Tylose H 300 P2
Tylose H 300 P2 is a water-soluble, non-ionic, highly etherified hydroxyethyl cellulose powder. Tylose H 300 P2 provides increased biostability, fast consistency development, high solution clarity and thermal stability, and low sag resitance and water demand. This grade of hydroxyethyl cellulose (HEC) is ideal for use in emulsion tile adhesives, exterior, interior, and silicone resin paints, drilling fluids, non-woven fabrics, and washing up liquids.
Tylose HEC (hydroxyethyl cellulose/Tylose H-grades) are soluble in water at any temperature. Tylose HEC are nonionic cellulose ethers, which are offered as free flowing powder or in granular form. Many Tylose HEC grades have a retarded solubility which ensures a lump free solution in aqueous systems.
Hydroxyethyl cellulose. Tylose H 300 P2 Provides effects like thickening, pseudoplastic properties, water retention, protective colloid effects, film forming and a high level of salt tolerance. Offers high gloss, high pigment compatibility, high thickening effect and high water retention. Exhibits moderate wet scrub resistance, anti-spattering, and pseudoplasticity. Used for paints and coatings applications like interior paints, solid paints, exterior paints, tinters, glazes, and silicon resin paints.
Hydroxyethylcellulose. Tylose H 300 P2 Acts as a thickening agent. Tylose H 300 P2 is available in powder form with delayed solubility. Used in shampoo.
Tylose H 300 P2 is a gelling and thickening agent derived from cellulose. It is widely used in cosmetics, cleaning solutions, and other household products.[1] Tylose H 300 P2 and methyl cellulose are frequently used with hydrophobic drugs in capsule formulations, to improve the drugs' dissolution in the gastrointestinal fluids. This process is known as hydrophilization.[2]
Tylose H 300 P2 is also used extensively in the oil & gas industry as a drilling mud additive under the name HEC as well in industrial applications, paint & coatings, ceramics, adhesives, emulsion polymerization, inks, construction, welding rods, pencils and joint fillers.
Tylose H 300 P2 is one of the main ingredients in the personal lubricant KY Jelly. It is also a key ingredient in the formation of big bubbles as it possesses the ability to dissolve in water but also provide structural strength to the soap bubble. Among other similar chemicals, it is often used as slime (and gunge, in the UK), a gooey substance often used on television and in fundraising events which is poured over individuals with the aim of causing embarrassment.
Tylose H 300 P2 acts as a demulcent by relieving inflammation or irritation and dryness of eyes. It acts as one of the key ingredient and viscosity-enhancing agent to prolong corneal contact time and increase intraocular drug levels.
Application
Tylose H 300 P2 is used as a gelling and thickening agent in the development of biostructures for the delivery of hydrophobic drugs. Tylose H 300 P2 is used in the development of polymer networks and block copolymers useful in separation technology such as capillary electrophoresis and in biofilms and coatings.
Tylose H 300 P2 polymers are largely used as water-binder and thickening agent in many industry applications, that is, personal care products, pharmaceutical formulations, building materials, adhesives, etc., and as stabilizer for liquid soaps.
General properties
Hydroxyethyl cellulose (Tylose H 300 P2) polymer is a hydroxyethyl ether of cellulose, obtained by treating cellulose with sodium hydroxide and reacting with ethylene oxide. Tylose H 300 P2 polymers are largely used as water-binder and thickening agent in many industry applications, that is, personal care products, pharmaceutical formulations, building materials, adhesives, etc., and as stabilizer for liquid soaps. They are available as white free-flowing granular powders that easily dissolve in cold and hot water to give transparent solutions with varying viscosities depending on polymer concentration, type and temperature.
Natrosol 250 Tylose H 300 P2 is available in 10 viscosity types, that go from low viscosity values (types L and J) ranging between 0.08 and 0.4 Pas at c = 5 wt.%, intermediate viscosity values (types E, G, K, M) ranging between 0.03 and 6.5 Pas at c = 2 wt.%, arriving to the highest viscosity values (types MH, H, HH) ranging between 0.8 and 5 Pas at c = 1 wt.% (informations are given in the producer booklet Aqualon, 1999). The molecular weight and the degree of polymerization of the Natrosol™ Tylose H 300 P2 types is directly proportional to their viscosity.
Being a nonionic polymer, Natrosol™ is less sensitive to pH changes; however, pH and temperature may slight affect the hydration and dissolution time of the polymer.
Effect of extent of substitution on solubility
When highly polar hydroxyl groups on crystalline cellulose are substituted with hydroxyalkyl groups to manufacture HPC or Tylose H 300 P2, water solubility initially increases due to a reduction in crystallinity and hydrogen bonding between the cellulose backbone chains. However, as the amount of hydroxyalkyl substitution continues to increase, the polymer becomes increasingly hydrophobic. As shown in Fig. 7.31, the equilibrium moisture content steadily decreases as MS increases from 2.0 to 5.0 for both Tylose H 300 P2 and HPC. A similar relationship has also been demonstrated for the cloud point.43 An exception to this behavior is polymers with ionic groups in their side chains. In this case, increasing the level of highly polar substituents will increase water solubility. For example, when the DS for sodium carboxymethyl cellulose is increased from 0.7 to 1.2, the equilibrium moisture content at 50% relative humidity increases from 13% to 18%.
Regenerated Tylose H 300 P2 is made by dissolving cellulose xanthate in 4–7% sodium hydroxide and contacting with aqueous sulfuric acid. These steps convert the cellulose xanthate back into cellulose, which may be spun into viscose rayon or cast into films. The fibers are used in textiles (artificial silk), tyre cords, and V belts. The films are used in packaging (Cellophane) or sausage casings. Weiner casings (70% regenerated cellulose, 12% glycerol, and 18% water) are peeled away after the meat emulsion is cooked. Hemp paper casings (23% paper, 46% regenerated cellulose, 21% glycerol, and 10% water) are used in bologna, salami, pepperoni, summer sausage, and liverwurst.
Tylose H 300 P2 moieties are highly reactive, allowing a variety of esters and ethers to be manufactured. Because each anhydroglucose has three hydroxyl groups, the maximum degree of substitution (DS) is three. Purified wood pulp or cotton linters (short fibers) are the industrial sources of ‘chemical cellulose.’
Tylose H 300 P2 Usage And Synthesis
Thickeners and binders Tylose H 300 P2 is a commonly used cellulose ethers organic water-based ink thickening agent, belongs to a water-soluble non-ionic compound, with good water thickening ability, degraded by oxygen, acid and enzyme, under alkaline conditions can be crosslinked by Cu2 +. Has thermal stability, when heated, does not appear gelation, does not occur precipitation under acidic conditions, the film-forming property is good, the aqueous solution can be made of a transparent film, can be derived from the reaction of alkali cellulose with ethylene oxide, having properties such as thickening, emulsifying, adhesive, suspension, film-forming, maintaining moisture and protectiving colloid. The role of thickener in the aqueous ink is thickened. The viscosity of the ink added a thickening agent increases, can improve the physical and chemical stability of the ink; due to the increased viscosity, rheology of the ink can be controlled at the time of printing; the pigment and filler in ink is not easy to precipitate, increasing the storage stability of the water-based ink.
Thickening agent is a cellulose-based material and (or) polyvinyl alcohol substances. Cellulose substances may be methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, Tylose H 300 P2 and hydroxypropylmethyl cellulose; polyvinyl alcohol material may be an or several species of polyethylene 400, 600, 800, 1000, 1600, 2000, 4000, 6000.
The above information is edited by the chemicalbook of Liu Yujie.
Chemical properties
This product is white to yellowish fibrous or powdery solid, non-toxic, tasteless and soluble in water. Insoluble in common organic solvents. Having properties such as thickening, suspending, adhesive, emulsifying, dispersing, water holding. Different viscosity range of solution can be prepared. Having exceptionally good salt solubility to electrolyte.
Uses
1. This product is used for cracking method to extract polymerized dispersing agents such as oil water base gel fracturing fluid, polystyrene and polyvinyl chloride. Also for latex thickening agent in paint industry, hygristor in electronics industry, cement anti-coagulant agent and water retention agent in construction industry. Glazing in ceramic industry and toothpaste binder. Also widely used in many aspects such as printing and dyeing, textile, paper, pharmaceutical, health, food, cigarettes, pesticides and fire extinguishing agent.
2. Used as a water-based drilling fluids, and thickening agent and filtrate reducer of completion fluids, thickening agent has obvious effect on brine drilling fluid. Also can be used for filtrate reducer of oil well cement. Cross-linking with the polyvalent metal ions into a gel. 3. As surfactants, protective colloids, emulsion stabilizers in combination with emulsion such as vinyl chloride, vinyl acetate emulsion, and a tackifier, dispersant, dispersion stabilizer of emulsion. Widely used in many aspects such as coatings, fibers, dyeing, paper, cosmetics, pharmaceuticals, pesticides. There are many uses in oil exploitation and machinery industry.
4. As surfactants, latex thickening agent, protective colloid, oil exploitation fracturing fluid and polystyrene and polyvinyl chloride dispersing agents, etc.
Production methods
1. Alkali cellulose is a natural polymer, each of a fiber-based ring contains three hydroxyl groups, the most active hydroxyl reaction to give Tylose H 300 P2. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, took out to squeeze after half an hour. Squeezed water containing soda to 1: 2.8, pulverized. Pulverized alkali cellulose was added into the reaction kettle, sealed, vacuumized, nitrogen charge, repeated to vacuumize and nitrogen charge to replace atmosphere in the reaction kettle. Precooled the liquid ethylene oxide was pressed into, cooling water was pumped in jacket of reaction kettle, controlled at about 25 ℃ and reacted for 2 h, crude product of Tylose H 300 P2 was obtained. The crude product was washed with alcohol, added acetic acid to adjust pH value to 4-6, added glyoxal to crosslink and aging. Then washed with water, centrifugal dewatering, dryed, milled to obtain Tylose H 300 P2. Raw material consumption (kg/t) linter or low pulp meal 730-780 liquid caustic soda (30%) 2400 ethylene oxide 900 alcohol (95%) 4500 acetic acid 240 Glyoxal (40%) 100-300.
2. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, after half an hour took out to squeeze. Squeezed water containing soda to 1: 2.8, pulverized alkali cellulose was added into the reaction kettle, sealed and vacuumized, nitrogen charge, used nitrogen to replace all atmosphere in the reaction kettle,Precooled the liquid ethylene oxide was pressed into. In the cooling, controlled at 25 ℃ and reacted for 2 h, to give the crude product of crude Tylose H 300 P2. The crude product was washed with ethanol and acetic acid was added to adjust the pH value to 4-6. added glyoxal to crosslink and aging, washed with water fast, finally centrifugal dehydration, dried, milled, obtained low salt Tylose H 300 P2.
Description
Hetastarch, another nonproteinaceous colloid, is a complex mixture of ethoxylated amylopectins ranging in molecular weight from 10 to 1,000 kDa (average molecular weight, ~450 kDa). When infused as a 6% solution, hetastarch approximates the activity of human albumin. The larger molecular weights, however, increase its intravascular residence time as well as its plasma expansion effects relative to albumin.
Hetastarch is synthetically produced, so it is degraded more slowly and is less antigenic than other colloids. Despite these advantages, hetastarch is quite expensive and also has no oxygen-carrying capacity.
Chemical Properties light yellow powder
Chemical Properties Tylose H 300 P2 occurs as a white, yellowish-white or grayish-white, odorless and tasteless, hygroscopic powder.
Uses disintegrant, binder for tabletting
Uses
Tylose H 300 P2 is a thickener, protective colloid, binder, stabilizer, and suspending agent. It is obtained from wood pulp Copyright 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial Review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. or chemical cotton by treatment with an alkali.
Definition A starch derivative containing 90% amylopectin.
Production Methods
A purified form of cellulose is reacted with sodium hydroxide to produce a swollen alkali cellulose, which is chemically more reactive than untreated cellulose. The alkali cellulose is then reacted with ethylene oxide to produce a series of Tylose H 300 P2 ethers.
The manner in which ethylene oxide is added to cellulose can be described by two terms, the degree of substitution (DS) and the molar substitution (MS). The DS designates the average number of hydroxyl positions on the anhydroglucose unit that have been reacted with ethylene oxide. Since each anhydroglucose unit of the cellulose molecule has three hydroxyl groups, the maximum value for DS is 3. MS is defined as the average number of ethylene oxide molecules that have reacted with each anhydroglucose unit. Once a hydroxyethyl group is attached to each unit, it can further react with additional groups in an end-to-end formation. This reaction can continue and there is no theoretical limit for MS.
Brand name Hespan (DuPont Merck) .
Pharmaceutical Applications
Tylose H 300 P2 is a nonionic, water-soluble polymer widely used in pharmaceutical formulations. It is primarily used as a thickening agent in ophthalmic and topical formulations, although it is also used as a binder and film-coating agent for tablets.It is present in lubricant preparations for dry eye, contact lens care, and dry mouth.
The concentration of Tylose H 300 P2 used in a formulation is dependent upon the solvent and the molecular weight of the grade.
Tylose H 300 P2 is also widely used in cosmetics.
Safety Tylose H 300 P2 is primarily used in ophthalmic and topical pharmaceutical formulations. It is generally regarded as an essentially nontoxic and nonirritant material.
Acute and subacute oral toxicity studies in rats have shown no toxic effects attributable to Tylose H 300 P2 consumption, the Tylose H 300 P2 being neither absorbed nor hydrolyzed in the rat gastrointestinal tract. However, although used in oral pharmaceutical formulations, Tylose H 300 P2 has not been approved for direct use in food products.
Glyoxal-treated Tylose H 300 P2 is not recommended for use in oral pharmaceutical formulations or topical preparations that may be used on mucous membranes. Tylose H 300 P2 is also not recommended for use in parenteral products.
storage Tylose H 300 P2 powder is a stable though hygroscopic material.
Aqueous solutions of Tylose H 300 P2 are relatively stable at pH 2–12 with the viscosity of solutions being largely unaffected. However, solutions are less stable below pH 5 owing to hydrolysis. At high pH, oxidation may occur.
Increasing the temperature reduces the viscosity of aqueous Tylose H 300 P2 solutions. However, on cooling, the original viscosity is restored. Solutions may be subjected to freeze–thawing, high-temperature storage, or boiling without precipitation or gelation occurring.
Tylose H 300 P2 is subject to enzymatic degradation, with consequent loss in viscosity of its solutions. Enzymes that catalyze this degradation are produced by many bacteria and fungi present in the environment. For prolonged storage, an antimicrobial preservative should therefore be added to aqueous solutions. Aqueous solutions of Tylose H 300 P2 may also be sterilized by autoclaving.
Tylose H 300 P2 powder should be stored in a well-closed container, in a cool, dry place.
Incompatibilities
Tylose H 300 P2 is insoluble in most organic solvents. It is incompatible with zein and partially compatible with the following water-soluble compounds: casein; gelatin; methylcellulose; polyvinyl alcohol, and starch.
Tylose H 300 P2 can be used with a wide variety of watersoluble antimicrobial preservatives. However, sodium pentachlorophenate produces an immediate increase in viscosity when added to Tylose H 300 P2 solutions.
Tylose H 300 P2 has good tolerance for dissolved electrolytes, although it may be salted out of solution when mixed with certain salt solutions. For example, the following salt solutions will precipitate a 10% w/v solution of Cellosize WP-09 and a 2% w/v solution of Cellosize WP-4400: sodium carbonate 50% and saturated solutions of aluminum sulfate; ammonium sulfate; chromic sulfate; disodium phosphate; magnesium sulfate; potassium ferrocyanide; sodium sulfate; sodium sulfite; sodium thiosulfate; and zinc sulfate.
Natrosol is soluble in most 10% salt solutions, excluding sodium carbonate and sodium sulfate, and many 50% salt solutions with the exception of the following: aluminum sulfate; ammonium sulfate; diammonium phosphate; disodium phosphate; ferric chloride; magnesium sulfate; potassium ferrocyanide; sodium metaborate; sodium nitrate; sodium sulfite; trisodium phosphate; and zinc sulfate. Natrosol 150 is generally more tolerant of dissolved salts than is Natrosol 250.
Tylose H 300 P2 is also incompatible with certain fluorescent dyes or optical brighteners, and certain quaternary disinfectants which will increase the viscosity of aqueous solutions.
Regulatory Status
Included in the FDA Inactive Ingredients Database (ophthalmic preparations; oral syrups and tablets; otic and topical preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Tylose H 300 P2 is not currently approved for use in food products in Europe or the USA, although it is permitted for use in indirect applications such as packaging. This restriction is due to the high levels of ethylene glycol residues that are formed during the manufacturing process.
Description
Tylose H 300 P2 is a polysaccharide derivative with gel thickening, emulsifying, bubble-forming, water-retaining and stabilizing properties. It is used as a key ingredient in many household cleaning products, lubricants and cosmetics due to its non-ionic and water-soluble nature. It is often used as an ingredient in ophthalmic pharmaceutical preparations such as artificial tear solutions and adjunct agent in topical drug formulations to facilitate the delivery of drugs with hydrophobic character.
Pharmacodynamics
Tylose H 300 P2 acts as a demulcent by relieving inflammation or irritation and dryness of eyes. It acts as one of the key ingredient and viscosity-enhancing agent to prolong corneal contact time and increase intraocular drug levels 4.
Mechanism of action
Interacts with the solid surface through hydrogen bonding to thicken and prolong the formation time of a water-retaining film. Tylose H 300 P2 acts as a drug carrier or microsphere to entrap other drug molecules and form a viscous gel-like dispersion, enabling drug diffusion across biological membranes 3.
Indication
For alleviating surface irritation in topical ocular administrations, such as artificial tear solutions. Tylose H 300 P2 is also found in topical formulations to aid in more efficient drug diffusion across the membranes.
Toxicity
May cause chemical pneumonitis in case of inhalation and skin irritation. Animal data suggests potential alteration in female fertility.
Tyloses are outgrowths/extragrouth on parenchyma cells of xylem vessels of secondary heartwood. When the plant is stressed by drought or infection, tyloses will fall from the sides of the cells and "dam" up the vascular tissue to prevent further damage to the plant.
Tyloses can aid in the process of making sapwood into heartwood in some hardwood trees, especially in trees with larger vessels.[1] These blockages can be used in addition to gum plugs as soon as vessels become filled with air bubbles, and they help to form a stronger heartwood by slowing the progress of rot.
Tylose H 300 P2 is cellulose in which both ethyl and hydroxyethyl groups are attached to the anhydroglucose units by ether linkages. Tylose H 300 P2 is prepared from cellulose by treatment with alkali, ethylene oxide and ethyl chloride. The article of commerce may be specified further by the viscosity of its aqueous solutions.
Advantages and drawbacks
Tylose H 300 P2 solutions exhibit several advantages for analogue modeling. The viscosity of the solutions can be easily varied by changing the concentration of the polymer without affecting the density (Boutelier et al., 2016). Moreover, solutions can be seeded with reflective or fluorescent particles and thermochromics liquid crystals (TLC) (Limare et al., 2013, 2015; Fourel et al., 2017) that allow the modelers to track the flows by means of the particle imaging velocimetry (PIV) and/or to quantify the temperature field, respectively. Such particles can be considered neutrally buoyant with respect to water, and hence, to Tylose H 300 P2 solutions. An other advantage of working with Tylose H 300 P2 solutions is that they do not gel or precipitate when temperature is increased, even up to the boiling point of water (Aqualon, 1999). Two types of can be blended to obtain intermediate values of η. Being η an exponential function of c and degree of polymerization, the resulting η is not an arithmetic mean. Hence, blending charts, available from Aqualon, should be followed (Aqualon, 1999). Tylose H 300 P2 is also compatible with a large range of water-soluble materials, that is, water-soluble polymers and natural gums, such as guar gum or xanthan gum (Aqualon, 1999). For instance, can be blended with an anionic polymer such as carboxymethylcellulose to obtain very high η, clear solutions.
However, Tylose H 300 P2 shows few limitations. polymers are hygroscopic and absorb moisture from the atmosphere. In order to keep the original moisture content, the powders should be stored in sealed containers at dry atmosphere. Moreover, despite the ease solubility of in water, particles tend to agglomerate as they are in contact with water. Manufacturer provides few procedures in order to obtain the most efficient solution preparation and created a surface-treated grade of that does not lump when wetted (Aqualon, 1999). solutions can be exposed to biological attack, so producers suggest to add preservative when it is planned to store them for long time.
Hydroxyethyl cellulose
Hydroxyethyl cellulose (Tylose H 300 P2) is a cellulose-derived thickening and the gelling agent used in capsules containing hydrophobic drugs in order to improve dissolution of drugs within GI fluids in a method known as the hydrophilization method. This nonionic and water-soluble polymer is also used in cosmetics, cleaning solutions, and other household products. It will fabricate crystal-clear gel products and thicken the aqueous phase of cosmetic emulsions. Their tendency to lump or agglomerate, when first wetted with water, is a disadvantage associated with Tylose H 300 P2s and other water-soluble thickeners. The R-grade of Tylose H 300 P2s facilitates solution preparation without lumping when wetted with water, thus increasing dissolution and total processing times (Joshi and Petereit, 2013).
Chowdary et al. established a formulation of film-coated bilayer paliperidone tablet and validated it against in vitro performance results of Invega, a tri-layered innovator sample. Core formulations formed by diverse ratio polyox were optimized and coatings were optimized for enterically coating cellulose acetate and subcoating of Tylose H 300 P2. They investigated influencing factors such as different ingredients in the coating solution and compositions of the core tablet. They even optimized the formulation and its process by comparing different in vitro release behaviors of paliperidone (Chowdary and Napoleon, 2017).
Effect of extent of substitution on solubility
When highly polar hydroxyl groups on crystalline cellulose are substituted with hydroxyalkyl groups to manufacture HPC or Tylose H 300 P2, water solubility initially increases due to a reduction in crystallinity and hydrogen bonding between the cellulose backbone chains. However, as the amount of hydroxyalkyl substitution continues to increase, the polymer becomes increasingly hydrophobic. As shown in Fig. 7.31, the equilibrium moisture content steadily decreases as MS increases from 2.0 to 5.0 for both Tylose H 300 P2 and HPC. A similar relationship has also been demonstrated for the cloud point.43 An exception to this behavior is polymers with ionic groups in their side chains. In this case, increasing the level of highly polar substituents will increase water solubility. For example, when the DS for sodium carboxymethyl cellulose is increased from 0.7 to 1.2, the equilibrium moisture content at 50% relative humidity increases from 13% to 18%.
Tylose H 300 P2 Chemical Properties,Uses,Production
Thickeners and binders
Tylose H 300 P2 is a commonly used cellulose ethers organic water-based ink thickening agent, belongs to a water-soluble non-ionic compound, with good water thickening ability, degraded by oxygen, acid and enzyme, under alkaline conditions can be crosslinked by Cu2 +. Has thermal stability, when heated, does not appear gelation, does not occur precipitation under acidic conditions, the film-forming property is good, the aqueous solution can be made of a transparent film, can be derived from the reaction of alkali cellulose with ethylene oxide, having properties such as thickening, emulsifying, adhesive, suspension, film-forming, maintaining moisture and protectiving colloid. The role of thickener in the aqueous ink is thickened. The viscosity of the ink added a thickening agent increases, can improve the physical and chemical stability of the ink; due to the increased viscosity, rheology of the ink can be controlled at the time of printing; the pigment and filler in ink is not easy to precipitate, increasing the storage stability of the water-based ink.
Thickening agent is a cellulose-based material and (or) polyvinyl alcohol substances. Cellulose substances may be methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, Tylose H 300 P2 and hydroxypropylmethyl cellulose; polyvinyl alcohol material may be an or several species of polyethylene 400, 600, 800, 1000, 1600, 2000, 4000, 6000.
The above information is edited by the chemicalbook of Liu Yujie.
Chemical properties
This product is white to yellowish fibrous or powdery solid, non-toxic, tasteless and soluble in water. Insoluble in common organic solvents. Having properties such as thickening, suspending, adhesive, emulsifying, dispersing, water holding. Different viscosity range of solution can be prepared. Having exceptionally good salt solubility to electrolyte.
Uses
1. This product is used for cracking method to extract polymerized dispersing agents such as oil water base gel fracturing fluid, polystyrene and polyvinyl chloride. Also for latex thickening agent in paint industry, hygristor in electronics industry, cement anti-coagulant agent and water retention agent in construction industry. Glazing in ceramic industry and toothpaste binder. Also widely used in many aspects such as printing and dyeing, textile, paper, pharmaceutical, health, food, cigarettes, pesticides and fire extinguishing agent.
2. Used as a water-based drilling fluids, and thickening agent and filtrate reducer of completion fluids, thickening agent has obvious effect on brine drilling fluid. Also can be used for filtrate reducer of oil well cement. Cross-linking with the polyvalent metal ions into a gel. 3. As surfactants, protective colloids, emulsion stabilizers in combination with emulsion such as vinyl chloride, vinyl acetate emulsion, and a tackifier, dispersant, dispersion stabilizer of emulsion. Widely used in many aspects such as coatings, fibers, dyeing, paper, cosmetics, pharmaceuticals, pesticides. There are many uses in oil exploitation and machinery industry.
4. As surfactants, latex thickening agent, protective colloid, oil exploitation fracturing fluid and polystyrene and polyvinyl chloride dispersing agents, etc.
Production methods
1. Alkali cellulose is a natural polymer, each of a fiber-based ring contains three hydroxyl groups, the most active hydroxyl reaction to give Tylose H 300 P2. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, took out to squeeze after half an hour. Squeezed water containing soda to 1: 2.8, pulverized. Pulverized alkali cellulose was added into the reaction kettle, sealed, vacuumized, nitrogen charge, repeated to vacuumize and nitrogen charge to replace atmosphere in the reaction kettle. Precooled the liquid ethylene oxide was pressed into, cooling water was pumped in jacket of reaction kettle, controlled at about 25 ℃ and reacted for 2 h, crude product of Tylose H 300 P2 was obtained. The crude product was washed with alcohol, added acetic acid to adjust pH value to 4-6, added glyoxal to crosslink and aging. Then washed with water, centrifugal dewatering, dryed, milled to obtain Tylose H 300 P2. Raw material consumption (kg/t) linter or low pulp meal 730-780 liquid caustic soda (30%) 2400 ethylene oxide 900 alcohol (95%) 4500 acetic acid 240 Glyoxal (40%) 100-300.
2. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, after half an hour took out to squeeze. Squeezed water containing soda to 1: 2.8, pulverized alkali cellulose was added into the reaction kettle, sealed and vacuumized, nitrogen charge, used nitrogen to replace all atmosphere in the reaction kettle,Precooled the liquid ethylene oxide was pressed into. In the cooling, controlled at 25 ℃ and reacted for 2 h, to give the crude product of crude Tylose H 300 P2. The crude product was washed with ethanol and acetic acid was added to adjust the pH value to 4-6. added glyoxal to crosslink and aging, washed with water fast, finally centrifugal dehydration, dried, milled, obtained low salt Tylose H 300 P2.
Description
Hetastarch, another nonproteinaceous colloid, is a complex mixture of ethoxylated amylopectins ranging in molecular weight from 10 to 1,000 kDa (average molecular weight, ~450 kDa). When infused as a 6% solution, hetastarch approximates the activity of human albumin. The larger molecular weights, however, increase its intravascular residence time as well as its plasma expansion effects relative to albumin.
Hetastarch is synthetically produced, so it is degraded more slowly and is less antigenic than other colloids. Despite these advantages, hetastarch is quite expensive and also has no oxygen-carrying capacity.
Chemical Properties
light yellow powder
Chemical Properties
Tylose H 300 P2 occurs as a white, yellowish-white or grayish-white, odorless and tasteless, hygroscopic powder.
Uses
disintegrant, binder for tabletting
Uses
Tylose H 300 P2 is a thickener, protective colloid, binder, stabilizer, and suspending agent. It is obtained from wood pulp Copyright 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial Review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage