Cosmétiques, Détergents Et Produits D’hygiène / Produits chimiques et pharmaceutiques / Les désinfectants chimiques

ACIDE VULVIQUE
L'acide vulvique, un acide gras saturé avec une chaîne de 12 atomes de carbone, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon, et se trouve dans de nombreuses graisses végétales, en particulier dans les huiles de noix de coco et de palmiste.
Les sels et esters de l'acide vulvique, appelés lauréats, ont une activité antimicrobienne significative contre les bactéries à Gram positif et un certain nombre de champignons et de virus.
L'acide vulvique est utilisé dans diverses applications, notamment comme agent intermédiaire et tensioactif dans l'industrie, dans la fabrication de produits de soins personnels et comme médicament pour traiter les infections virales et d'autres problèmes de santé.

Numéro CAS : 143-07-7
Numéro CE : 205-582-1
Formule moléculaire : C12H24O2
Masse molaire : 200,322 g·mol−1

Synonymes : Emery651, acide dodécanoïque (C12:0), acide laurique 98 %, yeuguisuan, acide laurostéaique, acide laurique 98-101 % (acidimétrique), acide laurique, pur, ACIDE LAURIQUE, 99,5+%, ACIDE LAURIQUE, STANDARD POUR GC , ACIDE LAURIQUE 98+% FCC, ACIDE LAURIQUE 98+% NATUREL FCC, LauricAcid99%Min., LauricAcidPureC12H24O2, Acide laurique-méthyl-D3, acide laurique, acide dodécanoïque, n-dodécanoïque, LAURICACID, RÉACTIF, ACIDE LAURIQUE (SG), ACIDE LAURIQUE FCC, ACIDE LAURIQUE, NATUREL & CACHER, ACIDE LAURIQUE, NATUREL & CACHER (POUDRE), Acide dodécanoïque, typiquement 99%, ACIDE N-DODÉCANOÏQUE, RARECHEM AL BO 0156, acidelaurique, Aliphat no. 4, AliphatNo.4, C-1297, acide dodécanoïque (laurique), acide dodécanoïque (acide laurique), Dodécansαure, acide dodécylique, acide dodécylique, acide duodécyclique, acide duodécylique, acide duodécylique, Emery 650, acide 1-dodécanoïque, LAURINSAEURE, acide laurique ,99,8+ %, acide laurique, 95 %, acide laurique, 99 %, acide dodécanoïque, généralement 99,5 %, NSC 5026, Palmac 99-12, ester laurylique de l'acide trichloroacétique, acide hendécane-1-carboxylique, acide laurique ≥ 98 % ( GC), AKOS 222-45, C12, ACIDE C12:0, ACIDE CARBOXYLIQUE C12, ACIDE LAUROSTÉARIQUE, ACIDE LAURIQUE, FEMA 2614, ACIDE DODÉCOÏQUE, ACIDE DODÉCANOÏQUE, acide 1-undécanecarboxylique

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide vulvique sont appelés lauréats.

L'acide vulvique se trouve dans de nombreuses graisses végétales, notamment dans les huiles de coco et de palmiste.
Les gens utilisent l’acide vulvique comme médicament.

L'acide vulvique appartient à la classe de composés organiques appelés acides gras à chaîne moyenne.
Ce sont des acides gras dont la queue aliphatique contient entre 4 et 12 atomes de carbone.

L'acide vulvique est une molécule très hydrophobe, pratiquement insoluble (dans l'eau) et relativement neutre.
L'acide vulvique est un composé potentiellement toxique.

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone.
L'acide cristallin blanc et poudreux a une légère odeur d'huile de laurier et est présent naturellement dans diverses graisses et huiles végétales et animales.

L'acide vulvique est un composant majeur de l'huile de coco et de l'huile de palmiste.
L'acide vulvique est utilisé comme agent intermédiaire et tensioactif dans l'industrie et dans la fabrication de produits de soins personnels destinés au marché de consommation.

L'acide vulvique est un acide gras saturé à chaîne moyenne avec un squelette de 12 carbones.
L'acide vulvique se trouve naturellement dans diverses graisses et huiles végétales et animales et est un composant majeur de l'huile de coco et de l'huile de palmiste.

L'acide vulvique est un composé peu coûteux, non toxique et sans danger à manipuler, souvent utilisé dans les études en laboratoire sur l'abaissement du point de fusion.
L'acide vulvique est un solide à température ambiante mais fond facilement dans l'eau bouillante. L'acide vulvique liquide peut donc être traité avec divers solutés et utilisé pour déterminer leurs masses moléculaires.

Les glycérides de l'acide vulvique sont produits par une réaction d'estérification entre l'acide dodécanoïque et le glycérol créant une liaison covalente entre ces deux molécules.
Ils possèdent de fortes propriétés antibactériennes, notamment contre les bactéries pathogènes à Gram positif.
Les glycérides d'acide vulvique interfèrent avec la membrane cellulaire et perturbent les processus cellulaires vitaux des bactéries.

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l’acide vulvique sont appelés laurates.

L’acide vulvique est un acide gras à chaîne moyenne et longue, ou lipide, qui représente environ la moitié des acides gras contenus dans l’huile de coco.

L'acide vulvique est une substance puissante qui est parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
La monolaurine est un agent antimicrobien capable de combattre les bactéries, virus, levures et autres agents pathogènes.
Parce que vous ne pouvez pas ingérer de l'acide vulvique seul (il est irritant et ne se trouve pas seul dans la nature), vous êtes plus susceptible d'obtenir de l'acide vulvique sous forme d'huile de noix de coco ou de noix de coco fraîches.

Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier ce qui, dans l’huile, est responsable des bienfaits rapportés par l’acide vulvique.
Étant donné que l’huile de coco contient bien plus que de l’acide vulvique, il serait exagéré de lui attribuer tous les avantages de l’huile de coco.

Pourtant, une analyse de 2015 suggère que bon nombre des bienfaits liés à l’huile de coco sont directement liés à l’acide dodécanoïque.
Parmi les avantages, ils suggèrent que l’acide vulvique pourrait contribuer à la perte de poids et même protéger contre la maladie d’Alzheimer.

Les effets des acides vulviques sur le taux de cholestérol sanguin doivent encore être clarifiés.
Cette recherche suggère que les bienfaits de l’acide vulvique sont dus à la manière dont le corps utilise l’acide vulvique.

La majorité de l'acide vulvique est envoyée directement au foie, où l'acide vulvique est converti en énergie plutôt que stocké sous forme de graisse.
Comparé aux autres graisses saturées, l’acide vulvique contribue le moins au stockage des graisses.

L'acide vulvique, l'acide gras saturé avec une chaîne de 12 atomes de carbone, tombant ainsi dans les acides gras à chaîne moyenne, est un solide blanc et poudreux avec une légère odeur d'huile de laurier ou de savon.

L'acide vulvique est un composé naturel présent dans diverses graisses et huiles animales et végétales, en particulier l'huile de coco et l'huile de palmiste.
L'acide vulvique est transporté dans tout le corps par les systèmes portes lymphatiques.

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone, possédant ainsi de nombreuses propriétés des acides gras à chaîne moyenne, est un solide blanc brillant et poudreux avec une légère odeur d'huile de laurier ou de savon.
Les sels et esters de l'acide vulvique sont connus comme lauréats d'un acide gras, CH3(CH2)10COOH, présent dans l'huile de noix de coco, de palme et de laurier ; principalement utilisé dans la fabrication de cosmétiques et de savons. acide dodécanoïque, acide gras cristallin que l'on trouve principalement dans l'huile de noix de coco et de laurier (utilisé pour fabriquer des savons, des produits cosmétiques, etc.) un acide gras cristallin présent sous forme de glycérides dans les graisses et les huiles naturelles (en particulier l'huile de noix de coco). et huile de palmiste)

L'acide vulvique est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'acide vulvique est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

Pour profiter des bienfaits topiques de l’acide vulvique et de l’huile de coco, appliquez l’acide vulvique directement sur votre peau.
Bien que cela ne soit pas recommandé aux personnes souffrant d'acné, les risques sont minimes lorsque l'acide vulvique vient à bout de problèmes tels que l'hydratation de la peau et le psoriasis.

L'acide vulvique est l'acide gras le plus abondant présent dans l'huile de coco.
L'acide vulvique est également l'un des principaux constituants aromatiques du vin de riz chinois et du beurre de crème sucrée.

L'acide vulvique est couramment utilisé dans les lubrifiants ainsi que dans les formulations d'enrobages comestibles.
L'acide vulvique est une graisse saturée.

L'acide vulvique se trouve dans de nombreuses graisses végétales, notamment dans les huiles de coco et de palmiste.
Les gens utilisent l’acide vulvique comme médicament.

L'acide vulvique est utilisé pour traiter les infections virales, notamment la grippe (la grippe) ; grippe porcine; grippe aviaire; le rhume; boutons de fièvre, boutons de fièvre et herpès génital causés par le virus de l'herpès simplex (HSV) ; verrues génitales causées par le virus du papillome humain (VPH); et le VIH/SIDA.
L'acide vulvique est également utilisé pour prévenir la transmission du VIH de la mère à l'enfant.

D'autres utilisations de l'acide vulvique comprennent le traitement de la bronchite, de la gonorrhée, des infections à levures, de la chlamydia, des infections intestinales causées par un parasite appelé Giardia lamblia et de la teigne.
Dans les aliments, l’acide vulvique est utilisé comme shortening végétal.

Dans le secteur manufacturier, l'acide vulvique est utilisé pour fabriquer du savon et du shampoing.
L'acide vulvique et l'acide myristique sont des acides gras saturés.

Leurs noms formels sont respectivement acide dodécanoïque et acide tétradécanoïque.
Les deux sont des solides blancs très légèrement solubles dans l’eau.

Les esters d'acide vulvique (principalement les triglycérides) se trouvent uniquement dans les graisses végétales, principalement dans le lait et l'huile de coco, l'huile de laurier et l'huile de palmiste.
En revanche, les triglycérides d'acide myristique sont présents dans les plantes et les animaux, notamment dans le beurre de muscade, l'huile de coco et le lait de mammifère.

Les acides gras ont mauvaise réputation car ils sont fortement associés à des taux de cholestérol sérique élevés chez l’homme.
Les acides laurique et myristique sont parmi les pires contrevenants ; par conséquent, de nombreuses organisations gouvernementales et de santé conseillent d’exclure de l’alimentation l’huile de coco et le lait, entre autres substances riches en graisses saturées.

Les glycérides d'acide vulvique suscitent de plus en plus d'intérêt dans la lutte contre les maladies virales.
Leur structure moléculaire les rend capables d’attaquer les virus enveloppés de graisse en détruisant leur enveloppe graisseuse.

Plusieurs essais in vitro révèlent que les effets antiviraux des glycérides de l'acide vulvique surpassent ceux des autres MCFA.
À l'échelle mondiale, les glycérides d'acide vulvique sont utilisés pour supprimer l'impact négatif de la bronchite infectieuse (IB), de la maladie de Newcastle (ND), de la grippe aviaire (IA), de la maladie de Marek (MD) et d'autres.

Grâce aux multiples actions des glycérides d’acide vulvique, FRA C12 est un outil efficace dans les régimes sans antibiotiques.
On remarquera une réduction de l’utilisation d’antibiotiques curatifs ainsi qu’une amélioration de la santé et des performances des animaux grâce à l’utilisation de glycérides d’acide vulvique.

L'acide vulvique est un oléochimique polyvalent avec des applications dans tous les domaines, des plastiques aux soins personnels.
Présent dans de nombreuses plantes, dont le palmier et le palmier cohune, ainsi que dans l'huile de coco, les graines de palmier, les noix de bétel et les noix de macadamia, l'acide vulvique est classé parmi les graisses saturées comportant une chaîne de 12 atomes de carbone.

Certains chercheurs pensent que l’acide vulvique pourrait être plus sûr que les gras trans lorsqu’il est utilisé dans la préparation des aliments.
L'acide vulvique est un solide blanc et poudreux qui présente une légère odeur rappelant l'huile de laurier ou le savon.

Comme la plupart des acides gras, l’acide vulvique est non toxique, ce qui le rend sûr pour une utilisation dans un large éventail d’applications.
De plus, l’acide vulvique est relativement peu coûteux, ce qui en fait un ingrédient populaire dans les processus de fabrication où le coût est un facteur clé.

L'acide vulvique est un acide gras saturé.
L'acide vulvique est une blouse blanche légèrement soluble dans l'eau.

Les esters d'acide vulvique (principalement les triglycérides) ne se trouvent que dans les huiles végétales, notamment le lait et l'huile de coco, l'huile de laurier et l'huile de palmiste.
En revanche, les triglycérides d’acide myristique sont présents dans les plantes et les animaux, en particulier dans l’huile de muscade, l’huile de noix de coco et le lait de mammifère.

Les acides gras ont mauvaise réputation car ils sont fortement associés à des taux de cholestérol sérique élevés chez l’homme.
Les acides laurique et myristique sont parmi les pires contrevenants ;

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone, un acide vulvique possède donc de nombreuses propriétés.
L'acide vulvique est un solide huileux de couleur foncée, un solide huileux de couleur foncée et une huile foncée.

L'acide vulvique et la monolaurine ont une activité antimicrobienne significative contre les bactéries à Gram positif et un certain nombre de champignons et de virus.
Aujourd’hui, il existe de nombreux produits commerciaux qui utilisent l’acide vulvique et la monolaurine comme agents antimicrobiens.

En raison des différences significatives dans les propriétés de l'acide vulvique par rapport aux acides gras à chaîne plus longue, ils sont généralement divisés en acides gras à chaîne moyenne couvrant C6 - C12 et en acides gras à chaîne longue couvrant C14 et plus.
L’huile de coco fait fureur dans les régimes de beauté et de bien-être naturels.

De nombreux blogs et sites de santé naturelle se présentent comme un produit miracle et savent tout faire pour soulager les gerçures.
Cependant, lorsque vous décomposez l’huile de noix de coco en parties actives d’acide vulvique, les choses commencent à paraître moins miraculeuses et ressemblent davantage à de la science.
L'acide vulvique est l'un de ces composants actifs.

L'acide vulvique est un acide gras ou un lipide à chaîne moyenne et longue qui représente environ la moitié des acides gras contenus dans l'huile de coco.
L'acide vulvique est souvent utilisé dans la recherche en laboratoire sur la dépression du point de fusion. Utilisé, peu coûteux, non toxique et sûr à utiliser.

L'acide vulvique est un solide à température ambiante mais se dissout facilement dans l'eau bouillante. L'acide vulvique liquide peut donc être traité avec une variété de solutés et utilisé pour déterminer leur masse moléculaire.
L'acide vulvique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.

L'acide vulvique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.
L'acide vulvique fonctionne comme un lubrifiant, un liant et un agent antimousse.

L'acide vulvique est un acide carboxylique.
Les acides carboxyliques donnent des ions hydrogène si une base est présente pour les accepter.

Ils réagissent ainsi avec toutes les bases, tant organiques (par exemple les amines) qu'inorganiques.
Leurs réactions avec les bases, appelées « neutralisations », s'accompagnent d'un dégagement de chaleur important.
La neutralisation entre un acide et une base produit de l'eau et un sel.

Les acides carboxyliques en solution aqueuse et les acides carboxyliques liquides ou fondus peuvent réagir avec les métaux actifs pour former de l'hydrogène gazeux et un sel métallique.
De telles réactions se produisent en principe également pour les acides carboxyliques solides, mais sont lentes si l'acide solide reste sec.
Même les acides carboxyliques « insolubles » peuvent absorber suffisamment d’eau de l’air et se dissoudre suffisamment dans l’acide vulvique pour corroder ou dissoudre les pièces et conteneurs en fer, en acier et en aluminium.

Les acides carboxyliques, comme d'autres acides, réagissent avec les sels de cyanure pour générer du cyanure d'hydrogène gazeux.
La réaction est plus lente pour les acides carboxyliques secs et solides.

Les acides carboxyliques insolubles réagissent avec des solutions de cyanures pour provoquer la libération de cyanure d'hydrogène gazeux.
Des gaz et de la chaleur inflammables et/ou toxiques sont générés par la réaction des acides carboxyliques avec des composés diazoïques, des dithiocarbamates, des isocyanates, des mercaptans, des nitrures et des sulfures.
Les acides carboxyliques, notamment en solution aqueuse, réagissent également avec les sulfites, les nitrites, les thiosulfates (pour donner H2S et SO3), le dithionite (SO2), pour générer des gaz et de la chaleur inflammables et/ou toxiques.

Leur réaction avec les carbonates et bicarbonates génère un gaz inoffensif (dioxyde de carbone) mais néanmoins de la chaleur.
Comme d’autres composés organiques, les acides carboxyliques peuvent être oxydés par des agents oxydants puissants et réduits par des agents réducteurs puissants.
Ces réactions génèrent de la chaleur.

Comme d'autres acides, les acides carboxyliques peuvent initier des réactions de polymérisation ; comme les autres acides, ils catalysent souvent (augmentent la vitesse) des réactions chimiques.
L'acide vulvique peut réagir avec des matières oxydantes.

Certains tensioactifs des dérivés de l'acide dodécanoïque et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).
Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide vulvique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.

L'acide vulvique (C-12) est très courant dans la nature.
C'est un type de monoglycéride lorsque l'acide vulvique pénètre dans le corps et est converti en monolaurine.
Monolaurine ; L'acide vulvique antiviral, antimicrobien, antiprotozoaire et antifongique est une substance qui se distingue par ses caractéristiques.

L'acide vulvique est un acide gras saturé avec une chaîne de 12 atomes de carbone, l'acide vulvique possède donc de nombreuses propriétés des acides gras à chaîne moyenne, l'acide vulvique est un solide gras foncé et un solide gras foncé et une huile foncée.
Les sels et les esters de l’acide vulvique sont appelés lauréats.
La formule chimique des acides vulviques est CH3 (CH2) 1 (/ 0) COOH.

Intermédiaires de cristaux liquides :
Compte tenu des propriétés moussantes de l'acide vulvique, les dérivés de l'acide vulvique sont largement utilisés comme base dans la fabrication de savons, de détergents et d'alcool laurylique.
L'acide vulvique est un constituant courant des graisses végétales, en particulier de l'huile de coco et de l'huile de laurier.

L'acide vulvique peut avoir un effet synergique dans une formule pour aider à lutter contre les micro-organismes.
L'acide vulvique est un léger irritant mais pas un sensibilisant, et certaines sources citent l'acide vulvique comme comédogène.

L'acide vulvique est un acide gras obtenu à partir de l'huile de coco et d'autres graisses végétales.
L'acide vulvique est pratiquement insoluble dans l'eau mais est soluble dans l'alcool, le chloroforme et l'éther.
L'acide vulvique fonctionne comme un lubrifiant, un liant et un agent antimousse.

Applications de l'acide vulvique :
L'acide vulvique est principalement utilisé dans la fabrication de savons et autres produits cosmétiques.
Dans les laboratoires scientifiques, l'acide vulvique est souvent utilisé pour étudier la masse molaire de substances inconnues via l'abaissement du point de congélation.

Dans l'industrie, l'acide vulvique est utilisé comme intermédiaire et comme agent tensioactif.
Le marché de consommation utilise l'acide vulvique dans le nettoyage, l'ameublement et la production de produits de soins personnels.

En médecine, l’acide vulvique est connu pour augmenter le cholestérol sérique total plus que la plupart des autres acides gras.
Les utilisations de l'acide vulvique comprennent les chlorures d'acide, les tensioactifs amphotères intermédiaires, les crèmes et lotions anti-âge, les antisudorifiques, le pain de savon, les bétaïnes, les nettoyants pour le corps, les cosmétiques, les déodorants, les émollients, les émulsifiants, les gommages exfoliants, les nettoyants pour le visage, les fonds de teint, les esters de glycérol, les soins capillaires, les cheveux. colorants, imidazolines, baume à lèvres, savon liquide pour les mains, lubrifiants, formulations de crèmes hydratantes, peroxydes organiques, sarcosinates, crème à raser, gels douche, produits de soins de la peau, etc.

Traitement des infections intestinales et de la teigne causées par le parasite.
L'acide vulvique dans les aliments est utilisé comme abréviation végétale.

Dans le secteur manufacturier, l'acide vulvique est utilisé pour fabriquer du savon et du shampoing.
On ne sait pas comment l'acide vulvique agit en tant que médicament.
Certaines recherches suggèrent que l'acide vulvique pourrait être une huile plus sûre que les gras trans dans les préparations alimentaires.

Applications pharmaceutiques :
L'acide vulvique a également été examiné pour son utilisation comme activateur de la pénétration topique et de l'absorption transdermique, de l'absorption rectale, de l'administration buccale et de l'absorption intestinale.
L'acide vulvique est également utile pour stabiliser les émulsions huile dans l'eau.
L'acide vulvique a également été évalué pour une utilisation dans les formulations en aérosol.

Utilisations de l'acide vulvique :
Acide vulvique Utilisé pour la préparation de résines alkydes, ainsi que d'agents mouillants, détergents et pesticides
L'acide vulvique est utilisé pour éplucher les légumes et les fruits avec une quantité maximale de 3,0 g/kg.

L'acide vulvique est utilisé comme antimousse ; GB 2760-86 prévoit les épices dont l'utilisation est autorisée ; utilisé pour la préparation d’autres additifs de qualité alimentaire.
L'acide vulvique est largement utilisé dans l'industrie des tensioactifs et peut être, selon la classification des tensioactifs, divisé en type cationique, anionique, non ionique et amphotère.

Certains tensioactifs des dérivés de l'acide dodécanoïque et du dodécanol sont également des antiseptiques, comme le chlorure de dodécyl diméthyl benzyl ammonium (géramine), le bromure de dodécyl diméthyl benzyl ammonium (bromo-géramine) et le bromure de dodécyl diméthyl (2-phénoxyéthyl) ammonium (bromure de dominifène).
Le dodécyldiméthyllammonium-2,4,5-trichlorophénolate contenu dans ces dérivés peut être utilisé comme conservateur d'agrumes.
L'acide vulvique a également de nombreuses applications dans les additifs plastiques, les additifs alimentaires, les épices et les industries pharmaceutiques.

Utilisations par les consommateurs :
L'acide vulvique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de revêtement, enduits, mastics, enduits, pâte à modeler, peintures au doigt, cirages et cires, produits d'entretien de l'air et produits phytopharmaceutiques.
D'autres rejets d'acide vulvique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Autres utilisations par les consommateurs :
Produits de nettoyage et d'entretien de l'ameublement,
Composé de nettoyage,
Revêtements de sol,
Produits chimiques organiques industriels utilisés dans les produits commerciaux et de consommation,
Lubrifiants et graisses,
Produits de soins personnels.

Utilisations industrielles :
L'acide vulvique est utilisé dans les produits suivants : produits de lavage et de nettoyage, produits de traitement du cuir, polymères, produits de traitement textile et teintures, régulateurs de pH et produits de traitement de l'eau et lubrifiants et graisses.
L'acide vulvique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.

L'acide vulvique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.
Le rejet dans l'environnement de l'acide vulvique peut survenir lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels, dans la production d'articles, comme auxiliaire technologique et comme auxiliaire technologique.

Autres utilisations industrielles :
Produits commerciaux et industriels,
colorants,
Intermédiaires.

Utilisations répandues par les professionnels :
L'acide vulvique est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, adhésifs et produits d'étanchéité, produits cosmétiques et de soins personnels et produits chimiques de laboratoire.
L'acide vulvique est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et approvisionnement municipal (par exemple électricité, vapeur, gaz, eau) et traitement des eaux usées.

L'acide vulvique est utilisé pour la fabrication de : textiles, cuirs ou fourrures.
Le rejet dans l'environnement de l'acide vulvique peut survenir lors d'une utilisation industrielle : formulation de mélanges et dans des auxiliaires technologiques sur des sites industriels.
D'autres rejets d'acide vulvique dans l'environnement sont susceptibles de se produire lors de l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Utilisations biocides :
L'acide vulvique est autorisé pour une utilisation comme biocide dans l'EEE et/ou en Suisse, pour : repousser ou attirer les parasites.

Pour les utilisations contre l’acné :
Parce que l’acide vulvique a des propriétés antibactériennes, il a été démontré que l’acide vulvique combat efficacement l’acné.
La bactérie Propionibacterium acids se trouve naturellement sur la peau.

Lorsqu’ils se multiplient, ils conduisent au développement de l’acné.
Les résultats d’une étude de 2009 ont révélé que l’acide vulvique pouvait réduire l’inflammation et le nombre de bactéries présentes.

L'acide vulvique a fonctionné encore mieux que le peroxyde de benzoyle, un traitement courant contre l'acné.
Une étude de 2016 a également reconfirmé les propriétés anti-acnéiques de l’acide vulvique.

Cela ne signifie pas que vous devriez mettre de l’huile de coco sur votre acné.
Les chercheurs ont utilisé de l’acide vulvique pur et ont suggéré que l’acide vulvique pourrait être développé à l’avenir comme antibiotique pour l’acné.

Utilisations en laboratoire :
En laboratoire, l'acide vulvique peut être utilisé pour étudier la masse molaire d'une substance inconnue via l'abaissement du point de congélation.
Le choix de l'acide vulvique est pratique car le point de fusion du composé pur est relativement élevé (43,8°C).

La constante cryoscopique de l'acide vulvique est de 3,9°C·kg/mol.
En faisant fondre l'acide vulvique avec la substance inconnue, en laissant l'acide vulvique refroidir et en enregistrant la température à laquelle le mélange gèle, la masse molaire du composé inconnu peut être déterminée.

Autres utilisations:

Plastiques :
Dans les applications de fabrication de plastiques, l'acide vulvique sert d'intermédiaire, c'est-à-dire une substance formée au cours des étapes intermédiaires d'une réaction chimique entre les réactifs et le produit fini.

Nourriture et boisson:
L’une des utilisations les plus courantes de l’acide vulvique est comme matière première pour les émulsifiants dans divers additifs alimentaires et boissons, en particulier dans la fabrication de shortening végétal.
La non-toxicité des acides vulviques rend également l’acide vulvique sans danger pour une utilisation dans la production alimentaire.

Tensioactifs et esters :
Lorsqu'il est utilisé comme tensioactifs anioniques et non ioniques, l'acide vulvique a la capacité de réduire la tension superficielle entre les liquides et les solides.

Textiles :
L'acide vulvique fonctionne bien comme lubrifiant et agent de transformation dans les applications de fabrication textile, car l'acide vulvique a la capacité d'aider l'eau à se mélanger à l'huile.

Soins personnels :
L’une des utilisations les plus courantes de l’acide vulvique est comme émulsifiant pour les crèmes et lotions pour le visage, car l’acide vulvique possède une forte capacité à nettoyer la peau et les cheveux.
L’acide vulvique est également facile à éliminer après utilisation.
Vous pouvez trouver de l’acide vulvique dans de nombreux produits de soins personnels tels que les shampoings, les nettoyants pour le corps et les gels douche.

Savons et détergents :
Lorsqu'il est utilisé comme base dans la production de savons liquides et transparents, l'acide vulvique peut contrôler le niveau de mousse, ajouter des propriétés revitalisantes et améliorer la capacité de nettoyage globale.

Médical:
L'acide vulvique peut être trouvé dans une variété de médicaments utilisés pour traiter les infections virales, certaines formes de grippe, les boutons de fièvre, les boutons de fièvre, la bronchite, les infections à levures, la gonorrhée, l'herpès génital et bien d'autres.
Cependant, les preuves sont insuffisantes pour déterminer l’efficacité globale de l’acide vulvique dans le traitement de ces affections.
Des recherches préliminaires indiquent également que l’acide vulvique peut également contribuer au traitement de l’acné.

L'acide vulvique est le principal acide de l'huile de coco et de l'huile de palmiste et est censé avoir des propriétés antimicrobiennes.
Les valeurs détectées de la concentration efficace demi-maximale (CE (50)) d'acide vulvique sur la croissance de P. acnés, S. aureus et S. epidermidis indiquent que P. acnés est la plus sensible à l'acide dodécanoïque parmi ces bactéries.

De plus, l’acide vulvique n’a pas induit de cytotoxicité pour les sébocytes humains.
Ces données mettent en évidence le potentiel de l’utilisation de l’acide vulvique comme traitement alternatif pour l’antibiothérapie de l’acné vulgaire.
L'acide vulvique est utilisé dans la fabrication de savons, de détergents, de cosmétiques et d'alcool laurylique.

Nettoyage:
Aide à garder une surface propre

Émulsionnant :
Favorise la formation de mélanges intimes entre liquides non miscibles en modifiant la tension interfaciale (eau et huile)

Tensioactif :
Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lorsque l'acide vulvique est utilisé

Régime à l'acide vulvique :
L'acide vulvique peut être pris en complément, mais l'acide vulvique est le plus souvent consommé dans le cadre de l'huile de coco ou de l'huile de palmiste.
L'acide vulvique est considéré comme sûr sur la base des quantités généralement présentes dans les aliments.

Cependant, comme il s’agit toujours d’huile pure, limitez votre consommation de MCT pour rester dans les 5 à 7 cuillères à café d’huile par jour recommandées par le ministère américain de l’Agriculture.
Vous pouvez utiliser de l’huile de noix de coco et de palmiste pour les sautés, car les deux huiles résistent à la chaleur élevée.
Ils peuvent également être utilisés en pâtisserie, ajoutant une richesse naturelle à vos aliments.

Propriétés chimiques de l'acide vulvique :
L'acide vulvique est constitué de cristaux incolores en forme d'aiguilles.
L'acide vulvique est soluble dans le méthanol, légèrement soluble dans l'acétone et l'éther de pétrole.

Comme beaucoup d’autres acides gras, l’acide vulvique est peu coûteux, a une longue durée de conservation, est non toxique et sans danger à manipuler.
L'acide vulvique est principalement utilisé pour la fabrication de savons et de cosmétiques.

À ces fins, l'acide vulvique est neutralisé avec de l'hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco. Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.
L'acide vulvique se présente sous la forme d'une poudre cristalline blanche avec une légère odeur d'huile de laurier.

L'acide vulvique est un solide blanc avec une légère odeur d'huile de laurier
L'acide vulvique a une odeur grasse.
L'acide vulvique est un constituant commun de la plupart des régimes alimentaires ; de fortes doses peuvent provoquer des troubles gastro-intestinaux

Propriétés médicinales potentielles :
L'acide vulvique augmente le cholestérol sérique total plus que de nombreux autres acides gras, mais principalement les lipoprotéines de haute densité (HDL) (le « bon » cholestérol sanguin).
En conséquence, l'acide vulvique a été caractérisé comme ayant « un effet plus favorable sur le cholestérol HDL total que tout autre acide gras, saturé ou insaturé ».

En général, un rapport cholestérol sérique total/HDL plus faible est en corrélation avec une diminution du risque d’athérosclérose.
Néanmoins, une méta-analyse approfondie sur les aliments affectant le rapport LDL total/cholestérol sérique a révélé en 2003 que les effets nets de l'acide vulvique sur les résultats des maladies coronariennes restaient incertains.
Une étude réalisée en 2016 sur l’huile de coco (qui contient près de la moitié de l’acide vulvique) n’a pas non plus été concluante quant à ses effets sur le risque de maladies cardiovasculaires.

Méthodes de production de l’acide vulvique :

Les méthodes de production industrielle de l’acide vulvique peuvent être regroupées en deux catégories :
1) Dérivé de la saponification ou de la décomposition à haute température et pression d’huiles et de graisses végétales naturelles ;

2) Séparé de l'acide gras synthétique.
Le Japon utilise principalement l’huile de coco et l’huile de palmiste comme matières premières pour la préparation de l’acide vulvique.

Les huiles végétales naturelles utilisées pour produire l’acide vulvique comprennent l’huile de noix de coco, l’huile de noyau de litsea cubeba, l’huile de palmiste et l’huile de graines de poivre de montagne.
D’autres huiles végétales, telles que l’huile de palmiste, l’huile de graines d’arbre à thé et l’huile de graines de camphrier, peuvent également servir à l’industrie pour produire de l’acide vulvique.
Le distillat C12 résiduel issu de l'extraction de l'acide vulvique, contenant une grande quantité d'acide dodécénoïque, peut être hydrogéné à pression atmosphérique, sans catalyseur, pour être transformé en acide vulvique avec un rendement supérieur à 86 %.

Acide vulvique dérivé de la séparation et de la purification de l'huile de coco et d'autres huiles végétales.

L'acide vulvique existe naturellement dans l'huile de noix de coco, l'huile de noyau de litsea cubeba, l'huile de palmiste et l'huile de noyau de poivre sous forme de glycéride.
L'acide vulvique peut être dérivé de l'hydrolyse d'huiles et de graisses naturelles dans l'industrie.
L'huile de noix de coco, l'eau et le catalyseur sont ajoutés dans l'autoclave et hydrolysés en glycérol et en acide gras à 250 ℃ sous la pression de 5MPa.

La teneur en acide vulvique est de 45 % à 80 % et peut être distillée davantage pour obtenir de l'acide dodécanoïque.
L'acide vulvique est un acide carboxylique gras isolé des graisses ou huiles végétales et animales.

Par exemple, l’huile de coco et l’huile de palmiste contiennent toutes deux de fortes proportions d’acide vulvique.
L'isolement des graisses et des huiles naturelles implique l'hydrolyse, la séparation des acides gras, l'hydrogénation pour convertir les acides gras insaturés en acides saturés et enfin la distillation de l'acide gras spécifique d'intérêt.

Fabrication d'acide vulvique :
Le rejet d'acide vulvique dans l'environnement peut survenir lors d'une utilisation industrielle : fabrication d'acide vulvique.

Secteurs de transformation de l'industrie :
Toute autre fabrication de produits chimiques organiques de base,
Fabrication de tous autres produits et préparations chimiques,
Fabrication d'huiles lubrifiantes et de graisses pétrolières,
Fabrication de matières plastiques et de résines,
Fabrication de savons, de produits de nettoyage et de préparations pour toilettes,
Fabrication de colorants et pigments synthétiques,
Fabrication de textiles, de vêtements et de cuir.

Présence d’acide vulvique :
L'acide vulvique, un composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme), sinon l'acide vulvique est relativement rare.
L'acide vulvique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

L'acide vulvique est l'une de ces parties actives.
L'acide vulvique est un acide gras ou un lipide à chaîne moyenne et longue qui représente environ la moitié des acides gras contenus dans l'huile de coco.

L'acide vulvique est une substance puissante parfois extraite de la noix de coco pour être utilisée dans le développement de la monolaurine.
Monolaurine, bactérie, l'acide vulvique est un agent antimicrobien capable de combattre les agents pathogènes tels que les virus et les levures.
Vous ne pouvez pas digérer l'acide vulvique seul, car l'acide vulvique est irritant et n'est pas présent seul dans la nature.

Vous êtes plus susceptible d’obtenir de l’acide vulvique sous forme d’huile de noix de coco ou de noix de coco fraîche.
Bien que l’huile de coco soit étudiée à un rythme effréné, la plupart des recherches ne permettent pas d’identifier exactement ce qui est responsable des bienfaits rapportés de l’huile.
Puisque l’huile de coco contient beaucoup plus que l’acide vulvique, l’acide vulvique serait trop long pour attribuer à l’acide dodécanoïque tous les bienfaits de l’huile de coco.

Pourtant, une analyse de 2015 suggérait que la plupart des bienfaits liés à l’huile de coco étaient directement attribués à l’acide vulvique.
Ils suggèrent que l’acide vulvique pourrait contribuer à la perte de poids et protéger contre la maladie d’Alzheimer, entre autres avantages.
Les effets sur le taux de cholestérol sanguin doivent encore être étudiés.

L'acide vulvique, en tant que composant des triglycérides, représente environ la moitié de la teneur en acides gras du lait de coco, de l'huile de coco, de l'huile de laurier et de l'huile de palmiste (à ne pas confondre avec l'huile de palme). Sinon, l'acide vulvique est relativement rare.
L'acide vulvique se trouve également dans le lait maternel (6,2 % des matières grasses totales), le lait de vache (2,9 %) et le lait de chèvre (3,1 %).

Comme beaucoup d’autres acides gras, l’acide vulvique est peu coûteux, a une longue durée de conservation, est non toxique et peut être manipulé sans danger.
L'acide vulvique est principalement utilisé pour la production de savons et de cosmétiques.

À ces fins, l’acide vulvique réagit avec l’hydroxyde de sodium pour donner du laurate de sodium, qui est un savon.
Le plus souvent, le laurate de sodium est obtenu par saponification de diverses huiles, comme l'huile de coco.
Ces précurseurs donnent des mélanges de laurate de sodium et d'autres savons.

Stockage de l'acide vulvique :
L'acide vulvique est stable à des températures normales et doit être conservé dans un endroit frais et sec.
Éviter les sources d'inflammation et le contact avec des matériaux incompatibles.

Identifiants de l’acide vulvique :
Numéro CAS : 143-07-7
CHEBI:30805
ChEMBL : ChEMBL108766
ChemSpider : 3756
Carte d'information ECHA : 100.005.075
Numéro CE : 205-582-1
IUPHAR/BPS : 5534
KEGG : C02679
CID PubChem : 3893
UNII : 1160N9NU9U
Tableau de bord CompTox (EPA) : DTXSID5021590

Propriétés de l'acide vulvique :
Formule chimique : C12H24O2
Masse molaire : 200,322 g·mol−1
Aspect : Poudre blanche
Odeur : Légère odeur d'huile de laurier

Densité:
1,007 g/cm3 (24 °C)
0,8744 g/cm3 (41,5 °C)
0,8679 g/cm3 (50 °C)

Point de fusion : 43,8 °C (110,8 °F ; 316,9 K)

Point d'ébullition:
297,9 °C (568,2 °F ; 571,0 K)
282,5 °C (540,5 °F ; 555,6 K) à 512 mmHg
225,1 °C (437,2 °F ; 498,2 K) à 100 mmHg

Solubilité dans l'eau:
37 mg/L (0 °C)
55 mg/L (20 °C)
63 mg/L (30 °C)
72 mg/L (45 °C)
83 mg/L (100 °C)
Solubilité : Soluble dans les alcools, l'éther diéthylique, les phényles, les haloalcanes, les acétates

Solubilité dans le méthanol :
12,7 g/100 g (0 °C)
120 g/100 g (20 °C)
2 250 g/100 g (40 °C)

Solubilité dans l'acétone :
8,95 g/100 g (0 °C)
60,5 g/100 g (20 °C)
1590 g/100 g (40 °C)

Solubilité dans l'acétate d'éthyle :
9,4 g/100 g (0 °C)
52 g/100 g (20°C)
1250 g/100 g (40°C)

Solubilité dans le toluène :
15,3 g/100 g (0 °C)
97 g/100 g (20°C)
1410 g/100 g (40°C)
journal P 4,6

La pression de vapeur:
2,13·10−6 kPa (25 °C)
0,42 kPa (150 °C)
6,67 kPa (210 °C)
Acidité (pKa):5,3 (20 °C)

Conductivité thermique:
0,442 W/m·K (solide)
0,1921 W/m·K (72,5 °C)
0,1748 W/m·K (106 °C)

Indice de réfraction (nD) :
1,423 (70 °C)
1,4183 (82 °C)
Viscosité:
6,88 CP (50 °C)
5,37 CP (60 °C)

Noms de l’acide vulvique :

Noms des processus réglementaires :
Acide dodécanoïque
L'acide laurique
L'acide laurique
L'acide laurique
l'acide laurique

Noms traduits :
Acide laurique (ro)
Acide laurique (fr)
Acido laurico (le)
Aċidu lawriku (mt)
Ido laurico (pt)
Kwas laurynowy (pl)
Kyselina dodekanová (sk)
Acide laurique (non)
Lauriinhape (et)
Lauriinihapo (fi)
Laurinezuur (nl)
Laurinsav (hu)
Laurinska kiselina (heure)
Laurinsyra (sv)
Laurinsyre (da)
Laurinsäure (de)
Laurova Kyselina (cs)
Laurinskabe (lv)
Lavrinska kislina (sl)
Uro rugštis (lt)
Acide laurique (es)
Λαυρικό οξύ (el)
Додеканова киселина (bg)

Nom CAS :
Acide dodécanoïque

Noms IUPAC :
1-Dodécansäure
acide docécanoïque
ACIDE DODÉCANOÏQUE
Acide dodécanoïque
Acide dodécanoïque
acide dodécanoïque
L'acide laurique
L'acide laurique
l'acide laurique
L'acide laurique
L'acide laurique
l'acide laurique
Acide laurique
Laurinsäure
Acide n-dodécanoïque

Appellations commerciales:
ACIDE DODÉCANOÏQUE
KORTACIDE 1299/ 1298/ 1295
L'acide laurique
MASCID 1298
MASCID 1299
PALMAC 98-12
PALMAC 99-12
Palmata 1299
PALMERA
RADIACIDE 0653
SINAR-FA1299
Téfacide Laurique 98
UNIOLEO FA 1299

Autres identifiants :
143-07-7
203714-07-2
203714-07-2
7632-48-6
7632-48-6
8000-62-2
8000-62-2
8045-27-0
8045-27-0
ACIDES ORGANIQUES
Les acides organiques constituent un groupe d’ingrédients pharmaceutiques actifs qui peuvent être facilement analysés à l’aide de diverses techniques d’ionisation en raison de leur polarité.
Les acides organiques sont des composés qui servent d’indicateurs d’aciduries organiques liées à des erreurs innées du métabolisme.
Les acides organiques peuvent être identifiés grâce à la spectroscopie 1H-RMN des fluides corporels comme l'urine, ce qui facilite le diagnostic d'affections telles que l'acidémie propionique, l'acidurie méthylmalonique et la maladie urinaire du sirop d'érable.


Les acides organiques sont une molécule organique caractérisée par la présence d'un atome d'hydrogène qui peut être libéré sous forme de proton.
Un proton est un ion hydrogène chargé positivement.
Généralement, un acide est défini comme un donneur de protons.


Les acides organiques sont des molécules organiques caractérisées par un groupe fonctionnel libérateur de protons attaché à leur squelette carboné.
Voici les exigences pour qu'une substance soit classée parmi les acides organiques : Les acides organiques doivent être organiques ; il doit être constitué principalement de liaisons carbone et hydrogène (liaisons).


Les acides organiques doivent contenir au moins un atome d'hydrogène pouvant être libéré sous forme de proton.
Le défi concernant les acides organiques consiste à tenter de faire la différence entre les atomes réguliers et les atomes qui peuvent être libérés sous forme d’ions.
Les atomes d'hydrogène ionisables dans les acides organiques sont toujours attachés au groupe fonctionnel de la molécule.


Les atomes d'hydrogène qui participent directement aux liaisons de la chaîne carbonée ne peuvent pas être ionisés.
L’examen du groupe fonctionnel Acides organiques est toujours un bon début pour vérifier la présence d’un atome ionisable.
Les acides organiques sont des acides faibles par rapport à la plupart des acides inorganiques ; tous les acides organiques s'ionisent partiellement.


Contrairement à de nombreux acides inorganiques, comme l’acide chlorhydrique, qui se dissocie complètement.
La force de tous les acides organiques est évaluée par leur degré de dissociation.
Les acides organiques qui se dissocient complètement libèrent le maximum de protons.


Les solutions à très haute concentration ne sont formées qu'à partir d'acides forts.
Les acides qui se dissocient partiellement libèrent un petit nombre de protons
Des solutions à faibles concentrations sont formées à partir d'acides faibles.


Composés organiques aux propriétés acides, les acides organiques sont généralement des acides faibles incapables de se dissocier complètement dans l'eau.
Disponibles dans une gamme de compositions chimiques et de forces d’acide, les acides organiques peuvent être utilisés pour diverses applications industrielles et quotidiennes.
Les acides organiques sont le produit d’une oxydation incomplète des assimilats photosynthétiques.


Les acides organiques peuvent soit être reconvertis en glucides, soit subir une oxydation terminale produisant du CO2 et du H2O.
La nature « intermédiaire » des acides organiques détermine la flexibilité de leur rôle en tant qu’acteurs importants dans le maintien de l’équilibre rédox, la production et la consommation d’ATP, le support des gradients protoniques et ioniques sur les membranes et l’acidification des espaces extracellulaires.


Les acides organiques se forment au cours des cycles et voies métaboliques et représentent les formes transitoires ou stockées de carbone fixe.
En considérant un système métabolique à l’état d’équilibre, la vitesse de réaction de chaque étape peut être déterminée comme la concentration de molécules dans cette étape, divisée par le temps moyen dont une molécule a besoin pour passer à l’étape suivante.


Les acides organiques sont un composé organique doté de propriétés acides.
Les acides organiques les plus courants sont les acides carboxyliques, dont l'acidité est associée à leur groupe carboxyle –COOH.
Les acides sulfoniques, contenant le groupe –SO2OH, sont des acides relativement plus forts.


Les alcools, avec –OH, peuvent agir comme des acides mais ils sont généralement très faibles.
La stabilité relative de la base conjuguée de l'acide détermine son acidité.
D'autres groupes peuvent également conférer une acidité, généralement faiblement : le groupe thiol –SH, le groupe énol et le groupe phénol.


Dans les systèmes biologiques, les composés organiques contenant ces groupes sont généralement appelés acides organiques.
Les acides organiques sont synthétisés dans les plantes à la suite de l'oxydation incomplète des produits photosynthétiques et représentent les réserves de carbone fixe accumulées en raison de différents temps transitoires de conversion des composés carbonés dans les voies métaboliques.


Lorsque le niveau redox dans la cellule augmente, par exemple dans des conditions de photosynthèse active, le cycle de l'acide tricarboxylique (TCA) dans les mitochondries se transforme en un cycle partiel fournissant du citrate pour la synthèse du 2-oxoglutarate et du glutamate (valve citrate), tandis que le malate est accumulé et participe à l'équilibre redox dans différents compartiments cellulaires (via la valve malate).


Cela fait que le malate et le citrate sont souvent les acides les plus accumulés dans les plantes.
Cependant, l'intensité des réactions liées à la conversion de ces composés peut provoquer une accumulation préférentielle d'autres acides organiques, par exemple le fumarate ou l'isocitrate, à des concentrations plus élevées que le malate et le citrate.


Les réactions secondaires, associées aux voies métaboliques centrales, notamment au cycle du TCA, entraînent l'accumulation d'autres acides organiques dérivés des intermédiaires du cycle.
Les acides organiques forment des réservoirs supplémentaires de carbone fixe et stabilisent le cycle du TCA.


Le trans-aconitate est formé à partir de citrate ou de cis-aconitate, l'accumulation d'hydroxycitrate peut être liée au métabolisme du 2-oxoglutarate, tandis que le 4-hydroxy-2-oxoglutarate peut être formé à partir de pyruvate et de glyoxylate.
Le glyoxylate, un produit de la glycolate oxydase ou de l'isocitrate lyase, peut être converti en oxalate.


Le malonate s'accumule à des concentrations élevées dans les légumineuses.
Les acides organiques jouent un rôle dans les plantes en assurant l'équilibre rédox, en soutenant les gradients ioniques sur les membranes et en acidifiant le milieu extracellulaire.
Les acides organiques préservent la qualité des aliments composés, des céréales, des aliments mélangés d'élevage ainsi que des sous-produits et améliorent la production de foin et d'ensilage.


Les conditions météorologiques imprévisibles et les fortes précipitations présentent constamment des défis pour la récolte du foin et des céréales ou pour la fabrication de l'ensilage.
Le traitement acide aide à protéger les aliments contre la détérioration causée par les micro-organismes ou leurs métabolites, même à des teneurs en humidité plus faibles.
Les acides organiques sont des éléments chimiques importants pour la production de polyesters, de polyamides, de plastifiants et de solvants.


Les acides organiques sont également utilisés dans la conservation des aliments.
GEA possède une expertise et une expérience de pointe dans la concentration des produits acides organiques finaux, des produits secondaires et des effluents issus de la fermentation des acides organiques.
La première étape du processus de concentration des acides organiques est la séparation de la biomasse par des décanteurs ou des unités de filtration membranaire.


Les acides organiques sont ensuite concentrés dans des installations d'évaporation. GEA propose des systèmes de décantation et de filtration sur membrane pour la plupart des applications, et nos installations d'évaporation à film tombant sont souvent utilisées pour concentrer les acides organiques.
La technologie des séparateurs est également généralement équipée de colonnes de lavage pour la séparation des composants facilement volatils, ou de colonnes de stripping pour la séparation de l'ammoniac.


Les acides organiques sont obtenus en oxydant de nombreuses substances organiques et se trouvent chez la fourmi rouge.
Les acides organiques sont largement dispersés dans la nature (sources animales, végétales et microbiennes) et sont produits par plusieurs champignons, levures et bactéries.


Les squelettes carbonés des acides organiques peuvent également être utilisés pour la biosynthèse des acides aminés.
Les acides organiques sont classés dans le groupe des acides « faibles » qui ne se dissolvent pas totalement dans l’eau et comprennent un ou plusieurs groupes d’acide carboxylique liés de manière covalente dans des groupes tels que les amides, les esters et les peptides.


Les acides organiques sont caractérisés par la présence d'un atome d'hydrogène polarisé positivement (bleu sur les cartes de potentiel électrostatique) et sont de deux types principaux : les acides tels que le méthanol et l'acide acétique qui contiennent un atome d'hydrogène lié à un atome d'oxygène électronégatif (O – H) et ceux comme l'acétone qui contiennent un atome d'hydrogène lié à un atome de carbone à côté d'une liaison C=O ( O=C-C-H).


Les acides organiques peuvent directement diminuer le pH de l’environnement intestinal grâce à la libération d’ions hydrogène, empêchant ou inhibant ainsi la prolifération des bactéries sensibles aux acides.
L'effet antimicrobien des acides organiques est plus important dans des conditions acides et moindre à pH neutre.


Il est important de savoir que chaque acide organique possède un spectre d’activité microbienne impliqué dans une plage de pH, une structure membranaire et une physiologie spécifiques dans la cellule de l’espèce du microbiote.
De plus, les acides organiques constituent des alternatives prometteuses aux antibiotiques pour favoriser la digestibilité des nutriments en diminuant le pH de la région supérieure du tube digestif.


Les acides organiques réduisent le pH gastrique, empêchent la croissance d'agents pathogènes, agissent comme une source d'énergie, augmentent la digestibilité apparente totale du tractus, améliorent la santé intestinale et améliorent les performances de croissance et la productivité.
Cependant, l'effet des acides organiques dans la pratique n'est pas toujours cohérent en raison de la grande variété de produits disponibles et des différents dosages efficaces recommandés avec les différentes combinaisons.


La composition du type, le dosage, la formule, le régime alimentaire, l'environnement, la composition nutritionnelle des aliments ainsi que l'âge et l'état de santé des animaux affectent tous l'efficacité des acides organiques.
Par conséquent, des recherches supplémentaires sont nécessaires pour établir un dosage et une combinaison efficaces d’acides organiques afin d’obtenir les meilleurs résultats possibles.


Les acides organiques sont faibles dans le sens où cette ionisation est très incomplète.
À tout moment, la majeure partie de l’acide sera présente dans la solution sous forme de molécules non ionisées.
Par exemple, dans le cas de l’acide éthanoïque dilué, la solution contient environ 99 % de molécules d’acide éthanoïque – à tout instant, seulement 1 % environ se sont réellement ionisés.


La position d’équilibre se situe donc bien à gauche.
Les acides organiques sont des composés organiques de nature acide.
Les acides organiques les plus courants sont les acides carboxyliques, dont l'acidité dérive du groupe carboxyle (-COOH).


L'acide sulfonique (-SO3H), l'acide sulfinique (RSOOH) et l'acide sulfurique (RCOSH) sont également des acides organiques.
Les acides organiques peuvent réagir avec les alcools pour former des esters.
Le groupe carboxyle est le groupe fonctionnel de l'acide carboxylique.


À l'exception de l'acide formique (H2CO2), l'acide carboxylique peut être considéré comme un dérivé de l'atome d'hydrogène de la molécule hydroxyle après avoir été remplacé par le groupe carboxyle.
Exprimés par la formule générale (Ar)R-COOH, les acides carboxyliques existent souvent largement dans la nature à l'état libre ou sous forme de sels et d'esters.


Un dérivé dans lequel l’atome d’hydrogène du groupe hydroxyle d’une molécule d’acide carboxylique est remplacé par un autre atome ou groupe d’atomes est appelé acide carboxylique substitué.
Les acides carboxyliques substitués importants comprennent les acides halogénés, les acides hydroxy, les acides céto et les acides aminés.


Certains de ces composés sont impliqués dans les processus vitaux du métabolisme végétal et animal, certains sont des produits intermédiaires du métabolisme, certains ont une activité biologique importante et peuvent prévenir et guérir des maladies, et certains sont des matières premières pour la synthèse organique, la production industrielle et agricole et pharmaceutique. industrie.


Les acides organiques sont largement distribués dans les feuilles, les racines et surtout les fruits des herbes, comme l'umeboshi, le schisandra, la framboise, etc.
Les acides organiques courants dans les plantes comprennent les acides aliphatiques mono-, di- et poly-carboxyliques tels que l'acide tartrique, l'acide oxalique, l'acide malique, le raffinat et l'acide ascorbique (c'est-à-dire la vitamine C), et les acides organiques aromatiques tels que l'acide benzoïque et l'acide salicylique. et l'acide caféique (acide Caffelc).


À l'exception de quelques-uns existant à l'état libre, les acides organiques sont généralement combinés avec le potassium, le sodium et le calcium pour former des sels, et certains sont combinés avec des alcaloïdes pour former des sels.
Le terme « acides organiques » fait référence à tous ces acides construits sur un squelette carboné, appelés acides carboxyliques, qui peuvent altérer la physiologie des bactéries, provoquant des troubles métaboliques qui empêchent la prolifération et provoquent la mort.


Presque tous les acides organiques utilisés en alimentation animale, comme les acides formique, propionique, lactique, acétique, sorbique ou citrique, ont une structure aliphatique et représentent une source d'énergie pour les cellules.
L’acide benzoïque, quant à lui, est construit sur un cycle aromatique et présente des caractéristiques métaboliques et d’absorption différentes.


Les acides organiques sont un type de composé organique qui contient souvent des propriétés acides.
Les acides organiques se trouvent dans divers aliments et contribuent souvent à leur saveur.
Quelques exemples courants incluent l’acide citrique dans les agrumes, l’acide lactique dans le yaourt et l’acide acétique dans le vinaigre.
Généralement, les acides organiques ont un groupe carboxyle (-COOH) et peuvent participer à des réactions dues à l'atome d'hydrogène de ce groupe.



UTILISATIONS et APPLICATIONS des ACIDES ORGANIQUES :
Des acides organiques simples comme l'acide formique ou acétique sont utilisés pour les traitements de stimulation des puits de pétrole et de gaz.
Ces acides organiques sont beaucoup moins réactifs avec les métaux que les acides minéraux forts comme le HCl ou les mélanges de HCl et de HF.
C'est pour cette raison que les acides organiques sont utilisés à des températures élevées ou lorsque de longs temps de contact entre l'acide et le tuyau sont nécessaires.


Les acides organiques sont des éléments chimiques importants pour la production de polyesters, de polyamides, de plastifiants et de solvants.
Les acides organiques sont également utilisés dans la conservation des aliments.
Les bases conjuguées d'acides organiques tels que le citrate et l'acétate sont souvent utilisées dans des solutions tampons biologiquement compatibles.


Les systèmes biologiques créent de nombreux acides organiques plus complexes tels que les acides L-lactique, citrique et D-glucuronique qui contiennent des groupes hydroxyle ou carboxyle.
Le sang et l'urine humains en contiennent, ainsi que des produits de dégradation des acides organiques tels que des acides aminés, des neurotransmetteurs et une action bactérienne intestinale sur les composants alimentaires.


Des exemples de ces catégories sont les acides alpha-cétoisocaproïque, vanilmandélique et D-lactique, dérivés respectivement du catabolisme de la L-leucine et de l'épinéphrine (adrénaline) par les tissus humains et du catabolisme des glucides alimentaires par les bactéries intestinales.
Les acides organiques sont utilisés pour diminuer la valeur du pH et le pouvoir tampon ainsi que pour les effets antibactériens et antifongiques dans l'aliment.


Les acides organiques sont utilisés pour réduire la valeur du pH en libérant des ions hydrogène dans l'estomac, activant ainsi le pepsinogène pour former de la pepsine et améliorant la digestibilité des protéines.
Les acides organiques sont utilisés pour inhiber la microflore indigène à Gram négatif dans le tractus gastro-intestinal.


Les acides organiques améliorent l’utilisation énergétique dans le métabolisme intermédiaire.
L'efficacité d'un acide organique à inhiber la croissance d'un micro-organisme dépend de sa valeur pKa, qui décrit la valeur du pH à laquelle l'acide est disponible à 50 % sous sa forme dissociée et non dissociée respectivement.


Ce n'est que sous sa forme non dissociée que l'acide organique possède son pouvoir antimicrobien, car il peut traverser les parois des bactéries et des champignons et modifier leur métabolisme.
Des acides organiques simples comme les acides formique ou acétique sont utilisés pour les traitements de stimulation des puits de pétrole et de gaz.


Ces acides organiques sont beaucoup moins réactifs avec les métaux que les acides minéraux forts comme l'acide chlorhydrique (HCl) ou les mélanges de HCl et d'acide fluorhydrique (HF).
C'est pour cette raison que les acides organiques sont utilisés à des températures élevées ou lorsque de longs temps de contact entre l'acide et le tuyau sont nécessaires.


Les bases conjuguées d'acides organiques tels que le citrate et le lactate sont souvent utilisées dans des solutions tampons biologiquement compatibles.
Les acides citrique et oxalique sont utilisés pour éliminer la rouille.
En tant qu'acides, ils peuvent dissoudre les oxydes de fer, mais sans endommager le métal de base, comme le font les acides minéraux plus forts.


Sous forme dissociée, ils peuvent être capables de chélater les ions métalliques, contribuant ainsi à accélérer leur élimination.
Les systèmes biologiques créent de nombreux acides organiques plus complexes tels que les acides L-lactique, citrique et D-glucuronique qui contiennent des groupes hydroxyle ou carboxyle.
Le sang et l'urine humains en contiennent, ainsi que des produits de dégradation des acides organiques des acides aminés, des neurotransmetteurs et une action bactérienne intestinale sur les composants alimentaires.


Des exemples de ces catégories sont les acides alpha-cétoisocaproïque, vanilmandélique et D-lactique, dérivés respectivement du catabolisme de la L-leucine et de l'épinéphrine (adrénaline) par les tissus humains et du catabolisme des glucides alimentaires par les bactéries intestinales.
Les acides organiques sont largement distribués dans la nature en tant que constituants normaux des tissus végétaux ou animaux.


Les acides organiques sont également formés par la fermentation microbienne des glucides, principalement dans le gros intestin.
Les acides organiques se trouvent parfois dans leurs sels de sodium, de potassium ou de calcium, ou même dans des sels doubles plus forts.
Les acides organiques sont également utilisés dans diverses applications industrielles telles que les conservateurs alimentaires, les stabilisants plastiques et les produits pharmaceutiques.


La supplémentation en acides organiques à des doses élevées et appropriées dans l'alimentation animale peut augmenter le poids corporel, améliorer le taux de conversion alimentaire et réduire la colonisation d'agents pathogènes dans l'intestin.
Cela signifie que l’efficacité antimicrobienne de l’acide organique est plus élevée dans des conditions acides, comme dans l’estomac, et réduite à pH neutre, comme dans l’intestin.


En conséquence, les acides organiques avec une valeur pKa élevée sont des acides plus faibles et donc des conservateurs plus efficaces pour les aliments pour animaux, car, étant présents dans l'aliment avec une proportion plus élevée de leur forme non dissociée, ils peuvent défendre les aliments contre les champignons et les microbes.


Ainsi, plus le pKa de l'acide organique est faible (plus la proportion de forme dissociée est élevée), plus son effet sur la réduction du pH est important et plus son effet antimicrobien est faible dans les parties les plus distales lors de son transit dans le tube digestif.
Un acide fort (avec un faible pKa) acidifiera l’alimentation et l’estomac, mais n’aura pas d’effets directs importants sur la microflore intestinale.


-Acides organiques couramment utilisés :
CH3COOH (acide acétique)
HCOOH (acide formique)
C6H8O7 (Acide citrique)
C2H2O4 (Acide oxalique)



DANS L'ALIMENTATION, LES ACIDES ORGANIQUES :
Les acides organiques sont utilisés dans la conservation des aliments en raison de leurs effets sur les bactéries.
Le principe de base clé du mode d'action des acides organiques sur les bactéries est que les acides organiques non dissociés (non ionisés) peuvent pénétrer dans la paroi cellulaire des bactéries et perturber la physiologie normale de certains types de bactéries que nous appelons sensibles au pH, c'est-à-dire qu'ils ne peuvent pas tolérer un large gradient de pH interne et externe.

Parmi ces bactéries figurent Escherichia coli, Salmonella spp., C. perfringens, Listeria monocytogenes et les espèces Campylobacter.
Lors de la diffusion passive d'acides organiques dans les bactéries, là où le pH est proche ou supérieur à la neutralité, les acides se dissocieront et augmenteront le pH interne des bactéries, conduisant à des situations qui n'altèreront ni n'arrêteront la croissance des bactéries.

En revanche, la partie anionique des acides organiques qui peuvent s'échapper de la bactérie sous sa forme dissociée va s'accumuler au sein de la bactérie et perturber quelques fonctions métaboliques, entraînant une augmentation de la pression osmotique, incompatible avec la survie de la bactérie.
Il a été bien démontré que l'état des acides organiques (non dissociés ou dissociés) n'est pas important pour définir leur capacité à inhiber la croissance des bactéries, comparativement aux acides non dissociés.

L'acide lactique et ses sels lactate de sodium et lactate de potassium sont largement utilisés comme antimicrobiens dans les produits alimentaires, en particulier les produits laitiers et la volaille comme le jambon et les saucisses.



EN NUTRITION ET ALIMENTATION ANIMALE, LES ACIDES ORGANIQUES :
Les acides organiques sont utilisés avec succès dans la production porcine depuis plus de 25 ans.
Bien que moins de recherches aient été effectuées sur la volaille, les acides organiques se sont également révélés efficaces dans la production avicole.

Les acides organiques ajoutés aux aliments doivent être protégés pour éviter leur dissociation dans le jabot et dans l'intestin (segments à pH élevé) et atteindre loin dans le tractus gastro-intestinal, où se trouve la majeure partie de la population bactérienne.

De l'utilisation d'acides organiques chez les volailles et les porcs, on peut s'attendre à une amélioration des performances similaire ou supérieure à celle des stimulateurs de croissance antibiotiques, sans souci de santé publique, un effet préventif sur les problèmes intestinaux comme l'entérite nécrotique chez les poulets et Escherichia coli. infection chez les jeunes porcs.
On peut également s'attendre à une réduction de l'état de porteur pour les espèces de Salmonella et de Campylobacter.

Recherche en cours;
En plus des utilisations finales vues précédemment, les acides organiques ont été testés pour les applications suivantes :



FONCTIONS DES ACIDES ORGANIQUES :
*Effet antibactérien
Les acides organiques peuvent augmenter la pression osmotique intracellulaire en dissociant les ions acides ou les ions hydrogène dans les membranes cellulaires bactériennes, abaissant ainsi l'indice d'acidité de l'environnement interne, conduisant à une perturbation du métabolisme normal des bactéries, voire à la lyse et à la mort, et réduisant indirectement le nombre de bactéries. Bactéries nocives.

Les acides organiques peuvent non seulement abaisser le pH de l'environnement, mais également inhiber les bactéries en endommageant les membranes cellulaires bactériennes, en interférant avec la synthèse des enzymes bactériennes et en affectant la réplication de l'ADN bactérien.


*Atténuer la toxicité des métaux lourds tels que le Pb et le Cd et réduire la contamination de l'environnement d'élevage.
Les acides organiques sont utilisés en aquaculture par éclaboussure et réduisent la toxicité des métaux lourds tels que le Pb, le Cd, le Cu et le Zn par adsorption, oxydation ou complexation.


*Favoriser la digestion, la résistance et les effets anti-stress
Les acides organiques favorisent la digestion animale en influençant les activités métaboliques et en augmentant les activités enzymatiques.
Certains acides organiques comme l'acide citrique peuvent participer au cycle de l'acide tricarboxylique ainsi qu'à la production et à la conversion de l'ATP, accélérant ainsi le métabolisme des animaux.

L'acide jhanosolique peut améliorer l'activité de l'adénylate cyclase mitochondriale, des enzymes intragastriques, etc., ce qui facilite la production d'énergie et la décomposition des macromolécules telles que les graisses et les protéines, et favorise l'absorption et l'utilisation.
De plus, il est également impliqué dans la conversion des acides aminés et, sous la stimulation de facteurs de stress, le corps peut synthétiser de l'ATP pour produire des effets anti-stress.

La combinaison d'échantillons standards et de spectrométrie de masse telle que la chromatographie en phase gazeuse-spectrométrie de masse (GC-MS) permet une analyse qualitative et quantitative efficace et précise des acides organiques.
La chromatographie liquide haute performance (HPLC) ou la spectrométrie de masse liquide (LC-MS) peuvent également être utilisées pour la détermination précise des acides organiques.



QUELQUES EXEMPLES COURANTS D'ACIDES ORGANIQUES COMPRENNENT :
*Acide lactique
*Acide acétique
*Acide formique
*Acide citrique
*Acide oxalique
*Acide urique
*L'acide malique
*Acide tartrique
*Acide butyrique
*Acide folique



CARACTÉRISTIQUES DES ACIDES ORGANIQUES :
En général, les acides organiques sont des acides faibles et ne se dissocient pas complètement dans l’eau, contrairement aux acides minéraux forts.
Les acides organiques de masse moléculaire inférieure, tels que les acides formique et lactique, sont miscibles dans l'eau, mais les acides organiques de masse moléculaire plus élevée, tels que l'acide benzoïque, sont insolubles sous forme moléculaire (neutre).

En revanche, la plupart des acides organiques sont très solubles dans les solvants organiques.
L'acide p-toluènesulfonique est un acide relativement fort utilisé souvent en chimie organique car il est capable de se dissoudre dans le solvant de réaction organique.
Des exceptions à ces caractéristiques de solubilité existent en présence d'autres substituants qui affectent la polarité du composé.



TYPES D'ACIDES ORGANIQUES :
Les acides organiques englobent une large gamme de composés répandus dans la nature et cruciaux pour de nombreux processus dans les systèmes biologiques, l'industrie et l'environnement.
Les acides organiques se distinguent par la présence d'un ou plusieurs groupes fonctionnels carboxyle (-COOH), qui confèrent des propriétés acides à ces molécules.
Des exemples courants d'acides organiques comprennent, entre autres, l'acide acétique, l'acide citrique, l'acide lactique et les acides gras.



CLASSIFICATION BASÉE SUR LA STRUCTURE CHIMIQUE DES ACIDES ORGANIQUES :
Les acides organiques peuvent être classés en fonction de leur structure chimique, qui peut varier considérablement.
Par exemple, certains acides organiques sont des acides monocarboxyliques simples, contenant un seul groupe carboxyle, tandis que d’autres sont des acides dicarboxyliques avec deux groupes carboxyle.

De plus, les acides organiques peuvent être classés en fonction de la longueur de leur chaîne carbonée, allant des acides gras à chaîne courte contenant moins de six atomes de carbone aux acides gras à chaîne longue contenant plus de douze atomes de carbone.



ORIGINE ET PRÉSENCE DES ACIDES ORGANIQUES :
Les acides organiques sont omniprésents dans la nature et se trouvent dans diverses sources telles que les fruits, les légumes, les produits laitiers et les processus de fermentation.
L'acide citrique, par exemple, est abondant dans les agrumes comme les oranges et les citrons, tandis que l'acide lactique est produit lors de la fermentation du lait par les bactéries lactiques.

Comprendre les différents types d'acides organiques est essentiel pour discerner leurs propriétés, fonctions et rôles dans différents systèmes.
La diversité des acides organiques contribue à leur polyvalence et à leur importance dans de nombreux processus biologiques, industriels et environnementaux.



LES TERMES TECHNIQUES « ORGANIQUES ET ACIDES ORGANIQUES » :
En chimie, le mot « organique » désigne simplement une molécule qui contient un atome de carbone.
Il ne fait pas référence aux pratiques agricoles ou aux aliments pour lesquels nous entendons traditionnellement ce terme.

Les « acides organiques » sont produits par divers microbes, présents dans les aliments ou fabriqués par notre propre corps via le métabolisme de molécules alimentaires, de nutriments, de neurotransmetteurs ou de toxines.
Les acides organiques ne sont pas nécessairement fixés dans un état, mais sont facilement modifiés et transformés lorsqu'ils influencent et sont influencés par diverses enzymes présentes dans les cellules.

Par exemple, les médecins peuvent rechercher de l'acide homovanillique dans l'urine pour évaluer les niveaux de dopamine dans le corps, ce qui peut être utile en cas de suspicion de maladie de Parkinson.



POURQUOI LES ACIDES ORGANIQUES SONT-ILS IMPORTANTS ?
Maintenant que nous comprenons la terminologie chimique des termes « organique » et « acides organiques », voyons pourquoi ils sont importants.
Les acides organiques peuvent être testés pour mieux comprendre le fonctionnement du corps : niveaux de nutriments, fonction hormonale et même état du microbiome, qui sont extrêmement importants pour comprendre notre santé globale.

Aujourd’hui, nous allons rester concentrés sur une poignée d’acides organiques dont le rôle est connu dans l’amélioration et le soutien de notre bien-être.
Certains acides organiques à noter qui sont très bénéfiques pour la santé humaine sont ceux qui sont eux-mêmes des nutriments tels que : Acide ascorbique (vitamine C) et acides aminés : qui créent les protéines et les neurotransmetteurs, ainsi que les acides gras eux-mêmes.



PRODUCTION ET EXTRACTION D'ACIDES ORGANIQUES :
La synthèse chimique ou la fermentation sont parmi les méthodes les plus utilisées pour la production d'acides organiques.
Ces dernières années, de nouvelles techniques ont été développées pour une extraction rapide et efficace des composés organiques de différentes matières végétales.

Les acides citrique, lactique, gluconique et itaconique sont produits industriellement par des processus microbiens, ce qui constitue une approche prometteuse pour obtenir des éléments chimiques de base basés sur des sources de carbone renouvelables.

De plus, de grandes quantités d’acide acétique sont produites par les bioprocédés et la synthèse chimique.
L'extraction assistée par micro-ondes est une autre technique permettant d'isoler divers composés de plantes ou de matières végétales à des fins analytiques et industrielles.



ACIDES ORGANIQUES DANS LE MÉTABOLISME :
Les acides organiques jouent un rôle central dans divers processus métaboliques au sein des organismes vivants, servant d'intermédiaires essentiels dans la production d'énergie, la biosynthèse et la régulation cellulaire.

Comprendre l'importance métabolique des acides organiques donne un aperçu des fonctions physiologiques, de l'homéostasie cellulaire et de la pathogenèse des troubles métaboliques.
Vous trouverez ci-dessous des explications détaillées sur les rôles des acides organiques dans le métabolisme :


*Intermédiaires dans les voies métaboliques :
Les acides organiques participent à des voies métaboliques clés, notamment le cycle de l'acide citrique (également connu sous le nom de cycle de Krebs ou cycle de l'acide tricarboxylique), la glycolyse et le métabolisme des acides gras.

Par exemple, l'acide citrique, un acide tricarboxylique, sert d'intermédiaire central dans le cycle de l'acide citrique, où il subit des réactions d'oxydo-réduction séquentielles pour générer de l'ATP, du NADH et du FADH2, qui sont des vecteurs d'énergie vitaux dans les cellules.


*Régulation du métabolisme cellulaire :
Les acides organiques contribuent à la régulation du métabolisme cellulaire en modulant l'activité enzymatique, l'expression des gènes et les voies de signalisation.

Certains acides organiques, tels que le succinate et le fumarate, agissent comme des molécules de signalisation qui régulent les processus cellulaires tels que la fonction mitochondriale, la phosphorylation oxydative et l'apoptose.
Une dérégulation du métabolisme des acides organiques peut entraîner des troubles métaboliques, tels qu'un dysfonctionnement mitochondrial et une acidose métabolique.


*Production d'énergie:
Les acides organiques servent de substrats pour la production d'énergie par le métabolisme oxydatif.
Les acides gras à chaîne courte, tels que l'acide acétique et l'acide propionique, sont produits lors de la fermentation des fibres alimentaires dans le côlon et servent de sources d'énergie aux colonocytes.

De plus, les acides organiques dérivés de la dégradation des glucides, des protéines et des lipides contribuent à la synthèse de l'ATP via le cycle de l'acide citrique et la phosphorylation oxydative.


*Biosynthèse de Biomolécules :
Les acides organiques servent de précurseurs pour la biosynthèse de diverses biomolécules, notamment les acides aminés, les nucléotides et les lipides.

Par exemple, l’oxaloacétate, un intermédiaire du cycle de l’acide citrique, peut être converti en aspartate, un acide aminé non essentiel, via des réactions de transamination.
De même, le malonyl-CoA, dérivé de l’acide malonique, sert d’élément constitutif de la synthèse des acides gras.



CARACTÉRISTIQUES DES ACIDES ORGANIQUES :
Les propriétés acides et basiques des composés organiques sont très similaires aux propriétés acides et basiques des composés inorganiques.
Les propriétés des acides comprennent un pH inférieur à 7, un goût aigre, produisant des ions hydrogène lorsqu'ils sont dissous dans l'eau et étant corrosifs pour les tissus humains et réactifs avec les bases pour former un sel et de l'eau.
Les propriétés courantes des bases incluent un pH supérieur à 7, une sensation « savonneuse », un goût amer et le fait d'être corrosives pour les tissus humains et réactives avec les acides pour former du sel et de l'eau.



COMBIEN DE TYPES D'ACIDES ORGANIQUES EXISTE-T-IL ?
Il existe deux types d'acides organiques.
On a le groupe carboxyle (groupe COOH), par exemple l'acide acétique (CH3COOH) qui est fabriqué par oxydation de l'alcool de grain ou par fermentation du sucre des fruits dans le cidre.
Le deuxième type possède un groupe phénol (C6H5OH).
L'acide salicylique (OHC6H4COOH) est un exemple d'acide organique contenant à la fois des groupes carboxyle et phénol.



POURQUOI LES ACIDES ORGANIQUES SONT-ILS IMPORTANTS ?
Les acides organiques jouent un rôle dans la régulation des processus cellulaires fondamentaux tels que la modification du pH, la signalisation des messagers et la modulation du transport à travers les membranes biologiques, et ils modifient considérablement les compartiments cellulaires, subcellulaires ou extracellulaires dans lesquels ils se trouvent en raison de leurs propriétés chimiques.

Par conséquent, les acides organiques peuvent être impliqués dans divers processus biochimiques et physiologiques in vivo.
De plus, les acides organiques sont impliqués dans la modification chimique des protéines, avec un impact important sur l’activité protéique in vivo.
Les différents rôles de ces composés restent encore à explorer.



CARACTÉRISTIQUES DES ACIDES ORGANIQUES :
Généralement, les acides organiques sont des acides faibles et ne se dissocient pas complètement dans l’eau, contrairement aux acides minéraux forts.
Les acides organiques de poids moléculaire inférieur tels que les acides formique et acétique sont miscibles dans l'eau, mais les acides organiques de poids moléculaire plus élevé tels que l'acide benzoïque sont insolubles sous forme moléculaire (neutre).

En revanche, la plupart des acides organiques sont très solubles dans les solvants organiques.
L'acide p-toluènesulfonique est un acide relativement fort utilisé souvent en chimie organique car il est capable de se dissoudre dans le solvant de réaction organique.
Des exceptions à ces caractéristiques de solubilité existent en présence d'autres substituants qui affectent la polarité du composé.



QUE SONT LES ACIDES ORGANIQUES ET COMMENT SONT-ILS ASSOCIÉS À VOTRE SANTÉ ?
*Acides aminés:
Les acides aminés sont les éléments constitutifs de tous nos tissus. Lorsque nous faisons de l'exercice, nous causons des dommages microscopiques aux cellules musculaires, mais lorsque nous dormons la nuit, le corps répare les dommages grâce aux acides aminés de notre alimentation, créant ainsi un muscle plus fort.

Les acides aminés sont également les matières premières des neurotransmetteurs (le tryptophane est utilisé pour fabriquer la sérotonine et la mélatonine, tandis que la tyrosine est utilisée pour fabriquer l'épinéphrine, la dopamine et les hormones thyroïdiennes). Nous devons donc garantir un apport régulier de protéines de qualité pour un fonctionnement mental et physique optimal. santé.


*Les acides gras
Les acides gras sont utilisés pour le stockage de l’énergie (la bataille des renflements !) mais peuvent aussi avoir d’autres propriétés.
Par exemple, l’acide caprylique de l’huile de coco est antifongique et utilisé dans de nombreux protocoles contre le Candida.


*Autres acides organiques à connaître
D’autres acides organiques sains participent à la production d’énergie au sein de la cellule.
Certains d’entre vous ne les connaissent peut-être pas du tout, d’autres peuvent en avoir de vagues souvenirs lors de cours de biologie au lycée, et certains d’entre vous peuvent être à l’aise avec eux mais ne connaissent pas toute l’étendue de leurs activités dans le corps.



LES AVANTAGES EN UN CLIN D'OEIL DES ACIDES ORGANIQUES :
*Protéger les aliments contre la détérioration causée par les micro-organismes ou leurs métabolites
*Améliorer la production d'ensilage lors de son incorporation dans l'aliment
*Par rapport aux acides purs, nos mélanges et mélanges sont simplement irritants pour la peau et les yeux et moins corrosifs.



QUELS SONT QUELQUES EXEMPLES D'ACIDES ORGANIQUES ?
Les acides organiques sont des molécules organiques qui possèdent au moins un atome H pouvant être libéré sous forme de proton H+.
Cet atome H fait toujours partie d’un groupe fonctionnel.

Voici des exemples d’acides organiques :
*Acide acétique.
*Méthanol.
*Acide méthanesulfonique.
*L'acide propionique.



QU'EST-CE QUE SIGNIFIENT PAR ACIDES ORGANIQUES ?
Les acides organiques sont des acides contenant du carbone.
Ce type d'acides organiques est principalement composé de liaisons CH.
Les acides organiques se comportent comme un acide en agissant comme donneur de protons.



PREMIERS SECOURS DES ACIDES ORGANIQUES :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE D'ACIDES ORGANIQUES :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE DES ACIDES ORGANIQUES :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE aux ACIDES ORGANIQUES :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE des ACIDES ORGANIQUES :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ des ACIDES ORGANIQUES :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


Acide 2-aminoéthanesulfinique (AMINOETHANESULFINIC ACID)
BUTYLOCTANOIC ACID, 2-butyloctanoic acid; Octanoic acid, 2-butyl-; Isocarb 12; N° CAS : 27610-92-0, Nom INCI : BUTYLOCTANOIC ACID, Nom chimique : 2-Butyloctanoic acid, N° EINECS/ELINCS : 248-570-1; Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile).Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. 248-570-1 [EINECS] 27610-92-0 [RN]; 2-Butyloctanoic acid ; 2-Butyloctansäure [German] ; Acide 2-butyloctanoïque [French] ;BUTYLOCTANOIC ACID ; Octanoic acid, 2-butyl- [ACD/Index Name]; 2-Butyloctanedioic acid ; 2-BUTYLOCTANOICACID; 2-Butyloctansaeure [German]; 2-Butyloctansaeure;4-02-00-01112 [Beilstein] 50905-10-7 [RN]; 53687-45-9 [RN]; 5-Undecanecarboxylic acid;PI-46872
Acide 2-butyloctanoïque ( Butyloctanoic acid)
Acide acrylique ; N° CAS : 79-10-7, Nom INCI : ACRYLIC ACID; N° EINECS/ELINCS : 201-177-9;2-PROPENOIC ACID; Acide acrylique. Noms anglais :ACROLEIC ACID; Acrylic acid; ETHYLENE CARBOXYLIC ACID; PROPENOIC ACID; VINYL FORMIC ACID; VINYLFORMIC ACID. Utilisation: Fabrication de produits organiques. fabrication de polymères Ses fonctions (INCI) : Agent d'entretien des ongles : Améliore les caractéristiques esthétiques des ongles. 2-Propenoic acid Acido acrilio; Acroleic acid; Acrylic acid;Acrylic acid, glacial; ACRYLIC ACID, STABILIZED; EU. ADN Dangerous Goods Lists, Directive 2008/68/EC, EU. ADR Dangerous Goods Lists, Directive 2008/68/EC, EU. RID Dangerous Goods Lists, Directive 2008/68/EC; acrylic acid; prop-2-enoic acid; EU. Worker Protection-Hazardous (98/24), EU. Workplace Signs, EU. Hazardous Waste Properties: Annex III (2008/98/EC), EU. Young People at Work (94/33); Ethylenecarboxylic acid; Glacial acrylic acid; Kyselina akrylova; Prop-2-enoic acid; Propene acid; Propenoic acid; Vinylformic acid; 2-propeno rūgštis (lt); 2-propensyra (sv); 2-propensyre (no); acid acrilic (ro); acid prop-2-enoic (ro); acide acrylique (fr); acido acrilico (it); acrylsyre (da); Acrylsäure (de); acrylzuur (nl); akrilna kiselina (hr); akrilna kislina (sl); akrilo rūgštis (lt); akrilsav (hu); akrilskābe (lv); akrylová kyselina (cs); akrylsyra (sv); akrylsyre (no); Akryylihappo (fi); Akrüülhape (et); kwas akrylowy (pl); kwas etenokarboksylowy (pl); kwas propenowy (pl); kyselina akrylová (sk); kyselina propénová (sk); Prop-2-eenhape (et); Prop-2-eenihappo (fi); prop-2-enojska kislina (sl); prop-2-enonska kiselina (hr); prop-2-enová kyselina (cs); prop-2-énsav (hu); Propensäure (de); propēn-2 skābe (lv); ácido 2-propenoico (es); ácido 2-propenóico (pt); ácido acrílico (es); ακρυλικο οξύ (el); акрилова киселина (bg); проп-2-енова киселина (bg) 2-hydroxyethyl methacrylate; Acrylic Acid (stabilized with MEHQ); Acrylic acid ; acrylic acid, acrylic acid glacial, acrylic acid technical; acrylicacid; prop-2-enoate
Acide acrylique ( ACRYLIC ACID)
N° CAS : 124-04-9 ; EC / List no.: 204-673-3; Mol. formula: C6H10O4; 1,4-Butanedicarboxylic acid; 1,6-Hexanedioic acid; Acifloctin; Acinetten; Adilactetten; Adipate;Adipic acid; Adipinic acid; Adipinsaure; Kyselina adipova; Molten adipic acid; acid adipic (ro); acide adipique (fr); acido adipico (it); Adipiinhape (et); Adipiinihappo (fi); adipinezuur (nl); adipinsav (hu); adipinska kiselina (hr); adipinska kislina (sl); adipinsyra (sv); adipinsyre (da); Adipinsäure (de); adipo rūgštis (lt); adipová kyselina (cs); adipīnskābe (lv); hexandikarboxylsyra (sv); kwas adypinowy (pl); kwas butano-1,4-dikarboksylowy (pl); kyselina adipová (sk); ácido adípico (es); αδιπικό οξύ (el); адипинова киселина (bg) Hexanedioic acid; : 1, 4-butanedicarboxylic acid; 1,4-buthanediacetic acid; Adipic acid ,CAS N°124-04-9; Hexamethylenediamine-adipate; hexan-1,6-dioic acid; hexane-1,6-dioic acid; Hexanedioic acid / Adipic acid; Adipic acid (8CI); adipin saure; ADIPINSAEURE L'acide adipique ou acide 1,6-hexanedioïque est un diacide carboxylique aliphatique. Il est utilisé principalement pour la fabrication du nylon, et plus généralement pour la synthèse des polyamides. C'est également un additif alimentaire (E355) utilisé pour acidifier des boissons non alcoolisées ou contrôler l’acidité des cosmétiques. Il contribue aussi au goût acide des betteraves. De formule CO2H(CH2)4CO2H, il se présente sous forme d'un solide cristallisé blanc. Il possède un groupe acide à ses 2 extrémités, comme l’acide téréphtalique, avec possibilité de développer des chaînes à chacune de ses extrémités. Par estérification avec un alcool double, tel l’éthylène glycol, il formera un polyester. Il peut également donner un polyamide.
Acide adipique (ADIPIC ACID)
Nom inci: Aminoethylphosphinic acid. Nom français: Acide aminoethylphosphinique. Aminoethylphosphinic acid | 1-aminoethylphosphinique acid. 1-aminoethylphosphinic acid; Phosphinic acid, P-(1-aminoethyl)-; (1-azaniumylethyl)phosphinate; N° CAS. : 74333-44-1, Nom INCI : AMINOETHYLPHOSPHINIC ACID, Nom chimique : Phosphinic acid, (1-aminoethyl)-, Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état. (1-Aminoethyl)phosphinic acid ; (1-Aminoethyl)phosphinsäure [German] ; 74333-44-1 [RN] Acide (1-aminoéthyl)phosphinique [French] ; Aminoethylphosphinic acid; Phosphinic acid, (1-aminoethyl)-, (-)-; Phosphinic acid, P-(1-aminoethyl)- (1-Amino-ethyl)-phosphinic acid; 1-aminoethylphosphinic acid; 71937-28-5 [RN]; AMINOETHYLPHOSPHINICACID; PHOSPHINIC ACID, (1-AMINOETHYL)-, (S)-
Acide aminoethylphosphinique ( AMINOETHYLPHOSPHINIC ACID)
ASCORBIC ACID, N° CAS : 50-81-7 / 62624-30-0 - Acide ascorbique (Vitamine C),utres langues : Acido ascorbico, Askorbinsäure, Ácido ascórbico, Nom INCI : ASCORBIC ACID; Nom chimique : Ascorbic acid, N° EINECS/ELINCS : 200-066-2 / 263-644-3. Additif alimentaire : E300, Plus connu sous le nom de Vitamine C, l'acide ascorbique est utilisé en cosmétique pour ses propriétés antioxydantes. On le retrouve assez régulièrement dans les actifs anti-âge, puisque qu'il protège les cellules des dégâts causés par les radicaux libres et unifie le teint. Il est aussi présent dans de nombreux autres produits de soin pour ces propriétés. Il est présent sous forme naturel dans les fruits et légumes (citrons, oranges, kiwis ...)Ses fonctions (INCI): Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Régulateur de pH : Stabilise le pH des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent d'entretien de la peau : Maintient la peau en bon état. Noms français :3-KETO-L-GULFURANOLACTONE; 3-OXO-L-GULOFURANOLACTONE; Acide ascorbique; L(+)-ASCORBIC ACID; L-3-KETOTHREOHEXURONIC ACID LACTONE; L-ASCORBIC ACID; L-LYXOASCORBIC ACID; L-TREO-HEX-ENONIC ACID, GAMMA-LACTONE; L-XYLOASCORBIC ACID; VITAMINE C XYLOASCORBIC ACID, L-. Noms anglais : Ascorbic acid; VITAMIN C. Utilisation: Vitamine. Ascorbic acid ; Vitamin C ; (5R)-5-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxy-2(5H)-furanon [German]; (5R)-5-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxy-2(5H)-furanone; (5R)-5-[(1S)-1,2-Dihydroxyéthyl]-3,4-dihydroxy-2(5H)-furanone; (5R)-5-[(1S)-1,2-Dihydroxyethyl]-3,4-dihydroxyfuran-2(5H)-one; 200-066-2 [EINECS]; acide ascorbique [French]; acido ascorbico [Spanish]; ácido ascórbico [Spanish]; acidum ascorbicum [Latin]; Ascorbinsäure [German]; Calscorbate; Cetebe; L-AA; L-Ascorbic acid; L-Threoascorbic acid; monodehydro-L-ascorbic acid; аскорбиновая кислота [Russian]; حمض أسكوربيك [Arabic]; 抗坏血酸 [Chinese]; (+)-ascorbate; (+)-Ascorbic acid; (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one; (5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one (R)-5-((S)-1,2-dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one; [(2R)-2-(1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5-dihydrofuran-3-yl]oxidanyl; 16351-10-3 [RN]; 2-(1,2-Dihydroxyethyl)-4,5-dihydroxyfuran-3-one; 299-36-5 [RN]; 3-Keto-L-gulofuranolactone; 3-Oxo-L-gulofuranolactone; 3-Oxo-L-gulofuranolactone (enol form); 5-(1,2-Dihydroxy-ethyl)-3,4-dihydroxy-5H-furan-2-one; acidum ascorbinicum; Adenex; AHI; Allercorb; Antiscorbic vitamin; Arco-cee; ASC; Ascoltin; Ascorb; Ascor-B.I.D.; Ascorbajen; Ascorbic Acid DC97SF; ascorbicab; Ascorbicap; Ascorbicin Ascorbin; Ascorbutina; Ascorin; Ascorteal; Ascorvit; ascrobin; Cantan; Cantaxin; Catavin C; ce lent; Cebicure; Cebid []; Cebion; Cebione; Cee-caps TD; Cee-vite; Cegiolan; Ceglion Celaskon; Cell C; Cemagyl; Ce-Mi-Lin; Cemill; Cenetone; Cenolate; Cereon; Cergona; Cescorbat; Cetamid; cetane; Cetane-Caps TC; Cetane-caps TD; Cetemican; Cevalin; Cevatine; Cevex; Cevi-bid; CeviminCE-VI-Sol; Cevital; Cevitamate; Cevitamic acid; Cevitamin; Cevitan; Cevitex; Cewin; Chewcee; Ciamin; Cipca; Citriscorb; Citrovit; C-Level; C-Long; Colascor; Concemin; C-Quin; C-Span; C-Vimin; Davitamon C; D-Isoascorbic acid; Dora-C-500; Duoscorb; E300; E-300; Hicee; Hybrin; IDO-C; Juvamine; Kangbingfeng; l-​(+)​-​ascorbic acid; L(+)-ascorbate; L-(+)-ascorbate; L-(+)-ascorbic acid; l(+)-ascorbic acid standard; l,3-ketothreohexuronic acid; Laroscorbine; L-ascorbate; L-Ascorbate;Vitamin C; L-ASCORBIC ACID 2-(DIHYDROGEN PHOSPHATE) CALCIUM SALT (2:3); l-ascorbic acid (vitamin c); L-Ascorbic acid ACS reagent grade; L-ASCORBIC ACID-6,6-Dl-ascorbic acid-用于细胞培养; Lemascorb; Liqui-Cee; L-lyxoascorbate; L-Lyxoascorbic acid; L-threo-Ascorbic acid; L-threo-hex-2-enono-1,4-lactone; L-xyloascorbate; L-XYLOASCORBIC ACID; meilun; Meri-C; Natrascorb; Natrascorb injectable; Planavit C; Proscorbin; Redoxon []; Ronotec 100; Rontex 100; Roscorbic; Rovimix C; Scorbacid; Scorbu C; Scorbu-C; Secorbate; Semidehydroascorbate; Semidehydroascorbic acid; Suncoat VC 40; Testascorbic; Vasc; Vicelat; Vicin; Vicomin C; Viforcit; Viscorin; Vitace; Vitacee; Vitacimin; Vitacin; Vitamisin; Vitascorbol; Xitix; γ-lactone L-threo-Hex-2-enonate; γ-lactone L-threo-Hex-2-enonic acid
Acide ascorbique (Vitamine C)
Acide aspartique (dl-); Acide DL-aspartique. Noms anglais :Aspartic acid, DL-; dl-Aspartic acid. Utilisation: Produit organique; ASPARTIC ACID, N° CAS : 56-84-8 / 617-45-8 - Acide aspartique, Nom INCI : ASPARTIC ACID, Nom chimique : Aspartic acid, N° EINECS/ELINCS : 200-291-6 / 210-513-3.Nom UICPA acide (2S)-2-aminobutanedioïque; Synonymes : D, Aspacide 2-aminosuccinique L’acide aspartique (abréviations IUPAC-IUBMB : Asp et D), est un acide α-aminé dont l'énantiomère L est l'un des 22 acides aminés protéinogènes, encodé sur les ARN messagers par les codons GAU et GAC. Il est caractérisé par la présence d'un groupe carboxyle –COOH à l'extrémité de sa chaîne latérale, lui conférant un point isoélectrique de 2,77, ce qui en fait le résidu le plus acide dans les protéines. Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent d'entretien de la peau : Maintient la peau en bon éta.Acid D,L-aspart; Aspartic acid; 2-Aminobutanedioic acid DL-Aspartic acid (±)-2-Aminosuccinic acid (±)-2-Aminosuccinic acid (R,S)-Aspartic acid 200-291-6 [EINECS] 2-Aminobutandisäure [German] 2-Aminosuccinic acid 617-45-8 [RN] 774618 [Beilstein] acide 2-aminobutanedioïque [French] Acide 2-aminosuccinique [French] Acide aspartique [French] Aminosuccinic acid ASP Asparaginic acid Asparaginsäure [German] Aspartic acid Aspartic acid, D- ASPARTIC ACID, DL- DL-2-Aminobutanedioic acid DL-Aminosuccinic acid DL-Asparagic acid H-DL-Asp-OH α-Aminosuccinic acid (±)-Aspartic Acid (±)-Aspartic Acid 1-deoxy-1-(N6-lysino)-D-fructose 217-234-6 [EINECS] 2-Amino Maleic Acid 2-aminobutanedioic acid 2-azaniumyl-4-hydroxy-4-oxobutanoate 874742-68-4 secondary RN [RN] DL-Asp-OH DL-Asp-OH|2-Aminosuccinic acid H-Asp-OH MFCD00063081 [MDL number] N-acetyl-seryl-aspartate
Acide aspartique ( Aspartic acid )
AZELAIC ACID, N° CAS : 123-99-9 - Acide azélaïque, Nom INCI : AZELAIC ACID, Nom chimique : Nonanedioic acid, N° EINECS/ELINCS : 204-669-1, Régulateur de pH : Stabilise le pH des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Noms français :1,7-HEPTANEDICARBOXYLIC ACID; ACIDE AZELAIQUE; ACIDE; HEPTANEDICARBOXYLIQUE-1,7; ACIDE NONANEDIOIQUE; HEPTANEDICARBOXYLIC ACID; NONANEDIOIC ACID. Noms anglais : ANCHOIC ACID; AZELAIC ACID;LEPARGYLIC ACID Utilisation: Fabrication de produits organiques et de résines. 1,7-Heptanedicarboxylic acid; 123-99-9 [RN]; 204-669-1 [EINECS]; Acide azélaïque [French] ; acide nonanedioïque [French]; Acido azelaico [Spanish]; anchoic acid; Azalaic Acid; Azelaate [; Azelaic acid ; Azelainic acid; Azelainsäure [German] ; Azelex ; Finaceae; lepargylic acid; Nonandisäure [German]; Nonanedioic acid Skinoren ; 1,7-dicarboxyheptane; 1,9-NONANEDIOIC ACID; acide azelaique [French]; Acido azelaico [Spanish]; Acidum acelaicum Acidum azelaicum [Latin] AHI AZ1 azelaicacid Azelainsäure Azelate Emery's L-110 Finacea Heptanedicarboxylic acid n-nonanedioic acid Nonandisäure Nonanedioate Nonanedionic acid Skinorem Zumilin
Acide azélaïque ( Azelaic acid )
Acide benzènesulfonique, dérivés mono-alkyles en C10-14; Noms anglais :Benzenesulfonic acid, mono-C10-14-alkyl derivativesC10-14 ALKYL BENZENESULFONIC ACID, N° CAS : 85117-49-3, Nom INCI : C10-14 ALKYL BENZENESULFONIC ACID, N° EINECS/ELINCS : 285-599-9. Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Benzenesulfonic acid, mono-C10-14-alkyl derivs;
Acide benzènesulfonique, dérivés mono-alkyles en C10-14 ( C10-14 ALKYL BENZENESULFONIC ACID)
BENZOIC ACID, N° CAS : 65-85-0 - Acide benzoïque. Autres langues : Acido benzoico, Benzoesäure, Ácido benzoico. Nom INCI : BENZOIC ACID. Nom chimique : Benzoic acid; N° EINECS/ELINCS : 200-618-2.Principaux synonymes. Noms français : Acide benzoique; Acide benzoïque;Benzenecarboxylic acid; Benzeneformic acid; Benzenmethanoic acid; Carboxybenzene Phenyl carboxylic acid; Phenyl formic acid; Phenylcarboxylic acid; Phenylformic acid. Noms anglais : Benzoic acid; Dracylic acid. L'acide benzoïque, de formule chimique C6H5COOH (ou C7H6O2) est un acide carboxylique aromatique dérivé du benzène.Il est utilisé comme conservateur alimentaire et est naturellement présent dans certaines plantes. C'est par exemple l'un des principaux constituants de la gomme benjoin, utilisée dans des encens dans les églises de Russie et d'autres communautés orthodoxes. Bien qu'étant un acide faible, l'acide benzoïque n'est que peu soluble dans l'eau du fait de la présence du cycle benzénique apolaire. On trouve de l'acide benzoïque dans les plantes alimentaires : - en quantité notable dans le canneberge d'Amérique11 (Vaccinium macrocarpon) : 48,10 mg·100ml-1. - dans une moindre mesure dans la poudre de cacao (Theobroma cacao) : 0,06 mg·100ml-1. Parmi les principaux composés qui dérivent de l'acide benzoïque, on peut citer l'acide salicylique et l'acide acétylsalicylique plus connu sous le nom d'aspirine. En tant qu'additif alimentaire, il est référencé en Europe sous le code E210. Ses sels, que l'on appelle des benzoates, sont référencés sous les numéros : E211 Benzoate de sodium (Ba) E212 Benzoate de potassium (Ba) E213 Benzoate de calcium (Ba) Au-dessus de 370 °C, il se décompose en formant du benzène et du dioxyde de carbone. L'acide benzoïque a une odeur forte et est facilement inflammable. Utilisation: Agent de préservation alimentaire, fabrication de produits organiques Additif alimentaire : E210. L'acide benzoïque est utilisé en tant que conservateur dans les cosmétiques. Agent de foisonnement : Réduit la densité apparente des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Acid benzoic (ro) Acide benzoïque (fr) Acido benzoico (it) Aċidu benżojku (mt) Bensoehape (et) Bensoesyra (sv) Bentsoehappo (fi) Benzenkarboksirūgštis (lt) Benzoe-säure (de) Benzoesav (hu) Benzoesyre (da) Benzoic acid (no) Benzojeva kiselina (hr) Benzojska kislina (sl) Benzoová kyselina (cs) Benzoskābe (lv) benzosyre (no) Benzoëzuur (nl) Kwas benzoesowy (pl) Kyselina benzoová (sk) Ácido benzoico (es) Βενζοϊκό οξύ (el) Бензоена киселина (bg) benzene carboxylic acid Benzenecarboxylic acid Benzoesäure Benzoic Acid Phenylformic acid, Benzene carboxylic acid Acide benzoique [French] Acide benzoïque [French] Acido benzoico [Italian] Acidum benzoicum [Latin] Alcohol bencílico [Spanish] Benzenecarboxylic acid benzeneformic acid Benzenemethanoic acid Benzoesaeure [German] Benzoesäure [German] Benzoic acid [ACD/Index Name] [USP] [Wiki] 苯甲酸 [Chinese] Acidum benzoicum benzenemethonic acid Benzoic acid 100 µg/mL in Acetone Benzoic acid, ACS reagent Carboxybenzene DB03793 Diacylic acid Dracylic acid Euxyl K 100 Oracylic acid Phenolcarbinol Phenylcarboxy PHENYLCARBOXYLIC ACID Phenylformic acid Retarder BAX Retardex Tenn-Plas UCEPHAN Unisept BZA
Acide benzoïque ( Benzoic Acid)
BORIC ACID, N° CAS : 10043-35-3 / 11113-50-1 - Acide borique, Nom INCI : BORIC ACID, Nom chimique : Boric acid, N° EINECS/ELINCS : 233-139-2 / 234-343-4, acide borique borate d'hydrogène. ACIDE BORACIQUE; Acide borique; ACIDE ORTHOBORIQUE; BORON TRIHYDROXIDE; O-BORIC ACID; TRIHYDROXYDE DE BORE. Noms anglais :BORA ; BORACIC ACID; Borate compounds, Inorganic [10043-35-3], boric acid; Boric acid; HYDROGEN BORATE; ORTHOBORIC ACID. Utilisation: Agent ignifuge, fabrication de produits pharmaceutiques. BoratesSynonymes : acide boracique; acide orthoborique. Additif alimentaire : E284,Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Régulateur de pH : Stabilise le pH des cosmétiques. Dénaturant : Rend les cosmétiques désagréables. Principalement ajouté aux cosmétiques contenant de l'alcool éthylique.Ce solide blanc, parfois légèrement coloré, cristallise dans un réseau triclinique. Il se présente sous forme d'un solide cristallisé en paillettes nacrées. Assez peu soluble dans l'eau, c'est un acide faible à très faible. Il est souvent employé comme antiseptique bien que toxique, insecticide, absorbeur de neutrons dans les centrales nucléaires pour contrôler le taux de fission de l'uranium, et comme précurseur d'autres composés chimiques. Cet acide de Lewis tire son nom de l'un de ses composants, le bore, sa formule brute est H3BO3 ou en respectant mieux la structure à liaisons covalentes B(OH)3. L'acide borique moléculaire peut provenir de la simple décomposition du minéral naturel nommée sassolite qui, décrit par sa formule B(OH)3, n'est qu'un assemblage de plans d'acide borique stabilisés par des liaisons hydrogènes7. Il existe sous forme de cristaux incolores ou de poudre blanche se dissolvant dans l'eau. L'acide libre est présent sous forme native ou régénérée dans certaines zones possédant des batholithes granitiques proches de la surface telles que la Toscane, les îles Lipari et au Nevada, ses effluents sont mélangés à la vapeur issue des fissures de la croûte terrestre. En Toscane, on récupère l'acide borique dans des jets de vapeur d'eau surchauffée (100 à 215 °C) d'origine volcanique, exploités comme source d'énergie ; la vapeur, hydrolysant des borates dans les profondeurs du sol de cette région, contient en effet de l'acide borique et divers sels minéraux. Celle qui s'échappe librement des fissures du sol (soffioni) est simplement condensée dans des bassins (lagoni). La présence de l'acide borique ou de ses sels a été décelée dans l’eau de mer, et existerait également dans les végétaux et plus particulièrement dans presque tous les fruits8 où il pourrait jouer un certain rôle d'insecticide naturel. Disposition spatiale de molécules (hélicoïdales) d'acide borique dans son cristal artificiel ou dans la sassolite naturelle L'acide borique est le produit de dégradation ultime (souvent à l'aide d'un acide fort) de nombreux borates : borax, boracite, boronatrocalcite, colemanite, borocalcite, ascharite, kaliborite, kernite, kurnakovite, pinnaïte, pandermite, tunellite, larderellite, probertite, inderite, hydroboracite, etc., mais aussi howlite et bakérite, en plus des minéraux qui peuvent contenir l'acide borique en partie comme la harkérite ou la sassolite.L'acide borique est produit principalement à partir de minerai de borate par sa réaction avec l’acide sulfurique. La plus grande source de borates dans le monde est une mine à ciel ouvert située à Boron.En agriculture L'acide borique et ses sels sont utilisés comme fertilisants en agriculture conventionnelle et biologique14. La carence en bore est la carence en oligoéléments la plus répandue dans le monde et occasionne des pertes de rendement importantes chez les plantes cultivées et les arbres fruitiers15. En médecine et biologie Antiseptique Il peut être utilisé comme antiseptique pour les brûlures ou les coupures et est parfois employé dans les pommades et les onguents ou est utilisé dans une solution très diluée comme bain oculaire (eau boriquée). Comme composé anti-bactérien, l'acide borique peut également être prescrit comme traitement de l’acné. On l'utilise encore comme antiseptique pour l'oreille en plongée scaphandre, à raison d'une goutte d'alcool boriqué à 2 % par oreille.[réf. nécessaire] Le borate de sodium, un antiseptique doux, associé à d’autres composants appropriés peut également être proposé en usage externe pour des maladies des yeux, telle que la sécheresse oculaire. Antimycosique L'acide borique peut être utilisé pour traiter les levures et les mycoses comme les candidoses (mycoses vaginales) en remplissant de poudre d'acide borique des ovules qui seront insérés dans la cavité vaginale au coucher pendant trois à quatre nuits consécutives. en solution il peut être prescrit pour traiter certaines formes d’otites externes (infection de l'oreille) chez l’homme ou l’animal. Le conservateur dans les flacons d'urine (bouchon rouge) au Royaume-Uni est de l’acide borique. Il est également employé en prévention du pied d'athlète, en insérant la poudre dans les chaussettes ou les bas. Solution tampon Le borate de lithium est le sel de lithium de l'acide borique employé en laboratoire comme solution tampon pour le gel couramment employé dans les tampons d'électrophorèse des acides nucléiques (tels que les tampons TBE, SB et LB). Il peut être utilisé pour l’électrophorèse de l'ADN et de l'ARN, en gel de polyacrylamide et en gel d'agarose. Insecticide L'acide borique est également souvent utilisé comme insecticide relativement peu toxique, pour l’extermination des cancrelats, termites, fourmis, puces, et beaucoup d'autres insectes. Il peut être employé directement sous la forme de poudre pour les puces et les cancrelats, ou être mélangé avec du sucre ou de la gelée pour les fourmis. C'est également un composant de beaucoup d’insecticides du commerce. Dans cette utilisation, particulièrement dans le cas des cancrelats, l'acide borique sous forme de poudre est appliqué dans les zones fréquentées par les insectes. Les fines particules s'accrochent aux pattes des insectes et causent par la suite des brûlures chimiques mortelles. L'acide borique est commercialisé pour cet usage dans des quartiers résidentiels dans des zones urbaines infestées par les cancrelats. Esters of boric acid Octaborates Salts of boric acid Trioctyldodecyl borate Translated names Acid boric (ro) Acide borique (fr) Acido borico (it) Aċidu boriku (mt) Boorhape (et) Boorihappo (fi) Boorzuur (nl) Boric acid (no) Borna kiselina (hr) Boro rūgštis (lt) Borova kislina (sl) Borskābe (lv) Borsyra (sv) Borsyre (da) Borsäure (de) Bórsav (hu) Kwas borowy (pl) Kyselina boritá (cs) Kyselina trihydrogenboritá (sk) Ácido bórico (es) Βορικό οξύ (el) Борна киселина (bg) Acidium boricum Boric acid (H3BO3) boric acid. Trihydroxidoboron Boric acidTrihydrooxidoboron boric acidTrihydroxidoboron Ortho-boric Acid Orthoboric Acid TRHIOSSOBORIC ACID Trihydroxidoboron s BORIC ACID 99,9% Optibor Optibor HG Optibor TG Optibor TP 10043-35-3 [RN] Acide borique [French] acidum boricum [Latin] B(OH)3 [Formula] Boric acid Boric acid-11B Borsäure [German] Orthoboric acid (10B)Orthoboric acid 7440-42-8 [RN] Acidum boricum Ant flip Boracic acid Boracic Acid, Orthoboric Acid Borate (H3bo3) borate ion Boric acid ACS grade Boric acid Electrophoresis grade Boric acid flakes Boric acid, biochemical grade Boric Acid, Granular Boric acid, NF/USP grade Boric Acid, Powder Boric acid-d3 BORIC-11B ACID Borofax Boron hydroxide Boron trihydroxide Borsaeure Borsaure H3-BO3 Heptaoxotetra-Borate(2-) Homberg's salt Hydrogen borate hydrogen orthoborate InChI=1S/BH3O3/c2-1(3)4/h2-4H Kill-off Kjel-sorb Orthboric acid Orthoboricacid Orthoborsaeure tetraborate trihydridoborate trihydroxidoboron Trihydroxyborane Trihydroxyborone WLN: QBQQ
Acide borique
CAPRIC ACID, N° CAS : 334-48-5, Nom INCI : CAPRIC ACID, Nom chimique : Decanoic acid, N° EINECS/ELINCS : 206-376-4, Agent nettoyant : Aide à garder une surface propre; Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation, Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques; Noms français : 1-NONANECARBOXYLIC ACID; Acide caprique; ACIDE CAPRIQUE NORMAL; ACIDE DECANOIQUE; ACIDE DECANOIQUE NORMAL;DECOIC ACID; DECYCLIC ACID; DECYLIC ACID; N-CAPRIC ACID; N-DECANOIC ACID; N-DECYLIC ACID. Noms anglais : Capric acid; CAPRINIC ACID; CAPRYNIC ACID; DECANOIC ACID; N-DECOIC ACID; Utilisation: Fabrication de produits organiques, additif alimentaire. Capric Acid; Capric acid (CAS 334-48-5); n-decanoic acid Translated names Acid decanoic (ro) Acide décanoïque (fr) Acido decanoico (it) Aċidu dekanojku (mt) Decaan-zuur (nl) Decanoic acid (no) Decansyre (da) Decansäure (de) Dekaanhape (et) Dekaanihappo (fi) Dekano rūgštis (lt) Dekanojska kislina (sl) Dekanová kyselina (cs) Dekanska kiselina (hr) Dekansyra (sv) Dekánsav (hu) Dekānskābe (lv) Kwas dekanowy (pl) Kyselina dekánová (sk) Ácido decanoico (es) Δεκανικό οξύ (el) Деканова киселина (bg) 1- Decansäure 2-Ethyl-7-sulfo-decansäure Deacnoic acid s Capric Acid – Palmata 1099 Ecoric 10/95 Ecoric 10/99 KORTACID (KORTACID 1099/ 1098/1095/1090) Kortacid 1098 MASCID 1098 Palmac 98-10 Palmac 99-10 Palmac 99-10/MB RADIACID 0610 RADIACID 0613 RADIACID 0691
Acide caprique ( CAPRIC ACID)
CAPRYLIC ACID, N° CAS : 124-07-2, Nom INCI : CAPRYLIC ACID, Nom chimique : Octanoic acid, N° EINECS/ELINCS : 204-677-5, Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation,Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques.Noms français : 1-HEPTANECARBOXYLIC ACID; Acide caprylique; ACIDE OCTANOIQUE NORMAL; Acide octanoïque; N-CAPRYLIC ACID; N-OCTANOIC ACID N-OCTOIC ACID; N-OCTYLIC ACID; NORMAL CAPRYLIC ACID; NORMAL OCTANOIC ACID; NORMAL OCTYLIC ACID; NORMAL-OCTOIC ACID; Octanoic acid; OCTIC ACID; OCTYLIC ACID Noms anglais : CAPRYLIC ACID; Octanoic acid; Utilisation: Fabrication de colorants et de parfums; Caprylic Acid; Caprylic acid (CAS 124-07-2) Translated names: Acid octanoic (ro) Acide octanoïque (fr) Acido ottanoico (it) Aċidu ottanojku (mt) Kwas kaprylowy (pl) Kyselina oktánová (sk) Octaanzuur (nl) Octanoic acid (no) Octansyre (da) Octansäure (de) Oktaanhape (et) Oktaanihappo (fi) Oktano rūgštis (lt) Oktanojska kislina (sl) Oktanová kyselina (cs) Oktanska kiselina (hr) Oktansyra (sv) Oktánsav (hu) Oktānskābe (lv) Ácido octanoico (es) Οκτανικό οξύ (el) Октанова киселина (bg) 1-heptanecarboxylic acid 1-Octansäure Acid C8, Caprylic acid, Octanoic acid Acido Octanoico C-8 Caprylic acid, Octanoic acid Caprylsäure CLP octanoic acid (PGC Only) n-Caprylic acid n-Octanoic Acid N-prop-2-enylprop-2-en-1-amine Octanoic acid (caprylic acid) Octanoic acid(caprylic acid) s CAPRYLIC ACID (POFAC 0899) Ecoric 8/99 KORTACID 0899/0898/0895/0890 MMFA 0898 (Caprylic Acid 98%) Oktansäure PALMAC 99-08 PALMATA 0899 RADIACID 0608 RADIACID 0698 SINAR – FA 0899 UNIOLEO FA 0899
Acide caprylique ( CAPRYLIC ACID)
CITRIC ACID, N° CAS : 77-92-9 / 5949-29-1 - Acide citrique, Origine(s) : Naturelle, Synthétique, Autres langues : Acido citrico, Zitronensäure, Ácido cítrico, Nom INCI : CITRIC ACID, Nom chimique : 2-Hydroxy-1,2,3-propanetricarboxylic acid, N° EINECS/ELINCS : 201-069-1, Additif alimentaire : E330. L'acide citrique est un des principaux actifs du citron. Il est souvent utilisé pour équilibrer le pH (trop basique) des produits cosmétiques. Il est aussi présent dans certains produits de bain (bombes de bain, galets de bain ou "poudres magiques") en raison de ses propriétés effervescentes.Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit
Acide citrique ( CITRIC ACID)
DEHYDROACETIC ACID, N° CAS : 520-45-6 / 771-03-9 / 16807-48-0 - Acide déhydroacétique, Autres langues : Acido deidroacetico, Dehydroessigsäure, Ácido deshidroacético. Nom INCI : DEHYDROACETIC ACID, Nom chimique : 3-Acetyl-6-methyl-2H-pyran-2,4(3H)-dione, N° EINECS/ELINCS : 208-293-9 / 212-227-4 / - Additif alimentaire : E265. Classification : Règlementé, Conservateur. L'acide déhydroacétique est utilisé dans les cosmétiques en tant que conservateur pour ses actions de fongicide et bactéricide. Il est employé sous la dénomination E265 en alimentaire. Comme il est Biodégradable, ce produit chimique ne pose pas de problème pour l'environnement, et les risques pour la santé restent assez faible. Notez toutefois, que le composé est interdit dans les sprays de type aérosol. L'acide déhydroacétique est autorisé en Bio.Ses fonctions (INCI): Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : 3-ACETYL-4-HYDROXY-6-METHYL-2H-PYRAN-2-ONE 3-ACETYL-6-METHYL-2,4-PYRANDIONE 3-ACETYL-6-METHYLDIHYDROPYRANDIONE-2,4 3-ACETYL-6-METHYLPYRANDIONE-2,4 4-HEXENOIC ACID, 2-ACETYL-5-HYDROXY-3-OXO-, DELTA-LACTONE ACETYL-3 METHYL-6 PYRANDIONE-2,4 Acide déhydroacétique METHYLACETOPYRONONE Noms anglais : Dehydroacetic acid Utilisation: Fabrication de produits organiques, bactéricide
Acide déhydroacétique ( Dehydroacetic acid)
THIODIPROPIONIC ACID N° CAS : 111-17-1 - Acide thiodipropanoïque Nom INCI : THIODIPROPIONIC ACID Nom chimique : 3,3'-Thiodipropionic Acid N° EINECS/ELINCS : 203-841-3 Additif alimentaire : E388 Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état
Acide diphosphorique ( Acide thiodipropanoïque)
SACCHAROSONIC ACID; ISOASCORBIC ACID; ERYTHORBIC ACID; N° CAS : 89-65-6 - Acide érythorbique. Nom INCI : ERYTHORBIC ACID. Nom chimique : 2,3-Didehydro-D-erythro-hexono-1,4-lactone; D-erythro-hex-2-enonic acid, gamma-lactone. N° EINECS/ELINCS : 201-928-0. Additif alimentaire : E315. Ses fonctions (INCI). Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Noms français : ACIDE ARABOASCORBIQUE ACIDE D-ERYTHORBIQUE ACIDE D-ISOASCORBIQUE ACIDE ERYTHORBIQUE ACIDE GLUCOSACCHARONIQUE ACIDE ISOASCORBIQUE ACIDE SACCHAROSONIQUE D-ERYTHRO-3-KETOHEXONIC ACID LACTONE D-ERYTHRO-3-OXOHEXONIC ACID LACTONE D-ERYTHRO-ASCORBIC ACID D-ERYTHRO-HEX-2-ENONIC ACID GAMMA-LACTONE D-ERYTHRO-HEX-2-ENONIC ACID, GAMMA-LACTONE Noms anglais : ARABOASCORBIC ACID D-ARABOASCORBIC ACID D-ERYTHORBIC ACID D-ISOASCORBIC ACID ERYTHORBIC ACID GLUCOSACCHARONIC ACID ISOASCORBIC ACID SACCHAROSONIC ACID Utilisation et sources d'émission Agent anti-oxydant, agent de préservation alimentaire. (5R)-5-[(1R)-1,2-Dihydroxyethyl]-3,4-dihydroxy-2(5H)-furanon [German] (5R)-5-[(1R)-1,2-Dihydroxyethyl]-3,4-dihydroxy-2(5H)-furanone (5R)-5-[(1R)-1,2-Dihydroxyéthyl]-3,4-dihydroxy-2(5H)-furanone [French] (5R)-5-[(1R)-1,2-Dihydroxyethyl]-3,4-dihydroxyfuran-2(5H)-one 228-973-9 [EINECS] 2410 311332OII1 84271 [Beilstein] 89-65-6 [RN] D-(-)-Isoascorbic acid D-Araboascorbic Acid D-erythro-3-Ketohexonic acid lactone D-erythro-3-Oxohexonic acid lactone D-erythro-Hex-2-enoic acid γ-lactone D-erythro-Hex-2-enonic Acid g-Lactone D-erythro-Hex-2-enonic acid, γ-lactone D-Isoascorbic acid Erycorbin Erythorbic acid [Wiki] Glucosaccharonic acid KF3015000 Mercate "5" Mercate 5 MFCD00005378 [MDL number] Saccharosonic Acid (2R)-2-[(1R)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one (5R)-5-(1,2-dihydroxyethyl)-3,4-dihydroxy-5-hydrofuran-2-one (5R)-5-[(1R)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one (R)-5-((R)-1,2-dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one [89-65-6] 2,3-Didehydro-D-erythro-hexono-1,4-lactone 6381-77-7 [RN] Araboascorbic acid D-(-)-Araboascorbic acid D(-)-Isoascorbic acid d(-)-isoascorbic acid 98% d(-)-isoascorbic acid, 98% d-(-)-isoascorbic acid, 98% d-(-)-isoascorbicacid D-ARABOASCORBICACID D-Erythorbic acid D-ERYTHRO-HEX-2-ENONIC ACID γ-LACTONE D-erythro-hex-2-enono-1,4-lactone D-Isoascorbic acid|D-Erythorbic acid ISD ISOASCORBIC ACID Isovitamin C UNII:311332OII1 UNII-311332OII1
Acide érythorbique ( ISOASCORBIC ACID)
EDTA, N° CAS : 60-00-4 - Acide éthylène diamine tétraacétique. Nom INCI : EDTA. Nom chimique : 1,2-Ethanediamine, N,N,N',N'-tetrakis(carboxymethyl)-, N° EINECS/ELINCS : 200-449-4, Additif alimentaire : E385. Classification : EDTA. L'EDTA (EDTA et ses principaux sels utilisés en cosmétique Disodium EDTA, Tetrasodium EDTA, Trisodium EDTA) est un agent chélateur que l'on emploie depuis les années 30 et pour lequel les industriels maîtrisent totalement la transformation et l'usage. Sa principale propriété est de complexer les métaux lourds. C'est-à-dire qu'il va en quelque sorte les neutraliser en formant avec eux un complexe, pour leur servir ensuite de transporteur et les évacuer. Il est donc assez logiquement utilisé en médecine pour lutter contre les intoxications aux métaux lourds (au plomb par exemple). Il est souvent employé en tant que séquestrant (calcium, calcaire ...) dans les savons ou gels douches, cela permet notamment de gérer les eaux "dures".Ses fonctions (INCI). Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Noms français : (ETHYLENEDINITRILO) TETRAACETIC ACID (ETHYLENEDINITRILO)TETRAACETIC ACID 3,6-BIS(CARBOXYMETHYL)-3,5-DIAZOOCTANEDIOIC ACID 3,6-DIAZAOCTANEDIOIC ACID, 3,6-BIS(CARBOXYMETHYL)- ACETIC ACID, (ETHYLENEDINITRILO)TETRA- ACETIC ACID, 2,2',2'',2'''-(1,2-ETHANEDIYLDINITRILO)TETRAKIS- ACIDE ETHYLENEDIAMINETETRACETIQUE Acide édétique Acide éthylènediaminetétraacétique ETHYLEBISIMINODIACETIC ACID ETHYLENE BIS (IMINODIACETIC ACID) ETHYLENEDINITRILOTETRAACETIC ACID N,N'-1,2-ETHANEDIYLBIS(N-(CARBOXYMETHYL)GLYCINE) Noms anglais : E D T A E.D.T.A. EDTA EDTA (CHELATING AGENT) EDTA ACID ETHYLENE DIAMINE TETRAACETIC ACID ETHYLENEDIAMINE TETRAACETIC ACID ETHYLENEDIAMINE-N,N,N',N'-TETRAACETIC ACID Ethylenediaminetetraacetic acid GLYCINE, N,N'-1,2-ETHANEDIYLBIS(N-CARBOXYMETHYL)- Utilisation et sources d'émission Agent chélateur, agent de dosage analytique
Acide éthylène diamine tétraacétique ( EDTA)
EDTMP, N° CAS : 1429-50-1 - Acide éthylènediaminetétraméthylène phosphonique. Nom INCI : EDTMP. Ses fonctions (INCI), Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques
Acide éthylènediaminetétraméthylène phosphonique (EDTMP)
HYDROXYETHANEDIPHOSPHONIC ACID; HEDP; ETIDRONIC ACID, N° CAS : 2809-21-4 - Acide étidronique, Origine(s) : Synthétique , Nom INCI : ETIDRONIC ACID , Nom chimique : Phosphonic acid, (1-hydroxyethylidene)bis- , N° EINECS/ELINCS : 220-552-8. L'acide étidronique est utilisé en tant qu'agent chélateur dans les cosmétiques. Il crée des complexes avec le calcium, l'arsenic, le fer et autres ions métalliques pour les neutraliser. Cela permet de gérer l'utilisation d'eaux un peu "dures", qui pourraient interférer avec les tensioactifs du produit par exemple. Ses fonctions (INCI) Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. oms français : (1-HYDROXYETHYLIDENE)BIS(PHOSPHONIC ACID) (1-HYDROXYETHYLIDENE)DIPHOSPHONIC ACID (HYDROXYETHYLIDENE)DIPHOSPHONIC ACID 1-HYDROXYETHANE-1,1-BIPHOSPHONIC ACID 1-HYDROXYETHANE-1,1-DIPHOSPHONIC ACID 1-HYDROXYETHANEDIPHOSPHONIC ACID 1-HYDROXYETHYLIDENE-1,1-DIPHOSPHONIC ACID ACIDE HYDROXY-1 ETHYLIDENE DIPHOSPHONIQUE-1,1 ACIDE HYDROXYETHYLIDENE DIPHOSPHONIQUE EHDP ETHANE-1-HYDROXY-1,1-DIPHOSPHONIC ACID HYDROXYETHANE-1,1-DIPHOSPHONIC ACID OXYETHYLIDENEDIPHOSPHONIC ACID PHOSPHONIC ACID, (1-HYDROXYETHYLIDENE)BIS- PHOSPHONIC ACID, (1-HYDROXYETHYLIDENE)BIS-, PHOSPHONIC ACID, (1-HYDROXYETHYLIDENE)DI-, Noms anglais : ETIDRONIC ACID HYDROXYETHANEDIPHOSPHONIC ACID Utilisation et sources d'émission Agent chélateur
Acide étidronique ( HEDP)
FUMARIC ACID, N° CAS : 110-17-8 - Acide fumarique, Nom INCI : FUMARIC ACID. Nom chimique : Fumaric acid. N° EINECS/ELINCS : 203-743-0. Additif alimentaire : E297. Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Noms français : (E)-BUTENEDIOIC ACID 1,2-ETHYLENE DICARBOXYLIC ACID (E) 2-BUTENEDIOIC ACID (E)- 2-BUTENEDIOIC ACID, (E)- ACIDE BOLETIQUE ACIDE BUTENEDIOIQUE (TRANS-) Acide fumarique ACIDE LICHENIQUE BUTENEDIOIC ACID,(E)- TRANS-1,2-ETHYLENE DICARBOXYLIC ACID TRANS-1,2-ETHYLENEDICARBOXYLIC ACID TRANS-BUTENEDIOIC ACID Noms anglais : BOLETIC ACID Fumaric acid LICHENIC ACID Utilisation : Fabrication de résines. Fumaric acid [Wiki] (2E)-2-Butendisäure [German] (2E)-2-Butenedioic acid (2E)-But-2-enedioic acid (E)-1,2-Ethylenedicarboxylic acid (E)-2-Butenedioic acid (E)-Butenedioic acid 1,2-Ethenedicarboxylic acid, trans- 110-17-8 [RN] 203-743-0 [EINECS] 2-Butenedioic acid 2-Butenedioic acid (2E)- 2-Butenedioic acid, (2E)- [ACD/Index Name] 2-Butenedioic acid, (E)- 605763 [Beilstein] Acide (2E)-2-butènedioïque [French] Acidum fumaricum Butenedioic acid, (E)- E-2-Butenedioic acid MFCD00002700 [MDL number] trans-1,2-ethenedicarboxylic acid trans-1,2-ethylenedicarboxylic acid TRANS-2-BUTENEDIOIC ACID trans-but-2-enedioic acid trans-Butenedioic acid (2E)-But-2-enedioate (E)-2-Butenedioate (E)-but-2-enedioate (E)-but-2-enedioic acid (E)-HO2CCH=CHCO2H 1,2-Ethylenedicarboxylic acid, (E) 2-(E)-Butenedioate 2-(E)-Butenedioic acid 2-Butenedioic acid (E)- 4-02-00-02202 [Beilstein] 605762 [Beilstein] Allomaleate Allomaleic acid Allomalenic acid Boletate Boletic acid cis-Butenedioic acid Fumaricum acidum Fumarsaeure Kyselina fumarova [Czech] Lichenate Lichenic acid (VAN) QV1U1VQ-T [WLN] trans-1,2-Ethylenedicarboxylate trans-2-Butenedioate trans-Butenedioate 延胡索酸 [Chinese]
Acide fumarique ( Fumaric acid)
GLUCONIC ACID, N° CAS : 526-95-4 - Acide gluconique. Nom INCI : GLUCONIC ACID. Nom chimique : D-gluconic acid. N° EINECS/ELINCS : 208-401-4. Additif alimentaire : E574. Ses fonctions (INCI). Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : Acide D-gluconique; Acide gluconique; D-GLUCONIC ACID; DEXTRONIC ACID; Gluconic acid; GLUCONIC ACID, D-GLYCOGENIC ACID; GLYCONIC ACID; MALTONIC ACID; PENTAHYDROXYCAPROIC ACID. Noms anglais : Gluconic acid. Utilisation: Additif alimentaire. D-Gluconic acid 1726055 [Beilstein] 2,3,4,5,6-Pentahydroxycaproic acid 208-401-4 [EINECS] 526-95-4 [RN] Acide D-gluconique [French] D-Gluconsäure [German] Gluconic acid Glyconic Acid 2,3,4,5,6-pentahydroxy-hexanoic acid Dextronate Glycogenate Glyconate Maltonate (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (3S,2R,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid [526-95-4] 157663-13-3 [RN] 2,3,4,5,6-pentahydroxyhexanoate 2,3,4,5,6-Pentahydroxyhexanoic acid 2-dehydro-3-deoxy-D-gluconate 2-keto-3-deoxy-D-gluconate 50% aqueous solution 50% gluconic acid solution 9025-70-1 [RN] d-(+)-gluconic acid Dextranase Dextronic acid D-gluco-Hexonic acid D-Gluconic acid - 45-50% in water D-Gluconic Acid (50per cent in Water) D-Gluconic acid 50% in water D-Gluconsaeure D-GLUCOSONIC ACID D-Glukonsaeure d-葡萄糖酸溶液 Galactonic acid GCO Glosanto Gluconic Acid (contains Gluconolactone) Gluconic acid (VAN) GLUCONIC ACID, D- gluconicacid Glycogenic acid ketogluconic acid Maltonic acid Pentahydroxycaproate Pentahydroxycaproic acid UNII:R4R8J0Q44B UNII-R4R8J0Q44B 葡萄糖酸 [Chinese]
Acide gluconique ( Gluconic acid)
GLUTAMIC ACID, N° CAS : 56-86-0 - Acide glutamique. Origine(s) : Synthétique. Autres langues : Acido glutammico, Glutaminsäure, Ácido glutamico. Nom INCI : GLUTAMIC ACID. Nom chimique : (S)-2-Aminopentanedioic acid. N° EINECS/ELINCS : 200-293-7. Additif alimentaire : E620. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau
Acide glutamique ( GLUCURONIC ACID)
GLUTARIC ACID, N° CAS : 110-94-1. Nom INCI : GLUTARIC ACID. Nom chimique : 1,3-Pentanedioic acid. N° EINECS/ELINCS : 203-817-2. Ses fonctions (INCI): Régulateur de pH : Stabilise le pH des cosmétiques. Noms français : 1,3-PROPANEDICARBOXYLIC ACID; 1,5-PENTANEDIOIC ACID; Acide glutarique; ACIDE PENTANEDIOIQUE; ACIDE PENTANEDIOIQUE-1,5; ACIDE PROPANEDICARBOXYLIQUE-1,3; Glutaric acid; PENTANEDIOIC ACID. Noms anglais : Glutaric acid. Utilisation: Fabrication de produits organiques. 1,3-Propanedicarboxylic acid. Glutaric acid ; 1,3-Propanedicarboxylate; 1,5-Pentanedioate; 1,5-Pentanedioic acid; 110-94-1 [RN]; 1209725 [Beilstein]; 203-817-2 [EINECS]; Acide glutarique [French] ; Glutarsäure hydrogen glutarate; MFCD00004410 [MDL number]; n-Pyrotartaric acid; Pentanedioic acid [ACD/Index Name]; 1,3-PROPANEDICARBOXYLIC ACID; 111-16-0 [RN]; 203-817-2MFCD00004410 271-678-5 [EINECS] 273-081-5 [EINECS] 4-02-00-01934 (Beilstein Handbook Reference) [Beilstein] 68603-87-2 [RN] 68937-69-9 [RN] 8065-59-6 [RN] Glutaric acid (Pentanedioic acid) glutaric acid, reagent Pentandioate Pentandioic acid pentanedioate Propane-1,3-dicarboxylic acid Propane-1,3-dicarboxylic acid|Pentanedioic acid,Glutaric acid WLN: QV3VQ 戊二酸 [Chinese] 1,5-Pentanedioic acid Glutaric acid n-Pyrotartaric acid Pentandioic acid CAS names Pentanedioic acid CH02923 Glutarsäure pentanedioic acid.
Acide glutarique ( GLUTARIC ACID)
Glycol acid; GLYCOLIC ACID; N° CAS : 79-14-1 - Acide glycolique, Origine(s) : Végétale, Synthétique. Nom INCI : GLYCOLIC ACID. Nom chimique : Acetic acid, hydroxy-, N° EINECS/ELINCS : 201-180-5, L'acide glycolique est un acide organique naturel, aussi nommé acides alpha-hydroxylés (AHA). Il est généralement fabriqué à partir de canne à sucre. Il est utilisé dans les peeling doux et produits exfoliants à base d'acide. Il permet d'accélérer la perte des cellules mortes et favorise le renouvellement cellulaire. Comme les autres acides de fruits, on l'emploie aussi pour lisser les rides, éclaircir le teint, estomper les tâches pigmentaires et les irrégularités de la peau.Ses fonctions (INCI): Régulateur de pH : Stabilise le pH des cosmétiques. Noms français : Acide glycolique; ACIDE; HYDROXYACETIQUE; HYDROXY ACETIC ACID; Hydroxyacetic acid; HYDROXYETHANOIC ACID. Noms anglais : Glycolic acid. Utilisation: Fabrication de produits textiles, fabrication de produits organiques. 1209322 [Beilstein]; 201-180-5 [EINECS]; 2-Hydroxyethanoic acid; 79-14-1 [RN]; Acetic acid, 2-hydroxy- [ACD/Index Name];Acide glycol [French] [ACD/IUPAC Name] Acide hydroxyacétique [French]; a-Hydroxyacetic acid; Glycol acid [ACD/IUPAC Name] Glycolic acid Glycolsäure [German] Hydroxyessigsäure [German] [ACD/IUPAC Name] Kyselina glykolova [Czech] Kyselina hydroxyoctova [Czech] QV1Q [WLN] 1,2-Ethanediol [ACD/Index Name] 102962-28-7 [RN] 1-hydroxy-ethanoic acid 26009-03-0 [RN] 2-oxonioacetate D-malate EDO GLV Glycocide Glycolic acid, 66-70% aqueous solution glycolic acid, crystal, reagent Glycolic acid, pure, 99.5% Glycollic acid Glyoxylic acid GOA HOCH2COOH Hydroxy-acetic acid Hydroxyethanoic acid Kyselina glykolova MFCD00868116 [MDL number] MLT TAR WLN: QV1Q α-Hydroxyacetic acid α-Hydroxyacetic acid 乙醇酸 [Chinese]. Acetic acid, 2-hydroxy- Acetic acid, hydroxy- Glycollic acid Hydroxyacetic acid Hydroxyethanoic acid Kyselina glykolova Kyselina hydroxyoctova Translated names Acid glicolic (ro) Acide glycolique (fr) Acido glicolico (it) Aċidu glikolliku (mt) Glikolio rūgštis (lt) Glikolna kiselina (hr) Glikolna kislina (sl) Glikolsav (hu) Glikolskābe (lv) Glycolic acid (no) glycolsyre (da) Glycolzuur (nl) Glykolihappo (fi) glykolová kyselina/2-hydroxyethanová kyselina (cs) Glykolsyra (sv) Glykolsäure (de) Glükoolhape (et) Kwas glikolowy (pl) kyselina glykolová (sk) Ácido glicólico (es) Γλυκολικό οξύ (el) Гликолова киселина (bg) 2-hydroxy acetic acid 2-Hydroxyacetic acid 2-Hydroxyethanoic acid glycol acid Glykolsäure ... %
Acide glycolique ( Glycolic acid )
Cas : 67701-05-7, EC : 266-929-0, Fatty acids, C8-18 and C18-unsatd.
Acide gras de coco
hyaluronan, HYALURONIC ACID, N° CAS : 9004-61-9 - Acide hyaluronique,Autres langues : Acido ialuronico, Hyaluronsäure, Ácido hialurónico, Nom INCI : HYALURONIC ACID, Nom chimique : Hyaluronic acid. N° EINECS/ELINCS : 232-678-0. Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Hydratant : Augmente la teneur en eau de la peau et aide à la maintenir douce et lisse. Agent d'entretien de la peau : Maintient la peau en bon état
Acide hyaluronique
HYDROLYZED HYALURONIC ACID, Acide hyaluronique hydrolysé, Nom INCI : HYDROLYZED HYALURONIC ACID. Ses fonctions (INCI) : Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Agent d'entretien de la peau : Maintient la peau en bon état
Acide hyaluronique hydrolysé ( HYDROLYZED HYALURONIC ACID)
ARACHIDIC ACID, Icosa-5,8,11,14-tetraenoic acid; N° CAS : 506-30-9 - Acide icosanoïque ou acide arachidique, Nom INCI : ARACHIDIC ACID, Nom chimique : Icosanoic acid, N° EINECS/ELINCS : 208-031-3. Noms français :Acide arachidique; ACIDE EICOSANOIQUE; EICOSANOIC ACID. Noms anglais : ARACHIC ACID; Arachidic acid; Utilisation: Produit organique, Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Opacifiant : Réduit la transparence ou la translucidité des cosmétiques. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. 208-031-3 [EINECS] 506-30-9 [RN] Acide icosanoïque [French] ácido n-eicosanoico [Spanish] Arachic acid Arachidic acid Arachidinic acid Arachinsaeure [German] Eicosanoic acid Icosanoic acid Icosansäure [German] 5,8,11-Eicosatriynoic Acid|5,8,11-eicosatriynoic acid ACD arachidic acid, 98% Arachidic acid;Eicosanoic acid Arachidic Acid|eicosanoic acid ARACHIDIC ACID|ICOSANOIC ACID arachidicacid Arachinsaeure Eicosanic acid Eicosanoic acid (Arachidic acid) eicosanoic acid, 99% Eicosanoicacid Eicosatetraynoic Acid|5,8,11,14-eicosatetraynoic acid ethyl stearic acid icosanoicacid
Acide icosanoïque ou acide arachidique ( Arachidic acid )
maleicacid; Maleinic acid; Malenic acid; Maleic acid; MALEINIC ACID; MALENIC ACID; TOXILIC ACID; ACIDE MALEINIQUE; ACIDE MALENIQUE; Acide maléique; acide (Z)-but-2-èn-1,4-dioïque, acide Z-butènedioïque, acide maléique, No CAS: 110-16-7, Nom INCI : MALEIC ACID.ácido maleico; Allomaleic acid; Allomalenic acid ;Nom chimique : 2-Butenedioic acid (2Z)-. N° EINECS/ELINCS : 203-742-5. Ses fonctions (INCI) : Régulateur de pH : Stabilise le pH des cosmétiques. L'acide maléique est un acide dicarboxylique insaturé, l'acide Z-butènedioïque. Cette molécule est le diastéréoisomère de l'acide fumarique ou acide E-butènedioïque, la configuration montre que les groupements carboxyles, caractéristiques des acides organiques sont placés sur un plan du même côté de la liaison éthylénique, c'est-à-dire de la double liaison carbone-carbone, rigide. Les sels de ses anions et les esters sont appelés maléates.Noms français : (Z)-BUTEDIOIC ACID; 1,2-ETHYLENEDICARBOXYLIC ACID, (Z); 2-BUTENEDIOIC ACID (Z)-; ACIDE BUTENEDIOIQUE (CIS-); ACIDE MALEINIQUE; ACIDE MALENIQUE; Acide maléique; CIS-1,2-ETHYLENEDICARBOXYLIC ACID; CIS-BUTENEDIOIC ACID.Noms anglais : Maleic acid; MALEINIC ACID; MALENIC ACID; TOXILIC ACID. Utilisation : Fabrication de produits organiques et de résines; Maleic acid; (2Z)-2-Butendisäure [German] [ACD/IUPAC Name]; (2Z)-2-Butenedioic acid [ACD/IUPAC Name]; (2Z)-But-2-enedioic acid; 110-16-7 [RN]; 2-Butenedioic acid, (2Z)- [ACD/Index Name]; 605762 [Beilstein]; Acide (2Z)-2-butènedioïque [French] [ACD/IUPAC Name]; Acidum maleicum; cis-Butenedioic acid; toxilic acid; trans-but-2-enedioic acid; (2Z)-But-2-ene-1,4-dioic acid; (2Z)-but-2-enedioate; (2Z)but-2-enedioic acid; (2Z)-Butene-2-dioate; (2Z)-Butene-2-dioic acid; (Z)-1,2-Ethenedicarboxylic Acid; (Z)-2-butenedioate; (Z)-2-Butenedioic acid; (Z)-but-2-enedioic acid; (z)-butenedioate; (Z)-butenedioic acid; 1,2-dihydropyridazine-3,6-dione; 1,2-Ethylenedicarboxylic acid, (Z); 1,2-Ethylenedicarboxylic acid, cis-; 2-Butenedioic acid [ACD/IUPAC Name]; 2-Butenedioic acid (2Z)-; 2-Butenedioic acid (Z)-; 2-Butenedioic acid, (Z)-; ácido maleico; Allomaleic acid; Allomalenic acid; Boletic acid; but-2-enedioic acid; BUTENE-1,4-DIOIC ACID; Butenedioic acid; Butenedioic acid, (Z)-; Butenedioic acid,(Z)-; cis-1,2-ethylenedicarboxylic acid; cis-2-Butenedioate; CIS-2-BUTENEDIOIC ACID; cis-But-2-enedioate; cis-but-2-enedioic acid; Cis-butenedioate; Fumaric acid; H2male; hydrogen maleate; Kyselina maleinova [Czech];Kyselina maleinova; Lichenic acid; MAE; maleic acid reference material; Maleic acid|(2Z)-But-2-ene-1,4-dioic acid; maleic acid-cp; maleicacid; Maleinic acid; Malenic acid; Malezid CM;polymaleic acid; QV1U1VQ-C [WLN]; ZEELCHEM 200;Z-fumaric acid; 馬來酸 [Chinese]; (Z)-but-2-enová kyselina (cs); acid maleic (ro); acide maléique (fr); acido maleico (it); aċidu malejku (mt); kwas maleinowy (pl); kyselina maleínová (sk); Maleiinhape (et); maleiinihappo (fi); maleino rūgštis (lt); maleinová kyselina (cs); maleinsav (hu); maleinska kiselina (hr); maleinska kislina (sl); maleinsyra (sv); maleinsyre (da); Maleinsäure (de); maleïnezuur (nl); maleīnskābe (lv); ácido maleico (es); μηλεϊνικό οξύ (el); малеинова киселина (bg); CAS names: 2-Butenedioic acid (2Z)-; : (2Z)-but-2-enedioic acid; (Z)-But-2-enedioic acid; (Z)-Butenedioic acid; (Z)-Butenedioic acid, Maleic acid; but-2-enedioic acid; but-2-enedioic acid ; cis-1,2-Ethylendicarbonsäure; cis-Butendisäure; cis-Butenedioic acid, Toxilic acid, Acidum maleicum, Butenedioic Acid; Maleic acid (Z)-Butenedioic acid; Maleinsaeure; Maleinsäurelösung; MEXORYL SCO; Trade names: 2-Butenedioic acid (Z)- (9CI); 2-Butenedioic acid, (Z)-; cis-1,2-Ethylenedicarboxylic acid; cis-2-Butenedioic acid; cis-Butenedioic acid; Maleic acid (40% in water); Maleic acid (8CI); Toxilic acid
Acide maléique ( maleic acid )
MERCAPTOPROPIONIC ACID, N° CAS : 107-96-0, Nom INCI : MERCAPTOPROPIONIC ACID. Nom chimique : 3-Mercaptopropionic acid, N° EINECS/ELINCS : 203-537-0. Dépilatoire : Enlève les poils indésirables. Agent bouclant ou lissant (coiffant) : Modifie la structure chimique des cheveux, pour les coiffer dans le style requis. Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène.beta.-Mercaptopropionic acid.beta.-Thiopropionic acid, 2-Mercaptoethanecarboxylic acid, 3-MERCAPTOPROPANOIC ACID, 3-MERCAPTOPROPIONATE, 3-mercaptopropionic acid, 3-sulfanylpropanoic acid, 3-thiohydracrylic acid, 3-Thiolpropanoic acid, 3-Thiopropanoic acid, 3-THIOPROPIONIC ACID, 3MPA, beta-Mercaptopropanoic acid, beta-Mercaptopropionate. BETA-MERCAPTOPROPIONIC ACID. BETA-THIOPROPIONIC ACID. EINECS 203-537-0. Hydracrylic acid, 3-thio-, Propanoic acid, 3-mercapto- Propanoic acid, 3-mercapto-, coco alkyl esters, Propionic acid, 3-mercapto-, PROPIONIC ACID, 3-MERCPATO-, Propionic acid, mercapto-, USAF E-5
Acide mercaptopropionique
FORMIC ACID, N° CAS : 64-18-6 - Acide méthanoïque ou Acide Formique, Nom INCI : FORMIC ACID, Nom chimique : Formic acid, N° EINECS/ELINCS : 200-579-1; Additif alimentaire : E236. Noms français : Acide formique; ACIDE METHANOIQUE; HYDROGEN CARBOXYLIC ACID; METHANOIC ACID. Noms anglais : AMINIC ACID; Formic acid; FORMYLIC ACID Utilisation: L'acide formique est utilisée notamment : en tant que préservatif pour la nourriture et pour l'ensilage;comme antiseptique dans le brassage;en tant qu'acidulant pour teindre les fibres naturelles et synthétiques; dans le tannage du cuir; pour coaguler le latex dans la production de caoutchouc;comme plastifiant dans certaines résines;en tant que réactif en chimie organique dans la manufacture de fumigants et d'insecticides. 1209246 [Beilstein]; 213-057-3 [EINECS]; 213-129-4 [EINECS]; 231-791-2 [EINECS]; 64-18-6 [RN];Acide formique [French] Acido formico [Italian] Ameisensäure [German] Formic acid [ACD/Index Name] [Wiki] HCOOH [Formula] hydroxidooxidocarbon(.) Kwas metaniowy [Polish] Kyselina mravenci [Czech] Methanoic acid Mierenzuur [Dutch] β-Lactic acid 107-31-3 [RN] 147173-07-7 [RN] 1901013 [Beilstein] 2564-86-5 [RN] 2-trans-indole-3-butyryl-CoA 2-trans-indole-3-butyryl-Coenzyme A 3-hydroxy-indole-3-butyryl-CoA 3-hydroxy-indole-3-butyryl-coenzyme A 3-keto-indole-3-butyryl-CoA 3-keto-indole-3-butyryl-coenzyme A 6'-hydroxyferuloyl-CoA 7056-83-9 [RN] 8006-93-7 [RN] Acetate ion Acetic acid [ACD/Index Name] [Wiki] Add-F Amasil Ameisensaeure [German] Bilorin Carbon dioxide [JP15] [USAN] [USP] [Wiki] CBX Citric acid [Wiki] Collo-bueglatt Collo-didax FMT Formic acid anhydrous Formic Acid, ACS Grade Formic acid-d [ACD/Index Name] Formira Formisoton Formylic acid HOCO(.) http://www.hmdb.ca/metabolites/HMDB0000142 hydrocarboxyl radical Hydrogen carboxylic acid Hydrogencarboxylic acid Hydroxycarbonyl indole-3-acetyl-CoA indole-3-butyryl-CoA Kwas metaniowy Kyselina mravenci Methanol [ACD/Index Name] [Wiki] methoic acid METHOXY, OXO- MFCD00167028 [MDL number] Mierenzuur MOH MONOCARBOXYLIC ACID Myrmicyl Salachlor SEC65 protein Sybest TBF tert-Butyl formate
Acide palmitique
Acide oléique – 6,7,8 – polyglycolester, Inci : PEG-6 oleate, PEG-4 oleate, PEG-5 oleate, PEG-7 oleate; Cas : 9004-96-0; Oleic acid, ethoxylated; Oleic acid, 12EO; Poly(ethylene glycol) monooleate; Poly(oxy-1,2-ethanediyl), .alpha.-(1-oxo-9-octadecenyl)-.omega.- hydroxy-, (Z)-
Acide polyglycolester
PROPIONIC ACID, N° CAS : 79-09-4 - Acide propanoïque. Nom INCI : PROPIONIC ACID. Nom chimique : Propionic acid. N° EINECS/ELINCS : 201-176-3. Additif alimentaire : E280, Classification : Règlementé, Conservateur. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI) : Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : Acide propanoïque; Acide propionique. Noms anglais : Carboxyethane; Ethanecarboxylic acid; Ethylformic acid; Metacetonic acid; Methyl acetic acid; Propanoic acid; Propionic acid; Pseudoacetic acid. Utilisation et sources d'émission: Fabrication de produits organiques et pharmaceutiques; Noms français : Acide propanoïque; Acide propionique. Noms anglais : Carboxyethane ; Ethanecarboxylic acid; Ethylformic acid; Metacetonic acid; Methyl acetic acid; Propanoic acid; Propionic acid; Pseudoacetic acid; Utilisation et sources d'émission: Fabrication de produits organiques et pharmaceutiques. Antischim B; C3 acid; Carboxyethane; Ethanecarboxylic acid; Ethylformic acid; Kyselina propionova; Luprosil; Metacetonic acid; Methyl acetic acid; Monoprop; Propionic acid (natural); propionic acid ... %; Propionic acid grain preserver; PROPIONIC ACID ; propionic acid ; Prozoin; Pseudoacetic acid; Sentry grain preserver; Tenox P grain preservative . Translated names: propiono rūgštis (lt); Acid propionic (ro); acid propionic … % (ro); Acide propionique (fr); acide propionique ... % (fr); Acido propionico (it); acido propionico ... % (it); Aċidu propjoniku (mt); kwas etanokarboksylowy ...% (pl); kwas metylooctowy ...% (pl); Kwas propionowy (pl); kwas propionowy ...% (pl); Kyselina propionová (cs); Kyselina propiónová (sk); Propano rūgštis (lt); propansyra ... % (sv); Propionic acid (no); Propionihappo (fi); Propionihappo... % (fi); propionová kyselina ...% (cs);Propionsav (hu); propionsav …% (hu); Propionska kiselina (hr); propionska kiselina ... % (hr); Propionska kislina (sl); propionska kislina...% (sl); Propionskābe (lv); Propionsyra (sv); propionsyra ... % (sv); Propionsyre (da); propionsyre ... % (da); Propionsäure (de); Propionsäure ... % (de); Propionzuur (nl); propionzuur ... % (nl); Propioonhape (et); Propioonhape … % (et); propánová kyselina ... % (sk); Ácido propiónico (es); ácido propiónico ... % (es); Προπιονικό οξύ (el); προπιονικό οξύ ... % (el); Пропионова киселина (bg); пропионова киселина... % (bg); % propionskābe (lv). CAS names: Propanoic acid. : Acid C3, Propanoic acid, Propanyl acid, Methyl acetic acid; n-Propionic Acid; propionic acid...%. Trade names: Adofeed; Carboxylic acid c3; E 280; Fema number 2924; Methylacetic acid; N-propanoic acid; Propanoic acid (9CI); Propcorn; Propionic acid (6CI, 8CI); Propionsaeure; Propkorn
Acide propanoïque ( Propionic acid)
STEARIC ACID, N° CAS : 57-11-4 - Acide stéarique, Origine(s) : Végétale, Animale, Synthétique,Autres langues : Acido stearico, Stearinsäure, Ácido esteárico. Nom INCI : STEARIC ACID, Nom chimique : Stearic acid, N° EINECS/ELINCS : 200-313-4, Additif alimentaire : E570. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre; Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent de restauration lipidique : Restaure les lipides des cheveux ou des couches supérieures de la peau Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Noms français : Acide octadécanoïque ; Acide stéarique. Noms anglais :1-Heptadecane carboxylic acid; 1-Heptadecanecarboxylic acid; Octadecanoic acid; Stearic acid. Utilisation et sources d'émission: Fabrication de produits pharmaceutiques et de savons; Stearic acid EC Inventory, , , EU. Com. Reg. No 10/2011 on plastic materials in contact with food CAS names : Octadecanoic acid. IUPAC names; acide octadécanoïque; Stearic acid (even numbered); Stearic Acid C18; stearic acid; Octadecanoic acid
Acide stéarique ( Acide octadécanoïque )
SUCCINIC ACID, N° CAS : 110-15-6 - Acide succinique, Nom INCI : SUCCINIC ACID, Nom chimique : Butanedioic acid, N° EINECS/ELINCS : 203-740-4.Additif alimentaire : E363. Compatible Bio ; Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit; Noms français : 1,2-ETHANE DICARBOXYLIC ACID; 1,2-ETHANEDICARBOXYLIC ACID; 1,4-BUTANEDIOIC ACID; ACIDE BUTANEDIOIQUE-1,4; Acide succinique; BUTANEDIOIC ACID; DIHYDROFUMARIC ACID; ETHYLENE DICARBOXYLIC ACID. Noms anglais : Succinic acid. Utilisation et sources d'émission : Fabrication de laques, fabrication de colorants; 1,2-Ethanedicarboxylic acid; 1,4-Butanedioic acid ; Acidum succinicum; Amber acid; Asuccin; Bernsteinsaure; Butandisaeure; Dihydrofumaric acid; Ethylene dicarboxylic acid; Ethylenesuccinic acid; Katasuccin; Kyselina jantarova Succinate ; Succinic acid; Succinicum acidum; Wormwood acid. CAS names: Butanedioic acid. IUPAC names : Butanedionic acid; Ethanedicarboxylic acid; Succinic; 1,2-Ethanedicarboxylic acid ; 1,4-Butanedioic acid; 110-15-6 [RN]; 203-740-4 [EINECS]; 4-02-00-01908 [Beilstein]; Acide butanedioique [French]; Acide succinique [French] ; Acido succinico [Italian]; ácido succínico [Spanish]; Ácido succínico [Portuguese]; acidum succinicum [Latin]; Bernsteinsaeure [German]; Bernsteinsäure [German] ; Butanedioic acid ; HOOC-CH2-CH2-COOH [Formula]; Kyselina jantarova [Czech]; MFCD00002789 [MDL number]; Succinic acid ; Succinic acid; Ηλεκτρικό οξύ ; Янтарная кислота [Russian]; コハク酸 [Japanese]; 琥珀酸 [Chinese]; acidum succinicum amber acid; asuccin; Bernsteinsaeure; Bernsteinsaure; Butandisaeure; BUTANE DIACID; BUTANEDIOICACID; Dihydrofumaric acid; Ethanedicarboxylic acid; Ethylene dicarboxylic acid ; Ethylene succinic acid; FMR; fum; Fumaric acid ; Katasuccin; Kyselina jantarova; Sal succini; Succinellite; succinic acid(free acid); succunic acide; Wormwood acid
Acide succinique ( succinic acid ) Butanedioic acid
L'acide sulfonique est un acide hypothétique de formule chimique HSO2OH. C'est un tautomère instable de l'acide sulfureux HO-SO-OH. C'est un composé instable qui présente peu d'intérêt en tant que tel, mais il existe de nombreux composés stables en dérivant, de formules chimiques R-SO2OH, pour lesquelles le groupement fonctionnel -SO2OH est appelé fonction acide sulfonique, le composé dans son ensemble étant appelé de manière générale un acide sulfonique.
Acide sulfonique pur
TARTARIC ACID, N° CAS : 133-37-9 / 147-71-7 / 87-69-4 - Acide tartrique. Autres langues : Acido tartarico, Weinsäure, Ácido tartárico. Nom INCI : TARTARIC ACID. Nom chimique : 2,3-Dihydroxybutanedioic acid, N° EINECS/ELINCS : 205-105-7 / 205-695-6 / 201-766-0. Additif alimentaire : E334. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit; Noms français : (+-)-Acide tartarique; (+-)-Acide tartrique; Acide dihydroxy-2,3 ; butanedioïque; Acide DL-tartarique; Acide DL-tartrique; Acide paratartarique; Acide tartarique; Acide tartarique (DL-); Acide tartarique racémique. Acide tartrique. Noms anglais : (+-)-Tartaric acid ; 2,3-Dihydroxybutanedioic acid; DL-Tartaric acid; Paratartaric acid; Racemic acid; Racemic tartaric acid; Resolvable tartaric acid; Tartaric acid; Tartaric acid, (+-)-; Uvic acid; Utilisation et sources d'émission : Fabrication de produits de tannage, additif alimentaire; (±)-tartaric acid. IUPAC names : (+-)-Tartaric acid; (2R,3R)-2,3-dihydroxybutanedioic acid ; 2, 3-Dihydroxybutanedioic Acid; 2,3 dihydroxybutanedioic acid; 2,3-Dihydroxybutanedioic acid; 2,3-dihydroxysuccinic acid; Acide Tartrique Poudre; Butanedioic acid, 2,3-dihydroxy-, (2R,3R)-rel-; DL-Tartaric Acid; Tartaric acid; L-(+)-Tartaric acid; (+)-(2R,3R)-Tartaric acid; (+)-(R,R)-tartaric acid; (+)-L-tartaric acid; (+)-tartaric acid; (2R,3R)-(+)-Tartaric acid; (2R,3R)-2,3-Dihydroxybernsteinsäure [German] [ACD/IUPAC Name]; (2R,3R)-2,3-dihydroxybutanedioic acid; (2R,3R)-2,3-Dihydroxysuccinic acid [ACD/IUPAC Name]; (2R,3R)-tartaric acid (R,R)-(+)-tartaric acid; (R,R)-tartaric acid; [R-(R*,R*)]-2,3-Dihydroxybutanedioic Acid; 133-37-9 [RN]; 1725147 [Beilstein]; 201-766-0 [EINECS]; 205-105-7 [EINECS]; 87-69-4 [RN]; Acide (2R,3R)-2,3-dihydroxysuccinique [French] [ACD/IUPAC Name]; Acidum tartaricum; Butanedioic acid, 2,3-dihydroxy-, (2R,3R)- [ACD/Index Name]; Butanedioic acid, 2,3-dihydroxy-, (2R,3R)-rel- ; L-(+)-Tartarate; L-(+)-Tartrate; L-2,3-Dihydroxybutanedioic Acid; L-tartaric acid; L-threaric acid; MFCD00064207 [MDL number]; Ordinary Tartaric Acid; Tartarate [ACD/IUPAC Name] Tartaric acid [ACD/IUPAC Name] ; Weinsaure [German]; Weinsteinsaure [German]; (+)-tartarate; (2R,3R)-Tartarate; (R,R)-tartarate;(R,R)-tartrate; 2,3-dihydroxybutanedioate; 2,3-dihydroxy-succinate; 2,3-dihydroxysuccinic acid; 2,3-Dihydroxy-succinic acid; L-tartarate; tartrate ; Weinsaeure; (+)-Weinsaeure; (1R,2R)-1,2-Dihydroxyethane-1,2-dicarboxylic acid; (2R,3R)-(+)-2,3-Dihydroxybutane-1,4-dioic acid, (2R,3R)-(+)-2,3-Dihydroxysuccinic acid; (2R,3R)-2,3-Dihydroxybernsteinsaeure ;(2R,3R)-2,3-dihydroxybutanedioate (2R,3R)-2,3-tartaric acid (2R,3R)-rel-2,3-Dihydroxybutanedioic acid (2R,3R)-rel-2,3-Dihydroxysuccinic acid (R,R)-(+)-tartatic acid 1,2-DIHYDROXYETHANE-1,2-DICARBOXYLIC ACID 138508-61-9 [RN] 144814-09-5 [RN] 147-71-7 [RN] 2,3-dihydrosuccinic acid 2,3-dihydroxybutanedioic acid 205-695-6 [EINECS] 39469-81-3 [RN] 3-hydroxymalic acid 4231301 [Beilstein] 526-83-0 [RN] 526-83-087-69-4 56959-20-7 [RN] 69-72-7 [RN] ACS D(-)-TARTARIC ACID D-(-)-Tartaric Acid (en) Dl-dihydroxysuccinic acid hydrogen (2R,3R)-tartrate l-​(+)​-​tartaric acid l-( )-tartaric acid L-(+) tartaric acid L(+)-Tartaric acid L-(+)-Tartaric acid, ACS l-(+)-tartaric acid, anhydrous L(+)-Tartaricacid L-(+)-Tartaricacid lamB protein (fungal) l-tartaricacid l-酒石酸 Metatartaric acid MFCD00071626 [MDL number] R,R-tartaric acid Rechtsweinsaeure TAR Tartaric acid (TN) THREARIC ACID TLA Weinsteinsaeure
Acide tartrique ( TARTARIC ACID)
MYRISTIC ACID, N° CAS : 544-63-8 - Acide tétradécanoïque (Acide myristique), Acide tetradécanoïque .Synonymes : 1-TRIDECANECARBOXYLIC ACID;ACIDO MYNISTICO;Butter acids;Coconut oil fatty acids;CRODACID;EMERY 655;HYDROFOL ACID 1495;Hystrene 9014;Myristic acid, pure;Myristinsaeure;N-TETRADECAN-1-OIC ACID;N-TETRADECANOIC ACID;N-TETRADECOIC ACID;neo-Fat 14;TETRADECANSAEURE;UNIVOL U 316S.Nom INCI : MYRISTIC ACID. Nom chimique : Tetradecanoic acid. N° EINECS/ELINCS : 208-875-2. Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 1-TRIDECANECARBOXYLIC ACID; Acide myristique; ACIDE TETRADECANOIQUE; ACIDE TETRADECANOIQUE NORMAL; ACIDE TETRADECANOIQUE-1; N-TETRADECAN-1-OIC ACID; N-TETRADECANOIC ACID; N-TETRADECOIC ACID; NORMAL-TETRADECANOIC ACID. Noms anglais :Myristic acid; TETRADECANOIC ACID. Utilisation et sources d'émission: Fabrication de parfums et de savons. 1-tetradecanoic acid; 1-Tridecanecarboxylic acid; 208-875-2 [EINECS]; 508624 [Beilstein]; 544-63-8 [RN];Acide myristique [French] [ACD/IUPAC Name]; Acide tétradécanoïque [French]; myristic acid [ACD/IUPAC Name]; Myristinsäure [German] [ACD/IUPAC Name]; n-Myristic acid; n-TETRADECANOIC ACID; Tetradecanoic acid [ACD/Index Name]; 1-Tridecanecarboxylate; n-Tetradecan-1-oaten-Tetradecanoate; 1,2-DIMYRISTOYL-RAC-GLYCERO-3-PHOSPHOCHOLINE; 12-O-Tetradecanoylphorbol 13-acetate; 12-Tetradecanoylphorbol 13-acetate; 13-Tetradecynoic acid [ACD/Index Name] [ACD/IUPAC Name]; 1-tetradecanecarboxylate; 1-tetradecanecarboxylic acid; 4-02-00-01126 [Beilstein]; 82909-47-5 [RN]; Crodacid; Methyl 11-methyldodecanoate [ACD/IUPAC Name]; Myristic Acid 655; Myristinsaeure; Myristoate; Myristoic acid; n-Tetradecan-1-oic acid; n-tetradecoate; n-Tetradecoic acid; QV13 [WLN]; tetradecanoate; TetradecanoicAcid; tetradecoate; tetradecoic acid
Acide tétradécanoïque (Acide myristique)
mercaptoacetic acid; Acide thioglycolique; 2-MERCAPTOACETIC ACID; THIOGLYCOLIC ACID, N° CAS : 68-11-1 - Acide thioglycolique et ses sels, Nom INCI : THIOGLYCOLIC ACID, Nom chimique : Mercaptoacetic acid, N° EINECS/ELINCS : 200-677-4; Classification : Règlementé. L'acide thioglycolique modifie les fibres des cheveux pour faciliter leur restructuration : on l'utilise par exemple dans les produits restructurant capillaires. On l'emploie aussi pour décomposer chimiquement les poils indésirables pour qu'ils puissent ensuite être éliminés en les essuyant simplement. C'est son sel de potassium qui est le plus utilisé aujourd'hui.Ses fonctions (INCI). Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Dépilatoire : Enlève les poils indésirables. Agent bouclant ou lissant (coiffant) : Modifie la structure chimique des cheveux, pour les coiffer dans le style requis. Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène. Noms français : 2-MERCAPTOACETIC ACID; 2-MERCAPTOETHANOIC ACID; 2-THIOGLYCOLIC ACID; ACIDE MERCAPTO-2 ACETIQUE; ACIDE MERCAPTO-2 ETHANOIQUE; ACIDE MERCAPTOACETIQUE; ACIDE THIO-2 GLYCOLIQUE; Acide thioglycolique; ALPHA-MERCAPTOACETIC ACID; MERCAPTOACETIC ACID; Noms anglais : ACETIC ACID, MERCAPTO-; Thioglycolic acid; THIOGLYCOLLIC ACID; THIOVANIC ACID. Utilisation: L'acide thioglycolique est un produit utilisé dans une grande variété d'applications, dont les cosmétiques, la fabrication des plastiques et la chimie analytique. Il est utilisé notamment: en coiffure pour l'ondulation permanente des cheveux; en tant qu'ingrédient dans des produits capillaires; pour faire des produits dépilatoires; dans certains produits pharmaceutiques; pour faire des thioglycolates utilisés dans l'industrie du plastique (emballages, additifs pour le PVC); pour modifier la laine ou le cuir; en chimie analytique pour différents procédés (par exemple la séparation de l'aluminium du fer); 2-Mercaptoacetate; 2-Mercaptoacetic acid; 2-Thioglycolic acid; Acetic acid, 2-mercapto-; Acetic acid, mercapto-; Glycolic acid, 2-thio-; Glycolic acid, thio-; Kyselina merkaptooctova; Kyselina thioglykolova; Mercaptoacetic acid; Mercaptoessigsaeure; Salts of Thioglycolic acid; Thioglycolate; THIOGLYCOLIC ACID; Thioglycollic acid; Thiovanic acid. Translated names: acid tioglicolic (ro); acide mercaptoacétique (fr); acide thioglycolique (fr); acido tioglicolico (it); kwas 2-sulfanylooctowy (pl); kwas merkaptooctowy (pl); kwas tioglikolowy (pl); kyselina tioglykolová (sk); mercaptoeddikesyre (da); merkaptoacto rūgštis (lt); merkaptoeddiksyre (no); merkaptoättiksyra (sv); thioglycolsyre (da); thioglycolzuur (nl); thioglykolová kyselina (cs); Thioglykolsäure (de); kiselina (hr); tioglikolna kislina (sl);tioglikolsav, merkaptoecetsav (hu); tioglikolskābe (lv); Tioglykolihappo (fi); tioglykolsyra (sv); tioglykolsyre (no); Tioglükoolhape (et); ácido mercaptoacético (es); ácido tioglicólico (es); θειογλυκολικό οξύ (el); тиогликолова киселина (bg).IUPAC names: 2-Sulfanylacetic acid; sulfanylacetic acid; Thioglycolic acid TGA, mercaptoacetic acid; THIOGLYKOLSAEURE. Trade names : Thio Glycolic Acid; Thioglycolic Acid 70%, technical grade; Thioglycolic Acid 80%, cosmetic grade; Thioglycolic Acid 80%, cosmetic grade, low odor; Thioglycolic Acid 80%, pure; Thioglycolic Acid 80%, technical grade; Thioglycolic Acid 85% cosmetic grade; Thioglycolic Acid 85%, technical grade; Thioglycolic Acid 97%, technical grade; Thioglycolic Acid 98%; Thioglycolic Acid 98%, commercial grade; Thioglycolic Acid 99% pure; Thioglycolic Acid 99%, cosmetic grade, low odor; Thioglycolic Acid 99%,cosmetic grade; 200-677-4 [EINECS]; 2-Mercaptoacetic acid; 2-mercaptoethanoic acid; 2-thioglycolic acid; 506166 [Beilstein]; 68-11-1 [RN]; Acetic acid, 2-mercapto- [ACD/Index Name]; acetic acid, mercapto-; acetyl mercaptan; Acide sulfanylacétique [French] ;Acide thioglycolique [French]; Glycolic acid, 2-thio-; Glycolic acid, thio-; Kyselina merkaptooctová [Czech]; Kyselina thioglykolová [Czech]; mercaptoacetic acid; Mercaptoessigsaeure [German]; mercaptoethanoic acid; Merkaptoessigsaeure [German]; MFCD00004876 [MDL number]; Sulfanylacetic acid [ACD/IUPAC Name]; Sulfanylessigsäure [German] ;Thioglycolic acid; thioglycolic acid; thioglycollic acid; Thioglykolsaeure [German]; α-mercaptoacetic acid; 2-sulfanylacetic acid; 2-sulfanylethanoic acid; Acetic acid; Acide thioglycolique; Acide thioglycolique [French]; Kyselina merkaptooctova [Czech]; Kyselina thioglykolova [Czech]; mercapto acetic acid; METHYLTHIO, CARBOXY-; SH1VQ [WLN]; sJPhLPDIKTp@; Thioglycolicacid; Thiovanic acid; WLN: SH1VQ; α-mercaptoacetic acid; α-Mercaptoacetic acid; 巯基乙酸 [Chinese]
Acide thioglycolique et ses sels ( THIOGLYCOLIC ACID) acide thioglycolique ( mercaptoacetic acid )
EC / List no.: 287-494-3; CAS no.: 85536-14-7; Mol. formula: C19H32O3S; Acide Linear alkyl benzène sulfonique ( labsa ) Linear alkyl benzène acide sulfonique est un grand tensioactif synthétique de volume en raison de son coût relativement faible , de bonnes performances , le fait qu'il peut être séché pour obtenir une poudre stable et le respect de l'environnement biodégradable. 2-Dodecylbenzenesulfonic acid; 4-(tridecan-3-yl)benzene-1-sulfonic acid; 4-Alkylbenzenesulfonic acid; Alkylbenzene C10-C13 sec , sulfonation product with sulphur trioxide; Benzenesulfonic acid; Benzenesulfonic acid, 4-C1-13-sec-alkyl derivs.; Benzenesulfonic Acid, 4-C10-13-Sec-Alkyl Derivatives; Benzenesulfonic acid, 4-C10-13-sec-alkyl derivs; Benzenesulfonic acid, 4-C10-13-sec-alkyl derivs..; Benzenesulfonic acid, 4-C10-13-sec-alkyl derivs.H; Benzesulfonic acid, 4-C10-13-sec-alkyl derivs.; Dodecylbenzene sulfonic acid, mixture of C10-C13 isomers; Dodecylbenzene sulphonic acid; LAB sulpohonic acid, Alkylbenzene sulfonic acid; LABSA; LABSA (Linear Alkylbenzene Sulphonic Acid); Linear alkyl benzene sulfonic acid; Linear Alkyl benzene Sulphonic acid; Linear alkylbenzene sulfonate; Linear Alkylbenzene Sulfonic Acid; Linear alkylbenzene sulphonic acid; Linear alkylbenzenesulphonic acid
Acide Linear alkyl benzène sulfonique
COCONUT ACID N° CAS : 61788-47-4 - Acides gras de coco Origine(s) : Végétale Autres langues : Acidi grassi di cocco, Coconut fatty acids, Kokosfettsäuren, Ácidos grasos de coco Nom INCI : COCONUT ACID N° EINECS/ELINCS : 262-978-7 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Emollient : Adoucit et assouplit la peau Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. MIXED COCONUT FATTY ACIDS Noms anglais : COCONUT OIL FATTY ACIDS FATTY ACIDS, COCO FATTY ACIDS, COCONUT OIL
Acides gras de coco
Acrylic amide; Ethylene Carboxamide; 2-Propenamide; Propenoic acid, amide; Vinyl Amide; Acrylamide ultra sequencing gel, 8%, ready-to-use solution, for biochemistry;Acrylamide, electrophoresis grade, for biochemistry, 99+%;Acrylamide, extra pure, 98.5%;Acrylamide 2X;Acrylamide 4X;SERDOGEL SSCP 2 x Concentrate;ACRYLAMIDE,ULTRAPURE,ELECTROPHORESISGRADE;prop-2-enamide CAS NO:79-06-1
ACRONAL S 790
ACRONAL S 790 est une dispersion aqueuse de styrène acrylique avec une viscosité moyenne et une excellente liaison des pigments.

ACRONAL S 790 est une dispersion anionique de viscosité moyenne avec une petite taille de particules.
ACRONAL S 790 présente une excellente compatibilité avec les charges et une absorption élevée des pigments.

Les films ACRONAL S 790 non pigmentés ne présentent pas d’adhésivité en surface à température ambiante.
Ils sont transparents, élastiques, brillants, très résistants à l'humidité et à la saleté.
ACRONAL S 790 ne contient pas d'émulsifiants à base d'éthoxylates d'alkylphénol.

ACRONAL S 790 est un liant standard universel pour les applications de mastics et d'apprêts.
ACRONAL S 790 présente une bonne compatibilité avec les charges et est compatible avec de nombreux types de plastifiants.

ACRONAL S 790 est une dispersion aqueuse d'un copolymère styrène-acrylique de viscosité moyenne et d'excellent pouvoir de liaison des pigments.

ACRONAL S 790 est un liant acrylique styrène anionique sans APEO.
Possède une large latitude de formulation, une viscosité moyenne et une très bonne capacité de liaison des pigments.

Offre un rapport qualité-prix exceptionnel et une très bonne résistance à l’eau.
Présente une résistance exceptionnelle à la saponification et aux alcalis ainsi qu’une résistance supérieure à l’accumulation de saleté.
ACRONAL S 790 est utilisé dans les finitions architecturales, les peintures intérieures, les finitions texturées, les apprêts, les systèmes d'isolation et de finition extérieurs (EIFS) ainsi que les coulis.

La dispersion acrylique ACRONAL S 790 est une dispersion styrène-acrylique (dispersion aqueuse d'un ester d'acide acrylique et d'un copolymère de styrène) destinée à la fabrication de peintures de construction (aussi bien extérieures qu'intérieures), d'enduits et de mastics, d'adhésifs, utilisées dans la production de non-tissés. matériaux et revêtements textiles.

Domaine d'application de l'ACRONAL S 790 :
Une caractéristique d'ACRONAL S 790 réside dans ses propriétés uniques, grâce auxquelles ACRONAL S 790 est utilisé pour la fabrication de peintures de construction allant de très brillantes à mates, qui peuvent être appliquées sur le plâtre, la maçonnerie, l'amiante-ciment, le béton, le bois et d'autres substrats. à l'intérieur et à l'extérieur du bâtiment.
De plus, ayant une capacité pigmentaire extrêmement élevée sur ACRONAL S 790, ACRONAL S 790 permet d'obtenir des systèmes hautement chargés (peintures, enduits, mastics, etc.) qui ne perdent pas leurs hautes propriétés de consommation, tout en étant moins chers en termes de coût de l'ACRONAL S 790.
En tant que liant pour non-tissés et revêtements textiles, l'ACRONAL S 790 s'applique par imprégnation, peinture ou pulvérisation.

Domaines d'utilisation de l'ACRONAL S 790 :
Peintures de façade et d'intérieur
Revêtements texturés
Primaires pour supports minéraux
mastic
Modifications des peintures silicatées
Moyens de protection du béton

Revêtements architecturaux
Finitions texturées
Peintures intérieures
Systèmes d'isolation et de finition extérieurs (EIFS)
Coulis
Apprêts

Avantages de l'ACRONAL S 790 :
Sans APEO (éthoxylate d'alkylphénol)
Capacité de liaison élevée
Bonne adhérence sur diverses surfaces
Faible absorption d'eau
Large gamme d'applications

Avantages de l'ACRONAL S 790 :
Large latitude de formulation
Rapport qualité-prix exceptionnel
Saponification et résistance alcaline exceptionnelles
Excellente résistance à l'eau
Résistance supérieure à la saleté

Traitement de l'ACRONAL S 790 :
Les peintures sont produites de la manière habituelle dans des dissolveurs à grande vitesse.
Il est recommandé de disperser d'abord les pigments et les charges en présence d'agents mouillants et dispersants (par exemple des dispersants pigmentaires N ou A ou des polyphosphates hydrosolubles) avant d'introduire la dispersion dans un milieu alcalin.
L'ACRONAL S 790 doit être ajouté avec les auxiliaires uniquement dans la production de produits à haute viscosité et à haute teneur en solides (par exemple, revêtements texturés et charges) produits dans des mélangeurs à basse vitesse.

ACRONAL S 790 se caractérise par une absorption élevée des pigments et une excellente compatibilité avec les charges.
Les exceptions sont les pigments difficiles à réticuler, comme le noir de carbone ou le sulfate de calcium et l'oxyde de zinc, qui peuvent conduire à une viscosité élevée.

Pour contrôler la viscosité et optimiser les propriétés de consommation de l'ACRONAL S 790, il est généralement nécessaire d'ajouter des épaississants à l'ACRONAL S 790.
Les épaississants les plus couramment utilisés sont les éthers de cellulose, les épaississants polyacrylates ou diuréthanes (par exemple Latecoll D ou Collacral PU 75, PU 85, LR 8989, LR 8990) ou les bentonites et polysaccharides.
Le choix de l'épaississant dépend du caractère du produit fini (thixotrope ou moins visqueux).

Lorsque des pigments sont utilisés pour des formulations colorantes, notamment sous forme de pâtes pigmentaires (par exemple de marque Luconyl), il faut s'assurer avec ACRONAL S 790 que l'épaississant ne provoque pas de précipitation ou de floculation des pigments.
Il est donc recommandé d'utiliser ACRONAL S 790 pour effectuer des tests de compatibilité (pour le stockage) et, si nécessaire, l'introduction de tensioactifs non ioniques (par exemple Lutensol AP 6).

Un petit ajout de LumitenNOC 30 améliore la compatibilité avec le ciment et la chaux, assure la stabilité au stockage des peintures intérieures hautement pigmentées dans les applications à l'eau dure et facilite le nettoyage des outils de travail.

Pour une formation de film réussie à des températures inférieures à 20°C, l'ajout de coalescents tels que le white spirit, les éthers de glycol et le Lusolvan FBH, SolvenonPP est recommandé.
La consommation recommandée est d'environ 2% (sur la base du volume total).

Pour rendre le film particulièrement flexible, des plastifiants peuvent être ajoutés, par exemple du Plastilit 3060 ou de la paraffine chlorée ou un ester d'acide phtalique.
ACRONAL S 790 est également possible de mélanger l'ACRONAL S 790 avec des dispersions molles (par exemple ACRONAL S 400) qui favorisent la formation d'un film transparent.

Un mélange avec des dispersions à base d'acrylate pur ou d'esters polyvinyliques est également possible, mais ne donne pas de film transparent et n'offre aucun avantage technique.
La compatibilité d'ACRONAL S 790 avec d'autres dispersions est améliorée grâce à l'ajout de CollacralVAL, un colloïde protecteur stabilisant.

Comme toutes les dispersions fines, ACRONAL S 790 a tendance à mousser.
Ainsi, dans ACRONAL S 790, il est nécessaire d'introduire des agents antimousse dans les quantités recommandées par les fabricants (environ 0,3 à 1 %).
L'efficacité des antimousses doit être déterminée empiriquement.

Bien qu'ACRONAL S 790 soit protégé des attaques de micro-organismes, des conservateurs doivent être ajoutés aux produits finaux pour garantir leur stabilité pendant le stockage.
La compatibilité et l'efficacité du conservateur utilisé doivent toujours être testées empiriquement.

Les fabricants doivent mener leurs propres essais rigoureux de développement de produits en utilisant ACRONAL S 790, car nos essais ne peuvent pas couvrir l'ensemble des facteurs pouvant influencer la fabrication et l'utilisation du produit (par exemple, compatibilité des composants, processus de mélange, adhérence à divers substrats, etc.).
Des tests de stabilité de viscosité doivent également être effectués après stockage à 50°C.

Stockage de l'ACRONAL S 790 :
ACRONAL S 790 pendant le stockage et le traitement ne doit pas entrer en contact avec des métaux corrosifs ou leurs alliages sans revêtements protecteurs.
Les conteneurs de produits doivent être hermétiquement fermés pendant le stockage et l'espace d'air libre au-dessus de l'ACRONAL S 790 doit être saturé d'humidité.
ACRONAL S 790 ne doit pas être exposé à une chaleur extrême ou au gel.

Pour éviter les problèmes liés aux micro-organismes, les mesures d'hygiène relatives aux conteneurs de stockage des produits doivent être respectées.

La durée de conservation de l'ACRONAL S 790 est de 6 mois lorsqu'il est stocké entre 10 et 30 ºС

Sécurité de l'ACRONAL S 790 :
Les exigences habituelles en matière de manipulation de produits chimiques et les réglementations locales en matière d'hygiène industrielle doivent être respectées.
Une ventilation efficace doit être assurée pendant le traitement, ainsi qu'un équipement de protection individuelle pour la peau et des lunettes.

Propriétés de l'ACRONAL S 790 :
Type de dispersion : anionique
Teneur en matières solides : env. 50 %
Valeur pH : env. 7,5 – 9,0
Viscosité1 : env. 700–1.500 mPa·s
Taille moyenne des particules : env. 0,1 µm
MFFT : env. 20°C
Densité spécifique (dispersion) : env. 1,04 g/cm³
Densité spécifique (polymère sec) : env. 1,08 g/c

Groupe de produits :
Dispersion

Groupe de produits:
Acryliques styrène

Industrie:
Construction

Type chimique :
Acryliques styrène

Autres produits ACRONAL :
ACRONAL TS 790
ACRONAL 290 D
ACRONAL T 290 D
ACRONAL S 562
ACRONAL S 562 T
ACRONAL ECO 6716
ACRONAL ECO 6716 T
ACRONAL PLUS 6727
ACRONAL S 813
ACRONAL ECO 6258
ACRONAL EDGE 6283
ACRONAL EDGE 6295
ACRONAL A 684
ACRONAL A 754
ACRONAL TA 754
ACRONAL PLUS 6257
ACRONAL DS
ACRONAL DS 6266
ACRONAL ECO 6270
ACRONAL LR 9014
ACRONAL TX 9014
ACRONAL TS 790
ACRONAL TS 790 est une dispersion aqueuse de styrène acrylique avec une viscosité moyenne et une excellente liaison des pigments.

ACRONAL TS 790 est une dispersion anionique de viscosité moyenne avec une petite taille de particules.
ACRONAL TS 790 présente une excellente compatibilité avec les charges et une absorption élevée des pigments.

Les films ACRONAL TS 790 non pigmentés ne présentent pas d'adhésivité de surface à température ambiante.
Ils sont transparents, élastiques, brillants, très résistants à l'humidité et à la saleté.
ACRONAL TS 790 ne contient pas d'émulsifiants à base d'éthoxylates d'alkylphénol.

ACRONAL TS 790 est un liant standard universel pour les applications de mastics et d'apprêts.
ACRONAL TS 790 présente une bonne compatibilité avec les charges et est compatible avec de nombreux types de plastifiants.

ACRONAL TS 790 est une dispersion aqueuse d'un copolymère styrène-acrylique de viscosité moyenne et d'un excellent pouvoir de liaison des pigments.

ACRONAL TS 790 est un liant acrylique styrène anionique sans APEO.
Possède une large latitude de formulation, une viscosité moyenne et une très bonne capacité de liaison des pigments.

Offre un rapport qualité-prix exceptionnel et une très bonne résistance à l’eau.
Présente une résistance exceptionnelle à la saponification et aux alcalis ainsi qu’une résistance supérieure à l’accumulation de saleté.
ACRONAL TS 790 est utilisé dans les finitions architecturales, les peintures intérieures, les finitions texturées, les apprêts, les systèmes d'isolation et de finition extérieurs (EIFS) ainsi que les coulis.

La dispersion acrylique ACRONAL TS 790 est une dispersion styrène-acrylique (dispersion aqueuse d'un ester d'acide acrylique et d'un copolymère de styrène) pour la fabrication de peintures de construction (extérieures et intérieures), d'enduits et de mastics, d'adhésifs, utilisées dans la production de non-tissés. matériaux et revêtements textiles.

Domaine d'application de l'ACRONAL TS 790 :
Une caractéristique d'ACRONAL TS 790 réside dans ses propriétés uniques, grâce auxquelles ACRONAL TS 790 est utilisé pour la fabrication de peintures de construction allant de très brillantes à mates, qui peuvent être appliquées sur le plâtre, la maçonnerie, l'amiante-ciment, le béton, le bois et d'autres substrats. à l'intérieur et à l'extérieur du bâtiment.
De plus, ayant une capacité pigmentaire extrêmement élevée sur ACRONAL TS 790, ACRONAL TS 790 permet d'obtenir des systèmes hautement chargés (peintures, enduits, mastics, etc.) qui ne perdent pas leurs hautes propriétés de consommation, tout en étant moins chers en termes de coût de l'ACRONAL TS 790.
En tant que liant pour non-tissés et revêtements textiles, l'ACRONAL TS 790 s'applique par imprégnation, peinture ou pulvérisation.

Domaines d'utilisation de l'ACRONAL TS 790 :
Peintures de façade et d'intérieur
Revêtements texturés
Primaires pour supports minéraux
mastic
Modifications des peintures silicatées
Moyens de protection du béton

Revêtements architecturaux
Finitions texturées
Peintures intérieures
Systèmes d'isolation et de finition extérieurs (EIFS)
Coulis
Apprêts

Avantages de l'ACRONAL TS 790 :
Sans APEO (éthoxylate d'alkylphénol)
Capacité de liaison élevée
Bonne adhérence sur diverses surfaces
Faible absorption d'eau
Large gamme d'applications

Avantages de l'ACRONAL TS 790 :
Large latitude de formulation
Rapport qualité-prix exceptionnel
Saponification et résistance alcaline exceptionnelles
Excellente résistance à l'eau
Résistance supérieure à la saleté

Traitement de l'ACRONAL TS 790 :
Les peintures sont produites de la manière habituelle dans des dissolveurs à grande vitesse.
Il est recommandé de disperser d'abord les pigments et les charges en présence d'agents mouillants et dispersants (par exemple des dispersants pigmentaires N ou A ou des polyphosphates hydrosolubles) avant d'introduire la dispersion dans un milieu alcalin.
L'ACRONAL TS 790 doit être ajouté avec les auxiliaires uniquement dans la production de produits à haute viscosité et à haute teneur en solides (par exemple, revêtements texturés et charges) produits dans des mélangeurs à basse vitesse.

ACRONAL TS 790 se caractérise par une absorption élevée des pigments et une excellente compatibilité avec les charges.
Les exceptions sont les pigments difficiles à réticuler, comme le noir de carbone ou le sulfate de calcium et l'oxyde de zinc, qui peuvent conduire à une viscosité élevée.

Pour contrôler la viscosité et optimiser les propriétés de consommation de l'ACRONAL TS 790, il est généralement nécessaire d'ajouter des épaississants à l'ACRONAL TS 790.
Les épaississants les plus couramment utilisés sont les éthers de cellulose, les épaississants polyacrylates ou diuréthanes (par exemple Latecoll D ou Collacral PU 75, PU 85, LR 8989, LR 8990) ou les bentonites et polysaccharides.
Le choix de l'épaississant dépend du caractère du produit fini (thixotrope ou moins visqueux).

Lorsque des pigments sont utilisés pour des formulations colorantes, notamment sous forme de pâtes pigmentaires (par exemple de marque Luconyl), il faut s'assurer avec ACRONAL TS 790 que l'épaississant ne provoque pas de précipitation ou de floculation des pigments.
Il est donc recommandé d'utiliser ACRONAL TS 790 pour effectuer des tests de compatibilité (pour le stockage) et, si nécessaire, l'introduction de tensioactifs non ioniques (par exemple Lutensol AP 6).

Un petit ajout de LumitenNOC 30 améliore la compatibilité avec le ciment et la chaux, assure la stabilité au stockage des peintures intérieures hautement pigmentées dans les applications à l'eau dure et facilite le nettoyage des outils de travail.

Pour une formation de film réussie à des températures inférieures à 20°C, l'ajout de coalescents tels que le white spirit, les éthers de glycol et le Lusolvan FBH, SolvenonPP est recommandé.
La consommation recommandée est d'environ 2% (sur la base du volume total).

Pour rendre le film particulièrement flexible, des plastifiants peuvent être ajoutés, par exemple du Plastilit 3060 ou de la paraffine chlorée ou un ester d'acide phtalique.
ACRONAL TS 790 est également possible de mélanger l'ACRONAL TS 790 avec des dispersions molles (par exemple ACRONAL S 400) qui favorisent la formation d'un film transparent.

Un mélange avec des dispersions à base d'acrylate pur ou d'esters polyvinyliques est également possible, mais ne donne pas de film transparent et n'offre aucun avantage technique.
La compatibilité d'ACRONAL TS 790 avec d'autres dispersions est améliorée grâce à l'ajout de CollacralVAL, un colloïde protecteur stabilisant.

Comme toutes les dispersions fines, ACRONAL TS 790 a tendance à mousser.
Ainsi, dans ACRONAL TS 790, il est nécessaire d'introduire des agents antimousse dans les quantités recommandées par les fabricants (environ 0,3 à 1 %).
L'efficacité des antimousses doit être déterminée empiriquement.

Bien qu'ACRONAL TS 790 soit protégé des attaques de micro-organismes, des conservateurs doivent être ajoutés aux produits finaux pour garantir leur stabilité pendant le stockage.
La compatibilité et l'efficacité du conservateur utilisé doivent toujours être testées empiriquement.

Les fabricants doivent mener leurs propres essais rigoureux de développement de produits en utilisant ACRONAL TS 790, car nos essais ne peuvent pas couvrir l'ensemble des facteurs pouvant influencer la fabrication et l'utilisation du produit (par exemple, compatibilité des composants, processus de mélange, adhérence à divers substrats, etc.).
Des tests de stabilité de viscosité doivent également être effectués après stockage à 50°C.

Stockage d'ACRONAL TS 790 :
ACRONAL TS 790 pendant le stockage et le traitement ne doit pas entrer en contact avec des métaux corrosifs ou leurs alliages sans revêtements protecteurs.
Les récipients du produit doivent être hermétiquement fermés pendant le stockage et l'espace d'air libre au-dessus de l'ACRONAL TS 790 doit être saturé d'humidité.
ACRONAL TS 790 ne doit pas être exposé à une chaleur extrême ou au gel.

Pour éviter les problèmes liés aux micro-organismes, les mesures d'hygiène relatives aux conteneurs de stockage des produits doivent être respectées.

La durée de conservation d'ACRONAL TS 790 est de 6 mois lorsqu'il est stocké entre 10 et 30 ºС

Sécurité de l'ACRONAL TS 790 :
Les exigences habituelles en matière de manipulation de produits chimiques et les réglementations locales en matière d'hygiène industrielle doivent être respectées.
Une ventilation efficace doit être assurée pendant le traitement, ainsi qu'un équipement de protection individuelle pour la peau et des lunettes.

Propriétés de l'ACRONAL TS 790 :
Type de dispersion : anionique
Teneur en matières solides : env. 50 %
Valeur pH : env. 7,5 – 9,0
Viscosité1 : env. 700–1.500 mPa·s
Taille moyenne des particules : env. 0,1 µm
MFFT : env. 20°C
Densité spécifique (dispersion) : env. 1,04 g/cm³
Densité spécifique (polymère sec) : env. 1,08 g/c

Groupe de produits :
Dispersion

Groupe de produits:
Acryliques styrène

Industrie:
Construction

Type chimique :
Acryliques styrène

Autres produits ACRONAL :
ACRONAL S 790
ACRONAL 290 D
ACRONAL T 290 D
ACRONAL S 562
ACRONAL S 562 T
ACRONAL ECO 6716
ACRONAL ECO 6716 T
ACRONAL PLUS 6727
ACRONAL S 813
ACRONAL ECO 6258
ACRONAL EDGE 6283
ACRONAL EDGE 6295
ACRONAL A 684
ACRONAL A 754
ACRONAL TA 754
ACRONAL PLUS 6257
ACRONAL DS
ACRONAL DS 6266
ACRONAL ECO 6270
ACRONAL LR 9014
ACRONAL TX 9014
ACRONAL TS 790
ACRONAL TS 790 est un composé chimique appartenant à la famille des isothiazolinones.
Le fluide métallurgique ACRONAL TS 790 est un mélange des deux isothiazoliones contenues dans Kathon CG, à une concentration de 13,9%.
ACRONAL TS 790 aide à inhiber la croissance de micro-organismes nuisibles.

Numéro CAS: 55965-84-9
Formule moléculaire: C4H5NOS. C4H4ClNOS
Poids moléculaire: 264.756
Numéro EINECS : 911-418-6

ACRONAL TS 790 est principalement contenu dans les fluides de travail des métaux.
En tant que composant actif d'Aigezid II. et contenu dans un bain-marie utilisé pour le développement phtotographique, il a provoqué une dermatite de contact chez un révélateur de photographie.

ACRONAL TS 790 est un mélange de biocides dérivés de l'isothiazolinone.
ACRONAL TS 790 est efficace contre les valeurs bactériennes à Gram positif et à Gram négatif de 0,0002, 0,0002, 0,00005 et 0,00005% (p / p).
ACRONAL TS 790 peut susciter une sensibilisation par contact.

Des formulations contenant ACRONAL TS 790 ont été utilisées pour contrôler la croissance microbienne dans les produits industriels et ménagers.
ACRONAL TS 790, est une combinaison de deux conservateurs synthétiques utilisés dans divers produits de soins personnels, ménagers et industriels.
Ces conservateurs sont des agents antimicrobiens qui aident à prévenir la croissance de bactéries, de champignons et d'autres micro-organismes dans les produits, prolongeant ainsi leur durée de conservation et maintenant leur qualité.

La combinaison d'ACRONAL TS 790T crée un effet synergique, améliorant l'activité antimicrobienne globale du mélange.
En combinant deux agents antimicrobiens différents, le conservateur peut cibler un plus large éventail de micro-organismes, offrant une protection plus complète.
Niveaux et concentrations d'utilisation de l'ACRONAL TS 790; les concentrations d'ACRONAL TS 790 dans les produits peuvent varier en fonction de l'utilisation prévue, du type de produit et des directives réglementaires.

Les fabricants d'ACRONAL TS 790 suivent les niveaux d'utilisation recommandés pour assurer une conservation efficace tout en minimisant le risque d'effets indésirables.
ACRONAL TS 790 aide à maintenir la stabilité et la qualité des produits en empêchant la croissance de micro-organismes qui pourraient dégrader les composants du produit.
Des cas de dermatite de contact allergique associée à des produits contenant ACRONAL TS 790 ont été rapportés.

Cela a conduit à des mesures réglementaires et à un examen accru de leur utilisation.
En réponse à des préoccupations, certains fabricants ont reformulé leurs produits afin de réduire ou d'éliminer l'utilisation de l'ACRONAL TS 790.
Dans les régions où ACRONAL TS 790 est conforme à ACRONAL TS 790ted, la réglementation exige souvent que les produits contenant ces agents de conservation soient correctement étiquetés pour informer les consommateurs et permettre aux personnes sensibles de faire des choix éclairés.

Les fabricants effectuent des tests d'efficacité des agents de conservation pour s'assurer que la concentration choisie d'ACRONAL TS 790 empêche efficacement la croissance microbienne pendant la durée de conservation du produit.
Le débat sur le potentiel de sécurité et de sensibilisation de l'ACRONAL TS 790 a incité l'industrie des cosmétiques et des soins personnels à explorer des conservateurs alternatifs qui présentent moins de risques de réactions allergiques.
Les conservateurs naturels, les antioxydants et d'autres alternatives synthétiques sont à l'étude comme substituts potentiels.

ACRONAL TS 790 et MI sont des composés chimiques couramment utilisés comme conservateurs dans divers produits de soins personnels et ménagers.
Ils font partie d'un groupe de produits chimiques connus sous le nom d'isothiazolinones, qui sont utilisés pour prolonger la durée de conservation des produits en empêchant la croissance de bactéries, de levures et de moisissures.

ACRONAL TS 790 a des propriétés antimicrobiennes et est souvent utilisé comme agent de conservation dans des produits tels que les shampooings, les revitalisants, les savons liquides et autres articles cosmétiques et de soins personnels à base d'eau.
ACRONAL TS 790 aide à prévenir la croissance de micro-organismes qui peuvent entraîner la détérioration ou la contamination du produit.

ACRONAL TS 790 est un autre composé isothiazolinone couramment utilisé comme agent de conservation.
ACRONAL TS 790 est étroitement lié à l'IM et possède des propriétés antimicrobiennes similaires.
ACRONAL TS 790 est utilisé dans une large gamme de produits, y compris les cosmétiques, les produits de soin de la peau, les détergents, les peintures et les produits industriels.

ACRONAL TS 790 et MI ont été associés à des problèmes de santé potentiels, en particulier en termes de sensibilisation cutanée et de réactions allergiques.
Certaines personnes peuvent développer une dermatite de contact allergique lors de l'exposition à des produits contenant ces composés.

En raison des problèmes de santé observés, les organismes de réglementation de divers pays ont pris des mesures pour réglementer l'utilisation d'ACRONAL TS 790 et MI dans les produits de consommation.
Dans l'Union européenne, par exemple, certaines concentrations d'ACRONAL TS 790 et de MI sont limitées dans les produits cosmétiques sans rinçage, qui sont des produits destinés à rester sur la peau après l'application, tels que les lotions et les crèmes.
Ce règlement est en réponse aux cas signalés de sensibilisation cutanée.

Dans de nombreux pays, les produits contenant ACRONAL TS 790 ou MI doivent être étiquetés de manière appropriée pour informer les consommateurs de leur présence.
Cela permet aux personnes ayant des sensibilités ou des allergies connues d'éviter les produits contenant ces composés.
Compte tenu des risques potentiels de sensibilisation cutanée associés aux ACRONAL TS 790 et MI, de nombreux fabricants ont commencé à reformuler leurs produits pour utiliser des conservateurs alternatifs.

Forme : liquide, dispersion
Couleur: blanc
Odeur : presque inodore
Valeur du pH: 7,5 - 9,0 (23 °C)
Informations sur: Eau
Point de fusion : 0 °C
Informations sur: Eau
Point d'ébullition : 100 °C
Point d'éclair : sans objet
Inflammabilité : inflammable
LiACRONAL TS 790 à explosion inférieure: Pour les liquides non pertinents pour la classification et l'étiquetage.
Informations sur: Eau
Pression de vapeur: 23,4 hPa (20 °C)
Densité: env. 1,0 g/cm3 (20 °C)
Solubilité dans l'eau : partiellement soluble (15 °C)
Densité (dispersion) : env. 1,04 g/cm³
Densité (polymère sec) : env. 1,08 g/cm³

ACRONAL TS 790 agit en perturbant les membranes cellulaires des micro-organismes, ce qui entraîne des fuites cellulaires et la mort.
Ce mode d'action inhibe la croissance et la reproduction des bactéries et des champignons.
ACRONAL TS 790 est une combinaison de conservateurs antimicrobiens largement utilisée dans les produits de soins personnels, ménagers et industriels.

ACRONAL TS 790 aide à prévenir la contamination microbienne, prolongeant la durée de conservation et maintenant la qualité de diverses formulations.
ACRONAL TS 790 agit à la fois comme agent microbiostatique (inhibant la croissance microbienne) et agent microbicide (tuant les micro-organismes existants).
Cette double action permet de maintenir l'intégrité des produits.

Bien que l'ACRONAL TS 790 prévienne efficacement la croissance microbienne, son utilisation peut être difficile en raison du risque de réactions allergiques chez certaines personnes.
L'industrie a subi des pressions pour trouver des solutions de rechange qui maintiennent les avantages de la protection microbienne sans causer de problèmes de sensibilisation.
Les fabricants utilisent parfois ACRONAL TS 790 en combinaison avec d'autres agents de conservation pour obtenir un spectre plus large d'activité antimicrobienne et réduire la concentration de chaque agent de conservation.

La compatibilité de l'ACRONAL TS 790 avec d'autres ingrédients dans les formulations de produits est importante pour maintenir la stabilité et l'efficacité globales du produit final.
Les autorités réglementaires ont introduit des restrictions et des directives pour l'utilisation de l'ACRONAL TS 790 en raison des cas signalés de dermatite de contact allergique.
Dans certains cas, certaines catégories de produits ou concentrations d'ACRONAL TS 790 ont été interdites ou liACRONAL TS 790ed.

Les tests épicutanés sont utilisés pour déterminer la sensibilité ou l'allergie d'une personne à ACRONAL TS 790, aidant à identifier les risques potentiels d'effets indésirables.
La sensibilisation des consommateurs à la présence de l'ACRONAL TS 790 dans les produits et à l'importance des tests épicutanés peut permettre aux individus de faire des choix éclairés.
Certaines populations, comme les nourrissons, les enfants et les personnes ayant la peau sensible ou fragilisée, peuvent être plus sensibles aux réactions causées par les produits contenant ACRONAL TS 790.

Le potentiel de sensibilisation à l'ACRONAL TS 790 peut être influencé par des facteurs tels que la concentration dans le produit, la fréquence d'exposition, la sensibilité cutanée individuelle et la présence d'autres allergènes.
Les dermatologues et les allergologues utilisent des tests épicutanés pour identifier la sensibilisation à des allergènes spécifiques, y compris ACRONAL TS 790.
Cela aide les individus à faire des choix éclairés sur l'utilisation du produit.

Certaines personnes sujettes à la sensibilisation peuvent suivre une stratégie de rotation des agents de conservation, en utilisant des produits contenant différents agents de conservation pour minimiser le risque de développer des allergies.
L'utilisation d'ACRONAL TS 790 dans les produits destinés aux enfants a soulevé des préoccupations en raison du potentiel de sensibilisation chez les peaux jeunes et sensibles.
Les règlements et les lignes directrices peuvent varier pour ces produits.

Utilise
ACRONAL TS 790 utilisé dans les conservateurs antimicrobiens dans les cosmétiques, les produits d'hygiène, les peintures, les émulsions, les huiles de coupe, les revêtements de papier et les unités de stockage et de refroidissement de l'eau.
ACRONAL TS 790 est un composé chimique utilisé comme conservateur dans divers produits.
ACRONAL TS 790 a une activité antimicrobienne à large spectre contre les bactéries et les champignons.

Les ACRONAL TS 790 sont particulièrement efficaces dans les produits à base d'eau, où la présence d'eau peut créer un environnement propice à la croissance microbienne.
ACRONAL TS 790 et MI peuvent être utilisés dans le traitement de l'eau pour inhiber la croissance de micro-organismes dans les systèmes d'eau, tels que les tours de refroidissement et les approvisionnements en eau industriels.
ACRONAL TS 790 est utilisé dans certains traitements textiles et tissus pour empêcher la croissance de micro-organismes pouvant causer des odeurs ou une dégradation.

ACRONAL TS 790 se trouve couramment dans les produits de soins personnels tels que les shampooings, les revitalisants, les nettoyants pour le corps, les lotions, les crèmes et les cosmétiques.
Il empêche la croissance des bactéries, des levures et des champignons, aidant à maintenir l'hygiène et la qualité des produits.
ACRONAL TS 790 est utilisé dans les produits d'entretien ménager comme les détergents, les assouplisseurs, les désinfectants et les nettoyants de surface pour inhiber la croissance microbienne et maintenir l'efficacité du produit.

ACRONAL TS 790 est utilisé dans les formulations industrielles, y compris les peintures, les adhésifs et les revêtements, pour prévenir la dégradation causée par les micro-organismes.
ACRONAL TS 790 utilisé dans les produits à base d'eau où la contamination microbienne est une préoccupation, tels que les savons liquides, les nettoyants pour le corps et les shampooings.
ACRONAL TS 790 est inclus dans les lingettes humides pour assurer leur fraîcheur et leur sécurité microbienne.

ACRONAL TS 790 et MI peuvent être trouvés dans certains produits de soins pour animaux de compagnie, tels que les shampooings et les fournitures de toilettage, pour préserver leur qualité et leur sécurité.
Certains produits automobiles, y compris les solutions de lavage de voiture et les nettoyants intérieurs, peuvent contenir ACRONAL TS 790 et MI pour prévenir la croissance microbienne et maintenir l'efficacité du produit.
Dans certains cas, ACRONAL TS 790 et MI sont utilisés dans des milieux médicaux et de soins de santé où le contrôle microbien est essentiel.

Ils peuvent être présents dans certains types de désinfectants, de nettoyants pour dispositifs médicaux et de désinfectants pour les mains.
ACRONAL TS 790 et MI sont parfois utilisés dans les produits chimiques photographiques pour prévenir la contamination microbienne et maintenir la stabilité de ces produits.
Dans les procédés industriels tels que le travail des métaux, ACRONAL TS 790 et MI peuvent être ajoutés aux fluides de coupe et aux liquides de refroidissement pour inhiber la croissance de micro-organismes susceptibles d'affecter les opérations d'usinage.

ACRONAL TS 790 et MI peuvent être trouvés dans les lingettes nettoyantes et les serviettes destinées à désinfecter et désinfecter les surfaces.
Les lingettes humides dans diverses applications, y compris les soins personnels et le nettoyage, peuvent contenir ACRONAL TS 790 et MI pour empêcher la croissance bactérienne et fongique dans l'environnement humide.
ACRONAL TS 790 et MI sont utilisés dans certaines peintures et revêtements à base d'eau pour prévenir la détérioration et maintenir la qualité du produit.

ACRONAL TS 790 utilisé dans les cosmétiques tels que les démaquillants, les nettoyants pour le visage et les hydratants pour maintenir la stabilité et la qualité du produit.
ACRONAL TS 790 aide à prévenir la croissance de micro-organismes dans les produits de soins capillaires comme les revitalisants et les produits coiffants.
Dans divers produits industriels, tels que les fluides de coupe et les fluides de travail des métaux, ACRONAL TS 790 inhibe la croissance microbienne, contribuant ainsi au maintien des performances du produit.

ACRONAL TS 790 peut être trouvé dans les détergents à lessive pour empêcher la croissance de bactéries et de champignons responsables des odeurs dans les tissus.
ACRONAL TS 790 utilisé dans les produits de nettoyage automobile et industriel pour s'assurer qu'ils restent exempts de contamination microbienne.
ACRONAL TS 790 est utilisé dans les adhésifs et les produits d'étanchéité pour empêcher la croissance microbienne qui pourrait compromettre l'intégrité des produits.

ACRONAL TS 790 utilisé dans certains produits de papier pour empêcher la croissance de moisissures et d'autres micro-organismes.
ACRONAL TS 790 est un autre composé antimicrobien qui est souvent utilisé en combinaison avec ACRONAL TS 790T.
Il offre une protection antimicrobienne supplémentaire contre un large éventail de micro-organismes.

ACRONAL TS 790 se trouve couramment dans une variété de produits de soins personnels, y compris les shampooings, les revitalisants, les nettoyants pour le corps, les lotions, les crèmes et les cosmétiques.
Sa présence aide à prévenir la croissance de micro-organismes dans ces produits, réduisant ainsi le risque de contamination.

ACRONAL TS 790 est utilisé dans les produits ménagers tels que les détergents, les assouplissants et les solutions de nettoyage pour maintenir la qualité et la sécurité des produits en inhibant la croissance microbienne.
ACRONAL TS 790 est également utilisé dans les milieux industriels, où il empêche la prolifération de micro-organismes dans diverses formulations, y compris les peintures, les adhésifs et les nettoyants industriels.

Considérations environnementales
Comme d'autres produits chimiques synthétiques, ACRONAL TS 790 a soulevé des préoccupations quant à son impact environnemental lorsqu'il est rejeté dans l'environnement, par exemple par les eaux usées.
Les efforts de l'industrie sont orientés vers le développement de conservateurs et de pratiques durables plus respectueux de l'environnement.

Sécurité
L'un des dangers les plus importants de l'ACRONAL TS 790 et de l'IM est leur potentiel de sensibilisation cutanée.
La sensibilisation cutanée est une réaction allergique qui se produit lorsque le système immunitaire est sensibilisé à une substance spécifique, entraînant le développement d'une réaction allergique lors d'une exposition ultérieure.
Les personnes sensibilisées à ACRONAL TS 790 et MI peuvent développer une dermatite de contact, qui se manifeste par des rougeurs, des démangeaisons, des éruptions cutanées et d'autres irritations cutanées.

Réactions allergiques
Les personnes sensibilisées à l'ACRONAL TS 790 et à l'IM peuvent présenter des réactions allergiques lors de l'exposition, même à de faibles concentrations.
Les réactions allergiques peuvent varier en gravité et peuvent entraîner de l'inconfort, de la douleur et une diminution de la qualité de vie des personnes touchées.

Synonymes
55965-84-9
ACRONAL TS 790
Biocide de Kathon
Kathon CG
Bio-Perge
Kathon LX
Kathon WT
Zonen F
ProClin 300
Microcide III
Somacide RS
Légende MK
ACRONAL TS 790MW
Kathon CG/PCI II
Slaoff 360
ACRONAL TS 790 W
Kathon RH 886
MBC 215
Tret-O-Lite XC 215
2-méthylisothiazol-3(2H)-un composé avec 5-chloro-2-méthylisothiazol-3(2H)-one (14% dans H2O)
CCRIS 4652
KKM 43
Chlorure d'isothiazolinone
Code chimique des pesticides de l'EPA 107103
5-chloro-2-méthyl-1,2-thiazol-3-one;2-méthyl-1,2-thiazol-3-one
Mélange de 5-chloro-2-méthyl-3(2H)-isothiazolone. avec 2-méthyl-3(2H)-isothiazolone
2-méthylisothiazol-3(2H)-un composé avec 5-chloro-2-méthylisothiazol-3(2H)-one (1:1)
5-chloro-2-méthylisothiazolone, 3(2H)-isothiazolone, mélange. avec 2-méthyl-3(2H)-isothiazolone
5-chloro-2-méthylisothiazolone, 3(2H)-isothiazolone, mélange. avec2-méthyl-3(2H)-isothiazoloneAUTRES NOMS D'INDEX CA:3(2H)-Isothiazolone, 2-méthyl-, mélange. suite.
C8H9ClN2O2S2
2-Méthylisothiazol-3(2H)-one 5-chloro-2-méthylisothiazol-3(2H)-one (1:1)
C4H5NOS. C4H4ClNOS
SCHEMBL348332
UNII-15O9QS218W
CHEMBL108095
ACRONAL TS 790 (biocide Kathon)
C(M)IT/ACRONAL TS 790 (3:1)
QYYMDNHUJFIDDQ-UHFFFAOYSA-N
15O9QS218W
AKOS016842708
CS-W018768
70294-89-2
CS-17384
LS-86321
PD151064
C4-H5-N-O-S. C4-H4-Cl-N-O-S
N° Q26841195
2-Méthylisothiazol-3(2H)-one 5-chloro-2-méthylisothiazol-3(2H)-one
2-Méthylisothiazol-3(2H)-one 5-chloro-2-méthylisothiazol-3(2H)-one (1:1) 14 % dans l'eau
2-méthylisothiazol-3(2H)-one composé avec 5-chloro-2-méthylisothiazol-3(2H)-one
2-méthylisothiazol-3(2H)-un composé avec 5-chloro-2-méthylisothiazol-3(2H)-one(14%inH2O)
2-MÉTHYLISOTHIAZOL-3(2H)-UN COMPOSÉ AVEC 5-CHLORO-2-MÉTHYLISOTHIAZOL-3(2H)-ONE (14% DANS H2O)
ACRONAL V 275
ACRONAL V 275 ACRONAL V 275 ACRONAL V 275 is a high solids acrylic binder used in flooring adhesives and specialty sealants. ACRONAL V 275 is ammonia-free and offers high cohesive strength, good plasticizer resistance, and filler acceptance. Acronal V 275 Technical Datasheet Acronal V 275 is an acrylic/vinyl acetate copolymer emulsion. Used in adhesives for laying PVC floor coverings & carpets with many different backings and specialty sealants. Acronal V 275 na offers high tack, good quick grab, heat stability, good plasticizer migration resistance and good filler acceptance. Product Type Acrylics & Acrylic Copolymers Physical Form Emulsion Product Status COMMERCIAL Acronal V 275 na is a high solids acrylic used in flooring adhesives and specialty sealants. It offers high cohesive strength, good plasticizer resistance, and filler acceptance. This product is ammonia free. Technical Information Construction Chemicals Acronal V 275 Aqueous polymer dispersion for the manufacture of adhesives & sealants for theConstruction industry. Acronal 81 D is an acrylic dispersion. Used in elastic sealants as gap fillers. Acronal® 81 D improves the coherence of expandable foams.
ACRYLAMIDE
SYNONYMS 2-Propenamide, polymer with N,N,N-trimethyl-3-(2-propenamido)propanaminium chloride;1-Propanaminium, N,N,N-trimethyl-3-((1-oxo-2-propen-1-yl)amino)-, chloride (1:1), polymer with 2-propenamide;1-Propanaminium, N,N,N-trimethyl-3-((1-oxo-2-propenyl)amino)-, chloride, polymer with 2-propenamide CAS NO:75150-29-7
ACRYLAMIDOPROPYLTRIMONIUM CHLORIDE/ACRYLAMIDE
acrylamide; Acrylic amide; Ethylene Carboxamide; 2-Propenamide; Propenoic acid, amide; Vinyl Amide; cas no: 79-06-1
ACRYLAMİDE (2-PROPENAMİDE)
L'acrylamide (2-propénamide), sous forme monomère, est un cristal inodore ressemblant à des flocons qui se subliment lentement à température ambiante.
L'acrylamide (2-propénamide) peut être dissous dans un liquide inflammable.
Le 2-propénamide, également connu sous le nom d'acrylamide, est un produit chimique industriel et peut également se former à partir de composants naturels de certains aliments lorsqu'ils sont cuits à haute température.

Numéro CAS: 79-06-1
Formule moléculaire: C3H5NO
Poids moléculaire: 71.08
Numéro EINECS : 201-173-7

L'acrylamide (2-propénamide) est un composé organique de formule chimique CH2=CHC(O)NH2.
L'acrylamide (2-propénamide) est un solide blanc inodore, soluble dans l'eau et plusieurs solvants organiques.
Du point de vue de la chimie, l'acrylamide (2-propénamide) est un amide primaire substitué par vinyle (CONH2).

L'acrylamide (2-propénamide) est produit industriellement principalement comme précurseur des polyacrylamides, qui trouvent de nombreuses utilisations comme épaississants solubles dans l'eau et agents de floculation.
L'acrylamide (2-propénamide) se forme dans les zones brûlées des aliments, en particulier les féculents comme les pommes de terre, lorsqu'ils sont cuits à haute température, au-dessus de 120 ° C (248 ° F).
Malgré les craintes pour la santé qui ont suivi sa découverte en 2002, on pense que l'acrylamide alimentaire est peu susceptible d'être cancérogène pour l'homme; Cancer Research UK a classé l'idée que les aliments brûlés causent le cancer comme un « mythe ».

L'acrylamide, également connu sous le nom de 2-propénamide ou amide acrylique, est une substance chimique qui joue un rôle dans la fabrication du polyacrylamide, qui à son tour est utilisé dans les encres, dans les floculants pour le traitement de l'eau, dans la production de ciment et la production de plastiques.
L'acrylamide (2-propénamide) est un composé chimique de formule brute C3H5NO.
C'est un solide cristallin incolore, inodore et hautement soluble dans l'eau.

L'acrylamide (2-propénamide) est un composé organique qui contient un groupe vinyle (CH2=CH-) et un groupe amide (CONH2) dans sa structure chimique.
L'acrylamide (2-propénamide) est une substance chimique cristalline blanche et une matière première pour la production de polyacrylamide.
L'acrylamide solide (2-propénamide) est généralement des cristaux floconneux incolores et transparents, le produit pur étant un solide cristallin blanc soluble dans l'eau, le méthanol, l'éthanol, le propanol et légèrement soluble dans l'acétate d'éthyle, le chloroforme et le benzène.

L'acrylamide (2-propénamide) peut être hydrolysé en acide acrylique dans un environnement acide ou alcalin.
L'acrylamide (2-propénamide) est une grande classe du composé parent des monomères, y compris le méthacrylamide, l'AMPS (monomère anionique, acide 2-acraylamide-2-méthyl propanesulfonique), le DMC (monomère cationique, chlorure de méthyl-acryloyloxyéthyl triméthylammonium) et le composé d'acrylamide N-substitué.

L'exposition professionnelle est principalement observée dans la production d'acrylamide et la synthèse de résines, d'adhésifs, etc.
L'acrylamide (2-propénamide) est également possible pour la construction souterraine, l'amélioration du sol, la peinture, l'industrie du papier et le traitement des vêtements.
Dans la vie quotidienne, les gens peuvent toucher l'acrylamide (2-propénamide) en fumant, en buvant et en mangeant les féculents transformés à haute température.

L'acrylamide (2-propénamide) est un solide cristallin blanc inodore qui a été initialement produit à des fins commerciales par réaction de l'acrylonitrile avec de l'acide sulfurique hydraté.
L'acrylamide (2-propénamide) existe sous deux formes : un monomère et un polymère.
Le monomère acrylamide (2-propénamide) participe facilement aux réactions de polymérisation initiées par radicalisation, dont les produits constituent la base de la plupart de ses applications industrielles.

La forme unitaire unique de l'acrylamide (2-propénamide) est toxique pour le système nerveux, cancérogène chez les animaux de laboratoire et cancérogène présumé chez l'homme.
L'unité multiple ou la forme polymérique n'est pas connue pour être toxique.
L'acrylamide (2-propénamide) est formé comme sous-produit de la réaction de Maillard.

La réaction de Maillard est surtout connue comme une réaction qui produit une saveur, un goût et une couleur dorée agréables dans les aliments frits et cuits au four; La réaction se produit entre les amines et les composés carbonyles, en particulier les sucres réducteurs et l'acide aminé asparagine.
Dans la première étape de la réaction, l'asparagine réagit avec un sucre réducteur, formant une base de Schiff.
L'acrylamide (2-propénamide) est formé à la suite d'une voie de réaction complexe qui comprend la décarboxylation et une réaction d'élimination en plusieurs étapes.

La formation d'acrylamide (2-propénamide) dans les produits de boulangerie, étudiée dans un système modèle, a montré que l'asparagine libre était un facteur limitant.
Le traitement des farines avec de l'asparaginase a pratiquement empêché la formation d'acrylamide.
La consommation et le tabagisme du café sont d'autres sources importantes en dehors de l'alimentation humaine.

L'acrylamide (2-propénamide) est un cristal inodore et incolore.
L'acrylamide (2-propénamide) est soluble dans l'eau, l'éthanol, l'acétone, l'éther et le méthylchloroforme, et légèrement soluble dans le toluène mais insoluble dans le benzène.
L'acrylamide (2-propénamide) est un monomère soluble dans l'eau avec deux centres réactifs (un groupe vinyle - avec sa double liaison réactive, et un groupe amide).

En raison de sa grande réactivité, l'acrylamide aqueux (2-propénamide) est stabilisé avec des sels cuivriques dissous et de l'oxygène pour empêcher la polymérisation pendant le transport et le stockage.
L'acrylamide (2-propénamide) peut se former dans certains aliments pendant les processus de cuisson qui impliquent des températures élevées, en particulier lorsque la réaction de Maillard se produit.
La réaction de Maillard est une réaction chimique complexe entre les acides aminés et les sucres réducteurs, et elle est responsable du brunissement et du développement des arômes dans divers aliments cuits.

L'acrylamide (2-propénamide) est l'un des sous-produits de cette réaction.
Les frites, les croustilles et les pommes de terre rôties sont connues pour contenir des niveaux relativement élevés d'acrylamide (2-propénamide), surtout si elles sont cuites à une texture brun foncé ou croustillante.
Les aliments à base de céréales, comme les céréales pour petit-déjeuner, le pain et les biscuits, peuvent également contenir de l'acrylamide (2-propénamide) lorsqu'ils sont cuits au four ou grillés.

Les grains de café torréfiés peuvent contenir de l'acrylamide (2-propénamide), bien que les niveaux soient généralement inférieurs à ceux de certains autres aliments.
Différents types de grignotines, y compris les craquelins et les bretzels, peuvent contenir de l'acrylamide (2-propénamide).
Les producteurs et les transformateurs d'aliments ont mis en œuvre diverses stratégies pour réduire les niveaux d'acrylamide (2-propénamide) dans leurs produits.

La modification du type d'ingrédients utilisés dans les formulations alimentaires, comme l'utilisation de variétés à faible teneur en sucre ou de pommes de terre blanchies, peut aider à réduire la formation d'acrylamide (2-propénamide) pendant la cuisson.
L'ajustement des paramètres de cuisson tels que la température, le temps et les méthodes de cuisson peut minimiser la formation d'acrylamide (2-propénamide).
Par exemple, l'utilisation de températures de friture plus basses ou de temps de cuisson plus courts peut aider à réduire les niveaux d'acrylamide (2-propénamide).

Certains aliments subissent des étapes de prétraitement comme le trempage, le blanchiment ou l'étuvage avant l'étape de cuisson finale pour réduire la formation d'acrylamide (2-propénamide).
Certaines enzymes peuvent être ajoutées aux produits alimentaires pour décomposer les précurseurs de l'acrylamide (2-propénamide), réduisant ainsi sa formation pendant la cuisson.
L'emballage et le stockage appropriés des aliments peuvent également jouer un rôle dans la réduction de l'acrylamide (2-propénamide).

Par exemple, stocker les pommes de terre dans un endroit frais et sombre peut aider à prévenir la formation de germes, qui contiennent des niveaux plus élevés de précurseurs d'acrylamide.
Différents pays et régions ont établi des normes et des directives réglementaires relatives à l'acrylamide (2-propénamide) dans les aliments.
Ces normes comprennent souvent des niveaux maximaux admissibles d'acrylamide (2-propénamide) dans des produits alimentaires spécifiques.

L'acrylamide (2-propénamide) et ses implications potentielles sur la santé ont augmenté au fil des ans.
Les organismes de santé publique fournissent souvent de l'information aux consommateurs sur la façon de faire des choix éclairés au sujet de leur régime alimentaire.
Cela comprend la compréhension des aliments les plus susceptibles de contenir de l'acrylamide (2-propénamide) et la façon de minimiser l'exposition par la cuisson et les choix alimentaires.

La recherche sur l'acrylamide (2-propénamide) continue d'évoluer, avec des études en cours visant à mieux comprendre ses effets sur la santé et comment réduire sa présence dans les aliments.
Les scientifiques étudient les risques potentiels pour la santé associés à une exposition alimentaire à long terme et à faible niveau à l'acrylamide (2-propénamide), et les résultats de la recherche pourraient conduire à des ajustements des normes réglementaires et des recommandations alimentaires.

Point de fusion : 82-86 °C (lit.)
Point d'ébullition : 125 °C25 mm Hg(lit.)
Densité: 1,322 g/cm3
Densité de vapeur: 2.45 (vs air)
pression de vapeur: 0,03 mm Hg (40 °C)
Indice de réfraction: 1.460
Point d'éclair: 138 °C
température de stockage: 2-8 °C
solubilité : 2040 g/L (25°C)
Forme: Poudre
pka: 15.35±0.50 (prédit)
couleur: Blanc
Odeur: Solide inodore
PH: 5.0-7.0 (50g / l, H2O, 20 ° C)
Solubilité dans l'eau: L'acrylamide est régulièrement testé à 250 mg / mL dans l'eau, donnant une solution incolore claire, Il est soluble au moins à 40% (p / v) dans l'eau, et apparemment jusqu'à 215 g / 100 mL dans l'eau à 30 ° C.
Sensible : Sensible à la lumière
Merck : 14 129
BRN : 605349
Stabilité: Instable. Ne pas chauffer au-dessus de 50C, Explosif, Incompatible avec les acides, bases, agents oxydants, agents réducteurs, fer et sels de fer, cuivre, aluminium, laiton, initiateurs de radicaux libres, Air sensible, Hygroscopique.
InChIKey: HRPVXLWXLXDGHG-UHFFFAOYSA-N
Norme sur l'eau potable primaire de l'EPA MCL: TT4, MCLG: zéro
LogP : -0,9 à 20°C et pH7

L'acrylamide (2-propénamide) a été découvert dans les aliments, principalement dans les féculents, tels que les croustilles (Royaume-Uni: chips), les frites (Royaume-Uni: chips) et le pain chauffé à plus de 120 ° C (248 ° F).
Il a été démontré que la production d'acrylamide (2-propénamide) dans le processus de chauffage dépendait de la température.
L'acrylamide (2-propénamide) n'a pas été trouvé dans les aliments bouillis ou dans les aliments qui n'ont pas été chauffés.

L'acrylamide (2-propénamide) a été trouvé dans le thé d'orge torréfié, appelé mugicha en japonais.
L'orge est rôtie de sorte qu'elle est brun foncé avant d'être trempée dans de l'eau chaude.
Le processus de torréfaction a produit 200 à 600 microgrammes / kg d'acrylamide dans le mugicha.

C'est moins que les >1000 microgrammes / kg trouvés dans les chips de pommes de terre et autres collations de pommes de terre entières frites citées dans la même étude et on ne sait pas combien de cela est ingéré après la préparation de la boisson.
Les niveaux de craquelins de riz et de patates douces étaient inférieurs à ceux des pommes de terre.
On a constaté que les pommes de terre cuites entières avaient des niveaux d'acrylamide (2-propénamide) significativement plus faibles que les autres, ce qui suggère un lien entre la méthode de préparation des aliments et les niveaux d'acrylamide.

Les niveaux d'acrylamide (2-propénamide) semblent augmenter à mesure que les aliments sont chauffés pendant de plus longues périodes.
Bien que les chercheurs ne soient toujours pas sûrs des mécanismes précis par lesquels l'acrylamide (2-propénamide) se forme dans les aliments, beaucoup pensent qu'il s'agit d'un sous-produit de la réaction de Maillard.
Dans les produits frits ou de boulangerie, l'acrylamide peut être produit par la réaction entre l'asparagine et les sucres réducteurs (fructose, glucose, etc.) ou les carbonyles réactifs à des températures supérieures à 120 ° C (248 ° F).

L'acrylamide (2-propénamide) peut se décomposer avec la chaleur et polymériser à des températures supérieures à 84 ° C, ou l'exposition à la lumière, libérant de l'ammoniac gazeux.
Réagit violemment avec les oxydants forts (chlorates, nitrates, peroxydes, permanganates, perchlorates, chlore, brome, fluor, etc.); Le contact peut provoquer des incendies ou des explosions.
Tenir à l'écart des matières alcalines, des bases fortes, des acides forts, des oxoacides, des époxydes.

Synthèse
À la fin du 19ème siècle, les gens avaient d'abord fabriqué de l'acrylamide (2-propénamide) en utilisant du chlorure de propylène et de l'ammoniac.
En 1954, American Cyanamid Company utilise l'hydrolyse de l'acide sulfurique de l'acrylonitrile pour la production industrielle.
En 1972, Mitsui Toatsu Chemicals, Inc. avait d'abord établi la synthèse de cuivre squelette (voir le catalyseur métallique) catalysée par l'acrylamide (2-propénamide) par hydratation de l'acrylonitrile.

Ensuite, d'autres pays ont développé différents types de catalyseurs et appliqué cette technologie à la production industrielle.
Dans les années 1980, la société japonaise Nitto Chemical Industry Company y est parvenue en utilisant un catalyseur biologique pour la production industrielle d'acrylamide (2-propénamide) à partir d'acrylonitrile.

L'acrylonitrile et l'eau sont hydrolysés en sulfate d'acrylamide (2-propénamide) en présence d'acide sulfurique, puis traités à l'ammoniac liquide neutralisé pour donner du sulfate d'ammonium et de l'acrylamide :
CH2 = CHCN + H2O + H2SO4 → CH2 = CHCONH2 • H2SO4 CH2 = CHCONH2 • H2SO4 + 2NH3→ CH2 = CHCONH2 + (NH4) 2SO4
L'inconvénient de cette méthode est de produire un grand nombre de sulfate d'ammonium de faible valeur et de faible efficacité fertilisante et de provoquer une corrosion et une pollution graves à l'acide sulfurique.

L'acrylonitrile est mis à réagir avec l'eau par le catalyseur à base de cuivre pour avoir une réaction d'hydratation en phase liquide à 70 ~ 120 ° C à une pression de 0,4 MPa.
CH2 = CH-CN + H2O → CH2 = CHCONH2; Filtrer le catalyseur après le catalyseur de réaction; recycler l'acrylonitrile n'ayant pas réagi; La solution d'acrylamide (2-propénamide) a été concentrée et refroidie pour donner des cristaux.
Il s'agit d'une méthode simple avec un rendement allant jusqu'à 98%.

Méthodes de production
Hydratation au sulfate d'acrylonitrile; L'acrylonitrile et l'eau sont hydrolysés en sulfate d'acrylamide en présence d'acide sulfurique, puis traités à l'ammoniac liquide neutralisé pour donner du sulfate d'ammonium et de l'acrylamide (2-propénamide): Les produits de réaction subissent ensuite une filtration et une séparation.
Cristalliser le filtrat, sécher pour obtenir le produit final.

L'inconvénient de cette méthode est de produire un grand nombre de sulfate d'ammonium de faible valeur et de faible efficacité fertilisante et de provoquer une corrosion et une pollution graves à l'acide sulfurique.
Cette méthode permet de produire des sous-produits de 2280 kg de sulfate d'ammonium par tonne d'acrylonitrile.
Quantité de matière consommée: Acrylonitrile (100%) 980kg / t, acide sulfurique (100%) 200kg / t, ammoniac (100%) 700kg / t.

Hydratation directe de l'acrylonitrile: l'acrylonitrile est directement hydraté par l'eau, le cuivre étant le catalyseur à une pression de 85 à 125 ° C et de 0,3 à 0,4 MPa.
La solution aqueuse d'acrylamide (2-propénamide) (ne contenant que de petites quantités de sous-produits) peut être vendue directement comme produit fini.
Cette méthode évite la pollution par la poussière d'acrylamide (2-propénamide) et est avantageuse pour la protection du travail lors de l'utilisation d'une solution aqueuse.

Spécifications du produit de référence : aspect : flocons blancs ou poudre.
Avec un produit de première qualité contenant du contenu ≥95%; contenu de qualité secondaire ≥90 %; teneur en grade III ≥85 %.
Catalyse enzymatique; à température ambiante, transférer la solution d'acrylonitrile dans le réacteur à lit fixe contenant le catalyseur bactérien; après la réaction, 100% de l'acrylonitrile est converti en acrylamide (2-propénamide).

Après isolement et même sans nécessité de raffinage et de concentration.
Méthode d'hydratation à l'acide sulfurique concentré: mélange contenant du sulfate, de la phénothiazine (inhibiteur de polymérisation) et de l'eau est ajouté au réacteur; remuer lentement avec de l'acrylonitrile en goutte Une fois l'addition terminée, augmentez la température à 95 ~ 100 ° C, maintenez la température pendant 50 min.
Refroidir à 20~25 °C, diluer avec une quantité appropriée d'eau, neutraliser avec du carbonate de sodium, filtrat pour obtenir une solution aqueuse d'acide acrylique.

Refroidir et cristalliser, séparer, sécher pour obtenir les produits finis.
Méthode d'hydratation catalytique; l'acrylonitrile et l'eau subissent une hydratation en phase liquide en présence d'un catalyseur à base de cuivre; Il est généralement utilisé pour la production continue avec la température de réaction étant de 85 ~ 120 ° C, la pression de réaction étant de 0,29 ~ 0,39 MPa, la concentration d'alimentation de 6,5%, la vitesse de l'air étant de 5 L / h, le taux de conversion étant de 85%, la sélectivité étant d'environ 95% et la concentration d'acrylamide dans la réaction étant de 7% à 8%.

La solution aqueuse obtenue par ce procédé peut être directement utilisée comme produit destiné à la vente.
L'acrylamide (2-propénamide) peut être préparé par hydratation de l'acrylonitrile, qui est catalysé par voie enzymatique :
CH2=CHCN + H2O → CH2=CHC(O)NH2

Cette réaction est également catalysée par l'acide sulfurique ainsi que divers sels métalliques.
Le traitement de l'acrylonitrile avec de l'acide sulfurique donne du sulfate d'acrylamide, CH=CHC(O)NH2· H2SO4.
Ce sel peut être converti en acrylamide à base ou en acrylate de méthyle avec du méthanol.

Utilise
L'acrylamide (2-propénamide) peut être utilisé comme monomère de polyacrylamide.
Son polymère ou copolymère est utilisé comme matériau d'étanchéité chimique, conditionneurs de sol, floculants, adhésifs et revêtements.
Le polyacrylamide, lorsqu'il est utilisé comme une sorte d'additif, peut améliorer l'efficacité du recyclage de l'huile.

Lorsqu'il est utilisé comme floculant, l'acrylamide (2-propénamide) peut être utilisé pour le traitement des eaux usées.
L'acrylamide (2-propénamide) peut également être utilisé comme agent de résistance du papier.
L'acrylamide (2-propénamide) est le produit le plus important dans les produits à base d'acrylamide et de méthacrylamide.

Depuis son application dans l'industrie en 1954, la demande augmente progressivement.
L'acrylamide (2-propénamide) est principalement utilisé pour la préparation de polymères solubles dans l'eau qui peuvent être utilisés comme additifs pour améliorer la récupération du pétrole; comme floculant, agents épaississants et additifs pour papier.
Une petite quantité d'acrylamide (2-propénamide) est introduite le centre hydrophile dans le polymère lipophile pour améliorer la viscosité, augmenter le point de ramollissement et améliorer la capacité anti-solvants de la résine, et peut également introduire un centre pour la propriété colorante du colorant.

L'acrylamide (2-propénamide) est également souvent utilisé comme composant du photopolymère.
Pour le polymère vinylique, sa réaction de réticulation peut tirer parti de ce type de groupes amides réactifs.
L'acrylamide (2-propénamide) peut copolymériser avec certains monomères tels que l'acétate de vinyle, le styrène, le chlorure de vinyle, le chlorure de vinylidène et l'acrylonitrile pour obtenir un polymère avec une variété d'applications.

Les principaux domaines d'application: utilisés pour le champ pétrolifère; Les matériaux peuvent être utilisés dans l'injection de puits pétrolifères pour ajuster le profil d'injection.
Mélanger ce produit avec l'initiateur et le dégazeur et injecter dans la partie couche à haute perméabilité des puits d'eau.
Cela conduira à la formation de polymères à haute viscosité déterrés de la strate.

Cela peut boucher le gros pore, augmenter le volume d'huile balayé et améliorer la récupération du pétrole.
En outre, le produit polymère ou copolymère peut être utilisé pour la récupération tertiaire du pétrole, la fracturation, l'arrêt de l'eau, le processus de mélange de forage et le coulis chimique.
L'acrylamide (2-propénamide) peut être utilisé comme floculant.

L'acrylamide (2-propénamide) produit partiellement hydrolysé et son copolymère greffé de méthylcellulose peuvent être utilisés dans le traitement des eaux usées et des eaux usées.
Amendement du sol; L'utilisation du produit hydrolysé comme amendement du sol peut agréger le sol et améliorer la circulation de l'air, la perméabilité à l'eau et la rétention d'eau.
Modification du traitement des fibres et des résines; L'utilisation de l'acrylamide pour la carbamylation ou la polymérisation de greffe peut améliorer la disposition de la résine d'une variété de fibres contenant des fibres synthétiques, ainsi que pour la chaîne et la pâte d'impression afin d'améliorer les propriétés physiques de base des tissus ainsi que de prévenir les rides, le rétrécissement et de garder une bonne sensation de main.

L'acrylamide (2-propénamide) peut être utilisé comme exhausteur de papier; Le copolymère d'acrylamide et d'acide acrylique ou les produits d'hydrolyse partielle du polyacrylamide peuvent être utilisés comme agent de renforcement de la résistance du papier pour remplacer ou combiner avec de l'amidon et de la résine aminée soluble dans l'eau.
L'acrylamide (2-propénamide) peut être utilisé comme agent adhésif, y compris l'agent adhésif en fibre de verre avec la combinaison de résine phénolique et de solution de polyacrylamide, ainsi que l'adhésif sensible à la pression combiné avec du caoutchouc synthétique.

L'acrylamide (2-propénamide) est la matière première pour la production de polyacrylamide et de produits connexes.
L'acrylamide (2-propénamide) peut être utilisé comme monomère du polyacrylamide.
Le polymère ou le copolymère d'acrylamide (2-propénamide) peut être utilisé comme matériau d'étanchéité chimique, conditionneur de sol, floculant, adhésif et revêtement.

Le polyacrylamide, en tant qu'additif, peut améliorer la récupération de l'huile. En tant que sorte de floculants, il peut être utilisé pour le traitement des eaux usées ainsi que pour l'amplificateur de résistance du papier.
L'acrylamide (2-propénamide) est la matière première pour la production de polyacrylamide et de produits connexes.
L'acrylamide (2-propénamide) peut également être utilisé pour déterminer le poids moléculaire relatif de l'acide.

La majorité de l'acrylamide (2-propénamide) est utilisée dans la fabrication de divers polymères, qui à leur tour sont utilisés comme agents liants, épaississants ou floculants dans le coulis, le ciment, le traitement des eaux usées et des eaux usées, les formulations de pesticides, les cosmétiques, la fabrication du sucre et la prévention de l'érosion des sols, le traitement du minerai, l'emballage alimentaire, les produits en plastique et dans les applications de laboratoire de biologie moléculaire.
Au Canada, le polyacrylamide est utilisé comme coagulant et floculant pour la clarification de l'eau potable; L'acrylamide (2-propénamide) est également utilisé dans les terreaux et comme ingrédient non médicinal dans les produits de santé naturels et les produits pharmaceutiques.

Plus de 90% de l'acrylamide (2-propénamide) est utilisé pour fabriquer des polyacrylamides (PAM), et les 10% restants sont utilisés pour fabriquer du N-méthylolacrylamide (NMA) et d'autres monomères.
Les PAM de traitement de l'eau ont consommé 60 % de l'acrylamide (2-propénamide); Les PAM destinés à la production de pâtes et papiers consomment 20 % de l'acrylamide; et les PAM pour le traitement des minéraux consomment 10% de l'acrylamide.
Dans la séparation liquide-solide où les polymères acrylamide (2-propénamide) agissent comme floculants et aident au traitement des minéraux, au traitement des déchets et au traitement de l'eau.

Ils contribuent également à réduire les volumes de boues dans ces applications.
Comme additifs dans la fabrication de produits en papier et en carton, industries du cuir et de la peinture.
Dans l'industrie papetière, les acrylamides (2-propénamides) agissent comme agents de rétention pendant le traitement final humide et dans les additifs à résistance humide.

Dans la fabrication de résines synthétiques pour liants pigmentaires pour les industries textile/cuir, et dans la récupération assistée du pétrole.
L'acrylamide (2-propénamide) est utilisé dans l'électrophorèse des protéines (PAGE), la synthèse de colorants et de copolymères pour lentilles de contact.
On peut raisonnablement s'attendre à ce que l'acrylamide (2-propénamide) soit cancérigène.

La majorité de l'acrylamide (2-propénamide) est utilisée pour fabriquer divers polymères, en particulier le polyacrylamide.
Ce polymère soluble dans l'eau, très peu toxique, est largement utilisé comme épaississant et agent floculant.
Ces fonctions sont précieuses dans la purification de l'eau potable, l'inhibition de la corrosion, l'extraction minière et la fabrication du papier.

Les gels d'acrylamide (2-propénamide) sont couramment utilisés en médecine et en biochimie pour la purification et les essais.
L'acrylamide (2-propénamide) est un monomère clé utilisé dans la production de polyacrylamide, un polymère polyvalent aux applications variées.
L'acrylamide (2-propénamide) est utilisé comme floculant dans le traitement des eaux usées pour aider à séparer les solides de l'eau.

L'acrylamide (2-propénamide) est utilisé dans l'industrie papetière comme agent de rétention et de drainage.
L'acrylamide (2-propénamide) est utilisé dans l'industrie pétrolière pour les procédés de RAP afin d'augmenter le rendement de la production de pétrole.
L'acrylamide (2-propénamide) est largement utilisé dans les laboratoires de biologie biochimique et moléculaire pour créer des gels de polyacrylamide pour des techniques telles que l'électrophorèse sur gel.

Ces gels sont utilisés pour séparer et analyser l'ADN, l'ARN et les protéines.
Les coulis à base d'acrylamide (2-propénamide) sont utilisés dans la construction et le génie civil pour stabiliser le sol et combler les vides ou les fissures dans les structures.
Les polymères à base d'acrylamide (2-propénamide) sont utilisés dans le traitement des eaux usées municipales et industrielles pour éliminer les impuretés et les solides.

L'acrylamide (2-propénamide) et ses dérivés sont parfois utilisés dans les cosmétiques et les produits de soins personnels, en particulier les produits de soins capillaires comme les gels capillaires et les laques.
Les polymères à base d'acrylamide (2-propénamide) sont utilisés en agriculture pour améliorer la structure du sol et la rétention d'eau.
Les polymères à base d'acrylamide (2-propénamide) sont utilisés dans l'industrie textile comme agents d'encollage et pour améliorer la qualité des tissus.

L'acrylamide (2-propénamide) est utilisé dans la fabrication d'adhésifs et de produits d'étanchéité pour diverses applications.
Bien qu'il ne s'agisse pas d'une utilisation directe de l'acrylamide (2-propénamide), il convient de noter que l'acrylamide peut se former dans certains aliments lors de processus de cuisson à haute température, tels que la friture et la cuisson, en raison de la réaction de Maillard.
Cependant, il s'agit d'un aspect involontaire et potentiellement indésirable de la préparation des aliments.

L'acrylamide (2-propénamide) et ses dérivés sont également utilisés dans la recherche et le développement pour diverses applications, y compris la science des matériaux et les produits pharmaceutiques.
L'acrylamide (2-propénamide) et son polymère, le polyacrylamide, sont largement utilisés dans les procédés de traitement de l'eau comme floculants.
Ils aident à clarifier l'eau en provoquant l'agrégation et le dépôt d'impuretés et de particules solides, ce qui facilite la séparation de l'eau propre des contaminants.

Cette application est cruciale pour l'épuration de l'eau potable et le traitement des eaux usées industrielles.
L'acrylamide (2-propénamide) est utilisé dans le contrôle de l'érosion du sol pour réduire l'érosion du sol causée par le ruissellement de l'eau.
L'acrylamide (2-propénamide) améliore la structure du sol et l'infiltration d'eau, ce qui le rend particulièrement précieux dans les projets d'agriculture, de construction et de remise en état des terres.

Les polymères à base d'acrylamide (2-propénamide) sont utilisés dans l'industrie du papier et de la pâte à papier pour améliorer les propriétés de rétention et de drainage de la pâte à papier pendant le processus de fabrication du papier.
Cela permet d'améliorer la qualité des produits en papier.
Les polymères à base d'acrylamide (2-propénamide) sont utilisés dans l'industrie minière pour les processus d'épaississement et de déshydratation, qui sont essentiels pour séparer les minéraux précieux du minerai et pour la gestion des déchets.

En plus de la récupération assistée du pétrole (RAH), le polyacrylamide est utilisé dans la production de pétrole et de gaz comme réducteur de friction dans les fluides de fracturation hydraulique, qui sont injectés dans les réservoirs de pétrole et de gaz pour améliorer la production.
L'acrylamide (2-propénamide) est utilisé dans les techniques d'électrophorèse sur gel, telles que SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), qui est essentiel pour séparer et analyser les protéines et les acides nucléiques dans la recherche en biologie moléculaire et en biochimie.

Les polymères à base d'acrylamide (2-propénamide) sont utilisés comme conditionneurs de sol en agriculture pour améliorer la qualité du sol, augmenter la rétention d'eau et améliorer l'absorption des nutriments par les plantes.
Cela peut conduire à une amélioration des rendements et de la durabilité des cultures.
Dans l'industrie textile, les polymères à base d'acrylamide sont utilisés pour les processus de calibrage et de finition des textiles.

Ils peuvent améliorer la texture, la durabilité et l'apparence des tissus.
Bien que moins courant, l'acrylamide (2-propénamide) et ses dérivés peuvent être trouvés dans certains produits cosmétiques et de soins personnels, tels que les produits coiffants, comme agents liants ou épaississants.
L'acrylamide (2-propénamide) est un monomère clé utilisé dans la production de polyacrylamide, un polymère avec un large éventail d'applications.

L'acrylamide (2-propénamide) est utilisé dans les procédés de traitement de l'eau, comme floculant pour clarifier l'eau, dans la production de papier et dans l'industrie pétrolière pour la récupération assistée du pétrole.
L'acrylamide (2-propénamide) est utilisé dans les laboratoires de biochimie et de biologie moléculaire pour créer des gels de polyacrylamide pour des techniques telles que l'électrophorèse sur gel.
Ces gels sont couramment utilisés pour séparer et analyser l'ADN, l'ARN et les protéines.

Les coulis à base d'acrylamide (2-propénamide) sont utilisés dans la construction et le génie civil pour stabiliser le sol et combler les vides ou les fissures dans les structures.
Les polymères à base d'acrylamide (2-propénamide) sont utilisés dans les procédés de traitement des eaux usées pour éliminer les impuretés et les solides de l'eau.

Risques
L'acrylamide (2-propénamide) est également un irritant cutané et peut être un initiateur de tumeur dans la peau, augmentant potentiellement le risque de cancer de la peau.
Les symptômes de l'exposition à l'acrylamide comprennent la dermatite dans la zone exposée et la neuropathie périphérique.
Des recherches en laboratoire ont révélé que certains composés phytochimiques peuvent avoir le potentiel d'être développés en médicaments qui pourraient atténuer la toxicité de l'acrylamide.

La présence d'acrylamide (2-propénamide) dans les aliments a soulevé des préoccupations pour la santé, car il a été lié au cancer chez les animaux de laboratoire lorsqu'il est administré à fortes doses.
Cependant, le risque pour les humains de l'exposition alimentaire à l'acrylamide fait toujours l'objet de recherches et de débats en cours parmi les scientifiques et les organismes de réglementation.

Il est important de noter que les niveaux d'acrylamide (2-propénamide) trouvés dans les aliments sont généralement beaucoup plus faibles que les doses utilisées dans les études animales qui ont montré des effets cancérogènes.
De plus, le risque réel pour la santé humaine découlant de l'exposition alimentaire à l'acrylamide demeure incertain, et il est difficile d'établir une relation de cause à effet claire entre l'acrylamide alimentaire (2-propénamide) et le cancer chez les humains.

Toxicité et cancérogénicité
L'acrylamide (2-propénamide) peut apparaître dans certains aliments cuits via une série d'étapes par la réaction de l'acide aminé asparagine et du glucose.
Cette condensation, l'une des réactions de Maillard, suivie d'une déshydrogénation produit de la N-(D-glucos-1-yl)-L-asparagine, qui, lors de la pyrolyse, génère de l'acrylamide (2-propénamide).

La découverte en 2002 que certains aliments cuits contiennent de l'acrylamide (2-propénamide) a attiré beaucoup d'attention sur ses effets biologiques possibles.
Le CIRC, le NTP et l'EPA l'ont classé comme cancérogène probable, bien que des études épidémiologiques (à partir de 2019) suggèrent que la consommation d'acrylamide alimentaire n'augmente pas de manière significative le risque de développer un cancer.

Synonymes
ACRYLAMIDE
79-06-1
2-Propénamide
prop-2-énamide
Propénamide
Éthylènecarboxamide
Acrylique amide
Amide vinylique
Akrylamid
Amide d'acide acrylique
Acrylagel
Propénéamide
Optimum
2-Propénéamide
9003-05-8
Amresco Acryl-40
Éthylène Carboxamide
Amide d'acide propénoïque
Au milieu de kyseliny akrylove
Numéro de déchet RCRA U007
Acrylamide monomère
Akrylamid [tchèque]
CCRIS 7
Acide propénoïque amide
NSC 7785
Acrylamide-13C3
Acrilamida
Porisutoron
HSDB 191
Au milieu de kyseliny akrylove [tchèque]
acrylamide
CHEBI:28619
Flokonit E
Aminogène PA
Acrylamide Monome
Flygtol FR
Stipix AD
EINECS 201-173-7
Superfloc 84
Cytame 5
UNII-20R035KLCI
Sursolan P 5
Solvitose 433
Sumitex A 1
Superfloc 900
Cyanamer P 35
Gélamide 250
Nacolyte 673
Versicol W 11
BRN 0605349
Magnafloc R 292
Sumirez A 17
Sumirez A 27
20R035KLCI
Aerofloc 3453
Cyanamer P 250
Praestol 2800
DTXSID5020027
Himoloc SS 200
Acide propénoïque, amide
Stokopol D 2624
ACYLAMIDE-
(IA3-04119)
Bio-Gel P 2
Reten 420
KPAM cyanamide américain
BioGel P-100
K-PAM
NSC-7785
UN2074
Cyanamid américain P-250
RCRA déchets no. U007
Dow ET 597
DTXCID6027
Taloflote
Pamid
AAM
Acrylamide, grade électrophorèse
NSC7785
CE 201-173-7
Acrylamide [UN2074] [Poison]
MFCD00008032
Himoloc OK 507
Percol 720
PAARK 123sh
ACRYLAMIDE (CIRC)
ACRYLAMIDE [CIRC]
ACRYLAMIDE (MART.)
ACRYLAMIDE [MART.]
AAP-1
Dow J 100
PAA 70L
PAM-50
Q 41F
AP 273
ET 597
Acrylamide 1000 microg/mL dans le méthanol
CAS-79-06-1
J 100
P 250
P 300
acrylarnide
Acrilammide
Crylamide
Propénoate d'amide
2-propenamida
2-propène amide
amide d'acide acryloïque
1HC
37 - Acrylamide
Acrylamide, 97%
Acrylamide inhalable
Bio Gel P2
Bio Gel P-2
Bio-Gel P-2
Acrylamide (Ultrapur)
AAM (code CHRIS)
ACRYLAMIDE [MI]
CH2CHCONH2
ACRYLAMIDE [HSDB]
ACRYLAMIDE [INCI]
bmse000392
D0L0SP
Solution d'acrylamide, 40%
Acrylamide, >=98,0 %
Acrylamide, >=99,9 %
acrylamide; prop-2-énamide
RCRA Waste Numbrt U007
WLN: ZV1U1
PROPENAMIDE (50%)
Acrylamide_RamanathanGurudeeban
BIDD:ER0629
Acrylamide, étalon analytique
CHEMBL348107
GTPL4553
Acrylamide, pour synthèse, 99%
Acrylamide [UN2074] [Poison]
Code de pesticide de l'EPA: 600008
BCP25183
Tox21_201526
Tox21_300145
BDBM50226193
NA2074
NSC116573
NSC116574
NSC116575
NSC118185
STL282727
UN3426
788 - Analyse de l'acrylamide dans les collations
881 - Analyse de l'acrylamide dans le café
AKOS000120965
Éthylène monoclinique comprimés carboxamide
Acrylamide, purum, >=98,0 % (GC)
LS-1769
NSC-116573
NSC-116574
NSC-116575
NSC-118185
ONU 2074
Acrylamide monomère (environ 50% dans l'eau)
Acrylamide monomère [pour l'électrophorèse]
NCGC00090736-01
NCGC00090736-02
NCGC00090736-03
NCGC00090736-04
NCGC00090736-05
NCGC00253932-01
NCGC00259076-01
Acrylamide monomère, [pour l'électrophorèse]
Acrylamide, première année SAJ, >=98,0 %
A0139
A1132
Acrylamide, Ultrapur, Grade électrophorèse
FT-0661414
FT-0688081
EN300-20803
C01659
Acrylamide, adapté à l'électrophorèse, >=99%
A839565
Acrylamide, pour l'électrophorèse, >=99,0 % (GC)
Q342939
Acrylamide, pour la biologie moléculaire, >=99% (HPLC)
J-200356
J-510287
Acrylamide, matériau de référence certifié, TraceCERT(R)
Acrylamide, pour électrophorèse, >=99% (HPLC), poudre
BC269F2E-D242-48E1-87E4-E51DB86FF0A8
F8880-6341
InChI=1/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5
Acrylamide, pour le transfert Northern et Southern, mélange de poudre
Acrylamide, qualité réactif Vetec(TM), adapté à l'électrophorèse
Acrylamide (powder)
Ethylic acid; Methanecarboxylic acid; vinegar; Vinegar acid; Acetic acid, glacial; Essigsäure; ácido acético; Acide acétique; Ethanoic acid; Acetasol; Octowy kwas; Kyselina octova; Essigsaeure; Octowy kwas; Vosol; CHLORINE IODIDE; CHLOROIODIDE; IODINE CHLORIDE; IODINE MONOCHLORIDE; IODINE MONOCHLORIDE SOLUTION, WIJS; IODINE-MONOCHLORIDE, WIJS; IODINE SOLUTION ACCORDING TO WIJS; IODOCHLORIDE; IODOMONOCHLORIDE; WIJS CHLORIDE; WIJS' CHLORIDE; WIJS IODINE SOLUTION; WIJ'S IODINE SOLUTION; WIJS REAGENT; WIJS' REAGENT; WIJS SOLUTION; WIJS' SOLUTION; Acetasol; aceticacid(non-specificname); aceticacid(solutionsgreaterthan10%) CAS NO:64-19-7, 77671-22-8
Acrylamide/Sodium acrylate copolymer
BUTYL ACRYLATE, N° CAS : 141-32-2, Nom INCI : BUTYL ACRYLATE, Nom chimique : 2-Propenoic acid, butyl ester, N° EINECS/ELINCS : 216-768-7 (I). Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Principaux synonymes. Noms français : 2-PROPENOIC ACID, BUTYL ESTER; Acrylate de butyle;Acrylate de butyle normal; ACRYLATE DE N-BUTYLE BUTYL 2-PROPENOATE; BUTYL ACRYLATE (NORMAL-); PROPENOATE-2 DE BUTYLE; PROPENOATE-2 DE BUTYLE NORMAL; PROPENOATE-2 DE N-BUTYLE. Noms anglais : ACRYLIC ACID, BUTYL ESTER; Butyl acrylate; n-Butyl acrylate; NORMAL BUTYL ACRYLATE. Commentaires: L'acrylate de butyle normal contient généralement un inhibiteur de polymérisation, l'éther monométhylique de l'hydroquinone (entre 10 et 20 ppm). La présence d'oxygène dissout étant essentielle à l'efficacité de l'inhibiteur, il ne doit pas être entreposé sous atmosphère inerte. Utilisation: L'acrylate de butyle normal sert presqu'exclusivement à la production de polymères, la grande majorité étant des copolymères. Ces derniers peuvent servir à la fabrication de divers revêtements, élastomères, adhésifs, agents de surface, plastiques, textiles et encres. Ils sont également utilisés dans la fabrication de matériaux superabsorbants et de détergents. 2-Propenoic acid, butyl ester Acrylic acid butyl ester (8CI) Acrylic acid n-butyl ester Acrylic acid, butyl ester acrylic acid, n-butyl ester Butyl 2-propenoate Butyl acrylate BUTYL ACRYLATES, STABILIZED Butylester kyseliny akrylove n-Butyl acrylate n-Butyl propenoate n-Butylacrylate acrilato de n-butilo (es) acrilato di n-butile (it) acrylate de n-butyle (fr) akrylan butylu (pl) butil-akrilát (hu) butilakrilatas (lt) butyl-akrylát (cs) butylacrylat (da) butylakrylat (sv) ester butylowy kwasu akrylowego (pl) n-butil acrilate (ro) n-butil akrilat (sl) n-butil-akrilat (hr) n-butilacrilato (it) n-butilakrilāts (lv) n-butylacrylaat (nl) n-Butylacrylat (de) n-butylakrylat (no) n-Butyyliakrylaatti (fi) n-butüülakrülaat (et) n-бутил акрилат (bg) ακρυλικός n-βουτυλεστέρας (el) 2-Propenoic acid, n-butyl ester ABU Acrylic acid butyl ester; n-Butyl acrylate; Acrylic acid, n-butyl ester; 2-Propenoic acid, butyl ester; Butyl 2-propenoate; n-Butyl propenoate; Butylacrylate, inhibited; Butyl ester kyseliny akrylove; UN 2348 butyl acrilate Butyl acryate butyl acrylate (BA) Butyl Acrylate (stabilized with MEHQ) Butyl prop-2-enoate butyl propenoate butylacrylate butyll prop-2-enoate n Butyl acrylate monomer s 2-Propenoic acid, butyl ester (9CI) Acrylic acid butyl ester (6CI, 8CI) Acrylic acid n-butyl ester, Butyl 2-propeonate ACRYLIC ACID NORMAL-BUTYL ESTER Acrylsaeurebutylester BA Butyl Acrylate ; Acrylic acid butyl ester Butyl Acylate Butyl Acylate Monomer Butyl ester acrylic acid FLOWING AGENT TP88 n-butyl acetate N-BUTYL-2-PROPENOATE TP88 UN 2348 ZMATLTXT
Acrylamido tert-Butyl Sulfonic acid
SYNONYMS Ethylic acid; Methanecarboxylic acid; vinegar; Vinegar acid; Acetic acid, glacial; CAS NO. 64-19-7, 77671-22-8
ACRYLATE DE 2-ÉTHYLE HEXYLE

L'acrylate de 2-éthylhexyle est un composé chimique de formule moléculaire C10H18O2.
L'acrylate de 2-éthylhexyle est un ester d'acrylate, ce qui signifie qu'il est dérivé de l'acide acrylique et fait partie de la famille des produits chimiques acrylates.
L'acrylate de 2-éthylhexyle est également connu sous son nom IUPAC, qui est « 2-éthylhexyl prop-2-enoate ».

Numéro CAS : 103-11-7
Numéro CE : 203-080-7



APPLICATIONS


L'acrylate de 2-éthyl hexyle est utilisé dans de nombreuses industries :

Adhésifs :
L'acrylate de 2-éthylhexyle est utilisé comme monomère clé dans la production d'adhésifs acryliques, connus pour leurs fortes propriétés de liaison dans diverses applications.

Revêtements :
L'acrylate de 2-éthyl hexyle est largement utilisé dans la formulation de revêtements, de peintures et de vernis pour améliorer leur adhérence, leur flexibilité et leur durabilité.

Polymères synthétiques :
L'acrylate de 2-éthylhexyle sert de comonomère essentiel dans la synthèse de polymères et copolymères synthétiques aux propriétés adaptées.

Polymères en émulsion :
Dans la polymérisation en émulsion, l'acrylate de 2-éthylhexyle est utilisé pour créer des dispersions polymères à base d'eau pour les revêtements, les textiles et le papier.

Résines acryliques :
L'acrylate de 2-éthylhexyle est un composant clé dans la production de résines acryliques, qui trouvent des applications dans les peintures, les adhésifs et les revêtements.

Caoutchoucs synthétiques :
L'acrylate de 2-éthylhexyle est crucial dans la fabrication de caoutchoucs synthétiques, notamment le caoutchouc acrylique, utilisé dans divers produits en caoutchouc.

Scellants :
L'acrylate de 2-éthylhexyle contribue à la formulation de produits d'étanchéité utilisés dans les applications de construction et automobiles pour sceller les joints et les interstices.

Textiles :
L'acrylate de 2-éthyl hexyle est utilisé pour conférer imperméabilité et durabilité aux textiles et aux tissus.

Plastiques :
L'acrylate de 2-éthylhexyle est utilisé dans la production de matières plastiques, notamment les plastiques transparents et les plastiques résistants aux chocs.

Encres :
Dans l’industrie de l’imprimerie, il est utilisé dans les formulations d’encres pour améliorer l’adhérence et la flexibilité sur diverses surfaces.

Revêtements de papier :
L'acrylate de 2-éthylhexyle est appliqué sur les surfaces en papier pour améliorer l'imprimabilité et réduire l'absorption de l'encre.

Revêtements de films et de feuilles :
L'acrylate de 2-éthylhexyle est utilisé dans les revêtements de films et de feuilles, offrant protection et flexibilité.

Adhésifs sensibles à la pression :
L'acrylate de 2-éthylhexyle est un composant clé des formulations d'adhésifs sensibles à la pression, utilisés dans les rubans, les étiquettes et les autocollants.

Revêtements de bois :
L'acrylate de 2-éthylhexyle est utilisé dans les revêtements du bois pour améliorer la résistance à l'humidité, aux produits chimiques et à l'abrasion.

Revêtements automobiles :
L'acrylate de 2-éthylhexyle contribue aux revêtements automobiles, offrant une résistance à la corrosion et une finition brillante.

Sol:
L'acrylate de 2-éthyl hexyle est utilisé dans la formulation de revêtements de sol pour des raisons de protection et d'esthétique.

Électronique:
Dans l’industrie électronique, il est utilisé dans les revêtements des cartes de circuits imprimés (PCB) et des composants électroniques.

Construction:
L'acrylate de 2-éthylhexyle est utilisé dans les matériaux de construction tels que les membranes d'étanchéité et les scellants pour béton.

Adhésifs médicaux :
L'acrylate de 2-éthylhexyle est utilisé dans les adhésifs médicaux pour des applications telles que les pansements et les patchs transdermiques.

Emballage:
Dans l’industrie de l’emballage, l’acrylate de 2-éthylhexyle est utilisé dans les revêtements des matériaux d’emballage flexibles.

Films agricoles :
L'acrylate de 2-éthylhexyle est utilisé dans la production de films agricoles destinés à la protection des cultures et aux applications en serre.

Matériaux dentaires :
Dans le domaine dentaire, il est utilisé dans la formulation d’adhésifs dentaires et de matériaux de restauration.

Impression textile :
L'acrylate de 2-éthylhexyle est utilisé dans les encres d'impression textile pour améliorer l'adhérence et la solidité des couleurs.

Intérieurs automobiles :
L'acrylate de 2-éthyl hexyle est utilisé dans les revêtements et les adhésifs pour les composants intérieurs automobiles, garantissant durabilité et esthétique.

Revêtements marins :
Le composé est utilisé dans les revêtements marins pour protéger les navires et les navires de la corrosion et de l'encrassement.

Revêtements textiles : Il est utilisé dans les revêtements textiles pour créer des finitions résistantes à l'eau et protectrices sur les tissus et les vêtements.

Encres d'impression à jet d'encre : l'acrylate de 2-éthylhexyle est utilisé dans les encres d'impression à jet d'encre pour améliorer l'adhérence aux substrats d'impression.

Films plastiques :
Dans la production de films plastiques, il est utilisé pour améliorer la flexibilité et la durabilité, ce qui rend les films adaptés aux applications d'emballage et d'emballage.

Revêtements de toiture :
L'acrylate de 2-éthylhexyle est un ingrédient des revêtements de toiture pour assurer la résistance aux intempéries et prolonger la durée de vie des matériaux de toiture.

Calfeutrants et scellants :
Dans l'industrie de la construction, il est utilisé dans les calfeutrants et les produits d'étanchéité pour combler les interstices et les joints, offrant ainsi résistance aux intempéries et flexibilité.

Plaques d'impression:
L'acrylate de 2-éthyl hexyle est utilisé dans les plaques d'impression flexographique et hélio pour améliorer leur durabilité et prolonger leur durée de vie.

Adhésifs en émulsion :
L'acrylate de 2-éthylhexyle est utilisé dans la formulation d'adhésifs en émulsion pour le collage de divers substrats, notamment le papier, le carton et le bois.

Adhésifs à bois :
L'acrylate de 2-éthylhexyle est ajouté aux adhésifs pour bois pour améliorer la force de liaison et la résistance aux facteurs environnementaux.

Additifs de revêtement :
Dans l'industrie des revêtements, l'acrylate de 2-éthylhexyle sert d'additif essentiel pour ajuster les propriétés des revêtements, notamment les caractéristiques de viscosité et d'écoulement.

Produits moulés :
L'acrylate de 2-éthylhexyle est utilisé dans la production de produits moulés, tels que des pièces automobiles et des récipients en plastique, pour améliorer leur résistance aux chocs.

Films adhésifs :
Dans les applications aérospatiales et automobiles, il est utilisé dans les films adhésifs pour le collage de matériaux composites.

Galvanoplastie :
L'acrylate de 2-éthylhexyle est utilisé dans les processus de galvanoplastie pour améliorer l'adhérence des revêtements métalliques sur divers substrats.

Revêtements durcis aux UV :
L'acrylate de 2-éthylhexyle est utilisé dans les revêtements durcis aux UV, qui offrent des temps de durcissement rapides et des propriétés hautes performances.

Encres de sérigraphie :
Dans l’industrie de la sérigraphie, il est utilisé dans les formulations d’encres pour créer des impressions durables sur les textiles, les céramiques et les plastiques.

Revêtements texturés :
L'acrylate de 2-éthylhexyle est ajouté aux revêtements texturés pour fournir une surface antidérapante sur les passerelles, les terrasses et les sols industriels.

Adhésifs de stratification :
L'acrylate de 2-éthylhexyle est utilisé dans les adhésifs de stratification pour lier plusieurs couches de matériaux, tels que des films et des feuilles.

Adhésifs d’emballage :
L'acrylate de 2-éthyl hexyle est utilisé dans les adhésifs d'emballage pour sceller en toute sécurité les cartons, les boîtes et les matériaux d'emballage.

Revêtements métalliques :
Dans les industries automobile et aérospatiale, il est utilisé dans les revêtements métalliques pour offrir résistance à la corrosion et durabilité.

Inhibiteurs de corrosion:
L'acrylate de 2-éthylhexyle est inclus dans les formulations d'inhibiteurs de corrosion pour protéger les surfaces métalliques de la corrosion.

Scellants de construction :
L'acrylate de 2-éthylhexyle est utilisé dans les mastics de construction pour sceller les joints de dilatation et les interstices des bâtiments et des infrastructures.

Composés de câbles : l'acrylate de 2-éthylhexyle est utilisé dans les composés de câbles pour offrir flexibilité et résistance à la fissuration sous contrainte environnementale.

Revêtements de meubles :
Dans l'industrie du meuble, l'acrylate de 2-éthyl hexyle est utilisé dans les revêtements du bois pour améliorer l'apparence et la durabilité des meubles.

Stabilisateurs de mousse :
L'acrylate de 2-éthylhexyle est inclus dans les stabilisants de mousse pour contrôler la structure cellulaire et la stabilité des produits en mousse.

Revêtements à base d'eau :
L'acrylate de 2-éthylhexyle est utilisé dans les revêtements à base d'eau, qui sont des alternatives écologiques aux revêtements à base de solvants.

Revêtement de sol industriel :
L'acrylate de 2-éthylhexyle est utilisé dans les systèmes de revêtements de sol industriels pour offrir une résistance chimique et une durabilité dans les zones à fort trafic.

Emballage souple :
Dans l’industrie de l’emballage flexible, il est utilisé pour améliorer les performances des films et des stratifiés, en leur offrant des propriétés barrières et de la flexibilité.

Plaques photopolymères :
L'acrylate de 2-éthylhexyle est utilisé dans les plaques photopolymères pour l'impression flexographique, créant des surfaces d'impression en relief pour diverses applications d'emballage.

Additif de revêtement automobile :
Dans les revêtements automobiles, l'acrylate de 2-éthylhexyle est ajouté comme additif pour améliorer l'adhérence, la brillance et la résistance aux intempéries.

Revêtements architecturaux :
L'acrylate de 2-éthyl hexyle est utilisé dans les revêtements architecturaux pour les surfaces extérieures et intérieures, offrant durabilité et rétention de couleur.

Couvertures d'impression :
Dans l’industrie de l’imprimerie, l’acrylate de 2-éthylhexyle est utilisé dans la production de blanchets d’impression pour garantir des impressions cohérentes et de haute qualité.

Finitions du cuir :
L'acrylate de 2-éthyl hexyle est appliqué dans les finitions du cuir pour améliorer la résistance à l'usure et à l'abrasion, améliorant ainsi l'apparence et la durabilité des produits en cuir.

Dimensionnement des textiles :
L'acrylate de 2-éthyl hexyle est utilisé dans les formulations d'encollage textile pour offrir rigidité et facilité de manipulation pendant le tissage et le traitement ultérieur.

Remplacement du plastifiant :
L'acrylate de 2-éthylhexyle sert de substitut au plastifiant dans les formulations de PVC (polychlorure de vinyle), réduisant ainsi l'impact environnemental.

Fluides pour le travail des métaux :
L'acrylate de 2-éthylhexyle est inclus dans les fluides de travail des métaux comme additif lubrifiant pour améliorer les performances d'usinage et de coupe.

Isolation électrique:
L'acrylate de 2-éthylhexyle est utilisé dans les matériaux d'isolation électrique, offrant des propriétés diélectriques et une flexibilité.

Dispersions de polymères :
Dans la production de dispersions de polymères, il contribue à créer des particules de polymère stables et uniformes.

Des gants en caoutchouc:
L'acrylate de 2-éthylhexyle est utilisé dans la fabrication de gants en caoutchouc, offrant flexibilité et résistance aux produits chimiques.

Revêtement pour l'électronique :
Dans l'industrie électronique, l'acrylate de 2-éthylhexyle est utilisé dans les revêtements de protection pour protéger les cartes de circuits imprimés (PCB) et les composants électroniques.

Revêtements anti-graffiti :
L'acrylate de 2-éthyl hexyle est appliqué dans les revêtements anti-graffiti pour faciliter le nettoyage et l'entretien des surfaces.

Bandes sensibles à la pression :
L'acrylate de 2-éthylhexyle est utilisé dans la formulation adhésive des rubans sensibles à la pression, garantissant une adhérence forte et durable.

Scellants pour l'aérospatiale :
Dans l'industrie aérospatiale, l'acrylate de 2-éthylhexyle est utilisé dans les produits d'étanchéité pour offrir une résistance aux fluctuations extrêmes de température et aux vibrations.

Promoteur d’adhérence des métaux :
L'acrylate de 2-éthylhexyle agit comme un promoteur d'adhésion dans les applications de liaison métal sur métal.

Intérieurs automobiles :
L'acrylate de 2-éthyl hexyle est utilisé dans les matériaux intérieurs automobiles, tels que les tableaux de bord et les panneaux de porte, pour améliorer la durabilité et l'esthétique.

Membranes d'étanchéité :
L'acrylate de 2-éthyl hexyle est inclus dans les membranes d'étanchéité pour les applications de construction afin d'empêcher l'infiltration d'eau.

Scellants marins :
Dans l'industrie maritime, il est utilisé dans les produits d'étanchéité pour la construction de bateaux et de navires afin de fournir une résistance à l'eau et aux intempéries.

Isolation thermique:
L'acrylate de 2-éthylhexyle est utilisé dans les matériaux d'isolation thermique des bâtiments et des appareils électroménagers, offrant ainsi une efficacité énergétique.

Revêtements anticorrosion :
L'acrylate de 2-éthyl hexyle est utilisé dans les revêtements anticorrosion pour les équipements industriels, les pipelines et les structures.

Adjuvants pour béton :
L'acrylate de 2-éthyl hexyle est inclus dans les adjuvants pour béton pour améliorer la maniabilité et réduire la perméabilité à l'eau.

Insonorisation automobile :
L'acrylate de 2-éthyl hexyle est utilisé dans les matériaux insonorisants automobiles pour réduire le bruit et les vibrations à l'intérieur des véhicules.

Produits chimiques pour champs pétrolifères :
Dans l’industrie pétrolière et gazière, il est utilisé dans les produits chimiques des champs pétrolifères pour les applications de forage et de stimulation de puits.



DESCRIPTION


L'acrylate de 2-éthylhexyle est un composé chimique de formule moléculaire C10H18O2.
L'acrylate de 2-éthylhexyle est un ester d'acrylate, ce qui signifie qu'il est dérivé de l'acide acrylique et fait partie de la famille des produits chimiques acrylates.
L'acrylate de 2-éthylhexyle est également connu sous son nom IUPAC, qui est « 2-éthylhexyl prop-2-enoate ».

L'acrylate de 2-éthylhexyle est un liquide clair et incolore avec une odeur âcre caractéristique.
L'acrylate de 2-éthylhexyle est couramment utilisé comme monomère dans la production de divers polymères et copolymères, en particulier dans la fabrication de caoutchoucs et de revêtements synthétiques.
L'acrylate de 2-éthyl hexyle joue un rôle important dans la production d'adhésifs, de peintures et de revêtements en raison de sa capacité à polymériser et à former des réseaux réticulés, conférant des propriétés souhaitables à ces matériaux.
De plus, l’acrylate de 2-éthylhexyle est utilisé dans certaines réactions chimiques et processus industriels.

L'acrylate de 2-éthylhexyle est un composé chimique de formule moléculaire C10H18O2.
L'acrylate de 2-éthylhexyle est un liquide clair et incolore à température ambiante.
L'acrylate de 2-éthylhexyle a une odeur âcre caractéristique.
L'acrylate de 2-éthylhexyle appartient à la famille des acrylates et est dérivé de l'acide acrylique.

L'acrylate de 2-éthylhexyle est également connu sous son nom IUPAC, « 2-éthylhexyl prop-2-enoate ».
La structure chimique de l'acrylate de 2-éthylhexyle comprend un groupe fonctionnel prop-2-énoate.
L'acrylate de 2-éthylhexyle est communément désigné par son abréviation « 2-EHA ».
L'acrylate de 2-éthylhexyle est un monomère polyvalent utilisé dans les réactions de polymérisation.

L'acrylate de 2-éthylhexyle est souvent utilisé comme comonomère dans la production de polymères et copolymères synthétiques.
L'acrylate de 2-éthylhexyle est particulièrement important dans la production de caoutchoucs synthétiques.
L'acrylate de 2-éthylhexyle joue un rôle clé dans la fabrication d'adhésifs, de produits d'étanchéité et de revêtements.

Dans le domaine des revêtements, l'acrylate de 2-éthylhexyle est utilisé pour améliorer les formulations de peintures et de revêtements.
L'acrylate de 2-éthylhexyle contribue à l'adhérence, à la flexibilité et à la durabilité des revêtements.

L'acrylate de 2-éthyl hexyle peut subir des réactions de polymérisation pour former des réseaux polymères réticulés.
Ces réseaux confèrent des propriétés souhaitables telles que la résilience et la ténacité.



PROPRIÉTÉS


Propriétés physiques:

Formule moléculaire : C10H18O2
Poids moléculaire : environ 170,25 g/mol
Aspect : Liquide clair et incolore
Odeur : Odeur âcre caractéristique
Densité : Environ 0,88-0,90 g/cm³ à 20°C
Point de fusion : -75°C (-103°F)
Point d'ébullition : environ 215-220°C (419-428°F)
Point d'éclair : 87°C (188,6°F) (coupe fermée)
Solubilité : Insoluble dans l’eau ; miscible avec la plupart des solvants organiques
Indice de réfraction : environ 1,433-1,438 à 20°C


Propriétés chimiques:

Structure chimique : contient un groupe fonctionnel prop-2-énoate
Monomère : Il est couramment utilisé comme monomère dans les réactions de polymérisation.
Polymérisation : subit une polymérisation pour former des réseaux de polymères réticulés.
Inflammabilité : Liquide inflammable ; forme des mélanges vapeur-air inflammables.
Pression de vapeur : Faible pression de vapeur.



PREMIERS SECOURS


Inhalation:

En cas d'inhalation, transporter immédiatement la personne affectée à l'air frais.
Si la personne ne respire pas ou éprouve des difficultés à respirer, administrez la respiration artificielle.
Consultez rapidement un médecin, même si les symptômes semblent légers, car des symptômes retardés peuvent survenir.


Contact avec la peau:

Retirer les vêtements et chaussures contaminés.
Lavez soigneusement la zone cutanée affectée avec de l’eau et du savon pendant au moins 15 minutes.
En cas d'irritation cutanée, de rougeur ou de brûlures chimiques, consultez un médecin.
Jetez les vêtements contaminés ou lavez-les avant de les réutiliser.


Lentilles de contact:

Rincer doucement mais soigneusement les yeux avec de l'eau tiède et propre pendant au moins 15 minutes, en maintenant les paupières ouvertes.
Consulter immédiatement un médecin si l'irritation, la rougeur, la douleur ou les troubles visuels persistent.


Ingestion:

En cas d'ingestion, ne pas faire vomir.
Rincer la bouche avec de l'eau, mais ne pas avaler.
Consulter immédiatement un médecin ou contacter un centre antipoison.
Ne rien administrer par voie orale à une personne inconsciente ou en convulsions.



MANIPULATION ET STOCKAGE


Manutention:

Équipement de protection individuelle (EPI) :
Lors de la manipulation de l'acrylate de 2-éthylhexyle, portez un EPI approprié, notamment des gants résistant aux produits chimiques, des lunettes de sécurité ou un écran facial, une blouse de laboratoire ou des vêtements résistant aux produits chimiques et des chaussures résistantes aux produits chimiques.
Assurez-vous que tous les EPI sont en bon état.

Ventilation:
Utiliser une ventilation par aspiration locale ou assurer une bonne ventilation générale pour contrôler les concentrations en suspension dans l'air.
Évitez d'inhaler les vapeurs.
Travaillez dans un endroit bien ventilé et si vous travaillez à l'intérieur, assurez-vous de la présence d'un système d'échappement pour éliminer les vapeurs et les fumées.

Évitez les contacts :
Évitez tout contact cutané et oculaire avec le produit chimique.
En cas de contact avec la peau, retirer rapidement les vêtements contaminés et laver soigneusement la zone affectée avec de l'eau et du savon.
En cas de contact avec les yeux, rincer immédiatement et abondamment les yeux à l'eau claire pendant au moins 15 minutes, en gardant les paupières ouvertes.

Conteneurs de stockage :
Conservez l'acrylate de 2-éthylhexyle dans des récipients hermétiquement fermés fabriqués dans des matériaux compatibles avec le produit chimique (par exemple, verre, acier inoxydable ou polyéthylène).
Assurez-vous que les conteneurs sont étiquetés avec les informations de danger appropriées et qu'ils sont correctement scellés pour éviter les fuites ou les déversements.

Évitez de mélanger :
Évitez de mélanger l'acrylate de 2-éthylhexyle avec des substances incompatibles, notamment des acides forts, des bases fortes et des oxydants puissants.
Stockez les produits chimiques séparément pour éviter les réactions accidentelles.

Mise à la terre et liaison :
Utilisez des procédures de mise à la terre et de liaison lors du transfert du produit chimique pour éviter l'accumulation d'électricité statique, qui pourrait potentiellement provoquer une inflammation.


Stockage:

Température:
Conservez l'acrylate de 2-éthyl hexyle dans un endroit frais et bien ventilé, à l'écart des sources de chaleur, des flammes nues et de la lumière directe du soleil.
La température de stockage doit être inférieure au point d'ébullition du composé, généralement autour de la température ambiante.

Stockage des matières inflammables :
Stockez le produit chimique à l’écart des autres matériaux inflammables et combustibles.
Respectez les codes et réglementations de prévention des incendies locaux lors du stockage de substances inflammables.

Séparation:
Gardez le produit chimique séparé des oxydants puissants, des acides forts et des substances incompatibles pour éviter les réactions chimiques et les dangers potentiels.

Compatibilité chimique :
Assurez-vous que les conteneurs de stockage et les matériaux utilisés pour la manipulation et le transfert sont compatibles avec l'acrylate de 2-éthyl hexyle pour éviter les interactions chimiques.

Étiquetage :
Étiquetez clairement les conteneurs de stockage avec le nom du produit chimique, les informations sur les dangers et les précautions de manipulation. Utilisez les étiquettes de danger et les avertissements appropriés.

Équipement d'urgence:
Ayez à portée de main l'équipement d'urgence approprié, tel que des douches oculaires, des douches de sécurité et du matériel d'extinction d'incendie, en cas d'exposition accidentelle ou d'incendie.

Sécurité:
Limitez l’accès aux zones de stockage au personnel autorisé uniquement et assurez-vous qu’il est conscient des dangers associés au produit chimique.



SYNONYMES


Acrylate d'octyle
2-éthylhexyl prop-2-énoate
Octyl 2-propénoate
EHA
Acrylate d'éthylhexyle
Acrylate d'octyle
Acrylate de 2-éthylhexyle
Ester 2-éthylhexylique de l'acide acrylique
Ester octylique d'acide acrylique
Acrylate C-8
2-EHA
2-propénoate d'éthylhexyle
Acrylique de 2-octyle
Ester octylique de l'acide acrylique
Propénoate de 2-octyle
Acrylate d'éthylhexyle
Acrylate d'acide caprylique
Éthanoate de 2-éthylhexyle
Propénoate d'octyle
Octyl 2-propénoate
Ester d'acrylate de 2-éthylhexyle
Ester d'acide octylacrylique
Ester de 2-éthylhexyle d'acide acrylique
Carboxylate d'octyle α,β-insaturé
Ester d'acide octyl α, β-insaturé
Ester éthylhexylique de l'acide acrylique
Ester octylique d'acide acrylique
Acrylate de 2-éthylhexanol
Ester 2-éthylhexylique de l'acide propénoïque
Ester d'acide octyl 2-propénoïque
Ester octylique de l'acide 2-propénoïque
Ester octylique d’acide acrylate
2-éthylhexyl prop-2-énoate
Ester 2-éthylhexylique de l'acide 2-propénoïque
Ester d'octyle 2-propénoate
Ester octylique α,β-insaturé
2-propénoate d'éthylhexyle
Ester d'octyle acrylate
Ester octylacrylique
Prop-2-énoate d'éthylhexyle
Prop-2-énoate d'octyle
2-éthylhexyle 2-propénoate
Ester d'acide carboxylique octyl α, β-insaturé
Ester d'acide 2-éthylhexyl 2-propénoïque
Ester éthylhexylique de l'acide 2-propénoïque
Ester octylique de l'acide acrylique
Ester octylique d'acrylate d'éthyle
Ester d'éthylhexyle α,β-insaturé
Propénoate d'octyle
Ester octylique d'acide vinylcarboxylique
Ester d'acide éthylhexyl 2-propénoïque
Ester octyl-2-propénoïque
Ester de 2-éthylhexyle 2-propénoate
Ester éthylhexylique de l'acide propénoïque
Ester d'octyle 2-propénoate
Ester de carboxylate d'octyle α,β-insaturé
Ester 2-éthylhexylique de l'acide acrylique
Éthanoate d'octyle
Ester de 2-propénoate d'éthylhexyle
Ester carboxylique octyl α, β-insaturé
Ester de 2-éthylhexyl prop-2-énoate
Ester octylique de l'acide 2-propénoïque
Ester éthylhexylique de l'acide 2-propénoate
Ester éthylique d'octyle 2-propénoate
Ester octylique de l'acide éthénylcarboxylique
ACRYLATE DE 2-ÉTHYLHEXYLE
2- L'acrylate d'éthylhexyle est un liquide incolore et transparent.
L'acrylate de 2-éthylhexyle est une matière première importante pour de nombreuses synthèses chimiques.
L'acrylate de 2-éthylhexyle est un acrylate liquide incolore à l'odeur agréable, utilisé dans la fabrication de peintures, de plastiques et d'adhésifs.


Numéro CAS : 103-11-7
Numéro CE : 203-080-7
Numéro MDL : MFCD00009495
Formule chimique : C11H20O2
Formule moléculaire : C11H20O2 / CH2=CHCOOC8H17


L'acrylate de 2-éthylhexyle est insoluble dans l'eau.
L'acrylate de 2-éthylhexyle se présente sous la forme d'un liquide clair incolore avec une odeur agréable.
L'acrylate de 2-éthylhexyle est moins dense que l'eau et insoluble dans l'eau.


Les vapeurs de l'acrylate de 2-éthylhexyle sont plus lourdes que l'air.
Le point d'éclair de l'acrylate de 2-éthylhexyle est de 180 °F.
L'acrylate de 2-éthylhexyle est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 100 000 à < 1 000 000 tonnes par an.


L'acrylate de 2-éthylhexyle est un acrylate liquide incolore à l'odeur agréable, utilisé dans la fabrication de peintures, de plastiques et d'adhésifs.
L'acrylate de 2-éthylhexyle est un liquide transparent, incolore et limpide.
L'acrylate de 2-éthylhexyle peut être copolymérisé par exemple avec l'acide acrylique et ses sels, esters et acrylamide, avec l'acide méthacrylique, les méthacrylates, l'acrylonitrile, le styrène, les esters d'acide maléique, l'acétate de vinyle, le chlorure de vinyle, le butadiène, les polyesters insaturés, etc.


Afin d'éviter une polymérisation spontanée, l'acrylate de 2-éthylhexyle doit toujours être stocké sous air, jamais sous gaz inerte.
La croissance des peintures et revêtements, des adhésifs et mastics, des encres d'impression et des polymères superabsorbants stimule le marché mondial de l'acrylate de 2-éthylhexyle.
En tant que comonomère d'acrylate d'alkyle supérieur, l'acrylate de 2-éthylhexyle confère une température de transition vitreuse bien inférieure à la température ambiante (la Tg de l'homopolymère est de - 65 ° C), une flexibilité et une élasticité, ainsi qu'un caractère hydrophobe.


Les caractéristiques uniques apportées aux compositions de copolymères comprennent la flexibilité à basse température, la résistance à l'eau, de bonnes caractéristiques aux intempéries et la résistance aux UV (lumière du soleil).
L'acrylate de 2-éthylhexyle est également une matière première très utile pour les synthèses chimiques car il subit facilement des réactions d'addition avec une grande variété de composés organiques et inorganiques.


L'acrylate de 2-éthylhexyle est un élément de base pour la fabrication de polymères et une matière première pour la synthèse chimique.
L'acrylate de 2-éthylhexyle est disponible sous forme de liquide conditionné en fûts.
L'acrylate de 2-éthylhexyle confère une excellente flexibilité, une grande résistance aux UV et une haute résistance à l'eau aux polymères.


En gérant les rapports des comonomères et les températures de transition vitreuse, le chimiste peut équilibrer la dureté et la douceur, l'adhésivité et la résistance au bloc, les propriétés adhésives et cohésives, la flexibilité à basse température, la résistance et la durabilité, et d'autres propriétés clés pour faciliter les objectifs d'utilisation finale.
Des monomères fonctionnels comme le diacétone acrylamide, l'acide (méth)acrylique, les acrylates de glycidyle et l'anhydride maléique peuvent être incorporés comme agents de réticulation et/ou comme accélérateurs de durcissement.


Des monomères comme l'acrylonitrile et le (méth)acrylamide peuvent améliorer la résistance aux solvants et à l'huile.
L'acrylate de 2-éthylhexyle sert de monomère fondamental pour créer une gamme de polymères et de matériaux copolymères.
Ce liquide incolore à faible viscosité, l'acrylate de 2-éthylhexyle, dégage un arôme sucré et possède un point d'ébullition de 146°C.


Avec un poids moléculaire de 146,20 g/mol, l'acrylate de 2-éthylhexyle démontre sa polyvalence dans de nombreuses applications.
Les applications de l'acrylate de 2-éthylhexyle couvrent diverses industries, trouvant une utilisation dans les revêtements, les adhésifs, les mastics et les élastomères.
Notamment, l'acrylate de 2-éthylhexyle joue un rôle crucial dans la production d'articles en plastique et en caoutchouc, répondant à divers besoins de fabrication.


Dans le domaine de la recherche scientifique, l'acrylate de 2-éthylhexyle reste un choix privilégié pour la synthèse de matériaux polymères et copolymères.
L'implication de l'acrylate de 2-éthylhexyle dans la création de polyuréthanes, de polyamides, de polyesters, de polycarbonates, de polyacrylates et de polyoléfines souligne son importance en tant que bloc de construction dans le domaine de la synthèse chimique.


Ce qui rend l'acrylate de 2-éthylhexyle particulièrement fascinant, c'est sa nature hautement réactive.
Le monomère s'engage dans un assortiment de réactions chimiques, ouvrant la voie à des processus de polymérisation tels que la polymérisation radicalaire, la polymérisation anionique, la polymérisation cationique et la polymérisation par coordination.


Au-delà de cela, l'acrylate de 2-éthylhexyle s'engage facilement dans des réactions de copolymérisation avec d'autres monomères, entraînant la formation de matériaux copolymères.
L'acrylate de 2-éthylhexyle est un acteur clé dans la création de polymères et de copolymères, entraînant des avancées dans un large éventail d'industries et d'activités scientifiques.


Son adaptabilité et sa capacité à participer à diverses réactions chimiques font de l'acrylate de 2-éthylhexyle un composant inestimable dans la synthèse des matériaux modernes.
L'acrylate de 2-éthylhexyle est un ester de l'acide énoïque.
L'acrylate de 2-éthylhexyle a un liquide blanc aqueux avec une odeur caractéristique.


L'acrylate de 2-éthylhexyle est fourni inhibé pour empêcher la polymérisation.
L'acrylate de 2-éthylhexyle est un produit stable, dont la solubilité dans l'eau est négligeable.
L'acrylate de 2-éthylhexyle est facilement polymérisé et affiche une gamme de propriétés dépendant de la sélection du monomère et des conditions de réaction.


L'acrylate de 2-éthylhexyle est un liquide incolore au-dessus de son point de congélation de -90°C (-130°F).
La température de transition vitreuse de l'homopolymère d'acrylate de 2-éthylhexyle est de -70 °C (-94 °F).
L'acrylate de 2-éthylhexyle peut être polymérisé entre eux et copolymérisé avec d'autres monomères pour produire des polymères ayant les propriétés optimales pour votre application.


L'acrylate de 2-éthylhexyle est un monomère d'acrylate de formule moléculaire CH2=CHCOOC8H17.
L'acrylate de 2-éthylhexyle est un liquide clair qui est complètement soluble dans les alcools et les éthers mais pas soluble dans l'eau.
L'acrylate de 2-éthylhexyle n'est pas un liquide très inflammable avec un point d'éclair entre 75 et 90° C et a une odeur acrylique caractéristique.



UTILISATIONS et APPLICATIONS de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle est utilisé dans la production d'homopolymères et de copolymères.
L'acrylate de 2-éthylhexyle est un acrylate très polyvalent qui peut être utilisé comme bloc de construction chimique pour produire une variété de revêtements, de résines, d'adhésifs et de mastics.


L'acrylate de 2-éthylhexyle est également utilisé dans les industries du plastique et du textile comme additif pour améliorer la résistance à l'eau, la résistance à la lumière du soleil et la résistance aux intempéries du produit final.
L'acrylate de 2-éthylhexyle entre dans la composition de copolymères, avec diverses applications industrielles.


L'acrylate de 2-éthylhexyle est utilisé Résines et polymères en émulsion ou dispersions pour tissus non tissés, encres, colles
L'acrylate de 2-éthylhexyle est utilisé comme adhésif sensible à la pression, textiles, papier
L'acrylate de 2-éthylhexyle est utilisé Produits de nettoyage et de cirage des sols


L'acrylate de 2-éthylhexyle est utilisé Caoutchoucs synthétiques et latex
L'acrylate de 2-éthylhexyle est utilisé Plastiques et résines synthétiques
L'acrylate de 2-éthylhexyle est utilisé comme additifs pour les fiouls et les huiles lubrifiantes.


L'acrylate de 2-éthylhexyle est capable de réagir par addition à la double liaison et de polymériser et copolymériser.
L'acrylate de 2-éthylhexyle est utilisé comme monomère pour les plastiques, les revêtements protecteurs et le traitement du papier, dans la copolymérisation de l'acétate de vinyle et du chlorure de vinyle, et dans la fabrication de peintures à base d'eau, d'adhésifs, d'encres d'imprimerie, d'agents d'imprégnation et de diluants réactifs/ agents de réticulation.


L'acrylate de 2-éthylhexyle est utilisé pour fabriquer des polymères et des copolymères qui sont généralement transformés en dispersions aqueuses de polymères, principalement utilisés dans les adhésifs et les peintures.
L'acrylate de 2-éthylhexyle est également utilisé pour le revêtement de matières premières, dans l'industrie des plastiques et comme monomère dans les produits chimiques de l'industrie de la construction (concentrations de 0,1 à 21 %).


L'acrylate de 2-éthylhexyle est principalement utilisé pour la fabrication d'homopolymères et de copolymères.
L'acrylate de 2-éthylhexyle est également utilisé dans les applications d'adhésifs.
L'acrylate de 2-éthylhexyle est utilisé dans les articles, par les travailleurs professionnels (usages répandus), dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.


D'autres rejets dans l'environnement de l'acrylate de 2-éthylhexyle sont susceptibles de se produire à partir de : l'utilisation à l'extérieur dans des matériaux à longue durée de vie à faible taux de rejet (par exemple, la construction et les matériaux de construction en métal, en bois et en plastique) et l'utilisation à l'intérieur dans des matériaux à longue durée de vie à faible taux de rejet taux (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipement électronique).


L'acrylate de 2-éthylhexyle peut être présent dans des produits dont les matériaux sont à base de : tissus, textiles et vêtements (par exemple, vêtements, matelas, rideaux ou tapis, jouets textiles), papier (par exemple, mouchoirs, produits d'hygiène féminine, couches, livres, magazines, papier peint) et le plastique (par exemple, emballage et stockage des aliments, jouets, téléphones portables).


Le rejet dans l'environnement d'acrylate de 2-éthylhexyle peut provenir de l'utilisation industrielle : d'articles où les substances ne sont pas destinées à être rejetées et où les conditions d'utilisation ne favorisent pas le rejet.
L'acrylate de 2-éthylhexyle est utilisé dans les produits suivants : adhésifs et mastics, produits de revêtement et polymères.


L'acrylate de 2-éthylhexyle est utilisé dans les domaines suivants : BTP et formulation de mélanges et/ou reconditionnement.
L'acrylate de 2-éthylhexyle est utilisé pour la fabrication de : produits en plastique.
D'autres rejets dans l'environnement de l'acrylate de 2-éthylhexyle sont susceptibles de se produire suite à : une utilisation en intérieur et une utilisation en extérieur entraînant une inclusion dans ou sur un matériau (par exemple un liant dans des peintures et des revêtements ou des adhésifs).


L'acrylate de 2-éthylhexyle est utilisé dans les produits suivants : adhésifs et mastics, produits de revêtement et polymères.
Le rejet dans l'environnement de l'acrylate de 2-éthylhexyle peut se produire lors d'une utilisation industrielle : formulation de mélanges.
L'acrylate de 2-éthylhexyle est utilisé dans les produits suivants : polymères, adhésifs et mastics, produits de revêtement et produits chimiques de laboratoire.


L'acrylate de 2-éthylhexyle a une utilisation industrielle aboutissant à la fabrication d'une autre substance (utilisation d'intermédiaires).
L'acrylate de 2-éthylhexyle est utilisé dans les domaines suivants : BTP et formulation de mélanges et/ou reconditionnement.
L'acrylate de 2-éthylhexyle est utilisé pour la fabrication de : produits chimiques et produits en plastique.


Le rejet dans l'environnement de l'acrylate de 2-éthylhexyle peut se produire lors d'une utilisation industrielle : pour la fabrication de thermoplastiques, en tant qu'auxiliaire de fabrication et en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires).
Le rejet dans l'environnement d'acrylate de 2-éthylhexyle peut provenir d'une utilisation industrielle : fabrication de la substance, pour la fabrication de thermoplastiques et comme auxiliaire de fabrication.


L'acrylate de 2-éthylhexyle est un ester énoate.
L'acrylate de 2-éthylhexyle est utilisé dans la fabrication de peintures et de plastiques.
L'acrylate de 2-éthylhexyle et l'acrylate de butyle sont les principaux monomères de base pour la préparation d'adhésifs acrylates.


L'acrylate de 2-éthylhexyle peut réagir par polymérisation radicalaire pour former des macromolécules ayant un poids moléculaire allant jusqu'à 200 000 g/mol.
D'autres monomères tels que l'acétate de vinyle, l'acrylate de méthyle et le styrène peuvent être copolymérisés pour modifier les propriétés du polymère résultant.
L'acrylate de 2-éthylhexyle est utilisé comme matière première pour fabriquer des adhésifs, des revêtements, des matériaux de construction, du caoutchouc acrylique et des émulsions.


L'acrylate de 2-éthylhexyle est utilisé comme matière première pour fabriquer des adhésifs, des revêtements, des matériaux de construction, du caoutchouc acrylique et des émulsions.
L'acrylate de 2-éthylhexyle est un bloc de construction très polyvalent qui se copolymérise facilement avec une grande variété d'autres monomères acryliques et vinyliques pour adapter les propriétés spécifiques du copolymère de haut poids moléculaire à une gamme variée d'applications non rigides.


L'acrylate de 2-éthylhexyle est l'ester de l'acide acrylique et du 2-éthyl hexanol.
Les principales applications qui tirent parti de ces caractéristiques comprennent les adhésifs multiples, en particulier les adhésifs sensibles à la pression (PSA), la peinture et les revêtements, les mastics et les mastics, les finitions textiles et papier et les encres d'impression.


Étant donné que l'acrylate de 2-éthylhexyle contribue à la clarté, à la ténacité, à la résistance à la lumière et aux intempéries et à la résistance chimique, les fabricants peuvent utiliser des copolymères acryliques contenant de l'acrylate de 2-éthylhexyle dans les formulations de peinture et de revêtement d'intérieur, d'extérieur, de couche de base et de couche de finition, et d'autres produits connexes.
L'acrylate de 2-éthylhexyle est utilisé (stabilisé avec de l'éther monométhylique d'hydroquinone) pour la synthèse.


L'acrylate de 2-éthylhexyle est un ester de l'acide acrylique et est utilisé comme composant de matière première dans la synthèse de polymères.
L'acrylate de 2-éthylhexyle est un monomère difonctionnel avec une réactivité élevée caractéristique des méthacrylates et une fraction hydrophobe ramifiée.
Les copolymères d'acrylate de 2-éthylhexyle peuvent être préparés avec l'acide (méth)acrylique et ses sels, amides et esters, et avec les (méth)acrylates, l'acrylonitrile, les esters d'acide maléique, l'acétate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le styrène, le butadiène, polyesters insaturés et huiles siccatives, etc.


L'acrylate de 2-éthylhexyle est utilisé dans la préparation de polymères solides, de dispersions et de solutions de polymères, qui sont utilisés comme liants, agents filmogènes, adhésifs et mastics, revêtements dans diverses industries.
L'acrylate de 2-éthylhexyle a été particulièrement utilisé dans la production d'adhésifs sensibles à la pression et de revêtements et liants hydrophobes.


L'acrylate de 2-éthylhexyle est couramment utilisé pour abaisser la Tg des polymères contenant du MMA, du styrène, de l'acétate de vinyle et d'autres monomères durs.
L'acrylate de 2-éthylhexyle est le plus souvent utilisé pour fabriquer des polymères pour les peintures, les revêtements et les adhésifs sensibles à la pression.
L'acrylate de 2-éthylhexyle peut également être utilisé comme charge pour des synthèses chimiques via des réactions d'addition.


L'acrylate de 2-éthylhexyle est un monomère d'ester d'acide acrylique couramment utilisé pour fabriquer des polymères pour les revêtements et les adhésifs.
L'acrylate de 2-éthylhexyle peut également être utilisé pour abaisser la température de transition vitreuse (Tg) des polymères acryliques.
L'acrylate de 2-éthylhexyle est utilisé dans la production d'homopolymères.


L'acrylate de 2-éthylhexyle peut également être utilisé dans la production de copolymères, par exemple l'acide acrylique et ses sels, les esters, les amides, les méthacrylates, l'acrylonitrile, les maléates, l'acétate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le styrène, le butadiène ainsi que les insaturés. les polyesters.
L'acrylate de 2-éthylhexyle est un monomère pour les plastiques, les revêtements protecteurs, le traitement du papier, les peintures à base d'eau, les revêtements durcissables aux UV et les encres; dans certains rubans adhésifs à base d'acrylique.


L'acrylate de 2-éthylhexyle est couramment utilisé comme comonomère plastifiant dans la production de résines, qui sont utilisées dans diverses applications telles que les adhésifs, le latex, les peintures, les finitions textiles et cuir et les revêtements pour papier.
L'acrylate de 2-éthylhexyle est utilisé Adhésifs, Matériaux de finition du cuir, Plastiques, Textiles, Mastics, Fibres


La principale utilisation actuelle de l'acrylate de 2-éthylhexyle concerne les adhésifs acryliques sensibles à la pression.
Un adhésif pour ruban à usage général contient généralement environ 75 % d'acrylate de 2-éthylhexyle.


L'acrylate de 2-éthylhexyle est également utilisé dans la production de plastiques, de latex, de peintures, de finitions textiles et cuir, de revêtements pour le papier et la finition industrielle des métaux.
Au Danemark, l'acrylate de 2-éthylhexyle est principalement utilisé dans les encres, les laques et les vernis durcissables aux UV.


-2-Ethylhexyl acrylate est appliqué dans la production de :
* Revêtements automobiles
*Revêtements industriels
*Adhésifs
*Plastiques
*Séchables aux UV



PRODUCTION ET UTILISATION DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'estérification directe catalysée par un acide de l'acide acrylique avec du 2-éthylhexanol est la principale méthode de fabrication de l'acrylate de 2-éthylhexyle.
Un inhibiteur de polymérisation est ajouté.



AVANTAGES DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
Robustesse, flexibilité, durabilité, élasticité, clarté
Résistance aux intempéries, résistance à l'humidité, résistance chimique
Bonnes propriétés à basse température, peut être copolymérisé avec d'autres acrylates
Faible volatilité et faible odeur



LES ATTRIBUTS DE L'ACRYLATE DE 2-ÉTHYLHEXYLE EN TANT QUE COMONOMÈRE COMPRENNENT :
*Une faible Tg -65 °C et une flexibilité à basse température
* Facilite la conception de la douceur et de l'adhésivité dans les copolymères
*Excellentes caractéristiques de copolymérisation
*L'enchevêtrement de la chaîne latérale C8 facilite l'enchevêtrement macromoléculaire (Me)
* Améliore la résistance à l'eau et aux intempéries ; adapté aux applications externes.
*Un faible degré de toxicité
* Disponibilité et économie des produits de base
Le profil de performance de l'acrylate de 2-éthylhexyle a conduit à un fort taux de croissance dans les applications commerciales.



INDUSTRIES DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
*Adhésifs
*Agriculture
*Construction de bâtiments
*Revêtements
*Élastomères
*Encres
* Formulation de lubrifiant
* Traitement et fabrication des métaux
*Plastiques



CARACTÉRISTIQUES ET AVANTAGES DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
*Résistance chimique
*Réticulation chimique
*Résistance à la rayure:
*Adhésion
*Faible teneur en COV
*Modificateur de rhéologie
* Résistance aux intempéries



PROPRIÉTÉS CHIMIQUES DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle est un liquide incolore et transparent qui est presque insoluble dans l'eau mais peut être mélangé avec de l'alcool et de l'éther.
L'acrylate de 2-éthylhexyle était présent dans un ruban chirurgical et a provoqué une dermatite allergique de contact chez un patient.



PRÉPARATION DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle racémique peut être préparé avec un rendement élevé par estérification de l'acide acrylique avec du 2-éthylhexanol racémique en présence d'hydroquinone comme inhibiteur de polymérisation et d'un acide fort tel que l'acide méthanesulfonique par distillation réactive en utilisant du toluène comme agent azéotrope.



PROPRIÉTÉS DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle polymérise facilement.
La polymérisation peut être initiée par la lumière, les peroxydes, la chaleur ou les contaminants.
L'acrylate de 2-éthylhexyle peut réagir violemment lorsqu'il est combiné avec des oxydants puissants et peut former des mélanges explosifs avec l'air à des températures supérieures à 82 °C (180 °F).
Les propriétés chimiques, physiques et toxicologiques peuvent cependant être fortement modifiées par des additifs ou des stabilisants.



LA POLYVALENCE DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle est un monomère clé dans une large gamme de compositions de copolymères.
Les techniques de polymérisation radicalaire permettent des conversions de monomères élevées et des poids moléculaires de macromolécules très élevés (> 200 000).
La facilité de manipulation et de copolymérisation de l'acrylate de 2-éthylhexyle permet une utilisation dans les polymérisations en émulsion, au solvant, en suspension et en masse.

Les esters d'acrylate en général, qui comprennent l'acrylate de 2-éthylhexyle, le BA, le MMA et le GAA, représentent une famille polyvalente de blocs de construction pour des milliers de compositions de copolymères.
La copolymérisation peut conduire à des propriétés bien conçues requises dans une large gamme d'applications d'utilisation finale.

Le monomère de styrène et les monomères acryliques à chaîne courte comme le méthacrylate de méthyle produisent des polymères plus durs et plus cassants, avec des caractéristiques de cohésion et de résistance élevées.
Les monomères à longue chaîne tels que l'acrylate de 2-éthylhexyle et le BA permettent d'obtenir des polymères souples, flexibles et collants avec des caractéristiques de résistance inférieures.



PRÉPARATION DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle est obtenu en estérifiant l'acide acrylique et le 2-éthylhexanol avec de l'acide sulfurique comme catalyseur, puis en neutralisant, désalcoolisant et rectifiant le mélange.



PROFIL DE RÉACTIVITÉ DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
Profil de réactivité
L'acrylate de 2-éthylhexyle polymérise facilement en présence de chaleur et de lumière générant beaucoup de chaleur; réagit avec les oxydants forts



STOCKAGE ET MANIPULATION DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
Afin d'éviter la polymérisation, l'acrylate de 2-éthylhexyle doit toujours être stocké sous air, et jamais sous gaz inertes.
La présence d'oxygène est nécessaire pour que le stabilisateur fonctionne efficacement.
L'acrylate de 2-éthylhexyle doit contenir un stabilisant et la température de stockage ne doit pas dépasser 35 °C.

Pour des périodes de stockage prolongées supérieures à 4 semaines, l'acrylate de 2-éthylhexyle est conseillé pour reconstituer la teneur en oxygène dissous.
Dans ces conditions, on peut s'attendre à une stabilité au stockage d'un an.
Afin de minimiser la probabilité d'un stockage excessif, la procédure de stockage doit suivre strictement le principe « premier entré, premier sorti ».

Les réservoirs de stockage et les tuyaux doivent être en acier inoxydable ou en aluminium.
Bien que l'acrylate de 2-éthylhexyle ne corrode pas l'acier au carbone, il existe un risque de contamination en cas de corrosion.
Les réservoirs de stockage, les pompes et les tuyaux doivent être mis à la terre.



DEVENIR ENVIRONNEMENTAL DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
AIR, ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle devrait exister presque entièrement en phase vapeur sur la base de sa pression de vapeur. Il peut se photolyser au soleil. Il réagira avec les radicaux hydroxyles produits photochimiquement et l'ozone avec une demi-vie estimée à 10,3 heures.



EAU, ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle ne devrait pas s'adsorber sur les sédiments ou les particules en suspension.
L'acrylate de 2-éthylhexyle peut s'hydrolyser, en particulier dans les eaux alcalines sur la base des données d'hydrolyse pour l'acrylate d'éthyle structurellement similaire.
L'acrylate de 2-éthylhexyle peut se photolyser au soleil.
L'acrylate de 2-éthylhexyle peut se biodégrader en fonction de la biodégradabilité de l'acrylate de butyle et de l'acrylate d'éthyle.
L'acrylate de 2-éthylhexyle se volatilisera de manière significative à partir de l'eau avec une demi-vie estimée entre 7,3 heures et 2,7 jours.



SOL, ACRYLATE DE 2-ÉTHYLHEXYLE :
L'acrylate de 2-éthylhexyle devrait présenter une mobilité modérée dans le sol.
L'acrylate de 2-éthylhexyle peut s'hydrolyser, en particulier dans les sols alcalins sur la base des données d'hydrolyse pour l'acrylate d'éthyle structurellement similaire.
L'acrylate de 2-éthylhexyle peut se biodégrader en fonction de la biodégradabilité de l'acrylate de butyle.
L'acrylate de 2-éthylhexyle peut se volatiliser à partir du sol proche de la surface et d'autres surfaces.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
Formule chimique : C11H20O2
Masse molaire : 184,279 g•mol−1
Densité : 0,885 g/mL
Point de fusion : -90 ° C (-130 ° F; 183 K)
Point d'ébullition : 215–219 ° C (419–426 ° F; 488–492 K)
Formule moléculaire : C11H20O2
Poids moléculaire : 184,28
Numéro MDL : MFCD00009495
Fichier MOL : 103-11-7.mol
Poids moléculaire : 184,27 g/mol
XLogP3-AA : 3,8
Nombre de donneurs d'obligations hydrogène : 0
Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 8
Masse exacte : 184,146329876 g/mol
Masse monoisotopique : 184,146329876 g/mol
Surface polaire topologique : 26,3 Å ²
Nombre d'atomes lourds : 13
Charge formelle : 0
Complexité : 152
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui
Point de fusion : -90°C

Point d'ébullition : 215-219 °C (lit.)
Densité : 0,885 g/mL à 25 °C (lit.)
densité de vapeur : 6,4 (vs air)
pression de vapeur : 0,15 mm Hg ( 20 °C)
indice de réfraction : n20/D 1,436(lit.)
Point d'éclair : 175 °F
température de stockage : Conserver en dessous de +30 °C.
solubilité : 0.1g/l
forme : Liquide
couleur: Clair
Odeur : odeur d'ester
Viscosité : 1,7 mPa.s ( 20 °C)
limite explosive : 0,9-6,0 % (V)
Solubilité dans l'eau : <0,1 g/100 mL à 22 ºC
BRN : 1765828
Limites d'exposition ACGIH : TWA 5 mg/m3
NIOSH : TWA 5 mg/m3
Stabilité: Stabilité Stable,
mais polymérise facilement, il est donc généralement inhibé par l'hydroquinone ou son éther monométhylique.
Sensible à l'hydrolyse.
Incompatible avec les agents oxydants.
InChIKey : GOXQRTZXKQZDDN-UHFFFAOYSA-N
LogP : 4 à 20 ℃
N° CAS : 103-11-7
Aspect : Liquide incolore
Odeur : Forte odeur d'ester
Point d'ébullition ( ℃ ): 213,5 ( 101325Pa )

Aspect : clair, incolore
Forme physique : liquide
Odeur : douce
Masse moléculaire : 184,3 g/mol
Densité : 0,885 g/cm3 à 20 °C
Point d'ébullition : 91 °C à 13 mbar
Point de congélation : env. – 90 °C
Viscosité : 1,7 mPa ∙ s à 20 °C
Point de vapeur : 0,1 mbar à 20 °C
Numéro CAS : 103-11-7
Numéro d'index CE : 607-107-00-7
Numéro CE : 203-080-7
Formule de Hill : C₁₁H₂₀O₂
Formule chimique : CH₂=CHCOOCH₂CH(C₂H₅)(CH₂)₃CH₃
Masse molaire : 184,27 g/mol
Code SH : 2916 12 00

Point d'ébullition : 229 °C (1013 hPa)
Densité : 0,887 g/cm3 (20 °C)
Limite d'explosivité : 0,9 - 6,0 %(V)
Point d'éclair : 86 °C
Température d'inflammation : 230 °C
Point de fusion : -90 °C
Pression de vapeur : 0,12 hPa (20 °C)
Solubilité : 0,1 g/l
Aspect : liquide clair incolore à jaune pâle (est)
Dosage : 95,00 à 100,00
Liste Codex des produits chimiques alimentaires : non
Gravité spécifique : 0,88500 à 0,88800 à 20,00 °C.
Livres par gallon - (est). : 7,373 à 7,398
Indice de réfraction : 1,43300 à 1,43700 à 20,00 °C.
Point d'ébullition : 213,50 °C. @ 760,00 mmHg
Pression de vapeur : 0,100000 mmHg à 25,00 °C. (HNE)
Point d'éclair : 175,00 °F. TCC ( 79,44 °C. )
logP (d/s): 4.330 (est)
Soluble dans : eau, 100 mg/L @ 25 °C (exp)
eau, 16,8 mg/L à 25 °C (est)

Description : Liquide incolore avec une forte odeur de moisi.
Pureté : 99,5 %
Point de fusion : -90°C
Point d'ébullition : 213-218°C
Densité : 0,887 g/ml (à 20°C)
Pression de vapeur : 0,14 mmHg (19 Pa) à 20° C
Concentration des vapeurs saturées : 184 ppm (calculée) à 20° C et 760 mmHg.
Densité de vapeur : 6,35 (air = 1)
Facteur de conversion : 1 ppm = 7,66 mg/m3 20° C
1 mg/m3 = 0,130 ppm 1 atmosphère
Point d'éclair : 82-92° C (coupe ouverte), 86° C (coupe fermée)
Limites d'inflammabilité : 0,8-6,4 (v/v% dans l'air)
Température d'auto-inflammation : 252° C
Solubilité : Eau 0,1g/l (à 20°C).
Soluble dans les alcools, les éthers et de nombreux solvants organiques
(acétone, benzène, éther éthylique, heptane, méthanol, tétrachlorure de carbone).
logPoctanol/eau : 3,67 - 4,32
Constante de Henry : 3,54 x 10-4 (atm x m3)/mole à 20° C.
Valeur pKa : -
Stabilité : Se polymérise facilement à moins d'être inhibé.
Réagit facilement avec les agents électrophiles, radicaux libres et nucléophiles.

État physique : liquide
Couleur : Aucune donnée disponible
Odeur : Aucune donnée disponible
Point de fusion/point de congélation : Aucune donnée disponible
Point initial d'ébullition et intervalle d'ébullition : 215 - 219 °C - lit.
Inflammabilité (solide, gaz): Aucune donnée disponible
Limites supérieures/inférieures d'inflammabilité ou d'explosivité : Aucune donnée disponible
Point d'éclair : Aucune donnée disponible
Température d'auto-inflammation : Aucune donnée disponible
Température de décomposition : Aucune donnée disponible
pH : Aucune donnée disponible
Viscosité
Viscosité, cinématique : Aucune donnée disponible
Viscosité, dynamique : Aucune donnée disponible
Solubilité dans l'eau : à 25 °C soluble
Coefficient de partage : n-octanol/eau :
log Pow: 4,1 à 25 °C - Potentiel de bioaccumulation, (Lit.)
Pression de vapeur : Aucune donnée disponible
Densité : 0,885 g/cm3 à 25 °C - lit.
Densité relative : Aucune donnée disponible
Densité de vapeur relative : Aucune donnée disponible
Caractéristiques des particules : Aucune donnée disponible
Propriétés explosives : Aucune donnée disponible
Propriétés comburantes : aucune
Autres informations de sécurité : Aucune donnée disponible

Description physique : Liquide clair avec une odeur agréable.
Point d'ébullition : 417-424°F
Poids moléculaire : 184,3
Point de congélation/point de fusion : -130 °F
Pression de vapeur : 0,01 mmHg
Point d'éclair : 180 °F
Densité de vapeur : 6,35
Gravité spécifique : 0,885
Potentiel d'ionisation :
Limite inférieure d'explosivité (LIE) : 0,8 %
Limite supérieure d'explosivité (LSE) : 6,4 %
Cote de santé NFPA : 1
Classement au feu NFPA : 2
Note de réactivité NFPA : 1
État Physique (20°C): Liquide
État Physique (25°C): Liquide
Densité (kg/m3) : 885 [Kg/m³] à une température de 20°C
897 [Kg/m³] à une température de 5°C
891,8 [Kg/m³] à une température de 10°C
886,1 [Kg/m³] à une température de 20°C
Viscosité cinématique (cSt):
4.4482 [cSt] à une température de 5°C
4.1826 [cSt] à une température de 10°C
6.2634 [cSt] à une température de 20°C
Masse molaire (g/mol) : 184,2

Densité du gaz (kg/m3): 8.192
Solubilité (g/L):
100 [g/L] à une température de 25°C et une salinité de 0‰
36 [g/L] à une température de 20°C et une salinité de 0‰
35 [g/L] à une température de 20°C et une salinité de 5‰
21 [g/L] à une température de 20°C et une salinité de 30‰
Point d'ébullition (°C): 214
Point de fusion (°C): -90
Tension superficielle (mN/m) :
26 [mN/m] à une température de 20°C
27,91 [mN/m] à une température de 5,4°C
27,68 [mN/m] à une température de 11,3°C
26,82 [mN/m] à une température de 19,3°C
Tension interfaciale (mN/m) :
30 [mN/m] à une température de 20°C et une salinité de 0‰
Pression de vapeur (Pa):
13 [Pa] à une température de 20°C
24 [Pa] à une température de 25°C
Température d'inflammation (°C): 384
Point d'éclair (°C): 82
Point d'éclair (coupe fermée Pensky-Martens) (°C) : 87,5
Limite inférieure d'explosivité (LIE) (volume %) : 0,87
Limite supérieure d'explosivité (LSE) (volume %) : 6,4
Enthalpie de combustion (J/Kg): 33800000
Efficacité de combustion (%) : 96
Débit massique de la surface de combustion (Kg/(m²•s)) : 0,05
Fraction Rad (%) : 23
Constante de Henry (mol/(m³•Pa)): 45



MESURES DE PREMIERS SOINS de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Description des mesures de premiers secours :
*Conseils généraux :
Montrez cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau à l'eau/se doucher.
Consultez un médecin.
*En cas de contact avec les yeux :
Après contact visuel :
Rincer abondamment à l'eau.
Retirer les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication de toute attention médicale immédiate et traitement spécial nécessaire :
Pas de données disponibles



MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE DE L'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériel de confinement et de nettoyage :
Couvrir les drains.
Recueillir, lier et pomper les déversements.
Respecter les éventuelles restrictions matérielles.
Reprendre avec un matériau absorbant les liquides.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Eau
Mousse
Dioxyde de carbone (CO2)
Poudre sèche
*Moyens d'extinction inappropriés :
Pour cette substance/ce mélange, aucune limitation des agents extincteurs n'est donnée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION PERSONNELLE de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection de la peau :
Manipuler avec des gants.
Se laver et se sécher les mains.
Coordonnées complètes :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,4 mm
Temps de percée : 480 min
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,4 mm
Temps de percée : 480 min
*Protection du corps :
vêtements de protection
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sensible à la lumière.



STABILITÉ et RÉACTIVITÉ de l'ACRYLATE DE 2-ÉTHYLHEXYLE :
-Réactivité:
Pas de données disponibles
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante) .
-Possibilité de réactions dangereuses:
Pas de données disponibles
-Conditions à éviter :
Pas d'information disponible
-Matériaux incompatibles :
Pas de données disponibles



SYNONYMES :
Prop-2-énoate de 2-éthylhexyle
Acrylate de 2-éthylhexyle
2-EHA
ACRYLATE DE 2-ÉTHYLHEXYLE
103-11-7
Prop-2-énoate de 2-éthylhexyle
2-Ethylhexyl 2-propénoate
2-ÉTHYLHEXYLACRYLATE
Acrylate de 2-éthyl-1-hexyle
Acide 2-propénoïque, ester 2-éthylhexylique
Acide acrylique, ester 2-éthylhexylique
1-hexanol, 2-éthyl-, acrylate
Acrylate de 2-éthylexyle
Acrylate de mono(2-éthylhexyle)
NSC 4803
CCRIS 3430
9003-77-4
HSDB 1121
2EHA
éthylhexylacrylate
UNII-HR49R9S6XG
EINECS 203-080-7
HR49R9S6XG
BRN 1765828
ester 2-éthylhexylique d'acide acrylique
DTXSID9025297
AI3-03833
Acrylate de 2-éthylhexanol
ACRYLATE DE BASE JC
NORSOCRYL 2-EHA
NSC-4803
DTXCID405297
CHEBI:82465
EC 203-080-7
EINECS 215-330-2
2EHA
EHA
JR 910
NSC 4803
Norsocryl 2-EHA
ACRYLATE DE 2-ÉTHYLHEXYLE (CIRC)
ACRYLATE DE 2-ÉTHYLHEXYLE [CIRC]
CAS-103-11-7
2-éthylhexylacrylate
1-hexanol, acrylate
Monomère d'acrylate d'octyle
propénoate de 2-éthylhexyle
Monomère d'ester 2-éthylhexylique d'acide acrylique
EAI (code CHRIS)
Acrylate d'éthyl-2 hexyle
Acide acrylique 2-éthylhexyle
2-éthylhexyl-2-propénoate
Résine d'acrylate de 2-éthylhexyle
SCHEMBL14869
Monomère d'acrylate de 2-éthylhexyle
Ester d'acide acrylique-2-éthylhexylique
Acrylate d'éthylhexyle (2-isomère)
CHEMBL1574328
Monomère d'ester octylique d'acide acrylique
NSC4803
ACRYLATE D'ÉTHYLHEXYLE [INCI]
LS-89
Ester 2-éthylhexylique de l'acide acrylique
Tox21_202053
Tox21_303227
WLN : 4Y2 et 1OV1U1
MFCD00084372
AKOS015894409
(+/-)-Ester 2-éthylhexylique d'acide acrylique
NCGC00091115-01
NCGC00091115-02
NCGC00091115-03
NCGC00256960-01
NCGC00259602-01
Acrylate de 2-éthylhexyle, étalon analytique
LS-123641
A0144
FT-0612226
Monomère d'acrylate de 2-éthylhexyle, stab. avec MEHQ
C19420
A896619
Q209383
Q-200277
Monomère d'acrylate de 2-éthylhexyle (stabilisé avec MEHQ)
Acrolate d'éthylhexyle, 2-
(Ester d'acide acrylique-2-éthylhexylique)
Acrolate d'éthylhexyle, 2-
(Acide acrylique, ester 2-éthylhexylique)
Acrylate de 2-éthylhexyle, 98 %, contient >=0,001-<=0,11 % d'hydroquinone d'éther monométhylique comme stabilisant
2-EHA;EHA;2-éthyl
ACRYLATE DE 2-ÉTHYLHEXYLE extra-pur
Acide acrylique 2-éthylhexyle
2-ÉTHYLHEXYLE 2-PROPÉNOATE
ACRYLATE D'OCTYLE
Propénoate de 2-éthylhexyle
Acrylate de 2-éthyl-1-hexyle
ESTER 2-ÉTHYLHEXIQUE D'ACIDE ACRYLIQUE
Acide 2-propénoïque, ester 2-éthylhexylique
Acide acrylique, ester 2-éthylhexylique
2-Ethylhexyl 2-propénoate
Acrylate de 2-éthylhexanol
1-hexanol, 2-éthyl-, acrylate
Acrylate de 2-éthyl-1-hexyle
2-Ethylhexylester kyseliny akrylove
Ester 2-éthylhexylique de l'acide acrylique
2EHA ; NSC 4803 ; acrylate d'éthylhexyle
Acide acrylique, ester 2-éthylhexylique
1-acryloyloxy-2-éthyl-hexane
3-acryloyloxyméthyl-heptane
2-Ethylhexyl 2-propénoate
1-hexanol, 2-éthyl-, acrylate
Octyl-acrylate
Acide 2-propénoïque, ester 2-éthylhexylique
Acide 2-propénoïque, ester octylique
ACIDE ACRYLIQUE
ESTER DE 2-ÉTHYLHEXYLE
Acrylate de 2-éthyl-1-hexyle
2-éthylhexyle 2-propénoate
Acide 2-propénoïque
Ester 2-éthylhexylique
Acide acrylique
Ester 2-éthylhexylique
Acrylate d'éthylhexyle
2-éthylhexylprop-2-énoate
Acrylate de 2-éthylhexyle
Acrylate D'Ethyl 2-Hexyle
EHA
1-hexanol, 2-éthyl-, acrylate
Acrylate de 2-éthyl-1-hexyle
le 2-propénoate de 2-éthylhexyle;
Acide 2-propénoïque, ester 2-éthylhexylique
Acide acrylique, ester 2-éthylhexylique
Acrylate d'octyle
Acrylate de mono(2-éthylhexyle)
2-EHA
Ester 2-éthylhexylique de l'acide 2-propénoïque
Acrylate de 2-éthyl-1-hexyle
2-Ethylhexyl 2-propénoate

ACRYLATE DE 2-HYDROXYÉTHYLE (HEA)
L'acrylate de 2-hydroxyéthyle (HEA) forme des homopolymères et des copolymères.
L'acrylate de 2-hydroxyéthyle (HEA) est principalement utilisé soit comme co-monomère dans la fabrication de polymères, soit comme réactif chimique dans la fabrication d'intermédiaires chimiques.
Les co-réactifs avec l'acrylate de 2-hydroxyéthyle (HEA) comprennent les isocyanates, anhydrides et époxydes aromatiques et aliphatiques.

CAS : 818-61-1
FM : C5H8O3
MW : 116,12
EINECS : 212-454-9

Synonymes
2-(Acryloyloxy)éthanol ; 2-hydroxyéthylester de kyseliny akrylove ; 2-hydroxyéthylesterkyselinyakrylove ; acide 2-propenoïque, 2-hydroxyéthylester ; acrylate de bêta-hydroxyéthyle ; acrylate de bêta-hydroxyéthyle ; Bisomère 2HEA ; bisomère2hea ; ACRYLATE DE 2-HYDROXYÉTHYLE
;818-61-1;Acrylate d'hydroxyéthyle;Prop-2-énoate de 2-hydroxyéthyle;Acide 2-propénoïque, ester de 2-hydroxyéthyle;Monoacrylate d'éthylèneglycol;Bisomère 2HEA;Ester de 2-hydroxyéthyle de l'acide acrylique
;2-hydroxyéthylacrylate;2-(acryloyloxy)éthanol;éthylèneglycol, acrylate;acide acrylique, 2-hydroxyéthylester;éthylèneglycol, monoacrylate;CCRIS 3431;HSDB 1123;EINECS 212-454-9
;2-Hydroxyéthylester kyseliny akrylove;UNII-25GT92NY0C;BRN 0969853;25GT92NY0C;26022-14-0
;DTXSID2022123;MFCD00002865;DTXCID202123;HEA;EC 212-454-9;ACRYLATE D'HYDROXYÉTHYLE, 2-;26403-58-7
;MFCD00081878;CAS-818-61-1;Acrylate de 2-hydroxyéthyle (7,56 cp(15,5 degrés C));2-Hydroxyéthylester kyseliny akrylove [tchèque];hydroxyéthylacrylate;acrylate d'hydroxyéthyle
2-hydroxyéthylacrylate;acrylate d'éthylèneglycol;acrylate d'éthylèneglycol;acrylate de 2-hydroxyéthyle;acrylate de bêta-hydroxyéthyle;éthandiol-1,2-monoacrylate;2-hydroxyéthyl-2-propénoate
;.beta.-Hydroxyéthylacrylate;SCHEMBL14875;MLS002174257;Ester hydroxyéthylique de l'acide acrylique
;CHEMBL1330518;Acrylate de 2-hydroxyéthyle, 97,5 %;ester de 2-hydroxyéthyle de l'acide acrylique;Tox21_201430
;Tox21_302968;Ester 2-hydroxyéthylique de l'acide 2-propénoïque;Acide 2-propénoïque, 2-hydroxyéthylester
;AKOS015856805;ACRYLATE DE 2-HYDROXYÉTHYLE [HSDB];ACRYLATE DE 2-HYDROXYÉTHYLE [INCI];CS-W013616
;NCGC00090958-01;NCGC00090958-02;NCGC00256462-01;NCGC00258981-01;LS-13051;SMR001253953
;A0743;NS00006157;Acrylate de 2-hydroxyéthyle (stabilisé avec MEHQ);D78194;Acrylate de 2-hydroxyéthyle, (stabilisé avec MEHQ);A840207;J-521472;Q27253959;InChI=1/C5H8O3/c1-2-5(7) 8-4-3-6/h2,6H,1,3-4H ; acrylate de 2-hydroxyéthyle, 96 %, contient 200 à 650 ppm d'éther monométhylique d'hydroquinone comme inhibiteur

Les polymères et intermédiaires chimiques fabriqués à base d'acrylate de 2-hydroxyéthyle (HEA) trouvent des applications dans les revêtements de finition automobiles, les revêtements architecturaux, les résines photodurcissantes et les adhésifs.
À l'échelle mondiale, environ la moitié de l'acrylate de 2-hydroxyéthyle (HEA) produit est utilisée dans la production d'émaux acryliques pour l'industrie automobile, où une couche de finition transparente est appliquée sur une couche de base pigmentée pour augmenter la protection contre la corrosion et la durabilité.
L'acrylate de 2-hydroxyéthyle (HEA) est un monomère fonctionnel pour la fabrication de résines acryliques thermodurcissables.
Un liquide clair et incolore.
Moins dense que l'eau.
Vapeurs plus lourdes que l'air.
Corrosif pour les tissus.
Point d'éclair 120°F.

Peut polymériser de manière exothermique s'il est chauffé ou contaminé.
Si la polymérisation a lieu à l'intérieur d'un récipient, celui-ci peut se rompre violemment.
Utilisé pour fabriquer du plastique.
L'acrylate de 2-hydroxyéthyle (HEA) est un monomère qui appartient à la classe des acrylates.
L'acrylate de 2-hydroxyéthyle (HEA) est utilisé dans la synthèse de polymères, tels que les éthers de glycol et les polyacrylates.
L'acrylate de 2-hydroxyéthyle (HEA) a un poids moléculaire élevé et une faible réactivité, ce qui en fait un excellent candidat pour une utilisation dans les dispositifs médicaux.
Il a été démontré que l'acrylate de 2-hydroxyéthyle (HEA) a une activité antibactérienne contre Staphylococcus aureus résistant à la méthicilline (SARM) et Clostridium perfringens.
L'activité antimicrobienne peut être due à sa capacité à se lier aux membranes bactériennes, entraînant la mort cellulaire par lyse.

L'acrylate de 2-hydroxyéthyle (HEA) peut également former des liaisons hydrogène avec d'autres molécules, ce qui peut contribuer à ses propriétés antimicrobiennes.
L'acrylate de 2-hydroxyéthyle (HEA) est un produit chimique organique et un composé aliphatique.
L'acrylate de 2-hydroxyéthyle (HEA) a la formule C5H8O3 et le numéro d'enregistrement CAS 818-61-1.
L'acrylate de 2-hydroxyéthyle (HEA) est enregistré REACH avec un numéro européen de 212-454-9.
L'acrylate de 2-hydroxyéthyle (HEA) a une double fonctionnalité contenant un groupe acrylique polymérisable et un groupe hydroxy terminal.
L'acrylate de 2-hydroxyéthyle (HEA) est utilisé pour fabriquer des polymères en émulsion avec d'autres monomères et les résines résultantes sont utilisées dans les revêtements, les mastics, les adhésifs et les élastomères et d'autres applications.
La toxicité du matériau a été étudiée et est assez bien comprise.

Dans la fabrication de polymères, l'acrylate de 2-hydroxyéthyle (HEA) peut être copolymérisé avec de l'acide acrylique, des acrylates, des méthacrylates, de l'acétate de vinyle, du chlorure de vinyle, du chlorure de vinylidène, du styrène, du butadiène, etc.
L'acrylate de 2-hydroxyéthyle (HEA) est un monomère acrylate.
L'acrylate de 2-hydroxyéthyle (HEA) forme des homopolymères et des copolymères.
Présente une résistance aux rayures, une résistance aux intempéries et a une faible teneur en COV.
Les copolymères d'acrylate de 2-hydroxyéthyle (HEA) peuvent être préparés avec de l'acide acrylique et ses sels, des amides et des esters, ainsi qu'avec des méthacrylates, de l'acrylonitrile, des esters d'acide maléique, de l'acétate de vinyle, du chlorure de vinyle, du chlorure de vinylidène, du styrène, du butadiène, des polyesters insaturés et un séchage. huiles, etc
L'acrylate de 2-hydroxyéthyle (HEA) subit facilement des réactions d'addition avec une grande variété de composés organiques et inorganiques.

Propriétés chimiques de l'acrylate de 2-hydroxyéthyle (HEA)
Point de fusion : -60 °C
Point d'ébullition : 90-92 °C12 mm Hg(lit.)
Densité : 1,106 g/mL à 20 °C
Densité de vapeur : >1 (vs air)
Pression de vapeur : <0,1 mm Hg (20 °C)
Indice de réfraction : n20/D 1,45 (lit.)
Fp : 209 °F
Température de stockage : 2-8°C
Forme : Liquide huileux
pka : 13,85 ± 0,10 (prédit)
Couleur : Jaune à marron
Solubilité dans l'eau : soluble
Sensible : sensible à la lumière
Numéro de référence : 969853
Limites d'exposition ACGIH : TWA 5 mg/m3
NIOSH : VME 5 mg/m3
InChIKey : OMIGHNLMNHATMP-UHFFFAOYSA-N
LogP : -0,17 à 25℃
Référence de la base de données CAS : 818-61-1 (référence de la base de données CAS)
Référence chimique NIST : Acrylate de 2-hydroxyéthyle (HEA)(818-61-1)
Système d'enregistrement des substances de l'EPA : Acrylate de 2-hydroxyéthyle (HEA) (818-61-1)

L'acrylate de 2-hydroxyéthyle (HEA) est un liquide clair et incolore.
miscible à l'eau, soluble dans les solvants organiques généraux.
Le produit contient généralement 400 ppm d’éther méthylique d’hydroquinone, un inhibiteur de polymérisation.
L'acrylate de 2-hydroxyéthyle (HEA) est un monomère acrylate difonctionnel doté d'une réactivité élevée caractéristique.
L'acrylate de 2-hydroxyéthyle (HEA) est utilisé dans les produits acryliques pour les revêtements, les adhésifs et les oligomères réactifs aux UV.
L'acrylate de 2-hydroxyéthyle (HEA) peut être utilisé pour la réticulation avec des isocyantes ou des mélamines.
Le matériau est un liquide clair, blanc comme l’eau, avec une odeur douce mais piquante semblable à celle d’un ester.
L'acrylate de 2-hydroxyéthyle (HEA) a un point de congélation bas.

Les usages
En tant que monomère réactif, l'acrylate de 2-hydroxyéthyle (HEA) est utilisé comme agent de réticulation pour les résines, les plastiques et les modificateurs de caoutchouc.
De plus, l'acrylate de 2-hydroxyéthyle (HEA) est utilisé dans la synthèse de copolymères blocs amphiles par polymérisation radicalaire vivante médiée par le nitroxyde.
En plus de cela, l'acrylate de 2-hydroxyéthyle (HEA) est utilisé pour préparer du poly(acrylate d'hydroxyéthyle) accordé par polymérisation radicalaire par transfert d'atomes.
L'acrylate de 2-hydroxyéthyle (HEA) est un monomère acrylique utilisé dans les encres UV, les adhésifs, les laques, les ongles artificiels, etc.

L'utilisation la plus courante de ce matériau consiste à le copolymériser avec d'autres monomères d'acrylate et de méthacrylate pour fabriquer des émulsions et d'autres polymères, notamment des hydrogels.
La modification des caoutchoucs et composés similaires constitue également une utilisation du matériau.
Les polymères résultants peuvent être utilisés pour fabriquer des adhésifs sensibles à la pression.
L'acrylate de 2-hydroxyéthyle (HEA) est principalement utilisé pour la résine de revêtement acrylique durcissant à la chaleur, la résine de revêtement acrylique photopolymérisable, la résine de revêtement photosensible, la résine de revêtement par galvanoplastie soluble dans l'eau, l'adhésif, l'agent de traitement textile, le traitement des esters et le modificateur de polymère, l'acide polycarboxylique. agent réducteur d'eau Dans d'autres aspects, l'acrylate de 2-hydroxyéthyle (HEA) a les caractéristiques d'un dosage moindre, mais peut améliorer considérablement les performances du produit.

La synthèse
Il existe un certain nombre de brevets et de documents de synthèse pour produire ce matériau visant principalement à réduire ou à éliminer les métaux lourds en tant que catalyseurs.
Le processus de fabrication traditionnel nécessite la réaction de l'oxyde d'éthylène avec l'acide acrylique en présence d'un catalyseur métallique.
ACRYLATE DE BUTYLE
ACRYLATE DE BUTYLE = BA = ACIDE ACRYLIQUE BUTYL ESTER



Numéro CAS : 141-32-2
Numéro CE : 205-480-7
Numéro MDL : MFCD00009446
Formule chimique : C7H12O2




L'acrylate de butyle est un composé organique de formule C4H9O2CCH=CH2.
L'acrylate de butyle est un liquide incolore, l'acrylate de butyle est l'ester butylique de l'acide acrylique.
L'acrylate de butyle est métabolisé par la carboxylestérase ou des réactions avec le glutathion ; cette détoxification produit des déchets d'acide acrylique, de butanol et d'acide mercapturique, qui sont excrétés.
L'acrylate de butyle se présente sous la forme d'un liquide clair et incolore avec une forte odeur caractéristique.


L'acrylate de butyle est très légèrement soluble dans l'eau et un peu moins dense que l'eau.
L'acrylate de butyle forme une surface lisse sur l'eau.
Le point d'éclair de l'acrylate de butyle est de 105 °F.
La densité de l'acrylate de butyle est de 7,5 lb / gal.
L'acrylate de butyle est un ester d'acrylate obtenu par la condensation formelle du groupe hydroxy du butan-1-ol avec le groupe carboxy de l'acide acrylique.


L'acrylate de butyle est fonctionnellement lié à un butane-1-ol et à un acide acrylique.
L'acrylate de butyle se présente sous la forme d'un liquide clair et incolore avec une forte odeur caractéristique.
L'acrylate de butyle est très légèrement soluble dans l'eau et un peu moins dense que l'eau.
L'acrylate de butyle forme une surface lisse sur l'eau.


L'acrylate de butyle est utilisé pour fabriquer des peintures, des revêtements, des mastics, des mastics, des adhésifs.
L'acrylate de butyle est un liquide clair et incolore avec une forte odeur fruitée.
L'acrylate de butyle est un liquide incolore très visqueux avec une légère odeur.
L'acrylate de butyle est un liquide clair et incolore.


L'acrylate de butyle est un monomère vinylique.
L'acrylate de butyle subit une copolymérisation radicalaire avec la benzoxazine contenant un groupe vinyle pour donner des copolymères.
Des réactions de couplage de Heck des bromures d'aryle avec l'acrylate de n-butyle médiées par le sel de phosphine-imidazolium ont été rapportées.
La copolymérisation du styrène et de l'acrylate de n-butyle catalysée par CuBr/4,4'-di(5-nonyl)-2,2'-bipyridine a été décrite.
L'acrylate de butyle (BA) est l'ester de l'acide acrylique et du n-butanol.


L'acrylate de butyle est un monomère d'acrylate dont la formule moléculaire est CH2=CHCOO(CH2)3CH3.
L'acrylate de butyle est un liquide clair et raisonnablement volatil qui est légèrement soluble dans l'eau et complètement soluble dans les alcools, les éthers et presque tous les solvants organiques.
L'acrylate de butyle a un point d'éclair autour de 40°C et a une odeur fruitée et piquante distincte.
L'acrylate de butyle est facilement miscible avec d'autres solvants organiques et est facilement polymérisé avec des molécules monomères pour créer des chaînes polymères.

L'acrylate de butyle est l'ester d'acrylate en plus grand volume utilisé dans la production de copolymères tout acrylique, vinyl acrylique et styrène acrylique.
L'acrylate de butyle offre un bon rapport qualité-prix et représente environ 60 % de la demande mondiale de monomère d'ester acrylique, avec un volume de consommation de plus de 2 000 kilotonnes.
L'acrylate de butyle occupe une place particulière sur le marché des esters acryliques.
Les autres principaux esters d'acrylate comprennent l'acrylate de méthyle (MA), l'acrylate d'éthyle (EA) et l'acrylate de 2-éthylhexyle (2-EHA).


L'acrylate de butyle est utilisé comme «monomère doux» pour améliorer les propriétés et la ténacité à basse température.
L'acrylate de butyle doit être conservé à des températures inférieures à ~25°C (<80°F).
Avec l'inhibiteur MEHQ, l'acrylate de butyle doit être stocké sous atmosphère d'air, car la présence d'oxygène est requise avec ce stabilisant.
L'acrylate de butyle est un bloc de construction polyvalent pour les copolymères, offrant une excellente résistance aux intempéries et à la lumière du soleil, des performances à basse température, une hydrophobicité et une résistance à l'eau.


L'acrylate de butyle est un monomère d'acrylate dont la formule moléculaire est CH2=CHCOO(CH2)3CH3.
L'acrylate de butyle est un liquide clair et raisonnablement volatil qui est légèrement soluble dans l'eau et complètement soluble dans les alcools, les éthers et presque tous les solvants organiques.
L'acrylate de butyle a un point d'éclair autour de 40°C et a une odeur fruitée et piquante distincte.
L'acrylate de butyle est facilement miscible avec d'autres solvants organiques et est facilement polymérisé avec des molécules monomères pour créer des chaînes polymères.


L'acrylate de butyle est un liquide (5 hPa à ∼ 20 °C) dans des conditions environnementales normales.
À l'équilibre dans l'environnement, l'acrylate de butyle se répartira principalement dans l'air (95 %) et le reste dans l'eau (5 %).
Dans l'air, l'acrylate de butyle sera éliminé par réaction avec les radicaux hydroxyles produits photochimiquement (demi-vie de 28 h) et l'ozone (demi-vie de 6,5 jours).
Dans l'eau, l'acrylate de butyle est relativement stable à l'hydrolyse à des pH acides et neutres (demi-vie ≥ 1100 jours) mais se volatilise lentement dans l'air (constante de la loi de Henry de 21,9 Pa m–3 mol−1 à 25 °C) ou se biodégrade (élimination de 58 à 90 % en 28 jours).


D'après le coefficient de partage octanol-eau relativement faible de l'acrylate de butyle (log Koe de 2,38) et son métabolisme rapide dans les systèmes biologiques, l'acrylate de butyle ne présente pas de risque de bioaccumulation important.
L'acrylate de butyle est un liquide incolore au-dessus du point de congélation de l'acrylate de butyle de -64°C (-83°F). La température de transition vitreuse de son homopolymère est de -54°C (-65°F).
L'acrylate de butyle peut être polymérisé entre eux et copolymérisé avec d'autres monomères pour produire des polymères ayant les propriétés optimales pour votre application.


Liquide limpide incolore à l'odeur fruitée caractéristique.
L'acrylate de butyle est facilement miscible avec la plupart des solvants organiques.
L'acrylate de butyle est facilement polymérisé et affiche une large gamme de propriétés dépendant de la sélection du monomère et des conditions de réaction.
L'acrylate de butyle est utilisé pour les adhésifs à base de copolymères.


L'acrylate de butyle offre flexibilité, résistance aux intempéries, plastification interne, adhérence, gamme de dureté et résistance à l'abrasion ainsi qu'à l'huile ou aux graisses.
La durée de conservation de l'acrylate de butyle est de 1 an.
L'acrylate de butyle (n° CAS 141-32-2), ou acrylate de n-butyle, est un monomère d'acrylate à faible Tg qui est produit par l'estérification de l'acide acrylique avec du n-butanol.
L'incorporation d'acrylate de butyle dans un polymère contribue à améliorer l'adhérence, la flexibilité, la résistance aux chocs et la durabilité globale.


La flexibilité et l'adhésivité fournies par l'acrylate de butyle font de l'acrylate de butyle un monomère idéal pour la production de polymères utilisés dans les formules d'adhésifs et de mastics.
L'acrylate de butyle se présente sous la forme d'un liquide clair et incolore avec une forte odeur caractéristique.
Très légèrement soluble dans l'eau et un peu moins dense que l'eau.
Il se forme donc une nappe de surface sur l'eau.


L'acrylate de butyle également connu sous le nom de butyl-2-propenoate est un monomère d'acrylate avec une formule moléculaire de C7H12O2, CAS : 141-32-2.
L'acrylate de butyle est un liquide clair et volatil qui est légèrement soluble dans l'eau et complètement soluble dans les alcools, les éthers et presque tous les solvants organiques.
L'acrylate de butyle est un liquide inflammable avec un point d'éclair d'environ 39°C et a une odeur distincte d'acrylique fruitée et piquante.
L'acrylate de butyle (BA) est un monomère monofonctionnel constitué d'un groupe acrylate à haute réactivité caractéristique et d'un groupe hydrophobe cyclique.


Les copolymères d'acrylate de butyle (BA) peuvent être préparés avec de l'acide (mét)acrylique et ses sels, amides et esters, et avec des méthacrylates, de l'acrylonitrile, des esters d'acide maléique, de l'acétate de vinyle, du chlorure de vinyle, du chlorure de vinylidène, du styrène, du butadiène, des polyesters insaturés et huiles siccatives, etc.
L'acrylate de butyle (BA) est une matière première très utile pour les synthèses chimiques car l'acrylate de butyle subit facilement des réactions d'addition avec une grande variété de composés organiques et inorganiques.


L'acrylate de butyle est un liquide clair et incolore avec une forte odeur fruitée.
Les seuils olfactifs varient considérablement.
L'acrylate de butyle est un liquide incolore à odeur piquante.
L'acrylate de butyle est facilement miscible avec la plupart des solvants organiques.
L'acrylate de butyle est un ester d'acrylate obtenu par la condensation formelle du groupe hydroxy du butan-1-ol avec le groupe carboxy de l'acide acrylique.


L'acrylate de butyle est un liquide clair et incolore avec une forte odeur caractéristique.
L'acrylate de butyle est un produit chimique créé en estérifiant l'acide acrylique et le butanol normal.
L'acrylate de butyle est principalement utilisé pour créer des homopolymères et des copolymères (exemples : acide acrylique, ester, amide, acide méthacrylique, acrylonitrile, acide maléique, acétate de vinyle, chlorure de vinyle, chlorure de vinylidène, styrène, butadiène, résine de polyester insaturé).


L'homopolymère et le copolymère créés sont ensuite transformés en ingrédients de base d'agent de traitement des fibres, de colle, de peinture, de résine synthétique, de caoutchouc acrylique, d'émulsion.
L'acrylate de butyle est un monomère acrylique majeur du groupe des esters acryliques, qui est dérivé de l'acide acrylique pour conférer des propriétés de performance à une large gamme de polymères.
L'acrylate de butyle est un liquide transparent incolore.


L'acrylate de butyle est un liquide clair et incolore à l'odeur fruitée.
L'acrylate de butyle est miscible avec la plupart des solvants organiques dans des conditions atmosphériques ambiantes.
Lors de la polymérisation, l'acrylate de butyle produit une large gamme d'homopolymères et de copolymères aux propriétés polyvalentes en fonction du ou des monomères et des conditions de réaction.
L'acrylate de butyle est un liquide clair et incolore avec une forte odeur distinctive.


L'acrylate de butyle peut être polymérisé entre eux et copolymérisé avec d'autres monomères pour produire des polymères ayant les propriétés optimales pour votre application.
L'acrylate de butyle est un liquide incolore clair avec une odeur fruitée caractéristique.
L'acrylate de butyle est facilement miscible avec la plupart des solvants organiques.
L'acrylate de butyle est facilement polymérisé et affiche une large gamme de propriétés dépendant de la sélection du monomère et des conditions de réaction.


L'acrylate de butyle est un composé chimique du groupe des esters acryliques.
L'acrylate de butyle est un liquide inflammatoire, sensible à la lumière, incolore et à l'odeur piquante.
L'acrylate de butyle est un monomère d'acrylate dont la formule moléculaire est CH2=CHCOO(CH2)3CH3.
L'acrylate de butyle est un liquide clair et raisonnablement volatil qui est légèrement soluble dans l'eau et complètement soluble dans les alcools, les éthers et presque tous les solvants organiques.


L'acrylate de butyle est un liquide raisonnablement inflammable avec un point d'éclair d'environ 40 ° C et a une odeur fruitée et piquante distincte.
L'acrylate de butyle est facilement miscible avec d'autres solvants organiques et est facilement polymérisé avec des molécules monomères pour créer des chaînes polymères.
L'acrylate de butyle forme des homopolymères et des copolymères.
Les copolymères d'acrylate de butyle peuvent être préparés avec l'acide acrylique et ses sels, amides et esters, et avec les méthacrylates, l'acrylonitrile, les esters d'acide maléique, l'acétate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le styrène, le butadiène, les polyesters insaturés et les huiles siccatives, etc.


L'acrylate de butyle est également une matière première très utile pour les synthèses chimiques, car l'acrylate de butyle subit facilement des réactions d'addition avec une grande variété de composés organiques et inorganiques.
L'acrylate de butyle est classiquement produit dans des réacteurs discontinus catalysés par des catalyseurs homogènes fortement acides.
La densité relative de l'acrylate de butyle est de 0,894.
Le point de fusion de l'acrylate de butyle est de -64,6 °C.
Le point d'ébullition de l'acrylate de butyle est de 146 ~ 148 degrés C; 69 degrés Celsius (6,7 kPa).


Le point d'éclair de l'acrylate de butyle (coupe fermée) est de 39 °c.
L'indice de réfraction de l'acrylate de butyle est de 4174.
L'acrylate de butyle est soluble dans l'éthanol, l'éther, l'acétone et d'autres solvants organiques.
L'acrylate de butyle est presque insoluble dans l'eau, 20 degrés de solubilité dans l'eau de 0,14 g/lOOmL.
L'acrylate de butyle est classé comme un hydrocarbure insaturé.


L'acrylate de butyle est un solide cristallin incolore et hygroscopique qui se présente sous la forme d'un liquide incolore translucide avec une saveur fruitée distincte.
L'acrylate de butyle est soluble dans les solvants organiques mais a une solubilité réduite dans l'eau et a une densité inférieure à celle de l'eau.
L'acrylate de butyle polymérise facilement et présente une grande variété de propriétés en fonction des conditions de réaction et du monomère utilisé.
L'acrylate de butyle est un liquide clair et incolore à l'odeur fruitée. Il est utilisé dans la production d'homopolymères et de copolymères.
L'acrylate de butyle offre une résistance à l'eau, une flexibilité à basse température et une résistance aux intempéries et à la lumière du soleil lorsqu'il est utilisé dans des applications de peinture au latex.


L'acrylate de butyle est un liquide clair et incolore avec une odeur piquante. L'acrylate de butyle forme des homopolymères et des copolymères.
Des copolymères d'acrylate de butyle peuvent être préparés avec de l'acide acrylique et ses sels, amides et esters.
La molécule d'acrylate de butyle contient un total de 20 liaison(s) Il y a 8 liaison(s) autre(s) que H, 2 liaison(s) multiple(s), 5 liaison(s) rotative(s), 2 double(s) liaison(s) et 1 ester(s) ( aliphatique).
L'acrylate de butyle est un liquide clair et incolore.


L'acrylate de butyle est un monomère vinylique.
L'acrylate de butyle subit une copolymérisation radicalaire avec la benzoxazine contenant un groupe vinyle pour donner des copolymères.
Des réactions de couplage de Heck des bromures d'aryle avec l'acrylate de n-butyle médiées par le sel de phosphine-imidazolium ont été rapportées.
La copolymérisation du styrène et de l'acrylate de butyle par ATRP catalysée par CuBr/4,4'-di(5-nonyl)-2,2'-bipyridine a été décrite.
L'acrylate de butyle est une sorte de liquide transparent incolore, insoluble dans l'eau, pouvant être mélangé dans de l'éthanol et de l'éther.
L'acrylate de butyle est une sorte de liquide transparent incolore, insoluble dans l'eau, pouvant être mélangé dans de l'éthanol et de l'éther.


Avec l'augmentation de la température et l'allongement de la durée de stockage, la tendance à l'auto-agrégation s'intensifie.
En raison des caractéristiques de l'acrylate de butyle, les applications de l'acrylate de butyle sont nombreuses.
L'acrylate de butyle est un liquide incolore clair avec une odeur fruitée caractéristique.
L'acrylate de butyle est facilement miscible avec la plupart des solvants organiques.
L'acrylate de butyle est facilement polymérisé et affiche une large gamme de propriétés dépendant de la sélection du monomère et des conditions de réaction.






UTILISATIONS et APPLICATIONS de l'ACRYLATE DE BUTYLE :
L'acrylate de butyle est utilisé commercialement à grande échelle comme précurseur du polyacrylate de butyle, qui est utilisé dans les peintures, les mastics, les revêtements, les adhésifs, les carburants, les textiles, les plastiques et le calfeutrage.
L'acrylate de butyle est utilisé pour fabriquer des peintures, des revêtements, des mastics, des mastics, des adhésifs.
L'acrylate de butyle est utilisé pour préparer des particules de poly(acrylate de butyle).
L'acrylate de butyle est utilisé pour préparer le copolymère séquencé poly(acrylate de butyle-acide b-acrylique).


L'acrylate de butyle est utilisé pour préparer des copolymères diblocs chargés amphiphiles poly(acrylate de butyle)-b-poly(acide acrylique).
L'acrylate de butyle est utilisé pour préparer le poly(acrylate de n-butyle), via la polymérisation radicalaire par transfert d'atome (ATRP) de l'acrylate de n-butyle en présence de CuIBr/4,4′-di(5-nonyl)-2,2′- bipyridine (catalyseur).
L'acrylate de butyle est utilisé comme matière première pour les agents de traitement des fibres, les adhésifs, les revêtements, les plastiques, le caoutchouc acrylique et les émulsions.
L'acrylate de butyle contient de très faibles impuretés et peut être utilisé comme matière première pour une grande variété de produits chimiques.


L'acrylate de butyle est utilisé comme matière première pour les agents de traitement des fibres, les adhésifs, les revêtements, les plastiques, le caoutchouc acrylique et les émulsions.
Les principaux marchés de l'acrylate de butyle sont les peintures et les revêtements, tels que les revêtements architecturaux et automobiles, suivis du marché des adhésifs et des mastics.
Les domaines d'application comprennent les encres, les finitions textiles, papier et cuir et les mastics.
Un segment important et en croissance pour l'acrylate de butyle est celui des copolymères thermoplastiques d'éthylène acrylate (EAC), à des niveaux de BA allant jusqu'à 35 % dans les copolymères.


Les copolymères d'acrylate de butyle sont utilisés comme modificateur d'impact et auxiliaire de traitement dans les thermoplastiques améliorant les propriétés telles que la ténacité, la flexibilité, les caractéristiques de moulage et l'apparence des pièces.
Les applications d'utilisation finale comprennent les emballages, les films multicouches et les adhésifs.
Avec une température de transition vitreuse homopolymère basse de -45°C, l'acrylate de butyle est utilisé dans les copolymères pour améliorer la flexibilité, la douceur et les propriétés à basse température.


L'acrylate de butyle présente une photostabilité supérieure et est un monomère préféré lorsque la résistance aux intempéries et à la lumière du soleil sont requises.
L'acrylate de butyle est le principal monomère d'ester acrylique de base utilisé dans la fabrication de copolymères pour la peinture et les revêtements, les adhésifs et les mastics, les encres d'imprimerie, les copolymères thermoplastiques d'éthylène-acrylate et une myriade d'autres domaines d'application.
L'acrylate de butyle est utilisé dans la production de revêtements et d'encres, d'adhésifs, de mastics, de textiles, de plastiques et d'élastomères. Les applications de revêtement comprennent : les revêtements architecturaux au latex, les dispersions à base d'eau, la fabrication d'équipements automobiles d'origine et les matériaux de finition.
Les adhésifs sensibles à la pression contiennent de l'acrylate de butyle.


Les applications adhésives se trouvent dans les industries du textile et de la construction.
Les produits de l'industrie textile qui contiennent de l'acrylate de butyle sont des fibres, de la chaîne
formulations d'apprêts, d'épaississants et de couches de fond (adhésifs).
Dans l'industrie des plastiques, l'acrylate de butyle se trouve dans certains modificateurs de PVC et additifs de moulage ou d'extrusion.
L'acrylate de butyle est utilisé dans la fabrication de modificateurs de viscosité, d'épaississants et de dispersants.


Utilisé dans les peintures et les revêtements, les adhésifs, les calfeutrants et les produits d'étanchéité, les additifs plastiques, les fibres
L'acrylate de butyle est principalement utilisé dans la production d'homopolymères et de copolymères destinés à être utilisés dans les peintures industrielles et architecturales à base d'eau.
L'acrylate de butyle peut également être utilisé dans les produits de nettoyage, les agents antioxydants, les émaux, les adhésifs, les textiles, les calfeutrants et les finis de papier.
La réactivité de la double liaison permet également d'utiliser l'acrylate de butyle comme intermédiaire chimique.
Les principaux marchés d'utilisateurs finaux de l'acrylate de butyle seraient les industries de l'eau, des plastiques, des cuirs, des peintures, des adhésifs et des textiles.


Utilisé comme monomère intermédiaire dans les polymères
Utilisé dans les formulations dans les laboratoires
Formulation de revêtements avec un polymère contenant de l'acrylate de butyle comme monomère
Formulation de mélanges pré-polymères
L'acrylate de butyle est utilisé comme intermédiaire


L'acrylate de butyle est utilisé dans la polymérisation sur les sites de production
L'acrylate de butyle est utilisé dans la polymérisation sur les sites utilisateurs en aval
L'acrylate de butyle est utilisé dans l'encre et les composants d'encre
L'acrylate de butyle est utilisé dans l'application intérieure/extérieure d'adhésifs
L'acrylate de butyle est utilisé comme intermédiaire industriel, peinture et revêtements, papier chimique, matière première pour les procédés chimiques, matière première pour l'industrie


L'acrylate de butyle est utilisé dans la fabrication de polymères, la finition des textiles et du cuir et la formulation de peintures et d'adhésifs
L'acrylate de butyle est utilisé dans le tannage et le traitement du cuir, la peinture (pigments, liants et biocides), la fabrication de composites plastiques, la sérigraphie, les textiles (impression, teinture ou finition)
L'acrylate de butyle est utilisé dans les produits chimiques pour la synthèse, le traitement des fibres, les adhésifs, les résines synthétiques, les caoutchoucs acryliques
L'acrylate de butyle est utilisé dans la fabrication de polymères et de résines, ainsi que dans les formulations de peinture.


L'acrylate de butyle (BA) est également utilisé dans les adhésifs et comme plastifiant polymère pour les résines plus dures.
L'acrylate de butyle (BA) peut être utilisé pour équilibrer des propriétés clés telles que la dureté et la douceur, l'adhésivité, la flexibilité à basse température, la résistance et la durabilité, et bien d'autres.
L'acrylate de butyle (BA) est utilisé dans la production de verre organique et comme comonomère dans la synthèse de dispersions acryliques utilisées dans les adhésifs, les liants, les compositions d'imprégnation dans les industries du cuir, de l'impression, de la peinture, du vernis, des pâtes et papiers et autres.


L'acrylate de butyle est appliqué dans la production de : dispersions acryliques et à base d'eau, peintures industrielles et architecturales à base d'eau, revêtements industriels et architecturaux, vernis, textiles, pâtes et papiers, revêtements en papier et en cuir, revêtements en bois et en métal, adhésifs, encres. , calfeutrants et scellants.
L'acrylate de butyle (BA) est un ester d'acide acrylique et est utilisé comme composant de matière première dans la synthèse de polymères.
L'acrylate de butyle est principalement utilisé dans la production d'émulsions d'homo et de copolymères à utiliser dans les peintures architecturales et industrielles à base d'eau.
Les polymères avec acrylate de butyle peuvent également être utilisés dans la fabrication de produits de nettoyage, les industries du cuir, les agents antioxydants, les plastiques, les émaux, les encres, les adhésifs, les mastics, les textiles, les mastics et les finitions en papier.


La fonctionnalité acrylate permet d'utiliser l'acrylate de butyle comme intermédiaire chimique.
L'acrylate de butyle est utilisé dans les produits chimiques de laboratoire, la fabrication de substances.
L'acrylate de butyle est utilisé pour fabriquer des peintures, des revêtements, des mastics, des mastics, des adhésifs.
Acrylate de butyle (N° CAS : 141-32-2) Principalement utilisé dans les résines synthétiques, les fibres synthétiques, le caoutchouc synthétique, les plastiques, les revêtements, les adhésifs, etc.
L'acrylate de butyle est utilisé dans les résines acryliques, les adhésifs structuraux, les adhésifs sensibles à la pression, les adhésifs d'emballage, les peintures au latex, les calfeutrants et les produits d'étanchéité, le caoutchouc acrylique, les revêtements pour béton, les revêtements élastomères


L'acrylate de butyle est utilisé dans les adhésifs, l'aérospatiale, l'architecture, l'automobile, la céramique, les boîtes en carton ondulé, les colles, les machines et appareils industriels, les dispositifs médicaux, l'emballage, le papier et les consommables, les mastics, les rubans textiles, les colles à bois, le bâtiment et la construction, les revêtements en béton
L'acrylate de butyle est utilisé dans les revêtements, les revêtements en aérosol, les revêtements aérospatiaux, les revêtements d'appareils et de machines, les revêtements architecturaux, les revêtements OEM automobiles, la finition automobile.
L'acrylate de butyle est utilisé dans les couches de base, les revêtements de briques, les revêtements de canettes, les revêtements en céramique, les revêtements de bobines, les revêtements conformes, les peintures grand public, les revêtements élastomères, les revêtements électrodéposés, les revêtements électroniques, les revêtements de sol, les revêtements de meubles, les revêtements thermosoudables, les revêtements industriels, les revêtements marins, Revêtements métalliques.


Utilisé dans les vernis à ongles, les vernis de surimpression, les diluants à peinture, les revêtements de papier, les revêtements de tuyaux, les revêtements en plastique, les apprêts, les revêtements anti-adhésifs, les revêtements de toit, les revêtements à usage spécial, les revêtements de pierre et de carrelage, les revêtements de textile et de cuir, les couches de finition, la peinture de circulation, les encres.
L'acrylate de butyle est utilisé dans les encres automobiles, le commerce et la publication, les encres numériques, les films flexibles, le verre et la céramique, les revêtements d'arts graphiques, la bande étroite, les plastiques, l'électronique imprimée, les étiquettes et les étiquettes.
L'acrylate de butyle est souvent utilisé dans la fabrication de produits chimiques et polymérisé avec des monomères à haute Tg comme le méthacrylate de méthyle, le styrène et l'acétate de vinyle afin d'équilibrer les propriétés du polymère final.


L'acrylate de butyle est un ester d'acide acrylique à faible Tg qui est utilisé comme monomère pour produire des polymères et copolymères acryliques flexibles utilisés dans les adhésifs, les mastics et les mastics.
L'acrylate de butyle est utilisé dans les adhésifs du bâtiment et de la construction, les revêtements, les élastomères, les encres, le traitement et la fabrication des métaux, les plastiques
Les esters butyliques sont utilisés dans diverses industries, notamment les peintures et les revêtements, les adhésifs et les mastics, les textiles, les additifs plastiques et le traitement du papier.
L'acrylate de butyle est utilisé pour fabriquer des peintures, des revêtements, des mastics, des mastics, des adhésifs.


Principalement utilisé pour les fibres, le caoutchouc, le plastique, les revêtements, les adhésifs, les auxiliaires textiles, peut également être utilisé comme agent de traitement du cuir et du papier.
L'acrylate de butyle est utilisé comme intermédiaire dans la synthèse organique, les polymères et les copolymères pour les revêtements à base de solvants, les adhésifs, les peintures, les liants, les émulsifiants.
L'acrylate de butyle est principalement utilisé comme bloc de construction réactif pour produire des revêtements et des encres, des adhésifs, des mastics, des textiles, des plastiques et des élastomères.


L'acrylate de butyle est utilisé pour fabriquer des polymères qui sont utilisés comme résines pour les finitions textiles et cuir, et dans les peintures.
L'acrylate de butyle est utilisé dans la fabrication de divers acryliques et adhésifs, dans les revêtements pour le cuir, dans la production textile
L'acrylate de butyle est un produit chimique utilisé pour les finitions textiles et cuir, dans les formulations de peinture, les adhésifs, les liants et les émulsifiants.
L'acrylate de butyle est utilisé dans les peintures, les revêtements, les produits d'étanchéité, les adhésifs, les textiles, les carburants, les plastiques et le calfeutrage.
L'acrylate de butyle est un monomère pour la fabrication de polymères et de résines pour les finitions textiles et cuir et les formulations de peinture.


L'acrylate de butyle est utilisé dans les peintures, les mastics, les revêtements, les adhésifs, les carburants, les textiles, les plastiques et les mastics.
L'acrylate de butyle est utilisé pour fabriquer des homopolymères et des copolymères.
Des copolymères d'acrylate de butyle peuvent être produits avec l'acide acrylique et ses sels, amides et esters, et avec les méthacrylates, l'acrylonitrile, les esters d'acide maléique, l'acétate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le styrène, le butadiène, les polyesters insaturés et les huiles siccatives, etc.
L'acrylate de butyle peut également être utilisé comme matière première pour la synthèse chimique, car l'acrylate de butyle subit des réactions d'addition avec une variété de composés organiques et inorganiques.


L'acrylate de butyle est utilisé dans la fabrication de peintures et d'adhésifs, dans la fabrication de cuir, dans les cosmétiques et les produits de soins personnels, dans la fabrication de papier, dans les détergents et les nettoyants, dans la fabrication de plastiques.
L'acrylate de butyle est le principal monomère d'ester acrylique de base utilisé dans la fabrication de copolymères pour la peinture et les revêtements, les adhésifs et les mastics, les encres d'impression, les copolymères thermoplastiques d'éthylène-acrylate et une myriade d'autres domaines d'application.
L'acrylate de butyle est un bloc de construction polyvalent pour les copolymères, offrant une excellente résistance aux intempéries et à la lumière du soleil, des performances à basse température, une hydrophobicité et une résistance à l'eau.


L'acrylate de butyle est utilisé dans les peintures, les mastics, les revêtements, les adhésifs, les carburants, les textiles, les plastiques et le calfeutrage.
L'acrylate de butyle est utilisé comme monomère mou pour améliorer les propriétés et la ténacité à basse température.
Les domaines d'application comprennent la peinture et les revêtements, tels que les revêtements architecturaux et automobiles, les adhésifs, les mastics, les encres, le textile, le papier, les finitions en cuir, les mastics, etc.
L'acrylate de butyle est utilisé pour fabriquer des monomères mous d'adhésifs à base de solvant et d'émulsion d'acrylate, qui peuvent être des homopolymères, une copolymérisation et une copolymérisation par greffage, ainsi que des monomères à haut polymère, utilisés comme intermédiaires dans la synthèse organique.


L'acrylate de butyle est utilisé pour préparer : Particules de poly(acrylate de butyle), Copolymère bloc de poly(acrylate de butyle-b-acide acrylique), Copolymères diblocs chargés amphiphiles poly(acrylate de butyle)-b-poly(acide acrylique), Poly(n-butyl acrylate), par polymérisation radicalaire par transfert d'atome (ATRP) de l'acrylate de n-butyle en présence de CuIBr/4,4'-di(5-nonyl)-2,2'-bipyridine (catalyseur).
L'acrylate de butyle est une matière première utile pour les synthèses chimiques.
L'acrylate de butyle est utilisé dans la production d'homopolymères et de copolymères tels que l'acide acrylique et ses sels, esters, amides, méthacrylates, acrylonitrile, maléates, acétate de vinyle, chlorure de vinyle, chlorure de vinylidène, styrène, butadiène et polyesters insaturés.


L'acrylate de butyle est utilisé pour créer des copolymères et des homopolymères.
Ces copolymères et homopolymères sont utilisés dans la production d'adhésifs, de plastiques et d'adhésifs.
L'acrylate de butyle est utilisé dans la production d'homopolymères et de copolymères tels que l'acide acrylique et ses sels, esters, amides, méthacrylates, acrylonitrile, maléates, acétate de vinyle, chlorure de vinyle, chlorure de vinylidène, styrène, butadiène et polyesters insaturés.
Lorsque l'acrylate de butyle est utilisé dans les formulations de peinture au latex, les polymères acryliques ont une bonne résistance à l'eau, une flexibilité à basse température et une excellente résistance aux intempéries et à la lumière du soleil.


-L'acrylate de butyle est utilisé dans les applications suivantes :
* Adhésifs - pour une utilisation dans la construction et les adhésifs sensibles à la pression
*Intermédiaires chimiques - pour une variété de produits chimiques
*Revêtements - pour les textiles et les adhésifs, et pour les revêtements de surface et à base d'eau, et les revêtements utilisés pour les peintures, la finition du cuir et le papier
* Cuir - pour produire différentes finitions, en particulier le nubuck et le daim
*Plastiques - pour la fabrication d'une variété de plastiques
* Textiles - dans la fabrication de textiles tissés et non tissés






STOCKAGE ET MANIPULATION DE L'ACRYLATE DE BUTYLE :
Afin d'éviter la polymérisation, l'acrylate de butyle doit toujours être stocké sous air, et jamais sous gaz inertes.
La présence d'oxygène est nécessaire pour que le stabilisateur fonctionne efficacement.
Il doit contenir un stabilisant et la température de stockage ne doit pas dépasser 35 °C.
Dans ces conditions, une stabilité au stockage d'un an peut être attendue.
Afin de minimiser la probabilité d'un stockage excessif, la procédure de stockage doit suivre strictement le principe « premier entré, premier sorti ».

Pour des périodes de stockage prolongées supérieures à 4 semaines, il est conseillé de reconstituer la teneur en oxygène dissous.
L'acier inoxydable ou l'aluminium doit être utilisé pour les réservoirs et les tuyaux.
Bien que l'acrylate de butyle ne corrode pas l'acier au carbone, il existe un risque de contamination en cas de corrosion.
Les réglementations pour le stockage des liquides inflammables doivent être respectées (équipements électriques antidéflagrants, réservoirs ventilés avec pare-flammes, etc.).
Les réservoirs de stockage, les pompes et les tuyaux doivent être mis à la terre.





COMMENT L'ACRYLATE DE BUTYLE EST-IL PRODUIT ?
L'acrylate de butyle peut être fabriqué en faisant réagir du n-butanol avec de l'acide acrylique en présence d'un catalyseur acide dans une zone à température élevée pour produire de l'acrylate de butyle, de l'eau et d'autres sous-produits.
Le mélange de produits est ensuite purifié dans une zone de distillation pour créer une plus grande pureté d'acrylate de butyle.
Le rendement typique de ce processus varie entre 94 et 97 %.





COMMENT L'ACRYLATE DE BUTYLE EST-IL STOCKÉ ET DISTRIBUÉ ?
Un revendeur de produits chimiques aurait une installation de stockage de produits pétrochimiques en vrac pour maintenir le produit.
Le stockage se fait normalement dans une installation fraîche, sèche et bien ventilée, à l'écart des agents oxydants.
L'acrylate de butyle doit être tenu à l'abri de la lumière directe du soleil, de la chaleur et des flammes nues.
Les solvants tels que l'acrylate de butyle doivent être stockés dans des conteneurs à fût tels que des isotanks en acier inoxydable, aluminium ou acier au carbone.
Un exportateur de solvants en vrac distribuerait normalement l'acrylate de butyle dans des vraquiers ou des camions-citernes.
Aux fins de transport, l'acrylate de butyle est classé comme un liquide inflammable avec un indice de risque d'incendie de 2.
Un distributeur complet de produits chimiques en vrac exporterait le solvant dans des régions telles que le Royaume-Uni, l'Europe, l'Afrique et l'Amérique.
L'acrylate de butyle est un groupe d'emballage 3.





ACRYLATE DE BUTYLE À PARTIR D'ACIDE ACRYLIQUE ET DE BUTANOL :
L'acrylate de butyle, l'ester butylique de l'acide acrylique, fait partie des acrylates les plus importants sur le plan industriel (avec l'acrylate de méthyle et l'acrylate d'éthyle).
L'acrylate de butyle est principalement utilisé dans la production de polymères acryliques et dans la fabrication de copolymères avec du polyéthylène.
L'acrylate de butyle est également utilisé dans la formulation de peintures, de mastics, de produits de nettoyage et d'adhésifs, ainsi que dans les tensioactifs amphotères, les résines aqueuses, les agents antioxydants, les élastomères et les dispersions pour textiles et papiers.

L'acrylate de butyle peut être produit à partir de plusieurs réactions impliquant l'acétylène, l'alcool 1-butylique, le monoxyde de carbone, le nickel carbonyle et l'acide chlorhydrique, entre autres produits chimiques.
À l'échelle industrielle, l'acrylate de butyle est produit à partir d'acide acrylique et de butanol de qualité ester, généralement dans des usines intégrées à des installations d'acide acrylique.
La présente analyse traite d'un procédé industriel de production d'acrylate de butyle.
Le procédé comprend deux étapes principales : estérification ; et purification.

-Estérification :
De l'acide acrylique, un petit excès de butanol et un catalyseur d'acide p-toluène sulfonique sont introduits dans le système réactionnel.
Le réacteur d'estérification est relié à un système de distillation pour l'élimination continue de l'eau du milieu du réacteur.
Cela améliore la cinétique de la réaction et déplace la réaction vers la formation d'esters.
Les composés organiques récupérés dans les fonds sont recyclés vers le réacteur d'estérification, tandis que l'eau est utilisée comme solvant pour l'extraction du catalyseur.

-Purification:
L'eau récupérée est introduite dans une colonne d'extraction de catalyseur pour séparer le catalyseur du produit de réaction préalablement refroidi retiré du second réacteur.
Le flux de catalyseur est recyclé vers le réacteur d'estérification.
Le produit brut est introduit dans une colonne de lavage, où les résidus d'acide acrylique et de catalyseur sont neutralisés avec une solution caustique et séparés du produit brut en tant que courant de fond de colonne.

Le flux de tête est distillé pour récupérer le butanol qui est envoyé dans la colonne de distillation de déshydratation en amont.
Dans la dernière étape de purification, une colonne sépare les déchets lourds organiques résiduels du flux d'acrylate de butyle brut, produisant de l'acrylate de butyle de haute pureté en tête de colonne.
La matière lourde organique est dirigée vers le réacteur décomposeur, où l'acrylate de butyle supplémentaire est récupéré par la réaction catalytique des sous-produits lourds.

-Chemins de production :
L'acrylate de butyle est principalement fabriqué à partir d'acide acrylique et de butanol, dans une variété de voies de fabrication qui diffèrent selon les sources de matières premières.
Dans ce contexte, les voies de production typiques de l'acrylate de butyle sont basées sur la fabrication d'acide acrylique, principalement via l'oxydation du propylène et, dans une moindre mesure, la carbonylation oxydative de l'éthylène.






AVANTAGES DE L'ACRYLATE DE BUTYLE :
-Résistance mécanique, flexibilité, durabilité, élasticité, faible volatilité, faible odeur
-Résistance aux intempéries, résistance à l'humidité, résistance aux UV
-Sites de réticulation, peuvent être copolymérisés avec d'autres acrylates
-Basse Tg (-45°C)
-Utile pour la synthèse des matières premières. Soumet facilement des réactions d'addition.
-Hydrophobie
-Adhésion
-Résistance à l'eau
-Performance à basse température
-Résistance et durabilité
-Souplesse
-Viscosité
-Résistance aux intempéries





PHOTODÉGRADATION DE L'ACRYLATE DE BUTYLE :
L'acrylate de butyle est indirectement photodégradé par réaction avec les radicaux hydroxyles dans l'atmosphère avec une demi-vie estimée à environ 1,2 jours (calculée).
La réaction de dégradation se produit via l'abstraction d'hydrogène et l'ajout de liaisons oléfiniques conduisant à une décomposition de la molécule en
fragments qui sont davantage dégradés et qui au moins donneront du H20 et du CO2.
Aucune donnée spécifique sur les produits de dégradation possibles de l'acrylate de butyle n'est disponible.






STABILITÉ DANS L'EAU :
Le taux d'hydrolyse de l'acrylate de butyle est extrêmement lent.
L'hydrolyse à pH 3 et pH 7 était inférieure à 2 % après 28 jours (mesurée) et la demi-vie d'hydrolyse a été calculée comme étant de 2800 jours à pH 3 et de 1100 jours à pH 7, respectivement.
La demi-vie d'hydrolyse à pH 11 était de 243 minutes.






TRANSPORT ENTRE COMPARTIMENTS ENVIRONNEMENTAUX :
La modélisation de la distribution utilisant Mackay niveau I indique que l'acrylate de butyle est susceptible de se répartir dans le compartiment air (94 %) avec de plus petites quantités se répartissant dans l'eau (5,73 %) et des quantités négligeables restant dans d'autres compartiments environnementaux (sol, sédiments).
Des résultats comparables ont été obtenus avec un modèle de fugacité de niveau III, en utilisant des pourcentages réalistes de rejets.
Selon le rapport US-EPA Toxic Release Inventory (TRI) 1999, les rejets d'acrylate de butyle étaient de 96,3 % dans l'air, de 3,4 % dans l'eau et de 0,27 % dans le sol.
De plus, comme prévu dans la modélisation de la fugacité de niveau I, les résultats du modèle de fugacité de niveau III indiquent que la distribution principale se fera dans le compartiment à air (89,4 %), et que de plus petites quantités se distribueront dans l'eau (8,24 %), le sol (2,39 %) et sédiment (0,00963 %).
Il convient de noter qu'au moment où la modélisation a été effectuée, seules les valeurs du TRI de 1999 étaient disponibles, elles ont donc été utilisées dans le modèle de niveau III au lieu des valeurs du TRI de 2000.





BIODÉGRADATION DE L'ACRYLATE DE BUTYLE :
Dans un essai de biodégradation, l'acrylate de butyle était facilement biodégradable : 100 mg de substance d'essai/l ; concentration des boues : 30 mg/l ; 61% de biodégradation après 14 jours exprimée en DBO.
Dans un essai en bouteille fermée (OCDE-Ligne directrice 301D) avec l'effluent secondaire d'une station d'épuration des eaux usées domestiques, une biodégradation de 57,8 % en 28 jours a été obtenue.






BIOACCUMULATION D'ACRYLATE DE BUTYLE :
Aucune donnée expérimentale sur la bioaccumulation n'est disponible.
Cependant, d'après le log Pow de 2,38 et le FBC calculé de 13,1, seul un faible potentiel de bioaccumulation est attendu.






CONCEPTION COPOLYMÈRE D'ACRYLATE DE BUTYLE :
Les combinaisons d'acrylate de butyle avec d'autres monomères polymérisables tels que le méthacrylate de méthyle, le styrène, l'acétate de vinyle, l'acide acrylique et d'autres monomères d'ester d'acrylate permettent la conception de milliers de compositions de copolymères.
Les formulations de copolymères d'acrylate de butyle contiennent souvent quatre comonomères différents ou plus.
De cette manière, les profils de performance des copolymères peuvent être adaptés pour répondre à une large gamme d'exigences d'utilisation finale.
En tant que monomère "doux" à faible Tg et économique, l'acrylate de butyle est le co-monomère de choix pour équilibrer la dureté et la douceur, l'adhésivité et la résistance au bloc, la flexibilité à basse température, la résistance et la durabilité, et d'autres propriétés clés pour faciliter la fin- utiliser des objectifs sur le marché.

Pour les polymères, la Tg est l'un des paramètres les plus importants dans le contrôle des performances.
La Tg est la température à laquelle le polymère passe d'un état dur et vitreux à un état élastomère, mou et visqueux, lorsqu'on augmente la température.
Cette transition est réversible, en ce sens que le matériau reviendra à son état dur et vitreux lorsqu'il sera refroidi en dessous de la Tg.
Ainsi, l'emplacement de la Tg influence de nombreux attributs, notamment les propriétés de surface, la flexibilité, la dureté, la résistance et les températures minimales de formation de film.

La température minimale de formation de film d'un latex acrylique est la température la plus basse à laquelle le système d'émulsion fusionne uniformément pour former un film continu.
Mais même avec une Tg fixe, les copolymères avec différentes combinaisons de monomères varient considérablement dans les propriétés du système final.
L'acrylate de butyle est le principal monomère d'ester acrylique polymérisé avec le méthacrylate de méthyle, le styrène et le monomère d'acétate de vinyle pour obtenir les degrés requis de dureté, de flexibilité et de ténacité dans un système de copolymère.
Le MMA (Tg 105°C) et le styrène (Tg 100°C) augmentent la dureté et la force de cohésion et réduisent le tack.

Dans la composition de copolymère, le BA (Tg -45°C) augmente la flexibilité, la ténacité, l'allongement, l'adhésivité et les propriétés à basse température.
L'augmentation de la teneur en acrylate de butyle réduira également la température minimale de formation de film en dessous de la température ambiante.
Les copolymérisations sont facilement réalisées en utilisant des techniques de polymérisation radicalaire dans un procédé en émulsion, en solution ou en suspension.
De faibles quantités de comonomères fonctionnels, tels que les acides acrylique, méthacrylique ou itaconique et l'acrylate/méthacrylate d'hydroxyéthyle sont incorporés dans la composition finale pour augmenter l'adhérence, faciliter la réticulation et dans le cas des systèmes d'émulsion, augmenter la stabilité du latex.
La chimie auto-réticulante à base de diacétone acrylamide (DAAM) et de dihydrazide d'acide adipique (ADH), connue sous le nom de réticulation céto-hydrazide, représente la technologie la plus avancée pour la réticulation contrôlée des polymères de latex acrylique.
L'acrylate de butyle commence par la copolymérisation de faibles niveaux de DAAM en un copolymère, suivie d'une réticulation à travers les fragments cétone pendants avec l'ADH.






PEINTURE ET REVÊTEMENTS D'ACRYLATE DE BUTYLE :
Pour les compositions résistantes aux intempéries, les copolymères d'acrylate de butyle et de MMA sont la combinaison préférée.
Les émulsions acryliques de haute qualité et durables ont révolutionné l'industrie de la peinture.
Les acryliques représentent désormais plus de 25 % du marché mondial des peintures et des revêtements, avec un déplacement continu des acryliques et des alkydes à base de solvants.
Les peintures et revêtements à base de copolymères VAM, y compris les copolymères vinylacryliques (par exemple VAM/BA) ont l'avantage d'être moins chers, mais ils souffrent d'une résistance réduite aux intempéries et d'une faible résistance aux UV, ainsi que d'une absorption d'eau et d'une hydrolyse du vinyle plus élevées. fractions d'ester.


Les liants polymères à base de monomère de styrène et d'acrylate de butyle présentent une absorption d'eau plus faible, une résistance plus élevée à l'hydrolyse et une bonne résistance au frottement humide.
Le styrène en tant que matière première réduit également les coûts en monomères des copolymères associés.
Mais comme le styrène a une faible résistance aux UV, tous les systèmes acryliques à base de MMA et d'acrylate de butyle sont préférés pour une utilisation en extérieur, en particulier les peintures et les revêtements à faible teneur en pigments, tels que les vernis, les teintures pour bois et les peintures à haute brillance.
Dans les peintures et les revêtements avec des concentrations volumiques de pigments (PVC) élevées de 35 à 55 %, les liants à base d'acrylate de styrène-butyle peuvent être utilisés à l'extérieur, par exemple, dans les revêtements de maçonnerie où la protection contre l'humidité et la résistance à la pénétration de l'eau sont essentielles.






ADHÉSIFS ET SCELLANTS :
Les propriétés adhésives des copolymères acryliques peuvent être très variées et sont définies à la fois par la force adhésive et la force de cohésion.
Pour les adhésifs sensibles à la pression, le collant est l'autre propriété dominante, la plus associée aux faibles Tg du copolymère.
Les variations de la composition du comonomère d'acrylate de butyle peuvent modifier à la fois la surface (adhésif) et le volume (propriétés cohésives).
Les unités polymères «dures» à Tg plus élevée, comme le MMA et le styrène, présentent les caractéristiques de force de cohésion les plus élevées.
Les monomères « mous » à faible Tg comme le BA et le 2-EHA contribuent aux propriétés adhésives.
De plus, l'incorporation de monomères polaires comme l'acide acrylique et l'acrylate d'hydroxyéthyle - à de faibles niveaux - augmente le mouillage du substrat et la liaison interfaciale.
De faibles niveaux de réticulation améliorent la force de cohésion. Un équilibre entre tous ces paramètres et d'autres, tels que les propriétés rhéologiques, la polarité et l'hydrophobicité, doit être atteint pour répondre aux performances spécifiques requises dans l'adhésif.





COPOLYMÈRES D'ACRYLATE D'ÉTHYLÈNE THERMOPLASTIQUES :
Les polymères thermoplastiques d'éthylène et d'acrylate de butyle (EBA) sont des résines thermoplastiques qui peuvent être facilement traitées sur des équipements de formation de feuilles et de films soufflés et coulés conventionnels.
Ils sont produits dans des autoclaves à haute pression et des réacteurs tubulaires via des chimies de polymérisation radicalaire.
Hautement compatibles avec le PET, les polyoléfines et les polyamides, les copolymères d'acrylate de butyle sont utilisés comme modificateurs d'impact pour améliorer la ténacité à basse température des mélanges de polymères.
Les résines d'acrylate de butyle présentent une bonne adhérence à divers substrats polaires et non polaires.
Les applications typiques incluent le revêtement par extrusion et le laminage, les films coextrudés pour l'emballage, les mélanges maîtres et les adhésifs thermofusibles.
Ces applications de résine thermoplastique ont poussé le TCAC au-dessus de 4 % pour les copolymères d'acrylate de butyle.






PRODUCTION D'ACRYLATE DE BUTYLE :
L'acrylate de butyle peut être produit par l'acide acrylique d'estérification catalysée par un acide avec du butanol.
Étant donné que l'acrylate de butyle polymérise facilement, les préparations commerciales peuvent contenir un inhibiteur de polymérisation tel que l'hydroquinone, la phénothiazine ou l'éther éthylique d'hydroquinone.
L'acrylate de butyle est produit en faisant réagir du butanol avec de l'acide acrylique en présence d'un catalyseur acide à une température élevée pour produire de l'acrylate de butyle, de l'eau et d'autres sous-produits.
Le mélange d'acrylate de butyle est purifié par distillation.

L'acrylate de butyle peut être fabriqué via une réaction d'acétylène, d'alcool n-butylique, de monoxyde de carbone, de nickel carbonyle et d'acide chlorhydrique.
L'acrylate de butyle est couramment fabriqué via une oxydation du propylène en acroléine puis en acide acrylique.
L'acide est mis à réagir avec l'acrylate de butyle pour donner l'ester de butyle.
L'acrylate de butyle est généralement produit par une simple réaction entre l'acide acrylique et le n-butanol en présence d'un catalyseur acide dans une zone à haute température avec de l'eau comme sous-produit.

L'estérification de l'acide acrylique et du n-butanol par la méthode de l'acrylate de méthyle est réalisée sous la catalyse de l'acide sulfurique, suivie d'une neutralisation, d'un lavage à l'eau, d'une élimination de l'alcool et d'une distillation pour obtenir l'acrylate de butyle fini.
L'acide acrylique est obtenu par oxydation du propylène ou hydrolyse de l'acrylonitrile (voir méthode de production de l'acrylate de méthyle).
méthode d'hydrolyse de l'acrylonitrile l'acrylonitrile est chauffé à 90°C.
Avec l'acide sulfurique pour hydrolyser l'acrylonitrile en un sulfate d'acrylamide, et le sulfate est encore estérifié pour former un ester d'acide acrylique.

Ces dernières années, des rapports de brevet indiquent que le rendement de
L'ester peut atteindre 95% en utilisant l'acrylonitrile comme matière première et une production en une étape.
Méthode β-propiolactone utilisant l'acide acétique comme matière première et le phosphate de triéthyle comme catalyseur, le cétène a été synthétisé par pyrolyse à 625 ~ 730 ℃ , la réaction en phase gazeuse avec le formaldéhyde anhydre est ensuite effectuée en présence de catalyseurs AICl3 ou BF3 pour former la bêta propiolactone .
Bêta propiolactone directement avec du butanol et de l'acide sulfurique au lieu de l'acrylate de butyle.

L'acrylate de butyle doit être purifié pour éliminer les inhibiteurs avant utilisation :
1. Séchez soigneusement le récipient de réaction et purgez-le avec de l'argon sec ou de l'azote.
2. Placer l'acrylate de butyle (1 ml, 7,0 mmol) dans le réacteur avec du diéthylène glycol anhydre (1 ml).
3. Ajouter AIBN (0,010 g, 0,060 mmol) et agiter fermement le récipient pendant quelques secondes.
4. Purger la solution avec de l'argon sec ou de l'azote et sceller le récipient avec un septum en caoutchouc approprié.
5. Effectuez la procédure de congélation-décongélation-dégazage en même temps sous vide et purgez le récipient avec de l'argon sec ou de l'azote pour vous assurer que tout l'oxygène est éliminé du système.
6. Placer le récipient dans la cavité du réacteur à micro-ondes monomode et chauffer la solution jusqu'à 65 °C pendant 10 min.
7. Retirer le récipient du réacteur et laisser refroidir à température ambiante.
8. Précipitez le polymère résultant dans une solution d'éthanol (30 ml) et filtrez-le à travers un papier filtre.
9. Transférer le solide obtenu dans un grand verre de montre et le sécher à l'air.
Une fois qu'un poids constant est atteint, enregistrez le rendement brut.
Les rendements > 60 % sont typiques.
10. Analyser le produit en utilisant la chromatographie par perméation de gel (GPC) pour déterminer Mn et Mw. (Mn = 1,3105, Mw = 2,1104)






PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ACRYLATE DE BUTYLE :
Masse molaire : 128,171 g•mol−1
Aspect : Liquide clair et incolore
Odeur : Forte, fruitée
Densité : 0,89 g/ml (20°C)
Point de fusion : −64 °C ; -83 °F ; 209 K
Point d'ébullition : 145 °C ; 293 °F ; 418 K
Solubilité dans l'eau : 0,1% (20°C)
Solubilité : éthanol, éther éthylique, acétone, tétrachlorure de carbone (légère)
Pression de vapeur : 4 mmHg (20°C)


Poids moléculaire : 128,17
XLogP3 : 2,4
Nombre de donneurs d'obligations hydrogène : 0
Nombre d'accepteurs de liaison hydrogène : 2
Nombre d'obligations rotatives : 5
Masse exacte : 128,083729621
Masse monoisotopique : 128,083729621
Surface polaire topologique : 26,3 Å ²
Nombre d'atomes lourds : 9


Charge formelle : 0
Complexité : 97,1
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui


densité de vapeur : >1 (vs air)
Niveau de qualité : 200
pression de vapeur : 3,3 mmHg ( 20 °C)
dosage : ≥ 99 %
forme : liquide
température d'auto-inflammation : 559 °F
contient : 10-60 ppm d'hydroquinone d'éther monométhylique comme inhibiteur
expl. limite : 9,9 %
indice de réfraction : n20/D 1,418 (lit.)
point d'ébullition : 145 °C (lit.)
Masse molaire : 128,17
Densité : 0,894 g/mL à 25 °C (lit.)


Point de fusion : -69 °C
Point de fusion : 61-63 °C60 mm Hg (lit.)
Point d'éclair : 63°F
Solubilité dans l'eau : 1,4 g/L (20 ºC)
Solubilité : 1,7 g/l
Pression de vapeur : 3,3 mm Hg ( 20 °C)
Densité de vapeur : > 1 (par rapport à l'air)
Apparence : Liquide
Couleur: Clair Incolore
Odeur : Fruitée
Limite d'exposition : TLV-TWA 10 ppm ( ~ 55 mg/m3) (ACGIH).
Merck : 14,1539
BRN : 1749970






PREMIERS SECOURS de l'ACRYLATE DE BUTYLE :
-Après inhalation :
Air frais.
-En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau à l'eau/se doucher.
Consultez un médecin.
- Après contact avec les yeux : rincer abondamment à l'eau.
Faites appel à un ophtalmologiste.
Retirer les lentilles de contact.
-Après ingestion :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.






MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE d'ACRYLATE DE BUTYLE :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériel de confinement et de nettoyage :
Couvrir les drains.
Recueillir, lier et pomper les déversements.
Reprendre avec un matériau absorbant les liquides.
Éliminer correctement.






MESURES DE LUTTE CONTRE L'INCENDIE de l'ACRYLATE DE BUTYLE :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
*Moyens d'extinction inappropriés :
Pour cette substance/ce mélange, aucune limitation des agents extincteurs n'est donnée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.






CONTRÔLES D'EXPOSITION/PROTECTION PERSONNELLE de l'ACRYLATE DE BUTYLE :
-Paramètres de contrôle:
*Ingrédients avec paramètres de contrôle en milieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utilisez des lunettes de sécurité.
*Protection de la peau :
Contact anti-éclaboussures :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,4 mm
Temps de passage : 30 min
*Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.






MANIPULATION et STOCKAGE de l'ACRYLATE DE BUTYLE :
-Précautions à prendre pour une manipulation sans danger:
*Mesures d'hygiène:
Changer immédiatement les vêtements contaminés.
Se laver les mains et le visage après avoir travaillé avec la substance.
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.







STABILITÉ et RÉACTIVITÉ de l'ACRYLATE DE BUTYLE :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante).






SYNONYMES :
Prop-2-énoate de butyle
Acrylate de n-butyle
Ester butylique de l'acide acylique
Butyl-2-propenoateACRYLATE DE BUTYLE
Acrylate de n-butyle
141-32-2
prop-2-énoate de butyle
Acide 2-propénoïque, ester butylique
Ester butylique d'acide acrylique
Propénoate de n-butyle
2-propénoate de butyle
butylacrylate
Acide acrylique, ester butylique
Ester n-butylique d'acide acrylique
Ester butylique de l'acide 2-propénoïque
Butylester kyseliny akrylove
Poly(acrylate de butyle)
Homopolymère d'acrylate de butyle
Acide acrylique, ester n-butylique
CHEBI:3245
9003-49-0
705NM8U35V
NSC-5163
DSSTox_CID_4676
DSSTox_RID_77496
DSSTox_GSID_24676
n-butylacrylate
CAS-141-32-2
Acrylate de butyle, n-
CCRIS 3401
HSDB 305
NSC 5163
EINECS 205-480-7
UN2348
BRN 1749970
UNII-705NM8U35V
AI3-15739
acrylate de n-butyle
Acide butyle acrylique
acrylate de butyle normal
Butylacrylate, inhibé
Acide acrylique-ester butylique
Acrylate de butyle polymérisé
Acrylates de butyle, inhibés
CE 205-480-7
SCHEMBL15037
Acrylate de n-butyle, AR, 99 %
Acrylate de n-butyle, CP, 98 %
4-02-00-01463
OFFRE : ER0366
ACRYLATE DE BUTYLE
WLN : 4OV1U1
ACRYLATE DE N-BUTYLE
Ester n-butylique de l'acide 2-propénoïque
CHEMBL1546388
DTXSID6024676
ACRYLATE DE N-BUTYLE
NSC5163
Acrylate de butyle, étalon analytique
ZINC1532055
Tox21_201387
Tox21_303296
MFCD00009446
STL280321
Butyl Acrylate, stabilisé avec MEHQ
AKOS000120041
Acide acrylique, ester butylique, homopolymère
Butyl Acrylate (stabilisé avec MEHQ)
ONU 2348
NCGC00091107-01
NCGC00091107-02
NCGC00256946-01
NCGC00258938-01
BP-20380
LS-13309
Acrylate de butyle, pur, >=99.0% (GC)
Acide 2-propénoïque, ester butylique, homopolymère
A0142
FT-0621881
Acrylate de butyle, SAJ premier degré, >=99,0 %
A807751
A845377
Q343005
J-007481
J-519959
Ester butylique d'acide acrylique 100 microg/mL dans l'acétonitrile
Z1258578290
Acrylates de butyle, inhibés
L'acrylate de butyle, >=99%, contient 10-60 ppm d'hydroquinone d'éther monométhylique comme inhibiteur
141-32-2
205-480-7
Ester butylique de l'acide 2-propénoïque
Acide 2-propénoïque, ester butylique
4-02-00-01463
4-02-00-01463
705NM8U35V
ester butylique d'acide acrylique
Ester butylique d'acide acrylique
Ester n-butylique d'acide acrylique
Acide acrylique, ester butylique
Acide acrylique, ester n-butylique
2-propénoate de butyle
acrylate de butyle
prop-2-énoate de butyle
butyle-2-propénoate
acrylate de n-butyle
propénoate de n-butyle
UD3150000
UNII-705NM8U35V
4OV1U1
Ester n-butylique de l'acide acrylique
Acide acrylique-ester butylique
Acrylate de butyle
Prop-2-énoate de butyle
Propénoate de butyle
butylacrylate
ester butylique de l'acide prop-2-énoïque
ONU 2348
UNII : 705NM8U35V
WLN : 4OV1U1
Acrylate de butyle
Acrylate de butyle
Acrylate de n-butyle
BUTYLE-2-ACRYLATE
2-propénoate de butyle
prop-2-énoate de butyle
Acrylsure-n-butylester
2-méthylidènehexanoate
Ester n-butylique de l'acide propénoïque
Ester butylique de l'acide 2-propénoïque
ACRYLATE DE BUTYLE (STABILISÉ AVEC HYDROQUI
ACRYLATE DE N-BUTYLE STABILISÉ AVEC 50PPM DE 4-MÉTHOXYPHÉNOL
ACRYLATE DE SILICONE
L'acrylate de silicone est un matériau hybride formé par la réaction de monomères de silicone et d'acrylique.
L'acrylate de silicone est un type de copolymère avec à la fois des fonctionnalités silicone et acrylique.
La composition et les propriétés exactes de l'acrylate de silicone peuvent varier en fonction des monomères spécifiques utilisés dans le processus de synthèse.



APPLICATIONS


L'acrylate de silicone est couramment utilisé dans la production de cartes de circuits imprimés en raison de ses excellentes propriétés d'isolation électrique.
L'utilisation d'acrylate de silicone dans les revêtements de matériaux de construction tels que les toitures et les parements offre une excellente résistance aux intempéries et une stabilité aux UV.

L'acrylate de silicone est utilisé dans la production de revêtements antiadhésifs pour adhésifs sensibles à la pression en raison de ses propriétés antiadhésives.
Les propriétés uniques de l'acrylate de silicone en font un matériau idéal pour la production d'appareils électroniques flexibles tels que les appareils portables et les écrans pliables.

L'utilisation d'acrylate de silicone dans la production de lentilles de contact offre une excellente perméabilité à l'oxygène et un confort amélioré pour les porteurs.
L'acrylate de silicone est utilisé dans la production de pièces automobiles telles que les joints et les joints en raison de son excellente résistance à l'huile et au carburant.
L'utilisation d'acrylate de silicone dans la production de composants aérospatiaux offre une excellente résistance aux températures extrêmes et aux produits chimiques agressifs.

L'acrylate de silicone est couramment utilisé dans la production de diffuseurs de lumière LED en raison de ses propriétés de transmission lumineuse élevées.
L'utilisation d'acrylate de silicone dans la production de matériaux d'emballage offre d'excellentes propriétés de barrière à l'humidité, garantissant que le contenu reste frais.

L'acrylate de silicone est utilisé dans la production de revêtements anti-graffiti, qui permettent d'éliminer facilement la peinture et d'autres marques des surfaces.
L'utilisation d'acrylate de silicone dans la production d'étiquettes imprimées offre une excellente durabilité et résistance à l'abrasion et aux produits chimiques.

L'acrylate de silicone est couramment utilisé dans la production d'adhésifs pour l'électronique en raison de son excellente stabilité thermique et de ses faibles propriétés de retrait.
L'utilisation d'acrylate de silicone dans la production de modules photovoltaïques offre une excellente résistance aux intempéries et aux rayons UV.
L'acrylate de silicone est utilisé dans la production de revêtements protecteurs pour éoliennes, offrant une excellente résistance aux intempéries et à l'érosion.

L'utilisation d'acrylate de silicone dans la production de revêtements automobiles offre une excellente rétention de la brillance et une résistance à l'écaillage et aux rayures.
L'acrylate de silicone est couramment utilisé dans la production d'adhésifs médicaux, offrant une excellente biocompatibilité et une excellente résistance aux fluides corporels.

L'utilisation d'acrylate de silicone dans la production d'adhésifs pour la construction offre une excellente adhérence à une variété de substrats, y compris le béton et la maçonnerie.
L'acrylate de silicone est utilisé dans la production de revêtements marins, offrant une excellente résistance à l'eau salée, aux rayons UV et à l'abrasion.

L'utilisation d'acrylate de silicone dans la production d'emballages alimentaires offre une excellente résistance aux produits chimiques et à l'humidité, garantissant la sécurité et la fraîcheur du contenu.
L'acrylate de silicone est couramment utilisé dans la production de matériaux isolants pour les équipements électriques en raison de ses excellentes propriétés diélectriques.
L'utilisation d'acrylate de silicone dans la production d'encres pour jet d'encre offre une excellente adhérence sur une variété de substrats, y compris les surfaces brillantes et non poreuses.

L'acrylate de silicone est utilisé dans la production d'adhésifs pour l'industrie aérospatiale, offrant une excellente résistance aux températures extrêmes et aux produits chimiques agressifs.
L'utilisation d'acrylate de silicone dans la production d'implants médicaux offre une excellente biocompatibilité, garantissant que les implants sont bien tolérés par l'organisme.
L'acrylate de silicone est couramment utilisé dans la production de revêtements textiles, offrant une excellente résistance à l'eau et aux taches.

L'utilisation d'acrylate de silicone dans la production de revêtements pour panneaux solaires offre une excellente résistance aux intempéries, améliorant leur durée de vie et leur efficacité.
L'acrylate de silicone est utilisé dans la production d'encres d'impression pour l'emballage, offrant une excellente adhérence et résistance à l'abrasion et aux produits chimiques.


Applications de l'acrylate de silicone :

Revêtements pour panneaux solaires
Matériaux d'isolation
Revêtements pour équipements industriels
Encres pour l'impression
Revêtements pour fibre de verre
Adhésifs pour l'industrie maritime
Revêtements pour toitures métalliques
Revêtements pour équipements de transformation alimentaire
Revêtements pour éoliennes
Encres pour emballages souples
Revêtements pour composants d'avions
Revêtements pour implants médicaux
Revêtements pour surfaces de piscine
Revêtements pour écrans électroniques
Revêtements pour appareils de cuisine
Revêtements pour sols
Revêtements pour montagnes russes
Revêtements pour équipements sportifs
Revêtements pour meubles métalliques
Revêtements pour oléoducs et gazoducs
Revêtements pour composants automobiles
Revêtements pour navires marins
Revêtements pour matériaux de construction
Revêtements pour équipements militaires
Adhésifs pour applications aérospatiales
Revêtements pour composants ferroviaires
Revêtements pour équipements de production d'énergie
Revêtements pour matériaux d'emballage
Revêtements pour dispositifs médicaux
Revêtements pour signalétique extérieure.


L'acrylate de silicone est utilisé dans la production de revêtements architecturaux, offrant une excellente stabilité aux UV et une excellente résistance aux intempéries.
L'utilisation d'acrylate de silicone dans la production de revêtements automobiles offre une excellente résistance chimique et une excellente rétention de la brillance.

L'acrylate de silicone est couramment utilisé dans la production de revêtements anti-adhésifs pour les doublures d'étiquettes et les rubans adhésifs, offrant des propriétés de démoulage faciles.
L'utilisation d'acrylate de silicone dans la production de lentilles optiques offre une excellente clarté optique et une excellente résistance aux rayures.

L'acrylate de silicone est utilisé dans la production de revêtements antiadhésifs pour les ustensiles de cuisine, permettant une libération facile des aliments et une facilité de nettoyage.
L'utilisation d'acrylate de silicone dans la production de revêtements à base d'eau offre une meilleure durabilité environnementale par rapport aux revêtements traditionnels à base de solvant.
L'acrylate de silicone est couramment utilisé dans la production de revêtements conformes pour les cartes de circuits électroniques, offrant une excellente résistance à l'humidité et aux produits chimiques.

L'utilisation d'acrylate de silicone dans la production d'adhésifs sensibles à la pression offre une excellente adhérence et une excellente adhérence à une variété de substrats.
L'acrylate de silicone est utilisé dans la production de films d'emballage, offrant d'excellentes propriétés de barrière à l'humidité et une durée de conservation améliorée pour les produits alimentaires.

L'utilisation d'acrylate de silicone dans la fabrication de produits cosmétiques procure une sensation soyeuse et lisse à la peau et aux cheveux.
L'acrylate de silicone est couramment utilisé dans la production de mastics automobiles, offrant une excellente résistance au carburant et à l'huile.

L'utilisation d'acrylate de silicone dans la production de tubulures médicales offre une excellente biocompatibilité et une résistance au vrillage.
L'acrylate de silicone est utilisé dans la production d'adhésifs pour l'industrie de la construction, offrant une excellente adhérence à une variété de substrats.
L'utilisation d'acrylate de silicone dans la production de matériaux dentaires offre une excellente biocompatibilité et résistance à l'usure.

L'acrylate de silicone est couramment utilisé dans la production de revêtements pour surfaces métalliques, offrant une excellente résistance à la corrosion et une excellente durabilité.
L'utilisation d'acrylate de silicone dans la production de résines d'impression 3D offre une excellente stabilité dimensionnelle et une excellente résistance chimique.

L'acrylate de silicone est utilisé dans la production de mastics pour appareils électroniques, offrant une excellente résistance à l'humidité et aux produits chimiques.
L'utilisation d'acrylate de silicone dans la production de revêtements résistants à la chaleur offre une excellente stabilité thermique et une résistance aux intempéries.

L'acrylate de silicone est couramment utilisé dans la production de revêtements pour les surfaces en béton et en maçonnerie, offrant une excellente résistance aux intempéries et une excellente durabilité.
L'utilisation d'acrylate de silicone dans la production d'adhésifs pour l'industrie aérospatiale offre une excellente résistance aux vibrations et aux chocs.
L'acrylate de silicone est utilisé dans la production d'agents de démoulage, offrant des propriétés de démoulage faciles pour les pièces en plastique moulées.

L'utilisation d'acrylate de silicone dans la production de revêtements pour instruments médicaux offre une excellente biocompatibilité et résistance aux méthodes de stérilisation.
L'acrylate de silicone est couramment utilisé dans la production de revêtements pour mobilier d'extérieur, offrant une excellente résistance aux intempéries et une stabilité aux UV.
L'utilisation d'acrylate de silicone dans la production de plaques d'impression offre une excellente durabilité et résistance à l'abrasion et aux produits chimiques.

L'acrylate de silicone est utilisé dans la production de revêtements pour l'électronique grand public, offrant une excellente résistance aux rayures et une grande durabilité.
L'utilisation d'acrylate de silicone dans la production de matériaux en contact avec les aliments offre une excellente résistance aux produits chimiques et aux propriétés de migration.

L'acrylate de silicone est couramment utilisé dans la production d'adhésifs pour l'industrie automobile, offrant une excellente résistance aux températures élevées et aux produits chimiques agressifs.
L'utilisation d'acrylate de silicone dans la production de revêtements pour dispositifs médicaux offre une excellente biocompatibilité et résistance aux fluides corporels.


L'acrylate de silicone est un type de polymère couramment utilisé dans diverses applications en raison de ses propriétés uniques.
Certaines des applications de l'acrylate de silicone comprennent :

Revêtements :
L'acrylate de silicone peut être utilisé comme revêtement pour une variété de substrats, y compris le métal, le plastique et le papier.
Le revêtement offre une excellente résistance aux intempéries, aux produits chimiques et aux UV.


Adhésifs :
L'acrylate de silicone peut être utilisé comme adhésif en raison de ses excellentes propriétés d'adhérence.
L'acrylate de silicone est couramment utilisé dans les industries automobile et aérospatiale pour le collage des métaux et des plastiques.


Films optiques :
L'acrylate de silicone est utilisé dans la production de films optiques utilisés dans les écrans LCD et OLED.
Ces films améliorent la clarté et la durabilité des écrans.


Produits de beauté:
L'acrylate de silicone est utilisé dans les produits cosmétiques tels que les écrans solaires, les bases de maquillage et les produits de soins capillaires.
L'acrylate de silicone procure une sensation soyeuse et lisse à la peau et aux cheveux.


Équipement médical:
L'acrylate de silicone est utilisé dans les dispositifs médicaux en raison de sa biocompatibilité et de sa capacité à résister à la croissance bactérienne.
L'acrylate de silicone est couramment utilisé dans les cathéters, les stimulateurs cardiaques et d'autres dispositifs implantables.


Textiles :
L'acrylate de silicone est utilisé dans la production de textiles pour fournir une imperméabilité à l'eau et une résistance aux taches.
L'acrylate de silicone est également utilisé pour améliorer la durabilité et la durée de vie des tissus.


L'acrylate de silicone est utilisé dans la production de revêtements pour panneaux solaires, offrant une excellente résistance aux intempéries et une durabilité à long terme.
L'utilisation d'acrylate de silicone dans la production de matériaux d'isolation offre une excellente résistance à la chaleur et une stabilité thermique.

L'acrylate de silicone est couramment utilisé dans la production de revêtements pour équipements industriels, offrant une excellente résistance aux produits chimiques et à l'abrasion.
L'utilisation d'acrylate de silicone dans la production d'encres pour l'impression offre une excellente adhérence à une variété de substrats et une résistance à la décoloration.
L'acrylate de silicone est utilisé dans la production de revêtements pour fibre de verre, offrant une excellente résistance aux intempéries et une grande durabilité.

L'utilisation d'acrylate de silicone dans la production d'adhésifs pour l'industrie maritime offre une excellente résistance à l'eau salée et aux rayons UV.
L'acrylate de silicone est couramment utilisé dans la production de revêtements pour toitures métalliques, offrant une excellente résistance aux intempéries et une grande longévité.

L'utilisation d'acrylate de silicone dans la production de revêtements pour les équipements de transformation des aliments offre une excellente résistance à la corrosion et aux agents de nettoyage.
L'acrylate de silicone est utilisé dans la production de revêtements pour éoliennes, offrant une excellente résistance aux intempéries et une grande durabilité.

L'utilisation d'acrylate de silicone dans la production d'encres pour emballages souples offre une excellente adhérence à une variété de substrats et une résistance à l'humidité.
L'acrylate de silicone est couramment utilisé dans la production de revêtements pour les composants d'avions, offrant une excellente résistance aux conditions de haute altitude et aux environnements difficiles.
L'utilisation d'acrylate de silicone dans la production de revêtements pour implants médicaux offre une excellente biocompatibilité et résistance aux fluides corporels.

L'acrylate de silicone est utilisé dans la production de revêtements pour les surfaces de piscine, offrant une excellente résistance aux produits chimiques et aux rayons UV.
L'utilisation d'acrylate de silicone dans la production de revêtements pour écrans électroniques offre une excellente clarté optique et une résistance aux rayures.

L'acrylate de silicone est couramment utilisé dans la production de revêtements pour les appareils de cuisine, offrant une excellente résistance à la chaleur et à l'humidité.
L'utilisation d'acrylate de silicone dans la production de revêtements de sol offre une excellente résistance aux rayures et une excellente durabilité.

L'acrylate de silicone est utilisé dans la production de revêtements pour montagnes russes, offrant une excellente résistance à l'usure.
L'utilisation d'acrylate de silicone dans la production de revêtements pour équipements sportifs offre une excellente résistance aux chocs et aux intempéries.

L'acrylate de silicone est couramment utilisé dans la production de revêtements pour meubles en métal, offrant une excellente résistance à la rouille et aux intempéries.
L'utilisation d'acrylate de silicone dans la production de revêtements pour oléoducs et gazoducs offre une excellente résistance à la corrosion et à l'abrasion.



DESCRIPTION


L'acrylate de silicone est un matériau hybride formé par la réaction de monomères de silicone et d'acrylique.
L'acrylate de silicone est un type de copolymère avec à la fois des fonctionnalités silicone et acrylique.
La composition et les propriétés exactes de l'acrylate de silicone peuvent varier en fonction des monomères spécifiques utilisés dans le processus de synthèse.

L'acrylate de silicone est un matériau polyvalent avec une variété d'applications potentielles dans diverses industries telles que les revêtements, les adhésifs et les produits de soins personnels.
Sa combinaison unique de propriétés, telles qu'une excellente adhérence, une grande flexibilité et une résistance à l'eau, fait de l'acrylate de silicone un matériau souhaitable pour de nombreuses applications.

Dans l'industrie des revêtements, l'acrylate de silicone est utilisé comme liant pour améliorer la durabilité, la résistance aux intempéries et la résistance chimique des revêtements.
L'acrylate de silicone est couramment utilisé dans la formulation de revêtements hautes performances pour les applications industrielles et automobiles.

Dans l'industrie des adhésifs, l'acrylate de silicone est utilisé comme résine de base pour la formulation d'adhésifs sensibles à la pression (PSA).
Les PSA à base d'acrylate de silicone ont une excellente adhérence sur une variété de surfaces et sont largement utilisés dans des applications telles que les étiquettes, les rubans et les adhésifs médicaux.

Dans l'industrie des soins personnels, l'acrylate de silicone est utilisé comme ingrédient dans les produits de soins capillaires et de soins de la peau.
Ses propriétés uniques, telles que sa haute brillance, sa résistance à l'eau et ses capacités filmogènes, en font un ingrédient recherché dans les produits coiffants tels que les gels, les sprays et les mousses.
L'acrylate de silicone est également utilisé dans les produits de soin de la peau comme filmogène et émollient.

Dans l'ensemble, l'acrylate de silicone est un matériau polyvalent et précieux avec un large éventail d'applications potentielles.
Ses propriétés uniques en font un choix idéal pour de nombreuses applications exigeantes où les propriétés du silicone et de l'acrylique sont nécessaires.



PROPRIÉTÉS


Propriétés chimiques:

Poids moléculaire : varie en fonction de la formulation spécifique
Formule chimique : varie en fonction de la formulation spécifique
Monomères : contiennent généralement des groupes silicone, acrylate et/ou méthacrylate
Polymérisation : généralement initiée par la lumière ou la chaleur


Propriétés physiques:

Aspect : liquide ou solide clair à légèrement jaune
Odeur : généralement inodore
Densité : varie en fonction de la formulation spécifique
Point de fusion : varie en fonction de la formulation spécifique
Solubilité : insoluble dans l'eau, soluble dans certains solvants organiques
Viscosité : viscosité faible à moyenne
Indice de réfraction : indice de réfraction élevé
Tension superficielle : faible tension superficielle
Constante diélectrique : bonnes propriétés diélectriques
Conductivité thermique : bonne conductivité thermique


Propriétés mécaniques:

Dureté : bonne dureté
Flexibilité : bonne flexibilité
Résistance aux rayures : haute résistance aux rayures
Coefficient de frottement : faible coefficient de frottement


Propriétés thermiques:

Stabilité thermique : haute stabilité thermique
Coefficient de dilatation thermique : varie en fonction de la formulation spécifique


Propriétés optiques:

Brillance : haute brillance
Résistance aux UV : bonne résistance aux UV
Transparence : transparente à translucide


Autres propriétés :

Résistance à l'humidité: bonne résistance à l'humidité
Perméabilité aux gaz : bonne perméabilité aux gaz
Perméabilité à l'oxygène : haute perméabilité à l'oxygène
Hydrophobicité : haute hydrophobicité



PREMIERS SECOURS


Les mesures de premiers secours en cas d'exposition à l'acrylate de silicone dépendent du type d'exposition et de la gravité des symptômes.
Voici quelques mesures générales de premiers soins qui peuvent être prises :

Contact avec la peau:
Retirer les vêtements contaminés et laver soigneusement la peau avec de l'eau et du savon.
En cas d'irritation ou de rougeur, consulter un médecin.


Lentilles de contact:
Rincer immédiatement les yeux à grande eau pendant au moins 15 minutes en maintenant les paupières ouvertes.
Consulter un médecin si les symptômes persistent.


Inhalation:
Déplacez immédiatement la personne à l'air frais.
Si des symptômes tels que toux, difficultés respiratoires ou douleurs thoraciques apparaissent, consultez un médecin.


Ingestion:
Rincer la bouche avec de l'eau et ne pas faire vomir.
Consultez immédiatement un médecin.


Il est important de toujours porter un équipement de protection individuelle (EPI) approprié lors de la manipulation de l'acrylate de silicone afin de minimiser le risque d'exposition.
Si vous ressentez des symptômes d'exposition ou si vous avez des inquiétudes, consultez immédiatement un médecin.



MANIPULATION ET STOCKAGE


Voici quelques conditions de manipulation et de stockage pour le Silicone Acrylate :


Température de stockage:
L'acrylate de silicone doit être stocké dans un endroit frais, sec et bien ventilé à une température comprise entre 5°C et 30°C (41°F à 86°F).


Contrôle de l'humidité :
L'humidité peut entraîner la dégradation de l'acrylate de silicone, il est donc important de le garder au sec pendant le stockage et la manipulation.


Matériel de manutention:
Utilisez un équipement de manipulation approprié, tel que des gants et des lunettes de sécurité, lors de la manipulation de l'acrylate de silicone pour éviter tout contact avec la peau et les yeux.
Éviter l'inhalation de vapeurs ou de brouillards.


Compatibilité:
L'acrylate de silicone n'est pas compatible avec certains matériaux, tels que les agents oxydants puissants, il doit donc être stocké à l'écart des substances incompatibles.


Type de conteneur :
L'acrylate de silicone doit être stocké dans un récipient hermétiquement fermé, tel qu'un fût ou un récipient pour vrac intermédiaire (IBC), pour éviter la contamination et l'absorption d'humidité.


Durée de conservation :
L'acrylate de silicone a une durée de conservation limitée et doit être utilisé dans les délais recommandés.
L'acrylate de silicone est important pour vérifier la date d'expiration et jeter tout matériau périmé ou dégradé.


Transport:
Pendant le transport, l'acrylate de silicone doit être correctement étiqueté et emballé pour éviter les déversements et les fuites.


Il est important de suivre ces conditions de manipulation et de stockage pour garantir la qualité et la sécurité de l'acrylate de silicone pendant le stockage et la manipulation.



SYNONYMES


Acrylate de siloxane
Silane Acrylate
Silicone Méthacrylate
Méthacrylate de siloxane
Silane Méthacrylate
Silicone Époxy
Époxy siloxane
Époxy silane
Résine silicone
Résine de siloxane
Résine de silane
Polymère de silicone
Polymère de siloxane
Polymère de silane
Adhésif silicone
Adhésif siloxane
Adhésif silane
Scellant silicone
Scellant au siloxane
Scellant au silane
Acrylates / C10-30 Alkyl Acrylate Cross polymer
C10-30 alkyl propenoate, polymer with propenoic acid, butenoic acid and/or alkyl propenoates, product with propenyl sucrose ether or propenyl 2,2-dihydroxymethyl-1,3-propanediol cas: 110-82-7
ACRYLATES COPOLYMER
Acroleic acid; 2-Propenoic acid; Acrylate; Ethylenecarboxylic acid; propene acid; Propenoic acid; Vinylformic Acid; Acide acrylique; Acido acrilio; Kyselina akrylova; 2-PROPENOIC ACID; Acroleic acid; ACRYLIC ACID; AKOS BBS-00003787; ETHYLENECARBOXYLIC ACID; PROPENOIC ACID; RARECHEM AL BO 0141; 2-Propensαure; acideacrylique; acideacrylique(french); acidoacrilio; Acrylate; acrylicacid,[waste]; acrylicacid,glacial; acrylicacid,inhibited; Acrylsαure; ai3-15717; caswellno.009a; CH2=CHCOOH; Glacial acrylic acid CAS NO: 79-10-7
ACRYLATES/ OCTYLACRYLAMIDE COPOLYMER
2-Propenoic acid, 2-methyl-, 2-methylpropylester, polymer with 2-propenoic acid and N-(1,1,3,3-tetramethylbutyl)-2-propenamide CAS No:129702-02-9
ACRYLATES/COPOLYMER
Acrylic acid-acrylate polymer; Acrylates copolymer,Copolymer acrylate; acrylic acid terpolymer, partial sodium salts;methyl methacrylate/ ethyl acrylate/ methacrylic acid pol.; Ethyl acrylate·methacrylic acid·methyl methacrylate copolymer; polymer with ethyl 2-propenoate and methyl 2-methyl-2-propenoate; ethyl prop-2-enoate,methyl 2-methylprop-2-enoate,2-methylprop-2-enoic acid; 2-Propenoic acid, 2-methyl-, polymer with ethyl 2-propenoate and methyl 2-methyl-2-propenoate CAS No:25133-97-5
Acrylates/Steareth 20 Itaconate Copolymer
SYNONYM 2-Propenoic acid, 2-methyl-, polymer with ethyl 2-propenoate and .alpha.-(2-methyl-1-oxo-2-propenyl)-.omega.-(octadecyloxy)poly(oxy-1,2-ethanediyl), graft;2-Propenoic acid, 2-methyl-, polymer with ethyl 2-propenoate and .alpha.-(2-methyl-1-oxo-2-propenyl)-.omega.-(octadecyloxy)poly(oxy-1,2-ethanediyl), graft CAS #676168-27-7
ACRYLATES/VINYL ISODECANOATE CROSSPOLYMER
Ethenyl isodecanoate, polymer with 2-methyl-2-propenoic acid, 2-propenoic acid or one or more of their simple esters, and polyalkenylpolyether; ACRYLATES/ VINYL ISODECANOATE CROSSPOLYMER and ACRYLATES/VINYL ISODECANOATE CROSSPOLYMER; Stabylen 30; ethenyl isodecanoate, polymer with 2-methyl-2-propenoic acid, 2-propenoic acid or one or more of their simple esters, and polyalkenylpolyether CAS NO:191808-02-3
acrylic acid
acrylic acid-hydroxypropyl acrylate copolymer ACRYLIC ACID-2-HYDROXYPROPYL ACRYLATE COPOLYMER AcrylicAcid-2-HydroxypropylAcrylateCopolymer(equaltoT-225) Acrylic Acid-2-Hydroxypropyl Acrylate Copolymer (T-225) T-225 Acrylic acid-hydroxypropyl acrylate polymer Acrylic Acid-2-Hydroxypropyl Acrylate Copolymer T-225 or AA/HPA flocculant TS-609 cas :55719-33-0
Acrylic Acid 2-Hydroxypropyl Acrylate Copolymer (T-225)
SynonymsTH-241;aa-ampsa;AcrylicAcid-AMPSCopolymer(AA/AMPS);Sulfonated Polyacrylic Acid Copolymer;TH-613 Acrylic-acrylate-sulfosalt copolymers;2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid;2-acrylamido-2-methylpropanesulfonic acid-acrylic acid;ACRYLIC ACID/ APSA COPOLYMER/HPA TERPOLYMER (AA/APSA/HPA);prop-2-enoic acid,2-(prop-2-enoylamino)butane-2-sulfonic acid;ACRYLIC ACID/ACRYLAMIDOMETHYL PROPANE SULFONIC ACID COPOLYMER cas :40623-75-4
Acrylic Acid-2-Acrylamido-2-Methylpropane Sulfonic acid Copolymer (AA/AMPS )
MA-AA; Copolymer of Maleic and Acrylic Acid; ACRYLIC ACID MALEIC ANHYDRIDE COPOLYMER CAS NO:26677-99-6
Acrylic and maleic copolymers
prop-2-enoic acid; acrylic acid; Carbopol; CARBOMER; CAS NO:9063-87-0
Acrylic copolymer
MA-AA; Copolymer of Maleic and Acrylic Acid; ACRYLIC ACID MALEIC ANHYDRIDE COPOLYMER CAS NO:26677-99-6
Acrylic/Maleic co-polymer (MW 5000)
MA-AA; Copolymer of Maleic and Acrylic Acid; ACRYLIC ACID MALEIC ANHYDRIDE COPOLYMER CAS NO:26677-99-6
Acrylic/Maleic co-polymer (MW 70 000)
ACETYLENE BLACK; ACETYLENE CARBON BLACK; ACTIVATED CARBON; ACTIVATED CARBON DARCO G-60; ACTIVATED CHARCOAL; ACTIVATED CHARCOAL NORIT; ACTIVATED CHARCOAL NORIT(R); CALGON CPG; CARBO ACTIVATUS; CARBON; CARBON 84; CARBON, ACTIVATED; CARBON ATOMIC ABSORPTION STANDARD; CARBON BLACK; CARBON BLACK, ACETYLENE; CARBON, DECOLORIZING; CARBON, DECOLORIZING DARCO(R); CARBON, DECOLORIZING NORIT(R) A; CARBON, DECOLORIZING NUCHAR(R) S-N; CARBON FELT CAS NO:7440-44-0
ACTIPONE ALPHA PULP

Actipone Alpha Pulp est un extrait naturel de haute qualité dérivé de la pulpe de pommes, connu pour ses puissantes propriétés antioxydantes et apaisantes pour la peau.
Actipone Alpha Pulp est largement utilisé dans les formulations de soins personnels en raison de sa capacité à améliorer l'hydratation de la peau, à renforcer l'éclat et à protéger la peau contre le stress oxydatif.
Cet ingrédient polyvalent est idéal pour une large gamme d'applications, y compris les produits anti-âge, les hydratants et les traitements éclaircissants pour la peau.

Numéro CAS : Non spécifiquement attribué (les numéros CAS pertinents peuvent varier en fonction des composants spécifiques tels que les polyphénols, la vitamine C, etc.)
Numéro EC : Non spécifiquement attribué (les numéros EC pertinents peuvent varier en fonction des composants spécifiques)

Synonymes : Actipone Alpha Pulp, Extrait de pulpe de pomme, Extrait de pulpe de Malus Domestica, Agent de conditionnement de la peau Alpha Pulp, Actipone Antioxidant Alpha, Extrait Naturel Alpha Pulp, Actipone Hydratant pour la peau, Actipone Éclaircissant de la peau Alpha, Anti-âge Alpha Pulp, Actipone Hydratant Alpha, Extrait de pomme Alpha Pulp, Extrait de pulpe de Malus, Complexe Actipone Pulp de pomme, Actipone Alpha Pulp Hydratant, Pulp de pomme dérivé Alpha, Extrait naturel de pulpe de pomme, Actipone Apaisant pour la peau Alpha, Actipone Conditionneur de peau de pomme, Actipone Alpha Pulp Antioxydant, Actipone Soin de la peau Alpha, Actipone Pulp de pomme Actif



APPLICATIONS


Actipone Alpha Pulp est largement utilisé dans la formulation de produits de soin anti-âge, offrant une protection antioxydante puissante qui aide à réduire l'apparence des rides et ridules.
Actipone Alpha Pulp est favorisé dans les hydratants et les crèmes hydratantes, où il améliore la rétention d'humidité de la peau et améliore la texture générale de la peau.
Actipone Alpha Pulp est utilisé dans le développement de produits éclaircissants pour la peau, aidant à uniformiser le teint et à renforcer l'éclat.

Actipone Alpha Pulp est largement utilisé dans la production de crèmes et de lotions apaisantes, où ses propriétés anti-inflammatoires aident à calmer la peau irritée.
Actipone Alpha Pulp est employé dans la formulation de sérums pour le visage, offrant une dose concentrée d'antioxydants et de nutriments pour favoriser une peau saine et éclatante.
Actipone Alpha Pulp est essentiel dans la création de produits de soin naturels et biologiques, répondant à la demande des consommateurs pour des solutions de beauté propres et efficaces.

Actipone Alpha Pulp est utilisé dans la production de masques pour le visage, offrant une hydratation profonde et des avantages antioxydants qui rajeunissent la peau.
Actipone Alpha Pulp est un ingrédient clé dans la formulation de crèmes pour les yeux, aidant à réduire l'apparence des cernes et des poches sous les yeux.
Actipone Alpha Pulp est utilisé dans la création de crèmes pour les mains, offrant hydratation et protection contre les agresseurs environnementaux.

Actipone Alpha Pulp est appliqué dans la formulation des écrans solaires, où ses propriétés antioxydantes aident à protéger la peau des dommages causés par les UV.
Actipone Alpha Pulp est employé dans la production de lotions après-soleil, offrant un soulagement apaisant et une réparation à la peau exposée au soleil.
Actipone Alpha Pulp est utilisé dans le développement de lotions pour le corps, offrant une hydratation complète du corps et une protection contre le stress oxydatif.

Actipone Alpha Pulp est largement utilisé dans la formulation de produits pour les lèvres, offrant hydratation et protection antioxydante pour garder les lèvres douces et lisses.
Actipone Alpha Pulp est un composant clé dans la création de nettoyants naturels, offrant un nettoyage doux avec des avantages supplémentaires pour le conditionnement de la peau.
Actipone Alpha Pulp est utilisé dans la production de traitements pour le cuir chevelu, aidant à apaiser et à hydrater le cuir chevelu tout en le protégeant des dommages environnementaux.

Actipone Alpha Pulp est employé dans la formulation de produits capillaires, tels que les shampooings et les après-shampooings, où il améliore la brillance et protège les cheveux contre le stress oxydatif.
Actipone Alpha Pulp est appliqué dans la création de produits pour bébés, offrant une hydratation douce et une protection pour la peau délicate.
Actipone Alpha Pulp est utilisé dans le développement de produits de soin anti-pollution, fournissant une barrière contre les polluants environnementaux et les radicaux libres.

Actipone Alpha Pulp se trouve dans la formulation de baumes multifonctionnels, offrant hydratation, protection et avantages antioxydants pour une utilisation sur les lèvres, le visage et le corps.
Actipone Alpha Pulp est utilisé dans la production de crèmes de nuit, où il soutient les processus naturels de réparation de la peau et améliore l'hydratation pendant la nuit.
Actipone Alpha Pulp est un ingrédient clé dans la création de produits exfoliants, offrant une exfoliation douce avec des avantages supplémentaires pour le conditionnement de la peau et une protection antioxydante.

Actipone Alpha Pulp est largement utilisé dans la formulation de toners, offrant hydratation et avantages antioxydants qui préparent la peau pour les étapes suivantes des soins de la peau.
Actipone Alpha Pulp est employé dans le développement d'huiles pour le visage, fournissant une couche nourrissante et protectrice qui retient l'humidité et renforce l'éclat de la peau.
Actipone Alpha Pulp est appliqué dans la production de sprays hydratants, offrant une hydratation légère et rafraîchissante avec des antioxydants.

Actipone Alpha Pulp est utilisé dans la création de beurres corporels, offrant une hydratation riche et une protection antioxydante pour les peaux sèches et rugueuses.
Actipone Alpha Pulp se trouve dans la formulation de masques capillaires, offrant un conditionnement en profondeur et une protection contre le stress oxydatif pour des cheveux plus sains et plus brillants.
Actipone Alpha Pulp est utilisé dans la production de traitements anti-âge pour les mains, aidant à réduire l'apparence des taches de vieillesse et à améliorer l'élasticité de la peau.

Actipone Alpha Pulp est un composant clé dans le développement de gommages pour le visage et le corps, offrant une exfoliation douce avec des avantages hydratants et antioxydants supplémentaires.
Actipone Alpha Pulp est largement employé dans la formulation de brumes pour le visage, offrant un moyen rapide et facile de rafraîchir et d'hydrater la peau tout au long de la journée.
Actipone Alpha Pulp est utilisé dans la création de produits pour le bain, offrant une expérience apaisante et hydratante avec une protection antioxydante supplémentaire.

Actipone Alpha Pulp est appliqué dans la formulation de produits de soin pour peaux sensibles, offrant une hydratation douce et une protection sans causer d'irritation.
Actipone Alpha Pulp est utilisé dans le développement de masques hydratants, offrant une hydratation en profondeur et des avantages antioxydants pour un teint éclatant.
Actipone Alpha Pulp se trouve dans la formulation de produits illuminants pour la peau, aidant à renforcer l'éclat de la peau et à créer une lueur naturelle.



DESCRIPTION


Actipone Alpha Pulp est un extrait naturel de haute qualité dérivé de la pulpe de pommes, connu pour ses puissantes propriétés antioxydantes et apaisantes pour la peau.
Actipone Alpha Pulp est largement utilisé dans les formulations de soins personnels en raison de sa capacité à améliorer l'hydratation de la peau, à renforcer l'éclat et à protéger la peau contre le stress oxydatif.

Actipone Alpha Pulp offre des avantages supplémentaires tels que des effets anti-inflammatoires et anti-âge, ce qui le rend idéal pour une large gamme d'applications de soins de la peau.
Actipone Alpha Pulp est souvent incorporé dans des formulations conçues pour éclaircir la peau, réduire l'apparence des taches sombres et uniformiser le teint.
Actipone Alpha Pulp est reconnu pour sa capacité à améliorer la texture et l'apparence globales de la peau, la laissant lisse, douce et éclatante.

Actipone Alpha Pulp est couramment utilisé dans les formulations de soins naturels et biologiques, où il fournit une alternative propre et efficace aux ingrédients synthétiques.
Actipone Alpha Pulp est apprécié pour sa capacité à soutenir les processus naturels de réparation de la peau, ce qui en fait un ingrédient clé dans les crèmes de nuit et les traitements anti-âge.
Actipone Alpha Pulp est un ingrédient polyvalent qui peut être utilisé dans une variété de produits, y compris les hydratants, les sérums, les nettoyants et les masques.

Actipone Alpha Pulp est un choix idéal pour les produits ciblant les peaux sèches et sensibles, car il offre une hydratation et une protection douces mais efficaces.
Actipone Alpha Pulp est un ingrédient clé dans les formulations conçues pour lutter contre les effets des facteurs de stress environnementaux, offrant une protection antioxydante contre les radicaux libres.
Actipone Alpha Pulp est reconnu pour son respect de l'environnement, étant dérivé de sources naturelles et offrant une alternative durable aux ingrédients synthétiques pour les soins de la peau.

Actipone Alpha Pulp améliore l'efficacité globale des produits de soins personnels en fournissant hydratation, protection antioxydante et conditionnement de la peau dans un seul ingrédient.
Actipone Alpha Pulp est souvent choisi pour les formulations nécessitant un équilibre entre hydratation et protection de la peau, assurant une approche équilibrée des soins de la peau.
Actipone Alpha Pulp est un ingrédient fiable pour créer des produits qui offrent une expérience utilisateur agréable, avec une sensation légère, non grasse et un parfum naturel et rafraîchissant.

Actipone Alpha Pulp est un composant essentiel dans les produits de soin de la peau innovants qui se distinguent sur le marché par leur performance, leur sécurité et leur origine naturelle.



PROPRIÉTÉS


Formule Chimique : N/A (Mélange complexe de composés naturels)
Nom Commun : Actipone Alpha Pulp (Extrait de pulpe de pomme)
Structure Moléculaire :
Apparence : Liquide jaune clair à ambre
Densité : Environ 1,0 g/cm³
Point de Fusion : N/A (liquide à température ambiante)
Solubilité : Soluble dans l'eau, soluble dans les alcools et les glycols
Point d'Éclair : N/A (solution aqueuse)
Réactivité : Stable dans des conditions normales ; aucun problème de réactivité connu
Stabilité Chimique : Stable dans les conditions de stockage recommandées
Température de Stockage : Stocker entre 15-25°C dans un endroit frais et sec
Pression de Vapeur : Basse



PREMIERS SECOURS


Inhalation :
Si Actipone Alpha Pulp est inhalé, amenez immédiatement la personne affectée à l'air frais.
Si des difficultés respiratoires persistent, consultez immédiatement un médecin.
Si la personne ne respire pas, pratiquez la respiration artificielle.
Gardez la personne affectée au chaud et au repos.

Contact avec la Peau :
Lavez la zone affectée avec de l'eau et du savon.
Si l'irritation de la peau persiste, consultez un médecin.

Contact avec les Yeux :
En cas de contact avec les yeux, rincez abondamment les yeux avec de l'eau pendant au moins 15 minutes, en soulevant les paupières supérieures et inférieures.
Si l'irritation ou la rougeur persiste, consultez immédiatement un médecin.
Enlevez les lentilles de contact si présentes et faciles à retirer ; continuez à rincer.

Ingestion :
Si Actipone Alpha Pulp est ingéré, ne pas provoquer de vomissements sauf indication contraire du personnel médical.
Rincez bien la bouche avec de l'eau.
Consultez immédiatement un médecin.
Si la personne est consciente, donnez de petites gorgées d'eau à boire.

Note aux Médecins :
Traitez de manière symptomatique.
Pas d'antidote spécifique.
Fournir des soins de soutien.



MANIPULATION ET STOCKAGE


Manipulation :

Protection Personnelle :
Portez un équipement de protection individuelle (EPI) approprié tel que des gants et des lunettes de sécurité si vous manipulez de grandes quantités.
Utilisez dans un endroit bien ventilé pour éviter l'inhalation de vapeurs.

Ventilation :
Assurez une ventilation adéquate lors de la manipulation de grandes quantités d'Actipone Alpha Pulp pour contrôler les concentrations dans l'air en dessous des limites d'exposition professionnelle.

Évitement :
Évitez le contact direct avec les yeux et le contact prolongé avec la peau.
Ne mangez pas, ne buvez pas et ne fumez pas en manipulant Actipone Alpha Pulp.
Lavez-vous bien les mains après manipulation.

Procédures en cas de Déversement et de Fuite :
Contenez les déversements pour éviter toute libération supplémentaire et minimiser l'exposition.
Absorbez avec un matériau inerte (par exemple, du sable, de la vermiculite) et ramassez pour élimination.
Éliminez conformément aux réglementations locales.

Stockage :
Stockez Actipone Alpha Pulp dans un endroit frais, sec et bien ventilé, à l'écart des matériaux incompatibles (voir SDS pour plus de détails spécifiques).
Gardez les contenants bien fermés lorsqu'ils ne sont pas utilisés pour éviter la contamination.
Conservez à l'écart des sources de chaleur, de la lumière directe du soleil et des sources d'inflammation.

Précautions de Manipulation :
Évitez l'inhalation de vapeurs et le contact direct avec la peau et les yeux.
Utilisez des équipements antidéflagrants dans les zones où des vapeurs peuvent être présentes.


Stockage :

Température :
Stockez Actipone Alpha Pulp à des températures comprises entre 15-25°C comme recommandé par le fabricant.
Évitez l'exposition à des températures extrêmes.

Contenants :
Utilisez des contenants approuvés fabriqués avec des matériaux compatibles.
Vérifiez régulièrement l'absence de fuites ou de dommages sur les contenants de stockage.

Séparation :
Stockez Actipone Alpha Pulp à l'écart des matériaux incompatibles, y compris les oxydants forts.

Équipements de Manipulation :
Utilisez un équipement dédié à la manipulation d'Actipone Alpha Pulp pour éviter la contamination croisée.
Assurez-vous que tout l'équipement de manipulation est en bon état.

Mesures de Sécurité :
Restreignez l'accès aux zones de stockage.
Respectez toutes les réglementations locales applicables concernant le stockage des ingrédients cosmétiques.

Réponse d'Urgence :
Ayez à disposition des équipements et du matériel de réponse d'urgence, y compris des matériaux de nettoyage de déversements, des extincteurs d'incendie et des stations de lavage oculaire d'urgence.

ACTIVATED CARBON
ACETYLENE BLACK ACETYLENE CARBON BLACK ACTIVATED CARBON ACTIVATED CARBON DARCO G-60 ACTIVATED CHARCOAL ACTIVATED CHARCOAL NORIT ACTIVATED CHARCOAL NORIT(R) CALGON CPG CARBO ACTIVATUS CARBON CARBON 84 CARBON, ACTIVATED CARBON ATOMIC ABSORPTION STANDARD CARBON BLACK CARBON BLACK, ACETYLENE CARBON, DECOLORIZING CARBON, DECOLORIZING DARCO(R) CARBON, DECOLORIZING NORIT(R) A CARBON, DECOLORIZING NUCHAR(R) S-N CARBON FELT cas :440-44-0
Actinidia chinensis
actinidia chinensis fruit extract; extract of the fruit of the kiwi, actinidia chinensis, actinidiaceae; fruitapone kiwi; fresh cells kiwi PFE CAS NO:92456-63-8
Actinidia Deliciosa Fruit Extract
extract obtained from the kiwi, actinidia deliciosa, actinidiaceae; fuzzy kiwi fruit extract; fresh cells kiwi PFE CAS NO:92456-63-8
Actinidia Polygama Fruit Extract (and) butylene glycol (and) water
extract of the fruit of actinidia polygama ; Actinidia polygama in butylene glycol and water, Actinidiaceae; actinidia lecomtei fruit extract; lecomtei fruit extract; cat powder fruit extract; actinidiaceae in water and butylene glycol; silver vine extract BG30; silver vine fruit extract; trochostigma polygamum fruit extract CAS NO:999999-99-4
Activated ACH
Activated Aluminum chlorohydrate; ACTIVATED ALUMINUM HYDROXYCHLORIDE; ALUMINUM CHLORIDE HYDROXIDE (AL2CL(OH)5);: basicaluminumchlorate;chlorhydrol;chlorhydrol,granular;chlorhydrol,impalpable;chlorohydrol;chloropentahydroxydialuminum;dialuminium;dialuminiumchloridepentahydroxide CAS NO:12042-91-0
Activated Al/Zr Tetrachlorohydrex Gly
Activated Aluminum Zirconium Tetrachlorohydrex Glycine ; Al4Zr(OH)12Cl4 Gly x nH2O; ACTIVATED ALUMINUM ZIRCONIUM TETRACHLOROHYDREX GLY;Activated Aluminum zirconium tetrachlorohydrex glycine complex CAS NO:134910-86-4
Activated Al/Zr Trichlorohydrex Gly
Activated Aluminum Zirconium Trichlorohydrex Glycine; reaction product obtained from the reaction of activated aluminium zirconium trichlorohydrate (Al8Zr(OH)13Cl3.xH2O) with glycin; aluminum;2-aminoacetic acid;zirconium(4+);chloride;hydroxide;hydrate;Triclosan aluMinuM zirconiuM glycine;Aluminium zirconium trichlorohydration glycin CAS NO:134375-99-8
ACTYLOL
L'actylol est un solvant respectueux de l'environnement avec une efficacité comparable aux solvants à base de pétrole.
L'actylol se trouve naturellement en petites quantités dans une grande variété d'aliments, notamment le vin, le poulet et divers fruits.
L'actylol, également connu sous le nom d'ester éthylique d'acide lactique, est le composé organique de formule CH3CH(OH)CO2CH2CH3.

Numéro CAS : 687-47-8
Numéro CE : 202-598-0
Formule moléculaire : C5H10O3
Poids moléculaire (g/mol) : 118,13

LACTATE D'ÉTHYLE, 97-64-3, 2-hydroxypropanoate d'éthyle, Solactol, Actylol, Acytol, Acide lactique, ester éthylique, 2-hydroxypropionate d'éthyle, Acide propanoïque, 2-hydroxy-, ester éthylique, Lactate d'éthyle, 2-Hydroxypropanoïque ester éthylique d'acide, Ester éthylique d'acide lactique, alpha-hydroxypropionate d'éthyle, FEMA n° 2440, Eusolvan, Lactate d'éthyle (naturel), Ethylester kyseliny mlecne, Lactate d'éthyle [français], NSC 8850, HSDB 412, Ethylester kyseliny mlecne [tchèque ], Ester éthylique de l'acide 2-hydroxypropionique, EINECS 202-598-0, UN1192, Ester éthylique de l'acide lactique, BRN 1209448, UNII-F3P750VW8I, AI3-00395, F3P750VW8I, .alpha.-hydroxypropionate d'éthyle, DTXSID6029127, CHEBI : 78321, NSC-8850, 4-03-00-00643 (référence du manuel Beilstein), d-lactate d'éthyle, lactate d'éthyle, C5H10O3,97-64-3, EthylL-(-)-Lactate, éthyl-lactate, éthyl DL-lactate, Lactate de DL-éthyle, Milchsaureathylester, Nat. Lactate d'éthyle, MFCD00065359, lactate racémique d'éthyle, ester éthylique d'acide lactique, ester éthylique d'acide (S)-(-)-2-hydroxypropionique, PURASOLV ELS, VERTECBIO EL, ester éthylique d'acide lactique, ELT (code CHRIS), mono-éthyle mono-lactate, LACTATE D'ÉTHYLE [MI], (.+/-.)-Lactate d'éthyle, 2-hydroxypropanoate d'éthyle #, LACTATE D'ÉTHYLE [FCC], SCHEMBL22598, LACTATE D'ÉTHYLE [FHFI], LACTATE D'ÉTHYLE [HSDB], LACTATE D'ÉTHYLE [ INCI], LACTATE D'ÉTHYLE [MART.], DTXCID509127, WLN : QVY1 & O2, LACTATE D'ÉTHYLE [WHO-DD], CHEMBL3186323, (+-)-2-hydroxypropanoate d'éthyle, (+-)-2-hydroxypropionate d'éthyle, FEMA 2440 , NSC8850, Tox21_200889, ester éthylique de l'acide 2-hydroxy-propionique, NA1192, lactate d'éthyle, >=98 %, FCC, FG, AKOS009157222, LS-2733, UN 1192, (+/-)-ESTER ÉTHYLIQUE DE L'ACIDE LACTIQUE, CAS- 97-64-3, NCGC00248866-01, NCGC00258443-01, (+/-)-ÉTHYL 2-HYDROXYPROPIONATE, AS-13500, SY030456, A9137, Lactate d'éthyle [UN1192] [Liquide inflammable], Lactate d'éthyle, naturel, >= 98%, FCC, FG, Lactate d'éthyle, SAJ première qualité, >=97,5%, FT-0626259, FT-0627926, FT-0651151, L0003, Lactate d'éthyle [UN1192] [Liquide inflammable], EN300-115258, A845735, Q415418 , J-521263, 2-[(4-benzylpipérazin-1-yl)méthyl]isoindoline-1,3-dione, (±)-éthyl 2 hydroxypropanoate, (±)-éthyl 2-hydroxypropionate, (±)-éthyl lactate , 2-Hydroxypropanoate d'éthyle [Français] [ACD/IUPAC Name], 2-Hydroxypropanoic acid éthyl ester, 97-64-3 [RN], Ethyl 2-hydroxypropanoate [ACD/IUPAC Name], Ethyl ester of lactic acid, Lactate d'éthyle [ACD/Index Name] [Wiki], Ethyl α-hydroxypropionate, Ethyl α-hydroxypropionate, Ethyl-2-hydroxypropanoat [allemand] [ACD/IUPAC Name], MFCD00065359 [numéro MDL], OD5075000, acide propanoïque, 2- hydroxy-, ester éthylique [ACD/Nom de l'index], QY1&VO2 [WLN], ester éthylique de l'acide 2-hydroxypropionique, 4-03-00-00643 [Beilstein], Actylol, Acytol, DL-Ethyl Lactate, DL-Ethyllactate, DL- ACIDE LACTIQUE, ESTER D'ÉTHYLE, Ethyl 2-hydroxy propanoate, Ethyl lactate, C5H10O3,97-64-3, Ethyl racemic-lactate, Ethylester kyseliny mlecne [tchèque], éthyllactate, Ethyl-lactate, Eusolvan, Lactate d'éthyle [français] , ester éthylique d'acide lactique, acide lactique, ester éthylique, ester éthylique d'acide lactique, ester éthylique d'acide L-lactique, MFCD00077825 [numéro MDL], Milchs??ure??thylester, acide propanoïque, 2-hydroxy-, ester éthylique ( 9CI), Solactol, ONU 1192

L'actylol se trouve naturellement en petites quantités dans une grande variété d'aliments, notamment le vin, le poulet et divers fruits.
L'odeur d'Actylol dilué est douce, beurrée, crémeuse, avec des notes de fruits et de noix de coco.

Actylol est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 à < 100 tonnes par an.
L'actylol est utilisé par les consommateurs, par les professionnels (usages répandus), en formulation ou reconditionnement et sur les sites industriels.

L'actylol, également connu sous le nom d'ester éthylique d'acide lactique, est le composé organique de formule CH3CH(OH)CO2CH2CH3.
L'actylol est l'ester éthylique de l'acide lactique.

Liquide incolore, l'Actylol est un ester chiral.
Étant d'origine naturelle, l'Actylol est facilement disponible sous la forme d'un énantiomère unique.

L'actylol est couramment utilisé comme solvant.
L'actylol est considéré comme biodégradable et peut être utilisé comme dégraissant rinçable à l'eau.

L'actylol est un solvant respectueux de l'environnement avec une efficacité comparable aux solvants à base de pétrole.
Le marché mondial des solvants est d'environ 30 millions de livres par an, où Actylol peut avoir une part importante.

L'actylol est considéré comme un produit chimique et a attiré beaucoup d'attention ces dernières années, car l'actylol est formé par la réaction d'estérification de l'éthanol et de l'acide lactique, qui peut être généré à partir de matières premières de biomasse par fermentation.
Dans ce travail, un aperçu des principales propriétés et applications de l'Actylol, ainsi que des processus de synthèse et de production d'Actylol, avec un accent particulier sur les processus réactifs/de séparation, est présenté.

L'actylol, l'ester éthylique de l'acide lactique ou l'ester éthylique de l'acide 2-hydroxypropanoïque est le composé chimique de l'acide lactique avec l'éthanol sous forme d'ester.
Selon la synthèse d'Actylol, l'Actylol est disponible sous forme de racémate ou de substance pure.

Si l'Actylol est redivisé en matières premières Actylol éthanol et acide lactique (par exemple par une réaction chimique), l'Actylol peut être décomposé dans la nature.
Les estérases, des enzymes naturelles, peuvent également effectuer la scission dans les matériaux d'origine.

L'ester éthylique d'acide lactique est donc considéré comme un "solvant vert", car Actylol ne laisse aucun produit de décomposition toxique dans l'écosystème.
Ceci offre un avantage par rapport aux solvants chlorés ou aux glycols ou éthers de glycol, qui ont une toxicité biologique plus élevée.

Aussi connu sous le nom d'ester éthylique d'acide lactique, est un ester monobasique formé à partir d'acide lactique et d'éthanol, couramment utilisé comme solvant d'où le nom « ester éthylique d'acide lactique ».
L'actylol est considéré comme biodégradable et peut être utilisé comme dégraissant risible dans l'eau.
L'actylol se trouve naturellement en petites quantités dans une grande variété d'aliments, notamment le vin, le poulet et divers fruits.

L'actylol est produit à partir de sources biologiques et peut être soit la forme Levo (S) ou la forme Dextro (R), selon l'organisme qui est la source de l'acide lactique.
L'Actylol le plus d'origine biologique est le (-)-L-lactate d'éthyle ((S)-lactate d'éthyle).

L'Actylol est également produit industriellement à partir de stocks pétrochimiques, et cet Actylol est constitué du mélange racémique des formes Levo et Dextro.
Dans certaines juridictions, le produit naturel est exempté de nombreuses restrictions imposées sur l'utilisation et l'élimination des solvants.
Étant donné que les deux énantiomères se trouvent dans la nature et que l'Actylol est facilement biodégradable, l'Actylol est considéré comme un "solvant vert".

Utilisations d'Actylol :
L'actylol est utilisé comme solvant de remplacement des éthers de glycol en photolithographie dans l'industrie de fabrication des semi-conducteurs.
L'actylol est utilisé dans certains dissolvants pour vernis à ongles.

L'actylol est utilisé comme solvant pour les résines, les colorants et les revêtements ; a l'approbation de la FDA pour une utilisation en tant qu'agent aromatisant alimentaire
L'actylol est l'ingrédient actif de nombreuses préparations anti-acnéiques.

Utilisations sur sites industriels :
Actylol est utilisé dans les produits suivants : semi-conducteurs, produits photochimiques, polymères, produits de traitement de surface métallique, produits de traitement de surface non métallique et produits de lavage et de nettoyage.
Actylol est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement.

L'actylol est utilisé pour la fabrication : d'équipements et de machines électriques, électroniques et optiques et de véhicules.
Le rejet dans l'environnement d'Actylol peut se produire lors d'une utilisation industrielle : dans les auxiliaires technologiques sur les sites industriels.

Utilisations industrielles :
Auxiliaires technologiques, non répertoriés ailleurs
Solvant
Solvants (qui font partie de la formulation ou du mélange du produit)

Utilisations grand public :
L'actylol est utilisé dans les produits suivants : produits de traitement de l'air, biocides (par exemple, désinfectants, produits antiparasitaires), parfums et parfums, vernis et cires, produits de lavage et de nettoyage, cosmétiques et produits de soins personnels.
D'autres rejets dans l'environnement d'Actylol sont susceptibles de se produire à partir de : l'utilisation à l'intérieur comme auxiliaire technologique et l'utilisation à l'extérieur comme auxiliaire technologique.

Utilisations répandues par les travailleurs professionnels :
L'actylol est utilisé dans les produits suivants : produits de polissage et cires et produits de lavage et de nettoyage.
D'autres rejets dans l'environnement d'Actylol sont susceptibles de se produire à partir de : l'utilisation à l'intérieur en tant qu'auxiliaire technologique.

Procédés industriels à risque d'exposition :
Fabrication de semi-conducteurs
Peinture (Solvants)
Fabrication de composites plastiques

Applications de l'Actylol :
L'actylol est un excellent ingrédient pour formuler des encres d'imprimerie, des revêtements, des nettoyants à base de résine, des décapants de peinture, des décapants de graffitis, des nettoyants d'encre, etc.
Actylol seul et est un solvant d'essuyage idéal.

L'actylol peut être utilisé dans les applications de revêtements industriels, principalement dans les bobines, l'extrusion, les meubles et accessoires en bois, les contenants et les fermetures, les finitions automobiles et les machines.
Actylol est 100% biodégradable, facile et peu coûteux à recycler.

En raison de la faible toxicité de l'Actylol, l'Actylol est un choix populaire dans de nombreux scénarios de production différents.
L'actylol est également utilisé comme solvant avec divers types de polymères.
En présence d'eau, d'acides et de bases, le produit chimique s'hydrolyse en éthanol et en acide lactique.

Étant donné que les deux énantiomères se trouvent dans la nature et que l'Actylol est facilement biodégradable, l'Actylol est considéré comme un "solvant vert".
Les solutions aqueuses d'Actylol et d'Actylol sont utilisées comme milieux durables pour la synthèse organique.

En raison de la toxicité relativement faible de l'Actylol, l'Actylol est couramment utilisé dans les préparations pharmaceutiques, les additifs alimentaires et les parfums.
L'actylol est également utilisé comme solvant pour la nitrocellulose, l'acétate de cellulose et les éthers de cellulose.

Fabrication d'Actylol :
L'actylol est produit à partir de sources biologiques et peut être soit la forme lévo (S) soit la forme dextro (R), selon l'organisme qui est la source de l'acide lactique.
La plupart des Actylol d'origine biologique sont le (-)-L-lactate d'éthyle ((S)-lactate d'éthyle).
L'actylol est également produit industriellement à partir de stocks pétrochimiques, et cet actylol est constitué du mélange racémique de formes lévo et dextro.

Méthodes de fabrication d'Actylol :

Dérivation : (a) Par estérification de l'acide lactique avec de l'éthanol ; (b) en combinant l'acétaldéhyde avec du cyanure d'hydrogène pour former de la cyanohydrine d'acétaldéhyde, qui est convertie en Actylol par traitement avec de l'éthanol et un acide inorganique.

Le d-Actylol est obtenu à partir d'acide d-lactique par distillation azéotropique avec de l'alcool éthylique ou du benzène en présence de H2SO4 concentré.
La forme l est préparée de manière similaire à partir d'acide l-lactique.
Le produit racémique est préparé en faisant bouillir pendant 24 heures de l'acide lactique optiquement inactif avec de l'alcool éthylique dans du tétrachlorure de carbone, ou avec un excès d'alcool éthylique en présence d'acide chlorosulfonique, ou en présence d'acide benzènesulfonique en solution benzénique.

Manipulation et stockage d'Actylol :

Intervention en cas de déversement sans incendie :
ÉLIMINER toutes les sources d'ignition (interdiction de fumer, fusées éclairantes, étincelles ou flammes) de la zone immédiate.
Tous les équipements utilisés lors de la manipulation d'Actylol doivent être mis à la terre.

Ne pas toucher ou marcher sur le produit déversé.
Arrêtez la fuite si vous pouvez faire Actylol sans risque.

Empêcher l'entrée dans les cours d'eau, les égouts, les sous-sols ou les zones confinées.
Une mousse anti-vapeur peut être utilisée pour réduire les vapeurs.

Absorber ou recouvrir de terre sèche, de sable ou d'un autre matériau non combustible et transférer dans des conteneurs.
Utilisez des outils propres et anti-étincelles pour recueillir le matériau absorbé.

GRAND DÉVERSEMENT :
Endiguer loin devant le déversement liquide pour une élimination ultérieure.
L'eau pulvérisée peut réduire les vapeurs, mais n'empêche pas l'inflammation dans les espaces clos.

Profil de réactivité de l'Actylol :

L'actylol est un ester.
Les esters réagissent avec les acides pour libérer de la chaleur avec les alcools et les acides.
Les acides oxydants forts peuvent provoquer une réaction vigoureuse suffisamment exothermique pour enflammer les produits de réaction.

La chaleur est également générée par l'interaction des esters avec des solutions caustiques.
L'hydrogène inflammable est généré en mélangeant des esters avec des métaux alcalins et des hydrures.

Lutte contre l'incendie d'Actylol :
La majorité de ces produits ont un point éclair très bas.
L'utilisation d'eau pulvérisée lors de la lutte contre l'incendie peut être inefficace.

PETIT FEU:
Poudre chimique sèche, CO2, eau pulvérisée ou mousse résistant à l'alcool.
Ne pas utiliser d'extincteurs à poudre chimique pour contrôler les incendies impliquant du nitrométhane (UN1261) ou du nitroéthane (UN2842).

GRAND INCENDIE :
Eau pulvérisée, brouillard ou mousse anti-alcool.
Évitez de diriger des jets droits ou solides directement sur Actylol.
Si Actylol peut être fait en toute sécurité, éloignez les contenants non endommagés de la zone autour du feu.

INCENDIE IMPLIQUANT DES RÉSERVOIRS OU DES CHARGES DE VOITURE/REMORQUE :
Combattez le feu à une distance maximale ou utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance.
Refroidir les conteneurs avec de grandes quantités d'eau jusqu'à ce que le feu soit éteint.

Retirer immédiatement en cas de bruit montant provenant des dispositifs de sécurité de ventilation ou de décoloration du réservoir.
Restez TOUJOURS à l'écart des réservoirs engloutis par le feu.
Pour un incendie massif, utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance ; si cela est impossible, retirez-vous de la zone et laissez le feu brûler.

Mesures de libération accidentelle d'Actylol :

Isolement et évacuation :

MESURE DE PRECAUTION IMMEDIATE :
Isoler la zone de déversement ou de fuite sur au moins 50 mètres (150 pieds) dans toutes les directions.

GRAND DÉVERSEMENT :
Envisagez une évacuation initiale sous le vent sur au moins 300 mètres (1000 pieds).

FEU:
Si une citerne, un wagon ou un camion-citerne est impliqué dans un incendie, ISOLER sur 800 mètres (1/2 mile) dans toutes les directions ; envisagez également une évacuation initiale sur 800 mètres (1/2 mile) dans toutes les directions.

Méthodes de nettoyage :
Utiliser un équipement de protection individuelle.
Éviter de respirer les vapeurs, les brouillards ou les gaz.

Assurer une ventilation adéquate.
Supprimer toute source d'incendie potentiel.

Évacuer le personnel vers des zones sûres.
Attention aux vapeurs qui s'accumulent pour former des concentrations explosives.
Les vapeurs peuvent s'accumuler dans les zones basses.

Méthodes d'élimination d'Actylol :
Recyclez toute partie inutilisée du matériau pour une utilisation approuvée par Actylol ou renvoyez Actylol au fabricant ou au fournisseur.

L'élimination finale du produit chimique doit prendre en compte :
l'impact de l'Actylol sur la qualité de l'air ; migration potentielle dans l'air, le sol ou l'eau; effets sur la vie animale, aquatique et végétale; et la conformité aux réglementations environnementales et de santé publique.
Si Actylol est possible ou raisonnable, utilisez un produit chimique alternatif avec moins de propension inhérente aux dommages/blessures/toxicité au travail ou à la contamination de l'environnement.

Identifiants d'Actylol :
Numero CAS:
687-47-8 (isomère L)
97-64-3 (racémate)
7699-00-5 (isomère D)

ChemSpider : 13837423
InfoCard ECHA : 100.002.363
Numéro CE : 202-598-0
PubChem CID : 7344
Numéro RTECS : OD5075000
UNII : F3P750VW8I
Numéro ONU : 1192
Tableau de bord CompTox (EPA) : DTXSID6029127
InChI : InChI=1S/C5H10O3/c1-3-8-5(7)4(2)6/h4,6H,3H2,1-2H3
Clé : LZCLXQDLBQLTDK-UHFFFAOYSA-N
InChI=1/C5H10O3/c1-3-8-5(7)4(2)6/h4,6H,3H2,1-2H3
Clé : LZCLXQDLBQLTDK-UHFFFAOYAV
SOURIRES : CCOC(=O)C(C)O

Synonyme(s) : (S)-(-)-Actylol, ester éthylique d'acide L(-)-lactique, ester éthylique d'acide (S)-(-)-2-hydroxypropionique
Formule linéaire : CH3CH(OH)COOC2H5
Numéro CAS : 687-47-8
Poids moléculaire : 118,13
Numéro MDL : MFCD00004518
Numéro d'index CE : 211-694-1

CAS : 687-47-8
Formule moléculaire : C5H10O3
Poids moléculaire (g/mol) : 118,13
Numéro MDL : MFCD00004518
Clé InChI : LZCLXQDLBQLTDK-BYPYZUCNSA-N
PubChem CID : 92831
ChEBI:CHEBI:78322
Nom IUPAC : éthyl (2S)-2-hydroxypropanoate
SOURIRES : CCOC(=O)C(C)O

Propriétés de l'Actylol :
Formule chimique : C5H10O3
Masse molaire : 118,132 g·mol−1
Aspect : Liquide incolore
Densité : 1,03 g/cm3
Point de fusion : -26 ° C (-15 ° F; 247 K)
Point d'ébullition : 151 à 155 °C (304 à 311 °F; 424 à 428 K)
Solubilité dans l'eau : Miscible
Solubilité dans l'éthanol
et la plupart des alcools : Miscible
Rotation chirale ([α]D) : −11,3°
Susceptibilité magnétique (χ) : -72,6·10−6 cm3/mol

pression de vapeur : 1,6 hPa ( 20 °C)
Niveau de qualité : 200
Dosage : ≥ 99 % (GC)
forme : liquide
température d'auto-inflammation : 400 °C
puissance : >2000 mg/kg LD50, orale (rat)
expl. limite : 1,5-16,4 % (v/v)
pH : 4 (20 °C, 50 g/L dans H2O)
viscosité cinématique : 2,7 cSt(25 °C)
point d'ébullition : 154 °C/1 013 hPa
point de fusion : -25 °C
température de transition : point d'éclair 53 °C
densité : 1,03 g/cm3 à 20 °C
température de stockage : 2-30°C
InChI : 1S/C5H10O3/c1-3-8-5(7)4(2)6/h4,6H,3H2,1-2H3/t4-/m0/s1
Clé InChI : LZCLXQDLBQLTDK-BYPYZUCNSA-N

Masse moléculaire : 118,13 g/mol
XLogP3-AA : 0,2
Nombre de donneurs d'obligations hydrogène : 1
Nombre d'accepteurs de liaison hydrogène : 3
Nombre d'obligations rotatives : 3
Masse exacte :
118,062994177 g/mol
Masse monoisotopique :
118,062994177 g/mol
Surface polaire topologique : 46,5 Ų
Nombre d'atomes lourds : 8
Complexité : 79,7
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 1
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui

Spécifications de l'Actylol :
Acidité : 0,1 % maximum. (sous forme d'acide lactique)
Point de fusion : -26,0 °C
Densité : 1,0340 g/mL
Point d'ébullition : 154,0 °C
Point d'éclair : 46 °C
Spectre Infrarouge : Authentique
Plage de pourcentage de dosage : 96 % min. (CG)
Conditionnement : Bouteille en verre
Formule linéaire : CH3CH(OH)CO2C2H5
Indice de réfraction : 1,4100 à 1,4160
Quantité : 250 mL
Beilstein : 03 264
Fieser : 17 135
Indice Merck : 14,3817
Gravité spécifique : 1,034
Condition de rotation spécifique : − 10,00 (20,00°C pur)
Rotation Spécifique : − 10.00
Information sur la solubilité : Solubilité dans l'eau : soluble. Autres solubilités : miscible avec les alcools, les cétones et les esters
Poids de la formule : 118,13
Pourcentage de pureté : 97 %
Forme Physique : Liquide
Nom chimique ou matériau : L(-)-lactate d'éthyle

Structure de l'actylol :
Moment dipolaire : 3,46 D

Composés apparentés d'Actylol :
Acide lactique, MActylol

Produits associés d'Actylol :
Glutaconate de diméthyle (~10% Cis)
Acide (E,E)-4,6-diméthyl-2,4-heptadiénoïque
3,6-diméthyl-3-heptanol
1,1-diméthoxybutane
(E)-6,6-diméthyl-2-hept-1-èn-4-yn-1-amine

Noms d'Actylol :

Noms des processus réglementaires :
Ester éthylique de l'acide 2-hydroxypropanoïque
Actylol
Acytol
2-hydroxypropionate d'éthyle
Alpha-hydroxypropionate d'éthyle
DL-lactate d'éthyle
Lactate d'éthyle
LACTATE D'ÉTHYLE
Lactate d'éthyle
lactate d'éthyle
Lactate d'éthyle (naturel)
lactate d'éthyle DL-lactate d'éthyle
lactate d'éthyle; DL-lactate d'éthyle
Ethylester kyseline mlecne
Lactate d'éthyle
Acide lactique, ester éthylique
Acide propanoïque, 2-hydroxy-, ester éthylique
Solactol

Noms traduits :
DL-mleczan etylu (pl)
ester etylowy kwasu mlekowego (pl)
DL-lactat d'éthyle (de)
éthyl-DL-laktát (cs)
éthyl-laktát (cs)
éthyl-laktát éthyl-DL-laktát (cs)
éthyllacta (da)
éthyllactaate (nl)
Éthyllactat (de)
Éthyllactat Éthyl DL-lactat (de)
etil DL-lactat (ro)
etil DL-laktat (sl)
etil lactat (ro)
etil lactat etil DL-lactat (ro)
etil laktat (sl)
etil laktat etil DL-laktat (sl)
etil-DL-laktat (hr)
etil-DL-laktatas (lt)
etil-DL-laktát (hu)
etil-DL-laktāts (lv)
etil-laktat (hr)
etil-laktát (hu)
etil-laktát etil-DL-laktát (hu)
etillaktatas (lt)
etillaktatas etil-DL-laktatas (lt)
etillaktāts (lv)
étyl-(RS)-laktát (sk)
etyl-laktát (sk)
etyllaktat (non)
étyllaktat (sv)
etyylilaktaatti (fi)
Etüül-DL-laktaat (et)
Etüüllaktaat (et)
lactate d'éthyle; DL-lactate d'éthyle; (en)
lacto de etilo (es)
lacto de etilo (pt)
lattato di etile (le)
mleczan etylu (pl)
mleczan etylu DL-mleczan etylu ester etylowy kwasu mlekowego (pl)
γαλακτικό αιθυλο (el)
етил DL-лактат (bg)
етил лактат (bg)
етил лактат етил DL-лактат (bg)

Noms IUPAC :
Acide 2-éthoxypropanoïque
(2R)-2-hydroxypropanoate d'éthyle
(S)-2-hydroxypropanoate d'éthyle
2-hydroxypropanoate d'éthyle
2-HYDROXYPROPANOATE D'ÉTHYLE
2-hydroxypropanoate d'éthyle
2-hydroxypropanoate d'éthyle
Alpha hydroxypropionate d'éthyle
Lactate d'éthyle DL
DL-lactate d'éthyle
LACTATE D'ÉTHYLE
Lactate d'éthyle
Lactate d'éthyle
lactate d'éthyle
lactate d'éthyle
lactate d'éthyle;
Éthyllactat
2-hydroxypropanoate d'éthyle

Autres noms:
Lactate d'éthyle
Ester éthylique d'acide lactique
Ester éthylique de l'acide 2-hydroxypropanoïque
Actylol
Acytol

Autres identifiants :
2676-33-7
607-129-00-7
97-64-3
ACUMER 1100
2-Acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; Acrylic Acid-2-Acrylamido-2-MeJSylpropane Sulfonic Acid Copolymer (AA/AMPS); Acrylic Acid-2-Acrylic AMide-2-Methyl Propane Sulfonate-AMps CopolyMer; ACRYLIC ACID/ APSA COPOLYMER/HPA TERPOLYMER (AA/APSA/HPA); prop-2-enoic acid,2-(prop-2-enoylamino)butane-2-sulfonic acid; 2-acrylamido-2-methylpropanesulfonic acid-acrylic acid; 2-(1-oxoprop-2-enylamino)-2-butanesulfonic acid; 2-acrylamido-2-methylpropanesulfonic acid-acrylic acid copolymer; 2-Propenoic acid polymer with 2-methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid CAS NO:40623-75-4
ACUMER 2000
ACUMER 2000 ACUMER 2000 Scale Inhibitor and Dispersant CHEMISTRY AND MODE OF ACTION ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: • Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. • Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. • Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. STABILIZATION/DISPERSANCY PERFORMANCE ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. APPLICATIONS • Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, antiscalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programmes : - Phosphate based programmes. - Zinc based programmes. - Advanced all organic programmes in which ACUMER 2000 helps corrosion inhibitors onto metal surfaces. ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion. BENEFITS OF ACUMER 2000 - Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH's. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life. - Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. - Keeps surfaces clean for maximum heat transfer and corrosion resistance. ACUMER 2000 Scale Inhibitor and Dispersant TEST METHOD ACUMER 2000 may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed by Rohm and Haas. SAFE HANDLING INFORMATION • Caution: - Contact may cause eye irritation and slight skin irritation. • First aid measures - Contact with skin: wash skin thoroughly with soap and water. Remove contaminated clothing and launder before rewearing. - Contact with eyes: flush eyes with plenty of water for at least 15 minutes and then call a physician. - If swallowed: if victim is conscious, dilute the liquid by giving the victim water to drink and then call a physician. If the victim is unconscious, call a physician immediately. Never give an unconscious person anything to drink. • Toxicity: - Acute oral (LD50 ) rats: >5g/kg. MATERIAL SAFETY DATA SHEETS Rohm and Haas company maintains Material Safety Data Sheet (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our products. Acumer 2000 Acumer 2000 is manufactured by DOW Chemical (Mid South Chemical is a “certified” repackager of Acumer™ products) Scale Inhibitor and Dispersant Copolymer stabilizer, scale inhibitor, and dispersant for cooling water treatment Description ACUMER 2000 is an excellent phosphate and zinc stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion cooling water treatment formulations. Used in: Water treatment Cooling waters Reverse osmosis Industrial and potable Advantages Prevent the formation of deposits on heat transfer surfaces Prevent inorganic and sedimentation fouling Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates NSF-60 certification for RO potable water Inhibits precipitation of calcium, magnesium, and iron salts Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical Nature Carboxylate/Sulfonate copolymer Average Molecular Weight 4500 (Mw) Total Solids (%) 43 pH as is (at 25°C) 4 Bulk density (at 25°C) 1.21 Viscosity Brookfield (mPa.s/cps at 25°C) 400 Chemistry and Mode of Action ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. Stabilization/Dispersancy Performance ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs: -Phosphate based programs -Zinc based programs -Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces. Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life. Exhibits exceptional stability in the presence of hypochlorite. Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. Keeps surfaces clean for maximum heat transfer and corrosion resistance. ACUMER 2000 Scale Inhibitor and Dispersant Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical nature Carboxylate/Sulfonate copolymer Average molecular weight 4500 (Mw) Total solids (%) 43 pH as is (at 25°C) 4 Bulk density (at 25°C) 1.21 Brookfield Viscosity (mPa.s/cps at 25°C) 400 Chemistry and Mode of Action ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readilyfractured crystals that do not adhere well to surfaces and can be easily removed during cleaningoperations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomeratingand depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groupsadsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them fromaggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. Stabilization/Dispersancy Performance ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs: Phosphate based programs. Zinc based programs. Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces. ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion. Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range oftemperatures and pH's. This stability enables the formulator to manufacture one-package treatments athigh pH for maximum shelf life. Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. Keeps surfaces clean for maximum heat transfer and corrosion resistance. Test Method If a traceable polymer is required, OPTIDOSE 2000 offers identical performance to ACUMER 2000, with the ability to detect 0.5 ppm - 15 ppm without interferences. Material Safety Data Sheets Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our products. Acumer 2000 Copolymer stabilizer, dispersant, and scale inhibitor for cooling water treatment Description ACUMER 2000 is recommended for use in cooling water treatments. It is an excellent zinc and phosphate stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion. Advantages of Acumer 2000 Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Prevents the formation of deposits on heat transfer surfaces Prevents inorganic and sedimentation fouling Inhibits precipitation of calcium, iron salts, and magnesium Used In Water treatment Cooling Towers Reverse osmosis Industrial and Potable ACUMER 2000 Scale Inhibitor and Dispersant CHEMISTRY AND MODE OF ACTION ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: • Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. • Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. • Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. STABILIZATION/DISPERSANCY PERFORMANCE ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. APPLICATIONS • Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, antiscalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programmes : - Phosphate based programmes. - Zinc based programmes. - Advanced all organic programmes in which ACUMER 2000 helps corrosion inhibitors onto metal surfaces. ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion. BENEFITS OF ACUMER 2000 - Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH's. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life. - Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. - Keeps surfaces clean for maximum heat transfer and corrosion resistance. ACUMER 2000 Scale Inhibitor and Dispersant TEST METHOD ACUMER 2000 may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed by Rohm and Haas. SAFE HANDLING INFORMATION • Caution: - Contact may cause eye irritation and slight skin irritation. • First aid measures - Contact with skin: wash skin thoroughly with soap and water. Remove contaminated clothing and launder before rewearing. - Contact with eyes: flush eyes with plenty of water for at least 15 minutes and then call a physician. - If swallowed: if victim is conscious, dilute the liquid by giving the victim water to drink and then call a physician. If the victim is unconscious, call a physician immediately. Never give an unconscious person anything to drink. • Toxicity: - Acute oral (LD50 ) rats: >5g/kg. MATERIAL SAFETY DATA SHEETS Rohm and Haas company maintains Material Safety Data Sheet (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our products. Acumer 2000 Acumer 2000 is manufactured by DOW Chemical (Mid South Chemical is a “certified” repackager of Acumer™ products) Scale Inhibitor and Dispersant Copolymer stabilizer, scale inhibitor, and dispersant for cooling water treatment Description ACUMER 2000 is an excellent phosphate and zinc stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion cooling water treatment formulations. Used in: Water treatment Cooling waters Reverse osmosis Industrial and potable Advantages Prevent the formation of deposits on heat transfer surfaces Prevent inorganic and sedimentation fouling Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates NSF-60 certification for RO potable water Inhibits precipitation of calcium, magnesium, and iron salts Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical Nature Carboxylate/Sulfonate copolymer Average Molecular Weight 4500 (Mw) Total Solids (%) 43 pH as is (at 25°C) 4 Bulk density (at 25°C) 1.21 Viscosity Brookfield (mPa.s/cps at 25°C) 400 Chemistry and Mode of Action ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readily fractured crystals that do not adhere well to surfaces and can be easily removed during cleaning operations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomerating and depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groups adsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. Stabilization/Dispersancy Performance ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs: -Phosphate based programs -Zinc based programs -Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces. Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range of temperatures and pH’s. This stability enables the formulator to manufacture one-package treatments at high pH for maximum shelf life. Exhibits exceptional stability in the presence of hypochlorite. Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. Keeps surfaces clean for maximum heat transfer and corrosion resistance. ACUMER 2000 Scale Inhibitor and Dispersant Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical nature Carboxylate/Sulfonate copolymer Average molecular weight 4500 (Mw) Total solids (%) 43 pH as is (at 25°C) 4 Bulk density (at 25°C) 1.21 Brookfield Viscosity (mPa.s/cps at 25°C) 400 Chemistry and Mode of Action ACUMER 2000 copolymer combines two functional groups: strong acid (sulfonate) and weak acid (carboxylate) that provide optimal anti-scale/dispersant efficiency through the following different mechanisms: Solubility enhancement by threshold effect, which reduces precipitation of low solubility inorganic salts. Crystal modification, which deforms the growing inorganic salt crystal to give small, irregular, readilyfractured crystals that do not adhere well to surfaces and can be easily removed during cleaningoperations. Dispersing activity, which prevents precipitated crystals or other inorganic particules from agglomeratingand depositing on surfaces. The sulfonate groups increase the negative charge of the carboxylate groupsadsorbed onto particles and, by then, reinforce the repulsion between the particles, preventing them fromaggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. Stabilization/Dispersancy Performance ACUMER 2000 polymer is designed to provide superior stabilization of calcium phosphate. It also demonstrates excellent stabilization of zinc and calcium carbonate. In addition ACUMER 2000 is a strong dispersant in keeping the silt and commonly encountered inorganic particules suspended and in preventing their settling out onto heat transfer surfaces. Applications Stabilizer/Anti-scale deposition polymer for cooling water treatment Taking advantage of all its complementary properties and high performance as a stabilizer, anti-scalent and dispersant, ACUMER 2000 is particularly recommended for the majorities of the cooling water treatment programs: Phosphate based programs. Zinc based programs. Advanced All Organic programs in which ACUMER 2000 helps corrosion inhibitors, such as phosphonates, onto metal surfaces. ACUMER 2000 has a synergic effect with the other additives in preventing scale as well as corrosion. Benefits of ACUMER 2000 Exhibits excellent thermal and chemical stability and can be used and stored over a broad range oftemperatures and pH's. This stability enables the formulator to manufacture one-package treatments athigh pH for maximum shelf life. Provides superior iron tolerance when most of the commercially available polymers are desactivated in the presence of soluble iron in the system. Keeps surfaces clean for maximum heat transfer and corrosion resistance. Test Method If a traceable polymer is required, OPTIDOSE 2000 offers identical performance to ACUMER 2000, with the ability to detect 0.5 ppm - 15 ppm without interferences. Material Safety Data Sheets Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our products. Acumer 2000 Copolymer stabilizer, dispersant, and scale inhibitor for cooling water treatment Description ACUMER 2000 is recommended for use in cooling water treatments. It is an excellent zinc and phosphate stabilizer and dispersant of inorganic particulates for anti-scale/anti-corrosion. Advantages of Acumer 2000 Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Prevents the formation of deposits on heat transfer surfaces Prevents inorganic and sedimentation fouling Inhibits precipitation of calcium, iron salts, and magnesium Used In Water treatment Cooling Towers Reverse osmosis Industrial and Potable
ACUMER 3100
ACUMER 3100 ACUMER 3100 Acumer 3100 is manufactured by DOW Chemical (Mid South Chemical is a “certified” repackager of Acumer 3100 products) Iron Oxide Dispersant Terpolymer stabilizer and dispersant for water treatment Description ACUMER 3100 is a superior phosphate and zinc stabilizer in stressed cooling water systems and an excellent iron and sludge dispersant in boilers. Used in Water Treatment Cooling Water Boilers industrial reverse osmosis membrane anti-scalant Advantages Use avoids potential fouling situations and maintains maximum heat transfer Excellent boiler sludge dispersant Exceptional iron scale inhibitor and iron oxide dispersant Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical Nature Carboxylate/Sulfonate/Nonionic functional terpolymer Average Molecular Weight 4500 (Mw) Total Solids (%) 43.5 Active Solids (%) 39.5 pH as is (at 25°C) 2.5 Bulk density (at 25°C) 1.20 Viscosity Brookfield (mPa.s/cps at 25°C) 500 Neutralization 0.13g of NaOH (100%) per g of ACUMER 3100 Chemistry and Mode of Action ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate) and a nonionic that provide optimal dispersancy for most particules under a broad range of operating conditions: It’s carboxylate groups are most strongly attracted to particles surfaces, allowing strong dispersant absorption onto particles. It’s sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion preventing particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. It’s nonionic groups further enhance dispersancy by providing steric repulsion between particles. Dispersancy Performance It is an outstanding dispersant, far superior to other types of polymers especially for dispersing both dried and hydrated iron oxide, hydroxyapatite and calcium carbonate. It is also an excellent stabilizer for corrosion inhibitors such as phosphate, phosphonates and zinc. Applications Dispersant and stabilizer for use in all cooling water programs It excels in the harshest of cooling water conditions, such as extremely high or low Ryznar Indexes, high iron concentrations, high levels of zinc or phosphate added as treatment to the system. ACUMER 3100 is particularly recommended in advanced all-organic programs. The product will maintain excellent heat transfer by its superior dispersancy and, in addition, will help corrosion inhibition by controlling film formation of the organic corrosion inhibitors onto metal surfaces. Control of boiler sludge ACUMER 3100 terpolymer is the product of choice for boiler water treatment formulations as it provides unsurpassed control of boiler sludge. The polymer makes it possible to easily transport iron with calcium and phosphate containing sludges for removal during blowdown. Superior iron oxide dispersant, ACUMER 3100 is particularly recommended to control hydrated iron oxide in condensate return line. Thermal/Hydrolytic Stability ACUMER 3100 terpolymer is highly resistant to breakdown in aqueous solution under conditions of high temperature, pressure and pH. As a safety measure ACUMER 3100 is not recommended for boilers operating at pressure greater than 900 psig. ACUMER 3100 is very resistant to hydrolysis as well. The product does not lose its performance capability after storage at pH 13.5 for 6 months at ambient temperature. Acumer 3100 Iron Oxide Dispersant Terpolymer Stabilizer and Dispersant for Water Treatment Description Acumer 3100 is an excellent phosphate and zinc stabilizer in stressed cooling water systems and a superior iron and sludge dispersant in boilers. Advantages of Acumer 3100 Use avoids potential fouling situations and maintains maximum heat transfer Excellent boiler sludge dispersant Exceptional iron scale inhibitor and iron oxide dispersant Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Used In Water Treatment Cooling Water Boilers Typical Properties of Acumer 3100 ACUMER 3100 Terpolymer The Anti-Scale Deposition for “Stressed” Cooling Water Conditions ACUMER 3100 is a carboxylate/sulfonate/nonionic functional terpolymer. It is a superior dispersant and stabilizer for use in all cooling water programs. When other polymers fail under “stressed” conditions, ACUMER 3100 will maintain excellent heat transfer and low corrosion rates in the system. “Stressed” conditions are found in cooling waters containing high levels of calcium, iron, phosphate, or zinc either, naturally occurring in the feedwater or introduced via treatment. These circulating waters may have either a very low or a very high Ryznar Index since ACUMER 3100 performs well in waters with either a scaling or corrosion problem. It is an excellent anti-scalant agent and, also, a stabilizer for corrosion inhibitors such as phosphate and zinc. ACUMER 3100 will disperse particulate matter containing calcium, iron, and kaolin and prevent their adhesion to heat transfer surfaces. This terpolymer also prevents the precipitation of phosphonates, and zinc in circulating water with high amounts of calcium, iron, or alkalinity, to allow controlled film formation of these corrosion inhibitors at the metal surface and, thus, maintain low corrosion rates. PHYSICAL PROPERTIES The typical physical properties of ACUMER 3100 terpolymer are listed in Table 1. TABLE 1 TYPICAL PHYSICAL PROPERTIES CHEMISTRY AND MECHANISM OF ACTION ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate), and a nonionic that provide optimal dispersancy for most particulates under a broad range of operating conditions. Among the three functionalities, ACUMER 3100 carboxylate groups are most strongly attracted to particle surfaces, allowing strong dispersant adsorption onto particles. ACUMER 3100 sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion of similarly charged particles in the cooling water circuit. This repulsion prevents particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. ACUMER 3100 nonionic groups further enhance dispersancy by providing steric repulsion between particles. This multi-functional action contrasts sharply to other dispersants, such as polyacrylic acid or polymethacrylic acid, having only carboxylate functionality which can become strongly attached to certain particles, leaving little residual negative charge available to provide dispersancy. Other polymers, such as SSMA can provide better dispersancy than PAA or PMAA on some particle substrates, but do not have the nonionic group which allows ACUMER 3100 terpolymer to function on a broader range of potential foulants. DISPERSANCY PERFORMANCE ACUMER 3100 terpolymer outperforms polymaleic acid and competitive polymers under cooling water conditions. FIGURE 1. IRON OXIDE DISPERSANCY COOLING WATER CONDITIONS, pH = 7.5 –3– STABILIZED PHOSPHATE PROGRAM Stabilizers control the deposition of phosphate to allow the formation of a very thin protective film on metal surfaces but prevent excessive deposits that reduce heat transfer efficiency. The graphs in Figures 2-4 show that ACUMER 3100 is also the best stabilizer for orthophosphate in high levels of calcium and iron. FIGURE 2. COOLING WATER — STABILIZED PHOSPHATE PROGRAM ALL-ORGANIC cooling water treatments rely on high pH (8-9) and high alkalinity (>200 ppm, as CaCO3) to help passivate metal surfaces. Organic phosphonate is used to inhibit CaCO3 precipitation and forms a cathodic corrosion-inhibiting film of calcium phosphonate. A “yellow-metal” inhibitor, such as tolyltriazole, is frequently included to inhibit brass or copper corrosion. Polymers, such as ACUMER 3100, are used to disperse particulates, inhibit CaCO3 precipitation, and stabilize calcium phosphonate. ACUMER 3100 stands out as the superior polymer for this program. Figure 5 shows results from phosphonate stabilization tests which demonstrate the superiority of ACUMER 3100. FIGURE 5. COOLING WATER — ALL-ORGANIC PROGRAM FORMULATION STABILITY Formulated products containing inorganic polyphosphates or triazoles are packaged at a high pH to maintain stability of the concentrated formulation. Unlike some competitive polymers, ACUMER 3100 terpolymer exhibited no loss of performance after six months of storage at a pH of 13.5. TEST METHODS ACUMER 3100 terpolymer may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed by Rohm and Haas Company. The kit was jointly developed by Rohm and Haas Company and the Hach Company. MATERIAL SAFETY DATA SHEETS Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our product. Under the OSHA Hazard Communication Standard, workers must have access to and understand MSDS on all hazardous substances to which they are exposed. Thus, it is important that appropriate training and information be provided to all employees and that MSDS be available on any hazardous products in their workplace. Rohm and Haas Company sends MSDS on non-OSHA-hazardous as well as OSHA-hazardous products to both “bill-to” and “ship-to” locations of all our customers upon initial shipment (including samples) of all of our products. Updated MSDS are sent upon revision to all customers of record. In addition, MSDS are sent annually to all customers of record. PATENTS The use of ACUMER 3100 ACUMER 3100 Iron Oxide Dispersant Typical Properties These properties are typical but do not constitute specifications. Property Typical Values Appearance Clear solution to slightly hazy Chemical nature Carboxylate/Sulfonate/Nonionic functional terpolymer Average molecular weight 4500 (Mw) Total solids (%) 43.5 Active solids (%) 39.5 pH as is (at 25°C) 2.5 Bulk density (at 25°C) 1.20 Brookfield Viscosity (mPa.s/cps at 25°C) 200 Neutralization 0.13g of NaOH (100%) per g of ACUMER 3100 Chemistry and Mode of Action ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate) and a nonionic that provide optimal dispersancy for most particules under a broad range of operating conditions: • ACUMER 3100 carboxylate groups are most strongly attracted to particles surfaces, allowing strong dispersant absorption onto particles. • ACUMER 3100 sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion preventing particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. • ACUMER 3100 nonionic groups further enhance dispersancy by providing steric repulsion between particles. Dispersancy Performance ACUMER 3100 polymer is an exceptional dispersant, especially for dispersing both dried and hydrated iron oxide, hydroxyapatite and calcium carbonate. It is also an excellent stabilizer for corrosion inhibitors such as phosphate, phosphonates and zinc. Page 2 of 3 ®TM Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow 713-00005-0712-EN ACUMER 3100 07/2012, Rev. 0 Suggested Applications • Dispersant and stabilizer that can be used in cooling water programs ACUMER 3100 terpolymer excels in harsh cooling water conditions, such as extremely high or low Ryznar Indexes, high iron concentrations, high levels of zinc or phosphate added as treatment to the system. ACUMER 3100 is particularly recommended in advanced all-organic programs. The product can maintain excellent heat transfer by its exceptional dispersancy and, in addition, will help corrosion inhibition by controlling film formation of the organic corrosion inhibitors onto metal surfaces. • Control of boiler sludge ACUMER 3100 terpolymer is the product of choice for boiler water treatment formulations as it provides unsurpassed control of boiler sludge. The polymer makes it possible to easily transport iron with calcium and phosphate containing sludges for removal during blowdown. Superior iron oxide dispersant, ACUMER 3100 is particularly recommended to control hydrated iron oxide in condensate return line. Thermal/Hydrolytic Stability ACUMER 3100 terpolymer is highly resistant to breakdown in aqueous solution under conditions of high temperature, pressure and pH. As a safety measure ACUMER 3100 is not recommended for boilers operating at pressure greater than 900 psig. ACUMER 3100 is very resistant to hydrolysis as well. The product does not lose its performance capability after storage at pH 13.5 for 6 months at ambient temperature. Approval ACUMER 3100 is TUV approved for use in boilers under the reference: 06-KG-66. ACUMER 3100 Acumer 3100 is manufactured by DOW Chemical (Mid South Chemical is a “certified” repackager of Acumer 3100 products) Iron Oxide Dispersant Terpolymer stabilizer and dispersant for water treatment Description ACUMER 3100 is a superior phosphate and zinc stabilizer in stressed cooling water systems and an excellent iron and sludge dispersant in boilers. Used in Water Treatment Cooling Water Boilers industrial reverse osmosis membrane anti-scalant Advantages Use avoids potential fouling situations and maintains maximum heat transfer Excellent boiler sludge dispersant Exceptional iron scale inhibitor and iron oxide dispersant Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Typical Properties These properties are typical but do not constitute specifications. Appearance Clear solution to slightly hazy Chemical Nature Carboxylate/Sulfonate/Nonionic functional terpolymer Average Molecular Weight 4500 (Mw) Total Solids (%) 43.5 Active Solids (%) 39.5 pH as is (at 25°C) 2.5 Bulk density (at 25°C) 1.20 Viscosity Brookfield (mPa.s/cps at 25°C) 500 Neutralization 0.13g of NaOH (100%) per g of ACUMER 3100 Chemistry and Mode of Action ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate) and a nonionic that provide optimal dispersancy for most particules under a broad range of operating conditions: It’s carboxylate groups are most strongly attracted to particles surfaces, allowing strong dispersant absorption onto particles. It’s sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion preventing particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. It’s nonionic groups further enhance dispersancy by providing steric repulsion between particles. Dispersancy Performance It is an outstanding dispersant, far superior to other types of polymers especially for dispersing both dried and hydrated iron oxide, hydroxyapatite and calcium carbonate. It is also an excellent stabilizer for corrosion inhibitors such as phosphate, phosphonates and zinc. Applications Dispersant and stabilizer for use in all cooling water programs It excels in the harshest of cooling water conditions, such as extremely high or low Ryznar Indexes, high iron concentrations, high levels of zinc or phosphate added as treatment to the system. ACUMER 3100 is particularly recommended in advanced all-organic programs. The product will maintain excellent heat transfer by its superior dispersancy and, in addition, will help corrosion inhibition by controlling film formation of the organic corrosion inhibitors onto metal surfaces. Control of boiler sludge ACUMER 3100 terpolymer is the product of choice for boiler water treatment formulations as it provides unsurpassed control of boiler sludge. The polymer makes it possible to easily transport iron with calcium and phosphate containing sludges for removal during blowdown. Superior iron oxide dispersant, ACUMER 3100 is particularly recommended to control hydrated iron oxide in condensate return line. Thermal/Hydrolytic Stability ACUMER 3100 terpolymer is highly resistant to breakdown in aqueous solution under conditions of high temperature, pressure and pH. As a safety measure ACUMER 3100 is not recommended for boilers operating at pressure greater than 900 psig. ACUMER 3100 is very resistant to hydrolysis as well. The product does not lose its performance capability after storage at pH 13.5 for 6 months at ambient temperature. Acumer 3100 Iron Oxide Dispersant Terpolymer Stabilizer and Dispersant for Water Treatment Description Acumer 3100 is an excellent phosphate and zinc stabilizer in stressed cooling water systems and a superior iron and sludge dispersant in boilers. Advantages of Acumer 3100 Use avoids potential fouling situations and maintains maximum heat transfer Excellent boiler sludge dispersant Exceptional iron scale inhibitor and iron oxide dispersant Stabilizes corrosion inhibitors such as zinc, phosphates, and phosphonates Used In Water Treatment Cooling Water Boilers Typical Properties of Acumer 3100 ACUMER 3100 Terpolymer The Anti-Scale Deposition for “Stressed” Cooling Water Conditions ACUMER 3100 is a carboxylate/sulfonate/nonionic functional terpolymer. It is a superior dispersant and stabilizer for use in all cooling water programs. When other polymers fail under “stressed” conditions, ACUMER 3100 will maintain excellent heat transfer and low corrosion rates in the system. “Stressed” conditions are found in cooling waters containing high levels of calcium, iron, phosphate, or zinc either, naturally occurring in the feedwater or introduced via treatment. These circulating waters may have either a very low or a very high Ryznar Index since ACUMER 3100 performs well in waters with either a scaling or corrosion problem. It is an excellent anti-scalant agent and, also, a stabilizer for corrosion inhibitors such as phosphate and zinc. ACUMER 3100 will disperse particulate matter containing calcium, iron, and kaolin and prevent their adhesion to heat transfer surfaces. This terpolymer also prevents the precipitation of phosphonates, and zinc in circulating water with high amounts of calcium, iron, or alkalinity, to allow controlled film formation of these corrosion inhibitors at the metal surface and, thus, maintain low corrosion rates. PHYSICAL PROPERTIES The typical physical properties of ACUMER 3100 terpolymer are listed in Table 1. TABLE 1 TYPICAL PHYSICAL PROPERTIES CHEMISTRY AND MECHANISM OF ACTION ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate), and a nonionic that provide optimal dispersancy for most particulates under a broad range of operating conditions. Among the three functionalities, ACUMER 3100 carboxylate groups are most strongly attracted to particle surfaces, allowing strong dispersant adsorption onto particles. ACUMER 3100 sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion of similarly charged particles in the cooling water circuit. This repulsion prevents particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. ACUMER 3100 nonionic groups further enhance dispersancy by providing steric repulsion between particles. This multi-functional action contrasts sharply to other dispersants, such as polyacrylic acid or polymethacrylic acid, having only carboxylate functionality which can become strongly attached to certain particles, leaving little residual negative charge available to provide dispersancy. Other polymers, such as SSMA can provide better dispersancy than PAA or PMAA on some particle substrates, but do not have the nonionic group which allows ACUMER 3100 terpolymer to function on a broader range of potential foulants. DISPERSANCY PERFORMANCE ACUMER 3100 terpolymer outperforms polymaleic acid and competitive polymers under cooling water conditions. FIGURE 1. IRON OXIDE DISPERSANCY COOLING WATER CONDITIONS, pH = 7.5 –3– STABILIZED PHOSPHATE PROGRAM Stabilizers control the deposition of phosphate to allow the formation of a very thin protective film on metal surfaces but prevent excessive deposits that reduce heat transfer efficiency. The graphs in Figures 2-4 show that ACUMER 3100 is also the best stabilizer for orthophosphate in high levels of calcium and iron. FIGURE 2. COOLING WATER — STABILIZED PHOSPHATE PROGRAM ALL-ORGANIC cooling water treatments rely on high pH (8-9) and high alkalinity (>200 ppm, as CaCO3) to help passivate metal surfaces. Organic phosphonate is used to inhibit CaCO3 precipitation and forms a cathodic corrosion-inhibiting film of calcium phosphonate. A “yellow-metal” inhibitor, such as tolyltriazole, is frequently included to inhibit brass or copper corrosion. Polymers, such as ACUMER 3100, are used to disperse particulates, inhibit CaCO3 precipitation, and stabilize calcium phosphonate. ACUMER 3100 stands out as the superior polymer for this program. Figure 5 shows results from phosphonate stabilization tests which demonstrate the superiority of ACUMER 3100. FIGURE 5. COOLING WATER — ALL-ORGANIC PROGRAM FORMULATION STABILITY Formulated products containing inorganic polyphosphates or triazoles are packaged at a high pH to maintain stability of the concentrated formulation. Unlike some competitive polymers, ACUMER 3100 terpolymer exhibited no loss of performance after six months of storage at a pH of 13.5. TEST METHODS ACUMER 3100 terpolymer may be analyzed at use concentration with the Hach polyacrylate test kit. This kit employs a patented method developed by Rohm and Haas Company. The kit was jointly developed by Rohm and Haas Company and the Hach Company. MATERIAL SAFETY DATA SHEETS Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our product. Under the OSHA Hazard Communication Standard, workers must have access to and understand MSDS on all hazardous substances to which they are exposed. Thus, it is important that appropriate training and information be provided to all employees and that MSDS be available on any hazardous products in their workplace. Rohm and Haas Company sends MSDS on non-OSHA-hazardous as well as OSHA-hazardous products to both “bill-to” and “ship-to” locations of all our customers upon initial shipment (including samples) of all of our products. Updated MSDS are sent upon revision to all customers of record. In addition, MSDS are sent annually to all customers of record. PATENTS The use of ACUMER 3100 ACUMER 3100 Iron Oxide Dispersant Typical Properties These properties are typical but do not constitute specifications. Property Typical Values Appearance Clear solution to slightly hazy Chemical nature Carboxylate/Sulfonate/Nonionic functional terpolymer Average molecular weight 4500 (Mw) Total solids (%) 43.5 Active solids (%) 39.5 pH as is (at 25°C) 2.5 Bulk density (at 25°C) 1.20 Brookfield Viscosity (mPa.s/cps at 25°C) 200 Neutralization 0.13g of NaOH (100%) per g of ACUMER 3100 Chemistry and Mode of Action ACUMER 3100 terpolymer contains three functional groups: strong acid (sulfonate), weak acid (carboxylate) and a nonionic that provide optimal dispersancy for most particules under a broad range of operating conditions: • ACUMER 3100 carboxylate groups are most strongly attracted to particles surfaces, allowing strong dispersant absorption onto particles. • ACUMER 3100 sulfonate groups are only weakly attracted to the particle surface and retain some residual negative charge to provide repulsion preventing particles from aggregating into larger particles which can settle and deposit on tube surfaces and low flow areas. • ACUMER 3100 nonionic groups further enhance dispersancy by providing steric repulsion between particles. Dispersancy Performance ACUMER 3100 polymer is an exceptional dispersant, especially for dispersing both dried and hydrated iron oxide, hydroxyapatite and calcium carbonate. It is also an excellent stabilizer for corrosion inhibitors such as phosphate, phosphonates and zinc. Page 2 of 3 ®TM Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow 713-00005-0712-EN ACUMER 3100 07/2012, Rev. 0 Suggested Applications • Dispersant and stabilizer that can be used in cooling water programs ACUMER 3100 terpolymer excels in harsh cooling water conditions, such as extremely high or low Ryznar Indexes, high iron concentrations, high levels of zinc or phosphate added as treatment to the system. ACUMER 3100 is particularly recommended in advanced all-organic programs. The product can maintain excellent heat transfer by its exceptional dispersancy and, in addition, will help corrosion inhibition by controlling film formation of the organic corrosion inhibitors onto metal surfaces. • Control of boiler sludge ACUMER 3100 terpolymer is the product of choice for boiler water treatment formulations as it provides unsurpassed control of boiler sludge. The polymer makes it possible to easily transport iron with calcium and phosphate containing sludges for removal during blowdown. Superior iron oxide dispersant, ACUMER 3100 is particularly recommended to control hydrated iron oxide in condensate return line. Thermal/Hydrolytic Stability ACUMER 3100 terpolymer is highly resistant to breakdown in aqueous solution under conditions of high temperature, pressure and pH. As a safety measure ACUMER 3100 is not recommended for boilers operating at pressure greater than 900 psig. ACUMER 3100 is very resistant to hydrolysis as well. The product does not lose its performance capability after storage at pH 13.5 for 6 months at ambient temperature. Approval ACUMER 3100 is TUV approved for use in boilers under the reference: 06-KG-66.
ACUMER 5000
ACUMER 5000 (akumer 5000) (akümer 5000) An excellent scale inhibitor and dispersant for silica and magnesium silicate. # NSF-60 for potable water. The ACUMER 5000 (akumer 5000) (akümer 5000) mobile phone app helps estimate a suitable dosage in the maintenance formulation for cooling circuits. Uses of ACUMER 5000 (akumer 5000) (akümer 5000): Industrial water treatment Benefits of ACUMER 5000 (akumer 5000) (akümer 5000): Excellent scale inhibition for a variety of applications including cooling circuits, boilers and RO units. Properties of ACUMER 5000 (akumer 5000) (akümer 5000) These values are typical properties and are not intended for use in preparing specifications. Application of ACUMER 5000 (akumer 5000) (akümer 5000) Boilers, Cooling Water, Membranes of ACUMER 5000 (akumer 5000) (akümer 5000) Phosphorus Free Yes Potable Approval of ACUMER 5000 (akumer 5000) (akümer 5000) Yes Scale Control / Inhibition of ACUMER 5000 (akumer 5000) (akümer 5000) Calcium Carbonate, Calcium Phosphate / Phosphonate, Iron Oxide Dispersion, Silica / Silicate ACUMER 5000 (akumer 5000) (akümer 5000) Multipolymer for Silica and Magnesium Silicate Scale Control Cooling water reuse is frequently limited by a ceiling on the amount of tolerable silica in the recirculation water. Normally, if silica levels exceed about 180 ppm SiO2, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer has now raised that ceiling to at least 300 ppm SiO2, proven by exacting pilot studies and field trials, allowing for greater water reuse than ever before. ACUMER 5000 (akumer 5000) (akümer 5000) polymer prevents silica-based scale formation by dispersing colloidal silica and by preventing magnesium silicate scale formation at the heat transfer surfaces. The unique features of ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the treatment of silica limited cooling water are presented below PHYSICAL PROPERTIES of ACUMER 5000 (akumer 5000) (akümer 5000) The typical physical properties of ACUMER 5000 (akumer 5000) (akümer 5000) polymer are listed in Table 1. TABLE 1 TYPICAL PHYSICAL PROPERTIES (these do not constitute specifications) of ACUMER 5000 (akumer 5000) (akümer 5000) Molecular Weight of ACUMER 5000 (akumer 5000) (akümer 5000) 5000 Total Solids, % 44.5 to 45.5 Active Solids, % 42 pH 2.1 to 2.6 Brookfield Viscosity of ACUMER 5000 (akumer 5000) (akümer 5000), cp 700 max. Specific Gravity of ACUMER 5000 (akumer 5000) (akümer 5000) 1.2 Bulk Density, lb/gal (g/cc) 10 (1.19) Lb (Kg) of 100% NaOH to neutralize 1 lb (kg) of polymer 0.131 FORMATION OF SILICA-BASED SCALE of ACUMER 5000 (akumer 5000) (akümer 5000) Silica forms particles with different structures depending upon the pH, presence of other ions and process by which the particles are formed. The three main forms of silica encountered in cooling water are: • Molybdate-reactive silica: frequently referred to as dissolved silica. • Colloidal silica: polymerized silica particles of 0.1 micron or less. • Silicate scale: primarily magnesium silicate, but may also be iron or calcium silicate. Colloidal silica, which forms when the solubility level of silica is exceeded, is difficult to measure under field conditions, and a total silica mass balance cannot be achieved with a simple field test. The most effective method of determining total silica is described in “Standard Methods for the Examination of Water and Wastewater”, 17th edition (Method 4500-SiC). A simpler method that converts other forms of silica to molybdate-reactive silica is described in Rohm and Haas Technical Bulletin FC-267, “ACUMER TST sm, Total Silica Test for High-Silica Waters”. As the colloidal silica passes into the Nernst diffusion layer at the heat transfer surface, it dissolves and acquires a negative (anionic) charge. Polyvalent cations, especially magnesium, tend to react with these anionic colloidal particles effectively “gluing” them together and ultimately forming a hard, glassy magnesium silicate scale. Figure 1 shows how colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can coprecipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silicate. Mechanism for Controlling Silica ACUMER 5000 (akumer 5000) (akümer 5000) The remarkable properties of ACUMER 5000 (akumer 5000) (akümer 5000) polymer derive in large part from its three distinctive functionalities. The weak acid (carboxylate) group provides a means of attaching the polymer to metal ions in solution and to the surfaces of particles or crystals. This enables the polymer to act as a dispersant to prevent agglomeration and deposit formation as well as stabilizing contaminants. The strong acid (sulfonate) contributes to this process by increasing the solubility and charge density of the polymer which enhances electrostatic repulsion of particles. What sets ACUMER 5000 (akumer 5000) (akümer 5000) polymer apart, however, is a unique third set of functionalities, based on balanced hydrophilicity and lipophilicity (hydrophobicity)1 . ACUMER 5000 (akumer 5000) (akümer 5000) Where the other functionalities operate primarily through charge-transfer, this so-called HLB functionality promotes physical adsorption on the surfaces of contaminant particles especially at higher temperatures. By promoting adsorption, this third type of functionality also contributes to the strength of the energy barrier (or the net repulsive force) created by the polymer around the silica particle. ACUMER 5000 (akumer 5000) (akümer 5000) polymer adsorbed on the colloid surfaces provides an energy barrier that prevents precipitation and agglomeration. Moreover, even if the silica particles precipitate, they are spaced too far apart for magnesium or redissolved silicate anions to bind them together. As a result, the scale formed by these particles will be powdery and, thus, easier to remove. For additional information on these mechanisms please request the following reprints: “Control of Iron and Silica with Polymeric Dispersants”, “Recent Experience in Controlling Silica and Magnesium Silicate Deposits with Polymeric Dispersants” 1The idea of enhancing adsorption by balancing hydrophilic and lipophilic moieties is borrowed from surfactant chemists who use the term HLB (hydrophile/ lipophile balance) to describe surfactant solubility and adsorption characteristics. ACUMER 5000 (akumer 5000) (akümer 5000) polymer does not actually have surfacant-like properties, but it behaves in an analogous way. MAGNESIUM SILICATE SCALE ACUMER 5000 (akumer 5000) (akümer 5000) PREVENTION WITH ACUMER 5000 (akumer 5000) (akümer 5000) POLYMER ACUMER 5000 (akumer 5000) (akümer 5000) Polymer Action in Recirculating Water Photomicrographs using cross-polarized lenses can be used to study crystal structures. Figure 3 shows the dispersed silica using ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the recirculating water versus agglomerated silica particles in Figure 2 without polymer. ACUMER 5000 (akumer 5000) (akümer 5000) Polymer Action at Heat Transfer Surface ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer also prevents formation of magnesium silicate under the conditions found near a heat transfer surface, as shown in Figures 4 and 5. PERFORMANCE OF ACUMER 5000 (akumer 5000) (akümer 5000) POLYMER Accelerated Pilot Cooling Tower Tests of ACUMER 5000 (akumer 5000) (akümer 5000) A series of 3-day pilot cooling tower (PCT) tests were run to compare the dispersing efficiency of ACUMER 5000 (akumer 5000) (akümer 5000) polymer with that of conventional products. The water chemistry and operating parameters of the PCT in these studies are shown in Tables 2 and 3. The treatment formulation used to evaluate polymer efficacy consisted of 2 ppm tolyltriazole (TTA), 10 ppm active polymer, and a 1/1 blend of 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) to give 5 ppm total active phosphonate. At start-up, the formulation was fed into the system at three times the normal strength to compensate for the high concentrations of silica, calcium and magnesium.In these accelerated tests, water passed over a series of four heat transfer rods in succession. Scale formed on all four rods, with each developing more scale than its immediate predecessor. This progressive deposition was caused by the water becoming hotter as it passed over the rods in succession. As the water temperature rose, the tendency for deposits to form increased. In repeat tests, the amount of scale fluctuated dramatically when the polymer was an ineffective scale inhibitor. ACUMER 5000 (akumer 5000) (akümer 5000) polymer shows only a light dusting of scale (Figure 6), considerably better than the other polymers tested (Figures 7 and 8). Within the limits of experimental error, the scale compositions obtained with all tests were approximately the same, >80% magnesium silicate (Table 5). Long-Term Pilot Cooling Tests of ACUMER 5000 (akumer 5000) (akümer 5000) ACUMER 5000 (akumer 5000) (akümer 5000) polymer was compared to the two polymers from the previous trials in longer tests; 1) to determine whether concentrating the water too rapidly gave an artificial negative effect, 2) to analyze scale that might form in the cooler parts of the PCT, and 3) to measure the impact of the polymer on corrosion. These products were evaluated in the same water under the same conditions employed in the accelerated PCT tests (Tables 2 and 3); only the cycling rate and start-up conditions were different. In the long-term trials, the water was started at 3 cycles of concentration (COC), using 2.5 times the normal treatment level, and then maintained at 5.5 COC (275 ppm SiO2) for four days to allow any silicate salts or silica to form, grow and precipitate. The water was then concentrated further to between 7.2 and 7.5 cycles of concentration over the next nine days of the test to reach a theoretical concentration of between 360 and 375 ppm SiO2 (50 ppm X 7.5). This quantity is approximately double the recommended maximum for cooling water. The results of these tests are given in Table 6. The results indicate that under the test conditions, ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer yields 10 times less silica-based scale than conventional polymaleic acid chemistry and 5 to 6 times less scale than the commercial silica control polymer. Moreover, the corrosion rate with ACUMER 5000 (akumer 5000) (akümer 5000) polymer is much lower than with the two other polymers. The large difference in corrosion rates may be due to underdeposit corrosion occurring with the less effective polymers. FIELD PERFORMANCE of ACUMER 5000 (akumer 5000) (akümer 5000) The benefits of ACUMER 5000 (akumer 5000) (akümer 5000) polymer have been substantiated by its performance in four field situations. In each instance, operators of the different facilities faced the problem of processing water that contained high silica levels and all overcame their difficulties by using ACUMER 5000 (akumer 5000) (akümer 5000) polymer in their cooling water treatment program. Chiller System Achieves 80% Increase in COC Plus On-Line Cleaning System Two 250-ton cooling water units with a recirculation rate of 580 gpm were used Description: to cool a high school. The units were treated with a chromate program until 1990. In March of 1990, the chromate treatment was replaced with molybdate/ zinc/phosphonate to comply with regulations against chromate. Deposits were controlled using 7-8 ppm active ACUMER 2000 copolymer. The pH of the system was maintained at 7.5 - 8.5. Problem: Total hardness of the makeup water was typically about 140 ppm, with a Ca/Mg ratio of about 1/1. The makeup water typically had about 45 ppm SiO2, and the system could only achieve about 2.5 cycles of concentration using the molybdate/phosphonate/zinc copolymer treatment. The condenser was opened in 1991 and found to have light scale containing about 25% silica with most of the balance being iron oxide. Solution: In one of the chiller systems, the copolymer was replaced with an equal concentration of ACUMER 5000 (akumer 5000) (akümer 5000) polymer and blowdown was reduced; all other variables remained the same. The other chiller system was maintained with the program containing ACUMER 2000 copolymer. Results: The system treated with ACUMER 5000 (akumer 5000) (akümer 5000) polymer achieved more than 4.5 cycles of concentration with no silica drop-out. Early in this trial, the chemical feed was stopped accidentally; a subsequent drop in recirculating water SiO2 levels suggests that some scaling probably occurred. When the chemical feed was re-established, SiO2 levels temporarily increased to higher than expected levels, which leads to the conclusion that the ACUMER 5000 (akumer 5000) (akümer 5000) polymer had removed some of the scale. This also suggests that the dispersing action of the polymer, even when underfed, resulted in the formation of a powdery scale rather than the expected glassy magnesium silicate. The powdery nature of the scale would explain its apparent on-line removal. Data showed that over 200 ppm SiO2 had been attained in the recirculating water. Winery Increases Silica in Cooling Water Past Vintage Levels of 150 ppm SiO2 System A northern California vineyard operates two 560-ton evaporative condensers using Descripion: makeup water1 with high silica levels of 92 ppm SiO2. The cooling water system has a capacity of 18 gallons per minute with water temperatures ranging between 75°F (24°C) and 85°F (29°C). Problem: Initially, a stabilized phosphate program containing HEDP, phosphoric acid, tolyltriazole and an acrylate-type polymer was used. Scale formed on the evaporative condensers when silica levels exceeded 150 ppm SiO2 in the recirculating water. This deposit was found to contain high levels of silicon and magnesium. Results: Our customer replaced the existing polymer in his formulation with ACUMER 5000 (akumer 5000) (akümer 5000) polymer. This formulation was dosed into the system to maintain 13 ppm residual orthophosphate and 10-15 ppm active ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the recirculating water. The recirculating water contains 400 ppm M-Alkalinity and had a pH between 8.5 and 8.7. The customer was able to increase cooling water cycles from 1.6 to 3 COC allowing up to 276 ppm SiO2 in the system. Thorough visual inspections, after 2 and 5 months, condenser tubes were free of scale. By switching to ACUMER 5000 (akumer 5000) (akümer 5000) polymer, this customer was able to cut his chemical usage by almost half and save 4 million gallons of water per year. 1 Make-up water analysis: pH 7.8, 138 ppm T-Alkalinity, 92 ppm SiO2, 35 ppm Ca as CaCO3, 11 ppm Mg, 7.4 ppm SO4, 18 ppm Cl, <0.1 ppm Fe, <0.3 ppm Mn, 270 ppm TDS. Cooling System Doubles COC in San Joaquin Valley, California System Two evaporative condenser towers rated at 500 tons were used to cool a large computer Description: computer facility. One tower was always kept as a backup to ensure continuous operation. The evaporative condensers consist of rows of tubes on the inside of the tower. The tower water cascades downward to directly contact the condenser tubes leaving a scale deposit if the water significantly exceeds the normal operating levels of about 180 ppm SiO2 and about 480 ppm (maximum) M-alkalinity. The original treatment used HEDP, benzotriazole and polymaleic acid with a supplemental feed of polyacrylic acid. Problem: The makeup water typically had 90-110 ppm SiO2, allowing only about 2 cycles of concentration. Due to severe drought conditions in this area for the previous 5 years, water was not readily available and had to be reused to the maximum extent possible. Solution: In 1991, the polymaleic acid and polyacrylic acid scale inhibitors used in the old treatment were replaced with an equal weight of ACUMER 5000 (akumer 5000) (akümer 5000) polymer. The treatment was fed to maintain the same levels as before, but the bleedoff was reduced. Results: With ACUMER 5000 (akumer 5000) (akümer 5000) polymer, the system maintained up to about 4 cycles of concentration without scale or corrosion. Recirculation water has up to 300 ppm total silica and about 650 ppm M-alkalinity (maximum). Benefits of the reduction in bleedoff include: • A calculated 30% reduction in water usage under typical conditions. • A calculated 30% reduction in chemical usage. • An increase in holding time which allows the biocide to work more effectively (since the makeup water has a high organism count). Scale Problem Eliminated at Ice-Making Plant System An ice-making plant with a refrigeration capacity of 270 tons had a history of Description: scale problems, especially on the condenser coils. Silica levels in the makeup water were 46 ppm SiO2. System temperature ranged between 83°F (28°C) and 91°F (33°C). Problem: The water was treated with an all-organic program which left heavy deposits of silica. A thorough cleaning with ammonium bifluoride and hydrochloric acid was performed in the summer of 1992 to remove the heavy deposits. Between August and November of 1992, the COC were maintained at low levels (less than 2) to prevent silica scale. Under these conditions, CaCO3 still formed on the condenser coils, with head pressure on the condenser side measuring approximately 230 psi. Solution: ACUMER 5000 (akumer 5000) (akümer 5000) polymer was added to the system to maintain 15 ppm active polymer in the recirculationg water, and COC were gradually increased to 6 to 9. Results: By February of 1993, head pressure had dropped to the lowest level, 215 psi, indicating no scale. Theoretical silica levels approached 400 ppm SiO2. Ten months after changing the formulation to one containing ACUMER 5000 (akumer 5000) (akümer 5000) polymer, the plant continued to operate without problems. OTHER APPLICATIONS of ACUMER 5000 (akumer 5000) (akümer 5000) Boilers of ACUMER 5000 (akumer 5000) (akümer 5000) The superior hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) polymer enables its use for controlling magnesium silicate scale in boilers operating up to about 600 psig (42 kg/cm2). Above 600 psig, it is recommended that the silica be removed from the feedwater by external treatment such as ion exchange. Reverse Osmosis The ability of ACUMER 5000 (akumer 5000) (akümer 5000) polymer to disperse colloidal silica as well as other particulates makes it suitable in formulations for fouling prevention in RO membranes used to treat high-silica water. Water Analysis of ACUMER 5000 (akumer 5000) (akümer 5000): Cycles of (at steady state) Makeup Recirculating Concentration pH 7.8-8.1 8.9-9.0 — Conductivity, µmho 330-360 1000-1030 2.9 M-Alkalinity, as CaCO3 154-180 536-540 3.2 Ca, as CaCO3 60-80 236-264 3.6 Mg, as CaCO3 56-80 260-268 3.9 Silica, as SiO2 60-70 265-300 4.2 TOXICITY of ACUMER 5000 (akumer 5000) (akümer 5000) Toxicity data on ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer are presented in Table 7. SAFE HANDLING INFORMATION ACUMER 5000 (akumer 5000) (akümer 5000) Caution: For Industrial Use Only! Keep Out of Reach of Children! Wear chemical splash goggles and impervious gloves when handling. An approved respirator, suitable for the concentrations encountered, should be worn. FIRST AID INFORMATION of ACUMER 5000 (akumer 5000) (akümer 5000) Skin Contact Wash affected skin area thoroughly with soap and water. Consult a physician if irritation persists. Eye Contact Flush eye immediately with plenty of water for at least 15 minutes. Consult a physician if irritation persists. Inhalation Move victim to fresh air. Ingestion If victim is conscious, dilute product by giving 2 glasses of water to drink and then call a physician. If victim is unconscious, call a physician immediately. Never give an unconscious person anything to drink. MATERIAL SAFETY DATA SHEETS of ACUMER 5000 (akumer 5000) (akümer 5000) Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our product. Under the OSHA Hazard Communication Standard, workers must have access to and understand MSDS on all hazardous substances to which they are exposed. Thus, it is important that appropriate training and information be provided to all employees and that MSDS be available on any hazardous products in their workplace. ACUMER 5000 (akumer 5000) (akümer 5000) Silica and Magnesium Silicate Scale Inhibitor Description of ACUMER 5000 (akumer 5000) (akümer 5000) Rohm and Haas ACUMER 5000 (akumer 5000) (akümer 5000) is a superior scale inhibitor and dispersant for silica and magnesium silicate in recirculating cooling circuits and boilers. Used of ACUMER 5000 (akumer 5000) (akümer 5000) in Water Treatment ACUMER 5000 (akumer 5000) (akümer 5000) Cooling waters ACUMER 5000 (akumer 5000) (akümer 5000) Boilers ACUMER 5000 (akumer 5000) (akümer 5000) Industrial reverse osmosis ACUMER 5000 (akumer 5000) (akümer 5000) Pools and fountains ACUMER 5000 (akumer 5000) (akümer 5000) Advantages of ACUMER 5000 (akumer 5000) (akümer 5000) Prevent the formation of deposits on heat transfer surfaces Prevent inorganic and sedimentation fouling Effectively inhibits magnesium silicate Excellent silica dispersant Outstanding iron, phosphate scale inhibitor Stabilizes corrosion inhibitors Boiler sludge dispersant Typical Properties These properties are typical but do not constitute specifications. Appearance Dark yellow to brown clear solution* Average Molecular weight 5,000 (Mw) % Total Solids 45 % Active Solids 42 pH as is (at 25°C) 2.May Bulk density (at 25°C) 1.Şub Viscosity Brookfield (mPa.s/cps at 25°C) 400 Neutralization 0.13g of NaOH (100%) per g of ACUMER 5000 (akumer 5000) (akümer 5000) *A slight haze may appear; this does not affect the intrinsic properties of the product or its performance. Chemistry and Mode of Action ACUMER 5000 (akumer 5000) (akümer 5000) is a proprietary multifunctional polymer with a molecular weight of 5000 that provides outstanding silica and magnesium silicate scale inhibition. ACUMER 5000 (akumer 5000) (akümer 5000) prevents silica-based scale formation by dispersing colloidal silica and by preventing magnesium silicate scale formation at heat transfer surfaces. Performance of ACUMER 5000 (akumer 5000) (akümer 5000) Control of silica-based scale is a complex problem due to the many forms of silica species that exist: Molybdate-reactive silica: frequently referred to as dissolved silica. Colloidal silica: polymerized silica particles of 0.1 microns or less. Silica scale: primarily magnesium silicate, but may also be iron or calcium silicate. Colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can co-precipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silica. Normally, if silica levels exceed about 180 ppm SiO2 in the recirculation water of a cooling circuit, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. ACUMER 5000 (akumer 5000) (akümer 5000) has been evaluated under field conditions, allowing up to 300 ppm silica in the recirculating water without scale. Case histories are available upon request from your local technical representative. Applications of ACUMER 5000 (akumer 5000) (akümer 5000) Recirculating cooling circuits ACUMER 5000 (akumer 5000) (akümer 5000) offers unique features for the treatment of silica-limited cooling waters, allowing up to at least 300 ppm silica in the recirculating water without scale or corrosion problems Boilers ACUMER 5000 (akumer 5000) (akümer 5000) The superior hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) enables its use for controlling magnesium silicate scale in boilers operating up to about 900 psig, although silica may carry over in steam at > 600 psig. Benefits of ACUMER 5000 (akumer 5000) (akümer 5000) Keeps surfaces clean for maximum heat transfer and enhances the performance of organic corrosion inhibitors. Has excellent thermal and chemical stability. Can be formulated at any pH without degradation. Exhibits a very good stability in the presence of hypochlorite. Contains no phosphorus, making its use acceptable where legislation requires that discharge waters contain low or no phosphorus. Chemistry and Mode of Action ACUMER 5000 (akumer 5000) (akümer 5000) is a proprietary multifunctional polymer with a molecular weight of 5000 that provides exceptional silica and magnesium silicate scale inhibition. ACUMER 5000 (akumer 5000) (akümer 5000) helps prevent silica-based scale formation by dispersing colloidal silica and by minimizing magnesium silicate scale formation at heat transfer surfaces. Performance Control of silica-based scale is a complex problem due to the many forms of silica species that exist: • Molybdate-reactive silica: frequently referred to as dissolved silica. • Colloidal silica: polymerized silica particles of 0.1 microns or less. • Silica scale: primarily magnesium silicate, but may also be iron or calcium silicate. Colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can co-precipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silica. Normally, if silica levels exceed about 180 ppm SiO2 in the recirculation water of a cooling circuit, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. ACUMER 5000 (akumer 5000) (akümer 5000) has been evaluated under field conditions, allowing up to 300 ppm silica in the recirculating water without scale. Case histories are available upon request from your local technical representative. ACUMER 5000 (akumer 5000) (akümer 5000) Silica and Magnesium Silicate Scale Inhibitor / Dow Coating Materials Applications of ACUMER 5000 (akumer 5000) (akümer 5000) • Recirculating cooling circuits ACUMER 5000 (akumer 5000) (akümer 5000) offers distinct features for the treatment of silica-limited cooling waters, allowing up to at least 300 ppm silica in the recirculating water without scale or corrosion problems. • Boilers The excellent hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) makes it an ideal choice for use in controlling magnesium silicate scale in boilers operating up to about 900 psig, although silica may carry over in steam at >600 psig. Benefits of ACUMER 5000 (akumer 5000) (akümer 5000) • Helps keep surfaces clean for maximum heat transfer and enhances the performance of organic corrosion inhibitors. • Has excellent thermal and chemical stability. • Can be formulated at any pH without degradation. • Exhibits a very good stability in the presence of hypochlorite. • Contains no phosphorus, making its use acceptable where legislation requires that discharge waters contain low or no phosphorus. Description of ACUMER 5000 (akumer 5000) (akümer 5000) ACUMER 5000 (akumer 5000) (akümer 5000) is a superior scale inhibitor and dispersant for silica and magnesium silicate in recirculating cooling circuits and boilers. Advantages of ACUMER 5000 (akumer 5000) (akümer 5000) Effectively inhibits magnesium silicate Excellent silica dispersant Outstanding iron, phosphate scale inhibitor Stabilizes corrosion inhibitors Boiler sludge dispersant Prevents the formation of deposits on heat transfer surfaces Prevents inorganic and sedimentation fouling Properties of ACUMER 5000 (akumer 5000) (akümer 5000): IR-5000 carboxylate-sulfonate copolymer (similar to ACUMER 5000 (akumer 5000) (akümer 5000)) is a superior scale inhibitor and dispersant. It has good inhibition for silica and magnesium silicate when used in recirculation cooling circuits and boilers. It is a superior phosphate scale inhibitor for dry or hydrated ferric oxide. Acting as a rust inhibitor, IR-5000 can also be used in systems like Industrial RO, pools, and fountains, etc. (Similar to ACUMER 5000 (akumer 5000) (akümer 5000)) Synthetic magnesium silicates (ACUMER 5000 (akumer 5000) (akümer 5000)) are white, odorless, finely divided powders formed by the precipitation reaction of water-soluble sodium silicate (water glass) and a water-soluble magnesium salt such as magnesium chloride, magnesium nitrate or magnesium sulfate. The composition of the precipitate depends on the ratio of the components in the reaction medium, the addition of the correcting substances, and the way in which they are precipitated.[1][2][3] The molecular formula is typically written as MgO:XSiO2, where X denotes the average mole ratio of SiO2 to MgO. The product is hydrated and the formula is sometimes written MgO:XSiO2•H2O to show the water of hydration. Properties of ACUMER 5000 (akumer 5000) (akümer 5000) Unlike natural magnesium silicates like talc and forsterite olivine which are crystalline, synthetic magnesium silicates are amorphous.[1] Synthetic magnesium silicates are insoluble in water or alcohol.[4] The particles are usually porous, and the BET surface area can range from less than 100 m2/g to several hundred m2/g.
ACUSOL 820
DESCRIPTION:
Lorsqu'il est neutralisé à un pH supérieur à 7 en ajoutant des alcalis, le polymère ACUSOL 820 s'épaissit instantanément.
L'effet instantané sur la viscosité et l'incorporation facile du polymère ACUSOL 820 dans les formulations de nettoyants alcalins offrent des économies de temps de production précieuses qui ne peuvent être égalées par les épaississants carbomères ou cellulosiques, nécessitant une prédissolution et l'élimination des grumeaux.
ACUSOL 820 peut également épaissir des solutions contenant des niveaux élevés de tensioactifs à faible pH.

NUMÉRO CAS : 75760-37-1
NOM COMMERCIAL : Acusol 820
NOM GÉNÉRIQUE : Émulsion de polymère acrylique soluble dans les alcalis modifiée hydrophobiquement (HASE)

ACUSOL 820 a un épaississement et une stabilisation aqueux élevés pour les formulations de nettoyage
Des nettoyants pour vitres aux détergents à lessive liquides en passant par les nettoyants pour fours, le modificateur/stabilisateur de rhéologie ACUSOL 820 est très rentable et offre des propriétés épaississantes et stabilisantes aqueuses exceptionnellement élevées.
Lorsqu'il est neutralisé à un pH supérieur à 7, le modificateur/stabilisateur de rhéologie ACUSOL 820 permet l'augmentation de la viscosité de diverses formulations, offrant des économies de temps de production qui ne peuvent être égalées par les épaississants carbomères ou cellulosiques.

Le modificateur/stabilisateur de rhéologie ACUSOL 820 peut également épaissir des solutions contenant des niveaux élevés de tensioactifs.
ACUSOL 820 est un modificateur et un stabilisateur de rhéologie
ACUSOL 820 est une émulsion de polymère acrylique AlkaliSoluble modifiée hydrophobiquement (HASE) avec une efficacité aqueuse exceptionnellement élevée d'épaississement et de stabilisation.

Travaillant par association, ACUSOL 820 peut également épaissir des solutions contenant des niveaux élevés de tensioactifs à faible pH.
Cette performance unique est obtenue en acidifiant une formulation contenant un tensioactif neutralisé avec un acide organique ou minéral dilué.

Acusol 820 est une émulsion de polymère acrylique soluble dans les alcalis hydrophobiquement modifiée avec une efficacité aqueuse exceptionnellement élevée d'épaississement et de stabilisation.
Lorsqu'il est neutralisé à un pH supérieur à 7, ACUSOL 820 s'épaissit instantanément.
Cette caractéristique a conduit à son incorporation dans des formulations de nettoyants alcalins tels que les nettoyants pour vitres et émulsions, les détergents liquides pour lave-vaisselle à la main, les nettoyants pour surfaces dures et sols, les nettoyants abrasifs liquides, les détergents à lessive liquides, les nettoyants pour four, les nettoyants sans eau pour les analgésiques et les nettoyants pour pneus à flancs blancs. .

UTILISATIONS D'ACUSOL 820 :
ACUSOL 820 est utilisé dans les nettoyants tout usage
ACUSOL 820 est utilisé dans les nettoyants pour sols
ACUSOL 820 est utilisé dans les liquides vaisselle à la main

ACUSOL 820 est utilisé dans les détergents à lessive
ACUSOL 820 est utilisé dans les gels lave-vaisselle automatiques
ACUSOL 820 est utilisé dans les nettoyants pour fours
ACUSOL 820 est utilisé dans les nettoyants abrasifs
ACUSOL 820 est utilisé dans le nettoyant alcalin
ACUSOL 820 est utilisé dans les décapants de peinture alcalins

ACUSOL 820 est utilisé dans l'épaississant à la soude caustique
ACUSOL 820 est utilisé dans les détergents pour lave-vaisselle
ACUSOL 820 est utilisé dans le déboucheur

ACUSOL 820 est utilisé dans les nettoyants pour sols
ACUSOL 820 est utilisé dans les nettoyants pour vitres
ACUSOL 820 est utilisé dans les détergents pour lave-vaisselle à la main

ACUSOL 820 est utilisé dans les nettoyants pour surfaces dures
ACUSOL 820 est utilisé dans les détergents à lessive
ACUSOL 820 est utilisé dans les décapants de peinture

ACUSOL 820 est utilisé dans le modificateur de rhéologie
ACUSOL 820 est utilisé dans l'épaississant
ACUSOL 820 est utilisé dans les assainisseurs de toilettes

ACUSOL 820 est utilisé dans les nettoyants pour les mains sans eau
ACUSOL 820 est utilisé dans le nettoyant pour pneus à flancs blancs

AVANTAGES DE L'ACUSOL 820 :
ACUSOL 820 a des capacités d'épaississement instantanées lorsqu'il est mélangé avec n'importe quel alcali
ACUSOL 820 a une faible viscosité pour une manipulation facile
ACUSOL 820 a une polymérisation à base d'eau sans solvants résiduels

ACUSOL 820 est compatible avec des niveaux élevés de certains sels et électrolytes couramment utilisés dans les formulations de nettoyage domestique.
ACUSOL 820 est un épaississement pratique et rapide des solutions et des gels pour un produit final exempt de bulles d'air ou de grumeaux

ACUSOL 820 est sans OGM
A notre connaissance ACUSOL 820 ne contient pas d'ingrédients d'origine animale.


CARACTÉRISTIQUES ET AVANTAGES DE L'ACUSOL 820 :
Anionique : peut être épaissi instantanément avec n'importe quel alcali. Compatible avec les tensioactifs non ioniques et anioniques, les adjuvants et les charges.
Liquide : Fourni sous forme d'émulsion liquide à faible viscosité, il est très facile à manipuler.
Aucune prédissolution, élimination des grumeaux ou réchauffement requis.

Nature associative : Une association peut se produire avec d'autres composants de la formulation donnant une viscosité et une stabilité améliorées.

Rhéologie : donne une rhéologie pseudoplastique (rhéofluidification), similaire à celle des cellulosiques, mais maintient une viscosité plus élevée pour des taux de cisaillement plus élevés.

Technologie d'émulsion : Polymérisation à base d'eau.
Aucun solvant résiduel.
Aucun initiateur organique résiduel.
Neutralisation instantanée : permet un processus de fabrication continu grâce à des mélangeurs statiques en ligne.

Aspect gélifié : Donne des gels ou solutions clairs.
Résistance microbienne : En tant que polymère synthétique, le modificateur/stabilisateur de rhéologie ACUSOL 820 est intrinsèquement résistant aux microbes et aux enzymes qui peuvent dégrader les épaississants cellulosiques, entraînant une perte de viscosité.
Tolérance au sel : Compatible avec des niveaux élevés de sels et d'électrolytes couramment utilisés dans les formulations domestiques et institutionnelles.


PROCÉDURE GÉNÉRALE DE MÉLANGE D'ACUSOL 820 :
La souplesse d'utilisation est apportée par les caractéristiques physiques du produit (liquide peu visqueux avant neutralisation), et sa grande efficacité épaississante permet de varier les modes opératoires.

La procédure de mélange suivante répond à la plupart des besoins de formulation :
1. Introduire le polymère ACUSOL 820 dans l'eau de formulation.
Cela devrait fournir au moins une dilution au triple du polymère.
2. Ajouter les tensioactifs non ioniques (le cas échéant).
3. Ajouter les tensioactifs anioniques (le cas échéant)—pH bas en premier.*
4. Ajouter des constructeurs, des charges, des particules.
5. Ajoutez des colorants, puis parfumez.
6. Neutraliser avec l'alcali choisi



INFORMATIONS DE SÉCURITÉ SUR ACUSOL 820 :
Premiers secours:
Description des premiers secours :
Conseil général :
Consultez un médecin.
Montrer cette fiche de données de sécurité au médecin traitant.
Sortir de la zone dangereuse :

Si inhalé :
En cas d'inhalation, transporter la personne à l'air frais.
En cas d'arrêt respiratoire, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlever immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact avec les yeux :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistant à l'alcool, de la poudre chimique sèche ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Gaz chlorhydrique

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour la lutte contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utiliser un équipement de protection individuelle.

Éviter de respirer les vapeurs, les brouillards ou les gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher d'autres fuites ou déversements si cela est possible en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l'environnement doit être évité.

Méthodes et matériel de confinement et de nettoyage :
Enlever avec un absorbant inerte et éliminer comme un déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Éviter l'inhalation de vapeur ou de brouillard.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les contenants ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du lieu de travail
Ne contient pas de substances avec des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
Manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (US) ou EN 166 (EU).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez des gants appropriés
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Coordonnées complètes :
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur de couche minimale : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d'utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques, Le type d'équipement de protection doit être sélectionné en fonction de la concentration et de la quantité de la substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utiliser un respirateur intégral avec une combinaison polyvalente (US) ou des cartouches de respirateur de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utiliser un respirateur à adduction d'air intégral.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l'exposition environnementale
Empêcher d'autres fuites ou déversements si cela est possible en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l'environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Gaz chlorhydrique.

Considérations relatives à l'élimination :
Modes de traitement des déchets :
Produit:
Offrez des solutions excédentaires et non recyclables à une entreprise d'élimination agréée.
Contactez un service d'élimination des déchets professionnel agréé pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé


PROPRIÉTÉS CHIMIQUES ET PHYSIQUES DE L'ACUSOL 820 :
Apparence :
État physique liquide
Couleur blanc laiteux
Odeur : Légère odeur
pH 2,2 - 3,2
Point/intervalle de fusion 0 °C Eau
Point d'ébullition (760 mmHg) 100.00 °C Eau
Point d'éclair : Incombustible
Taux d'évaporation (acétate de butyle = 1)
<1.00 Eau
Pression de vapeur 17.0000000 mmHg à 25.00 °C Eau
Densité de vapeur relative (air = 1) <1,0000 Eau
Densité relative (eau = 1) 1.0000 - 1.2000
Viscosité dynamique 40.000 mPa.s
Pourcentage de volatilité 69,00 - 71,00 % Eau

Adansonia digitata
adansonia digitata fruit extract; adansonia bahobab fruit extract; adansonia integrifolia fruit extract; adansonia scutula fruit extract; adansonia situla fruit extract; adansonia sphaerocarpa fruit extract; adansonia sulcata fruit extract; baobab fruit extract;baobabus digitata fruit extract; extract of the fruits of the monkey bread tree or the baobab, adansonia digitata l., bombacaceae; monkey bread tree fruit extract; ophelus sitularius fruit extract CAS NO:91745-12-9
ADBAC - Alkyl Dimethyl Benzyl Ammonium Chloride
1,4-Butanedicarboxylic acid; 1,6-Hexanedioic Acid; Adipinic Acid; Acifloctin; Acinetten; Hexanedioic acid; 1,4-BUTANEDICARBOXYLIC ACID; 1,6-HEXANEDIOIC ACID; ADIPIC ACID; adipinic acid; AKOS BBS-00004308; BUTANE-1,4-DICARBOXYLIC ACID; DICARBOXYLIC ACID C6; FEMA 2011; HEXANDIOIC ACID; RARECHEM AL BO 0180; acideadipique; Acifloctin; Acinetten; Adilactetten; adipate; adipic; Adipinsαure; Adi-pure; ai3-03700; femanumber2011 CAS NO:124-04-9
ADDITIF ALIMENTAIRE E331
L'additif alimentaire E331 se présente sous la forme d'une poudre cristalline blanche ou de cristaux granulaires et, étant donné que l'additif alimentaire E331 est un sel, possède un goût salé/salé sans odeur réelle détectable.
L'additif alimentaire E331 est un composé chimique, le sel de sodium de l'acide citrique.
L'additif alimentaire E331 est obtenu en faisant réagir du citrate de sodium avec de l'hydroxyde, du carbonate ou du bicarbonate de sodium, puis cristallisé et déshydraté.

Numéro CAS : 68-04-2
Numéro CE : 200-675-3
Formule chimique : Na3C6H5O7
Masse molaire : 294,10 g/mol

L'additif alimentaire E331 a la formule chimique Na3C6H5O7.
L'additif alimentaire E331 est parfois simplement appelé « citrate de sodium », bien que l'additif alimentaire E331 puisse faire référence à l'un des trois sels de sodium de l'acide citrique.
L'additif alimentaire E331 possède une saveur saline légèrement acidulée et est un alcali doux.

L'additif alimentaire E331 est légèrement basique et peut être utilisé avec le citrate de sodium pour fabriquer des tampons biologiquement compatibles.

L'additif alimentaire E331 a la formule chimique Na3C6H5O7.
L'additif alimentaire E331 peut faire référence à l'un des trois sels de sodium de l'acide citrique.

L'additif alimentaire E331 est léger et peut être utilisé avec le citrate de sodium pour fabriquer des tampons biocompatibles.

L'additif alimentaire E331, l'un des sels de sodium de l'acide citrique, est un composé présent dans tous les organismes vivants et fait partie des voies métaboliques clés de toutes les cellules du corps.
L'additif alimentaire E331 se trouve en concentrations élevées dans les fruits aigres, les kiwis, les fraises et de nombreux autres fruits.
L'additif alimentaire E331 est préparé commercialement par fermentation de mélasse par la moisissure Aspergillus niger.

L'additif alimentaire E331, également appelé citrate de sodium, sel trisodique ou citrate trisodique, est le sel tribasique de l'acide citrique.
L'additif alimentaire E331 se présente sous la forme d'une poudre cristalline blanche ou de cristaux granulaires et, étant donné que l'additif alimentaire E331 est un sel, possède un goût salé/salé sans odeur réelle détectable.

L'additif alimentaire E331 porte le numéro CAS 6132-04-3 et la formule Na3C6H5O7.
L'additif alimentaire E331 est soluble dans l'eau, non toxique et entièrement biodégradable.

L'additif alimentaire E331 est le sel de sodium de l'acide citrique.
L'additif alimentaire E331 est une poudre cristalline blanche ou des cristaux granulaires blancs, légèrement déliquescents dans l'air humide, librement solubles dans l'eau, pratiquement insolubles dans l'alcool.

Comme le citrate de sodium, l'additif alimentaire E331 a un goût aigre.
D'un point de vue médical, l'additif alimentaire E331 est utilisé comme agent alcalinisant.

L'additif alimentaire E331 agit en neutralisant l'excès d'acide dans le sang et l'urine.
L'additif alimentaire E331 a été indiqué pour le traitement de l'acidose métabolique.

L'additif alimentaire E331 est un composé chimique, le sel de sodium de l'acide citrique.
L'additif alimentaire E331 est obtenu en faisant réagir du citrate de sodium avec de l'hydroxyde, du carbonate ou du bicarbonate de sodium, puis cristallisé et déshydraté.

L'additif alimentaire E331 est également présent naturellement dans les agrumes.
L'additif alimentaire E331 est communément appelé « citrate de sodium », mais ce terme est ambigu car l'additif alimentaire E331 peut également faire référence au sel de sodium ou monosodique.

L'additif alimentaire E331 est structuré de telle manière qu'un atome de sodium est attaché à chacun des trois groupes carboxyle présents.
De même, le citrate monosodique est un composé chimique contenant un sodium dans la molécule et le citrate disodique est un composé chimique contenant deux atomes de sodium.

L'additif alimentaire E331 est étiqueté comme additif alimentaire avec le symbole E331.

L'additif alimentaire E331 est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.
L'additif alimentaire E331 est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.

L'additif alimentaire E331 est un sel tribasique de l'acide citrique.
L'additif alimentaire E331 est produit par neutralisation complète de l'acide citrique avec de l'hydroxyde ou du carbonate de sodium de haute pureté, puis cristallisation et déshydratation.
La forme hydratée courante, l'additif alimentaire E331 dihydraté, est largement utilisée dans les aliments, les boissons et diverses applications techniques, principalement comme agent tampon, séquestrant ou émulsifiant.

L'additif alimentaire E331 anhydre est fabriqué à partir de l'additif alimentaire E331 dihydraté.
Les molécules d'eau des cristaux dihydratés sont éliminées par un procédé breveté sans détruire la matrice cristalline d'origine.

Les cristaux résultants possèdent une matrice poreuse qui peut être utilisée comme support pour des substances inorganiques et/ou organiques telles que des parfums et des tensioactifs.
En raison de la faible teneur en eau de l'additif alimentaire E331, l'additif alimentaire E331 anhydre n'ajoute pas d'eau à la formulation.

L'additif alimentaire E331 a même l'excellente capacité d'absorber l'excédent d'eau des formulations sensibles à l'humidité, offrant ainsi une meilleure durée de conservation au produit final.
Par conséquent, l'additif alimentaire E331 anhydre trouve des utilisations particulières dans les formulations sensibles à l'eau comme les boissons instantanées ainsi que les comprimés et les poudres dans les produits pharmaceutiques et les détergents.

L’additif alimentaire E331 anhydre se présente sous forme de cristaux granulaires blancs ou de poudre cristalline blanche.
L'additif alimentaire E331 est librement soluble dans l'eau et pratiquement insoluble dans l'éthanol (96 %).

L'additif alimentaire E331 est un sel neutre non toxique et peu réactif.
L'additif alimentaire E331 est chimiquement stable s'il est stocké à température ambiante.
L'additif alimentaire E331 anhydre est entièrement biodégradable et peut être éliminé avec les déchets ordinaires ou les eaux usées.

L'additif alimentaire E331 dihydraté est largement utilisé dans les aliments, les boissons et les charges comme agent tampon, séquestrant ou émulsifiant.
Additif alimentaire E331 utilisé comme anticoagulant dans les transfusions sanguines, laxatif osmotique, fluides fonctionnels, solvants de nettoyage, produits d'entretien de l'ameublement, produits pour laver la vaisselle et nettoyage des radiateurs d'automobile.

L'additif alimentaire E331 dihydraté est un sel tribasique de l'acide citrique.
L'additif alimentaire E331 est produit par neutralisation complète de l'additif alimentaire E331 avec de l'hydroxyde ou du carbonate de sodium de haute pureté et cristallisation ultérieure.
L'additif alimentaire E331 dihydraté est largement utilisé dans les aliments, les boissons et diverses applications techniques, principalement comme agent tampon, séquestrant ou émulsifiant.

L'additif alimentaire E331 dihydraté se présente sous forme de cristaux granulaires blancs ou de poudre cristalline blanche au goût agréable et salé.
L'additif alimentaire E331 est légèrement déliquescent dans l'air humide, facilement soluble dans l'eau et pratiquement insoluble dans l'éthanol (96 %).

L'additif alimentaire E331 dihydraté est un sel neutre non toxique et peu réactif.
L'additif alimentaire E331 est chimiquement stable s'il est stocké à température ambiante.
L'additif alimentaire E331 dihydraté est entièrement biodégradable et peut être éliminé avec les déchets ordinaires ou les eaux usées.

Additif alimentaire E331 dans les aliments :
L'additif alimentaire E331 est un additif alimentaire portant le numéro E E331.
L'additif alimentaire E331 est utilisé dans une variété d'aliments et de boissons transformés, principalement comme exhausteur de goût et conservateur.
En tant qu'agent émulsifiant, l'additif alimentaire E331 est également utilisé dans la fabrication du fromage pour permettre au fromage de fondre sans séparation des huiles et des graisses.

L'additif alimentaire E331 contenu dans les aliments tamponne les niveaux de pH pour aider à réguler l'acidité dans une variété d'aliments afin d'équilibrer le goût et est également capable de conférer une saveur acidulée/aigre à une grande variété de boissons.

Domaines d'utilisation de l'additif alimentaire E331 :
L'additif alimentaire E331 est souvent utilisé comme additif alimentaire comme arôme ou conservateur.
Le numéro E est E331.

L'additif alimentaire E331 est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'additif alimentaire E331 est un ingrédient courant dans la Bratwurst et est également disponible dans le commerce pour les boissons et les mélanges de boissons, contribuant ainsi à une saveur acidulée.

L'additif alimentaire E331 se trouve dans les mélanges de gélatine, les glaces, les confitures, les desserts, le lait en poudre, les fromages fondus, les sodas et le vin.
L'additif alimentaire E331 peut être utilisé comme émulsifiant lors de la fabrication du fromage.
L'additif alimentaire E331 permet au fromage de fondre sans rester gras.

L'additif alimentaire E331, une base conjuguée d'un acide faible, peut agir comme agent tampon ou régulateur d'acidité en résistant aux changements de pH.
L'additif alimentaire E331 est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'additif alimentaire E331 se trouve dans les mini récipients à lait utilisés dans les machines à café.
L'additif alimentaire E331 est une substance particulièrement efficace pour éliminer le calcaire des chaudières sans se fissurer et pour nettoyer les radiateurs des voitures.

Utilisations de l'additif alimentaire E331 :
L'additif alimentaire E331 a de nombreuses utilisations, mais est principalement utilisé dans l'industrie alimentaire.
L'additif alimentaire E331 a des applications similaires à celles de l'acide citrique. L'additif alimentaire E331 est donc généralement utilisé comme exhausteur de goût, pour acidifier les aliments ou les boissons, ou comme conservateur.

L'additif alimentaire E331 est également couramment utilisé en médecine comme ingrédient médicamenteux, généralement pour les personnes souffrant d'infections des voies urinaires.
L'additif alimentaire E331 joue également un rôle d'anticoagulant, ce qui signifie que l'additif alimentaire E331 inhibe la coagulation du sang.

De plus, l’additif alimentaire E331 est utilisé en chimie.
L'additif alimentaire E331 est un composant des tampons et un composant du réactif de Benedict, utilisé pour détecter les sucres et les aldéhydes.
L'additif alimentaire E331 se retrouve également dans les cosmétiques tels que les gels douche, les shampoings ou les crèmes pour la peau, car l'additif alimentaire E331 leur donne le bon niveau d'acidité et est utilisé comme conservateur.

Une autre application de l'additif alimentaire E331 consiste à éliminer le tartre des chaudières, à nettoyer les radiateurs de voiture et les tôles ou casseroles brûlées.
L'additif alimentaire E331 est également utilisé dans la production de produits de nettoyage, car il adoucit l'eau, permettant ainsi aux détergents d'agir plus efficacement.

L'additif alimentaire E331 est utilisé dans des applications similaires à l'acide citrique.
Ces utilisations incluent comme régulateur d'acidité dans les aliments et les boissons, comme agent séquestrant pour empêcher l'apparition de calcaire avec les savons et les détergents et comme agent émulsifiant pour faciliter les processus de mélange chimique où deux éléments séparés sont incapables de se mélanger (par exemple l'huile et l'eau) et aide à maintenir ces mélanges stables une fois formulés.

L'additif alimentaire E331 est utilisé dans la collecte de sang (anticoagulant), la photographie et la production alimentaire. (agent séquestrant, émulsifiant et acidulant)
Utilisation autorisée comme ingrédient inerte dans les produits pesticides non alimentaires.

Additif alimentaire E331 dans l'industrie agroalimentaire :

Nourriture:
L'additif alimentaire E331 est principalement utilisé comme additif alimentaire, généralement pour donner de la saveur ou comme conservateur.
Additif alimentaire E331 Le numéro E est E331.

L'additif alimentaire E331 est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'additif alimentaire E331 est un ingrédient courant dans les saucisses bratwurst et est également utilisé dans les boissons commerciales prêtes à boire et les mélanges pour boissons, apportant une saveur acidulée.
L'additif alimentaire E331 se trouve dans le mélange de gélatine [clarification nécessaire], les glaces, les yaourts, les confitures, les bonbons, le lait en poudre, les fromages fondus, les boissons gazeuses et le vin [citation nécessaire], entre autres.

En tant que base conjuguée d'un acide faible, le citrate peut jouer le rôle d'agent tampon ou de régulateur d'acidité, résistant aux changements de pH.
L'additif alimentaire E331 est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'additif alimentaire E331 peut être trouvé dans les mini-bidons de lait utilisés avec les machines à café.
L'additif alimentaire E331 est le produit d'antiacides, tels que l'Alka-Seltzer, lorsqu'ils sont dissous dans l'eau.

Le pH d'une solution de 5 g/100 ml d'eau à 25 °C est compris entre 7,5 et 9,0.
L'additif alimentaire E331 est ajouté à de nombreux produits laitiers emballés commercialement pour contrôler l'impact du pH sur le système gastro-intestinal humain, principalement dans les produits transformés tels que le fromage et le yaourt.

L'additif alimentaire E331 peut être utilisé pour optimiser la sécurité et la qualité des snacks, des céréales, des produits de boulangerie et des produits à base de pommes de terre comme les frites sans affecter le processus de production.

L'additif alimentaire E331 se trouve dans les boissons gazeuses, les produits laitiers, les confiseries, les plats préparés, les viandes et légumes en conserve, la margarine, la moutarde, les sauces, la mayonnaise, les épices, les confitures et bien plus encore.
Cela n’est pas surprenant, car l’additif alimentaire E331 possède diverses propriétés importantes pour l’industrie alimentaire.

Premièrement, l'additif alimentaire E331 est utilisé comme régulateur d'acidité pour maintenir le pH approprié de l'additif alimentaire E331.
L'additif alimentaire E331 se retrouve dans les sodas, notamment ceux au goût de citron, les boissons énergisantes, les desserts ou les confitures.

L'additif alimentaire E331 est un agent séquestrant, ce qui signifie que l'additif alimentaire E331 est une substance qui lie les ions métalliques, appelés chélates.
Grâce à cela, le consommateur est protégé des effets nocifs des métaux lourds présents dans les aliments.

L'additif alimentaire E331 est également un émulsifiant – L'additif alimentaire E331 permet la préparation d'une solution uniforme à partir de deux liquides non miscibles.
L'additif alimentaire E331 est utile, par exemple, dans la production de fromage, car l'additif alimentaire E331 ne devient pas gras après la fusion, car l'additif alimentaire E331 empêche la séparation des graisses.

Une autre utilisation de l'additif alimentaire E331 dans l'industrie alimentaire est celle d'un conservateur.
L'additif alimentaire E331 protège les graisses de l'additif alimentaire E331 de l'oxydation et du rancissement.
L'additif alimentaire E331 prévient également les changements de couleur des aliments.

Utilisations médicales :
En 1914, le médecin belge Albert Hustin et le médecin et chercheur argentin Luis Agote ont utilisé avec succès l'additif alimentaire E331 comme anticoagulant dans les transfusions sanguines, Richard Lewisohn déterminant la concentration correcte de l'additif alimentaire E331 en 1915.
L'additif alimentaire E331 continue d'être utilisé aujourd'hui dans les tubes de prélèvement sanguin et pour la conservation du sang dans les banques de sang.

L'ion citrate chélate les ions calcium dans le sang en formant des complexes de citrate de calcium, perturbant ainsi le mécanisme de coagulation sanguine.
Récemment, l'additif alimentaire E331 a également été utilisé comme agent de blocage dans les lignes de vascath et d'hémodialyse au lieu de l'héparine en raison du risque moindre d'anticoagulation systémique de l'additif alimentaire E331.

En 2003, Ööpik et al. a montré que l'utilisation de l'additif alimentaire E331 (0,5 g/kg de poids corporel) améliorait les performances de course sur 5 km de 30 secondes.

L'additif alimentaire E331 est utilisé pour soulager l'inconfort lié aux infections des voies urinaires, telles que la cystite, pour réduire l'acidose observée dans l'acidose tubulaire rénale distale, et peut également être utilisé comme laxatif osmotique.
L'additif alimentaire E331 est un composant majeur de la solution de réhydratation orale de l'OMS.

L'additif alimentaire E331 est utilisé comme antiacide, notamment avant l'anesthésie, lors des césariennes afin de réduire les risques liés à l'aspiration du contenu gastrique.

Additif alimentaire E331 en médecine :
L'additif alimentaire E331 est non seulement connu comme additif alimentaire, mais également comme composé chimique important en médecine.
L'additif alimentaire E331 est utilisé dans les laboratoires d'analyses où des analyses de sang sont effectuées car l'additif alimentaire E331 a un effet anticoagulant.

Cela empêche les cellules sanguines de s’agglutiner.
L'additif alimentaire E331 est ensuite utilisé comme composant de solutions de remplissage de cathéters d'hémodialyse.

L'additif alimentaire E331 abaisse la concentration d'héparine, ce qui réduit les risques associés aux troubles de la coagulation chez les patients souffrant d'une maladie rénale ou de la coagulation sanguine.
Cela neutralise les effets secondaires pendant et après le traitement de dialyse.
Cet effet est également extrêmement utile lors du stockage du sang ou lors de transfusions.

L'additif alimentaire E331 est également utilisé comme médicament.
L'additif alimentaire E331 traite les calculs rénaux, la goutte et réduit les symptômes de l'acidose métabolique.

L'additif alimentaire E331 peut également être utilisé comme laxatif.
L'additif alimentaire E331 peut être utilisé pour l'hypercalcémie, une condition dans laquelle la concentration de calcium dans le sang est trop élevée.
L'additif alimentaire E331 agit en augmentant l'excrétion de calcium par l'urine.

Utilisations par les consommateurs :
L'additif alimentaire E331 est utilisé dans les produits suivants : produits de lavage et de nettoyage, cirages et cires, produits de traitement de l'air, cosmétiques et produits de soins personnels, adoucisseurs d'eau, parfums et fragrances, produits chimiques de traitement de l'eau, produits de revêtement, encres et toners, produits de traitement textile. et colorants, biocides (par exemple désinfectants, produits antiparasitaires), engrais, adsorbants, charges, mastics, plâtres, pâte à modeler, produits chimiques de laboratoire et produits photochimiques.
D'autres rejets dans l'environnement de l'additif alimentaire E331 sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur en longue durée de vie. matériaux à faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie avec un taux de libération élevé (par exemple pneus, traités produits en bois, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules (navires)), utilisation en intérieur dans des matériaux de longue durée à taux de libération élevé (par exemple libération des tissus, textiles lors du lavage , élimination des peintures intérieures) et utilisation extérieure dans des matériaux de longue durée à faible taux de libération (par exemple, construction et matériaux de construction en métal, en bois et en plastique).

Utilisations répandues par les professionnels :
L'additif alimentaire E331 est utilisé dans les produits suivants : produits chimiques de laboratoire, produits de lavage et de nettoyage, produits de traitement de l'air, parfums et fragrances, cirages et cires, adoucisseurs d'eau, produits chimiques de traitement de l'eau, biocides (par exemple désinfectants, produits antiparasitaires), produits de revêtement, charges, mastics, plâtres, pâte à modeler, encres et toners, produits de traitement textile et teintures, engrais, produits photochimiques, produits cosmétiques et de soins personnels et adsorbants.
L'additif alimentaire E331 est utilisé dans les domaines suivants : services de santé, travaux de construction, mines, agriculture, sylviculture et pêche et formulation de mélanges et/ou reconditionnement.
L'additif alimentaire E331 est utilisé pour la fabrication de : machines et véhicules et meubles.

D'autres rejets dans l'environnement de l'additif alimentaire E331 sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air), l'utilisation en extérieur, l'utilisation en intérieur en longue durée de vie. matériaux à faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques), utilisation en extérieur dans des matériaux à longue durée de vie à faible taux de libération (par exemple métal, bois) et matériaux de construction et de construction en plastique), utilisation en extérieur dans des matériaux à longue durée de vie et à taux de démoulage élevé (par exemple pneus, produits en bois traités, textiles et tissus traités, plaquettes de frein de camions ou de voitures, ponçage de bâtiments (ponts, façades) ou de véhicules ( navires)), utilisation en intérieur dans des matériaux à longue durée de vie avec un taux de libération élevé (par exemple, libération des tissus, des textiles lors du lavage, enlèvement des peintures intérieures), utilisation en intérieur dans des systèmes fermés avec un rejet minimal (par exemple, liquides de refroidissement dans les réfrigérateurs, systèmes électriques à base d'huile). chauffages) et utilisation en extérieur dans des systèmes fermés avec un minimum de rejets (par exemple liquides hydrauliques dans les suspensions automobiles, lubrifiants dans l'huile moteur et liquides de freinage).

Utilisations sur sites industriels :
L'additif alimentaire E331 est utilisé dans les produits suivants : régulateurs de pH et produits de traitement de l'eau, produits de lavage et de nettoyage, cirages et cires et produits chimiques de traitement de l'eau.
L'additif alimentaire E331 est utilisé dans les domaines suivants : mines, services de santé et travaux de construction.
L'additif alimentaire E331 est utilisé pour la fabrication de : machines et véhicules, textiles, cuir ou fourrure, métaux, produits métalliques, équipements électriques, électroniques et optiques et produits chimiques.

Le rejet dans l'environnement de l'additif alimentaire E331 peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels, de substances dans des systèmes fermés avec un rejet minimal, comme auxiliaire technologique, dans la formulation de mélanges et dans la production d'articles.
D'autres rejets dans l'environnement de l'additif alimentaire E331 sont susceptibles de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et en extérieur.

Autres utilisations:

Nourriture:
Aliments pour bébés, préparations pour nourrissons
Boulangerie
Céréales, Snacks
Confiserie
Laitier
Alternatives laitières
Desserts, Glaces
Les saveurs
Préparations de fruits, pâtes à tartiner sucrées
Fruits légumes
Substituts de viande
Viande, Fruits de mer
Produits à base de plantes
Plats cuisinés, plats instantanés
Sauces, vinaigrettes, assaisonnements

Breuvages:
Boissons alcoolisées
Boissons gazeuses
Boissons instantanées, sirops
Boissons à base de jus
À base de plantes
Thé et café prêt-à-boire
Boissons sportives et énergisantes
Des eaux

Soins de santé:
Nutrition Clinique
Équipement médical
OTC, Compléments Alimentaires
Produits pharmaceutiques

Soins personnels :
Cosmétiques de couleur
Parfums
Soin des cheveux
Soins bucco-dentaires
Soins de la peau
Savons et produits de bain

Nettoyants et détergents :
Lavage de la vaisselle
Nettoyants industriels
Entretien du linge
Entretien des surfaces

Applications industrielles:
Adhésifs, mastics
Produits agrochimiques, engrais
Construction
Produits chimiques raffinés, produits chimiques en bon état
Encres, peintures, revêtements
Forage pétrolier
Papier
Plastiques, polymères
Textiles, Cuir

Aliments pour animaux et aliments pour animaux :
Alimentation
La nourriture pour animaux

Pharmaceutique :
Agent tampon
Agent chélatant
Source minérale

Processus industriels avec risque d’exposition :
Traitement photographique

Applications de l'additif alimentaire E331 :
L'additif alimentaire E331 dihydraté est largement utilisé dans les aliments, les boissons et les charges comme agent tampon, séquestrant ou émulsifiant.
Additif alimentaire E331 utilisé comme anticoagulant dans les transfusions sanguines, laxatif osmotique, fluides fonctionnels, solvants de nettoyage, produits d'entretien de l'ameublement, produits pour laver la vaisselle et nettoyage des radiateurs d'automobile.

Nourriture:
L'additif alimentaire E331 est principalement utilisé comme additif alimentaire, généralement pour donner de la saveur ou comme conservateur.
Additif alimentaire E331 Le numéro E est E331.

L'additif alimentaire E331 est utilisé comme agent aromatisant dans certaines variétés de club soda.
L'additif alimentaire E331 est un ingrédient courant dans les saucisses bratwurst et est également utilisé dans les boissons commerciales prêtes à boire et les mélanges pour boissons, apportant une saveur acidulée.
L'additif alimentaire E331 se trouve entre autres dans les mélanges de gélatine, les glaces, les yaourts, les confitures, les bonbons, le lait en poudre, les fromages fondus, les boissons gazeuses et le vin[3].

L'additif alimentaire E331 peut être utilisé comme stabilisant émulsifiant lors de la fabrication du fromage.
L'additif alimentaire E331 permet au fromage de fondre sans devenir gras en empêchant la séparation des graisses.

Mise en mémoire tampon :
En tant que base conjuguée d'un acide faible, le citrate peut jouer le rôle d'agent tampon ou de régulateur d'acidité, résistant aux changements de pH.
L'additif alimentaire E331 est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.

L'additif alimentaire E331 peut être trouvé dans les mini-bidons de lait utilisés avec les machines à café.
L'additif alimentaire E331 est le produit d'antiacides, tels que l'Alka-Seltzer, lorsqu'ils sont dissous dans l'eau.

Le pH d'une solution de 5 g/100 ml d'eau à 25 °C est compris entre 7,5 et 9,0.
L'additif alimentaire E331 est ajouté à de nombreux produits laitiers emballés dans le commerce pour contrôler l'impact du pH sur le système gastro-intestinal humain, principalement dans les produits transformés tels que le fromage et le yaourt, bien que l'additif alimentaire E331 ait également des effets bénéfiques sur la microstructure physique du gel.

Chimie:
L'additif alimentaire E331 est un composant de la solution qualitative de Benedict, souvent utilisé en analyse biologique pour détecter la présence de sucres réducteurs tels que le glucose.

Médecine:
En 1914, le médecin belge Albert Hustin et le médecin et chercheur argentin Luis Agote ont utilisé avec succès l'additif alimentaire E331 comme anticoagulant dans les transfusions sanguines, Richard Lewisohn déterminant la concentration correcte de l'additif alimentaire E331 en 1915.
L'additif alimentaire E331 continue d'être utilisé aujourd'hui dans les tubes de prélèvement sanguin et pour la conservation du sang dans les banques de sang.

L'ion citrate chélate les ions calcium dans le sang en formant des complexes de citrate de calcium, perturbant ainsi le mécanisme de coagulation sanguine.
Récemment, l'additif alimentaire E331 a également été utilisé comme agent de blocage dans les lignes de vascath et d'hémodialyse au lieu de l'héparine en raison du risque moindre d'anticoagulation systémique de l'additif alimentaire E331.

En 2003, Ööpik et al. a montré que l'utilisation de l'additif alimentaire E331 (0,5 g/kg de poids corporel) améliorait les performances de course sur 5 km de 30 secondes.

L'additif alimentaire E331 est utilisé pour soulager l'inconfort lié aux infections des voies urinaires, telles que la cystite, pour réduire l'acidose observée dans l'acidose tubulaire rénale distale, et peut également être utilisé comme laxatif osmotique.
L'additif alimentaire E331 est un composant majeur de la solution de réhydratation orale de l'OMS.

L'additif alimentaire E331 est utilisé comme antiacide, notamment avant l'anesthésie, lors des césariennes afin de réduire les risques liés à l'aspiration du contenu gastrique.

Détartrage chaudière :
L'additif alimentaire E331 est un agent particulièrement efficace pour éliminer le tartre carbonaté des chaudières sans les mettre hors service et pour nettoyer les radiateurs des automobiles.

Soins de santé:

Comprimés et préparations effervescents :
La réaction de l'acide citrique et du bicarbonate libère du dioxyde de carbone, ce qui facilite la dissolution des principes actifs et améliore l'appétence.
Les systèmes effervescents sont largement utilis��s dans les produits de nettoyage des prothèses dentaires, ainsi que dans les analgésiques et les comprimés de vitamines.

Substances pharmaceutiquement actives — beaucoup sont fournies sous forme de sel de citrate.

Contrôle du pH :
L'acide citrique, avec le citrate de sodium ou de potassium, est un système tampon efficace utilisé dans diverses applications pharmaceutiques et cosmétiques pour améliorer la stabilité et (le cas échéant) renforcer l'activité des conservateurs.

Saveur:
Le goût piquant et acide de l’acide citrique (qui est souvent utilisé pour rehausser les saveurs des fruits) peut aider à masquer le goût médicinal désagréable des produits pharmaceutiques.

Antioxydant :
L’ion citrate est un puissant agent chélateur des ions métaux traces.

Anticoagulant sanguin :
L’ion citrate chélatera le calcium, réduisant ainsi la tendance du sang à coaguler.

Diurétique – le citrate de potassium a des propriétés diurétiques.
Dispositifs médicaux de nutrition clinique
OTC, Compléments Alimentaires Produits Pharmaceutiques
Déodorants Cosmétiques Colorés
Parfums Soins des cheveux
Soins bucco-dentaires Soins de la peau Savons et produits pour le bain

Nettoyants et détergents :
Les principaux composants des produits de nettoyage sont les tensioactifs et les adjuvants.
D'autres ingrédients sont ajoutés pour fournir une variété de fonctions, par exemple augmenter les performances de nettoyage pour des sols/surfaces spécifiques, assurer la stabilité du produit et fournir une identité unique à un produit.

Les phosphates complexes et l'additif alimentaire E331 sont des constructeurs séquestrants courants.
Les constructeurs améliorent ou maintiennent l'efficacité de nettoyage du tensioactif.

La fonction première des constructeurs est de réduire la dureté de l’eau.
Cela se fait soit par séquestration, soit par chélation (en maintenant les minéraux de dureté en solution) ; par précipitation (formant une substance insoluble) ; ou par échange d'ions (échange de particules chargées électriquement).
Les constructeurs peuvent également fournir et maintenir l'alcalinité, ce qui facilite le nettoyage, en particulier des sols acides ; aide à empêcher la saleté enlevée de se redéposer pendant le lavage et émulsionne les saletés huileuses et grasses.

Nettoyants industriels pour le lavage de la vaisselle :

Entretien du linge Entretien des surfaces :

Industriel
Le citrate de sodium est utilisé comme nettoyant industriel pour éliminer les couches de calcium et de rouille des blocs de vapeur et des systèmes d'eau chaude.
En tant que produit chimique, le citrate de sodium est utilisé pour traiter l'aluminium, le cuivre et d'autres surfaces métalliques.

Le citrate de sodium et les citrates sont utilisés comme agents tampons et complexants dans les bains de galvanoplastie.
Les industries du bâtiment et du textile profitent également de la capacité chélatrice exceptionnelle du citrate de sodium ainsi que de la non-toxicité de l'additif alimentaire E331.

Les exemples incluent le retardement de prise des plâtres de gypse et la finition textile.
D'autres applications industrielles du citrate de sodium et des citrates vont de la désulfuration des gaz de combustion et de la récupération du pétrole à la décontamination des matériaux radioactifs des réacteurs nucléaires.

Adhésifs, mastics, produits agrochimiques, engrais
Construction, Chimie Fine
Encres, peintures, revêtements, traitement de surface métallique
Extraction et raffinage de minerais de forage pétrolier
Papier, plastiques, polymères
Textiles, Cuir

Fonctions principales de l'additif alimentaire E331 :
Régulateur de pH
Agent chélatant
Agent tampon
Exhausteur de goût
Stabilisateur
Agent émulsifiant

Propriétés de l'additif alimentaire E331 :
L'additif alimentaire E331 se présente sous la forme d'une poudre blanche, inodore, au goût légèrement salé.
L'additif alimentaire E331 se présente sous forme d'hydrate en combinaison avec de l'eau.

L'additif alimentaire E331 se caractérise par le fait que l'additif alimentaire E331 est hygroscopique, de sorte que l'additif alimentaire E331 absorbe et se combine facilement avec l'eau.
Par conséquent, l'additif alimentaire E331 doit être stocké dans des conditions telles que l'additif alimentaire E331 soit protégé de l'humidité.
Bien que l'additif alimentaire E331 soit un sel d'acide, l'additif alimentaire E331 a un pH alcalin.

Propriétés typiques :
Dihydraté
Blanc
Cristaux granulaires ou poudre cristalline
Typique, pratiquement inodore
Agréablement salé
Librement soluble dans l'eau
Pratiquement insoluble dans l'éthanol (96 %)
Non toxique
Faible réactif
Stable chimiquement et microbiologiquement
Entièrement biodégradable

Mécanisme d'action de l'additif alimentaire E331 :
L'additif alimentaire E331 chélate les ions calcium libres, les empêchant de former un complexe avec le facteur tissulaire et le facteur de coagulation VIIa pour favoriser l'activation du facteur de coagulation X.
Cela inhibe l’initiation extrinsèque de la cascade de coagulation.

L'additif alimentaire E331 peut également exercer un effet anticoagulant via un mécanisme jusqu'à présent inconnu, dans la mesure où la restauration de la concentration en calcium n'inverse pas complètement l'effet du citrate.
L'additif alimentaire E331 est une base faible et réagit donc avec l'acide chlorhydrique présent dans l'estomac pour augmenter le pH.

Additif alimentaire E331 L'additif alimentaire E331 est ensuite métabolisé en bicarbonate qui agit ensuite comme un agent alcalinisant systémique, augmentant le pH du sang et de l'urine.
L'additif alimentaire E331 agit également comme diurétique et augmente l'excrétion urinaire du calcium.

Pharmacologie et biochimie de l'additif alimentaire E331 :

Classification pharmacologique MeSH :

Tampons :
Un système chimique qui fonctionne pour contrôler les niveaux d’ions spécifiques en solution.
Lorsque le niveau d’ions hydrogène dans la solution est contrôlé, le système est appelé tampon pH.

Conservateurs alimentaires :
Substances capables d'inhiber, de retarder ou d'arrêter le processus de fermentation, d'acidification ou autre détérioration des aliments.

Anticoagulants :
Agents qui empêchent la COAGULATION DU SANG.

Méthode de fabrication de l'additif alimentaire E331 :
Préparez le tampon Additif alimentaire E331 en mélangeant l’additif alimentaire E331, l’acide chlorhydrique et l’eau ultra pure dans un bécher ou une fiole conique de 2 L.
Utilisez un agitateur magnétique pour vous assurer que tous les réactifs sont correctement dissous.

Ajuster au pH 6,01 avec les solutions d’hydroxyde de sodium à 0,5 % (p/v) et d’acide chlorhydrique à 0,5 % (v/v).
Ajoutez cette solution à la cocotte minute.

Placez la cocotte minute sur la plaque chauffante et allumez l'additif alimentaire E331 à pleine puissance.
Ne fixez pas le couvercle de l'autocuiseur à ce stade ; déposez simplement l'additif alimentaire E331 sur le dessus.

En attendant que l'autocuiseur bout, déparaffinez et réhydratez les coupes de paraffine en les plaçant dans trois changements de xylène pendant 3 min chacun, suivis de trois changements d'IMS ou de méthanol pendant 3 min chacun, suivis d'eau froide du robinet. .
Gardez-les dans l’eau du robinet jusqu’à ce que la cocotte minute arrive à ébullition.

Une fois que la cocotte minute bout, transférez les lames de l’eau du robinet vers la cocotte minute.
Faites attention à la solution chaude et à la vapeur : utilisez des pinces et des gants. Fixez le couvercle de l'autocuiseur en suivant les instructions du fabricant.

Une fois que la cocotte a atteint sa pleine pression (voir les instructions du fabricant), laissez cuire 3 min.

Au bout de 3 minutes, éteignez la plaque chauffante et placez la cocotte minute dans un évier vide.
Activez la soupape de surpression (voir les instructions du fabricant) et faites couler de l'eau froide sur la cuisinière.

Une fois dépressurisé, ouvrez le couvercle et faites couler de l’eau froide dans la cuisinière pendant 10 minutes.
Faites attention à la solution chaude et à la vapeur.

Continuez avec un protocole de coloration immunochimique approprié.

Manipulation et stockage de l'additif alimentaire E331 :
Manipulation Assurer une ventilation adéquate.
Évitez tout contact avec la peau, les yeux ou les vêtements.

Éviter l'ingestion et l'inhalation.
Eviter la formation de poussière.
Stockage Conserver les récipients bien fermés dans un endroit sec, frais et bien ventilé.

Stabilité et réactivité de Additif alimentaire E331 :

Réactif:
Danger Aucun connu, sur la base des informations disponibles.

La stabilité:
Stable dans des conditions normales.
Conditions à éviter Produits incompatibles.

Chaleur excessive.
Eviter la formation de poussière.

Matériaux incompatibles :
Agents oxydants forts, Agents réducteurs forts, Acides, Bases

Produits de décomposition dangereux:
Monoxyde de carbone (CO), Dioxyde de carbone (CO2), Oxydes de sodium

Polymérisation hasardeuse:
Une polymérisation dangereuse ne se produit pas. Réactions dangereuses Aucune dans des conditions normales de traitement.

Premiers secours de l'additif alimentaire E331 :

Lentilles de contact:
Rincer immédiatement et abondamment à l'eau, également sous les paupières, pendant au moins 15 minutes.
Consulter un médecin si des symptômes apparaissent.

Contact avec la peau:
Laver immédiatement à grande eau pendant au moins 15 minutes.
Si l'irritation cutanée persiste, appeler un médecin.

Inhalation:
Retirer à l'air frais.
Obtenez immédiatement des soins médicaux si des symptômes apparaissent.
S'il ne respire pas, pratiquer la respiration artificielle.

Ingestion:
NE PAS faire vomir.
Obtenez immédiatement des soins médicaux si des symptômes apparaissent.

Symptômes et effets les plus importants :
Pas d'information disponible.

Notes au médecin :
Traiter de manière symptomatique

Mesures de lutte contre l'incendie de l'additif alimentaire E331 :

Moyens d'extinction appropriés :
Eau pulvérisée, dioxyde de carbone (CO2), poudre chimique sèche, mousse résistante à l'alcool.

La température d'auto-inflammation:
500 °C / 932 °F

Mesures en cas de dispersion accidentelle de l'additif alimentaire E331 :
Précautions personnelles Assurer une ventilation adéquate.
Eviter la formation de poussière.

Eviter le contact avec la peau et les yeux.
Utiliser un équipement de protection individuelle si nécessaire.
Précautions environnementales Aucune précaution environnementale particulière requise.

Méthodes de confinement et de nettoyage :
Balayer et pelleter dans des récipients appropriés pour l'élimination.
Eviter la formation de poussière.

Identifiants de l'additif alimentaire E331 :
Numero CAS:
68-04-2
6132-04-3 (dihydraté)
6858-44-2 (pentahydraté)

ChEMBL : ChEMBL1355
ChemSpider : 5989
Carte d'information ECHA : 100.000.614
Numéro E : E331iii (antioxydants, ...)
CID PubChem : 6224
Numéro RTECS : GE8300000

UNII :
RS7A450LGA
B22547B95K (dihydraté)

Tableau de bord CompTox (EPA) : DTXSID2026363
InChI : InChI=1S/C6H8O7.3Na/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7, 8)(H,9,10)(H,11,12);;;/q;3*+1/p-3
Clé: HRXKRNGNAMMEHJ-UHFFFAOYSA-K
InChI=1/C6H8O7.3Na/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7,8) (H,9,10)(H,11,12);;;/q;3*+1/p-3
Clé : HRXKRNGNAMMEHJ-DFZHHIFOAL
SOURIRES : C(C(=O)[O-])C(CC(=O)[O-])(C(=O)[O-])O.[Na+].[Na+].[Na+]

Numéro CAS : 6132-04-3
Numéro CE : 200-675-3
Note : Ph Eur, BP, JP, USP, E 331
Formule de Hill : C₆H₅Na₃O₇ * 2 H₂O
Masse molaire : 294,10 g/mol
Code SH : 2918 15 00

Code produit : NA2043
Numéro CAS : 6132-04-3
Dosage (pureté) : USP
Méthode de pureté : par titrage
Poids moléculaire : 294,10
Forme : solide
Aspect : poudre blanche
Point de fusion : 300 C
Point d'ébullition : 309,6 C
Titrage : 99,0-101,0 %
Type de titrage : avec HCLO4
Formule moléculaire : Na3C6H5O7 · 2H2O
Formule linéaire : HOC(COONa)(CH2COONa)2 · 2H2O

Propriétés de l'additif alimentaire E331 :
Formule chimique : Na3C6H5O7
Masse molaire : 258,06 g/mol (anhydre), 294,10 g/mol (dihydraté)
Aspect : Poudre cristalline blanche
Densité : 1,7 g/cm3
Point de fusion : > 300 °C (572 °F ; 573 K) (les hydrates perdent de l'eau à environ 150 °C)
Point d'ébullition : se décompose
Solubilité dans l'eau : Forme pentahydratée : 92 g/100 g H2O (25 °C)

Point de fusion : 300°C (substance anhydre)
Valeur pH : 7,5 - 9,0 (50 g/l, H₂O, 25°C)
Densité apparente : 600 kg/m3
Solubilité : 720 g/l

Poids moléculaire : 294,10 g/mol
Nombre de donneurs de liaisons hydrogène : 3
Nombre d'accepteurs de liaison hydrogène : 9
Nombre de liaisons rotatives : 2
Masse exacte : 293,99396471 g/mol
Masse monoisotopique : 293,99396471 g/mol
Surface polaire topologique : 143Ų
Nombre d'atomes lourds : 18
Complexité : 211
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 6
Le composé est canonisé : oui

Spécifications de l'additif alimentaire E331 :
Dosage (titrage à l'acide perchlorique, calqué sur substance anhydre (Ph Eur)) : 99,0 - 101,0 %
Dosage (titrage à l'acide perchlorique, substance préalablement séchée) (JP/USP) : 99,0 - 100,5 %
Identité (Na) : réussit le test
Identité (Citrate) : réussit le test
Identité (réaction à l'inflammation) : réussit le test
Aspect : cristaux blancs à presque blancs
Aspect de la solution (100 g/l, eau sans CO₂) : claire et incolore
Acidité ou alcalinité : réussit le test
pH (50 g/l d'eau sans CO₂) : 7,5 - 8,5
Chlorure (Cl) : ≤ 50 ppm
Sulfate (SO₄) : ≤ 150 ppm
Métaux lourds (en Pb) : ≤ 5 ppm
Al (aluminium) : ≤ 5 ppm
As (Arsenic) : ≤ 1 ppm
Hg (Mercure) : ≤ 1 ppm
Pb (plomb) : ≤ 1 ppm
Oxalate (sous forme de C₂H₂O₄) : ≤ 100 ppm
Tartrate (C₄H₄O₆) : réussit le test
Solvants résiduels (ICH (Q3C)) : exclus par procédé de fabrication
Substance facilement carbonisable : réussit le test
Eau (selon Karl Fischer) : 11,0 - 13,0 %
Perte au séchage (180 °C, 18 h) : 10,0 - 13,0 %

Composés associés de l'additif alimentaire E331 :
Citrate monosodique
Citrate disodique
Citrate de calcium
Acide citrique

Noms de l'additif alimentaire E331 :

Noms IUPAC :
Acide 1,2,3-propanetricarboylique, sel 2-hydroxy-trisodique, dihydraté
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique
Acide 2-hydroxy-1,2,3-propanetrioïque, sel trisodique
Ascorbaton de sodium trisodico-anidro E331
Sel trisodique d'acide citrique, Citrate de sodium tribasique, Citrate de sodium
2-hydroxypropane-1,2,3-tricarboxylate de sodium
CITRATE DE SODIUM
Citrate de sodium
citrate de sodium
Citrate de sodium
citrate de sodium dihydraté
Citrate de sodium dihydraté
Citrate de sodium – OU 10
Citrate trisodique
Citrate trisodique
Citrate de trinatium dihydraté
Trinatrium-2-hydroxypropan-1,2,3-tricarboxylate
Trisodique 2-hydroxypropane-1,2,3-
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté
2-hydroxypropane-1,2,3-tricarboxylate trisodiqueCitrate trisodique
3-hydroxy-3-carboxylate-1,5-pentanedicaroxylate trisodique
CITRATE TRISODIQUE
Citrate trisodique
Citrate trisodique
citrate trisodique
Citrate trisodique
Citrate trisodique
citrate trisodique
citrate trisodique (dihydraté)
citrate trisodique 2-hidrate
Citrate trisodique dihydraté
citrate trisodique dihydraté
Citrate trisodique, 2-hydroxypropane-1,2,3-tricarboxylate trisodique
Citrate trisodique; 2-hydroxypropane-1,2,3-tricarboxylate trisodique
2-hydroxypropane-1,2,3-tricarboxylate de trisodium
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate ; dihydraté

Nom IUPAC préféré :
2-hydroxypropane-1,2,3-tricarboxylate trisodique

Noms des processus réglementaires :
Citrate de sodium anhydre
Citrate trisodique
citrate trisodique

Appellations commerciales:
Citrate de trisodium, dihydraté
Citrate de trisodio, dihydraté
Citrate de sodium
CITRATE DE SODIUM
Citrate de sodium
CITRATE DE SODIUM DIHYDRATE
Citrate trisodique dihydraté
Trinatriumcitraatdihydraat
Trinatriumcitrat-Dihydraté
Trisodio citrato diidrato
Citrate trisodique
citrate trisodique
CITRATE DE TRISODIUM DIHYDRATE
Citrate trisodique dihydraté
CITRATRE TRISODIQUE

Autres noms:
Citrate de sodium
Citrate trisodique
Citrosodine
Acide citrique, sel trisodique
E331

Autres identifiants :
1000844-65-4
1648840-06-5
183748-56-3
2095548-08-4
6132-04-3
68-04-2
8055-55-8
856354-90-0

Synonymes de l’additif alimentaire E331 :
Citrate trisodique dihydraté
Citrate de sodium dihydraté
6132-04-3
Citrate de sodium tribasique dihydraté
Citrate de sodium hydraté
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel trisodique, dihydraté
Sel trisodique d'acide citrique dihydraté
Citrate de sodium hydraté
CITRATE DE SODIUM, DIHYDRATE
2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté
MFCD00150031
B22547B95K
trisodique ; 2-hydroxypropane-1,2,3-tricarboxylate ; dihydraté
DTXSID1049437
Natrum citricum
Acide citrique, sel trisodique, dihydraté
Citronensaeure,Trinatrium-Salz-Dihydrate
N-1560
Citras natrii, déshydratés
CITRATE DE SODIUM HYDRE (II)
CITRATE DE SODIUM HYDRE [II]
2-hydroxypropane-1,2,3-tricarboxylate trisodique-eau (1/2)
Citrate trisodique dihydraté ; Sel trisodique d'acide citrique dihydraté
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanetricarboxylique dihydraté
MFCD00130806
CITRATE DE SODIUM (MONOGRAPHIE EP)
CITRATE DE SODIUM [MONOGRAPHIE EP]
citrate trisodique dihydraté
CITRATE DE TRISODIUM DIHYDRATE (II)
CITRATE DE TRISODIUM DIHYDRATE [II]
UNII-B22547B95K
CITRATE DE TRISODIUM DIHYDRATE (MONOGRAPHIE USP)
CITRATE DE TRISODIUM DIHYDRATE [MONOGRAPHIE USP]
2-hydroxypropane-1,2,3-tricarboxylate de sodium dihydraté
Citrate de sodium
Tricitrasol
Tricitrasol (TN)
Citrate de sodium; 2-hydroxypropane-1,2,3-tricarboxylate trisodique dihydraté ; Citrate de sodium dihydraté
Citrate de sodium (TN)
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium, hydraté (1:3:2)
D05KTE
Citrate de sodium [USP:JAN]
Citrate de sodium tribasique dihydraté
CITRATE DE SODIUM [FHFI]
DTXCID0029397
Citrate de sodium hydraté (JP17)
CHEBI:32142
Citrate trisodique dihydraté, ACS
NLJMYIDDQXHKNR-UHFFFAOYSA-K
CITRATE DE SODIUM HYDRATE [JAN]
CITRATE DE SODIUM DIHYDRATE [MI]
AKOS025293920
Citrate de sodium dihydraté, >=99%, FG
CITRATE DE SODIUM DIHYDRATE [VANDF]
BP-31019
CITRATE DE SODIUM DIHYDRATE [QUI-DD]
Citrate de sodium tribasique dihydraté, >=98 %
Citrate de sodium dihydraté, qualité réactif ACS
CITRATE DE SODIUM, DIHYDRATE [WHO-IP]
D01781
F82065
Citrate de sodium tribasique dihydraté, AR, >=99 %
Citrate de sodium tribasique dihydraté, LR, >=99 %
Réactif ACS acide citrique, sel trisodique dihydraté
NATRII CITRAS, DÉSHYDRATÉ [WHO-IP LATINE]
A833161
A835986
Q22075862
Citrate de sodium dihydraté de qualité biochimique, granulaire fin
Citrate de sodium tribasique dihydraté, USP, 99,0-100,5 %
Citrate de sodium tribasique dihydraté (qualité biologie moléculaire)
Citrate de sodium tribasique dihydraté, réactif ACS, >=99,0 %
2-oxydanylpropane-1,2,3-tricarboxylate trisodique dihydraté
Acide citrique, sel trisodique dihydratéCitrate trisodique dihydraté
Citrate de sodium tribasique dihydraté, BioUltra, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, testé sur culture de cellules d'insectes
Citrate de sodium tribasique dihydraté, qualité spéciale JIS, >=99,0 %
Citrate de sodium tribasique dihydraté, pa, réactif ACS, 99,0 %
Citrate de sodium tribasique dihydraté, purum pa, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, SAJ première qualité, >=99,0 %
Citrate de sodium tribasique dihydraté, testé selon Ph.Eur.
Citrate trisodique dihydraté, répond aux spécifications de test USP
Citrate de sodium tribasique dihydraté, BioXtra, >=99,0 % (titrage)
Citrate de sodium tribasique dihydraté, pour la biologie moléculaire, >=99%
Citrate de sodium tribasique dihydraté, qualité réactif Vetec(TM), 98 %
Citrate de sodium, étalon de référence de la Pharmacopée américaine (USP)
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium, dihydraté
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique, dihydraté
Citrate de sodium tribasique dihydraté, pa, réactif ACS, reag. ISO, 99-101 %
Citrate de sodium tribasique dihydraté, BioUltra, pour la biologie moléculaire, >=99,5 % (NT)
Citrate de sodium tribasique dihydraté, puriss. pa, réactif ACS, >=99,0 % (NT)
Citrate de sodium tribasique dihydraté, adapté à l'analyse des acides aminés, >=99,0 %
Citrate de sodium, étalon secondaire pharmaceutique ; Matériel de référence certifié
Citrate de sodium tribasique dihydraté, puriss. pa, réactif ACS, reag. ISO, reag. Ph. Eur., >=99,5%
Citrate de sodium tribasique dihydraté, adapté à l'analyse des acides aminés, >=98 % (titrage), poudre
Citrate trisodique [Nom ACD/IUPAC] [Wiki]
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium (1:3) [ACD/Nom de l'index]
200-675-3 [EINECS]
68-04-2 [RN]
994-36-5 [RN]
Citrate de trisodium [Français] [Nom ACD/IUPAC]
Sel trisodique d'acide citrique
MFCD00012462 [numéro MDL]
RS7A450LGA
2-hydroxy-1,2,3-propanetricarboxylate de sodium
Citrate de sodium [JAN] [USAN] [Wiki]
Citrate de sodium anhydre
Trinatriumcitrat [Allemand] [Nom ACD/IUPAC]
Citrate de trisodium
2-hydroxypropane-1,2,3-tricarboxylate trisodique
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel trisodique
114456-61-0 [RN]
205-623-3 [EINECS]
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanenetricarboxylique
Sel trisodique de l'acide 2-hydroxy-1,2,3-propanetricarboxylique
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique
Citnatine
Citrate Concentrémanquant
citrate de sodium
citrate trisodique
Citrate manquant
Citrème
Sel de sodium d'acide citrique anhydre
Sel trisodique de l'acide citrique, anhydre
Acide citrique, sel trisodique
Citrosodine
Citrosodine
Citrosode
Isolyte E
Natrocitral
2-hydroxypropane-1,2,3-tricarboxylate de sodium
Citrate de sodium (USP)
Tampon citrate de sodium
CITRATE DE SODIUM TRIBASIQUE
Citrate de sodium, anhydre
Synthèse à la demande
citrate trisodique
Citrate trisodique anhydre
citrate trisodique
UNII-RS7A450LGA
ADDOCAT 10/9
Addocat 10/9 raccourcit également la durée de vie en pot de la formulation.
Addocat 10/9 convient pour une utilisation dans les revêtements polyuréthane.


Type de produit : Catalyseurs/Accélérateurs/Initiateurs > Amines
Composition chimique : Ester d'aminoalcanol (ester amine)
Forme physique : Liquide, incolore à brun


Addocat 10/9 est un ester d'aminoalcanol (ester amine).
Addocat 10/9 agit comme un catalyseur.
Addocat 10/9 raccourcit également la durée de vie en pot de la formulation.


Pour faciliter le dosage, Addocat 10/9 doit être utilisé sous forme de solution à 10 % dans de l'acétate de butyle, de l'acétate d'éthyle, de la méthylisobutylcétone ou de la méthyléthylcétone .
Addocat 10/9 convient pour une utilisation dans les revêtements polyuréthane.
Le niveau de dosage recommandé d’ Addocat 10/9 est de 0,1 à 0,5 %.


Addocat 10/9 a une durée de conservation de 6 mois.
Addocat 10/9 est un catalyseur doux pour les revêtements polyuréthane, si des isocyanates aromatiques comme le Desmodur L sont utilisés.
Addocat 10/9 accélère le séchage et le durcissement des revêtements polyuréthane.


Addocat 10/9 raccourcit également la durée de vie en pot de la formulation.
Addition : 0,1 - 0,5 % Addocat 10/9, calculé sur la teneur en isocyanate / polyol des formulations .



UTILISATIONS et APPLICATIONS d'ADDOCAT 10/9 :
Addocat 10/9 cts comme catalyseur.
Addocat 10/9 raccourcit également la durée de vie en pot de la formulation.
Pour faciliter le dosage, Addocat 10/9 doit être utilisé sous forme de solution à 10 % dans de l'acétate de butyle, de l'acétate d'éthyle, de la méthylisobutylcétone ou de la méthyléthylcétone .


Addocat 10/9 convient pour une utilisation dans les revêtements polyuréthane.
Pour faciliter le dosage, Addocat 10/9 doit être utilisé sous forme de solution à 10 % dans de l'acétate de butyle, de l'acétate d'éthyle, de la méthylisobutylcétone ou de la méthyléthylcétone .
Addocat 10/9 est utilisé, la teneur en eau de l'agent de résolution doit être inférieure à 0,05 ppw .


Le stockage des solutions d' Addocat 10/9 doit être d'abord mis à l'épreuve avec de la mousse et de la mousse moulée à chaud.
Addocat 10/9 est également utilisé pour les mousses HR et, comme co-catalyseur, pour les mousses rigides.
Addocat 10/9 est utilisé comme esters d'amino- alcanol , accélérateurs de réaction dans les revêtements polyuréthane.



FONCTION DE L'ADDOCAT 10/9 :
Catalyseur pour revêtements polyuréthane.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 10/9 :
Nom commercial : ADDOCAT 10/9
Nom générique : ADDITIF POUR POLYURÉTHANE
Type de produit : Catalyseurs/Accélérateurs/Initiateurs > Amines
Composition chimique : Ester d'aminoalcanol (ester amine)
Forme physique : Liquide, incolore à brun



PREMIERS SECOURS de ADDOCAT 10/9 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau /douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 10/9 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 10/9 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de ADDOCAT 10/9 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE d'ADDOCAT 10/9 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 10/9 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante ).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 102
Addocat 102, un produit chimique de formule moléculaire C4H6N2, est principalement utilisé pour la synthèse de l'acide désoxyribonucléique.
Addocat 102 est un liquide incolore à jaune, avec une odeur d'amine.
Addocat 102 agit comme un catalyseur de réticulation.


Numéro CAS : 616-47-4
Numéro CE : 210-484-7
Numéro MDL : MFCD00005292
Type de produit : Catalyseurs/accélérateurs/initiateurs de réticulation
Composition chimique : 1-méthylimidazole
Formule moléculaire : C4H6N2



SYNONYMES :
Amine tertiaire, Dabco 33-S, Dabco 33S, solution de triéthylènediamine 33 % BDO, Addocat 106, TEDA-L33B, catalyseur microporeux DABCO POLYCAT, catalyseur microporeux, catalyseur gel Dabco 33S, 1-méthylimidazole, Cap B (1-méthylimidazole 16 % dans THF), Cap B (1-méthylimidazole 10 % dans THF), Cap B (1-méthylimidazole 12 % dans acétonitrile/pyridine 78 : 10), 1-méthyl-1H-imidazole, méthylimidazole, N-méthylimidazole, N-méthyle imidazole, 1-méthyl-1H-imidazole, Thiamazole Imp. B (EP), impureté B thiamazole, N-MÉTHYLIMIDAZOLE, 1-méthyl-1h-imidazole, MIM, MeIm, méthylimidazole, 1H-imidazole, 1-méthyl-, N-méthylimidazole (1-méthylimidazole), 1-méthylmidazole, N-méthyl midazole, N-méthyl glyoxaline, 1-méthyl-1H-imidazole, N-méthylimidazole, 1H-imidazole, 1-méthyl-, 1-méthyl-1h-imidazole, 1-MÉTHYLIMIDAZOLE, LUPRAGEN(R) NMI, méthyle imidazole, N-MÉTHYLIMIDAZOLE, 1-méthyl-1h-imidazol, 1-méthyl-imidazol, Imidazole, 1-méthyl-, N-méthylimidazole (1-méthylimidazole), N-méthyl midazole, N-méthyl glyoxaline, CAP B (1 -MÉTHYLIMIDAZOLE 12% DANS ACETONIT, 1-Méthylimidazole, >=99%, purifié par redistillation, CAP B (1-MÉTHYLIMIDAZOLE 10% DANS THF), CAP B (1-MÉTHYLIMIDAZOLE 10% IN, CAP B (1-MÉTHYLIMIDAZOLE 16% DANS THF), 1-MÉTHYLIMIDAZOLE, POUR LA SYNTHÈSE DE L'ADN, 1-Méthylimdazole, 1H-Imidazole, 1-méthyl-, solution de 1-méthylimidazole, 1-méthylimidazole, 1-Méthyl-1H-imidazole, 616-47-7, N- Méthylimidazole, 1H-imidazole, 1-méthyl-, IMIDAZOLE, 1-MÉTHYL-, N-méthylimidazol, 1-méthylimidazol, n-méthyl imidazole, MFCD00005292, DTXSID6052291, CHEBI:113454, P4617QS63Y, NSC-88064, 1-méthyl-imidazole , 1-méthylimdazole, EINECS 210-484-7, N1-méthylimidazole, UNII-P4617QS63Y, Araldite DY 070, NSC 88064, 3-méthylimidazole, N-méthyl-imidazole, N-méthyl-imidazole, 1-méthylimidazole, 1- N-méthylimidazole, Lopac-M-8878, 1-méthyl-(1H)-imidazole, CHEMBL543, 1-méthyl-1H-imidazole #, EC 210-484-7, WLN : T5N CNJ A1, Lopac0_000831, 3-méthyl- 1H-imidazol-3-ium, BDBM7884, DTXCID6030863, HMS3262H03, BCP29437, NSC88064, STR00990, Tox21_304006, Tox21_500831, BBL011447, STL146559, AKOS000119840 CCG, -204915, CS-W008580, LP00831, PS-9372, SDCCGSBI-0050808.P002, NCGC00015702-01, NCGC00015702-02, NCGC00015702-03, NCGC00015702-04, NCGC00094162-01, NCGC00094162-02, NCGC00261516-01, NCGC00357222-01, réactif 1-méthylimidazole, Plus(R), 99 %, 1-méthylimidazole, redistillé à partir de verre, CAS-616-47-7, PD015169, DB-002020, THIAMAZOLE IMPURITÉ B [EP IMPURITÉ], EU-0100831, M0508, NS00009025, EN300-21628, 1-Méthylimidazole, puriss., >=99,0% (GC) , D70869, M 8878, 1-méthylimidazole, qualité réactif Vetec(TM), 98 %, SR-01000076013, Q-200126, Q4545792, SR-01000076013-1, 1-méthylimidazole, >=99 %, purifié par redistillation, F0001 -1635, Z104506032, InChI=1/C4H6N2/c1-6-3-2-5-4-6/h2-4H,1H, Cap B (1-méthylimidazole 16% dans THF), pour synthèse d'oligonucléotides, filtré sur filtre Filtre 1µm, Capping B (10 % N-méthylimidazole dans THF / pyridine, V / V = 80 : 10) NC-0803 emp Biotech GmbH, Capping B, 16 % NMI dans THF, emp Biotech GmbH (THF/N-méthylimidazole, V / V = 84 : 16) NC-0801, 450 ml : filetage 28-400, 2,5 L : filetage GL45



Addocat 102, également connu sous le nom de N-méthylimidazole, est utilisé comme solvant spécial, base et précurseur de certains liquides ioniques.
Dans les mousses rigides, Addocat 102 catalyse principalement la réaction de réticulation (isocyanate-polyol).
Pour la production de ces matériaux, l'Addocat 102 est utilisé comme co-catalyseur en combinaison avec l'Addocat 726 b, l'Addocat 104 ou l'Addocat PP.


Addocat 102 confère à la mousse rigide une peau résistante et élastique, améliorant ainsi l'adhérence de la mousse aux parements, notamment dans les panneaux sandwich.
Addocat 102 est un 1-méthylimidazole.
Addocat 102 agit comme un catalyseur de réticulation.


Addocat 102 confère à la mousse rigide une peau résistante et élastique, améliorant ainsi l'adhérence de la mousse aux parements, notamment dans les panneaux sandwich.
Addocat 102 est un catalyseur polyuréthane à base d'amine tertiaire, notamment le N-méthylimidazole.
Addocat 102 active la réaction de gélification (réticulation) dans les mousses de polyuréthane rigides.


Addocat 102 produit une peau résistante et élastique, améliorant ainsi l'adhérence de la mousse aux parements.
Addocat 102, un produit chimique de formule moléculaire C4H6N2, est principalement utilisé pour la synthèse de l'acide désoxyribonucléique.
Addocat 102 est un liquide incolore à jaune, avec une odeur d'amine.


Addocat 102 est miscible à l'eau.
Addocat 102 est un intermédiaire polyvalent avec une variété d'applications.
Addocat 102 est un intermédiaire polyvalent utilisé comme élément de base pour les ingrédients actifs ainsi que dans le durcissement des époxy.


Addocat 102 est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 100 à < 1 000 tonnes par an.
Addocat 102 a été amélioré pour la catalyse.


Addocat 102 est un dérivé de l'imidazole utilisé dans la fabrication d'articles tels que des produits pharmaceutiques, des pesticides, des résines échangeuses d'ions, des intermédiaires de teinture, des auxiliaires textiles, des produits chimiques photographiques et des inhibiteurs de corrosion.
Addocat 102 est un 1H-imidazole ayant un substituant méthyle en position N-1.


Addocat 102 est un métabolite du 1-méthyl-2-thioimidazole (méthimazole).
Addocat 102 inhibe la résorption osseuse.
Addocat 102 est un 1H-imidazole ayant un substituant méthyle en position N-1.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 102 :
Addocat 102 est utilisé pour la production continue de panneaux sandwich.
Addocat 102 est utilisé pour l'isolation thermique/froid discontinue des réfrigérateurs et des canalisations.
Addocat 102 est utilisé en coulée sur site.


Addocat 102 est utilisé pour la production de mousse polyuréthane et l'isolation thermique/froid discontinue des réfrigérateurs et des tuyauteries.
Addocat 102 est utilisé Industrie automobile Carrosserie pour équipements électriques Câbles Construction Matériaux de construction Industrie électronique Boîtier pour l'électricité et l'électronique Mousses in situ Isolation des tuyaux Plastiques et caoutchoucpolymères Auxiliaires polymères


L'Addocat 102 est généralement utilisé dans la production continue de panneaux sandwich, dans l'isolation discontinue du bruit/du froid des réfrigérateurs et des canalisations, et pour le moulage sur site.
Addocat 102 est utilisé dans l'industrie automobile, les équipements de machines électriques, les câbles, l'architecture, les matériaux de construction, l'industrie électronique, les boîtiers d'équipements électriques et électroniques, la mousse in situ, l'isolation des pipelines, les polymères de plastique et de caoutchouc et les additifs polymères.


Addocat 102 est un catalyseur de type gel modérément actif, sensible à la chaleur, etc.
Addocat 102 est principalement utilisé dans la mousse polyuréthane semi-rigide, les élastomères microcellulaires, etc.
Addocat 102 peut être utilisé comme accélérateur de durcissement époxy avec des agents de durcissement anhydride dans les adhésifs d'enrobage époxy.


Addocat 102 est utilisé pour la synthèse de l'acide désoxyribonucléique. Catalyseur d'hydroxyacétylation.
Addocat 102 est principalement utilisé comme agent de durcissement pour la résine époxy et d'autres résines.
Addocat 102 est utilisé dans les domaines du moulage, du collage et du FRP.


Addocat 102 est utilisé comme intermédiaire de synthèse organique, comme agent de durcissement de résine et adhésif.
Addocat 102 peut être utilisé dans les domaines du moulage, du collage et du plastique renforcé de fibres de verre.
Addocat 102 est utilisé comme intermédiaire de synthèse organique et agent de durcissement de résine, adhésif, etc.


Dans les mousses rigides, Addocat 102 catalyse principalement la réaction de réticulation (isocyanate-polyol).
Pour la production de ces matériaux, l'Addocat 102 est utilisé comme co-catalyseur en combinaison avec l'Addocat 726 b, l'Addocat 104 ou l'Addocat PP.


Addocat 102 confère à la mousse rigide une peau résistante et élastique,
améliorant ainsi l'adhérence de la mousse aux parements, notamment dans les panneaux sandwich.
Addocat 102 est utilisé par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et en fabrication.


Le rejet dans l'environnement d'Addocat 102 est susceptible de se produire lors d'une utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air).
Le rejet dans l'environnement d'Addocat 102 peut survenir lors d'une utilisation industrielle : formulation de mélanges.


Addocat 102 est utilisé dans les produits suivants : produits de revêtement, produits pharmaceutiques, polymères et produits d'exploration ou de production pétrolière et gazière.
Addocat 102 est utilisé pour la fabrication de : produits chimiques et produits plastiques.
Le rejet dans l'environnement d'Addocat 102 peut survenir lors d'une utilisation industrielle : dans des auxiliaires technologiques sur des sites industriels, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), comme auxiliaire technologique, comme auxiliaire technologique et pour la fabrication de thermoplastiques.


Le rejet dans l'environnement d'Addocat 102 peut survenir lors d'une utilisation industrielle : fabrication de la substance.
Addocat 102 est utilisé comme précurseur pour la synthèse de polyamides pyrrole-imidazole, de liquides ioniques tels que l'hexafluorophosphate de 1-butyl-3-méthylimidazolium.
Addocat 102 participe activement à l’élimination de l’acide lors de la production de diéthoxyphénylphosphine.


Addocat 102 est utilisé comme intermédiaire en synthèse organique.
Addocat 102 est un dérivé de l'imidazole utilisé dans la production de produits pharmaceutiques, de pesticides, de résines échangeuses d'ions, d'intermédiaires de teinture, d'auxiliaires textiles, de produits chimiques photographiques et d'inhibiteurs de corrosion.


Addocat 102 peut également être utilisé comme catalyseur pour la fabrication de polyuréthane et comme agent de durcissement pour les résines époxy.
Par exemple, lorsque Addocat 102 est ajouté à une solution aqueuse de diéthylènetriamine (DETA), une charge élevée en CO2 peut être obtenue grâce à la séparation des phases de l'absorbant pendant l'absorption du CO2.


Addocat 102 est également utilisé comme catalyseur pour la fabrication de polyuréthanes et comme agent de durcissement pour les résines époxy.
Addocat 102 est un solvant aprotique.


-Applications d'Addocat 102 :
*Production continue de panneaux sandwich.
*Isolation discontinue chaleur/froid des réfrigérateurs et des tuyauteries.
*Casting sur place.



PROPRIÉTÉS CHIMIQUES DE L'ADDOCAT 102 :
Addocat 102 est un composé organique hétérocyclique aromatique de formule C4H6N2.
Addocat 102 est un liquide incolore à jaune, avec une odeur d'amine.
Addocat 102 est miscible à l'eau.

Addocat 102 est une matière première importante pour la synthèse d'intermédiaires pharmaceutiques, utilisée dans la préparation du losartan, de la nizofenone, du chlorhydrate de chlorure de 1-méthyl-1H-imidazole-5-carbonyle et du chlorhydrate de naphazoline, etc.
Addocat 102 est également utilisé comme solvant spécialisé, base et précurseur de certains liquides ioniques.



PRÉPARATION DE L'ADDOCAT 102 :
Addocat 102 est préparé principalement par deux voies industrielles.
Le principal est la méthylation catalysée par un acide de l’imidazole par le méthanol.

La deuxième méthode implique la réaction de Radziszewski à partir de glyoxal, de formaldéhyde et d'un mélange d'ammoniac et de méthylamine.
(CHO)2 + CH2O + CH3NH2 + NH3 → H2C2N(NCH3)CH + 3 H2O
Addocat 102 peut être synthétisé à l'échelle du laboratoire par méthylation de l'imidazole au niveau de l'azote de type pyridine et déprotonation ultérieure.

De même, Addocat 102 peut être synthétisé en déprotonant d'abord l'imidazole pour former un sel de sodium suivi d'une méthylation.
H2C2N(NH)CH + CH3I → [H2C2(NH)(NCH3)CH]I
[H2C2(NH)(NCH3)CH]I + NaOH → H2C2N(NCH3)CH + H2O + NaI



FONCTION DE L'ADDOCAT 102 :
Catalyseur pour la production de mousse de polyuréthane rigide.



POSOLOGIE D'ADDOCAT 102 :
0,5 à 1,0 pp d'Addocat 102, calculé sur 100 pp de polyol, avec 1 à 3 pp d'Addocat PP ou Addocat 726 b ou 0,3 à 1,0 pp d'Addocat 104.



STOCKAGE ET TRANSPORT DE L'ADDOCAT 102 :
Addocat 102 doit être scellé et stocké dans un entrepôt sec, frais et ventilé, rempli d'azote et scellé dans un endroit frais et sec pour le stockage.



MÉTHODES DE PURIFICATION DE L'ADDOCAT 102 :
Séchez l'Addocat 102 avec du sodium métallique puis distillez-le.
Conservez Addocat 102 à 0° sous argon sec.
Le picrate a m 159,5-160,5o (de H2O).



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 102 :
Type de produit : Catalyseurs de réticulation / Accélérateurs / Initiateurs
Composition chimique : 1-méthylimidazole
Forme physique : Liquide
Composition chimique : Aminé tertiaire
Forme physique : Liquide clair, incolore à jaune pâle
Densité (20 °C) : env. 1,03 g/cm³
Viscosité (25 °C) : env. 2 mPa.s
Point d'ébullition : 198 °C
Point de solidification : env. -2 °C
Point d'éclair : 92 °C (ASTM-D 93, DIN EN 22719)
Miscibilité avec l'eau : Miscible

Teneur en eau : Max. 0,5%
Teneur en substance : Min. 99,0%
Densité relative : 1.030
Indice de réfraction : 1,4970
Point d'éclair ( ℃ ): 92
Point de fusion (°C) : -60
Point d'ébullition (°C) : 198
Aspect : Liquide transparent incolore
Contenu : ≥99 %
Densité : 1,03 g/mL à 25 ℃
Pression de vapeur : 0,4 mm Hg (20 ℃ )
Couleur : Clair, incolore à jaune

Gravité spécifique : 1,031
pKa : 6,95 (à 25 ℃ )
BR: 105197
Température de stockage : Conserver en dessous de +30°C
Indice de réfraction : n20/D 1,495 (lit.)
Forme : Liquide
Plage de pH : 9,5 - 11,5 à 100 g/L à 20 °C
pH : 9,5-10,5 (50 g/L, H2O, 20 ℃ )
InChIKey : MCTWTZJPVLRJOU-UHFFFAOYSA-N
Limite explosive : 2,7-15,7 % (V)
Fp : 198 °F
Pression de vapeur : 0,4 mm Hg (20 °C)
Système d'enregistrement des substances de l'EPA : 1H-imidazole, 1-méthyl- (616-47-7)
Densité : 1,03 g/mL à 25 °C (lit.)
Solubilité dans l'eau : Miscible avec l'eau

Point de fusion : −60 °C (lit.)
Stabilité : Stable, mais sensible à l’humidité.
Incompatible avec les acides, les anhydrides d'acide, les oxydants forts,
humidité, dioxyde de carbone, chlorures d'acide.
Sensible : Hygroscopique
Référence chimique NIST : 1H-imidazole, 1-méthyl- (616-47-7)
Référence de la base de données CAS : 616-47-7 (Référence de la base de données CAS)
Poids moléculaire : 82,10 g/mol
XLogP3 : -0,1
Nombre de donneurs de liaisons hydrogène : 0
Nombre d'accepteurs de liaison hydrogène : 1
Nombre de liaisons rotatives : 0
Masse exacte : 82,053098200 g/mol
Masse monoisotopique : 82,053098200 g/mol
Surface polaire topologique : 17,8 Ų

Nombre d'atomes lourds : 6
Frais formels : 0
Complexité : 44,8
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Pureté/Méthode d'analyse : >99,0 % (GC)
Formule moléculaire : C4H6N2
Formule moléculaire/poids moléculaire : C4H6N2 = 82,11
État physique (20 °C) : Liquide

Température de stockage : Température ambiante (Recommandé dans un endroit frais et sombre, <15°C)
Stocker sous gaz inerte : stocker sous gaz inerte
Condition à éviter : sensible à l’air, hygroscopique
Numéro CAS : 616-47-7
Numéro de registre Reaxys : 105197
ID de substance PubChem : 87572549
SDBS (BD spectrale AIST) : 3569
Numéro MDL : MFCD00005292
Numéro CB : CB1316726
Fichier MOL : 616-47-7.mol
Point de fusion : −60 °C (lit.)
Point d'ébullition : 198 °C (lit.)
Densité : 1,03 g/mL à 25 °C (lit.)

Pression de vapeur : 0,4 mm Hg (20 °C)
Indice de réfraction : n20/D 1,495 (lit.)
Point d'éclair : 198 °F
Température de stockage : Conserver en dessous de +30°C
Solubilité : chloroforme (légèrement), méthanol (légèrement)
Forme : Liquide
pKa : 6,95 (à 25°C)
Gravité spécifique : 1,031
Couleur : Clair, incolore à jaune
pH : 9,5-10,5 (50 g/L, H2O, 20°C)
Plage de pH : 9,5 - 11,5 à 100 g/L à 20 °C
Limite explosive : 2,7-15,7 % (V)

Solubilité dans l'eau : Miscible avec l'eau
Sensible : Hygroscopique
BR: 105197
Stabilité : Stable, mais sensible à l’humidité.
Incompatible avec les acides, les anhydrides d'acide, les oxydants forts,
humidité, dioxyde de carbone, chlorures d'acide
InChIKey : MCTWTZJPVLRJOU-UHFFFAOYSA-N
LogP : -0,19 à 25°C
Référence de la base de données CAS : 616-47-7
Scores alimentaires de l'EWG : 1
FDA UNII : P4617QS63Y
Référence chimique NIST : 1H-imidazole, 1-méthyl- (616-47-7)
Système d'enregistrement des substances de l'EPA : 1H-imidazole, 1-méthyl- (616-47-7)



PREMIERS SECOURS de l'ADDOCAT 102 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 102 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 102 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 102 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 102 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 102 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 105
a réaction de gélification (réticulation) et la réaction de gonflement dans les mousses de polyuréthane.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 105 :
Addocat 105 est solide à température ambiante et ne convient pas pour être utilisé comme catalyseur de polyuréthane.
Dans les applications industrielles, Addocat 105 est souvent dissous dans des diols à petites molécules et configuré pour être utilisé comme solution alcoolique à 33 % en poids (ou à d'autres concentrations).


Addocat 105 est couramment utilisé. Les diols sont le monoacétate de dipropylène glycol, le propylène glycol, le monoacétate de diéthylène glycol (diéthylène glycol), l'éthylène glycol, etc.
Addocat 105 est utilisé en mousse d'uréthane flexible, semi-rigide et rigide


Utilisation d'Addocat 105 pour les élastomères coulés durcis à froid : Dans la production d'élastomères coulés durcis à froid Addocat 105
(0,1 - 0,5 pp) est utilisé partout où des temps de remplissage relativement longs sont souhaités.
Addocat 105 convient pour une utilisation dans la mousse en dalles flexibles, la mousse moulée à chaud, la mousse HR, la mousse de remplissage, la mousse à peau intégrale et la mousse rigide.


Addocat 105 convient également pour une utilisation dans les revêtements polyuréthane, les élastomères et les mastics.
Addocat 105 est utilisé pour la production continue et discontinue de panneaux sandwich.
Addocat 105 est utilisé pour l'isolation froide/chaleur discontinue des réfrigérateurs et des tuyauteries.


Addocat 105 est utilisé en coulée sur site.
Utilisations de la mousse HR (mousse moulée et en plaques) de l'Addocat 105 : Ici, la réaction peut être contrôlée avec Addocat 105 (0,3 - 1,0 pp sur 100 pp de polyol) en combinaison avec Addocat 108 (0,1 - 0,5 pp).


-Utilisations de mousse de remplissage d'Addocat 105 :
Dans la production de mousses de remplissage semi-rigides, l'Addocat 105 s'est avéré conseillé d'utiliser de la triéthanolamine (jusqu'à 4,0 ppb) en plus de l'Addocat 105.
Cela améliore la structure cellulaire ouverte.


-Utilisations de mousse rigide d'Addocat 105 :
Addocat 105 confère aux mousses rigides une peau résistante et élastique,
améliorer l'adhésion de la mousse sur les parements souples et rigides.

Addocat 105 peut être utilisé seul, mais également en combinaison avec
Addocat 726b et Addocat PP.
Dosage d'Addocat 105 : 1,0 à 3,0 pp sur 100 pp de polyol.


-Mousse cutanée intégrale (souple, semi-rigide, rigide) utilisations d'Addocat 105 :
Dans la production de mousse à peau intégrale Addocat 105 (1,0 - 2,0
pbw) est utilisé avec Addocat 201 (0,02 - 0,05 pbw). Les combinaisons des deux activateurs réduisent les temps de démoulage.


-Utilisations de mousse polyéther flexible d'Addocat 105 :
Dans la production de plaques de mousse de polyéther et de mousse moulée à chaud, Addocat 105 sert principalement à favoriser la réaction gazeuse (0,3 à 0,45 pp pour 100 pp de polyol).
Addocat 105 est utilisé avec Addocat SO (0,1 à 0,3 pp), qui active la réaction de réticulation.



UTILISATION D'ADDOCAT 105 :
L'ingrédient actif du catalyseur polyuréthane A33 est l'Addocat 105, la solution préparée à partir de 33 % d'Addocat 105 et de 67 % de dipropylène glycol monoconjugué est principalement utilisée comme catalyseur de gel pour la mousse de polyuréthane, qui est largement utilisée dans le polyuréthane flexible, semi-rigide et rigide. mousse, revêtement, élastomère, Dans le système de moussage polyuréthane, l'isocyanate réagit d'abord avec Addocat 105 pour générer un complexe actif.

La nature du complexe est très instable, une fois la liaison uréthane générée, elle sera libre, ce qui est propice à une catalyse ultérieure, Addocat 105 a un fort effet catalytique sur la réaction de gel et la réaction de moussage, en particulier sur le catalyseur polyuréthane et hydroxyle. l’effet est plus sélectif.
Addocat 105 est principalement utilisé comme catalyseur de gel pour les mousses de polyuréthane et est largement utilisé dans les mousses de polyuréthane flexibles, semi-rigides et rigides, les élastomères, les revêtements, etc.



COMPOSITION CHIMIQUE DE L'ADDOCAT 105 :
Solution à 33% d'Addocat 105.
Addocat 105 est solide à température ambiante et ne convient pas à une utilisation comme catalyseur de polyuréthane.

Dans les applications industrielles, Addocat 105 est souvent fondu dans des diols à petites molécules et configuré pour être utilisé comme solution alcoolique avec une fraction massique de 33 % (ou d'autres concentrations).
Addocat 105 est couramment utilisé. Les diols sont le monoacétate de dipropylène glycol, le propylène glycol, le monoacétate de diéthylène glycol (diéthylène glycol), l'éthylène glycol, etc.



STABILITÉ DE STOCKAGE DE L'ADDOCAT 105 :
Lorsque Addocat 105 est stocké dans des récipients bien fermés, on peut s'attendre à une durée de conservation de 12 mois.
Manutention
Consultez la fiche de données de sécurité (MSDS) pour obtenir des informations supplémentaires sur la manipulation d'Addocat 105.



FONCTION DE L'ADDOCAT 105 :
Catalyseur pour la production de polyuréthanes, par exemple mousse flexible en plaques, mousse moulée à chaud, mousse HR, mousse de remplissage, mousse à peau intégrale, mousse rigide et revêtements en polyuréthane, élastomères et autres produits.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 105 :
Formule moléculaire : C6H12N2
Masse moléculaire relative : 112,17
N° CAS : 280-57-9
Pureté ≥99 %
Humidité ≤0,5%
Viscosité (25 ℃ ): 100mPa.s
Densité (20 ℃ ) : 1,033 g/cm3
Point d'éclair (PMCC) : 79 ℃
Pression de vapeur (38 ℃ ) : 266 Pa

Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Solution de triéthylène diamine dans du dipropylène glycol
Forme physique : Liquide
Densité (20 °C) : 1,03 g/cm³
Viscosité (20 °C) : env. 148 mPa.s
Point d'ébullition initial : 198 °C
Point d'écoulement : env. -33 °C
Point d'éclair : 92 °C (DIN EN 22719, ASTM-D 93)
Valeur OH : env. 560 mg de KOH/g
Miscibilité avec l'eau : illimitée
Teneur en eau : Max. 0,5 %
Teneur en TEDA : 33,3 ± 0,5 %



PREMIERS SECOURS de l'ADDOCAT 105 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 105 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 105 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 105 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 105 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 105 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 106
Addocat 106 agit comme un catalyseur pour le polyuréthane.
Addocat 106 convient pour une utilisation dans des systèmes intégraux semi-rigides tels que les formulations pour semelles de chaussures, accoudoirs pour voitures.


Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : solution à 25 % de triéthylène diamine dans du 1,4 butanediol



SYNONYMES :
Dabco 33-S, Dabco 33S Solution BDO 33% de triéthylènediamine, Advocate 106, TEDA-L33B, micro-catalyseur DABCO POLYCAT, petit catalyseur, Gel catalyseur Dabco 33S, solution 25 % de triéthylènediamine dans 1,4-butanediol



Addocat 106 est une solution à 25 % de triéthylène diamine dans du 1,4 butanediol .
Addocat 106 agit comme un catalyseur pour le polyuréthane.


Addocat 106 convient pour une utilisation dans des systèmes intégraux semi-rigides tels que les formulations pour semelles de chaussures, accoudoirs pour voitures.
Addocat 106 a une durée de conservation de 12 mois.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 106 :
Addocat 106 est spécifiquement utilisé pour les systèmes intégraux semi-rigides tels que les formulations pour semelles de chaussures, accoudoirs pour voitures, etc. et pour les revêtements polyuréthanes et élastomères fabriqués par coulée à froid.


Environ 1 à 2 parties en poids de mélange de polyols Addocat 106 à 100 parties en poids sont utilisées, en fonction du temps de démoulage requis.
Le temps de démoulage peut être encore réduit en utilisant des composés organométalliques tels que l'Addocat 201 (environ 0,03 ppb).
Addocat 106 est un catalyseur utilisé pour les auxiliaires polymères de polyuréthane, de plastique et de caoutchoucpolymères.


Addocat 106 convient aux recettes contenant également du 1,4 butanediol .
Addocat 106 agit comme un catalyseur pour le polyuréthane.
Addocat 106 convient pour une utilisation dans des systèmes intégraux semi-rigides tels que les formulations pour semelles de chaussures, accoudoirs pour voitures.



FONCTION DE L'ADDOCAT 106 :
Catalyseur pour polyuréthane.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 106 :
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : solution à 25 % de triéthylène diamine dans du 1,4 butanediol
Forme physique : Liquide



PREMIERS SECOURS de l'ADDOCAT 106 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau /douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 106 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 106 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 106 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 106 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ADDOCAT 106 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante ).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 108
Addocat 108 est clair, incolore à jaunâtre.
Addocat 108 est un mélange de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylène glycol.


Numéro CAS : 3033-62-3
Type de produit : Polyuréthane-Amine
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Mélange de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylène glycol
Formule moléculaire : C8H20N2O



SYNONYMES :
Catalyseur polyuréthane A-1, catalyseur A-1, Dabco BL-11, Niax A-1, Jeffcat ZF-22, Lupragen N206, Tegoamin BDE, PC CAT NP90, Addocat 108, Toyocat ET



Addocat 108 est un catalyseur polyuréthane à base d'amine tertiaire, notamment le Bis-(2-diemthylaminoéthyl)-éther coupé dans le DPG.
Addocat 108 active fortement la réaction de soufflage des mousses polyuréthanes souples et rigides.
Dans les mousses rigides, Addocat 108 améliore l'écoulement du mélange réactionnel, normalement utilisé comme co-catalyseur.


Addocat 108 est clair, incolore à jaunâtre.
Addocat 108 est un mélange de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylène glycol.
Addocat 108 convient à la production continue de panneaux et de dalles - isolation thermique/froid discontinue des canalisations et des réfrigérateurs.


Addocat 108 a une durée de conservation de 12 mois.
Addocat 108 est un mélange de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylène glycol.
Addocat 108 agit comme un activateur pour la production de mousse de polyuréthane flexible en dalles et de mousse moulée à chaud.


Addocat 108 a une durée de conservation de 12 mois.
Addocat 108 est un puissant catalyseur pour la réaction gazeuse.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 108 :
Addocat 108 est principalement utilisé dans la production de mousse de polyuréthane flexible de type polyéther et peut également être utilisé dans la production de mousse rigide pour l'emballage, particulièrement adaptée à la production de mousse semi-rigide à haute résilience et de mousse à faible densité ;
Addocat 108 est utilisé conjointement avec des catalyseurs organostanniques pour fournir une augmentation significative de la tolérance à la production de mousse.


Addocat 108 agit comme un activateur pour la production de mousse de polyuréthane flexible en dalles et de mousse moulée à chaud.
Addocat 108 est utilisé pour les mousses HR et, comme co-catalyseur, pour les mousses rigides.
Addocat 108 est principalement utilisé dans la production de mousse de polyuréthane flexible de type polyéther, et peut également être utilisé dans la production de mousse rigide pour l'emballage, particulièrement adaptée à la production de mousse haute résilience, semi-rigide et de mousse basse densité ;


Addocat 108 est utilisé conjointement avec des catalyseurs organostanniques pour fournir une augmentation significative de la tolérance à la production de mousse.
Addocat 108 est poursuivi pour la production continue de panneaux et de dalles.
Addocat 108 est utilisé pour l'isolation thermique/froid discontinue des canalisations et des réfrigérateurs.


Utilisations de mousse HR (mousse moulée et en plaques) d'Addocat 108 : Dans ce cas, la réaction peut être contrôlée avec Addocat 108 (0,1 - 0,5 pp sur 100 pp de polyol) en combinaison avec Addocat 105 (0,3 - 1,0 pp).
Addocat 108 est également utilisé pour les mousses HR et, comme co-catalyseur, pour les mousses rigides.


Addocat 108 convient à la production continue de panneaux et de dalles.
Addocat 108 est utilisé pour l'isolation thermique/froid discontinue des canalisations et des réfrigérateurs.


-Utilisations de mousse de remplissage d'Addocat 108 :
Dans la production de mousse de remplissage semi-rigide, Addocat 108 s'est avéré conseillé d'utiliser
triéthanolamine (jusqu'à 4,0 pp) en plus d'Addocat 108.
Cela donne une structure cellulaire plus ouverte.


-Utilisations de mousse rigide d'Addocat 108 :
Dans les systèmes à mousse rigide, Addocat 108 est utilisé uniquement comme co-catalyseur en combinaison avec Addocat 726 b, Addocat 1926, Addocat 1221 ou Addocat 9412.
Même de petits ajouts d'Addocat 108 (0,1 ppb) améliorent la fluidité du système.


-Utilisations de mousse polyéther flexible d'Addocat 108 :
Addocat 108 est l'un des catalyseurs standards utilisés pour favoriser la réaction gazeuse dans la production de mousse de polyéther en plaques et de mousse moulée à chaud (dosage de 0,1 à 0,15 pp sur 100 pp de polyol).
Ici, Addocat 108 est toujours utilisé en combinaison avec Addocat SO (0,1 - 0,3 pbw).



STABILITÉ DE STOCKAGE DE L'ADDOCAT 108 :
Lorsque Addocat 108 est stocké dans des récipients d'origine bien fermés
on peut s'attendre à une durée de conservation de 12 mois.
Un éventuel jaunissement du liquide au fil du temps n'a aucune influence sur l'effet catalytique du produit.



FONCTION DE L'ADDOCAT 108 :
Addocat 108 est utilisé pour la production de plaques de mousse flexibles en polyuréthane et de mousse moulée à chaud.
Addocat 108 est également utilisé pour les mousses HR et, comme co-catalyseur, pour les mousses rigides.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 108 :
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Mélange de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylène glycol
Forme physique : Liquide
Composition chimique : Mélange de substances actives composé de bis-(2-diméthyl-aminoéthyl)-éther et de dipropylèneglycol.
Forme physique : liquide clair, incolore à légèrement jaunâtre
Densité (20 °C) : env. 0,90 g/cm³
Viscosité (25 °C) : env. 4 mPa.s
Point d'ébullition initial : env. 170 °C
Point de solidification : env. - 80 °C
Point d'éclair : env. 71 °C (DIN EN 22719, ASTM-D 93)

Miscibilité à l'eau : miscible
Teneur en eau : max. 0,5 % 70,0 ± 1,0 %
Formule moléculaire : C8H20N2O ;
Masse moléculaire relative : 160,3 ;
N° CAS : 3033-62-3 ;
Liquide transparent jaune clair ;
Pureté ≥99 % ;
Teneur en eau ≤0,5 % ;
Viscosité (25 ℃ ) : 4,1 mPa.s ;
Densité (25 ℃ ) : 0,902 g/cm3 ;
Point d'éclair (PMCC) : 74 ℃ ;
Pression de vapeur (20 ℃ ) : 1,3 Pa ;
Plage d'ébullition : 186-226°C ;

Formule : C8H20N2O
InChI : InChI=1S/C8H20N2O/c1-9(2)5-7-11-8-6-10(3)4/h5-8H2,1-4H3
Clé InChI : InChIKey=GTEXIOINCJRBIO-UHFFFAOYSA-N
SOURIRES :O(CCN(C)C)CCN(C)C
Formule moléculaire : C8H20N2O
Masse moléculaire relative : 160,3
Numéro CAS : 3033-62-3
Liquide transparent jaune clair
Pureté ≥99 %
Humidité≤0,5%
Viscosité (25 ℃ ): 4,1 mPa.s
Densité (25 ℃ ) : 0,902 g/cm3
Point d'éclair (PMCC) : 74 ℃
Pression de vapeur (20 ℃ ) : 1,3 Pa
Plage d'ébullition : 186-226 ℃



PREMIERS SECOURS de l'ADDOCAT 108 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 108 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 108 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 108 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 108 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ADDOCAT 108 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 117
Addocat 117 est un polyol polyester à 100 p.b.w.
Addocat 117 est la 1,4 -diméthylpipérazine.


Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : 1,4 - diméthylpipérazine



SYNONYMES :
Jeffcat DMP, Lupragen N204, PC CAT DMP, Addocat 117, catalyseur d'équilibre de gel, catalyseur d'équilibre de gel moussant de polyuréthane, 1,4-diméthylpipérazine, DMP, Lupragen N204, PC CAT DMP, Addocat 117, catalyseur d'équilibre de gel, catalyseur d'équilibre de gel moussant de polyuréthane , 1,4-Diméthylpipérazine



Addocat 117 est un excellent co-catalyseur pour tous les systèmes polyuréthane.
Addocat 117 est la 1,4 -diméthylpipérazine.
Addocat 117 agit comme co-catalyseur pour les polyuréthanes, en particulier pour les dalles de mousse flexibles en polyester à faible odeur .


Le dosage d' Addocat 117 doit être compris entre 0,1 et 0,5 ppw .
Ajouter 117 à 100 ppw . polyester polyol .
Addocat 117 a une durée de conservation de 12 mois.


Addocat 117 est un liquide incolore à jaune clair, soluble dans l'eau et sa solution aqueuse est faiblement alcaline.
Addocat 117 est un excellent co-catalyseur pour tous les systèmes polyuréthane.
Addocat 117 est particulièrement adapté pour être utilisé comme co-catalyseur pour la catalyse à odeur réduite de dalles de polyester flexibles en combinaison avec de l'urée, Addocat DMEA et Addocat SO.


Addocat 117 est un catalyseur polyuréthane à base d'amine tertiaire à base de N ,N - diméthylpipérazine (DMP).
Ajouter Le 117 active la réaction de gélification (réticulation) des mousses polyuréthanes flexibles.
Addocat 117 est particulièrement adapté comme co-catalyseur pour les dalles de mousse flexibles en polyester et polyuréthane à faible odeur.


Addocat 117 est un excellent co-catalyseur pour tous les systèmes polyuréthane.
Addocat 117 est particulièrement adapté pour être utilisé comme co-catalyseur pour la catalyse à odeur réduite de dalles de polyester flexibles en combinaison avec de l'urée, Addocat DMEA et Addocat SO.


Le dosage d' Addocat 117 doit être compris entre 0,1 et 0,5 ppw .
Ajouter 117 à 100 ppw . polyester polyol .



UTILISATIONS et APPLICATIONS de l'ADDOCAT 117 :
Addocat 117 peut être utilisé comme catalyseur équilibré moussant/gélifiant pour le polyuréthane.
Addocat 117 peut être utilisé dans la mousse polyuréthane souple, la mousse polyuréthane rigide, les revêtements, les adhésifs, etc.
Addocat 117 est bénéfique pour l’ouverture des cellules de mousse.


Addocat 117 peut également être utilisé dans d’autres intermédiaires tels que les intermédiaires pharmaceutiques.
Addocat 117 est utilisé comme auxiliaire polymère.
Addocat 117 est utilisé pour les mousses d'ester.


Addocat 117 peut également être utilisé comme intermédiaires pharmaceutiques et autres intermédiaires.
Addocat 117 est particulièrement adapté pour être utilisé comme co-catalyseur pour la catalyse à odeur réduite de dalles de polyester flexibles en combinaison avec de l'urée, Addocat DMEA et Addocat SO.



PROPRIÉTÉS PHYSIQUES ET CHIMIQUES DE L'ADDOCAT 117 :
Addocat 117 est un liquide incolore à jaune clair, soluble dans l'eau et sa solution aqueuse est faiblement alcaline.



FONCTION DE L'ADDOCAT 117 :
Co-catalyseur pour polyuréthanes, spécialement pour dalles de mousse flexibles en polyester à faible odeur.



STABILITÉ DE STOCKAGE DE L'ADDOCAT 117 :
Lorsque Addocat 117 est stocké dans des récipients d'origine bien fermés à environ 20 °C, une durée de conservation de 6 mois peut être attendue .
Une exposition prolongée à des températures supérieures à 30 °C peut décolorer le produit, même dans des récipients fermés.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 117 :
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : 1,4 - diméthylpipérazine
Forme physique : Liquide
Aspect : Liquide incolore à jaunâtre
Densité à 20 °C : env. 0,85 g/cm³
Point d'ébullition initial : 130-133 °C
Point de solidification : env. -1 °C
Point d'éclair (TCC) : 22 °C
Viscosité à 25 °C : env. 1 mPa.s
Miscibilité avec l'eau : illimitée
Teneur en eau : Max. 0,5 %
Teneur en substance : Min. 98,0 %



PREMIERS SECOURS de l'ADDOCAT 117 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau /douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 117 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 117 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 117 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 117 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ADDOCAT 117 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante ).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 118
Addocat 118 convient à la production de mousses polyuréthanes rigides, notamment pour les systèmes à cartouches 1K et 2K.
Addocat 118 est un catalyseur à base d'amine également connu sous le nom d'éther dimorpholino-diéthylique.


Numéro CAS : 6425-39-4
Numéro CE : 229-194-7
Type de produit : Polyuréthane-Amine
Formule moléculaire : C12H24N2O3



SYNONYMES :
DMDEE, Bis(2,2-morpholinodiéthyl)éther, CAS 6425-39-4, Catalyseur DMDEE, Catalyseur polyuréthane DMDEE, Catalyseur moussant DMDEE DMDEE, Dabco DMDEE, Jeffcat DMDEE, Lupragen DMDEE, Fodocatat DMDEE, PC Addocam N106, 118 Catalyseur DMDEE , catalyseur de moussage de polyuréthane DMDEE, Nsc 28749, dimorpholine, Lupragen N106, Einecs 229-194-7, LUPRAGEN(R) N 106, 2,2-Dimorpholinodiet, Lupragen N106 (DMDEE), dimorpholinodiéthyléther, bis(morpholinoéthyl)éther, Di( éther morpholinyléthylique



Addocat 118 est un catalyseur à base d'amine également connu sous le nom d'éther dimorpholino-diéthylique.
Addocat 118 peut agir comme un catalyseur pour les réactions de soufflage et facilite le processus de durcissement des polymères.
Addocat 118 est enregistré au titre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 1 000 à < 10 000 tonnes par an.


Addocat 118 est un catalyseur polyuréthane à base d'amine tertiaire à base de 2,2 - dimorpholinyl-diéthyléther.
Addocat 118 convient à la production de mousses polyuréthanes rigides, notamment pour les systèmes à cartouches 1K et 2K.


Addocat 118 améliore les conditions de stockage dans ces formulations.
Bien qu'Addocat 118 soit un bon produit, TRiiSO estime que nous pouvons proposer de bien meilleures options auprès de Tosoh.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 118 :
Addocat 118 est utilisé par les consommateurs, dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et dans la fabrication.
Addocat 118 est utilisé dans les produits suivants : adhésifs et mastics, produits de revêtement et polymères.


D'autres rejets dans l'environnement d'Addocat 118 sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur entraînant une inclusion dans ou sur un matériau. (par exemple liant dans les peintures et revêtements ou adhésifs).


Le rejet dans l'environnement d'Addocat 118 peut survenir lors d'une utilisation industrielle : traitement d'abrasion industrielle avec un faible taux de libération (par exemple, découpe de textile, découpe, usinage ou meulage de métal).


D'autres rejets dans l'environnement de cette substance sont susceptibles de se produire lors de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur entraînant une inclusion dans ou sur un matériau. (par exemple liant dans les peintures et revêtements ou adhésifs).


Le rejet dans l'environnement d'Addocat 118 peut survenir lors d'une utilisation industrielle : formulation de mélanges et formulation dans des matériaux.
Addocat 118 est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et travaux de construction.
Addocat 118 est utilisé pour la fabrication de : meubles.


Le rejet dans l'environnement d'Addocat 118 peut survenir lors d'une utilisation industrielle : dans la production d'articles, comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), dans des auxiliaires technologiques sur des sites industriels et comme auxiliaire technologique.
Le rejet dans l'environnement d'Addocat 118 peut survenir lors d'une utilisation industrielle : fabrication de la substance.


Addocat 118 est un catalyseur utilisé pour les mousses de polyester flexibles, les mousses moulées et les mousses et revêtements durcis à l'humidité.
Addocat 118 est un bon catalyseur de soufflage qui ne provoque pas de réticulation.
Utilisation de la substance/du mélange d'Addocat 118 : Additifs destinés à être utilisés dans la production de polyuréthanes


Addocat 118 convient au système de durcissement de l'eau, c'est un catalyseur moussant puissant, car l'effet de résistance du groupe amino en place peut prolonger la durée de stockage du composant NCO, adapté à la réaction catalytique NCO et à l'eau dans les systèmes TDI, MDI, IPDI et autres. .
Addocat 118 est principalement utilisé dans les systèmes de mousse de polyuréthane rigide monocomposant.


Addocat 118 peut également être utilisé dans la mousse souple de polyuréthane de type polyéther et de type polyester.
Addocat 118 peut également être utilisé dans la mousse souple de polyuréthane de type polyéther et polyester, la mousse semi-dure, les matériaux CASE, etc.
La quantité ajoutée d'Addocat 118 est de 0,3 à 0,55 % du composant polyéther/ester.


Addocat 118 est un catalyseur aminé adapté aux systèmes de conservation.
Addocat 118 est principalement utilisé dans les systèmes de mousse de polyuréthane rigide monocomposant, mais peut également être utilisé dans les mousses flexibles de polyuréthane de type polyéther et de type polyester, les mousses semi-rigides et les matériaux CASE.


Addocat 118 est utilisé comme catalyseur (ou durcisseur) dans les systèmes polyuréthane monocomposant (par exemple, mastic polyuréthane monocomposant, adhésif en mousse polyuréthane monocomposant, matériau de jointoiement polyuréthane monocomposant, etc.).
Étant donné que les prépolymères de polyuréthane monocomposant nécessitent une stabilité de stockage à long terme, Addocat 118 joue un rôle clé dans la stabilisation et la polymérisation des prépolymères de polyuréthane, ce qui impose également des exigences très élevées en matière de qualité des produits Addocat 118.


Addocat 118 est utilisé comme catalyseur (ou durcisseur) dans les systèmes polyuréthane monocomposant (par exemple calfeutrage polyuréthane monocomposant, adhésifs en mousse polyuréthane monocomposant, matériaux de jointoiement polyuréthane monocomposant, etc.).
Étant donné que les prépolymères de polyuréthane monocomposant nécessitent une stabilité de stockage à long terme, Addocat 118 joue un rôle clé dans la stabilisation et la polymérisation des prépolymères de polyuréthane, ce qui impose également des exigences très élevées en matière de qualité des produits à base d'éther diéthylique de bismorpholine.


Addocat 118 convient au système de séchage de l'eau, c'est un puissant catalyseur de mousse, en raison de l'effet de résistance du site du groupe amino.
Addocat 118 peut prolonger la période de stockage du composant NCO, adapté à la réaction catalytique du NCO et de l'eau dans les systèmes TDI, MDI, IPDI et autres.


Addocat 118 est principalement utilisé dans les systèmes de mousse de polyuréthane rigide monocomposant.
Addocat 118 peut également être utilisé dans la mousse de polyuréthane souple de type polyéther et polyester.
Addocat 118 peut également être utilisé dans la mousse souple polyuréthane de type polyéther et polyester , la mousse semi-rigide, les matériaux CASE, etc.


La quantité ajoutée d'Addocat 118 est de 0,3 à 0,55 % du composant polyéther/ester.
Addocat 118 est un catalyseur aminé approprié pour les systèmes de durcissement.
Addocat 118 est un catalyseur de mousse puissant, qui peut conférer aux composants contenant des NCO une longue durée de conservation en raison de l'effet bloquant du site amine.


Addocat 118 est principalement utilisé dans les systèmes de mousse de polyuréthane rigide à un composant, mais peut également être utilisé dans les mousses de polyuréthane flexibles de type polyéther et polyester, les mousses semi-rigides et les matériaux CASE.
Addocat 118 est un catalyseur moussant puissant qui peut donner au composant contenant du NCO une longue durée de conservation en raison de l'effet de blocage de site de l'amine.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 118 :
Formule moléculaire : C12H24N2O3
Masse moléculaire relative : 244,0
N° CAS : 6425-39-4
Proprietes physiques et chimiques:
Éther bimorpholinodiéthylique Aspect Liquide incolore à jaune clair,
soluble dans l'eau.
Les indices typiques de propriété physique sont :
Viscosité (25 ℃ ) : 18 mPa-s.
Densité relative (25 ℃ ) : 1,06 ;
Point d'ébullition : supérieur à 225°C ;
Point de fusion : inférieur à -28°C ;

Point d'éclair (TCC) : 146 °C ;
Indice d'amine : 7,9-8,1 mmol/g.
Numéro CBN :CB9307993
Formule moléculaire : C12H24N2O3
Poids moléculaire : 244,33
Numéro MDL :MFCD00072740
Fichier MOL : 6425-39-4.mol
État physique : Liquide
Conservation : Conserver à température ambiante
Point de fusion : -28 °C
Point d'ébullition : 192 °C à 2 kPa
Densité : 1,06 g/mL à 25 °C (lit.)

Pression de vapeur : 66 Pa à 20 °C
Indice de réfraction : n20/D 1,484 (lit.)
Point d'éclair : 295 °F
Température de stockage : 2-8 °C
Solubilité : légèrement soluble dans le chloroforme et l'acétate d'éthyle
Forme : Huile
pKa : 6,92 ± 0,10 (prédit)
Couleur : Brun pâle à brun clair
Viscosité : 216,6 mm²/s
Hydrosolubilité : 100 g/L à 20 °C
Clé InChIKey : ZMSQJSMSLXVTKN-UHFFFAOYSA-N
LogP : 0,5 à 25 °C
Référence de la base de données CAS : 6425-39-4
FDA UNII : 5BH27U8GG4
Système d'enregistrement des substances de l'EPA : Morpholine, 4,4 ' -(oxydi-2,1-éthanediyl)bis- (6425-39-4)



PREMIERS SECOURS de l'ADDOCAT 118 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau /douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 118 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 118 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 118 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 118 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 118 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standard (température ambiante ).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 1221 VN
Addocat 1221 VN vire du jaune au brun lors de l'exposition à l'air et à la lumière, mais sans perdre son effet catalytique.
Addocat 1221 VN permet un bon temps de démarrage et une bonne polymérisation.


Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation
Composition chimique : Mélange d'amines tertiaires avec du polyétherpolyol



Addocat 1221 VN est un mélange d'amines tertiaires avec du polyétherpolyol.
Addocat 1221 VN agit comme catalyseur pour la fabrication de mousses polyuréthanes rigides et de panneaux de construction.
Addocat 1221 VN est hygroscopique et doit donc être protégé de l'humidité.


Addocat 1221 VN doit être conservé dans des récipients fermés à des températures d'environ 20°C.
Addocat 1221 VN vire du jaune au brun lors de l'exposition à l'air et à la lumière, mais sans perdre son effet catalytique.
Addocat 1221 VN permet un bon temps de démarrage et une bonne polymérisation.


Pour la mousse rigide PUR, le dosage est d'env. 2,0 - 4,0 points en poids
Addocat 1221 VN a une durée de conservation de 6 mois.



UTILISATIONS et APPLICATIONS de ADDOCAT 1221 VN :
Addocat 1221 VN est un catalyseur utilisé pour la fabrication de mousses polyuréthanes rigides
Addocat 1221 VN est hygroscopique et doit donc être protégé de l'humidité.



FONCTION DE L'ADDOCAT 1221 VN :
Addocat 1221 VN est principalement utilisé pour la production continue de mousses rigides en plaques et de panneaux de construction.
Addocat 1221 VN permet un bon temps de démarrage et une bonne polymérisation.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 1221 VN :
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation
Composition chimique : Mélange d'amines tertiaires avec du polyétherpolyol
Forme physique : Liquide



PREMIERS SECOURS de l'ADDOCAT 1221 VN :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE d'ADDOCAT 1221 VN :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 1221 VN :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de ADDOCAT 1221 VN :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 1221 VN :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 1221 VN :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 1926
Addocat 1926 agit comme catalyseur pour la production de mousses polyuréthanes rigides.


Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Mélange d'une amine tertiaire et d'un polyol



SYNONYMES :
ADDOCAT 1926, Produit d'essai Desmorapid PU 1926, Amine tertiaire dans polyéther polyol



Addocat 1926 est un mélange d'une amine tertiaire et d'un polyol.
Addocat 1926 agit comme catalyseur pour la production de mousses polyuréthanes rigides.


Addocat 1926 est hygroscopique et doit donc être protégé de l'humidité de l'air.
Comme Addocat 1926 ne contient que 50 % de principe actif, il doit être utilisé à des doses de 2 à 6 pp, calculées sur 100 pp de polyéther polyol.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 1926 :
Addocat 1926 est utilisé pour la production continue et discontinue de feuilles de mousse et de panneaux sandwich.
Addocat 1926 est utilisé pour l'isolation thermique/froid continue des canalisations et des équipements de réfrigération.


Addocat 1926 est utilisé en coulée sur site.
Les applications d'Addocat 1926 incluent la production discontinue de feuilles de mousse et de panneaux sandwich, l'isolation thermique/froide discontinue de la tuyauterie et des équipements de réfrigération, le moulage sur site.


Addocat 1926 a une durée de conservation d'au moins six mois.
Addocat 1926 est utilisé comme auxiliaires polymères, boîtiers pour l'électricité et l'électronique, mousses in situ, matériaux de construction, dalles, isolation de tuyaux et corps pour équipements électriques.


Addocat 1926 catalyse les réactions de formation de gaz et de réticulation et est utilisé exclusivement pour les systèmes de mousse de polyuréthane rigide.
Comme le produit ne contient que 50 % de principe actif, Addocat 1926 doit être utilisé à des doses de 2 à 6 pp, calculées sur 100 pp de polyéther polyol.
Addocat 1926 est particulièrement adapté aux unités de dosage simples mais précises ainsi qu'au dosage automatique.



FONCTION DE L'ADDOCAT 1926 :
Catalyseur pour la production de mousses de polyuréthane rigides.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 1926 :
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Mélange d'une amine tertiaire et d'un polyol
Forme physique : Liquide



PREMIERS SECOURS de l'ADDOCAT 1926 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 1926 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 1926 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 1926 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 1926 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 1926 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 201
Addocat 201 est un catalyseur polyuréthane à base d'un composé organométallique, en particulier le dilaurate de dibutylétain (DBTDL).
Addocat 201 active fortement la réaction de gélification (réticulation) dans les mousses de polyuréthane rigides, les élastomères et les revêtements.


Numéro CAS : 77-58-7
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Dilaurate de dibutylétain
Formule moléculaire : (C4H9)2Sn(OOCC11H23)2



SYNONYMES :
Dilaurate de dibutylétain, DBDLO, dilaurate de dibutylétain, laurat de dibutylétain, DBTL, MCT12, dilaurate de dibutylétain, catalyseur polyuréthane T-12, catalyseur organostannique T12, organoétain -T12, catalyseur T-12, Dabco T-12, Niax D-22, Kosmos 19, PC CAT T-12, Addocat 201, organostannique T-12, dilaurate de dibutylétain, stabilisant organostannique, Nom étranger : T-12



Addocat 201 catalyse fortement la réaction de réticulation.
Addocat 201 est un liquide jaune dont l'ingrédient principal est le dilaurate de dibutylétain, utilisé comme catalyseur pour la production de polyuréthanes tels que la peinture PU, les mousses dures, les mousses souples, les feuilles de mousse isolante, la mousse élastique.


Addocat 201 est du dilaurate de dibutylétain.
Addocat 201 agit comme catalyseur pour la production de polyuréthanes, par exemple les mousses à peau intégrale, les mousses rigides pulvérisées, les élastomères coulés durcissables à froid, etc.
Addocat 201 réduit considérablement le temps de durcissement.


Addocat 201 a une durée de conservation de 12 mois.
Addocat 201 répond aux exigences de la Food and Drug Administration des États-Unis pour une utilisation dans certains siloxanes.
Addocat 201 est un catalyseur polyuréthane à base d'un composé organométallique, en particulier le dilaurate de dibutylétain (DBTDL).
Addocat 201 active fortement la réaction de gélification (réticulation) dans les mousses de polyuréthane rigides, les élastomères et les revêtements.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 201 :
Addocat 201 est un additif utilisé dans la production de polyuréthanes
Addocat 201 est un catalyseur destiné à diverses applications.
Addocat 201 réduit considérablement le temps de durcissement.


Addocat 201 peut être utilisé individuellement ou en combinaison avec des cocatalyseurs aminés standards.
Addocat 201 est utilisé dans les systèmes polyuréthanes (systèmes adhésifs et mastics à un et deux composants, dans les élastomères PU), dans la production de mastics à base de silicone et de silane, ainsi que de mastics à base de silane modifiés par polyoléfine.


Addocat 201 catalyse fortement la réaction de réticulation.
Mousse à peau intégrale (flexible et semi-rigide) : Dans la production de mousse à peau intégrale, l'Addocat 201 est utilisé à raison de 0,02 à 0,1 pp en plus des amines tertiaires, telles que l'Addocat 105, dont la proportion utilisée est de 1,0 à 2,0 pp sur 100 polyol pbw.


-Utilisations de mousse rigide pulvérisée d'Addocat 201 :
Addocat 201 est utilisé à raison de 0,2 à 0,4 pp sur 100 pp de polyol
avec 0,5 à 2,0 parties en poids d'amine tertiaire, par exemple
Addocat 726 b et/ou triéthylamine, pour accélérer le durcissement des systèmes de mousse pulvérisée rigide.


-Utilisations d'Addocat 201 pour les élastomères coulés durcissables à froid :
Addocat 201 est un catalyseur très efficace pour les fontes durcies à froid
élastomères.
Même de petits ajouts (0,02 à 0,1 ppw sur 100 pbw de polyol)
réduire considérablement le temps de durcissement (temps de démoulage).



FONCTION DE L'ADDOCAT 201 :
Catalyseur pour la production de polyuréthanes, par exemple mousses à peau intégrale, mousse rigide pulvérisée, élastomères coulés durcissables à froid, etc.



CARACTÉRISTIQUES DE L'ADDOCAT 201 :
Lors de l'utilisation d'Addocat 201, la vitesse de durcissement sera plus rapide et la réaction de réticulation sera plus forte.

*mousse dure et mousse souple (mousse cutanée intégrale)
Pour ce type de mousse, l'Addocat 201 est utilisé à raison de 0,02 à 0,1 pour cent en poids pour les polyols. De plus, les gens utilisent également des amines quaternaires telles que l'Addocat 105 à raison de 1,0 à 2,0 pour cent.
Addocat 201 a pour effet de réduire le temps de durcissement.


*Panneaux de mousse isolante (mousse pulvérisée)
Pour ce type de mousse, le rapport d'Addocat 201 utilisé est de 0,2 à 0,4 pour cent en poids pour le polyol avec 0,5 à 2 % d'amine quaternaire telle que l'Addocat 726 b et (ou) de triéthylamine pour augmenter la capacité de durcissement de ce système de mousse pulvérisée.


*Système de mousse moulée élastique
Addocat 201 est très efficace pour les systèmes de moulage de mousse élastique.
Une petite quantité de 0,02 à 0,1 pour cent en poids de polyol peut réduire considérablement le temps de durcissement.

Addocat 201 est un catalyseur polyuréthane à base d'un composé organométallique, en particulier le dilaurate de dibutylétain (DBTDL).
Addocat 201 active fortement la réaction de gélification (réticulation) dans les mousses polyuréthanes rigides, les élastomères et les revêtements.



PRINCIPALES CARACTÉRISTIQUES DE L'ADDOCAT 201 :
Addocat 201 est l'un des catalyseurs standards pour les applications PUR, par exemple les mousses à peau intégrale, les mousses rigides pulvérisées,
élastomères coulés durcissables à froid, etc.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 201 :
Composition chimique : dilaurate de dibutylétain
Forme physique : liquide jaune clair
Densité (20 °C) : env. 1,05 g/cm³
Viscosité (20 °C) : env. 50 mPa.s
Point d'écoulement : < 0 °C
Point d'éclair : 149 °C (ASTM-D 93, DIN EN 22719)
Miscibilité à l'eau : non miscible, hydrolyse
Teneur en étain : min. 18,3 %
Indice de réfraction : 1,4700 ± 0,0100

Aspect : Liquide jaune pâle
Point de congélation : 10-15°C
Point d'éclair : 232°C
Densité (20°C) : 1,03 – 1,06 g/cm³
Teneur en étain : ≥ 17,5%
Couleur (Gardner) : ≤ 3
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Dilaurate de dibutylétain
Forme physique : Liquide

Ingrédient : Dilaurate de dibutylétain
Inspection externe : Liquide jaune clair
Densité : ~ 1,05 g/cm³
Viscosité (20°C) : ~ 50 mPa•s
Température de coulée : < 0°C
Point d'éclair : 149°C
Solubilité dans l'eau : Ne se dissout pas
Teneur en étain : Min 18,3 %
Indice de réfraction : 1,4700 ± 0,0100



PREMIERS SECOURS de l'ADDOCAT 201 :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 201 :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 201 :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de l'ADDOCAT 201 :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 201 :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de ADDOCAT 201 :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles


ADDOCAT 726 B
Addocat 726 B est un catalyseur polyuréthane à base d'amine tertiaire, notamment la diméthylcyclohexylamine.
Addocat 726 B est un liquide incolore à odeur musquée d'ammoniaque.


Numéro CAS : 98-94-3
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Diméthylcyclohexylamine
Formule moléculaire : C8H17N



SYNONYMES :
N,N-DIMETHYLCYCLOHEXYLAMINE, 98-94-2, N,N-Diméthylcyclohexanamine, Cyclohexyldiméthylamine, Diméthylcyclohexylamine, N-Cyclohexyldiméthylamine, Cyclohexanamine, N,N-diméthyl-, (Diméthylamino)cyclohexane, Diméthylaminocyclohexane, Cyclohexylamine, N,N-diméthyl- , N,N-Diméthylaminocyclohexane, N,N-Diméthyl-N-cyclohexylamine, NSC 163904, hydrolysat de diméthylcycliquesiloxane, N,N-diméthyl-cyclohexylamine, N1H19E7HTA, DTXSID9026633, CHEBI:59022, MFCD00003844, NSC-163904, HSDB 5323 , EINECS202 -715-5, UN2264, UNII-N1H19E7HTA, BRN 1919922, N, N-Diméthylcyclohexylamine, 8IA, cyclohexyl-diméthylamine, diméthylcyclohexylamine, diméthylcyclohexylamine, cyclohexane, diméthylamino-, Cyclohexanamine, N-diméthyl-, cyclohexyl(diméthyl)ammonium , Cyclohexylamine, N-diméthyl-, EC 202-715-5, N,N-diméthylcyclohexylamine, SCHEMBL15595, N-cyclohexyl-N,N-diméthylamine, DTXCID906633, CHEMBL3186662, WLN : L6TJ AN1 & 1, N,N-Diméthylcyclohexylamine , 99 % 0705, NS00008221, Diméthylcyclohexylamine [ UN2264], A845928, W-100060, Q25945666, F0001-2323, DMCHA, Diméthylcyclohexylamine, PC8, N,N-Diméthylcyclohexanamine, Polycat 8, DIMÉTHYLAMINOCYCLOHEXANE, N,N-Diméthylaminocyclohexane, Cyclohexanamine,N,N-diméthyl-, KL3, NiaxC8 , Diméthylcyclohexylamine, DMCHA, N,N-diméthylcyclohexylamine, CAS : 98-94-2, Polycat 8, Niax C-8, catalyseur PC8, catalyseur PC-8, catalyseur de polyuréthane PC-8, catalyseur à mousse rigide PC-8, cyclohexyldiméthylamine, DMCHA, N,N-Diméthylcyclohexylamine, Diméthylcyclohexylamine, N,N-Diméthylcyclohexylamine



Addocat 726 B est un catalyseur aminé modérément actif avec une faible viscosité et peut être utilisé dans une large gamme de mousses dures.
Addocat 726 B est de la diméthylcyclohexylamine.
Addocat 726 B agit comme catalyseur pour la production de mousse polyuréthane rigide.


Dosage : 1 à 3 pbw, calculé sur 100 pbw de polyol.
Addocat 726 B a une durée de conservation de 12 mois.
Addocat 726 B est un catalyseur polyuréthane à base d'amine tertiaire, notamment la diméthylcyclohexylamine.


Addocat 726 B est un catalyseur équilibré de gélification (réticulation) et de soufflage utilisé dans les mousses de polyuréthane rigides.
Addocat 726 B catalyse la réaction gazeuse et de réticulation des systèmes rigides en polyuréthane.
Addocat 726 B est hygroscopique et doit donc être protégé de l'humidité atmosphérique.


Addocat 726 B jaunit lors de l'exposition à l'air et à la lumière, mais sans perdre son effet catalytique.
Addocat 726 B doit être conservé à des températures d'environ 20 °C.
Une exposition prolongée à des températures supérieures à 30 °C peut provoquer une décoloration, même dans des récipients fermés.


La durée de stockage d'Addocat 726 B dans les emballages d'origine bien fermés est de 12 mois.
Addocat 726 B est un liquide incolore à odeur musquée d'ammoniaque.
Addocat 726 B est moins dense que l'eau.


Addocat 726 B est une amine tertiaire constituée de cyclohexane ayant un substituant diméthylamino.
Addocat 726 B est enregistré sous le règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, à raison de ≥ 10 000 à < 100 000 tonnes par an.


Addocat 726 B est un catalyseur amine à faible viscosité.
Addocat 726 B est une amine tertiaire constituée de cyclohexane ayant un substituant diméthylamino.
Addocat 726 B est un liquide incolore à odeur musquée d'ammoniaque.


Addocat 726 B est soluble dans l’eau.
Addocat 726 B est un catalyseur aminé à faible viscosité et modérément actif destiné à être utilisé dans une large gamme de mousses rigides.
L'une des principales applications de l'Addocat 726 B concerne les formulations pour mousses isolantes, pulvérisation, panneaux, stratifiés, infusion et réfrigération in situ, etc.


Addocat 726 B convient également à la fabrication de cadres de meubles en mousse rigide et d'éléments décoratifs.
Addocat 726 B est une faible viscosité de l'activité de catalyseur d'amine secondaire et rigide utilisée dans le réfrigérateur, la planche, la pulvérisation, la mousse dure de polyuréthane de perfusion sur les lieux.



UTILISATIONS et APPLICATIONS de l'ADDOCAT 726 B :
L’une des principales applications de l’Addocat 726 B concerne les mousses isolantes, les revêtements, les plaques, les stratifiés, les coulées sur site et les formulations de réfrigération.
Addocat 726 B convient également à la fabrication de cadres de meubles et de pièces décoratives en mousse rigide.
Addocat 726 B est utilisé pour l'isolation des réfrigérateurs et le remplissage en mousse de cavités de forme complexe.


Addocat 726 B est utilisé dans la production continue et discontinue de panneaux de construction (épaisseur de mousse < 80 mm ; également avec parements rigides ou métalliques) et de panneaux isolants avec parements flexibles (épaisseur de mousse 15-100 mm).
Addocat 726 B est utilisé pour la production d'isolants par la méthode couche par couche.


Addocat 726 B convient à l'isolation des réfrigérateurs et au remplissage de mousse de cavités de forme complexe, à la production continue et discontinue de panneaux de construction (épaisseur de mousse <80 mm ; également avec des revêtements rigides ou métalliques) et de panneaux isolants avec des revêtements flexibles ( épaisseur de mousse 15-100 mm), réalisation d'isolants par la méthode couche par couche.


Addocat 726 B est un catalyseur utilisé pour la production de mousse de polyuréthane rigide
Addocat 726 B est utilisé dans les articles, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et en fabrication.
Le rejet dans l'environnement d'Addocat 726 B peut survenir lors d'une utilisation industrielle : d'articles où les substances ne sont pas destinées à être rejetées et où les conditions d'utilisation ne favorisent pas le rejet.


D'autres rejets dans l'environnement d'Addocat 726 B sont susceptibles de provenir de : une utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple, des matériaux de construction et des matériaux de construction en métal, en bois et en plastique) et une utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération. (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques).


Addocat 726 B peut être trouvé dans des produits dont les matériaux sont à base de : plastique (par exemple emballages et stockage de produits alimentaires, jouets, téléphones portables).
Addocat 726 B est utilisé dans les produits suivants : polymères et adhésifs et mastics.
Addocat 726 B est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement, mines et travaux de construction.


Addocat 726 B est utilisé pour la fabrication de : produits en plastique, machines et véhicules et .
Le rejet dans l'environnement d'Addocat 726 B peut survenir lors d'une utilisation industrielle : formulation dans des matériaux et dans la production d'articles.


D'autres rejets dans l'environnement d'Addocat 726 B sont susceptibles de se produire à partir de : l'utilisation en intérieur (par exemple, liquides/détergents de lavage en machine, produits d'entretien automobile, peintures et revêtements ou adhésifs, parfums et assainisseurs d'air) et l'utilisation en extérieur entraînant une inclusion dans ou sur un matériaux (par exemple liant dans les peintures et revêtements ou adhésifs).


Addocat 726 B est utilisé dans les produits suivants : polymères.
Le rejet dans l'environnement de cette substance peut survenir lors d'une utilisation industrielle : formulation dans des matériaux, dans la production d'articles et formulation de mélanges.


D'autres rejets dans l'environnement d'Addocat 726 B sont susceptibles de se produire à partir de : une utilisation en intérieur, une utilisation en extérieur entraînant une inclusion dans ou sur un matériau (par exemple un liant dans les peintures et revêtements ou des adhésifs), une utilisation en extérieur dans des matériaux de longue durée à faible dégagement. (par exemple, construction et matériaux de construction en métal, en bois et en plastique) et utilisation en intérieur dans des matériaux à longue durée de vie avec un faible taux de libération (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et en carton, équipement électronique).


Addocat 726 B est utilisé dans les produits suivants : polymères et adhésifs et mastics.
Addocat 726 B est utilisé dans les domaines suivants : mines et travaux de construction.
Addocat 726 B est utilisé pour la fabrication de : produits en plastique, machines et véhicules et meubles.


Le rejet dans l'environnement d'Addocat 726 B peut survenir lors d'une utilisation industrielle : dans la production d'articles, la formulation de matériaux et d'auxiliaires technologiques sur des sites industriels.
Addocat 726 B est spécialement utilisé dans le système à deux composants, soluble avec de nombreux types de polyol rigide et d'additif.


D'autres rejets dans l'environnement d'Addocat 726 B sont susceptibles de se produire à partir de : l'utilisation en extérieur, l'utilisation en intérieur, l'utilisation en extérieur dans des matériaux à longue durée de vie avec un faible taux de rejet (par exemple, les matériaux de construction et les matériaux de construction en métal, en bois et en plastique) et l'utilisation en intérieur dans des conditions de longue durée. matériaux vitaux à faible taux de rejet (par exemple revêtements de sol, meubles, jouets, matériaux de construction, rideaux, chaussures, produits en cuir, produits en papier et carton, équipements électroniques).


Le rejet dans l'environnement d'Addocat 726 B peut survenir lors d'une utilisation industrielle : fabrication de la substance.
Addocat 726 B agit comme un catalyseur largement utilisé.
Les applications de l'Addocat 726 B incluent tous les types de mousse d'emballage rigide.


Addocat 726 B est spécialement utilisé dans le système à deux composants, soluble avec de nombreux types de polyol rigide et d'additif.
Addocat 726 B est stable, compatible dans les mélanges de polyols.
Addocat 726 B est stable, compatible dans les mélanges de polyols.


Addocat 726 B est utilisé pour le réfrigérateur, le congélateur, le panneau continu, le panneau discontinu, le bloc de mousse, la mousse coulée, etc.
Addocat 726 B a été utilisé comme solvant d'hydrophilie commutable (SHS) pour l'extraction de lipides à partir d'échantillons lyophilisés de microalgues Botryococcus braunii pour la production de biocarburants.


Addocat 726 B sur le gel et la mousse a un rôle catalytique, la réaction de mousse rigide et de gel fournit des propriétés catalytiques équilibrées, les propriétés de l'eau et la réaction de l'isocyanate (mousse) sont catalytiques plus fortes, en même temps que les polyols et les isocyanates sont modérément catalytiques. réaction, il s'agit d'une forte réaction initiale de mousse de catalyseur.


Addocat 726 B est utilisé comme catalyseur dans la réaction de Strecker organocatalysée à trois composants sur l'eau
À l'exception des bulles dures, Addocat 726 B peut également être utilisé pour le moulage de catalyseurs auxiliaires à bulles molles, mi-dures, etc.
Addocat 726 B est utilisé dans les plastiques et textiles polyuréthanes et comme intermédiaire chimique.


-La température de durcissement des finitions de cuisson comprenant des substances formant du polyuréthane peut être réduite de 50 à 80 ℃ en ajoutant des dérivés faiblement acides de N,N-Diméthylcyclohexylamine.

Comme la pyridine, l'Addocat 726 B catalyse certaines réactions et est légèrement plus efficace que la pyridine dans la préparation de chlorures d'acide avec le chlorure de thionyle.
Addocat 726 B peut être utilisé comme inhibiteur de corrosion et comme antioxydant dans les fiouls.


-Utilisations industrielles :
Addocat 726 B est utilisé comme catalyseur dans la production de mousses polyuréthane.
Addocat 726 B est également utilisé comme intermédiaire pour les accélérateurs et colorants du caoutchouc et dans le traitement des textiles.



PROPRIÉTÉS ET UTILISATION DE L'ADDOCAT 726 B :
L'objectif principal de l'Addocat 726 B est de servir de catalyseur pour les mousses de polyuréthane rigides.
Addocat 726 B est un catalyseur aminé à faible viscosité et moyennement actif utilisé pour les réfrigérateurs, les plaques, la pulvérisation et l'infusion sur site de mousses de polyuréthane rigides.

Addocat 726 B a un effet catalytique sur la gélification et le moussage et offre des performances catalytiques plus équilibrées pour la réaction de moussage et la réaction de gélification de la mousse rigide.
Addocat 726 B possède un catalyseur plus puissant pour la réaction de l'eau et de l'isocyanate (réaction moussante), et en même temps.

La réaction de l'isocyanate de plumes de polyol a également une catalyse modérée.
Addocat 726 B est un puissant catalyseur initial pour la réaction de mousse.
En plus de la mousse dure, l'Addocat 726 B peut également être utilisé comme agent moussant auxiliaire pour le moulage de mousse souple et de mousse semi-rigide.
Addocat 726 B offre des performances stables dans les matériaux combinés, une grande adaptabilité et un stockage à long terme.



MÉTHODES DE PRODUCTION DE L'ADDOCAT 726 B :
Addocat 726 B est fabriqué soit par réaction de chlorure de méthyle ou de formaldéhyde et d'hydrogène avec de la cyclohexylamine



FONCTION DE L'ADDOCAT 726 B :
Addocat 726 B catalyse la réaction gazeuse et de réticulation des systèmes rigides en polyuréthane.



PROPRIÉTÉS CHIMIQUES DE L'ADDOCAT 726 B :
Le catalyseur Addocat 726 B est une amine tertiaire liquide fortement basique et incolore.
Addocat 726 B a une forte odeur d'ammoniaque, placé pendant une longue période, la couleur deviendra progressivement plus foncée, mais n'affectera pas son activité chimique.
Addocat 726 B est soluble dans la plupart des polyols et solvants organiques, mais insoluble dans l'eau.



PROFIL DE RÉACTIVITÉ DE L'ADDOCAT 726 B :
Addocat 726 B neutralise les acides dans les réactions exothermiques pour former des sels et de l'eau.
Addocat 726 B peut être incompatible avec les isocyanates, les composés organiques halogénés, les peroxydes, les phénols (acides), les époxydes, les anhydrides et les halogénures d'acide.



PROPRIÉTÉS PHYSIQUES et CHIMIQUES de l'ADDOCAT 726 B :
Composition chimique : diméthylcyclohexylamine
Forme physique : liquide clair, incolore à jaune pâle
Densité (20 °C) : env. 0,85 g/ml
Viscosité (25 °C) : env. 2 mPa.s
Plage d'ébullition : 162 - 165 °C
Point de congélation : env. - 60 °C
Point d'éclair : 41 °C (DIN 51755)
Miscibilité à l'eau : partiellement miscible
Teneur en eau : max. 0,25 %
Teneur en substance : min. 99,0 %
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Diméthylcyclohexylamine
Forme physique : Liquide

Composition chimique : Diméthylcyclohexylamine
Aspect : Liquide transparent incolore à jaune clair
Densité à 25 °C : 0,849 g/mL
Point d'ébullition : 158-159 °C (lit.)
Point de fusion : -60 °C
Point d'éclair : 108 °F
Indice de réfraction : n20/D 1,454 (lit.)
Viscosité : 1,49 mm2/s
Hydrosolubilité : 10 g/L à 20 °C
Pression de vapeur : 3,6 mm Hg à 20 °C
Température de stockage : Conserver en dessous de +30 °C
PH : 12 (5 g/l, H2O, 20 °C)
Limite explosive : 3,6-19 % (V)
Point de congélation : <-77 °C
Sensible : sensible à l'air

Numéro de référence : 1919922
Constante diélectrique : 2,86
InChIKey : SVYKKECYCPFKGB-UHFFFAOYSA-N
LogP : 2,31 à 25 °C
Dosage : 95,00 à 100,00 %
Répertorié par le Codex des produits chimiques alimentaires : Non
Densité spécifique : 0,84900 à 25,00 °C
Solubilité : Eau, 1,026e+004 mg/L à 25 °C (est)
FDA UNII : N1H19E7HTA
Référence chimique NIST : Cyclohexanamine, N,N-diméthyl- (98-94-2)
Système d'enregistrement des substances de l'EPA : N,N-Diméthylcyclohexylamine (98-94-2)
Type de produit : Initiateurs/Inhibiteurs/Catalyseurs de polymérisation > Catalyseurs
Composition chimique : Diméthylcyclohexylamine
Forme physique : Liquide

Propriétés chimiques:
Formule moléculaire : C8H17N
Poids moléculaire : 127,23 g/mol
Masse exacte : 127,136099547 g/mol
Masse monoisotopique : 127,136099547 g/mol
XLogP3 : 1,9
Surface polaire topologique : 3,2 Ų
Nombre d'atomes lourds : 9
Frais formels : 0
Complexité : 72,6
Nombre de donneurs de liaisons hydrogène : 0

Nombre d'accepteurs de liaison hydrogène : 1
Nombre de liaisons rotatives : 1
Nombre d'atomes d'isotopes : 0
Nombre de stéréocentres d'atomes définis : 0
Nombre de stéréocentres atomiques non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison non défini : 0
Nombre d'unités liées de manière covalente : 1
Le composé est canonisé : oui
Identifiants :
Numéro CAS : 98-94-2
Numéro MDL : MFCD00003844
Numéro CBN : CB1854754

Propriétés physiques:
Aspect : Liquide transparent incolore à jaune clair
Densité : 0,849 g/mL à 25 °C (lit.)
Point d'ébullition : 158-159 °C (lit.)
Point de fusion : -60 °C
Point d'éclair : 108 °F
Indice de réfraction : n20/D 1,454 (lit.)
Viscosité : 1,49 mm²/s
Hydrosolubilité : 10 g/L à 20 °C
Pression de vapeur : 3,6 mm Hg à 20 °C
Température de stockage : Conserver en dessous de +30 °C
pH : 12 (5 g/L, H₂O, 20 °C)

Limite explosive : 3,6-19 % (V)
Point de congélation : <-77 °C
Sensible : sensible à l'air
Numéro de référence : 1919922
Constante diélectrique : 2,86
InChIKey : SVYKKECYCPFKGB-UHFFFAOYSA-N
LogP : 2,31 à 25 °C
Informations de sécurité et de réglementation :
FDA UNII : N1H19E7HTA
Référence chimique NIST : Cyclohexanamine, N,N-diméthyl- (98-94-2)
Système d'enregistrement des substances de l'EPA : N,N-Diméthylcyclohexylamine (98-94-2)
Densité spécifique : 0,84900 à 25,00 °C
Solubilité : Eau, 1,026e+004 mg/L à 25 °C (est)



PREMIERS SECOURS de l'ADDOCAT 726 B :
-Description des premiers secours
*Conseils généraux :
Montrer cette fiche de données de sécurité au médecin traitant.
*En cas d'inhalation :
Après inhalation :
Air frais.
*En cas de contact avec la peau :
Enlever immédiatement tous les vêtements contaminés.
Rincer la peau avec
eau/douche.
*En cas de contact visuel :
Après contact visuel :
Rincer abondamment à l'eau.
Appelez un ophtalmologiste.
Retirez les lentilles de contact.
*En cas d'ingestion:
Après avoir avalé :
Faire boire immédiatement de l'eau à la victime (deux verres au maximum).
Consultez un médecin.
-Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires.
Pas de données disponibles



MESURES EN CAS DE DISPERSION ACCIDENTELLE de l'ADDOCAT 726 B :
-Précautions environnementales:
Ne laissez par le produit entrer dans des canalisations.
-Méthodes et matériels de confinement et de nettoyage :
Couvrir les canalisations.
Collectez, liez et pompez les déversements.
Respecter les éventuelles restrictions matérielles.
Prendre à sec.
Éliminer correctement.
Nettoyer la zone touchée.



MESURES DE LUTTE CONTRE L'INCENDIE de l'ADDOCAT 726 B :
-Moyens d'extinction:
* Moyens d'extinction appropriés :
Dioxyde de carbone (CO2)
Mousse
Poudre sèche
* Moyens d'extinction inappropriés :
Pour cette substance/mélange, aucune limitation concernant les agents extincteurs n'est indiquée.
-Plus d'informations :
Empêcher l'eau d'extinction d'incendie de contaminer les eaux de surface ou le système d'eau souterraine.



CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE de ADDOCAT 726 B :
-Paramètres de contrôle:
--Ingrédients avec paramètres de contrôle sur le lieu de travail :
-Contrôles d'exposition:
--Équipement de protection individuelle:
*Protection des yeux/du visage :
Utiliser un équipement de protection des yeux.
Lunettes de protection
*Protection du corps :
vêtements de protection
*Protection respiratoire:
Type de filtre recommandé : Filtre A
-Contrôle de l'exposition environnementale :
Ne laissez par le produit entrer dans des canalisations.



MANIPULATION et STOCKAGE de l'ADDOCAT 726 B :
-Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
*Conditions de stockage:
Hermétiquement fermé.
Sec.



STABILITÉ et RÉACTIVITÉ de l'ADDOCAT 726 B :
-Stabilité chimique:
Le produit est chimiquement stable dans des conditions ambiantes standards (température ambiante).
-Possibilité de réactions dangereuses:
Pas de données disponibles