Oxone (also known as MPS, KMPS, potassium monopersulfate, Potassium peroxymonosulfate, potassium caroate, the trade names Caroat and Oxone, and as a non-chlorine shock in the pool and spa industry) is widely used as an oxidizing agent. It is the potassium salt of peroxymonosulfuric acid. The triple salt 2KHSO5·KHSO4·K2SO4 (known by the trade name Oxone) is a form with higher stability. The standard electrode potential for this compound is 1.81 V with a half-reaction generating the hydrogen sulfate
Oxone is also used as a wet strength resin paper repulping aid, metal surface treatment agent, selective oxidizer in chemical synthesis, wool shrink proofing treatment, wastewater treatment and odor control agent.
CAS NO: 10058-23-8
EC NO: 233-187-4
IUPAC NAMES:
Potassium peroxysulfate
potassium;oxido hydrogen sulfate
pentapotassium bis((hydroperoxysulfonyl)oxidanide) hydrogen sulfate sulfate
pentapotassium bis(O-(hydroperoxysulfonyl)oxidanidolate) hydrogen sulfate sulfate
Pentapotassium bis(peroxymonosulphate) bis(sulphate)
pentapotassium bis(peroxymonosulphate) bis(sulphate)
pentapotassium bis(peroxymonosulphate) bis(sulphate)
Potassium peroxymonosulfate
potassium (hydroperoxysulfonyl)oxidanide
Potassium hydrogenperoxomonosulphate
potassium hydrogenperoxomonosulphate
Potassium peroxymonosulphate
potassium peroxymonosulphate
SYNONYMS
potassium hydrogenperoxomonosulphate;Peroxymonosulfuric acid, monopotassium salt;potassium peroxymonosulfuric acid;Kaliumperoxomonosulfat;monopotassium peroxymonosulfurate;Hydroperoxysulfonyloxypotassium;Peroxosulfic acid O-potassium salt;Persulfuric acid hydrogen=potassium salt;Monopotassium peroxymonosulfate;Monopotassium persulfate;Potassium hydrogen peroxomonosulfate;Potassium peroxymonosulfate;ChanGuo potassium hydrogen sulfate;Potassium peroxymonosulfate,>98%;PMPS;POTASSIUM PEROXOMONOSULFATE;POTASSIUM PEROXOMONOSULFATE COMPOUND;POTASSIUM MONOPERSULFATE;POTASSIUM MONOPERSULFATE TRIPLE SALT;POTASSIUM MONOPERSULPHATE TRIPLE SALT;OXONE(TM);OXONE(TM), MONOPERSULFATE;OXONE(TM), MONOPERSULFATE COMPOUND;OXONE;OXONE MONOPERSULFATE COMPOUND;OXONE(R), MONOPERSULFATE COMPOUND;Peroxymonosulfuricacid,monopotassiumsalt,mixturewithdipotassiumsulfateandpotassiumhydrogensulfate;potassiumperoxymonosulfatesulfate,(2khso5.khso4.k2so4);'CARO'S ACID';CAROAT;KMPS;Oxone(4.5% active oxygen);Potassium peroxomonosulfate, min. 4.5% active oxygen, extra pure;Oxone(rg~Potassium peroxymonosulphate;POTASSIUM MONOPERSULFATE TRIPLE SALT, ACTIVE OXGEN CA 4.7% (OXONE);Oxone\(rg~potassium)peroxymonosulfate;Oxone,monopersulfate;Potassium monoperoxysulfate;Potassium peroxymonosulfate sulfate (K5HSO3(O2)2(HSO4)(SO4));POTASSIUMPEROXYMONOSULPHATE;Oxone(R), monopersulfate (Potassium peroxymonosulfate);Potassium Peroxymonosulfate [>45%(T) as KHSO5];Potassium peroxomonosulfate,extra pure,min. 4.5% active oxygen;Oxone, monopersulfate (Potassium peroxymonosulfate);Caro's acid Potassium peroxymonosulfate, Oxone;Potassium Peroxomonosulfate Compound,min4.5% active oxygen;Caros acid, Oxone(R), Potassium peroxymonosulfate;Potassium monopersulphate triple salt, active oxygen ca 4.7%;PotassiuM peroxyMonosulfate sulfate (K5(HSO5)2(HSO4)(SO4));oxido hydrogen sulfate;tetrapotassium;Potassium Peroxymonosulfate [> ca. 45%(T) as KHSO5];PotassiuM peroxoMonosulfate, 4.5% active oxygen;Potassium peroxymonosulfonate;Potassium peroxomonosulfate, for synthesis, 4.5% active oxygen;PotassiumPeroxomonosulphate(Oxone);Potassium peroxymonosulfate,Active Oxygen≥4.5%;Potassium hydrogen monopersulfate;Potassium peroxymonosulfate joyce;OXONE, MONOPERSULFATE COMPOUNDOXONE, MONOPERSULFATE;COMPOUNDOXONE, MONOPERSULFATE COMPOUND;Potassiumhydrogenperoxymonosulfate;PotassiuM 3-sulfotrioxidan-1-ide;PotassiuM Monopersulfate coMpound;Oxone , potassium monopersulfate;potassium peroxymonopersulfate;Oxone|r, Monopersulfate;Potassium monoperoxysulfate OXONE(R);POTASSIUM HYDROGEN MONOPERSULFATE FOR SY;PotassiuM peroxyMonosulfate,Monopersulfate coMpound;Potassium monoperoxysulfate OXONE;Potassium PeroxomonosuL;Potassium peroxymonosulfate triple salt;Potassium monopersulfate (Oxone);Potassium hydrogen monopersulfate for synthesis;potassiumperoxymonosulfatesulfate(k5h3(so3(o2))2(so4)2);PotassiumMonopersulphate,ActiveComponent42%Min;Potassium Monopersulphate, Active Component 42%Min, Cas;Potassium peroxymonosulfate sulfate (K5HSO3(O2)SO3(O2)(HSO4)2);CAROAT (POTASSIUM MONOPERSULFATE);Pentakalium-bis(peroxymonosulfat)-bis(sulfat);Potassium Monopersulfate Sulfate;Pentapotassium bis(peroxymonosulphate) bis(sulphate);Potassium peroxymonosulfate;Potassium peroxymonosulfate sulfate;POTASSIUM CAROATE;Oxone PS-16;Potassium monopersulfate triple salt,42.8-46%;Potassium peroxymonosulfat;Potassium perbisulfate;Potassiummonopersulfatetriplesal;10058-23-8;Potassium hydrogen dioxidan-2-idesulfonate (1:1:1);POTASSIUM PEROXOSULFATE;Potassium sulfodioxidanide;Sulfodioxidanide de potassium;potassium (hydroperoxysulfonyl)oxidanide;dipotassium dioxidan-2-idesulfonate
37222-66-5;Potassium Peroxomonosulfate;Potassium monopersulfate triple salt;MFCD00040551;Oxone, monopersulfate;DTXSID8051415,OXONE(R), monopersulfate compound;AKOS015912003;AKOS030228420;SC-26713;FT-0697154;O0310;Potassium monopersulfate triple salt, >=47% KHSO5 basis;pentapotassium;hydrogen sulfate;oxido hydrogen sulfate;sulfate
What is Oxone?
Oxone is an inorganic chemical compound. It is primarily used for the treatment of wastewater. Potassium monopersulfate occurs as white crystals or powder with hygroscopic properties.
Oxone is exceedingly hygroscopic and is readily soluble in water to form the monopersulfate salts.
It has very low solubility in organic solvents, but excellent solubility in acids and aqueous solutions of acids and bases.
Oxone is known for its ability to convert hypochlorite ion into free chlorine. It also produces free chlorine without oxidizing ammonia.
Oxonee can be used to control pH fluctuations in water treatment systems.
Potassium monopersulfate for swimming pools. Potassium monopersulfate is frequently used by swimming pool owners to make chlorination water.
Potassium monopersulfate is also used to treat industrial wastewater.
In swimming pools, it is an effective oxidizer for controlling algae. It also helps prevent the formation of precipitates that can cloud the water.
Benefits of Oxone
The benefits of Oxone include reducing phosphates and chemical use, stabilizing pH in a pool, eliminating algae. It also increases circulation, which saves energy. As a result, pools using Oxone have increased clarity, and decreases the likelihood of chemical and odor problems.
Oxone is not the same as the Chlorine you are used to using. Discretely, Oxone is similar to bleach, but it is not a typical bleach product. To determine advantages in your pool, you must first understand the chemical formula. Because Oxone is a salt, it has a chemical formula containing Potassium. Other ingredients, such as Oxygen, and Sulfur (Sulfur is the "E" in Oxone) are added. Using this formula, the official chemical name for Oxone is Potassium Peroxymonosulfate, and if was not derived from bleach, it would be considered a bleach product.
Reactions
MPS is a versatile oxidant. It oxidizes aldehydes to carboxylic acids; in the presence of alcoholic solvents, the esters may be obtained. Internal alkenes may be cleaved to two carboxylic acids (see below), while terminal alkenes may be epoxidized. Sulfides give sulfones, tertiary amines give amine oxides, and phosphines give phosphine oxides.
Illustrative of the oxidative power of this salt is the conversion of an acridine derivative to the corresponding acridine-N-oxide.
MPS will also oxidize sulfide to a sulfone with 2 equivalents. With one equivalent the reaction converting sulfide to sulfoxide is much faster than that of sulfoxide to sulfone, so the reaction can conveniently be stopped at that stage if so desired.
MPS can also react with ketones to form dioxiranes, with the synthesis of dimethyldioxirane (DMDO) being representative. These are versatile oxidising agents and may be used for the epoxidation of olefins. In particular, if the starting ketone is chiral then the epoxide may be generated enantioselectively, which forms the basis of the Shi epoxidation.
Uses
Swimming Pools
Oxone can be used in swimming pools to keep the water clear, thus allowing chlorine in pools to work to sanitize the water rather than clarify the water, resulting in less chlorine needed to keep pools clean. One of the drawbacks of using Oxone in pools is it can cause the common DPD #3 water test for combined chlorine to read incorrectly high. Moreover, by-products can be formed during the peroxymonosulfate treatment, which are sometimes even more toxic than the original contaminants.
The composition of the oxidizing agent Oxone is 2KHSO5.KHSO4.K2SO4. The active component potassium monopersulfate (KHSO5, potassium peroxomonosulfate) is a salt from the Caro´s acid H2SO5.
The use of Oxone has increased rapidly. Reasons for this are the stability, the simple handling, the non-toxic nature, the versatility of the reagent and the low costs.
As long as Oxone is stored under dry and cool conditions, it loses about 1% activity per month under release of oxygen and heat. Decomposition to SO2 and SO3 takes place under the influence of heat (starting at 300°C).
Acidic, aqueous solutions of the pure reagent in distilled water are relatively stable. The stability reaches a minimum at pH 9, where the mono anion (HSO5-) has the same concentration as the dianion (SO52-). Iron, cobalt, nickel, copper, manganese and further transition metals can catalyze the decay of Oxone in solution.
The following secondary reactions should be avoided:
Halides can be oxidized to halogens (e.g. chloride to chlorine), cyanides react with Oxone under release of hydrogen cyanide, "heavy" transition metals (Cu, Mn, Co, Ni) and their salts lead to the decomposition of Oxone under release of oxygen.
Whenever strong oxidation is needed Oxone monopersulfate compound is the right choice for a wide variety of industrial and consumer applications.
Also known as KPMS or potassium peroxymonosulfate, Oxon is a white granular product that provides non-chlorinated oxidation in a wide variety of applications. It's safe to use in a production facility, in the environment, and even as a key ingredient in your denture cleaner!
Most notably, the active ingredient allows for efficient non-chlorinated oxidation as a pool shock, allowing less use of sanitizer and leaves the pool clean, clear, and swimmable nearly immediately. The powerful oxidation as a microetchant in printed circuit boards improves process control in multi-step copper etching with a predictable rate to completion. KPMS is of particular interest in metal plating and mining as it safely, economically, and conveniently oxidizes cyanide in waste streams. These key benefits of rapid rate of reaction as well as non-chlorinated oxidation has allowe repulping papers with wet strength resins to move their processes to greener methods without sacrificing production time.
Oxone monopersulfate compound is a white, granular, freeflowing peroxygen that provides powerful non-chlorine oxidation for a wide variety of industrial and consumer uses.
Application areas:
• Swimming pool shock oxidizer
• Printed wiring board microetchant
• Repulping aid for wet-strength-resin destruction
• Odor control agent in wastewater treatment
• Bleach component in denture cleanser and laundry formulations
• Activator in antimicrobial compositions
• Other uses where its combination of powerful oxidation and relative safe handling properties are of value
The active ingredient of Oxone, commonly known as potassium monopersulfate, which is present as a component of a triple salt with the formula 2KHSO5·KHSO4·K2SO4 potassium hydrogen peroxymonosulfate sulfate The oxidizing power of Oxone is derived from its peracid chemistry; it is the first neutralization salt of peroxymonosulfuric acid H2SO5.
Stability
Oxone is a very stable peroxygen in the solid state and loses less than 0.5% (relative) of its activity per month when stored under recommended conditions. However, like all other peroxygens, Oxone undergoes very slow disproportionation with the liberation of heat and oxygen gas. If a decomposition is associated with high temperature, decomposition of the constituent salts of Oxone may generate sulfuric acid, sulfur dioxide, or sulfur trioxide.
The stability is reduced by the presence of small amounts of moisture, alkaline chemicals, chemicals that contain water of hydration, transition metals in any form, and/or any material with which Oxone can react. Since the decomposition of Oxone is exothermic, the decomposition can self-accelerate if storage conditions allow the product temperature to rise.
The stability is adversely affected by higher pH, especially above pH 7. A point of minimum stability exists at about pH 9, at which the concentration of the mono-anion HSO5 - is equal to that of the. Cobalt, nickel, and manganese are particularly strong catalysts for the decomposition of Oxon in solution; the degree to which catalysis occurs is dependent on the concentrations of Oxone and of the metal ion.
Product Grades
Oxone is available in both granular and liquid forms. By screening, grinding, or compaction/granulation processing, several granular grades are produced which differ in particle size distribution. Liquid products are specially-formulated to optimize active oxygen stability.
Solubility
Oxone is highly and readily soluble in water. At 20°C (68°F), the solubility of Oxone in water is >250 g/L. At concentrations above saturation, potassium sulfate will precipitate, but an additional active component, Oxone, will remain in the solution.
Oxone is also called MPS, or Potassium Monopersulfate. MPS does not contain chlorine, as it is a potassium salt of peroxymonosulfuric acid.
Oxone is marketed as a popular non-chlorine based shock. Its primary swimming pool use is to oxidize any contaminants in the water, leaving chlorine or bromine sanitizers already present in the water to focus on sanitizing the water.
There are several advantages of using Oxone in swimming pools:
Since there is no chlorine added, the swimming pool is available for swimming immediately after the shock has dissolved and time has been given for the oxidation process to complete. Oxidation is usually complete in about one to two hours, versus eight or more hours for chlorine-based shock.
Chlorine use can decrease, as less chlorine is needed to oxidize organic and inorganic matter in the pool.
There are several disadvantage of using Oxone as a shock treatment in swimming pools
Chlorine tests can read incorrectly high in DPD or FAS-DPD tests, as the non-chlorine shock may show up as combined chlorine in these tests.
More expensive than chlorine-based shock products.
If adequate chlorine sanitizer levels are not maintained, then adding non-chlorine shock like MSP may increase the risk of algae growth due to possible nitrate creation from adding MPS.
Chemical Properties
white crystalline powder
Uses
PCB metal surface treatment chemical and water treatment etc.
Purification Methods
This is a stable form of Caro's acid and should contain >4.7% of active oxygen. It can be used in EtOH/H2O and EtOH/AcOH/H2O solutions. If active oxygen is too low. it is best to prepare it afresh from 1mole of KHSO5, 0.5mole of KHSO4 and 0.5mole of K2SO4.
Used for oral cavity cleaning, swimming pool and hot spring water disinfection, pulp bleaching
1. Disinfection of family living environment
Novel coronavirus can be rapidly killed by 1:100 dilution
1:400 dilution can kill H5N1 avian influenza virus
Can kill common bacteria, fungi, viruses (influenza virus Noah virus)
It is used for washing hands and disinfecting, spraying the floor of hotels, dining halls, vehicles, colleges and cinemas, and disinfecting the walls and other crowded places
2. Disinfection of animal breeding environment
African swine fever can be killed by 1:400 dilution for 1min
Disinfect and deodorize, improve air quality
3. Low temperature cold chain disinfection
The antifreeze spray can be sterilized at minus 18 degrees Celsius and minus 40 degrees Celsius by adding the diluted water solution of antifreeze
4. Repair damaged soil, improve river environment, sewage treatment, aquaculture, etc
Product Functions Applications:
Active indication: This product's aqueous solution oxidation state is pink, the reduced state is colorless, easy for users to judge the effectiveness of a disinfectant, avoid ineffective disinfection.Multi-function, multi-purpose:
Applicable to a variety of places disinfection: can be used for farm office, pet operating room, clinic room, canteen, dormitory and other disinfection.
Suitable for disinfection of various methods: can be used for environment, clothing, rubber boots, water supply system, equipment, apparatus, washbasin disinfection.
One operation, multiple harvests: in the disinfection process, it can effectively reduce the odor and improve the air quality while suppressing and killing the pathogenic microorganisms.
When chlorine is used to oxidize pool water, it reacts with bather and other organic wastes, which are primarily nitrogen-based compounds, to form chloramines. These by-products have a foul odor and are considered unpleasant. Oxone also reacts with the nitrogen-based compounds introduced by bathers, but because it does not contain chlorine, it does not form chloramines in its oxidation process.
Actually, It reacts very slowly with ammonia. Oxone's lifetime in pool water depends on the quantity of oxidizable material. All things being equal, however, it is not nearly as sensitive to sunlight as chlorine. Unstabilized chlorine is more than 90 percent decomposed within a few hours, while Oxone is about 23 percent decomposed per hour, according to Wojtowitc.
One of its greatest advantages is that bathers can reenter the water a short time after it has been added — typically about 30 minutes.
Oxone dissolves quickly and does not fade liners. It works well with chlorine, arguably allowing chlorine to work more efficiently as a sanitizer. Using Oxone is highly recommended for indoor pools, where there is no sunlight or wind to help break down and carry away combined chlorine. For indoor pools, shocking with Oxone is recommended about once a week.
The active ingredient allows for efficient non-chlorinated oxidation as a pool shock, allowing less use of sanitizer and leaves the pool clean, clear, and swimmable nearly immediately. The powerful oxidation as a micro etchant in printed circuit boards improves process control in multi-step copper etching with a predictable rate to completion.
Oxone is of particular interest in metal plating and mining as it safely, economically, and conveniently oxidizes cyanide in waste streams. These key benefits of the rapid rate of reaction as well as non-chlorinated oxidation allow repulping papers with wet strength resins to move their processes to greener methods without sacrificing production time.
Overview
Oxone is a non-chlorine oxidizer and is used as an oxidizing agent in the pool and spa industry. The active ingredients of Oxone are potassium sulfate, potassium monopersulfate, and potassium bisulfide. Oxone is popularly known by its trade names such as Oxone, Caroat, and non-chlorine shock. Oxone has a similar magnitude of oxidation potential as chlorine and does not form chloramines during its oxidation process. In addition, it is highly soluble in water and provides high microbiological effectiveness and powerful non-chlorine oxidation for various industrial applications. Oxone is widely used as a disinfectant in wastewater treatment, swimming pools, etc., for reducing the organic and microbe content of the water. It is used as a cleaning agent in printed circuit boards, as an oxidizer agent for treating wool, and as an auxiliary agent for organic chemicals. In addition, it finds application in paper recycling, carpet browning, and oral hygiene formulations.
Oxone offers low shrink resistance during the wool as well as laundry bleaching processes.
Oxone aids in the quick cleaning of pools and leads to less usage of sanitizer due to its strong non-chlorinated oxidation potential.
Application Areas
•Oxone is used in the formulations of Denture cleaners. Oxone is the effective main ingredient in Cleaning tablets for dentures.
•Oxone is used in disinfectants: Oxone is suitable for use for chlorine-free disinfection or purification of swimming pool water and spas.
•Prevention of chlorine acne and eye irritation.
•Approved for oxidative drinking water treatment.
•Oxone is a bleaching agent: Oxone has a bleaching effect comparable to that of organic peracids
•Oxone has a biocidal effect: Oxone is suitable as an additive to acidic cleaning agents with bleaching and disinfectant effect.
•Oxone works very well in effluent treatment: Oxidative treatment of problematic effluents; sulfide oxidation, nitrite oxidation, and cyanide detoxification.
•Plaster additive: The addition of Oxone leads to the generation of oxygen and improved product characteristics (e.g. thermal insulation, water absorbency, mechanical properties).
•Metal treatment: Micro Etchant: Oxone is used for etching printed circuit boards.
•Odor control agent
•Paper industry
•Pulp and paper recycling
•Professional Disinfection
•Personal Care
•Pool & Spa
•Pool & Spa Shock Oxidizer
•Pulp & paper repulping aid
•rendering plants
•Laundry Bleach Ingredient
•Material protection
•Selective oxidizer in chemical synthesis
•Food industry
•Chemical Industry
•Disinfection of drinking water
•Denture cleanser bleach additive
•Disinfection
•Effluent treatment agent
•Electronics Industry
•Surface Treatment (electronic industry)
•Waste water treatment agent
•Textile industry
•Wool treatment
•Washing- and cleaning agent industry
•Wastewater treatment
•Water Treatment
•Metal surface treatment
•Laundry
•Animal Hygiene
•Chemical synthesis
•Cosmetics
Treatment efficiency of Oxone compound, a new kind of oxidation reagent, on killing algae and bacteria and the effect of influence factors, such as dosage, contact time and temperature are also discussed. Oxone appropriate for killing algae and bacteria in landscape water, dosage and contact time are the major influence factors. The contact time should be longer than 20min and the algicidal rate is higher when the temperature is above 20°C.
The appropriate usage of disinfectants is critical for establishing a successful sanitation program. Because not all disinfectants are effective against major pathogens, different families of disinfectants that target specific microorganisms should be considered. For instance, several bacteria and viruses are sensitive to phenols; however, most bacteria are also sensitive to quaternary ammonium, iodophors, paracetic acid, glutaraldehydes, and cresols. Therefore, there is no single disinfectant reported in the literature that would be efficacious against a wide spectrum of etiological agents that economically impact diseases in animal farms.
Oxone is the potassium salt of peroxymonosulfuric acid, which is widely used as an oxidizing agent.
Oxone , contain potassium monopersulfate for their main ingredient, as a non-chlorine shock agent; Oxone breaks the chlorine–ammonia bond formed when chlorine combines with ammonia, without increasing the chlorine level of the swimming pool; hence, Oxone can be used in swimming pools to keep the water clear.
Generally, bacteria and viruses are highly resistant to disinfectants contained in bio-environmental constituents such as feces, saliva, or vomitus.
Oxone can inactivate bacteria and viruses either in the absence or presence of organic materials, and it is useful as an alternative disinfectant, especially for biosecurity enhancement aiming to control bacteria and viruses that contaminate animal farms and hospitals.
The most popular sanitizers used in pools and spas—chlorine and bromine—function both as biocides (they kill bacteria and other potentially harmful microbes) and oxidizers (they "burn up" unpleasant organic contaminants like bather wastes, dust, and pollen).
The periodic addition of a supplemental oxidizer—a "shock treatment"—can free up the sanitizer for its highest purpose, killing germs.
Potassium monopersulfate is a powerful oxidizer with several attractive properties.
Properly applied, it will prevent the formation of new combined chlorine by eliminating organics in the water without creating more combined chlorine. Bathers can re-enter the water after waiting a short period of time (usually one hour) to allow proper mixing and circulation. The reaction byproducts are harmless sulfate salts.
After traditional shocking, then use the Oxone product to prevent further combined chlorine development.
Oxone products are particularly useful in indoor environments where proper air exchange rates may be nonexistent. Monopersulfate does not cause odors or irritation.