Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. This colorless liquid is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. It has a relatively high boiling point. Dimethyl sulfoxide (DMSO) has the unusual property that many individuals perceive a garlic-like taste in the mouth after contact with the skin.
In terms of chemical structure, the molecule has idealized Cs symmetry. It has a trigonal pyramidal molecular geometry consistent with other three-coordinate S(IV) compounds, with a nonbonded electron pair on the approximately tetrahedral sulfur atom.
CAS NO: 67-68-5
EC Number: 200-664-3
IUPAC NAMES:
Dimethyl Sulfoxide
Dimethyl sulfoxide
dimethyl sulfoxide
Dimethyl Sulfoxide
Dimethyl sulfoxide
dimethyl sulfoxide
Dimethyl sulphoxide, anhydrous
Dimethylsulfoxid
Dimethylsulfoxide
DMSO, Methyl Sulfoxide
methanesulfinylmethane
Methylsulfinidemethane
methylsulfinylmethan
methylsulfinylmethane
SYNONYMS
dimethyl sulfoxide;DMSO;67-68-5;Methyl sulfoxide;Methylsulfinylmethane;Dimethylsulfoxide;Dimethyl sulphoxide;Methane, sulfinylbis-;Demsodrox;Demasorb;Demavet;Dimexide;Domoso;Dromisol;Durasorb;Infiltrina;Somipront;Syntexan;Deltan;Demeso;Dolicur;Hyadur;sulfinylbismethane;Dimethyl sulfur oxide;Dermasorb;Dipirartril-tropico;Doligur;Kemsol;Topsym;Gamasol 90;Sulfinylbis(methane);Dimethylsulphoxid;Sclerosol;Rimso-50;Dimethylsulfoxid;Dimethylsulfoxyde;Rimso 50;SQ 9453;NSC-763;Caswell No. 381;Dimetil sulfoxido;Dimethyli sulfoxidum;CCRIS 943;Methane;1,1'-sulfinylbis-;(methylsulfinyl)methane;methylsulfoxide;(CH3)2SO;DMS-90;NSC 763;A 10846;Methyl sulphoxide;dimethyl-sulfoxide;S(O)Me2;M 176;UNII-YOW8V9698H;MFCD00002089;EPA Pesticide Chemical Code 000177;DMS 70;DMS 90;AI3-26477;CHEMBL504;NSC763;YOW8V9698H;Dimethyl sulfoxide, HPLC Grade;CHEBI:28262;SQ-9453;Dimethyl sulfoxide, 99%;Sulfinylbis-methane;Topsym (rescinded);Rimso-5;Domoso (Veterinary);Methyl sulfoxide, 99.7%, pure;Dimexidum;sulfinyldimethane;Dimetilsolfossido;Dimetilsolfossido [DCIT];Dimethyl sulpoxide;Methyl sulfoxide, 99.8+%, for HPLC;Methyl sulfoxide, 99.8+%, extra pure;HSDB 80;Methyl sulfoxide, 99.5+%, for analysis;Methyl sulfoxide, 99.9+%, ACS reagent;Sulfoxide, dimethyl;methanesulfinylmethane;DMS-70;Dimethylsulfoxyde [INN-French];Dimetil sulfoxido [INN-Spanish];(methanesulfinyl)methane;Dimethyli sulfoxidum [INN-Latin];Methyl sulfoxide, 99.8+%, for peptide synthesis;EINECS 200-664-3;Methyl sulfoxide, 99.7+%, Extra Dry, AcroSeal(R);C2H6OS;Diluent;dimethysulfoxide;dimethvlsulfoxide;dimethyisulfoxide;dimethylsulphoxid;dimethy sulfoxide;dimetyl sulfoxide;dimethyisulphoxide;Methyl sulfoxide, 99.7+%, Extra Dry over Molecular Sieve, AcroSeal(R);dimethyl sulfoxyde;dimethyl-sulfoxyde;dimethyl suiphoxide;dimethyl-sulphoxide;dirnethyl sulfoxide;Dimethyl sulfoxixde;methylsulfmylmethane;dimethyl sulf oxide;Sulfinyl bis(methane);2-Thiapropane2-oxide;Dimethyl sulfoxide [USAN:USP:INN:BAN];DMSO, sterile filtered;dimethylsulfoxide solution;Methyl sulfoxide (8CI);Rimso-50 (TN);Dimethyl sulfoxide(DMSO);DMSO (Sterile-filtered);DMSO, Dimethyl Sulfoxide;DSSTox_CID_1735;Dimethyl sulfoxide solution;(DMSO);DMSO (Dimethyl sulfoxide);EC 200-664-3;Sulfinylbis-methane (9CI);ACMC-1BH88;DSSTox_RID_76298;H3C-SO-CH3;BIDD:PXR0182;DSSTox_GSID_21735;Dimethyl sulfoxide, >=99%;Dimethyl sulfoxide, anhydrous;Dimethyl sulfoxide, for HPLC;Methane, sulfinylbis- (9CI);WLN: OS1&1;Dimethyl sulfoxide, >=99.5%;Dimethyl sulfoxide, PCR Reagent;DTXSID2021735;Dimethyl sulfoxide, ACS reagent;Methyl sulfoxide, >=99%, FG;Dimethyl sulfoxide, p.a., 99%;Dimethyl sulfoxide, LR, >=99%;Pharmakon1600-01506122;Dimethyl sulfoxide (JAN/USP/INN);ZINC5224188;Tox21_300957;ANW-42740;BDBM50026472;NSC760436;STL264194;Dimethyl sulfoxide, AR, >=99.5%;AKOS000121107;CCG-213615;DB01093;Dimethyl sulfoxide, analytical standard;MCULE-2005841258;NSC-760436;CAS-67-68-5;MRF-0000764;(methanesulfinyl)methanedimethyl sulfoxide;Dimethyl sulfoxide, for molecular biology;NCGC00163958-01;NCGC00163958-02;NCGC00163958-03;NCGC00254859-01;Dimethyl sulfoxide, anhydrous, >=99.9%;Dimethyl sulfoxide, HPLC grade, 99.9%;SC-16101;Dimethyl Sulfoxide [for Spectrophotometry],Dimethyl sulfoxide, for HPLC, >=99.5%;Dimethyl sulfoxide, for HPLC, >=99.7%;DS-015031;D0798;D1159;D5293;Dimethyl sulfoxide, ACS reagent, >=99.9%;Dimethyl sulfoxide, AldraSORB(TM), 99.8%;FT-0625099;FT-0625100;Dimethyl sulfoxide, p.a., ACS reagent, 99.9%;Dimethyl sulfoxide, SAJ first grade, >=99.0%;Dimethyl sulfoxide, JIS special grade, >=99.0%;Dimethyl sulfoxide, Vetec(TM) reagent grade, 99%;Q407927;Dimethyl sulfoxide, UV HPLC spectroscopic, 99.9%;Dimethyl sulfoxide, anhydrous, ZerO2(TM), >=99.9%
spectrophotometric grade, >=99.9%;Dimethyl sulfoxide, puriss. p.a., dried, <=0.02% water;4H-1,3-oxazine,2-cyclopentyl-5,6-dihydro-4,4,7-trimethyl-;Dimethyl sulfoxide, >=99.5% (GC),
Synthesis and production
It was first synthesized in 1866 by the Russian scientist Alexander Zaytsev, who reported his findings in 1867. Dimethyl sulfoxide is produced industrially from dimethyl sulfide, a by-product of the Kraft process, by oxidation with oxygen or nitrogen dioxide.
Reactions
Reactions with electrophiles
The sulfur center in Dimethyl sulfoxide (DMSO) is nucleophilic toward soft electrophiles and the oxygen is nucleophilic toward hard electrophiles. With methyl iodide it forms trimethylsulfoxonium iodide,
This salt can be deprotonated with sodium hydride to form the sulfur yield
Acidity
The methyl groups of Dimethyl sulfoxide (DMSO) are only weakly acidic, with a pKa = 35. For this reason, the basicities of many weakly basic organic compounds have been examined in this solvent.
Deprotonation of Dimethyl sulfoxide (DMSO) requires strong bases like lithium diisopropylamide and sodium hydride. Stabilization of the resultant carbanion is provided by the S(O)R group. The sodium derivative of Dimethyl sulfoxide (DMSO) formed in this way is referred to as dimsyl sodium. It is a base, e.g., for the deprotonation of ketones to form sodium enolates, phosphonium salts to form Wittig reagents, and formamidinium salts to form diaminocarbenes. It is also a potent nucleophile.
Oxidant
In organic synthesis, Dimethyl sulfoxide (DMSO) is used as a mild oxidant, as illustrated by the Pfitzner–Moffatt oxidation and the Swern oxidation.
Ligand and Lewis base
Related to its ability to dissolve many salts, Dimethyl sulfoxide (DMSO) is a common ligand in coordination chemistry. Illustrative is the complex dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) (RuCl2(dmso)4). In this complex, three Dimethyl sulfoxide (DMSO) ligands are bonded to ruthenium through sulfur. The fourth Dimethyl sulfoxide (DMSO) is bonded through oxygen. In general, the oxygen-bonded mode is more common.
In carbon tetrachloride solutions Dimethyl sulfoxide (DMSO) functions as a Lewis base with a variety Lewis acids such as I2, phenols, trimethyltin chloride, metalloporphyrins, and the dimer Rh2Cl2(CO)4. The donor properties are discussed in the ECW model. The relative donor strength of Dimethyl sulfoxide (DMSO) toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.
Applications
Dimethyl sulfoxide (DMSO) is a polar aprotic solvent and is less toxic than other members of this class, such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, and HMPA. Dimethyl sulfoxide (DMSO) is frequently used as a solvent for chemical reactions involving salts, most notably Finkelstein reactions and other nucleophilic substitutions. It is also extensively used as an extractant in biochemistry and cell biology. Because Dimethyl sulfoxide (DMSO) is only weakly acidic, it tolerates relatively strong bases and as such has been extensively used in the study of carbanions. A set of non-aqueous pKa values (C-H, O-H, S-H and N-H acidities) for thousands of organic compounds have been determined in Dimethyl sulfoxide (DMSO) solution.
Because of its high boiling point, 189 °C (372 °F), Dimethyl sulfoxide (DMSO) evaporates slowly at normal atmospheric pressure. Samples dissolved in Dimethyl sulfoxide (DMSO) cannot be as easily recovered compared to other solvents, as it is very difficult to remove all traces of Dimethyl sulfoxide (DMSO) by conventional rotary evaporation. One technique to fully recover samples is the removal of the organic solvent by evaporation followed by the addition of water (to dissolve Dimethyl sulfoxide (DMSO)) and cryodesiccation to remove both Dimethyl sulfoxide (DMSO) and water. Reactions conducted in Dimethyl sulfoxide (DMSO) are often diluted with water to precipitate or phase-separate products. The relatively high freezing point ofDimethyl sulfoxide (DMSO), 18.5 °C (65.3 °F), means that at, or just below, room temperature it is a solid, which can limit its utility in some chemical processes (e.g. crystallization with cooling).
In its deuterated form (DMSO-d6), it is a useful solvent for NMR spectroscopy, again due to its ability to dissolve a wide range of analytes, the simplicity of its own spectrum, and its suitability for high-temperature NMR spectroscopic studies. Disadvantages to the use of DMSO-d6 are its high viscosity, which broadens signals, and its hygroscopicity, which leads to an overwhelming H2O resonance in the 1H-NMR spectrum. It is often mixed with CDCl3 or CD2Cl2 for lower viscosity and melting points.
Dimethyl sulfoxide (DMSO) is also used to dissolve test compounds in vitro drug discovery and drug design screening programs (including high-throughput screening programs). This is because it is able to dissolve both polar and nonpolar compounds, can be used to maintain stock solutions of test compounds (important when working with a large chemical library), is readily miscible with water and cell culture media, and has a high boiling point (this improves the accuracy of test compound concentrations by reducing room temperature evaporation). One limitation with Dimethyl sulfoxide (DMSO) is that it can affect cell line growth and viability (with low Dimethyl sulfoxide (DMSO) concentrations sometimes stimulating cell growth, and high Dimethyl sulfoxide (DMSO) concentrations sometimes inhibiting or killing cells).
Dimethyl sulfoxide (DMSO) is used as a vehicle in vivo studies of test compounds too. It has. As with its use in in vitro studies, Pleiotropic effects can occur.
In addition to the above, Dimethyl sulfoxide (DMSO) is finding increased use in manufacturing processes to produce microelectronic devices. It is widely used to strip photoresist in TFT-LCD 'flat panel' displays and advanced packaging applications (such as wafer-level packaging/solder bump patterning). Dimethyl sulfoxide (DMSO) is an effective paint stripper too, being safer than many of the others such as nitromethane and dichloromethane.
Biology
Dimethyl sulfoxide (DMSO) is used in a polymerase chain reaction (PCR) to inhibit secondary structures in the DNA template or the DNA primers. It is added to the PCR mix before reacting, where it interferes with the self-complementarity of the DNA, minimizing interfering reactions.
Dimethyl sulfoxide (DMSO) in a PCR reaction is applicable for supercoiled plasmids (to relax before amplification) or DNA templates with high GC content (to decrease thermostability). For example, 10% final concentration of Dimethyl sulfoxide (DMSO) in the PCR mixture with Phusion decreases primer annealing temperature (i.e. primer melting temperature) by 5.5–6.0 °C (9.9–10.8 °F).
Dimethyl sulfoxide (DMSO) may also be used as a cryoprotectant, added to cell media to reduce ice formation and thereby prevent cell death during the freezing process. Approximately 10% may be used with a slow-freeze method, and the cells may be frozen at −80 °C (−112 °F) or stored in liquid nitrogen safely.
In cell culture, Dimethyl sulfoxide (DMSO) is used to induce differentiation of P19 embryonic carcinoma cells into cardiomyocytes and skeletal muscle cells.
Medicine
Use of Dimethyl sulfoxide (DMSO) in medicine dates from around 1963, when an Oregon Health & Science University Medical School team, headed by Stanley Jacob, discovered it could penetrate the skin and other membranes without damaging them and could carry other compounds into a biological system. In medicine, Dimethyl sulfoxide (DMSO) is predominantly used as a topical analgesic, a vehicle for topical application of pharmaceuticals, as an anti-inflammatory, and an antioxidant. Because Dimethyl sulfoxide (DMSO) increases the rate of absorption of some compounds through biological tissues, including skin, it is used in some transdermal drug delivery systems. Its effect may be enhanced with the addition of EDTA. It is frequently compounded with antifungal medications, enabling them to penetrate not just skin but also toenails and fingernails.
In interventional radiology, Dimethyl sulfoxide (DMSO) is used as a solvent for ethylene-vinyl alcohol in the Onyx liquid embolic agent, which is used in embolization, the therapeutic occlusion of blood vessels.
In cryobiology, Dimethyl sulfoxide (DMSO) has been used as a cryoprotectant and is still an important constituent of cryoprotectant vitrification mixtures used to preserve organs, tissues, and cell suspensions. Without it, up to 90% of frozen cells will become inactive. It is particularly important in the freezing and long-term storage of embryonic stem cells and hematopoietic stem cells, which are often frozen in a mixture of 10% Dimethyl sulfoxide (DMSO), a freezing medium, and 30% fetal bovine serum. In the cryogenic freezing of heteroploid cell lines (MDCK, VERO, etc.) a mixture of 10% Dimethyl sulfoxide (DMSO) with 90% EMEM (70% EMEM + 30% fetal bovine serum + antibiotic mixture) is used. As part of an autologous bone marrow transplant, the Dimethyl sulfoxide (DMSO) is re-infused along with the patient's own hematopoietic stem cells.
Dimethyl sulfoxide (DMSO) is metabolized by disproportionation to dimethyl sulfide and dimethyl sulfone. It is subject to renal and pulmonary excretion. A possible side effect of Dimethyl sulfoxide (DMSO) is therefore elevated blood dimethyl sulfide, which may cause a blood-borne halitosis symptom.
The use of Dimethyl sulfoxide (DMSO) as an alternative treatment for cancer is of particular concern, as it has been shown to interfere with a variety of chemotherapy drugs, including cisplatin, carboplatin, and oxaliplatin. There is insufficient evidence to support the hypothesis that Dimethyl sulfoxide (DMSO) has any effect, and most sources agree that its history of side effects when tested warrants caution when using it as a dietary supplement, for which it is marketed heavily with the usual disclaimer.
Taste
The perceived garlic taste upon skin contact with Dimethyl sulfoxide (DMSO) may be due to the nonolfactory activation of TRPA1 receptors in trigeminal ganglia. Unlike dimethyl and diallyl disulfide (also with odors resembling garlic), the mono- and tri- sulfides (typically with foul odors), and other similar structures, the pure chemical Dimethyl sulfoxide (DMSO) is odorless.
Dimethyl sulfoxide appears as a clear liquid, essentially odorless. Closed cup flash point 192°F. Vapors are heavier than air. Contact with the skin may cause stinging and burning and lead to an odor of garlic on the breath. An excellent solvent that can transport toxic solutes through the skin. High vapor concentrations may cause headache, dizziness, and sedation.
Industry Uses
-Cleaning Solution
-Functional fluids (closed systems)
-Intermediates
-Laboratory chemicals
-Lubricants and lubricant additives
-Paint additives and coating additives not described by other categories
-Plating agents and surface treating agents
-Processing aids, specific to petroleum production
-Propellants and blowing agents
-Solvents (which become part of product formulation or mixture)
-Viscosity adjustors
Consumer Uses
-Electrical and electronic products
-Lubricants and greases
-Metal products not covered elsewhere
General Manufacturing Information
Industry Processing Sectors
-All other chemical products and preparation manufacturing.
-Computer and electronic product manufacturing.
-Electrical equipment, appliance, and component manufacturing.
-Fabricated metal product manufacturing.
-Pesticide, fertilizer, and other agricultural chemical manufacturing.
-Pharmaceutical and medicine manufacturing.
-Plastics product manufacturing.
-Services.
-Wholesale and retail trade.
IDENTIFICATION AND USE:
Dimethyl sulfoxide (DMSO) is a colorless, very hygroscopic, liquid. It is a molecule with a long history in pharmaceutics and is now well established as a penetration enhancer in topical pharmaceutical formulations. It is currently prescribed as medication for this purpose in diclofenac sodium topical solution (approved in the United States to treat signs and symptoms of osteoarthritis) and idoxuridine topical solution (approved in Europe for the treatment of herpes zoster). Dimethyl sulfoxide (DMSO) is used as a medication for symptomatic relief of interstitial cystitis. Dimethyl sulfoxide (DMSO) is not a nutritional supplement, it is metabolized to methylsulfonylmethane (MSM), which is available as a nutritional supplement. Dimethyl sulfoxide (DMSO) is used in the cryopreservation of cell populations including stem cells, embryos, and various cell cultures. It is also used as an industrial solvent and as antifreeze or hydraulic fluid when mixed with water.
Dimethyl sulfoxide's production and use as a reagent in organic synthesis, as an industrial solvent, in industrial cleaners and paint strippers and in medicine may result in its release to the environment through various waste streams. Dimethyl sulfoxide is part of the global atmospheric sulfur cycle and is produced when dimethyl sulfide is photo oxidized. It has been isolated from many plants, is a common constituent of natural waters, and it occurs in seawater in the zone of light penetration where it may represent a product of algal metabolism. If released to air, a vapor pressure of 0.60 mm Hg at 25 °C indicates dimethyl sulfoxide will exist solely as a vapor in the atmosphere. Vapor-phase dimethyl sulfoxide will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 4.3 hours. Vapor-phase dimethyl sulfoxide will also be degraded in the night-time atmosphere by reaction with nitrate radicals; the half-life for this reaction in air is estimated to be 1.4 hours. Dimethyl sulfoxide does not absorb light at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. Dimethyl sulfoxide has been detected in rainwater indicating that it may be removed from the air by wet deposition. If released to soil, dimethyl sulfoxide is expected to have very high mobility based upon an estimated Koc of 2. Volatilization from moist soil surfaces is not expected to be an important fate process based upon a Henry's Law constant of 1.03X10-8 atm-cu m/mole. Dimethyl sulfoxide is expected to slowly volatilize from dry soil surfaces based upon its vapor pressure. The available biodegradation screening tests have conflicting results, but based on available data and weight-of-evidence approach, dimethyl sulfoxide is expected to be inherently biodegradable in soil and water.
Dimethyl sulfoxide occurs widely at levels of 3 ppm or less. It has been isolated from spearmint oil, corn, barley, malt, alfalfa, beets, cabbage, cucumbers, oats, onion, Swiss chard, tomatoes, raspberries, beer, coffee, milk, and tea. Dimethyl sulfoxide is a common constituent of natural waters, and it occurs in seawater in the zone of light penetration where it may represent a product of algal metabolism. Its occurrence in rainwater may result from the oxidation of atmospheric dimethyl sulfide, which occurs as part of the natural transfer of sulfur of biological origin.
DMSO (Dimethyl Sulfoxide) is an organosulfur compound with the formula (CH₃)₂SO. It is a colorless liquid and is a powerful solvent. It dissolves both polar and non-polar compounds. This property makes the Dimethyl sulfoxide miscible in a wide range of organic solvents as well as water.
Sigma Aldrich Dimethyl Sulfoxide Lewis Structure
Dimethyl sulfoxide is a potent solvent because of its highly polar nature. Dimethyl sulfoxide works with ionic compounds, certain salts, and non-ionic compounds.
General description
Dimethyl Sulfoxide is an apolar protic solvent that is generally used as a reaction medium and reagent in organic reactions.
Application
Dimethyl Sulfoxide may be used as an oxidant for the conversion of isonitriles into isocyanates. Dimethyl sulfoxide activated by oxalyl chloride can be used in the oxidation of long-chain alcohols to carbonyls.
Dimethyl Sulfoxide, or dimethyl sulfoxide, is a by-product of papermaking. It comes from a substance found in wood.
Dimethyl Sulfoxide has been used as an industrial solvent since the mid-1800s. From about the mid-20th century, researchers have explored its use as an anti-inflammatory agent.
Dimethyl Sulfoxide is easily absorbed by the skin. It's sometimes used to increase the body's absorption of other medications.
Dimethylsulfoxide is an agent with a wide spectrum of pharmacological effects, including membrane penetration, anti-inflammatory effects, local analgesia, and weak bacteriostasis. The principal use of dimethylsulfoxide is as a vehicle for other drugs, thereby enhancing the effect of the drug, and aiding the penetration of other drugs into the skin. Dimethylsulfoxide has been given orally, intravenously, or topically for a wide range of indications. It is also given by bladder installation in the symptomatic relief of interstitial cystitis and is used as a cryoprotectant for various human tissues.
Dimethyl sulfoxide (DMSO) is an organic solvent in which some secondary metabolites may be dissolved. Unlike most other organic solvents, Dimethyl sulfoxide (DMSO) does not evaporate rapidly at ambient temperature. This is convenient for analytical techniques such as nuclear magnetic resonance spectroscopy in which the analyte must be in the liquid phase. IR spectroscopy, however, is often performed on a sample in which the solvent has been allowed to evaporate. Although it is best to dissolve the metabolite of interest in a solvent that is volatile at ambient temperature, there may be metabolites for which Dimethyl sulfoxide (DMSO) is the only practical solvent. To properly interpret IR data for a metabolite in Dimethyl sulfoxide (DMSO), a spectrum of the solvent without metabolite must also be recorded. A data-analysis program may then be used to subtract the spectrum of the solvent from the spectrum of the metabolite dissolved in the solvent.
Dimethyl Sulfoxide is a prescription medicine and dietary supplement. It can be taken by mouth, applied to the skin (used topically), or injected into the veins.
Dimethyl Sulfoxide is taken by mouth, used topically, or given intravenously for the management of amyloidosis and related symptoms. Amyloidosis is a condition in which certain proteins are deposited abnormally in organs and tissues.
Dimethyl Sulfoxide is used topically to decrease pain and speed the healing of wounds, burns, and muscle and skeletal injuries. Dimethyl Sulfoxide is also used topically to treat painful conditions such as headache, inflammation, osteoarthritis, rheumatoid arthritis, and severe facial pain called tic douloureux. It is used topically for eye conditions including cataracts, glaucoma, and problems with the retina; for foot conditions including bunions, calluses, and fungus on toenails; and for skin conditions including keloid scars and scleroderma. It is sometimes used topically to treat skin and tissue damage caused by chemotherapy when it leaks from the IV that is used to deliver it. Dimethyl Sulfoxide is used either alone or in combination with a drug called idoxuridine to treat pain associated with shingles (herpes zoster infection).
Intravenously, Dimethyl Sulfoxide is used to lower abnormally high blood pressure in the brain. It is also given intravenously to treat bladder infections (interstitial cystitis) and chronic inflammatory bladder disease. The U.S. Food and Drug Administration (FDA) has approved certain Dimethyl Sulfoxide products for placement inside the bladder to treat symptoms of chronic inflammatory bladder disease. Dimethyl Sulfoxide is sometimes placed inside bile ducts with other medications to treat bile duct stones.
Dimethyl sulfoxide (DMSO) is a small molecule with polar, aprotic and amphiphilic properties. It serves as a solvent for many polar and nonpolar molecules and continues to be one of the most used solvents (vehicle) in medical applications and scientific research.
Dimethyl sulfoxide (DMSO); C2H6OS) is a small amphipathic organic molecule with a hydrophilic sulfoxide group and two hydrophobic methyl groups. Being also aprotic, Dimethyl sulfoxide (DMSO) tends to accept rather than donate protons. It can solubilize a wide variety of organic and inorganic compounds at high concentrations. This, as well as its apparent low toxicity, has made Dimethyl sulfoxide (DMSO) to be accepted as a “universal solvent” that is widely used as a vehicle in scientific research, drug screening settings and biomedical applications. Dimethyl sulfoxide (DMSO) is also a commonly used cryoprotectant to protect cells from ice crystal-induced mechanical injury
Roles Classification
Chemical Roles:
Polar aprotic solvent: A solvent with a comparatively high relative permittivity (or dielectric constant), greater than ca. 15, and a sizable permanent dipole moment, that cannot donate suitably labile hydrogen atoms to form strong hydrogen bonds.
Radical scavenger: A role played by a substance that can react readily with, and thereby eliminate, radicals.
Biological Roles:
Alkylating agent: Highly reactive chemical that introduces alkyl radicals into biologically active molecules and thereby prevents their proper functioning. It could be used as an antineoplastic agent, but it might be very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. It could also be used as a component of poison gases.
Application
polar aprotic solvent: A solvent with a comparatively high relative permittivity (or dielectric constant), greater than ca. 15, and a sizable permanent dipole moment, that cannot donate suitably labile hydrogen atoms to form strong hydrogen bonds.
non-narcotic analgesic: A drug that has principally analgesic, antipyretic and anti-inflammatory actions. Non-narcotic analgesics do not bind to opioid receptors.
antidote: Any protective agent counteracting or neutralizing the action of poisons.
MRI contrast agent
Dimethyl sulfoxide (DMSO) is used topically to decrease pain and speed the healing of wounds, burns, and muscle and skeletal injuries. Dimethyl sulfoxide (DMSO) is also used topically to treat painful conditions such as headache, inflammation, osteoarthritis, rheumatoid arthritis, and severe facial pain called tic douloureux. It is used topically for eye conditions including cataracts, glaucoma, and problems with the retina; for foot conditions including bunions, calluses, and fungus on toenails; and for skin conditions including keloid scars and scleroderma. It is sometimes used topically to treat skin and tissue damage caused by chemotherapy when it leaks from the IV that is used to deliver it.
Intravenously, Dimethyl sulfoxide (DMSO) is used to lower abnormally high blood pressure in the brain. It is also given intravenously to treat bladder infections (interstitial cystitis) and chronic inflammatory bladder disease. The U.S. Food and Drug Administration (FDA) has approved certain Dimethyl sulfoxide (DMSO) products for placement inside the bladder to treat symptoms of chronic inflammatory bladder disease. Dimethyl sulfoxide (DMSO) is sometimes placed inside bile ducts with other medications to treat bile duct stones.
Dimethyl sulfoxide (abbreviated DMSO) is a sulfur-containing organic compound; molecule formula: (CH3) 2SO; It exhibits as colorless, odorless, hygroscopic, and flammable transparent liquid at room temperature. It has both high polarities as well as a high-boiling point. It also has aprotic and water-miscible characteristics. It has low toxicity, good thermal stability, and is not miscible with paraffin. It is soluble in water, ethanol, propanol, ether, benzene and chloroform and many other kinds of organic substance and is called the "universal solvent." It is a common organic solvent that has the strongest dissolving ability. It can dissolve most organic compounds including carbohydrates, polymers, peptides, as well as many inorganic salts and gases. It can dissolve a certain amount of solute whose weight equals to 50-60% of itself (other common solvents usually only dissolve 10-20%), so it is very important in the sample management as well as high-speed screening of drugs. Under certain conditions, contact between dimethyl sulfoxide and chloride can even lead to explosive reaction.
dimethyl sulfoxide is widely used as solvents and reagents, particularly as the processing reagent and spinning solvent at the reaction of acrylonitrile polymerization used for polyurethane synthesis and the spinning solvent. It can also be used as the synthetic solvent for polyamide, polyimide and polysulfone resin as well as the extraction solvents for aromatic hydrocarbon and butadiene extraction solvents and solvents for synthesizing chlorofluoroaniline.
Uses
1. It can be used for the extraction of arene, also as the reaction medium used for resins and dyes, and applied to acrylic polymerization and spinning solvent.
2. It can be used as an organic solvent, reaction medium and the intermediates of organic synthesis. It is highly versatile. This product has a highly selective extraction capacity and can be used as the polymerization and condensation solvent of acrylic resin and polysulfone resin, as the polymerization and spinning solvent of polyacrylonitrile and cellulose acetate, as the extraction solvent for separating alkanes and arenes, and as the reaction medium for the arenes, butadiene extraction, acrylic fiber, plastic solvents, organic and synthetic dyes, and pharmaceuticals industries. In the field of medicine, dimethyl sulfoxide has anti-inflammatory and analgesic effects with a strong capability of penetration through the skin, and thus being able to dissolve certain drugs and boost their penetration into the human body to achieve therapeutic purposes. Taking this carrier property of dimethyl sulfoxide can make it be used as pesticide additives. Adding a small amount of dimethyl sulfoxide in some pesticides can facilitate the penetration of pesticides into the plant in order to improve the efficacy. dimethyl sulfoxide can also be used as the dye solvent, dye removing agent, and dye carrier for the synthetic fibers. It can also be used as the absorbent of recycling acetylene and sulfur dioxide and also the modifiers of synthetic fiber, antifreeze agent and the capacitor dielectric, brake oil, and extractant of the rare metals.
3. It can be used as analytic solvents and fixing agent of gas chromatography as well as the solvent for analyzing UV spectra.
Production method
Dimethyl sulfoxide is generally made by using the dimethyl sulfide oxidation method. They have different production processes due to the different oxidants and oxidation types.
1. Methanol carbon disulfide method; take carbon disulfide and methanol as raw materials and use γ-Al2O3 as the catalyst; first synthesize the dimethyl sulfide, then have oxidation reaction with nitrogen dioxide (or nitrate) to obtain dimethyl sulfoxide.
2. The hydrogen peroxide method: take acetone as the buffer medium to have dimethyl sulfide be reacted with hydrogen peroxide. This method of dimethyl sulfo