Autres Industries

SODIUM ALUMINIUM SILICATE
SODIUM ARACHIDATE Nom INCI : SODIUM ARACHIDATE Nom chimique : Sodium eicosanoate Classification : Arachides Ses fonctions (INCI) Régulateur de pH : Stabilise le pH des cosmétiques Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM ARACHIDATE
SYNONYMS L-Ascorbic Acid Sodium Salt; Vitamin C Sodium Salt; Ascorbicin; Ascorbin; Monosodium Ascorbate; 3-oxo-L-gulofuranolactone sodium; Sodium Ascorbate; Sodium L-(+)-Ascorbate; Sodium L-Ascorbate; sodascorbate; CAS NO. 134-03-2
SODIUM ASCORBATE
ascorbic acid sodium salt; Vitamin C sodium salt; Vitamine C sodium salt; SODIUM ASCORBATE; N° CAS : 134-03-2 - Ascorbate de sodium; Nom INCI : SODIUM ASCORBATE. Nom chimique : Sodium ascorbate; N° EINECS/ELINCS : 205-126-1; Additif alimentaire : E301; Ses fonctions (INCI): Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Noms français : 3-OXO-L-GULOFURANOLACTONE SODIUM; ASCORBATE DE SODIUM; ASCORBIC ACID SODIUM SALT; L-ASCORBIC ACID, MONOSODIUM SALT; L-ASCORBIC SODIUM SALT; MONOSODIUM ASCORBATE; SEL DE SODIUM DE ;L'ACIDE ASCORBIQUE; SODIUM ASCORBATE; SODIUM L-ASCORBATE. Utilisation et sources d'émission: Additif alimentaire et agent anti-oxydant; Sodium ascorbate; L-Ascorbic acid, sodium salt (1:1). : sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate; sodium 2-(1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate (non-preferred name); (+)-Sodium L-ascorbate; (2R)-2-[(1S)-1,2-Dihydroxyéthyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolate de sodium [French] [ACD/IUPAC Name]; (2R)-2-[(1S)-1,2-dihydroxyéthyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate de sodium; 134-03-2 [RN]; 205-126-1 [EINECS]; Adenex; ascorbate de sodium [French] ; ascorbato de sodio [Spanish] ; ASK-P 10KR; CI7671000; E301; L(+)-Ascorbic acid sodium salt; L-Ascorbic Acid Monosodium Salt; Natrium-(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolat [German] ; Natrium-(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olat; S033EH8359; Sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydro-3-furanolate [ACD/IUPAC Name]; Sodium (2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2,5-dihydrofuran-3-olate (non-preferred name); sodium ascorbate; Vitamin C sodium salt ; Vitamine C sodium salt; Xitix; натрия аскорбат [Russian]; أسكوربات صوديوم ; 维生素C钠 [Chinese]; ()-Sodium L-ascorbate; 3-Oxo-L-gulofuranolactone sodium; Aminofenitrooxon ; ascorbate de sodium; ascorbate de sodium; natrii ascorbas; sodium ascorbate; ascorbic acid sodium salt; Ascorbic acid sodium salt (Vitamin C sodium salt); Ascorbicin; Ascorbin; Cebitate ; Cenolate; Iskia-C; L()-Ascorbic acid sodium salt; L(+)-Ascorbic acid sodium salt; Vitamin C sodium salt; (+)-Sodium L-ascorbate; L-Ascorbic Acid ? Monosodium Salt; L-Ascorbic acid sodium L-Ascorbic acid sodium salt; L-Ascorbic acid, monosodium salt; L-Ascorbic acid, sodium salt; monosodium ascorbate; Monosodium L-ascorbate; Natrascorb; Natri-C; natrii ascorbas; Phosphoric acid, 4-amino-3-methylphenyl dimethyl ester [ACD/Index Name]; Sodascorbate; Sodium L-Ascorbate; sodium;(2R)-2-[(1S)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2H-furan-3-olate; Sodiumascorbate; UNII:S033EH8359; UNII-S033EH8359; Vitamin C; VITAMIN C SODIUM; Vitamin- C sodium salt; Vitamin C, sodium salt
SODIUM ASCORBATE ( Ascorbate de sodium) Vitamine C sodium salt
SYNONYMS Sodium L-ascorbyl-2-phosphate (Sodium Ascorbyl Phosphate);L-Ascorbic acid 2-phosphate trisodium salt;Sodium ascorbyl monophosphate;Trisodium ascorbate-2-phosphate CAS NO:66170-10-3
SODIUM ASCORBYL PHOSPHATE
cas no 1302-78-9 Montmorillonite; Taylorite; Wilkinite; Alumino silicate; Sodium montmorillonite;
SODIUM BENTONITE
cas no 532-32-1 Benzoate of soda; Sodium salt of benzoic acid; Benzoan sodny; Benzoate de sodium; Benzoate sodium; Benzoesaeure (German); NA-SALZ (German); Sobenate; Sodium Benzoic Acid; Ucephan; Benzoan Sodny (Czech);
SODIUM BENZOATE
SYNONYMS Benzoate of soda; Sodium salt of benzoic acid; Benzoan sodny; Benzoate de sodium; Benzoate sodium CAS NO 532-32-1
SODIUM BENZOATE
Le benzoate de sodium est le sel de sodium de l'acide benzoïque.
Le benzoate de sodium peut être obtenu par réaction acide-base entre l'acide benzoïque et la solution de bicarbonate de sodium/hydroxyde de sodium.
Le benzoate de sodium est le sel de l'acide benzoïque, un acide que l'on trouve naturellement dans les aliments comme les canneberges, les abricots, les champignons et le miel.

Numéro CAS: 532-32-1
Formule moléculaire: C7H5NaO2
Poids moléculaire: 144.10317
No EINECS : 208-534-8

Le benzoate de sodium a des propriétés anticorrosives.
Le benzoate de sodium est un agent de conservation et un additif alimentaire courant qui est largement utilisé dans l'industrie des aliments et des boissons.
Le benzoate de sodium est particulièrement efficace dans des conditions acides, ce qui le rend approprié pour une utilisation dans les aliments et les boissons acides tels que les boissons gazeuses, les jus de fruits, les cornichons et les condiments.

Le benzoate de sodium sur dissolution dans l'eau fournit une solution faiblement basique.
Le benzoate de sodium a des propriétés anticorrosives.
Le benzoate de sodium est le sel de sodium de l'acide benzoïque.

Le benzoate de sodium peut être obtenu par réaction acide-base entre l'acide benzoïque et la solution de bicarbonate de sodium/hydroxyde de sodium.
Le benzoate de sodium est le sel de l'acide benzoïque, un acide que l'on trouve naturellement dans les aliments comme les canneberges, les abricots, les champignons et le miel.
Sa détermination dans les jus de fruits, les sodas, la sauce soja, le ketchup, le beurre d'arachide, le fromage à la crème et d'autres aliments par méthode HPLC a été proposée.

Certaines personnes peuvent être sensibles ou allergiques au benzoate de sodium et, dans de rares cas, il peut provoquer des réactions indésirables ou exacerber certains problèmes de santé.
Il est toujours recommandé de lire les étiquettes des aliments et de consulter des professionnels de la santé si vous avez des préoccupations.

Le benzoate de sodium est la forme de sel de sodium de l'acide benzoïque, et est synthétisé en faisant réagir l'acide benzoïque avec de l'hydroxyde de sodium.
Le benzoate de sodium est également connu sous le nom de E211.
Bien que le benzoate de sodium doive être fabriqué, l'acide benzoïque se trouve naturellement dans certains aliments tels que les pommes, les pruneaux, les prunes, les greengages, les clous de girofle et certaines baies.
Le comité indépendant d'examen des ingrédients cosmétiques a statué que le benzoate de sodium est sûr comme il est utilisé dans les cosmétiques, où les niveaux d'utilisation maximaux varient de 0,5 à 1%.

Dans sa forme brute, le benzoate de sodium est un solide cristallin blanc qui se dissout dans l'eau.
Le benzoate de sodium apparaît comme un produit chimique cristallin blanc de formule C6H5COONa.
Le monostéarate de glycéryle n'est pas considéré comme hautement inflammable.
Après que le benzoate de sodium pénètre dans le corps, dans le processus de biotransformation, il se combinerait avec la glycine pour être de l'acide urique, ou se combiner avec de l'acide glucuronique pour être de l'acide glucosiduronique, et tout pour être éliminé du corps dans l'urine, pas pour s'accumuler dans le corps.

Le benzoate de sodium a une grande lipophilie, et il est facile de pénétrer la membrane cellulaire dans les cellules, d'interférer dans la perméabilité de la membrane cellulaire et d'inhiber l'absorption des acides aminés par la membrane cellulaire; provoquer l'acidification par ionisation du stockage alcalin dans la cellule lors de l'entrée, inhiber l'activité des enzymes respiratoires et arrêter la réaction de condensation de l'acétyl coenzyme A, et ainsi atteindre le but de l'antiseptique alimentaire.

Le benzoate de sodium peut également être utilisé pour les boissons gazeuses, le jus concentré, la margarine, la base de gomme à mâcher, la confiture, la gelée, la sauce soja, etc.
La dose journalière admissible (DJA) humaine < 5 mg/kg de poids corporel (prendre l'acide benzoïque comme base de calcul).

Le benzoate de sodium est généralement produit par la neutralisation de l'hydroxyde de sodium (NaOH) avec de l'acide benzoïque (C6H5COOH), qui est lui-même produit commercialement par oxydation partielle du toluène avec de l'oxygène.
Le benzoate de sodium est un agent de conservation alimentaire largement utilisé, avec un numéro E de E211.
C'est le sel de sodium de l'acide benzoïque et existe sous cette forme lorsqu'il est dissous dans l'eau.

Le benzoate de sodium peut être produit en faisant réagir de l'hydroxyde de sodium avec de l'acide benzoïque.
Le benzoate de sodium est un sel composé de sodium et d'acide benzoïque. Il peut être trouvé naturellement dans les fruits et les épices comme les pommes, les canneberges et la cannelle.
Bien qu'il soit d'origine naturelle, il est généralement synthétisé en laboratoire lorsque cela est nécessaire en grande quantité pour les cosmétiques.

Le benzoate de sodium, un ingrédient actif dans un produit de soins de la peau comme un nutriment ou une vitamine, est utilisé pour nourrir les cellules de votre peau, il y a de fortes chances que les mêmes nutriments fassent également de bons aliments pour les microbes dans l'air qui peuvent coloniser votre produit et le moisir.
En incluant le benzoate de sodium à côté de l'ingrédient actif, vous pouvez prolonger la durée de vie du produit et lutter contre la croissance de moisissures.

Le benzoate de sodium est également utilisé comme agent de conservation dans les aliments et les boissons.
Le benzoate de sodium est un ingrédient populaire dans les cosmétiques, non pas en raison d'une propriété étonnante de soins de la peau, mais parce qu'il fonctionne comme un conservateur.

Le benzoate de sodium est un produit chimique synthétique produit lorsque l'acide benzoïque, qui se trouve naturellement dans certains fruits et épices, est combiné avec de l'hydroxyde de sodium.
Puisque le benzoate de sodium contient un ingrédient naturel, il est probablement sûr, non? Après tout, la Food and Drug Administration (FDA) des États-Unis et la Direction générale de la protection de la santé du Canada ont déclaré que cet agent de conservation chimique était acceptable lorsqu'il est consommé en faibles quantités.

Point de fusion :>300 °C (lit.)
Densité: 1,44 g/cm3
pression de vapeur: 0Pa à 20°C
FEMA: 3025 | SODIUM BENZOATE
Point d'éclair: >100 °C
Température de stockage: température ambiante
solubilité: H2O: 1 M à 20 °C, limpide, incolore
pka: 4.03[à 20 °C]
Forme: Cristaux, granulés, flocons ou poudre cristalline
couleur: Blanc
PH: 7.0-8.5 (25°C, 1M en H2O)
Odeur: inodore
Eau: Solubilité,soluble
Merck : 14 8582
BRN : 3572467
Stabilité: Stable, mais peut être sensible à l'humidité. Incompatible avec les agents oxydants forts, les alcalis, les acides minéraux.
LogP: 1.88

Le benzoate de sodium est un agent de conservation ajouté à certains sodas, aliments emballés et produits de soins personnels pour prolonger la durée de conservation.
Le benzoate de sodium est surtout connu comme un agent de conservation utilisé dans les aliments et les boissons transformés pour prolonger la durée de conservation, bien qu'il ait plusieurs autres utilisations.
Le benzoate de sodium est un conservateur alimentaire courant et un inhibiteur de moisissure.

Le benzoate de sodium est un agent de conservation que l'on trouve dans les aliments acides tels que les vinaigrettes, les boissons gazeuses, les confitures, les jus et les condiments.
Le benzoate de sodium se trouve également dans les bains de bouche, les vernis à l'argent, les sirops contre la toux, les savons et les shampooings.
Le benzoate de sodium n'est pas présent naturellement, mais l'acide benzoïque se trouve dans de nombreuses plantes, y compris la cannelle, le clou de girofle, les tomates, les baies, les prunes, les pommes et les canneberges (2).

Le benzoate de sodium est plus efficace dans les aliments et les boissons peu acides et les produits de boulangerie tels que les pains, les gâteaux, les tartes, les tortillas et bien d'autres.
Le benzoate de sodium est une poudre cristalline inodore obtenue en combinant de l'acide benzoïque et de l'hydroxyde de sodium.
Le benzoate de sodium est un bon conservateur en soi, et sa combinaison avec de l'hydroxyde de sodium l'aide à se dissoudre dans les produits.

Le benzoate de sodium est donc très efficace contre les champignons, les levures et les bactéries.
Il est fait assez facilement avec de la soude, de l'eau et de l'acide benzoïque.
Le benzoate de sodium est un alcool organique présent dans de nombreux fruits et thés.

Le benzoate de sodium a un groupe hydroxyle (-OH), tandis que le composé apparenté, l'acide benzoïque, a un groupe carboxyle (-COOH).
Le benzoate de sodium, le benzoate de calcium et le benzoate de potassium sont des sels de l'acide benzoïque.
On le trouve naturellement dans certains fruits comme les prunes, les pruneaux ou les pommes.

Le benzoate de sodium est synthétisé ou préparé artificiellement à partir des substances acide benzoïque et hydroxyde de sodium.
De plus, certaines bactéries produisent de l'acide benzoïque lors de la fermentation de produits laitiers comme le yogourt (1, 3).
Le benzoate de sodium est utilisé comme conservateur antifongique dans les cosmétiques et les aliments sous le nom de E211.

Le benzoate de sodium est inodore ou avec une légère odeur de benjoin, et a un goût d'astringence douce.
Stable dans l'air Le benzoate de sodium peut absorber l'humidité à l'air libre comme conservateur, il est bactériostatique et fongistatique dans des conditions acides.

Utilise
Le benzoate de sodium se trouve couramment dans les boissons gazeuses, les jus de fruits, les confitures, les gelées, les vinaigrettes, les condiments et les aliments transformés.
Le benzoate de sodium est également utilisé dans les feux d'artifice comme combustible dans le mélange de sifflet, une poudre qui émet un sifflement lorsqu'elle est comprimée dans un tube et enflammée.
Le benzoate de sodium est également un conservateur important des aliments de type acide.
Il se transforme en forme efficace d'acide benzoïque lors de l'application.


Le benzoate de sodium est principalement utilisé comme agent de conservation dans divers produits alimentaires et boissons.
L'agent benzoate de sodium est un conservateur très important du fourrage de type acide.
Il se transforme en forme efficace d'acide benzoïque lors de l'application.

Benzoate de sodium pour la gamme d'application et le dosage. En outre, il peut également être utilisé comme conservateur alimentaire.
Benzoate de sodium utilisé dans la recherche de l'industrie pharmaceutique et génétique végétale, également utilisé comme intermédiaire colorant, fongicide et conservateur.

Le benzoate de sodium est utilisé comme additif alimentaire (conservateur), fongicide dans l'industrie pharmaceutique, colorant mordant, plastifiant dans le plastique industriel, et également utilisé comme intermédiaire synthétique organique des épices et autres.
Il aide à prévenir la croissance des micro-organismes, prolongeant ainsi la durée de conservation de ces produits.

Le benzoate de sodium est également utilisé comme conservateur dans les médicaments et les cosmétiques.
En tant qu'additif alimentaire, le benzoate de sodium porte le numéro E E211.
Le benzoate de sodium est bien meilleur que l'acide benzoïque pour se dissoudre dans l'eau.

Le benzoate de sodium est un agent de conservation.
Le benzoate de sodium est bactériostatique et fongistatique dans des conditions acides.
Il est le plus largement utilisé dans les aliments acides tels que les vinaigrettes (vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (vinaigre) et les condiments.

Le benzoate de sodium est l'une de ses propriétés physiques les plus caractéristiques.
Bien que l'excipient Le benzoate de sodium se conserve légèrement mieux que le benzoate de sodium, vous pouvez compenser cela en utilisant un peu plus ou en abaissant le pH en ajoutant un acide à votre produit.

Le benzoate de sodium est également l'un des carburants de fusée les plus rapides et fournit beaucoup de poussée et de fumée.
Il a ses inconvénients: il y a un risque élevé d'explosion lorsque le carburant est fortement comprimé en raison de la sensibilité du carburant à l'impact.

Le benzoate de sodium peut agir comme agent de conservation alimentaire.
Le benzoate de sodium est également utilisé dans les feux d'artifice comme combustible dans le mélange de sifflet, une poudre qui émet un sifflement lorsqu'elle est comprimée dans un tube et enflammée.

Le benzoate de sodium est le plus largement utilisé dans les aliments acides tels que les vinaigrettes (par exemple l'acide acétique dans le vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (acide acétique), les condiments et les garnitures de yogourt glacé.
Le benzoate de sodium est également utilisé comme conservateur dans les médicaments et les cosmétiques.

Benzoate de sodium Dans ces conditions, il est converti en acide benzoïque (E210), bactériostatique et fongistatique.
Le benzoate de sodium est également autorisé comme additif alimentaire animal jusqu'à 0,1%, selon l'Association of American Feed Control Officials.

Le benzoate de sodium a été remplacé par le sorbate de potassium dans la majorité des boissons gazeuses au Royaume-Uni.
Le benzoate de sodium est un conservateur utilisé dans les produits de soin de la peau pour prévenir la prolifération de micro-organismes, c'est un inhibiteur de moisissure qui aide à réduire la croissance des moisissures et des bactéries.

Le benzoate de sodium est largement utilisé comme conservateur dans les aliments, les médicaments, les cosmétiques et les aliments pour animaux.
Le benzoate de sodium est utilisé dans le traitement de l'hyperammoniémie et des troubles du cycle de l'urée.
Le benzoate de sodium est utilisé dans les feux d'artifice comme combustible dans le mélange de sifflet.

Le benzoate de sodium n'est généralement pas utilisé directement en raison de sa faible solubilité dans l'eau.
Le benzoate de sodium est également utilisé dans la préparation de dentifrices et de bains de bouche.

Le benzoate de sodium trouve une application dans la plupart des aliments acides tels que les vinaigrettes (vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (vinaigre) et les condiments.
Le benzoate de sodium est produit par la neutralisation de l'acide benzoïque avec de l'hydroxyde de sodium.
La concentration en tant que conservateur alimentaire est limitée par la FDA aux États-Unis à 0,1% en poids.

Le benzoate de sodium est également un agent de conservation présent dans de nombreux aliments et boissons gazeuses.
De nombreuses boissons gazeuses contiennent du benzoate de sodium à la fois comme agent de conservation et pour améliorer l'effet de saveur de leur sirop de maïs à haute teneur en fructose.
Le benzoate de sodium est le plus souvent ajouté aux aliments acides comme les vinaigres de cidre, les cornichons, les condiments, les confitures et les conserves, et la sauce soja pour contrôler les moisissures, les bactéries, les levures et autres microbes.

Le benzoate de sodium a également des applications au-delà de l'industrie alimentaire.
Le benzoate de sodium est utilisé dans divers produits de soins personnels, tels que les cosmétiques, les shampooings et les lotions, pour inhiber la croissance des bactéries et des champignons.
Le benzoate de sodium est utilisé comme inhibiteur de corrosion dans l'antigel automobile et comme médicament dans certaines formulations pharmaceutiques.

Le benzoate de sodium interfère avec leur capacité à produire de l'énergie.
Le benzoate de sodium ne se transforme en acide benzoïque que dans les environnements acides, il n'est pas utilisé pour son action antimicrobienne à moins que le pH ne soit inférieur à environ 3,6.
Le benzoate de sodium est couramment utilisé comme agent de conservation dans les boissons non alcoolisées telles que les boissons gazeuses, les boissons énergisantes, les boissons pour sportifs et l'eau aromatisée.

De nombreux condiments et sauces, y compris le ketchup, la mayonnaise, la moutarde et la sauce soja, peuvent contenir du benzoate de sodium comme agent de conservation.
Il aide à prévenir la croissance bactérienne et maintient la saveur et la qualité de ces produits.
Le benzoate de sodium est parfois utilisé comme agent de conservation dans les aliments pour animaux de compagnie et les aliments pour animaux afin d'assurer sa sécurité et de prolonger sa durée de conservation.

Le benzoate de sodium aide à maintenir la fraîcheur et la qualité de ces boissons en prévenant la détérioration microbienne.
Le benzoate de sodium peut être trouvé dans certains produits laitiers comme le yogourt, le fromage et la crème glacée.
Le benzoate de sodium aide à prévenir la croissance de microorganismes responsables de la détérioration et prolonge la durée de conservation de ces produits périssables.

Le benzoate de sodium a été étudié pour son utilisation potentielle comme régulateur de croissance des plantes et pour le contrôle des maladies en agriculture et en horticulture.
Il peut avoir des propriétés fongicides et peut être utilisé pour inhiber la croissance de certains phytopathogènes.
Le benzoate de sodium est parfois utilisé dans les compositions de feux d'artifice pour produire des flammes de couleur verte lorsqu'il est allumé.

Le benzoate de sodium peut être trouvé dans certains produits de nettoyage, tels que les savons liquides, les détergents et les désinfectants.
Le benzoate de sodium aide à inhiber la croissance des micro-organismes et prolonge la durée de conservation de ces produits.
Le benzoate de sodium est utilisé comme agent de conservation dans les adhésifs et les produits d'étanchéité.

Le benzoate de sodium a été utilisé dans l'industrie photographique comme agent de développement dans certains procédés photographiques.
Le benzoate de sodium aide à prévenir la croissance microbienne, assurant ainsi l'intégrité et la stabilité du produit.
Dans le secteur pétrolier et gazier, le benzoate de sodium est parfois utilisé comme inhibiteur de corrosion dans les fluides de forage, les fluides de production et les réseaux pipeliniers.

Il aide à protéger les surfaces métalliques de la corrosion causée par l'eau, les acides et les bactéries.
Avec l'avènement de la photographie numérique, son utilisation dans cette industrie a considérablement diminué.
Le benzoate de sodium peut être utilisé comme colorant auxiliaire dans les procédés d'impression et de teinture textile.

Méthodes de production du benzoate de sodium:
Neutralisé par l'acide benzoïque et le bicarbonate de sodium.
Mettez de l'eau et du bicarbonate de sodium dans le pot neutralisant, faites-le bouillir et dissolvez-le dans une solution de bicarbonate de sodium.
Mélangez-le avec de l'acide benzoïque jusqu'à ce que la valeur du pH de la solution réactionnelle atteigne 7-7,5.
Chauffez-le pour émettre du dioxyde de carbone, puis ajoutez du charbon actif pour le décolorer pendant une demi-heure.

Faites la filtration par aspiration, une fois que le filtrat est concentré, mettez-le dans un bac à floconner, séchez-le pour qu'il soit des feuilles dans le tambour, écrasez-le, puis le benzoate de sodium est fait.
Taux de consommation d'acide benzoïque (99,5%) 1045kg/t et de bicarbonate de sodium (98%) 610kg/t.

Utilisez une solution de soude à 32% pour neutraliser l'acide benzoïque dans le pot afin d'atteindre une valeur de pH de 7,5 et une température de neutralisation de 70 ° C.
Utilisez 0,3% de charbon actif pour décolorer la solution neutralisée, filtrez-la sous vide, concentrez-la, séchez-la et obtenez ensuite du benzoate de sodium en poudre.
C6H5COOH+Na2CO3→C6H5COONa

Pour l'obtenir par oxydation du toluène, l'acide benzoïque réagit avec le bicarbonate de sodium, le carbonate de sodium ou l'hydroxyde de sodium.
Le benzoate de sodium est préparé en ajoutant de l'acide benzoïque à une solution concentrée chaude de carbonate de sodium jusqu'à ce que l'effervescence cesse.
La solution est ensuite évaporée, refroidie et laissée cristalliser ou évaporer jusqu'à sec, puis granulée.

Profil d'innocuité :
Le benzoate de sodium est généralement reconnu comme sûr (GRAS) par les autorités réglementaires lorsqu'il est utilisé conformément aux limites approuvées.
La FDA et d'autres organismes de réglementation ont fixé des niveaux maximaux spécifiques pour son utilisation dans les produits alimentaires.
Cependant, il convient de noter qu'une consommation excessive d'aliments et de boissons contenant du benzoate de sodium, en particulier en combinaison avec certaines autres substances, peut avoir un effet potentiel sur la santé.

Les symptômes de la toxicité systémique des benzoates ressemblent à ceux des salicylates.
Alors que l'administration orale de la forme acide libre peut causer une irritation gastrique grave, les sels de benzoate sont bien tolérés en grande quantité: par exemple, 6 g de benzoate de sodium dans 200 ml d'eau sont administrés par voie orale comme test de la fonction hépatique.

D'autres effets indésirables incluent l'anaphylaxie et les réactions urticariennes, bien qu'une étude contrôlée ait montré que l'incidence de l'urticaire chez les patients recevant de l'acide benzoïque n'est pas supérieure à celle avec un placebo de lactose.
Il a été recommandé que le benzoate de sodium ne soit pas utilisé chez les nouveau-nés pour l'injection de caféine et de benzoate de sodium; Cependant, le benzoate de sodium a été utilisé par d'autres dans le traitement de certains troubles métaboliques néonatals.

Le benzoate de sodium a été suggéré qu'il existe un effet indésirable général des conservateurs de benzoate sur le comportement des enfants de 3 ans, qui est détectable par les parents, mais pas par une simple évaluation clinique.
En combinaison avec l'acide ascorbique (vitamine C, E300), le benzoate de sodium et le benzoate de potassium forment du benzène, un cancérogène connu.
Cependant, dans la plupart des boissons qui contiennent les deux, les niveaux de benzène sont inférieurs à ceux considérés comme dangereux pour la consommation.

Le corps humain élimine rapidement le benzoate de sodium en le combinant avec de la glycine pour former de l'acide hippurique qui est ensuite excrété.
La voie métabolique pour cela commence par la conversion du benzoate par la butyrate-CoA ligase en un produit intermédiaire, le benzoyl-CoA, qui est ensuite métabolisé par la glycine N-acyltransférase en acide hippurique.

Lorsque le benzoate de sodium est combiné avec de l'acide ascorbique (vitamine C) dans des conditions acides, comme dans certaines boissons, il peut former du benzoate de sodium.
Le benzoate de sodium est un cancérogène connu et peut présenter des risques pour la santé s'il est consommé en quantités excessives.

Impact sur l’environnement:
Le benzoate de sodium, lorsqu'il est rejeté dans l'environnement en grande quantité, peut avoir des effets négatifs.
Le benzoate de sodium peut être toxique pour les organismes aquatiques et peut persister dans l'environnement.
Des pratiques d'élimination et de traitement des eaux usées appropriées peuvent aider à minimiser la contamination de l'environnement.

Synonymes
benzoate de sodium
532-32-1
Sobenate
Antimol
Acide benzoïque, sel de sodium
Sel de sodium de l'acide benzoïque
Benzoate sodique
Benzoate de soude
Benzoate, sodium
sodium;benzoate
Benzoate de sodium
Natrium benzoicum
FEMA n° 3025
Fuminaru
Benzoan sodny
Caswell n° 746
Microcare sb
PUROX S
Numéro FEMA 3025
Benzoan sodny [tchèque]
CCRIS 3921
HSDB 696
Benzoesaeure (na-salz)
UNII-OJ245FE5EU
EINECS 208-534-8
OJ245FE5EU
acide benzoïque sodique
Code chimique des pesticides de l'EPA 009103
N° INS 211
DTXSID1020140
E211
AI3-07835
Benzoesaeure (na-salz) [allemand]
INS-211
DTXCID90140
Benzoate de sodium [USAN:JAN]
E-211
CHEBI:113455
Benzoate de sodium [USAN:JAN:NF]
CE 208-534-8
COMPOSANT AMMONUL BENZOATE DE SODIUM
COMPOSANT D'UCEPHAN BENZOATE DE SODIUM
COMPOSANT BENZOATE DE SODIUM DE L'AMMONUL
COMPOSANT BENZOATE DE SODIUM DE L'UCEPHAN
Acide benzoïque sodique
BENZOATE DE SODIUM (II)
BENZOATE DE SODIUM [II]
BENZOATE DE SODIUM (MART.)
BENZOATE DE SODIUM [MART.]
BENZOATE DE SODIUM (MONOGRAPHIE EP)
BENZOATE DE SODIUM [MONOGRAPHIE EP]
C7H5NaO2
MFCD00012463
BzONa
benzoate monosodique
Sodium Benzoate USP
Benzoate de sodium,(S)
Benzoate de sodium (TN)
SCHEMBL823
CHEMBL1356
BENZOATE DE SODIUM [MI]
Benzoate de sodium (JP17/NF)
BENZOATE DE SODIUM [FCC]
BENZOATE DE SODIUM [JAN]
C7-H6-O2.Na
BENZOATE DE SODIUM [IFDF]
BENZOATE DE SODIUM [HSDB]
BENZOATE DE SODIUM [INCI]
BENZOATE DE SODIUM [USAN]
BENZOATE DE SODIUM [VANDF]
BENZOATE DE SODIUM [USP-RS]
BENZOATE DE SODIUM [OMS-JJ]
Benzoate de sodium (qualité parfumée)
Acide benzoïque, sel de sodium (1:1)
HY-Y1316
Tox21_300125
BENZOATE DE SODIUM [LIVRE ORANGE]
AKOS003053000
AKOS015890021
GCC-266169
LS-2390
NCGC00254072-01
CAS-532-32-1
CS-0017788
E 211
FT-0645126
N° S0593
D02277
A829462
Q423971
J-519752
SODIUM BENZOATE E211
Le benzoate de sodium E211 est le sel de sodium de l'acide benzoïque.
Benzoate de sodium E211 lors de la dissolution dans l'eau, il fournit une solution faiblement basique.
Le benzoate de sodium E211 a des propriétés anticorrosives.

Numéro CAS : 532-32-1
Formule moléculaire : C7H5NaO2
Poids moléculaire : 144,10317
N° EINECS : 208-534-8

Benzoate de sodium E211, 532-32-1, Sobenate, Antimol, Acide benzoïque, Sel de sodium, Sel de sodium d'acide benzoïque, Benzoate de sodium, Benzoate de soude, Benzoate, sodium, sodium ; benzoate, benzoate de sodium, Natrium benzoicum, FEMA n° 3025, Fuminaru, benzoan sodny, Caswell n° 746, Microcare sb, PUROX S, FEMA Number 3025, Benzoan sodny [tchèque], CCRIS 3921, HSDB 696, Benzoesaeure (na-salz), UNII-OJ245FE5EU, EINECS 208-534-8, OJ245FE5EU, acide benzoïque sodique, EPA Pesticide Chemical Code 009103, INS NO.211, DTXSID1020140, E211, AI3-07835, Benzoesaeure (na-salz) [allemand], INS-211, DTXCID90140, Benzoate de sodium E211 [USAN :JAN], E-211, CHEBI :113455, Benzoate de sodium E211 [USAN :JAN :NF], EC 208-534-8, COMPOSANT D'AMMONUL Benzoate de sodium E211, COMPOSANT D'UCEPHAN Benzoate de sodium E211, Benzoate de sodium E211 COMPOSANT D'AMMONUL, Benzoate de sodium E211 COMPOSANT D'UCEPHAN, Acide benzoïque de sodium, Benzoate de sodium E211 (II), Benzoate de sodium E211 [II], Benzoate de sodium E211 (MART.), Benzoate de sodium E211 [MART.], Benzoate de sodium E211 (MONOGRAPHIE EP), Benzoate de sodium E211 [MONOGRAPHIE EP], C7H5NaO2, MFCD00012463, BzONa, monobenzoate de sodium E211, Benzoate de sodium E211 USP, Benzoate de sodium E211,(S), Benzoate de sodium E211 (TN), SCHEMBL823, CHEMBL1356, Benzoate de sodium E211 [MI], Benzoate de sodium E211 (JP17/NF), Benzoate de sodium E211 [FCC], Benzoate de sodium E211 [JAN], C7-H6-O2.Na, Benzoate de sodium E211 [FHFI], Benzoate de sodium E211 [HSDB], Benzoate de sodium E211 [INCI], Benzoate de sodium E211 [USAN], Benzoate de sodium E211 [VANDF], Benzoate de sodium E211 [USP-RS], Benzoate de sodium E211 [OMS-DD], Benzoate de sodium E211 (qualité parfumée), Acide benzoïque, sel de sodium (1 :1), HY-Y1316, Tox21_300125, Benzoate de sodium E211 [LIVRE ORANGE], AKOS003053000, AKOS015890021, CCG-266169, LS-2390, NCGC00254072-01, CAS-532-32-1, CS-0017788, E 211, FT-0645126, S0593, D02277, A829462, Q423971, J-519752.

La détermination du benzoate de sodium E211s dans les jus de fruits, les sodas, la sauce soja, le ketchup, le beurre d'arachide, le fromage à la crème et d'autres aliments par la méthode HPLC a été proposée.
Le benzoate de sodium E211 est un médicament non toxique approuvé par la Food and Drug Administration.
Le benzoate de sodium E211 est utilisé comme conservateur dans les cosmétiques et les produits alimentaires, où il empêche la croissance bactérienne et fongique, bien qu'il soit plus actif contre ces dernières.

La Food and Drug Administration (FDA) des États-Unis l'a désigné comme un ingrédient « généralement reconnu comme sûr ».
Le benzoate de sodium E211 est un additif alimentaire utilisé comme conservateur dans les aliments et les boissons acides, principalement ceux dont le pH est inférieur à 5.
Ajouté comme antifongique, le benzoate de sodium E211 est utilisé pour équilibrer le pH à l'intérieur des cellules individuelles, augmentant l'acidité globale du produit et créant un environnement dans lequel il est plus difficile pour les champignons de se développer.

Ces champignons peuvent envahir les aliments et les détériorer, ce qui réduit considérablement leur durée de conservation.
Le benzoate de sodium E211 est un conservateur et un additif alimentaire courant qui est largement utilisé dans l'industrie alimentaire et des boissons.
C'est le sel de sodium de l'acide benzoïque et a la formule chimique C7H5NaO2.

Le benzoate de sodium E211 est une poudre blanche, inodore et cristalline qui est très soluble dans l'eau.
L'une des principales raisons d'utiliser le benzoate de sodium E211 comme conservateur est sa capacité à inhiber la croissance des bactéries, des levures et des champignons.
Le benzoate de sodium E211 est particulièrement efficace dans des conditions acides, ce qui le rend adapté à une utilisation dans les aliments et les boissons acides tels que les boissons gazeuses, les jus de fruits, les cornichons et les condiments.

Le benzoate de sodium E211 agit en perturbant les processus métaboliques des micro-organismes, empêchant ainsi leur croissance et la détérioration des produits alimentaires.
Le benzoate de sodium E211 peut être obtenu par réaction acide-base entre l'acide benzoïque et la solution de bicarbonate de sodium/hydroxyde de sodium.
Le benzoate de sodium E211 est le sel de l'acide benzoïque, un acide que l'on trouve naturellement dans les aliments comme les canneberges, les abricots, les champignons et le miel.

Il est important de noter que le benzoate de sodium E211 est considéré comme sûr pour la consommation lorsqu'il est utilisé dans les limites approuvées fixées par les autorités réglementaires, telles que la Food and Drug Administration (FDA) des États-Unis et l'Autorité européenne de sécurité des aliments (EFSA).
Certaines personnes peuvent être sensibles ou allergiques au benzoate de sodium E211 et, dans de rares cas, il peut provoquer des effets indésirables ou exacerber certains problèmes de santé.
Le benzoate de sodium E211 est toujours recommandé pour lire les étiquettes des aliments et consulter des professionnels de la santé si vous avez des inquiétudes.

Le benzoate de sodium E211 est le sel de sodium de l'acide benzoïque, largement utilisé comme conservateur alimentaire (avec un numéro E de E211) et comme agent de décapage.
Le benzoate de sodium E211 se présente sous la forme d'un produit chimique cristallin blanc de formule C6H5COONa.
Le monostéarate de glycéryle n'est pas considéré comme hautement inflammable.

Le benzoate de sodium E211 a un point d'éclair relativement élevé et ne devrait pas contribuer de manière significative aux risques d'incendie.
Cependant, comme tout composé organique, il peut brûler dans certaines conditions.
Le benzoate de sodium E211 est important pour manipuler et stocker le monostéarate de glycéryle à l'écart des flammes nues et des sources d'inflammation.

Le benzoate de sodium E211 est généralement stable dans des conditions normales.
Le benzoate de sodium E211 peut subir une décomposition à haute température, ce qui peut libérer des sous-produits potentiellement dangereux.
Le benzoate de sodium E211 est important pour éviter une chaleur excessive ou une exposition prolongée à des températures élevées.

Bien que le benzoate de sodium E211 soit considéré comme sûr pour la consommation et l'utilisation à des concentrations réglementées, les personnes souffrant de problèmes de santé ou d'allergies spécifiques peuvent ressentir des effets indésirables.
Le benzoate de sodium E211 est conseillé d'éviter les produits qui en contiennent et de consulter un professionnel de la santé.
Le benzoate de sodium E211 est soumis à des réglementations et des restrictions établies par différents organismes de réglementation en fonction du pays ou de la région.

Ces règlements définissent généralement les concentrations permises, les utilisations et les exigences en matière d'étiquetage.
Il est important que les fabricants et les formulateurs se conforment à ces réglementations afin de garantir une utilisation sûre du benzoate de sodium E211 dans les produits de consommation.
Le benzoate de sodium E211 est un sel de sodium de l'acide benzoïque, qui est librement soluble dans l'eau par rapport à l'acide benzoïque.

Le benzoate de sodium E211 est généralement utilisé comme conservateur antimicrobien dans les cosmétiques, les aliments et les produits pharmaceutiques.
Les étalons secondaires pharmaceutiques pour l'application dans le contrôle de la qualité offrent aux laboratoires pharmaceutiques et aux fabricants une alternative pratique et rentable à la préparation de normes de travail internes.
Le benzoate de sodium E211, également connu sous le nom d'acide benzoïque sodique, est couramment utilisé comme conservateur alimentaire dans l'industrie alimentaire, inodore ou avec une légère odeur de benjoin, et a un goût sucré d'astringence.

Stable dans l'air, peut absorber l'humidité à l'air libre.
Le benzoate de sodium E211 se trouve naturellement dans la myrtille, la pomme, la prune, la canneberge, les pruneaux, la cannelle et les clous de girofle, avec une performance antiseptique plus faible que l'acide benzoïque.
La performance antiseptique de 1,180 g de benzoate de sodium E211 équivaut à environ 1 g d'acide benzoïque.

Dans un environnement acide, le benzoate de sodium E211 a un effet inhibiteur évident sur une variété de micro-organismes : lorsque le pH est à 3,5, une solution à 0,05% peut inhiber complètement la croissance de la levure ; tandis que lorsque le pH est supérieur à 5,5, il a un effet médiocre sur beaucoup de moisissures et de levures ; n'a pratiquement aucun effet en solution alcaline.
Une fois que le benzoate de sodium E211 entre dans le corps, dans le processus de biotransformation, il se combinerait avec la glycine pour être de l'acide urique, ou se combinerait avec l'acide glucuronique pour être de l'acide glucosiduronique, et tout serait éliminé du corps dans l'urine, pour ne pas s'accumuler dans le corps.
Tant qu'il est dans le cadre de la posologie normale, il serait inoffensif pour le corps humain, et c'est un conservateur sûr.

Le benzoate de sodium E211 peut également être utilisé pour les boissons gazeuses, les jus concentrés, la margarine, la base de chewing-gum, la confiture, la gelée, la sauce soja, etc.
La dose journalière admissible (DJA) humaine < de 5 mg/kg de poids corporel (prendre l'acide benzoïque comme base de calcul).
Le benzoate de sodium E211 a une grande lipophilie et il est facile de pénétrer la membrane cellulaire dans les cellules, d'interférer dans la perméabilité de la membrane cellulaire et d'inhiber l'absorption des acides aminés par la membrane cellulaire ; provoquer l'acidification par ionisation du stockage alcalin dans la cellule lors de l'entrée, inhiber l'activité des enzymes respiratoires et arrêter la réaction de condensation de l'acétyl coenzyme A, et ainsi atteindre l'objectif d'antiseptique alimentaire.

Le benzoate de sodium E211 est la forme de sel de sodium de l'acide benzoïque et est synthétisé en faisant réagir l'acide benzoïque avec de l'hydroxyde de sodium.
Bien que le benzoate de sodium E211 doive être fabriqué, l'acide benzoïque se trouve naturellement dans certains aliments tels que les pommes, les pruneaux, les prunes, les greengages, les clous de girofle et certaines baies.
Le benzoate de sodium E211 est couramment produit par neutralisation de l'hydroxyde de sodium (NaOH) avec de l'acide benzoïque (C6H5COOH), qui est lui-même produit commercialement par oxydation partielle du toluène avec de l'oxygène.

Le benzoate de sodium E211 est un conservateur alimentaire largement utilisé, avec un numéro E de E211.
C'est le sel de sodium de l'acide benzoïque et existe sous cette forme lorsqu'il est dissous dans l'eau.
Le benzoate de sodium E211 peut être produit en faisant réagir de l'hydroxyde de sodium avec de l'acide benzoïque.

Le benzoate de sodium E211 est un sel composé de sodium et d'acide benzoïque. On le trouve naturellement dans les fruits et les épices comme les pommes, les canneberges et la cannelle.
Bien qu'il soit d'origine naturelle, il est généralement synthétisé en laboratoire lorsqu'il est nécessaire en grande quantité pour les cosmétiques.
Le benzoate de sodium E211 est également utilisé comme conservateur dans les aliments et les boissons.

Le benzoate de sodium E211 est un ingrédient populaire dans les cosmétiques, non pas en raison de certaines propriétés étonnantes des soins de la peau, mais parce qu'il fonctionne comme un conservateur.
Le benzoate de sodium E211, un ingrédient actif d'un produit de soin de la peau comme un nutriment ou une vitamine, est utilisé pour nourrir les cellules de votre peau, il y a de fortes chances que ces mêmes nutriments constituent également une bonne nourriture pour les microbes dans l'air qui peuvent coloniser votre produit et le rendre moisi.
En incluant le benzoate de sodium E211 aux côtés de l'ingrédient actif, vous pouvez prolonger la durée de vie du produit et lutter contre la croissance des moisissures.

Le comité indépendant d'examen des ingrédients cosmétiques a jugé que le benzoate de sodium E211 est sûr lorsqu'il est utilisé dans les cosmétiques, où les niveaux d'utilisation maximum varient de 0,5 à 1 %.
Sous sa forme brute, le benzoate de sodium E211 est un solide cristallin blanc qui se dissout dans l'eau.

Point de fusion :>300 °C (lit.)
Densité : 1,44 g/cm3
pression de vapeur : 0Pa à 20°C
FEMA : 3025 | Sodium Benzoate E211
Point d'éclair : >100°C
Température de stockage : Température ambiante
solubilité : H2O : 1 M à 20 °C, limpide, incolore
pka : 4,03 [à 20 °C]
forme : cristaux, granulés, flocons ou poudre cristalline
couleur : Blanc
PH : 7,0-8,5 (25 °C, 1 M en H2O)
Odeur : inodore
Eau : Solubilité, soluble
Merck : 14,8582
BRN : 3572467
Stabilité : Stable, mais peut être sensible à l'humidité. Incompatible avec les agents oxydants forts, les alcalis, les acides minéraux.
Log P : 1,88

Le benzoate de sodium E211 est un conservateur que l'on trouve dans les aliments acides tels que les vinaigrettes, les boissons gazeuses, les confitures, les jus et les condiments.
Le benzoate de sodium E211 se trouve également dans les bains de bouche, les vernis à argent, les sirops contre la toux, les savons et les shampooings.
Le benzoate de sodium E211 est un alcool organique présent dans de nombreux fruits et thés.

Le benzoate de sodium E211 a un groupe hydroxyle (-OH), tandis que le composé apparenté, l'acide benzoïque, a un groupe carboxyle (-COOH).
Le benzoate de sodium E211, le benzoate de calcium et le benzoate de potassium sont des sels d'acide benzoïque.
Le benzoate de sodium E211 est un ester d'alcool benzylique et d'acide benzoïque.

Le benzoate de sodium E211, également connu sous le nom de sel de sodium d'acide benzoïque, peut être fabriqué chimiquement en faisant réagir l'hydroxyde de sodium avec l'acide benzoïque.
Le benzoate de sodium E211 est inodore ou avec une légère odeur de benjoin, et a un goût sucré d'astringence.
Stable dans l'air, le benzoate de sodium E211 peut absorber l'humidité à l'air libre, comme conservateur, il est bactériostatique et fongistatique dans des conditions acides.

Benzoate de sodium E211 comme additif alimentaire.
Le benzoate de sodium E211 n'est pas présent à l'état naturel, mais l'acide benzoïque se trouve dans de nombreuses plantes, notamment la cannelle, les clous de girofle, les tomates, les baies, les prunes, les pommes et les canneberges (2).
Le benzoate de sodium E211 est synthétisé ou préparé artificiellement à partir des substances acide benzoïque et hydroxyde de sodium.

De plus, certaines bactéries produisent de l'acide benzoïque lors de la fermentation de produits laitiers comme le yogourt (1, 3).
Le benzoate de sodium E211 est utilisé comme conservateur antifongique dans les cosmétiques et dans les aliments sous le nom de E211.
Le benzoate de sodium E211 est donc très efficace contre les champignons, les levures et les bactéries.

Le benzoate de sodium E211 est fabriqué assez facilement avec de la soude, de l'eau et de l'acide benzoïque.
On le trouve naturellement dans certains fruits comme les prunes, les pruneaux ou les pommes.
Le benzoate de sodium E211 est un produit chimique synthétique produit lorsque l'acide benzoïque, que l'on trouve naturellement dans certains fruits et épices, est combiné avec de l'hydroxyde de sodium.

Étant donné que le benzoate de sodium E211 contient un ingrédient naturel, il est probablement sans danger, n'est-ce pas ? Après tout, la Food and Drug Administration (FDA) des États-Unis et la Direction générale de la protection de la santé du Canada ont déclaré que cet agent de conservation chimique était acceptable lorsqu'il était consommé en faible quantité.
Le benzoate de sodium E211 est un conservateur ajouté à certains sodas, aliments emballés et produits de soins personnels pour prolonger la durée de conservation.
Le benzoate de sodium E211 est surtout connu comme conservateur utilisé dans les aliments et les boissons transformés pour prolonger la durée de conservation, bien qu'il ait plusieurs autres utilisations.

Le benzoate de sodium E211 est un conservateur alimentaire courant et un inhibiteur de moisissure.
Le benzoate de sodium E211 est le plus efficace dans les aliments et les boissons peu acides et les produits de boulangerie tels que le pain, les gâteaux, les tartes, les tortillas et bien d'autres.
Le benzoate de sodium E211 est une poudre cristalline inodore fabriquée en combinant de l'acide benzoïque et de l'hydroxyde de sodium.

Le benzoate de sodium E211 est un bon conservateur en soi, et sa combinaison avec de l'hydroxyde de sodium l'aide à se dissoudre dans les produits.
Lorsque le benzoate de sodium E211 est combiné avec de l'acide ascorbique (vitamine C) dans des conditions acides, comme dans certaines boissons, il peut former du benzoate de sodium E211.
Le benzoate de sodium E211 est un cancérogène connu et peut présenter des risques pour la santé s'il est consommé en quantités excessives.

Il a été affirmé que le benzoate de sodium E211, ainsi que certains colorants alimentaires, peuvent contribuer aux symptômes d'hyperactivité ou de trouble déficitaire de l'attention avec hyperactivité (TDAH) chez certaines personnes sensibles, en particulier chez les enfants.
Benzoate de sodium E211, les preuves scientifiques concernant ce lien sont limitées et non concluantes.
Bien que le risque soit faible lorsqu'il est utilisé dans les limites réglementaires, dans certaines conditions (telles que l'exposition à la chaleur, à la lumière ou à des conditions acides), le benzoate de sodium E211 peut réagir avec d'autres ingrédients pour former du benzène.

Le benzoate de sodium E211 est un cancérogène puissant et doit être minimisé dans les produits alimentaires et les boissons.
Les organismes de réglementation surveillent et fixent des limites quant à la quantité de benzène autorisée dans les produits de consommation.

Le benzoate de sodium E211, lorsqu'il est rejeté dans l'environnement en grande quantité, peut avoir des effets négatifs.
Le benzoate de sodium E211 peut être toxique pour les organismes aquatiques et peut persister dans l'environnement.

Méthodes de production :
Neutralisé par l'acide benzoïque et le bicarbonate de sodium.
Mettez de l'eau et du bicarbonate de sodium dans la casserole neutralisante, faites-la bouillir et dissolvez-la dans une solution de bicarbonate de sodium.
Mélangez-le avec de l'acide benzoïque jusqu'à ce que le pH de la solution réactionnelle atteigne 7-7,5.

Chauffez-le pour qu'il émette du dioxyde de carbone, puis ajoutez du charbon actif pour le décolorer pendant une demi-heure.
Faites une filtration par aspiration, une fois que le filtrat s'est concentré, mettez-le dans un plateau de flocons, séchez-le pour qu'il soit en feuilles dans le tambour, écrasez-le, puis le benzoate de sodium E211 est fabriqué.
Taux de consommation d'acide benzoïque (99,5%) 1045kg/t et de bicarbonate de sodium (98%) 610kg/t.

Utilisez une solution de soude à 32% pour neutraliser l'acide benzoïque dans le pot afin d'atteindre une valeur de pH de 7,5 et une température de neutralisation de 70 °C.
Utilisez 0,3% de charbon actif pour décolorer la solution neutralisée, filtrez-la sous vide, concentrez-la, séchez-la, puis elle passe au benzoate de sodium E211 en poudre.
C6H5COOH+Na2CO3→C6H5COONa

Pour l'obtenir par oxydation du toluène, l'acide benzoïque réagit avec le bicarbonate de sodium, le carbonate de sodium ou l'hydroxyde de sodium.
Le benzoate de sodium E211 est préparé en ajoutant de l'acide benzoïque à une solution concentrée chaude de carbonate de sodium jusqu'à ce que l'effervescence cesse.
La solution est ensuite évaporée, refroidie et laissée cristalliser ou s'évaporer jusqu'à siccité, puis granulée.

Utilise:
Le benzoate de sodium E211 est également l'un des carburants de fusée à combustion rapide et fournit beaucoup de poussée et de fumée.
Le benzoate de sodium E211 est également utilisé dans la préparation de dentifrices et de bains de bouche.
Le benzoate de sodium E211 trouve une application dans la plupart des aliments acides tels que les vinaigrettes (vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (vinaigre),
et condiments.

Le benzoate de sodium E211 est produit par la neutralisation de l'acide benzoïque avec de l'hydroxyde de sodium.
Le benzoate de sodium E211 a également des applications au-delà de l'industrie alimentaire.
Le benzoate de sodium E211 est utilisé dans divers produits de soins personnels, tels que les cosmétiques, les shampooings et les lotions, pour inhiber la croissance des bactéries et des champignons.

Le benzoate de sodium E211 est utilisé comme inhibiteur de corrosion dans l'antigel automobile et comme médicament dans certaines formulations pharmaceutiques.
Le benzoate de sodium E211 est également un conservateur que l'on trouve dans de nombreux aliments et boissons gazeuses.
De nombreuses boissons gazeuses contiennent du benzoate de sodium E211 à la fois comme agent de conservation et pour rehausser l'effet de saveur de leur sirop de maïs à haute teneur en fructose.

Le benzoate de sodium E211 est le plus souvent ajouté aux aliments acides comme les vinaigres de cidre, les cornichons, les condiments, les confitures et les conserves, et la sauce soja pour contrôler les moisissures, les bactéries, les levures et autres microbes.
Le benzoate de sodium E211 interfère avec leur capacité à produire de l'énergie.
Le benzoate de sodium E211 ne se transforme en acide benzoïque que dans des environnements acides, il n'est pas utilisé pour son action antimicrobienne à moins que le pH ne soit inférieur à environ 3,6.

Le benzoate de sodium E211 est couramment utilisé comme conservateur dans les boissons non alcoolisées telles que les boissons gazeuses, les boissons énergisantes, les boissons pour sportifs et l'eau aromatisée.
Le benzoate de sodium E211 aide à maintenir la fraîcheur et la qualité de ces boissons en empêchant la détérioration microbienne.
Le benzoate de sodium E211 peut être trouvé dans certains produits laitiers comme le yogourt, le fromage et la crème glacée.

Le benzoate de sodium E211 aide à prévenir la croissance des micro-organismes responsables de la détérioration et prolonge la durée de conservation de ces produits périssables.
Il a ses inconvénients : il y a un risque élevé d'explosion lorsque le carburant est fortement comprimé en raison de la sensibilité du carburant à l'impact.
Le benzoate de sodium E211 peut agir comme conservateur alimentaire.

Le benzoate de sodium E211 est le plus largement utilisé dans les aliments acides tels que les vinaigrettes (par exemple l'acide acétique dans le vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (acide acétique), les condiments et les garnitures de yogourt glacé.
De nombreux condiments et sauces, y compris le ketchup, la mayonnaise, la moutarde et la sauce soja, peuvent contenir du benzoate de sodium E211 comme agent de conservation.
Il aide à prévenir la croissance bactérienne et à maintenir la saveur et la qualité de ces produits.

Le benzoate de sodium E211 est parfois utilisé comme conservateur dans les aliments pour animaux de compagnie et les aliments pour animaux afin d'assurer sa sécurité et de prolonger sa durée de conservation.
Le benzoate de sodium E211 aide à protéger contre la croissance des bactéries et des moisissures qui peuvent entraîner la détérioration et la contamination.
Dans les applications de traitement de l'eau, le benzoate de sodium E211 peut être utilisé comme inhibiteur de corrosion et pour contrôler la croissance microbienne dans les tours de refroidissement et les systèmes d'eau industriels.

Le benzoate de sodium E211 aide à prévenir la formation de tartre et de biofilm, ce qui peut avoir un impact négatif sur l'efficacité du système.
Le benzoate de sodium E211 a été étudié pour son utilisation potentielle comme régulateur de croissance des plantes et pour le contrôle des maladies dans l'agriculture et l'horticulture.
Il peut avoir des propriétés fongicides et peut être utilisé pour inhiber la croissance de certains agents pathogènes des plantes.

Le benzoate de sodium E211 est parfois utilisé dans les compositions de feux d'artifice pour produire des flammes de couleur verte lorsqu'il est allumé.
Le benzoate de sodium E211 agit comme un colorant et aide à générer les effets visuels souhaités.
Le benzoate de sodium E211 est utilisé dans une variété de produits de soins personnels, y compris les produits de soins capillaires (shampooings, revitalisants, produits coiffants), les produits de soins de la peau (lotions, crèmes, nettoyants),
et les produits de soins bucco-dentaires (dentifrice, bain de bouche).

Le benzoate de sodium E211 sert de conservateur pour maintenir la stabilité du produit et empêcher la croissance des bactéries et des champignons.
Le benzoate de sodium E211 peut être trouvé dans certains produits de nettoyage, tels que les savons liquides, les détergents et les désinfectants.
Le benzoate de sodium E211 aide à inhiber la croissance des micro-organismes et prolonge la durée de conservation de ces produits.

Le benzoate de sodium E211 est utilisé comme conservateur dans les adhésifs et les produits d'étanchéité.
Le benzoate de sodium E211 aide à prévenir la croissance microbienne, assurant l'intégrité et la stabilité du produit.
Dans le secteur pétrolier et gazier, le benzoate de sodium E211 est parfois utilisé comme inhibiteur de corrosion dans les fluides de forage, les fluides de production et les systèmes de pipelines.

Il aide à protéger les surfaces métalliques de la corrosion causée par l'eau, les acides et les bactéries.
Le benzoate de sodium E211 a été utilisé dans l'industrie photographique comme agent de développement dans certains procédés photographiques.
Avec l'avènement de la photographie numérique, son utilisation dans cette industrie a considérablement diminué.
Le benzoate de sodium E211 peut être utilisé comme auxiliaire de colorant dans les procédés d'impression et de teinture textiles.

Le benzoate de sodium E211 est également utilisé comme conservateur dans les médicaments et les cosmétiques.
Benzoate de sodium E211 Dans ces conditions, il est converti en acide benzoïque (E210), qui est bactériostatique et fongistatique.
Le benzoate de sodium E211 n'est généralement pas utilisé directement en raison de sa faible solubilité dans l'eau.

La concentration en tant que conservateur alimentaire est limitée par la FDA aux États-Unis à 0,1 % en poids.
Le benzoate de sodium E211 est également autorisé en tant qu'additif alimentaire pour animaux jusqu'à 0,1 %, selon l'Association of American Feed Control Officials.
Le benzoate de sodium E211 a été remplacé par du sorbate de potassium dans la majorité des boissons gazeuses au Royaume-Uni.

Le benzoate de sodium E211 est un conservateur utilisé dans les produits de soin de la peau pour empêcher la prolifération des micro-organismes, c'est un inhibiteur de moisissure qui aide à réduire la croissance des moisissures et des bactéries.
Le benzoate de sodium E211 est largement utilisé comme conservateur dans les aliments, les médicaments, les cosmétiques et les aliments pour animaux.
Le benzoate de sodium E211 est utilisé dans le traitement de l'hyperammoniémie et des troubles du cycle de l'urée.

Le benzoate de sodium E211 est utilisé dans les feux d'artifice comme combustible dans le mélange de sifflets.
Le benzoate de sodium E211 est principalement utilisé comme conservateur dans divers produits alimentaires et boissons.
Il aide à prévenir la croissance des micro-organismes, prolongeant ainsi la durée de conservation de ces produits.

Le benzoate de sodium E211 se trouve couramment dans les boissons gazeuses, les jus de fruits, les confitures, les gelées, les vinaigrettes, les condiments et les aliments transformés.
Le benzoate de sodium E211 est également utilisé dans les feux d'artifice comme combustible dans le mélange de sifflets, une poudre qui émet un sifflement lorsqu'elle est comprimée dans un tube et enflammée.
Le benzoate de sodium E211 est également un conservateur important des aliments de type acide.

Le benzoate de sodium E211 se transforme en une forme efficace d'acide benzoïque lors de l'application.
L'agent benzoate de sodium E211 est un conservateur très important du fourrage de type acide.
Il se transforme en une forme efficace d'acide benzoïque lors de l'application.

Benzoate de sodium E211 pour la gamme d'application et le dosage. De plus, il peut également être utilisé comme conservateur alimentaire.
Benzoate de sodium E211 utilisé dans la recherche de l'industrie pharmaceutique et de la génétique des plantes, également utilisé comme intermédiaire colorant, fongicide et conservateur.
Le benzoate de sodium E211 est utilisé comme additif alimentaire (conservateur), fongicide dans l'industrie pharmaceutique, mordant colorant, plastifiant dans le plastique industriel, et également utilisé comme intermédiaire synthétique organique d'épices et autres.

Le benzoate de sodium E211 est un conservateur.
Le benzoate de sodium E211 est bactériostatique et fongistatique dans des conditions acides.
Il est le plus largement utilisé dans les aliments acides tels que les vinaigrettes (vinaigre), les boissons gazeuses (acide carbonique), les confitures et les jus de fruits (acide citrique), les cornichons (vinaigre) et les condiments.

Le benzoate de sodium E211 est également utilisé comme conservateur dans les médicaments et les cosmétiques.
En tant qu'additif alimentaire, le benzoate de sodium E211 porte le numéro E E211.
Le benzoate de sodium E211 est bien meilleur que l'acide benzoïque pour se dissoudre dans l'eau.

Le benzoate de sodium E211 est l'une de ses propriétés physiques les plus caractéristiques.
Bien que l'excipient Benzoate de sodium E211 se conserve légèrement mieux que le Benzoate de sodium E211, vous pouvez compenser cela en utilisant un peu plus ou en abaissant le pH en ajoutant un acide à votre produit.
Le benzoate de sodium E211 est également utilisé dans les feux d'artifice comme combustible dans le mélange de sifflets, une poudre qui émet un sifflement lorsqu'elle est comprimée dans un tube et enflammée.

Profil d'innocuité :
Le benzoate de sodium E211 est généralement reconnu comme sûr (GRAS) par les autorités réglementaires lorsqu'il est utilisé conformément aux limites approuvées.
La FDA et d'autres organismes de réglementation ont fixé des niveaux maximaux spécifiques pour son utilisation dans les produits alimentaires.
Cependant, il convient de noter qu'une consommation excessive d'aliments et de boissons contenant du benzoate de sodium E211, en particulier en combinaison avec certaines autres substances, peut avoir des effets potentiels sur la santé.

La chaleur, la lumière et la durée de conservation peuvent affecter la vitesse à laquelle le benzène se forme.
Aux États-Unis, le benzoate de sodium E211 est désigné comme généralement reconnu comme sûr (GRAS) par la Food and Drug Administration.
Le Programme international sur la sécurité des produits chimiques n'a trouvé aucun effet nocif chez l'homme à des doses de 647 à 825 mg/kg de poids corporel par jour.

Les chats ont une tolérance significativement plus faible au benzoate de sodium E211 et à ses sels que les rats et les souris.
Le corps humain élimine rapidement le benzoate de sodium E211 en le combinant avec de la glycine pour former de l'acide hippurique qui est ensuite excrété.
La voie métabolique pour cela commence par la conversion du benzoate par la butyrate-CoA ligase en un produit intermédiaire, le benzoyl-CoA, qui est ensuite métabolisé par la glycine N-acyltransférase en acide hippurique.

Certaines personnes peuvent être sensibles ou allergiques au benzoate de sodium E211.
Les réactions allergiques peuvent se manifester par des symptômes tels que des éruptions cutanées, des démangeaisons, de l'urticaire, un gonflement, des difficultés respiratoires ou des malaises gastro-intestinaux.
Par exemple, lorsque le benzoate de sodium E211 est combiné avec de l'acide ascorbique (vitamine C) ou de l'acide citrique, il peut former du benzène, un cancérigène connu.

Pour minimiser la formation de benzène, les fabricants sont tenus de limiter les niveaux de ces substances dans les produits contenant du benzoate de sodium E211.
Le benzoate de sodium E211 ingéré est conjugué à la glycine dans le foie pour produire de l'acide hippurique, qui est excrété dans l'urine.
Les symptômes de la toxicité systémique du benzoate ressemblent à ceux des salicylates.

Alors que l'administration orale de la forme acide libre peut provoquer une irritation gastrique sévère, les sels de benzoate sont bien tolérés en grande quantité : par exemple, 6 g de benzoate de sodium E211 dans 200 ml d'eau sont administrés par voie orale comme test de la fonction hépatique.
Les données cliniques ont indiqué que le benzoate de sodium E211 peut produire une urtcarie de contact non immunologique et des réactions de contact immédiat non immunologiques.

Cependant, il est également reconnu que ces réactions sont strictement cutanées et que le benzoate de sodium E211 peut donc être utilisé en toute sécurité à des concentrations allant jusqu'à 5%.
Cependant, ce phénomène non immunologique doit être pris en compte lors de la conception de formulations pour les nourrissons et les enfants.
D'autres effets indésirables comprennent l'anaphylaxie et les réactions urticariennes, bien qu'une étude contrôlée ait montré que l'incidence de l'urticaire chez les patients recevant de l'acide benzoïque n'est pas supérieure à celle d'un placebo au lactose.

Il a été recommandé d'utiliser du benzoate de sodium E211 et du benzoate de sodium E211 injectable chez les nouveau-nés ; cependant, le benzoate de sodium E211 a été utilisé par d'autres dans le traitement de certains troubles métaboliques néonatals.
Le benzoate de sodium E211 a été suggéré qu'il existe un effet indésirable général des conservateurs à base de benzoate sur le comportement des enfants de 3 ans, qui est détectable par les parents, mais pas par une simple évaluation clinique.

En combinaison avec l'acide ascorbique (vitamine C, E300), le benzoate de sodium E211 et le benzoate de potassium forment du benzène, un cancérogène connu.
Cependant, dans la plupart des boissons qui contiennent les deux, les niveaux de benzène sont inférieurs à ceux considérés comme dangereux pour la consommation.

SODIUM BICARBONATE
SODIUM BICARBONATE Sodium Bicarbonate is a strong alkali base used in green cleaning products. Often found in powder form, it's used in a wide range of industries, such as in cleaning and personal care products and as a fungicide, microbicide, herbicide, and pH adjuster. What Is Sodium Bicarbonate? Sodium Bicarbonate is a chemical compound with the molecular formula Na2CO3. It's commonly referred to as washing soda and is used in cleaning products, glass production, as a food additive, and more. Synonyms Sodium Bicarbonate may go by the following names: Washing soda Soda ash DiSodium Bicarbonate Calcined soda Carbonic acid disodium salt Solvay soda 497-19-8 Properties Sodium Bicarbonate is alkali with a high pH when in concentrated solutions. When it is added to water it breaks down into carbonic acid and sodium hydroxide (lye). Cleaning Uses Sodium Bicarbonate is used in several cleaning products, including green cleaning ones, due to its disinfectant properties and ability to cut through grease and soften water. You can find it in laundry detergents, automatic dishwashing detergents, all-purpose cleaners, glass cleaners, stain removers, countertop cleaners, sanitizing sprays, and bleach. To clean and disinfect with Sodium Bicarbonate, the Environmental Protection Agency (EPA) recommends using 2 ounces per gallon of water.1 This solution can be used to clean hard, non-porous surfaces, such as floors, walls, bathtubs, tile, and grout. Sodium Bicarbonate is considered an irritant at concentrations below 15 percent and caustic above 15 percent according to the EPA, so keep this in mind when mixing your cleaning solutions with it.1 Wear cleaning gloves and avoid getting it in your eyes or mouth. Other Uses In addition to its use in cleaning products, Sodium Bicarbonate is used in: Chemical manufacturing Food (e.g., anticaking agent) Glass manufacturing Personal care products (e.g., bubble bath, toothpaste, bath salts and soaks, and scrubs) Pulp and paper products Swimming pool maintenance (to adjust the pH) Therapeutic treatments (e.g., to treat dermatitides) Veterinary medicine treatments (e.g., to treat ringworm, cleanse the skin, and treat eczema) Product Brands Containing Sodium Bicarbonate To see if certain products contain Sodium Bicarbonate, try searching the U.S. Department of Health and Human Services Household Products Database, the Environmental Working Group's (EWG) Guide to Healthy Cleaning, the Good Guide, or the EWG's Skin Deep Cosmetic Database. If using the general term "Sodium Bicarbonate" doesn't generate a lot of results, try entering one of its synonyms. Regulation When Sodium Bicarbonate is used in personal care products, food, or drugs, it is monitored by the U.S. Food and Drug Administration (FDA). For other uses, such as pesticides and cleaning products, it is monitored by the EPA. Health and Safety The EPA considers Sodium Bicarbonate a safe pesticide and the FDA designates it as generally regarded as safe (GRAS). In the 2006 "Reregistration Eligibility Decision (R.E.D) for Sodium Bicarbonate; Weak Mineral Bases," the EPA notes that there are no known human health hazards when Sodium Bicarbonate is used according to EPA and FDA GRAS guidelines and that "no additional information is needed" to assess its safety.1 After seeking immediate medical attention, here are some home care, first-aid guidelines: Ingestion: Have the person drink a glass of water or milk unless otherwise advised by a health care provider. However, do not have them drink if they are having any of the serious symptoms such as vomiting, convulsions, or drowsiness and have difficulty swallowing. Do not have the person vomit unless to told to do so by a doctor or poison control center. Eye or skin contact: Flush with plenty of water for a minimum of 15 minutes. Inhalation: Move the person to fresh air. Environmental Effects According to the 2006 R.E.D document, the EPA considers Sodium Bicarbonate to be a naturally occurring chemical found in soil and water and doesn't expect any adverse effects on wildlife or water if low amounts are released into the environment. Therefore, it could be considered green.1 Source Most of the world's supply of Sodium Bicarbonate is derived from processing trona ore, which is mined in southwest Wyoming.2 Making Sodium Bicarbonate Interestingly enough, you can also make Sodium Bicarbonate from baking soda by baking it in the oven. Sodium Bicarbonate Jump to navigationJump to search Not to be confused with Sodium bicarbonate (baking soda), a similar compound. Sodium Bicarbonate Skeletal formula of Sodium Bicarbonate Sample of Sodium Bicarbonate Names IUPAC name Sodium Bicarbonate Other names Soda ash, washing soda, soda crystals, sodium trioxocarbonate Identifiers CAS Number 497-19-8 (anhydrous) check 5968-11-6 (monohydrate) ☒ 6132-02-1 (decahydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:29377 check ChEMBL ChEMBL186314 check ChemSpider 9916 check ECHA InfoCard 100.007.127 Edit this at Wikidata EC Number 207-838-8 E number E500(i) (acidity regulators, ...) PubChem CID 10340 RTECS number VZ4050000 UNII 45P3261C7T check CompTox Dashboard (EPA) DTXSID1029621 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula Na2CO3 Molar mass 105.9888 g/mol (anhydrous) 286.1416 g/mol (decahydrate) Appearance White solid, hygroscopic Odor Odorless Density 2.54 g/cm3 (25 °C, anhydrous) 1.92 g/cm3 (856 °C) 2.25 g/cm3 (monohydrate)[1] 1.51 g/cm3 (heptahydrate) 1.46 g/cm3 (decahydrate)[2] Melting point 851 °C (1,564 °F; 1,124 K) (Anhydrous) 100 °C (212 °F; 373 K) decomposes (monohydrate) 33.5 °C (92.3 °F; 306.6 K) decomposes (heptahydrate) 34 °C (93 °F; 307 K) (decahydrate)[2][6] Solubility in water Anhydrous, g/100 mL: 7 (0 °C) 16.4 (15 °C) 34.07 (27.8 °C) 48.69 (34.8 °C) 48.1 (41.9 °C) 45.62 (60 °C) 43.6 (100 °C)[3] Solubility Soluble in aq. alkalis,[3] glycerol Slightly soluble in aq. alcohol Insoluble in CS2, acetone, alkyl acetates, alcohol, benzonitrile, liquid ammonia[4] Solubility in glycerine 98.3 g/100 g (155 °C)[4] Solubility in ethanediol 3.46 g/100 g (20 °C)[5] Solubility in dimethylformamide 0.5 g/kg[5] Acidity (pKa) 10.33 Magnetic susceptibility (χ) −4.1·10−5 cm3/mol[2] Refractive index (nD) 1.485 (anhydrous) 1.420 (monohydrate)[6] 1.405 (decahydrate) Viscosity 3.4 cP (887 °C)[5] Structure Crystal structure Monoclinic (γ-form, β-form, δ-form, anhydrous)[7] Orthorhombic (monohydrate, heptahydrate)[1][8] Space group C2/m, No. 12 (γ-form, anhydrous, 170 K) C2/m, No. 12 (β-form, anhydrous, 628 K) P21/n, No. 14 (δ-form, anhydrous, 110 K)[7] Pca21, No. 29 (monohydrate)[1] Pbca, No. 61 (heptahydrate)[8] Point group 2/m (γ-form, β-form, δ-form, anhydrous)[7] mm2 (monohydrate)[1] 2/m 2/m 2/m (heptahydrate)[8] Lattice constant a = 8.920(7) Å, b = 5.245(5) Å, c = 6.050(5) Å (γ-form, anhydrous, 295 K)[7] α = 90°, β = 101.35(8)°, γ = 90° Coordination geometry Octahedral (Na+, anhydrous) Thermochemistry Heat capacity (C) 112.3 J/mol·K[2] Std molar entropy (So298) 135 J/mol·K[2] Std enthalpy of formation (ΔfH⦵298) −1130.7 kJ/mol[2][5] Gibbs free energy (ΔfG˚) −1044.4 kJ/mol[2] Hazards Main hazards Irritant Safety data sheet MSDS GHS pictograms GHS07: Harmful[9] GHS Signal word Warning GHS hazard statements H319[9] GHS precautionary statements P305+351+338[9] NFPA 704 (fire diamond) [11] NFPA 704 four-colored diamond 010 Lethal dose or concentration (LD, LC): LD50 (median dose) 4090 mg/kg (rat, oral)[10] Related compounds Other anions Sodium bicarbonate Other cations Lithium carbonate Potassium carbonate Rubidium carbonate Caesium carbonate Related compounds Sodium sesquicarbonate Sodium percarbonate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium Bicarbonate, Na2CO3, (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, water-soluble salts that yield moderately alkaline solutions in water. Historically it was extracted from the ashes of plants growing in sodium-rich soils. Because the ashes of these sodium-rich plants were noticeably different from ashes of wood (once used to produce potash), Sodium Bicarbonate became known as "soda ash."[12] It is produced in large quantities from sodium chloride and limestone by the Solvay process. Contents 1 Hydrates 1.1 Washing soda 2 Applications 2.1 Glass manufacture 2.2 Water softening 2.3 Food additive and cooking 2.4 Inexpensive, weak base 2.5 Precursor to other compounds 2.6 Miscellaneous 3 Physical properties 4 Occurrence as natural mineral 5 Production 5.1 Mining 5.2 Barilla and kelp 5.3 Leblanc process 5.4 Solvay process 5.5 Hou's process 6 See also 7 References 8 Further reading 9 External links Hydrates Sodium Bicarbonate is obtained as three hydrates and as the anhydrous salt: Sodium Bicarbonate decahydrate (natron), Na2CO3·10H2O, which readily effloresces to form the monohydrate. Sodium Bicarbonate heptahydrate (not known in mineral form), Na2CO3·7H2O. Sodium Bicarbonate monohydrate (thermonatrite), Na2CO3·H2O. Also known as crystal carbonate. anhydrous Sodium Bicarbonate, also known as calcined soda, is formed by heating the hydrates. It is also formed when sodium hydrogen carbonate is heated (calcined) e.g. in the final step of the Solvay process. The decahydrate is formed from water solutions crystallizing in the temperature range -2.1 to +32.0 °C, the heptahydrate in the narrow range 32.0 to 35.4 °C and above this temperature the monohydrate forms.[13] In dry air the decahydrate and heptahydrate lose water to give the monohydrate. Other hydrates have been reported, e.g. with 2.5 units of water per Sodium Bicarbonate unit ("pentahemihydrate").[14] Washing soda Sodium Bicarbonate decahydrate (Na2CO3·10H2O), also known as washing soda, is the most common hydrate of Sodium Bicarbonate containing 10 molecules of water of crystallization. Soda ash is dissolved in water and crystallized to get washing soda. {\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}}{\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}} It is transparent crystalline solid. It is one of the few metal carbonates which are soluble in water. It is alkaline with a pH level of 11; it turns red litmus to blue. It has detergent properties or cleansing properties, because it can remove dirt and grease from dirty clothes, etc. It attacks dirt and grease to form water soluble products, which are then washed away on rinsing with water. Applications Some common applications of Sodium Bicarbonate (or washing soda) include: Sodium Bicarbonate (or washing soda) is used as a cleansing agent for domestic purposes like washing clothes. Sodium Bicarbonate is a component of many dry soap powders. It is used for removing temporary and permanent hardness of water.[15] (see water softening). It is used in the manufacture of glass, soap and paper. (see glass manufacture) It is used in the manufacture of sodium compounds like borax Glass manufacture Sodium Bicarbonate serves as a flux for silica, lowering the melting point of the mixture to something achievable without special materials. This "soda glass" is mildly water-soluble, so some calcium carbonate is added to the melt mixture to make the glass insoluble. Bottle and window glass (soda-lime glass) is made by melting such mixtures of Sodium Bicarbonate, calcium carbonate, and silica sand (silicon dioxide (SiO2)). When these materials are heated, the carbonates release carbon dioxide. In this way, Sodium Bicarbonate is a source of sodium oxide. Soda-lime glass has been the most common form of glass for centuries.[16] Water softening Water Hardness in United States Hard water contains dissolved compounds, usually calcium or magnesium compounds. Sodium Bicarbonate is used for removing temporary and permanent hardness of water.[15] As Sodium Bicarbonate is water-soluble and magnesium carbonate and calcium carbonate are insoluble, so it is used to soften water by removing Mg2+ and Ca2+. These ions form insoluble solid precipitates upon treatment with carbonate ions: {\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}}{\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}} {\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}} Similarly, {\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}} The water is softened because it no longer contains dissolved calcium ions and magnesium ions.[15] Food additive and cooking Sodium Bicarbonate is a food additive (E500) used as an acidity regulator, anticaking agent, raising agent, and stabilizer. It is one of the components of kansui (かん水), a solution of alkaline salts used to give ramen noodles their characteristic flavor and texture. It is used in the production of snus to stabilize the pH of the final product. Sodium Bicarbonate is used in the production of sherbet powder. The cooling and fizzing sensation results from the endothermic reaction between Sodium Bicarbonate and a weak acid, commonly citric acid, releasing carbon dioxide gas, which occurs when the sherbet is moistened by saliva. In China, it is used to replace lye-water in the crust of traditional Cantonese moon cakes, and in many other Chinese steamed buns and noodles. In cooking, it is sometimes used in place of sodium hydroxide for lyeing, especially with German pretzels and lye rolls. These dishes are treated with a solution of an alkaline substance to change the pH of the surface of the food and improve browning. Sodium Bicarbonate is corrosive to aluminum cookware, utensils and foil. [17] Inexpensive, weak base Sodium Bicarbonate is also used as a relatively strong base in various fields. As a common alkali, it is preferred in many chemical processes because it is cheaper than NaOH and far safer to handle. Its mildness especially recommends its use in domestic applications. For example, it is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of photographic film developing agents. It is also a common additive in swimming pools and aquarium water to maintain a desired pH and carbonate hardness (KH). In dyeing with fiber-reactive dyes, Sodium Bicarbonate (often under a name such as soda ash fixative or soda ash activator) is used to ensure proper chemical bonding of the dye with cellulose (plant) fibers, typically before dyeing (for tie dyes), mixed with the dye (for dye painting), or after dyeing (for immersion dyeing). It is also used in the froth flotation process to maintain a favourable pH as a float conditioner besides CaO and other mildly basic compounds. Precursor to other compounds Sodium bicarbonate (NaHCO3) or baking soda, also a component in fire extinguishers, is often generated from Sodium Bicarbonate. Although NaHCO3 is itself an intermediate product of the Solvay process, the heating needed to remove the ammonia that contaminates it decomposes some NaHCO3, making it more economic to react finished Na2CO3 with CO2: Na2CO3 + CO2 + H2O → 2NaHCO3 In a related reaction, Sodium Bicarbonate is used to make sodium bisulfite (NaHSO3), which is used for the "sulfite" method of separating lignin from cellulose. This reaction is exploited for removing sulfur dioxide from flue gases in power stations: Na2CO3 + SO2 + H2O → NaHCO3 + NaHSO3 This application has become more common, especially where stations have to meet stringent emission controls. Sodium Bicarbonate is used by the cotton industry to neutralize the sulfuric acid needed for acid delinting of fuzzy cottonseed. Miscellaneous Sodium Bicarbonate is used by the brick industry as a wetting agent to reduce the amount of water needed to extrude the clay. In casting, it is referred to as "bonding agent" and is used to allow wet alginate to adhere to gelled alginate. Sodium Bicarbonate is used in toothpastes, where it acts as a foaming agent and an abrasive, and to temporarily increase mouth pH. Sodium Bicarbonate is also used in the processing and tanning of animal hides.[citation needed] Physical properties The integral enthalpy of solution of Sodium Bicarbonate is −28.1 kJ/mol for a 10% w/w aqueous solution.[18] The Mohs hardness of Sodium Bicarbonate monohydrate is 1.3.[6] Occurrence as natural mineral Structure of monohydrate at 346 K. Sodium Bicarbonate is soluble in water, and can occur naturally in arid regions, especially in mineral deposits (evaporites) formed when seasonal lakes evaporate. Deposits of the mineral natron have been mined from dry lake bottoms in Egypt since ancient times, when natron was used in the preparation of mummies and in the early manufacture of glass. The anhydrous mineral form of Sodium Bicarbonate is quite rare and called natrite. Sodium Bicarbonate also erupts from Ol Doinyo Lengai, Tanzania's unique volcano, and it is presumed to have erupted from other volcanoes in the past, but due to these minerals' instability at the earth's surface, are likely to be eroded. All three mineralogical forms of Sodium Bicarbonate, as well as trona, trisodium hydrogendicarbonate dihydrate, are also known from ultra-alkaline pegmatitic rocks, that occur for example in the Kola Peninsula in Russia. Extraterrestrially, known Sodium Bicarbonate is rare. Deposits have been identified as the source of bright spots on Ceres, interior material that has been brought to the surface.[19] While there are carbonates on Mars, and these are expected to include Sodium Bicarbonate,[20] deposits have yet to be confirmed, this absence is explained by some as being due to a global dominance of low pH in previously aqueous Martian soil.[21] Production Mining Trona, trisodium hydrogendicarbonate dihydrate (Na3HCO3CO3·2H2O), is mined in several areas of the US and provides nearly all the domestic consumption of Sodium Bicarbonate. Large natural deposits found in 1938, such as the one near Green River, Wyoming, have made mining more economical than industrial production in North America. There are important reserves of trona in Turkey; two million tons of soda ash have been extracted from the reserves near Ankara. It is also mined from some alkaline lakes such as Lake Magadi in Kenya by dredging. Hot saline springs continuously replenish salt in the lake so that, provided the rate of dredging is no greater than the replenishment rate, the source is fully sustainable.[citation needed] Barilla and kelp Several "halophyte" (salt-tolerant) plant species and seaweed species can be processed to yield an impure form of Sodium Bicarbonate, and these sources predominated in Europe and elsewhere until the early 19th century. The land plants (typically glassworts or saltworts) or the seaweed (typically Fucus species) were harvested, dried, and burned. The ashes were then "lixiviated" (washed with water) to form an alkali solution. This solution was boiled dry to create the final product, which was termed "soda ash"; this very old name refers derives from the Arabic word soda, in turn applied to salsola soda, one of the many species of seashore plants harvested for production. "Barilla" is a commercial term applied to an impure form of potash obtained from coastal plants or kelp.[22] The Sodium Bicarbonate concentration in soda ash varied very widely, from 2–3 percent for the seaweed-derived form ("kelp"), to 30 percent for the best barilla produced from saltwort plants in Spain. Plant and seaweed sources for soda ash, and also for the related alkali "potash", became increasingly inadequate by the end of the 18th century, and the search for commercially viable routes to synthesizing soda ash from salt and other chemicals intensified.[23] Leblanc process Main article: Leblanc process In 1792, the French chemist Nicolas Leblanc patented a process for producing Sodium Bicarbonate from salt, sulfuric acid, limestone, and coal. In the first step, sodium chloride is treated with sulfuric acid in the Mannheim process. This reaction produces sodium sulfate (salt cake) and hydrogen chloride: 2NaCl + H2SO4 → Na2SO4 + 2HCl The salt cake and crushed limestone (calcium carbonate) was reduced by heating with coal.[16] This conversion entails two parts. First is the carbothermic reaction whereby the coal, a source of carbon, reduces the sulfate to sulfide: Na2SO4 + 2C → Na2S + 2CO2 The second stage is the reaction to produce Sodium Bicarbonate and calcium sulfide: Na2S + CaCO3 → Na2CO3 + CaS This mixture is called black ash. The soda ash is extracted from the black ash with water. Evaporation of this extract yields solid Sodium Bicarbonate. This extraction process was termed lixiviation. The hydrochloric acid produced by the Leblanc process was a major source of air pollution, and the calcium sulfide byproduct also presented waste disposal issues. However, it remained the major production method for Sodium Bicarbonate until the late 1880s.[23][24] Solvay process Main article: Solvay process In 1861, the Belgian industrial chemist Ernest Solvay developed a method to make Sodium Bicarbonate by first reacting sodium chloride, ammonia, water, and carbon dioxide to generate sodium bicarbonate and ammonium chloride:[16] NaCl + NH3 + CO2 + H2O → NaHCO3 + NH4Cl The resulting sodium bicarbonate was then converted to Sodium Bicarbonate by heating it, releasing water and carbon dioxide: 2NaHCO3 → Na2CO3 + H2O + CO2 Meanwhile, the ammonia was regenerated from the ammonium chloride byproduct by treating it with the lime (calcium oxide) left over from carbon dioxide generation: 2NH4Cl + CaO → 2NH3 + CaCl2 + H2O The Solvay process recycles its ammonia. It consumes only brine and limestone, and calcium chloride is its only waste product. The process is substantially more economical than the Leblanc process, which generates two waste products, calcium sulfide and hydrogen chloride. The Solvay process quickly came to dominate Sodium Bicarbonate production worldwide. By 1900, 90% of Sodium Bicarbonate was produced by the Solvay process, and the last Leblanc process plant closed in the early 1920s.[16] The second step of the Solvay process, heating sodium bicarbonate, is used on a small scale by home cooks and in restaurants to make Sodium Bicarbonate for culinary purposes (including pretzels and alkali noodles). The method is appealing to such users because sodium bicarbonate is widely sold as baking soda, and the temperatures required (250 °F (121 °C) to 300 °F (149 °C)) to convert baking soda to Sodium Bicarbonate are readily achieved in conventional kitchen ovens.[25] Hou's process This process was developed by Chinese chemist Hou Debang in the 1930s. The earlier steam reforming byproduct carbon dioxide was pumped through a saturated solution of sodium chloride and ammonia to produce sodium bicarbonate by these reactions: CH4 + 2H2O → CO2 + 4H2 3H2 + N2 → 2NH3 NH3 + CO2 + H2O → NH4HCO3 NH4HCO3 + NaCl → NH4Cl + NaHCO3 The sodium bicarbonate was collected as a precipitate due to its low solubility and then heated up to approximately 80 °C (176 °F) or 95 °C (203 °F) to yield pure Sodium Bicarbonate similar to last step of the Solvay process. More sodium chloride is added to the remaining solution of ammonium and sodium chlorides; also, more ammonia is pumped at 30-40 °C to this solution. The solution temperature is then lowered to below 10 °C. Solubility of ammonium chloride is higher than that of sodium chloride at 30 °C and lower at 10 °C. Due to this temperature-dependent solubility difference and the common-ion effect, ammonium chloride is precipitated in a sodium chloride solution. The Chinese name of Hou's process, lianhe zhijian fa (联合制碱法), means "coupled manufacturing alkali method": Hou's process is coupled to the Haber process and offers better atom economy by eliminating the production of calcium chloride, since ammonia no longer needs to be regenerated. The byproduct ammonium chloride can be sold as a fertilizer. See also Natron Residual Sodium Bicarbonate index Sodium bicarbonate
SODIUM BICHROMATE
SYNONYMS sodium hydrogen fluoride; Sodium fluoride (Na(HF2)); CAS NO. 1333-83-1
SODIUM BIFLUORIDE
cas no 7681-38-1 sodium hydrosulfate; sodium bisulphate; sodium hydrogensulphate; sodium bisulfate; sodium hydrogen sulfate; sodium hydrogen sulphate; sodium hydro sulphate;
SODIUM BISULFITE 35%
SODIUM BISULFITE 35% Sodium bisulfite Sodium bisulfite Sodium bisulfite.png Ball-and-stick model of a bisulfite anion (left) and a sodium cation (right) Names IUPAC name Sodium hydrogen sulfite Other names E222, sodium bisulphite Identifiers CAS Number 7631-90-5 check 3D model (JSmol) Interactive image ChEBI CHEBI:26709 check ChEMBL ChEMBL1689285 ☒ ChemSpider 571016 check ECHA InfoCard 100.028.680 E number E222 (preservatives) PubChem CID 23665763 RTECS number VZ2000000 UNII TZX5469Z6I check CompTox Dashboard (EPA) DTXSID8034902 InChI[show] SMILES[show] Properties Chemical formula NaHSO3 Molar mass 104.061 g/mol Appearance White solid Odor Slight sulfurous odor Density 1.48 g/cm3 Melting point 150 °C (302 °F; 423 K) Boiling point 315 °C (599 °F; 588 K) Solubility in water 42 g/100 mL Refractive index (nD) 1.526 Hazards EU classification (DSD) (outdated) Harmful (Xn) R-phrases (outdated) R22 R31 S-phrases (outdated) (S2), S25, S46 NFPA 704 (fire diamond) NFPA 704 four-colored diamond 021 Flash point Non-flammable NIOSH (US health exposure limits): PEL (Permissible) none[1] REL (Recommended) TWA 5 mg/m3[1] IDLH (Immediate danger) N.D.[1] Related compounds Other anions Sodium sulfite Sodium metabisulfite Other cations Potassium bisulfite Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium bisulfite (or sodium bisulphite, sodium hydrogen sulfite) is a chemical mixture with the approximate chemical formula NaHSO3. Sodium bisulfite in fact is not a real compound,[2] but a mixture of salts that dissolve in water to give solutions composed of sodium and bisulfite ions. It is a white solid with an odour of sulfur dioxide. Regardless of its ill-defined nature, "sodium bisulfite" is a food additive with E number E222. Synthesis Sodium bisulfite solutions can be prepared by treating a solution of suitable base, such as sodium hydroxide or sodium bicarbonate with sulfur dioxide. SO2 + NaOH → NaHSO3 SO2 + NaHCO3 → NaHSO3 + CO2 Attempts to crystallise the product yield sodium disulfite, Na2S2O5.[3] Reactivity and uses Further information: bisulfite A tank containing 25% sodium bisulfite at a water treatment plant in Sunnyvale, California. Sodium bisulfite is a common industrial reducing agent, as it readily reacts with dissolved oxygen: 2 NaHSO3 + O2 → 2 NaHSO4 It is usually added to large piping systems to prevent oxidative corrosion. In biochemical engineering applications, it is helpful to maintain anaerobic conditions within a reactor. It is used for preserving food and beverages. See also Sodium metabisulfite Calcium bisulfite Potassium bisulfite Croscarmellose sodium Sulfurous acid Formula: NaHO3S/NaHSO3 Molecular mass: 104.06 Boiling point: 104°C Melting point: <-5°C Relative density (water = 1): 1.34 Vapour pressure, kPa at 20°C: 2.4 Viscosity: 3.64 mPa*s at 20°C Product Identification Product Name: Sodium Bisulfite Chemical Formula: NaHSO3 CAS Number: 007631-90-5 Other Designations: Sodium Bisulfite Solution, Sodium Hydrogen Sulfite Solution. General Use: Food and pharmaceutical preservative, waste water dechlorination agent, laboratory reagent, reducing agent, dietary supplement, and color preservative APPLICATIONS - Dechlorination in municipal wastewater, pulp & paper, power, and textile water treatment plants - Oxygen scavenger - Boiler water treatment - Preservative in photo developer process - Food additive - Flue gas desulfurization - Mild reducing agent in organic synthesis - Efficiently remove traces or excess amounts of bromine, iodine, osmate esters, chromium trioxide, and potassium permanganate - Surfactant production CHEMICAL COMPOSITION Sodium Bisulfite, wt% 38.0 - 42.0 Sodium Sulfate, wt% ≤ 3.5% Iron, (Fe ppm) ≤ 15 pH 3.6 – 4.6 Physical State; Appearance COLOURLESS-TO-YELLOW LIQUID WITH CHARACTERISTIC ODOUR. Molecular Weight 104.06 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 4 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 103.954409 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 103.954409 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 79.6 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 5 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 33.9 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 0 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 0 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 2 Computed by PubChem Compound Is Canonicalized Yes Properties Related Categories Chemical Synthesis, Essential Chemicals, Inorganic Salts, Research Essentials, Salts, Sodium, Sodium Salts, Synthetic Reagents Less... Quality Level 200 grade ACS reagent assay ≥58.5% (SO2) form powder or crystals impurities ≤0.005% insolubles pH 4.3 (10 g/L) anion traces chloride (Cl-): ≤0.02% Show More (13) Description General description The aqueous solutions of sodium bisulfite are acidic in nature. Degradation of sodium bisulfite with acid forms sulfur dioxide gas.[4] Application Sodium bisulfite (NaHSO3) has been used as a reagent to compose the immunoprecipitation (IP) buffer to chemically modify DNA[2] and to synthesize arsenolipids (AsL).[3] It can also be used as a reagent during the synthesis of 5,6-dihydrouracil-6-sulfonate.[1] Sodium Bisulfite is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sulfites are a preservative many people are sensitive to that can severely aggravate asthma. Their use on fresh fruits and vegetables is banned in the United States, but sulfites are present in other foods. What is sodium bisulfite used for? Sodium Bisulfite is a white, crystalline solid with a slight odor of rotten eggs. It is often in a liquid solution. It is used in making paper and leather, as a food preservative and in dye and chemical production What is the difference between sodium bisulfite and sodium bisulfate? 4 Answers. In short, bisulphate and bisulphite are not interchangeable, but bisulphite and metabisulphite are. It's reversible in aqueous solution. The assumption that 30 mg of metabisulphite contain the same amount of sulphite as 30 mg of bisulphite is OK, the error is small, about 10 %. Is sodium bisulfite an oxidizer? SODIUM BISULFITE is a reducing agent. Emits highly toxic gaseous sulfur dioxide gas when heated to decomposition or on contact with mineral acids.
SODIUM BROMATE
Bromic acid sodium salt; Bromate de sodium; SODIUM BROMATE, N° CAS : 7789-38-0, Nom INCI : SODIUM BROMATE, Nom chimique : Sodium bromate, N° EINECS/ELINCS : 232-160-4. Ses fonctions (INCI). Agent Oxydant : Modifie la nature chimique d'une autre substance en ajoutant de l'oxygène ou en éliminant l'hydrogène. Noms français : Bromate de sodium; SODIUM, BROMATE DE. Noms anglais : BROMIC ACID, SODIUM SALT; Sodium bromate. Utilisation et sources d'émission: Agent oxydant; Sodium bromate; Bromic acid, sodium salt (1:1). : Bromic acid, sodium salt; NaBrO3; Natriumbromat Sodium bromate. sodium;bromate; Sodium bromate ; 232-160-4 [EINECS]; 7789-38-0 [RN]; Bromate de sodium [French] ; Bromic acid sodium salt; Natriumbromat [German] ; [7789-38-0]; 38869-75-9 [RN]; 38869-76-0 [RN]; 99% (metals basis); sodyumbromat; sodyum bromat; Bromate de sodium [French]; Bromic acid (acd/name 4.0) ; BROMIC ACID, SODIUM SALT; Dyetone; EINECS 232-160-4; NaBrO3; Sodium bromate Msynth; Sodium bromic acid; sodium;bromate; 溴酸钠 [Chinese]
SODIUM BROMIDE
SYNONYMS Sedoneural; Bromide salt of sodium; CAS: 7647-15-6
SODIUM BUTYLPARABEN
SODIUM BUTYROYL HYALURONATE N° CAS : 942471-70-7 Nom INCI : SODIUM BUTYROYL HYALURONATE Ses fonctions (INCI) Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM BUTYROYL HYALURONATE
Benzènesulfonate de sodium (alkyle linéaire); SODIUM ALKYLBENZENE SULFONATE; N° CAS : 68411-30-3; Nom INCI : SODIUM ALKYLBENZENE SULFONATE. Classification : Tensioactif anionique. Ses fonctions (INCI). Tensioactif : ; Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Benzènesulfonate de sodium (alkyle linéaire); Noms anglais :ALKYL(C10-C13)BENZENESULFONIC ACID, SODIUM SALT; BENZENESULFONIC ACID, C10-13-ALKYL DERIVS., SODIUM SALTS; Benzenesulfonic acid, linear alkyl, sodium salt; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts. : 0110 N-ALKYLBENZOLSULFONSÄURE, NA-SALZ C10-13; Alkylbenzene sulphonate sodium salt; Benzene sulfonic acid, C10-C13 alkyl derivatives, sodium salt; benzenesulfonic acid; Benzenesulfonic acid C10-C13- alkyl derivs sodium salts; benzenesulfonic acid, 4-C10-13-sec-alkylderivs, sodium salt; Benzenesulfonic acid, C1-13-alkyl derivs., sodium salts; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts, Sodium dodecylbenzenesulfonate, NaLAS, LASNa C10-13, LAS Na Salt; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts.; Benzenesulfonic acid, C10-C14-alkyl-, sodium salts; Benzenesulfonic acid,C10-13-alkyl derivs,sodium salts; Benzenesulphonic acid, C10-C13 alkyl derivs., sodium salts; DDBSS; LABSNa; LAS Na; LAS Na Salt; LASNa C10-13: Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts (270-115-0); Linear Alkyl benzene Sulphonic acid, sodium salt; N/A mixture of different structures; sodium 4-undecan-3-ylbenzenesulfonate; Sodium 4-undecylbenzenesulfonate; Sodium alkylbenzene sulfonate; Sodium Alkylbenzene Sulphonate; Sodium C10-13 linear alkyl benzene sulfonate; Sodium dodecylbenzene sulfonate; Sodium dodecylbenzenesulfonate; Sodium LAS; Sodium Linear Alkyl Benzene Sulfonate; Sodium, alkyl-(C10-C13)-benzenesulfonate; Sodiumalkyl (C10-13)benzenesulfonate; 270-115-0 [EINECS] 27636-75-5 [RN]; 4-Undécylbenzènesulfonate de sodium [French] [ACD/IUPAC Name]; 68411-30-3 [RN]; benzenesulfonic acid, 4-undecyl-, sodium salt; Benzenesulfonic acid, 4-undecyl-, sodium salt (1:1) [ACD/Index Name]; Natrium-4-undecylbenzolsulfonat [German] [ACD/IUPAC Name]; Sodium 4-undecylbenzenesulfonate [ACD/IUPAC Name]; Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts; SODIUM P-N-UNDECYLBENZENESULFONATESODIUM C10-13 ALKYL BENZENESULFONATE N° CAS : 68411-30-3 Origine(s) : Synthétique Nom INCI : SODIUM C10-13 ALKYL BENZENESULFONATE Nom chimique : Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts N° EINECS/ELINCS : 270-115-0 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Noms français : Benzènesulfonate de sodium (alkyle linéaire) Noms anglais : ALKYL(C10-C13)BENZENESULFONIC ACID, SODIUM SALT BENZENESULFONIC ACID, C10-13-ALKYL DERIVS., SODIUM SALTS Benzenesulfonic acid, linear alkyl, sodium salt Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts EC Inventory, 0110 N-ALKYLBENZOLSULFONSÄURE, NA-SALZ C10-13 Alkylbenzene sulphonate sodium salt Benzene sulfonic acid, C10-C13 alkyl derivatives, sodium salt benzenesulfonic acid Benzenesulfonic acid C10-C13- alkyl derivs sodium salts benzenesulfonic acid, 4-C10-13-sec-alkylderivs, sodium salt Benzenesulfonic acid, C1-13-alkyl derivs., sodium salts Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts, Sodium dodecylbenzenesulfonate, NaLAS, LASNa C10-13, LAS Na Salt Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts. Benzenesulfonic acid, C10-C14-alkyl-, sodium salts Benzenesulfonic acid,C10-13-alkyl derivs,sodium salts Benzenesulphonic acid, C10-C13 alkyl derivs., sodium salts DDBSS LABSNa LAS Na LAS Na Salt LASNa C10-13: Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts (270-115-0) Linear Alkyl benzene Sulphonic acid, sodium salt N/A mixture of different structures sodium 4-undecan-3-ylbenzenesulfonate Sodium 4-undecylbenzenesulfonate Sodium alkylbenzene sulfonate Sodium Alkylbenzene Sulphonate Sodium C10-13 linear alkyl benzene sulfonate Sodium dodecylbenzene sulfonate Sodium dodecylbenzenesulfonate Sodium LAS Sodium Linear Alkyl Benzene Sulfonate Sodium, alkyl-(C10-C13)-benzenesulfonate Sodiumalkyl (C10-13)benzenesulfonate; 270-115-0 [EINECS] 27636-75-5 [RN] 4-Undécylbenzènesulfonate de sodium [French] [ACD/IUPAC Name] 68411-30-3 [RN] benzenesulfonic acid, 4-undecyl-, sodium salt Benzenesulfonic acid, 4-undecyl-, sodium salt (1:1) [ACD/Index Name] Natrium-4-undecylbenzolsulfonat [German] [ACD/IUPAC Name] Sodium 4-undecylbenzenesulfonate [ACD/IUPAC Name] Benzenesulfonic acid, C10-13-alkyl derivs., sodium salts SODIUM P-N-UNDECYLBENZENESULFONATE
SODIUM C10-13 ALKYL BENZENESULFONATE
SODIUM C10-16 PARETH-2 SULFATE; N° CAS : 68585-34-2; Nom INCI : SODIUM C10-16 PARETH-2 SULFATE; Classification : Sulfate, Composé éthoxylé. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Sel sodique du sulfate d'alkyle (C10-C16) éthoxylé. Noms anglais : (C10-C16) ALCOHOL ETHOXYLATE, SULFATED, SODIUM SALT; (C10-C16) ALKYL ETHOXYLATE SULFURIC ACID, SODIUM SALT; (C10-C16) ALKYLETHOXYLATE SULFURIC ACID, SODIUM SALT; (C10-C16)ALKYL(ALCOHOL)ETHOXYLATE SULFURIC ACID, SODIUM SALT; C10-C16 ALKYL (ALCOHOL) ETHOXYLATE SULFURIC ACID SODIUM SALT; POLY(OXY-1,2-ETHANEDIYL), .ALPHA.-SULFO-.OMEGA.-HYDROXY-, C10-16-ALKYL ETHERS, SODIUM SALTS; SDA 15-067-04. Alcohols, C10-16, ethoxylated, sulfates, sodium salts. : .alpha.-Alkyl (C10-16) .omega.-hydroxypoly (oxyethylene) sulfate, sodium salt; 2-(2-dodecyloxyethoxy)ethyl sulphate; 2-[bis(2-hydroxyethyl)amino]ethan-1-ol; 4-(tridecan-3-yl)benzene-1-sulfonic acid; 2-[bis(2-hydroxyethyl)amino]ethanol; 4-tridecan-3-ylbenzenesulfonic acid; Alcohols, C10-14, ethoxylated, sulfates, sodium salts; Alcohols, C10-16, ethoxylated, sulfates, sodium salts CAS information ; alkyl C10-16 ether sulfate, sodium salt; Alkyl ether sulfate C10-16, sodium salt; linear alkybenzene sulphonic acid; Poly(oxy-1,2-ethanediyl), .alpha.-sulfo-.omega.-hydroxy-, C10-16-alkyl ethers, sodium salts; Poly(oxy-1,2-ethanediyl), a-sulfo-w-hydroxy-, C10-16-alkyl ethers, sodium salts; Polyethylene glycol mono-C10-16-alkyl ether sulfate sodium; Sel sodique du sulfate d'alkyle (C10-C16) éthoxylé; sodium 2-(2-dodecyloxyethoxy)ethyl sulphate; Sodium alkyl(C10-C16)ether sulphate; sodium alkylether sulphate; Sodium Laureth Sulfate; sodium lauryl ether sulfate; sodium lauryl ether sulphate; SODIUM LAURYL ETHOXYSULPHATE
SODIUM C10-16 PARETH-2 SULFATE
SODIUM C12-13 ALKYL SULFATE N° CAS : 91783-23-2 Nom INCI : SODIUM C12-13 ALKYL SULFATE N° EINECS/ELINCS : 295-101-1 Classification : Sulfate Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 ALKYL SULFATE
SODIUM C12-13 PARETH SULFATE Nom INCI : SODIUM C12-13 PARETH SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 PARETH SULFATE
SODIUM C12-13 PARETH-12 CARBOXYLATE N° CAS : 68908-98-5 Nom INCI : SODIUM C12-13 PARETH-12 CARBOXYLATE Classification : Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-13 PARETH-12 CARBOXYLATE
SODIUM C12-14 OLEFIN SULFONATE, N° CAS : 85536-12-5. Nom INCI : SODIUM C12-14 OLEFIN SULFONATE. N° EINECS/ELINCS : 287-492-2. Ses fonctions (INCI) : Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation; Sulfonic acids, C12-14-alkane hydroxy and C12-14-alkene, sodium salts
SODIUM C12-14 OLEFIN SULFONATE
SODIUM C12-15 ALKYL SULFATE, N° CAS : 68890-70-0, Nom INCI : SODIUM C12-15 ALKYL SULFATE, N° EINECS/ELINCS : 272-575-8. Classification : Sulfate. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 ALKYL SULFATE
Alcohols, C12-15, branched and linear,ethoxylated, sulfates, sodium salts; SODIUM C12-15 PARETH SULFATE, N° CAS : 91648-56-5, Nom INCI : SODIUM C12-15 PARETH SULFATE. N° EINECS/ELINCS : 293-918-8. Classification : Sulfate, Composé éthoxylé, Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 PARETH SULFATE
SODIUM C12-15 PARETH-12 CARBOXYLATE Nom INCI : SODIUM C12-15 PARETH-12 CARBOXYLATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C12-15 PARETH-12 CARBOXYLATE
SODIUM C12-18 ALKYL SULFATE, N° CAS : 68955-19-1, Nom INCI : SODIUM C12-18 ALKYL SULFATE, N° EINECS/ELINCS : 273-257-1. Classification : Sulfate. Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. ASCON 68955-19-1 Sulfuric acid, mono-C12-18 (even numbered)-alkyl esters, sodium salts; Colonial SCS ; FAS C12-18, Na; FETTALKOHOLSULFAT, NA-SALZ C12-18; sodium C12-18-alkyl sulfate; Sodium Coco Sulfate; sodium pentadecyl sulfate; sodium;pentadecyl sulfate; Sulfuric acid, C12-18-alkyl(even numbered) esters, sodium salts; Sulfuric acid, mono C12-18 alkyl esters, sodium salts; SULFURIC ACID, MONO-C12-18-ALKYLESTERS, SODIUM SALTS, SULPHURIC ACID, MONO-C12-18-ALKYL ESTERS, SODIUM SALTS
SODIUM C12-18 ALKYL SULFATE
SODIUM C13-15 PARETH-3 SULFATE, Nom INCI : SODIUM C13-15 PARETH-3 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C13-15 PARETH-3 SULFATE
Sulfonic acids, C13-17-alkane, sodium salts; SODIUM C13-17 ALKANE SULFONATE, N° CAS : 93763-92-9, Nom INCI : SODIUM C13-17 ALKANE SULFONATE, N° EINECS/ELINCS : 297-913-1. Classification : Tensioactif anionique. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre, Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C13-17 ALKANE SULFONATE
SODIUM C14-16 OLEFIN SULFONATE, N° CAS : 68439-57-6. Origine(s) : Synthétique. Nom INCI : SODIUM C14-16 OLEFIN SULFONATE. N° EINECS/ELINCS : 270-407-8/931-534-0, Classification : Tensioactif anionique. Cet ingrédient est utilisé dans les cosmétiques en tant que tensioactif anionique, il produit une mousse abondante. Il peut causer des irritations mais est réputé plus doux qu'un Sodium Lauryl Sulfate par exemple. Il ne pause pas de problèmes environnementaux et est biodégradable.Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Acides sulfoniques, C14-C16 hydroxyalcane, C14-C16 alcène, sels de sodium ; ACIDES SULFONIQUES, C14-C16-HYDROXYALCANE, C14-C16 ALCENE, SELS DE SODIUM; Sels de sodium des acides sulfoniques hydroxy alcane C14-16 et alcène C14-16; SODIUM (C14-16) OLEFIN SULFONATE; SULFONIC ACIDS, C14-16 ALKANE HYDROXY AND C14-16 ALKENE, SODIUM SALTS; SULFONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS. Noms anglais : SODIUM (C14-16) OLEFIN SULFONATE. Utilisation et sources d'émission: Fabrication de détergents; Sulfonic acids, C14-16-alkane hydroxy and C14-16-alkene, sodium salts. ; EC 270-407-8: SULPHONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS; Sodium alpha olefin (C14-16) sulphonate ; Sodium C14-16 Olefin sulfonate; Sulfonic acids, C14-16 (even numbered)-alkane hydroxy and C14-16 (even numbered)-alkene, sodium salts; SULPHONIC ACIDS, C14-16-ALKANE HYDROXY AND C14-16-ALKENE, SODIUM SALTS; (2E)-2-Hexadécène-1-sulfonate de sodium [French] ; 11067-19-9 [RN]; 234-286-5 [EINECS]; 2-Hexadecene-1-sulfonic acid, sodium salt, (2E)- (1:1) [ACD/Index Name]; Natrium-(2E)-2-hexadecen-1-sulfonat [German] [ACD/IUPAC Name]; Sodium (2E)-2-hexadecene-1-sulfonate [ACD/IUPAC Name]; SODIUM C16 OLEFIN SULFONATE ; 270-407-8 [EINECS]; 68439-57-6 [RN]; sodium (E)-hexadec-2-ene-1-sulfonate; sodium (E)-tetradec-2-ene-1-sulfonate; sodium 2-hexadecene-1-sulfonate; SODIUM C14-16 OLEFIN SULFONATE; SODIUM C14-18 OLEFIN SULFONATE; SODIUM C16-18 OLEFIN SULFONATE
SODIUM C14-16 OLEFIN SULFONATE
SODIUM C14-17 ALKYL SEC SULFONATE, N° CAS : 97489-15-1, Nom INCI : SODIUM C14-17 ALKYL SEC SULFONATE, N° EINECS/ELINCS : 307-055-2. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C14-17 ALKYL SEC SULFONATE
SODIUM C14-18 OLEFIN SULFONATE, Nom INCI : SODIUM C14-18 OLEFIN SULFONATE. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM C14-18 OLEFIN SULFONATE
SODIUM CAPRATE, N° CAS : 1002-62-6, Nom INCI : SODIUM CAPRATE, N° EINECS/ELINCS : 213-688-4. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRATE
SODIUM CAPRYLATE, N° CAS : 1984-06-1, Nom INCI : SODIUM CAPRYLATE, Nom chimique : Sodium octanoate, N° EINECS/ELINCS : 217-850-5. Ses fonctions (INCI): Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRYLATE
SODIUM CAPRYLOAMPHOACETATE, Nom INCI : SODIUM CAPRYLOAMPHOACETATE. Nom chimique : Octanamide, N-[2-[N-(2-hydroxyethyl)-N-(carboxymethyl)amino]ethyl]-, sodium salt Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide. Sinergiste de mousse : Améliore la qualité de la mousse produite en augmentant une ou plusieurs des propriétés suivantes: volume, texture et / ou stabilité Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CAPRYLOAMPHOACETATE
SODIUM CARBOMER N° CAS : 73298-57-4 Nom INCI : SODIUM CARBOMER Classification : Polymère de synthèse Ses fonctions (INCI) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Gélifiant : Donne la consistance d'un gel à une préparation liquide Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM CARBOMER
SODIUM CARBOXYMETHYL STARCH, N° CAS : 9063-38-1 Nom INCI : SODIUM CARBOXYMETHYL STARCH Ses fonctions (INCI) Agent fixant : Permet la cohésion de différents ingrédients cosmétiques Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM CARBONATE(HEAVY)
SODIUM CARBONATE(HEAVY) Sodium Carbonate(Heavy) is a strong alkali base used in green cleaning products. Often found in powder form, it's used in a wide range of industries, such as in cleaning and personal care products and as a fungicide, microbicide, herbicide, and pH adjuster. What Is Sodium Carbonate(Heavy)? Sodium Carbonate(Heavy) is a chemical compound with the molecular formula Na2CO3. It's commonly referred to as washing soda and is used in cleaning products, glass production, as a food additive, and more. Synonyms Sodium Carbonate(Heavy) may go by the following names: Washing soda Soda ash DiSodium Carbonate(Heavy) Calcined soda Carbonic acid disodium salt Solvay soda 497-19-8 Properties Sodium Carbonate(Heavy) is alkali with a high pH when in concentrated solutions. When it is added to water it breaks down into carbonic acid and sodium hydroxide (lye). Cleaning Uses Sodium Carbonate(Heavy) is used in several cleaning products, including green cleaning ones, due to its disinfectant properties and ability to cut through grease and soften water. You can find it in laundry detergents, automatic dishwashing detergents, all-purpose cleaners, glass cleaners, stain removers, countertop cleaners, sanitizing sprays, and bleach. To clean and disinfect with Sodium Carbonate(Heavy), the Environmental Protection Agency (EPA) recommends using 2 ounces per gallon of water.1 This solution can be used to clean hard, non-porous surfaces, such as floors, walls, bathtubs, tile, and grout. Sodium Carbonate(Heavy) is considered an irritant at concentrations below 15 percent and caustic above 15 percent according to the EPA, so keep this in mind when mixing your cleaning solutions with it.1 Wear cleaning gloves and avoid getting it in your eyes or mouth. Other Uses In addition to its use in cleaning products, Sodium Carbonate(Heavy) is used in: Chemical manufacturing Food (e.g., anticaking agent) Glass manufacturing Personal care products (e.g., bubble bath, toothpaste, bath salts and soaks, and scrubs) Pulp and paper products Swimming pool maintenance (to adjust the pH) Therapeutic treatments (e.g., to treat dermatitides) Veterinary medicine treatments (e.g., to treat ringworm, cleanse the skin, and treat eczema) Product Brands Containing Sodium Carbonate(Heavy) To see if certain products contain Sodium Carbonate(Heavy), try searching the U.S. Department of Health and Human Services Household Products Database, the Environmental Working Group's (EWG) Guide to Healthy Cleaning, the Good Guide, or the EWG's Skin Deep Cosmetic Database. If using the general term "Sodium Carbonate(Heavy)" doesn't generate a lot of results, try entering one of its synonyms. Regulation When Sodium Carbonate(Heavy) is used in personal care products, food, or drugs, it is monitored by the U.S. Food and Drug Administration (FDA). For other uses, such as pesticides and cleaning products, it is monitored by the EPA. Health and Safety The EPA considers Sodium Carbonate(Heavy) a safe pesticide and the FDA designates it as generally regarded as safe (GRAS). In the 2006 "Reregistration Eligibility Decision (R.E.D) for Sodium Carbonate(Heavy); Weak Mineral Bases," the EPA notes that there are no known human health hazards when Sodium Carbonate(Heavy) is used according to EPA and FDA GRAS guidelines and that "no additional information is needed" to assess its safety.1 After seeking immediate medical attention, here are some home care, first-aid guidelines: Ingestion: Have the person drink a glass of water or milk unless otherwise advised by a health care provider. However, do not have them drink if they are having any of the serious symptoms such as vomiting, convulsions, or drowsiness and have difficulty swallowing. Do not have the person vomit unless to told to do so by a doctor or poison control center. Eye or skin contact: Flush with plenty of water for a minimum of 15 minutes. Inhalation: Move the person to fresh air. Environmental Effects According to the 2006 R.E.D document, the EPA considers Sodium Carbonate(Heavy) to be a naturally occurring chemical found in soil and water and doesn't expect any adverse effects on wildlife or water if low amounts are released into the environment. Therefore, it could be considered green.1 Source Most of the world's supply of Sodium Carbonate(Heavy) is derived from processing trona ore, which is mined in southwest Wyoming.2 Making Sodium Carbonate(Heavy) Interestingly enough, you can also make Sodium Carbonate(Heavy) from baking soda by baking it in the oven. Sodium Carbonate(Heavy) Jump to navigationJump to search Not to be confused with Sodium bicarbonate (baking soda), a similar compound. Sodium Carbonate(Heavy) Skeletal formula of Sodium Carbonate(Heavy) Sample of Sodium Carbonate(Heavy) Names IUPAC name Sodium Carbonate(Heavy) Other names Soda ash, washing soda, soda crystals, sodium trioxocarbonate Identifiers CAS Number 497-19-8 (anhydrous) check 5968-11-6 (monohydrate) ☒ 6132-02-1 (decahydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:29377 check ChEMBL ChEMBL186314 check ChemSpider 9916 check ECHA InfoCard 100.007.127 Edit this at Wikidata EC Number 207-838-8 E number E500(i) (acidity regulators, ...) PubChem CID 10340 RTECS number VZ4050000 UNII 45P3261C7T check CompTox Dashboard (EPA) DTXSID1029621 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula Na2CO3 Molar mass 105.9888 g/mol (anhydrous) 286.1416 g/mol (decahydrate) Appearance White solid, hygroscopic Odor Odorless Density 2.54 g/cm3 (25 °C, anhydrous) 1.92 g/cm3 (856 °C) 2.25 g/cm3 (monohydrate)[1] 1.51 g/cm3 (heptahydrate) 1.46 g/cm3 (decahydrate)[2] Melting point 851 °C (1,564 °F; 1,124 K) (Anhydrous) 100 °C (212 °F; 373 K) decomposes (monohydrate) 33.5 °C (92.3 °F; 306.6 K) decomposes (heptahydrate) 34 °C (93 °F; 307 K) (decahydrate)[2][6] Solubility in water Anhydrous, g/100 mL: 7 (0 °C) 16.4 (15 °C) 34.07 (27.8 °C) 48.69 (34.8 °C) 48.1 (41.9 °C) 45.62 (60 °C) 43.6 (100 °C)[3] Solubility Soluble in aq. alkalis,[3] glycerol Slightly soluble in aq. alcohol Insoluble in CS2, acetone, alkyl acetates, alcohol, benzonitrile, liquid ammonia[4] Solubility in glycerine 98.3 g/100 g (155 °C)[4] Solubility in ethanediol 3.46 g/100 g (20 °C)[5] Solubility in dimethylformamide 0.5 g/kg[5] Acidity (pKa) 10.33 Magnetic susceptibility (χ) −4.1·10−5 cm3/mol[2] Refractive index (nD) 1.485 (anhydrous) 1.420 (monohydrate)[6] 1.405 (decahydrate) Viscosity 3.4 cP (887 °C)[5] Structure Crystal structure Monoclinic (γ-form, β-form, δ-form, anhydrous)[7] Orthorhombic (monohydrate, heptahydrate)[1][8] Space group C2/m, No. 12 (γ-form, anhydrous, 170 K) C2/m, No. 12 (β-form, anhydrous, 628 K) P21/n, No. 14 (δ-form, anhydrous, 110 K)[7] Pca21, No. 29 (monohydrate)[1] Pbca, No. 61 (heptahydrate)[8] Point group 2/m (γ-form, β-form, δ-form, anhydrous)[7] mm2 (monohydrate)[1] 2/m 2/m 2/m (heptahydrate)[8] Lattice constant a = 8.920(7) Å, b = 5.245(5) Å, c = 6.050(5) Å (γ-form, anhydrous, 295 K)[7] α = 90°, β = 101.35(8)°, γ = 90° Coordination geometry Octahedral (Na+, anhydrous) Thermochemistry Heat capacity (C) 112.3 J/mol·K[2] Std molar entropy (So298) 135 J/mol·K[2] Std enthalpy of formation (ΔfH⦵298) −1130.7 kJ/mol[2][5] Gibbs free energy (ΔfG˚) −1044.4 kJ/mol[2] Hazards Main hazards Irritant Safety data sheet MSDS GHS pictograms GHS07: Harmful[9] GHS Signal word Warning GHS hazard statements H319[9] GHS precautionary statements P305+351+338[9] NFPA 704 (fire diamond) [11] NFPA 704 four-colored diamond 010 Lethal dose or concentration (LD, LC): LD50 (median dose) 4090 mg/kg (rat, oral)[10] Related compounds Other anions Sodium bicarbonate Other cations Lithium carbonate Potassium carbonate Rubidium carbonate Caesium carbonate Related compounds Sodium sesquicarbonate Sodium percarbonate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium Carbonate(Heavy), Na2CO3, (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, water-soluble salts that yield moderately alkaline solutions in water. Historically it was extracted from the ashes of plants growing in sodium-rich soils. Because the ashes of these sodium-rich plants were noticeably different from ashes of wood (once used to produce potash), Sodium Carbonate(Heavy) became known as "soda ash."[12] It is produced in large quantities from sodium chloride and limestone by the Solvay process. Contents 1 Hydrates 1.1 Washing soda 2 Applications 2.1 Glass manufacture 2.2 Water softening 2.3 Food additive and cooking 2.4 Inexpensive, weak base 2.5 Precursor to other compounds 2.6 Miscellaneous 3 Physical properties 4 Occurrence as natural mineral 5 Production 5.1 Mining 5.2 Barilla and kelp 5.3 Leblanc process 5.4 Solvay process 5.5 Hou's process 6 See also 7 References 8 Further reading 9 External links Hydrates Sodium Carbonate(Heavy) is obtained as three hydrates and as the anhydrous salt: Sodium Carbonate(Heavy) decahydrate (natron), Na2CO3·10H2O, which readily effloresces to form the monohydrate. Sodium Carbonate(Heavy) heptahydrate (not known in mineral form), Na2CO3·7H2O. Sodium Carbonate(Heavy) monohydrate (thermonatrite), Na2CO3·H2O. Also known as crystal carbonate. anhydrous Sodium Carbonate(Heavy), also known as calcined soda, is formed by heating the hydrates. It is also formed when sodium hydrogen carbonate is heated (calcined) e.g. in the final step of the Solvay process. The decahydrate is formed from water solutions crystallizing in the temperature range -2.1 to +32.0 °C, the heptahydrate in the narrow range 32.0 to 35.4 °C and above this temperature the monohydrate forms.[13] In dry air the decahydrate and heptahydrate lose water to give the monohydrate. Other hydrates have been reported, e.g. with 2.5 units of water per Sodium Carbonate(Heavy) unit ("pentahemihydrate").[14] Washing soda Sodium Carbonate(Heavy) decahydrate (Na2CO3·10H2O), also known as washing soda, is the most common hydrate of Sodium Carbonate(Heavy) containing 10 molecules of water of crystallization. Soda ash is dissolved in water and crystallized to get washing soda. {\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}}{\displaystyle {\ce {Na2CO3 + 10H2O -> Na2CO3.10H2O}}} It is transparent crystalline solid. It is one of the few metal carbonates which are soluble in water. It is alkaline with a pH level of 11; it turns red litmus to blue. It has detergent properties or cleansing properties, because it can remove dirt and grease from dirty clothes, etc. It attacks dirt and grease to form water soluble products, which are then washed away on rinsing with water. Applications Some common applications of Sodium Carbonate(Heavy) (or washing soda) include: Sodium Carbonate(Heavy) (or washing soda) is used as a cleansing agent for domestic purposes like washing clothes. Sodium Carbonate(Heavy) is a component of many dry soap powders. It is used for removing temporary and permanent hardness of water.[15] (see water softening). It is used in the manufacture of glass, soap and paper. (see glass manufacture) It is used in the manufacture of sodium compounds like borax Glass manufacture Sodium Carbonate(Heavy) serves as a flux for silica, lowering the melting point of the mixture to something achievable without special materials. This "soda glass" is mildly water-soluble, so some calcium carbonate is added to the melt mixture to make the glass insoluble. Bottle and window glass (soda-lime glass) is made by melting such mixtures of Sodium Carbonate(Heavy), calcium carbonate, and silica sand (silicon dioxide (SiO2)). When these materials are heated, the carbonates release carbon dioxide. In this way, Sodium Carbonate(Heavy) is a source of sodium oxide. Soda-lime glass has been the most common form of glass for centuries.[16] Water softening Water Hardness in United States Hard water contains dissolved compounds, usually calcium or magnesium compounds. Sodium Carbonate(Heavy) is used for removing temporary and permanent hardness of water.[15] As Sodium Carbonate(Heavy) is water-soluble and magnesium carbonate and calcium carbonate are insoluble, so it is used to soften water by removing Mg2+ and Ca2+. These ions form insoluble solid precipitates upon treatment with carbonate ions: {\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}}{\displaystyle {\ce {Ca^2+ + CO3^2- -> CaCO3}}} {\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Ca^2+(aq) + Na2CO3(aq) -> CaCO3(s) + 2Na+(aq)}}} Similarly, {\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}}{\displaystyle {\ce {Mg^2+(aq) + Na2CO3(aq) -> MgCO3(s) + 2Na+(aq)}}} The water is softened because it no longer contains dissolved calcium ions and magnesium ions.[15] Food additive and cooking Sodium Carbonate(Heavy) is a food additive (E500) used as an acidity regulator, anticaking agent, raising agent, and stabilizer. It is one of the components of kansui (かん水), a solution of alkaline salts used to give ramen noodles their characteristic flavor and texture. It is used in the production of snus to stabilize the pH of the final product. Sodium Carbonate(Heavy) is used in the production of sherbet powder. The cooling and fizzing sensation results from the endothermic reaction between Sodium Carbonate(Heavy) and a weak acid, commonly citric acid, releasing carbon dioxide gas, which occurs when the sherbet is moistened by saliva. In China, it is used to replace lye-water in the crust of traditional Cantonese moon cakes, and in many other Chinese steamed buns and noodles. In cooking, it is sometimes used in place of sodium hydroxide for lyeing, especially with German pretzels and lye rolls. These dishes are treated with a solution of an alkaline substance to change the pH of the surface of the food and improve browning. Sodium Carbonate(Heavy) is corrosive to aluminum cookware, utensils and foil. [17] Inexpensive, weak base Sodium Carbonate(Heavy) is also used as a relatively strong base in various fields. As a common alkali, it is preferred in many chemical processes because it is cheaper than NaOH and far safer to handle. Its mildness especially recommends its use in domestic applications. For example, it is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of photographic film developing agents. It is also a common additive in swimming pools and aquarium water to maintain a desired pH and carbonate hardness (KH). In dyeing with fiber-reactive dyes, Sodium Carbonate(Heavy) (often under a name such as soda ash fixative or soda ash activator) is used to ensure proper chemical bonding of the dye with cellulose (plant) fibers, typically before dyeing (for tie dyes), mixed with the dye (for dye painting), or after dyeing (for immersion dyeing). It is also used in the froth flotation process to maintain a favourable pH as a float conditioner besides CaO and other mildly basic compounds. Precursor to other compounds Sodium bicarbonate (NaHCO3) or baking soda, also a component in fire extinguishers, is often generated from Sodium Carbonate(Heavy). Although NaHCO3 is itself an intermediate product of the Solvay process, the heating needed to remove the ammonia that contaminates it decomposes some NaHCO3, making it more economic to react finished Na2CO3 with CO2: Na2CO3 + CO2 + H2O → 2NaHCO3 In a related reaction, Sodium Carbonate(Heavy) is used to make sodium bisulfite (NaHSO3), which is used for the "sulfite" method of separating lignin from cellulose. This reaction is exploited for removing sulfur dioxide from flue gases in power stations: Na2CO3 + SO2 + H2O → NaHCO3 + NaHSO3 This application has become more common, especially where stations have to meet stringent emission controls. Sodium Carbonate(Heavy) is used by the cotton industry to neutralize the sulfuric acid needed for acid delinting of fuzzy cottonseed. Miscellaneous Sodium Carbonate(Heavy) is used by the brick industry as a wetting agent to reduce the amount of water needed to extrude the clay. In casting, it is referred to as "bonding agent" and is used to allow wet alginate to adhere to gelled alginate. Sodium Carbonate(Heavy) is used in toothpastes, where it acts as a foaming agent and an abrasive, and to temporarily increase mouth pH. Sodium Carbonate(Heavy) is also used in the processing and tanning of animal hides.[citation needed] Physical properties The integral enthalpy of solution of Sodium Carbonate(Heavy) is −28.1 kJ/mol for a 10% w/w aqueous solution.[18] The Mohs hardness of Sodium Carbonate(Heavy) monohydrate is 1.3.[6] Occurrence as natural mineral Structure of monohydrate at 346 K. Sodium Carbonate(Heavy) is soluble in water, and can occur naturally in arid regions, especially in mineral deposits (evaporites) formed when seasonal lakes evaporate. Deposits of the mineral natron have been mined from dry lake bottoms in Egypt since ancient times, when natron was used in the preparation of mummies and in the early manufacture of glass. The anhydrous mineral form of Sodium Carbonate(Heavy) is quite rare and called natrite. Sodium Carbonate(Heavy) also erupts from Ol Doinyo Lengai, Tanzania's unique volcano, and it is presumed to have erupted from other volcanoes in the past, but due to these minerals' instability at the earth's surface, are likely to be eroded. All three mineralogical forms of Sodium Carbonate(Heavy), as well as trona, trisodium hydrogendicarbonate dihydrate, are also known from ultra-alkaline pegmatitic rocks, that occur for example in the Kola Peninsula in Russia. Extraterrestrially, known Sodium Carbonate(Heavy) is rare. Deposits have been identified as the source of bright spots on Ceres, interior material that has been brought to the surface.[19] While there are carbonates on Mars, and these are expected to include Sodium Carbonate(Heavy),[20] deposits have yet to be confirmed, this absence is explained by some as being due to a global dominance of low pH in previously aqueous Martian soil.[21] Production Mining Trona, trisodium hydrogendicarbonate dihydrate (Na3HCO3CO3·2H2O), is mined in several areas of the US and provides nearly all the domestic consumption of Sodium Carbonate(Heavy). Large natural deposits found in 1938, such as the one near Green River, Wyoming, have made mining more economical than industrial production in North America. There are important reserves of trona in Turkey; two million tons of soda ash have been extracted from the reserves near Ankara. It is also mined from some alkaline lakes such as Lake Magadi in Kenya by dredging. Hot saline springs continuously replenish salt in the lake so that, provided the rate of dredging is no greater than the replenishment rate, the source is fully sustainable.[citation needed] Barilla and kelp Several "halophyte" (salt-tolerant) plant species and seaweed species can be processed to yield an impure form of Sodium Carbonate(Heavy), and these sources predominated in Europe and elsewhere until the early 19th century. The land plants (typically glassworts or saltworts) or the seaweed (typically Fucus species) were harvested, dried, and burned. The ashes were then "lixiviated" (washed with water) to form an alkali solution. This solution was boiled dry to create the final product, which was termed "soda ash"; this very old name refers derives from the Arabic word soda, in turn applied to salsola soda, one of the many species of seashore plants harvested for production. "Barilla" is a commercial term applied to an impure form of potash obtained from coastal plants or kelp.[22] The Sodium Carbonate(Heavy) concentration in soda ash varied very widely, from 2–3 percent for the seaweed-derived form ("kelp"), to 30 percent for the best barilla produced from saltwort plants in Spain. Plant and seaweed sources for soda ash, and also for the related alkali "potash", became increasingly inadequate by the end of the 18th century, and the search for commercially viable routes to synthesizing soda ash from salt and other chemicals intensified.[23] Leblanc process Main article: Leblanc process In 1792, the French chemist Nicolas Leblanc patented a process for producing Sodium Carbonate(Heavy) from salt, sulfuric acid, limestone, and coal. In the first step, sodium chloride is treated with sulfuric acid in the Mannheim process. This reaction produces sodium sulfate (salt cake) and hydrogen chloride: 2NaCl + H2SO4 → Na2SO4 + 2HCl The salt cake and crushed limestone (calcium carbonate) was reduced by heating with coal.[16] This conversion entails two parts. First is the carbothermic reaction whereby the coal, a source of carbon, reduces the sulfate to sulfide: Na2SO4 + 2C → Na2S + 2CO2 The second stage is the reaction to produce Sodium Carbonate(Heavy) and calcium sulfide: Na2S + CaCO3 → Na2CO3 + CaS This mixture is called black ash. The soda ash is extracted from the black ash with water. Evaporation of this extract yields solid Sodium Carbonate(Heavy). This extraction process was termed lixiviation. The hydrochloric acid produced by the Leblanc process was a major source of air pollution, and the calcium sulfide byproduct also presented waste disposal issues. However, it remained the major production method for Sodium Carbonate(Heavy) until the late 1880s.[23][24] Solvay process Main article: Solvay process In 1861, the Belgian industrial chemist Ernest Solvay developed a method to make Sodium Carbonate(Heavy) by first reacting sodium chloride, ammonia, water, and carbon dioxide to generate sodium bicarbonate and ammonium chloride:[16] NaCl + NH3 + CO2 + H2O → NaHCO3 + NH4Cl The resulting sodium bicarbonate was then converted to Sodium Carbonate(Heavy) by heating it, releasing water and carbon dioxide: 2NaHCO3 → Na2CO3 + H2O + CO2 Meanwhile, the ammonia was regenerated from the ammonium chloride byproduct by treating it with the lime (calcium oxide) left over from carbon dioxide generation: 2NH4Cl + CaO → 2NH3 + CaCl2 + H2O The Solvay process recycles its ammonia. It consumes only brine and limestone, and calcium chloride is its only waste product. The process is substantially more economical than the Leblanc process, which generates two waste products, calcium sulfide and hydrogen chloride. The Solvay process quickly came to dominate Sodium Carbonate(Heavy) production worldwide. By 1900, 90% of Sodium Carbonate(Heavy) was produced by the Solvay process, and the last Leblanc process plant closed in the early 1920s.[16] The second step of the Solvay process, heating sodium bicarbonate, is used on a small scale by home cooks and in restaurants to make Sodium Carbonate(Heavy) for culinary purposes (including pretzels and alkali noodles). The method is appealing to such users because sodium bicarbonate is widely sold as baking soda, and the temperatures required (250 °F (121 °C) to 300 °F (149 °C)) to convert baking soda to Sodium Carbonate(Heavy) are readily achieved in conventional kitchen ovens.[25] Hou's process This process was developed by Chinese chemist Hou Debang in the 1930s. The earlier steam reforming byproduct carbon dioxide was pumped through a saturated solution of sodium chloride and ammonia to produce sodium bicarbonate by these reactions: CH4 + 2H2O → CO2 + 4H2 3H2 + N2 → 2NH3 NH3 + CO2 + H2O → NH4HCO3 NH4HCO3 + NaCl → NH4Cl + NaHCO3 The sodium bicarbonate was collected as a precipitate due to its low solubility and then heated up to approximately 80 °C (176 °F) or 95 °C (203 °F) to yield pure Sodium Carbonate(Heavy) similar to last step of the Solvay process. More sodium chloride is added to the remaining solution of ammonium and sodium chlorides; also, more ammonia is pumped at 30-40 °C to this solution. The solution temperature is then lowered to below 10 °C. Solubility of ammonium chloride is higher than that of sodium chloride at 30 °C and lower at 10 °C. Due to this temperature-dependent solubility difference and the common-ion effect, ammonium chloride is precipitated in a sodium chloride solution. The Chinese name of Hou's process, lianhe zhijian fa (联合制碱法), means "coupled manufacturing alkali method": Hou's process is coupled to the Haber process and offers better atom economy by eliminating the production of calcium chloride, since ammonia no longer needs to be regenerated. The byproduct ammonium chloride can be sold as a fertilizer. See also Natron Residual Sodium Carbonate(Heavy) index Sodium bicarbonate
SODIUM CARBOXYMETHYL STARCH
SODIUM CASEINATE, N° CAS : 9005-46-3, Nom INCI : SODIUM CASEINATE. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM CASEINATE
sodium,heptadecyl sulfate; Hexadecylsulfuric Acid; Sodium Salt SODIUM CETYL STEARYL SULFATE cas no: 59186-41-3
SODIUM CASEINATE
CAS number: 9005-46-3
EC number: 618-419-8

Sodium caseinate is a compound derived from casein, a protein present in the milk of mammals.
Casein is the dominant protein in cow’s milk and responsible for its opaque, white appearance.
sodium caseinate’s an integral component of many milk-based products like ice cream and cheese.
Casein proteins can be separated from milk and used independently as a supplement or additive to thicken, texturize, and stabilize various food products.
Sodium caseinate can be used as a protein supplement and to alter the texture and stability of various products, such as baked goods, cheeses, ice cream, medications, and soap.

How sodium caseinate’s made
The terms casein and sodium caseinate are often used interchangeably, but they differ slightly on a chemical level.
Sodium caseinate is a compound that forms when casein proteins are chemically extracted from skim milk.

First, the solid casein-containing curds are separated from the whey, which is the liquid part of milk.
This can be done by adding specialized enzymes or an acidic substance — like lemon juice or vinegar — to the milk.
Once the curds have been separated from the whey, they’re treated with a basic substance called sodium hydroxide before being dried into a powder.

The resulting sodium caseinate powder can then be used in a variety of foods, including:
-protein powder
-coffee creamer
-cheese
-ice cream
-cheese-flavored snacks
-margarine
-cereal bars
-processed meats
-chocolate
-bread

What is Sodium Caseinate?
Sodium caseinates primary purpose is as an emulsifier.
The emulsification of sodium casein is mainly contributed to casein.
This is because casein is a protein, the molecules of that have both hydrophilic and hydrophobic groups, which can be attracted to water and fatty substances to achieve emulsification.

What is Sodium caseinate Made of?
Sodium casein is composed of protein, fat, calcium, sodium, lactose and others.

How is Sodium Caseinate made?
Like calcium caseinate, Sodium caseinate is produced by treating casein curd with an alkaline substance, here it is sodium hydroxide.
The insoluble casein is converted into a soluble form in this way.

How to Produce Casein?
Generally, casein is made from skim milk by two methods, precipitation by acid or coagulation by rennet, one is acid casein, another is rennet casein.

Applications:
-Cream liqueurs
-Nutritional beverages
-Processed cheese and spreads
-Soups
-Whipping agent
-Non-dairy creamer
-Processed meat

Description of Sodium caseinate:
Sodium caseinate is a kind of water soluble emulsifier.
Sodium caseinate has the function of stabilizing, strengthening protein, thickening, foaming etc.
Sodium caseinate is also a protein nutrition fortifier.
Sodium caseinate has also been used in bread, biscuits, and other cereals.
Like casein, sodium caseinate is a high quality protein source.

Sodium caseinate is made from milk protein and is hydrolyzed and absorbed to participate in the normal metabolism of the body.
There is no definite chemical structure for sodium caseinate.
In electrophoretic analysis, there are at least 20 different kinds of protein components.
The main components are a mixture of alpha casein, beta casein and kappa casein (rather than simple proteins).

Sodium Caseinate can be used in Food, Beverage, Pharmaceutical, Health & Personal care products, Agriculture/Animal Feed/Poultry.
Sodium Caseinate is used as food emulsifier and thickening agent in bread, biscuits, candy, cakes, ice cream, yogurt drinks, and margarine, gravy, fast food, meat and seafood products.
Sodium caseinate is the biochemical name for casein, which is a type of protein found in the milk from all mammals.
Casein, which is Latin for “cheese,” is a major component of commercial cheese and its principle source of protein.
Some people are allergic to sodium caseinate, and it has been linked to some human diseases, mainly autism and gastrointestinal problems.

Sodium caseinate is a compound derived from casein, the main protein in milk.
sodium caseinate’s commonly used as a food additive because of its diverse nutritional and functional properties.
sodium caseinate’s used in nutrition supplements and processed foods like cheese, ice cream, bread, and cured meats, as well as in various cosmetic and personal care products.

Sodium caseinate, the sodium salt of casein (a milk protein), is a multi-functional food additive, and together with calcium caseinate, they’re dairy protein commonly used as an emulsifier, thickener or stabilizer in food.
Sodium caseinate improves the properties of food during processing and storage, as well as provides nutrition, taste and smell.

The following are the simple manufacturing process:
1. Acid Casein
The fresh milk, after the process of skimmed and pasteurized, then add acid (lactic acid, acetic acid, hydrochloric acid or sulfuric acid) and adjust the pH to 4.6 to make the casein micelles lose their charge and solidify & precipitate. Then followed by neutralization and drying.

2. Rennet Casein
Made from skim milk, then add rennetase to form a coagulated precipitate.

This ingredient has the following features:
-Good emulsifying properties
-Good water solubility
-Good whipping properties
-Low flavour profile
-Good nutritional value
-Good retort stabilty

This ingredient can be used in the following applications:
-Whipped toppings
-Coffee whiteners
-Cream liqueurs
-Nutritional products
-Wet blend ingredient for susceptible population
-Not intended for use as a Dry Blend ingredient for infants
Synergy
Sodium caseinate itself is a high molecular weight protein that has a certain viscosity in an aqueous solution.
The combined uses with some thickeners, such as carrageenan, guar gum, and CMC can greatly improve its thickening and suspension stability.
The synergistic effect with carrageenan is the best, in addition to increasing the viscosity, it can also improve the emulsifying ability.

Heat Stable
Sodium caseinates emulsion can be sterilized at 120 ℃ for a long time without destroying its stability and functionality.

What’re the applications of Sodium Caseinate?
With Sodium caseinates emulsification, foaming, thickening, hydration, gelling and other properties, plus it is a protein, sodium caseinate is widely used in food, cosmetics and pharmaceutical industries.

Food
Sodium caseinates uses of food grade are more wider than casein due to the water-soluble property.
The common applications are in ice cream, meat products, bread, cereal products and etc.
Let’s see Sodium caseinates functions and suggested uses in food categories.

Sausage
Sodium caseinate can make fat distribution evenly, enhance the stickiness of the meat.
The common usage: 0.2-0.5%.

Ice cream
Ice cream contains a certain amount of fat and non-fat milk solids.
The common usage of sodium caseinate is 0.2-0.3%.
Sodium caseinate is added as/to:

There are several types of caseinates, but sodium caseinate is usually preferred because it’s the most water-soluble, meaning that it readily mixes with other substances.
Sodium caseinate is a food additive and nutritional supplement derived from the milk protein casein.

A variety of uses
Sodium caseinate is an ingredient with many broad and useful applications in the food, cosmetic, and personal care industries.

Nutrition supplements
Casein comprises approximately 80% of the protein in cow’s milk, while whey accounts for the remaining 20%.
Sodium caseinate is a popular protein choice in supplements like protein powders, snack bars, and meal replacements because it provides a rich source of high quality and complete protein.

Proteins are considered complete if they contain all nine essential amino acids that your body needs to stay healthy.
Research suggests that casein can promote the growth and repair of muscle tissue, which makes it a popular protein supplement choice among athletes and weight lifters.
Due to Sodium caseinates favorable amino acid profile, sodium caseinate is also frequently used as a protein source in infant formulas.

Food additive
In addition to being a great source of protein, sodium caseinate has many functional attributes that make it a popular additive in the food industry.
For example, sodium caseinate has a high capacity for water absorption, meaning it can be used to modify the texture of foods like dough and commercially prepared baked goods .
sodium caseinate’s also frequently used as an emulsifier to keep fats and oils suspended in products like processed and cured meats.
Sodium caseinate’s unique melting properties also make it useful for producing natural and processed cheeses, while its foaming properties make it an ideal additive in products like whipped toppings and ice cream.

Other applications
Although sodium caseinate’s usually added to food, sodium caseinate is also used to change the texture and chemical stability of a variety of other products like pharmaceutical drugs, soap, makeup, and personal care products.

An emulsifying stabilizer, which can avoid the shrinking and deforming caused by the low milk solids content.
Reduce lactose content in the formulation, prevent lactose from crystallizing during freezing and storage of the finished product.

Bakery
Sodium caseinate combines with gluten protein to improve the stability and gas retention of the gluten network, enhance the dough’s elasticity and toughness.
In addition, sodium caseinate can also interact with amylose, thereby soften and extend the shelf life of bread.

Coffee Mate
Sodium caseinate is the main ingredient of coffee mate or non-dairy cream due to its three characteristics:

With a high protein content.
A strong emulsifying effect with fat and it can prevent the agglomeration and accumulation of fat.
Increasing the viscosity and mouthfeel of coffee mate, making the product taste more delicious.

Food supplement
Due to Sodium caseinates high protein content, Sodium caseinate can be combined with cereal products to produce high-protein cereal products, elderly foods, infant foods and diabetic foods.
In addition, sodium caseinate can also be added to dairy products such as margarine, chocolate, whipped toppings, desserts, and cheese as an emulsifier and foaming agent to increase the viscosity of the aqueous phase, stabilize the emulsification system, increase the viscosity of bubbles, and prevent fat balls.

Cosmetics
Per the “European Commission database for information on cosmetic substances and ingredients”, sodium caseinate acts as an antistatic, hair conditioning, and skin conditioning agent in cosmetic and personal care products.

CHARACTERISTIC of Sodium caseinate:
White to yellowish colour, free flowing powder, typical milk taste and smell without foreign odour.

APPLICATIONS of Sodium caseinate:
Food supplements (baby food and sports nutrition), coffee creamers, drinks and dietetic products, meat industry, processed and hard cheese.

BENEFITS of Sodium caseinate:
Improvement of nutrition features, high emulsification, gelling properties (good viscosity), enrich products with organic amino-acids, foaming capability, water and fat absorbability.

Casein has a wide variety of uses, from being a major component of cheese, to use as a food additive.
The most common form of casein is sodium caseinate.
In milk, casein undergoes phase separation to form colloidal casein micelles, a type of secreted biomolecular condensate.
These highly purified caseinate proteins have a good nutritional value and excellent functional properties (emulsion, thickening).

Dietetics :
- Clinical nutrition
- Slimming and nutritional foods

Food industries :
- Meat processing
- Meat, ready-cooked dishes
- Dairy products
- Coffee whiteners

The enzyme trypsin can hydrolyze off a phosphorus-containing peptone.
The commercial product also known as casein is used in adhesives, binders, protective coatings, and other products.
The purified material is a water-insoluble white powder.
While Sodium caseinate is also insoluble in neutral salt solutions, Sodium caseinate is readily dispersible in dilute alkalies and in salt solutions such as those of sodium oxalate and sodium acetate.

Definition of Sodium caseinate:
Though commonly regarded as the principal protein in milk (approximately 3%), casein is actually a colloidal aggregate composed of several identifiable proteins together with phosphorus and calcium.
Sodium caseinate occurs in milk as a heterogeneous complex called calcium caseinate, which can be fractionated by a number of methods.
Sodium caseinate can be precipitated with acid at p H 4.7 or with the enzyme rennet (rennin).
The product of the latter method is called paracasein, the term being applied to any of the casein fractions involved, i.e., α, β, κ, etc.
Sodium Caseinates are protein products mainly used in the food-, sports- and diet- industries because of their various functional properties.

Product information
Sodium caseinates are produced from fresh skimmed milk.
With Neutralization the curds from the skim milk acid coagulation are made soluble.
After that, the protein contained in the curd is rendered functional and soluble.
Finally an alkali containing sodium (sodium hydroxide or soda) is added.
After that the dehydration (drying) is the last step.

Spray dried Sodium caseinates are known for their highly viscosity and emulsifying properties.
That’s why they are often applied in ready meals, sausages, coffee creamers and other dairy products.

Extruded sodium caseinates are neutralized in an extruder.
The dry matter of the final product is close to 94%.
In the next step the extruded sodium caseinates are grounded.
This allows to get a desired particle size. The product is often applied in coffee creamer and delicatessen.

Applications of Sodium caseinate:
-Ready-to-eat-meals
-Dairy products
-Dietetics
-Meat processing (for example sausages)
-Sports nutrition
-Coffee whiteners
-Product’s advantages

Sodium caseinate has Emulsifier and thickening qualities
Sodium caseinate has Texturizing properties
Sodium caseinate has a low viscosity

Sodium caseinate is made from casein which is the main protein present in milk which is used as an excellent food additive and for industrial purposes as it contains high protein & nutritional value.
In food industry Sodium caseinate is used to improve the quality of products.
Sodium caseinate is totally safe for consumption as it is announced as unrestricted food additive by FAO and WHO, so, used in all kinds of food products such as meat products, roasted food, artificial cream, coffee partner, baby food, cheese, various cake and candies, beverages, medicine for daily uses and many more.

Useful in a wide variety of applications, our Sodium Caseinate provides excellent functionality, helping to deliver texture in your products and provides whitening and a clean, milky flavour to beverages.
A spray dried protein powder made from premium quality acid casein.
Adds texture to your products by thickening and stabilising; adds thickness and opacity to sauces.

Highly functional for creamers, providing opacity and helping enhance foam structure.
Has a bland milky flavour making Sodium caseinate ideal for use in flavour sensitive formulations and high protein beverages.

Applications:
-Bakery
-Yogurt & ice cream
-Confectionery & chocolate
-Beverages

Chemical Properties
White to cream colored powder

Uses:
Sodium Caseinate is the sodium salt of casein, a milk protein.
Sodium caseinate is used as a protein source and for its functional properties such as water binding, emulsification, whitening, and whipping.
Sodium caseinate is used in coffee whiteners, nondairy whipped toppings, processed meat, and desserts.
Casein is the phosphoprotein of fresh milk; the rennin-coagulated product is sometimes called paracasein.
British nomenclature terms the casein of fresh milk caseinogen and the coagulated product casein.

As Sodium caseinate exists in milk it is probably a salt of calcium.
Casein is not coagulated by heat.
Sodium caseinate is precipitated by acids and by rennin, a proteolytic enzyme obtained from the stomach of calves. Casein is a conjugated protein belonging to the group of phosphoproteins.

Sodium caseinate is obtained from casein, a protein found in mammal's milk.
Sodium caseinate is rich in protein and is usually used as a protein supplement and food additive.

Uses Of Sodium Caseinate
-Protein supplement - This sodium caseinate powder can be used as a protein powder because it provides a rich source of high quality protein.
Sodium caseinate contains 90 per cent protein.
This essential nutrient is required for the body for building and repairing muscle tissues, improving bone health and boosting metabolism.
As sodium caseinate is high in protein, it would make an excellent protein supplement choice among athletes and people involved in strength training .

-Food additive - In the food industry, sodium caseinate is used as a food additive.
Sodium caseinate can be used to change the texture and stabilise many kinds of food products such as ice cream, cheese, coffee creamer, cereal bars, chocolate, bread, margarine, cheese-flavoured snacks and processed meats.

What Is Sodium Caseinate And How Its Made?
Milk is curdled by adding specialised enzymes or an acidic substance such as lemon juice or vinegar to it.
After which, the solid curds are separated from the whey, which is the liquid part of the milk.
Once the curd has been separated, they are treated with an alkali called sodium hydroxide, and are then dried and formed into a powder.

Sodium caseinate is called sodium caseinate, which is extracted from casein and contains 90 per cent protein.
Casein and sodium caseinate are almost the same products and can be used in the same manner, but they vary on a chemical level.
A high quality milk protein product, manufactured from fresh pasteurised skimmed milk through acid precipitation of the casein followed by neutralisation and drying.

Sodium Caseinate uses as follows:
In Food
Sodium Caseinate can be used as nutritional suppliments, thickener, emulsifier and texture stabilizer in food such as in bread, biscuits, candy, cakes, ice cream, yogurt drinks, and margarine, gravy, fast food, meat and seafood products.
In sausage, Sodium caseinate can be used to make fat distribution uniform, and enhance the adhesion property of meat. The dosage in sausage is 0.2%-0.3%.
In the fish cake, Sodium caseinate can improve the elasticity.

In ice cream, the use of sodium caseinate helps to the bubble of products stable and to prevent sugar condensation and contraction.
In bread Sodium caseinate is used to achieve enhancement.
In bread, biscuit and noodles, the dosage is 0.2%-0.5%; in foreign pastry, doughnut and chocolate, Sodium caseinate is 0.59%-5.0% while in cream milk beverages, it is 0.2%-0.39%.
In addition, gellan gum can also be used in dairy products and egg products.

In Beverage
Sodium Caseinate can be used as nutritional suppliments, thickener, emulsifier and texture stabilizer in beverage.

In Pharmaceutical
Sodium Caseinate can be used as intermediate in Pharmaceutical.

In Health and Personal care
Sodium Caseinate can be used in cosmetic and personal care products.

CHEMICAL PARAMETERS:
Protein (as is %): ≥ 87,0 (92,5% in dry matter)
Fat (%): ≤ 2,0
Moisture (%): ≤ 6,0
Ash (%): ≤ 4,5
pH: ≤ 7,0
Insolubility (ml): ≤ 1,0
Lactose (%): ≥ 0,5
Purity (disc): A, A/B

MICROBIOLOGICAL PARAMETERS:
Total Plate Count /g: ≤2 000
Coliforms/0,1g: absent
E- Coli /0,1 g: absent
Salmonella /25 g: absent
Antibiotics: absent
Yeast /g: ≤ 50
Mould /g: ≤ 50

SYNONYMS:
CASEIN SODIUM
CASEIN SODIUM MILK
CASEIN SODIUM SALT
casein,sodiumcomplex
Caseins,sodiumcomplexes
sodiumcasein
luodanbaisuanna
ldbsn
sodiumcomplex
NUTROSE
SODIUM CASEINATE
SODIUM CASEINATE FOOD GRADE
CASEIN FROM BOVINE MILK SODIUM
CaseinHydrolysate(Technical)(AcidHydrolysed)
Sodium caseinate, pract.
casein sodium salt from bovine milk
Casein Sodium from Milk
Casein Na salt
Casein SodiuM
Nutrose 〔Casein Sodium〕
Sodium caseite
Sodium Caseinate,>90%
Sodium caseinate USP/BP/EP
Sodium cascinate
SODIUM CETEARYL SULFATE
Sulfuric acid, C16-18-alkyl esters, sodium salts; SODIUM CETEARYL SULFATE, N° CAS : 59186-41-3. Origine(s) : Végétale, Synthétique. Nom INCI : SODIUM CETEARYL SULFATE. Classification : Sulfate, Tensioactif anionique. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CETYL SULFATE
cas no 7775-09-9 Soda Chlorate; Chloric acid, sodium salt; chlorax; Chlorsaure (German); Natrium Chloraat (Dutch); Natrium Chlorat (German); Sodio (Clorato Di) (Italian); Sodium (Chlorate De) (French); Chlorate of Soda;
SODIUM CHLORATE
cas no 7758-19-2 Chlorous Acid, Sodium Salt; Chlorite (sodium salt); Natriumchlorit (German); Clorito de sodio (Spanish); Chlorite de sodium (French);
SODIUM CHLORIDE PHARMA
SODIUM CHLORIDE PHARMA What is it? Sodium chloride Pharma (NaCl) is the chemical name for salt. Sodium chloride Pharma occurs naturally as the mineral halite. Commercially, it is obtained by the solar evaporation of salt water, or by mining. It is a component of Sodium chloride Pharma injections USP, and has production uses in pharmaceutical processing.[1] Sodium chloride Pharma has uses a channeling agent, and as an osmotic agent in the cores of controlled-release tablets. It also is used to help modify drug release, and to adjust porosity in tablet coatings. It can adjust drug release from gels and emulsions, and adjust the thickness of solutions by altering the ionic attributes of a formulation.[1] Sodium chloride Pharma is widely used in a variety of pharmaceutical products to produce isotonic solutions. It is used in normal nasal saline sprays, in intravenous lock flush solutions, and in eye washes or solutions. Sodium chloride Pharma tablets are also available to replace salt lost through excess sweating to help prevent muscle cramps. Sodium chloride Pharma solution may also be used to dilute medications for nebulization and inhalation.[2] As an excipient, Sodium chloride Pharma may be regarded as nontoxic and nonirritant. However, toxic effects following the oral ingestion of 0.5–1.0 g per kilogram of body weight in adults may occur.[1] Abstract Sodium chloride Pharma ceutical applications must fulfill high purity requirements, as excipients or active pharmaceutical ingredients (API). In addition to the chemical purity, bacteriological limits must also be observed. The requirements are defined in pharmacopoeias (BP, Ch.P., JP, Ph.Eur., USP, KP, Ph.Rus.) and individually specified in quality agreements between salt producers and pharmaceutical companies. Solar salts and rock salts cannot be used directly as pharmaceutical salt due to their insufficient purity and/or increased microbial content. The required purity can only be achieved by crystallizing vacuum salt. For this purpose, the methods single effect, multiple effect, MVR and recrystallization are available. The first three technologies require additionally the removal of mother liquor from the crystals by washing with purified water, usually per production campaign. The recrystallization process doesn’t require additional washing due to the low sulfate concentration in the process brine loop. The sulfate requirements for pharmaceutical salt will be automatically fulfilled. Generally, high bromide and potassium contents in the crude salt or in the crude brine make the production of pharmaceutical salt difficult or even impossible. Several case studies from Europe, Asia and Africa confirm the recrystallization process as suitable for the production of pharmaceutical salt. The production of API Sodium chloride Pharma requires compliance with GMP standards (FDA, EU-GMP). Pharmaceutical salt with extreme low sulfate limits, like in China, needs additional sulfate removal from the raw brine and/or double crystallization. Since anticaking agents or free-flow additives may not be used for pharmaceutical salt, special measures are required to prevent caking of the salt. Granulation can be an additional process step. One possible application for granulation is the production of dry dialysis concentrates, where only the pharmaceutical grade vacuum salt is granulated or in mixture with other salts required for the dialysis. The preparation of pharmaceutical grade brine requires removal of undesirable ions, such as calcium, magnesium, and sulfate. This can be achieved by chemical precipitation, ion exchange and/or nanofiltration. The main applications of pharmaceutical sodium chloride are hemodialysis and peritoneal dialysis. Further applications include IV (intravenous) solutions, oral rehydration salts and extraction of biological heparin. Due to the worldwide growing demand, this market segment might be of increasing interest for salt producers. Pharmaceutical grade sodium chloride is required for dialysis solutions (hemodialysis, peritoneal dialysis, hemofiltration), intravenous (IV) injections, oral rehydration salts, channeling agents, osmotic agents, cleansing solutions, pharmaceutical formulations, nutrition (enteral, parenteral), extraction of biological heparin, and non-medical applications (corrosion testing, cosmetics, etc.). Dialysis application dominates with a 50% share the global market due to the worldwide mounting kidney failure. The worldwide increasing wealth also drives the pharmaceutical grade Sodium chloride Pharma market as spending in the healthcare sector are increasing. Dialysis is used as replacement for lost kidney functions, cleaning the blood from waste products through artificial means. Renal dialysis is vital to a growing number of patients around the world and the only alternative for many people, because kidney transplantation is precluded due to a shortage of donor organs. Sodium chloride is the major component of dry and liquid hemodialysis concentrates, as well as peritoneal dialysis solutions. The second key application of pharmaceutical grade Sodium chloride Pharma are IV solutions. These solutions have a wide range of applications which include regulation of blood pressure, hydration, electrolyte balance, medication and nutrition delivery, flushing, cleaning out IV lines and feed tubes, wound cleaning, renal dialysis and plasma collection. Urological and gynecological surgeries, and knee and hip replacements, may require up to 30 liters of solution for each treatment. Sodium chloride Pharma 0.9% injection bags are currently in shortage in the U.S. [1]. Most often, diarrhea kills children and elder people by dehydration. In order to replace the lost liquid, it is essential to feed extra drinks as soon as diarrhea starts. Oral rehydration therapy with oral rehydration salt (ORS) solutions is a cheap, simple and effective way to treat dehydration caused by diarrhea. It has substantially contributed to the dramatic global reduction in mortality from diarrheal disease. ORS is the name of a balanced glucose-electrolyte mixture, where each sachet with 20.5 grams contains 2.6 grams Sodium chloride Pharma, 13.5 grams anhydrous glucose, 1.5 grams potassium chloride and 2.9 grams tri Sodium chloride Pharma citrate, dihydrate [2]. Global pharmaceutical grade Sodium chloride Pharma consumption is estimated to reach 690 kt by 2019 [3]. The market is continuously growing, with North-America as the leading consumer, followed by the Asia-Pacific region and Europe. U.S., Germany and Japan are also among the world’s largest consumers. The Asia-Pacific region with China, India, Indonesia, Vietnam, etc. is the fastest growing market across the world, followed by North-America and Europe. By 2021, an annual growth rate of approximately 6% of the worldwide dialysis patients is expected. The overall pharmaceutical grade Sodium chloride Pharma market will continue to grow with a compound annual growth rate (CAGR) of more than 5% in terms of volume. It is estimated to reach 1,000 kt by 2025, making the Asia-Pacific region, Africa, South-America, Eastern Europe, and the Russian Commonwealth particularly attractive for new capacities or capacity expansion. At present, only around 30 companies out of hundreds of salt producers worldwide produce pharmaceutical grade Sodium chloride Pharma. One reason for this is that pharmaceutical grade Sodium chloride Pharma is a salt specialty with a market share of less than 1% of the total global salt demand. The major part goes to applications in the chemical industry, road de-icing, human and animal nutrition and water treatment. In addition, pharmaceutical salt is only suitable in the form of vacuum salt, and specific measures in production, quality monitoring and documentation are necessary. Extra certifications and qualifications are also required. Pharmaceutical grade Sodium chloride Pharma is required in injections; hemodialysis, peritoneal dialysis, & hemofiltration solutions, oral rehydration salts (ORS), channeling agents/ osmotic agent, mechanical cleansing solutions, and others (dietary formulations and infant formulations). The report covers qualitative aspect and detailed volume (kilotons) and value ($Million) forecasts along with its applications and region. This study aims at estimating the global market for 2013 and to project the expected demand of the same by 2019. This market research study provides a detailed qualitative and quantitative analysis of the global pharmaceutical grade Sodium chloride Pharma market. It provides a comprehensive review of key market drivers, restraints, opportunities, winning imperatives, challenges, and key issues in the market. The market is segmented and projected for important regions, such as Asia-Pacific, Europe, North America and Rest of the World, which are further segmented for key countries in each region. This research report categorizes the global pharmaceutical grade Sodium chloride Pharma market on the basis of applications and region along with forecasting volume, value, and trends in each of the markets. On the basis of application: Pharmaceutical grade Sodium chloride Pharma is characterized on the basis of applications that include injections, hemodialysis, peritoneal dialysis, & hemofiltration solutions, oral rehydration salts (ORS), channeling agents/ osmotic agent, mechanical cleansing solutions, and others (dietary formulations and infant formulations). These applications are described in detail in this report. On the basis of region: Regional level segmentation is done for Pharmaceutical grade Sodium chloride Pharma that includes North America, Asia-Pacific, Europe and Rest of the World and further for key countries in each region that include U.S., China, Japan, India, Germany, France, and Belgium. South America, Africa and Middle East are collectively considered in Rest of the World. The pharmaceutical grade Sodium chloride Pharma market is estimated to witness a CAGR of 6.9% between 2014 and 2019 in terms of volume, and the consumption is anticipated to reach 690 KT by 2019. The report on ‘Pharmaceutical grade Sodium chloride Pharma market’ considers study by its applications. Pharmaceutical grade Sodium chloride Pharma finds its application in injections, dialysis, oral rehydration salts (ORS), pharmaceutical formulations, mechanical cleansing solutions, and others (dietary formulations and infant formulations). The market is estimated to increase significantly in Asia-Pacific due to the increasing awareness and increased spending of the region in the healthcare sector. The growing dialysis and IV solutions applications are projected to register descent CAGRs in terms of volume, during the forecast period (2014- Growing awareness, increased spending in the healthcare sector and excessive availability and accessibility makes Asia-Pacific an attractive market for capacity expansion. Asia-Pacific is the fastest growing market across the world, followed by North America and Europe. With the aforementioned opportunities, the overall pharmaceutical grade Sodium chloride Pharma market remains attractive for coming years. The key participants in this market are AkzoNobel [Sanal Pharma] (The Netherlands), K+S AG (Germany), Dominion Salt (New Zealand), Salinen Austria AG (Austria), Cargill Incorporated (U.S.), Sudsalz (Germany), Cheetham Salt (Australia) and Hub Salt (Pakistan). This report follows both top-down and bottom-up approaches to estimate and forecast the global market size. Sodium chloride Pharma, ACS, USP-EP-JP Hawkins carries high purity, pharmaceutical grade Sodium chloride Pharma. We also carry pharmaceutical grade Sodium chloride Pharma in bulk and in multiple packaging options. Appearance: White Crystals Molecular Weight: 58.44 Chemical Formula: NaCl CAS #: 7647-14-5 Solubility: 36g/100ml water at 20°C Storage Conditions: Store in tight containers at 15-30ºC Sodium chloride Pharma, ACS supplied by Hawkins, Inc. Pharmaceutical Group meets the standards of the American Chemical Society (ACS). Sodium chloride Pharma, USP-EP-JP: Sodium chloride Pharma, USP/EP/JP supplied by Hawkins, Inc. Pharmaceutical Group meets the standards of United States Pharmacopeia (USP), European Pharmacopeia (EP), and Japanese Pharmacopeia (JP) monograph standards below. Product Description Sodium chloride Pharma (Pharma Grade) is a white crystalline solid commonly known as common salt, table salt or halite, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of Sodium chloride Pharma and chloride ions. It is one of the most abundant minerals on Earth and an essential nutrient for many animals and plants. Pharmaceutical grade Sodium chloride Pharma or pharmaceutical salt is manufactured under appropriate GMP controls norm for pharmaceutical production it is a screened, granular, white crystalline Sodium chloride Pharma manufactured under stringent process control procedures. WE GUARANTEE CONTINOUS HIGH QUALITY Sodium chloride Pharma Pharmaceutical Quality are committed to purity our customers can rely on. Salt in its purest form and without additives plays an essential role in the pharmaceutical industry, in the manufacture medical and pharmaceutical products. Active Pharmaceutical Ingredients - API Comply with the monographs of all international pharmacopoeia Registered licenses for all main markets, including US DMF P Sodium chloride Pharma Pharmaceutical Quality - API quality P+ Sodium chloride Pharma Pharmaceutical Quality - API quality Dedicated manufacturing line and finishing area - FDA accepted Manufacturing based on GMP-ICH Q7 guidelines for API What is Sodium chloride Pharma? Sodium chloride Pharma (NaCl), also known as salt, is an essential compound our body uses to: absorb and transport nutrients maintain blood pressure maintain the right balance of fluid transmit nerve signals contract and relax muscles Salt is an inorganic compound, meaning it doesn’t come from living matter. It’s made when Na (Sodium chloride Pharma) and Cl (chloride) come together to form white, crystalline cubes. Your body needs salt to function, but too little or too much salt can be harmful to your health. While salt is frequently used for cooking, it can also be found as an ingredient in foods or cleansing solutions. In medical cases, your doctor or nurse will typically introduce Sodium chloride Pharma as an injection. Read on to see why and how salt plays an important role in your body. What’s the difference between salt and Sodium chloride Pharma? Despite the fact that many people use the words Sodium chloride Pharma and salt interchangeably, they are different. Sodium chloride Pharma is a mineral and a nutrient that’s naturally occurring. Unprocessed foods like fresh vegetables, legumes, and fruit can naturally have Sodium chloride Pharma. Baking soda has Sodium chloride Pharma too. But about 75 to 90 percent of the Sodium chloride Pharma we get comes from salt already added to our foods. The weight of salt is usually a combination of 40 percent Sodium chloride Pharma and 60 percent chloride. How can you use Sodium chloride Pharma? How is Sodium chloride Pharma used medically? When your doctor prescribes a treatment with salt, they’ll use the term Sodium chloride Pharma. Sodium chloride Pharma mixed with water creates a saline solution, which has a number of different medical purposes. Medical uses for a saline solution include: Name Use IV drips to treat dehydration and electrolyte imbalances; can be mixed with sugar Saline flush injections to flush a catheter or IV after medication is administered Nasal irrigation or nasal drops to clear congestion and reduce post nasal drip and keep the nasal cavity moist Cleaning wounds to wash and rinse the area for a clean environment Eye drops to treat eye redness, tearing, and dryness Sodium chloride Pharma inhalation to help create mucus so you can cough it out It’s important to consult a doctor and only use medical saline products (excluding over-the-counter products like contact solution) as prescribed. Different types of saline solutions will contain different ratios of Sodium chloride Pharma to water. Saline that’s used for different purposes may also have additional chemicals or compounds added in. How much salt should you eat? Although salt and Sodium chloride Pharma are different, salt is 40 percent Sodium chloride Pharma and we get most of our Sodium chloride Pharma intake from salt. Many companies and restaurants use salt to preserve, season, and flavor their food. Since one teaspoon of salt has about 2,300 milligrams (mg) of Sodium chloride Pharma, it’s easy to go over the daily value. According to the CDCTrusted Source, the average American eats over 3,400 mg each day. You can limit your Sodium chloride Pharma intake by eating unprocessed foods. You may also find it easier to manage your Sodium chloride Pharma intake by making more meals at home. The American Dietary Guidelines recommendTrusted Source that Americans consume less than 2,300 mg of Sodium chloride Pharma per day. Low- Sodium chloride Pharma diet Your doctor may suggest sticking to a low- Sodium chloride Pharma diet if you’re at risk for high blood pressure or heart disease. If you have heart disease, you should try to consume less than 2,000 mg of Sodium chloride Pharma per day, although the American Heart Association (AHA) recommends keeping it under 1,500 mg. Eliminating processed foods like sausages and ready-made meals may make maintaining this number easier. Top ten low- Sodium chloride Pharma frozen meals » What does your body use Sodium chloride Pharma for? Nutrient absorption and transportation Sodium chloride Pharma and chloride play an important role in your small intestine. Sodium chloride Pharma helps your body absorb: Maintaining resting energy Sodium chloride Pharma and potassium are electrolytes in the fluid outside and inside your cells. The balance between these particles contributes to how your cells maintain your body’s energy. It’s also how nerves send signals to the brain, your muscles contract, and your heart functions. Maintaining blood pressure and hydration Your kidneys, brain, and adrenal glands work together to regulate the amount of Sodium chloride Pharma in your body. Chemical signals stimulate the kidney to either hold on to water so it can be reabsorbed into the bloodstream or get rid of excess water through the urine. When there’s too much Sodium chloride Pharma in your bloodstream, your brain signals your kidneys to release more water into your blood circulation. This leads to an increase in blood volume and blood pressure. Decreasing your Sodium chloride Pharma intake can lead to less water being absorbed into the bloodstream. The result is a lower blood pressure. Side effects For the most part, Sodium chloride Pharma isn’t a health hazard, but in excessive amounts it can irritate your: Excess salt While Sodium chloride Pharma is essential, it’s also in large amounts of almost everything we eat. Eating too much salt is linked to: Too little Sodium chloride Pharma Sodium chloride Pharma deficiency is usually a sign of an underlying disorder. The name for this condition is hyponatremia. It can be due to: About 75 to 90 percent of our Sodium chloride Pharma intake comes from salt, or Sodium chloride Pharma. Salt provides an essential mineral (Sodium chloride Pharma) that our bodies use for functions such as maintaining blood pressure and absorbing nutrients. You can also use salt for seasoning foods, cleaning your household items, and addressing certain medical issues. The American Dietary Guidelines suggest you eat less than 2,300 mg of Sodium chloride Pharma per day. You can do this by eating less processed foods, like cold cuts and prepackaged foods, and cooking meals at home. What foods have the least amount of Sodium chloride Pharma? » Too much salt can lead to bigger health concerns like high blood pressure, heart disease, and kidney disease. Lowering your salt intake while increasing how much potassium you get can help lower your risk for those conditions. You should consult your doctor before adding more Sodium chloride Pharma to your diet. Most people exceed the recommended amount, but people who drink excessive amounts of water, have persistent diarrhea, or participate in long endurance events may have Sodium chloride Pharma deficiency. In these cases, good oral hydration may help. In more severe cases, a healthcare professional may need to provide intravenous (IV) saline solution to restore hydration and electrolytes. Sodium chloride Pharma Sodium chloride Pharma (NaCl), commonly known as salt, is one of the most abundant minerals on Earth and an essential nutrient for many animals and plants. It is naturally found in seawater and in underground rock formations. What is Sodium chloride Pharma? Sodium chloride Pharma is the chemical name for salt. Sodium chloride Pharma is an electrolyte that regulates the amount of water in your body. Sodium chloride Pharma also plays a part in nerve impulses and muscle contractions. Sodium chloride Pharma is used to treat or prevent Sodium chloride Pharma loss caused by dehydration, excessive sweating, or other causes. Sodium chloride Pharma may also be used for purposes not listed in this medication guide. Important Information You should not take Sodium chloride Pharma if you have ever had an allergic reaction to it, or if you have high Sodium chloride Pharma levels in your blood. Before you take Sodium chloride Pharma, tell your doctor if you have high blood pressure, kidney or liver disease, fluid retention (especially around your legs or your lungs), congestive heart failure, preeclampsia of pregnancy if you are on a low-salt diet, or if you are allergic to any foods or drugs. Tell your doctor if you are pregnant or breast-feeding. Stop using Sodium chloride Pharma and call your doctor at once if you have stomach pain, nausea and vomiting, or swelling in your hands or feet. Call your doctor if your symptoms do not improve, or if they get worse while using Sodium chloride Pharma. Before taking this medicine You should not take Sodium chloride Pharma if you have ever had an allergic reaction to it, or if you have high Sodium chloride Pharma levels in your blood. To make sure you can safely take Sodium chloride Pharma, tell your doctor if you have any of these other conditions: FDA pregnancy category C. It is not known whether Sodium chloride Pharma will harm an unborn baby. Tell your doctor if you are pregnant or plan to become pregnant while using this medication. It is not known whether Sodium chloride Pharma passes into breast milk or if it could harm a nursing baby. Do not use this medication without telling your doctor if you are breast-feeding a baby. How should I take Sodium chloride Pharma? Take exactly as prescribed by your doctor. Do not take in larger or smaller amounts or for longer than recommended. Follow the directions on your prescription label. Take Sodium chloride Pharma with a full glass (8 ounces) of water. Sodium chloride Pharma may be taken with or without food. To be sure this medication is helping your condition, your blood may need to be tested often. Visit your doctor regularly. Do not share this medication with another person, even if they have the same symptoms you have. Call your doctor if your symptoms do not improve, or if they get worse while using Sodium chloride Pharma. What should I avoid while taking Sodium chloride Pharma? Avoid becoming overheated or dehydrated during exercise and in hot weather. Follow your doctor's instructions about the type and amount of liquids you should drink. In some cases, drinking too much liquid can be as unsafe as not drinking enough. Sodium chloride Pharma side effects Get emergency medical help if you have any of these signs of an allergic reaction: hives; difficult breathing; swelling of your face, lips, tongue, or throat. Stop using Sodium chloride Pharma and call your doctor at once if you have a serious side effect such as: This is not a complete list of side effects and others may occur. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. See also: Sodium chloride Pharma side effects (in more detail) What other drugs will affect Sodium chloride Pharma? There may be other drugs that can interact with Sodium chloride Pharma. Tell your doctor about all medications you use. This includes prescription, over-the-counter, vitamin, and herbal products. Do not start a new medication without telling your doctor. See also: Sodium chloride Pharma drug interactions (in more detail) Further information Remember, keep this and all other medicines out of the reach of children, never share your medicines with others, and use this medication only for the indication prescribed. Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances. Sodium chloride Pharma (NaCl) What is Sodium chloride Pharma? Sodium chloride Pharma is an ionic compound in which the Sodium chloride Pharma and chloride ions are in the ratio of 1:1. It is commonly called table salt, common salt or halite (the mineral form of common salt). It is the salt which is mainly responsible for the salinity of seawater and for the extracellular fluid which is present in many multi-cellular organisms. It finds its application from household to industrial processes. Seawater is a major source of this salt. The chemical formula of Sodium chloride Pharma is NaCl. The Occurrence of Sodium chloride Pharma Mostly all the chemical compounds which consist of chlorine or Sodium chloride Pharma is usually derived from salts. It is distributed abundantly in nature. Salt is a major ingredient of the dissolved materials in seawater. Pure salt can be obtained from mineral halite. Sodium chloride Pharma is obtained by mining the deposits and brine solution is obtained by passing water into the deposits. Hence the salts get dissolved then the solution is pumped out. Evaporation of the sea water is one of the major processes used to obtain salt and is most widely followed in countries like India. The crystals obtained usually consists of impurities such as calcium sulfate, Sodium chloride Pharma sulfate etc. Pure crystals are obtained by dissolving the salts with little water and filtering the solution. Preparation of Sodium chloride Pharma However, Sodium chloride Pharma and chlorine respond together to generate a substance that is familiar to nearly everybody in the globe that is Sodium chloride Pharma, or table salt, or common salt. 2Na(s) + Cl2(g) → 2NaCl(s) Properties of Sodium chloride Pharma It is easily soluble in water and partially soluble or insoluble in other liquids. They are white crystals which do not have an odour but possess a taste. In its aqueous state NaCl acts as a good conductor of electricity due to the free movement of the ions. It has a melting point of 801°C and a boiling point of 1,413°C. Sodium chloride Pharma Crystal Structure Sodium chloride Pharma Crystal Structure Uses of Sodium chloride Pharma It is widely used in food industries as a food preservative and as a flavour enhancer. It is a major raw material in the industrial manufacturing of various chemicals such as Sodium chloride Pharma carbonate, Sodium chloride Pharma hydrogen carbonate etc. This salt is used in glass production. In cold countries, it is used to prevent the build-up of ice on roads, bridges etc which is important for safe driving conditions. Frequently Asked Questions – FAQs What is Sodium chloride Pharma used for? The basic compound used by our body to digest and transport nutrients is Sodium chloride Pharma ( NaCl), also known as salt. Preservation of blood pressure. Keeping the correct fluid balance. Why the formula of Sodium chloride Pharma is NaCl? If Sodium chloride Pharma atoms interact with chlorine atoms, Sodium chloride Pharma is formed. Sodium chloride Pharma will donate an electron (which is a negative-charged particle) to chlorine as this happens. The chemical formula for Sodium chloride Pharma is NaCl, indicating that there is precisely one chloride atom for every Sodium chloride Pharma atom present. Does Sodium chloride Pharma kill bacteria? Sodium chloride Pharma is not only used for a number of different things, but is a good antibacterial agent as well. An antibacterial agent is one that prevents bacteria from developing and multiplying. What is the primary composition of NaCl? Formula and structure: NaCl is the molecular formula of Sodium chloride Pharma and 58.44 g / mol is its molar mass. It is an ionic compound which consists of a chloride anion (Cl-) and a Sodium chloride Pharma cation (Na+).
SODIUM CHLORITE
SODIUM CHLORITE Sodium chlorite Jump to navigationJump to search Sodium chlorite Na+.svg Chlorition.png The sodium cation Space-filling model of the chlorite anion Sodium chlorite 450g.jpg Names IUPAC name Sodium chlorite Other names Chlorous acid, sodium salt Textone Identifiers CAS Number 7758-19-2 check 49658-21-1 (trihydrate) ☒ 3D model (JSmol) Interactive image ChEBI CHEBI:78667 ☒ ChemSpider 22860 check ECHA InfoCard 100.028.942 Edit this at Wikidata EC Number 231-836-6 KEGG C19523 ☒ PubChem CID 23668197 RTECS number VZ4800000 UNII G538EBV4VF check UN number 1496 CompTox Dashboard (EPA) DTXSID8021272 Edit this at Wikidata InChI[show] SMILES[show] Properties Chemical formula NaClO2 Molar mass 90.442 g/mol (anhydrous) 144.487 g/mol (trihydrate) Appearance white solid Odor odorless Density 2.468 g/cm3, solid Melting point anhydrous decomposes at 180–200 °C trihydrate decomposes at 38 °C Solubility in water 75.8 g/100 mL (25 °C) 122 g/100 mL (60 °C) Solubility slightly soluble in methanol, ethanol Acidity (pKa) 10-11 Structure Crystal structure monoclinic Thermochemistry Std enthalpy of formation (ΔfH⦵298) -307.0 kJ/mol Pharmacology ATC code D03AX11 (WHO) Hazards Safety data sheet SDS GHS pictograms GHS03: OxidizingGHS05: CorrosiveGHS06: ToxicGHS09: Environmental hazard GHS Signal word Danger GHS hazard statements H272, H301, H310, H330, H314, H318, H400 GHS precautionary statements P210, P220, P221, P260, P262, P264, P270, P271, P273, P280, P284, P301+330+331, P303+361+353, P305+351+338, P310, P361, P363, P370+378, P391, P403+233, P405, P501 Ingestion hazard Category 3 Inhalation hazard Category 2 Eye hazard Category 1 Skin hazard Category 1B NFPA 704 (fire diamond) NFPA 704 four-colored diamond 021OX Flash point Non-flammable Lethal dose or concentration (LD, LC): LD50 (median dose) 350 mg/kg (rat, oral) Related compounds Other anions Sodium chloride Sodium hypochlorite Sodium chlorate Sodium perchlorate Other cations Potassium chlorite Barium chlorite Related compounds Chlorine dioxide Chlorous acid Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant. Contents 1 Use 1.1 Chemical reagent 1.2 Acidified sodium chlorite 1.3 Use in public crises 2 Safety 3 Toxicity 4 Manufacture 5 General references 6 References 7 External links Use The main application of sodium chlorite is the generation of chlorine dioxide for bleaching and stripping of textiles, pulp, and paper. It is also used for disinfection of municipal water treatment plants after conversion to chlorine dioxide.[1]:2 An advantage in this application, as compared to the more commonly used chlorine, is that trihalomethanes (such as chloroform) are not produced from organic contaminants.[1]:25,33 Chlorine dioxide generated from sodium chlorite is approved by FDA under some conditions for disinfecting water used to wash fruits, vegetables, and poultry.[2][full citation needed] Sodium chlorite, NaClO2, sometimes in combination with zinc chloride, also finds application as a component in therapeutic rinses, mouthwashes,[3][4] toothpastes and gels, mouth sprays, as preservative in eye drops,[5] and in contact lens cleaning solution under the trade name Purite. It is also used for sanitizing air ducts and HVAC/R systems and animal containment areas (walls, floors, and other surfaces). Chemical reagent In organic synthesis, sodium chlorite is frequently used as a reagent in the Pinnick oxidation for the oxidation of aldehydes to carboxylic acids. The reaction is usually performed in monosodium phosphate buffered solution in the presence of a chlorine scavenger (usually 2-methyl-2-butene).[6] In 2005, sodium chlorite was used as an oxidizing agent to convert alkyl furans to the corresponding 4-oxo-2-alkenoic acids in a simple one pot synthesis.[7] Acidified sodium chlorite Mixing sodium chlorite solution with a weak food-grade acid solution (commonly citric acid), both stable, produces short-lived acidified sodium chlorite (ASC) which has potent decontaminating properties. Upon mixing the main active ingredient, chlorous acid is produced in equilibrium with chlorite anion. The proportion varies with pH, temperature, and other factors, ranging from approximately 5–35% chlorous acid with 65–95% chlorite; more acidic solutions result in a higher proportion of chlorous acid. Chlorous acid breaks down to chlorine dioxide which in turn breaks down to chlorite anion and ultimately chloride anion. ASC is used for sanitation of the hard surfaces which come in contact with food and as a wash or rinse for a variety of foods including red meat, poultry, seafood, fruits and vegetables. Because the oxo-chlorine compounds are unstable when properly prepared, there should be no measurable residue on food if treated appropriately.[8][9] ASC also is used as a teat dip for control of mastitis in dairy cattle.[10] Use in public crises The U.S. Army Natick Soldier Research, Development, and Engineering Center produced a portable "no power required" method of generating chlorine dioxide, known as ClO2, gas, described as one of the best biocides available for combating contaminants, which range from benign microbes and food pathogens to Category A Bioterror agents. In the weeks after the 9/11 attacks when anthrax was sent in letters to public officials, hazardous materials teams used ClO2 to decontaminate the Hart Senate Office Building, and the Brentwood Postal Facility.[11] In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many disinfectants that meet its criteria for use in environmental measures against the causative coronavirus.[12][13] Some are based on sodium chlorite that is activated into chlorine dioxide, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action. Safety Sodium chlorite, like many oxidizing agents, should be protected from inadvertent contamination by organic materials to avoid the formation of an explosive mixture. The chemical is stable in pure form and does not explode on percussive impact, unless organic contaminants are present, such as on a greasy hammer striking the chemical on an anvil.[14] It also easily ignites by friction if combined with a reducing agent like powdered sugar, sulfur or red phosphorus. Toxicity Sodium chlorite is a strong oxidant and can therefore be expected to cause clinical symptoms similar to the well known sodium chlorate: methemoglobinemia, hemolysis, kidney failure.[15] A dose of 10-15 grams of sodium chlorate can be lethal.[16] Methemoglobemia had been demonstrated in rats and cats,[17] and recent studies by the EMEA have confirmed that the clinical symptomatology is very similar to the one caused by sodium chlorate in rats, mice, rabbits, and green monkeys.[18] There is only one human case in the medical literature of chlorite poisoning.[19] It seems to confirm that the toxicity is equal to sodium chlorate. From the analogy with sodium chlorate, even small amounts of about 1 gram can be expected to cause nausea, vomiting and even life-threatening hemolysis in glucose-6-phosphate dehydrogenase deficient persons. The EPA has set a maximum contaminant level of 1 milligram of chlorite per liter (1 mg/L) in drinking water.[20] Sellers of “Miracle Mineral Solution”, a mixture of sodium chlorite and citric acid also known as "MMS" that is promoted as a cure-all have been convicted, fined, or otherwise disciplined in multiple jurisdictions around the world. MMS products were variously referred to as snake oil and complete quackery. The U.S. Food and Drug Administration has issued multiple warnings against consuming MMS.[21] [22] [23][24] [25][26] [27][28][29] Manufacture The free acid, chlorous acid, HClO2, is only stable at low concentrations. Since it cannot be concentrated, it is not a commercial product. However, the corresponding sodium salt, sodium chlorite, NaClO2 is stable and inexpensive enough to be commercially available. The corresponding salts of heavy metals (Ag+, Hg+, Tl+, Pb2+, and also Cu2+ and NH4+) decompose explosively with heat or shock. Sodium chlorite is derived indirectly from sodium chlorate, NaClO3. First, sodium chlorate is reduced to chlorine dioxide, typically in a strong acid solution using reducing agents such as sodium sulfite, sulfur dioxide, or hydrochloric acid. This intermediate is then absorbed into a solution of aqueous sodium hydroxide where another reducing agent converts it to sodium chlorite. Even hydrogen peroxide can be used as the reducing agent, giving oxygen gas as its byproduct rather than other inorganic salts or materials that could contaminate the desired product.[30] Sodium Chlorite: Can It Be Used as Medicine? Chlorite vs. chloride Typical uses Health claims Alleged medical uses Safety and side effects Takeaway What’s sodium chlorite? Sodium chlorite — also referred to as chlorous acid, sodium salt textone, and Miracle Mineral Solution — is composed of sodium (Na), chlorine (Cl), and oxygen (O2). Many claims have been made for its use as a health supplement. However, the U.S. Food and Drug Administration (FDA)Trusted Source warns that it’s a dangerous, potentially life threatening chemical that should never be swallowed. It isn’t the same as sodium chloride Don’t confuse sodium chlorite with sodium chloride. Sodium chloride (NaCl) is also called table salt. Sodium chloride is used for many things, but it’s typically thought of as a seasoning and food preservative. Sodium chlorite (NaClO2) is typically found in an industrial setting as a bleach and a disinfectant. How’s sodium chlorite used? Sodium chlorite is marketed to both consumers and industries for various uses. Some consumer uses of sodium chlorite include: water treatment and purification surface cleaner for areas of food preparation antimicrobial treatment for food, especially seafood Larger concentrations of sodium chlorite are commonly used for industrial purposes, such as: bleaching and stripping of textiles, pulp, and paper sterilizing agent used in water treatment plants Are there any health benefits to sodium chlorite? Sodium chlorite has been promoted as a health supplement and a treatment for various illnesses, such as: common cold arthritis HIV malaria cancer hepatitis amyotrophic lateral sclerosis (ALS) While there are anecdotal reports from people who claim to have experienced medical relief by ingesting sodium chlorite solutions, there’s no reliable scientific evidence showing a benefit. The FDA issued a warning in 2019 to not drink sodium chlorite products, stating they are dangerous.Trusted Source Promoted health benefits Despite the lack of evidence supporting the use of sodium chlorite as a medication, some continue to support this chemical as a form of alternative medicine. Of these supporters, people with ALS — also known as Lou Gehrig’s disease — report the most positive benefits from sodium chlorite. ALS is a rare neurological disease that progressively leads to: muscle weakness impaired motor function muscle cramps slurred speech Eventually this condition can shut down vital parts of the body. Only about 10 percent of people with this condition live for longer than 10 years following diagnosis. People with ALS who use sodium chlorite report positive benefits, including: increased muscle activity clearer speech slowed rate of ALS progression improved flexibility improved motor functions, balance, and speed of movement Sodium chlorite received approval in the European Union as an “orphan drug” in the treatment of ALS. These drugs are usually used for rare conditions and don’t always require proven safety and effectiveness. A small number of studies have evaluated sodium chlorite in people with ALS, but the results are too preliminary to know if it’s beneficial. Is it safe to ingest sodium chlorite? Ingesting sodium chlorite as a form of alternative medicine for extended periods of time or in larger dosages is unsafe and can cause a variety of symptoms, including: fatigue diarrhea headache nausea excess saliva insomnia dehydration lowered blood pressure In addition to these symptoms, there are more serious health problems that healthcare providers warn may result from use of this chemical, such as: worsening of ALS skin burns nosebleeds hoarse throat coughing bronchitis shortness of breath In high concentrations, sodium chlorite is typically used as a bleach and a disinfectant. Sodium chlorite can be supplied either as a solid or a solution. Both forms are potentially dangerous and require a high degree of safety and skill during storage and handling. Sodium chlorite is a white flaky salt prepared at a concentration of 80%. It is extremely reactive and will explode in a violent reaction on contact with organic substances including basic items such as gloves and clothing, spillage control materials such as sawdust and cotton waste, or even oil and grease. Heat, friction or just impact can lead to an explosion, so the solid should be dissolved in water to form a solution as quickly as possible. In practice the dry form is simply too dangerous to transport, store and handle for normal WTP use, so liquid sodium chlorite is normally employed. Sodium chlorite is a highly corrosive liquid that requires careful handling to avoid damage to pipe work and equipment. Spillages of sodium chlorite must be washed away before they evaporate to leave the flammable dry residue. It has to be stored under temperature controlled conditions and is supplied at a concentration of 25–26% w/w, which gives the sodium chlorite optimum storage characteristics. At this concentration it still freezes at −15°C and is also explosive at relatively low temperatures and so should be maintained at below 40°C (Cowley, 1993). The solution is stable under neutral to slightly acidic conditions but will decay under more acidic conditions which can be prevented by adding a small amount of alkalinity (<10 mg CaCO3 L−1). However, it will also decay if the alkalinity buffers the solution above pH 8.0 (Eq. 32.6), so pH control during storage is an important consideration. Chlorate is present as an impurity in most sodium chlorite products with contamination levels usually 2–3% by weight of chlorite. [32.6] Chlorine dioxide has a relatively short half life and so is made up as required at a concentration of 1g L−1 if used in open systems or 10 g L−1 if used in enclosed pressurized systems. It is produced by reacting chlorine gas or a solution of chlorine with sodium chlorite in a glass mixing chamber which is filled with porcelain Raschig rings or Teflon® chips (Eq. 32.5). Stoichiometrically 0.5 kg of Cl2 and 1.34 kg NaClO2 are required to produce 1 kg of ClO2 (Fig. 32.1; Black and Veatch Corporation, 2010). Once prepared, ClO2 can be photo-chemically degraded in sunlight to form chlorate, chlorite, hydrogen peroxide, oxygen and chlorine, and so it must be stored and used in the dark. Similarly it is destroyed by UV light. Sign in to download full-size image Figure 32.1. Schematic diagram of the generation and use of chlorine dioxide using chlorine gas. Alternatively chlorine dioxide can be produced by reacting the sodium chlorite with hydrochloric acid. However, this process uses 1.25 times more NaClO2 than the chlorine reaction to produce the same weight of ClO2 (Eq. 32.7). Stoichiometrically 0.54 kg of HCl and 1.67 kg NaClO2 are required to produce 1 kg of ClO2, although in practice 50% more NaClO2 is required and possibly up to three times the amount of HCl may be needed to lower the pH sufficiently for the reaction to occur at pH ≤0.5 (Twort et al., 2000). [32.7] Generators are normally rented so when this is added to the cost of sodium chlorite, then chlorine dioxide disinfection is expensive, even taking into consideration that smaller doses are required compared to either chlorine or chloramines. Contact tank designs and the use of either injectors or diffusers are very similar to those used for chlorination (see Ch. 31, p. 580). However, care must be taken not to allow chlorine dioxide to escape to the atmosphere, so open pipes or channels should not be used at high ClO2 concentrations. Further details on the generation and use of chlorine dioxide are given in Gates (1998). General description The acidified solution of sodium chlorite has been tested for the antimicrobial action on the broiler carcasses. It was found to be effective in the reduction of natural bioburden in a prechill procedure..[3] Application Sodium chlorite may be used in the synthesis of chlorine dioxide[1] and as a hydroxylating agent for the hydroxylation of androstenedione (steroid).[2] Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Sodium chlorite (NaClO2) is a chemical compound used in the manufacturing of paper and as a disinfectant. Contents 1 Use 1.1 Chemical reagent 1.2 Acidified sodium chlorite 1.3 Use in public crises 2 Safety 3 Toxicity 4 Manufacture 5 General references 6 References 7 External links Use The main application of sodium chlorite is the generation of chlorine dioxide for bleaching and stripping of textiles, pulp, and paper. It is also used for disinfection of municipal water treatment plants after conversion to chlorine dioxide.[1]:2 An advantage in this application, as compared to the more commonly used chlorine, is that trihalomethanes (such as chloroform) are not produced from organic contaminants.[1]:25,33 Chlorine dioxide generated from sodium chlorite is approved by FDA under some conditions for disinfecting water used to wash fruits, vegetables, and poultry.[2][full citation needed] Sodium chlorite, NaClO2, sometimes in combination with zinc chloride, also finds application as a component in therapeutic rinses, mouthwashes,[3][4] toothpastes and gels, mouth sprays, as preservative in eye drops,[5] and in contact lens cleaning solution under the trade name Purite. It is also used for sanitizing air ducts and HVAC/R systems and animal containment areas (walls, floors, and other surfaces). Chemical reagent In organic synthesis, sodium chlorite is frequently used as a reagent in the Pinnick oxidation for the oxidation of aldehydes to carboxylic acids. The reaction is usually performed in monosodium phosphate buffered solution in the presence of a chlorine scavenger (usually 2-methyl-2-butene).[6] In 2005, sodium chlorite was used as an oxidizing agent to convert alkyl furans to the corresponding 4-oxo-2-alkenoic acids in a simple one pot synthesis.[7] Acidified sodium chlorite Mixing sodium chlorite solution with a weak food-grade acid solution (commonly citric acid), both stable, produces short-lived acidified sodium chlorite (ASC) which has potent decontaminating properties. Upon mixing the main active ingredient, chlorous acid is produced in equilibrium with chlorite anion. The proportion varies with pH, temperature, and other factors, ranging from approximately 5–35% chlorous acid with 65–95% chlorite; more acidic solutions result in a higher proportion of chlorous acid. Chlorous acid breaks down to chlorine dioxide which in turn breaks down to chlorite anion and ultimately chloride anion. ASC is used for sanitation of the hard surfaces which come in contact with food and as a wash or rinse for a variety of foods including red meat, poultry, seafood, fruits and vegetables. Because the oxo-chlorine compounds are unstable when properly prepared, there should be no measurable residue on food if treated appropriately.[8][9] ASC also is used as a teat dip for control of mastitis in dairy cattle.[10] Use in public crises The U.S. Army Natick Soldier Research, Development, and Engineering Center produced a portable "no power required" method of generating chlorine dioxide, known as ClO2, gas, described as one of the best biocides available for combating contaminants, which range from benign microbes and food pathogens to Category A Bioterror agents. In the weeks after the 9/11 attacks when anthrax was sent in letters to public officials, hazardous materials teams used ClO2 to decontaminate the Hart Senate Office Building, and the Brentwood Postal Facility.[11] In addressing the COVID-19 pandemic, the U.S. Environmental Protection Agency has posted a list of many disinfectants that meet its criteria for use in environmental measures against the causative coronavirus.[12][13] Some are based on sodium chlorite that is activated into chlorine dioxide, though differing formulations are used in each product. Many other products on the EPA list contain sodium hypochlorite, which is similar in name but should not be confused with sodium chlorite because they have very different modes of chemical action. Safety Sodium chlorite, like many oxidizing agents, should be protected from inadvertent contamination by organic materials to avoid the formation of an explosive mixture. The chemical is stable in pure form and does not explode on percussive impact, unless organic contaminants are present, such as on a greasy hammer striking the chemical on an anvil.[14] It also easily ignites by friction if combined with a reducing agent like powdered sugar, sulfur or red phosphorus. Toxicity Sodium chlorite is a strong oxidant and can therefore be expected to cause clinical symptoms similar to the well known sodium chlorate: methemoglobinemia, hemolysis, kidney failure.[15] A dose of 10-15 grams of sodium chlorate can be lethal.[16] Methemoglobemia had been demonstrated in rats and cats,[17] and recent studies by the EMEA have confirmed that the clinical symptomatology is very similar to the one caused by sodium chlorate in rats, mice, rabbits, and green monkeys.[18] There is only one human case in the medical literature of chlorite poisoning.[19] It seems to confirm that the toxicity is equal to sodium chlorate. From the analogy with sodium chlorate, even small amounts of about 1 gram can be expected to cause nausea, vomiting and even life-threatening hemolysis in glucose-6-phosphate dehydrogenase deficient persons. The EPA has set a maximum contaminant level of 1 milligram of chlorite per liter (1 mg/L) in drinking water.[20] Sellers of “Miracle Mineral Solution”, a mixture of sodium chlorite and citric acid also known as "MMS" that is promoted as a cure-all have been convicted, fined, or otherwise disciplined in multiple jurisdictions around the world. MMS products were variously referred to as snake oil and complete quackery. The U.S. Food and Drug Administration has issued multiple warnings against consuming MMS.[21] [22] [23][24] [25][26] [27][28][29] Manufacture The free acid, chlorous acid, HClO2, is only stable at low concentrations. Since it cannot be concentrated, it is not a commercial product. However, the corresponding sodium salt, sodium chlorite, NaClO2 is stable and inexpensive enough to be commercially available. The corresponding salts of heavy metals (Ag+, Hg+, Tl+, Pb2+, and also Cu2+ and NH4+) decompose explosively with heat or shock. Sodium chlorite is derived indirectly from sodium chlorate, NaClO3. First, sodium chlorate is reduced to chlorine dioxide, typically in a strong acid solution using reducing agents such as sodium sulfite, sulfur dioxide, or hydrochloric acid. This intermediate is then absorbed into a solution of aqueous sodium hydroxide where another reducing agent converts it to sodium chlorite. Even hydrogen peroxide can be used as the reducing agent, giving oxygen gas as its byproduct rather than other inorganic salts or materials that could contaminate the desired product.[30] Sodium Chlorite: Can It Be Used as Medicine? Chlorite vs. chloride Typical uses Health claims Alleged medical uses Safety and side effects Takeaway What’s sodium chlorite? Sodium chlorite — also referred to as chlorous acid, sodium salt textone, and Miracle Mineral Solution — is composed of sodium (Na), chlorine (Cl), and oxygen (O2). Many claims have been made for its use as a health supplement. However, the U.S. Food and Drug Administration (FDA)Trusted Source warns that it’s a dangerous, potentially life threatening chemical that should never be swallowed. It isn’t the same as sodium chloride Don’t confuse sodium chlorite with sodium chloride. Sodium chloride (NaCl) is also called table salt. Sodium chloride is used for many things, but it’s typically thought of as a seasoning and food preservative. Sodium chlorite (NaClO2) is typically found in an industrial setting as a bleach and a disinfectant. How’s sodium chlorite used? Sodium chlorite is marketed to both consumers and industries for various uses. Some consumer uses of sodium chlorite include: water treatment and purification surface cleaner for areas of food preparation antimicrobial treatment for food, especially seafood Larger concentrations of sodium chlorite are commonly used for industrial purposes, such as: bleaching and stripping of textiles, pulp, and paper sterilizing agent used in water treatment plants Are there any health benefits to sodium chlorite? Sodium chlorite has been promoted as a health supplement and a treatment for various illnesses, such as: common cold arthritis HIV malaria cancer hepatitis amyotrophic lateral sclerosis (ALS) While there are anecdotal reports from people who claim to have experienced medical relief by ingesting sodium chlorite solutions, there’s no reliable scientific evidence showing a benefit. The FDA issued a warning in 2019 to not drink sodium chlorite products, stating they are dangerous.Trusted Source Promoted health benefits Despite the lack of evidence supporting the use of sodium chlorite as a medication, some continue to support this chemical as a form of alternative medicine. Of these supporters, people with ALS — also known as Lou Gehrig’s disease — report the most positive benefits from sodium chlorite. ALS is a rare neurological disease that progressively leads to: muscle weakness impaired motor function muscle cramps slurred speech Eventually this condition can shut down vital parts of the body. Only about 10 percent of people with this condition live for longer than 10 years following diagnosis. People with ALS who use sodium chlorite report positive benefits, including: increased muscle activity clearer speech slowed rate of ALS progression improved flexibility improved motor functions, balance, and speed of movement Sodium chlorite received approval in the European Union as an “orphan drug” in the treatment of ALS. These drugs are usually used for rare conditions and don’t always require proven safety and effectiveness. A small number of studies have evaluated sodium chlorite in people with ALS, but the results are too preliminary to know if it’s beneficial. Is it safe to ingest sodium chlorite? Ingesting sodium chlorite as a form of alternative medicine for extended periods of time or in larger dosages is unsafe and can cause a variety of symptoms, including: fatigue diarrhea headache nausea excess saliva insomnia dehydration lowered blood pressure In addition to these symptoms, there are more serious health problems that healthcare providers warn may result from use of this chemical, such as: worsening of ALS skin burns nosebleeds hoarse throat coughing bronchitis shortness of breath In high concentrations, sodium chlorite is typically used as a bleach and a disinfectant. Sodium chlorite can be supplied either as a solid or a solution. Both forms are potentially dangerous and require a high degree of safety and skill during storage and handling. Sodium chlorite is a white flaky salt prepared at a concentration of 80%. It is extremely reactive and will explode in a violent reaction on contact with organic substances including basic items such as gloves and clothing, spillage control materials such as sawdust and cotton waste, or even oil and grease. Heat, friction or just impact can lead to an explosion, so the solid should be dissolved in water to form a solution as quickly as possible. In practice the dry form is simply too dangerous to transport, store and handle for normal WTP use, so liquid sodium chlorite is normally employed. Sodium chlorite is a highly corrosive liquid that requires careful handling to avoid damage to pipe work and equipment. Spillages of sodium chlorite must be washed away before they evaporate to leave the flammable dry residue. It has to be stored under temperature controlled conditions and is supplied at a concentration of 25–26% w/w, which gives the sodium chlorite optimum storage characteristics. At this concentration it still freezes at −15°C and is also explosive at relatively low temperatures and so should be maintained at below 40°C (Cowley, 1993). The solution is stable under neutral to slightly acidic conditions but will decay under more acidic conditions which can be prevented by adding a small amount of alkalinity (<10 mg CaCO3 L−1). However, it will also decay if the alkalinity buffers the solution above pH 8.0 (Eq. 32.6), so pH control during storage is an important consideration. Chlorate is present as an impurity in most sodium chlorite products with contamination levels usually 2–3% by weight of chlorite. [32.6] Chlorine dioxide has a relatively short half life and so is made up as required at a concentration of 1g L−1 if used in open systems or 10 g L−1 if used in enclosed pressurized systems. It is produced by reacting chlorine gas or a solution of chlorine with sodium chlorite in a glass mixing chamber which is filled with porcelain Raschig rings or Teflon® chips (Eq. 32.5). Stoichiometrically 0.5 kg of Cl2 and 1.34 kg NaClO2 are required to produce 1 kg of ClO2 (Fig. 32.1; Black and Veatch Corporation, 2010). Once prepared, ClO2 can be photo-chemically degraded in sunlight to form chlorate, chlorite, hydrogen peroxide, oxygen and chlorine, and so it must be stored and used in the dark. Similarly it is destroyed by UV light. Sign in to download full-size image Figure 32.1. Schematic diagram of the generation and use of chlorine dioxide using chlorine gas. Alternatively chlorine dioxide can be produced by reacting the sodium chlorite with hydrochloric acid. However, this process uses 1.25 times more NaClO2 than the chlorine reaction to produce the same weight of ClO2 (Eq. 32.7). Stoichiometrically 0.54 kg of HCl and 1.67 kg NaClO2 are required to produce 1 kg of ClO2, although in practice 50% more NaClO2 is required and possibly up to three times the amount of HCl may be needed to lower the pH sufficiently for the reaction to occur at pH ≤0.5 (Twort et al., 2000). [32.7] Generators are normally rented so when this is added to the cost of sodium chlorite, then chlorine dioxide disinfection is expensive, even taking into consideration that smaller doses are required compared to either chlorine or chloramines. Contact tank designs and the use of either injectors or diffusers are very similar to those used for chlorination (see Ch. 31, p. 580). However, care must be taken not to allow chlorine dioxide to escape to the atmosphere, so open pipes or channels should not be used at high ClO2 concentrations. Further details on the generation and use of chlorine dioxide are given in Gates (1998). General description The acidified solution of sodium chlorite has been tested for the antimicrobial action on the broiler carcasses. It was found to be effective in the reduction of natural bioburden in a prechill procedure..[3] Application Sodium chlorite may be used in the synthesis of chlorine dioxide[1] and as a hydroxylating agent for the hydroxylation of androstenedione (steroid).[2]
SODIUM CHLORITE 31%
SODIUM COCAMINOPROPIONATE N° CAS : 68608-68-4 / 8033-69-0 / 12676-68-4 Nom INCI : SODIUM COCAMINOPROPIONATE N° EINECS/ELINCS : 271-795-1 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM CITRATE
SODIUM CITRATE Sodium citrate Monosodium citrate Disodium citrate Trisodium citrate The three forms of the salt are collectively known by the E number E331. Sodium citrates are used as acidity regulators in food and drinks, and also as emulsifiers for oils. They enable cheeses to melt without becoming greasy. Sodium citrate is used to prevent donated blood from clotting in storage. It is also used in a laboratory, before an operation, to determine whether a person's blood is too thick and might cause a blood clot, or if the blood is too thin to safely operate. SODIUM CITRATE Trisodium citrate dihydrate is a salt of citric acid Use a small amount to make a melty cheese sauce out of any cheese Add to spherification liquids to neutralize the pH when needed Commonly used as a sequestrant and pH buffer in food and beverages Cold/hot soluble, practically insoluble in ethanol (96%) earn and spend points. DESCRIPTION 100% Pure Food Grade Sodium Citrate Powder (e331) for use in spherification and molecular gastronomy. Sodium Citrate (E331) is the sodium salt of citric acid. Like citric acid, it has a sour taste. Like other salts, it also has a salty taste. It is commonly known as sour salt and is mainly used as a food additive, usually for flavor or as a preservative. It gives club soda both its sour and salty flavors. It reduces the acidity of foods, so it allows spherification with strongly acidic ingredients. Sodium citrate is also used as an antioxidant in food as well as a sequestrant. It dissolves easily and acts instantaneously. OTHER DETAILS Dietary Attributes: Plant-Based, Non-GMO, Gluten-Free, Kosher (OU), Keto-friendly Ingredient List: Sodium Citrate Allergen(s): None Uses This medication is used to make the urine less acidic. Urine that is less acidic helps the kidneys get rid of uric acid, helping to prevent gout and certain types of kidney stones (urate). This medication can also prevent and treat certain metabolic problems (acidosis) caused by kidney disease. Citric acid and citrate salts (which contain potassium and sodium) belong to a class of drugs known as urinary alkalinizers. Because some conditions require you to limit your intake of potassium and sodium, your doctor's choice of product may depend on how much potassium and sodium you can take. How to use Sodium CITRATE & CITRIC Acid Shake the container well before each dose. Take this medication by mouth, usually 4 times a day or as directed by your doctor. To help prevent diarrhea and stomach upset, take each dose after a meal, and mix your prescribed dose of medication in a full glass (4 to 8 ounces or 120 to 240 milliliters) of cold water or juice just before taking, or take as directed by your doctor. Drink the entire mixture slowly. Ask your doctor or pharmacist for further instructions. The liquid form of this medication must be mixed with at least 4 ounces (120 milliliters) of water or juice before taking. Refrigerating the mixture before drinking may improve the taste. Drink more water or juice after taking this medication unless otherwise directed by your doctor. Dosage is based on your medical condition and response to treatment. Take this medication as prescribed. Do not increase your dose or take this more often without your doctor's approval. Use this medication regularly to get the most benefit from it. To help you remember, take it at the same times each day. While taking this medication, you may need to test the pH (acidity) of your urine using special paper. The pH will help determine the proper dose. Consult your doctor or pharmacist for more information. What is citric acid and sodium citrate? Citric acid and sodium citrate are both alkalinizing agents that make the urine less acidic. The combination of citric acid and sodium citrate is used to prevent gout or kidney stones, or metabolic acidosis in people with kidney problems. Citric acid and sodium citrate may also be used for other purposes not listed in this medication guide. Important Information You should not use this medication if you have kidney failure, severe heart damage (such as from a prior heart attack), Addison's disease (an adrenal gland disorder), high levels of potassium in your blood (hyperkalemia), or if you are severely dehydrated or have heat cramps. Before you take citric acid and sodium citrate, tell your doctor about all your medical conditions, especially kidney disease, heart disease, high blood pressure, a history of heart attack, urinary problems, swelling (edema), or chronic diarrhea (such as ulcerative colitis, Crohn's disease). Also tell your doctor about all other medications you use, including over-the-counter medications and household remedies. Citric acid and sodium citrate should be taken after meals to help prevent stomach or intestinal side effects. The liquid medicine should be mixed with water or juice. Drink plenty of liquids while you are taking citric acid and sodium citrate. Your treatment may include a special diet. You should become very familiar with the list of foods you should eat or avoid to help control your condition. Avoid using antacids without your doctor's advice, including household baking soda (sodium bicarbonate). Antacids that contain aluminum or sodium can interact with citric acid and sodium citrate, causing a serious electrolyte imbalance or aluminum toxicity. Avoid eating foods that are high in salt, or using extra table salt on your meals. To be sure citric acid and sodium citrate is helping your condition, your blood and urine may need to be tested often. Follow your doctor's instructions carefully and do not miss any scheduled appointments. Serious side effects of citric acid and sodium citrate include muscle twitching or cramps, swelling or weight gain, weakness, mood changes, rapid and shallow breathing, fast heart rate, restless feeling, black or bloody stools, severe diarrhea, or seizure (convulsions). Before taking this medicine You should not use this medication if you are allergic to it, or if you have: kidney failure; severe heart damage (such as from a prior heart attack); Addison's disease (an adrenal gland disorder); high levels of potassium in your blood (hyperkalemia); or if you are severely dehydrated or have heat cramps. How should I take citric acid and sodium citrate? Take this medication exactly as prescribed by your doctor. Do not take it in larger amounts or for longer than recommended. Follow the directions on your prescription label. Citric acid and sodium citrate should be taken after meals to help prevent stomach or intestinal side effects. You may also need to take the medicine at bedtime. Follow your doctor's instructions. Shake the oral solution (liquid) well just before you measure a dose. To be sure you get the correct dose, measure the liquid with a marked measuring spoon or medicine cup, not with a regular table spoon. If you do not have a dose-measuring device, ask your pharmacist for one. The liquid medicine should be mixed with at lease 4 ounces of water or juice. Drink this mixture slowly and then add a little more water to the same glass, swirl gently and drink right away. You may chill the mixed medicine to make it taste better, but do not allow it to freeze. Drink plenty of liquids while you are taking citric acid and sodium citrate. Your treatment may include a special diet. It is very important to follow the diet plan created for you by your doctor or nutrition counselor. You should become very familiar with the list of foods you should eat or avoid to help control your condition. To be sure citric acid and sodium citrate is helping your condition, your blood and urine may need to be tested often. Follow your doctor's instructions carefully and do not miss any scheduled appointments. Trisodium citrate dihydrate is a tribasic salt of citric acid. Trisodium citrate dihydrate is produced by complete neutralisation of citric acid with high purity sodium hydroxide or carbonate and subsequent crystallisation. Trisodium citrate dihydrate is widely used in foods, beverages and various technical applications mainly as buffering, sequestering or emulsifying agent.Sodium citrate dihydrate is the most widely used emulsifying salt in sliced processed cheese products. It is commonly used as a buffering agent in combination with citric acid to provide precise pH control required in many food and beverage applications.Trisodium citrate is often referred to as sodium citrate, though sodium citrate can refer to any of the three sodium salts of citric acid. Sodium citrate has a saline, mildly tart flavor. It is mildly basic and can be used along with citric acid to make biologically compatible buffers. Sodium citrate is primarily used as a food additive, usually for flavor or as a preservative. In certain varieties of club soda, sodium citrate is employed as a flavoring agent. Sodium citrate is a common ingredient in Bratwurst, and is also used to contribute a tart flavor in commercial, ready-to- drink beverages and drink mixes. It is found in gelatin mix, ice-cream, jams, sweets, milk powder, processed cheeses, carbonated beverages, and wine.Sodium Citrate is also used as an emulsifier for oils in the cheesemaking process. Sodium citrate allows cheese to melt without becoming greasy. Historically, sodium phosphate was used to keep water and fat droplets mixed when cheese is melted. Soy Products: Bakery Flavors,Table Top Product Dairy Confectionery, Fruits, Vegetables Meat, Seafood , Cereals, Snacks Desserts, Ice Cream Ready Meals, Instant Food, Fruit Preparations, Sweet Spreads Baby Food, Infant Formula Sauces, Dressings, Seasoning The main functions of citric acid and the citrates in foods and beverages can be summarized as follows: as a flavor adjunct, to improve taste as a pH control agent, e.g., for gelation control, buffering and preservative enhancement as a chelating agent to improve the action of antioxidants and prevent spoilage of foods such as seafood Beverages, Alcoholic Beverages, Carbonated Soft Drinks, Instant Drinks, Syrups, Juice Drinks, Tea and Coffee, Sports and Energy Drinks, Waters Within this market, citric acid or its salts perform several functions. The dominant application is for flavor enhancement. Many of the lemon, lime or citrus soft drinks available today use citric acid as a way of enhancing the tangy, zesty flavor consumers associate with these tropical fruit flavors. Additionally, citric acid can help provide consistency in acidity and flavor of fruit juices or fruit cordials. If used together with sodium citrate, it is possible for citric acid to help maintain the flavor of other types of soft drinks without adding to the tanginess. Sodium citrate can also provide a cool saline taste. Effervescent tablets and preparations: The reaction of citric acid and bicarbonate liberates carbon dioxide, which aids the dissolution of active ingredients and improves palatability. Effervescent systems are widely used in denture-cleaning products, as well as pain relief and vitamin tablets. Pharmaceutically active substances - many are supplied as their citrate salt. pH control: Citric acid, with sodium or potassium citrate, is an efficient buffering system used in a variety of pharmaceutical and cosmetic applications for improving stability and (where appropriate) enhancing the activity of preservatives. Flavor: The sharp, acid taste of citric acid (which is often used to enhance fruit flavors) can help mask the unpleasant, medicinal taste of pharmaceuticals. Antioxidant: The citrate ion is a powerful chelating agent for trace metal ions. Blood anticoagulant: The citrate ion will chelate calcium, thereby reducing the tendency for blood to clot. Diuretic - potassium citrate has diuretic properties. Clinical Nutrition Medical Devices OTC, Food Supplements Pharmaceutical Productscolor Cosmetics Deodorants, Fragrances Hair Care, Oral Care Skin Care Soap and Bath Products, Cleaners & Detergents, The major components of cleaning products are surfactants and builders. Other ingredients are added to provide a variety of functions, e.g., increasing cleaning performance for specific soils/surfaces, ensuring product stability, and supplying a unique identity to a product. Complex phosphates and sodium citrate are common sequestering builders. Builders enhance or maintain the cleaning efficiency of the surfactant. The primary function of builders is to reduce water hardness. This is done either by sequestration or chelation (holding hardness minerals in solution); by precipitation (forming an insoluble substance); or by ion exchange (trading electrically charged particles). Builders can also supply and maintain alkalinity, which assists cleaning, especially of acid soils; help keep removed soil from redepositing during washing, and emulsify oily and greasy soils. Dish Washing Industrial Cleaners, Laundry Care Surface Care. Trisodium citrate dihydrate occurs as white, granular crystals or as white, crystalline powder with a pleasant, salty taste. It is slightly deliquescent in moist air, freely soluble in water and practically insoluble in ethanol (96 %). Product Usage: Mainly used as food additive and preservative, The anticoagulant in blood transfusions, Used to relieve discomfort in urinary tract infections, Trisodium citrate dihydrate also works as buffering agent in food and acidity regulator as antacid, As a sequestrant - to improve the quality and stability of the food p6132-04-3roducts, As a emulsifier - to stabilize processed foods like cheese. Sodium citrate material is derived from the citric acid (sodium salts). This material is available in the colorless granular form or powdery form. This is fragrance free material and generously mixed with water, but not in the alcohol. Trisodium citrate dihydrate is not contain any food allergens and it is suitable for consumption by vegans and vegetarians. Trisodium citrate dihydrate adds enjoyable flavor in food items. It is widely used as dehydrate salt, but it provides remarkable gain in dry products where long shelf life is needed to store it. Sodium Citrate Dihydrate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Sodium citrate. It is used as flavors, stabilizing agent, buffering agent, chelating agent, nutritional supplement of buttermilk, emulsifying agent and flavoring agent in food and beverage industry;it can be used as anti-blood clotting, apophlegmatisant and diuretics in phamaceutical industry;it can replace sodium tripolyphosphate as a non-toxic detergent additives in detergent industry;it can also be used in brewing, injection, photography drugs and electroplating etc. Contact us for more information. Sodium citrate is the sodium salt of citric acid. It is white, crystalline powder or white, granular crystals, slightly deliquescent in moist air, freely soluble in water, practically insoluble in alcohol. Like citric acid, it has a sour taste. From the medical point of view, it is used as alkalinizing agent. It works by neutralizing excess acid in the blood and urine. Trisodium citrate dihydrate has been indicated for the treatment of metabolic acidosis. Sodium citrate dihydrate (C6H5Na3O7•2H2O), also known as citric trisodium salt dihydrate, or trisodium citrate dehydrate is obtained from citric acid and is available in granular or powder form having a salty but pleasant taste. Sodium citrate dihydrate is odorless and freely soluble in water, marginally deliquescent in moist air, and insoluble in alcohol. Trisodium citrate dihydrate is prepared by completely neutralizing citric acid with high purity sodium hydroxide or carbonate followed by crystallization. Global Sodium Citrate Dihydrate Market: Overview: Trisodium citrate dihydrate is a non-toxic, neutral salt having low reactivity. Trisodium citrate dihydrate shows chemically stability when stored at ambient temperatures. Sodium citrate dihydrate is totally biodegradable and disposable with the regular waste or sewage. It is widely used in the food industry inpreservatives, and as a flavoring agent. According to the FDA Select Committee, sodium citrate are regarded as safe when used in normal quantities. In the pharmaceutical industry, it is used to resist changes in the pH. Sodium citrate dihydrate also finds its use as a buffering agent, alkalizing agent, emulsifying agent, or sequestering agent. Global Sodium Citrate Dihydrate Market: Segmentation: Global sodium citrate dihydrate market is segmented into types, forms, functions, applications, manufacturing methods, and region. Types of sodium citrate dehydrate can be segmented into monosodium citrate, disodium citrate, and trisodium citrate. The global sodium citrate dihydrate market can be segmented on the basis of form into granular and crystals. Functions include regulation of pH, chelating agent, buffering agent, flavor enhancer, and emulsifying agent. Application types include food and beverage industry, cleaners and detergents, industrial applications and healthcare industry. Global sodium citrate dihydrate market is also segmented on the basis of manufacturing methods. Region-wise, global sodium citrate dihydrate market is segmented into North America, Latin America, Europe, Asia-Pacific and MEA. Global Trisodium Citrate Dihydrate Market: Region-wise Outlook: The global sodium citrate dihydrate market is expected to witness a considerable growth in CAGR between 2015 and 2025. Owing to number of favorable conditions, the focus of the major chemical companies is gradually shifting towards the growing economies. China has graduated to become the largest base for producing chemicals worldwide in terms of capacity and output. Reason being the cost benefits over the western countries in terms of production of chemical products and a high demand within the country. Moreover, the licensing procedures are comparatively shorter and the construction costs being lower than in Europe. Global Trisodium Citrate Dihydrate Market: Drivers & Restraints: Seasonal factors for beverages and new detergent applications are the principal growth drivers for the global sodium citrate dihydrate market. Fluctuations in the raw materials prices hinders the steady growth of the global sodium citrate dihydrate market. Trisodium Citrate Dihydrate (TriSodium Citrate) is commonly used to improve exercise performance and as a food additive. Trisodium citrate dihydrate's naturally a strong source of antioxidants and typically used as a natural preservative. Some have also used the ingredient in beverages to increase acidity or to emulsify cheese during the aging process. This ingredient may be added to foods and beverages or smoothies and green drinks. It is a pure white powder and has no fillers or binders, additives or preservatives. Various sizes available for personal use and quantity discounts available on bulk- packed foods and food powders for commercial uses. Only the highest quality natural food and bulk ingredients are sourced through family-owned Prescribed For Life Nutrition. Thank you for shopping with us and please come again! BENEFITS: Promotes healthy circulation and blood flow, Balances the pH levels in the body, Odorless and tasteless, 100% food grade. We use only FDA GRAS rated ingredients(Generally Recognized as Safe) that are Non-GMO (Contains NO Genetically Modified Organisms). We have size options for individual use and in volume at wholesale pricing. Sodium citrate dihydrate with chemical formula C6H5Na3O7 - 2H2O is also known as citric trisodium salt dihydrate, or trisodium citrate dehydrate. Sodium citrate dihydrate is obtained from the reaction of citric acid, high purity sodium hydroxide or carbonate followed by crystallization. Sodium citrate dihydrate is characterised as odorless and freely soluble in water, marginally deliquescent in moist air, and insoluble in alcohol. Sodium citrate dihydrate is a non-toxic, neutral salt having low reactivity. Trisodium citrate dihydrate shows chemical stability when stored at ambient temperatures. Sodium citrate dihydrate is totally biodegradable and disposable with regular waste or sewage. Globally increasing demand from the end-use industries is expected to be the key growth driver for sodium citrate dehydrate during the period of study. Geographically, Asia-Pacific dominated trisodium citrate dihydrate market driven in terms of production and consumption driven by higher demand into major end-user industry in the region. Asia-Pacific was followed by North America and Europe as second and third largest market for sodium citrate dihydrate market. Asia Pacific is projected to have fastest growth, owing to increasing consumption into its increasing industrial base demanding higher sodium citrate dihydrate. Sodium citrate, (molecular formula: Na3C6H5O7 • 2H2O) has molecular weight of 294.1, is a colorless crystal or white crystalline powder product; it is odorless, salty taste, and cool.It will lose its crystal water at 150 °C and will be decomposed at even higher temperature. It also has slight deliquescence in wet air and has weathering property upon hot air. It is soluble in water and glycerol, but insoluble in alcohol and some other organic solvents. Sodium citrate has no toxic effect, and has pH adjusting capability as well as having a good stability, and therefore can be used in the food industry. Sodium citrate has the greatest demand when being used as a food additive; As food additives, it is mainly used as flavoring agents, buffers, emulsifiers, bulking agents, stabilizers and preservatives; in addition, combination between sodium citrate and citric acid can be used in a variety of jams, jelly,Sodium citrate is currently the most important citrate. Trisodium citrate dihydrate is produced by two steps: first starch food is fermented to generate citric acid; secondly, citric acid is neutralized by alkali to generate the final products. Sodium citrate has the following excellent performance: Safe and nontoxic properties; Since the basic raw material for the preparation of sodium citrate mainly comes from the food, it is absolutely safe and reliable without causing harm to human health. The United Nations Food and Agriculture and the World Health Organization has no restriction in its daily intake, which means that this product can be considered as non- toxic food. It is biodegradable. After subjecting to the dilution of a large amount of water, sodium citrate is partially converted into citrate, which coexists with sodium citrate in the same system. Citrate is easy to subject to biological degradation at water by the action of oxygen, heat, light, bacteria and microbes. Its decomposition pathways are generally going through aconitic acid, itaconic acid, citraconic acid anhydride to be further converted to carbon dioxide and water.The ability of forming complex with metal ions. Sodium citrate has a good capability of forming complex with some metal ions such as Ca2+, Mg2+; for other ions such as Fe2+, it also has a good complex-forming ability. Excellent solubility, and the solubility increases with increasing temperature of water. It has a good capability for pH adjustment and a good buffering property. Sodium citrate is a weak acid-strong alkali salt; When combined with citrate, they can form a pH buffer with strong compatibility; therefore, this is very useful for some cases in which it is not suitable to have large change of pH value. In addition, sodium citrate also has excellent retardation performance and stability. juice, drinks, cold drinks, dairy products and pastries gelling agents, flavoring agents and nutritional supplements. During the process of clinically taking fresh blood, adding some amount of sterile sodium citrate can play a role in prevent blood clotting; this is exactly taking advantage of the features that calcium citrate can form soluble complexes with calcium ion; In the field of medicine, it is used for the in vitro anti-clotting drugs and anticoagulants drugs, phlegm drugs, and diuretics drugs during blood transfusions; Trisodium citrate dihydrate can also used for cyanide-free electroplating industry; also used as developer for photographic industry. It can be used as flavoring agents, buffering materials, emulsifiers, and stabilizer in the food industry. Moreover, it is also widely used in chemical, metallurgical industry, the absorption of sulfur dioxide exhaust with the absorption rate of 99% and regenerate liquid sulfur dioxide citrate for recycle application. Sodium citrate has a good water solubility and a excellent cheating capability with Ca2 +, Mg2 + and other metal ions; it is biodegradable and has a strong dispersing ability and anti-redeposition ability; Daily-applied chemical detergents use it as alternative to trimer sodium phosphate for production of non-phosphorus detergent and phosphate-free liquid detergent. Adding a certain amount sodium citrate to the detergent can significantly increase the cleaning ability of detergent cleaning. The large scale of application of sodium tripolyphosphate as a builder in detergents is an important discovery in synthetic detergent industry. It is non-toxic without environmental pollution; it can also be acted as a buffer for the production of cosmetics.It can be used as Ph adjusting agents and emulsifying enhancers applied to jam, candy, jelly and ice cream; its combination with citric acid has an effect of alleviating tour; it also has effects on forming complex with metal ions. China rules that it can be applied to various types of food with appropriate usage according to the absolute necessity. It can be used as a food additive, as complex agent and buffering agent in electroplating industry; at the field of pharmaceutical industry, it is used for the manufacturing of anti-clotting drugs; and used as the detergent additives in light industry. It is used as the analysis agents used for chromatography analysis and can also used for preparing bacterial culture medium; moreover, it can also be applied into pharmaceutical industry. The product can be used for the flavoring processing of food, as stabilizers, buffers and deputy complex-forming agents in non-toxic electroplating industry; at pharmaceutical industry, it is used as anti-clotting agent, phlegm drugs and diuretics drugs. It can also be used in brewing, injection, newspaper and movies medicines.An anticoagulant also used as a biological buff. Sodium citrate is chiefly used as a food additive, usually for flavor or as a preservative. Anticoagulant for collection of blood. In photography; as sequestering agent to remove trace metals; as emulsifier, acidulant and sequestrant in foods.Sodium Citrate, Dihydrate, a conjugate base of a weak acid, can perform as a biological buffering agent because it resists changes in pH. Citric acid is one of a series of compounds responsible for the physiological oxidation of fats, carbohydrates and proteins to carbon dioxide and water. Trisodium Citrate Dihydrate is often used to prepare sodium citrate buffer for antigen retrieval of tissue samples. The citrate solution is designed to break protein cross-links; thus, unmasking antigens and epitopes in formalin-fixed and paraffin embedded tissue sections, resulting in enhancing staining intensity of antibodies. Trisodium citrate dihydrate has anticoagulant activity and as a calcium chelator, it forms complexes that disrupt the tendency of blood to clot. Molecular Weight of sodium citrate: 258.07 g/mol Hydrogen Bond Donor Count of sodium citrate: 1 Hydrogen Bond Acceptor Count of sodium citrate: 7 Rotatable Bond Count of sodium citrate: 2 Exact Mass of sodium citrate: 257.972835 g/mol Monoisotopic Mass of sodium citrate: 257.972835 g/mol Topological Polar Surface Area of sodium citrate: 141 Ų Heavy Atom Count of sodium citrate: 16 Formal Charge of sodium citrate: 0 Complexity of sodium citrate: 211 Isotope Atom Count of sodium citrate: 0 Defined Atom Stereocenter Count of sodium citrate: 0 Undefined Atom Stereocenter Count of sodium citrate: 0 Defined Bond Stereocenter Count of sodium citrate: 0 Undefined Bond Stereocenter Count of sodium citrate: 0 Covalently-Bonded Unit Count of sodium citrate: 4 Compound of sodium citrate is Canonicalized?: Yes
SODIUM CITRATE
Le citrate de sodium est une poudre cristalline blanche ou des cristaux granuleux blancs, légèrement déliquescents à l'air humide, librement solubles dans l'eau, pratiquement insolubles dans l'alcool.
Le citrate de sodium, également connu sous le nom de citrate de sodium dihydraté, est le sel de sodium de l'acide citrique de formule chimique C6H9NaO7.
Le citrate de sodium est un sel d'acide citrique, un acide organique naturellement présent dans les agrumes, le maïs et d'autres aliments.

Numéro CAS : 68-04-2
Formule moléculaire : C6H9NaO7
Poids moléculaire : 216,12
Numéro EINECS : 200-675-3

Le citrate de sodium est le sel de sodium de l'acide citrique.
Comme l'acide citrique, le citrate de sodium a un goût aigre.
D'un point de vue médical, il est utilisé comme agent alcalinisant.

Le citrate de sodium agit en neutralisant l'excès d'acide dans le sang et l'urine.
Le citrate de sodium a été indiqué pour le traitement de l'acidose métabolique.
Le citrate de sodium est une poudre cristalline blanche au goût légèrement salé et acidulé.

Le citrate de sodium sert de conservateur pour garantir des produits sûrs et durables en inhibant la croissance microbienne.
Le citrate de sodium aide également à la régulation du pH des formulations cosmétiques.
Le citrate de sodium se présente sous forme de cristaux incolores ou de poudre blanche.

Le citrate de sodium est généralement proposé dans le commerce sous forme de citrate trisodique blanc cristallin dihydraté.
Le citrate de sodium a la formule chimique de Na3C6H5O7.It est parfois appelé simplement citrate de sodium, bien que le citrate de sodium puisse faire référence à l'un des trois sels de sodium de l'acide citrique.
Le citrate de sodium possède une saveur saline et légèrement acidulée.

Pour cette raison, les citrates de certains métaux alcalins et alcalino-terreux (par exemple, les citrates de sodium et de calcium) sont communément appelés « sel acide » (parfois l'acide citrique est appelé à tort sel acide).
Le citrate de sodium est le sel trisodique de l'acide citrique.
Le citrate de sodium joue un rôle d'agent aromatisant et d'anticoagulant.

Le citrate de sodium contient un citrate(3-).
Le citrate de sodium, également connu sous le nom de citrate trisodique ou simplement citrate de sodium, est le sel de sodium de l'acide citrique.
Le citrate de sodium a la formule chimique Na3C6H5O7.

Le citrate de sodium est disponible sous différentes formes, notamment le citrate monosodique, le citrate disodique et le citrate trisodique, en fonction du nombre d'ions sodium associés à la molécule de citrate.
Produit par la neutralisation de l'acide citrique avec de l'hydroxyde de sodium ou du carbonate de sodium.
Peut être préparé à l'état anhydre ou peut contenir 2 moles d'eau par mole de citrate de sodium.

La solution concentrée de citrate ou citrate de sodium est un anticoagulant utilisé pour prélever des échantillons de sang.
Le citrate de sodium est utile dans les tests de coagulation et pour la vitesse de sédimentation des érythrocytes.
Le citrate de sodium élimine le calcium, qui est connu pour intervenir dans la coagulation.

Les citrates de sodium sont utilisés comme régulateurs d'acidité dans les aliments et les boissons, ainsi que comme émulsifiants pour les huiles.
Ils permettent aux fromages de fondre sans devenir gras.
Le citrate de sodium réduit également l'acidité des aliments.

Le citrate de sodium est le sel de sodium de l'acide citrique. Comme l'acide citrique et d'autres sels, il a un goût aigre et salé.
Le citrate de sodium est communément appelé sel acide, sel tampon ou citrate trisodique et est principalement utilisé pour aromatiser les aliments et les boissons ou comme conservateur.
Une qualité utile du citrate de sodium est qu'il réduit l'acidité des aliments et des solutions liquides, ce qui permet la sphérification et la sphérification inverse avec des ingrédients fortement acides.

Le citrate de sodium est également utilisé comme antioxydant dans les aliments ainsi que comme séquestrant.
Le citrate de sodium se dissout facilement et agit instantanément.
Le citrate de sodium est le sel de sodium de l'acide citrique.

Comme l'acide citrique et d'autres sels, il a un goût aigre et salé.
Le citrate de sodium est communément appelé sel acide, sel tampon ou citrate trisodique et est principalement utilisé pour aromatiser les aliments et les boissons ou comme conservateur.
Une qualité utile du citrate de sodium est qu'il réduit l'acidité des aliments et des solutions liquides, ce qui permet la sphérification et la sphérification inverse avec des ingrédients fortement acides.

Le citrate de sodium est également utilisé comme antioxydant dans les aliments ainsi que comme séquestrant.
Le citrate de sodium, également connu sous le nom de sel acide, est le sel de l'acide citrique et peut inclure l'un des trois types suivants : citrate monosodique, disodique ou trisodique, tous connus sous le nom de citrate de sodium.
L'acide citrique se trouve dans les agrumes, d'où il tire son nom, mais aussi dans une gamme d'autres fruits et légumes.

Le citrate de sodium est fabriqué en neutralisant l'acidité de l'acide citrique à l'aide d'hydroxyde de sodium, soit par fermentation, soit à l'aide d'un procédé d'extraction par solvant.
La fermentation est la méthode la plus courante, et la majeure partie du citrate de sodium produit commercialement est fabriquée en faisant fermenter de la mélasse avec de l'Aspergillus niger, une spore fongique naturellement présente dans le sol.
Une fois la fermentation terminée, le liquide est filtré et l'acide citrique est séparé, laissant derrière lui les cristaux de citrate de sodium.

Le citrate de sodium a été découvert pour avoir une utilisation importante en médecine lorsque le médecin belge Albert Hustin a découvert qu'il pouvait être utilisé comme anticoagulant lors de transfusions sanguines.
Le citrate de sodium est encore utilisé aujourd'hui pour conserver le sang lorsqu'il est stocké dans les banques de sang et il est également utilisé comme antiacide pour les patients devant être anesthésiés et dans un certain nombre de médicaments contre la toux.

Le citrate de sodium est utilisé comme adoucisseur d'eau et peut être trouvé dans les détergents à lessive et les produits de soins personnels tels que les crèmes hydratantes, les lingettes pour bébés, le savon, le shampooing et l'après-shampooing.
Le citrate de sodium est également appelé citrate trisodique ou citrosodine ou natrocitral.
Le citrate de sodium est largement utilisé comme conservateur alimentaire, pour l'alcalinisation de l'urine afin de prévenir les calculs rénaux, comme anticoagulant pour le sang stocké et comme tampon.

Lors de l'absorption, Natrocitral se dissocie en anions citrate et en cations sodium.
Les ions citrate organiques sont métabolisés en ions bicarbonate et entraînent la mise en tampon des ions hydrogène en excès, potentiellement l'inversion de l'acidose, une augmentation de la concentration plasmatique de bicarbonate et l'élévation du pH sanguin.
Le citrate de sodium est un sel trisodique de l'acide citrique qui se dissout dans l'eau.

Le citrate de sodium a un pH compris entre 7,5 et 9,0.
Le citrate de sodium est le sel de sodium de l'acide citrique.
Comme l'acide citrique, il a un goût aigre.

Comme les autres sels, le citrate de sodium a également un goût salé.
Le citrate de sodium est communément appelé sel acide, sel tampon ou citrate trisodique et est principalement utilisé pour aromatiser les aliments et les boissons ou comme conservateur.
Une qualité utile du citrate de sodium est qu'il réduit l'acidité des aliments et des solutions liquides, de sorte qu'il permet la sphérification et la sphérification inverse avec des ingrédients fortement acides.

Le citrate de sodium est également utilisé comme antioxydant dans les aliments ainsi que comme séquestrant.
Le citrate de sodium se dissout facilement et agit instantanément.
Le citrate de sodium est utilisé comme régulateur d'acidité dans l'industrie alimentaire pour contrôler et ajuster le niveau de pH de divers produits alimentaires et boissons.

Le citrate de sodium peut aider à équilibrer l'acidité des aliments et des boissons, ce qui leur donne un goût moins acide ou acidulé.
Le citrate de sodium sert d'agent émulsifiant, ce qui signifie qu'il peut aider à mélanger l'huile et l'eau dans les produits alimentaires.
Cette propriété est particulièrement précieuse dans la production de fromages fondus, de crèmes glacées et de vinaigrettes, car elle améliore leur texture et empêche la séparation.

Le citrate de sodium a des propriétés chélatantes, ce qui signifie qu'il peut se lier aux ions métalliques et les empêcher d'interférer avec les performances d'autres ingrédients dans diverses applications, notamment les aliments, les produits pharmaceutiques et les produits chimiques.
Le citrate de sodium est utilisé comme anticoagulant, principalement dans les tubes de prélèvement sanguin.
Le citrate de sodium aide à prévenir la coagulation du sang, ce qui le rend adapté aux tests sanguins et aux transfusions.

Le citrate de sodium est utilisé comme agent tampon dans les produits pharmaceutiques pour maintenir un niveau de pH stable dans les médicaments, en particulier les antiacides et les agents alcalinisants urinaires.
Le citrate de sodium peut réduire la perception de l'acidité des aliments, en améliorant leur saveur générale et en les rendant plus appétissants pour les consommateurs.

Melting point: 300°C
Densité : 1,008 g/mL à 20 °C
FEMA : 3026 | SODIUM CITRATE
storage temp.: 2-8°C
solubilité : Eau (légèrement)
forme : Liquide
couleur : blanc à blanc cassé
PH: 8.59(1 mM solution); 8.9(10 mM solution); 9.04(100 mM solution); 9.26(1000 mM solution)
Odeur : à 100.00 ?%. inodore
Solubilité dans l'eau : Soluble dans l'eau.
Sensible : Hygroscopique
λmax : λ : 260 nm Amax : ≤0,1
Stabilité : Hygroscopique
InChIKey : HRXKRNGNAMMEHJ-UHFFFAOYSA-K
LogP : -0.280 (est)

Le citrate de sodium agit comme un agent tampon dans les produits cosmétiques pour contrôler leur niveau de pH.
Le citrate de sodium peut également être utilisé comme conservateur.
Le citrate de sodium est utilisé dans divers produits cosmétiques, notamment les produits pour bébés, le maquillage, les produits de bain, les teintures et les couleurs capillaires et les produits de soins de la peau.

Le citrate de sodium est utilisé pour empêcher le sang donné de coaguler pendant l'entreposage.
Le citrate de sodium est également utilisé en laboratoire, avant une opération, pour déterminer si le sang d'une personne est trop épais et pourrait provoquer un caillot sanguin, ou si le sang est trop mince pour fonctionner en toute sécurité.
Le citrate de sodium est utilisé dans des contextes médicaux comme agent alcalinisant à la place du bicarbonate de sodium, pour neutraliser l'excès d'acide dans le sang et l'urine.

Le citrate de sodium est parfois utilisé comme régulateur d'acidité dans les boissons, et aussi comme émulsifiant pour les huiles lors de la fabrication du fromage.
Le citrate de sodium permet aux fromages de fondre sans devenir gras. Considérez la citation suivante de la cuisine moderniste.
Le citrate de sodium est parfois utilisé dans le plâtrage comme retardateur ou régulateur de temps de prise.

Le plâtre est fabriqué en mélangeant de la poudre de gypse avec de l'eau, puis le mélange est appliqué sur une surface où il durcit en séchant.
Du citrate de sodium peut être ajouté à l'eau utilisée pour mélanger le plâtre afin de ralentir le temps de prise du mélange.
Cela peut être utile dans les situations où il faut plus de temps pour travailler avec le plâtre ou pour l'appliquer sur une surface, car cela empêche le plâtre de durcir trop rapidement.

La quantité de citrate de sodium nécessaire pour ralentir le temps de prise du plâtre peut varier en fonction de l'application spécifique et du résultat souhaité.
En règle générale, une concentration de 0,2 % à 0,5 % du poids du gypse dans le mélange de plâtre est souvent utilisée.
Le citrate de sodium est un sel extrait de l'acide citrique.

Le citrate de sodium est une poudre alcaline qui est utilisée pour abaisser les niveaux d'acidité élevés afin de permettre à la gélification ou à la stabilisation de fonctionner efficacement.
Le citrate de sodium peut également être ajouté aux plats à base de fromage afin d'empêcher le fromage de se fendre ou de cailler.
Le citrate de sodium est souvent utilisé comme ajusteur de pH et adoucisseur d'eau.

Le citrate de sodium est utilisé dans des dizaines de produits de soins personnels, tels que le shampooing, l'après-shampooing, la crème solaire, la crème hydratante pour le visage, le maquillage, les lingettes pour bébés, le détergent à lessive liquide et le savon.
Le citrate de sodium est également couramment utilisé pour contrôler l'acidité des aliments et des produits médicaux.
Le citrate de sodium est utilisé dans l'industrie pharmaceutique à plusieurs fins :

Le citrate de sodium peut être trouvé dans des médicaments tels que les antiacides pour aider à neutraliser l'acide gastrique.
Le citrate de sodium est utilisé comme alcalinisant urinaire pour traiter les affections où l'urine doit être moins acide.
Dans certains médicaments oraux, le citrate de sodium peut être utilisé pour améliorer le goût ou l'appétence du médicament.

En laboratoire et dans la recherche, le citrate de sodium est utilisé dans diverses techniques, telles que l'extraction de l'ADN et l'isolement de l'ARN.
Le citrate de sodium est souvent utilisé pour maintenir les niveaux de pH appropriés dans les solutions de réaction.
Le citrate de sodium est ajouté à certains produits de nettoyage ménagers et industriels comme agent chélateur et adoucisseur d'eau.

Cela permet d'améliorer l'efficacité des détergents et d'éviter l'accumulation de dépôts minéraux sur les surfaces.
Le citrate de sodium peut être utilisé pour contrôler les niveaux de pH, réduire l'entartrage et améliorer les performances des coagulants et des floculants dans le traitement des eaux usées.
Le citrate de sodium a été utilisé dans l'industrie photographique dans le cadre de solutions de développement pour contrôler le pH et faciliter le processus de développement.

Le citrate de sodium peut être utilisé comme fixateur de colorant pour améliorer la solidité des couleurs des tissus teints.
Le citrate de sodium peut être utilisé dans la vinification et le brassage pour ajuster l'acidité du produit final et améliorer sa stabilité.

Le citrate de sodium est utilisé dans les procédés de galvanoplastie pour aider à contrôler le pH et le comportement des ions métalliques.
En plus de rehausser la saveur des aliments en réduisant l'acidité, le citrate de sodium est utilisé dans certaines recettes pour créer une solution de citrate de sodium, qui est utilisée pour modifier la texture des produits fromagers, comme créer des sauces au fromage onctueuses ou améliorer les propriétés fondantes du fromage.

Utilise:
Le citrate de sodium est un tampon et un séquestrant obtenu à partir de l'acide citrique sous forme de citrate de sodium anhydre et de citrate de sodium dihydraté ou de citrate de sodium hydraté.
Les produits cristallins sont préparés par cristallisation directe à partir de solutions aqueuses.
Le citrate de sodium anhydre a une solubilité dans l'eau de 57 g dans 100 ml à 25 °C, tandis que le citrate de sodium dihydraté a une solubilité de 65 g dans 100 ml à 25 °C.

Le citrate de sodium est utilisé comme tampon dans les boissons gazeuses et pour contrôler le pH dans les conserves.
Le citrate de sodium améliore les propriétés de fouettage de la crème et empêche le gonflement de la crème et des blanchissants de café non laitiers.
Le citrate de sodium assure l'émulsification et solubilise les protéines dans le fromage fondu.

Le citrate de sodium empêche la précipitation des solides pendant le stockage dans le lait évaporé. Dans les soupes sèches, il améliore la réhydratation, ce qui réduit le temps de cuisson.
Le citrate de sodium fonctionne comme un séquestrant dans les puddings.
Le citrate de sodium fonctionne comme un agent complexant pour le fer, le calcium, le magnésium et l'aluminium.

Les niveaux d'utilisation typiques varient de 0,10 à 0,25 %, également appelé citrate trisodique.
Le citrate de sodium est également connu sous le nom de citrate de soude, les cristaux blancs ou la poudre granulaire ont été obtenus en neutralisant l'acide citrique avec du carbonate de sodium.
Le citrate de sodium est soluble dans l'eau mais moins dans l'alcool.

Le citrate de sodium était utilisé comme conservateur dans les papiers albuminés.
Le citrate de sodium est principalement utilisé comme additif alimentaire E331, généralement pour la saveur ou comme conservateur.
Le citrate de sodium est utilisé comme agent aromatisant dans certaines variétés de soda club.

Le citrate de sodium est un ingrédient courant dans les Bratwurst et est également utilisé dans les boissons commerciales prêtes à boire et les mélanges à boissons, ce qui donne une saveur acidulée.
En tant que base conjuguée d'un acide faible, le citrate peut servir d'agent tampon ou de régulateur d'acidité, résistant aux changements de pH. Le citrate de sodium est utilisé pour contrôler l'acidité de certaines substances, comme les desserts à la gélatine.
Le citrate de sodium se trouve dans les mini-récipients à lait utilisés avec les machines à café.

Le citrate de sodium est le produit d'antiacides, tels que l'alcalo-seltzer, lorsqu'ils sont dissous dans l'eau.
En 1914, le médecin belge Albert Hustin et le médecin et chercheur argentin Luis Agote ont utilisé avec succès le citrate de sodium comme anticoagulant dans les transfusions sanguines.
Le citrate de sodium continue d'être utilisé aujourd'hui dans les tubes de prélèvement sanguin et pour la conservation du sang dans les banques de sang.

L'ion citrate chélate les ions calcium dans le sang en formant des complexes de citrate de calcium, perturbant ainsi le mécanisme de coagulation du sang.
Le citrate de sodium est utilisé pour soulager l'inconfort dans les infections des voies urinaires, telles que la cystite, pour réduire l'acidose observée dans l'acidose tubulaire rénale distale, et peut également être utilisé comme laxatif osmotique.
Le citrate de sodium est un composant majeur de la solution de réhydratation orale de l'OMS.

Le citrate de sodium est utilisé dans les aliments pour sa saveur, qui est une combinaison d'acide et de salé, et on le trouve couramment dans les boissons prêtes à l'emploi et les courges où sa saveur acidulée donne une saveur rafraîchissante.
Les boissons gazeuses, telles que les sodas et les boissons énergisantes, contiennent souvent du citrate de sodium ajouté pour leur donner plus de profondeur de saveur.
Le citrate de sodium possède également une gamme d'autres propriétés qui en font un excellent ingrédient à avoir sous la main pour une gamme d'utilisations.

Le citrate de sodium est un alcali doux, il est donc idéal pour une utilisation comme équilibreur de pH et est souvent combiné avec de l'acide citrique pour fournir un tampon biologique.
Le citrate de sodium se trouve souvent dans les crèmes glacées, les gelées, les bonbons et autres desserts contenant de la gélatine et des gélifiants similaires.
Le citrate de sodium est également utilisé comme conservateur, en particulier avec les produits laitiers, car il empêche la détérioration beaucoup plus longtemps que toute autre solution similaire.

Le citrate de sodium est souvent ajouté au fromage pour ses propriétés émulsifiantes, en particulier le fromage tranché conçu pour être ajouté aux aliments chauds.
Le citrate de sodium forme des liaisons entre les molécules d'eau et de graisse, gardant les deux ensemble même lorsqu'elles sont fondues pour éviter que la graisse ne se sépare et ne s'écoule.
Ceci est particulièrement utile pour faire des sauces au fromage onctueuses et crémeuses et le citrate de sodium est souvent utilisé dans les plats à base de fromage produits dans le commerce.

Le citrate de sodium est utilisé pour contrôler et ajuster le niveau de pH des aliments et des boissons, en veillant à ce qu'ils aient le niveau d'acidité souhaité.
Le citrate de sodium sert d'agent émulsifiant dans les produits alimentaires, aidant à mélanger l'huile et l'eau et empêchant la séparation.
Cette propriété est utile dans le fromage, la crème glacée et les vinaigrettes.

Le citrate de sodium peut être utilisé pour prolonger la durée de conservation de certains produits alimentaires en contrôlant l'acidité et en inhibant la croissance des micro-organismes.
Le citrate de sodium peut réduire la perception de l'acidité ou de l'acidité des aliments, améliorant ainsi la saveur globale.
Le citrate de sodium est utilisé comme anticoagulant dans les tubes de prélèvement sanguin et lors des transfusions sanguines pour prévenir la coagulation du sang.

Le citrate de sodium est utilisé pour contrôler et maintenir le pH des médicaments, en particulier les antiacides et les agents alcalinisants urinaires.
Le citrate de sodium est utilisé comme excipient dans diverses formulations pharmaceutiques pour améliorer la stabilité du produit.
Le citrate de sodium est utilisé dans la recherche et le diagnostic en laboratoire pour diverses applications, y compris l'extraction de l'ADN et de l'ARN, car il aide à maintenir le pH approprié dans les solutions de réaction.

Le citrate de sodium est également utilisé dans la préparation de solutions tampons pour diverses expériences scientifiques.
Le citrate de sodium est ajouté aux produits de nettoyage ménagers et industriels comme agent chélateur et adoucisseur d'eau.
Le citrate de sodium améliore l'efficacité des détergents et aide à prévenir les dépôts minéraux sur les surfaces.

Dans les procédés de traitement de l'eau, le citrate de sodium est utilisé pour contrôler les niveaux de pH, réduire l'entartrage et améliorer les performances des coagulants et des floculants dans le traitement des eaux usées.
Le citrate de sodium a été utilisé dans l'industrie photographique comme composant de solutions de développement pour contrôler le pH et faciliter le processus de développement.
Dans la teinture textile, le citrate de sodium peut être utilisé comme fixateur de colorant pour améliorer la solidité des couleurs des tissus teints.

Le citrate de sodium est utilisé dans la vinification et le brassage pour ajuster l'acidité du produit final et améliorer sa stabilité.
Dans certains cas, le citrate de sodium est utilisé dans les processus de galvanoplastie pour aider à contrôler le pH et le comportement des ions métalliques.
Le citrate de sodium peut être trouvé dans certains produits cosmétiques et de soins personnels en tant qu'agent stabilisant et chélateur, aidant à maintenir la qualité et la stabilité du produit.

Le citrate de sodium dihydraté est le sel émulsifiant le plus largement utilisé dans les fromages fondus en tranches.
Le citrate de sodium est couramment utilisé comme agent tampon en combinaison avec l'acide citrique pour fournir un contrôle précis du pH requis dans de nombreuses applications alimentaires et de boissons.
Le citrate de sodium est souvent appelé citrate de sodium, bien que le citrate de sodium puisse faire référence à l'un des trois sels de sodium de l'acide citrique.

Le citrate de sodium a une saveur saline et légèrement acidulée.
Le citrate de sodium est légèrement basique et peut être utilisé avec de l'acide citrique pour fabriquer des tampons biologiquement compatibles.
Le citrate de sodium est principalement utilisé comme additif alimentaire, généralement pour la saveur ou comme conservateur.

Dans certaines variétés de soda club, le citrate de sodium est utilisé comme agent aromatisant.
Le citrate de sodium est un ingrédient courant dans les Bratwurst et est également utilisé pour apporter une saveur acidulée dans les boissons commerciales prêtes à boire et les mélanges à boissons.
Le citrate de sodium se trouve dans les mélanges de gélatine, les glaces, les confitures, les bonbons, le lait en poudre, les fromages fondus, les boissons gazeuses et le vin.

Le citrate de sodium est également utilisé comme émulsifiant pour les huiles dans le processus de fabrication du fromage.
Le citrate de sodium permet au fromage de fondre sans devenir gras.
Historiquement, le phosphate de sodium était utilisé pour garder l'eau et les gouttelettes de graisse mélangées lorsque le fromage est fondu.

Dans l'industrie du nettoyage, le citrate de sodium est couramment utilisé en raison de ses excellentes caractéristiques de nettoyage et de sa propriété inhabituelle d'être presque neutre tout en présentant les caractéristiques d'un acide comme dans les détartrants et d'un alcali comme dans les dégraissants.
Les produits de nettoyage comprennent les poudres et les détergents à lessive, les nettoyants pour toilettes, les nettoyants pour surfaces dures, les nettoyants pour tapis, les liquides vaisselle, les dégraissants en poudre et liquides et les pré-trempages.
Le citrate de sodium devient de plus en plus populaire maintenant car il est considéré comme respectueux de l'environnement, il remplace les phosphates et est facilement biodégradable.

Dans l'industrie, le citrate de sodium trouve de nombreuses utilisations, notamment les bains de dégraissage alcalin, les produits chimiques de galvanoplastie pour le cuivre et le nickel, etc., les produits photochimiques.
Le citrate de sodium est également utilisé dans les industries du papier et de la pâte à papier et dans l'industrie textile.
Le citrate de sodium est couramment utilisé en gastronomie moléculaire pour ajuster le pH des sauces et des liquides afin de leur permettre de former un gel pendant le processus de sphérification.

La gélification ne se produit pas dans les liquides qui ont un pH élevé, de sorte que le citrate de sodium peut être ajouté à un mélange pour lui permettre d'attirer les ions calcium qui provoquent le raffermissement du liquide.
Plus il y a de citrate de sodium ajouté, plus le gel sera ferme, mais pour un gel plus lâche et plus fluide, le citrate de sodium peut être ajouté par petits incréments pour obtenir le résultat souhaité.
Lors de la fabrication de perles ou de perles à l'aide de cette méthode, le goût du citrate de sodium doit être pris en compte dans le mélange pour assurer un équilibre entre les saveurs acides et salées.

Le citrate de sodium est soluble dans l'eau à n'importe quelle température, ce qui le rend idéal pour les plats préparés avec de l'eau froide car il se dissout toujours facilement.
Le citrate de sodium est couramment utilisé dans l'industrie laitière pour sa capacité à améliorer la texture et la stabilité des produits laitiers, en particulier le fromage.
Le citrate de sodium peut empêcher la séparation du caillé et du lactosérum, ce qui permet d'obtenir des produits fromagers plus lisses et plus consistants.

En pâtisserie, le citrate de sodium est parfois utilisé pour ajuster le pH et améliorer les performances des agents levants.
Le citrate de sodium peut améliorer la texture de la pâte et affecter la qualité du produit final.
Le citrate de sodium peut être ajouté aux produits carnés transformés pour améliorer leur capacité de rétention d'eau, leur texture et leur saveur.

Le citrate de sodium peut également aider à contrôler le pH des produits carnés.
Le citrate de sodium est utilisé dans l'industrie des boissons, en particulier dans les boissons gazeuses et les boissons pour sportifs, pour réguler l'acidité et rehausser la saveur.
Le citrate de sodium peut également servir d'antioxydant dans certaines formulations.

En médecine, le citrate de sodium peut être utilisé comme laxatif doux, généralement sous la forme d'une solution buvable, pour aider à soulager la constipation.
Le citrate de sodium peut rehausser la saveur de certains aliments en réduisant leur acidité naturelle, ce qui les rend moins acidulés et plus attrayants.
Certains brasseurs amateurs utilisent du citrate de sodium pour ajuster la chimie de l'eau dans les processus de brassage, ce qui peut avoir un impact significatif sur le goût et la qualité de la bière finale.

Dans la recherche biomédicale et scientifique, le citrate de sodium peut être utilisé à diverses fins, y compris comme composant de réactifs de laboratoire et de tampons pour maintenir des niveaux de pH constants dans les expériences.
Le citrate de sodium se trouve dans certains produits de soins bucco-dentaires, tels que les bains de bouche, où il peut aider à réguler le pH et à améliorer le goût.

Le citrate de sodium se trouve dans certains bains de bouche et produits dentaires en tant que régulateur de pH et agent aromatisant.
Le citrate de sodium peut être trouvé dans certains produits de soin de la peau en tant qu'agent tampon ou d'ajustement du pH.

Profil d'innocuité du citrate de sodium :
Le groupe d'experts Cosmetic Ingredient Review (CIR) a examiné la littérature scientifique et les données sur l'innocuité de l'acide citrique et de ses esters et sels, comme le citrate de sodium.
Leurs résultats ont montré que l'acide citrique, ses esters et ses sels n'irritaient pas les yeux et ne provoquaient pas d'irritation cutanée ou de réactions allergiques cutanées à des concentrations utilisées dans les cosmétiques et les produits de soin de la peau.
À la lumière des preuves scientifiques disponibles, le comité d'experts est arrivé à la conclusion que le citrate de sodium, ses esters et ses sels pouvaient être utilisés sans danger dans les cosmétiques et les produits de soins personnels dans les circonstances actuelles.

Risques pour la santé :
Il a été vérifié que la citrosodine est peu préoccupante après avoir mené diverses expériences.
Le citrate de sodium est combustible.
Si la citrosodine est inhalée, reposez-vous et respirez de l'air frais.

Lorsque le citrate de sodium entre en contact avec la peau, rincez et lavez la peau avec de l'eau et du savon.
Lorsque le citrate de sodium entre accidentellement en contact avec les yeux, rincez abondamment à l'eau.

Synonymes:
Citrate de sodium
68-04-2
TRISODIUM CITRATE
Citrate de sodium anhydre
Citrosodine
Natrocitral
citrate de sodium, anhydre
Acide citrique, sel trisodique
Citrate trisodique, anhydre
citrate de sodium anhydre
Sel trisodique d'acide citrique
Acide 1,2,3-propanetricarboxylique, sel 2-hydroxy-, trisodique
2-hydroxypropane-1,2,3-tricarboxylate de sodium
FEMA n° 3026
CCRIS 3293
Citrate de sodium (Na3C6H5O7)
Citrate de sodium, anhydre
HSDB 5201 (en anglais seulement)
2-hydroxypropane-1,2,3-tricarboxylate trisodique
citrate de trisodium
Citrate trisodique anhydre
UNII-RS7A450LGA
EINECS 200-675-3
Bicitra
Pneucid
2-hydroxy-1,2,3-propanetricarboxylate trisodique
994-36-5
CHEBI :53258
RS7A450LGA
INS N° 331 (III)
INS-331(III)
CE 200-675-3
E-331(III)
Trisodique; 2-hydroxypropane-1,2,3-tricarboxylate
MFCD00012462
FEMA N° 3026, ANHYDRE-
Citroflu
Citnatine
Citreme
Citrojudiciaire
EINECS 213-618-2
Citrate de sodium hydraté
Citrate trisodique anhydre
Natrii citras, déshydraté
E 331
2-hydroxy-1,2,3-propanetricarboxylate de sodium
UNII-68538UP9SE
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium
EINECS 242-734-6
C6H5Na3O7
CE 242-734-6
Oracit
Natrii citras
tri-sodium citrate
sel de citrate de sodium
La solution d'Albright
Acide 1,2,3-propanetricarboxylique, 2-hydroxy-, sel de sodium (1 :3)
citrate de sodium (iii)
Citrate de sodium (USP)
Solution de Shohl modifiée
Anticoagulant Sodium Citrate
1Q73Q2JULR
CHEMBL1355
CITRATE DE SODIUM (II)
CITRATE DE SODIUM [MI]
Solution concentrée de citrate
DTXSID2026363
CITRATE DE SODIUM (USP-RS)
CITRATE DE SODIUM [OMS-IP]
Acide 2-hydroxy-1,2,3-propanetricarboxylique, sel trisodique
Sel trisodique d'acide citrique, 99%
HRXKRNGNAMMEHJ-UHFFFAOYSA-K
CITRATE DE SODIUM, SANS PRÉCISION
NATRII CITRAS [OMS-IP LATIN]
CITRATE DE SODIUM (IMPURETÉ USP)
AKOS015915009
DB09154
CITRATE DE SODIUM ANHYDRE [HSDB]
CITRATE TRISODIQUE ANHYDRE [II]
CITRATE DE SODIUM, FORME NON SPÉCIFIÉE
CITRATE DE SODIUM, ANHYDRE [VANDF]
8055-55-8
AC-15008
Réf. E331
Citrate de sodium dihydraté USP Fine Granular
CITRATE DE SODIUM ANHYDRE [OMS-IP]
FT-0623960
EN300-74572
D05855
D77308
CITRATE TRISODIQUE ANHYDRE [MONOGRAPHIE DE L'USP]
Q409728
J-520101
Sel trisodique d'acide citrique, anhydre, >=98% (GC)
Sel trisodique d'acide citrique, qualité réactif Vetec(TM), 98 %
Acide 2-hydroxy-1,2,3-propanènetricarboxylique, sel trisodique dihydraté
SODIUM COCAMINOPROPIONATE
SODIUM COCETH SULFATE Origine(s) : Végétale, Synthétique Nom INCI : SODIUM COCETH SULFATE Classification : Sulfate, Composé éthoxylé, Tensioactif anionique À SAVOIRLe sodium Coceth Sulfate est un tensioactif anionique équivalent au Sodium Laureth Sulfate. On le retrouve principalement dans certains démaquillant et produits de bain. Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent moussant : Capture des petites bulles d'air ou d'autres gaz dans un petit volume de liquide en modifiant la tension superficielle du liquide Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCETH SULFATE
SODIUM COCETH-30 SULFATE N° CAS : 68891-38-3 Nom INCI : SODIUM COCETH-30 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCETH-30 SULFATE
SODIUM COCO SULFOACETATE Nom INCI : SODIUM COCO SULFOACETATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCO SULFOACETATE
SODIUM COCOA BUTTERATE Beurre de cacao saponifié Nom INCI : SODIUM COCOA BUTTERATE Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOA BUTTERATE
SODIUM COCOAMPHOACETATE; N° CAS : 90387-76-1; Nom INCI : SODIUM COCOAMPHOACETATE; N° EINECS/ELINCS : 291-352-6/931-291-0. Classification : Tensioactif amphotère. Le sodium cocoamphoacetate est un tensioactif de type amphotère dérivé de l'huile de coco. Il est autorisé en bio. Glycine, N-(2-aminoethyl)-N-(2-hydroxyethyl)-, N-coco acyl derivs., monosodium salts
SODIUM COCOAMPHOACETATE
disodium; 2-chloroacetate;2-(4,5-dihydroimidazol-1-yl)ethanol;hydroxide; glycine, N-(2-aminoethyl)-N-(2-hydroxyethyl)-, N-coco-acyl derivatives, monosodium salts cas no: 68608-65-1
SODIUM COCOAMPHOPROPIONATE
SYNONYMS Dodecyl sodium sulfate, Dodecyl sulfate sodium salt, Lauryl sulfate sodium salt, SDS, Sodium dodecyl sulfate, Sodium lauryl sulfate CAS NO:151-21-3
SODIUM COCO-SULFATE
cas no 90170-45-9 l-Alanine; N-coco-acyl derivatives, sodium salts; Sodium N-Cocoyl-L-Alaninate; L-Alanine, N-coco acyl derivs., sodium salts;
SODIUM COCOYL ALANINATE
cas no 68187-32-6 Sodium N-Cocoyl L-Glutamate; N-Kokos-acylderivate glutamic acid, natriumsalze (German); N-coco acil derivados ácido L-glutámico, sales sódicas; (Spanish); N-acyles de coco acide L-glutamique, sels sodiques (French);
SODIUM COCOYL GLUTAMATE
Sodium cocoyl glutamate; Sodium cocoanutylglutamate cas no: 68187-32-6
SODIUM COCOYL GLUTAMINATE
cas no 29923-31-7 N-(1-Oxododecyl)-L-glicinic acid monosodium salt; N-Lauroyl-L-glicinic acid monosodium salt; Sodium N-dodecanoylglycinate; Sodium lauroyl glycinate; Monosodium N-lauroyl-L-glycinate;
SODIUM COCOYL GLYCINATE
SODIUM COCOYL GLYCINATE; N° CAS : 90387-74-9; Nom INCI : SODIUM COCOYL GLYCINATE; Nom chimique : Glycine, N-coco acyl derivs., sodium salts; N° EINECS/ELINCS : 291-350-5; Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
SODIUM COCOYL ISETHIONATE
Sodium Cocoyl Isethionate (SCI) est un tensioactif anionique solide et doux fabriqué à partir d'huile de noix de coco.
Sodium Cocoyl Isethionate est vraiment polyvalent et bon, et est considéré comme naturel.
Sodium Cocoyl Isethionate est un ester de sel de sodium, ou un acide gras dérivé de l'huile de noix de coco.

Numéro CAS: 61789-32-0
Formule moléculaire: C2Na6O47S20
Poids moléculaire: 1555.23182
Numéro EINECS: 263-052-5

L'isethionate de cocoyle de sodium est utilisé pour créer des nettoyants solides et des nettoyants liquides opaques.
L'isethionate de cocoyl sodique est un ingrédient naturel dérivé des noix de coco, en particulier de l'huile de noix de coco.

Le processus comprend le mélange d'un acide sulfonique naturel appelé acide iséthionique avec les acides gras naturellement présents dans l'huile de noix de coco.
Le mélange est ensuite chauffé pour éliminer l'eau supplémentaire ainsi que distillé pour éliminer les acides gras inutiles.

Tout comme l'huile de noix de coco, l'isethionate de cocoyl de sodium offre des propriétés incroyablement hydratantes, en particulier par rapport à d'autres tensioactifs ayant des propriétés nettoyantes et moussantes similaires.
Cet ingrédient puissant est commun dans de nombreux savons et nettoyants car il élimine efficacement la saleté et l'huile sans entraîner de sécheresse ou d'irritation.

L'isothionate de cocoyle de sodium est utilisé dans les cosmétiques et les produits de soins personnels comme surfactant et est souvent vu dans les produits de soins capillaires comme les shampooings en raison de sa capacité à aider l'eau à se mélanger avec l'huile et la saleté, ce qui leur permet d'être rincés plus facilement.
Sodium Cocoyl Isethionate est également considéré comme un ingrédient dans une variété de savons et de produits de nettoyage.

En tant que tensioactif, le cocoyl isethionate de sodium crée une sensation humide, il solubilise les huiles et réduit la tension superficielle, et peut également aider à la mousse.
L'isethionate de cocoyl sodique est un composé chimique couramment utilisé dans la formulation de produits de soins personnels et cosmétiques, en particulier dans les produits de soins de la peau, de soins capillaires et de bain.

L'isothéniate de cocoyle de sodium est un type de tensioactif, ce qui signifie qu'il a la capacité de réduire la tension superficielle des liquides et d'améliorer la tartinabilité des produits.
Cela le rend utile pour créer des propriétés moussantes et nettoyantes dans divers produits de soins personnels.
Sodium Cocoyl Isethionate est généralement dérivé de l'huile de noix de coco, d'où la partie « cocoyl » de son nom.

Le cocoyl isethionate de sodium est un sel de sodium produit à partir d'huile de noix de coco.
Sodium Cocoyl Isethionate est un composé anionique et est également connu sous le nom d'isethionate de sodium.
L'isethionate de cocoyle de sodium est un substitut populaire aux sels de sodium d'origine animale, tels que le tallowate de sodium, qui provient des bovins et des moutons.

Cet ingrédient a des propriétés moussantes élevées, ce qui fait de l'isethionate de cocoyl sodique un ajout utile aux produits cosmétiques et de soins personnels.
L'isethionate de cocoyl sodique est également connu sous le nom de « mousse pour bébé » car il s'agit d'un tensioactif exceptionnellement doux.
Sodium Cocoyl Isethionate est une fine poudre blanche qui a une odeur douce.

L'isothionate de cocoyle sodique est une combinaison d'un type d'acide sulfonique appelé acide iséthionique et d'un acide gras ou ester de sel de sodium dérivé de l'huile de noix de coco.
Ce tensioactif est utilisé comme agent nettoyant dans de nombreux produits de soins de la peau, de soins capillaires et de nettoyage.
Sodium Cocoyl Isethionate est connu pour être non allergique, non irritant et non toxique, donc utilisé dans une large gamme de produits de beauté et d'articles de toilette.

La poudre d'isethionate de cocoyl de sodium est un tensioactif particulièrement doux dérivé de la noix de coco.
Les cocoylisethionates de sodium sont des composés organiques qui aident au mélange de liquides qui ne se mélangent pas habituellement, le plus évidemment l'huile et l'eau.
L'isethionate a à la fois un élément hydrophile (aimant l'eau) et hydrophobe (craignant l'eau) et est donc attiré par l'eau et l'huile.

La poudre de cocoyl isethionate de sodium est biodégradable, non toxique et végétalienne.
En plus de son potentiel de liaison, il peut attirer la saleté de la peau et des cheveux qui peuvent ensuite être lavés à l'eau.
Sodium Cocoyl Isethionate est très doux pour la peau et le cuir chevelu et convient à tous les types de peau, y compris les nourrissons.

La capacité moussante élevée de Sodium Cocoyl Isethionate maintient l'humidité de la peau.
L'isethionate de cocoyl sodique est un ingrédient nettoyant utilisé dans les formulations de soins de la peau et des cheveux.
L'isethionate de cocoyl sodique est dérivé de l'huile de noix de coco. Il est principalement utilisé dans les savons, les nettoyants, les shampooings et les produits nettoyants en raison de ses capacités tensioactives.

Sodium Cocoyl Isethionate aide à éliminer l'huile et la saleté de la peau permet à elle d'être lavée.
C'est pourquoi le cocoyl isethionate de sodium peut être trouvé dans les produits qui aident à nettoyer la peau et les cheveux.
L'isethionate de cocoyl sodique est utilisé sous forme de fine poudre blanche qui a un parfum doux.

Sodium Cocoyl Isethionate est généralement utilisé dans des concentrations qui varient entre 10-25%.
On considère qu'il n'y a pas de problèmes d'irritation, de sensibilité ou de toxicité à ces concentrations.
Sodium Cocoyl Isethionate (SCI) est un tensioactif doux dérivé de l'huile de noix de coco qui est couramment utilisé dans les produits de soins de la peau et des cheveux.

Cette substance blanche et poudreuse a gagné en popularité en raison de sa nature douce et non irritante, ce qui la rend adaptée à une variété d'applications de soins personnels.
Sodium Cocoyl Isethionate est un sel de sodium de l'ester d'acide gras de noix de coco de l'acide iséthionique.
L'isethionate de cocoyl sodique est un tensioactif anionique, ce qui signifie qu'il porte une charge négative qui aide à créer une mousse et à éliminer la saleté, l'huile et les impuretés de la peau et des cheveux.

Sodium Cocoyl Isethionate, également connu sous le nom de SCI, est un tensioactif doux qui ajoute des propriétés moussantes et nettoyantes élevées à une formule cosmétique.
Sodium Cocoyl Isethionate vient généralement sous forme de flocons, de nouilles ou de poudre.
La matière première de cocoyl isethionate de sodium est un tensioactif composé d'un type d'acide sulfonique appelé acide iséthionique ainsi que de l'acide gras – ou ester de sel de sodium – obtenu à partir d'huile de noix de coco.

L'isethionate de cocoyle de sodium est un substitut traditionnel des sels de sodium dérivés d'animaux, à savoir les moutons et les bovins.
Sodium Cocoyl Isethionate présente une grande capacité moussante, produisant une mousse stable, riche et veloutée qui ne déshydrate pas la peau, ce qui le rend idéal pour l'ajout de produits sans eau ainsi que de soins de la peau, de soins capillaires et de produits de bain.

Le tensioactif haute performance Cocoyl Isethionate de sodium, qui est tout aussi efficace dans l'eau dure que dans l'eau douce, est un choix populaire pour ajouter aux shampooings liquides et aux shampooings en barre, aux savons liquides et aux savons en barre, aux beurres de bain et aux bombes de bain, ainsi qu'aux gels douche, pour ne nommer que quelques produits moussants.
L'odeur de cocoyl isethionate de sodium peut varier d'un lot à l'autre, notre dernier lot avait peu d'odeur, ce nouveau lot a une certaine odeur.

Dans les tests, l'huile parfumée couvre toutes les odeurs, mais les huiles essentielles plus faibles telles que le pamplemousse et les agrumes peuvent ne pas couvrir entièrement l'odeur de l'isethionate de cocoyle sodique.
L'isethionate de cocoyl de sodium est utilisé comme surfactant ou co-surfactant (pour les propriétés nettoyantes et la mousse) dans des produits tels que les shampooings, les barres de shampooing, les nettoyants pour le corps et les savons pour les mains.
Sodium Cocoyl Isethionate est créé en combinant l'isethionate de sodium avec des acides gras d'huile de noix de coco. (source)

L'isethionate de cocoyl sodique (SCI) est un ingrédient prédominant dans la formulation de barres syndet depuis plus de trente ans.
Bien que rentable et bien reconnu pour sa bonne compatibilité cutanée, l'isethionate de cocoyle sodique n'est pas régulièrement présent dans les systèmes de détergents liquides en raison de sa solubilité limitée dans l'eau.
La solubilité de l'isethionate de cocoyle sodique dans l'eau est défavorable en termes d'enthalpie de solvatation.

Lors de la mise en place de l'équilibre de solubilisation, il y a trois phases possibles, et trois méthodes ont été développées pour empêcher le cocoyl isethionate de sodium de recristalliser dans des solutions aqueuses.
La première se concentre sur la liaison des ions Sodium Cocoyl Isethionate dans des micelles constituées de tensioactifs secondaires.
La seconde porte sur l'échange d'ions sodium avec des ions ammonium (et/ou triéthanolammonium).

Le troisième est centré sur l'émulsification de l'isethionate de cocoyle de sodium et le changement ultérieur des micelles en gouttes d'huile émulsionnées.
Une combinaison de deux ou trois de ces méthodes permettra au formulateur d'utiliser l'isethionate de cocoyle de sodium comme surfactant principal dans les systèmes détersifs liquides.

La poudre de cocoyl isethionate de sodium est un tensioactif doux à haute teneur en mousse.
En raison de l'excellente mousse et de la douceur des cocoyl isethionates de sodium, il convient à une utilisation dans les barres Syndet, les shampooings, les gels douche, les savons liquides et les nettoyants pour le visage.
Les températures élevées et la façon dont cet ingrédient est stocké peuvent également affecter l'odeur.

Densité: 1110 [à 20 °C]
pression de vapeur: 0.002Pa à 20°C
pka: 0.36[à 20 °C]
Solubilité dans l'eau : 102 mg/L à 23 °C
LogP: -0.41 à 20°C
Scores alimentaires d'EWG: 1
FDA UNII : 518XTE8493

L'isethionate de cocoyl sodique est le sel de sodium de l'ester d'acide gras de noix de coco de l'acide sisethionique qui fonctionne comme un agent de nettoyage surfactant (Nikitakis, 1988).
Le cocoylisethionate de sodium se présente sous la forme d'une fine poudre blanche composée d'ingrédients actifs et d'impuretés mineures et d'une odeur légère (Estrin et coll., 1982b).
Le cocoyllséthinate de sodium est stable à un pH de 6 à 8 et s'hydrolyse en dehors de cette plage de pH (Hunting, 1983).

L'isethionate de cocoyle de sodium est produit en faisant réagir l'isethionate de sodium avec des acides gras dérivés de l'huile de noix de coco ou d'autres chlorures.
Le mélange est ensuite chauffé pour éliminer l'eau et distillé pour éliminer l'excès d'acides gras.
L'isethionate de cocoyl sodique est un agent nettoyant doux sans savon connu pour sa capacité à atténuer la perturbation de la barrière cutanée.

Sodium Cocoyl Isethionate est dérivé de la noix de coco et est considéré comme compatible avec les peaux sensibles.
Sodium Cocoyl Isethionate est un tensioactif anionique, c'est-à-dire un agent nettoyant avec une charge négative au lieu d'une charge positive.
Les tensioactifs anioniques sont le type le plus courant en raison de leur capacité à soulever et à suspendre la saleté, l'huile et les débris, ce qui leur permet d'être emportés.

Sodium Cocoyl Isethionate aide à éliminer la saleté, les huiles et les impuretés de la peau ou des cheveux sans éliminer excessivement les huiles naturelles, ce qui peut aider à maintenir l'hydratation de la peau et des cheveux.
Sodium Cocoyl Isethionate produit une mousse riche et crémeuse lorsqu'il est mélangé avec de l'eau, améliorant l'expérience de nettoyage dans des produits comme les shampooings, les nettoyants pour le corps et les nettoyants pour le visage.

Sodium Cocoyl Isethionate aide à mélanger les ingrédients à base d'huile et d'eau dans les formulations, créant ainsi des produits stables et homogènes.
En raison de la nature douce de Sodium Cocoyl Isethionates, il est souvent utilisé dans les produits destinés aux personnes ayant la peau sensible ou irritée.
Le cocoyliséthionate de sodium est considéré comme plus respectueux de l'environnement que certains autres tensioactifs, car il peut se biodégrader plus facilement.

La poudre de cocoyliséthionate de sodium, souvent appelée mousse pour bébé, est un tensioactif de poudre anionique de spécialité fabriqué à partir de toutes les ressources végétales renouvelables, principalement la noix de coco.
Sodium Cocoyl Isethionate est utilisé pour conférer une douceur supplémentaire, une bonne sensation après et une bonne mousse dans de nombreux produits de soins personnels et de nettoyage.
La poudre de cocoyl isethionate de sodium est un excellent mousseur dans l'eau dure ou douce.

Sodium Cocoyl Isethionate est un ingrédient d'origine naturelle qui provient des acides gras présents dans l'acide iséthionique et l'huile de noix de coco.
Ces acides gras réagissent avec l'isethionate de sodium et le mélange est chauffé pour éliminer toute eau laissée derrière.
Sous sa forme brute, l'isethionate de cocoyle de sodium se présente sous la forme d'une fine poudre blanche.

Utilise
L'isethionate de cocoyle de sodium est un ingrédient dérivé de l'huile de noix de coco.
Dans les cosmétiques et les produits de soins personnels, le cocoyl isethionate de sodium est principalement utilisé dans la préparation de savons de bain et de produits nettoyants.
Cet ingrédient est également utilisé dans la formulation de shampooings, toniques, pansements, autres aides au toilettage des cheveux et préparations nettoyantes pour la peau.

Le cocoyl isethionate de sodium est utilisé comme agent tensioactif-nettoyant dans les formulations cosmétiques.
L'isethionate de cocoyle sodique est légèrement à pratiquement non toxique, avec une DL50 orale de 24,33 g/kg pour les rats.
L'application cutanée de 1,0 à 36,0 % p/p de lséthinate aqueux de cocoyle sodique à des rats pendant 28 jours n'a produit aucun effet toxique significatif.

Sodium Cocoyl Isethionate est souvent utilisé dans les shampooings pour créer une mousse crémeuse qui aide à nettoyer les cheveux et le cuir chevelu sans enlever excessivement les huiles naturelles.
Cela rend Sodium Cocoyl Isethionate adapté à un usage quotidien et pour les personnes ayant un cuir chevelu sensible.
Dans les nettoyants pour le corps et les gels douche, Sodium Cocoyl Isethionate produit une mousse luxueuse qui nettoie efficacement la peau sans la laisser sèche ou irritée.

Sodium Cocoyl Isethionate est utilisé dans les nettoyants pour le visage pour éliminer le maquillage, la saleté et les impuretés de la peau tout en maintenant une expérience de nettoyage douce.
Sa nature douce le rend adapté à différents types de peau.
L'isethionate de cocoyl de sodium se trouve couramment dans les barres nettoyantes solides, telles que les barres nettoyantes pour le visage, les barres pour le corps et même les barres de shampooing, en raison de sa capacité à produire une mousse riche.

Les propriétés douces de Sodium Cocoyl Isethionates le rendent approprié pour une utilisation dans les shampooings pour bébés, les nettoyants pour le corps et les produits de bain.
Le cocoyl isethionate de sodium est souvent inclus dans les produits conçus pour les peaux sensibles ou facilement irritées, car il nettoie sans causer de sécheresse ou d'irritation excessive.

Sodium Cocoyl Isethionate est utilisé dans les savons liquides pour les mains pour créer une action moussante qui nettoie efficacement les mains sans trop assécher la peau.
Sodium Cocoyl Isethionate est parfois utilisé dans les bombes de bain et autres produits de bain pour créer une expérience moussante et nettoyante luxueuse lorsqu'il est ajouté à l'eau du bain.

Dans certains cas, Sodium Cocoyl Isethionate peut être utilisé dans les crèmes et les lotions pour aider à l'émulsification, créant un produit lisse et bien mélangé.
Sodium Cocoyl Isethionate est un tensioactif doux et hautement moussant.
Sodium Cocoyl Isethionate laisse la peau avec une sensation douce de sécession, c'est pourquoi il est parfois appelé « mousse pour bébé ».

Sodium Cocoyl Isethionate est une bonne alternative sans sulfate pour les personnes qui veulent éviter les tensioactifs communément connus tels que le laurylsulfate de sodium (SLS).
L'isethionate de cocoyle de sodium peut être inclus dans les produits exfoliants comme les gommages et les nettoyants pour aider à éliminer les cellules mortes de la peau et les impuretés tout en maintenant une action nettoyante douce.

L'isethionate de cocoyle de sodium peut être utilisé dans des produits conçus pour avoir une texture crémeuse et hydratante, aidant à créer un équilibre entre le nettoyage et l'hydratation.
Dans les démaquillants, Sodium Cocoyl Isethionate aide à décomposer les produits de maquillage tout en étant doux pour la peau autour des yeux et du visage.
Sodium Cocoyl Isethionate est souvent utilisé dans les crèmes à raser et les mousses pour créer une expérience de rasage douce et confortable, réduisant l'irritation et les brûlures du rasoir.

En raison de sa nature douce, Sodium Cocoyl Isethionate est utilisé dans les produits pour les personnes ayant des cuirs chevelus sensibles ou facilement irrités, tels que les shampooings antipelliculaires et les traitements du cuir chevelu.
Sodium Cocoyl Isethionate peut être trouvé dans des formulations naturelles, organiques et sans sulfate comme une alternative plus douce aux tensioactifs traditionnels à base de sulfate.

Sodium Cocoyl Isethionate est parfois utilisé dans les shampooings pour animaux de compagnie pour fournir une action nettoyante douce pour la peau et le pelage des animaux de compagnie.
La forme solide de Sodium Cocoyl Isethionates le rend approprié pour créer des barres nettoyantes solides et des barres de shampooing, qui sont pratiques pour voyager et réduisent le besoin de produits liquides.

Dans certains cas, Sodium Cocoyl Isethionate peut être utilisé dans les masques moussants ou nettoyants pour fournir un aspect nettoyant lorsque le masque est lavé.
Sodium Cocoyl Isethionate peut être trouvé dans les produits cosmétiques comme les crèmes nettoyantes pour le visage, les démaquillants, et même dans certaines formulations de dentifrice pour ses propriétés moussantes et nettoyantes.

Sécurité
Comme beaucoup de tensioactifs, Sodium Cocoyl Isethionate peut provoquer une irritation s'il entre en contact direct avec les yeux.
Sodium Cocoyl Isethionate est important pour éviter d'avoir le produit dans les yeux et de rincer abondamment à l'eau si cela se produit.
Alors que Sodium Cocoyl Isethionate est généralement bien toléré par la plupart des individus, certaines personnes peuvent avoir des sensibilités ou des allergies à cet ingrédient.

Dans certains cas, certains tensioactifs peuvent contribuer à l'obstruction des pores et des éruptions, en particulier chez les personnes ayant une peau sujette à l'acné ou sensible.
Bien que l'isethionate de cocoyle de sodium soit considéré comme plus biodégradable que certains autres tensioactifs, son impact sur l'environnement peut encore varier en fonction de facteurs tels que la formulation, l'utilisation et l'élimination.
L'isethionate de cocoyle de sodium est généralement une bonne pratique d'utiliser des produits avec des formulations respectueuses de l'environnement chaque fois que possible.

Synonymes
SODIUM COCOYL ISETHIONATE
61789-32-0
ACIDE GRAS DE NOIX DE COCO, ESTER DE 2-SULFOÉTHYLE, SEL DE SODIUM
ACIDES GRAS, HUILE DE COCO, ESTERS SULFOÉTHYLIQUES, SELS DE SODIUM
IGEPON AC-78
COCOYL ISETHIONATE DE SODIUM [INCI]
COCOYL ISETHIONATE DE SODIUM [MI]
COCOYLISÉTIONATE DE SODIUM [MART.]
ESTER DE NOIX DE COCO ISETHIONATE DE SODIUM
Cocoyl isethionate de sodium [OMS-DD]
518XTE8493
SODIUM COCOYL ISETHIONATE (SCI)
SODIUM COCOYL SARCOSINATE; Glycine, N-methyl-, N-coco acyl derivs, sodium salts; N° CAS : 61791-59-1, Nom INCI : SODIUM COCOYL SARCOSINATE; N° EINECS/ELINCS : 263-193-2 ; Classification : Tensioactif anionique; Ses fonctions (INCI); Agent nettoyant : Aide à garder une surface propre; Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance; Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOYL ISETHIONATE 85%
Le sodium Cocoyl Isethionate 85% est dérivé de l'huile de noix de coco et est facilement soluble dans l'eau.
Le sodium Cocoyl Isethionate 85% a un pH légèrement acide, ce qui le rend idéal pour la peau.
Le sodium Cocoyl Isethionate 85% est un tensioactif anionique fabriqué à partir d'acide gras d'huile de noix de coco, et a une excellente qualité hydratante et une qualité nettoyante douce.

Numéro CAS : 61789-32-0
Formule moléculaire : C2Na6O47S20
Poids moléculaire : 1555.23182
Numéro EINECS : 263-052-5

L'isethionate de cocoyle de sodium à 85 % produit une mousse souple dense dans l'eau douce et l'eau dure.
Le Sodium Cocoyl Isethionate 85% est un tensioactif anionique doux avec d'excellentes propriétés moussantes.
Le sodium Cocoyl Isethionate 85% confère une sensation luxueusement douce et revitalisée sur la peau.

Sodium Cocoyl Isethionate 85% P de Clariant est un tensioactif anionique doux d'origine végétale qui donne des mousses hautes, denses et crémeuses.
Le Sodium Cocoyl Isethionate 85% est un tensioactif doux dérivé de la noix de coco.
Peut être formulé pour obtenir un aspect clair ou opaque/crémeux.

Le Sodium Cocoyl Isethionate 85% peut être utilisé dans une variété de recettes cosmétiques.
Le Sodium Cocoyl Isethionate 85% agit comme un ingrédient moussant et nettoyant.
Il s'agit d'un ingrédient utilisé dans des produits comme le savon, les bombes de bain, les pains moussants et le shampooing.

La poudre d'isethionate de cocoyle de sodium à 85 % est un tensioactif en poudre anionique de premier ordre, très doux et dérivé de toutes les ressources végétales et renouvelables.
Sodium Cocoyl Isethionate 85% poudre / Sodium Cocoyl Isethionate est utilisé dans de nombreuses applications.
La concentration de « 85 % » signifie que dans le produit auquel vous faites référence, l'isethionate de cocoyle de sodium représente 85 % de la composition totale et que les 15 % restants peuvent être constitués d'autres ingrédients, tels que de l'eau, des conservateurs, des émollients et des parfums, selon la formulation spécifique.

Le Sodium Cocoyl Isethionate 85% est un tensioactif anionique doux avec d'excellentes propriétés moussantes.
Le sodium Cocoyl Isethionate 85% confère une sensation luxueusement douce et revitalisée sur la peau.
L'isethionate de cocoyle de sodium à 85 % produit une mousse souple dense dans l'eau douce et l'eau dure.

Peut être formulé pour obtenir un aspect clair ou opaque/crémeux.
Le sodium Cocoyl Isethionate 85% est dérivé de l'huile de noix de coco et est facilement soluble dans l'eau.
Le sodium Cocoyl Isethionate 85% a un pH légèrement acide, ce qui le rend idéal pour la peau.

Le sodium Cocoyl Isethionate 85% est généralement dérivé de l'huile de noix de coco, d'où la partie « cocoyl » de son nom.
Le Sodium Cocoyl Isethionate 85% est un sel de sodium produit à partir d'huile de noix de coco.
L'isethionate de cocoyle de sodium à 85 % présente une grande capacité moussante, produisant une mousse stable, riche et veloutée qui ne déshydrate pas la peau, ce qui le rend idéal pour être ajouté aux produits sans eau ainsi qu'aux produits de soins de la peau, de soins capillaires et de bain.

L'isethionate de cocoyle de sodium 85% est un composé anionique et est également connu sous le nom d'isethionate de sodium.
Le cocoyl iséthionate de sodium à 85 % est un substitut populaire aux sels de sodium d'origine animale, tels que le suif de sodium, qui provient des bovins et des moutons.
Le sodium Cocoyl Isethionate 85% est un tensioactif anionique fabriqué à partir d'acide gras d'huile de noix de coco, et a une excellente qualité hydratante et une qualité nettoyante douce.

Le cocoyl isethionate de sodium à 85 % est efficace dans l'eau dure et les solutions électrolytiques, et compatible avec le savon et le glycérol.
Cet ingrédient a des propriétés moussantes élevées, ce qui fait de l'isethionate de cocoyle de sodium à 85 % un ajout utile aux produits cosmétiques et de soins personnels.
Le sodium Cocoyl Isethionate 85% est également connu sous le nom de « Baby Foam » car il s'agit d'un tensioactif exceptionnellement doux.

Le Sodium Cocoyl Isethionate 85% est une fine poudre blanche qui dégage une odeur douce.
Le Sodium Cocoyl Isethionate 85% est un substitut traditionnel aux sels de sodium dérivés d'animaux, à savoir les ovins et les bovins.
Le cocoyl iséthionate de sodium à 85 % est un composé chimique couramment utilisé dans la formulation de produits de soins personnels et cosmétiques, en particulier dans les soins de la peau, les soins capillaires et les produits de bain.

La grande capacité moussante de l'isethionate de cocoyle de sodium 85 % maintient l'hydratation de la peau.
Le sodium cocoyl isethionate 85% est un ingrédient nettoyant utilisé dans les formulations de soins de la peau et de soins capillaires.
Le sodium Cocoyl Isethionate 85% est dérivé de l'huile de noix de coco. Il est principalement utilisé dans les savons, les nettoyants, les shampooings et les produits nettoyants en raison de ses capacités tensioactives.

Le sodium Cocoyl Isethionate 85% aide à éliminer le sébum et la saleté de la peau et lui permet d'être lavée.
C'est pourquoi le Sodium Cocoyl Isethionate 85% peut être trouvé dans les produits qui aident à nettoyer la peau et les cheveux.
Le Sodium Cocoyl Isethionate 85% est un ester de sel de sodium, ou un acide gras dérivé de l'huile de noix de coco.

Le sodium Cocoyl Isethionate 85% est un ingrédient naturel dérivé de la noix de coco, en particulier de l'huile de noix de coco.
Sodium Cocoyl Isethionate 85% est un sel de sodium de l'ester d'acide gras de noix de coco de l'acide iséthionique.
Le sodium Cocoyl Isethionate 85% est un tensioactif anionique, ce qui signifie qu'il porte une charge négative qui aide à créer une mousse et à éliminer la saleté, le sébum et les impuretés de la peau et des cheveux.

Le sodium cocoyl isethionate 85%, également connu sous le nom de SCI, est un tensioactif doux qui ajoute des propriétés moussantes et nettoyantes élevées à une formule cosmétique.
Le cocoyl iséthionate de sodium à 85 % se présente généralement sous forme de flocons, de nouilles ou de poudre.
La matière première Sodium Cocoyl Isethionate 85% est un tensioactif composé d'un type d'acide sulfonique appelé acide iséthionique ainsi que de l'acide gras - ou ester de sel de sodium - obtenu à partir de l'huile de noix de coco.

Le Sodium Cocoyl Isethionate 85% est un tensioactif primaire doux avec une mousse dense et luxueuse.
Le cocoyl iséthionate de sodium à 85 % est doux pour la peau et ne dessèche pas.
Le sodium Cocoyl Isethionate 85% peut être combiné avec d'autres tensioactifs pour créer un shampooing et un nettoyant pour le corps crémeux et élégants.

Le sodium Cocoyl Isethionate 85% peut être utilisé comme seul tensioactif dans une crème ou un solide nettoyant.
Dans les applications de soins capillaires et cutanés, ce tensioactif crée une sensation d'élégance pendant l'utilisation et une sensation de sésame conditionnée.

Le sodium Cocoyl Isethionate 85% est une combinaison d'un type d'acide sulfonique appelé acide iséthionique et d'un acide gras ou d'un ester de sel de sodium dérivé de l'huile de noix de coco.
Ce tensioactif est utilisé comme agent nettoyant dans de nombreux produits de soin de la peau, de soins capillaires et de nettoyage.
Le cocoyl iséthionate de sodium à 85 % est considéré comme un ingrédient dans une variété de savons et de produits nettoyants.

Le cocoyl iséthionate de sodium 85% est utilisé sous forme de poudre blanche fine au parfum doux.
Le cocoyl iséthionate de sodium 85% est un type de tensioactif, ce qui signifie qu'il a la capacité d'abaisser la tension superficielle des liquides et d'améliorer la capacité d'étalement des produits.
Le sodium Cocoyl Isethionate 85% est connu pour être non allergique, non irritant et non toxique, donc utilisé dans une large gamme de produits de beauté et d'articles de toilette.

La poudre d'isethionate de cocoyle de sodium à 85 % est un tensioactif particulièrement doux dérivé de la noix de coco.
Le sodium cocoyl isethionate 85% sont des composés organiques qui facilitent le mélange de liquides qui ne se mélangent pas habituellement, le plus évidemment l'huile et l'eau.
L'isethionate a à la fois un élément hydrophile (aimant l'eau) et hydrophobe (craignant l'eau) et est donc attiré par l'eau et l'huile.

La poudre d'isethionate de cocoyle de sodium à 85 % est biodégradable, non toxique et végétalienne.
En plus de son potentiel de liaison, il peut attirer la saleté de la peau et des cheveux qui peut ensuite être lavée à l'eau.
Le cocoyl iséthionate de sodium 85% est très doux pour la peau et le cuir chevelu et convient à tous les types de peau, y compris les nourrissons.

Le tensioactif haute performance Sodium Cocoyl Isethionate 85%, qui est aussi efficace dans l'eau dure que dans l'eau douce, est un choix populaire pour l'ajout aux shampooings liquides et aux shampoings en barre, aux savons liquides et aux savons en barre, aux beurres de bain et aux bombes de bain, ainsi qu'aux gels douche, pour ne nommer que quelques produits moussants.
L'odeur de l'isethionate de cocoyle de sodium 85% peut varier d'un lot à l'autre, notre dernier lot avait peu d'odeur, ce nouveau lot a une certaine odeur.
Dans les tests, l'huile parfumée couvre n'importe quelle odeur, mais les huiles essentielles plus faibles, telles que le pamplemousse et les agrumes, peuvent ne pas couvrir entièrement l'odeur de l'isethionate de cocoyle de sodium 85%.

Le sodium Cocoyl Isethionate 85% est utilisé comme tensioactif ou co-tensioactif (pour les propriétés nettoyantes et moussantes) dans des produits tels que les shampooings, les barres de shampooing, les nettoyants pour le corps et les savons pour les mains.
Cela le rend utile pour créer des propriétés moussantes et nettoyantes dans divers produits de soins personnels.
Le Sodium Cocoyl Isethionate 85% est un tensioactif anionique solide et doux fabriqué à partir d'huile de noix de coco.

Le sodium cocoyl isethionate 85% est vraiment polyvalent et bon, et est considéré comme naturel.
Le cocoyl isethionate de sodium à 85 % est utilisé pour créer des nettoyants solides et des nettoyants liquides opaques.
Le cocoyl iséthionate de sodium à 85 % est généralement utilisé à des concentrations comprises entre 10 et 25 %.

On considère qu'il n'y a pas de problèmes d'irritation, de sensibilité ou de toxicité à ces concentrations.
L'isethionate de cocoyle de sodium 85% est créé en combinant de l'isethionate de sodium avec des acides gras d'huile de noix de coco. (la source)
Le sodium cocoyl isethionate 85% est un ingrédient prédominant dans la formulation des barres syndet depuis plus de trente ans.

Bien qu'il soit rentable et bien reconnu pour sa bonne compatibilité avec la peau, le Sodium Cocoyl Isethionate 85% ne se trouve pas régulièrement dans les systèmes de détergents liquides en raison de sa solubilité limitée dans l'eau.
La solubilité du Sodium Cocoyl Isethionate 85% dans l'eau est défavorable en termes d'enthalpie de solvatation.
Lors de la mise en place de l'équilibre de solubilisation, il existe trois phases possibles, et trois méthodes ont été développées pour empêcher le Sodium Cocoyl Isethionate 85% de recristalliser dans des solutions aqueuses.

Le premier se concentre sur la liaison des ions Sodium Cocoyl Isethionate à 85 % dans des micelles constituées de tensioactifs secondaires.
La seconde se concentre sur l'échange d'ions sodium avec des ions ammonium (et/ou triéthanolammonium).
Le troisième est centré sur l'émulsification de l'isethionate de cocoyle de sodium à 85% et la transformation ultérieure des micelles en gouttes d'huile émulsionnées.

Une combinaison de deux ou trois de ces méthodes permettra au formulateur d'utiliser l'isethionate de cocoyle de sodium à 85 % comme tensioactif primaire dans les systèmes de désactivation liquide.
Le sodium cocoyl isethionate 85% est le sel de sodium de l'ester d'acide gras de noix de coco de l'acide sisethionique qui fonctionne comme un agent tensioactif-nettoyant (Nikitakis, 1988).
Le cocoyl iséthionate de sodium à 85 % se présente sous la forme d'une fine poudre blanche composée d'un ingrédient actif et d'impuretés mineures et dégage une odeur douce (Estrin et coll., 1982b).

Le cocoyl lséthionate de sodium est stable à un pH de 6 à 8 et s'hydrolyse en dehors de cette plage de pH (Hunting, 1983).
Le sodium Cocoyl Isethionate 85% est un tensioactif doux dérivé de l'huile de noix de coco qui est couramment utilisé dans les produits de soin de la peau et des cheveux.
Le cocoyl isethionate de sodium 85 est un tensioactif anionique doux, qui peut améliorer la structure de la mousse avec une bonne résistance à l'eau dure.

Le sodium cocoyl isethionate 85% est utilisé dans les cosmétiques et les produits de soins personnels comme tensioactif et est souvent vu dans les produits de soins capillaires comme les shampooings en raison de sa capacité à aider l'eau à se mélanger à l'huile et à la saleté, ce qui leur permet d'être plus facilement rincés.
Le processus comprend le mélange d'un acide sulfonique naturel appelé acide iséthionique avec les acides gras naturellement présents dans l'huile de noix de coco.
Tout comme l'huile de noix de coco, l'isethionate de cocoyle de sodium à 85 % offre des propriétés incroyablement hydratantes, en particulier par rapport à d'autres tensioactifs aux propriétés nettoyantes et moussantes similaires.

Densité : 1110 [à 20°C]
pression de vapeur : 0,002 Pa à 20°C
pka : 0,36 [à 20 °C]
Solubilité dans l'eau : 102mg/L à 23°C
LogP : -0,41 à 20°C

Le sodium cocoyl isethionate 85% est un tensioactif doux d'origine végétale couramment utilisé dans les produits de soins personnels et cosmétiques.
Le sodium Cocoyl Isethionate 85% est dérivé de l'huile de noix de coco et est utilisé comme agent moussant et nettoyant.
Le sodium Cocoyl Isethionate 85% est une alternative douce, non irritante et biodégradable aux tensioactifs plus agressifs tels que le laurylsulfate de sodium.

L'isothétonate de cocoyle de sodium à 85 % est souvent utilisé dans les pains de savon, les nettoyants pour le corps, les shampooings et autres produits de soins personnels.
Le sodium cocoyl isethionate 85% est également utilisé comme constructeur de viscosité dans les produits liquides et crémeux.
La poudre d'isethionate de cocoyle de sodium à 85 % est un tensioactif doux hautement moussant.

Le cocoyl iséthionate de sodium à 85 % aide à mélanger les ingrédients à base d'huile et d'eau dans les formulations, créant ainsi des produits stables et homogènes.
En raison de la nature douce de l'isethionate de cocoyle de sodium à 85%, il est souvent utilisé dans les produits destinés aux personnes à la peau sensible ou irritée.

Le sodium Cocoyl Isethionate 85% est dérivé de la noix de coco et est considéré comme compatible avec les peaux sensibles.
Le cocoyl isethionate de sodium à 85 % est un tensioactif anionique, c'est-à-dire un agent nettoyant avec une charge négative au lieu d'une charge positive.
Les tensioactifs anioniques sont le type le plus courant en raison de leur capacité à soulever et à suspendre la saleté, l'huile et les débris, ce qui leur permet d'être lavés.

L'isethionate de cocoyle de sodium à 85 % aide à éliminer la saleté, les huiles et les impuretés de la peau ou des cheveux sans éliminer excessivement les huiles naturelles, ce qui peut aider à maintenir l'hydratation de la peau et des cheveux.
L'isethionate de cocoyle de sodium à 85 % produit une mousse riche et crémeuse lorsqu'il est mélangé à de l'eau, améliorant l'expérience de nettoyage de produits tels que les shampooings, les nettoyants pour le corps et les nettoyants pour le visage.
Le Sodium Cocoyl Isethionate 85% est un agent nettoyant doux sans savon connu pour sa capacité à atténuer la perturbation de la barrière cutanée.

Le Sodium Cocoyl Isethionate 85% est un ingrédient d'origine naturelle qui provient des acides gras présents dans l'acide iséthionique et l'huile de noix de coco.
Ces acides gras réagissent avec l'isethionate de sodium et le mélange est chauffé pour éliminer l'eau restante.
Sous sa forme brute, le Sodium Cocoyl Isethionate 85% se présente sous la forme d'une fine poudre blanche.

Le cocoyl iséthionate de sodium à 85 % est considéré comme plus respectueux de l'environnement que certains autres tensioactifs, car il peut se biodégrader plus facilement.
La poudre d'isothionate de cocoyle de sodium à 85 %, souvent appelée mousse pour bébé, est un tensioactif en poudre anionique de spécialité fabriqué à partir de toutes les ressources végétales renouvelables, principalement la noix de coco.
L'isethionate de cocoyle de sodium à 85 % est utilisé pour conférer une douceur supplémentaire, une bonne sensation et une bonne mousse dans de nombreux produits de soins personnels et de nettoyage.

La poudre d'isethionate de cocoyle de sodium à 85 % est un excellent mousseur dans l'eau dure ou douce.
Le cocoyl iséthionate de sodium à 85 % est produit en faisant réagir l'isethionate de sodium avec des acides gras dérivés de l'huile de noix de coco ou d'autres chlorures.
En raison de l'excellente mousse et de la douceur de l'isethionate de cocoyl de sodium à 85%, il convient à une utilisation dans les barres, shampooings, gels douche, savons liquides et nettoyants pour le visage Syndet.

De plus, les températures élevées et la façon dont cet ingrédient est stocké peuvent affecter l'odeur.
L'isethionate de cocoyle de sodium (poudre) est produit en faisant réagir l'isethionate de sodium avec des acides gras de noix de coco, suivie d'une neutralisation avec de l'hydroxyde de sodium.
Le mélange est chauffé pour éliminer l'eau et distillé pour éliminer l'excès d'acide gras.

Le sodium Cocoyl Isethionate 85% est fabriqué à l'origine par éthoxylation de sulfites de sodium et de leurs dérivés.
Sodium Cocoyl Isethionate Tensioactif en poudre super fine Ou tensioactif anionique, un type spécial de détergent doux Utilisé comme détergent principal Dans les formules qui nécessitent des formules douces telles que le shampooing pour bébé, le savon pour bébé, le nettoyant pour le visage Et utilisé comme détergent secondaire Dans les formules qui nécessitent une grande quantité de mousse ou de mousse.

Utilise:
Le cocoyl iséthionate de sodium à 85 % est utilisé comme agent tensioactif-nettoyant dans les formulations cosmétiques.
L'isethionate de cocoyle de sodium à 85 % est parfois utilisé dans les bombes de bain et autres produits de bain pour créer une expérience moussante et nettoyante luxueuse lorsqu'il est ajouté à l'eau du bain.
Le sodium cocoyl isethionate 85% peut être utilisé dans les crèmes et les lotions pour aider à l'émulsification, créant ainsi un produit lisse et bien mélangé.

Le sodium cocoyl isethionate 85% est un tensioactif doux et très moussant.
Le sodium Cocoyl Isethionate 85% laisse la peau avec une sensation douce, c'est pourquoi il est parfois appelé « mousse pour bébé ».
Le Sodium Cocoyl Isethionate 85% est un ingrédient dérivé de l'huile de noix de coco.

Dans les cosmétiques et les produits de soins personnels, le Sodium Cocoyl Isethionate 85% est principalement utilisé dans la préparation de savons de bain et de produits nettoyants.
Cet ingrédient est également utilisé dans la formulation de shampooings, de toniques, de pansements, d'autres aides au toilettage des cheveux et de préparations nettoyantes pour la peau.
Les propriétés douces de l'isethionate de cocoyle de sodium à 85 % le rendent adapté à une utilisation dans les shampooings pour bébés, les nettoyants pour le corps et les produits de bain.

L'isethionate de cocoyle de sodium à 85 % est souvent inclus dans les produits conçus pour les peaux sensibles ou facilement irritées, car il nettoie sans provoquer de sécheresse ou d'irritation excessive.
L'isethionate de cocoyle de sodium à 85 % est légèrement à pratiquement non toxique, avec une DL50 orale de 24,33 g/kg pour les rats.
L'application cutanée de 1,0 à 36,0 % p/p de cocoyl lsethionate de sodium aqueux sur des rats pendant 28 jours n'a pas produit d'effets toxiques significatifs.

Le sodium Cocoyl Isethionate 85% s sous forme solide le rend adapté à la création de barres nettoyantes solides et de barres de shampooing, qui sont pratiques pour les voyages et réduisent le besoin de produits liquides.
Le Sodium Cocoyl Isethionate 85% peut être utilisé dans des produits conçus pour avoir une texture crémeuse et hydratante, aidant à créer un équilibre entre le nettoyage et l'hydratation.

Dans les démaquillants, l'isethionate de cocoyle de sodium à 85 % aide à décomposer les produits de maquillage tout en étant doux pour la peau du contour des yeux et du visage.
Le cocoyl iséthionate de sodium à 85 % est souvent utilisé dans les crèmes à raser et les mousses pour créer une expérience de rasage douce et confortable, réduisant ainsi les irritations et le feu du rasoir.
En raison de sa nature douce, l'isethionate de cocoyle de sodium à 85 % est utilisé dans les produits destinés aux personnes ayant un cuir chevelu sensible ou facilement irrité, tels que les shampooings antipelliculaires et les traitements du cuir chevelu.

L'isethionate de cocoyle de sodium à 85 % peut être trouvé dans des formulations naturelles, biologiques et sans sulfate comme alternative plus douce aux tensioactifs traditionnels à base de sulfate.
Dans certains cas, l'isethionate de cocoyle de sodium à 85 % peut être utilisé dans les masques moussants ou nettoyants pour le visage afin de fournir un aspect nettoyant lorsque le masque est lavé.
Le sodium Cocoyl Isethionate 85% peut être trouvé dans les produits cosmétiques comme les crèmes nettoyantes pour le visage, les démaquillants et même dans certaines formulations de dentifrice pour ses propriétés moussantes et nettoyantes.

Le sodium Cocoyl Isethionate 85% peut être inclus dans des produits exfoliants comme les gommages et les nettoyants pour aider à éliminer les cellules mortes de la peau et les impuretés tout en maintenant une action nettoyante douce.
Le sodium Cocoyl Isethionate 85% est souvent utilisé dans les shampooings pour créer une mousse crémeuse qui aide à nettoyer les cheveux et le cuir chevelu sans éliminer excessivement les huiles naturelles.
Cela rend l'isethionate de cocoyle de sodium à 85 % adapté à un usage quotidien et aux personnes ayant un cuir chevelu sensible.

Dans les nettoyants pour le corps et les gels douche, l'isethionate de cocoyle de sodium à 85 % produit une mousse luxueuse qui nettoie efficacement la peau sans la laisser sèche ou irritée.
L'isethionate de cocoyle de sodium à 85 % est utilisé dans les nettoyants pour le visage pour éliminer le maquillage, la saleté et les impuretés de la peau tout en maintenant une expérience de nettoyage douce.
La nature douce de l'isethionate de cocoyl de sodium 85% le rend adapté à divers types de peau.

L'isethionate de cocoyle de sodium à 85 % se trouve couramment dans les barres nettoyantes solides, telles que les barres nettoyantes pour le visage, les barres pour le corps et même les barres de shampooing, en raison de sa capacité à produire une mousse riche.
Le sodium cocoyl isethionate 85% est une bonne alternative sans sulfate pour les personnes qui souhaitent éviter les tensioactifs connus tels que le laurylsulfate de sodium (SLS).

Le cocoyl isethionate de sodium à 85 % est parfois utilisé dans les shampooings pour animaux de compagnie afin de fournir une action nettoyante douce pour la peau et le pelage des animaux de compagnie.
Le cocoyl isethionate de sodium 85 est principalement utilisé dans les shampooings spéciaux, les bains de douche, les lotions nettoyantes douces et les savons liquides.
Le sodium Cocoyl Isethionate 85% est particulièrement utilisé dans le pain de savon syndet à pH neutre.

L'isethionate de cocoyl de sodium à 85 % se trouve souvent dans les shampooings car il aide à créer une mousse riche, à nettoyer efficacement les cheveux et le cuir chevelu et à éliminer la saleté et l'excès de sébum.
Le Sodium Cocoyl Isethionate 85% est particulièrement adapté aux shampooings doux et à usage quotidien.
L'isethionate de cocoyle de sodium à 85 % est utilisé dans les nettoyants pour le corps et les gels douche pour fournir une mousse mousseuse et un nettoyage doux de la peau.

Le cocoyl isethionate de sodium à 85 % peut aider à éliminer les impuretés sans trop dessécher la peau.
Dans les nettoyants pour le visage, l'isethionate de cocoyle de sodium à 85 % est utilisé pour éliminer le maquillage, la saleté et les huiles du visage sans provoquer d'irritation.
La nature douce de l'isethionate de cocoyl de sodium à 85 % le rend adapté à la peau sensible du visage.

Certains pains de savon contiennent 85 % d'isothionate de cocoyle de sodium pour améliorer leurs propriétés moussantes et nettoyantes.
L'isethionate de cocoyle de sodium à 85 % peut contribuer à une mousse crémeuse et à un nettoyage efficace dans les formulations de pain de savon.
L'isethionate de cocoyle de sodium à 85 % se trouve dans les nettoyants à base de crème, aidant à émulsionner et à éliminer le maquillage et les impuretés de la peau tout en maintenant une expérience de nettoyage douce.

En raison de sa nature douce et non irritante, le sodium cocoyl isethionate 85% est couramment utilisé dans les shampooings pour bébés, les nettoyants pour le corps et d'autres produits de soins pour bébés pour assurer un nettoyage en douceur.
Les produits conçus pour les personnes ayant la peau sensible ou facilement irritée contiennent souvent de l'isethionate de cocoyle de sodium à 85 %, car il est moins susceptible de provoquer une irritation de la peau que les tensioactifs plus agressifs.

Le sodium Cocoyl Isethionate 85% est utilisé dans les shampoings solides solides, qui constituent une alternative plus durable et écologique aux shampoings liquides.
Le cocoyl isethionate de sodium 85% aide à faire mousser et à nettoyer efficacement les cheveux.
Le cocoyl isethionate de sodium 85% est utilisé dans les savons liquides pour les mains pour créer une action moussante qui nettoie efficacement les mains sans trop dessécher la peau.

Profil d'innocuité :
Le sodium Cocoyl Isethionate 85% sous forme de poudre peut être irritant pour les yeux et la peau, de sorte que des précautions de manipulation et de sécurité appropriées sont nécessaires pendant la production et la formulation.
L'inhalation d'une fine poudre d'isothionate de sodium à 85 % peut irriter le système respiratoire.
Par conséquent, il est important d'utiliser un équipement de protection individuelle approprié lors de la manipulation du produit chimique pur.

Le sodium cocoyl isethionate 85% est considéré comme doux, certaines personnes peuvent y être sensibles ou allergiques.
Des tests épicutanés doivent être effectués lors de la formulation des produits, en particulier pour les personnes ayant des sensibilités cutanées connues.
Le cocoyl isethionate de sodium à 85 % est biodégradable et considéré comme plus respectueux de l'environnement que certains autres tensioactifs.

Synonymes:
Sodium Cocoyl Isethionate
Acides gras, huile de noix de coco, esters sulfoethyliques, sels de sodium
N° 518XTE8493
Acide gras de noix de coco, ester de 2-sulfoéthyle, sel de sodium
Igepon AC-78
Incroyable chiffon à vaisselle SainteteSavon
Barre à cheveux camélia MODUGA
Barre à cheveux boisée MODUGA
DTXSID6028070
CE 263-052-5
EINECS 263-052-5
Jordapon CI
SODIUM COCOYL ISETIONATE (MART.)
ESTER DE NOIX DE COCO À L'ISETHIONATE DE SODIUM
Isothionate de cocoyle de sodium
UNII-518XTE8493

SODIUM COCOYL SARCOSINATE
SODIUM COCOYL TAURATE N° CAS : 86089-05-6 Nom INCI : SODIUM COCOYL TAURATE N° EINECS/ELINCS : 289-173-3 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM COCOYL TAURATE
cas no 28348-53-0 Sodium o-cumenesulfonate; Sodium 2-isopropylbenzenesulfonate; Eltesol SC 40; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; Sodium Cumene Sulphonate 40;
SODIUM CUMENE SULFONATE
cumenesulfonic acid sodium salt; Sodium cumenesulphonate; SODIUM CUMENESULFONATE, N° CAS : 32073-22-6 / 28348-53-0, Nom INCI : SODIUM CUMENESULFONATE, N° EINECS/ELINCS : 250-913-5 / 248-983-7. Ses fonctions (INCI); Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau.Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Cumène sulfonate de sodium. Noms anglais : BENZENE, (1-METHYLETHYL)-, MONOSULFO DERIV., SODIUM SALT; CUMENESULFONIC ACID, SODIUM SALT; SODIUM CUMENE SULFONATE; 250-913-5 [EINECS]; 2-Isopropylbenzènesulfonate de sodium [French]; 32073-22-6 [RN]; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1) ; Natrium-2-isopropylbenzolsulfonat [German] ; sodium 2-(1-methylethyl)benzenesulfonate; sodium 2-(propan-2-yl)benzenesulfonate; Sodium 2-isopropylbenzenesulfonate [ACD/IUPAC Name];Sodium cumenesulphonate; SODIUM O-CUMENESULFONATE; (1-Methylethyl)benzenesulfonic acid sodium salt; CUMENE MONOSULPHO DERIVATIVE SODIUM SALT; cumene, monosulpho derivative, sodium salt; cumenesulfonic acid sodium salt; Sodium 2-(propan-2-yl) benzene sulfonate; SODIUM 2-(PROPAN-2-YL)BENZENE-1-SULFONATE; sodium 2-propan-2-ylbenzenesulfonate; Sodium 4-propan-2-ylbenzenesulfonate; Sodium cumene sulfonate; Sodium cumenesulfonate; Sodium isopropylbenzenesulfonate; SODIUM MONO-ISOPROPYLBENZENESULFONATE; Sodium-4-(1 methyl ethyl) benzene sulfonate. 250-913-5 [EINECS]; 2-Isopropylbenzènesulfonate de sodium [French] ; 32073-22-6 [RN] ; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1) [ACD/Index Name]; Natrium-2-isopropylbenzolsulfonat [German]; sodium 2-(1-methylethyl)benzenesulfonate; sodium 2-(propan-2-yl)benzenesulfonate Sodium 2-isopropylbenzenesulfonate [ACD/IUPAC Name]; Sodium cumenesulphonate; SODIUM O-CUMENESULFONATE; (1-Methylethyl)benzenesulfonic acid sodium salt; [32073-22-6] 71407-44-8 [RN]; CUMENE MONOSULPHO DERIVATIVE SODIUM SALT; cumene, monosulpho derivative, sodium salt; cumenesulfonic acid sodium salt; Sodium 2-(propan-2-yl) benzene sulfonate; SODIUM 2-(PROPAN-2-YL)BENZENE-1-SULFONATE; sodium 2-propan-2-ylbenzenesulfonate; Sodium 4-propan-2-ylbenzenesulfonate; Sodium cumene sulfonate; Sodium cumenesulfonate; Sodium isopropylbenzenesulfonate; SODIUM MONO-ISOPROPYLBENZENESULFONATE; Sodium-4-(1 methyl ethyl) benzene sulfonate; Sodium o-cumenesulfonate ; Sodium 2-isopropylbenzenesulfonate; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; Sodium o-cumenesulfonate; Sodium 2-isopropylbenzenesulfonate; Benzenesulfonic acid, (1-methylethyl)-, sodium salt; 15763-77-6; Sodium o-cumenesulphonate; o-Cumenesulfonic acid, sodium salt; Sodium 2-isopropylbenzenesulphonate; o-Cumenesulphonic acid, sodium salt; SODIUM CUMENE SULFONATE; Benzenesulfonic acid, 2-(1-methylethyl)-, sodium salt (1:1); Sodium 2-(propan-2-yl) benzene sulfonate; Sodium-4-(1 methyl ethyl) benzene sulfonate; Benzene, (1-methylethyl)-, monosulfo deriv., sodium salt; Benzenesulfonic acid,(1-methylethyl)-, sodium salt (1:1) 71407-44-8
SODIUM CYANIDE
SODIUM CYANIDE (Sodyum Siyanür, SODIUM CYANIDE) Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is a poisonous compound with the formula NaCN. It is a white, water-soluble solid. Cyanide has a high affinity for metals, which leads to the high toxicity of this salt. Its main application, in gold mining, also exploits its high reactivity toward metals. It is a moderately strong base. When treated with acid, it forms the toxic gas hydrogen cyanide: NaCN + H2SO4 → HCN + NaHSO4 Contents 1 Production and chemical properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2 Applications of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.1 Cyanide mining of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.1.1 Sodium gold cyanide 2.2 Chemical feedstock of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.3 Niche uses of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 2.4 Homicide of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) 3 Toxicity of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Production and chemical properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is produced by treating hydrogen cyanide with sodium hydroxide:[4] HCN + NaOH → NaCN + H2O Worldwide production was estimated at 500,000 tons in the year 2006. Formerly it was prepared by the Castner process involving the reaction of sodium amide with carbon at elevated temperatures. NaNH2 + C → NaCN + H2 The structure of solid NaCN is related to that of sodium chloride.[5] The anions and cations are each six-coordinate. Potassium cyanide (KCN) adopts a similar structure. Each Na+ forms pi-bonds to two CN− groups as well as two "bent" Na---CN and two "bent" Na---NC links.[6] Because the salt is derived from a weak acid, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) readily reverts to HCN by hydrolysis; the moist solid emits small amounts of hydrogen cyanide, which smells like bitter almonds (not everyone can smell it—the ability thereof is due to a genetic trait[7]). Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts rapidly with strong acids to release hydrogen cyanide. This dangerous process represents a significant risk associated with cyanide salts. It is detoxified most efficiently with hydrogen peroxide (H2O2) to produce sodium cyanate (NaOCN) and water:[4] NaCN + H2O2 → NaOCN + H2O Applications of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Cyanide mining See also: Cyanide process Sodium gold cyanide Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used mainly to extract gold and other precious metals in mining industry. This application exploits the high affinity of gold(I) for cyanide, which induces gold metal to oxidize and dissolve in the presence of air (oxygen) and water, producing the salt sodium gold cyanide (or gold Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)) and sodium hydroxide: 4 Au + 8 NaCN + O2 + 2 H2O → 4 Na[Au(CN)2] + 4 NaOH A similar process uses potassium cyanide (KCN, a close relative of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)) to produce potassium gold cyanide (KAu(CN)2). Few other methods exist for this extraction process. Chemical feedstock of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Several commercially significant chemical compounds are derived from cyanide, including cyanuric chloride, cyanogen chloride, and many nitriles. In organic synthesis, cyanide, which is classified as a strong nucleophile, is used to prepare nitriles, which occur widely in many chemicals, including pharmaceuticals. Illustrative is the synthesis of benzyl cyanide by the reaction of benzyl chloride and Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE).[8] Niche uses of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Being highly toxic, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used to kill or stun rapidly such as in widely illegal cyanide fishing and in collecting jars used by entomologists. Homicide of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) In 1986, Stella Nickell murdered her husband Bruce Nickell with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). In order to disguise her being responsible for the murder, she placed several bottles of Excedrin tainted with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on store shelves near her home in Tacoma, WA. Susan Snow, a bank manager living nearby in the same town, died several days later from taking some of the tainted Excedrin. In 1991, Joseph Meling, a resident of Tumwater, WA, copied Nickell's idea, this time tainting capsules of Sudafed on store shelves near his home to murder his wife and disguise the incident as a mass murder. Meling had forged life insurance in his wife's name totaling $700,000. Meling's wife Jennifer Meling survived the poisoning attempt but two other residents of Tumwater died after taking the tainted Sudafed. Toxicity of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Main article: Cyanide poisoning Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE), like other soluble cyanide salts, is among the most rapidly acting of all known poisons. NaCN is a potent inhibitor of respiration, acting on mitochondrial cytochrome oxidase and hence blocking electron transport. This results in decreased oxidative metabolism and oxygen utilization. Lactic acidosis then occurs as a consequence of anaerobic metabolism. An oral dosage as small as 200–300 mg can be fatal. Aqueous solutions of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are slightly hydrolyzed (Kh= 2.5X10-5) at ordinary temperatures to produce hydrogen cyanide. When heated in a dry carbon dioxide atmosphere, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) fuses without much decomposition. Thermal dissociation of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has been studied in an atm of helium at 600-1050 °C and in an atm of nitrogen at 1050-1255 °C. It has been shown that vapor phase over melt contains decomposition products. As estimated in rats given 30 mg Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) intraperitoneally over a period of 8 days, 80 percent of the total cyanide is excreted in the urine in the form of thiocyanate. The effects of carotid body chemoreceptor stimulation by Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on respiration and phrenic nerve activity were studied in intact and vagotomized rabbits. In intact animals an intracarotid injection of 30 ug of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) resulted in an elevation of phrenic nerve activity and a rapid onset of respiratory excitation associated with an increase in respiratory rate and the response was markedly potentiated after vagotomy. The change in respiratory rate was primarily due to a decrease in expiration time in intact animals, whereas it resulted from a pronounced decrease in inspiration time in vagotomized animals. Apparently, a suppressive effect of the vagus nerve on carotid body chemoreceptor reflex occurred. An induction of a continuous increase in phrenic nerve activity accompanied by apneustic respiration by intracarotid dopamine was another evidence to support the /observation/. The major detoxification pathway for cyanide in many species is a biotransformation to the less toxic thiocyanate. Hepatic thiosulfate: cyanide sulfurtransferase (rhodanese) is the principal enzyme demonstrating in vitro catalytic activity. Despite the assumed importance of the hepatic enzyme for cyanide detoxification in vivo, the effects of liver damage (surgical or chemical) on cyanide lethality in animals have not been examined previously. Male CD-1 mice pretreated with carbon tetrachloride (CCl4, 1 mg/kg, ip 24 hr prior to the administration of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). In other experiments carbon tetrachloride was given in the same doses at both 48 hr and 24 hr prior to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Hepatotoxicity was documented by elevated serum glutamic pyruvic transaminase (SGPT) activity, by histologic evaluation of the extent of cellular necrosis, by electron microscopy of the mitochondrial fraction, and by the increased duration of zoxazolamine-induced paralysis. Lethality was not changed by carbon tetrachloride pretreatments when Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) was given alone in doses of 4 or 6 mg/kg or at a dose of 10.7 mg/kg following sodium thiosulfate (sodium sulfide, 1 g/kg, ip). A small but statistically ... protective effect was exhibited by CCl4 when Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) was given at a dose of 16 mg/kg following the administration of sodium sulfide. Rhodanese activity as measured in mitochrondrial preparations fractionated from the livers of mice pretreated with carbon tetrachloride was not different from that in animals given the corn oil vehicle even through electron micrographs showed extensive mitochondrial damage. No difference in cyanide lethality was evident between sham-operated mice and partially (2/3) hepatectomized mice at 24 hr post-surgery. An intact healthy liver does not appear to be essential for cyanide detoxification in mice whether or not thiosulfate is also given. Because rhodanese activity was slightly but ... higher in mitochondria lysed by Triton X-100 than in intact mitochondria, the mitochondrial membrane may constitute a barrier to sodium sulfide. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases hydrogen cyanide gas, a highly toxic chemical asphyxiant that interferes with the body’s ability to use oxygen. Exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be rapidly fatal. It has whole-body (systemic) effects, particularly affecting those organ systems most sensitive to low oxygen levels: the central nervous system (brain), the cardiovascular system (heart and blood vessels), and the pulmonary system (lungs). Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used commercially for fumigation, electroplating, extracting gold and silver from ores, and chemical manufacturing. Hydrogen cyanide gas released by Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has a distinctive bitter almond odor (others describe a musty “old sneakers smell”), but a large proportion of people cannot detect it; the odor does not provide adequate warning of hazardous concentrations. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is odorless when dry. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is shipped as pellets or briquettes. It absorbs water from air (is hygroscopic or deliquescent). Super toxic; probable oral lethal dose in humans is less than 5 mg/kg or a taste (less than 7 drops) for a 70 kg (150 lb.) person. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is poisonous and may be fatal if inhaled, swallowed or absorbed through the skin. Contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may cause burns to skin and eyes. Individuals with chronic diseases of the kidneys, respiratory tract, skin, or thyroid are at greater risk of developing toxic cyanide effects. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is not combustible itself, but contact with acids releases highly flammable hydrogen cyanide gas. Fire may produce irritating or poisonous gases. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts violently with strong oxidants such as nitrates, chlorates, nitric acid, and peroxides, causing an explosion hazard. Upper and lower explosive (flammable) limits in air are not available for Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Cyanide is usually found joined with other chemicals to form compounds. Examples of simple cyanide compounds are hydrogen cyanide, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide. Certain bacteria, fungi, and algae can produce cyanide, and cyanide is found in a number of foods and plants. In certain plant foods, including almonds, millet sprouts, lima beans, soy, spinach, bamboo shoots, and cassava roots (which are a major source of food in tropical countries), cyanides occur naturally as part of sugars or other naturally-occurring compounds. However, the edible parts of plants that are eaten in the United States, including tapioca which is made from cassava roots, contain relatively low amounts of cyanide. Hydrogen cyanide is a colorless gas with a faint, bitter, almondlike odor. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide are both white solids with a bitter, almond-like odor in damp air. Cyanide and hydrogen cyanide are used in electroplating, metallurgy, organic chemicals production, photographic developing, manufacture of plastics, fumigation of ships, and some mining processes. Hydrogen cyanide gas produced from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) mixes well with air; explosive mixtures are easily formed. Warning: Heart palpitations may occur within minutes after exposure. Caution is advised. Effects may be delayed. Signs and Symptoms of Acute Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) Exposure: Signs and symptoms of acute exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may include hypertension (high blood pressure) and tachycardia (rapid heart rate), followed by hypotension (low blood pressure) and bradycardia (slow heart rate). Cardiac arrhythmias and other cardiac abnormalities are common. Cyanosis (blue tint to the skin and mucous membranes) and cherry-red or bloody mucous membranes may occur. Tachypnea (rapid respiratory rate) may be followed by respiratory depression. Pulmonary edema and lung hemorrhage may also occur. Headache, vertigo (dizziness), agitation, and giddiness may be followed by combative behavior, dilated and unreactive pupils, convulsions, paralysis, and coma. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is irritating to the skin and mucous membranes. Lacrimation (tearing) and a burning sensation of the mouth and throat are common. Increased salivation, nausea, and vomiting are often seen. Emergency Life-Support Procedures: Acute exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) may require decontamination and life support for the victims. All exposed persons should be transported to a health care facility as quickly as possible. Emergency personnel should wear protective clothing appropriate to the type and degree of contamination. Air-purifying or supplied-air respiratory equipment should also be worn as necessary. Rescue vehicles should carry supplies such as plastic sheeting and disposable plastic bags to assist in preventing spread of contamination. Inhalation Exposure: 1. Move victims to fresh air. Emergency personnel should avoid self-exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 3. RUSH to a health care facility! 4. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. Dermal/Eye Exposure: 1. Remove victims from exposure. Emergency personnel should avoid self- exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 2. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 3. RUSH to a health care facility! 4. Remove contaminated clothing as soon as possible. 5. If eye exposure has occurred, eyes must be flushed with lukewarm water for at least 15 minutes. 6. Wash exposed skin areas twice with soap and water. 7. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. Ingestion Exposure: 1. Evaluate vital signs including pulse and respiratory rate, and note any trauma. If no pulse is detected, provide CPR. If not breathing, provide artificial respiration. IMMEDIATELY begin administering 100% oxygen to all victims. Monitor victims for respiratory distress.Warning: To prevent self-poisoning, avoid mouth-to-mouth breathing; use a forced-oxygen mask. Direct oral contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)-contaminated persons or their gastric contents may result in self-poisoning. 2. RUSH to a health care facility! 3. DO NOT induce vomiting. Ipecac is not recommended for ingestion of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). 4. Obtain authorization and/or further instructions from the local hospital for administration of an antidote or performance of other invasive procedures. 5. Activated charcoal may be administered if victims are conscious and alert. Use 15 to 30 g (1/2 to 1 oz) for children, 50 to 100 g (1-3/4 to 3-1/2 oz) for adults, with 125 to 250 mL (1/2 to 1 cup) of water. 6. Promote excretion by administering a saline cathartic or sorbitol to conscious and alert victims. Children require 15 to 30 g (1/2 to 1 oz) of cathartic; 50 to 100 g (1-3/4 to 3-1/2 oz) is recommended for adults. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is non-combustible. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases highly flammable and toxic hydrogen cyanide gas on contact with acids or water. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is a poor candidate for incineration. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is an extremely hazardous substance (EHS) subject to reporting requirements when stored in amounts in excess of its threshold planning quantity (TPQ) of 100 lbs. Manufacturers and processors of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are required to conduct chemical fate and terrestrial effects tests under TSCA section 4. Acute systemic toxicity of hydrogen cyanide, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE), and potassium cyanide by instillation into the inferior conjunctival sac was investigated in rabbits. Methods of Dissemination Indoor Air: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be released into indoor air as fine droplets, liquid spray (aerosol), or fine particles. Water: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be used to contaminate water. Food: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be used to contaminate food. Outdoor Air: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can be released into outdoor air as fine droplets, liquid spray (aerosol), or fine particles. Agricultural: If Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is released as fine droplets, liquid spray (aerosol), or fine particles, it has the potential to contaminate agricultural products. ROUTES OF EXPOSURE: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can affect the body through ingestion, inhalation, skin contact, or eye contact. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) can affect the body through ingestion, inhalation, skin contact, or eye contact. The effects of tribuyltin and Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) on hemolysis in human erythrocytes are described. Tributyltin has a sharp cut take off concentration for induction of hemolysis. A 5 uM concentration of tributyltin induces hemolysis and 1 uM or less does not in erythrocyte suspensions with lysis are sigmoidal indicating a complex molecular mechanism leading to lysis. Ten mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus 1 uM tributyltin does not stimulate hemolysis rates above levels observed with 10 mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) alone. Five nM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus hemolytic concentrations of tributyltin stimulates hemolysis rates synergistically compared with either cyanide or tributyltin alone. Ultrastructurally, hemolytic concentrations of tribuyltin can be visualized in the electron microscope by osmium staining during fixation as electron dense spheres penetrating the lipid bilayer of the erythrocyte plasma membrane. Ten mM Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) plus 25 uM tributyltin increases slightly the size of osmiophilic structures in erythrocyte membranes compared with those spheres seen in cells exposed to 25 uM tribuyltin alone. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is the only compound tested that stimulates tributyltin induced hemolysis. CHEMICAL DANGERS: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is water-reactive. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) decomposes on contact with acids, acid salts, water, moisture, and carbon dioxide, producing highly toxic, flammable hydrogen cyanide gas. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) solution in water is a strong base; it reacts violently with acid and is corrosive. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is incompatible with strong oxidants. Carbon dioxide from the air is sufficiently acidic to liberate toxic hydrogen cyanide gas on contact with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). EXPLOSION HAZARDS: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) reacts violently with strong oxidants such as nitrates, chlorates, nitric acid, and peroxides, causing an explosion hazard. Upper and lower explosive (flammable) limits in air are not available for Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Containers may explode when heated or if they are contaminated with water. FIRE FIGHTING INFORMATION: Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is non-combustible. The agent itself does not burn. Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) releases highly flammable and toxic hydrogen cyanide gas on contact with acids or water. Fire will produce irritating, corrosive, and/or toxic gases. Hydrogen cyanide gas produced from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) mixes well with air; explosive mixtures are easily formed. TIME COURSE: Effects occur rapidly following exposure to Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). Inhalation exposure to hydrogen cyanide gas released from Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) produces symptoms within seconds to minutes; death may occur within minutes. What is Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE)? The term cyanide is clearly understood in the public consciousness to be almost synonymous with poison itself. This is largely because of its use as lethal suicide pill (L-pill) in World War 2, most notably with the suicide of Nazi army officer Erwin Rommel. The cyanide used in the L-pill was potassium cyanide but the properties of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) are nearly identical. An inorganic and very innocent looking white solid with deadly properties, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) (NaCN) can be fatal at amounts as little as 5% of a teaspoon. It is produced from the equally dangerous gas hydrogen cyanide (HCN) in a simple process with sodium hydroxide. Why would a company want so much of it? Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is used industrially across the globe, most frequently in the mining of gold. Although most of us have the traditional imagery of a 19th-century gold miner panning for nuggets, this isn’t the industrial method used today. After mining and milling, the crude rock mixture is turned into a fine powder and added to a solution of Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE). The gold forms strong bonds with cyanide molecules and can then be separated from the rest of the minerals because it is then soluble in water. It then reacts with zinc and turns back into a solid. Finally is smelted to isolate the gold and cast into bars. How dangerous is it? As with the very similar potassium cyanide used in the L-pill, Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is extremely toxic to humans. Although there are risks with skin absorption, the biggest risk is ingestion. Inhaling or swallowing Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) blocks oxygen transport causing serious medical problems and ultimately death. Gold Extraction Process Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) has been used in the extraction of gold from ore for over a century. Today it is still considered the most efficient extraction method – with Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) used in the leaching process in most gold mining operations. Solid Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is produced to form a white crystalline briquette or ‘cyanoid’. Liquid Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) is delivered to mine sites via purpose-built isotanks that are suitable for road or rail transport. In inorganic cyanides, the cyanide group is present as the anion CN−. Salts such as Sodium cyanide (Sodyum Siyanür, SODIUM CYANIDE) and potassium cyanide are highly toxic.[2] Hydrocyanic acid, also known as hydrogen cyanide, or HCN, is a highly volatile liquid that is produced on a large scale industrially. It is obtained by acidification of cyanide salts.
SODIUM CYCLAMATE
Sodium cyclohexanesulfamate; Cyclohexanesulfamic acid monosodium salt; Assugrin; Asugryn; Cyclohexylsulfamic acid monosodium salt; Hachi-sugar; Ibiosuc; Sodium cyclohexyl amidosulfate; Sodium cyclohexyl sulfamate; Sodium cyclohexylsulfamidate; Sodium N-cyclohexylsulfamate; N-Cyclohexylsulphamic acid sodium salt; Sodium sucaryl; Suessette; Suestamin; N-Cyklohexylsulfamat sodny; Natraiumcyclohexylamidosulfat; Other RN: 53170-91-5, 61373-78-2 cas no: 139-05-9
SODIUM DECYL SULFATE ( Sulfate de sodium et de décyle)
SODIUM DEHYDROACETATE, N° CAS : 4418-26-2 - Déhydroacétate de sodium. sodium dehydracetate; Sodium dehydroacetate; Origine(s) : Synthétique. Autre langue : Dihidroacetato sódico, Nom INCI : SODIUM DEHYDROACETATE. Nom chimique : Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate; N° EINECS/ELINCS : 224-580-1 Additif alimentaire : E266. Le déhydroacétate de sodium est un conservateur utilisé dans les cosmétiques pour ses propriétés antimicrobiennes. Même si l'ingrédient semble poser peu de problèmes pour la santé, notez toutefois que sa concentration est limitée (voir ci-dessous) et qu'il est interdit dans les produits en spray de type aérosol. Il est autorisé en Bio.Ses fonctions (INCI) Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques. Classification : Règlementé, Conservateur. Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate; sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethonolate; sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethonolate; sodium dehydracetate; sodium dehydracetate; Sodium dehydroacetate. Translated names: 1-(3,4-dihidro-6-metil-2,4-dioxo-2H-piran-3-iliden)etanolato de sodio (es); 1-(3,4-dihydro-6-méthyl-2,4-dioxo-2H-pyranne-3-ylidène)éthanolate de sodium (fr); 1-(3,4-diidro-6-metil-2,4-diosso-2H-piran-3-iliden)etanolato di sodio (it); 1-(3,4-diidro-6-metil-2,4-dioxo-2H-pirano-3-ilideno)etanolato de sódio (pt); 1-(3,4-διυδρο-6-μεθυλο-2,4-διοξο-2H-πυραν-3-υλιδεν)αιθυλικό νάτριο (el); 3-acetyl-6-methyltetrahydropyran-2,4-dion, sodná sůl (cs); 3-acetylo-6-metylo-4-okso-4H-piran-2-olan sodu (pl); dehidracetato de sódio (pt); dehidracetato sódico (es); dehydracetová kyselina, sodná sůl (cs); dehydrooctan sodu (pl); deidracetato di sodio (it); déhydroacétate de sodium (fr); Naatrium-1-(3,4-dihüdro-6-metüül-2,4-diokso-2H-püraan-3-ülideen)etonolaat (et); Naatriumdehüdroatsetaat (et); natrijev 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etonolat (hr); natrijev 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etanolat (sl); natrijev dehidracetat (hr); natrijev dehidroacetat (sl) ; natrio 1-(3,4-dihidro-6-metil-2,4-diokso-2H-piran-3-iliden)etanoliatas (lt); natrio dehidracetatas (lt); natrium dehydracetaat (nl); natrium dehydracetat (da); natrium-1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylideen)ethanolaat (nl); natrium-1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-yliden)ethanolat (da); natrium-1-(3,4-dihydro-6-metyl-2,4-diokso-2H-pyran-3-yliden)etanolat (no); natrium-1-(3,4-dihydro-6-metyl-2,4-dioxo-2H-pyran-3-yliden)etanolat (sv); natriumdehydracetat (no); Natriumdehydroasetaatti (fi); nátrium-1-(3,4-dihidro-6-metil-2,4-dioxo-2H-pirán-3-Ilidén)-etanolát (hu); nátrium-3-acetyl-4-oxo-6-metyl-4H-pyrán-2-olát (sk); nátrium-dehidracetát (hu); nātrija 1-(3,4-dihidro-6-metil-2,4-diokso-2H-pirān-3-ilidēn)etonolāts (lv); nātrija dehidracetāts (lv) ; sodiu 1-(3,4-dihidro-6-metil-2,4-dioxo-2H-piran-3-iliden)etonolat (ro); sodiu dehidracetat (ro); δεϋδροξικό νάτριο (el); натриев дехидрацетат (bg); натриев-1-(3,4-дихидро-6-метил-2,4-диоксо-2H-пиран-3-илиден)eтанолат (bg) CAS names 2H-Pyran-2,4(3H)-dione, 3-acetyl-6-methyl-, ion(1-), sodium (1:1) 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate sodium sodium (1E)-1-(6-methyl-2,4-dioxopyran-3-ylidene)ethanolate sodium 1-(3,4-dihydro-6methyl-2,4-dioxo-2H-pyran-3ylidene)ethanolate sodium 1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-ylidene)ethanolate sodium 1-(6-methyl-2,4-dioxo-pyran-3-ylidene)ethanolate sodium 3-acetyl-6-methylpyran-3-ide-2,4-dione Sodium dehydracetate, Dehydroacetic acid sodium salt, 3-(1-Hydroxyethylidene)-6-methyl-2H-pyran-2,4(3H)-dione sodium salt; 1-(6-Méthyl-2,4-dioxo-2H-pyran-3(4H)-ylidène)éthanolate de sodium [French] [ACD/IUPAC Name] 224-580-1 [EINECS] 2H-Pyran-2,4(3H)-dione, 3-(1-hydroxyethylidene)-6-methyl-, sodium salt (1:1) [ACD/Index Name] 4418-26-2 [RN] Natrium-1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-yliden)ethanolat [German] [ACD/IUPAC Name] Sodium 1-(6-methyl-2,4-dioxo-2H-pyran-3(4H)-ylidene)ethanolate [ACD/IUPAC Name] Sodium dehydroacetate Sodium 1-(3,4-dihydro-6-methyl-2,4-dioxo-2H-pyran-3-ylidene)ethanolate
SODIUM DEHYDROACETATE ( Déhydroacétate de sodium)
cas no 7789-12-0 Dichromic acid disodium aalt dihydrate; Sodium dichromate dihydrate; Disodium dichromate dihydrate; Sodium dichromate; Natriumdichromat (German); Dicromato de sodio (Spanish); Dichromate de sodium (French); Sodio (dicromato di) (Italian);
SODIUM DIETHYLHEXYL SULFOSUCCINATE
SODIUM DILAURETH-7 CITRATE, Nom INCI : SODIUM DILAURETH-7 CITRATE. Classification : Composé éthoxylé. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM DILAURETH-7 CITRATE
cas no 128-04-1 Sodium dimethyldithiocarbamate; Carbam-S; SDDC; Dimethyldithiocarbamate sodium salt; Dimethyldithiocarbamic acid sodium salt; Methyl namate; N,N-Dimethyldithiocarbamate sodium salt; N,N-Dimethyldithiocarbamic acid sodium salt; Sodam; Sodium N,N-dimethyldithiocarbamate; Sodium dimethyl dithiocarbamate; Sodium dimethylaminecarbodithioate; Sodium dimethylaminocarbodithioate; Sodium dimethylcarbamodithioate; Sodium dimethyldithiocarbamate; Thiostop N;
SODIUM DIMETHYLDITHIOCARBAMATE
SODIUM DIMETHYLDITHIOCARBAMATE Dimethyldithiocarbamate Chemical structure of the dimethyldithiocarbamate anion Dimethyldithiocarbamate is the organosulfur anion with the formula (CH3)2NCS2−. It is one of the simplest organic dithiocarbamate. Uses It is a component of various pesticides and rubber chemicals in the form of its salts sodium dimethyldithiocarbamate, and potassium dimethyldithiocarbamate) as well as its complexes zinc dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and nickel bis(dimethyldithiocarbamate). Oxidation gives thiram. Properties Related Categories Building Blocks, Chemical Synthesis, Organic Building Blocks, Sulfur Compounds, Thiocarbonyl Compounds Molecular Weight of Sodium dimethyldithiocarbamate: 143.21 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Sodium dimethyldithiocarbamate: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Sodium dimethyldithiocarbamate: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Sodium dimethyldithiocarbamate: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Sodium dimethyldithiocarbamate: 142.983936 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Sodium dimethyldithiocarbamate: 142.983936 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Sodium dimethyldithiocarbamate: 36.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Sodium dimethyldithiocarbamate: 7 Computed by PubChem Formal Charge of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Complexity of Sodium dimethyldithiocarbamate: 64 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Defined Atom Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Undefined Atom Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Defined Bond Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Undefined Bond Stereocenter Count of Sodium dimethyldithiocarbamate: 0 Computed by PubChem Covalently-Bonded Unit Count of Sodium dimethyldithiocarbamate: 2 Computed by PubChem Compound of Sodium dimethyldithiocarbamate Is Canonicalized Yes Sodium dimethyldithiocarbamate act as materials preservatives for fuels, metalworking fluids, paints, coatings, adhesives, cloth, and paper/paperboard; they act as antifoulants/slimicides in a variety of liquids including industrial/commercial cooling water, air washer water, sugar mill pulp/process water, marine heat exchangers, gas/oil recovery fluid, industrial wastewater treatment systems, industrial water purification systems, reverse osmosis water systems, and pasteurizer cooling water. Their main uses are as antifoulants in industrial cooling and air washer water systems, as well as pulp and paper mills and gas/oil drilling muds. Product description SDDC (Sodium Dimethyldithiocarbamate) is a yellowish aqueous solution and is used in the following applications: Biocide for paper mills, sugar mills, water treatment, leather industry Heavy metal scavenger Applications/uses Water treatment industrial . Sodium dimethyldithiocarbamate, is used to aid the precipitation of metals in industrial wastewater treatment and pretreatment systems. When used appropriately it can effectively enhance the removal of some difficult to treat pollutants, without impacting the environment or POTW operations. However, sodium dimethyldithiocarbamate is toxic to aquatic life and can combine to form, or break down to, a number of other toxic chemicals, including thiram (an EPA registered fungicide) and other thiurams, other dithiocarbamates, carbon disulfide, and dimethylamine. Thiram is known to be toxic to aquatic life at the following levels: LC50 less than 10 :g/l (parts per billion) including some less than 1 :g/l for several varieties of catfish, carp, rainbow trout, daphnia, and harlequinfish; LC50 between 10 and 100 ug/l in other studies Occurence(s)/Use(s) Herbicide, biocide (cutting oils and aqueous systems), coagulant, vulcanizing agent, chelating agent; water treatment (precipitate heavy metal ions); stops polymerization of synthetic latexes in rubber Sodium dimethyldithiocarbamate Agent Name Sodium dimethyldithiocarbamate CAS Number 128-04-1 Formula C3-H6-N-S2.Na Major Category Pesticides Sodium dimethyldithiocarbamate formula graphical representation Synonyms Aceto SDD 40; Alcobam NM; Amersep MP 3R; Brogdex 555; Carbam S; Carbam-S; DDC; DMDK; Diaprosim AB 13; Dibam; Dibam A; Dimethyldithiocarbamate sodium salt; Dimethyldithiocarbamic acid, sodium salt; Diram; MSL; MSL (carbamate); MetalPlex 143; Methyl namate; N,N-Dimethyldithiocarbamate sodium salt; N,N-Dimethyldithiocarbamic acid, sodium salt; Nalmet A 1; Nocceler S; SDDC; Sanceler S; Sdmdtc; Sharstop 204; Sodam; Sodium N,N-dimethyldithiocarbamate; Sodium dimethyl dithiocarbamate; Sodium dimethylaminecarbodithioate; Sodium dimethylaminocarbodithioate; Sodium dimethylcarbamodithioate; Sta-Fresh 615; Steriseal liquid #40; Thiostop N; Vinditat; Vinstop; Vulnopol NM; Wing Stop B; Carbamic acid, dimethyldithio-, sodium salt; [ChemIDplus] Category Dithiocarbamates (Pesticide) Description 40% aqueous solution: Yellow liquid; [HSDB] Off-white to cream colored flakes; [MSDSonline] Sources/Uses Used as a disinfectant, corrosion inhibitor, coagulant, vulcanizing agent, chelating agent, fungicide, and biocide (paints, cutting oils, water treatment, leather tanning, and paper manufacturing); [HSDB] Comments May cause irritation; [MSDSonline] Several of the dialkyldithiocarbamates are known skin sensitizers.
SODIUM DIOCTYL SULFOSUCCINATE
Sodium dodecylbenzene sulfonate. Utilisation et sources d'émission: Agent nettoyant, agent dispersant; Sodium dodecylbenzenesulfonate. CAS names; Benzenesulfonic acid, dodecyl-, sodium salt (1:1); SODIUM DODECYLBENZENESULFONATE, N° CAS : 25155-30-0, Nom INCI : SODIUM DODECYLBENZENESULFONATE, Nom chimique : Sodium dodecylbenzenesulphonate. N° EINECS/ELINCS : 246-680-4. Classification : Tensioactif anionique. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile).Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : BENZENESULFONIC ACID, DODECYL-, SODIUM SALT; DODECYL BENZENE SULFONATE DE SODIUM; DODECYL BENZENESULFONIC ACID, SODIUM SALT; DODECYLBENZENE SULFONATE DE SODIUM; DODECYLBENZENESULFONATE DE SODIUM; DODECYLBENZENESULFONIC ACID SODIUM SALT; Dodécylbenzènesulfonate de sodium; Sel de sodium de l'acide dodécylbenzènesulfonique; SEL SODIQUE DE L'ACIDE DODECYLBENZENESULFONIQUE; SODIUM DODECYL BENZENE SULFONATE; Sodium dodecylbenzene sulfonate; Sodium dodecylbenzenesulfonate; SODIUM LAURYLBENZENESULFONATE; SODIUM, DODECYL BENZENE SULFONATE DE ; SODIUM, DODECYLBENZENE SULFONATE DE; SODIUM, DODECYLBENZENESULFONATE DE. Noms anglais : Sodium dodecylbenzene sulfonate. Utilisation et sources d'émission: Agent nettoyant, agent dispersant; Sodium dodecylbenzenesulfonate. CAS names; Benzenesulfonic acid, dodecyl-, sodium salt (1:1); : alkylarylsulphonates; Benzenesulfonic acid, dodecyl-, sodium salt; Dodecene-1 LAS (JIS K 3363-1990) ; Dodecylbenzene sulfonic acid, sodium salt; DUBAROL; sodium 2-dodecylbenzene-1-sulfonate; SODIUM 2-DODECYLBENZENESULFONATE; Sodium 4-dodecylbenzenesulfonate; Sodium dodecyl benzene sulfonate; sodium dodecyl benzenesulfonate; sodium dodecylbenzenesufonate; Sodium Dodecylbenzenesulfonate (Sodium Alkylbenzenesulfonate C10-C13); Sodium dodecylbenzenesulphonate; Sodiumdodecylbenzenesulfonate; Tetrapropylenbenzenesulfonic acid sodium salt ; Trade names: Alkyl(C12)benzenesulfonic acid, sodium salt; Dodecylbenzene sodium sulfonate; dodecylbenzenesulfonic acid, sodium salt; Na-C12 LAS; SDBS; Sodium Dodecyl Benzene Sulphonate; sodium dodecylbenzene sulphonate; Sodium laurylbenzenesulfonate; sodium linear C12 Alkylbenzene sulfonate; Sodium 4-dodecylbenzenesulfonate [ACD/IUPAC Name] ; 218-654-2 [EINECS]; 25155-30-0 [RN]; 4171051; 4-Dodécylbenzènesulfonate de sodium [French] ; 4-Dodecylbenzenesulfonic acid, sodium salt; benzenesulfonic acid, 4-dodecyl-, sodium salt ; Benzenesulfonic acid, 4-dodecyl-, sodium salt (1:1) [ACD/Index Name]; DB6825000; MFCD00011508; Natrium-4-dodecylbenzolsulfonat [German] [ACD/IUPAC Name]; SDBS; sodium 4-dodecylbenzenesulphonate; sodium dodecyl benzenesulfonate; sodium dodecylbenzenesulfonate; sodium para-dodecylbenzene sulfonate; SODIUM P-DODECYLBENZENESULFONATE ; 11067-82-6 [RN]; 4-(2-dodecyl)benzene sulfonate sodium salt; Benzenesulfonic acid,4-dodecyl-, sodium salt (1:1); Dodecyl benzenesulfonic acid, sodium salt; DODECYLBENZENESODIUMSULFONATE; EINECS 218-654-2; P-DODECYLBENZENESULFONIC ACID, SODIUM SALT; sodium 4-dodecylbenzene-1-sulfonate; sodium 4-laurylbenzenesulfonate
SODIUM DODECYL SULFATE
CAS Number: 151-21-3
IUPAC name: Sodium dodecyl sulfate
Chemical formula: C12H25NaSO4
Molar mass: 288.372 g
EC Number: 205-788-1

Sodium dodecyl sulfate (SDS) or Sodium dodecyl sulfate (SLS), sometimes written sodium laurilsulfate, is an organic compound with the formula CH3(CH2)11OSO3Na.
Sodium dodecyl sulfate is an anionic surfactant used in many cleaning and hygiene products.
This compound is the sodium salt of the 12-carbon an organosulfate.
Sodium dodecyl sulfates hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties and so make it useful as a detergent.
Sodium dodecyl sulfate is also component of mixtures produced from inexpensive coconut and palm oils.
Sodium dodecyl sulfate is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical,
and food products, as well as of industrial and commercial cleaning and product formulations.

Physicochemical properties
The critical micelle concentration (CMC) in water at 25 °C is 8.2 mM, and the aggregation number at this concentration is usually considered to be about 62.
The micelle ionization fraction (α) is around 0.3 (or 30%).

Applications
Cleaning and hygiene
Sodium dodecyl sulfate is mainly used in detergents for laundry with many cleaning applications.
Sodium dodecyl sulfate is a highly effective surfactant and is used in any task requiring the removal of oily stains and residues. For example, it is found in higher concentrations with industrial products including engine degreasers, floor cleaners, and car exterior cleaners.

Sodium dodecyl sulfate is a component in hand soap, toothpastes, shampoos, shaving creams, and bubble bath formulations, for its ability to create a foam (lather), for its surfactant properties, and in part for its thickening effect.

Food additive
Sodium dodecyl sulfate, appearing as its synonym Sodium dodecyl sulfate (SLS), is considered a generally recognized as safe (GRAS) ingredient for food use according to the USFDA (21 CFR 172.822).


Sodium dodecyl sulfate is used as an emulsifying agent and whipping aid.
As an emulsifier in or with egg whites the United States Code of Federal Regulations require that it must not exceed 1,000 parts per million (0.1%) in egg white solids or 125 parts per million (0.0125%) in frozen or liquid egg whites and as a whipping agent for the preparation of marshmallows it must not exceed 0.5% of the weight of gelatine.
SLS is reported to temporarily diminish perception of sweetness.

Laboratory applications
Sodium dodecyl sulfate is used in cleaning procedures, and is commonly used as a component for lysing cells during RNA extraction and/or DNA extraction, and for denaturing proteins in preparation for electrophoresis in the Sodium dodecyl sulfate-PAGE technique.


Denaturation of a protein using Sodium dodecyl sulfate
In the case of Sodium dodecyl sulfate-PAGE, the compound works by disrupting non-covalent bonds in the proteins, and so denaturing them, i.e. causing the protein molecules to lose their native conformations and shapes.

By binding to proteins at a ratio of one Sodium dodecyl sulfate molecule per 2 amino acid residues, the negatively charged detergent provides all proteins with a similar net negative charge and therefore a similar charge-to-mass ratio.
In this way, the difference in mobility of the polypeptide chains in the gel can be attributed solely to their length as opposed to both their native charge and shape.

Sodium dodecyl sulfate is possible to make separation based on the size of the polypeptide chain to simplify the analysis of protein molecules, this can be achieved by denaturing proteins with the detergent Sodium dodecyl sulfate.

Pharma applications
Sodium dodecyl sulfate is a widely used in the pharmaceutical field as an ionic solubilizer and emulsifier that is suitable for applications in liquid dispersions, solutions, emulsions and micro emulsions, tablets, foams and semi-solids such as creams, lotions and gels.

Additionally, SLS aids in tablet wettability, as well as lubrication during manufacturing. Brand names of pharma-grade SLS include Kolliphor SLS and Kolliphor SLS Fine.

Miscellaneous applications
SLS is used in an improved technique for preparing brain tissues for study by optical microscopy.
The technique, which has been branded as CLARSodium dodecyl sulfate, was the work of Karl Deisseroth and coworkers at Stanford University, and involves infusion of the organ with an acrylamide solution to bind the macromolecules of the organ (proteins, nucleic acids, etc.), followed by thermal polymerization to form a "brain–hydrogel" (a mesh interspersed throughout the tissue to fix the macromolecules and other structures in space), and then by lipid removal using Sodium dodecyl sulfate to eliminate light scattering with minimal protein loss, rendering the tissue quasi-transparent.

Along with sodium dodecylbenzene sulfonate and Triton X-100, aqueous solutions of Sodium dodecyl sulfate are popular for dispersing or suspending nanotubes, such as carbon nanotubes.

Niche uses
SLS has been proposed as a potentially effective topical microbicide, for intravaginal use, to inhibit and possibly prevent infection by various enveloped and non-enveloped viruses such as the herpes simplex viruses, HIV, and the Semliki Forest virus.

Liquid membranes formed from Sodium dodecyl sulfate in water have been demonstrated to work as unusual particle separators.
The device acts as a reverse filter, allowing large particles to pass while capturing smaller particles.

Production
Sodium dodecyl sulfate is synthesized by treating lauryl alcohol with sulfur trioxide, oleum, or chlorosulfuric acid to produce hydrogen lauryl sulfate.
Lauryl alcohol can be used in pure form or as a mixtures of fatty alcohols.

When produced from these sources, "Sodium dodecyl sulfate" products are a mixture of various sodium alkyl sulfates with Sodium dodecyl sulfate being the main component.
For instance, Sodium dodecyl sulfate is a component, along with other chain-length amphiphiles, when produced from coconut oil, and is known as sodium coco sulfate (SCS).

Sodium dodecyl sulfate is available commercially in powder, pellet, and other forms (each differing in rates of dissolution), as well as in aqueous solutions of varying concentrations.

Safety
Sodium dodecyl sulfate is not carcinogenic.
Like all detergents, Sodium dodecyl sulfate removes oils from the skin, and can cause skin and eye irritation.
Sodium dodecyl sulfate has been shown to irritate the skin of the face, with prolonged and constant exposure (more than an hour) in young adults.
Sodium dodecyl sulfate may worsen skin problems in individuals with chronic skin hypersensitivity, with some people being affected more than others.

Oral concerns
The low cost of Sodium dodecyl sulfate, its lack of impact on taste, its potential impact on volatile sulfur compounds (VSCs), which contribute to malodorous breath, and its desirable action as a foaming agent have led to the use of Sodium dodecyl sulfate in the formulations of toothpastes.

A series of small crossover studies (25–34 patients) have supported the efficacy of SLS in the reduction of VSCs, and its related positive impact on breath malodor, although these studies have been generally noted to reflect technical challenges in the control of study design variables.

While primary sources from the group of Irma Rantanen at University of Turku, Finland conclude an impact on dry mouth (xerostomia) from SLS-containing pastes, a 2011 Cochrane review of these studies, and of the more general area, concludes that there "is no strong evidence… that any topical therapy is effective for relieving the symptom of dry mouth".

A safety concern has been raised on the basis of several studies regarding the effect of toothpaste Sodium dodecyl sulfate on aphthous ulcers, commonly referred to as canker or white sores.
A consensus regarding practice (or change in practice) has not appeared as a result of the studies.

As Lippert notes, of 2013, "very few… marketed toothpastes contain a surfactant other than Sodium dodecyl sulfate," and leading manufacturers continue to formulate their produce with Sodium dodecyl sulfate.

Appearance: White or cream-colored crystals, flakes, or powder
Odor: Faint odor of fatty substances
Density: 1.01 g/cm3
Melting point: 206 °c
Hydrogen Bond Donor Count: 0
Hydrogen Bond Acceptor Count: 4
Rotatable Bond Count: 12
Exact Mass: 288.13712473
Monoisotopic Mass: 288.13712473
Topological Polar Surface Area: 74.8 Ų
Heavy Atom Count: 18
Complexity: 249
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 2
Compound Is Canonicalized: Yes

About Sodium dodecyl sulfate
Sodium dodecyl sulfate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 to < 100 000 tonnes per annum.

Sodium dodecyl sulfate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses of Sodium dodecyl sulfate
Sodium dodecyl sulfate is used in the following products: washing & cleaning products, coating products, plant protection products, adhesives and sealants, fillers, putties, plasters, modelling clay, air care products, polishes and waxes and cosmetics and personal care products.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment).

Article service life of Sodium dodecyl sulfate
Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials). Sodium dodecyl sulfate can be found in complex articles, with no release intended: vehicles and machinery, mechanical appliances and electrical/electronic products (e.g. computers, cameras, lamps, refrigerators, washing machines). Sodium dodecyl sulfate can be found in products with material based on: plastic (e.g. food packaging and storage, toys, mobile phones) and paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper).

Widespread uses by professional workers
Sodium dodecyl sulfate is used in the following products: adhesives and sealants, coating products, fillers, putties, plasters, modelling clay, plant protection products and polymers.
Sodium dodecyl sulfate is used in the following areas: building & construction work and agriculture, forestry and fishing.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Formulation or re-packing of Sodium dodecyl sulfate
Sodium dodecyl sulfate is used in the following products: cosmetics and personal care products, washing & cleaning products, air care products, biocides (e.g. disinfectants, pest control products), coating products, fillers, putties, plasters, modelling clay, polishes and waxes and polymers.
Release to the environment of Sodium dodecyl sulfate can occur from industrial use: formulation of mixtures.

Uses of Sodium dodecyl sulfate at industrial sites
Sodium dodecyl sulfate is used in the following products: polymers, laboratory chemicals, biocides (e.g. disinfectants, pest control products), metal surface treatment products, pH regulators and water treatment products and washing & cleaning products.

Sodium dodecyl sulfate is used in the following areas: building & construction work.
Sodium dodecyl sulfate is used for the manufacture of: plastic products, chemicals and rubber products.

Release to the environment of Sodium dodecyl sulfate can occur from industrial use: in processing aids at industrial sites, in the production of articles, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid and for thermoplastic manufacture.

Other release to the environment of Sodium dodecyl sulfate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Sodium dodecyl sulfate (SLS) is an anionic surfactant naturally derived from coconut and/or palm kernel oil.
Sodium dodecyl sulfate usually consists of a mixture of sodium alkyl sulfates, mainly the lauryl.

Sodium dodecyl sulfate lowers surface tension of aqueous solutions and is used as fat emulsifier, wetting agent, and detergent in cosmetics, pharmaceuticals and toothpastes.
Sodium dodecyl sulfate is also used in creams and pastes to properly disperse the ingredients and as research tool in protein biochemistry. SLS also has some microbicidal activity.

Sodium dodecyl sulfate is used as a surfactant in shampoos and toothpastes.
Sodium dodecyl sulfate also has microbicidal activities against both enveloped (Herpes simplex viruses, HIV-1, Semliki Forest virus) and nonenveloped (papillomaviruses, reovirus, rotavirus and poliovirus) viruses, although it has not been approved for this use.

Like other surfactants, Sodium dodecyl sulfate is amphiphilic.
Sodium dodecyl sulfate thus migrates to the surface of liquids, where its alignment and aggregation with other Sodium dodecyl sulfate molecules lowers the surface tension. This allows for easier spreading and mixing of the liquid.
Sodium dodecyl sulfate has potent protein denaturing activity and inhibits the infectivity of viruses by by solubilizing the viral envelope and/or by denaturing envelope and/or capsid proteins.

Sodium dodecyl sulfate is an organic sodium salt that is the sodium salt of dodecyl hydrogen sulfate. Sodium dodecyl sulfate has a role as a detergent and a protein denaturant.

Dodecyl sulfate, [sodium salt] appears as white to pale yellow paste or liquid with a mild odor.
Sinks and mixes with water. (USCG, 1999)

An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry.

Features of Sodium Dodecyl Sulfate (Lauryl):
Popular anionic detergent for a variety of protein methods Especially useful for denaturing polyacrylamide gel electrophoresis (SDS-PAGE)
Common component of cell lysis buffers

This lauryl-grade sodium dodecyl sulfate (SDS) is a popular anionic detergent for routine protein electrophoresis and cell lysis methods. The formulation is a mixture of several different alkyl sulfate chain lengths (C10 to C18).

Sodium dodecyl sulfate (sodium lauryl sulfate) also called SDS (= sodium dodecyl sulfate), is an anionic surfactant that is used as a detergent, eg. in detergents or toothpaste.
Sodium dodecyl sulfate is also used as a denaturant for proteins, and is mainly used in biochemistry and biotechnology.
The effect on proteins is based on breaking non-covalent bonds of the proteins and thus destroying their quaternary and tertiary structure.

Sodium Dodecyl Sulfate (SDS) is an anionic detergent that denatures secondary and nondisulfide-linked tertiary protein structure, shattering the native shape.
Sodium Dodecyl Sulfate provides a negative charge to each protein as a function of their size.

Accordingly, all of proteins have the same shape in the gel separation they are separated only for their size. Furthermore, Sodium Dodecyl Sulfate can be used to aid in lysing cell during DNA extraction.

Sodium Dodecyl Sulfate is what’s known as a “surfactant”.
This means it lowers the surface tension between ingredients, which is why it’s used as a cleansing and foaming agent.

Most concerns about Sodium Dodecyl Sulfate stem from the fact that it can be found in beauty and self-care products as well as in household cleaners.

Grooming products, such as shaving cream, lip balm, hand sanitizer, nail treatments, makeup remover, foundation, facial cleansers, exfoliants, and liquid hand soap

Hair products, such as shampoo, conditioner, hair dye, dandruff treatment, and styling gel

Dental care products, such as toothpaste, teeth whitening products, and mouthwash

Bath products, such as bath oils or salts, body wash, and bubble bath

Creams and lotions, such as hand cream, masks, anti-itch creams, hair-removal products, and sunscreen

Sodium Dodecyl Sulfate (SDS) is a surfactant, which basically means it has an effect on the surfaces it touches. It’s used in a variety of products such as food thickeners, toothpaste, and floor cleaners.

Uses of Sodium Dodecyl Sulfate
All the soaps and cleaning products that you use are a mix of water and oil.
But they don’t mix together on their own.

Instead, surfactants bring them together.
Soap's cleaning power comes from the bonded oil and water molecules rubbing against dirt and grease.

That is why so many products have surfactants in them.
They blend the ingredients that make cleaning happen.‌

Sodium lauryl sulfate is very easy and inexpensive to make, and it works well in many situations. You'll see it listed as an ingredient in common products found in the home and in the workplace. ‌

Personal Products. These include things like:

Body wash
Hand soap
Facial cleaner
Bubble bath
Toothpaste
Shampoo

Sodium Dodecyl Sulfate is also a foaming agent.
Many of these products use Sodium Dodecyl Sulfate to give a foaming action during the cleaning process.
If you have a foaming face wash or are working up a good lather with your shampoo, you're probably using something with SLS.‌

Sodium Dodecyl Sulfate’s ability to break down oil and grease lends itself well to industrial products.
You can find it in household cleaning products as well as engine cleaners and industrial-strength soaps. ‌

You may see Sodium Dodecyl Sulfate used in certain foods you eat, within limits approved by the FDA.
As a food additive, SLS can make marshmallows fluffier and dried egg products lighter.
Sodium Dodecyl Sulfate helps mix citrus and other acidic liquids with water to make fruit drinks.

Sodium Dodecyl Sulfate (SDS), also known as Sodium lauryl sulfate, is a widely used surfactant in cleaning products, cosmetics, and personal care products.
The sodiumclauryl sulfate formula is a highly effective anionic surfactant used to remove oily stains and residues.

Sodium Dodecyl Sulfate is found in high concentrations in industrial products, including engine degreasers, floor cleaners, and car wash products, where workplace protections can be implemented to avoid unsafe exposures.
Sodium Dodecyl Sulfate is also used in lower concentrations in household and personal care products such as cleaning products, toothpastes, shampoos, and shaving foams.

Sodium Dodecyl Sulfate has been an ingredient in shampoos since the 1930s.
Sodium Dodecyl Sulfate works as a surfactant, trapping oil and dirt in hair so it can rinse away with water.

Personal Care Products
An effective foaming agent, Sodium Dodecyl Sulfate can help create a rich lather in products like body and hand wash, facial cleansers and bubble.
Likewise, Sodium Dodecyl Sulfate helps create the foaming action in toothpaste and also helps remove food particles from teeth.

Cleaning Products
Sodium Dodecyl Sulfate is an effective surfactant used in household cleaning products to help remove oily stains and residues, such as food stains in carpets.
Because of its ability to break down oil and grease, Sodium Dodecyl Sulfate also is an ingredient in many industrial cleaning products, such as engine degreasers and industrial strength detergents.

Food Additive
As a food additive, Sodium Dodecyl Sulfate is used as an emulsifier or thickener.
For example, Sodium Dodecyl Sulfate helps make marshmallows and dried egg products light and fluffy.
Sodium Dodecyl Sulfate also helps acids mix better with liquids, for example in fruit juices and punches.

Sodium Dodecyl Sulfate is frequently used as a surfactant, or foaming agent.
Sodium Dodecyl Sulfate may also serve as an emulsifier, helping oil based and water based ingredients to stay mixed.
In many of our toothpastes SLS is used as a surfactant and helps to properly disperse the ingredients during brushing, and ensures easy rinsing and removal of debris (i.e. food particles).

Sodium Dodecyl Sulfate may be derived from either petroleum based or vegetable based sources.
The oils can be split into glycerin and the component fatty acids, one of which is lauric acid.
The lauric acid is isolated and then hydrogenated to form the lauryl alcohol.

Alternately, the whole oil can be esterified and then hydrogenated to form the fatty alcohols of which lauryl alcohol would be isolated by fractionation.
The lauryl alcohol is then combined with sulfur which then forms the salt, Sodium Dodecyl Sulfate.

Sodium Dodecyl Sulfate is a cleansing agent known for being too good at the job and potentially irritating the skin.
But, on the positive side, it can produce copious, creamy and luxurious foam compared to the more gentle and thus nowadays much more commonly used Sodium Dodecyl Sulfate.

In fact, SLS is so good at irritating the skin that it is very commonly used in dermatological studies just for that. It is a so-called "primary irritant", a substance that irritates the skin in one go (without prior sensitization) but doesn't do any other big harm (such as being carcinogenic or systematically toxic - those claims are not true).
Also, the formula can greatly influence the irritating potential of SLS, and mixing it with other cleaning agents makes it milder.

If it's not in a cleanser, it works as an emulsifier or even as a penetration enhancer for active materials.

Synonyms:
151-21-3
SODIUM LAURYL SULFATE
Sodium dodecylsulfate
Sodium lauryl sulphate
Sodium dodecyl sulphate
Dodecyl sodium sulfate
Neutrazyme
Sodium n-dodecyl sulfate
Irium
Dodecyl sulfate sodium salt
Dodecyl sulfate, sodium salt
Sulfuric acid monododecyl ester sodium salt
Anticerumen
Duponal
Duponol
Gardinol
Dreft
Aquarex methyl
Duponol methyl
Solsol needles
Stepanol methyl
Duponol waqa
Stepanol wac
Stepanol waq
Duponol qx
Richonol af
Perlandrol L
Perlankrol L
Sipex sb
Sipex sd
Standapol wa-ac
Stepanol me dry
Duponol Me
Richonol A
Richonol C
Sintapon L
Duponol C
Maprofix LK
Standapol WAQ
Stepanol ME
Stepanol WA
Akyposal SDS
Carsonol SLS
Maprobix NEU
Maprofix NEU
Maprofix WAC
Aquarex ME
Dupanol WAQ
Duponol QC
Duponol WA
Duponol WA dry
Duponol WAQ
Empicol LPZ
Hexamol SLS
Melanol CL
Duponal WAQE
Duponol WAQE
Duponol WAQM
Lanette Wax-S
Sterling wa paste
Conco sulfate WA
Conco sulfate WN
Nikkol SLS
Orvus WA Paste
Sipex OP
Sipex SP
Sipex UB
Sipon LS
Sipon PD
Sipon WD
Detergent 66
Montopol La Paste
Sipon LSB
Maprofix WAC-LA
Sterling WAQ-CH
Cycloryl 21
Cycloryl 31
Stepanol WA Paste
Conco Sulfate WAG
Conco Sulfate WAN
Conco Sulfate WAS
Quolac EX-UB
Odoripon Al 95
Avirol 118 conc
Cycloryl 580
Cycloryl 585N
Lauryl sulfate sodium salt
Lauyl sodium sulfate
Maprofix 563
Sinnopon LS 95
Stepanol T 28
Steinapol NLS 90
Empicol LS 30
Empicol LX 28
Lauryl sodium sulfate
Melanol CL 30
NALS
Rewopol NLS 30
Standapol waq special
Standapol was 100
Sinnopon LS 100
Stepanol WA-100
Carsonol SLS Special
Standapol 112 conc
Stepanol ME Dry AW
Avirol 101
Emersal 6400
Monogen Y 100
Carsonol SLS Paste B
sodium;dodecyl sulfate
Stepanol methyl dry aw
Berol 452
Emal 10
EMAL O
Sipon LS 100
n-Dodecyl sulfate sodium
Sodium monolauryl sulfate
Monododecyl sodium sulfate
Sodiumlauryl ether sulfate
Conco sulfate WA-1200
Conco sulfate WA-1245
Dehydag sulfate GL emulsion
Product no. 75
Product no. 161
MFCD00036175
Emulsifier no. 104
CHEBI:8984
UNII-368GB5141J
P and G Emulsifier 104
Sodium lauryl sulfate ether
Sodium Laurylsulfate
Sulfuric acid monododecyl ester sodium salt (1:1)
SLS
Texapon K 1296
NCI-C50191
Laurylsulfuric Acid Sodium Salt
Natriumalkyl(C8-C20)-sulfate
Dodecyl alcohol, hydrogen sulfate, sodium salt
Dodecylsulfuric Acid Sodium Salt
Finasol osr2
Incronol SLS
Natriumlaurylsulfat
368GB5141J
NSC-402488
NCGC00091020-03
E487
Jordanol SL-300
Finasol osr(sub 2)
Dodecyl sulfate sodium
Monagen Y 100
Perklankrol ESD 60
Caswell No. 779
Natrium laurylsulfuricum
DSSTox_CID_6031
DSSTox_RID_77989
Sodium monododecyl sulfate
DSSTox_GSID_26031
12738-53-3
12765-21-8
1334-67-4
Laurylsiran sodny [Czech]
Lauryl sulfate, sodium salt
Dehydrag sulfate gl emulsion
Dehydag sulphate GL emulsion
Laurylsiran sodny
Rhodapon UB
Sodium lauryl sulfate 30%
sodiumdodecylsulfate
CAS-151-21-3
CCRIS 6272
Lauryl sulfate sodium
HSDB 1315
Sodium lauryl sulfate, dental grade
EINECS 205-788-1
EPA Pesticide Chemical Code 079011
NSC 402488
CP 75424
Empicol
AI3-00356
Sodium lauryl sulfate [JAN:NF]
sodiumlauryl sulfate
Sodium laurilsulfate
sodium dodecylsulphate
Sodium dedecyl sulfate
Sodium-dodecyl-S-SDS
IPC-SDS
sodium n-dodecyl sulphate
Sodium Lauryl Sulfate NF
lauryl sulphate sodium salt
EC 205-788-1
dodecyl sulphate sodium salt
SCHEMBL1102
C12H25NaO4S
sodium dodecyl sulfate (sds)
CHEMBL23393
Sodium dodecyl sulfate, 99%
sodium dodecyl sulphate (sds)
sodium 2-dodecoxyethyl sulfate
Sodium dodecyl sulphate solution
DTXSID1026031
dodecyl sulfuric acid sodium salt
Dodecyl sulphuric acid sodium salt
Sodium lauryl sulfate (JP17/NF)
BCP30594
CS-B1770
Tox21_111059
Tox21_201614
Tox21_300149
BDBM50530482
AKOS015897278
AKOS025147308
Tox21_111059_1
DB00815
Dodecyl sulfuric acid ester sodium salt
NCGC00091020-01
NCGC00091020-02
NCGC00254225-01
NCGC00259163-01
NCGC00274082-01
AS-14730
M361
Lauryl Sulfate, Sodium Salt (25% Aq.)
D1403
FT-0603358
FT-0700721
I0352
S0588
D01045
F16341
S-4600
S-4601
Sodium dodecyl sulfate, 10% solution in water
SODIUM DODECYL SULFATE BIOTECH GRD 100G
Q422241
Sodium n-dodecyl sulfate, 98%, for electrophoresis
Sodium n-dodecyl sulfate (SDS), 20% aqueous solution
F0001-0539
Z169572898
SODIUM DODECYLBENZENESULFONATE ( Dodécylbenzènesulfonate de sodium )
SODIUM DODOXYNOL-40 SULFATE Nom INCI : SODIUM DODOXYNOL-40 SULFATE Classification : Sulfate, Composé éthoxylé Ses fonctions (INCI) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM DODOXYNOL-40 SULFATE
cas no 6381-77-7 Isoascorbic acid, sodium salt; D-Araboascorbic acid, monosodium salt; D-erythro-Hex-2-enonic acid, gamma-lactone, monosodium salt; Erythorbic Acid Monosodium Salt; Monosodium erythorbate; Neo-cebitate; 2,3-Didehydro-3-O-sodio- D-erythro- hexono-1,4-Lactone; 2,3-Didehidro-3-O-sodio-D- eritro-hexono- 1,4-Lactona: 2,3-Didéhydro-3-O-sodio-D- érythro-hexono-1,4-Lactone; Sodium D-araboascorbate; sodium D-isoascorbate;
SODIUM ERYTHORBATE
SYNONYMS Isoascorbic acid, sodium salt; D-Araboascorbic acid, monosodium salt; D-erythro-Hex-2-enonic acid, gamma-lactone, monosodium salt; Erythorbic Acid Monosodium Salt; Monosodium erythorbate; Neo-cebitate; 2,3-Didehydro-3-O-sodio- D-erythro- hexono-1,4-Lactone; 2,3-Didehidro-3-O-sodio-D- eritro-hexono- 1,4-Lactona: 2,3-Didéhydro-3-O-sodio-D- érythro-hexono-1,4-Lactone; Sodium D-araboascorbate; sodium D-isoascorbate; CAS NO. 6381-77-7
SODIUM ERYTHORBATE ( Érythorbate de sodium ) Sodium isoascorbate
ETHYL 4-HYDROXYBENZOATE SODIUM SALT ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT ETHYL-P-HYDROXYBENZOATE SODIUM SALT p-Hydroxybenzoic acid ethyl ester sodium salt sodium 4-ethoxycarbonylphenoxide SODIUM ETHYL 4-HYDROXYBENZOATE SODIUM ETHYL-P-HYDROXYBENZOATE benzoicacid,4-hydroxy-,ethylester,sodiumsalt Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. 4-Hydroxybenzoic acid ethyl ester sodium salt SODIUM ETHYLPARABEN EthylParabenSodium ETHYL4-HYDROBENZOATESODIUMSALT BENZOICACID,PARA-HYDROXY-,ETHYLESTER,SODIUMSALT 4-(Sodiooxy)benzoic acid ethyl ester 4-Sodiooxybenzoic acid ethyl ester CAS :35285-68-8
SODIUM ETHYL PARABENE
Chemical name Sodium Ethyl p-Hydroxybenzoate 35285-68-8Sodium Ethylparaben Sodium Ethyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Nipagin A Sodium is suitable to preserve both rinse- off and leave- on formulations. Nipagin A Sodium is effective against bacteria, molds and yeast. EC / List no.: 252-487-6 CAS no.: 35285-68-8 Mol. formula: C9H9NaO3 Sodium Ethyl P-hydroxybenzoate Odor: characteristic Use: Sodium ethyl p-hydroxybenzoate is widely used in food and pharmaceutical and textile industry for its antiseptic property. Sodium Ethylparaben is also can be used in industries such as cosmetics, feed and so on. Synonyms: benzoic acid, 4-hydroxy-, ethyl ester, sodium salt benzoic acid, p-hydroxy-, ethyl ester, sodium deriv. ethyl p-hydroxybenzoate, sodium salt ethylparaben sodium ethylparaben, sodium salt 4- hydroxybenzoic acid, ethyl ester, sodium salt sodium 4-ethoxycarbonyl phenoxide sodium 4-ethoxycarbonylphenoxide sodium ethyl 4-hydroxybenzoate sodium ethyl p-hydroxybenzoate sodium ethyl paraben sodium;4-ethoxycarbonylphenolate Synonym: Ethyl 4-hydroxybenzoate sodium salt, p-Hydroxybenzoic acid ethyl ester sodium salt, Ethylparaben sodium salt Sodium Ethyl paraben is a Sodium salt of ethylparaben Sodium Ethylparaben uses and applications include: Antimicrobial, preservative, bactericide, fungicide for foods, beer, pharmaceuticals; preservative in cosmetics Sodium Ethylparaben is a water-soluble antiseptic mainly used as a safe, high efficiency, broad-spectrum antibiotic for cosmetics. Sodium Ethyl paraben is in the paraben family of preservatives used by the food, pharmaceutical, and personal care product industries. INCI designation Sodium Ethylparaben. Product properties *) Appearance: White powder Chemical and physical data pH 9.5- 10.5 Water content: max. 5.0 % Assay by non aqueous titration: 99 - 102 % Uses: Sodium Ethyl paraben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Ethyl paraben is suitable to preserve both rinse- off and leave- on formulations. Sodium Ethylparaben is effective against bacteria, molds and yeast. The recommended use level of Nipagin A Sodium to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. The Paraben esters have many advantages as preservatives,like broad spectrum antimicrobial activity, effective at low use concentrations, compatible with a wide range of cosmetic ingredients, colourless, odourless, well documented toxicological and dermatological acceptability based on human experience (used in cosmetics, food and pharmaceuticals since 1930ies), p-Hydroxybenzoic Acid and a number of its esters occur naturally in a variety of plants and animals, stable and effective over a wide pH- range, etc. The Sodium Parabens, like Sodium Ethylparaben have several additional advantages: - Nipagin A Sodium is highly soluble in cold water for ease of addition. - No heating stage required for incorporation, thus saving energy and plant occupancy. - Increased antimicrobial activity at alkaline pH. Applications: Sodium Ethylparaben is designed for preservation of a wide range of cosmetics and toiletries. Sodium Ethylparaben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative, like Nipaguard DMDMH might be necessary to add as Sodium Ethylparaben provides a higher efficacy against fungi than against bacteria. Solubility Water up to 50 % Sodium Ethylparaben SINGLE PRESERVATIVE Sodium Ethylparaben is a highly water-soluble short-chain paraben in sodium salt form. The major benefit offered by the sodium salts is their high solubility in cold water, thereby enabling the introduction of parabens without heating or pre-dissolving in solvents. Benefits Sodium Ethylparaben has high solubility in cold water Sodium Ethylparaben performs broad spectrum of activity against bacteria and fungi Sodium Ethylparaben shows effectiveness at low concentrations Sodium Ethylparaben has stability over a broad pH-range Water-soluble Biodegradability at environmental concentrations Global acceptance in personal care applications Ethylparaben Sodium, also known as Ethyl paraben or Ethyl parahydroxybenzoate, can be used as a food additive and as an antifungal preservative Incorporation: Sodium Ethylparaben is highly soluble in water and so easily incorporated into cosmetic formulations. It is important to note that, whilst the aqueous solubility in alkaline solution is high, if the pH of the formulated product is acidic the sodium salt reverts to the ester and the low solubility is regained. Microbial activity: Sodium Ethylparaben has a broad spectrum of activity which includes the following common spoilage organisms. Microorganisms MIC level (%) Gram-negative bacteria Pseudomonas aeruginosa 0.113 Escherichia coli 0.056 Klebsiella pneumoniae 0.056 Serratia marcescens 0.056 Proteus vulgaris 0.068 Salmonella enteritidis 0.046 Gram-positive bacteria Staphylococcus aureus 0.079 Streptococcus haemolyticus 0.068 Bacillus cereus 0.028 Yeasts Candida albicans 0.079 Saccharomyces cerevisiae 0.056 Molds Aspergillus niger 0.045 Technical Data Appearance :Powder Active Substance (ca.): 100% INCI-Name: Sodium Ethylparaben Applications Aqueous concentrates may be prepared up to 40% in strength. The concentrate may then be added to the process, preferably slowly and with rapid mixing. Due to the high pH of aqueous solutions of sodium parabens, the pH of the final product requires adjustment. The aqueous solution should be used within a short time of preparation as prolonged storage will result in alkaline hydrolysis of the esters. It is important to note that, at the target pH of the formulation, the parabens will exist as the free esters and not as salts and, therefore, the solubility will also be that of the free esters. Use of the sodium salts will facilitate introduction of the parabens; it will not allow higher concentrations to be used compared with the free esters. pH stability: Sodium Ethylparaben remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions of Nipagin A Sodium are not long- term stable at alkaline pH. Temperature stability The recommended maximum handling temperature is 80°C. Storage instructions Sodium Ethylparaben is stable in sealed original containers. Further information on handling, storage and dispatch is given in the EC safety data sheet. Sodium Ethylparaben is a broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. It is suitable to preserve both rinse- off and leave- on formulations. This product is highly soluble in cold water, which adds to its ease of addition to formulations. Sodium Ethylparaben. Sodium Ethyl paraben provides a broad spectrum of activity against bacteria & fungi. Sodium Ethyl paraben is a short-chain paraben in sodium salt form. Sodium Ethylparaben offers high solubility in cold water, low order of toxicity and stability over a broad pH-range. Sodium Ethylparaben exhibits effectiveness at low concentrations. Sodium Ethylparaben shows good biodegradability at environmental concentrations. Sodium Ethylparaben is used in all kinds of personal care products. Parabene Product description Parabens - esters of the para-hydroxybenzoic acid, are used as preservatives for pharmaceuticals, cosmetics as well as food applications due to their effective antibacterial and fungicidal properties. The grades comply to different pharmaceutical standards as EP, BP or USP. More products available upon request. INCI CAS Methyl Paraben 99-76-3 Sodium Methyl Paraben 5026-62-0 Propyl Paraben 94-13-3 Sodium Propyl Paraben 35285-69-9 Ethyl Paraben 120-47-8 Sodium Ethyl Paraben 35285-68-8 Butyl Paraben 94-26-8 Preservative for the cosmetic industry. Sodium Ethyl p-Hydroxybenzoate, designed for preservation of a wide range of cosmetics and toiletries. Sodium Ethyl Paraben is suitable to preserve both rinse- off and leave- on formulations. Formulations which are prone to bacteria contamination an additional antibacterial preservative might be necessary to add as it provides a higher efficacy against fungi than against bacteria. Sodium Ethyl Paraben is broad spectrum antimicrobial agent designed for preservation of a wide range of cosmetics, toiletries pharmaceuticals. Sodium Ethyl Paraben is suitable to preserve both rinse- off and leave- on formulations. Sodium Ethyl Paraben is effective against bacteria, molds and yeast. Sodium Ethyl Paraben's usage level to preserve most product types is normally in the range of 0.1- 0.3 % based on the total weight of the finished product. Sodium Ethyl Paraben is soluble in cold water for ease; No heating stage required for incorporation, thus saving energy and plant occupancy; Increased antimicrobial activity at alkaline pH.pH stability; remains fully stable over a wide pH range from 3.0- 11.0. Aqueous solutions are not long- term stable at alkaline pH.max. temperature 80°C. This substance is one of the parabens family. Parabens are esters formed by p-hydroxybenzoic acid and an alcohol. They are largely used as biocides in cosmetics and toiletries, medicaments, or food. They have synergistic power with biocides. Parabens can induce allergic contact dermatitis, mainly in chronic dermatitis and wounded skin. • p-Hydroxybenzoic acid ethyl ester sodium salt • SODIUM ETHYL-P-HYDROXYBENZOATE • SODIUM ETHYL 4-HYDROXYBENZOATE • sodium 4-ethoxycarbonylphenoxide • benzoicacid,4-hydroxy-,ethylester,sodiumsalt • Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. • ETHYL-P-HYDROXYBENZOATE SODIUM SALT • ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT • ETHYL 4-HYDROXYBENZOATE SODIUM SALT • 4-Hydroxybenzoic acid ethyl ester sodium salt • SODIUM ETHYLPARABEN • EthylParabenSodium • ETHYL4-HYDROBENZOATESODIUMSALT • BENZOICACID,PARA-HYDROXY-,ETHYLESTER,SODIUMSALT • 4-(Sodiooxy)benzoic acid ethyl ester • 4-Sodiooxybenzoic acid ethyl ester • p-Hydroxybenzoic acid ethyl ester sodium salt,sodium salt • Sodium 4-(ethoxycarbonyl)phenolate • Benzoic acid,4-hydroxy-, ethyl ester, sodiuM salt (1:1) • Sodium Ethyl-p-hydroxyl Benzoate • 35285-68-8 • Sodium 4-(ethoxycarbonyl) • p-Hydroxybenzoic acid ethyl ester sodium salt fandachem • odium 4-(ethoxycarbonyl)phenolate • 35285-68-8 • C9H9O3Na • Benzoic acid Series • Aromatic Esters Ethyl Paraben Sodium - Names and Identifiers Name p-Hydroxybenzoic acid ethyl ester sodium salt,sodium salt Synonyms p-Hydroxybenzoic acid ethyl ester sodium salt SODIUM ETHYL-P-HYDROXYBENZOATE SODIUM ETHYL 4-HYDROXYBENZOATE sodium 4-ethoxycarbonylphenoxide benzoicacid,4-hydroxy-,ethylester,sodiumsalt Benzoicacid,p-hydroxy-,ethylester,sodiumderiv. ETHYL-P-HYDROXYBENZOATE SODIUM SALT ETHYL-4-HYDROXYBENZOIC ACID SODIUM SALT sodium salt Ethyl 4-hydroxybenzoate,sodium salt Sodium Ethylparaben Ethyl Paraben Sodium sodium 4-(ethoxycarbonyl)phenolate benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1) Ethyl p-hydroxybenzoate sodium Parabens are a family of related ingredients commonly used as preservatives in cosmetics and personal care products. They help prevent the growth of harmful bacteria and mold, protecting both products and consumers. Parabens are highly effective and widely used preservatives that enhance the shelf life and safety of products including all types of cosmetics, as well as foods and drugs, and protect the families who trust and enjoy them. The most commonly used parabens in cosmetics are methylparaben, ethylparaben, propylparaben, and butylparaben. Paraben preservatives all share para-hydroxybenzoic acid, or PHBA, as a common chemical structure. PHBA occurs naturally in many fruits and vegetables. The parabens used in cosmetics are identical to those found in nature, and are quickly eliminated by the body. Any product that contains water is susceptible to being spoiled by the growth of fungi or bacteria, which could cause problems such as discoloration, malodor, or breakdown of the product. Under certain conditions, an inadequately preserved product can become contaminated, allowing harmful levels of microorganisms to grow. Parabens are highly effective preservatives that protect products against such changes, thus enhancing the shelf life and safety of products, and have been used safely for decades. Ethylparaben, also known as e-214 or aseptin a, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. It is used as an antifungal preservative. Sodium ethyl para-hydroxybenzoate, the sodium salt of ethylparaben, has the same uses and is given the E number E215. Ethylparaben is an extremely weak basic (essentially neutral) compound (based on its pKa). Its formula is HO-C6H4-CO-O-CH2CH3. Ethylparaben is a mild and phenolic tasting compound. Outside of the human body, ethylparaben has been detected, but not quantified in, alcoholic beverages. This could make ethylparaben a potential biomarker for the consumption of these foods. Ethylparaben (ethyl para-hydroxybenzoate) is the ethyl ester of p-hydroxybenzoic acid. Ethylparaben is a potentially toxic compound. As a food additive, it has E number E214. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as guaranteeing specific properties of the products described on their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our General Conditions of Sale.
SODIUM ETHYL P-HYDROXYBENZOATE (SODIUM ETHYL PARABEN)
Sodium 2-ethylhexyl sulfate; 2-Ethylhexylsulfate, sodium salt; ALKOHOLSULFAT, NA-SALZ I-C8; Sodium (2-ethylhexyl) alcohol sulfate; sodium (2-ethylhexyl) sulfate; Sodium 2-ethylhexyl sulfate; SODIUM ETHYLHEXYL SULFATE, N° CAS : 126-92-1, Nom INCI : SODIUM ETHYLHEXYL SULFATE. Nom chimique : Sodium etasulfate. N° EINECS/ELINCS : 204-812-8. Classification : Sulfate Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Hydrotrope : Augmente la solubilité d'une substance qui est peu soluble dans l'eau. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Ethalsulfate de sodium; ETHALSULFATE SODIQUE; ETHASULFATE SODIUM; ETHYL-2 HEXYLSULFATE DE SODIUM. Noms anglais : 2-ETHYL-1-HEXANOL SODIUM SULFATE ; 2-ETHYLHEXYL SODIUM SULFATE; SODIUM 2-ETHYLHEXYL SULFATE; SODIUM ETASULFATE; SODIUM ETHASULFATE; SULFURIC ACID, MONO(2-ETHYLHEXYL) ESTER, SODIUM SALT; Sodium etasulfate. CAS names: Sulfuric acid, mono(2-ethylhexyl) ester, sodium salt (1:1). : 2-ethylhexyl hydrogen sulfate; 2-ethylhexyl hydrogen sulfate; sodium; 2-Ethylhexylsulfate, sodium salt; ALKOHOLSULFAT, NA-SALZ I-C8; Sodium (2-ethylhexyl) alcohol sulfate; sodium (2-ethylhexyl) sulfate; Sodium 2-ethylhexyl sulfate; sodium etasulphate; sodium ethasulfate; Sodium-2-ethylhexyl sulphate; Sodium-2-ethylhexylsulphate; sodium;2-ethylhexyl sulfate; Sulfuric acid,mono(2-ethylhexyl)ester,sodium salt; 126-92-1 [RN]; 12838560LI 1487; 204-812-8 [EINECS]; 2-Ethylhexyl sulfate sodium salt; 5177087; étasulfate de sodium ; etasulfato de sodio [Spanish] ; MFCD00042047 [MDL number]; MP0700000; natrii etasulfas [Latin] ; Natrium-2-ethylhexylsulfat [German] ; Sodium 2-ethylhexyl sulfate; sodium etasulfate; sodium ethasulfate; Sulfate de sodium et de 2-éthylhexyle [French] ; sulfuric acid, 2-ethylhexyl ester, sodium salt; Sulfuric acid, 2-ethylhexyl ester, sodium salt (1:1); tergemist; UNII:12838560LI; натрия этасульфат [Russian] ; إيتاسولفات صوديوم [Arabic]; 依他硫酸钠 [Chinese]; 11099-08-4 secondary RN [RN] ; 1-Hexanol, 2-ethyl-, hydrogen sulfate, sodium salt; 1-Hexanol, 2-ethyl-, sulfate, sodium salt; 2-Ethyl-1-hexanol hydrogen sulfate sodium salt; 2-Ethyl-1-hexanol sodium sulfate; 2-ethyl-1-hexanol sulfate sodium salt; 2-ethylhexyl hydroxysulfonate, sodium salt; 2-Ethylhexyl sodium sulfate; 2-Ethylhexylsiran sodny [Czech]; 2-Ethylhexylsulfate sodium; 2-Ethylhexylsulphate,sodium salt 75037-31-9 secondary RN [RN]; ammonium 2-ethylhexyl sulphate; Avirol SA 4106; Carsonol SHS; emcol d 5-10; emersal 6465; Etasulfate de sodium [French]; Etasulfato sodico [Spanish] ; Ethasulfate sodium; Hexanol, 2-ethyl-, hydrogen sulfate, sodium salt; Lugalvan TC-EHS; Lutensit TC-EHS; Mono(2-ethylhexyl) sulfate sodium salt; mono(2-ethylhexyl)sulfate sodium salt ; Newcol 1000SN; nia proof 08; Niaproof ; Niaproof 08; Nissan Sintrex EHR; pentrone on; propaste 6708; Rewopol NEHS 40; Rhodapon BOS; Sinolin SO 35; Sintrex EHR; sipex bos ;Sodium (2-Ethylhexyl)Alcohol Sulfate; sodium 2-ethylhexyl sulphate; Sodium Ethylhexyl Sulfate; Sodium mono(2-ethylhexyl) sulfate; Sodium octyl sulfate, iso-; Sodium(2-ethylhexyl)alcohol sulfate ; sodium; sulfuric acid 2-ethylhexyl ester; sodium-2-ethylhexyl sulfate; sodium2-ethylhexylsulfate; sodiumisooctylsulfate; Sole Tege TS 25; Sulfuric Acid Mono(2-ethylhexyl) Ester Sodium Salt ; Sulfuric acid, mono(2-ethylhexyl) ester, sodium salt; Supralate SP; Tergimist; tergitol 08; Tergitol anionic 08; Tergitol-8; Tergitol-8|Niaproof-8|Sodium 2-ethylhexyl sulfate; Texapon 842; Texapon 890; Witcolate D 5-10. Sodium 2-ethylhexyl sulfate is a low-foaming anionic surfactant with excellent wetting properties and outstanding stability in highly electrolyte, alkaline and acidic systems. It is a profound hydrotropic and wetting agent suitable for use in the production of liquid detergents for household and industrial use such as hard-surface cleaners and alkaline and acid metal degreasers. Owing to its wetting and penetrating properties Sodium 2-ethylhexyl sulfate is used as a mercerizing agent in textile industry, in metal galvanization, pickling and brightening, in lye washing and peeling solutions for fruits and vegetables, in fountain solutions for offset printing, wallpaper removal solutions etc. Sodium 2-ethylhexyl sulfate uses and applications include: Wetting agent for electroplating baths, alkaline textile processing aids, industrial cleaners; coemulsifier for polymerization; viscous control in adhesives; food packaging adhesives; in paperpaperboard in contact with aqueousfatty foods; surfactant, detergent, wetting agent, emulsifier, penetrant, stabilizer for cosmetics, pharmaceuticals, textiles, household and industrial cleaners, metal cleaning, paints, plastics, rubber, food packaging and processing, adhesives; washinglye peeling of fruits and vegetables. product carries excellent wetting, spreading and hydrotropic proterties. This material can tolorate alkanline condition. Sodium Ethylhexyl Sulfate is mainly applied as wetting agent in alkaline solutions such as in the textile industry. Sodium Ethylhexyl Sulfate can also be added to the aerosol fulmulated product as the spreading agent. Also the material can be used as the hydrotropic agent.
SODIUM ETHYLHEXYL SULFATE ( ETHYL-2 HEXYLSULFATE DE SODIUM) Sulfate de sodium et de 2-éthylhexyle
cas no 120-47-87 Ethyl 4-hydroxybenzoate; Sodium ethylp-hydroxybenzoate; Sodium ethyl p-hydroxybenzoate;
SODIUM ETHYLPARABEN
Ethyl p-hydroxybenzoate; SODIUM ETHYLPARABEN, N° CAS : 35285-68-8. Nom INCI : SODIUM ETHYLPARABEN. Nom chimique : Sodium 4-ethoxycarbonylphenoxide; N° EINECS/ELINCS : 252-487-6; Classification : Paraben, Perturbateur endocrinien suspecté, Règlementé, Conservateur. Ses fonctions (INCI) : Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.4-Hydroxybenzoic acid, ethyl ester, sodium salt; Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt; Benzoic acid, p-hydroxy-, ethyl ester, sodium deriv.; Ethyl p-hydroxybenzoate, sodium salt ; Ethylparaben sodium; Ethylparaben, sodium salt; Sodium 4-ethoxycarbonylphenoxide; Sodium ethylparaben. CAS names : Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1); : Ethyl-4-hydroxybenzoat, Natriumsalz; Ethyl-4-hydroxybenzoat, sodium salt; p-Hydroxybenzoic acid ethyl ester sodium salt; sodium 4-(ethoxycarbonyl)benzen-1-olate; sodium 4-(ethoxycarbonyl)phenolate; sodium;4-ethoxycarbonylphenolate; Sodium ethyl p-hydroxybenzoate; 252-487-6 [EINECS]; 35285-68-8 [RN]; 4-(Éthoxycarbonyl)phénolate de sodium [French] ; Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt (1:1) ; E215; ETHYLPARABEN SODIUM; Natrium-4-(ethoxycarbonyl)phenolat [German] [ACD/IUPAC Name]; p-hydroxybenzoic acid ethyl ester sodium salt; Sodium 4-(ethoxycarbonyl)phenolate [ACD/IUPAC Name]; Sodium ethylparaben Z0D00IVA10 [35285-68-8] 4-ethoxycarbonylphenolate 4-Hydroxybenzoic acid, ethyl ester, sodium salt 5026-62-0 [RN] Benzoic acid, 4-hydroxy-, ethyl ester, sodium salt Benzoic acid, 4-hydroxy-, methyl ester, sodium salt BENZOIC ACID, p-HYDROXY-, ETHYL ESTER, SODIUM DERIV. BENZOIC ACID, p-HYDROXY-, METHYL ESTER, SODIUM DERIV. Bonomold OMNa EINECS 225-714-1 EINECS 252-487-6 Ethyl p-hydroxybenzoate, sodium salt ETHYL4-HYDROXYBENZOATESODIUMSALT Ethylparaben sodium salt Ethylparaben, sodium salt Methyl 4-hydroxybenzoate sodium salt METHYL P-HYDROXYBENZOATE, SODIUM SALT Methylparaben sodium [NF] Methylparaben sodium (NF) Methylparaben sodium [USAN] [USAN] methylparaben, sodium salt MFCD00016475 [MDL number] NIPASEPT SODIUM Preserval MS Sodium [ACD/Index Name] [ACD/IUPAC Name] [Wiki] sodium 4-(ethoxycarbonyl)benzen-1-olate SODIUM 4-(ETHOXYCARBONYL)BENZENOLATE Sodium 4-(methoxycarbonyl)phenolate [ACD/IUPAC Name] sodium 4-carbethoxyphenolate sodium 4-carbomethoxyphenolate sodium 4-ethoxycarbonylphenolate Sodium 4-ethoxycarbonylphenoxide sodium 4-methoxycarbonylphenolate sodium and 4-ethoxycarbonylphenolate SODIUM ETHYL PARABEN Sodium Ethyl Parahydroxybenzoate Sodium ethyl p-hydroxybenzoate, tech. Sodium methyl 4-hydroxybenzoate Sodium methyl p-hydroxybenzoate Sodium methylparaben Sodium p-methoxycarbonylphenoxide Sodium, (p-carboxyphenoxy)-, methyl ester (7CI) sodium;4-ethoxycarbonylphenolate Solparol ST5405340 UNII:Z0D00IVA10 UNII-F57SQP06GK UNII-Z0D00IVA10
SODIUM FORMATE
Sodium Formate Sodium formate, HCOONa, is the sodium salt of formic acid, HCOOH. It usually appears as a white deliquescent powder. Properties Chemical formula HCOONa Molar mass 68.007 g/mol Appearance white granules deliquescent Density 1.92 g/cm3 (20 °C) Melting point 253 °C (487 °F; 526 K) Boiling point decomposes Solubility in water 43.82 g/100 mL (0 °C) 97.2 g/100 mL (20 °C) 160 g/100 mL (100 °C) Solubility insoluble in ether soluble in glycerol, alcohol, formic acid Preparation For commercial use, sodium formate is produced by absorbing carbon monoxide under pressure in solid sodium hydroxide at 130 °C and 6-8 bar pressure: CO + NaOH → HCO2Na Because of the low-cost and large-scale availability of formic acid by carbonylation of methanol and hydrolysis of the resulting methyl formate, sodium formate is usually prepared by neutralizing formic acid with sodium hydroxide. Sodium formate is also unavoidably formed as a by-product in the final step of the pentaerythritol synthesis and in the crossed Cannizzaro reaction of formaldehyde with the aldol reaction product trimethylol acetaldehyde [3-hydroxy-2,2-bis(hydroxymethyl)propanal]. In the laboratory, sodium formate can be prepared by neutralizing formic acid with sodium carbonate. It can also be obtained by reacting chloroform with an alcoholic solution of sodium hydroxide. CHCl3 + 4 NaOH → HCOONa + 3 NaCl + 2 H2O or by reacting sodium hydroxide with chloral hydrate. C2HCl3(OH)2 + NaOH → CHCl3 + HCOONa + H2O The latter method is, in general, preferred to the former because the low aqueous solubility of CHCl3 makes it easier to separate out from the sodium formate solution, by fractional crystallization, than the soluble NaCl would be. Sodium formate may also be created via the haloform reaction between ethanol and sodium hypochlorite in the presence of a base. This procedure is well documented for the preparation of chloroform. Properties Physical properties Sodium formate crystallizes in a monoclinic crystal system with the lattice parameters a = 6,19 Å, b = 6,72 Å, c = 6,49 Å and β = 121,7°.[3] Chemical properties On heating, sodium formate decomposes to form sodium oxalate and hydrogen.[4] The resulting sodium oxalate can be converted by further heating to sodium carbonate upon release of carbon monoxide: As a salt of a weak acid (formic acid) and a strong base (sodium hydroxide) sodium formate reacts in aqueous solutions basic: A solution of formic acid and sodium formate can thus be used as a buffer solution. Sodium formate is slightly water-hazardous and inhibits some species of bacteria but is degraded by others. Uses Sodium formate is used in several fabric dyeing and printing processes. It is also used as a buffering agent for strong mineral acids to increase their pH, as a food additive (E237), and as a de-icing agent. In structural biology, sodium formate can be used as a cryoprotectant for X-ray diffraction experiments on protein crystals,[6] which are typically conducted at a temperature of 100 K to reduce the effects of radiation damage. Sodium formate plays a role in the synthesis of formic acid, it is converted by sulfuric acid via the following reaction equation: Sodium formate is converted with sulfuric acid to formic acid and sodium sulfate. The urticating hair of stinging nettles contain sodium formate as well as formic acid. Solid sodium formate is used as a non-corrosive agent at airports for de-icing of runways in mix with corrosion inhibitors and other additives, which rapidly penetrate solid snow and ice layers, detach them from the asphalt or concrete and melt the ice rapidly. Sodium formate was also used as a road deicer in the city of Ottawa from 1987 to 1988. The high freezing point depression e.g. in comparison to the still frequently used urea (which is effective but problematic due to eutrophication) effectively prevents the re-icing, even at temperatures below −15 °C. The thawing effect of the solid sodium formate can even be increased by moistening with aqueous potassium formate or potassium acetate solutions. The degradability of sodium formate is particularly advantageous with a chemical oxygen demand (COD) of 211 mg O2/g compared with the de-icing agents sodium acetate (740 mg O2/g) and urea with (> 2,000 mg O2/g).[8] Saturated sodium formate solutions (as well as mixtures of other alkali metal formates such as potassium and cesium formate) are used as important drilling and stabilizing aids in gas and oil exploration because of their relatively high density. By mixing the corresponding saturated alkali metal formate solutions any densities between 1,0 and 2,3 g/cm3 can be set. The saturated solutions are biocidal and long-term stable against microbial degradation. Diluted, on the other hand, they are fast and completely biodegradable. As alkali metal formates as drilling aids make it unnecessary to add solid fillers to increase the density (such as barytes) and the formate solutions can be recovered and recycled at the drilling site, formates represent an important advance in exploration technology. Applications Biotechnological Sodium formate is used as the carbon source for culturing bacteria. Sodium formate is also useful for increasing yields of DNA isolation by ethanol precipitation. Industrial Sodium formate is used in the textile industry to neutralize sulfuric acid waste streams and also as a photoresist while using aniline dyes. It is also a pickling agent in chrome tanning and helps to impede vulcanization of chloroprene in synthetic rubber production. In processing cotton for disposable cotton pads, Sodium formate is used to eliminate the buildup of static electricity. Concrete longevity Sodium formate is used to mitigate water damage to concrete by acting as a concrete sealant, while also being environmentally benign and cheaper than the commonly used epoxy alternative for sealing concrete against water permeation.[9] Food Sodium formate may be added to food as a seasoning, sometimes in the form of sodium diacetate, a one-to-one complex of Sodium formate and acetic acid,[10] given the E-number E262. It is often used to give potato chips a salt and vinegar flavor.[citation needed] Sodium formate (anhydrous) is widely used as a shelf-life extending agent, pH control agent[11] It is safe to eat at low concentration.[12] Buffer solution A solution of Sodium formate (a basic salt of acetic acid) and acetic acid can act as a buffer to keep a relatively constant pH level. This is useful especially in biochemical applications where reactions are pH-dependent in a mildly acidic range (pH 4–6). Heating pad A hand warmer containing a supersaturated solution of Sodium formate which releases heat upon crystallization Sodium formate is also used in heating pads, hand warmers, and hot ice. Sodium formate trihydrate crystals melt at 136.4 °F/58 °C[13] (to 137.12 °F/58.4 °C),[14] dissolving in their water of crystallization. When they are heated past the melting point and subsequently allowed to cool, the aqueous solution becomes supersaturated. This solution is capable of cooling to room temperature without forming crystals. By pressing on a metal disc within the heating pad, a nucleation center is formed, causing the solution to crystallize back into solid Sodium formate trihydrate. The bond-forming process of crystallization is exothermic.[15] The latent heat of fusion is about 264–289 kJ/kg.[13] Unlike some types of heat packs, such as those dependent upon irreversible chemical reactions, a Sodium formate heat pack can be easily reused by immersing the pack in boiling water for a few minutes, until the crystals are completely dissolved, and allowing the pack to slowly cool to room temperature. Preparation A crystal of Sodium formate trihydrate (length 1.7 centimetres) For laboratory use, Sodium formate is inexpensive and usually purchased instead of being synthesized. It is sometimes produced in a laboratory experiment by the reaction of acetic acid, commonly in the 5–8% solution known as vinegar, with sodium carbonate ("washing soda"), sodium bicarbonate ("baking soda"), or sodium hydroxide ("lye", or "caustic soda"). Any of these reactions produce Sodium formate and water. When a sodium and carbonate ion-containing compound is used as the reactant, the carbonate anion from sodium bicarbonate or carbonate, reacts with hydrogen from the carboxyl group (-COOH) in acetic acid, forming carbonic acid. Carbonic acid readily decomposes under normal conditions into gaseous carbon dioxide and water. This is the reaction taking place in the well-known "volcano" that occurs when the household products, baking soda and vinegar, are combined. Sodium formate appears in sodium methylate at 0.3% The slow decomposition in storage of 98-100% Sodium formate with liberation of carbon monoxide led to rupture of the sealed glass containers. In absence of gas leakage, a full 2.5 L bottle would develop a pressure of over 7 bar during 1 yr at 25 °C. Explosive decomposition of Sodium formate on a clean nickel ... surface was studied, using deuteroSodium formate. A full 1 L bottle of 96% Sodium formate burst when the ambient temp fell to -6 °C overnight and the contents froze and expanded. Gas pressure from previous partial decomposition may also have contributed. Sodium formate decomposes slowly during storage and more rapidly under fire conditions, forming carbon monoxide. Sodium formate is a reagent comprised of the organic chemical Sodium formate that cleaves proteins into peptides at the C- or N-terminal side of an aspartate residue. Enzyme pathways involved in detoxification of hydrogen peroxide, formaldehyde, and Sodium formate, which are produced as a consequence of oxidative demethylation by the cytochrome P-450 system, were examined in isolated hepatocytes from phenobarbital pretreated rats. The formaldehyde produced during oxidative demethylation in isolated hepatocytes is rapidly oxidized to Sodium formate. Depletion of cellular reduced glutathione by pretreatment of rats with diethylmaleate decreases the rate of Sodium formate production, and therefore, it appears that formaldehyde produced by oxidative demethylation is oxidized by formaldehyde dehydrogenase, an enzyme which requires but does not consume reduced glutathione. Because of the rapid nonenzymatic reaction of formaldehyde with reduced glutathione, this enzyme system may be viewed as essential to prevent the loss of reduced glutathione due to S-hydroxymethylglutathione formation. Reduced glutathione concentration in isolated hepatocytes decreased rapidly following addition of substrates undergoing oxidative demethylation. Addition of other cytochrome P-450 substrates which do not undergo demethylation did not result in such a dramatic oxidation of reduced glutathione. Sodium formate, produced during oxidative demethylation acts as a substrate for the peroxidatic mode of catalase, but also binds to catalase as an anionic ligand. This binding decreases the catalase concentration detectable by cyanide titration and therefore appears to inhibit the catalytic reaction mode. Synthesis of Sodium formate by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to Sodium formate and methanol. Sodium formate is produced as a byproduct in the liquid-phase oxidation of hydrocarbons to acetic acid. In the United States, butane is used as the hydrocarbon, and ca. 50 kg of Sodium formate is produced per ton of acetic acid. In Europe, the oxidation of naphtha is preferred, and up to 250 kg of Sodium formate is produced per ton of acetic acid in this process. The reaction of sodium formate or calcium formate with strong mineral acids, such as sulfuric and nitric acids, is the oldest known process for producing Sodium formate commercially. If formates or sodium hydroxide are available cheaply or occur as byproducts in other processes, Sodium formate can still be produced economically in this manner. A method for analysis of Sodium formate in concentration of approx 0.2 mg/l in body fluids and tissues is described. Formate dehydrogenase analysis is done in two steps. In the first step, a 0.1 ml sample of blood, urine, or tissue extraction is mixed with 0.1 of 10 mmol/l nicotinamide adenine dinucleotide soln, 0.1 ml of potassium phosphate buffer, and 50 ul of formate dehydrogenase soln. The mixture is incubated for 15 min at 37 °C then 0.1 ml of diaphorase soln, 50 ul of resazurin soln and 0.5 ml of phosphate buffer (pH 6.00, 200 mmol/l) are added. Fluorescence is measured. Indirect food substance additives affirmed as generally recognized as safe. (a) Sodium formate (CH2O2, CAS Reg. No. 64-18-6) is also referred to as methanoic acid or hydrogen carboxylic acid. It occurs naturally in some insects and is contained in the free acid state in a number of plants. Sodium formate is prepared by the reaction of sodium formate with sulfuric acid and is isolated by distillation. (b) Sodium formate is used as a constituent of paper and paperboard used for food packaging. (c) The ingredient is used at levels not to exceed good manufacturing practice in accordance with part 186.1(b)(1). (d) Prior sanctions for Sodium formate different from the uses established in this section do not exist or have been waived. An examination of 12 fatalities attributed to methanol poisoning is presented. Six individuals were found deceased, and their postmortem methanol and Sodium formate concentrations ranged from 84 to 543 mg/dL and 64 to 110 mg/dL, respectively. In the other six individuals, hospital treatment such as bicarbonate, ethanol infusion, and hemodialysis was administered. Antemortem methanol and Sodium formate concentrations ranged from 68 to 427 mg/dL and 37 to 91 mg/dL, respectively, whereas corresponding postmortem methanol and Sodium formate levels ranged from undetectable to 49 mg/dL and undetectable to 48 mg/dL, respectively. Hospital treatment of Sodium formate toxicity resulted in significantly reduced postmortem methanol and Sodium formate concentrations In 13-week studies, groups of 10 animals of each species and sex were exposed to Sodium formate at concentrations of 0, 8, 16, 32, 64, and 128 ppm for 6 hr a day, 5 days a week. Two mice, 1 male and 1 female, died in the 128 ppm groups. Body weight gains were significantly decreased in mice exposed to 64 and 128 ppm Sodium formate. Microscopic changes in rats and mice ranged from minimal to mild in severity and generally were limited to animals in the 128 ppm groups. Lesions related to exposure to Sodium formate consisted of squamous metaplasia and degeneration of the respiratory and olfactory epithelia, respectively. Hematologic and serum biochemical changes at interim and terminal time points were minimal to mild and, generally, were consistent with hemoconcentration. Sodium formate's production and use as a preservative in foods and silage; acidulant in dyeing of natural and synthetic fibers, leather tanning; coagulating latex in rubber production, and in chemical synthesis may result in its release to the environment through various waste streams. Its use in hydrofracking to prevent pipe corrosion and application to freshly cut grass prior to ensilation will result in its direct release to the environment. Sodium formate occurs in fruits, vegetables, and leaves and roots of plants, and also in the defensive secretions of numerous insects, particularly of ants. Sodium formate is an intermediary human metabolite that is immediately transformed to formate. If released to air, a vapor pressure of 42.6 mm Hg at 25 °C indicates Sodium formate will exist solely as a vapor in the atmosphere. Vapor-phase Sodium formate will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 36 days. Sodium formate does not absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Sodium formate is expected to have very high mobility based upon an estimated Koc of 1. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 1.67X10-7 atm-cu m/mole. The pKa of Sodium formate is 3.75, indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts. Sodium formate may volatilize from dry soil surfaces based upon its vapor pressure. Theoretical BOD values ranging from 4.3% to 77.6% after 5 days using sewage, activated sludge, fresh water, and synthetic sea water inocula indicate that biodegradation may be an important environmental fate process in soil and water. If released into water, Sodium formate is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 150 and 1,100 days, respectively. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Occupational exposure to Sodium formate may occur through inhalation and dermal contact with this compound at workplaces where Sodium formate is produced or used. Monitoring data indicate that the general population may be exposed to Sodium formate via inhalation of ambient air, ingestion of food, and dermal contact with this compound in consumer products containing Sodium formate as well as when stung by certain insects and marine cnidarians. Sodium formate occurs in fruits, vegetables, and leaves and roots of plants(1), and also in the defensive secretions of numerous insects, particularly of ants(2). It is also an intermediate product in the decomposition of organic matter in lake sediment(3) and a photooxidation product of alkanes, alkenes, and biogenic terpenes by hydroxyl-radical(4,5). Sodium formate is an intermediary human metabolite that is immediately transformed to formate(6). Based on a classification scheme(1), an estimated Koc value of 1(SRC), determined from a log Kow of -0.54(2) and a regression-derived equation(3), indicates that Sodium formate is expected to have very high mobility in soil(SRC). The pKa of Sodium formate is 3.75(4), indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts(5). Volatilization of Sodium formate from moist soil surfaces is expected to be an important fate process(SRC) given a Henry's Law constant of 1.67X10-7 atm-cu m/mole(6). Sodium formate is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 42.6 mm Hg(7). Theoretical BOD values ranging from 4.3% to 77.6% after 5 days using sewage and activated sludge inocula(8-13) indicate that biodegradation may be an important environmental fate process in soil(SRC). According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), Sodium formate, which has a vapor pressure of 42.6 mm Hg at 25 °C(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Sodium formate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 36 days(SRC), calculated from its rate constant of 4.5X10-13 cu cm/molecule-sec at 25 °C(3). Sodium formate does not absorb at wavelengths >290 nm(4) and therefore is not expected to be susceptible to direct photolysis by sunlight(SRC). Sodium formate biodegrades readily in screening tests(1-9). Specific results include: 4.3 and 38.8% of theoretical BOD after 5 and 10 days using a sewage inoculum(1); 43.7-77.6% of theoretical BOD after 5 days with a sewage inoculum(2); 70% of theoretical BOD in 24 hours using activated sludge(3); 66% of theoretical BOD in 12 hours using an activated sludge inoculum(4); 39.9% of theoretical BOD in 24 hours with activated sludge(5); 48 and 51% of theoretical BOD after 5 days with unacclimated and acclimated sewage inoculum, respectively(6); and 40.5 and 51.7% of theoretical BOD after 5 days with sewage inocula in fresh water and synthetic seawater, respectively(7). Microorganisms are present in the air that can degrade formate in rainwater(8). Sodium formate, present at 100 mg/L, reached 110% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L in the Japanese MITI test(9). The rate constant for the vapor-phase reaction of Sodium formate with photochemically-produced hydroxyl radicals is 4.5X10-13 cu cm/molecule-sec at 25 °C(1). This corresponds to an atmospheric half-life of about 36 days at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(2). Sodium formate is not expected to undergo hydrolysis in the environment due to the lack of hydrolyzable functional groups(3). Sodium formate does not absorb at wavelengths >290 nm(4) and therefore is not expected to be susceptible to direct photolysis by sunlight(SRC). The anhydrous acid catalyzes its own esterification with alcohols and polyols, but often also promotes dehydration to the ether or olefin(5). Anhydrous Sodium formate decomposes to carbon monoxide and water(6). Reactions between hydroxyl radicals and Sodium formate occur in cloud water. During daylight hours, aqueous-phase hydroxyl radical reactions can both produce and destroy Sodium formate in cloud drops and may control the Sodium formate levels in rain(7). The Koc of Sodium formate is estimated as 1(SRC), using a log Kow of -0.54(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that Sodium formate is expected to have very high mobility in soil. The pKa of Sodium formate is 3.75(4), indicating that this compound will primarily exist in anion form in the environment and anions generally do not adsorb more strongly to organic carbon and clay than their neutral counterparts(5). The Henry's Law constant for Sodium formate is 1.67X10-7 atm-cu m/mole(1). This Henry's Law constant indicates that Sodium formate is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 150 days(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 1100 days(SRC). Sodium formate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of Sodium formate from dry soil surfaces may exist(SRC) based upon a vapor pressure of 42.6 mm Hg(3). Concentrations of Sodium formate in the Ohio River, Little Miami River and Tannes Creek were 12-39 ppb, 18.4-25.2 ppb, and 22.3 ppb, respectively(1). In Lake Kizaki in Japan, surface concentration of Sodium formate was 115 ppb(2). Although the concentration varied with depth (0-28 m) between 0 and 115 ppb, the variation was not a smoothly decreasing one(2). The volume-weighted average concentration of Sodium formate in Venezuelan rains was 7 uM in the continental region(1). Sodium formate was detected in 14 wet precipitation samples collected from 9 sites in southern California between 1982 and 1984 with concentrations ranging from 0.18 uM in snow from rural Wrightwood to 15.85 uM in rain from urban Los Angeles, and an average concentration of 4.12 uM(2). Six in-cloud precipitation samples collected from a cloud in Shenandoah National Park, VA during September 1990 had an average Sodium formate concentration of 8.3 uM(3). Precipitation samples collected at two Wisconsin lakes on the Wisconsin Acid Deposition Monitoring Network contained Sodium formate concentrations ranging from the detection limit of 20 ppb to 2,576 ppb, median 382 ppb(4). The average volume-weighted concentration of Sodium formate in rainwater in a study (154 measurements) at Wilmington, NC was 7.4 umol/L and contributed 19% of the rainwater's acidity(5). Fogwater in Corvallis, OR had a median and high Sodium formate concentration of 61 and 133 umol/L, respectively(6). NIOSH (NOES Survey 1981-1983) has statistically estimated that 158,933 workers (37,338 of these were female) were potentially exposed to Sodium formate in the US(1). The NOES Survey does not include farm workers. Occupational exposure to Sodium formate may occur through inhalation and dermal contact with this compound at workplaces where Sodium formate is produced or used(SRC). Monitoring data indicate that the general population may be exposed to Sodium formate via inhalation of ambient air, ingestion of food, and dermal contact with this compound in consumer products containing Sodium formate as well as when stung by certain insects and marine cnidarians(SRC). Sodium Formate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. About Sodium formate Helpful information Sodium formate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 100 000 to < 1 000 000 tonnes per annum. Sodium formate is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses Sodium formate is used in the following products: washing & cleaning products, polishes and waxes and water treatment chemicals. Other release to the environment of Sodium formate is likely to occur from: indoor use as processing aid. Article service life Other release to the environment of Sodium formate is likely to occur from: outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment). Sodium formate can be found in products with material based on: leather (e.g. gloves, shoes, purses, furniture) and metal (e.g. cutlery, pots, toys, jewellery). Widespread uses by professional workers Sodium formate is used in the following products: washing & cleaning products, laboratory chemicals, anti-freeze products and water treatment chemicals. Sodium formate is used in the following areas: mining, health services and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment. Other release to the environment of Sodium formate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Formulation or re-packing Sodium formate is used in the following products: leather treatment products, laboratory chemicals and washing & cleaning products. Release to the environment of Sodium formate can occur from industrial use: formulation of mixtures, formulation in materials and of substances in closed systems with minimal release. Other release to the environment of Sodium formate is likely to occur from: indoor use as reactive substance. Uses at industrial sites Sodium formate is used in the following products: leather treatment products, heat transfer fluids, pH regulators and water treatment products and anti-freeze products. Sodium formate is used in the following areas: formulation of mixtures and/or re-packaging, mining and printing and recorded media reproduction. Sodium formate is used for the manufacture of: textile, leather or fur. Release to the environment of Sodium formate can occur from industrial use: in processing aids at industrial sites, in the production of articles, as processing aid, of substances in closed systems with minimal release, as an intermediate step in further manufacturing of another substance (use of intermediates) and formulation of mixtures. Other release to the environment of Sodium formate is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners). Manufacture Release to the environment of Sodium formate can occur from industrial use: manufacturing of the substance and as an intermediate step in further manufacturing of another substance (use of intermediates).
SODIUM FUMARATE
cas no 527-07-1 D-Gluconic acid, sodium salt; D-Gluconic acid monosodium salt; Glonsen; Gluconato di sodio; Monosodium D-gluconate; Sodium (2R,3S,4R,5R')-2,3,4,5,6-pentahydroxyhexanoate; 2,3,4,5,6-Pentahydroxycaproic acid sodium salt; Sodium Gluconate;
SODIUM GLUCONATE
Le gluconate de sodium est un sel de sodium organique ayant le D-gluconate comme contre-ion.
Le gluconate de sodium a un rôle de chélateur.
Le gluconate de sodium est le sel de sodium organique de l'acide gluconique.

Numéro CAS : 527-07-1
Formule moléculaire : C6H13NaO7
Poids moléculaire : 220,15
Numéro EINECS : 208-407-7

GLUCONATE DE SODIUM, D-gluconate de sodium, 527-07-1, Sel de sodium de l'acide D-gluconique, Acide D-gluconique, sel monosodique, Gluconate monosodique, Sel de sodium de l'acide gluconique, gluconate de sodium, Sel de sodium D-Gluconate, Gluconate (sodium), D-gluconate monosodique, Acide D-gluconique, sel de sodium (1 :1), Acide gluconique, sel monosodique, D-, sodium (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate, Gluconate de sodium [USP], 14906-97-9, DTXSID7027170, CHEBI :84997, 2,3,4,5,6-Acide pentahydroxycaproïque sel de sodium, MFCD00064210, R6Q3791S76, sodium ; (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate, NCGC00164076-01, Glonsen, Gluconate de sodium (USP), Acide gluconique, sel de sodium, C6H11NaO7, Pasexon 100T, Acide D-gluconique, sel de sodium, Sel de sodium de l'acide D-gluconique ; D-gluconate de sodium ; Sel de sodium D-Gluconate, Gluconato di sodio, Gluconato di sodio [Italien], NSC-759599, EINECS 208-407-7, UNII-R6Q3791S76, EINECS 238-976-7, Acide D-Gluconique, sel de sodium (1 :?), Gluconate de sodium ,(S), SCHEMBL23640, GLUCONATE DE SODIUM [II], GLUCONATE DE SODIUM [FCC], DTXCID007170, GLUCONATE DE SODIUM [INCI], CHEMBL1200919, GLUCONATE DE SODIUM [VANDF], HY-B1092A, GLUCONATE DE SODIUM [MART.], GLUCONATE DE SODIUM [OMS-DD], UPMFZISCCZSDND-JJKGCWMISA-M, Tox21_112081, S4174, AKOS015899031, AKOS015951225, GLUCONATE DE SODIUM [LIVRE ORANGE], CCG-229938, CS-4777, SEL DE SODIUM D'ACIDE GLUCONIQUE [MI], NSC 759599, GLUCONATE DE SODIUM [MONOGRAPHIE USP], AS-11680, CAS-527-07-1, G0041, D05862, A829211, Q264552, W-110397

Le gluconate de sodium est un chélateur qui forme des complexes stables avec divers ions et empêche finalement ces ions de s'engager dans des réactions chimiques.
Les gluconates de sodium sont des substances naturelles qui se dissocient librement de l'anion gluconate et de ses cations respectifs.
Le gluconate de sodium contient un D-gluconate.

Étant entièrement biodégradable et non toxique, le gluconate de sodium représente une alternative respectueuse de l'environnement aux agents chélateurs courants utilisés dans les cosmétiques tels que l'EDTA.
En plus de cela, le gluconate de sodium a une faible toxicité aiguë pour les organismes aquatiques.
Le gluconate de sodium est une poudre cristalline blanche à beige, granuleuse à fine, pratiquement inodore.

Le gluconate de sodium est très soluble dans l'eau, peu soluble dans l'alcool et insoluble dans l'éther.
Le gluconate de sodium est un composé de formule NaC6H11O7.
Le gluconate de sodium est le sel de sodium de l'acide gluconique.

Le numéro E du gluconate de sodium est E576.
Cette poudre blanche soluble dans l'eau a un large éventail d'applications dans toutes les industries.
Dérivé à l'origine de l'acide gluconique au 19ème siècle, le gluconate de sodium est connu pour ses propriétés chélatrices et est utilisé comme agent chélateur dans divers processus.

Le gluconate de sodium trouve des applications dans le textile, le traitement de surface des métaux, le ciment, etc.
De plus, le gluconate de sodium est de nature non toxique et sa biodégradabilité contribue à son utilisation dans des pratiques respectueuses de l'environnement.
Le gluconate de sodium est fabriqué par fermentation d'hydrates de carbone contenant la matière première sirop de glucose dérivé du maïs.

Après une étape de cristallisation, le gluconate de sodium est séparé de la liqueur mère par centrifugation, les cristaux sont séchés puis tamisés pour garantir la granulation souhaitée.
Sur la base du processus de production ainsi que des matières premières utilisées, le gluconate de sodium n'est pas synthétique naturel.
Le gluconate de sodium est un sel de sodium de l'acide gluconique, dérivé du glucose.

Le gluconate de sodium est une poudre blanche à bronzée, inodore et cristalline qui est très soluble dans l'eau.
Le gluconate de sodium a diverses applications dans différentes industries en raison de ses propriétés chélatantes et séquestrantes.
Le gluconate de sodium est un agent chélateur efficace, ce qui signifie qu'il peut se lier aux ions métalliques, en particulier le calcium, le fer et le magnésium.

Cette propriété le rend utile dans diverses applications industrielles et de nettoyage.
En tant que séquestrant, le gluconate de sodium aide à contrôler la réactivité des ions métalliques dans les solutions, à prévenir les interactions indésirables et à améliorer la stabilité des formulations.
Le gluconate de sodium est considéré comme respectueux de l'environnement car il est biodégradable.

Le gluconate de sodium peut être décomposé par des processus naturels, ce qui contribue à son impact environnemental relativement faible.
Le gluconate de sodium peut agir comme un tampon de pH, aidant à stabiliser le pH d'une solution.
Cette propriété est bénéfique dans les applications où le maintien d'un niveau de pH spécifique est crucial.

Dans les applications de traitement de l'eau, le gluconate de sodium est utilisé pour prévenir la formation de tartre et la corrosion dans les systèmes d'eau.
Le gluconate de sodium se lie aux ions métalliques, les empêchant de provoquer l'entartrage ou la corrosion.
Le gluconate de sodium est utilisé comme adjuvant pour béton afin d'améliorer la maniabilité et la résistance du béton.

Le gluconate de sodium agit comme un agent réducteur d'eau, aidant à réduire la teneur en eau du mélange.
Dans l'industrie alimentaire, le gluconate de sodium est utilisé comme séquestrant, stabilisant et agent tampon.
Le gluconate de sodium peut être ajouté à certains produits alimentaires et boissons pour améliorer la stabilité et contrôler l'acidité.

Le gluconate de sodium est un ingrédient courant dans les détergents et les nettoyants industriels.
Le gluconate de sodium aide à prévenir le redépôt de saleté et de tartre en séquestrant les ions métalliques dans la solution de lavage.
Le gluconate de sodium est utilisé dans les formulations de nettoyage des métaux pour éliminer la rouille et le tartre des surfaces métalliques.

Dans l'industrie textile, le gluconate de sodium est utilisé dans les processus de teinture pour améliorer la solidité des couleurs des colorants.
Le gluconate de sodium peut être trouvé dans certains produits cosmétiques et de soins personnels où ses propriétés chélatantes aident à améliorer la stabilité et la durée de conservation.
Le gluconate de sodium est parfois utilisé dans certaines applications médicales, comme composant dans les formulations pour le traitement des plaies ou comme agent stabilisant dans les préparations pharmaceutiques.

Le gluconate de sodium peut être utilisé dans l'industrie pétrolière et gazière comme inhibiteur de corrosion et antitartre dans les fluides de forage à base d'eau.
L'ingestion de gluconate de sodium est connue pour stimuler la production de butyrate intestinal.
Le gluconate de sodium est largement utilisé dans l'industrie alimentaire, pharmaceutique, papetière et textile.

Le gluconate de sodium agit comme un agent chélateur.
Le gluconate de sodium sert de détergent dans la formulation de lavage des bouteilles.
Le gluconate de sodium est un solide cristallin granulaire blanc qui est très soluble dans l'eau.

Le gluconate de sodium est non corrosif, non toxique, biodégradable et renouvelable.
Le gluconate de sodium est résistant à l'oxydation et à la réduction, même à des températures élevées.
La principale propriété du gluconate de sodium est son excellent pouvoir chélatant, en particulier dans les solutions alcalines et alcalines concentrées.

Le gluconate de sodium forme des chélates stables avec le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds.
Le gluconate de sodium est un agent chélateur utile agissant comme stabilisateur et épaississant pour améliorer la qualité et la stabilité des produits alimentaires.
Le gluconate de sodium inhibe les saveurs amères et est utilisé dans les produits laitiers, les fruits transformés, les légumes, les céréales, les viandes transformées, les conserves de poisson et de nombreuses autres applications.

Le gluconate de sodium est un sel de sodium cristallin de l'acide gluconique, produit par la fermentation du glucose, et est très soluble dans l'eau.
Le gluconate de sodium est une poudre cristalline blanche qui est un sel d'acide gluconique, un composé naturellement présent dans les fruits et le miel.
Le gluconate de sodium a de nombreuses utilisations, notamment en tant qu'agent chélateur, ce qui signifie qu'il peut se lier aux ions métalliques et les empêcher de réagir avec d'autres substances dans l'environnement.

Cette propriété le rend utile dans une variété d'applications, y compris comme conservateur dans les produits cosmétiques.
La formule chimique du gluconate de sodium est NaC6H11O7. Il est soluble dans l'eau, inodore et a un goût légèrement sucré.
Le gluconate de sodium est fabriqué par fermentation du glucose à l'aide de bactéries, telles que l'Aspergillus niger ou le Gluconobacter suboxydans.

L'acide gluconique résultant est ensuite neutralisé avec de l'hydroxyde de sodium pour former du gluconate de sodium.
Le gluconate de sodium est le sel de sodium de l'acide gluconique avec des capacités chélatantes.
Le gluconate de sodium chélate et forme des complexes stables avec divers ions, les empêchant de s'engager dans des réactions chimiques, augmentant ainsi la stabilité de vos produits cosmétiques.

Le gluconate de sodium a été utilisé comme composant du tampon d'enregistrement utilisé dans l'enregistrement de la pince de tension à deux électrodes (TEVC) dans les ovocytes de Xenopus laevis.
Le gluconate de sodium a également été utilisé comme témoin du sodium.
Le gluconate de sodium pour la peau est la forme saline de l'acide gluconique, un acide doux produit à partir du glucose.

Malgré les origines en partie sucrées, le gluconate de sodium dans les soins de la peau est un ingrédient synthétique.
Dans les soins de la peau, le gluconate de sodium fonctionne comme un agent chélateur.
Les agents chélateurs sont des ingrédients qui se lient aux ions métalliques pour améliorer la stabilité des autres ingrédients.

Il est intéressant de noter que le corps humain produit lui-même des gluconates pour aider à obtenir des nutriments à partir de minéraux.
Le gluconate de sodium est le sel de sodium de l'acide gluconique, produit par la fermentation du glucose.
Le gluconate de sodium est largement utilisé dans la teinture textile, l'impression et le traitement de surface des métaux.

Le gluconate de sodium est un cristal non dangereux, blanc ou jaunâtre.
Le gluconate de sodium est un excellent agent chélateur et a un large éventail d'utilisations dans des industries telles que les nettoyants et les détergents, l'alimentation, les produits agrochimiques, les produits chimiques de construction, les encres / peintures / colorants, la finition des métaux, les auxiliaires de papier, les auxiliaires textiles, le traitement de l'eau et les soins personnels.
Le gluconate de sodium mérite d'être utilisé comme agent chélateur dans les articles de soins personnels et comme nettoyant dans les environnements industriels et domestiques.

Lorsqu'il est utilisé comme nettoyant, il est suffisamment puissant pour nettoyer les surfaces en métal et en verre.
Le gluconate de sodium est un conservateur inégalé car il est non toxique, non cancérigène et biodégradable, et est utilisé pour fabriquer des shampooings, des savons, des détergents, des pains à vaisselle, etc.
Le gluconate de sodium aide à réguler le fonctionnement des nerfs en éliminant les ions métalliques toxiques du corps.

Lorsqu'il est utilisé comme complément alimentaire, il restaure toute carence en sodium dans l'organisme.
Le gluconate de sodium fonctionne bien lorsqu'il est utilisé comme additif alimentaire pour épaissir et stabiliser les produits alimentaires emballés et augmenter leur durée de conservation.
Le gluconate de sodium est utilisé dans les engrais pour permettre aux plantes de mieux absorber les minéraux.

Le gluconate de sodium améliore la résistance à l'eau du ciment, ce qui empêche la rouille du fer.
Le gluconate de sodium est le sel de sodium de l'acide gluconique, produit par fermentation du glucose.
Le gluconate de sodium est une poudre cristalline blanche à beige, granuleuse à fine, très soluble dans l'eau.

Non corrosif, non toxique et facilement biodégradable (98 % après 2 jours), le gluconate de sodium est de plus en plus apprécié comme agent chélatant.
La propriété exceptionnelle du gluconate de sodium est son excellent pouvoir chélatant, en particulier dans les solutions alcalines et alcalines concentrées.
Le gluconate de sodium forme des chélates stables avec le calcium, le fer, le cuivre, l'aluminium et d'autres métaux lourds, et à cet égard, il surpasse tous les autres agents chélatants, tels que l'EDTA, le NTA et les composés apparentés.

Le gluconate de sodium, également appelé sel de sodium de l'acide gluconique, est produit par fermentation du glucose.
L'aspect est une poudre cristalline blanche, il est donc très soluble dans l'eau.
Le gluconate de sodium a les caractéristiques de non toxique, non corrosif et facilement biodégradable.

En tant que sorte de mélange chimique, le gluconate de sodium Kingsun joue toujours un rôle important dans de nombreux domaines différents, tels que le béton, l'industrie textile, le forage pétrolier, le savon, les cosmétiques, le dentifrice, etc.
Le gluconate de sodium est un sel d'acide gluconate créé par la fermentation du glucose.
Avec une formule de NaC6H11O7, le gluconate de sodium est une poudre granulaire blanche qui est très soluble dans l'eau froide et chaude.

Le gluconate de sodium est résistant à l'oxydation et à la dégradation, même à des températures extrêmement élevées.
Le gluconate de sodium présente une stabilité remarquable dans une large gamme de températures.
Le gluconate de sodium présente une compatibilité avec les oxydants et possède une concentration exceptionnellement faible en sulfates.

Le gluconate de sodium est non toxique, biodégradable, non corrosif et renouvelable.
Le gluconate de sodium est principalement utilisé comme agent chélateur dans les solutions alcalines et alcalines concentrées. En raison de son excellent pouvoir chélatant, il crée des chélates stables avec la plupart des métaux lourds tels que le cuivre, le calcium, le fer et l'aluminium.

Diverses applications du gluconate de sodium incluent son utilisation comme adjuvant dans le ciment pour prolonger le temps de prise, améliorant ainsi la maniabilité et la résistance du ciment. Dans le domaine des fluides de forage de puits de pétrole et de gaz, il sert d'inhibiteur de corrosion et de tartre.
De plus, le gluconate de sodium est utilisé comme additif dans les fluides de travail des métaux pour prévenir la formation de rouille et comme nettoyant industriel pour les surfaces métalliques et en verre.

Notamment, le gluconate de sodium peut être efficacement formulé et utilisé comme substitut aux agents chélateurs courants comme l'EDTA, l'acide citrique, le NTA et le THPS.
Le gluconate de sodium a de nombreuses utilisations dans divers domaines, notamment l'industrie du nettoyage, l'industrie alimentaire, l'industrie du traitement de l'eau, le secteur de la construction et l'industrie pharmaceutique.
Le gluconate de sodium est un sel biodégradable, inodore et non corrosif utilisé dans certains produits de nettoyage et de soins personnels.

Le gluconate de sodium est synthétisé à partir de l'acide gluconique, que l'on trouve dans la nature dans le miel et le vin - et qui peut être produit par fermentation de sucres végétaux.
Cet ingrédient haute performance est considéré comme présentant un faible risque et est facilement biodégradable, se décomposant complètement dans les 2 à 35 jours suivant son entrée dans les cours d'eau.
Le gluconate de sodium est généralement immédiatement disponible dans la plupart des volumes.

Des formes de haute pureté, submicroniques et nanopoudres peuvent être envisagées.
American Elements produit selon de nombreuses qualités standard, le cas échéant, y compris Mil Spec (qualité militaire) ; ACS, réactif et qualité technique ; Qualité alimentaire, agricole et pharmaceutique ; Qualité optique, USP et EP/BP (Pharmacopée européenne/Pharmacopée britannique) et suit les normes de test ASTM applicables.
Des emballages typiques et personnalisés sont disponibles.

Des informations techniques, de recherche et de sécurité (FDS) supplémentaires sont disponibles, ainsi qu'un calculateur de référence pour convertir les unités de mesure pertinentes.
Le gluconate de sodium est un composé de formule NaC₆H₁₁O₇.
Le gluconate de sodium est le sel de sodium de l'acide gluconique.

Le gluconate de sodium peut être utilisé comme agent réducteur d'eau et retardateur dans l'industrie de la construction et du bâtiment.
Le gluconate de sodium peut être utilisé pour nettoyer les bouteilles en verre et les métaux.
Le gluconate de sodium peut être utilisé comme stabilisateur de la qualité de l'eau car il a une excellente capacité d'inhibition du tartre.

Dans l'industrie textile, utilisé dans le nettoyage et le dégraissage des fibres.
Le gluconate de sodium peut également être utilisé comme additif alimentaire.
Le gluconate de sodium est utilisé comme retardateur de prise dans l'industrie du béton.

Le gluconate de sodium retarde le temps de prise du béton, ce qui permet une maniabilité plus longue et empêche la prise prématurée du matériau.
En plus de son rôle de retardateur de prise de béton, le gluconate de sodium peut également être utilisé dans les matériaux de construction pour améliorer leurs performances et leur stabilité.
Le gluconate de sodium est utilisé comme agent anticorrosion dans diverses formulations, aidant à protéger les surfaces métalliques de la corrosion et de la rouille.

Le gluconate de sodium peut servir de conservateur dans les produits cosmétiques et de soins personnels, contribuant à prolonger leur durée de conservation en empêchant la croissance des micro-organismes.
Dans les détergents à vaisselle ménagers et industriels, le gluconate de sodium agit comme adoucisseur d'eau et séquestrant, empêchant la formation de tartre et améliorant l'efficacité du nettoyage.
Le gluconate de sodium est utilisé dans l'industrie des pâtes et papiers pour améliorer le processus de blanchiment, améliorer la qualité de la pâte et réduire l'impact environnemental.

Le gluconate de sodium est un ingrédient courant dans les solutions de nettoyage des métaux, contribuant à l'élimination des oxydes, de la rouille et d'autres contaminants des surfaces métalliques.
Dans les formulations de traitement de l'eau de refroidissement, le gluconate de sodium aide à contrôler la formation de tartre et la corrosion dans les systèmes de refroidissement.
Le gluconate de sodium est utilisé dans les produits de nettoyage des surfaces domestiques et industrielles pour améliorer leur efficacité et prévenir les dépôts minéraux.

Dans certaines formulations, le gluconate de sodium peut être utilisé comme additif pour carburant afin d'améliorer l'efficacité de la combustion et de réduire les émissions.
Le gluconate de sodium peut être inclus dans les fluides caloporteurs pour prévenir la corrosion dans les systèmes où les surfaces métalliques entrent en contact avec le fluide.
Le gluconate de sodium peut être utilisé dans certains produits de soins pour animaux, tels que les shampooings et les solutions de toilettage, pour ses propriétés séquestrantes et stabilisantes.

Le gluconate de sodium est utilisé dans les procédés de traitement de surface des métaux pour améliorer l'adhérence des revêtements ou améliorer les propriétés des surfaces métalliques.
Le gluconate de sodium peut servir de source d'ions sodium dans certaines applications où la libération contrôlée de sodium est souhaitée.
Dans les formulations pharmaceutiques, le gluconate de sodium peut être utilisé comme excipient pour améliorer la stabilité et la solubilité de certains médicaments.

Dans l'industrie pétrolière et gazière, le gluconate de sodium a fait l'objet d'études pour son utilisation potentielle comme inhibiteur d'hydrates de gaz dans les pipelines.
Le gluconate de sodium peut être utilisé dans les formulations de détergents liquides, contribuant ainsi à la performance globale du produit de nettoyage.

Point de fusion : 170-175 °C
alpha : [α]D20 +11~+13° (c=10, H2O)
Température de stockage : Conserver à une température inférieure à +30°C.
solubilité : H2O : 0,1 g/mL, clair
forme : Poudre cristalline
Couleur : Blanc à beige clair
PH : 7,0-8,0 (100g/l, H2O, 20°C)
Odeur : wh. à ylsh. cryst. powd., odeur agréable
Solubilité dans l'eau : Très soluble dans l'eau ; peu soluble dans l'alcool ; insoluble dans l'éther.
Merck : 14,4456
BRN : 3919651
Stabilité : Stable. Incompatible avec les agents oxydants forts.
InChI : InChI=1/C6H12O7. Na.H/c7-1-2(8)3(9)4(10)5(11)6(12)13 ;; /h2-5,7-11H,1H2,(H,12,13) ;; /t2-,3-,4+,5- ;; /s3
InChIKey : MPPJUDJABRMYJR-QZHCVFHNNA-N
SOURIRES : [C@@H](O)([C@@H](O)C(=O)O)[C@H](O)[C@H](O)CO.[NaH] |&1 :0,2,7,9,r|
LogP : -3.175 (est)

Le gluconate de sodium est un composé de formule NaC6H11O7.
Le gluconate de sodium est le sel de sodium de l'acide gluconique. Son numéro E est E576.
Cette poudre blanche soluble dans l'eau a un large éventail d'applications dans toutes les industries.

Dérivé à l'origine de l'acide gluconique au 19ème siècle, le gluconate de sodium est connu pour ses propriétés chélatrices et est utilisé comme agent chélateur dans divers processus.
Le gluconate de sodium trouve des applications dans le textile, le traitement de surface des métaux, le ciment, etc.
De plus, sa nature non toxique et sa biodégradabilité contribuent à son utilisation dans des pratiques respectueuses de l'environnement.

Le gluconate de sodium a la propriété exceptionnelle de chélater le calcium et d'autres ions métalliques di- et trivalents.
Le gluconate de sodium est utilisé dans les préparations pour le lavage des bouteilles, où il aide à prévenir la formation de tartre et son élimination du verre.
Le gluconate de sodium est bien adapté pour éliminer les dépôts calcaires des métaux et autres surfaces, y compris le lait ou la bière sur du fer galvanisé ou de l'acier inoxydable.

Le gluconate de sodium est une propriété de séquestration du fer sur une large gamme de pH est exploité dans l'industrie textile, où il empêche le dépôt de fer et pour le désencollage des tissus en polyester et en polyamide.
Le gluconate de sodium est également utilisé en métallurgie pour le dérouillage alcalin, ainsi que dans le lavage des murs peints et l'élimination des précipités de carbonate métallique sans provoquer de corrosion.
Le gluconate de sodium est également utilisé comme addatif au ciment, en contrôlant le temps de prise et en augmentant la résistance et la résistance à l'eau du ciment.

Le gluconate de sodium aide à la fabrication de bétons résistants au gel et aux fissures.
Le gluconate de sodium est également utilisé dans les produits de nettoyage ménager tels que les bains de bouche.
Le gluconate de sodium peut être produit par le processus de fermentation ou la synthèse chimique.

Dans le processus de fermentation, le glucose est fermenté par certains micro-organismes, généralement des souches d'Aspergillus niger ou de Pseudomonas.
L'acide gluconique est le principal produit de cette fermentation, et le gluconate de sodium est dérivé de la neutralisation de l'acide gluconique avec de l'hydroxyde de sodium.
La production de gluconate de sodium commence avec son précurseur, l'acide gluconique.

Cet acide organique est souvent obtenu par un processus de fermentation.
Le gluconate de sodium, ou d'autres sources de sucre, sert de substrat aux micro-organismes, généralement des bactéries ou des champignons, pour produire de l'acide gluconique.
Une fois l'acide gluconique récolté, il subit une transformation en gluconate de sodium.

La conversion implique principalement une réaction chimique où l'acide gluconique est neutralisé avec de l'hydroxyde de sodium (NaOH).
Cette réaction entraîne la formation de gluconate de sodium, où les ions sodium (Na+) remplacent les ions hydrogène (H+) dans l'acide gluconique.
La purification comprend souvent une filtration et des traitements chimiques pour atteindre le niveau de pureté souhaité.

Après cristallisation, les cristaux de gluconate de sodium contiennent encore de l'humidité résiduelle.
Le séchage peut impliquer des processus tels que le séchage à l'air ou le séchage par atomisation.
Le gluconate de sodium se trouve couramment dans de nombreux nettoyants ménagers et industriels.

C'est parce que sur sa multi fonctionnalité.
Le gluconate de sodium agit comme un agent chélatant, un agent séquestrant, un constructeur et un agent de redépôt.
Dans les nettoyants alcalins comme les détergents pour lave-vaisselle et les dégraissants, il empêche les ions de l'eau dure (magnésium et calcium) d'interférer avec les alcalis et permet au nettoyant de fonctionner au maximum de ses capacités.

Le gluconate de sodium aide à éliminer les salissures pour les détergents à lessive car il brise la liaison calcique qui maintient la saleté sur le tissu et empêche davantage la saleté de se redéposer sur le tissu.
Le gluconate de sodium aide à protéger les métaux comme l'acier inoxydable lorsque des nettoyants à base de caustiques puissants sont utilisés.
Le gluconate de sodium aide à décomposer le tartre, la pierre de lait et la pierre de bière.

En conséquence, le gluconate de sodium trouve une application dans de nombreux nettoyants à base d'acide, en particulier ceux formulés pour une utilisation dans l'industrie alimentaire.
Le gluconate de sodium agit en chélant et en empêchant divers ions libres de se livrer à des réactions chimiques.
Le gluconate de sodium se lie aux ions d'eau dure pour améliorer l'efficacité du détergent.

Le gluconate de sodium est utilisé pour la passivation des surfaces métalliques, ce qui contribue à améliorer la résistance à la corrosion en formant une couche protectrice sur le métal.
Dans les bains de galvanoplastie, le gluconate de sodium peut servir d'agent complexant pour améliorer la qualité et l'uniformité des revêtements métalliques.
Le gluconate de sodium est parfois utilisé comme alternative écologique aux phosphates dans certaines applications, telles que les détergents, où les phosphates peuvent contribuer à des préoccupations environnementales.

Le gluconate de sodium peut agir comme stabilisateur de chlore dans les applications de traitement de l'eau, aidant à maintenir l'efficacité des désinfectants à base de chlore.
Dans les formulations de nettoyage industriel, le gluconate de sodium peut être utilisé pour le dégraissage des métaux, contribuant ainsi à l'élimination des huiles et des graisses des surfaces.
Le gluconate de sodium est utilisé comme retardateur de gypse dans la production de matériaux à base de gypse, ce qui permet un meilleur contrôle des temps de prise.

Dans l'industrie pétrolière et gazière, le gluconate de sodium est utilisé dans la cimentation des champs pétrolifères pour améliorer les performances et la maniabilité des boues de ciment.
Le gluconate de sodium est utilisé dans les procédés de traitement des eaux usées pour contrôler les ions métalliques et améliorer l'efficacité de diverses méthodes de traitement.
Le gluconate de sodium peut être ajouté aux revêtements pour améliorer l'adhérence, améliorer la durabilité et fournir une résistance à la corrosion aux surfaces revêtues.

Dans certaines formulations, le gluconate de sodium peut contribuer à la formation de gels, affectant la viscosité et la texture du produit.
Le gluconate de sodium peut servir d'humectant dans les produits cosmétiques et de soins personnels, aidant à retenir l'humidité et à prévenir le dessèchement de la peau.
Le gluconate de sodium est utilisé comme adjuvant dans les matériaux à base de ciment pour améliorer leurs propriétés, telles que la maniabilité et la résistance.

Dans les procédés d'épuration des gaz industriels, le gluconate de sodium peut être utilisé pour séquestrer les ions métalliques et améliorer l'efficacité de l'élimination des polluants.
Le gluconate de sodium peut être incorporé dans les lingettes nettoyantes pour surfaces métalliques, offrant un moyen pratique et efficace d'éliminer les contaminants.
Le gluconate de sodium est parfois utilisé comme abat-poussière sur les routes non pavées et les chantiers de construction pour contrôler les particules de poussière en suspension dans l'air.

Le gluconate de sodium a été exploré en vue d'une utilisation potentielle dans le nettoyage des déversements d'hydrocarbures, où il pourrait aider à disperser et à solubiliser le pétrole.
Le gluconate de sodium est utilisé dans l'industrie du cuir comme séquestrant pour contrôler les ions métalliques pendant le processus de tannage.
Le gluconate de sodium peut être inclus dans les matériaux de réparation du béton pour améliorer leur adhérence et leur durabilité.

Dans la fracturation hydraulique (fracturation), le gluconate de sodium peut être utilisé comme additif pour contrôler la viscosité des fluides de fracturation.
Dans les applications de construction, le gluconate de sodium est principalement utilisé comme adjuvant pour béton.
Le gluconate de sodium peut être ajouté au béton pour aider à réduire la demande en eau, augmenter la fluidité du béton et améliorer la maniabilité.

Le gluconate de sodium peut également aider à minimiser la ségrégation, le retrait et le saignement dans les mélanges de béton.
Le gluconate de sodium peut également réduire la corrosion de l'acier dans les matériaux en béton et accélérer le processus d'hydratation.
Le gluconate de sodium améliore également les propriétés du béton, telles que la durabilité, la résistance et l'augmentation des temps de prise.

Ce sel peut également être utilisé comme retardateur de durcissement dans les mélanges de béton pour aider à réduire la vitesse à laquelle le béton durcit.
Le gluconate de sodium agit en influençant le processus d'hydratation en réduisant le taux d'hydratation du ciment.
Cela laisse plus de temps pour que le béton soit mélangé et placé.

Une poudre cristalline blanc-jaune non dangereuse, le gluconate de sodium produit par la fermentation du glucose.
Très soluble dans l'eau, il possède de bonnes propriétés séquestrantes et est stable sous des températures et une alcalinité extrêmes.
Le gluconate de sodium est utilisé dans les procédés de placage des métaux, où il aide à contrôler le dépôt d'ions métalliques et améliore la qualité des surfaces plaquées.

Dans les solutions de développement photographique, le gluconate de sodium peut être utilisé comme agent stabilisant et pour contrôler le pH de la solution.
Le gluconate de sodium est utilisé dans l'industrie de l'imprimerie comme séquestrant pour empêcher les réactions indésirables entre les ions métalliques et les composants de l'encre d'imprimerie.
Le gluconate de sodium trouve une application dans l'industrie pétrolière et gazière en tant qu'inhibiteur de schiste, aidant à contrôler le gonflement des particules d'argile dans les fluides de forage.

Dans les systèmes de traitement de l'eau, le gluconate de sodium est parfois utilisé comme inhibiteur de tartre dans les membranes d'osmose inverse, aidant à prévenir la formation de dépôts minéraux.
Le gluconate de sodium est utilisé dans le traitement des eaux usées pour aider à éliminer l'excès de colorants et de métaux lourds.
Le gluconate de sodium peut être inclus dans les formulations d'adhésifs et de produits d'étanchéité afin d'améliorer leur performance et leur stabilité.

Dans certaines formulations, le gluconate de sodium est utilisé comme composant de solutions ignifuges.
Le gluconate de sodium peut être utilisé en agriculture pour améliorer l'efficacité de certains produits agrochimiques en séquestrant les ions métalliques qui peuvent interférer avec leurs performances.
Le gluconate de sodium peut être utilisé comme additif dans l'alimentation animale pour fournir des nutriments essentiels et améliorer la qualité des aliments.

Dans les bains de galvanoplastie, le gluconate de sodium aide à réguler le dépôt de revêtements métalliques sur les surfaces.
Dans les procédés de récupération assistée du pétrole, le gluconate de sodium peut être utilisé comme tensioactif pour améliorer le déplacement du pétrole des réservoirs.
Le gluconate de sodium peut être utilisé dans les systèmes hydroponiques pour empêcher la précipitation des sels minéraux et maintenir la disponibilité des nutriments pour les plantes.

Le gluconate de sodium est utilisé dans l'industrie papetière comme agent chélateur pour améliorer l'efficacité de certains produits chimiques utilisés dans les procédés de mise en pâte et de blanchiment.
Le gluconate de sodium peut trouver une application dans l'industrie électronique pour les processus de nettoyage et de gravure.

Le gluconate de sodium est utilisé dans l'impression textile pour améliorer les propriétés de teinture et la solidité des couleurs des tissus imprimés.
Dans le cadre de l'entretien hivernal des routes, le gluconate de sodium a été exploré comme agent de déglaçage potentiel respectueux de l'environnement.

Utilise:
Le gluconate de sodium est utilisé comme conservateur naturel.
Le gluconate de sodium empêche la croissance des microbes dans nos produits afin de les garder sans danger pour les consommateurs.
Le gluconate de sodium agit également comme un agent revitalisant pour la peau et un agent chélateur qui aide les produits nettoyants à mieux mousser dans l'eau dure.

Le gluconate de sodium a été utilisé comme composant du tampon d'enregistrement utilisé dans l'enregistrement de la pince de tension à deux électrodes (TEVC) dans les ovocytes de Xenopus laevis.
Le gluconate de sodium a également été utilisé comme témoin du sodium.
Les premières utilisations du gluconate de sodium étaient principalement en médecine en raison de ses propriétés douces et non toxiques.

Au fil du temps, ses applications se sont étendues à diverses industries, notamment l'alimentation, les produits pharmaceutiques, la construction, les textiles, etc., à mesure que ses propriétés polyvalentes et son profil de sécurité sont devenus plus largement reconnus.
Le gluconate de sodium est utilisé comme additif alimentaire à diverses fins, notamment comme séquestrant pour empêcher les ions métalliques d'affecter la couleur, la saveur ou la stabilité des produits alimentaires.
Le gluconate de sodium est utilisé dans l'industrie de la construction comme adjuvant pour béton.

Le gluconate de sodium agit comme un réducteur et un retardateur d'eau, améliorant la maniabilité et les performances du béton.
Dans la teinture et l'impression textiles, le gluconate de sodium est utilisé comme agent chélateur pour améliorer la solidité des couleurs.
Le gluconate de sodium est utilisé pour le traitement et le nettoyage des surfaces métalliques, en particulier pour les surfaces en acier.

Le gluconate de sodium peut être trouvé dans les produits de nettoyage pour les bouteilles en verre et comme agent chélateur dans diverses formulations de nettoyage.
Le gluconate de sodium est utilisé comme agent de nettoyage de surface pour les métaux.
Le gluconate de sodium est utilisé comme agent de nettoyage des bouteilles en verre.

Le gluconate de sodium peut également être utilisé comme agent réducteur d'eau et retardateur dans l'industrie du bâtiment.
Le gluconate de sodium est également un retardateur de prise efficace et un bon plastifiant et réducteur d'eau pour le béton, le ciment, le mortier et le gypse.
Le gluconate de sodium est utilisé comme adjuvant pour béton.

Le gluconate de sodium offre plusieurs avantages, notamment une meilleure maniabilité, un ralentissement des temps de prise, une réduction de l'eau, une meilleure résistance au gel-dégel, une réduction des saignements, des fissures et des retraits à sec.
Lorsqu'il est ajouté à un niveau de gluconate de sodium de 0,3%, il peut retarder le temps de prise du ciment à plus de 16 heures en fonction du rapport entre l'eau et le ciment, la température, etc.
Comme le gluconate de sodium agit comme un inhibiteur de corrosion, il aide à protéger les barres de fer utilisées dans le béton de la corrosion.

Le gluconate de sodium peut être ajouté aux revêtements pour améliorer l'adhérence, améliorer la durabilité et fournir une résistance à la corrosion aux surfaces revêtues.
Dans les procédés d'épuration des gaz industriels, le gluconate de sodium peut être utilisé pour séquestrer les ions métalliques et améliorer l'efficacité de l'élimination des polluants.
Le gluconate de sodium est utilisé dans les formulations de nettoyage industriel pour les surfaces métalliques, contribuant à l'élimination des oxydes, de la rouille et d'autres contaminants.

Dans certaines formulations, le gluconate de sodium peut contribuer à la formation de gels, affectant la viscosité et la texture du produit.
Le gluconate de sodium peut servir d'humectant dans les produits cosmétiques et de soins personnels, aidant à retenir l'humidité dans la peau.
Le gluconate de sodium est utilisé comme adjuvant dans les matériaux à base de ciment pour améliorer leurs propriétés, telles que la maniabilité et la résistance.

Dans l'industrie pétrolière et gazière, le gluconate de sodium a fait l'objet d'études pour son utilisation potentielle comme inhibiteur d'hydrates de gaz dans les pipelines.
Le gluconate de sodium peut être utilisé dans les formulations de détergents liquides, contribuant ainsi à la performance globale du produit de nettoyage.
Le gluconate de sodium est utilisé pour la passivation des surfaces métalliques, ce qui contribue à améliorer la résistance à la corrosion en formant une couche protectrice sur le métal.

Dans les bains de galvanoplastie, le gluconate de sodium peut servir d'agent complexant pour améliorer la qualité et l'uniformité des revêtements métalliques.
Le gluconate de sodium est parfois utilisé comme alternative écologique aux phosphates dans certaines applications, telles que les détergents, où les phosphates peuvent contribuer à des préoccupations environnementales.
Le gluconate de sodium peut agir comme stabilisateur de chlore dans les applications de traitement de l'eau, aidant à maintenir l'efficacité des désinfectants à base de chlore.

Dans les formulations de nettoyage industriel, le gluconate de sodium peut être utilisé pour le dégraissage des métaux, contribuant ainsi à l'élimination des huiles et des graisses des surfaces.
Le gluconate de sodium est utilisé comme retardateur de gypse dans la production de matériaux à base de gypse, ce qui permet un meilleur contrôle des temps de prise.
Dans l'industrie pétrolière et gazière, le gluconate de sodium est utilisé dans la cimentation des champs pétrolifères pour améliorer les performances et la maniabilité des boues de ciment.

Le gluconate de sodium est utilisé dans les procédés de traitement des eaux usées pour contrôler les ions métalliques et améliorer l'efficacité de diverses méthodes de traitement.
Le gluconate de sodium est utilisé dans l'industrie du cuir comme séquestrant pour contrôler les ions métalliques pendant le processus de tannage.
Le gluconate de sodium peut être inclus dans les matériaux de réparation du béton pour améliorer l'adhérence et la durabilité.

Dans la fracturation hydraulique (fracturation), le gluconate de sodium peut être utilisé comme additif pour contrôler la viscosité des fluides de fracturation.
Le gluconate de sodium peut être incorporé dans les lingettes nettoyantes pour surfaces métalliques, offrant un moyen pratique et efficace d'éliminer les contaminants.
Le gluconate de sodium est un ingrédient utile lorsqu'il s'agit de soins personnels et de cosmétiques.

Qu'il s'agisse d'augmenter la durée de conservation des produits ou de les rendre plus attrayants pour l'utilisateur, cet ingrédient fait tout.
Dans les produits de soins de la peau, le gluconate de sodium est couramment utilisé comme agent chélatant, ce qui signifie qu'il peut aider à éliminer les métaux indésirables des formulations, ce qui améliore finalement leur stabilité et leur texture.
Le gluconate de sodium est également un bon conservateur, car il peut aider à prévenir la croissance de bactéries et de champignons nocifs dans les produits, prolongeant ainsi leur durée de conservation.

Le gluconate de sodium est utilisé pour améliorer les performances et l'attrait de nombreux produits de soins capillaires.
Le gluconate de sodium élimine les ions métalliques indésirables des produits, améliorant la clarté et réduisant l'accumulation de minéraux sur les cheveux.
Le gluconate de sodium prévient également la sécheresse et la casse, laissant les cheveux plus sains.

En plus d'être un agent chélateur, le gluconate de sodium est également bon pour l'hydratation.
Le gluconate de sodium rend les produits cosmétiques plus hydratants pour la peau et empêche la surface de se dessécher en retenant l'eau.
Dans l'ensemble, cet ingrédient améliore l'expérience utilisateur et l'attrait des produits.

Le gluconate de sodium est utilisé dans la galvanoplastie et la finition des métaux en raison de sa forte affinité pour les ions métalliques.
Agissant comme un séquestrant, il stabilise la solution en empêchant les impuretés de déclencher des réactions indésirables dans le bain.
Les propriétés de chélation du gluconate de sodium aident à la détérioration de l'anode, augmentant ainsi l'efficacité du bain de placage.

Le gluconate de sodium peut être utilisé dans les bains de placage de cuivre, de zinc et de cadmium pour éclaircir et augmenter l'éclat.
Le gluconate de sodium est utilisé dans les produits agrochimiques et en particulier dans les engrais. Il aide les plantes et les cultures à absorber les minéraux nécessaires du sol.
On le trouve couramment dans les sels contenant du sodium et du calcium.

Le gluconate de sodium ou gluconate est utilisé pour maintenir l'équilibre cation-anion sur les solutions électrolytiques.
Le gluconate de sodium est principalement utilisé comme agent chélateur dans l'industrie du nettoyage.
Le gluconate de sodium lie et élimine les sels minéraux et les métaux des surfaces, ce qui les rend plus faciles à nettoyer.

Ce sel est également utilisé comme inhibiteur de corrosion dans les solutions de nettoyage industriel.
Le gluconate de sodium peut également être utilisé comme agent de nettoyage pour les détergents à lessive, grâce à sa capacité à briser les liaisons calciques transportant la saleté.
Le gluconate de sodium est utilisé comme adjuvant pour béton afin d'améliorer la maniabilité et la résistance du béton.

Le gluconate de sodium agit comme un réducteur et un retardateur d'eau, permettant un meilleur contrôle du temps de prise.
Le gluconate de sodium est chélatant, ce qui le rend efficace pour séquestrer les ions métalliques, en particulier le calcium, le fer et le magnésium.
Cela le rend utile dans le traitement de l'eau pour éviter la formation de tartre.

En tant que retardateur de prise, le gluconate de sodium retarde le temps de prise du béton, ce qui permet une maniabilité prolongée et un meilleur placement du matériau.
Le gluconate de sodium est utilisé dans les procédés de traitement de l'eau pour contrôler la formation de tartre et prévenir la corrosion dans les pipelines et les équipements.
Le gluconate de sodium est un ingrédient courant dans les détergents et les nettoyants industriels, où il agit comme séquestrant pour empêcher la redéposition de la saleté et améliorer l'efficacité du nettoyage.

Dans l'industrie alimentaire, le gluconate de sodium est utilisé comme séquestrant et stabilisant.
Le gluconate de sodium peut être ajouté à certains produits alimentaires et boissons pour contrôler l'acidité et améliorer la stabilité.
Le gluconate de sodium est utilisé dans l'industrie textile, en particulier dans les processus de teinture, pour améliorer la solidité des couleurs des colorants et améliorer les performances globales de teinture.

Le gluconate de sodium peut être inclus dans les matériaux de réparation du béton pour améliorer l'adhérence et la durabilité.
Dans l'industrie pétrolière et gazière, le gluconate de sodium est utilisé dans les fluides de forage et de cimentation en tant qu'inhibiteur de schiste et additif de contrôle des pertes de fluide.
Le gluconate de sodium sert d'agent complexant dans les bains de placage métallique pour améliorer la qualité et l'uniformité des revêtements métalliques.

Le gluconate de sodium est utilisé dans les solutions de développement photographique comme agent stabilisant et régulateur de pH.
Le gluconate de sodium est utilisé pour passiver les surfaces métalliques, ce qui contribue à améliorer la résistance à la corrosion.
Le gluconate de sodium peut être incorporé dans les lingettes nettoyantes pour surfaces métalliques, offrant un moyen efficace d'éliminer les contaminants.

Dans l'industrie pharmaceutique, le gluconate de sodium peut être utilisé comme excipient ou agent stabilisant dans certaines formulations.
Le gluconate de sodium peut servir d'humectant dans les produits cosmétiques et de soins personnels, aidant à retenir l'humidité dans la peau.
Le gluconate de sodium peut être inclus dans les formulations d'adhésifs et de produits d'étanchéité afin d'améliorer leur performance et leur stabilité.

Le gluconate de sodium est utilisé comme retardateur de gypse dans la production de matériaux à base de gypse.
Le gluconate de sodium peut trouver des applications dans les processus de nettoyage et de gravure dans l'industrie électronique.

Le gluconate de sodium est utilisé comme inhibiteur de tartre dans les membranes d'osmose inverse pour empêcher la formation de dépôts minéraux.
Le gluconate de sodium est utilisé dans les procédés de traitement des eaux usées pour contrôler les ions métalliques et améliorer l'efficacité des méthodes de traitement.

Profil d'innocuité :
Le gluconate de sodium est généralement considéré comme sans danger pour la peau et les cheveux.
Le gluconate de sodium est non comédogène et ne provoque généralement pas de réactions allergiques, mais il est tout de même recommandé de faire un test épicutané.
Le gluconate de sodium est végétalien et halal, car il est dérivé de sources végétales et ne contient pas de produits d'origine animale.

Lorsqu'il est chauffé jusqu'à la décomposition, il émet une fumée âcre et des vapeurs irritantes
Le gluconate de sodium est généralement reconnu comme sûr (GRAS) pour la consommation par les autorités réglementaires telles que la Food and Drug Administration (FDA) des États-Unis.
Le gluconate de sodium est considéré comme non toxique et sans danger pour une utilisation dans les aliments et les produits pharmaceutiques.

SODIUM GLYCINATE
SODIUM GLYCOLATE, N° CAS : 2836-32-0 - Glycolate de sodium, Nom INCI : SODIUM GLYCOLATE, N° EINECS/ELINCS : 220-624-9, Ses fonctions (INCI), Régulateur de pH : Stabilise le pH des cosmétiques. Noms français : GLYCOLATE DE SODIUM. Noms anglais : ACETIC ACID, HYDROXY-, MONOSODIUM SALT; GLYCOLIC ACID, MONOSODIUM SALT; SODIUM .ALPHA.-HYDROXYACETATE; SODIUM GLYCOLATE
SODIUM GLYCOLATE ( Glycolate de sodium)
cas no 10124-56-8 Metaphosphoric acid, hexasodium salt; Calgon S; SHMP; Glassy sodium; Hexasodium metaphosphate; Metaphosphoric acid, hexasodium salt; Sodium Polymetaphosphate; sodium polymetaphosphate; Graham's Salt; Graham's salt; SHMP;
SODIUM HEXAMETAPHOSPHATE
Sodium Hexametaphosphate Uses of Sodium hexametaphosphate Sodium hexametaphosphate is used as a sequestrant and has applications within a wide variety of industries, including as a food additive in which Sodium hexametaphosphate is used under the E number E452i. Sodium carbonate is sometimes added to SHMP to raise the pH to 8.0–8.6, which produces a number of Sodium hexametaphosphate products used for water softening and detergents. A significant use for sodium hexametaphosphate is as a deflocculant in the production of clay-based ceramic particles. Sodium hexametaphosphate is also used as a dispersing agent to break down clay and other soil types for soil texture assessment. Sodium hexametaphosphate is used as an active ingredient in toothpastes as an anti-staining and tartar prevention ingredient. The energy drink NOS contains sodium hexametaphosphate. Food additive As a food additive, Sodium hexametaphosphate is used as an emulsifier. Artificial maple syrup, canned milk, cheese powders and dips, imitation cheese, whipped topping, packaged egg whites, roast beef, fish fillets, fruit jelly, frozen desserts, salad dressing, herring, breakfast cereal, ice cream, beer, and bottled drinks, among other foods, can contain Sodium hexametaphosphate. Preparation of Sodium hexametaphosphate Sodium hexametaphosphate is prepared by heating monosodium orthophosphate to generate sodium acid pyrophosphate: 2 NaH2PO4 → Na2H2P2O7 + H2O Subsequently, the pyrophosphate is heated to give the corresponding sodium hexametaphosphate: 3 Na2H2P2O7 → (NaPO3)6 + 3 H2O followed by rapid cooling. Reactions of Sodium hexametaphosphate SHMP hydrolyzes in aqueous solution, particularly under acidic conditions, to sodium trimetaphosphate and sodium orthophosphate. History of Sodium hexametaphosphate Hexametaphosphoric acid was named (but misidentified) in 1849 by the German chemist Theodor Fleitmann. By 1956, chromatographic analysis of hydrolysates of Graham's salt (sodium polyphosphate) indicated the presence of cyclic anions containing more than four phosphate groups; these findings were confirmed in 1961. In 1963, the German chemists Erich Thilo and Ulrich Schülke succeeded in preparing sodium hexametaphosphate by heating anhydrous sodium trimetaphosphate. Safety of Sodium hexametaphosphate Sodium phosphates are recognized to have low acute oral toxicity. Sodium hexametaphosphate concentrations not exceeding 10,000mg/l or mg/kg are considered protective levels by the EFSA and USFDA. Extreme concentrations of this salt may cause acute side effects from excessive blood serum concentrations of sodium, such as: “irregular pulse, bradycardia, and hypocalcemia." Properties of Sodium hexametaphosphate Chemical formula Na6P6O18 Molar mass 611.7704 g mol−1 Appearance White crystals Odor odorless Density 2.484 g/cm3 Melting point 628 °C (1,162 °F; 901 K) Boiling point 1,500 °C (2,730 °F; 1,770 K) Solubility in water soluble Solubility insoluble in organic solvents Refractive index (nD) 1.482 General description of Sodium hexametaphosphate Sodium hexametaphosphate is an inorganic polyphosphate salt commonly used as a corrosion inhibitor, emulsifying agent and as a tooth whitening agent in dentifrice formulations. Application of Sodium hexametaphosphate Sodium hexametaphosphate has been used as a deflocculant to prepare clay suspensions. Final report on the safety assessment of Sodium Metaphosphate, Sodium Trimetaphosphate, and Sodium Hexametaphosphate These inorganic polyphosphate salts all function as chelating agents in cosmetic formulations. In addition, Sodium Metaphosphate functions as an oral care agent, Sodium Trimetaphosphate as a buffering agent, and Sodium Hexametaphosphate as a corrosion inhibitor. Only Sodium Hexametaphosphate is currently reported to be used. Although the typical concentrations historically have been less than 1%, higher concentrations have been used in products such as bath oils, which are diluted during normal use. Sodium Metaphosphate is the general term for any polyphosphate salt with four or more phosphate units. The four-phosphate unit version is cyclic, others are straight chains. The hexametaphosphate is the specific six-chain length form. The trimetaphosphate structure is cyclic. Rats fed 10% Sodium Trimetaphosphate for a month exhibited transient tubular necrosis; rats given 10% Sodium Metaphosphate had retarded growth and those fed 10% Sodium Hexametaphosphate had pale and swollen kidneys. In chronic studies using animals, growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis, and muscle fiber size alterations. Sodium Hexametaphosphate was a severe skin irritant in rabbits, whereas a 0.2% solution was only mildly irritating. A similar pattern was seen with ocular toxicity. These ingredients were not genotoxic in bacterial systems nor were they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to Sodium Hexametaphosphate or Sodium Trimetaphosphate. In clinical testing, irritation is seen as a function of concentration; concentrations as high as 1% produced no irritation in contact allergy patients. Because of the corrosive nature of Sodium Hexametaphosphate, it was concluded that these ingredients could be used safely if each formulation was prepared to avoid skin irritation; for example, low concentration in a leave-on product or dilution of a higher concentration as part of product usage. Uses of Sodium hexametaphosphate Salt mixture of metaphosphates Great for combining with sodium citrate for making cheese sauces Commonly used as a pH buffer and sequestrant Cold/hot soluble, free flowing powder DESCRIPTION of Sodium hexametaphosphate (SHMP) 100% Pure Food Grade Sodium Hexametaphosphate SHMP (e452i) for use in molecular gastronomy. SHMP is a sequestrant, which allows gelling agents to be hydrated at much lower temperatures. It is the highest performing sequestrant available. And unlike sodium citrate, it has no taste at the concentrations used for gel hydration. OTHER DETAILS of Sodium hexametaphosphate Dietary Attributes: Plant-Based, Gluten-Free, Non-GMO, Kosher (OU), Keto-friendly Ingredient List: Sodium Hexametaphosphate Allergen(s): None Effect of sodium hexametaphosphate concentration and cooking time on the physicochemical properties of pasteurized process cheese Sodium hexametaphosphate (SHMP) is commonly used as an emulsifying salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of Sodium hexametaphosphate concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of Sodium hexametaphosphate (0.25–2.75%) and holding time (0–20 min) on the textural and rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of Sodium hexametaphosphate. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of Sodium hexametaphosphate increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of Sodium hexametaphosphate. The insoluble Ca and total and insoluble P contents increased as concentration of Sodium hexametaphosphate increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) Sodium hexametaphosphate formed soluble salts. The results of this study suggest that Sodium hexametaphosphate chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of Sodium hexametaphosphate helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese. Process cheese is made by grinding natural cheese and then heating the cheese in the presence of one or more Ca chelating salts (phosphate or citrates), often called emulsifying salts (ES). In the United States, the Code of Federal Regulations (Department of Health and Human Services, 2004) identifies 13 types of ES that can be used in process cheese manufacture, either singly or in combination, and allows for the addition of up to 3% (wt/wt; Kapoor and Metzger, 2008). These ES help disperse the insoluble CN in natural cheese curd, and it is these solubilized CN that can then act as emulsifiers around the liquid fat released during the heating and shearing of natural cheese. These ES function as ion exchangers, buffers, and Ca sequestrants and cause CN dispersion and peptization. Several reviews exist on the properties of the ES used for process cheese manufacture (Carić et al., 1985; Berger et al., 1998; Zehren and Nusbaum, 2000; Guinee et al., 2004). Long-chain polyphosphates are commonly (but incorrectly) called hexametaphosphates. The real hexametaphosphates are ring forming and are not used in process cheese. Sodium hexametaphosphates (SHMP) have a wide range of uses in the food industry, including increasing the water binding properties of proteins in processed meats, protein precipitation for purification purposes, and prevention of protein sedimentation in sterilized milks (Molins, 1991). Sodium hexametaphosphates are often used in process cheese manufacture either singly or more commonly in a blend of several types of ES. Numerous factors, including pH, affect the melting and textural characteristics of process cheese (Mulsow et al., 2007). Many of these factors, which are not well understood at the molecular level, are interrelated and have a combined effect on meltability and texture. It has been reported that the use of Sodium hexametaphosphate produces hard and poorly meltable process cheese (Thomas, 1973; Gupta et al., 1984; Carić et al., 1985). However, it appears that no studies exist on the effect of Sodium hexametaphosphate on process cheese properties where pH was kept constant (to avoid pH as a confounding factor). Gupta et al. (1984) reported that the use of Sodium hexametaphosphate resulted in process cheese with low pH values, which could have contributed to the poor textural attributes. Lu et al. (2008) reported that increasing the pH resulted in improved meltability for process cheese made with Sodium hexametaphosphate. Cooking time also affects the properties of process cheese (Rayan et al., 1980; Shirashoji et al., 2006). One method by which cooking time affects process cheese is by increasing the extent of shearing of curd and thus improving the emulsification of fat (i.e., by reducing the size of emulsified fat globules; Shimp, 1985; Kapoor and Metzger, 2008). The objective of this study was to investigate the effects of various concentrations of Sodium hexametaphosphate and cooking times on the rheological and textural properties of process cheese. Because pH is well known to influence the texture of process cheese made with Sodium hexametaphosphate (Lu et al., 2008), all samples were adjusted to a constant pH value (∼5.6). Rheological Properties of Sodium hexametaphosphate The effects of ES concentration on the rheological properties of process cheese made with Sodium hexametaphosphate during heating are shown in Figures 1a and b. The rheological properties of the natural Cheddar cheese are also shown for comparison purposes. The G′ value of all cheeses decreased with temperature from 5 to 70°C. The G′ value of the process cheese made with 1.50 and 2.75% ES, as well as natural cheese, increased again at >70°C, although cheese made with 0.25% ES continued to decrease with increasing temperature throughout the entire heating range. This increase in G′ at high temperature was not observed with any of the process cheeses made with trisodium citrate (TSC) in our previous study (Shirashoji et al., 2006). The LT value of process cheese measured at >50°C decreased with an increase in ES concentration. Process cheese made with 2.75% Sodium hexametaphosphate had LT values that were <1 over the entire heating range. Samples with LT values <1 do not exhibit flow (Lucey et al., 2003). Several factors could explain the effect of increasing Sodium hexametaphosphate concentration on cheese texture. Increasing the concentration of Sodium hexametaphosphate (SHMP) used in process cheese resulted in an increase in hardness and the G′ value at 70°C and a decrease in the LT value at 50°C and DOF. These effects were not attributable to any compositional factors because we manufactured the cheeses to a constant composition. We believe that the higher hardness and lower meltability with increasing Sodium hexametaphosphate concentration is attributable to a combination of enhanced CN dispersion, Ca chelation, and ion exchange. One of the key functions of ES, such as Sodium hexametaphosphate, is the ability to disperse (sometimes called peptization) the insoluble CN matrix in natural cheese. Polyphosphates have a greater CN dispersing ability compared with orthophosphates or TSC (Lee et al., 1986; Molins, 1991; Dimitreli et al., 2005; Mizuno and Lucey, 2005). The addition of Sodium hexametaphosphate to milk rapidly causes CN dispersion (Vujicic et al., 1968). The use of Sodium hexametaphosphate in process cheese greatly increases CN dispersion (hydration, peptization, or swelling) compared with TSC or orthophosphates (Lee et al., 1986; Guinee et al., 2004), although in these studies the pH of cheese was not kept constant. Increasing the concentration of polyphosphate used in process cheese resulted in an increase in soluble nitrogen content (indicating greater CN dispersion; Lee and Alais, 1980). Hot process cheese after holding at 80°C for 10 min exhibited very large LT values compared with process cheeses made with low ES concentration. The high LT values in hot process cheese made with high ES concentrations suggest that increasing the concentration of Sodium hexametaphosphate greatly increased CN dispersion. The ability of Sodium hexametaphosphate to disperse CN is pH-dependent with low ability near pH 5 (Dimitreli et al., 2005). Our cheeses were all at pH 5.6, and at this pH value Sodium hexametaphosphate should still be effective at causing CN dispersion. These highly dispersed CN molecules then reassociate during cooling to form a fine-structured gel network (some CN reassociation may be occurring in the hot product as evidenced by the increase in G′ values during the holding of cheese at 80°C). The greater the degree of CN dispersion, the firmer, more cross-linked, and less meltable is the final process cheese. This agrees with the similar trend reported for process cheese made with increasing concentrations of TSC (Shirashoji et al., 2006). Johnston and Murphy (1992) reported that there was greater CN dispersion in milk with an increase in Sodium hexametaphosphate levels; acid gels made from these Sodium hexametaphosphate-treated milks had improved gel textural properties. Polyphosphates also have a strong ability to complex Ca, and we can rank phosphates and citrates in the following order: long-chain phosphates > tripolyphosphate > pyrophosphate > citrate > orthophosphate (Van Wazer and Callis, 1958). The strong Ca binding properties of Sodium hexametaphosphate should result in greater dispersion of CN because of the loss of CCP cross-links present in natural cheese. The highly charged anionic nature of polyphosphates causes them to be attracted to the oppositely charged groups on other long-chain polyelectrolytes, such as proteins (Van Wazer and Callis, 1958). In our process cheeses, association of polyphosphate with CN should increase the charge repulsion between CN molecules. In some circumstances the addition of phosphates to milk can cause gelation (Mizuno and Lucey, 2007). Sodium hexametaphosphate was less effective at gelling CN than tetrasodium pyrophosphate. One factor that inhibits gelation of CN is that polyphosphates introduce more charge repulsion to CN because of their multiple negative charges (i.e., polyelectrolyte nature) compared with tetrasodium pyrophosphate. Another possible factor that could contribute to the increased hardness and reduced meltability of cheese made with high concentration of Sodium hexametaphosphate (SHMP) is the formation of new Ca phosphate linkages within the cheese network (Gupta et al., 1984). Taneya et al. (1980) reported that long protein strands were observed in a process cheese made with sodium polyphosphate, whereas these long strands were not observed in a process cheese made with TSC. Long CN strands in process cheese could have resulted from the formation of new Ca phosphate linkages between CN. The insoluble Ca and insoluble P content (Table 3) of process cheese increased with increasing Sodium hexametaphosphate concentration. The addition of Sodium hexametaphosphate to milk protein concentrate at pH 5.8 increased CN-bound Ca (Mizuno and Lucey, 2005). Polyphosphates bind Ca from the native CCP (which help to disperse the CN micelles), but these new Ca phosphates complexes can associate with the dispersed CN (Odagiri and Nickerson, 1965; Mizuno and Lucey, 2005). Lee and Alais (1980) reported that the use of polyphosphates resulted in a high level of insoluble P in process cheese. Johnston and Murphy (1992) reported that skim milk solutions with polyphosphate contained a high proportion of nonsedimentable (soluble) CN. Apart from the lowest ES concentration, all other process cheese samples exhibited an increase in G′ at temperatures >70°C during heating. Udayarajan et al. (2005) suggested that the increase in G′ value of natural Cheddar cheese at high temperature was attributable to the heat-induced formation of additional Ca phosphate cross-links between CN. The acid-base buffering profiles of process cheese indicate that the addition of Sodium hexametaphosphate caused a shift in the pH value where the buffering peak occurred during acidification. Lucey et al. (1993) suggested that a change in location or shape of the buffering peak observed during the acidification of milk might be attributable to some shift in the structure, or composition, or both, of the indigenous CCP. The buffering profiles of process cheese suggest that increasing the Sodium hexametaphosphate content altered the type and concentration of Ca phosphate salts present in the cheese network. A small quantity of Sodium hexametaphosphate (0.25%) was not enough to efficiently disperse the CN network even with the use of long holding times during the cooking step. Consequently, fat was poorly emulsified (results not shown) and the process cheese was relatively soft and had good meltability. Holding time resulted in a significant decrease in the LT value at 50°C, DOF, and Schreiber melt area and a significant increase in hardness and the G′ value at 70°C. Long holding times have previously been reported to reduce melt and increase hardness of process cheese (Rayan et al., 1980). An increase in the hold time also increases the extent of shear applied to the process cheese; this creates smaller homogenized fat globules that reinforce the matrix formed during cooling. During prolonged holding time at high temperatures, it is likely that some heat-induced CN aggregation occurred. Although increasing the concentration of ES used in process cheese resulted in an increase in the initial measured LT of the hot product (i.e., measured after a holding time of 10 min at 80°C), during (further) prolonged holding there was a substantial decrease in the LT and an increase in G′ values. Panouillé et al. (2003) observed that heat-induced aggregation and gelation of CN micelles could occur in the presence of sodium polyphosphates. Holding time had no significant effect on the insoluble Ca or P content. Because Sodium hexametaphosphate is a very effective Ca chelating agent, the time required to heat the process cheese to 80°C was likely sufficient to allow Sodium hexametaphosphate to chelate Ca from CN (i.e., a holding time at 80°C was not required to facilitate Ca chelation). In solution, polyphosphates can undergo hydrolysis to orthophosphates, particularly at higher temperatures (>60°C; Maurer-Rothmann and Scheurer, 2005). In practice, Sodium hexametaphosphate (SHMP) is likely that the hydrolytic breakdown is low in most process cheese applications (Maurer-Rothmann and Scheurer, 2005). During holding of process cheese at high temperature some hydrolysis of Sodium hexametaphosphate may have occurred (Lee and Alais, 1980); however, holding time had no significant effect on the concentration of insoluble P in process cheese. It has been claimed (Roesler, 1966) that hydrolysis also occurs in process cheese during storage. Because the process cheese samples were not analyzed until after 7 d of storage, any (possible) hydrolysis should already have occurred before testing of cheese. Comparing the results reported by Shirashoji et al. (2006) for process cheese made with TSC to those made with Sodium hexametaphosphate in the present study, we observed that cheese made with Sodium hexametaphosphate had lower LT values at 50°C and lower DOF values for all experimental conditions. The experimental work for our previous study (Shirashoji et al., 2006) was actually performed around the same time period as the current study. The hardness values for process cheese made with various concentrations of TSC were much lower (range: 1,572–2,685 g; Shirashoji et al., 2006) compared with cheese made with Sodium hexametaphosphate (range: 1,892–4,490 g). Conclusions The concentration of Sodium hexametaphosphate used as an ES in the manufacture of pasteurized process Cheddar cheese greatly affected the textural and melting properties, even when these cheeses had a similar pH value. The added Sodium hexametaphosphate appeared to convert the original form of CCP to a new type of Ca phosphate salt during cooking. A small quantity of Sodium hexametaphosphate (0.25%) was not enough to efficiently disperse the CN network even with long holding times during cooking; consequently, fat was poorly emulsified and the process cheese was soft and highly meltable. Holding times increased hardness and decreased meltability. High levels of Sodium hexametaphosphate produced firm and poorly meltable cheese because CN were highly dispersed during cooking, Sodium hexametaphosphate resulted in the formation of new Ca phosphate-CN linkages, and a fine-stranded network was formed during cooling. The results of this study will assist process cheese manufacturers in understanding the role of Sodium hexametaphosphate as an ES and demonstrates the effect of ES concentration and holding time on process cheese functionality. Sodium hexametaphosphate (SHMP) Chemical Properties,Uses,Production Outline Sodium hexametaphosphate is a kind of sodium metaphosphate polymers. Sodium hexametaphosphate is also known as "polyvinylidene sodium," "sodium multiple metaphosphate", "sodium metaphosphate vitreous body", and "Graham salt". Sodium hexametaphosphate is a colorless transparent glass-like solid or white powder with greater solubility but low dissolving rate in water. Its aqueous solution exhibits acidic property. Its complex of divalent metal ion is relatively more stable than the complexes of mono-valent metal ion. Sodium hexametaphosphate can easily be hydrolyzed to orthophosphate in warm water, acid or alkali solution. Hexametaphosphate has a relative strong hygroscopicity with being sticky after absorbing moisture. For certain metal ions (e.g., calcium, magnesium, etc.), it has the ability to form soluble complexes, and thus being able to being used for demineralizing water. Sodium hexametaphosphate can also from precipitate with lead and silver ions with precipitate being re-dissolved in excess amount of sodium hexametaphosphate solution to form a complex salt. Its barium salt can also form complexes with the sodium hexametaphosphate. Sodium hexametaphosphate can be used as a kind of highly efficient water softener of power stations, rolling stock boiler water; as detergent additive, as corrosion-controlling or anti-corrosion agents; as cement hardening accelerator; as streptomycin purification agent, and the cleaning agent of textile industry and dyeing industry. Sodium hexametaphosphate can also be used as a kind of sedative drug, preservative, stabilizer, and fruit juice precipitant in food industry. In the oil industry, it is used for control of drilling pipe rust and adjusting the viscosity of oil drilling mud. Sodium hexametaphosphate also has applications in fabric dyeing, tanning, paper, color film, soil analysis, radiation chemistry and analytical chemistry and other departments. Our GB2760-1996 provisions that hexametaphosphate is allowable food additives (water retention agent) for being used for canned food, fruit juice drinks, dairy products, soy products; it can also be used as a dye dispersant, and water treatment agent. Toxicity of Sodium hexametaphosphate Adl 0~70 mg/kg (in terms of phosphorus); LD50:4g/kg (rat, oral). According to the provision of the GB2760-86, it is allowed for being applied to canned food, fruit juice drinks, dairy products, soy milk as quality improver; the maximum usage amount is 1.0 g/kg. When being used as composite phosphate, calculated as the total phosphate, the canned meat products shall not exceed 1.0 g/kg; for condensation of milk, it shall not exceed 0.50 g/kg. Chemical Properties of Sodium hexametaphosphate Sodium hexametaphosphate is colorless and transparent glass flake or white granular crystals. It is easily soluble in water but insoluble in organic solvents. Uses of Sodium hexametaphosphate Sodium hexametaphosphate can be used as a food quality improver in food industry, pH adjusting agent, metal ion chelating agents, dispersants, extenders, etc. Sodium hexametaphosphate can be used as a kind of common analytical reagents, water softener, and also used for photofinishing and printing. Sodium hexametaphosphate can be used as a water softener, detergent, preservative, cement hardening accelerator, fiber dyeing and cleaning agents; it can also used for medicine, food, petroleum, printing and dyeing, tanning, and paper industry. Sodium hexametaphosphate can be used as texturizing agent; emulsifiers; stabilizer; chelating agent. Sodium hexametaphosphate is less frequently for being used alone and is generally used in mixture with pyrophosphate and metaphosphate. The mixture is mainly used for ham, sausage, surimi such as the tissue improver for water retention, tendering and meat softening. It can also be used for prevention of crystallization of canned crab as well as dissolving agent of pectin. Sodium hexametaphosphate can be used as the water softening agent of boiler water and industrial water (including water for the production of dyes, water for the production of titanium dioxide, water for printing and dyeing, and slurry mixing, water for cleaning color copy of the film, as well as chemical industrial water and the water for the medicines, reagents production, etc.) as well as the water treatment agent for the industrial cooling water; it can also be used as a corrosion inhibitor, flotation agent, dispersant agent, high temperature binding agent, dyeing auxiliaries, metal surface treatment, rust inhibitors, detergent additives and also cement hardening accelerator. Coated paper production can use it as pulp dispersants in order to improve the penetration capability. In addition, it can also be apply to the washing utensils and chemical fiber in order to remove iron ions of the pulp. In the oil industry, it can be used for the antirust of the drilling pipe and adjusting the slurry viscosity upon the control of oil drilling. Sodium hexametaphosphate can be used as the quality improver with various effects of increasing the complex metal ions of food, pH, ionic strength, thereby improving the adhesive capability as well as the water holding ability of food. China provides that it can be applied to the dairy products, poultry products, ice cream, instant noodles and meat with the maximum permitted amount being 5.0 g/kg; the maximal permitted usage amount in canned food, fruit juice (flavored) drinks and vegetable protein drink is 1.0g/kg. Sodium hexametaphosphate can be used as a food quality improver in food industry and applied to canned food, fruit juice drinks, dairy products, and soy milk. Sodium hexametaphosphate can be used as Ph adjusting agent, metal ion chelate agent, adhesive and bulking agents. When being applied to beans and canned fruits and vegetables, it can be stabilize the natural pigment and protect the food color and lustre; when being used in canned meat, it can be used for preventing the emulsification of the fat and maintaining its uniform texture; when being applied to meat, it can be used to increase the water holding capacity and prevent the deterioration of fat in the meat. Sodium hexametaphosphate can also help to clarify the wine when being supplied to beer and further prevent turbidity. Chemical Properties of Sodium hexametaphosphate The sodium polyphosphates class consists of several amorphous, water soluble polyphosphates composed of linear chains of metaphosphate units, (NaPO3)x where x ≥ 2, terminated by Na2PO4- groups. They are usually identified by their Na2O/ P2O5 ratio or their P2O5 content. The Na2O/P2O5 ratios vary from about 1.3 for sodium tetrapolyphosphate, where x = approximately 4; through about 1.1 for Graham’s salt, commonly called sodium hexametaphosphate, where x = 13 to 18; to about 1.0 for the higher molecular weight sodium polyphosphates, where x = 20 to 100 or more. The pH of their solution varies from about 3 to 9. For additional details of description, refer to Burdock (1997). Uses of Sodium hexametaphosphate Sodium Hexametaphosphate is a sequestrant and moisture binder that is very soluble in water but dissolves slowly. solutions have a ph of 7.0. Sodium hexametaphosphate permits peanuts to be salted in the shell by making it possible for the salt brine to penetrate the peanuts. in canned peas and lima beans, Sodium hexametaphosphate functions as a tenderizer when added to the water used to soak or scald the vegetables prior to canning. Sodium hexametaphosphate improves whipping properties in whipping proteins. Sodium hexametaphosphate functions as a seques- trant for calcium and magnesium, having the best sequestering power of all the phosphates. it prevents gel formation in sterilized milk. it is also termed sodium metaphosphate and graham’s salt. Uses For industrial use, such as oil field, paper-making, textile, dyeing, petrochemical industry,tanning industry, metallurgical industry and building material industry, It is mainly used as a water sortening agent in solution for printing, dyeing ,and boiler; Diffusant in papermersing medium, high temperature agglomerant,detergent and soil analytical chemistry reagent, Uses sodium hexametaphosphate is a chelating agent and a corrosion inhibitor. This is an inorganic salt. Preparation of Sodium hexametaphosphate Sodium hexametaphosphate is prepared by heating monosodium phosphate (NaH2PO4) rapidly to a clear melt, which occurs slightly above 625°C. Rapid chilling of this melt produces a very soluble glass, which is then crushed or milled. Agricultural Uses of Sodium hexametaphosphate Sodium metaphosphate is the salt of metaphosphoric acid having a molecular formula (NaPO3)n, where n ranges from 3 to 10 (for cyclic molecules) or may be much larger (for polymers).
SODIUM HUMATE
SODIUM HYDROSULFITE, N° CAS : 7775-14-6, Nom INCI : SODIUM HYDROSULFITE, Nom chimique : Sodium dithionite, N° EINECS/ELINCS : 231-890-0. Ses fonctions (INCI), Agent réducteur : Modifie la nature chimique d'une autre substance en ajoutant de l'hydrogène ou en éliminant l'oxygène. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SODIUM HYDROXIDE
SYNONYMS Caustic soda; Sodium hydrate; soda lye; Lye;White Caustic CAS NO. 1310-73-2
SODIUM HYDROXIDE
IUPAC name: Sodium hydroxide
CAS Number: 1310-73-2
EC Number: 215-185-5
Chemical formula: NaOH
Molar mass: 39.9971 g/mol

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH.
Sodium hydroxide is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−.

Sodium hydroxide is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns.
Sodium hydroxide is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air.
Sodium hydroxide forms a series of hydrates NaOH·nH2O.

The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C.
The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound.

As one of the simplest hydroxides, sodium hydroxide is frequently used alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students.

Sodium hydroxide is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner.
Worldwide production in 2004 was approximately 60 million tons, while demand was 51 million tons.

Properties
Physical properties
Pure sodium hydroxide is a colorless crystalline solid that melts at 318 °C (604 °F) without decomposition, and with a boiling point of 1,388 °C (2,530 °F).
Sodium hydroxide is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol.
NaOH is insoluble in ether and other non-polar solvents.

Similar to the hydration of sulfuric acid, dissolution of solid sodium hydroxide in water is a highly exothermic reaction where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing.

The resulting solution is usually colorless and odorless.
As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils.

Viscosity
Concentrated (50%) aqueous solutions of sodium hydroxide have a characteristic viscosity, 78 mPa·s, that is much greater than that of water (1.0 mPa·s) and near that of olive oil (85 mPa·s) at room temperature.
The viscosity of aqueous NaOH, as with any liquid chemical, is inversely related to its service temperature, i.e., its viscosity decreases as temperature increases, and vice versa.
The viscosity of sodium hydroxide solutions plays a direct role in its application as well as its storage.

Hydrates
Sodium hydroxide can form several hydrates NaOH·nH2O, which result in a complex solubility diagram that was described in detail by S.U. Pickering in 1893.
The known hydrates and the approximate ranges of temperature and concentration (mass percent of NaOH) of their saturated water solutions are:

Heptahydrate, NaOH·7H2O: from −28 °C (18.8%) to −24 °C (22.2%).
Pentahydrate, NaOH·5H2O: from −24 °C (22.2%) to −17.7 (24.8%).
Tetrahydrate, NaOH·4H2O, α form: from −17.7 (24.8%) to +5.4 °C (32.5%).
Tetrahydrate, NaOH·4H2O, β form: metastable.
Trihemihydrate, NaOH·3.5H2O: from +5.4 °C (32.5%) to +15.38 °C (38.8%) and then to +5.0 °C (45.7%).
Trihydrate, NaOH·3H2O: metastable.
Dihydrate, NaOH·2H2O: from +5.0 °C (45.7%) to +12.3 °C (51%).
Monohydrate, NaOH·H2O: from +12.3 °C (51%) to 65.10 °C (69%) then to 62.63 °C (73.1%).
Early reports refer to hydrates with n = 0.5 or n = 2/3, but later careful investigations failed to confirm their existence.

The only hydrates with stable melting points are NaOH·H2O (65.10 °C) and NaOH·3.5H2O (15.38 °C).
The other hydrates, except the metastable ones NaOH·3H2O and NaOH·4H2O (β) can be crystallized from solutions of the proper composition, as listed above.

However, solutions of NaOH can be easily supercooled by many degrees, which allows the formation of hydrates (including the metastable ones) from solutions with different concentrations.

For example, when a solution of NaOH and water with 1:2 mole ratio (52.6% NaOH by mass) is cooled, the monohydrate normally starts to crystallize (at about 22 °C) before the dihydrate.
However, the solution can easily be supercooled down to −15 °C, at which point it may quickly crystallize as the dihydrate.

When heated, the solid dihydrate might melt directly into a solution at 13.35 °C; however, once the temperature exceeds 12.58 °C.
Sodium hydroxide often decomposes into solid monohydrate and a liquid solution.
Even the n = 3.5 hydrate is difficult to crystallize, because the solution supercools so much that other hydrates become more stable.

A hot water solution containing 73.1% (mass) of NaOH is an eutectic that solidifies at about 62.63 °C as an intimate mix of anhydrous and monohydrate crystals.

A second stable eutectic composition is 45.4% (mass) of NaOH, that solidifies at about 4.9 °C into a mixture of crystals of the dihydrate and of the 3.5-hydrate.

The third stable eutectic has 18.4% (mass) of NaOH. Sodium hydroxide solidifies at about −28.7 °C as a mixture of water ice and the heptahydrate NaOH·7H2O.

When solutions with less than 18.4% NaOH are cooled, water ice crystallizes first, leaving the NaOH in solution.

The α form of the tetrahydrate has density 1.33 g/cm3. Sodium hydroxide melts congruously at 7.55 °C into a liquid with 35.7% NaOH and density 1.392 g/cm3, and therefore floats on it like ice on water. However, at about 4.9 °C it may instead melt incongruously into a mixture of solid NaOH·3.5H2O and a liquid solution.

The β form of the tetrahydrate is metastable, and often transforms spontaneously to the α form when cooled below −20 °C.[17] Once initiated, the exothermic transformation is complete in a few minutes, with a 6.5% increase in volume of the solid. The β form can be crystallized from supercooled solutions at −26 °C, and melts partially at −1.83 °C.

The "sodium hydroxide" of commerce is often the monohydrate (density 1.829 g/cm3). Physical data in technical literature may refer to this form, rather than the anhydrous compound.

Crystal structure
NaOH and its monohydrate form orthorhombic crystals with the space groups Cmcm (oS8) and Pbca (oP24), respectively.
The monohydrate cell dimensions are a = 1.1825, b = 0.6213, c = 0.6069 nm.
The atoms are arranged in a hydrargillite-like layer structure /O Na O O Na O/...

Each sodium atom is surrounded by six oxygen atoms, three each from hydroxyl anions HO− and three from water molecules.
The hydrogen atoms of the hydroxyls form strong bonds with oxygen atoms within each O layer.
Adjacent O layers are held together by hydrogen bonds between water molecules.

Chemical properties
Reaction with acids
Sodium hydroxide reacts with protic acids to produce water and the corresponding salts.
For example, when sodium hydroxide reacts with hydrochloric acid, sodium chloride is formed:

NaOH(aq) + HCl(aq) → NaCl(aq) +H2O(l)
In general, such neutralization reactions are represented by one simple net ionic equation:

OH−(aq) + H+(aq) → H2O(l)
This type of reaction with a strong acid releases heat, and hence is exothermic.
Such acid–base reactions can also be used for titrations. However, sodium hydroxide is not used as a primary standard because it is hygroscopic and absorbs carbon dioxide from air.

Reaction with acidic oxides
Sodium hydroxide also reacts with acidic oxides, such as sulfur dioxide.
Such reactions are often used to "scrub" harmful acidic gases (like SO2 and H2S) produced in the burning of coal and thus prevent their release into the atmosphere.
For example,

2 NaOH + SO2 → Na2SO3 + H2O
Reaction with metals and oxides
Glass reacts slowly with aqueous sodium hydroxide solutions at ambient temperatures to form soluble silicates.
Because of this, glass joints and stopcocks exposed to sodium hydroxide have a tendency to "freeze".

Flasks and glass-lined chemical reactors are damaged by long exposure to hot sodium hydroxide, which also frosts the glass. Sodium hydroxide does not attack iron at room temperatures, since iron does not have amphoteric properties (i.e., it only dissolves in acid, not base).

Nevertheless, at high temperatures (e.g. above 500 °C), iron can react endothermically with sodium hydroxide to form iron(III) oxide, sodium metal, and hydrogen gas.

This is due to the lower enthalpy of formation of iron(III) oxide (−824.2 kJ/mol) compared to sodium hydroxide (-500 kJ/mol) and positive entropy change of reaction, which imply spontaneity at high temperatures (ΔST>ΔH, ΔG<0) and non-spontaneity at low temperatures (ΔST<ΔH, ΔG>0).
Consider the following reaction between molten sodium hydroxide and finely divided iron filings:

4 Fe + 6 NaOH → 2 Fe2O3 + 6 Na + 3 H2
A few transition metals, however, may react vigorously with sodium hydroxide under milder conditions.

In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% sodium hydroxide solution, causing pressurization of the contents and damage to the tanker.
The pressurization was due to the hydrogen gas which is produced in the reaction between sodium hydroxide and aluminium:

2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2

Precipitant
Unlike sodium hydroxide, which is soluble, the hydroxides of most transition metals are insoluble, and therefore sodium hydroxide can be used to precipitate transition metal hydroxides. The following colours are observed:

Copper - blue
Iron(II) - green
Iron(III) - yellow / brown
Zinc and lead salts dissolve in excess sodium hydroxide to give a clear solution of Na2ZnO2 or Na2PbO2.

Aluminium hydroxide is used as a gelatinous flocculant to filter out particulate matter in water treatment. Aluminium hydroxide is prepared at the treatment plant from aluminium sulfate by reacting it with sodium hydroxide or bicarbonate.

Al2(SO4)3 + 6 NaOH → 2 Al(OH)3 + 3 Na2SO4
Al2(SO4)3 + 6 NaHCO3 → 2 Al(OH)3 + 3 Na2SO4 + 6 CO2

Saponification
Sodium hydroxide can be used for the base-driven hydrolysis of esters (as in saponification), amides and alkyl halides.
However, the limited solubility of sodium hydroxide in organic solvents means that the more soluble potassium hydroxide (KOH) is often preferred.
Touching a sodium hydroxide solution with bare hands, while not recommended, produces a slippery feeling.

This happens because oils on the skin such as sebum are converted to soap.
Despite solubility in propylene glycol it is unlikely to replace water in saponification due to propylene glycol's primary reaction with fat before reaction between sodium hydroxide and fat.

Production
For historical information, see Alkali manufacture.
Sodium hydroxide is industrially produced as a 50% solution by variations of the electrolytic chloralkali process.

Chlorine gas is also produced in this process.
Solid sodium hydroxide is obtained from this solution by the evaporation of water.
Solid sodium hydroxide is most commonly sold as flakes, prills, and cast blocks.

In 2004, world production was estimated at 60 million dry tonnes of sodium hydroxide, and demand was estimated at 51 million tonnes.
In 1998, total world production was around 45 million tonnes.
North America and Asia each contributed around 14 million tonnes, while Europe produced around 10 million tonnes.

In the United States, the major producer of sodium hydroxide is Olin, which has annual production around 5.7 million tonnes from sites at Freeport, Texas, and Plaquemine, Louisiana, St Gabriel, Louisiana, McIntosh, Alabama, Charleston, Tennessee, Niagara Falls, New York, and Becancour, Canada.
Other major US producers include Oxychem, Westlake, Shintek and Formosa.
All of these companies use the chloralkali process.

Historically, sodium hydroxide was produced by treating sodium carbonate with calcium hydroxide in a metathesis reaction which takes advantage of the fact that sodium hydroxide is soluble, while calcium carbonate is not.
This process was called causticizing.

Ca(OH)2(aq) + Na2CO3(s) → CaCO3(s) + 2 NaOH(aq)
This process was superseded by the Solvay process in the late 19th century, which was in turn supplanted by the chloralkali process which is in use today.

Sodium hydroxide is also produced by combining pure sodium metal with water. The byproducts are hydrogen gas and heat, often resulting in a flame.

2 Na + 2 H2O → 2 NaOH + H2
This reaction is commonly used for demonstrating the reactivity of alkali metals in academic environments; however, it is not commercially viable, as the isolation of sodium metal is typically performed by reduction or electrolysis of sodium compounds including sodium hydroxide.

Uses
Sodium hydroxide is a popular strong base used in industry.
Sodium hydroxide is used in the manufacture of sodium salts and detergents, pH regulation, and organic synthesis.
In bulk, it is most often handled as an aqueous solution, since solutions are cheaper and easier to handle.

Sodium hydroxide is used in many scenarios where it is desirable to increase the alkalinity of a mixture, or to neutralize acids.

For example, in the petroleum industry, sodium hydroxide is used as an additive in drilling mud to increase alkalinity in bentonite mud systems, to increase the mud viscosity, and to neutralize any acid gas (such as hydrogen sulfide and carbon dioxide) which may be encountered in the geological formation as drilling progresses.

Another use is in Salt spray testing where pH needs to be regulated. Sodium hydroxide is used with hydrochloric acid to balance pH. The resultant salt, NaCl, is the corrosive agent used in the standard neutral pH salt spray test.

Poor quality crude oil can be treated with sodium hydroxide to remove sulfurous impurities in a process known as caustic washing.
As above, sodium hydroxide reacts with weak acids such as hydrogen sulfide and mercaptans to yield non-volatile sodium salts, which can be removed.

The waste which is formed is toxic and difficult to deal with, and the process is banned in many countries because of this.
In 2006, Trafigura used the process and then dumped the waste in Ivory Coast.

Other common uses of sodium hydroxide include:

For making soaps and detergents.
Sodium hydroxide is used for hard bar soap while potassium hydroxide is used for liquid soaps.
Sodium hydroxide is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed.

As drain cleaners that contain sodium hydroxide convert fats and grease that can clog pipes into soap, which dissolves in water. (see cleaning agent)

For making artificial textile fibres (such as Rayon).

In the manufacture of paper. Around 56% of sodium hydroxide produced is used by industry, 25% of which is used in the paper industry. (see chemical pulping)

In purifying bauxite ore from which aluminium metal is extracted. This is known as Bayer process. (see dissolving amphoteric metals and compounds)

In de-greasing metals, oil refining, and making dyes and bleaches.

In water treatment plants for pH regulation.
to treat bagels and pretzel dough, giving the distinctive shiny finish.

Chemical pulping
Main article: Pulp (paper)
Sodium hydroxide is also widely used in pulping of wood for making paper or regenerated fibers.
Along with sodium sulfide, sodium hydroxide is a key component of the white liquor solution used to separate lignin from cellulose fibers in the kraft process.

Sodium hydroxide also plays a key role in several later stages of the process of bleaching the brown pulp resulting from the pulping process.
These stages include oxygen delignification, oxidative extraction, and simple extraction, all of which require a strong alkaline environment with a pH > 10.5 at the end of the stages.

Tissue digestion
In a similar fashion, sodium hydroxide is used to digest tissues, as in a process that was used with farm animals at one time. This process involved placing a carcass into a sealed chamber, then adding a mixture of sodium hydroxide and water (which breaks the chemical bonds that keep the flesh intact).

This eventually turns the body into a liquid with coffee-like appearance, and the only solid that remains are bone hulls, which could be crushed between one's fingertips.

Sodium hydroxide is frequently used in the process of decomposing roadkill dumped in landfills by animal disposal contractors.
Due to its availability and low cost, it has been used by criminals to dispose of corpses.
Sodium hydroxidealian serial killer Leonarda Cianciulli used this chemical to turn dead bodies into soap.
In Mexico, a man who worked for drug cartels admitted disposing of over 300 bodies with it.

Sodium hydroxide is a dangerous chemical due to its ability to hydrolyze protein.
If a dilute solution is spilled on the skin, burns may result if the area is not washed thoroughly and for several minutes with running water.
Splashes in the eye can be more serious and can lead to blindness.

Dissolving amphoteric metals and compounds
Strong bases attack aluminium. Sodium hydroxide reacts with aluminium and water to release hydrogen gas.
The aluminium takes the oxygen atom from sodium hydroxide, which in turn takes the oxygen atom from the water, and releases the two hydrogen atoms.
The reaction thus produces hydrogen gas and sodium aluminate.
In this reaction, sodium hydroxide acts as an agent to make the solution alkaline, which aluminium can dissolve in.

2 Al + 2 NaOH + 2 H2O → 2 NaAlO2 + 3 H2
Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications.
Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, Na3AlO3, NaAl(OH)4, Na2O·Al2O3 or Na2Al2O4.
Formation of sodium tetrahydroxoaluminate(III) or hydrated sodium aluminate is given by:[38]

2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2
This reaction can be useful in etching, removing anodizing, or converting a polished surface to a satin-like finish, but without further passivation such as anodizing or alodining the surface may become degraded, either under normal use or in severe atmospheric conditions.

In the Bayer process, sodium hydroxide is used in the refining of alumina containing ores (bauxite) to produce alumina (aluminium oxide) which is the raw material used to produce aluminium metal via the electrolytic Hall-Héroult process.
Since the alumina is amphoteric, it dissolves in the sodium hydroxide, leaving impurities less soluble at high pH such as iron oxides behind in the form of a highly alkaline red mud.

Other amphoteric metals are zinc and lead which dissolve in concentrated sodium hydroxide solutions to give sodium zincate and sodium plumbate respectively.

Esterification and transesterification reagent
Sodium hydroxide is traditionally used in soap making (cold process soap, saponification).
Sodium hydroxide was made in the nineteenth century for a hard surface rather than liquid product because it was easier to store and transport.

For the manufacture of biodiesel, sodium hydroxide is used as a catalyst for the transesterification of methanol and triglycerides.
This only works with anhydrous sodium hydroxide, because combined with water the fat would turn into soap, which would be tainted with methanol.
NaOH is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed.
Due to production costs, NaOH, which is produced using common salt is cheaper than potassium hydroxide.

Food preparation
Food uses of sodium hydroxide include washing or chemical peeling of fruits and vegetables, chocolate and cocoa processing, caramel coloring production, poultry scalding, soft drink processing, and thickening ice cream.

Olives are often soaked in sodium hydroxide for softening; Pretzels and German lye rolls are glazed with a sodium hydroxide solution before baking to make them crisp.
Owing to the difficulty in obtaining food grade sodium hydroxide in small quantities for home use, sodium carbonate is often used in place of sodium hydroxide.
Sodium hydroxide is known as E number E524.

Specific foods processed with sodium hydroxide include:

German pretzels are poached in a boiling sodium carbonate solution or cold sodium hydroxide solution before baking, which contributes to their unique crust.
Lye-water is an essential ingredient in the crust of the traditional baked Chinese moon cakes.
Most yellow coloured Chinese noodles are made with lye-water but are commonly mistaken for containing egg.
One variety of zongzi uses lye water to impart a sweet flavor.

Sodium hydroxide is also the chemical that causes gelling of egg whites in the production of Century eggs.
Some methods of preparing olives involve subjecting them to a lye-based brine.
The Filipino dessert (kakanin) called kutsinta uses a small quantity of lye water to help give the rice flour batter a jelly like consistency. A similar process is also used in the kakanin known as pitsi-pitsi or pichi-pichi except that the mixture uses grated cassava instead of rice flour.

The Norwegian dish known as lutefisk (from lutfisk, "lye fish").
Bagels are often boiled in a lye solution before baking, contributing to their shiny crust.
Hominy is dried maize (corn) kernels reconstituted by soaking in lye-water.
These expand considerably in size and may be further processed by frying to make corn nuts or by drying and grinding to make grits.

Hominy is used to create Masa, a popular flour used in Mexican cuisine to make Corn tortillas and tamales. Nixtamal is similar, but uses calcium hydroxide instead of sodium hydroxide.

Cleaning agent
Main article: Cleaning agent
Sodium hydroxide is frequently used as an industrial cleaning agent where it is often called "caustic".
Sodium hydroxide is added to water, heated, and then used to clean process equipment, storage tanks, etc. Sodium hydroxide can dissolve grease, oils, fats and protein-based deposits.

Sodium hydroxide is also used for cleaning waste discharge pipes under sinks and drains in domestic properties.
Surfactants can be added to the sodium hydroxide solution in order to stabilize dissolved substances and thus prevent redeposition.
A sodium hydroxide soak solution is used as a powerful degreaser on stainless steel and glass bakeware.
Sodium hydroxide is also a common ingredient in oven cleaners.

A common use of sodium hydroxide is in the production of parts washer detergents.
Parts washer detergents based on sodium hydroxide are some of the most aggressive parts washer cleaning chemicals.
The sodium hydroxide-based detergents include surfactants, rust inhibitors and defoamers.
A parts washer heats water and the detergent in a closed cabinet and then sprays the heated sodium hydroxide and hot water at pressure against dirty parts for degreasing applications.

Sodium hydroxide used in this manner replaced many solvent-based systems in the early 1990s[citation needed] when trichloroethane was outlawed by the Montreal Protocol. Water and sodium hydroxide detergent-based parts washers are considered to be an environmental improvement over the solvent-based cleaning methods.

Storage
Careful storage is needed when handling sodium hydroxide for use, especially bulk volumes.
Following proper NaOH storage guidelines and maintaining worker/environment safety is always recommended given the chemical's burn hazard.

Sodium hydroxide is often stored in bottles for small-scale laboratory use, within intermediate bulk containers (medium volume containers) for cargo handling and transport, or within large stationary storage tanks with volumes up to 100,000 gallons for manufacturing or waste water plants with extensive NaOH use.

Common materials that are compatible with sodium hydroxide and often utilized for NaOH storage include: polyethylene (HDPE, usual, XLPE, less common), carbon steel, polyvinyl chloride (PVC), stainless steel, and fiberglass reinforced plastic (FRP, with a resistant liner).

Sodium hydroxide must be stored in airtight containers to preserve its normality as it will absorb water from the atmosphere.

History
Sodium hydroxide was first prepared by soap makers.
A procedure for making sodium hydroxide appeared as part of a recipe for making soap in an Arab book of the late 13th century: Al-mukhtara' fi funun min al-suna' (Inventions from the Various Industrial Arts), which was compiled by al-Muzaffar Yusuf ibn 'Umar ibn 'Ali ibn Rasul (d. 1295), a king of Yemen.

The recipe called for passing water repeatedly through a mixture of alkali (Arabic: al-qily, where qily is ash from saltwort plants, which are rich in sodium; hence alkali was impure sodium carbonate) and quicklime (calcium oxide, CaO), whereby a solution of sodium hydroxide was obtained. European soap makers also followed this recipe.

When in 1791 the French chemist and surgeon Nicolas Leblanc (1742–1806) patented a process for mass-producing sodium carbonate, natural "soda ash" (impure sodium carbonate that was obtained from the ashes of plants that are rich in sodium): was replaced by this artificial version.
However, by the 20th century, the electrolysis of sodium chloride had become the primary method for producing sodium hydroxide.

Appearance: White, hard (when pure), opaque crystals
Odor: odorless
Density: 2.13 g/cm3
Melting point: 323 °C
Boiling point: 1,388 °C
Solubility in water: 418 g/L (0 °C) - 1000 g/L (25 °C) - 3370 g/L (100 °C)
Solubility: soluble in glycerol - negligible in ammonia - insoluble in ether - slowly soluble in propylene glycol
Solubility in methanol: 238 g/L
Solubility in ethanol: <<139 g/L
Vapor pressure: <2.4 kPa (at 20 °C)
Acidity (pKa): 15.7
Magnetic susceptibility (χ): −15.8·10−6 cm3/mol (aq.)[5]
Refractive index (nD): 1.3576
Crystal structure: Orthorhombic, oS8
Space group: Cmcm, No. 63
Lattice constant: a = 0.34013 nm, b = 1.1378 nm, c = 0.33984 nm
Formula units (Z): 4
Hydrogen Bond Donor Count: 1
Hydrogen Bond Acceptor Count: 1
Rotatable Bond Count: 0
Exact Mass: 39.99250893
Monoisotopic Mass: 39.99250893
Topological Polar Surface Area: 1 Ų
Heavy Atom Count: 2
Complexity: 2
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 2
Compound Is Canonicalized: Yes

Thermochemistry
Heat capacity (C): 59.5 J/mol K
Std molar entropy (So298): 64.4 J·mol−1·K−1
Std enthalpy of formation (ΔfH⦵298): −425.8 kJ·mol−1
Gibbs free energy (ΔfG˚): -379.7 kJ/mol

About Sodium hydroxide
Sodium hydroxide is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 000 tonnes per annum.

Sodium hydroxide is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
Other release to the environment of Sodium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters), outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints) and outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)).

Article service life
Other release to the environment of Sodium hydroxide is likely to occur from: outdoor use, indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints).

Sodium hydroxide can be found in products with material based on: fabrics, textiles and apparel (e.g. clothing, mattress, curtains or carpets, textile toys), leather (e.g. gloves, shoes, purses, furniture), metal (e.g. cutlery, pots, toys, jewellery) and stone, plaster, cement, glass or ceramic (e.g. dishes, pots/pans, food storage containers, construction and isolation material).

Widespread uses by professional workers
Sodium hydroxide is used in the following areas: mining.
Sodium hydroxide is used for the manufacture of: chemicals.
Release to the environment of Sodium hydroxide can occur from industrial use: formulation of mixtures and formulation in materials.
Other release to the environment of Sodium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters), outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment), outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)) and indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints).

Formulation or re-packing
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
Release to the environment of Sodium hydroxide can occur from industrial use: formulation of mixtures, formulation in materials, as processing aid, as processing aid, in pro
SODIUM HYDROXIDE FLAKES
Caustic soda; Sodium hydrate; soda lye; Lye;White Caustic; Hydroxyde De Sodium (French); Natriumhydroxid (German); Natriumhydroxyde (Dutch); Sodio(Idrossido Di); cas no: 1310-73-2
SODIUM HYDROXIDE LIQUID
Sodium Hydroxide Liquid Sodium hydroxide liquid, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−. Sodium hydroxide liquid is a highly caustic base and alkali that decomposes proteins at ordinary ambient temperatures and may cause severe chemical burns. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH2O. The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "Sodium hydroxide liquid" is often this monohydrate, and published data may refer to it instead of the anhydrous compound. As one of the simplest hydroxides, Sodium hydroxide liquid is frequently utilized alongside neutral water and acidic hydrochloric acid to demonstrate the pH scale to chemistry students. Sodium hydroxide liquid is used in many industries: in the manufacture of pulp and paper, textiles, drinking water, soaps and detergents, and as a drain cleaner. Worldwide production in 2004 was approximately 60 million tonnes, while demand was 51 million tonnes. Properties of Sodium hydroxide liquid Chemical formula NaOH Molar mass 39.9971 g mol−1 Appearance White, waxy, opaque crystals Odor odorless Density 2.13 g/cm3 Melting point 323 °C (613 °F; 596 K) Boiling point 1,388 °C (2,530 °F; 1,661 K) Solubility in water 418 g/L (0 °C) 1000 g/L (25 °C) 3370 g/L (100 °C) Solubility soluble in glycerol negligible in ammonia insoluble in ether slowly soluble in propylene glycol Solubility in methanol 238 g/L Solubility in ethanol <<139 g/L Vapor pressure <2.4 kPa (at 20 °C) Basicity (pKb) 0.2 Magnetic susceptibility (χ) −15.8·10−6 cm3/mol (aq.) Refractive index (nD) 1.3576 Properties of Sodium hydroxide liquid Physical properties Sodium hydroxide liquid Pure Sodium hydroxide liquid is a colorless crystalline solid that melts at 318 °C (604 °F) without decomposition, and with a boiling point of 1,388 °C (2,530 °F). It is highly soluble in water, with a lower solubility in polar solvents such as ethanol and methanol. NaOH is insoluble in ether and other non-polar solvents. Similar to the hydration of sulfuric acid, dissolution of solid Sodium hydroxide liquid in water is a highly exothermic reaction where a large amount of heat is liberated, posing a threat to safety through the possibility of splashing. The resulting solution is usually colorless and odorless. As with other alkaline solutions, it feels slippery with skin contact due to the process of saponification that occurs between NaOH and natural skin oils. Viscosity of Sodium hydroxide liquid Concentrated (50%) aqueous solutions of Sodium hydroxide liquid have a characteristic viscosity, 78 mPa·s, that is much greater than that of water (1.0 mPa·s) and near that of olive oil (85 mPa·s) at room temperature. The viscosity of aqueous NaOH, as with any liquid chemical, is inversely related to its service temperature, i.e., its viscosity decreases as temperature increases, and vice versa. The viscosity of Sodium hydroxide liquid solutions plays a direct role in its application as well as its storage. Hydrates Sodium hydroxide liquid can form several hydrates NaOH·nH2O, which result in a complex solubility diagram that was described in detail by S. U. Pickering in 1893. The known hydrates and the approximate ranges of temperature and concentration (mass percent of NaOH) of their saturated water solutions are: Heptahydrate, NaOH·7H2O: from −28 °C (18.8%) to −24 °C (22.2%). Pentahydrate, NaOH·5H2O: from −24 °C (22.2%) to −17.7 (24.8%). Tetrahydrate, NaOH·4H2O, α form: from −17.7 (24.8%) to +5.4 °C (32.5%). Tetrahydrate, NaOH·4H2O, β form: metastable. Trihemihydrate, NaOH·3.5H2O: from +5.4 °C (32.5%) to +15.38 °C (38.8%) and then to +5.0 °C (45.7%). Trihydrate, NaOH·3H2O: metastable. Dihydrate, NaOH·2H2O: from +5.0 °C (45.7%) to +12.3 °C (51%). Monohydrate, NaOH·H2O: from +12.3 °C (51%) to 65.10 °C (69%) then to 62.63 °C (73.1%). Early reports refer to hydrates with n = 0.5 or n = 2/3, but later careful investigations failed to confirm their existence. The only hydrates with stable melting points are NaOH·H2O (65.10 °C) and NaOH·3.5H2O (15.38 °C). The other hydrates, except the metastable ones NaOH·3H2O and NaOH·4H2O (β) can be crystallized from solutions of the proper composition, as listed above. However, solutions of NaOH can be easily supercooled by many degrees, which allows the formation of hydrates (including the metastable ones) from solutions with different concentrations. For example, when a solution of Sodium hydroxide liquid and water with 1:2 mole ratio (52.6% Sodium hydroxide liquid by mass) is cooled, the monohydrate normally starts to crystallize (at about 22 °C) before the dihydrate. However, the solution can easily be supercooled down to −15 °C, at which point it may quickly crystallize as the dihydrate. When heated, the solid dihydrate might melt directly into a solution at 13.35 °C; however, once the temperature exceeds 12.58 °C. it often decomposes into solid monohydrate and a liquid solution. Even the n = 3.5 hydrate is difficult to crystallize, because the solution supercools so much that other hydrates become more stable. A hot water solution containing 73.1% (mass) of Sodium hydroxide liquid is an eutectic that solidifies at about 62.63 °C as an intimate mix of anhydrous and monohydrate crystals. A second stable eutectic composition is 45.4% (mass) of Sodium hydroxide liquid, that solidifies at about 4.9 °C into a mixture of crystals of the dihydrate and of the 3.5-hydrate. The third stable eutectic has 18.4% (mass) of Sodium hydroxide liquid. It solidifies at about −28.7 °C as a mixture of water ice and the heptahydrate Sodium hydroxide liquid·7H2O. When solutions with less than 18.4% Sodium hydroxide liquid are cooled, water ice crystallizes first, leaving the Sodium hydroxide liquid in solution. The α form of the tetrahydrate has density 1.33 g/cm3. It melts congruously at 7.55 °C into a liquid with 35.7% Sodium hydroxide liquid and density 1.392 g/cm3, and therefore floats on it like ice on water. However, at about 4.9 °C it may instead melt incongruously into a mixture of solid Sodium hydroxide liquid·3.5H2O and a liquid solution. The β form of the tetrahydrate is metastable, and often transforms spontaneously to the α form when cooled below −20 °C. Once initiated, the exothermic transformation is complete in a few minutes, with a 6.5% increase in volume of the solid. The β form can be crystallized from supercooled solutions at −26 °C, and melts partially at −1.83 °C. The "sodium hydroxide" of commerce is often the monohydrate (density 1.829 g/cm3). Physical data in technical literature may refer to this form, rather than the anhydrous compound. Crystal structure of Sodium hydroxide liquid Sodium hydroxide liquid and its monohydrate form orthorhombic crystals with the space groups Cmcm (oS8) and Pbca (oP24), respectively. The monohydrate cell dimensions are a = 1.1825, b = 0.6213, c = 0.6069 nm. The atoms are arranged in a hydrargillite-like layer structure /O Na OO NaO/... Each sodium atom is surrounded by six oxygen atoms, three each from hydroxyl anions HO− and three from water molecules. The hydrogen atoms of the hydroxyls form strong bonds with oxygen atoms within each O layer. Adjacent O layers are held together by hydrogen bonds between water molecules. Chemical properties of Sodium hydroxide liquid Reaction with acids of Sodium hydroxide liquid Sodium hydroxide liquid reacts with protic acids to produce water and the corresponding salts. For example, when Sodium hydroxide liquid reacts with hydrochloric acid, sodium chloride is formed: NaOH(aq) + HCl(aq) → NaCl(aq) +H2O(l) In general, such neutralization reactions are represented by one simple net ionic equation: OH−(aq) + H+(aq) → H2O(l) This type of reaction with a strong acid releases heat, and hence is exothermic. Such acid-base reactions can also be used for titrations. However, Sodium hydroxide liquid is not used as a primary standard because it is hygroscopic and absorbs carbon dioxide from air. Reaction with acidic oxides Sodium hydroxide liquid also reacts with acidic oxides, such as sulfur dioxide. Such reactions are often used to "scrub" harmful acidic gases (like SO2 and H2S) produced in the burning of coal and thus prevent their release into the atmosphere. For example, 2 NaOH + SO2 → Na2SO3 + H2O Reaction with metals and oxides Glass reacts slowly with aqueous Sodium hydroxide liquid solutions at ambient temperatures to form soluble silicates. Because of this, glass joints and stopcocks exposed to Sodium hydroxide liquid have a tendency to "freeze". Flasks and glass-lined chemical reactors are damaged by long exposure to hot Sodium hydroxide liquid, which also frosts the glass. Sodium hydroxide liquid does not attack iron at room temperatures, since iron does not have amphoteric properties (i.e., it only dissolves in acid, not base). Nevertheless, at high temperatures (e.g. above 500 °C), iron can react endothermically with Sodium hydroxide liquid to form iron(III) oxide, sodium metal, and hydrogen gas. This is due to the lower enthalpy of formation of iron(III) oxide (−824.2 kJ/mol compared to Sodium hydroxide liquid (-500 kJ/mol), thus the reaction is thermodynamically favorable, although its endothermic nature indicates non-spontaneity. Consider the following reaction between molten Sodium hydroxide liquid and finely divided iron filings: 4 Fe + 6 NaOH → 2 Fe2O3 + 6 Na + 3 H2 A few transition metals, however, may react vigorously with Sodium hydroxide liquid. In 1986, an aluminium road tanker in the UK was mistakenly used to transport 25% Sodium hydroxide liquid solution, causing pressurization of the contents and damage to the tanker. The pressurization was due to the hydrogen gas which is produced in the reaction between Sodium hydroxide liquid and aluminium: 2 Al + 2 NaOH + 6 H2O → 2 NaAl(OH)4 + 3 H2 Precipitant Unlike Sodium hydroxide liquid, which is soluble, the hydroxides of most transition metals are insoluble, and therefore Sodium hydroxide liquid can be used to precipitate transition metal hydroxides. The following colours are observed: Copper - blue Iron(II) - green Iron(III) - yellow / brown Zinc and lead salts dissolve in excess Sodium hydroxide liquid to give a clear solution of Na2ZnO2 or Na2PbO2. Aluminium hydroxide is used as a gelatinous flocculant to filter out particulate matter in water treatment. Aluminium hydroxide is prepared at the treatment plant from aluminium sulfate by reacting it with Sodium hydroxide liquid or bicarbonate. Al2(SO4)3 + 6 NaOH → 2 Al(OH)3 + 3 Na2SO4Al2(SO4)3 + 6 NaHCO3 → 2 Al(OH)3 + 3 Na2SO4 + 6 CO2 Saponification Sodium hydroxide liquid can be used for the base-driven hydrolysis of esters (as in saponification), amides and alkyl halides. However, the limited solubility of Sodium hydroxide liquid in organic solvents means that the more soluble potassium hydroxide (KOH) is often preferred. Touching Sodium hydroxide liquid solution with the bare hands, while not recommended, produces a slippery feeling. This happens because oils on the skin such as sebum are converted to soap. Despite solubility in propylene glycol it is unlikely to replace water in saponification due to propylene glycol primary reaction with fat before reaction between Sodium hydroxide liquid and fat. Production For historical information, see Alkali manufacture. Sodium hydroxide liquid is industrially produced as a 50% solution by variations of the electrolytic chloralkali process. Chlorine gas is also produced in this process. Solid Sodium hydroxide liquid is obtained from this solution by the evaporation of water. Solid Sodium hydroxide liquid is most commonly sold as flakes, prills, and cast blocks. In 2004, world production was estimated at 60 million dry tonnes of Sodium hydroxide liquid, and demand was estimated at 51 million tonnes. In 1998, total world production was around 45 million tonnes. North America and Asia each contributed around 14 million tonnes, while Europe produced around 10 million tonnes. In the United States, the major producer of Sodium hydroxide liquid is the Dow Chemical Company, which has annual production around 3.7 million tonnes from sites at Freeport, Texas, and Plaquemine, Louisiana. Other major US producers include Oxychem, Westlake, Olin, Shintek and Formosa. All of these companies use the chloralkali process. Historically, Sodium hydroxide liquid was produced by treating sodium carbonate with calcium hydroxide in a metathesis reaction which takes advantage of the fact that Sodium hydroxide liquid is soluble, while calcium carbonate is not. This process was called causticizing. Ca(OH)2(aq) + Na2CO3(s) → CaCO3(s) + 2 NaOH(aq) This process was superseded by the Solvay process in the late 19th century, which was in turn supplanted by the chloralkali process which we use today. Sodium hydroxide liquid is also produced by combining pure sodium metal with water. The byproducts are hydrogen gas and heat, often resulting in a flame. 2 Na + 2 H2O → 2 NaOH + H2 This reaction is commonly used for demonstrating the reactivity of alkali metals in academic environments; however, it is not commercially viable, as the isolation of sodium metal is typically performed by reduction or electrolysis of sodium compounds including Sodium hydroxide liquid. Uses Sodium hydroxide liquid is a popular strong base used in industry. Sodium hydroxide liquid is used in the manufacture of sodium salts and detergents, pH regulation, and organic synthesis. In bulk, it is most often handled as an aqueous solution, since solutions are cheaper and easier to handle. Sodium hydroxide liquid is used in many scenarios where it is desirable to increase the alkalinity of a mixture, or to neutralize acids. For example, in the petroleum industry, Sodium hydroxide liquid is used as an additive in drilling mud to increase alkalinity in bentonite mud systems, to increase the mud viscosity, and to neutralize any acid gas (such as hydrogen sulfide and carbon dioxide) which may be encountered in the geological formation as drilling progresses. Another use is in Salt spray testing where pH needs to be regulated. Sodium hydroxide liquid is used with hydrochloric acid to balance pH. The resultant salt, NaCl, is the corrosive agent used in the standard neutral pH salt spray test. Poor quality crude oil can be treated with Sodium hydroxide liquid to remove sulfurous impurities in a process known as caustic washing. As above, Sodium hydroxide liquid reacts with weak acids such as hydrogen sulfide and mercaptans to yield non-volatile sodium salts, which can be removed. The waste which is formed is toxic and difficult to deal with, and the process is banned in many countries because of this. In 2006, Trafigura used the process and then dumped the waste in Ivory Coast. Other common uses of Sodium hydroxide liquid include: It is used for making soaps and detergents. Sodium hydroxide liquid is used for hard bar soap while potassium hydroxide is used for liquid soaps.Sodium hydroxide liquid is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed. It is used as drain cleaners that contain Sodium hydroxide liquid convert fats and grease that can clog pipes into soap, which dissolves in water. (see cleaning agent) It is used for making artificial textile fibres (such as Rayon). It is used in the manufacture of paper. Around 56% of Sodium hydroxide liquid produced is used by industry, 25% of which is used in the paper industry. (see chemical pulping) It is used in purifying bauxite ore from which aluminium metal is extracted. This is known as Bayer process. (see dissolving amphoteric metals and compounds) It is used in de-greasing metals, oil refining, and making dyes and bleaches. Chemical pulping Sodium hydroxide liquid is also widely used in pulping of wood for making paper or regenerated fibers. Along with sodium sulfide, Sodium hydroxide liquid is a key component of the white liquor solution used to separate lignin from cellulose fibers in the kraft process. It also plays a key role in several later stages of the process of bleaching the brown pulp resulting from the pulping process. These stages include oxygen delignification, oxidative extraction, and simple extraction, all of which require a strong alkaline environment with a pH > 10.5 at the end of the stages. Tissue digestion In a similar fashion, Sodium hydroxide liquid is used to digest tissues, as in a process that was used with farm animals at one time. This process involved placing a carcass into a sealed chamber, then adding a mixture of Sodium hydroxide liquid and water (which breaks the chemical bonds that keep the flesh intact). This eventually turns the body into a liquid with coffee-like appearance, and the only solid that remains are bone hulls, which could be crushed between one's fingertips. Sodium hydroxide liquid is frequently used in the process of decomposing roadkill dumped in landfills by animal disposal contractors. Due to its availability and low cost, it has been used by criminals to dispose of corpses. Italian serial killer Leonarda Cianciulli used this chemical to turn dead bodies into soap. In Mexico, a man who worked for drug cartels admitted disposing of over 300 bodies with it. Sodium hydroxide liquid is a dangerous chemical due to its ability to hydrolyze protein. If a dilute solution is spilled on the skin, burns may result if the area is not washed thoroughly and for several minutes with running water. Splashes in the eye can be more serious and can lead to blindness. Dissolving amphoteric metals and compounds Strong bases attack aluminium. Sodium hydroxide liquid reacts with aluminium and water to release hydrogen gas. The aluminium takes the oxygen atom from Sodium hydroxide liquid, which in turn takes the oxygen atom from the water, and releases the two hydrogen atoms, The reaction thus produces hydrogen gas and sodium aluminate. In this reaction, Sodium hydroxide liquid acts as an agent to make the solution alkaline, which aluminium can dissolve in. 2 Al + 2 NaOH + 2 H2O → 2 NaAlO2 + 3H2 Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate (anhydrous) is a white crystalline solid having a formula variously given as NaAlO2, NaAl(OH)4< (hydrated), Na2O.Al2O3, or Na2Al2O4. Formation of sodium tetrahydroxoaluminate(III) or hydrated sodium aluminate is given by: 2Al + 2NaOH + 6H2O → 2 NaAl(OH)4 + 3 H2 This reaction can be useful in etching, removing anodizing, or converting a polished surface to a satin-like finish, but without further passivation such as anodizing or alodining the surface may become degraded, either under normal use or in severe atmospheric conditions. In the Bayer process, Sodium hydroxide liquid is used in the refining of alumina containing ores (bauxite) to produce alumina (aluminium oxide) which is the raw material used to produce aluminium metal via the electrolytic Hall-Héroult process. Since the alumina is amphoteric, it dissolves in the Sodium hydroxide liquid, leaving impurities less soluble at high pH such as iron oxides behind in the form of a highly alkaline red mud. Other amphoteric metals are zinc and lead which dissolve in concentrated Sodium hydroxide liquid solutions to give sodium zincate and sodium plumbate respectively. Esterification and transesterification reagent Sodium hydroxide liquid is traditionally used in soap making (cold process soap, saponification). It was made in the nineteenth century for a hard surface rather than liquid product because it was easier to store and transport. For the manufacture of biodiesel, Sodium hydroxide liquid is used as a catalyst for the transesterification of methanol and triglycerides. This only works with anhydrous Sodium hydroxide liquid, because combined with water the fat would turn into soap, which would be tainted with methanol. NaOH is used more often than potassium hydroxide because it is cheaper and a smaller quantity is needed. Due to production costs, NaOH, which is produced using common salt is cheaper than potassium hydroxide. Food preparation Food uses of Sodium hydroxide liquid include washing or chemical peeling of fruits and vegetables, chocolate and cocoa processing, caramel coloring production, poultry scalding, soft drink processing, and thickening ice cream. Olives are often soaked in Sodium hydroxide liquid for softening; Pretzels and German lye rolls are glazed with a Sodium hydroxide liquid solution before baking to make them crisp. Owing to the difficulty in obtaining food grade Sodium hydroxide liquid in small quantities for home use, sodium carbonate is often used in place of Sodium hydroxide liquid. It is known as E number E524. Specific foods processed with Sodium hydroxide liquid include: German pretzels are poached in a boiling sodium carbonate solution or cold Sodium hydroxide liquid solution before baking, which contributes to their unique crust. Lye-water is an essential ingredient in the crust of the traditional baked Chinese moon cakes. Most yellow coloured Chinese noodles are made with lye-water but are commonly mistaken for containing egg. One variety of zongzi uses lye water to impart a sweet flavor. Sodium hydroxide liquid is also the chemical that causes gelling of egg whites in the production of Century eggs. Some methods of preparing olives involve subjecting them to a lye-based brine. The Filipino dessert (kakanin) called kutsinta uses a small quantity of lye water to help give the rice flour batter a jelly like consistency. A similar process is also used in the kakanin known as pitsi-pitsi or pichi-pichi except that the mixture uses grated cassava instead of rice flour. The Norwegian dish known as lutefisk (from lutfisk, "lye fish"). Bagels are often boiled in a lye solution before baking, contributing to their shiny crust. Hominy is dried maize (corn) kernels reconstituted by soaking in lye-water. These expand considerably in size and may be further processed by frying to make corn nuts or by drying and grinding to make grits. Hominy is used to create Masa, a popular flour used in Mexican cuisine to make Corn tortillas and tamales. Nixtamal is similar, but uses calcium hydroxide instead of Sodium hydroxide liquid. Cleaning agent Sodium hydroxide liquid is frequently used as an industrial cleaning agent where it is often called "caustic". It is added to water, heated, and then used to clean process equipment, storage tanks, etc. It can dissolve grease, oils, fats and protein-based deposits. It is also used for cleaning waste discharge pipes under sinks and drains in domestic properties. Surfactants can be added to the Sodium hydroxide liquid solution in order to stabilize dissolved substances and thus prevent redeposition. A Sodium hydroxide liquid soak solution is used as a powerful degreaser on stainless steel and glass bakeware. It is also a common ingredient in oven cleaners. A common use of Sodium hydroxide liquid is in the production of parts washer detergents. Parts washer detergents based on Sodium hydroxide liquid are some of the most aggressive parts washer cleaning chemicals. The Sodium hydroxide liquid-based detergents include surfactants, rust inhibitors and defoamers. A parts washer heats water and the detergent in a closed cabinet and then sprays the heated Sodium hydroxide liquid and hot water at pressure against dirty parts for degreasing applications. Sodium hydroxide liquid used in this manner replaced many solvent-based systems in the early 1990s when trichloroethane was outlawed by the Montreal Protocol. Water and Sodium hydroxide liquid detergent-based parts washers are considered to be an environmental improvement over the solvent-based cleaning methods. Hardware stores grade Sodium hydroxide liquid to be used as a type of drain cleaner. Paint stripping with caustic soda Sodium hydroxide liquid is used in the home as a type of drain opener to unblock clogged drains, usually in the form of a dry crystal or as a thick liquid gel. The alkali dissolves greases to produce water soluble products. It also hydrolyzes the proteins such as those found in hair which may block water pipes. These reactions are sped by the heat generated when Sodium hydroxide liquid and the other chemical components of the cleaner dissolve in water. Such alkaline drain cleaners and their acidic versions are highly corrosive and should be handled with great caution. Sodium hydroxide liquid is used in some relaxers to straighten hair. However, because of the high incidence and intensity of chemical burns, manufacturers of chemical relaxers use other alkaline chemicals in preparations available to average consumers. Sodium hydroxide liquid relaxers are still available, but they are used mostly by professionals. A solution of Sodium hydroxide liquid in water was traditionally used as the most common paint stripper on wooden objects. Its use has become less common, because it can damage the wood surface, raising the grain and staining the colour. Water treatment of Sodium hydroxide liquid Sodium hydroxide liquid is sometimes used during water purification to raise the pH of water supplies. Increased pH makes the water less corrosive to plumbing and reduces the amount of lead, copper and other toxic metals that can dissolve into drinking water. Historical uses of Sodium hydroxide liquid Sodium hydroxide liquid has been used for detection of carbon monoxide poisoning, with blood samples of such patients turning to a vermilion color upon the addition of a few drops of Sodium hydroxide liquid. Today, carbon monoxide poisoning can be detected by CO oximetry. In cement mixes, mortars, concrete, grouts Sodium hydroxide liquid is used in some cement mix plasticisers. This helps homogenise cement mixes, preventing segregation of sands and cement, decreases the amount of water required in a mix and increases workability of the cement product, be it mortar, render or concrete. Summer-winter heat storage EMPA researchers are experimenting with concentrated Sodium hydroxide liquid (NaOH) as the thermal storage or seasonal reservoir medium for domestic space-heating. If water is added to solid or concentrated Sodium hydroxide liquid (NaOH), heat is released. The dilution is exothermic – chemical energy is released in the form of heat. Conversely, by applying heat energy into a dilute Sodium hydroxide liquid solution the water will evaporate so that the solution becomes more concentrated and thus stores the supplied heat as latent chemical energy. Neutron Moderator Seaborg is working on a reactor design in which NaOH is used as a neutron moderator. Safety of Sodium hydroxide liquid Like other corrosive acids and alkalis, drops of Sodium hydroxide liquid solutions can readily decompose proteins and lipids in living tissues via amide hydrolysis and ester hydrolysis, which consequently cause chemical burns and may induce permanent blindness upon contact with eyes. Solid alkali can also express its corrosive nature if there is water, such as water vapor. Thus, protective equipment, like rubber gloves, safety clothing and eye protection, should always be used when handling this chemical or its solutions. The standard first aid measures for alkali spills on the skin is, as for other corrosives, irrigation with large quantities of water. Washing is continued for at least ten to fifteen minutes. Moreover, dissolution of Sodium hydroxide liquid is highly exothermic, and the resulting heat may cause heat burns or ignite flammables. It also produces heat when reacted with acids. Sodium hydroxide liquid is also mildly corrosive to glass, which can cause damage to glazing or cause ground glass joints to bind. Sodium hydroxide liquid is corrosive to several metals, like aluminium which reacts with the alkali to produce flammable hydrogen gas on contact: 2 Al + 6 NaOH → 3 H2 + 2 Na3AlO3 2 Al + 2 NaOH + 2 H2O → 3 H2 + 2 NaAlO2 2 Al + 2 NaOH + 6 H2O → 3 H2 + 2 NaAl(OH)4 Storage Careful storage is needed when handling Sodium hydroxide liquid for use, especially bulk volumes. Following proper NaOH storage guidelines and maintaining worker/environment safety is always recommended given the chemical's burn hazard. Sodium hydroxide liquid is often stored in bottles for small-scale laboratory use, within intermediate bulk containers (medium volume containers) for cargo handling and transport, or within large stationary storage tanks with volumes up to 100,000 gallons for manufacturing or waste water plants with extensive NaOH use. Common materials that are compatible with Sodium hydroxide liquid and often utilized for NaOH storage include: polyethylene (HDPE, usual, XLPE, less common), carbon steel, polyvinyl chloride (PVC), stainless steel, and fiberglass reinforced plastic (FRP, with a resistant liner). Sodium hydroxide liquid must be stored in airtight containers to preserve its normality as it will absorb water from the atmosphere. History of Sodium hydroxide liquid Sodium hydroxide liquid was first prepared by soap makers. A procedure for making Sodium hydroxide liquid appeared as part of a recipe for making soap in an Arab book of the late 13th century: Al-mukhtara` fi funun min al-suna` (Inventions from the Various Industrial Arts), which was compiled by al-Muzaffar Yusuf ibn `Umar ibn `Ali ibn Rasul (d. 1295), a king of Yemen. The recipe called for passing water repeatedly through a mixture of alkali (Arabic: al-qily, where qily is ash from saltwort plants, which are rich in sodium ; hence alkali was impure sodium carbonate) and quicklime (calcium oxide, CaO), whereby a solution of Sodium hydroxide liquid was obtained. European soap makers also followed this recipe. When in 1791 the French chemist and surgeon Nicolas Leblanc (1742–1806) patented a process for mass-producing sodium carbonate, natural "soda ash" (impure sodium carbonate that was obtained from the ashes of plants that are rich in sodium) was replaced by this artificial version. However, by the 20th century, the electrolysis of sodium chloride had become the primary method for producing Sodium hydroxide liquid. Sodium hydroxide liquid solution appears as a colorless liquid. More dense than water. Contact may severely irritate skin, eyes, and mucous membranes. Toxic by ingestion. Corrosive to metals and tissue. Caustic soda reacts with all the mineral acids to form the corresponding salts. It also reacts with weak-acid gases, such as hydrogen sulfide, sulfur dioxide, and carbon dioxide. Caustic soda reacts with amphoteric metals (Al, Zn, Sn) and their oxides to form complex anions such as AlO2(-), ZnO2(-2), SNO2(-2), and H2 (or H2O with oxides). All organic acids also react with sodium hydroxide liquid to form soluble salts. Another common reaction of caustic soda is dehydrochlorination. Because of its high-level alkalinity, sodium hydroxide in aqueous solution directly causes bond breakage in proteins (especially disulfide bridges). Hair and fingernails are found to be dissolved after 20 hours of direct contact with sodium hydroxide at pH values higher than 9.2. Sodium hydroxide has depilatory effects which have been described after accidental contact with solutions in the workplace. The breakage of bonds in proteins may lead to severe necrosis to the application site. The level of corrosion depends on the period of contact with the tissue, and on the concentration of sodium hydroxide. Liquid or solid sodium hydroxide is a severe skin irritant. It causes second and third degree burns on short contact and is very injurious to the eyes. The organic chemical industry uses Sodium hydroxide liquid for saponification reactions, production of nucleophilic anionic intermediates, etherification and esterification, basic catalysis, and the production of free organic bases. Sodium hydroxide liquid solution is used for scrubbingwaste gases and neutralizing wastewater. In inorganic chemistry, Sodium hydroxide liquid is used in the manufacture of sodium salts, for alkaline ore digestion, and for pH regulation.
SODIUM HYDROXYMETHANE SULFONATE
SYNONYMS Sodium chloride oxide; Sodium oxychloride; Hypochlorite sodium; Bleach Liquor; active chlorine; Hychlorite; Hipofosfito De Sodio; Hypochlorous acid sodium salt; CAS NO. 7681-52-9
SODIUM HYPOCHLORITE
Sodium Hypochlorite Sodium hypochlorite is most often encountered as a pale greenish-yellow dilute solution referred to as liquid bleach, which is a household chemical widely used (since the 18th century) as a disinfectant or a bleaching agent. In solution, the compound is unstable and easily decomposes, liberating chlorine which is the active principle of such products. Sodium hypochlorite is the oldest and still most important chlorine-based bleach. Its corrosive properties, common availability, and reaction products make it a significant safety risk. In particular, mixing liquid bleach with other cleaning products, such as acids or ammonia, may produce toxic fumes. Properties of Sodium Hypochlorite Chemical formula NaOCl Molar mass 74.442 g/mol Appearance greenish-yellow solid (pentahydrate) Odor chlorine-like and sweetish Density 1.11 g/cm3 Melting point 18 °C (64 °F; 291 K) pentahydrate Boiling point 101 °C (214 °F; 374 K) (decomposes) Solubility in water 29.3 g/100mL (0 °C) Acidity (pKa) 7.5185 Basicity (pKb) 6.4815 Chemistry of Sodium hypochlorite Stability of the solid Anhydrous sodium hypochlorite can be prepared but, like many hypochlorites, it is highly unstable and decomposes explosively on heating or friction. The decomposition is accelerated by carbon dioxide at atmospheric levels. It is a white solid with the orthorhombic crystal structure. Sodium hypochlorite can also be obtained as a crystalline pentahydrate NaOCl·5H2O, which is not explosive and is much more stable than the anhydrous compound. The formula is sometimes given as 2NaOCl·10H2O. The transparent light greenish yellow orthorhombic crystals contain 44% NaOCl by weight and melt at 25–27 °C. The compound decomposes rapidly at room temperature, so it must be kept under refrigeration. At lower temperatures, however, it is quite stable: reportedly only 1% decomposition after 360 days at 7 °C. A 1966 US patent claims that stable solid sodium hypochlorite dihydrate NaOCl·2H2O can be obtained by carefully excluding chloride ions (Cl−), which are present in the output of common manufacturing processes and are said to catalyze the decomposition of hypochlorite into chlorate (ClO−3) and chloride. In one test, the dihydrate was claimed to show only 6% decomposition after 13.5 months storage at −25 °C. The patent also claims that the dihydrate can be reduced to the anhydrous form by vacuum drying at about 50 °C, yielding a solid that showed no decomposition after 64 hours at −25 °C. Equilibria and stability of solutions At typical ambient temperatures, sodium hypochlorite is more stable in dilute solutions that contain solvated Na+ and OCl− ions. The density of the solution is 1.093 g/mL at 5% concentration, and 1.21 g/mL at 14%, 20 °C. Stoichiometric solutions are fairly alkaline, with pH 11 or higher since hypochlorous acid is a weak acid: OCl− + H2O ⇌ HOCl + OH− The following species and equilibria are present in solutions of NaOCl: HOCl (aq) ⇌ H+ + OCl−HOCl (aq) + Cl− + H+ ⇌ Cl2 (aq) + H2OCl2 (aq) + Cl− ⇌ Cl−3Cl2 (aq) ⇌ Cl2 (g) The second equilibrium equation above will be shifted to the right if the chlorine Cl2 is allowed to escape as gas. The ratios of Cl2, HOCl, and OCl− in solution are also pH dependent. At pH below 2, the majority of the chlorine in the solution is in the form of dissolved elemental Cl2. At pH greater than 7.4, the majority is in the form of hypochlorite ClO−. The equilibrium can be shifted by adding acids (such as hydrochloric acid) or bases (such as sodium hydroxide) to the solution: ClO− (aq) + 2 HCl (aq) → Cl2 (g) + H2O (aq) + Cl− (aq)Cl2 (g) + 2 OH− → ClO− (aq) + Cl− (aq) + H2O (aq) At a pH of about 4, such as obtained by the addition of strong acids like hydrochloric acid, the amount of undissociated (nonionized) HOCl is highest. The reaction can be written as: ClO− + H+ ⇌ HClO Sodium hypochlorite solutions combined with acid evolve chlorine gas, particularly strongly at pH < 2, by the reactions: HOCl (aq) + Cl− + H+ ⇌ Cl2 (aq) + H2OCl2 (aq) ⇌ Cl2 (g) At pH > 8, the chlorine is practically all in the form of hypochlorite anions (OCl−). The solutions are fairly stable at pH 11–12. Even so, one report claims that a conventional 13.6% NaOCl reagent solution lost 17% of its strength after being stored for 360 days at 7 °C. For this reason, in some applications one may use more stable chlorine-releasing compounds, such as calcium hypochlorite Ca(ClO)2 or trichloroisocyanuric acid (CNClO)3. Anhydrous sodium hypochlorite is soluble in methanol, and solutions are stable. Decomposition to chlorate or oxygen In solution, under certain conditions, the hypochlorite anion may also disproportionate (autoxidize) to chloride and chlorate: 3 ClO− + H+ → HClO3 + 2 Cl− In particular, this reaction occurs in sodium hypochlorite solutions at high temperatures, forming sodium chlorate and sodium chloride: 3 NaOCl (aq) → 2 NaCl (aq) + NaClO3 (aq) This reaction is exploited in the industrial production of sodium chlorate. An alternative decomposition of hypochlorite produces oxygen instead: 2 OCl− → 2 Cl− + O2 In hot sodium hypochlorite solutions, this reaction competes with chlorate formation, yielding sodium chloride and oxygen gas: 2 NaOCl (aq) → 2 NaCl (aq) + O2 (g) These two decomposition reactions of NaClO solutions are maximized at pH around 6. The chlorate-producing reaction predominates at pH above 6, while the oxygen one becomes significant below that. For example, at 80 °C, with NaOCl and NaCl concentrations of 80 mM, and pH 6–6.5, the chlorate is produced with ∼95% efficiency. The oxygen pathway predominates at pH 10. This decomposition is affected by light and metal ion catalysts such as copper, nickel, cobalt, and iridium. Catalysts like sodium dichromate Na2Cr2O7 and sodium molybdate Na2MoO4 may be added industrially to reduce the oxygen pathway, but a report claims that only the latter is effective. Titration Titration of hypochlorite solutions is often done by adding a measured sample to an excess amount of acidified solution of potassium iodide (KI) and then titrating the liberated iodine (I2) with a standard solution of sodium thiosulfate or phenyl arsine oxide, using starch as indicator, until the blue color disappears. According to one US patent, the stability of sodium hypochlorite content of solids or solutions can be determined by monitoring the infrared absorption due to the O–Cl bond. The characteristic wavelength is given as 140.25 μm for water solutions, 140.05 μm for the solid dihydrate NaOCl·2H 2O, and 139.08 μm for the anhydrous mixed salt Na2(OCl)(OH). Oxidation of organic compounds Oxidation of starch by sodium hypochlorite, that adds carbonyl and carboxyl groups, is relevant to the production of modified starch products. In the presence of a phase-transfer catalyst, alcohols are oxidized to the corresponding carbonyl compound (aldehyde or ketone). Sodium hypochlorite can also oxidize organic sulfides to sulfoxides or sulfones, disulfides or thiols to sulfonyl chlorides or bromides, imines to oxaziridines. It can also de-aromatize phenols. Oxidation of metals and complexes Heterogeneous reactions of sodium hypochlorite and metals such as zinc proceed slowly to give the metal oxide or hydroxide: NaOCl + Zn → ZnO + NaCl Homogeneous reactions with metal coordination complexes proceed somewhat faster. This has been exploited in the Jacobsen epoxidation. Other reactions of Sodium hypochlorite If not properly stored in airtight containers, sodium hypochlorite reacts with carbon dioxide to form sodium carbonate: 2 NaOCl + CO2 + H2O → Na2CO3 + 2 HOCl Sodium hypochlorite reacts with most nitrogen compounds to form volatile monochloramine, dichloramines, and nitrogen trichloride: NH3 + NaOCl → NH2Cl + NaOHNH2Cl + NaOCl → NHCl2 + NaOHNHCl2 + NaOCl → NCl3 + NaOH Neutralization Sodium thiosulfate is an effective chlorine neutralizer. Rinsing with a 5 mg/L solution, followed by washing with soap and water, will remove chlorine odor from the hands. Production of Sodium hypochlorite Chlorination of soda Potassium hypochlorite was first produced in 1789 by Claude Louis Berthollet in his laboratory on the Quai de Javel in Paris, France, by passing chlorine gas through a solution of potash lye. The resulting liquid, known as "Eau de Javel" ("Javel water"), was a weak solution of potassium hypochlorite. Antoine Labarraque replaced potash lye by the cheaper soda lye, thus obtaining sodium hypochlorite (Eau de Labarraque). Cl2 (g) + 2 NaOH (aq) → NaCl (aq) + NaClO (aq) + H2O (aq) Hence, chlorine is simultaneously reduced and oxidized; this process is known as disproportionation. The process is also used to prepare the pentahydrate NaOCl·5H 2O for industrial and laboratory use. In a typical process, chlorine gas is added to a 45–48% NaOH solution. Some of the sodium chloride precipitates and is removed by filtration, and the pentahydrate is then obtained by cooling the filtrate to 12 °C . From calcium hypochlorite Another method involved by reaction of sodium carbonate ("washing soda") with chlorinated lime ("bleaching powder"), a mixture of calcium hypochlorite Ca(OCl)2, calcium chloride CaCl2, and calcium hydroxide Ca(OH)2: Na2CO3 (aq) + Ca(OCl)2 (aq) → CaCO3 (s) + 2 NaOCl (aq) Na2CO3 (aq) + CaCl2 (aq) → CaCO3 (s) + 2 NaCl (aq) Na2CO3 (aq) + Ca(OH)2 (s) → CaCO3 (s) + 2 NaOH (aq) This method was commonly used to produce hypochlorite solutions for use as a hospital antiseptic that was sold after World War I under the names "Eusol", an abbreviation for Edinburgh University Solution Of (chlorinated) Lime – a reference to the university's pathology department, where it was developed. Electrolysis of brine Near the end of the nineteenth century, E. S. Smith patented the chloralkali process: a method of producing sodium hypochlorite involving the electrolysis of brine to produce sodium hydroxide and chlorine gas, which then mixed to form sodium hypochlorite. The key reactions are: 2 Cl− → Cl2 + 2 e− (at the anode) 2 H2O + 2 e− → H2 + 2 HO− (at the cathode) Both electric power and brine solution were in cheap supply at the time, and various enterprising marketers took advantage of the situation to satisfy the market's demand for sodium hypochlorite. Bottled solutions of sodium hypochlorite were sold under numerous trade names. Today, an improved version of this method, known as the Hooker process (named after Hooker Chemicals, acquired by Occidental Petroleum), is the only large-scale industrial method of sodium hypochlorite production. In the process, sodium hypochlorite (NaClO) and sodium chloride (NaCl) are formed when chlorine is passed into cold dilute sodium hydroxide solution. The chlorine is prepared industrially by electrolysis with minimal separation between the anode and the cathode. The solution must be kept below 40 °C (by cooling coils) to prevent the undesired formation of sodium chlorate. Commercial solutions always contain significant amounts of sodium chloride (common salt) as the main by-product, as seen in the equation above. From hypochlorous acid and soda A 1966 patent describes the production of solid stable dihydrate NaOCl·2H2O by reacting a chloride-free solution of hypochlorous acid HClO (such as prepared from chlorine monoxide ClO and water), with a concentrated solution of sodium hydroxide. In a typical preparation, 255 mL of a solution with 118 g/L HClO is slowly added with stirring to a solution of 40 g of NaOH in water 0 °C. Some sodium chloride precipitates and is removed by fitration. The solution is vacuum evaporated at 40–50 °C and 1–2 mmHg until the dihydrate crystallizes out. The crystals are vacuum-dried to produce a free-flowing crystalline powder. The same principle was used in another 1991 patent to produce concentrated slurries of the pentahydrate NaClO·5H 2O. Typically, a 35% solution (by weight) of HClO is combined with sodium hydroxide at about or below 25 °C. The resulting slurry contains about 35% NaClO, and are relatively stable due to the low concentration of chloride. From ozone and salt Sodium hypochlorite can be easily produced for research purposes by reacting ozone with salt. NaCl + O3 → NaClO + O2 This reaction happens at room temperature and can be helpful for oxidizing alcohols. Packaging and sale Main article: Bleach Bleach packaged for household use, with 2.6% sodium hypochlorite Household bleach sold for use in laundering clothes is a 3–8% solution of sodium hypochlorite at the time of manufacture. Strength varies from one formulation to another and gradually decreases with long storage. Sodium hydroxide is usually added in small amounts to household bleach to slow down the decomposition of NaClO. A 10–25% solution of sodium hypochlorite is, according to Univar's safety sheet, supplied with synonyms or trade names bleach, Hypo, Everchlor, Chloros, Hispec, Bridos, Bleacol, or Vo-redox 9110. A 12% solution is widely used in waterworks for the chlorination of water, and a 15% solution is more commonly used for disinfection of waste water in treatment plants. Sodium hypochlorite can also be used for point-of-use disinfection of drinking water, taking 0.2-2 mg of sodium hypochlorite per liter of water. Dilute solutions (50 ppm to 1.5%) are found in disinfecting sprays and wipes used on hard surfaces. Uses of Sodium hypochlorite Bleaching Household bleach is, in general, a solution containing 3–8% sodium hypochlorite, by weight, and 0.01–0.05% sodium hydroxide; the sodium hydroxide is used to slow the decomposition of sodium hypochlorite into sodium chloride and sodium chlorate. Cleaning of Sodium hypochlorite Sodium hypochlorite has destaining properties. Among other applications, it can be used to remove mold stains, dental stains caused by fluorosis, and stains on crockery, especially those caused by the tannins in tea. It has also been used in laundry detergents and as a surface cleaner. Its bleaching, cleaning, deodorizing and caustic effects are due to oxidation and hydrolysis (saponification). Organic dirt exposed to hypochlorite becomes water-soluble and non-volatile, which reduces its odor and facilitates its removal. Disinfection of Sodium hypochlorite See also: Hypochlorous acid Sodium hypochlorite in solution exhibits broad spectrum anti-microbial activity and is widely used in healthcare facilities in a variety of settings. It is usually diluted in water depending on its intended use. "Strong chlorine solution" is a 0.5% solution of hypochlorite (containing approximately 5000 ppm free chlorine) used for disinfecting areas contaminated with body fluids, including large blood spills (the area is first cleaned with detergent before being disinfected). It may be made by diluting household bleach as appropriate (normally 1 part bleach to 9 parts water). Such solutions have been demonstrated to inactivate both C. difficile and HPV. "Weak chlorine solution" is a 0.05% solution of hypochlorite used for washing hands, but is normally prepared with calcium hypochlorite granules. "Dakin's Solution" is a disinfectant solution containing low concentration of sodium hypochlorite and some boric acid or sodium bicarbonate to stabilize the pH. It has been found to be effective with NaOCl concentrations as low as 0.025%. US government regulations allow food processing equipment and food contact surfaces to be sanitized with solutions containing bleach, provided that the solution is allowed to drain adequately before contact with food, and that the solutions do not exceed 200 parts per million (ppm) available chlorine (for example, one tablespoon of typical household bleach containing 5.25% sodium hypochlorite, per gallon of water). If higher concentrations are used, the surface must be rinsed with potable water after sanitizing. A similar concentration of bleach in warm water is used to sanitize surfaces prior to brewing of beer or wine. Surfaces must be rinsed with sterilized (boiled) water to avoid imparting flavors to the brew; the chlorinated byproducts of sanitizing surfaces are also harmful. The mode of disinfectant action of sodium hypochlorite is similar to that of hypochlorous acid. Solutions containing more than 500 ppm available chlorine are corrosive to some metals, alloys and many thermoplastics (such as acetal resin) and need to be thoroughly removed afterwards, so the bleach disinfection is sometimes followed by an ethanol disinfection. Liquids containing sodium hypochlorite as the main active component are also used for household cleaning and disinfection, for example toilet cleaners. Some cleaners are formulated to be viscous so as not to drain quickly from vertical surfaces, such as the inside of a toilet bowl. The undissociated (nonionized) hypochlorous acid is believed to react with and inactivate bacterial and viral enzymes. Neutrophils of the human immune system produce small amounts of hypochlorite inside phagosomes, which digest bacteria and viruses. Deodorizing of Sodium hypochlorite Sodium hypochlorite has deodorizing properties, which go hand in hand with its cleaning properties. Waste water treatment of Sodium hypochlorite Sodium hypochlorite solutions have been used to treat dilute cyanide waste water, such as electroplating wastes. In batch treatment operations, sodium hypochlorite has been used to treat more concentrated cyanide wastes, such as silver cyanide plating solutions. Toxic cyanide is oxidized to cyanate (OCN−) that is not toxic, idealized as follows: CN− + OCl− → OCN− + Cl− Sodium hypochlorite is commonly used as a biocide in industrial applications to control slime and bacteria formation in water systems used at power plants, pulp and paper mills, etc., in solutions typically of 10–15% by weight. Endodontics Sodium hypochlorite is the medicament of choice due to its efficacy against pathogenic organisms and pulp digestion in endodontic therapy. Its concentration for use varies from 0.5% to 5.25%. At low concentrations it dissolves mainly necrotic tissue; at higher concentrations it also dissolves vital tissue and additional bacterial species. One study has shown that Enterococcus faecalis was still present in the dentin after 40 minutes of exposure of 1.3% and 2.5% sodium hypochlorite, whereas 40 minutes at a concentration of 5.25% was effective in E. faecalis removal. In addition to higher concentrations of sodium hypochlorite, longer time exposure and warming the solution (60 °C) also increases its effectiveness in removing soft tissue and bacteria within the root canal chamber. 2% is a common concentration as there is less risk of an iatrogenic hypochlorite incident. A hypochlorite incident is an immediate reaction of severe pain, followed by edema, haematoma, and ecchymosis as a consequence of the solution escaping the confines of the tooth and entering the periapical space. This may be caused by binding or excessive pressure on the irrigant syringe, or it may occur if the tooth has an unusually large apical foramen. Nerve agent neutralization At the various nerve agent (chemical warfare nerve gas) destruction facilities throughout the United States, 50% sodium hypochlorite is used to remove all traces of nerve agent or blister agent from Personal Protection Equipment after an entry is made by personnel into toxic areas. 50% sodium hypochlorite is also used to neutralize any accidental releases of nerve agent in the toxic areas. Lesser concentrations of sodium hypochlorite are used in similar fashion in the Pollution Abatement System to ensure that no nerve agent is released in furnace flue gas. Reduction of skin damage Dilute bleach baths have been used for decades to treat moderate to severe eczema in humans, but it has not been clear why they work. According to work published by researchers at the Stanford University School of Medicine in November 2013, a very dilute (0.005%) solution of sodium hypochlorite in water was successful in treating skin damage with an inflammatory component caused by radiation therapy, excess sun exposure or aging in laboratory mice. Mice with radiation dermatitis given daily 30-minute baths in bleach solution experienced less severe skin damage and better healing and hair regrowth than animals bathed in water. A molecule called nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is known to play a critical role in inflammation, aging, and response to radiation. The researchers found that if NF-κB activity was blocked in elderly mice by bathing them in bleach solution, the animals' skin began to look younger, going from old and fragile to thicker, with increased cell proliferation. The effect diminished after the baths were stopped, indicating that regular exposure was necessary to maintain skin thickness. Safety It is estimated that there are about 3,300 accidents needing hospital treatment caused by sodium hypochlorite solutions each year in British homes (RoSPA, 2002). Oxidation and corrosion Sodium hypochlorite is a strong oxidizer. Oxidation reactions are corrosive. Solutions burn the skin and cause eye damage, especially when used in concentrated forms. As recognized by the NFPA, however, only solutions containing more than 40% sodium hypochlorite by weight are considered hazardous oxidizers. Solutions less than 40% are classified as a moderate oxidizing hazard (NFPA 430, 2000). Household bleach and pool chlorinator solutions are typically stabilized by a significant concentration of lye (caustic soda, NaOH) as part of the manufacturing reaction. This additive will by itself cause caustic irritation or burns due to defatting and saponification of skin oils and destruction of tissue. The slippery feel of bleach on skin is due to this process. Storage hazards Contact of sodium hypochlorite solutions with metals may evolve flammable hydrogen gas. Containers may explode when heated due to release of chlorine gas. Hypochlorite solutions are corrosive to common container materials such as stainless steel and aluminium. The few compatible metals include titanium (which however is not compatible with dry chlorine) and tantalum. Glass containers are safe. Some plastics and rubbers are affected too; safe choices include polyethylene (PE), high density polyethylene (HDPE, PE-HD), polypropylene (PP), some chlorinated and fluorinated polymers such as polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF); as well as ethylene propylene rubber, and Viton. Containers must allow venting of oxygen produced by decomposition over time, otherwise they may burst. Reactions with other common products Mixing bleach with some household cleaners can be hazardous. Sodium hypochlorite solutions, such as liquid bleach, may release toxic chlorine gas when heated above 35 °C or mixed with an acid, such as hydrochloric acid or vinegar. A 2008 study indicated that sodium hypochlorite and organic chemicals (e.g., surfactants, fragrances) contained in several household cleaning products can react to generate chlorinated volatile organic compounds (VOCs). These chlorinated compounds are emitted during cleaning applications, some of which are toxic and probable human carcinogens. The study showed that indoor air concentrations significantly increase (8–52 times for chloroform and 1–1170 times for carbon tetrachloride, respectively, above baseline quantities in the household) during the use of bleach containing products. The increase in chlorinated volatile organic compound concentrations was the lowest for plain bleach and the highest for the products in the form of "thick liquid and gel." The significant increases observed in indoor air concentrations of several chlorinated VOCs (especially carbon tetrachloride and chloroform) indicate that the bleach use may be a source that could be important in terms of inhalation exposure to these compounds. The authors suggested that using these cleaning products may significantly increase the cancer risk. In particular, mixing hypochlorite bleaches with amines (for example, cleaning products that contain or release ammonia, ammonium salts, urea, or related compounds and biological materials such as urine) produces chloramines. These gaseous products can cause acute lung injury. Chronic exposure, for example, from the air at swimming pools where chlorine is used as the disinfectant, can lead to the development of atopic asthma. Bleach can react violently with hydrogen peroxide and produce oxygen gas: H2O2 (aq) + NaOCl (aq) → NaCl (aq) + H2O (aq) + O2 (g) Explosive reactions or byproducts can also occur in industrial and laboratory settings when sodium hypochlorite is mixed with diverse organic compounds. Limitations in health care The UK's National Institute for Health and Care Excellence in October 2008 recommended that Dakin's solution should not be used in routine wound care. Environmental impact In spite of its strong biocidal action, sodium hypochlorite per se has limited environmental impact, since the hypochlorite ion rapidly degrades before it can be absorbed by living beings. However, one major concern arising from sodium hypochlorite use is that it tends to form persistent chlorinated organic compounds, including known carcinogens, that can be absorbed by organisms and enter the food chain. These compounds may be formed during household storage and use as well during industrial use. For example, when household bleach and wastewater were mixed, 1–2% of the available chlorine was observed to form organic compounds. As of 1994, not all the byproducts had been identified, but identified compounds include chloroform and carbon tetrachloride. The estimated exposure to these chemicals from use is estimated to be within occupational exposure limits. Sodium hypochlorite (NaOCl) is a compound that can be effectively used for water purification. It is used on a large scale for surface purification, bleaching, odor removal and water disinfection. When was sodium hypochlorite discovered? Sodium hypochlorite has a long history. Around 1785 the Frenchman Berthollet developed liquid bleaching agents based on sodium hypochlorite. The Javel company introduced this product and called it 'liqueur de Javel'. At first, it was used to bleach cotton. Because of its specific characteristics it soon became a popular compound. Hypochlorite can remove stains from clothes at room temperature. In France, sodium hypochlorite is still known as 'eau de Javel'. What are the characteristics of sodium hypochlorite? Sodium hypochlorite is a clear, slightly yellowish solution with a characteristic odor. Sodium hypochlorite has a relative density of is 1,1 (5,5% watery solution). As a bleaching agent for domestic use it usually contains 5% sodium hypochlorite (with a pH of around 11, it is irritating). If it is more concentrated, it contains a concentration 10-15% sodium hypochlorite (with a pH of around 13, it burns and is corrosive). Sodium hypochlorite is unstable. Chlorine evaporates at a rate of 0,75 gram active chlorine per day from the solution. Then heated sodium hypochlorite disintegrates. This also happens when sodium hypochlorite comes in contact with acids, sunlight, certain metals and poisonous and corrosive gasses, including chlorine gas. Sodium hypochlorite is a strong oxidator and reacts with flammable compounds and reductors. Sodium hypochlorite solution is a weak base that is inflammable. These characteristics must be kept in mind during transport, storage and use of sodium hypochlorite. What happens to the pH value when sodium hypochlorite is added to water? Due to the presence of caustic soda in sodium hypo chlorite, the pH of the water is increased. When sodium hypo chlorite dissolves in water, two substances form, which play a role in for oxidation and disinfection. These are hypochlorous acid (HOCl) and the less active hypochlorite ion (OCl-). The pH of the water determines how much hypochlorous acid is formed. While sodium hypochlorite is used, hydrochloric acid (HCl) is used to lower the pH. Sulfuric acid (H2SO4) can be used as an alternative for acetic acid. Less harmful gasses are produced when sulfuric acid is used. Sulfuric acid is a strong acid that strongly reacts with bases and that is very corrosive. How can sodium hypochlorite be produced? Sodium hypochlorite can be produced in two ways: - By dissolving salt in softened water, which results in a concentrated brine solution. The solution is electrolyzed and forms a sodium hypochlorite solution in water. This solution contains 150 g active chlorine (Cl2) per liter. During this reaction the explosive hydrogen gas is also formed. - By adding chlorine gas (Cl2) to caustic soda (NaOH). When this is done, sodium hypochlorite, water (H2O) and salt (NaCl) are produced according to the following reaction: Cl2 + 2NaOH + → NaOCl + NaCl + H2O What are the applications of sodium hypochlorite? Sodium hypochlorite is used on a large scale. For example in agriculture, chemical industries, paint- and lime industries, food industries, glass industries, paper industries, pharmaceutical industries, synthetics industries and waste disposal industries. In the textile industry sodium hypochlorite is used to bleach textile. It is sometimes added to industrial waste water. This is done to reduce odors. Hypochlorite neutralizes sulphur hydrogen gas (SH) and ammonia (NH3). It is also used to detoxify cyanide baths in metal industries. Hypochlorite can be used to prevent algae and shellfish growth in cooling towers. In water treatment, hypochlorite is used to disinfect water. In households, hypochlorite is used frequently for the purification and disinfection of the house. How does sodium hypochlorite disinfection work? By adding hypochlorite to water, hypochlorous acid (HOCl) is formed: NaOCl + H2O → HOCl + NaOH- Hypochlorous acid is divided into hydrochloric acid (HCl) and oxygen (O). The oxygen atom is a very strong oxidator. Sodium hypochlorite is effective against bacteria, viruses and fungi. Sodium hypochlorite disinfects the same way as chlorine does. How is sodium hypochlorite applied in swimming pools? Sodium hypochlorite is applied in swimming pools for water disinfection and oxidation. It has the advantage that microorganisms cannot build up any resistance to it. Sodium hypochlorite is effective against Legionella bacteria and bio film, in which Legionella bacteria can multiply. Hypochlorous acid is produced by the reaction of sodium hydroxide with chlorine gas. In water, the so-called 'active chlorine' is formed. There are various ways to use sodium hypochlorite. For on-site salt electrolysis, a solution of salt (NaCl) in water is applied. Sodium (Na+) and chloride (Cl-) ions are produced. 4NaCl- → 4Na+ + 4Cl- By leading the salty solution over an electrolysis cell, the following reactions take place at the electrodes: 2Cl- → Cl2 + 2e- 2H2O + 2e- → H2 + 20H- 2H20 → O2 + 4H++ 4e- Subsequently, chlorine and hydroxide react to form hypochlorite: OH- + Cl2 → HOCl + Cl- The advantage of the salt electrolysis system is that no transport or storage of sodium hypochlorite is required. When sodium hypochlorite is stored for a long time, it becomes inactive. Another advantage of the on site process is that chlorine lowers the pH and no other acid is required to lower pH. The hydrogen gas that is produced is explosive and as a result ventilation is required for expolsion prevention. This system is slow and a buffer of extra hypochlorous acid needs to be used. The maintenance and purchase of the electrolysis system is much more expensive than sodium hypochlorite. When sodium hypochlorite is used, acetic or sulphuric acid are added to the water. An overdose can produce poisonous gasses. If the dosage is too low, the pH becomes to high and can irritate the eyes. Because sodium hypochlorite is used both to oxidize pollutions (urine, sweat, cosmetics) and to remove pathogenic microorganisms, the required concentration of sodium hypochlorite depends on the concentrations of these pollutions. Especially the amount of organic pollution determines the required concentration. If the water is filtered before sodium hypochlorite is applied, less sodium hypochlorite is needed.
SODIUM ISETHIONATE
SODIUM ISOBUTYLPARABEN N° CAS : 84930-15-4 Origine(s) : Synthétique Nom INCI : SODIUM ISOBUTYLPARABEN Nom chimique : Sodium isobutyl 4-oxidobenzoate N° EINECS/ELINCS : 284-595-4 Classification : Paraben, Perturbateur endocrinien suspecté, Règlementé, Conservateur, Interdit en Europe Restriction en Europe : II/1375 La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de : - 0,4 % (en acide) pour un ester - 0,8 % (en acide) pour les mélanges d'esters Ses fonctions (INCI) Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes
SODIUM ISOBUTYLPARABEN
SODIUM ISOSTEARATE N° CAS : 64248-79-9 Nom INCI : SODIUM ISOSTEARATE Nom chimique : Isooctadecanoic acid, sodium salt N° EINECS/ELINCS : 264-754-4 Ses fonctions (INCI) Agent nettoyant : Aide à garder une surface propre Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
SODIUM ISOSTEARATE
SODIUM LACTATE; N° CAS : 72-17-3 / 867-56-1 - Lactate de sodium; Nom INCI : SODIUM LACTATE; Nom chimique : Sodium lactate; N° EINECS/ELINCS : 200-772-0 / 212-762-3; Additif alimentaire : E325. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau; Kératolytique : Décolle et élimine les cellules mortes de la couche cornée de l'apiderme. Noms français : 2-HYDROXYPROPANOATE SODIUM; HYDROXY-2 PROPANOATE DE SODIUM; Lactate de sodium; PROPANOIC ACID, 2-HYDROXY-, MONOSODIUM SALT; SEL DE SODIUM DE L'ACIDE HYDROXY-2 PROPANOIQUE. Noms anglais : LACTIC ACID SODIUM SALT; LACTIC ACID, MONOSODIUM SALT; LACTIC ACID, SODIUM SALT; Sodium lactate. Utilisation et sources d'émission: Agent anticorrosif. 2-Hydroxypropanoic acid, monosodium salt; Lacolin; Lactic acid sodium salt; Lactic acid, monosodium salt; Lactic acid, sodium salt (VAN); Monosodium 2-hydroxypropanoate; Monosodium lactate; Per-glycerin; Propanoic acid, 2-hydroxy-, monosodium salt; Propanoic acid, 2-hydroxy-, sodium salt (1:1); Sodium (dl)-lactate; Sodium alpha-hydroxypropionate; Sodium lactate; Sodium lactate 0.167 molar in plastic container; Sodium lactate 1/6 molar in plastic container; Sodium lactate in plastic container. IUPAC names: Sodium 2-hydroxy-propanoate; Sodium 2-hydroxypropanoate;Sodium DL-lactate ; sodium;2-hydroxypropanoate; (±)-2-Hydroxypropionic acid sodium salt; 200-772-0 [EINECS]; 2-Hydroxypropanoate de sodium [French] ; 4157; 72-17-3 [RN]; Lactic acid monosodium salt Lactic Acid, Sodium Salt; MFCD00065400 [MDL number]; Natrium-2-hydroxypropanoat [German]; Propanoic acid, 2-hydroxy-, sodium salt (1:1) [ACD/Index Name]; QY1&VQ &&Na salt [WLN] ; Sodium 2-hydroxypropanoate [ACD/IUPAC Name]; Sodium Lactate [JAN] [USAN]; SODIUM LACTATE, L-; Sodium α-hydroxypropionate; Sodium-DL-lactate; [72-17-3];1219802-24-0 [RN] ; 2-Hydroxypropanoic acid, monosodium salt; 2-Hydroxypropionic acid sodium salt; 344299-52-1 [RN]; E325; Lacolin; Lactic acid, monosodium salt (8CI); Lactic acid, sodium salt (VAN) ; MFCD00066576 [MDL number]; Monosodium 2-hydroxypropanoate; P2Y1C6M9PS; Per-glycerin; Pharmakon1600-01300036; Propanoic acid, 2-hydroxy-, monosodium salt; Propanoic acid, 2-hydroxy-, monosodium salt (9CI); Purasal S/SP 60; Sodium (dl)-lactate; Sodium lactate (60% in water); Sodium lactate (7CI); SODIUM LACTATE|SODIUM 2-HYDROXYPROPANOATE ; SODIUM α-HYDROXYPROPIONATE; sodiumlactate; SodiumLactate,(??)-2-Hydroxypropionicacidsodiumsalt,SodiumDL-lactate,Lacolin?; 乳酸ナトリウム [Japanese]
SODIUM LACTATE ( Lactate de sodium)
cas no 867-56-1 (S)-2-Hydroxypropionic acid sodium salt; L-Lactic acid sodium salt; Sarcolactic acid sodium salt; Sodium L-lactate; Sodium L-lactate;