitement de surface des métaux, où il sert de mordançage doux ou de nettoyant pour éliminer les oxydes, les écailles ou les contaminants des surfaces métalliques avant un traitement, un revêtement ou une finition ultérieurs.
Dans les applications de galvanoplastie, l'acide glyoxylique (acide oxoacétique) peut être utilisé comme agent réducteur ou agent stabilisant dans les solutions électrolytiques pour faciliter le dépôt de revêtements métalliques sur des substrats avec une adhérence, une uniformité ou une résistance à la corrosion améliorées.

L'acide glyoxylique (acide oxoacétique) trouve une application dans les formulations d'adhésifs et de produits d'étanchéité, où il peut agir comme agent de réticulation ou modificateur pour améliorer la force de liaison, la durabilité ou la résistance à l'humidité dans diverses applications de liaison.
L'acide glyoxylique (acide oxoacétique) est utilisé dans les processus de tannage comme agent de fixation ou de blanchiment pour stabiliser les fibres de collagène, éliminer les impuretés et améliorer la couleur, la douceur ou la texture des produits en cuir.
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans les applications de traitement de l'eau comme désinfectant ou biocide pour contrôler la croissance microbienne, les algues ou la formation de biofilm dans les systèmes d'eau, les tours de refroidissement, les piscines ou les installations de traitement des eaux usées.

L'acide glyoxylique (acide oxoacétique) peut être utilisé comme matériau étalon ou de référence dans les méthodes de chimie analytique, telles que la chromatographie, la spectrométrie ou le titrage, pour la quantification ou l'identification de composés dans des mélanges complexes ou des matrices.
Au lieu de cela, l'acide glyoxylique (acide oxoacétique) existe souvent sous forme d'hydrate ou de dimère cyclique.
Par exemple, en présence d'eau, le carbonyle se transforme rapidement en diol géminal (décrit comme le « monohydrate »).

La constante d'équilibre (K) est de 300 pour la formation de l'acide glyoxylique (acide oxoacétique) à température ambiante : l'acide dihydroxyacétique a été caractérisé par cristallographie aux rayons X.
La base conjuguée de l'acide glyoxylique (acide oxoacétique) est connue sous le nom de glyoxylate et est la forme sous laquelle le composé existe en solution à pH neutre.
Pour mémoire, l'acide glyoxylique (acide oxoacétique) a été préparé à partir d'acide oxalique par électrosynthèse : en synthèse organique, des cathodes de dioxyde de plomb ont été appliquées pour préparer de l'acide glyoxylique à partir de l'acide oxalique dans un électrolyte d'acide sulfurique.

L'acide glyoxylique (acide oxoacétique) est un intermédiaire du cycle du glyoxylate, qui permet aux organismes, tels que les bactéries, les champignons et les plantes, de convertir les acides gras en glucides.
Le cycle du glyoxylate est également important pour l'induction des mécanismes de défense des plantes en réponse aux champignons.
Le cycle du glyoxylate est initié par l'activité de l'isocitrate lyase, qui convertit l'isocitrate en glyoxylate et en succinate.

Des recherches sont en cours pour coopter la voie pour une variété d'utilisations telles que la biosynthèse du succinate.
L'acide glyoxylique (acide oxoacétique) est un composé organique.
Avec l'acide acétique, l'acide glycolique et l'acide oxalique, l'acide glyoxylique est l'un des acides carboxyliques C2.

L'acide glyoxylique (acide oxoacétique) est un solide incolore qui se produit naturellement et qui est utile industriellement.
L'acide glyoxylique (acide oxoacétique) est un composé organique qui est à la fois un aldéhyde et un acide carboxylique.
L'acide glyoxylique (acide oxoacétique) est le sous-produit du processus d'amidation dans la biosynthèse de plusieurs peptides amidés.

Ce sont des composés contenant un groupe acide carboxylique de formule -C(=O)OH.
L'acide glyoxylique (acide oxoacétique) est le plus petit acide alpha-céto qui a un groupe cétone sur l'atome de carbone à côté du groupe acide.
Si le groupe cétone se trouve sur le deuxième carbone à côté du groupe acide, on l'appelle acide bêta-céto.

L'acide glyoxylique (acide oxoacétique) a un composé double fonctionnel avec l'acide carboxylique et l'aldéhyde.
Un autre exemple d'acide alpha-céto de petit poids mole est l'acide pyruvique qui a une branche méthylique.
L'acide glyoxylique (acide oxoacétique) est un composé organique. Avec l'acide acétique, l'acide glycolique et l'acide oxalique, l'acide glyoxylique est l'un des acides carboxyliques C2.

L'acide glyoxylique (acide oxoacétique) est un solide incolore qui se produit naturellement et qui est utile industriellement.
L'acide glyoxylique (acide oxoacétique), est un composé chimique de formule moléculaire C2H2O3.
L'acide glyoxylique (acide oxoacétique) est caractérisé par son groupe carbonyle (C=O) et son groupe hydroxyle (OH) attachés au même atome de carbone, ce qui en fait un acide α-hydroxy.

L'acide glyoxylique (acide oxoacétique) est un solide incolore à température ambiante et est soluble dans l'eau.
L'acide glyoxylique (acide oxoacétique) en tant qu'agent réducteur alternatif pour le placage de cuivre autocatalytique a été étudié.
L'acide glyoxylique (acide oxoacétique) est un solide incolore qui se produit naturellement et qui est utile industriellement.

L'acide glyoxylique (acide oxoacétique) est le sous-produit du processus d'amidation dans la biosynthèse de plusieurs peptides amidés.
Le cycle du glyoxylate est une voie métabolique présente chez les plantes et plusieurs micro-organismes, tels que Pseudomonas aeruginosa et la levure.
L'acide glyoxylique (acide oxoacétique) est un solide incolore qui se produit naturellement et qui est utile industriellement.

La solution aqueuse d'acide glyoxylique est un liquide transparent, incolore ou jaune clair.
Soluble dans l'eau et l'éthanol, légèrement soluble dans les solvants organiques comme l'éther ou le benzène, insoluble dans les esters de solvants aromatiques.
Cette solution n'est pas stable mais ne se décompose pas dans l'air.

L'acide glyoxylique (acide oxoacétique) est un acide organique fort et un intermédiaire chimique hautement réactif ayant deux groupes fonctionnels : le groupe aldéhyde et le groupe acide carboxylique.
En raison de sa bi-fonctionnalité, c'est un réactif polyvalent dans les synthèses organiques et de chimie fine.
D'autres synonymes sont l'acide formylformique et l'acide oxoéthanoïque.

L'acide glyoxylique (acide oxoacétique) est un aldéhyde et un acide carboxylique.
Les esters alkyliques de l'acide glyoxylique sont appelés acides alkyl glyoxyliques.
L'acide glyoxylique (acide oxoacétique) est formé par oxydation organique de l'acide glycolique ou ozonolyse de l'acide maléique.

L'acide glyoxylique (acide oxoacétique) est un liquide dont le point de fusion est de -93 °C et le point d'ébullition de 111 °C.
L'acide glyoxylique (acide oxoacétique) est disponible dans le commerce sous forme de monohydrate ou de solution dans l'eau.

L'acide glyoxylique (acide oxoacétique), monohydraté, également connu sous le nom d'acide oxoacétique ou d'acide formylformique, est un composé organique et l'un des acides carboxyliques C2 ; Il peut être utilisé pour vérifier la présence de tryptophane dans les protéines. Les produits non classés fournis par Spectrum indiquent qu'il s'agit d'une qualité convenant à un usage industriel général ou à des fins de recherche ;
ne conviennent généralement pas à la consommation humaine ou à un usage thérapeutique.
L'acide glyoxylique (acide oxoacétique) appartient à la classe des composés organiques connus sous le nom d'acides carboxyliques.

Point de fusion : -93°C
Point d'ébullition : 111°C
Densité : 1,33 g/mL à 20 °C
pression de vapeur : 14hPa à 19.85°C
indice de réfraction : n20/D 1.414
Point d'éclair : 111°C
Température de stockage : Conserver à une température inférieure à +30°C.
solubilité : Miscible à l'éthanol. Légèrement miscible à l'éther et au benzène. Non miscible aux esters.
pka : 3,18 (à 25 °C)
Forme : liquide clair
couleur : incolore à orange clair à jaune
Solubilité dans l'eau : miscible
Merck : 14,4511
BRN : 741891
InChIKey : HHLFWLYXYJOTON-UHFFFAOYSA-N
LogP : -0,930 (est)

L'acide glyoxylique (acide oxoacétique) est ensuite converti en glycine par des actions parallèles par le SGAT et le GGAT, qui est ensuite transporté dans les mitochondries.
L'acide glyoxylique (acide oxoacétique) a également été rapporté que le complexe pyruvate déshydrogénase peut jouer un rôle dans le métabolisme du glycolate et du glyoxylate.
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans les procédés de modification des polymères pour introduire des groupes fonctionnels, améliorer la compatibilité des polymères ou conférer des propriétés spécifiques telles que l'ignifugation, la stabilité aux UV ou la biodégradabilité aux matériaux polymères.

L'acide glyoxylique (acide oxoacétique) continue d'être étudié pour de nouvelles applications et innovations de procédés dans diverses industries, grâce aux efforts de recherche en cours pour explorer sa réactivité chimique, ses propriétés et ses avantages potentiels dans divers secteurs industriels.
L'acide glyoxylique (acide oxoacétique) est utilisé dans l'industrie du cuir comme agent tannant et pour améliorer le processus de teinture.
L'acide glyoxylique (acide oxoacétique) aide à la fixation des colorants sur les surfaces en cuir et améliore la solidité des couleurs des produits en cuir teints.

Dans les procédés de galvanoplastie, l'acide glyoxylique (acide oxoacétique) est parfois utilisé comme agent réducteur pour les ions métalliques.
L'acide glyoxylique (acide oxoacétique) facilite le dépôt de métaux tels que l'argent ou le cuivre sur des substrats, contribuant ainsi à la production de revêtements métalliques ou de placages.
L'acide glyoxylique (acide oxoacétique) peut être utilisé comme réactif ou étalon dans les méthodes de chimie analytique, telles que la chromatographie ou la spectrophotométrie.

L'acide glyoxylique (acide oxoacétique) peut servir de matériau de référence à des fins de quantification ou d'identification dans les analyses chimiques.
Les chercheurs explorent les applications pharmaceutiques potentielles des dérivés de l'acide glyoxylique (acide oxoacétique) dans la découverte et le développement de médicaments.
Les formes modifiées de l'acide glyoxylique peuvent présenter des activités biologiques et des propriétés pharmacologiques pertinentes pour la chimie médicinale.

L'acide glyoxylique (acide oxoacétique) peut fonctionner comme un ajusteur de pH ou un tampon dans diverses formulations, où un contrôle précis du pH est nécessaire.
L'acide glyoxylique (acide oxoacétique) peut aider à maintenir les niveaux d'acidité ou d'alcalinité souhaités dans les solutions, les suspensions ou les émulsions dans les procédés industriels ou les expériences de laboratoire.
Dans le domaine de l'ingénierie environnementale et du traitement des eaux usées, l'acide glyoxylique (acide oxoacétique) peut être impliqué dans des processus chimiques visant à la détoxification, à la dégradation ou à l'élimination des polluants organiques de l'eau ou des effluents contaminés.

Les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent participer aux réactions de polymérisation, conduisant à la formation de matériaux polymères aux propriétés spécifiques.
Ces polymères peuvent trouver des applications dans les revêtements, les adhésifs, les produits d'étanchéité ou les matériaux spécialisés.
L'acide glyoxylique (acide oxoacétique) peut former des complexes stables avec les ions métalliques, influençant leur réactivité et leur coordination chimique.

Ces complexes peuvent avoir des applications en catalyse, en chimie de coordination ou en science des matériaux.
Les dérivés de l'acide glyoxylique (acide oxoacétique), tels que ses sels ou ses esters, peuvent avoir des applications potentielles dans la conservation des aliments ou les matériaux d'emballage des aliments.
Ils pourraient aider à prolonger la durée de conservation des produits alimentaires en inhibant la croissance microbienne ou la dégradation oxydative.

L'acide glyoxylique (acide oxoacétique) ou ses dérivés peuvent être incorporés dans des produits de santé tels que des désinfectants, des antiseptiques ou des formulations de soins des plaies.
Ils peuvent contribuer aux propriétés antimicrobiennes ou protectrices des tissus de ces produits.
Les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent être utilisés dans les formulations adhésives pour améliorer les propriétés de liaison, la force d'adhérence ou les caractéristiques de durcissement.

Ils peuvent améliorer les performances des adhésifs dans le collage de substrats tels que les métaux, les plastiques ou les composites.
L'acide glyoxylique (acide oxoacétique) peut être appliqué pour la modification de surface ou la fonctionnalisation des matériaux afin de conférer des propriétés spécifiques telles que l'hydrophilie, la résistance à la corrosion ou la bioactivité.
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans les revêtements de surface, les traitements ou les modifications dans diverses industries.

Utilisations de l'acide glyoxylique (acide oxoacétique) :
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans la synthèse d'une variété de réactions.
L'acide glyoxylique (acide oxoacétique) est utilisé dans la réaction de Hopkins Cole, qui est utilisé dans la détection du tryptophane dans les protéines.
L'acide glyoxylique (acide oxoacétique) réagit avec le phénol pour obtenir de l'acide 4-hydroxymandélique, qui, lors d'une réaction ultérieure avec l'ammoniac, donne de l'hydroxyphénylglycine, comme précurseur du médicament amoxicilline.

L'acide glyoxylique (acide oxoacétique) est également utilisé comme matière première pour la préparation de l'acide 4-hydroxyphénylacétique, qui est utilisé pour obtenir de l'aténolol.
L'acide glyoxylique (acide oxoacétique) est utilisé dans les produits suivants : régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir et polymères.
L'acide glyoxylique (acide oxoacétique) a un usage industriel entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).

Le rejet dans l'environnement d'acide glyoxylique (acide oxoacétique) peut se produire à partir d'une utilisation industrielle : formulation de mélanges.
L'acide glyoxylique (acide oxoacétique) est utilisé dans les produits suivants : régulateurs de pH et produits de traitement de l'eau, produits de traitement du cuir et polymères.
L'acide glyoxylique (acide oxoacétique) a un usage industriel entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).

L'acide glyoxylique (acide oxoacétique) est utilisé pour la fabrication de produits chimiques, de textiles, de cuir ou de fourrure, de métaux et de produits métalliques.
Le rejet dans l'environnement d'acide glyoxylique (acide oxoacétique) peut se produire lors d'une utilisation industrielle : dans la production d'articles, en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), dans les adjuvants technologiques sur les sites industriels et comme auxiliaire technologique.
L'acide glyoxylique (acide oxoacétique) est un intermédiaire crucial dans la synthèse de divers composés organiques, notamment les produits pharmaceutiques, les produits agrochimiques, les arômes, les parfums et les colorants.

L'acide glyoxylique (acide oxoacétique) sert d'élément constitutif à de nombreuses molécules complexes en chimie organique.
L'acide glyoxylique (acide oxoacétique) est utilisé dans le traitement des textiles comme agent de fixation pour les colorants réactifs, améliorant la solidité des couleurs des tissus teints.
L'acide glyoxylique (acide oxoacétique) agit également comme agent réducteur pour les teintures de cuve et comme agent de blanchiment pour les textiles.

L'acide glyoxylique (acide oxoacétique) est utilisé dans les produits de lissage des cheveux car il aide à rompre et à reformer les liaisons disulfure dans les cheveux, ce qui donne des cheveux plus lisses et plus raides.
L'acide glyoxylique (acide oxoacétique) est également utilisé dans certaines formulations de soins de la peau pour ses propriétés exfoliantes.
L'acide glyoxylique (acide oxoacétique) est utilisé comme composant du développement de solutions pour stabiliser et fixer les images photographiques sur film ou papier.

L'acide glyoxylique (acide oxoacétique) est utilisé dans le développement de solutions pour fixer des images photographiques sur papier ou film.
L'acide glyoxylique (acide oxoacétique) joue un rôle crucial dans la stabilisation des images développées et dans la prévention de la décoloration ou de la détérioration au fil du temps.
L'acide glyoxylique (acide oxoacétique) trouve une application dans la recherche et la fabrication pharmaceutiques.

L'acide glyoxylique (acide oxoacétique) est utilisé dans la synthèse de certains intermédiaires médicamenteux et ingrédients pharmaceutiques actifs, contribuant ainsi à la production de produits pharmaceutiques à diverses fins thérapeutiques.
L'acide glyoxylique (acide oxoacétique) est utilisé dans la production d'herbicides, de fongicides et d'insecticides.
L'acide glyoxylique (acide oxoacétique) est un élément clé de la synthèse des principes actifs des produits chimiques agricoles utilisés dans la protection des cultures et la lutte antiparasitaire.

L'acide glyoxylique (acide oxoacétique) peut être utilisé dans l'industrie alimentaire comme agent aromatisant ou comme précurseur dans la synthèse d'additifs alimentaires.
L'acide glyoxylique (acide oxoacétique) contribue à la production de certains ingrédients alimentaires ou additifs utilisés pour l'amélioration ou la conservation de la saveur.
L'acide glyoxylique (acide oxoacétique) est utilisé comme réactif dans diverses expériences de laboratoire et analyses chimiques.

L'acide glyoxylique (acide oxoacétique) peut être utilisé pour la dérivation chimique, comme agent réducteur ou pour la synthèse de composés spécifiques dans des contextes de recherche.
Dans l'industrie du cuir, l'acide glyoxylique (acide oxoacétique) sert d'agent tannant et facilite le processus de teinture.
L'acide glyoxylique (acide oxoacétique) aide à fixer les colorants sur les surfaces en cuir, améliorant ainsi la rétention de la couleur et la qualité des produits en cuir teint.

L'acide glyoxylique (acide oxoacétique) est parfois utilisé comme agent réducteur dans les procédés de galvanoplastie pour le dépôt de métal.
L'acide glyoxylique (acide oxoacétique) facilite le dépôt de métaux sur les substrats, contribuant ainsi à la production de revêtements métalliques ou de placages pour diverses applications.
L'acide glyoxylique (acide oxoacétique) peut servir de réactif ou d'étalon dans les méthodes de chimie analytique, telles que la chromatographie ou la spectrophotométrie.

L'acide glyoxylique (acide oxoacétique) peut être utilisé comme matériau de référence à des fins de quantification ou d'identification dans les analyses chimiques.
L'acide glyoxylique (acide oxoacétique) peut agir comme un ajusteur de pH ou un tampon dans diverses formulations où un contrôle précis du pH est nécessaire.
L'acide glyoxylique (acide oxoacétique) aide à maintenir les niveaux d'acidité ou d'alcalinité souhaités dans les solutions, les suspensions ou les émulsions dans les procédés industriels ou les expériences de laboratoire.

Dans le domaine de l'ingénierie environnementale et du traitement des eaux usées, l'acide glyoxylique (acide oxoacétique) peut être impliqué dans des processus chimiques visant à la détoxification, à la dégradation ou à l'élimination des polluants organiques de l'eau ou des effluents contaminés.
L'acide glyoxylique (acide oxoacétique) peut aider au traitement des eaux usées industrielles ou des sites contaminés.
Les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent participer aux réactions de polymérisation, conduisant à la formation de matériaux polymères aux propriétés spécifiques.

Ces polymères peuvent trouver des applications dans les revêtements, les adhésifs, les produits d'étanchéité ou les matériaux spécialisés dans des industries telles que la construction, l'automobile et l'électronique.
L'acide glyoxylique (acide oxoacétique) peut former des complexes stables avec les ions métalliques, influençant leur réactivité et leur coordination chimique.
Ces complexes peuvent avoir des applications en catalyse, en chimie de coordination ou en science des matériaux, contribuant au développement de matériaux et de catalyseurs avancés.

Les dérivés de l'acide glyoxylique (acide oxoacétique), tels que ses sels ou ses esters, peuvent avoir des applications potentielles dans la conservation des aliments ou les matériaux d'emballage des aliments.
Ils pourraient contribuer à prolonger la durée de conservation des produits alimentaires en inhibant la croissance microbienne ou la dégradation oxydative, améliorant ainsi la sécurité et la qualité des aliments.
L'acide glyoxylique (acide oxoacétique) ou ses dérivés peuvent être incorporés dans des produits de santé tels que des désinfectants, des antiseptiques ou des formulations de soins des plaies.

Ils peuvent contribuer aux propriétés antimicrobiennes ou protectrices des tissus de ces produits, aidant à la cicatrisation des plaies et au contrôle des infections.
Les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent être utilisés dans les formulations adhésives pour améliorer les propriétés de liaison, la force d'adhérence ou les caractéristiques de durcissement.
Ils peuvent améliorer les performances des adhésifs dans le collage de substrats tels que les métaux, les plastiques ou les composites, ce qui conduit au développement d'adhésifs haute performance pour diverses applications.

L'acide glyoxylique (acide oxoacétique) peut être appliqué pour la modification de surface ou la fonctionnalisation des matériaux afin de conférer des propriétés spécifiques telles que l'hydrophilie, la résistance à la corrosion ou la bioactivité.
L'acide glyoxylique (acide oxoacétique) peut être utilisé dans les revêtements, les traitements ou les modifications de surface dans diverses industries, notamment les secteurs de l'automobile, de l'aérospatiale et du biomédical.
L'acide glyoxylique (acide oxoacétique) continue d'être étudié pour ses applications potentielles dans divers domaines grâce aux efforts de recherche et de développement.

L'acide glyoxylique (acide oxoacétique) est une propriété chimique unique et une réactivité polyvalente en font un sujet d'intérêt pour l'exploration de nouvelles applications et technologies dans des domaines tels que la science des matériaux, la nanotechnologie et la biotechnologie.
On pense que l'acide glyoxylique (acide oxoacétique) est un marqueur précoce potentiel du diabète de type II.
Acide glyoxylique (acide oxoacétique) L'une des principales conditions de la pathologie du diabète est la production de produits finaux de glycation avancée (AGE) causés par l'hyperglycémie.

L'acide glyoxylique (acide oxoacétique) peut entraîner d'autres complications du diabète, telles que des lésions tissulaires et des maladies cardiovasculaires.
Ils sont généralement formés à partir d'aldéhydes réactifs, tels que ceux présents sur les sucres réducteurs et les alpha-oxoaldéhydes.
Dans une étude, les niveaux de glyoxylate ont été significativement augmentés chez les patients qui ont ensuite été diagnostiqués avec un diabète de type II.
Les taux élevés ont été trouvés parfois jusqu'à trois ans avant le diagnostic, démontrant le rôle potentiel du glyoxylate en tant que marqueur prédictif précoce.

L'acide glyoxylique (acide oxoacétique) est impliqué dans le développement de l'hyperoxalurie, une cause clé de néphrolithiase (communément appelée calculs rénaux).
L'acide glyoxylique (acide oxoacétique) est à la fois un substrat et un inducteur du transporteur d'anions sulfate-1 (sat-1), un gène responsable du transport de l'oxalate, ce qui lui permet d'augmenter l'expression de l'ARNm sat-1 et, par conséquent, l'efflux d'oxalate de la cellule.
L'augmentation de la libération d'oxalate permet l'accumulation d'oxalate de calcium dans l'urine, et donc la formation éventuelle de calculs rénaux.

Dans l'industrie pétrolière, les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent être utilisés comme additifs pour carburant ou comme stimulants de combustion pour améliorer le rendement énergétique, réduire les émissions ou prévenir les dépôts de moteur dans l'essence, le diesel ou le biodiesel.
L'acide glyoxylique (acide oxoacétique) est étudié dans la recherche biomédicale pour ses applications potentielles dans les systèmes d'administration de médicaments, les biomatériaux, l'ingénierie tissulaire ou en tant que composant dans des tests de diagnostic ou des dispositifs médicaux.
Les dérivés de l'acide glyoxylique (acide oxoacétique) peuvent être utilisés dans l'industrie des arômes et des parfums comme éléments constitutifs pour synthétiser des composés aromatiques, des exhausteurs de goût ou des ingrédients parfumés utilisés dans les parfums, les cosmétiques ou les produits alimentaires.

L'acide glyoxylique (acide oxoacétique) est parfois ajouté aux solutions de placage en tant qu'agent complexant ou stabilisant pour améliorer la stabilité de la solution, les taux de dépôt de métal ou la qualité des revêtements plaqués dans les procédés de dépôt électrochimique.
L'acide glyoxylique (acide oxoacétique) est présent dans les fruits non mûrs et dans les jeunes feuilles vertes.
L'acide glyoxylique (acide oxoacétique) a également été trouvé dans les très jeunes betteraves sucrières.

L'acide glyoxylique (acide oxoacétique) se trouve dans les plantes et est un métabolite dans les voies biochimiques des mammifères.
L'acide glyoxylique (acide oxoacétique) est l'un des nombreux acides carboxyliques contenant des cétones et des aldéhydes qui, ensemble, sont abondants dans les aérosols organiques secondaires.
En présence d'eau et de lumière du soleil, l'acide glyoxylique (acide oxoacétique) peut subir une oxydation photochimique.

La photorespiration est le résultat de la réaction secondaire de RuBisCO avec de l'O2 au lieu du CO2.
Bien qu'elle ait d'abord été considérée comme un gaspillage d'énergie et de ressources, la photorespiration s'est avérée être une méthode importante pour régénérer le carbone et le CO2, éliminer le phosphoglycolate toxique et initier des mécanismes de défense.
Dans la photorespiration, le glyoxylate est converti à partir du glycolate par l'activité de la glycolate oxydase dans le peroxysome.

Plusieurs voies de réaction différentes peuvent s'ensuivre, conduisant à divers autres produits à base d'acide carboxylique et d'aldéhyde.
La réaction de condensation de l'acide glyoxylique (acide oxoacétique) est couramment utilisée pour la détection visuelle des amines biogènes dans les coupes histologiques.
Il s'agit de la méthode d'histofluorescence de l'acide glyoxylique (acide oxoacétique) pour la visualisation des monoamines dans les tissus où la fluorescence est analysée par microscopie à fluorescence.

L'acide glyoxylique (acide oxoacétique) est utilisé pour contre-colorer les tissus.
La production et l'utilisation de l'acide glyoxylique (acide oxoacétique) comme agent de nettoyage pour diverses applications industrielles, comme matière première chimique spécialisée et copolymère biodégradable, et comme ingrédient dans les cosmétiques peuvent entraîner son rejet dans l'environnement par divers flux de déchets.
Le pKa de l'acide glyoxylique est de 3,3, ce qui indique que l'acide glyoxylique (acide oxoacétique) existera principalement sous forme d'anion dans les surfaces humides du sol et que les anions devraient avoir une très grande mobilité dans les sols.

S'il est rejeté dans le sol ou dans l'eau, l'acide glyoxylique devrait se biodégrader.
La dégradation peut également se produire dans l'eau éclairée par le soleil par photolyse directe.
L'acide glyoxylique (acide oxoacétique) est produit par deux voies : par l'oxydation du glycolate dans les peroxysomes ou par le catabolisme de l'hydroxyproline dans les mitochondries.

Dans les peroxysomes, l'acide glyoxylique (acide oxoacétique) est converti en glycine par AGT1 ou en oxalate par la glycolate oxydase.
Dans les mitochondries, le glyoxylate est converti en glycine par AGT2 ou en glycolate par glyoxylate réductase.

Une petite quantité de glyoxylate est convertie en oxalate par la lactate déshydrogénase cytoplasmique.
En plus d'être un intermédiaire dans le cycle du glyoxylate, l'acide glyoxylique (acide oxoacétique) est également un intermédiaire important dans la voie de la photorespiration.

Profil d'innocuité de l'acide glyoxylique (acide oxoacétique) :
L'acide glyoxylique (acide oxoacétique) est toxique s'il est ingéré, et l'ingestion peut entraîner une irritation gastro-intestinale, des nausées, des vomissements, des douleurs abdominales et de la diarrhée.
L'ingestion de grandes quantités peut entraîner une toxicité systémique, affectant plusieurs systèmes organiques.
L'exposition à l'acide glyoxylique (acide oxoacétique) peut entraîner des réactions de sensibilisation chez certaines personnes, entraînant une dermatite allergique lors d'un contact ultérieur.

Les personnes sensibilisées peuvent ressentir des démangeaisons, des rougeurs et une inflammation de la peau lorsqu'elles sont exposées à de petites quantités d'acide glyoxylique.
L'acide glyoxylique (acide oxoacétique) est corrosif pour la peau, les yeux et les muqueuses au contact.
L'acide glyoxylique (acide oxoacétique) peut provoquer de graves irritations, des brûlures et des lésions tissulaires.

Le contact avec la peau peut entraîner des rougeurs, des douleurs et des dermatites, tandis que le contact avec les yeux peut entraîner une irritation grave, des larmoiements et des dommages potentiellement permanents aux yeux.
L'inhalation de vapeurs ou d'aérosols d'acide glyoxylique peut irriter les voies respiratoires, entraînant de la toux, un essoufflement et une gêne respiratoire.
Une exposition prolongée ou à des niveaux élevés peut provoquer une irritation pulmonaire ou une détresse respiratoire.

ACIDE GLYOXYLIQUE (GXA)

L'acide glyoxylique (GXA) est un composé organique simple de formule chimique C2H2O3.
L'acide glyoxylique (GXA) est le plus petit acide alpha-céto, constitué d'un groupe fonctionnel acide carboxylique (-COOH) et d'un groupe fonctionnel aldéhyde (-CHO) sur les atomes de carbone adjacents.
L'acide glyoxylique (GXA) est un liquide incolore à jaune pâle avec une odeur caractéristique.

Numéro CAS : 298-12-4
Numéro CE : 206-058-5

Synonymes : oxaldéhyde, hydroxyoxaldéhyde, glyoxalate, glyoxalate, hydrate, hydroxyde d'oxalyle, acide glyoxalique, oxoéthanal, éthanedial, hydrate de glyoxalate, oxaldéhyde, hydrate de glyoxalate, hydroxyoxaldéhyde, glyoxalate, éthanedial, glyoxalate, hydroxyoxaldéhyde, hydroxyde d'oxalyle, acide glyoxalique , Oxoéthanal, Ethanedial, Glyoxalate Hydrate, Oxalaldéhyde, Glyoxalate Hydrate, Hydroxyoxaldehyde, Glyoxalate, Ethanedial, Glyoxaldehyde, Hydroxyoxaldehyde, Oxalyl Hydroxyde, Acide glyoxalique, Oxoethanal, Ethanedial, Glyoxalate Hydrate, Oxalaldehyde, Glyoxaldehyde, Hydroxyoxaldehyde, Glyoxalate, Ethanedial Gly, oxalate, hydroxyoxaldéhyde, hydroxyde d'oxalyle, glyoxalique acide, Oxoéthanal, Ethanedial, Glyoxalate Hydrate, Oxalaldéhyde, Glyoxalate Hydrate, Hydroxyoxaldéhyde, Glyoxalate, Ethanedial, Glyoxalate, Hydroxyoxaldehyde, Oxalyl Hydroxyde, Acide glyoxalique, Oxoethanal, Ethanedial, Glyoxalate Hydrate



APPLICATIONS


L'acide glyoxylique (GXA) est largement utilisé comme intermédiaire dans la synthèse de produits pharmaceutiques, notamment d'antihypertenseurs et d'agents antinéoplasiques.
L'acide glyoxylique (GXA) sert de précurseur clé dans la production de produits agrochimiques tels que les herbicides et les pesticides.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de produits chimiques fins, notamment des parfums, des arômes et des colorants.
L'acide glyoxylique (GXA) est utilisé dans la production de résines et de polymères synthétiques, notamment l'acide polyglycolique (PGA) et l'acide polyglyoxylique (PGAA).
L'acide glyoxylique (GXA) est utilisé dans l'industrie textile comme agent de blanchiment des tissus et des fibres, notamment dans les procédés de teinture et d'impression.

L'acide glyoxylique (GXA) sert de fixateur de colorant, contribuant à améliorer la solidité des couleurs et la durabilité des textiles teints.
L'acide glyoxylique (GXA) est utilisé dans les produits de soins capillaires comme ingrédient clé dans les traitements de lissage et de lissage des cheveux.

Dans l’industrie cosmétique, il est utilisé dans les formulations de soins de la peau comme agent de peeling chimique et agent éclaircissant pour la peau.
L'acide glyoxylique (GXA) est utilisé dans la production d'adhésifs et de produits d'étanchéité pour le collage de divers matériaux, notamment les plastiques et les métaux.

Le composé est utilisé dans la synthèse d'intermédiaires pharmaceutiques tels que les acides aminés et les vitamines.
L'acide glyoxylique (GXA) est utilisé dans la production de produits chimiques photographiques, notamment des révélateurs et des fixateurs.

L'acide glyoxylique (GXA) sert de réactif dans les réactions de synthèse organique, notamment la synthèse de Strecker des acides aminés et la réaction de Darzens.
L'acide glyoxylique (GXA) est utilisé en chimie analytique comme agent de dérivatisation des acides aminés et d'autres composés.
L'acide glyoxylique (GXA) est utilisé dans la production d'exhausteurs de goût et d'additifs alimentaires, notamment la vanilline et l'aspartame.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de composés chiraux et d'intermédiaires pharmaceutiques via des réactions asymétriques.
Le composé est utilisé dans la production d'inhibiteurs de corrosion pour les surfaces métalliques dans les applications industrielles.
L'acide glyoxylique (GXA) sert d'agent réducteur dans certaines réactions chimiques, notamment la synthèse de produits pharmaceutiques et de produits chimiques fins.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de produits agrochimiques tels que les régulateurs de croissance des plantes et les insecticides.
L'acide glyoxylique (GXA) est utilisé dans la production de retardateurs de flamme pour les textiles et les plastiques.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de produits chimiques spécialisés tels que les imidazoles et les oxazolidinones.
L'acide glyoxylique (GXA) est utilisé dans la production d'agents de nettoyage et de désinfection pour les applications domestiques et industrielles.
L'acide glyoxylique (GXA) sert d'agent de réticulation dans la production de matériaux polymères tels que les revêtements et les adhésifs.

L'acide glyoxylique (GXA) est utilisé dans la production de produits chimiques de traitement de l'eau pour la purification et la désinfection.
Le composé est utilisé dans la synthèse de produits pharmaceutiques tels que des antibiotiques et des agents antiviraux.
L'acide glyoxylique (GXA) est utilisé dans la production d'arômes et de parfums destinés aux aliments, aux cosmétiques et aux produits de soins personnels.

L'acide glyoxylique (GXA) est utilisé dans la production de plastifiants pour le PVC (polychlorure de vinyle) et d'autres applications polymères.
L'acide glyoxylique (GXA) est utilisé dans la synthèse de tensioactifs et de détergents destinés à être utilisés dans les produits de nettoyage et les processus industriels.

L'acide glyoxylique (GXA) est utilisé dans la production d'intermédiaires pharmaceutiques tels que des agents antifongiques et des antihistaminiques.
L'acide glyoxylique (GXA) sert d'agent de réticulation dans la production de mousses de polyuréthane et d'élastomères.

Le composé est utilisé dans la synthèse d’antioxydants destinés à être utilisés dans l’emballage et la conservation des aliments.
L'acide glyoxylique (GXA) est utilisé dans la production d'additifs pour encre et toner pour améliorer la qualité d'impression et la durabilité.
L'acide glyoxylique (GXA) sert de catalyseur dans les réactions de synthèse organique, y compris les réactions de condensation aldolique et d'estérification.

L'acide glyoxylique (GXA) est utilisé dans la production de produits chimiques spécialisés tels que des inhibiteurs de corrosion et des additifs pour lubrifiants.
L'acide glyoxylique (GXA) est utilisé dans la synthèse d'herbicides et de régulateurs de croissance des plantes pour les applications agricoles.
L'acide glyoxylique (GXA) sert de stabilisant dans la production de formulations pharmaceutiques pour prévenir la dégradation et prolonger la durée de conservation.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de ligands chiraux pour la catalyse asymétrique en chimie organique.
L'acide glyoxylique (GXA) est utilisé dans la production de complexes métalliques pour des applications de chimie catalytique et de coordination.
L'acide glyoxylique (GXA) sert de précurseur dans la synthèse de composés biologiquement actifs tels que les acides aminés et les nucléosides.

L'acide glyoxylique (GXA) est utilisé dans la production d'agents chélateurs pour les processus d'élimination et de purification des ions métalliques.
L'acide glyoxylique (GXA) est utilisé dans la synthèse de photoinitiateurs pour les revêtements et adhésifs durcissables aux UV.
L'acide glyoxylique (GXA) est un ingrédient clé dans la production d'exhausteurs de goût et d'additifs alimentaires destinés à l'industrie alimentaire.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de parfums et de fragrances destinés à être utilisés dans les produits de soins personnels.
L'acide glyoxylique (GXA) est utilisé dans la production d'additifs de placage métallique pour améliorer l'adhérence et la résistance à la corrosion.

L'acide glyoxylique (GXA) sert de réactif dans la synthèse d'intermédiaires pharmaceutiques tels que les antibiotiques bêta-lactamines.
L'acide glyoxylique (GXA) est utilisé dans la production de polymères spéciaux tels que les polyacrylates et les polyamides.
L'acide glyoxylique (GXA) est utilisé dans la synthèse de stabilisants UV et d'antioxydants pour les applications polymères.
L'acide glyoxylique (GXA) sert d'agent de durcissement dans la production de résines époxy pour revêtements et composites.

L'acide glyoxylique (GXA) est utilisé dans la synthèse de colorants fluorescents et d'indicateurs pour des applications analytiques et diagnostiques.
L'acide glyoxylique (GXA) est utilisé dans la production de biocides et de désinfectants pour le traitement de l'eau et l'assainissement.
L'acide glyoxylique (GXA) sert de précurseur dans la synthèse de matériaux avancés tels que les nanotubes de carbone et les dérivés du graphène.

L'acide glyoxylique (GXA) est utilisé dans les produits de soins capillaires comme ingrédient clé dans les traitements de lissage et de lissage des cheveux.
Dans l’industrie textile, il est utilisé comme agent de blanchiment et fixateur de teinture pour les tissus et les fibres.

L'acide glyoxylique (GXA) est également utilisé dans la production de résines, de plastiques et d'adhésifs.
L'acide glyoxylique (GXA) réagit avec les amines pour former des imines, qui sont des intermédiaires importants dans la synthèse organique.
L'acide glyoxylique (GXA) peut subir des réactions de décarboxylation pour produire du glyoxal, du dioxyde de carbone et de l'eau.
Les solutions d'acide glyoxylique (GXA) peuvent agir comme agents réducteurs dans certaines réactions chimiques.

L'acide glyoxylique (GXA) a un large éventail d'applications industrielles en raison de ses propriétés chimiques polyvalentes.
L'acide glyoxylique (GXA) est considéré comme une substance dangereuse et doit être manipulé avec précaution.

L'exposition à des solutions concentrées ou à des vapeurs d'acide glyoxylique (GXA) peut provoquer une irritation de la peau, des yeux et des voies respiratoires.
Une exposition prolongée ou répétée au composé peut entraîner des effets néfastes sur la santé.

Des précautions de sécurité appropriées, y compris l'utilisation d'un équipement de protection individuelle, doivent être suivies lors de la manipulation de l'acide glyoxylique (GXA).
Les déversements ou fuites d’acide glyoxylique (GXA) doivent être nettoyés rapidement à l’aide de matériaux absorbants appropriés.
Le stockage de l'acide glyoxylique (GXA) doit se faire dans des zones bien ventilées, loin des sources de chaleur, d'ignition et des substances incompatibles.
Dans l’ensemble, l’acide glyoxylique (GXA) est un composé chimique important ayant diverses applications industrielles dans divers domaines.



DESCRIPTION


L'acide glyoxylique (GXA) est un composé organique simple de formule chimique C2H2O3.
L'acide glyoxylique (GXA) est le plus petit acide alpha-céto, constitué d'un groupe fonctionnel acide carboxylique (-COOH) et d'un groupe fonctionnel aldéhyde (-CHO) sur les atomes de carbone adjacents.
L'acide glyoxylique (GXA) est un liquide incolore à jaune pâle avec une odeur caractéristique.
L'acide glyoxylique (GXA) est hautement soluble dans l'eau et miscible avec de nombreux solvants organiques.

L'acide glyoxylique (GXA) est produit industriellement par diverses méthodes, notamment l'oxydation du glyoxal ou l'oxydation de l'acide glycolique.
L'acide glyoxylique (GXA) est utilisé dans diverses applications dans différentes industries.
Dans l'industrie chimique, l'acide glyoxylique (GXA) est un intermédiaire polyvalent dans la synthèse de nombreux composés organiques, notamment les produits pharmaceutiques, agrochimiques et de chimie fine.
L'acide glyoxylique (GXA) sert de précurseur à la synthèse de divers dérivés tels que l'acide glycolique, l'acide oxalique et les imidazoles.

Dans l'industrie cosmétique, l'acide glyoxylique (GXA) est utilisé dans les traitements de lissage et de lissage des cheveux.
L'acide glyoxylique (GXA) réagit avec les protéines de la kératine capillaire pour former des liaisons temporaires, permettant aux cheveux d'être remodelés et lissés.
Cette application a gagné en popularité comme alternative aux traitements de lissage chimiques traditionnels contenant du formaldéhyde.

Outre ses applications industrielles et cosmétiques, l'acide glyoxylique (GXA) a été étudié pour son potentiel comme intermédiaire chimique dans la production de carburants renouvelables et comme catalyseur dans les réactions de synthèse organique.
Cependant, il est important de manipuler l'acide glyoxylique (GXA) avec précaution en raison de sa nature corrosive et des dangers potentiels associés à l'exposition.

L'acide glyoxylique (GXA) est un liquide incolore à jaune pâle avec une odeur âcre.
L'acide glyoxylique (GXA) a une formule moléculaire de C2H2O3 et une masse molaire d'environ 74,04 g/mol.
L'acide glyoxylique (GXA) est hautement soluble dans l'eau, l'éthanol et d'autres solvants polaires.

L'acide glyoxylique (GXA) est un composé réactif en raison de la présence de groupes fonctionnels acide carboxylique et aldéhyde.
L'acide glyoxylique (GXA) est couramment utilisé comme intermédiaire chimique dans les réactions de synthèse organique.
L'acide glyoxylique (GXA) est un acide alpha-céto, ce qui signifie qu'il contient un groupe carbonyle adjacent à un groupe carboxyle.

L'acide glyoxylique (GXA) peut subir diverses réactions chimiques, notamment des réactions d'oxydation, de réduction et de condensation.
Dans les solutions aqueuses, il existe en équilibre avec sa forme hydratée, l'acide glyoxylique (GXA) hydraté.

L'acide glyoxylique (GXA) est hygroscopique, ce qui signifie qu'il absorbe facilement l'humidité de l'atmosphère.
L'acide glyoxylique (GXA) présente des propriétés acides et peut subir des réactions acido-basiques avec des bases fortes pour former des sels.
L'acide glyoxylique (GXA) est utilisé comme précurseur dans la synthèse de produits pharmaceutiques, agrochimiques et de chimie fine.



PROPRIÉTÉS


Propriétés physiques:

Aspect : Liquide incolore à jaune pâle
Odeur : Odeur âcre
Goût : Goût aigre
Densité : Environ 1,27 g/cm³
Point de fusion : 108-110°C
Point d'ébullition : se décompose avant l'ébullition
Solubilité : Très soluble dans l’eau, miscible avec de nombreux solvants organiques tels que l’éthanol et l’acétone
Pression de vapeur : Faible pression de vapeur
Viscosité : Liquide à faible viscosité
Hygroscopique : Hygroscopique, absorbe l'humidité de l'atmosphère
pH : Généralement acide (pH autour de 2-3 en solution aqueuse)


Propriétés chimiques:

Formule chimique : C2H2O3
Poids moléculaire : environ 74,04 g/mol
Groupes fonctionnels : contient à la fois un groupe fonctionnel acide carboxylique (-COOH) et un groupe fonctionnel aldéhyde (-CHO).
Acidité : Propriétés acides dues à la présence d'un groupe acide carboxylique
Réactivité : Réagit avec les bases pour former des sels, subit des réactions de condensation avec des alcools et des amines, subit des réactions d'oxydation et de réduction
Stabilité : Stable dans des conditions normales de stockage, mais peut subir une décomposition lors d'une exposition à la chaleur, à la lumière ou à des acides ou bases forts.
Inflammabilité : Ininflammable et incombustible
Hydrolyse : subit une hydrolyse pour former de l'acide glycolique et du dioxyde de carbone dans des solutions aqueuses



PREMIERS SECOURS


Inhalation:

Si des vapeurs d'acide glyoxylique (GXA) sont inhalées, déplacez immédiatement la personne affectée à l'air frais.
Permettez à la personne de se reposer dans un endroit bien ventilé.
Si les difficultés respiratoires persistent ou si la personne est inconsciente, consulter immédiatement un médecin.
Fournir un soutien en oxygène si disponible et formé pour le faire.
Gardez la personne affectée au chaud et à l'aise.


Contact avec la peau:

Si l'acide glyoxylique (GXA) entre en contact avec la peau, retirez immédiatement les vêtements contaminés et rincez la zone affectée avec beaucoup d'eau pendant au moins 15 minutes.
Utilisez du savon doux et de l'eau tiède pour laver soigneusement la peau et éliminer tout résidu restant.
Consulter un médecin en cas d'irritation, de rougeur ou de brûlures chimiques.
Évitez d'utiliser des crèmes, des pommades ou des lotions, sauf avis contraire du personnel médical.


Lentilles de contact:

En cas de contact avec l'acide glyoxylique (GXA), rincer immédiatement les yeux à grande eau courante pendant au moins 15 minutes, en maintenant les paupières ouvertes pour assurer un rinçage complet.
Retirez les lentilles de contact le cas échéant et continuez à rincer.
Consultez immédiatement un médecin, même si les symptômes semblent mineurs.
Fournir des informations pertinentes sur l’exposition au personnel médical.


Ingestion:

Si l'acide glyoxylique (GXA) est ingéré accidentellement et que la personne est consciente, ne pas faire vomir sauf indication contraire du personnel médical.
Rincer abondamment la bouche avec de l'eau pour éliminer toute substance restante.
Ne rien donner à boire si la personne est inconsciente ou présente des convulsions.
Consulter immédiatement un médecin et fournir des informations sur la quantité ingérée et la durée de l'exposition.


Premiers secours généraux :

Rassurez la personne concernée et gardez-la calme.
Surveillez les signes vitaux tels que le pouls, la respiration et le niveau de conscience.
Gardez la personne concernée au chaud et à l'aise en attendant une assistance médicale.
Si des soins médicaux sont nécessaires, fournissez les fiches de données de sécurité (FDS) ou les informations sur le produit pertinentes aux professionnels de la santé.
N’administrer aucun médicament sauf indication contraire du personnel médical.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle (EPI) :
Portez un EPI approprié, y compris des gants résistant aux produits chimiques, des lunettes de sécurité et des vêtements de protection, lors de la manipulation de l'acide glyoxylique (GXA) pour éviter tout contact avec la peau et les yeux.
Utilisez une protection respiratoire, telle qu'un respirateur approuvé par le NIOSH, si vous manipulez de l'acide glyoxylique (GXA) dans des zones mal ventilées ou lors d'activités pouvant générer des vapeurs ou des aérosols.

Ventilation:
Manipulez l'acide glyoxylique (GXA) dans des zones bien ventilées ou sous une ventilation par aspiration locale pour minimiser l'exposition par inhalation.
Utiliser des sorbonnes ou d'autres mesures de confinement lorsque vous travaillez avec des solutions concentrées ou de grandes quantités d'acide glyoxylique (GXA).

Précautions d'emploi:
Évitez tout contact cutané direct avec l'acide glyoxylique (GXA) en portant un EPI approprié et en pratiquant une bonne hygiène chimique.
Prévenez les déversements et les fuites en utilisant des mesures de confinement appropriées, telles que des plateaux de confinement secondaire ou des kits de déversement.
Soyez prudent lors du transfert d'acide glyoxylique (GXA) entre des conteneurs afin de minimiser le risque d'éclaboussures ou de déversements.

Compatibilité de stockage :
Conservez l'acide glyoxylique (GXA) dans des récipients fabriqués à partir de matériaux compatibles, tels que le polyéthylène haute densité (HDPE) ou le verre, pour éviter les réactions chimiques ou la dégradation.
Assurez-vous que les conteneurs de stockage sont hermétiquement fermés pour empêcher la pénétration d’humidité et minimiser le risque de déversements ou de fuites.
Étiquetez les conteneurs de stockage avec les avertissements de danger et les instructions de manipulation appropriés pour une identification facile.

Séparation des substances incompatibles :
Conservez l'acide glyoxylique (GXA) à l'écart des substances incompatibles, y compris les oxydants forts, les bases et les agents réducteurs, pour éviter les réactions chimiques ou la contamination.
Maintenir des distances de séparation adéquates entre l'acide glyoxylique (GXA) et les autres produits chimiques pour minimiser le risque de mélange ou d'exposition accidentel.


Stockage:

Conditions de stockage:
Conservez l'acide glyoxylique (GXA) dans un endroit frais, sec et bien ventilé, à l'abri de la lumière directe du soleil et des sources de chaleur ou d'inflammation.
Maintenir les températures de stockage dans la plage recommandée pour éviter la dégradation ou la décomposition de l'acide glyoxylique (GXA).
Inspectez régulièrement les zones de stockage pour détecter tout signe de dommage ou de détérioration et résolvez tout problème rapidement.

Gestion de l'inventaire:
Tenir des registres précis des stocks d'acide glyoxylique (GXA), y compris les quantités, les numéros de lot et les dates de péremption, pour faciliter un stockage et une manipulation appropriés.
Effectuez une rotation des stocks si nécessaire pour garantir que les lots plus anciens sont utilisés avant les plus récents afin de minimiser le risque d'expiration ou de dégradation.

Mesures de sécurité:
Limiter l'accès aux zones de stockage de l'acide glyoxylique (GXA) au personnel autorisé formé aux procédures de manipulation appropriées.
Mettez en œuvre des mesures de sécurité, telles que des verrous ou des contrôles d'accès, pour empêcher tout accès non autorisé ou toute altération des conteneurs d'acide glyoxylique (GXA).

Préparation aux urgences:
Gardez les matériaux de confinement des déversements, les douches oculaires d'urgence et les douches de sécurité à proximité des zones de stockage d'acide glyoxylique (GXA).
Élaborer et réviser régulièrement les procédures d'intervention d'urgence en cas de déversements, de fuites ou d'autres incidents impliquant l'acide glyoxylique (GXA).

Conformité réglementaire :
Se conformer à toutes les réglementations et directives applicables régissant le stockage et la manipulation de l'acide glyoxylique (GXA), y compris les réglementations OSHA, les codes de prévention des incendies locaux et les réglementations environnementales.
Conserver une documentation appropriée, y compris des fiches de données de sécurité (FDS) et des inventaires de produits chimiques, pour démontrer la conformité aux exigences réglementaires.