Autres Industries

C11-15 PARETH-12
C11-15 PARETH-40, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-40, Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-40
C11-15 PARETH-5, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-5, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-5
C11-15 PARETH-7, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-7
C11-15 PARETH-9, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-9, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-9
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C12 - 15 ALKYL BENZOATE
SYNONYMS Alkyl (C12-15) benzoate; Benzoic acid, C12-15 alkyl esters; C12-15 alcohol benzoate; C12-15 alcohols benzoate; Benzoic acid, C12-15-alkyl esters; Benzoic acid, C12-15 alkyl esters CAS NO:68411-27-8
C12 14 Alcohol 2,6,7 (Ethoxylated)
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C12 14 Alcohol 3,5,6,8 (Ethoxylated)
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C-12 16 ALKOL 7 EO
Özellikle toz deterjanda kullanılan, düşük ısıda aktif temizleme özelliği olan linear yapıda noniyonik aktif madde. Yağ sökme gücü yüksek. Genel temizlik (%1-3), Toz deterjan (1-10), Yağ/Kir Çöz (%3-5)
C12-13 ALCOHOLS ( Dodecanol)
Nom INCI : C12-13 ALKYL ETHYLHEXANOATE, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
C12-13 ALKYL ETHYLHEXANOATE
Nom INCI : C12-13 ALKYL LACTATE, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
C12-13 ALKYL LACTATE
Alcohols, C12-13, ethoxylated (9 mol EO average molar ratio); C12-13 PARETH-9; CAS Number‎: ‎66455-14-9
C12-13 PARET-9
C12-13 PARETH-15, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-15, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools (C12-C13) éthoxylés. Noms anglais :ALCOHOLS, C12-13, ETHOXYLATED. Utilisation: Fabrication de détergents. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-15
C12-13 PARETH-23, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-23, Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-23
C12-13 PARETH-3, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-3 , Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension, interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-3
C12-13 PARETH-4, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-4, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension, interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-4
C12-13 PARETH-9, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-9
C12-14 PARETH-12, N° CAS : 68439-50-9, Nom INCI : C12-14 PARETH-12, N° EINECS/ELINCS : 500-213-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-12
C12-14 PARETH-3, N° CAS : 68439-50-9 (generic), Nom INCI : C12-14 PARETH-3, N° EINECS/ELINCS : 500-213-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-14 PARETH-3
C12-14 PARETH-5, Nom INCI : C12-14 PARETH-5, Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-5
C12-14 PARETH-7, N° CAS : 68439-50-9, Nom INCI : C12-14 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-7
Nom INCI : C12-14 SEC-PARETH-12, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile); Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-12
C12-14 SEC-PARETH-30, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-30, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-30
C12-14 SEC-PARETH-5, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-5, Anti-moussant : Supprime la mousse lors de la fabrication / réduit la formation de mousse dans des produits finis liquides, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile),Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-5
C12-14 SEC-PARETH-7, Nom INCI : C12-14 SEC-PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-7
C12-14 SEC-PARETH-9, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-9, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-9
Accueil Ingrédients C12-15 ALCOHOLS, C12-15 ALCOHOLS, N° CAS : 63393-82-8, Nom INCI : C12-15 ALCOHOLS, N° EINECS/ELINCS : 264-118-6, Emollient : Adoucit et assouplit la peau Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques; Alcohols, C12-15
C12-15 ALCOHOLS
C12-15 ALKYL BENZOATE, N° CAS : 68411-27-8, Nom INCI : C12-15 ALKYL BENZOATE, N° EINECS/ELINCS : 270-112-4, Le C12-15 Alkyl benzoate est utilisé en cosmétique en tant qu'émollient (adoucissant). Il est souvent aussi utilisé en tant qu'agent antimicrobien dans les crèmes solaires. C'est un ester de faible poids moléculaire d'acide benzoïque et d'alcools en C12-C15. On le retrouve dans de très nombreux produits pour la peau et les cheveux en raison de ses facultés à rendre le toucher soyeux et doux.Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état. Benzoic acid, C12-15-alkyl esters. : Benzoic acid, C12-15 alkyl esters; C12 C15 alkyl benzoate; C12-C15 alkyl benzoate. Esterification product of alcohols, C12-15 (linear and branched) and benzoic acid ; s: CHINT: Benzoic (FA C12-15)E; Cosmacol EBI; Cosmacol EBL; Dub B1215; Finsolv TN ; LINCOL BAS; SABODERM AB; Tegosoft TN
C12-15 ALKYL BENZOATE
Dodecyl/pentadecyl benzoate; Alkyl (C12-15) benzoate [usan]; Einecs 270-112-4.; ALKYL BENZOATE; Lauryl Benzoate; Benzoic acid, C12-15-alkyl esters; C12-15 ALKYL BENZOATE; Benzoesure, Alkyl(C12-C15)ester cas no: 68411-27-8
C12-15 ALKYL ETHYLHEXANOATE
C12-15 ALKYL LACTATE; PENTADECYL LACTATE; Propanoic acid, 2-hydroxy-, C12-15-alkyl esters; CERAPHYL 41; PARYOL ALKYLAT; Dermol 25L; C12-15 ALKYL LACTATE, N° CAS : 93925-36-1, Nom INCI : C12-15 ALKYL LACTATE, N° EINECS/ELINCS : 300-338-1, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état. (2R)-2-Hydroxypropanoate de pentadécyle [French] ; Pentadecyl (2R)-2-hydroxypropanoate ; Pentadecyl-(2R)-2-hydroxypropanoat [German] ; Propanoic acid, 2-hydroxy-, pentadecyl ester, (2R)- [ACD/Index Name]; 258269-67-9 [RN]; 93925-36-1 [RN];
C12-15 ALKYL LACTATE
C12-15 PARETH-10, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-10, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-10
C12-15 PARETH-12, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-12, Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI); C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-12
C12-15 PARETH-2, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-2, N° EINECS/ELINCS : 500-195-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-2
C12-15 PARETH-3, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-3
C12-15 PARETH-3 PHOSPHATE, Nom INCI : C12-15 PARETH-3 PHOSPHATE, Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-15 PARETH-3 PHOSPHATE
C12-15 PARETH-5, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-5, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-5
C12-15 PARETH-7, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-7
C12-15 PARETH-9, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-9
tetradecan-1-ol; C12-16 ALCOHOLS; N° CAS : 68855-56-1; Nom INCI : C12-16 ALCOHOLS; N° EINECS/ELINCS : 272-490-6; Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Emollient : Adoucit et assouplit la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Alcohols, C12-16; ; Alcohols C12-16; Fatty Alcohol C12-16; Fatty alcohol, C12-16; tetradecan-1-ol
C12-16 ALCOHOLS
C12-16 PARETH-5, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-5, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-5
C12-16 PARETH-7, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-7, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-7
C12-16 PARETH-9, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-9
C12-18 ACID TRIGLYCERIDE, N° CAS : 67701-26-2, Nom INCI : C12-18 ACID TRIGLYCERIDE, N° EINECS/ELINCS : 266-944-2, Emollient : Adoucit et assouplit la peau Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Agent d'entretien de la peau : Maintient la peau en bon état, Solvant : Dissout d'autres substances, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
C12-18 ACID TRIGLYCERIDE
Amines, di-C12-18-alkyl; n-pentadecylpentadecan-1-amine; (C12-C18) Dialkylamine cas no: 68153-95-7
C12-18 ALKYL AMINES
Nom INCI : C12-18 ALKYL GLUCOSIDE, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion
C12-18 ALKYL GLUCOSIDE
C12-18 FATTY ALCOHOL 7 EO, N° CAS : 100843-23-0, 106232-81-9, 106232-82-0, Nom INCI : C12-18 FATTY ALCOHOL 7 EO, Classification : Composé éthoxylé, Tensioactif non ionique
C12-18 FATTY ALCOHOL 7 EO
C12-18 PARETH-7, N° CAS : 68213-23-0, Nom INCI : C12-18 PARETH-7, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-18 PARETH-7
C12-20 ALKYL GLUCOSIDE, Nom INCI : C12-20 ALKYL GLUCOSIDE, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-20 ALKYL GLUCOSIDE
C12-C14 (5 Mol EO +4 Mol Po); c12 14 5eo, 4po; C 12 14 Alcohol 5 ethoxylate 4 propoxylate; alcohol ethoxylate CAS-No: 68439-50-9
C12-C13 alkyl octanoate
COSMACOL EOI CAS #: 90411-66-8
C12-C14 (5 Mol EO +4 Mol Po)
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12–C14 ALCOOL GLYCİDYL ETHER
L'éther glycidylique de l'alcool C12-C14, également connu sous le nom d'AGE, est un liquide clair, incolore et huileux avec une odeur douce.
L'alcool glycidyléther C12-C14 a une faible volatilité, une faible toxicité, une faible couleur, une excellente capacité de mouillage du substrat et du remplissage.
L'alcool glycidyléther C12-C14 est un composé chimique qui entre dans la catégorie des éthers glycidyliques.

Numéro CAS: 68609-97-2
Formule moléculaire: C48H96O6
Poids moléculaire: 769.27
Numéro EINECS : 271-846-8


Les éthers glycidyliques de l'alcool C12–C14 participent à la synthèse de copolymères diblocs de poly(oxyde d'éthylène)-b-poly(alkylglycidyléther) de haut poids moléculaire.
La dose maximale recommandée d'éther glycidylique de l'alcool C12-C14 est de 20% de la formulation de résine.
L'alcool glycidyléther C12-C14 est généralement dérivé d'un mélange d'alcools avec des longueurs de chaîne carbonée allant de C12 à C14, ce qui signifie qu'ils ont entre 12 et 14 atomes de carbone dans leur structure moléculaire.

Le terme « éther glycidylique » indique la présence d'un groupe glycidyle (-CH2-CH-O-) dans la molécule.
Ces éthers glycidyliques sont couramment utilisés dans diverses applications industrielles, y compris comme diluants réactifs dans les formulations de résines époxy.
Ils peuvent servir de stabilisateur, de modificateur de viscosité ou de co-réactif dans les systèmes époxy. G

L'alcool glycidyléther C12-C14 peut améliorer les caractéristiques de manipulation et les performances des résines époxy, ce qui les rend plus adaptées à des applications spécifiques telles que les adhésifs, les revêtements et les matériaux composites.
L'alcool C12–C14 L'éther glycidylique est un produit chimique organique de la famille des éthers glycidyliques.
L'alcool glycidyléther C12-C14 est un mélange principalement d'alcools à chaîne carbonée 12 et 14, également appelés alcools gras qui ont été glycifiés.

L'éther glycidylique de l'alcool C12-C14 est un produit chimique industriel utilisé comme tensioactif, mais principalement pour la réduction de la viscosité de la résine époxy.
L'éther glycidylique de l'alcool C12-C14 porte le numéro CAS 68609-97-2, mais le nom IUPAC est plus complexe car il s'agit d'un mélange et est 2-(dodécoxyméthyl)oxirane;2-(tétradécoxyméthyl)oxirane;2-(tridécoxyméthyl)oxirane.
D'autres noms incluent les éthers glycidyliques dodécyles et tétradécyles et alkyl (C12-C14) glycidyl éther.

L'éther glycidylique de l'alcool C12-C14 est un tensioactif non ionique qui contient une tête hydrophile et une queue hydrophobe.
L'éther glycidylique de l'alcool C12-C14 est utilisé dans le traitement des eaux usées, ainsi que dans la synthèse de l'acide polycarboxylique.
L'alcool glycidyléther C12-C14 s'est avéré réactif et peut former des liaisons hydrogène avec d'autres molécules.

L'alcool glycidyléther C12-C14 a également une solubilité élevée dans l'eau, ce qui le rend approprié pour une utilisation dans des solutions riches en sel. L'effet hydrophobe de cette molécule signifie qu'elle est plus susceptible de se dissoudre dans les huiles ou les graisses que dans l'eau. Ce produit présente une fluorescence lorsqu'il est éclairé par la lumière ultraviolette et peut être détecté par spectroscopie de résonance magnétique.

L'éther glycidylique de l'alcool C12-C14 est un produit chimique organique de la famille des éthers glycidyliques.
L'alcool glycidyléther C12-C14 est un mélange principalement d'alcools à chaîne carbonée 12 et 14, également appelés alcools gras qui ont été
glycidé.
L'alcool glycidyléther C12-C14 est un produit chimique industriel utilisé comme tensioactif mais principalement pour la réduction de la viscosité de la résine époxy.

L'éther glycidylique de l'alcool C12-C14 porte le numéro CAS 68609-97-2, mais le nom IUPAC est plus complexe car il s'agit d'un mélange et est le 2-(dodécoxyméthyl)oxirane;2-(tétradécoxyméthyl)oxirane;2-(tridécoxyméthyl)oxirane.
D'autres noms incluent les éthers glycidyliques de dodécyle et de tétradécyle et l'éther glycidylique d'alcool C12-C14.
Un mélange d'alcool gras riche en éthers glycidyliques d'alcool C12-C14 est placé dans un réacteur avec un catalyseur acide de Lewis.

Ensuite, l'épichlorhydrine est ajoutée lentement pour contrôler l'exothermie, ce qui entraîne la formation des halohydrines.
Ceci est suivi d'une déshydrochloration caustique, pour former l'éther glycidylique de l'alcool C12-C14.
Les déchets sont l'eau et le chlorure de sodium et l'excès de soude caustique.

L'un des essais de contrôle de la qualité consisterait à mesurer la valeur époxy en déterminant le poids équivalent époxy.
L'éther alkylglycidylique C12-C14 est un diluant réactif époxy à faible viscosité et toxicité.
L'éther alkylglycidylique C12-C14 est utilisé dans de nombreuses applications de peinture et de revêtements telles que la peinture pour appareils, la peinture de bateau, le revêtement de bâtiment, la peinture automobile, le revêtement de papier, le revêtement plastique et le revêtement de caoutchouc.

Un mélange d'alcool gras riche en éther glycidylique d'alcool C12-C14 est placé dans un réacteur avec un catalyseur acide de Lewis.
Ensuite, l'épichlorhydrine est ajoutée lentement pour contrôler l'exothermie, ce qui entraîne la formation des halohydrines.
Ceci est suivi d'une déshydrochloration caustique, pour former l'éther glycidylique de l'alcool C12-C14.

Les déchets sont l'eau et le chlorure de sodium et l'excès de soude caustique.
L'un des essais de contrôle de la qualité consisterait à mesurer la valeur époxy en déterminant le poids équivalent époxy.
L'alcool glycidyléther C12–C14 participe à la synthèse de copolymères diblocs poly(oxyde d'éthylène)-bpoly(alkylglycidyléther) de haut poids moléculaire.

L'alcool glycidyléther C12-C14 est un liquide clair, incolore, huileux avec une odeur douce.
L'alcool glycidyléther C12-C14 a une faible volatilité, une faible toxicité, une faible couleur, une excellente capacité de mouillage du substrat et du remplissage.
La dose maximale recommandée d'éther glycidylique d'alcool C12-C14 est de 20% de la formulation de résine.

Éther glycidylique aliphatique, basé sur l'époxydation de l'alcool aliphatique en C12-C14.
L'alcool glycidyléther C12-C14 est un diluant monofonctionnel utilisé pour réduire la viscosité des systèmes de résine époxy.
L'alcool glycidyléther C12-C14 offre une bonne flexibilité et adhérence sur les surfaces non polaires et présente d'excellentes caractéristiques de mouillage.

L'alcool glycidyléther C12-C14 est principalement utilisé comme diluant réactif pour les résines époxy à haute viscosité, compatible à toutes les concentrations avec la résine époxy, et comme agent de durcissement.
Largement utilisé dans les revêtements de sol époxy de haute qualité, les peintures époxy de qualité alimentaire, les matériaux d'empotage époxy, les matériaux de moulage, les adhésifs, les matériaux isolants et les revêtements de sol.
L'alcool glycidyléther C12-C14 est un liquide transparent incolore.

L'alcool glycidyléther C12-C14 est principalement utilisé comme diluant réactif pour les résines époxy à haute viscosité, compatibles à toutes les concentrations de résine époxy, et comme agent de trempage.
L'éther glycidylique de l'alcool C12-C14 est utilisé comme solvant époxy de spécialité utilisé dans la fabrication de résines époxy et d'adhésifs.
L'alcool glycidyléther C12-C14 est un mélange complexe d'éthers synthétiques et de composés hétérocycliques qui se conforment généralement à la formule : C48H96O6.

Les diluants réactifs comme l'alcool glycidyléther C12-C14 sont formulés pour réduire la viscosité des résines époxy typiques sans affecter de manière significative les propriétés de performance.
L'incorporation d'un diluant réactif C12-C14 à l'alcool glycidylique éther dans votre résine améliorera la manipulation et la facilité d'application en raison de la viscosité réduite.
L'alcool glycidyléther réactif C12-C14 est largement utilisé dans les revêtements métalliques, les revêtements de béton, les composés de réparation et de collage, les adhésifs et les composites.

Les diluants réactifs sont des produits fonctionnels contenant un groupe époxy qui sont des éthers glycidyliques d'alcool C12-C14 à faible viscosité qui peuvent réagir avec les agents de durcissement pour devenir la partie du système époxy réticulé.
Les diluants réactifs sont principalement utilisés pour réduire la viscosité de la résine de base à base de résines bisphénol A, F et EPN afin d'améliorer la manipulation et la facilité de traitement dans diverses applications.
L'alcool glycidyléther C12-C14 est utilisé dans la formulation de composés de peinture et de revêtement sans solvant ainsi que d'additifs en combinaison avec d'autres polymères pour améliorer l'adhérence et la stabilisation contre les réactions de dégénérescence.

L'alcool glycidyléther C12-C14 peut également être utilisé pour optimiser les propriétés de performance telles que la résistance aux chocs, l'adhérence, la flexibilité, la charge de charge et la résistance aux solvants du système époxy.
L'éther glycidylique de l'alcool C12-C14 abaisse considérablement la tension superficielle des résines époxy liquides aromatiques standard, ce qui se traduit par un excellent mouillage de surface, une adhérence et une viscosité plus faible à une charge de charge donnée.
La chaîne aliphatique du diluant réactif à l'éther glycidylique de l'alcool C12-C14 augmente généralement la durée de vie du pot ainsi que la flexibilité (résistance aux chocs).

Bien que le diluant réactif C12-C14 alcool glycidyl éther limite quelque peu la résistance au solvant, la résistance aux acides est améliorée.
L'alcool glycidyléther C12-C14 est un diluant réactif époxy à faible viscosité et toxicité.
L'alcool glycidyléther C12-C14 est utilisé dans de nombreuses applications de peinture et de revêtements telles que la peinture d'appareils, la peinture de bateau, le revêtement de bâtiment, la peinture automobile, le revêtement de papier, le revêtement plastique et le revêtement de caoutchouc.

L'alcool glycidyléther C12-C14 est utilisé comme diluant réactif pour les résines époxy.
L'alcool glycidyléther C12-C14 est utilisé comme intermédiaire de fabrication de résine et de polymère.
Les applications de l'alcool glycidyléther C12-C14 comprennent une grande variété de revêtements pour les industries de l'automobile et du génie civil.

L'alcool glycidyléther C12-C14 offre une bonne flexibilité et adhérence sur les surfaces non polaires et présente d'excellentes caractéristiques de mouillage.
Principalement comme diluant réactif pour les résines époxy à haute viscosité, compatible à toutes les concentrations avec la résine époxy, et comme agent de durcissement.
Largement utilisé dans les revêtements de sol époxy de haute qualité, les peintures époxy de qualité alimentaire, les matériaux d'empotage époxy, les matériaux de moulage, les adhésifs, les matériaux isolants et les revêtements de sol.

L'alcool glycidyléther C12-C14 est un diluant réactif époxy à faible viscosité et toxicité.
L'alcool glycidyléther C12-C14 est utilisé dans de nombreuses applications de peinture et de revêtements telles que la peinture d'appareils, la peinture de bateau, le revêtement de bâtiment, la peinture automobile, le revêtement de papier, le revêtement plastique et le revêtement de caoutchouc.
L'alcool glycidyléther C12-C14 est principalement appliqué comme agent de dilution pour le revêtement de sol époxy, diluant le revêtement époxy des produits de qualité alimentaire.

L'éther glycidylique aliphatique est fabriqué à partir d'alcool alkylique C12 ~ 14 et d'épichlorhydrine par la technique scientifique, son nom chimique est C12 ~ 14 alkyl glycidyl ether (AGE).
L'alcool glycidyléther C12-C14 est utilisé pour abaisser la viscosité de la résine époxy liquide, pour être utilisé comme matériau de plancher, matériau de réparation du béton, matériau de remplissage, matériau de flexibilité, matériau d'enrobage, matériau d'enrobage, à utiliser dans l'amélioration du diluant et de la ténacité, et enroulement-formage.
L'alcool glycidyléther C12-C14 offre une bonne flexibilité et adhérence sur les surfaces non polaires et présente d'excellentes caractéristiques de mouillage.

L'éther glycidylique de l'alcool C12-C14 est principalement utilisé comme diluant réactif pour les résines époxy à haute viscosité, compatible à toutes les concentrations avec la résine époxy, et comme agent de durcissement.
L'éther glycidylique de l'alcool C12-C14 est largement utilisé dans les revêtements de sol époxy de haute qualité, les peintures époxy de qualité alimentaire, les matériaux d'empotage époxy, les matériaux de moulage, les adhésifs, les matériaux isolants et les revêtements de sol.
L'alcool glycidyléther C12-C14 agit comme solvant et agent de durcissement. AGE a une faible virulence, une légère couleur et une faible viscosité.

L'alcool glycidyléther C12-C14 est bien miscible avec toutes sortes de résines époxy, utilisées dans les produits de résine époxy pour diminuer leur viscosité.
L'alcool glycidyl éther C12-C14 a un groupe époxy actif qui peut rejoindre la réaction de guérison.
L'alcool glycidyléther C12-C14 a une faible volatilité, ce qui améliore les performances et la qualité du produit.

L'alcool glycidyléther C12-C14 améliore la flexibilité des produits de salaison.
L'éther glycidylique de l'alcool C12-C14 devrait croître à un TCAC de 4,5% au cours de la période 2021-2030.
La demande croissante d'adhésifs et de produits d'étanchéité, de composites, de revêtements marins et protecteurs, d'enrobage et d'encapsulation chez les utilisateurs finaux tels que les industries automobile, aérospatiale et de défense devrait stimuler la croissance du marché au cours de la période de prévision.

L'alcool glycidyléther C12-C14 est un alcool de glycérine à bas point d'ébullition, de poids moléculaire élevé.
L'alcool glycidyléther C12-C14 a une bonne stabilité thermique et une couleur neutre, ce qui le rend idéal pour une utilisation dans la production de systèmes de résine époxy.
L'alcool glycidyléther C12-C14 de qualité industrielle est un type de tensioactif non ionique qui a la capacité de réduire la tension superficielle entre l'eau et l'huile.

L'alcool glycidyléther C12-C14 peut être utilisé dans les produits de nettoyage, les peintures, les revêtements, les adhésifs et les produits d'étanchéité pour les applications marines.
L'alcool glycidyléther C12-C14 est utilisé dans l'empotage et l'encapsulation en raison de ses propriétés d'adhérence élevées.
L'alcool glycidyléther C12-C14 est très réactif, par conséquent, ils durcissent rapidement à température ambiante lorsqu'ils sont exposés à l'humidité atmosphérique.

L'alcool glycidyléther C12-C14 a une très faible viscosité, ce qui facilite le mélange avec d'autres résines telles que la résine époxy ou le polyuréthane (PU).
L'alcool glycidyléther C12-C14 est stimulé par l'augmentation de la demande d'adhésifs et de produits d'étanchéité.
Le confinement de solvants dangereux tels que le benzène, le xylène, le toluène, etc., a conduit à une nouvelle génération de formulations adhésives à base d'eau qui comprend l'éther glycidylique alkylique C12-C14.

En outre, les préoccupations environnementales croissantes à l'échelle mondiale ont également contribué à cette évolution.
L'alcool glycidyl éther C12-C14 est une forme de composé organique largement utilisé dans les domaines chimique, industriel et de la construction.
L'utilisation principale est définie comme pour les procédés de polymérisation en tant que monomère de qualité industrielle, utilisé comme scellant dans les matériaux liés à la construction et comme adhésif à diverses fins.

L'alcool glycidyléther C12-C14 est logiquement un sous-produit d'une réaction de condensation entre le glycidol et l'alcool allylique.
En raison de la présence d'époxyde et d'un alcène, ils peuvent être manipulés pour réagir séparément dans un groupe tout en maintenant les autres processus intacts.
L'alcool glycidyléther C12-C14 peut provoquer une sensibilisation par inhalation et contact cutané.

L'éther glycidylique de l'alcool C12–C14 est un composé de l'éther glycidylique avec une structure chimique générale similaire à celle-ci:
CH3-(CH2)n-O-CH2-CHO, où 'n' représente le nombre d'atomes de carbone dans la chaîne alkyle (C12 à C14 dans ce cas).

L'alcool glycidyléther C12-C14 est connu pour sa fonctionnalité époxy, ce qui signifie qu'il contient des groupes époxy (cycles oxirane) dans sa structure moléculaire.
Ces groupes époxy sont réactifs et peuvent subir des réactions de réticulation avec des amines, des acides ou d'autres composés, formant des matériaux thermodurcissables solides et durables.
Les composés chimiques comme les éthers glycidyliques de l'alcool C12-C14 peuvent être soumis à des restrictions réglementaires et à des directives dans différents pays en raison de préoccupations potentielles pour la santé et l'environnement.

Les fabricants et les utilisateurs doivent connaître ces règlements et s'y conformer.
Il peut y avoir des variations de l'éther glycidylique de l'alcool C12-C14 en fonction des longueurs spécifiques de la chaîne carbonée, des niveaux de pureté et d'autres propriétés.
Ces variations peuvent être adaptées à des applications spécifiques ou aux exigences du marché.

Densité: 0,89 g/mL à 25 °C (lit.)
pression de vapeur: 0.018Pa à 20°C
indice de réfraction: n20 / D 1.447 (lit.)
Point d'éclair: >230 °F
Solubilité dans l'eau : 483μg/L à 30°C
LogP: 6 à 20°C

L'alcool glycidyléther C12-C14 est une preuve limitée d'un effet cancérogène. Lorsque vous l'utilisez, portez des vêtements et des gants de protection appropriés.
L'éther glycidylique de l'alcool C12-C14 est utilisé comme modificateur de réduction de la viscosité dans les formulations de résines époxy.
L'alcool glycidyléther C12-C14 a une faible couleur et offre une excellente capacité de mouillage du substrat et du remplissage.

L'alcool glycidyléther C12-C14 est utile pour les revêtements de sol résineux, les composés de coulée, les revêtements, les adhésifs et les systèmes d'encapsulation électrique.
L'alcool glycidyléther C12-C14 est principalement appliqué sur l'agent de dilution, le trempeur, le revêtement de sol époxy, la dilution du revêtement époxy de qualité alimentaire.
Combiné avec de la résine époxy liquide, convient au matériau d'incorporation époxy, au matériau de moulage, au matériau d'encapsulation, au matériau de revêtement et à l'adhésif.

L'alcool glycidyléther C12-C14 offre une bonne flexibilité et adhérence sur les surfaces non polaires et présente d'excellentes caractéristiques de mouillage.
Principalement comme diluant réactif pour les résines époxy à haute viscosité, compatible à toutes les concentrations avec la résine époxy, et comme agent de trempage.
Largement utilisé dans les revêtements de sol époxy de haute qualité, les peintures époxy de qualité alimentaire, les matériaux d'empotage époxy et les revêtements de sol.

L'alcool glycidyléther C12-C14 est formulé sous la direction et l'assistance de chercheurs talentueux qui ont une vaste connaissance dans ce domaine.
L'alcool glycidyléther C12-C14 est capable d'améliorer les propriétés de flexibilité et d'adhérence de la résine durcie.
L'alcool glycidyléther C12-C14 est surtout approprié dans les industries textiles.

L'alcool glycidyléther C12-C14 aide en tant que monomère pour les réactifs de polymérisation.
L'alcool glycidyléther C12-C14 est un agent d'un stabilisant pour composé chloré.
L'éther glycidylique de l'alcool C12–C14 est un diluant réactif époxy à faible viscosité et toxicité.

L'éther alkylglycidylique C12-C14 est utilisé dans de nombreuses applications de peinture et de revêtements telles que la peinture pour appareils, la peinture de bateau, le revêtement de bâtiment, la peinture automobile, le revêtement de papier, le revêtement plastique et le revêtement de caoutchouc.
Les éthers glycidyliques de l'alcool C12–C14 sont une classe de composés caractérisés par la présence du groupe glycidyle (-CH2-CH-O-) dans leur structure moléculaire.

Ce groupe est également connu sous le nom de groupe époxy ou cycle oxirane.
Les éthers glycidyliques de l'alcool C12-C14 sont largement utilisés dans l'industrie chimique pour diverses applications en raison de leur capacité à subir des réactions de polymérisation, ce qui entraîne la formation de matériaux thermodurcissables ayant d'excellentes propriétés mécaniques et chimiques.

La fonctionnalité époxy dans les éthers alkylglycidyliques C12-C14 les rend très réactifs.
Lorsque les éthers alkylglycidyliques C12-C14 sont mélangés à des agents de durcissement tels que des amines, des acides ou des anhydrides, ils subissent une réaction chimique appelée durcissement époxy.
Ce processus de durcissement conduit à la formation d'un réseau de polymères réticulés, ce qui donne des matériaux d'une résistance et d'une durabilité accrues.

Les éthers d'alkylglycidyle C12-C14 sont couramment utilisés comme composants clés dans les systèmes de résine époxy.
Les résines époxy sont polyvalentes et trouvent des applications dans diverses industries, notamment la construction, l'aérospatiale, l'électronique, l'automobile, etc.
Ils sont utilisés pour les revêtements, les adhésifs, les composites et l'encapsulation en raison de leurs excellentes propriétés adhésives, de leur résistance chimique et de leur résistance mécanique.

C12-C14 alkyl glycidyl éther et leurs propriétés peuvent varier en fonction de leur structure chimique et de la longueur des chaînes alkyle ou aryle attachées au groupe glycidyle.
Certains éthers glycidyliques courants comprennent l'éther glycidylique alkylique C12-C14, l'éther phénylglycidylique et l'éther glycidylique de l'alcool C12-C14 mentionné précédemment.
Chaque type peut avoir des caractéristiques et des applications uniques.

Les éthers d'alkyle glycidylique C12-C14, comme l'éther glycidylique de l'alcool C12-C14, peuvent également servir de solvants ou de diluants dans les formulations époxy.
Ils aident à réduire la viscosité des résines époxy, ce qui les rend plus faciles à manipuler et à appliquer.
Le choix de l'éther alkylglycidylique C12-C14 peut avoir un impact sur la cinétique de durcissement et les propriétés finales du système époxy.

Les éthers alkylglycidyliques C12-C14 offrent des propriétés précieuses, il est essentiel de tenir compte de leurs impacts potentiels sur l'environnement et la santé.
Certains éthers glycidyliques peuvent être soumis à des réglementations et à des restrictions en raison de préoccupations concernant la toxicité et la persistance dans l'environnement.
C12-C14 alkyl glycidyl éther est important d'utiliser et d'éliminer ces composés de manière responsable et en conformité avec les réglementations pertinentes.

Le développement de nouveaux éthers alkylglycidyliques en C12-C14 et de formulations époxy est un domaine actif de recherche et d'innovation.
Les scientifiques et les ingénieurs cherchent continuellement à améliorer les matériaux époxy pour un large éventail d'applications, des composites avancés aux revêtements haute performance.

Les éthers d'alkylglycidyl C12-C14 sont utilisés dans la synthèse de composés pharmaceutiques en raison de leur réactivité chimique polyvalente.
Les éthers d'alkylglycidyl C12-C14 peuvent servir de tensioactifs ou d'émulsifiants dans diverses formulations, y compris les produits de soins personnels et les procédés industriels.

L'éther alkylglycidylique C12-C14 peut être utilisé comme additif dans les polymères pour modifier des propriétés telles que la flexibilité, l'adhérence et la résistance aux chocs.
Les chimistes peuvent modifier les éthers d'alkylglycidyl C12-C14 par diverses réactions pour créer des dérivés spécialisés ayant des propriétés spécifiques.
Ces dérivés peuvent avoir des applications dans des industries de niche et de la recherche.

C12-C14 alkyl glycidyl éther, il est crucial de suivre les directives de sécurité et de comprendre les risques potentiels pour la santé.
L'éther alkylglycidylique C12-C14 peut être irritant pour la peau, les yeux et le système respiratoire.
Une ventilation adéquate, un équipement de protection individuelle et des pratiques de manipulation sécuritaires sont essentiels pour minimiser l'exposition.

Les organismes de réglementation de différents pays, tels que l'Environmental Protection Agency (EPA) aux États-Unis, réglementent souvent l'utilisation, l'étiquetage et l'élimination des éthers alkylglycidyliques en C12-C14 et des composés apparentés.
Les utilisateurs d'éther alkylglycidylique C12-C14 doivent connaître et respecter ces règlements afin d'assurer une utilisation sûre et conforme.

Les recherches en cours visent à développer des éthers alkylglycidyliques en C12-C14 et des systèmes de résine époxy avec des performances améliorées, une durabilité et un impact environnemental réduit.
Cela comprend l'exploration de sources biosourcées ou renouvelables pour les éthers glycidyliques.
Les propriétés des éthers alkylglycidyliques en C12-C14 peuvent varier considérablement en fonction de leur structure chimique et de leur procédé de fabrication.

L'éther alkylglycidylique C12-C14 est essentiel pour sélectionner l'éther glycidylique approprié pour une application spécifique en fonction des propriétés et des critères de performance souhaités.
Diverses normes et spécifications de l'industrie existent pour les éthers alkylglycidyliques C12-C14 et les systèmes de résine époxy, en particulier dans des secteurs tels que l'aérospatiale et l'électronique.
Le respect de ces normes est essentiel pour assurer la qualité et la sécurité des produits.

C12-C14 alkyl glycidyl éther, il est important de considérer leur compatibilité avec d'autres produits chimiques et additifs dans le système.
Les tests de compatibilité sont souvent effectués pour évaluer comment les différents composants interagissent et s'ils atteignent les propriétés souhaitées.

L'élimination et la gestion appropriées des déchets de l'éther alkylglycidylique en C12-C14 et des formulations époxy sont essentielles pour prévenir la contamination de l'environnement.
De nombreuses régions ont des lignes directrices spécifiques pour l'élimination des matières dangereuses, et le respect de ces directives est nécessaire.

Utilise
En tant que modificateur époxy C12-C14, l'éther alkylglycidylique est classé comme un diluant réactif époxy.
L'éther alkylglycidylique C12-C14 fait partie d'une famille d'éthers glycidyliques disponibles utilisés pour la réduction de la viscosité des résines époxy.
Ceux-ci sont ensuite formulés en revêtements, produits d'étanchéité, adhésifs et élastomères.

Les résines avec ce diluant ont tendance à montrer une meilleure maniabilité.
L'éther alkylglycidylique C12-C14 est également utilisé pour synthétiser d'autres molécules.
L'utilisation du diluant affecte les propriétés mécaniques et la microstructure des résines époxy.

L'éther alkylglycidylique C12-C14 est principalement utilisé comme modificateur de réduction de la viscosité dans les formulations de résines époxy.
L'éther alkylglycidylique C12-C14 est utile pour les revêtements de sol résineux, les composés de coulée, les revêtements, les adhésifs et les systèmes d'encapsulation électrique.
L'éther alkylglycidylique C12-C14 est utilisé comme intermédiaire chimique.

L'éther alkylglycidylique C12-C14 est utilisé dans les produits suivants: charges, mastics, plâtres, pâte à modeler, produits de revêtement, adhésifs et produits d'étanchéité et polymères.
L'éther alkylglycidylique C12-C14 a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).
L'éther alkylglycidylique C12-C14 est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement et extraction.

L'éther alkylglycidylique C12-C14 est utilisé pour la fabrication de produits chimiques, de produits en plastique, de produits en caoutchouc, de produits minéraux (par exemple, plâtres, ciment), d'équipements électriques, électroniques et optiques, de machines et de véhicules.
Le rejet dans l'environnement d'éther alkylglycidylique en C12-C14 peut se produire à partir d'une utilisation industrielle: dans la production d'articles, la formulation de mélanges et comme étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires).
D'autres rejets dans l'environnement d'éther alkylglycidylique en C12-C14 sont susceptibles de se produire à partir de l'utilisation à l'intérieur.

L'éther alkylglycidylique C12-C14 est souvent utilisé comme diluant réactif ou co-monomère dans les formulations de résines époxy.
L'éther alkylglycidylique C12-C14 peut réduire la viscosité du système époxy, ce qui le rend plus facile à manipuler et à appliquer.
L'éther alkylglycidylique C12-C14 est utilisé dans la formulation d'adhésifs à base d'époxy, appréciés pour leur haute résistance, leur résistance chimique et leur durabilité.

Ces adhésifs trouvent des applications dans diverses industries, notamment la construction, l'automobile et l'aérospatiale.
Dans le domaine des revêtements, cet éther glycidylique peut être utilisé comme modificateur pour améliorer les performances des revêtements à base d'époxy.
L'éther alkylglycidylique C12-C14 peut améliorer l'adhérence, la résistance aux chocs et la résistance à la corrosion.

L'alcool glycidyléther C12-C14 peut être utilisé dans la fabrication de matériaux composites, où sa fonctionnalité époxy est essentielle pour le collage et le renforcement.
Les éthers glycidyliques, y compris l'éther glycidylique de l'alcool C12-C14, sont souvent utilisés comme composants dans les formulations de résines époxy.
Ils servent à plusieurs fins dans les systèmes époxy:

Ils réduisent la viscosité des résines époxy, ce qui les rend plus faciles à manipuler et à appliquer.
Les éthers glycidyliques réagissent avec les agents de durcissement (p. ex. amines ou acides) pour former des réseaux réticulés, conférant force et durabilité aux produits époxy.
Ils peuvent modifier les propriétés mécaniques, thermiques et chimiques de l'époxy durci, en fonction de l'éther glycidylique spécifique utilisé.

L'éther alkylglycidylique C12-C14 est utilisé dans la formulation d'adhésifs à base d'époxy.
Ces adhésifs sont connus pour leur haute force d'adhérence et leur résistance à diverses conditions environnementales, ce qui les rend adaptés au collage d'une large gamme de matériaux dans des industries telles que l'automobile, la construction et l'aérospatiale.
L'éther alkylglycidylique C12-C14 peut être utilisé dans les revêtements à base d'époxy, tels que les revêtements protecteurs pour les équipements industriels, les planchers et les pipelines.

Les éthers alkylglycidyliques C12-C14 offrent une excellente résistance à la corrosion, résistance chimique et durabilité.
Dans les industries de l'aérospatiale, de l'automobile et des articles de sport, l'alcool glycidyléther C12-C14 peut être utilisé dans la production de matériaux composites.
Les composites époxy sont appréciés pour leurs propriétés légères et de haute résistance et sont utilisés pour fabriquer des composants tels que des pièces d'avion, des panneaux de carrosserie automobile et des équipements sportifs.

Dans l'industrie électronique, les éthers glycidyliques sont utilisés pour encapsuler des composants électroniques, offrant une protection contre l'humidité, les produits chimiques et les dommages physiques.
Les scellants à base d'époxy sont utilisés dans la construction et la fabrication pour l'étanchéité des joints et des interstices.
L'alcool glycidyléther C12-C14 peut faire partie de la formulation pour améliorer les propriétés adhésives et d'étanchéité.

Dans l'industrie du moulage, les composés de moulage époxy sont utilisés pour encapsuler des composants électroniques et créer des pièces moulées avec une excellente stabilité dimensionnelle et des propriétés thermiques.
L'éther alkylglycidylique C12-C14 peut être utilisé pour traiter les fibres, améliorant ainsi leur compatibilité avec les résines époxy.
Ces fibres traitées sont ensuite utilisées pour renforcer les composites époxy, améliorant ainsi leur résistance et leur rigidité.

Les éthers d'alkylglycidyl C12-C14 sont également utilisés dans des contextes de recherche et développement pour créer de nouvelles formulations époxy avec des propriétés adaptées à des applications spécifiques.
Les éthers d'alkylglycidyl C12-C14 sont utilisés dans des applications marines, telles que la construction et la réparation de bateaux.
Ils fournissent une liaison solide et résistante à l'eau, ce qui les rend adaptés au laminage de la fibre de verre et d'autres matériaux.

Les éthers d'alkylglycidyl C12-C14 sont utilisés pour les composants d'aéronefs, y compris les ailes, les fuselages et les structures intérieures.
Ces matériaux offrent des rapports résistance/poids élevés, ce qui est essentiel dans l'aviation.
L'éther alkylglycidylique C12-C14 est utilisé dans la fabrication automobile.

Ils peuvent être trouvés dans des composants tels que les composites légers renforcés de fibres de carbone, les adhésifs structurels pour l'assemblage de véhicules et les revêtements pour les pièces de moteur.
Les éthers alkylglycidyliques C12-C14 sont utilisés dans la production de cartes de circuits imprimés (PCB).
Ils servent de matériau isolant et aident à protéger les composants électroniques de l'humidité et des facteurs environnementaux.

Les éthers d'alkylglycidyl C12-C14 sont utilisés par les artistes et les artisans pour créer des sculptures, des bijoux et diverses œuvres d'art.
Ils sont appréciés pour leur clarté, leur durabilité et leur facilité d'utilisation dans les applications de moulage et de revêtement.
Les revêtements et adhésifs à base d'époxy peuvent être trouvés dans divers produits de consommation, tels que les appareils électroménagers, les articles de sport et les matériaux de rénovation domiciliaire.

Dans le secteur des énergies renouvelables, l'éther alkylglycidylique C12-C14 est utilisé dans la fabrication de pales d'éoliennes et de panneaux solaires en raison de leurs propriétés légères et durables.
L'éther alkylglycidylique C12-C14, lorsqu'il est modifié et durci de manière appropriée, peut être utilisé comme revêtement dans les matériaux d'emballage alimentaire, fournissant une barrière protectrice et améliorant l'intégrité de l'emballage.
L'éther alkylglycidylique C12-C14 est couramment disponible pour les réparations domiciliaires de bricolage, y compris la réparation des fissures dans le béton, la réparation des tuyaux qui fuient et le colmatage des trous dans divers matériaux.

Les éthers alkylglycidyliques C12-C14 continuent de faire partie intégrante du développement de matériaux avancés, y compris les composites haute performance, les revêtements aux propriétés améliorées et les nanomatériaux.
Les recherches en cours portent sur le développement d'éthers alkylglycidyliques en C12-C14 à partir de sources renouvelables, conformément aux principes de la chimie verte pour réduire l'impact environnemental.

Les utilisateurs d'éther alkylglycidylique C12-C14 doivent connaître les règlements et les directives concernant l'utilisation des éthers glycidyliques, en particulier dans les applications sensibles telles que les matériaux en contact avec les aliments ou les dispositifs médicaux.
Le respect de ces réglementations est crucial pour assurer la sécurité des produits et la santé des consommateurs.

Considérations relatives à la sécurité :
Comme pour tout composé chimique, il est essentiel de suivre les consignes de sécurité et d'utiliser des mesures de protection appropriées lors de la manipulation de l'alcool glycidyléther C12-C14.
Cela comprend le port d'un équipement de protection individuelle (EPI) approprié et le travail dans un endroit bien ventilé pour minimiser l'exposition.

L'alcool glycidyléther C12-C14 peut être irritant pour la peau et les yeux au contact.
L'exposition de la peau peut entraîner des rougeurs, des démangeaisons ou une dermatite, tandis que le contact visuel peut causer une irritation, une rougeur et un inconfort.
Une exposition prolongée ou répétée peut aggraver ces effets.

L'inhalation de vapeurs ou de brouillards d'alcool C12-C14 glycidyl éther peut irriter le système respiratoire, entraînant des symptômes tels que la toux, l'essoufflement et l'irritation de la gorge.
L'éther alkylglycidylique C12-C14 peut également causer des maux de tête ou des étourdissements s'il est exposé à des concentrations élevées dans des endroits mal ventilés.
Lorsqu'ils sont mal manipulés ou entreposés, les éthers alkylglycidyliques en C12-C14 peuvent subir des réactions dangereuses, telles que la polymérisation ou la décomposition, en particulier lorsqu'ils sont exposés à des températures élevées ou à des substances incompatibles.

Synonymes
68609-97-2
Lauryl glycidyl éther
ÉTHER DE DODÉCYLGLYCIDYL
Glycidyl Lauryl Éther
2-(dodécoxyméthyl)oxirane
Éther glycidylique N-dodécylique
2-[(Dodécyloxy)méthyl]oxirane
Éther dodécyle 2,3-époxypropyle
((Dodécyloxy)méthyl)oxirane
1-(dodécyloxy)-2,3-époxypropane
((dodécyloxy)méthyl)oxirane
laurylglycidyléther
éther de dodécylglycidyl
CCRIS 2635
HSDB 5462
Éther glycidylique 1-dodécyle
EINECS 219-554-1
[(Dodécyloxy)méthyl]oxirane
DTXSID0025494
[(dodécyloxy)méthyl]oxirane
UNII-84653J97E3
2-((dodécyloxy)méthyl)oxirane
84653J97E3
2-((dodécyloxy)méthyl)oxirane
2-[(dodécyloxy)méthyl]oxirane
C12Ge cpd
Éther de glycidyldodécyl
DSSTox_CID_5494
DENACOL EX 192
2-(dodécyloxyméthyl)oxirane
DSSTox_RID_78656
DSSTox_GSID_28774
SCHEMBL15970
DTXCID605494
ÉTHER GLYCIDYLIQUE N-DODÉCYLIQUE
CHEMBL1574716
2-[(Dodécyloxy)méthyl]oxirane #
Tox21_200787
Tox21_303452
MFCD00022344
STL453740
ALCOOL DODÉCYLIQUE ÉTHER GLYCIDYLIQUE
AKOS024332807
ÉTHER DODÉCYL 2,3-ÉPOXYPROPYLE
LS-1057
1-DODÉCYL GLYCIDYL ÉTHER [HSDB]
NCGC00091870-01
NCGC00091870-02
NCGC00257384-01
NCGC00258341-01
1,2-ÉPOXY-3-(DODÉCYLOXY)PROPANE
AS-60945
CAS-2461-18-9
CAS-68609-97-2
CS-0320613
G0448
T72150
CHLORHYDRATE DE 6-AMINO-2-MÉTHYL-2-HEPTANOL
Q27269499
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 1 EO
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 2 EO %28
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 2 EO %70
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 3 EO
N° CAS : 68411-27-8, Le C12-15 Alkyl benzoate est utilisé en cosmétique en tant qu'émollient (adoucissant). Il est souvent aussi utilisé en tant qu'agent antimicrobien dans les crèmes solaires. C'est un ester de faible poids moléculaire d'acide benzoïque et d'alcools en C12-C15. On le retrouve dans de très nombreux produits pour la peau et les cheveux en raison de ses facultés à rendre le toucher soyeux et doux. Benzoic acid, C12-15-alkyl esters; C12 C15 alkyl benzoate; C12-C15 alkyl benzoate;Esterification product of alcohols, C12-15 (linear and branched) and benzoic acid
C12-C15 alkyl benzoate
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3
C13 Alcohol 3,5,6,8(Ethoxylated)
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3
C13 Alcohol 3,5,6,8,12,20 (Ethoxylated)
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3
C13-15 PARETH-11
C13-15 PARETH-21, Nom INCI : C13-15 PARETH-21, N° EINECS/ELINCS : 931-662-7, Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C13-15 PARETH-21
Nom INCI : C13-15 PARETH-7
C13-15 PARETH-7
C14-15 ALCOHOLS; N° CAS : 75782-87-5, Nom INCI : C14-15 ALCOHOLS, Classification : Alcool, Emollient : Adoucit et assouplit la peau Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent d'entretien de la peau : Maintient la peau en bon état Agent stabilisant : Améliore les ingrédients ou la stabilité de la formulation et la durée de conservation Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
C14-15 ALCOHOLS
C14-15 PARETH-7,N° CAS : 68951-67-7, Nom INCI : C14-15 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C14-C15, éthoxylés; Noms anglais : Alcohols, C14-15, ethoxylated; POLY(OXY-1,2-ETHANEDIYL), .ALPHA.-HYDRO-.OMEGA.-HYDROXY-, MONO-C14-15-ALKYL ETHERS; 1-ethoxypentadecane
C14-15 PARETH-7
Nom INCI : C14-22 ALCOHOLS, Classification : Alcool gras, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion
C14-22 ALCOHOLS
Alcohols, C16-18, ethoxylated; (C16-C18) Alkyl alcohol ethoxylate; (C16-C18) Fatty alcohol, ethylene oxide reaction product; Alfonic 1618-46; Aliphatic (C16-C18)alcohol, ethoxylated; Ceteareth 11; Ceteareth 12; Ceteareth 15; Ceteareth 16; Ceteareth 18; Ceteareth 25; Ceteareth 50; Ceteareth 80 CAS no.: 68439-49-6
C15-19 Alkane
EMOGREEN L 19 CAS Number 64741-76-0/64742-46-7
C16 18 Alcohol 6,11,18,25,50, 80 (Ethoxylated)
Alcohols, C16-18, ethoxylated; (C16-C18) Alkyl alcohol ethoxylate; (C16-C18) Fatty alcohol, ethylene oxide reaction product; Alfonic 1618-46; Aliphatic (C16-C18)alcohol, ethoxylated; Ceteareth 11; Ceteareth 12; Ceteareth 15; Ceteareth 16; Ceteareth 18; Ceteareth 25; Ceteareth 50; Ceteareth 80 CAS no.: 68439-49-6
C16-18 ALKYL AMINES
C18-22 HYDROXYALKYL HYDROXYPROPYL GUAR, Origine(s) : Synthétique, Nom INCI : C18-22 HYDROXYALKYL HYDROXYPROPYL GUAR, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance, Agent d'entretien de la peau : Maintient la peau en bon état
C18-22 HYDROXYALKYL HYDROXYPROPYL GUAR
C20-22 ALCOHOLS, N° CAS : 90604-34-5, Nom INCI : C20-22 ALCOHOLS, N° EINECS/ELINCS : 292-327-2, Classification : Alcool gras, Ses fonctions (INCI), Agent fixant : Permet la cohésion de différents ingrédients cosmétiques, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
C20-22 ALCOHOLS
C20-40 ALCOHOLS, N° CAS : 222400-16-0, Nom INCI : C20-40 ALCOHOLS, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent d'entretien de la peau : Maintient la peau en bon état, Agent stabilisant : Améliore les ingrédients ou la stabilité de la formulation et la durée de conservation
C20-40 ALCOHOLS
Octanoic acid; Caprylic acid (CAS 124-07-2); CAS number: 124-07-2; L'acide octanoïque ou acide caprylique est un acide gras saturé à chaîne linéaire comportant 8 atomes de carbone. Acide gras saturé de chaine moyenne d’origine naturelle, l’acide Caprylique, d’aspect liquide huileux, est connu pour ses propriétés antifongiques.Il est présent naturellement dans la noix de coco et le lait maternel, l'huile de palme. C'est un liquide huileux, très peu soluble dans l'eau, ayant un goût rance légèrement désagréable.L'acide caprylique est utilisé commercialement dans la fabrication d'esters utilisés en parfumerie et dans la fabrication de colorants.L'acide caprylique a été découvert par le chimiste français Jules BouisIl est surtout employé pour la fabrication d’esters.Utilisations: L'acide caprylique trouve un usage commercial dans la production d'esters utilisés en parfumerie et dans l'industrie des teintures. L'acide caprylique est connu pour ses propriétés antifongiques et souvent recommandé par les nutritionnistes dans le traitement de la candidose (ou candida). Lorsqu'il y a une prolifération des candidas qui sont des levures saprophytes du système intestinal, l'acide caprylique a une action significative ; d'où son usage dans la candidose. L'acide caprylique est aussi utilisé dans le traitement de quelques maladies infectieuses. Du fait de sa relativement courte chaîne moléculaire, il ne présente pas de difficultés de pénétration des membranes cellulaires épaisses, d'où son efficacité pour combattre certaines bactéries recouvertes de lipides telles que le staphylocoque doré et diverses variétés de streptocoques.Caprylic Acid; Acid octanoic (ro); Acide octanoïque (fr); Acido ottanoico (it); Aċidu ottanojku (mt); Kwas kaprylowy (pl); Kyselina oktánová (sk); Octaanzuur (nl); Octanoic acid (no); Octansyre (da); Octansäure (de); Oktaanhape (et); Oktaanihappo (fi); Oktano rūgštis (lt); Oktanojska kislina (sl); Oktanová kyselina (cs); Oktanska kiselina (hr); Oktansyra (sv); Oktánsav (hu); Oktānskābe (lv); Ácido octanoico (es); Οκτανικό οξύ (el); Октанова киселина (bg); 1-heptanecarboxylic acid;1-Octansäure; Acid C8, Caprylic acid, Octanoic acid; Acido Octanoico; C-8; Caprylic acid, Octanoic acid; Caprylsäure; CLP octanoic acid (PGC Only); n-Caprylic acid; n-Octanoic Acid; N-prop-2-enylprop-2-en-1-amine; Octanoic acid (caprylic acid); Octanoic acid(caprylic acid). s: CAPRYLIC ACID (POFAC 0899); Ecoric 8/99; KORTACID 0899/0898/0895/0890; MMFA 0898 (Caprylic Acid 98%); Oktansäure; PALMAC 99-08; PALMATA 0899; RADIACID 0608; RADIACID 0698; SINAR – FA 0899; UNIOLEO FA 0899. Solubilité 0,68 g·l-1 eau à 20 °C. Sol dans l'éthanol, le chloroforme, l'éther, l'éther de pétrole, le disulfure de carbone, l'acide acétique glacial
C20-C40 Alcohol
Alcohols, C20-40; Performacol 350 alcohol; C20-40 alcohols (melting point 79C); C20-40 alcohols (hydroxyl number 115); C20-40 alcohols (mp 79C); CAS NO:222400-16-0
C8 Acide Caprylique (Caprylic acid)
Nom INCI : C8-12 ACID TRIGLYCERIDE Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état Solvant : Dissout d'autres substances Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
C8-12 ACID TRIGLYCERIDE
C9-11 ALCOHOLS, N° CAS : 66455-17-2, Nom INCI : C9-11 ALCOHOLS, N° EINECS/ELINCS : 266-367-6, Emollient : Adoucit et assouplit la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Alcohols, C9-11; Alcohols C7-C9; decan-1-ol; Dodecanol
C8-C10 Methyl Ester
C11 (6 Mol EO +4 Mol Po); c11 6eo, 4po; C 11 Alcohol 6 ethoxylate 4 propoxylate; alcohol ethoxylate CAS-No: 68439-50-9
C9-11 ALCOHOLS
Nom INCI : C9-11 FATTY ALCOHOL 6 EO, Classification : Composé éthoxylé. Noms français :Alcool d'alkyl (C9-C11) éthoxylé; Noms anglais : (C9-C11) ALKYL ALCOHOL, ETHOXYLATE; ALCOHOLS, C9-11, ETHOXYLATED. Alcohols, C9-11, ethoxylated. : (C9-C11)Alkyl alcohol ethoxylate; 2-[2-[2-[2-(2-decoxyethoxy)ethoxy]ethoxy]ethoxy]ethanol; a-((nonyl - undecyl)oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); ALCOHOL C9-11, ETHOXYLATED; ALCOHOL ETHOXYLATE, C9-15; ALCOHOL ETHOXYLATES; Alcohol ethoxylates (8 EO); Alcohols C9-11 Ethoxylated; Alcohols C9-11, ethoxylated; Alcohols C9-11,ethoxylated; Alcohols, C7-11, ethoxylated; Alcohols, C9-11 ethoxylated; alcohols, C9-11 ethoxylated,; Alcohols, C9-11 ethoxylated, < 2.5 EO; Alcohols, C9-11 ethoxylated, > 6 EO; Alcohols, C9-11, branched and linear, ethoxylated; Alcohols, C9-11, ethoxylated (1 - 2.5 mol EO); Alcohols, C9-11, ethoxylated (2,5-4EO); Alcohols, C9-11, ethoxylated (3 mol EO average molar ratio); Alcohols, C9-11, ethoxylated (8EO); ALCOHOLS, C9-11, ETHOXYLATED (EO>2.5); Alcohols, C9-11, ethoxylated 2,5 - 4 EO Alcohols, C9-C11, ethoxylated; alcohols,C9-11,ethoxylated; Alkohole, C9-11, ethoxyliert; Alkoholethoxylat; Alkyl alcohol, C9-C11, ethoxylated; ALKYL(C9-11) ALCOHOL, ETHOXYLATED; C9-11 ALCOHOL (6) ETHOXYLATE; C9-C11 Pareth-3; ETHOXYLATED ALCOHOL; Ethoxylated C9 -11 alcohols; ETHOXYLATED C9-11 ALCOHOLS; Ethoxylated C9-11 alcohols (CAS # 68439-46-3) (C9-C11) Alkyl alcohol, ethoxylate; 1-Ethoxynonan [German] ; 1-Ethoxynonane ; 1-Éthoxynonane [French] ; Ethyl nonyl ether; Nonane, 1-ethoxy- [ACD/Index Name]; Nonyl ethyl ether; C9-11 Pareth-3
C9-11 FATTY ALCOHOL 6 EO
C9-11 PARETH-3, N° CAS : 68439-46-3, Nom INCI : C9-11 PARETH-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Classification : Composé éthoxylé. Noms français :Alcool d'alkyl (C9-C11) éthoxylé; Noms anglais : (C9-C11) ALKYL ALCOHOL, ETHOXYLATE; ALCOHOLS, C9-11, ETHOXYLATED. Alcohols, C9-11, ethoxylated. : (C9-C11)Alkyl alcohol ethoxylate; 2-[2-[2-[2-(2-decoxyethoxy)ethoxy]ethoxy]ethoxy]ethanol; a-((nonyl - undecyl)oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); ALCOHOL C9-11, ETHOXYLATED; ALCOHOL ETHOXYLATE, C9-15; ALCOHOL ETHOXYLATES; Alcohol ethoxylates (8 EO); Alcohols C9-11 Ethoxylated; Alcohols C9-11, ethoxylated; Alcohols C9-11,ethoxylated; Alcohols, C7-11, ethoxylated; Alcohols, C9-11 ethoxylated; alcohols, C9-11 ethoxylated,; Alcohols, C9-11 ethoxylated, < 2.5 EO; Alcohols, C9-11 ethoxylated, > 6 EO; Alcohols, C9-11, branched and linear, ethoxylated; Alcohols, C9-11, ethoxylated (1 - 2.5 mol EO); Alcohols, C9-11, ethoxylated (2,5-4EO); Alcohols, C9-11, ethoxylated (3 mol EO average molar ratio); Alcohols, C9-11, ethoxylated (8EO); ALCOHOLS, C9-11, ETHOXYLATED (EO>2.5); Alcohols, C9-11, ethoxylated 2,5 - 4 EO Alcohols, C9-C11, ethoxylated; alcohols,C9-11,ethoxylated; Alkohole, C9-11, ethoxyliert; Alkoholethoxylat; Alkyl alcohol, C9-C11, ethoxylated; ALKYL(C9-11) ALCOHOL, ETHOXYLATED; C9-11 ALCOHOL (6) ETHOXYLATE; C9-C11 Pareth-3; ETHOXYLATED ALCOHOL; Ethoxylated C9 -11 alcohols; ETHOXYLATED C9-11 ALCOHOLS; Ethoxylated C9-11 alcohols (CAS # 68439-46-3) (C9-C11) Alkyl alcohol, ethoxylate; 1-Ethoxynonan [German] ; 1-Ethoxynonane ; 1-Éthoxynonane [French] ; Ethyl nonyl ether; Nonane, 1-ethoxy- [ACD/Index Name]; Nonyl ethyl ether; C9-11 Pareth-3
C9-11 PARETH-3
C9-11 PARETH-3, N° CAS : 68439-46-3, Nom INCI : C9-11 PARETH-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Classification : Composé éthoxylé. Noms français :Alcool d'alkyl (C9-C11) éthoxylé; Noms anglais : (C9-C11) ALKYL ALCOHOL, ETHOXYLATE; ALCOHOLS, C9-11, ETHOXYLATED. Alcohols, C9-11, ethoxylated. : (C9-C11)Alkyl alcohol ethoxylate; 2-[2-[2-[2-(2-decoxyethoxy)ethoxy]ethoxy]ethoxy]ethanol; a-((nonyl - undecyl)oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); ALCOHOL C9-11, ETHOXYLATED; ALCOHOL ETHOXYLATE, C9-15; ALCOHOL ETHOXYLATES; Alcohol ethoxylates (8 EO); Alcohols C9-11 Ethoxylated; Alcohols C9-11, ethoxylated; Alcohols C9-11,ethoxylated; Alcohols, C7-11, ethoxylated; Alcohols, C9-11 ethoxylated; alcohols, C9-11 ethoxylated,; Alcohols, C9-11 ethoxylated, < 2.5 EO; Alcohols, C9-11 ethoxylated, > 6 EO; Alcohols, C9-11, branched and linear, ethoxylated; Alcohols, C9-11, ethoxylated (1 - 2.5 mol EO); Alcohols, C9-11, ethoxylated (2,5-4EO); Alcohols, C9-11, ethoxylated (3 mol EO average molar ratio); Alcohols, C9-11, ethoxylated (8EO); ALCOHOLS, C9-11, ETHOXYLATED (EO>2.5); Alcohols, C9-11, ethoxylated 2,5 - 4 EO Alcohols, C9-C11, ethoxylated; alcohols,C9-11,ethoxylated; Alkohole, C9-11, ethoxyliert; Alkoholethoxylat; Alkyl alcohol, C9-C11, ethoxylated; ALKYL(C9-11) ALCOHOL, ETHOXYLATED; C9-11 ALCOHOL (6) ETHOXYLATE; C9-C11 Pareth-3; ETHOXYLATED ALCOHOL; Ethoxylated C9 -11 alcohols; ETHOXYLATED C9-11 ALCOHOLS; Ethoxylated C9-11 alcohols (CAS # 68439-46-3) (C9-C11) Alkyl alcohol, ethoxylate; 1-Ethoxynonan [German] ; 1-Ethoxynonane ; 1-Éthoxynonane [French] ; Ethyl nonyl ether; Nonane, 1-ethoxy- [ACD/Index Name]; Nonyl ethyl ether; C9-11 Pareth-3
C9-11 PARETH-6
C9-11 PARETH-8, N° CAS : 68439-46-3, Nom INCI : C9-11 PARETH-8, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Classification : Composé éthoxylé. Noms français :Alcool d'alkyl (C9-C11) éthoxylé; Noms anglais : (C9-C11) ALKYL ALCOHOL, ETHOXYLATE; ALCOHOLS, C9-11, ETHOXYLATED. Alcohols, C9-11, ethoxylated. : (C9-C11)Alkyl alcohol ethoxylate; 2-[2-[2-[2-(2-decoxyethoxy)ethoxy]ethoxy]ethoxy]ethanol; a-((nonyl - undecyl)oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); ALCOHOL C9-11, ETHOXYLATED; ALCOHOL ETHOXYLATE, C9-15; ALCOHOL ETHOXYLATES; Alcohol ethoxylates (8 EO); Alcohols C9-11 Ethoxylated; Alcohols C9-11, ethoxylated; Alcohols C9-11,ethoxylated; Alcohols, C7-11, ethoxylated; Alcohols, C9-11 ethoxylated; alcohols, C9-11 ethoxylated,; Alcohols, C9-11 ethoxylated, < 2.5 EO; Alcohols, C9-11 ethoxylated, > 6 EO; Alcohols, C9-11, branched and linear, ethoxylated; Alcohols, C9-11, ethoxylated (1 - 2.5 mol EO); Alcohols, C9-11, ethoxylated (2,5-4EO); Alcohols, C9-11, ethoxylated (3 mol EO average molar ratio); Alcohols, C9-11, ethoxylated (8EO); ALCOHOLS, C9-11, ETHOXYLATED (EO>2.5); Alcohols, C9-11, ethoxylated 2,5 - 4 EO Alcohols, C9-C11, ethoxylated; alcohols,C9-11,ethoxylated; Alkohole, C9-11, ethoxyliert; Alkoholethoxylat; Alkyl alcohol, C9-C11, ethoxylated; ALKYL(C9-11) ALCOHOL, ETHOXYLATED; C9-11 ALCOHOL (6) ETHOXYLATE; C9-C11 Pareth-3; ETHOXYLATED ALCOHOL; Ethoxylated C9 -11 alcohols; ETHOXYLATED C9-11 ALCOHOLS; Ethoxylated C9-11 alcohols (CAS # 68439-46-3) (C9-C11) Alkyl alcohol, ethoxylate; 1-Ethoxynonan [German] ; 1-Ethoxynonane ; 1-Éthoxynonane [French] ; Ethyl nonyl ether; Nonane, 1-ethoxy- [ACD/Index Name]; Nonyl ethyl ether; C9-11 Pareth-3
C9-11 PARETH-8
CAFFEINE, N° CAS : 58-08-2 - Caféine, Autres langues : Cafeína, Caffeina, Koffein, Nom INCI : CAFFEINE, Nom chimique : 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl-, N° EINECS/ELINCS : 200-362-1, La caféine est réputée pour être un actif anti-cellulite et minceur. En cosmétique, elle est donc utilisée dans les soins minceurs en application locale. On la retrouve assez souvent dans les soins anti-âges et contours des yeux, il semble qu'elle est un effet anti-poche et raffermissant. Elle est autorisée en bio. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit ,Agent d'entretien de la peau : Maintient la peau en bon état, Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Principaux synonymes Noms français : 1,3,7-TRIMETHYL-2,6-DIOXOPURINE 1,3,7-TRIMETHYLXANTHINE 1-METHYLTHEOBROMINE 1H-PURINE-2,6-DIONE, 3,7-DIHYDRO-1,3,7-TRIMETHYL- 3,7-DIHYDRO-1,3,7-TRIMETHYL-1H-PURINE-2,6-DIONE 7-METHYLTHEOPHYLLINE Caféine Caféine anhydre METHYLTHEOBROMINE THEOBROMINE, 1-METHYL THEOPHYLLINE, 7-METHYL TRIMETHYL-1,3,7 DIOXO-2,6 PURINE TRIMETHYL-1,3,7 XANTHINE Noms anglais : ANHYDROUS CAFFEINE CAFFEIN Caffeine Utilisation et sources d'émission Additif alimentaire; 1-metilteobromina (nl) cafeina (ro) cafeína (es) caffeina (it) caffeine (nl) caféine (fr) coffein (da) kofeiin (et) Kofeiini (fi) kofein (cs) kofeina (pl) kofeinas (lt) kofeín (sk) kofeīns (lv) koffein (hu) Trimethylxanthen (de) καφεΐν (el) кофеин (bg) CAS names: 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 1,3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione 1,3,7-trimethyl xanthine 1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione 1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione 1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione 1,3,7-Trimethyl-2,6-purindion 1,3,7-Trimethyl-3, 7-dihydro-1H-purine-2,6-dione 1,3,7-Trimethyl-3,7-dihydro-1H-purine-2,6-dione 1,3,7-Trimethyl-3,7-dihydro-2H-purin-2,6-dion 1,3,7-trimethylpurine -2,6-dione 1,3,7-Trimethylpurine-2,6-dione 1,3,7-trimethylpyrine-2,6-dione 1,3,7-TRIMETHYLXANTHINE 1,3,7-Trimethylxanthine, Coffeinum, 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, 1,3,7-Trimethyl-2,6-dioxopurine, 1,3,7-Trimethyl-7H-purine-2,6-dione, 1,3,7-Trimethylxanthine 1,3,7-Trimethylxanthine; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione 1,3,7-trimetilxantina 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione Coffein, wasserfrei s 1,3,7-Trimethyl-2,6-dioxopurine 1H-Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- (9CI) 7-Methyltheophylline Alert-Pep Anhydrous caffeine Caffein Caffeine (8CI) CAFFEINE MELTING POINT STANDARD Cafipel Coffeinum Guaranine Mateina Methyltheobromine Methyltheothylline No-Doz Refresh'n Stim Thein Theine Tri-Aqua
CAB-O-SIL M-5 SILICE FUMÉE

La silice fumée CAB-O-SIL M-5 est un excipient d'une pureté extrêmement élevée qui peut être utilisé comme additif multifonctionnel dans l'industrie pharmaceutique.
La silice fumée CAB-O-SIL M-5 est compatible avec de nombreux ingrédients pharmaceutiques et peut agir comme une aide à l'écoulement pour réduire les problèmes courants dans la production de comprimés et de capsules, notamment un mauvais écoulement dans la trémie, la ségrégation des ingrédients actifs/inactifs et la rupture des comprimés pendant le compactage. .
La silice fumée CAB-O-SIL M-5 est un oxyde de silicium composé de molécules triatomiques linéaires dans lesquelles un atome de silicium est lié de manière covalente à deux oxygènes.

CAS : 112945-52-5
FM : O2Si
MW : 60,08
EINECS : 231-545-4

Synonymes
acticel;GEL DE SILICE 7G;GEL DE SILICE 8-20 MAILLES;GEL DE SILICE 12-28 MAILLES;GEL DE SILICE 100;GEL DE SILICE 60;GEL DE SILICE 30;GEL DE SILICE 60 G;Silice pyrogène; Fumée de silice; Silice colloïdale fumée ; Silice fumée; l'anhydride silicique; dioxyde de silicium fumé; Aérosil ; Cab-O-Sil ; Cabosil; dioxyde de silicium amorphe, silice amorphe synthétique ; dioxyde de silicium colloïdal, ts-100 acematt, noir de carbone blanc

La silice fumée synthétique CAB-O-SIL M-5 possède des propriétés épaississantes et thixotropiques intéressantes, ainsi qu'une énorme surface externe.
La silice fumée CAB-O-SIL M-5 est produite par un processus d'hydrolyse en phase vapeur utilisant des chlorosilanes ou des silanes substitués tels que le tétrachlorure de silicium dans une flamme d'hydrogène et d'oxygène.
La silice fumée CAB-O-SIL M-5 est formée et collectée à l'état sec.
La silice fumée CAB-O-SIL M-5 ne contient aucune silice cristalline détectable.
La silice fumée CAB-O-SIL M-5 est une poudre composée de sphères de silice amorphe de taille submicronique disposées en chaînes ramifiées de différentes longueurs.
Pour produire de la silice fumée CAB-O-SIL M-5, du tétrachlorure de silicium ou du quartz est brûlé dans une flamme d'hydrogène et d'oxygène pour produire des sphères fondues de taille uniforme qui fusionnent ensuite en agrégats tridimensionnels.
Bien que les longueurs et les formes de ces chaînes diffèrent (ce qui leur confère une énorme surface externe), la taille des sphères elles-mêmes peut être contrôlée pendant le processus de préparation.

La silice fumée CAB-O-SIL M-5 présente des propriétés thixotropes et est généralement utilisée comme dessicant, épaississant et anti-agglomérant, ainsi que comme stabilisant dans les produits pharmaceutiques, les cosmétiques, les peintures et revêtements, les produits d'étanchéité et les batteries à gel (en tant qu'additif). aux électrolytes à base d'acide).
American Elements peut produire de la silice fumée CAB-O-SIL M-5 à la fois hydrophile et hydrophobe (traitée) dans une gamme de tailles et de surfaces différentes.
La silice fumée CAB-O-SIL M-5 est une silice fumée à surface moyenne qui permet une augmentation significative de la viscosité dans les systèmes liquides, la libre circulation des poudres et le renforcement des silicones et des caoutchoucs organiques.
La silice fumée CAB-O-SIL M-5 est la plus efficace dans les systèmes de polarité non polaire à moyenne et offre un excellent équilibre entre efficacité épaississante et dispersibilité.
Les principales caractéristiques de la silice fumée CAB-O-SIL M-5 comprennent une pureté élevée, une structure agrégée, une taille de particule submicronique, une faible densité apparente et une surface hydrophile.

Propriétés chimiques de la silice fumée CAB-O-SIL M-5
Point de fusion : >1600°C
Densité : 2,3 lb/pi3 à 25 °C (densité apparente)(lit.)
Indice de réfraction : n20/D 1,46 (lit.)
Solubilité : Pratiquement insoluble dans les solvants organiques, l’eau et les acides, à l’exception de l’acide fluorhydrique ; soluble dans les solutions chaudes d'hydroxyde alcalin.
Forme une dispersion colloïdale avec l'eau. Pour Aerosil, la solubilité dans l’eau est de 150 mg/L à 258℃ (pH 7).
Forme : poudre
Gravité spécifique : 2,2
Sensibilité hydrolytique 5 : forme un hydrate réversible
Référence de la base de données CAS : 112945-52-5 (référence de la base de données CAS)
Système d'enregistrement des substances de l'EPA : Silice fumée CAB-O-SIL M-5 (112945-52-5)

La silice fumée CAB-O-SIL M-5, la forme non cristalline de SiO2, est une poudre amorphe transparente à grise, inodore.
La silice fumée CAB-O-SIL M-5 est une silice fumée submicroscopique avec une taille de particule d'environ 15 nm.
La silice fumée CAB-O-SIL M-5 est une poudre amorphe légère, lâche, de couleur blanc bleuâtre, inodore, insipide.

Les usages
La silice fumée CAB-O-SIL M-5 possède des propriétés épaississantes et thixotropiques intéressantes, ainsi qu'une énorme surface externe.
La silice fumée CAB-O-SIL M-5 est produite par un processus d'hydrolyse en phase vapeur utilisant des chlorosilanes ou des silanes substitués tels que le tétrachlorure de silicium dans une flamme d'hydrogène et d'oxygène.
La silice fumée CAB-O-SIL M-5 est formée et collectée à l'état sec.
La silice fumée CAB-O-SIL M-5 ne contient aucune silice cristalline détectable.
CAB-O-SIL® EH-5F
CAB-O-SIL® EH-5F, également connue sous le nom de silice pyrogène car elle est produite dans une flamme, est constituée de gouttelettes microscopiques de silice amorphe fusionnées en particules secondaires tridimensionnelles ramifiées, en forme de chaîne, qui s'agglomèrent ensuite en particules tertiaires.
La poudre résultante a une densité apparente extrêmement faible et une surface spécifique élevée.
La structure tridimensionnelle du CAB-O-SIL® EH-5F se traduit par un comportement thixotrope augmentant la viscosité lorsqu'il est utilisé comme épaississant ou comme charge renforçante.

CAS : 112945-52-5
FM : O2Si
MW : 60,08
EINECS : 231-545-4

Synonymes
acticel;GEL DE SILICE 7G;GEL DE SILICE 8-20 MAILLES;GEL DE SILICE 12-28 MAILLES;GEL DE SILICE 100;GEL DE SILICE 60;GEL DE SILICE 30;GEL DE SILICE 60 G;Silice pyrogène; Fumée de silice; Silice colloïdale fumée ; Silice fumée; l'anhydride silicique; dioxyde de silicium fumé; Aérosil ; Cab-O-Sil ; Cabosil; dioxyde de silicium amorphe, silice amorphe synthétique ; dioxyde de silicium colloïdal, ts-100 acematt, noir de carbone blanc

CAB-O-SIL® EH-5F est un oxyde de silicium constitué de molécules triatomiques linéaires dans lesquelles un atome de silicium est lié de manière covalente à deux oxygènes.

Propriétés chimiques du CAB-O-SIL® EH-5F
Point de fusion : >1600°C
densité : 2,3 lb/pi3 à 25 °C (densité apparente)(lit.)
indice de réfraction : n20/D 1,46 (lit.)
solubilité : pratiquement insoluble dans les solvants organiques, l'eau et les acides, à l'exception de l'acide fluorhydrique ; soluble dans les solutions chaudes d'hydroxyde alcalin.
Forme une dispersion colloïdale avec l'eau. Pour Aerosil, la solubilité dans l’eau est de 150 mg/L à 258℃ (pH 7).
forme : poudre
Gravité spécifique : 2,2
Sensibilité hydrolytique 5 : forme un hydrate réversible
Référence de la base de données CAS : 112945-52-5 (référence de la base de données CAS)
Système d'enregistrement des substances de l'EPA : CAB-O-SIL® EH-5F (112945-52-5)

CAB-O-SIL® EH-5F, la forme non cristalline de SiO2, est une poudre amorphe transparente à grise, inodore.
CAB-O-SIL® EH-5F est une silice fumée submicroscopique avec une taille de particule d'environ 15 nm.
CAB-O-SIL® EH-5F est une poudre amorphe légère, lâche, de couleur blanc bleuâtre, inodore et insipide.

Propriétés
Silice fuméeCAB-O-SIL® EH-5FLa taille des particules primaires est de 5 à 50 nm.
Les particules sont non poreuses et ont une surface spécifique de 50 à 600 m2/g.
La densité est de 160 à 190 kg/m3.

Applications
CAB-O-SIL® EH-5F sert d'agent épaississant universel et d'agent antiagglomérant (agent d'écoulement libre) dans les poudres.
Comme le gel de silice, CAB-O-SIL® EH-5F sert de déshydratant.
CAB-O-SIL® EH-5F est utilisé en cosmétique pour ses propriétés diffusantes de la lumière.
CAB-O-SIL® EH-5F est utilisé comme abrasif léger, dans des produits comme le dentifrice. D'autres utilisations incluent les charges dans les élastomères de silicone et l'ajustement de la viscosité dans les peintures, les revêtements, les encres d'imprimerie, les adhésifs et les résines polyester insaturées.
CAB-O-SIL® EH-5F forme facilement une structure de réseau au sein du bitume et améliore son élasticité.

Applications pharmaceutiques
CAB-O-SIL® EH-5F est largement utilisé dans les produits pharmaceutiques, cosmétiques et alimentaires.
La petite taille de particules et la grande surface spécifique du CAB-O-SIL® EH-5F lui confèrent des caractéristiques d'écoulement souhaitables qui sont exploitées pour améliorer les propriétés d'écoulement des poudres sèches dans un certain nombre de processus tels que la fabrication de comprimés et le remplissage de capsules.
CAB-O-SIL® EH-5F est également utilisé pour stabiliser les émulsions et comme agent épaississant et suspensif thixotrope dans les gels et les préparations semi-solides.
Avec d'autres ingrédients d'indice de réfraction similaire, des gels transparents peuvent être formés.
Le degré d'augmentation de la viscosité dépend de la polarité du liquide (les liquides polaires nécessitent généralement une plus grande concentration de dioxyde de silicium colloïdal que les liquides non polaires). La viscosité est largement indépendante de la température.

Cependant, les modifications du pH d'un système peuvent affecter la viscosité1.
Dans les aérosols autres que ceux destinés à l'inhalation, CAB-O-SIL® EH-5F est utilisé pour favoriser la suspension des particules, éliminer les dépôts durs et minimiser le colmatage des buses de pulvérisation.
CAB-O-SIL® EH-5F est également utilisé comme désintégrant de comprimés et comme agent dispersant adsorbant pour les liquides en poudre.
CAB-O-SIL® EH-5F est fréquemment ajouté aux formulations de suppositoires contenant des excipients lipophiles pour augmenter la viscosité, empêcher la sédimentation pendant le moulage et diminuer le taux de libération.
CAB-O-SIL® EH-5F est également utilisé comme adsorbant lors de la préparation de microsphères de cire ; comme agent épaississant pour les préparations topiques ; et a été utilisé pour faciliter la lyophilisation de nanocapsules et de suspensions de nanosphères.

Problèmes de santé
CAB-O-SIL® EH-5F n'est pas répertorié comme cancérogène par l'OSHA, le CIRC ou le NTP.
En raison de sa finesse et de sa minceur, la silice fumée peut facilement être aéroportée, ce qui en fait un risque d'inhalation susceptible de provoquer une irritation.

Production
CAB-O-SIL® EH-5F est fabriqué à partir de pyrolyse à la flamme de tétrachlorure de silicium ou de sable de quartz vaporisé dans un arc électrique à 3000 °C.
Les principaux producteurs mondiaux sont Evonik (qui vend le CAB-O-SIL® EH-5F sous le nom d'Aerosil), Cabot Corporation (Cab-O-Sil), Wacker Chemie (HDK), Dow Corning, Heraeus (Zandosil), Tokuyama Corporation ( Reolosil), OCI (Konasil), Orisil (Orisil) et Xunyuchem(XYSIL).

Méthodes de purification
La purification du CAB-O-SIL® EH-5F pour les applications de haute technologie utilise la distillation de vapeur isopiestique à partir d'acides volatils concentrés et est absorbée dans de l'eau de haute pureté.
Les impuretés restent derrière.
Le nettoyage préliminaire pour éliminer les contaminants de surface utilise une gravure par immersion dans HF ou un mélange de HCl, H2O2 et d'eau déminéralisée.
CAFÉINE
DESCRIPTION:

La caféine est un produit chimique naturel aux effets stimulants.
La caféine se trouve dans le café, le thé, le cola, le cacao, le guarana, le yerba maté et plus de 60 autres produits.
La caféine agit en stimulant le système nerveux central, le cœur, les muscles et les centres qui contrôlent la tension artérielle.

Formule chimique : C8H10N4O2
Poids moyen : 194,1906
Monoisotopique : 194,080375584

SYNONYMES DE CAFÉINE :
Guaranine, méthylthéobromine, 1,3,7-triméthylxanthine, 7-méthylthéophylline[1] Théine, 1-méthylthéobromine, 1,3,7-triméthyl-2,6-dioxopurine, 1,3,7-triméthylpurine-2,6- dione,1,3,7-triméthylxanthine,3,7-Dihydro-1,3,7-triméthyl-1H-purine-2,6-dion,7-méthylthéophylline,Caféine anhydre


La caféine peut augmenter la tension artérielle, mais pourrait ne pas avoir cet effet chez les personnes qui en consomment régulièrement. La caféine peut également agir comme une « pilule d’eau » qui augmente le débit urinaire.




Les gens consomment le plus souvent de la caféine pour lutter contre la vigilance mentale, les maux de tête, les migraines, les performances sportives, la mémoire et l’obésité.
Il est également utilisé pour traiter l’asthme, les maladies de la vésicule biliaire, le TDAH, l’hypotension artérielle, la dépression et de nombreuses autres affections, mais il n’existe aucune preuve scientifique solide pour étayer la plupart de ces autres utilisations.

Les produits à base de caféine vendus sous des formes très concentrées ou pures constituent un problème de santé.

Les gens peuvent facilement prendre par erreur des doses beaucoup trop élevées.
Aux États-Unis, il est illégal de vendre ces produits en gros aux consommateurs.
La consommation de caféine, dans certaines limites, est autorisée par la National Collegiate Athletic Association (NCAA). Les concentrations urinaires supérieures à 15 mcg/mL sont interdites.


La caféine est un stimulant du système nerveux central (SNC) de la classe des méthylxanthines.
Il est principalement utilisé comme eugéroïque (promoteur de l’éveil) ou comme léger stimulateur cognitif pour augmenter la vigilance et les performances attentionnelles.
La caféine agit en bloquant la liaison de l'adénosine au récepteur de l'adénosine A1, ce qui améliore la libération du neurotransmetteur acétylcholine.

La caféine a une structure tridimensionnelle similaire à celle de l'adénosine, ce qui lui permet de se lier et de bloquer ses récepteurs.
La caféine augmente également les niveaux d’AMP cyclique grâce à l’inhibition non sélective de la phosphodiestérase.
La caféine est une purine cristalline blanche et amère, un alcaloïde méthylxanthine, et est chimiquement liée aux bases adénine et guanine de l'acide désoxyribonucléique (ADN) et de l'acide ribonucléique (ARN).

On le trouve dans les graines, les fruits, les noix ou les feuilles d'un certain nombre de plantes originaires d'Afrique, d'Asie de l'Est et d'Amérique du Sud,[17] et contribue à les protéger contre les herbivores et la concurrence en empêchant la germination des graines à proximité,[17] 18] ainsi qu'en encourageant la consommation par certains animaux tels que les abeilles mellifères.[19]

La source de caféine la plus connue est le grain de café, la graine de la plante Coffea.
Les gens peuvent boire des boissons contenant de la caféine pour soulager ou prévenir la somnolence et améliorer les performances cognitives.
Pour fabriquer ces boissons, la caféine est extraite en trempant le produit végétal dans l’eau, un processus appelé infusion.

Les boissons contenant de la caféine, telles que le café, le thé et le cola, sont consommées en grande quantité dans le monde.
En 2020, près de 10 millions de tonnes de grains de café ont été consommées dans le monde.
La caféine est la drogue psychoactive la plus consommée au monde.

Contrairement à la plupart des autres substances psychoactives, la caféine reste largement non réglementée et légale dans presque toutes les régions du monde.
La caféine est également une exception, car sa consommation est considérée comme socialement acceptable dans la plupart des cultures et même encouragée dans d’autres.
La caféine a des effets à la fois positifs et négatifs sur la santé.

Il peut traiter et prévenir les troubles respiratoires du prématuré, la dysplasie broncho-pulmonaire de la prématurité et l'apnée de la prématurité.
Le citrate de caféine figure sur la liste modèle de l’OMS des médicaments essentiels.

Il pourrait conférer un léger effet protecteur contre certaines maladies, notamment la maladie de Parkinson.
Certaines personnes éprouvent des troubles du sommeil ou de l'anxiété si elles consomment de la caféine,[26] mais d'autres présentent peu de perturbations.
Les preuves d'un risque pendant la grossesse sont équivoques ; certaines autorités recommandent aux femmes enceintes de limiter la caféine à l'équivalent de deux tasses de café par jour ou moins.

La caféine peut produire une forme légère de dépendance aux drogues – associée à des symptômes de sevrage tels que somnolence, maux de tête et irritabilité – lorsqu’un individu arrête de consommer de la caféine après une consommation quotidienne répétée.
La tolérance aux effets autonomes de l'augmentation de la pression artérielle et de la fréquence cardiaque, ainsi que de l'augmentation du débit urinaire, se développe avec une utilisation chronique (c'est-à-dire que ces symptômes deviennent moins prononcés ou n'apparaissent pas après une utilisation régulière).


La caféine est classée par la Food and Drug Administration des États-Unis comme étant généralement reconnue comme étant sans danger.
Les doses toxiques, supérieures à 10 grammes par jour pour un adulte, sont bien supérieures à la dose typique de moins de 500 milligrammes par jour.
L'Autorité européenne de sécurité des aliments a signalé qu'une consommation allant jusqu'à 400 mg de caféine par jour (environ 5,7 mg/kg de masse corporelle par jour) ne soulève pas de problèmes de sécurité pour les adultes non enceintes, alors que des apports allant jusqu'à 200 mg par jour pour les femmes enceintes et allaitantes les femmes ne soulèvent pas de problèmes de sécurité pour le fœtus ou les nourrissons allaités.

Une tasse de café contient 80 à 175 mg de caféine, selon le « grain » (graine) utilisé, la façon dont il est torréfié et la façon dont il est préparé (par exemple, goutte à goutte, percolation ou expresso).
Il faut donc environ 50 à 100 tasses de café ordinaires pour atteindre la dose toxique.
Cependant, la caféine pure en poudre, disponible sous forme de complément alimentaire, peut être mortelle en quantités de la taille d'une cuillère à soupe.


UTILISATIONS DE LA CAFÉINE :
Médical:
La caféine est utilisée à la fois pour la prévention[35] et le traitement[36] de la dysplasie broncho-pulmonaire chez les prématurés. Il peut améliorer la prise de poids pendant le traitement[37] et réduire l'incidence de la paralysie cérébrale ainsi que le retard de langage et cognitif.
En revanche, de subtils effets secondaires à long terme sont possibles.

La caféine est utilisée comme traitement primaire de l’apnée du prématuré,[41] mais pas comme prévention.
Il est également utilisé pour le traitement de l'hypotension orthostatique.
Certaines personnes consomment des boissons contenant de la caféine, comme le café ou le thé, pour tenter de traiter leur asthme.

Les preuves à l’appui de cette pratique sont rares.
Il semble que la caféine à faibles doses améliore la fonction des voies respiratoires chez les personnes asthmatiques, en augmentant le volume expiratoire forcé (VEMS) de 5 à 18 % pendant quatre heures maximum.
L'ajout de caféine (100 à 130 mg) aux analgésiques couramment prescrits tels que le paracétamol ou l'ibuprofène améliore légèrement la proportion de personnes qui parviennent à soulager la douleur.

La consommation de caféine après une chirurgie abdominale raccourcit le délai de récupération de la fonction intestinale normale et raccourcit la durée du séjour à l'hôpital.
La caféine était autrefois utilisée comme traitement de deuxième intention pour le TDAH.
Il est considéré comme moins efficace que le méthylphénidate ou l’amphétamine, mais plus que le placebo pour les enfants atteints de TDAH.

Les enfants, les adolescents et les adultes atteints de TDAH sont plus susceptibles de consommer de la caféine, peut-être comme forme d'automédication.

Améliorer les performances :
La caféine est un stimulant du système nerveux central qui peut réduire la fatigue et la somnolence.
À doses normales, la caféine a des effets variables sur l’apprentissage et la mémoire, mais elle améliore généralement le temps de réaction, l’éveil, la concentration et la coordination motrice.
La quantité de caféine nécessaire pour produire ces effets varie d’une personne à l’autre, en fonction de sa taille et de son degré de tolérance.

Les effets souhaités surviennent environ une heure après la consommation et les effets souhaités d'une dose modérée disparaissent généralement après environ trois ou quatre heures.
La caféine peut retarder ou empêcher le sommeil et améliorer l’exécution des tâches en cas de privation de sommeil.
Les travailleurs postés qui consomment de la caféine font moins d’erreurs pouvant résulter de la somnolence.

La caféine, de manière dose-dépendante, augmente la vigilance chez les individus fatigués et normaux.
Une revue systématique et une méta-analyse de 2014 ont révélé que la consommation concomitante de caféine et de L-théanine a des effets psychoactifs synergiques qui favorisent la vigilance, l'attention et le changement de tâche ;[58] ces effets sont plus prononcés au cours de la première heure après la dose.


Performance physique:
La caféine est une aide ergogénique éprouvée chez l'homme.
La caféine améliore les performances sportives dans des conditions aérobies (en particulier les sports d’endurance) et anaérobies.
Des doses modérées de caféine (environ 5 mg/kg[59]) peuvent améliorer les performances de sprint[60], les performances de cyclisme et de course à pied contre la montre[59], l'endurance (c'est-à-dire qu'elle retarde l'apparition de la fatigue musculaire et de la fatigue centrale) et le cyclisme. puissance de sortie.

La caféine augmente le taux métabolique de base chez les adultes.
L'ingestion de caféine avant un exercice aérobique augmente l'oxydation des graisses, en particulier chez les personnes ayant une mauvaise forme physique.
La caféine améliore la force et la puissance musculaires[67] et peut améliorer l'endurance musculaire.

La caféine améliore également les performances lors des tests anaérobies.
La consommation de caféine avant un exercice à charge constante est associée à une réduction de l'effort perçu.
Bien que cet effet ne soit pas présent pendant les exercices allant de l'exercice à l'épuisement, les performances sont considérablement améliorées.

Cela concorde avec le fait que la caféine réduit l'effort perçu, car l'exercice jusqu'à l'épuisement devrait se terminer au même point de fatigue.
La caféine améliore également la puissance de sortie et réduit le temps nécessaire pour terminer les épreuves contre la montre aérobiques,[71] un effet positivement (mais pas exclusivement) associé à un exercice de plus longue durée.


Populations spécifiques :
Adultes:
Pour la population générale d'adultes en bonne santé, Santé Canada conseille un apport quotidien ne dépassant pas 400 mg.
Cette limite a été jugée sûre par une revue systématique de 2017 sur la toxicologie de la caféine.

Enfants:
Chez les enfants en bonne santé, une consommation modérée de caféine inférieure à 400 mg produit des effets « modestes et généralement inoffensifs ».
Dès l’âge de six mois, les nourrissons peuvent métaboliser la caféine au même rythme que les adultes.
Des doses plus élevées de caféine (> 400 mg) peuvent causer des dommages physiologiques, psychologiques et comportementaux, en particulier chez les enfants souffrant de troubles psychiatriques ou cardiaques.

Il n’existe aucune preuve que le café ralentisse la croissance d’un enfant.
L'American Academy of Pediatrics recommande que la consommation de caféine ne soit pas appropriée pour les enfants et les adolescents et qu'elle soit évitée.
Cette recommandation est basée sur un rapport clinique publié par l'American Academy of Pediatrics en 2011 avec un examen de 45 publications de 1994 à 2011 et comprend les contributions de divers intervenants (pédiatres, Comité sur la nutrition, Société canadienne de pédiatrie, Centres de contrôle et de prévention des maladies, Food and Drug Administration, Comité de médecine sportive et de remise en forme, Fédérations nationales des associations de lycées).

Pour les enfants de 12 ans et moins, Santé Canada recommande une consommation quotidienne maximale de caféine ne dépassant pas 2,5 milligrammes par kilogramme de poids corporel.

Sur la base du poids corporel moyen des enfants, cela se traduit par les limites d'apport suivantes en fonction de l'âge :
• Tranche d'âge, apport quotidien maximal recommandé en caféine
• 4 à 6, 45 mg (un peu plus que dans 355 ml (12 fl. oz) d'une boisson gazeuse contenant de la caféine typique)
• 7-9, 62,5 mg
• 10-12, 85 mg (environ 1⁄2 tasse de café)

Adolescents :
Santé Canada n'a pas élaboré de conseils à l'intention des adolescents en raison de données insuffisantes.
Cependant, ils suggèrent que la consommation quotidienne de caféine pour ce groupe d’âge ne dépasse pas 2,5 mg/kg de poids corporel.
En effet, la dose maximale de caféine pour adultes peut ne pas convenir aux adolescents de poids léger ou aux adolescents plus jeunes qui sont encore en croissance.

La dose quotidienne de 2,5 mg/kg de poids corporel n’entraînerait pas d’effets néfastes sur la santé de la majorité des adolescents consommateurs de caféine.
Il s’agit d’une suggestion prudente, car les adolescents plus âgés et plus lourds peuvent consommer des doses de caféine pour adultes sans subir d’effets indésirables.

La grossesse et l'allaitement:
Le métabolisme de la caféine est réduit pendant la grossesse, en particulier au troisième trimestre, et la demi-vie de la caféine pendant la grossesse peut être augmentée jusqu'à 15 heures (contre 2,5 à 4,5 heures chez les adultes non enceintes).
Les preuves concernant les effets de la caféine sur la grossesse et sur l’allaitement ne sont pas concluantes.
Il existe peu de conseils primaires et secondaires pour ou contre la consommation de caféine pendant la grossesse et ses effets sur le fœtus ou le nouveau-né.


La Food Standards Agency du Royaume-Uni a recommandé aux femmes enceintes de limiter leur consommation de caféine, par prudence, à moins de 200 mg de caféine par jour, soit l'équivalent de deux tasses de café instantané, ou d'une tasse et demie à deux tasses de café frais. .
Le Congrès américain des obstétriciens et gynécologues (ACOG) a conclu en 2010 que la consommation de caféine est sans danger jusqu'à 200 mg par jour chez les femmes enceintes.
Pour les femmes qui allaitent, sont enceintes ou pourraient le devenir, Santé Canada recommande un apport quotidien maximal de caféine ne dépassant pas 300 mg, soit un peu plus de deux tasses de café de 8 oz (237 ml).

Une revue systématique de 2017 sur la toxicologie de la caféine a trouvé des preuves démontrant que la consommation de caféine jusqu'à 300 mg/jour pour les femmes enceintes n'est généralement pas associée à des effets indésirables sur la reproduction ou le développement.
Il existe des rapports contradictoires dans la littérature scientifique sur la consommation de caféine pendant la grossesse.
Une étude de 2011 a révélé que la caféine pendant la grossesse ne semble pas augmenter le risque de malformations congénitales, de fausse couche ou de retard de croissance, même lorsqu'elle est consommée en quantités modérées à élevées.

D’autres études ont cependant conclu qu’il existe des preuves selon lesquelles une consommation plus élevée de caféine chez les femmes enceintes pourrait être associée à un risque plus élevé de donner naissance à un bébé de faible poids à la naissance[84] et pourrait être associée à un risque plus élevé de fausse couche.
Une revue systématique analysant les résultats d'études observationnelles suggère que les femmes qui consomment de grandes quantités de caféine (supérieures à 300 mg/jour) avant de devenir enceintes peuvent avoir un risque plus élevé de fausse couche.



HISTOIRE DE LA CAFÉINE :
Découverte et diffusion des usages :
Selon la légende chinoise, l'empereur chinois Shennong, réputé avoir régné vers 3000 avant notre ère, aurait découvert le thé par inadvertance lorsqu'il aurait remarqué que lorsque certaines feuilles tombaient dans l'eau bouillante, il en résultait une boisson parfumée et réparatrice.
Shennong est également mentionné dans Cha Jing de Lu Yu, un ouvrage célèbre sur le thème du thé.


Les premières preuves crédibles de la consommation de café ou de la connaissance du caféier apparaissent au milieu du XVe siècle, dans les monastères soufis du Yémen, dans le sud de l'Arabie.
À partir du Moka, le café s'est répandu en Égypte et en Afrique du Nord et, au XVIe siècle, il avait atteint le reste du Moyen-Orient, la Perse et la Turquie.
Du Moyen-Orient, la consommation de café s'est répandue en Italie, puis dans le reste de l'Europe, et les plants de café ont été transportés par les Néerlandais vers les Indes orientales et vers les Amériques.


L’utilisation de la noix de kola semble avoir des origines anciennes.
Il est mâché dans de nombreuses cultures ouest-africaines, tant dans le cadre privé que social, pour redonner de la vitalité et apaiser la sensation de faim.
Les premières preuves de l'utilisation des fèves de cacao proviennent de résidus trouvés dans un ancien pot maya daté de 600 avant notre ère.

En outre, le chocolat était consommé dans une boisson amère et épicée appelée xocolatl, souvent assaisonnée de vanille, de piment et de roucou.
On croyait que le Xocolatl combattait la fatigue, une croyance probablement attribuable à sa teneur en théobromine et en caféine.
Le chocolat était un produit de luxe important dans toute la Méso-Amérique précolombienne, et les fèves de cacao étaient souvent utilisées comme monnaie.


Le Xocolatl a été introduit en Europe par les Espagnols et est devenu une boisson populaire vers 1700.
Les Espagnols ont également introduit le cacaoyer aux Antilles[254] et aux Philippines.
Les feuilles et les tiges du houx yaupon (Ilex vomitoria) étaient utilisées par les Amérindiens pour préparer un thé appelé asi ou « boisson noire ».
Les archéologues ont trouvé des preuves de cette utilisation très loin dans l'Antiquité,[257] remontant peut-être à l'époque archaïque tardive.

La caféine est un médicament de la classe des méthylxanthines utilisé à diverses fins, notamment certaines affections respiratoires du nouveau-né prématuré, le soulagement de la douleur et la somnolence.
La caféine a une structure chimique similaire à celle de la théophylline et de la théobromine.
Il peut provenir des grains de café, mais il est également présent naturellement dans divers thés et fèves de cacao, qui sont différents des grains de café.

La caféine est également utilisée dans divers produits cosmétiques et peut être administrée par voie topique, orale, par inhalation ou par injection.
L'injection de citrate de caféine, utilisée pour traiter l'apnée du nouveau-né prématuré, a été initialement approuvée par la FDA en 1999.

Selon un article de 2017, plus de 15 millions de bébés naissent prématurément dans le monde. Cela correspond à environ 1 naissance sur 10.
Une naissance prématurée peut entraîner de l'apnée et une dysplasie broncho-pulmonaire, une affection qui interfère avec le développement pulmonaire et peut éventuellement provoquer de l'asthme ou un emphysème précoce chez les personnes nées prématurément.
La caféine est bénéfique dans la prévention et le traitement de l'apnée et de la dysplasie broncho-pulmonaire chez les nouveau-nés, améliorant ainsi la qualité de vie des prématurés.






IDENTIFICATION CHIMIQUE, ISOLATION ET SYNTHÈSE DE LA CAFÉINE :
En 1819, le chimiste allemand Friedlieb Ferdinand Runge isole pour la première fois de la caféine relativement pure ; il l'a appelé « Kaffebase » (c'est-à-dire une base qui existe dans le café).
Selon Runge, il l'a fait à la demande de Johann Wolfgang von Goethe.
En 1821, la caféine a été isolée à la fois par le chimiste français Pierre Jean Robiquet et par un autre couple de chimistes français, Pierre-Joseph Pelletier et Joseph Bienaimé Caventou, selon le chimiste suédois Jöns Jacob Berzelius dans son journal annuel.

De plus, Berzelius a déclaré que les chimistes français avaient fait leurs découvertes indépendamment de toute connaissance des travaux de Runge ou des autres.
Cependant, Berzelius reconnut plus tard la priorité de Runge dans l'extraction de la caféine, déclarant : « Cependant, à ce stade, il ne faut pas omettre de mentionner que Runge (dans ses découvertes phytochimiques, 1820, pages 146-147) a spécifié la même méthode et décrit la caféine sous le nom de Caffeebase un an plus tôt que Robiquet, à qui l'on attribue habituellement la découverte de cette substance, après en avoir fait la première annonce orale lors d'une réunion de la Société de Pharmacie à Paris.

L'article de Pelletier sur la caféine a été le premier à utiliser le terme sous forme imprimée (sous la forme française Caféine du mot français pour café : café).[263] Cela corrobore le récit de Berzelius :
Caféine, nom (féminin). Substance cristallisable découverte dans le café en 1821 par M. Robiquet. A la même époque – alors qu'ils recherchaient la quinine dans le café parce que le café est considéré par plusieurs médecins comme un médicament qui diminue les fièvres et parce que le café appartient à la même famille que l'arbre quinquina –, de leur côté, MM.

Pelletier et Caventou ont obtenu de la caféine ; mais parce que leurs recherches avaient un but différent et que leurs recherches n'étaient pas terminées, ils ont laissé la priorité à ce sujet à M. Robiquet.
On ne sait pas pourquoi M. Robiquet n'a pas publié l'analyse du café qu'il a lue à la Société de Pharmacie. Sa publication aurait permis de mieux faire connaître la caféine et de nous donner des idées précises sur la composition du café...

Robiquet fut l'un des premiers à isoler et à décrire les propriétés de la caféine pure, tandis que Pelletier fut le premier à effectuer une analyse élémentaire.


En 1827, M. Oudry isola la « théine » du thé[266], mais en 1838 il fut prouvé par Mulder et par Carl Jobst[268] que la théine était en réalité la même que la caféine.
En 1895, le chimiste allemand Hermann Emil Fischer (1852-1919) synthétisa pour la première fois la caféine à partir de ses composants chimiques (c'est-à-dire une « synthèse totale ») et, deux ans plus tard, il en déduisit également la formule développée.
Cela faisait partie des travaux pour lesquels Fischer reçut le prix Nobel en 1902.

Règlements historiques :
Parce qu'il a été reconnu que le café contenait un composé agissant comme un stimulant, le café, puis plus tard la caféine, ont parfois été soumis à une réglementation.
Par exemple, au XVIe siècle, les islamistes de La Mecque et de l’Empire ottoman ont rendu le café illégal pour certaines classes sociales.

Charles II d'Angleterre a tenté de l'interdire en 1676, Frédéric II de Prusse l'a interdit en 1777 et le café a été interdit en Suède à plusieurs reprises entre 1756 et 1823.
En 1911, la caféine est devenue l'objet de l'une des premières alertes sanitaires documentées, lorsque le gouvernement américain a saisi 40 barils et 20 fûts de sirop Coca-Cola à Chattanooga, Tennessee, alléguant que la caféine contenue dans sa boisson était « nocive pour la santé ».


Bien que la Cour suprême se soit par la suite prononcée en faveur de Coca-Cola dans l'affaire États-Unis c. Forty Barrels and Twenty Kegs of Coca-Cola, deux projets de loi ont été présentés à la Chambre des représentants des États-Unis en 1912 pour modifier la Pure Food and Drug Act, en ajoutant de la caféine. à la liste des substances « accoutumantes » et « délétères », qui doivent figurer sur l'étiquette d'un produit.



PRÉSENCE NATURELLE DE LA CAFÉINE :
Grains de café torréfiés :
Une trentaine d’espèces végétales sont connues pour contenir de la caféine.
Les sources courantes sont les « grains » (graines) des deux caféiers cultivés, Coffea arabica et Coffea canephora (la quantité varie, mais 1,3 % est une valeur typique) ; et du cacaoyer Theobroma cacao ; les feuilles du théier ; et des noix de cola.

D'autres sources incluent les feuilles de houx yaupon, de houx sud-américain yerba mate et de houx guayusa d'Amazonie ; et des graines de baies de guarana d'érable d'Amazonie.
Les climats tempérés du monde entier ont produit des plantes contenant de la caféine sans rapport avec elles.
La caféine présente dans les plantes agit comme un pesticide naturel : elle peut paralyser et tuer les insectes prédateurs qui se nourrissent de la plante.

Des niveaux élevés de caféine se trouvent dans les plants de caféier lorsqu’ils développent leur feuillage et manquent de protection mécanique.
De plus, des niveaux élevés de caféine se trouvent dans le sol environnant des plants de café, ce qui inhibe la germination des graines des plants de café à proximité, donnant ainsi aux plants ayant les niveaux de caféine les plus élevés moins de concurrents pour les ressources existantes pour leur survie.

La caféine est stockée dans les feuilles de thé à deux endroits.
Premièrement, dans les vacuoles cellulaires où il est complexé aux polyphénols.
Cette caféine est probablement libérée dans la bouche des insectes pour décourager les herbivores.

Deuxièmement, autour des faisceaux vasculaires, où il empêche probablement les champignons pathogènes de pénétrer et de coloniser les faisceaux vasculaires.

La caféine contenue dans le nectar peut améliorer le succès reproducteur des plantes productrices de pollen en améliorant la mémoire des récompenses des pollinisateurs tels que les abeilles domestiques.
Les différentes perceptions des effets de l'ingestion de boissons à base de diverses plantes contenant de la caféine pourraient s'expliquer par le fait que ces boissons contiennent également divers mélanges d'autres alcaloïdes méthylxanthine, notamment les stimulants cardiaques théophylline et théobromine, et des polyphénols qui peuvent former des complexes insolubles avec la caféine.


PRODUITS DE CAFÉINE :
Les produits contenant de la caféine comprennent le café, le thé, les boissons gazeuses (« colas »), les boissons énergisantes, les autres boissons, le chocolat, les comprimés de caféine, les autres produits oraux et les produits par inhalation.
Selon une étude réalisée en 2020 aux États-Unis, le café est la principale source de consommation de caféine chez les adultes d'âge moyen, tandis que les boissons gazeuses et le thé sont les principales sources chez les adolescents.
Les boissons énergisantes sont plus couramment consommées comme source de caféine chez les adolescents que chez les adultes.

Breuvages:
Café:
La principale source mondiale de caféine est le « grain » de café (la graine du caféier), à partir duquel le café est infusé.
La teneur en caféine du café varie considérablement en fonction du type de grain de café et de la méthode de préparation utilisée ;[229] même les grains d'un buisson donné peuvent présenter des variations de concentration. En général, une portion de café varie de 80 à 100 milligrammes, pour une seule dose (30 millilitres) d'espresso de variété arabica, à environ 100 à 125 milligrammes pour une tasse (120 millilitres) de café filtre.

Le café Arabica contient généralement la moitié de la caféine de la variété Robusta.
En général, le café torréfié foncé contient très légèrement moins de caféine que les torréfactions plus claires, car le processus de torréfaction réduit légèrement la teneur en caféine du grain.

Thé:
Le thé contient plus de caféine que le café en poids sec.
Cependant, une portion typique en contient beaucoup moins, car une moindre quantité de produit est utilisée par rapport à une portion équivalente de café. Les conditions de culture, les techniques de transformation et d’autres variables contribuent également à la teneur en caféine.
Ainsi, les thés contiennent des quantités variables de caféine.[232]


Le thé contient de petites quantités de théobromine et des niveaux légèrement plus élevés de théophylline que le café. La préparation et de nombreux autres facteurs ont un impact significatif sur le thé, et la couleur est un très mauvais indicateur de la teneur en caféine.
Les thés comme le thé vert pâle japonais, gyokuro, par exemple, contiennent beaucoup plus de caféine que les thés beaucoup plus foncés comme le lapsang souchong, qui en contient très peu.

Boissons gazeuses et boissons énergisantes :
La caféine est également un ingrédient courant des boissons gazeuses, comme le cola, préparé à l'origine à partir de noix de cola. Les boissons gazeuses contiennent généralement de 0 à 55 milligrammes de caféine par portion de 12 onces (350 ml).
En revanche, les boissons énergisantes, comme Red Bull, peuvent commencer à 80 milligrammes de caféine par portion.

La caféine contenue dans ces boissons provient soit des ingrédients utilisés, soit d'un additif dérivé du produit de la décaféination ou de la synthèse chimique.
Le guarana, un ingrédient principal des boissons énergisantes, contient de grandes quantités de caféine avec de petites quantités de théobromine et de théophylline dans un excipient naturel à libération lente.

Autres boissons :
Le maté est une boisson populaire dans de nombreuses régions d'Amérique du Sud.
Sa préparation consiste à remplir une gourde avec les feuilles du houx sud-américain yerba mate, à verser sur les feuilles de l'eau chaude mais non bouillante, et à boire avec une paille, la bombilla, qui fait office de filtre de manière à n'aspirer que le liquide et pas la yerba ne part.

Le guarana est une boisson gazeuse originaire du Brésil à base de graines du fruit guarana.
Les feuilles d'Ilex guayusa, le houx équatorien, sont placées dans de l'eau bouillante pour préparer un thé guayusa.

Les feuilles d'Ilex vomitoria, le houx yaupon, sont placées dans l'eau bouillante pour préparer un thé yaupon.
Les boissons lactées aromatisées au café préparées dans le commerce sont populaires en Australie.

Les exemples incluent Oak's Ice Coffee et Farmers Union Iced Coffee.
La quantité de caféine contenue dans ces boissons peut varier considérablement. Les concentrations de caféine peuvent différer considérablement des affirmations du fabricant.

Chocolat:
Le chocolat dérivé des fèves de cacao contient une petite quantité de caféine.
Le faible effet stimulant du chocolat peut être dû à une combinaison de théobromine et de théophylline, ainsi que de caféine.

Une portion typique de 28 grammes d’une barre de chocolat au lait contient autant de caféine qu’une tasse de café décaféiné.
En poids, le chocolat noir contient une à deux fois plus de caféine que le café : 80 à 160 mg pour 100 g.
Des pourcentages plus élevés de cacao, comme 90 %, s'élèvent à 200 mg pour 100 g environ et ainsi, une barre de chocolat à 85 % de cacao de 100 grammes contient environ 195 mg de caféine.

Comprimés:
Comprimés de caféine No-Doz 100 mg
Les comprimés offrent plusieurs avantages par rapport au café, au thé et aux autres boissons contenant de la caféine, notamment la commodité, un dosage connu et l'évitement de la consommation concomitante de sucre, d'acides et de liquides.
On dit que la consommation de caféine sous cette forme améliore la vigilance mentale.
Ces tablettes sont couramment utilisées par les étudiants qui préparent leurs examens et par les personnes qui travaillent ou conduisent pendant de longues heures.



Sources de caféine :
La caféine se trouve naturellement dans les fruits, les feuilles et les grains des plantes de café, de cacao et de guarana.
Il est également ajouté aux boissons et aux suppléments.
Il existe un risque de boire des quantités excessives de boissons contenant de la caféine comme les sodas et les boissons énergisantes, car elles sont consommées fraîches et sont faciles à digérer rapidement en grande quantité.


Café:
1 tasse ou 8 onces de café infusé contient environ 95 mg de caféine.
La même quantité de café instantané contient environ 60 mg de caféine. Le café décaféiné contient environ 4 mg de caféine. Apprenez-en davantage sur le café.

Expresso:
1 dose ou 1,5 once contient environ 65 mg de caféine.

Thé:
1 tasse de thé noir contient environ 47 mg de caféine.
Le thé vert en contient environ 28 mg.
Le thé décaféiné en contient 2 mg et les tisanes n’en contiennent pas.

Un soda:
Une canette de 12 onces de cola noir ordinaire ou diététique contient environ 40 mg de caféine.
La même quantité de Mountain Dew contient 55 mg de caféine.

Chocolat (cacao) : 1 once de chocolat noir contient environ 24 mg de caféine, tandis que le chocolat au lait en contient un quart.

Guarana : Il s'agit d'une graine d'une plante sud-américaine qui est transformée comme extrait dans les aliments, les boissons énergisantes et les suppléments énergétiques.
Les graines de guarana contiennent environ quatre fois plus de caféine que celle trouvée dans les grains de café.
[4] Certaines boissons contenant des extraits de ces graines peuvent contenir jusqu'à 125 mg de caféine par portion.
Boissons énergisantes:
1 tasse ou 8 onces de boisson énergisante contient environ 85 mg de caféine.
Cependant, la portion standard de boisson énergisante est de 16 onces, ce qui double la caféine à 170 mg. Les shots énergétiques sont beaucoup plus concentrés que les boissons ; une petite dose de 2 onces contient environ 200 mg de caféine.

Suppléments :
Les suppléments de caféine contiennent environ 200 mg par comprimé, soit la quantité contenue dans 2 tasses de café infusé.


Autres produits oraux :
Une entreprise américaine commercialise des bandelettes de caféine solubles par voie orale.
Une autre voie de consommation est le SpazzStick, un baume à lèvres contenant de la caféine.
Alert Energy Caffeine Gum a été introduit aux États-Unis en 2013, mais a été volontairement retiré après l'annonce d'une enquête de la FDA sur les effets sur la santé de l'ajout de caféine dans les aliments.

Substances inhalées :
Semblable à une cigarette électronique, un inhalateur de caféine peut être utilisé pour administrer de la caféine ou un stimulant comme le guarana par vapotage.
En 2012, la FDA a envoyé une lettre d'avertissement à l'une des sociétés commercialisant un inhalateur, exprimant ses inquiétudes quant au manque d'informations sur la sécurité de la caféine inhalée.


Associations avec d'autres médicaments :
Certaines boissons combinent de l'alcool avec de la caféine pour créer une boisson alcoolisée contenant de la caféine.
Les effets stimulants de la caféine peuvent masquer les effets dépresseurs de l'alcool, réduisant potentiellement la conscience de l'utilisateur de son niveau d'intoxication.
Ces boissons ont fait l'objet d'interdictions pour des raisons de sécurité.

En particulier, la Food and Drug Administration des États-Unis a classé la caféine ajoutée aux boissons alcoolisées à base de malt comme un « additif alimentaire dangereux ».
Ya ba contient une combinaison de méthamphétamine et de caféine.
Les analgésiques tels que la propyphénazone/paracétamol/caféine combinent la caféine avec un analgésique.



UTILISATIONS ET EFFICACITÉ DE LA CAFÉINE :
Efficace pour :
Migraine.
Prendre de la caféine par voie orale avec des analgésiques tels que l'aspirine et l'acétaminophène est efficace pour traiter les migraines.
La caféine est un produit approuvé par la FDA à utiliser avec des analgésiques pour traiter les migraines.
Pauses respiratoires pouvant être suivies d’une fréquence cardiaque faible et d’un faible niveau d’oxygène chez les nouveau-nés.

Donner de la caféine par voie orale ou intraveineuse peut améliorer la respiration chez les nourrissons très prématurés.
Le citrate de caféine est approuvé comme médicament d'ordonnance pour cette maladie. Les produits IV ne peuvent être administrés que par un professionnel de la santé.

Maux de tête après la chirurgie.
La prise de caféine par voie orale ou intraveineuse est efficace pour prévenir les maux de tête après une intervention chirurgicale.
La caféine est un produit approuvé par la FDA pour cette utilisation chez les personnes qui consomment régulièrement de la caféine. Les produits IV ne peuvent être administrés que par un professionnel de la santé.

Céphalée de tension.
La prise de caféine par voie orale en association avec des analgésiques est efficace pour traiter les céphalées de tension.
Il est approuvé par la FDA pour cette utilisation.

Probablement efficace pour :
Vigilance mentale.
Prendre de la caféine par voie orale améliore la vigilance mentale.
Mais cela n’est peut-être pas aussi efficace que de dormir suffisamment.

Peut-être efficace pour :
Performance athlétique.
Prendre de la caféine par voie orale semble augmenter la force physique et l’endurance et pourrait retarder la fatigue pendant l’exercice.
Mais prendre plus de 800 mg de caféine par jour (6 à 8 tasses) peut entraîner des niveaux de caféine supérieurs à ceux autorisés par la National Collegiate Athletic Association (NCAA).

Maladie pulmonaire qui touche les nouveau-nés (dysplasie broncho-pulmonaire).
Donner de la caféine par voie orale ou intraveineuse à des prématurés semble réduire le risque de ce problème pulmonaire.
Les produits IV ne peuvent être administrés que par un professionnel de la santé.


Diabète.
La consommation de boissons contenant de la caféine est associée à un risque plus faible de développer un diabète de type 2.
Mais il n’est pas clair si la consommation de caféine aide à traiter le diabète.

Mémoire.
Prendre de la caféine par voie orale semble améliorer la mémoire à court terme chez les étudiants ou les personnes ayant une personnalité extravertie.

Obésité.
Prendre de la caféine par voie orale avec de l'éphédrine semble augmenter la perte de poids à court terme.
Mais il peut y avoir des effets secondaires indésirables.
Même chez des adultes étroitement surveillés et en bonne santé, les combinaisons caféine/éphédra peuvent provoquer des modifications de la tension artérielle et de la fréquence cardiaque.

La douleur aiguë.
Prendre de la caféine par voie orale avec des analgésiques tels que l'ibuprofène peut réduire la douleur davantage que les analgésiques seuls.
Maux de tête après une anesthésie péridurale, une anesthésie rachidienne ou une ponction lombaire.
La prise de caféine par voie orale ou intraveineuse semble aider à prévenir les maux de tête pouvant survenir après ces procédures.
Les produits IV ne peuvent être administrés que par un professionnel de la santé.






BIENFAITS DE LA CAFÉINE :
La caféine peut avoir certains bienfaits pour la santé, mais tous n’ont pas été confirmés par la recherche.
Perte de poids:
La caféine peut stimuler la perte de poids ou empêcher la prise de poids, éventuellement en :
• supprimer l'appétit et réduire temporairement le désir de manger
• stimuler la thermogenèse, de sorte que le corps génère plus de chaleur et d'énergie en digérant les aliments
Les produits amaigrissants commercialisés comme thermogéniques peuvent contenir de la caféine et de l'éphédra, ou de l'éphédrine.
La recherche n'a pas confirmé les résultats à long terme.

Vigilance
Une portion de 75 mg de caféine peut augmenter l'attention et la vigilance, et une dose de 160 à 600 mg peut améliorer la vigilance mentale, la rapidité du raisonnement et la mémoire.
Cependant, la caféine ne remplace pas le sommeil.

Performance sportive
La caféine peut améliorer les performances physiques lors d’exercices d’endurance.
L'Agence européenne de sécurité des aliments (EFSA) reconnaît que la caféine peut augmenter les performances d'endurance, la capacité d'endurance et réduire l'effort perçu.
Cependant, les effets sur les exercices de haute intensité à court terme restent peu concluants.


Fonction cérébrale :
La caféine affecte les récepteurs de l'adénosine dans le cerveau.
Le café contient également des antioxydants polyphénols, qui agissent également de diverses manières.
Des études ont suggéré que boire du café peut aider à améliorer certaines capacités de réflexion et à ralentir le déclin mental qui accompagne l'âge.


Cependant, des recherches supplémentaires sont nécessaires pour le confirmer.

Maladie d'Alzheimer et de Parkinson :
Des recherches ont montré que la consommation de caféine tout au long de la vie peut réduire le risque de développer la maladie d'Alzheimer.
Des études ont également montré que les personnes consommant davantage de café couraient un risque plus faible de développer la maladie de Parkinson.

Mémoire:
Des recherches de l'Université Johns Hopkins suggèrent qu'une dose de caféine après une séance d'apprentissage peut aider à stimuler la mémoire à long terme.
Foie et côlon :
Il a été suggéré que les lavements à la caféine pourraient aider à préparer le côlon pour une endoscopie ou une coloscopie en favorisant l'excrétion de la bile à travers la paroi du côlon.
Les partisans affirment qu’un lavement à la caféine augmente les niveaux de glutathion, un antioxydant, et soutient ainsi les processus naturels de détoxification du foie.
Cependant, il existe peu de preuves pour étayer cette théorie.


La consommation de café peut contribuer à réduire le risque de cirrhose et à ralentir la progression de la maladie liée à l’hépatite C.
Des études observationnelles ont montré que le café pourrait avoir des effets protecteurs sur les personnes atteintes d'un cancer hépatocellulaire.

Spasme des paupières :
Il existe des preuves selon lesquelles la caféine pourrait aider à protéger les personnes contre un trouble oculaire appelé blépharospasme.
Cette condition, causée par un fonctionnement cérébral anormal, fait que les gens clignent des yeux sans cesse et peuvent les rendre fonctionnellement aveugles.

Cataractes :
Les chercheurs ont découvert que la caféine peut aider à protéger le cristallin de l’œil contre les dommages pouvant entraîner la formation de cataractes.

Cancer de la peau:
Certains scientifiques ont suggéré que la caféine pourrait protéger contre certains cancers de la peau.
Une équipe a découvert que la caféine appliquée directement sur la peau des souris aidait à empêcher les rayons ultraviolets (UV) nocifs de provoquer le cancer de la peau.
D'autres ont associé la consommation de trois tasses de café caféiné par jour à un risque inférieur de 21 % de développer un carcinome basocellulaire chez les femmes et à un risque inférieur de 10 % chez les hommes, par rapport à la consommation de moins d'une tasse par mois.


Calculs rénaux:
Une étude portant sur 217 883 participants a analysé l’association entre la consommation de caféine et le risque de développer des calculs rénaux.
Ceux qui consommaient plus de caféine présentaient un risque plus faible de développer des calculs rénaux.

Cancers de la bouche, de la gorge et autres :
Dans une étude portant sur 968 432 hommes et femmes, les participants qui buvaient plus de 4 tasses de café par jour présentaient un risque de décès par cancer de la bouche 49 % inférieur à ceux qui ne buvaient pas de café du tout ou seulement une tasse occasionnelle.

D’autres avantages possibles liés au cancer comprennent :
• un risque plus faible de cancer de l'endomètre
• un risque réduit de cancer de la prostate
• protection contre le cancer de la tête et du cou
• protection contre la récidive du cancer du sein

Accident vasculaire cérébral:
Les données portant sur 34 670 femmes suédoises sans antécédents de maladie cardiovasculaire ont indiqué que les femmes qui buvaient plus d'une tasse de café par jour présentaient un risque d'accident vasculaire cérébral de 22 à 25 % inférieur à celui des femmes qui buvaient moins.
Une consommation faible ou inexistante de café semble être liée à un risque accru d'accident vasculaire cérébral.

Diabète de type 2:
Une étude longitudinale a révélé que les participants qui augmentaient leur consommation de café de plus d'une tasse par jour sur une période de 4 ans présentaient un risque 1 % inférieur de développer un diabète de type 2 par rapport aux personnes qui ne modifiaient pas leur consommation.
Les personnes qui réduisaient leur consommation quotidienne de plus d’une tasse de café présentaient un risque 17 % plus élevé de diabète de type 2.

Une étude publiée dans Diabetes Care en 2004 a établi un lien entre une consommation élevée de café sur une période de 4 semaines et une augmentation des concentrations d'insuline à jeun.
Cependant, les raisons de ce lien n’étaient pas claires.
Cela peut être dû à une sensibilité réduite à l’insuline, ce qui signifie que l’organisme n’utilise pas efficacement l’insuline produite.
L'équipe a demandé des recherches plus approfondies avant d'affirmer qu'une consommation élevée de café réduisait le risque de diabète de type 2.





ABSORPTION ET METABOLISME DE LA CAFÉINE :
Le nom chimique de la poudre blanche amère connue sous le nom de caféine est 1,3,7 triméthylxanthine.
La caféine est absorbée environ 45 minutes après sa consommation et atteint son maximum dans le sang entre 15 minutes et 2 heures.

La caféine contenue dans les boissons telles que le café, le thé et les sodas est rapidement absorbée dans l'intestin et se dissout dans l'eau et les molécules de graisse du corps.
Il est capable de pénétrer dans le cerveau.
Les aliments ou les composants alimentaires, tels que les fibres, présents dans l’intestin peuvent retarder la rapidité avec laquelle la caféine dans le sang atteint son maximum.

Par conséquent, boire votre café du matin à jeun peut vous donner un regain d’énergie plus rapide que si vous le buviez au petit-déjeuner.
La caféine est décomposée principalement dans le foie.
Il peut rester dans le sang de 1,5 à 9,5 heures, selon divers facteurs.

Le tabagisme accélère la dégradation de la caféine, alors que la grossesse et les contraceptifs oraux peuvent ralentir cette dégradation.
Au cours du troisième trimestre de la grossesse, la caféine peut rester dans l’organisme jusqu’à 15 heures.
Les gens développent souvent une « tolérance à la caféine » lorsqu’ils en prennent régulièrement, ce qui peut réduire ses effets stimulants à moins d’en consommer une quantité plus élevée.

Lorsque l’on arrête soudainement toute caféine, des symptômes de sevrage s’ensuivent souvent, tels que l’irritabilité, les maux de tête, l’agitation, l’humeur dépressive et la fatigue.
Les symptômes sont plus forts quelques jours après l’arrêt de la caféine, mais ont tendance à s’atténuer après environ une semaine.

Réduire progressivement la quantité peut aider à réduire les effets secondaires.






QUESTIONS ET RÉPONSES SUR LA CAFÉINE :

QU'EST-CE QUE LA CAFÉINE ?
La caféine est une substance amère présente naturellement dans plus de 60 plantes, notamment :
Grains de café
Feuilles de thé
Noix de cola, utilisées pour aromatiser les boissons gazeuses au cola
Les cabosses de cacao, utilisées pour fabriquer des produits chocolatés

Il existe également de la caféine synthétique (artificielle), qui est ajoutée à certains médicaments, aliments et boissons. Par exemple, certains analgésiques, médicaments contre le rhume et médicaments en vente libre pour la vigilance contiennent de la caféine synthétique. Il en va de même pour les boissons énergisantes, les gommes et les collations « énergisantes ».

La plupart des gens consomment de la caféine dans les boissons.
La quantité de caféine dans différentes boissons peut varier considérablement, mais elle est généralement :
• Une tasse de café de 8 onces : 95-200 mg
• Une canette de cola de 12 onces : 35 à 45 mg
• Une boisson énergisante de 8 onces : 70-100 mg
• Une tasse de thé de 8 onces : 14 à 60 mg

QUELS SONT LES EFFETS DE LA CAFÉINE SUR LE CORPS ?
La caféine a de nombreux effets sur le métabolisme de votre corps.
Caféine Stimule votre système nerveux central, ce qui peut vous faire sentir plus éveillé et vous donner un regain d'énergie
La caféine est un diurétique, ce qui signifie qu'elle aide votre corps à se débarrasser de l'excès de sel et d'eau en urinant davantage.

Caféine Augmente la libération d'acide dans votre estomac, entraînant parfois des maux d'estomac ou des brûlures d'estomac
Caféine Peut interférer avec l'absorption du calcium dans l'organisme
La caféine augmente votre tension artérielle

Moins d’une heure après avoir mangé ou bu de la caféine, celle-ci atteint son niveau maximal dans votre sang. Vous pouvez continuer à ressentir les effets de la caféine pendant quatre à six heures.

QUELS SONT LES EFFETS SECONDAIRES D’UNE TROP DE CAFÉINE ?
Pour la plupart des gens, il n’est pas nocif de consommer jusqu’à 400 mg de caféine par jour.
Si vous mangez ou buvez trop de caféine, cela peut entraîner des problèmes de santé, tels que :
• Agitation et tremblements
• Insomnie
• Maux de tête
• Vertiges
• Rythme cardiaque rapide
• Déshydratation
• Anxiété

Dépendance, il faut donc en prendre plus pour obtenir les mêmes résultats
Certaines personnes sont plus sensibles que d’autres aux effets de la caféine.


QUE SONT LES BOISSONS ÉNERGÉTIQUES ET POURQUOI PEUVENT-ELLES ÊTRE UN PROBLÈME ?
Les boissons énergisantes sont des boissons auxquelles on ajoute de la caféine.
La quantité de caféine contenue dans les boissons énergisantes peut varier considérablement et parfois les étiquettes des boissons ne vous indiquent pas la quantité réelle de caféine qu'elles contiennent. Les boissons énergisantes peuvent également contenir des sucres, des vitamines, des herbes et des suppléments.

Les entreprises qui fabriquent des boissons énergisantes affirment que ces boissons peuvent augmenter la vigilance et améliorer les performances physiques et mentales.
Cela a contribué à rendre ces boissons populaires auprès des adolescents et des jeunes adultes américains.
Il existe peu de données montrant que les boissons énergisantes pourraient améliorer temporairement la vigilance et l’endurance physique.

Il n’existe pas suffisamment de preuves démontrant qu’ils améliorent la force ou le pouvoir.
Mais ce que nous savons, c’est que les boissons énergisantes peuvent être dangereuses car elles contiennent de grandes quantités de caféine.

Et comme ils contiennent beaucoup de sucre, ils peuvent contribuer à la prise de poids et aggraver le diabète.
Parfois, les jeunes mélangent leurs boissons énergisantes avec de l'alcool.

Il est dangereux de combiner alcool et caféine.
La caféine peut interférer avec votre capacité à reconnaître votre état d’ébriété, ce qui peut vous amener à boire davantage.
Cela vous rend également plus susceptible de prendre de mauvaises décisions.


QUI DEVRAIT ÉVITER OU LIMITER LA CAFÉINE ?
Vous devriez vérifier auprès de votre fournisseur de soins de santé si vous devez limiter ou éviter la caféine si VOUS :
• Vous êtes enceinte, car la caféine passe par le placenta jusqu'à votre bébé.
• Vous allaitez, car une petite quantité de caféine que vous consommez est transmise à votre bébé.
• souffrez de troubles du sommeil, notamment d’insomnie.
• Vous avez des migraines ou d’autres maux de tête chroniques.
• Soyez anxieux.
• Vous avez un RGO ou des ulcères.
• avez une arythmie (un problème avec la fréquence ou le rythme de votre rythme cardiaque).
• Vous souffrez d’hypertension artérielle.

Prenez certains médicaments ou suppléments, notamment des stimulants, certains antibiotiques, des médicaments contre l'asthme et des médicaments pour le cœur.
Vérifiez auprès de votre fournisseur de soins de santé s'il pourrait y avoir des interactions entre la caféine et les médicaments et suppléments que vous prenez.

QU'EST-CE QUE LE SEVRAGE DE CAFÉINE ?
Si vous consommez régulièrement de la caféine et que vous arrêtez brusquement, il se peut que vous souffriez d'un manque de caféine.
Les symptômes peuvent inclure :
• Maux de tête
• Somnolence
• Irritabilité
• Nausée
• Difficulté à se concentrer


COMMENT LA CAFÉINE AFFECTE-T-ELLE LES GENS ?
La caféine est classée comme drogue car elle stimule le système nerveux central.

Il peut rendre les gens plus alertes et plus énergiques et a des effets similaires chez les enfants et les adultes.
Les aliments et les boissons contenant de la caféine sont omniprésents, mais il est sage de limiter la consommation de caféine au minimum, en particulier chez les jeunes enfants.

Chez les enfants comme chez les adultes, une trop grande quantité de caféine peut provoquer :
• nervosité et nervosité
• maux d'estomac
• maux de tête
• problèmes de concentration
• troubles du sommeil
• rythme cardiaque plus rapide
• une pression artérielle plus élevée

Surtout chez les jeunes enfants, il ne faut pas beaucoup de caféine pour produire ces effets.


QUELS AUTRES PROBLÈMES PEUVENT SURVENIR ?
Voici quelques autres raisons de limiter la consommation de caféine des enfants :
Les boissons contenant de la caféine, comme le cola, les boissons au café et les boissons énergisantes, contiennent souvent des calories vides.
Les enfants et les adolescents qui en consomment consomment beaucoup de calories sans les vitamines et les minéraux dont ils ont besoin.

Par exemple, ils ne contiennent pas le calcium dont les enfants ont besoin, provenant du lait, pour développer des os et des dents solides. Et trop de boissons sucrées peuvent entraîner une prise de poids supplémentaire.

L'arrêt brutal de la caféine peut provoquer des symptômes de sevrage (comme des maux de tête, un manque d'énergie et de l'irritabilité), en particulier chez ceux qui en consomment beaucoup.
La caféine peut aggraver les problèmes cardiaques ou l'anxiété, et certains enfants ne savent peut-être pas qu'ils courent un risque.

Une consommation excessive de caféine est associée à d’autres comportements malsains, comme l’abus de tabac et d’alcool.


QU'EST-CE QUE LA SENSIBILITÉ À LA CAFÉINE ?
La sensibilité à la caféine fait référence à la quantité de caféine qui provoquera un effet chez une personne.
La sensibilité à la caféine est principalement liée à la consommation quotidienne de caféine, mais plus la personne est petite, moins la caféine est nécessaire pour produire des effets secondaires.
Les enfants sont plus sensibles à la caféine que les adultes.

Les personnes qui boivent régulièrement des boissons contenant de la caféine y deviennent rapidement moins sensibles.
Cela signifie qu’ils ont besoin de plus de caféine pour obtenir les mêmes effets qu’une personne qui boit moins de caféine.

Ainsi, plus vous consommez de caféine, plus vous en aurez besoin pour ressentir les mêmes effets.
Les effets de la caféine durent jusqu'à 6 heures.


QUELS ALIMENTS ET BOISSONS CONTENENT DE LA CAFÉINE ?
La caféine est produite naturellement dans les feuilles et les graines de nombreuses plantes.
Il est également fabriqué artificiellement et ajouté à certains aliments.
Les enfants tirent la majeure partie de leur caféine des sodas, mais on la trouve également dans les boissons énergisantes, le café, le thé, le chocolat, la glace au café, ainsi que dans certains analgésiques et autres médicaments en vente libre.


Voici comment comparer certaines sources de caféine :
• Boisson gazeuse Jolt, 12 oz, 71,2 mg
• Rosée de montagne, 12 onces, 55 mg
• Coca-Cola, 12 onces, 34 mg
• Coca light, 12 oz, 45 mg
• Pepsi, 12 onces, 38 mg
• café infusé (méthode goutte à goutte), 5 oz, 115 mg*
• thé glacé, 12 oz, 70 mg*
• chocolat noir, 1 oz, 20 mg*
• chocolat au lait, 1 oz, 6 mg*
• boisson au cacao, 5 oz, 4 mg*
• boisson au lait chocolaté, 8 oz, 5 mg*
• médicament contre le rhume, 1 comprimé, 30 mg*
• *quantité moyenne de caféine, ,



INFORMATIONS DE SÉCURITÉ SUR LA CAFÉINE :
Premiers secours:
Description des premiers secours :
Conseils généraux :
Consultez un médecin.
Montrez cette fiche de données de sécurité au médecin traitant.
Sortez de la zone dangereuse :

En cas d'inhalation :
En cas d'inhalation, transporter la personne à l'air frais.
S'il ne respire pas, pratiquer la respiration artificielle.
Consultez un médecin.
En cas de contact avec la peau :
Enlevez immédiatement les vêtements et les chaussures contaminés.
Laver avec du savon et beaucoup d'eau.
Consultez un médecin.

En cas de contact visuel :
Rincer abondamment à l'eau pendant au moins 15 minutes et consulter un médecin.
Continuer à rincer les yeux pendant le transport à l'hôpital.

En cas d'ingestion:
NE PAS faire vomir.
Ne portez rien à la bouche d'une personne inconsciente.
Rincer la bouche avec de l'eau.
Consultez un médecin.

Lutte contre l'incendie:
Moyens d'extinction:
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistante à l'alcool, de la poudre chimique ou du dioxyde de carbone.
Dangers particuliers résultant de la substance ou du mélange
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux

Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Mesures de rejet accidentel:
Précautions individuelles, équipement de protection et procédures d'urgence
Utilisez un équipement de protection individuelle.

Éviter de respirer les vapeurs, brouillards ou gaz.
Évacuer le personnel vers des zones sûres.

Précautions environnementales:
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Méthodes et matériels de confinement et de nettoyage :
Absorber avec un matériau absorbant inerte et éliminer comme déchet dangereux.
Gardez à récipients adaptés et fermés pour l'élimination.

Manipulation et stockage:
Précautions à prendre pour une manipulation sans danger:
Évitez l'inhalation de vapeurs ou de brouillards.

Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les récipients ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Classe de stockage (TRGS 510) : 8A : matières dangereuses combustibles et corrosives

Contrôle de l'exposition / protection individuelle:
Paramètres de contrôle:
Composants avec paramètres de contrôle du poste de travail
Ne contient aucune substance ayant des valeurs limites d'exposition professionnelle.
Contrôles d'exposition:
Contrôles techniques appropriés :
A manipuler conformément aux bonnes pratiques d'hygiène industrielle et aux consignes de sécurité.
Se laver les mains avant les pauses et à la fin de la journée de travail.

Équipement de protection individuelle:
Protection des yeux/du visage :
Lunettes de sécurité bien ajustées.
Écran facial (8 pouces minimum).
Utilisez un équipement de protection oculaire testé et approuvé selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou EN 166 (UE).

Protection de la peau :
Manipuler avec des gants.
Les gants doivent être inspectés avant utilisation.
Utilisez un gant approprié
technique de retrait (sans toucher la surface extérieure du gant) pour éviter tout contact cutané avec ce produit.
Jetez les gants contaminés après utilisation conformément aux lois applicables et aux bonnes pratiques de laboratoire.
Se laver et se sécher les mains.

Contact complet :
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Contact anti-éclaboussures
Matériau : Caoutchouc nitrile
Épaisseur minimale de la couche : 0,11 mm
Temps de percée : 480 min
Matériel testé : Dermatril (KCL 740 / Aldrich Z677272, Taille M)
Il ne doit pas être interprété comme offrant une approbation pour un scénario d’utilisation spécifique.

Protection du corps :
Combinaison complète de protection contre les produits chimiques. Le type d'équipement de protection doit être choisi en fonction de la concentration et de la quantité de substance dangereuse sur le lieu de travail spécifique.
Protection respiratoire:
Lorsque l'évaluation des risques montre que les respirateurs purificateurs d'air sont appropriés, utilisez un respirateur complet avec des cartouches respiratoires combinées polyvalentes (US) ou de type ABEK (EN 14387) en complément des contrôles techniques.

Si le respirateur est le seul moyen de protection, utilisez un respirateur complet à adduction d'air.
Utilisez des respirateurs et des composants testés et approuvés selon les normes gouvernementales appropriées telles que NIOSH (États-Unis) ou CEN (UE).
Contrôle de l’exposition environnementale
Empêcher toute fuite ou déversement supplémentaire si cela peut être fait en toute sécurité.
Ne laissez par le produit entrer dans des canalisations.
Le rejet dans l’environnement doit être évité.

Stabilité et réactivité:
Stabilité chimique:
Stable dans les conditions de stockage recommandées.
Matériaux incompatibles :
Agents oxydants forts :
Produits de décomposition dangereux:
Des produits en décomposition peuvent être dangereux en cas de feu.
Oxydes de carbone, Oxydes d'azote (NOx), Chlorure d'hydrogène gazeux.

Considérations relatives à l'élimination :
Méthodes de traitement des déchets :
Produit:
Proposez des solutions excédentaires et non recyclables à une entreprise d’élimination agréée.
Contactez un service professionnel agréé d’élimination des déchets pour éliminer ce matériau.
Emballages contaminés :
Jeter comme produit non utilisé





Caféine ( CAFFEINE)
CAFFEIC ACID, N° CAS : 331-39-5, Nom INCI : CAFFEIC ACID, Nom chimique : 3-(3,4-Dihydroxyphenyl)-2-Propenoic acid, N° EINECS/ELINCS : 206-361-2, Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité, Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit
CAFFEIC ACID
1,3,7-Trimethylxanthine; 1-methyltheobromine; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione; 1,3,7-Trimethyl-2,6-dioxopurine; Methyltheobromide; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione; Caffenium; 1,3,7-Trimethylxanthine; 7-methyltheophylline; 1,3,7-trimethyl-Xanthine CAS NO:58-08-2
CAFFEINE ANHYDRATE
1,3,7-Trimethylxanthine; 1-methyltheobromine; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione; 1,3,7-Trimethyl-2,6-dioxopurine; Methyltheobromide; 3,7-Dihydro-1,3,7-trimethyl-1H-purine-2,6-dione; Caffenium; 1,3,7-Trimethylxanthine; 7-methyltheophylline; 1,3,7-trimethyl-Xanthine CAS NO: 58-08-2
CAFFEINE ANHYDROUS
CAFFEINE Property Name Property Value Reference CAFFEINE Molecular Weight 194.19 g/mol CAFFEINE XLogP3 -0.1 CAFFEINE Hydrogen Bond Donor Count 0 CAFFEINE Hydrogen Bond Acceptor Count 3 CAFFEINE Rotatable Bond Count 0 CAFFEINE Exact Mass 194.080376 g/mol CAFFEINE Monoisotopic Mass 194.080376 g/mol CAFFEINE Topological Polar Surface Area 58.4 Ų CAFFEINE Heavy Atom Count 14 CAFFEINE Formal Charge 0 CAFFEINE Complexity 293 CAFFEINE Isotope Atom Count 0 CAFFEINE Defined Atom Stereocenter Count 0 CAFFEINE Undefined Atom Stereocenter Count 0 CAFFEINE Defined Bond Stereocenter Count 0 CAFFEINE Undefined Bond Stereocenter Count 0 CAFFEINE Covalently-Bonded Unit Count 1 CAFFEINE Compound Is Canonicalized Yes Caffeine is a central nervous system (CNS) stimulant of the methylxanthine class.It is the world's most widely consumed psychoactive drug.Unlike many other psychoactive substances, it is legal and unregulated in nearly all parts of the world. There are several known mechanisms of action to explain the effects of caffeine. The most prominent is that it reversibly blocks the action of adenosine on its receptors and consequently prevents the onset of drowsiness induced by adenosine. Caffeine also stimulates certain portions of the autonomic nervous system. Caffeine is a bitter, white crystalline purine, a methylxanthine alkaloid, and is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America,and helps to protect them against predator insects and to prevent germination of nearby seeds.The most well-known source of caffeine is the coffee bean, the seed of the Coffea plant. People may drink beverages containing caffeine to relieve or prevent drowsiness and to improve cognitive performance. To make these drinks, caffeine is extracted by steeping the plant product in water, a process called infusion. Caffeine-containing drinks, such as coffee, tea, and cola, are very popular; as of 2014, 85% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine can have both positive and negative health effects. It can treat and prevent the premature infant breathing disorders bronchopulmonary dysplasia of prematurity and apnea of prematurity. Caffeine citrate is on the WHO Model List of Essential Medicines. It may confer a modest protective effect against some diseases,including Parkinson's disease.Some people experience sleep disruption or anxiety if they consume caffeine, but others show little disturbance. Evidence of a risk during pregnancy is equivocal; some authorities recommend that pregnant women limit caffeine to the equivalent of two cups of coffee per day or less.Caffeine can produce a mild form of drug dependence - associated with withdrawal symptoms such as sleepiness, headache, and irritability - when an individual stops using caffeine after repeated daily intake.Tolerance to the autonomic effects of increased blood pressure and heart rate, and increased urine output, develops with chronic use (i.e., these symptoms become less pronounced or do not occur following consistent use). Caffeine is classified by the US Food and Drug Administration as generally recognized as safe (GRAS). Toxic doses, over 10 grams per day for an adult, are much higher than the typical dose of under 500 milligrams per day.A cup of coffee contains 80-175 mg of caffeine, depending on what "bean" (seed) is used, how it is roasted (darker roasts have less caffeine), and how it is prepared (e.g., drip, percolation, or espresso). Thus it requires roughly 50-100 ordinary cups of coffee to reach the toxic dose. However, pure powdered caffeine, which is available as a dietary supplement, can be lethal in tablespoon-sized amounts. Contents 1 Use -CAFFEINE 1.1 Medical -CAFFEINE 1.2 Enhancing performance ->CAFFEINE 1.3 Specific populations ->CAFFEINE 2 Adverse effects ->CAFFEINE 2.1 Physical ->CAFFEINE 2.2 Psychological ->CAFFEINE 2.3 Reinforcement disorders ->CAFFEINE 2.4 Risk of other diseases ->CAFFEINE 3 Overdose ->CAFFEINE 4 Interactions ->CAFFEINE 4.1 Alcohol ->CAFFEINE 4.2 Tobacco ->CAFFEINE 4.3 Birth control ->CAFFEINE 4.4 Medications ->CAFFEINE 5 Pharmacology ->CAFFEINE 5.1 Pharmacodynamics ->CAFFEINE 5.2 Pharmacokinetics ->CAFFEINE 6 Chemistry ->CAFFEINE 6.1 Synthesis ->CAFFEINE 6.2 Decaffeination ->CAFFEINE 6.3 Detection in body fluids ->CAFFEINE 6.4 Analogs ->CAFFEINE 6.5 Precipitation of tannins ->CAFFEINE 7 Natural occurrence ->CAFFEINE 8 Products ->CAFFEINE 8.1 Beverages ->CAFFEINE 8.2 Chocolate ->CAFFEINE 8.3 Tablets ->CAFFEINE 8.4 Other oral products ->CAFFEINE 8.5 Inhalants ->CAFFEINE 8.6 Combinations with other drugs ->CAFFEINE 9 History ->CAFFEINE 9.1 Discovery and spread of use ->CAFFEINE 9.2 Chemical identification, isolation, and synthesis ->CAFFEINE 9.3 Historic regulations ->CAFFEINE 10 Society and culture ->CAFFEINE 10.1 Regulations ->CAFFEINE 10.2 Consumption ->CAFFEINE 10.3 Religions ->CAFFEINE 11 Other organisms ->CAFFEINE 12 Research ->CAFFEINE Medical ->CAFFEINE Main article: Caffeine citrate Caffeine is used in: Some people use caffeine-containing beverages such as coffee or tea to try to treat their asthma.Evidence to support this practice, however, is poor.It appears that caffeine improves airway function in people with asthma, increasing forced expiratory volume (FEV1) by 5% to 18%, with this effect lasting for up to four hours.The addition of caffeine (100-130 mg) to commonly prescribed pain relievers such as paracetamol or ibuprofen modestly improves the proportion of people who achieve pain relief.Enhancing performance Cognitive Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness.At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination.The amount of caffeine needed to produce these effects varies from person to person, depending on body size and degree of tolerance.The desired effects arise approximately one hour after consumption, and the desired effects of a moderate dose usually subside after about three or four hours.Caffeine can delay or prevent sleep and improves task performance during sleep deprivation.Shift workers who use caffeine make fewer mistakes due to drowsiness.A systematic review and meta-analysis from 2014 found that concurrent caffeine and l-theanine use has synergistic psychoactive effects that promote alertness, attention, and task switching;these effects are most pronounced during the first hour post-dose. Physical ->CAFFEINE Caffeine is a proven ergogenic aid in humans.Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions.Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance,cycling and running time trial performance,endurance (i.e., it delays the onset of muscle fatigue and central fatigue), and cycling power output. Caffeine increases basal metabolic rate in adults.Caffeine improves muscular strength and power,and may enhance muscular endurance.Caffeine also enhances performance on anaerobic tests. Caffeine consumption before constant load exercise is associated with reduced perceived exertion. While this effect is not present during exercise-to-exhaustion exercise, performance is significantly enhanced. This is congruent with caffeine reducing perceived exertion, because exercise-to-exhaustion should end at the same point of fatigue.Caffeine also improves power output and reduces time to completion in aerobic time trials, an effect positively (but not exclusively) associated with longer duration exercise. Specific populations ->CAFFEINE Adults For the general population of healthy adults, Health Canada advises a daily intake of no more than 400 mg.This limit was found to be safe by a 2017 systematic review on caffeine toxicology.Children ->CAFFEINEIn healthy children, moderate caffeine intake under 400 mg produces effects that are "modest and typically innocuous".Higher doses of caffeine (>400 mg) can cause physiological, psychological and behavioral harm, particularly for children with psychiatric or cardiac conditions.There is no evidence that coffee stunts a child's growth.The American Academy of Pediatrics recommends that caffeine consumption is not appropriate for children and adolescents and should be avoided.This recommendation is based on a clinical report released by American Academy of Pediatrics in 2011 with a review of 45 publications from 1994 to 2011 and includes inputs from various stakeholders (Pediatricians, Committee on nutrition, Canadian Pediatric Society, Centers for Disease Control & Prevention, Food and Drug Administration, Sports Medicine & Fitness committee, National Federations of High School Associations).For children age 12 and under, Health Canada recommends a maximum daily caffeine intake of no more than 2.5 milligrams per kilogram of body weight. Based on average body weights of children, this translates to the following age-based intake limits:Age range Maximum recommended daily caffeine intake 4-6 45 mg (slightly more than in 12 oz of a typical caffeinated soft drink) 7-9 62.5 mg 10-12 85 mg (about ½ cup of coffee) AdolescentsHealth Canada has not developed advice for adolescents because of insufficient data. However, they suggest that daily caffeine intake for this age group be no more than 2.5 mg/kg body weight. This is because the maximum adult caffeine dose may not be appropriate for light-weight adolescents or for younger adolescents who are still growing. The daily dose of 2.5 mg/kg body weight would not cause adverse health effects in the majority of adolescent caffeine consumers. This is a conservative suggestion since older and heavier weight adolescents may be able to consume adult doses of caffeine without suffering adverse effects.Pregnancy and breastfeeding The metabolism of caffeine is reduced in pregnancy, especially in the third trimester, and the half life of caffeine during pregnancy can be increased up to 15 hours (as compared to 2.5 to 4.5 hours in non-pregnant adults).Current evidence regarding the effects of caffeine on pregnancy and for breastfeeding are inconclusive.There is limited primary and secondary advice for, or against, caffeine use during pregnancy and its effects on the fetus or newborn.The UK Food Standards Agency has recommended that pregnant women should limit their caffeine intake, out of prudence, to less than 200 mg of caffeine a day - the equivalent of two cups of instant coffee, or one and a half to two cups of fresh coffee.The American Congress of Obstetricians and Gynecologists (ACOG) concluded in 2010 that caffeine consumption is safe up to 200 mg per day in pregnant women.For women who breastfeed, are pregnant, or may become pregnant, Health Canada recommends a maximum daily caffeine intake of no more than 300 mg, or a little over two 8 oz (237 mL) cups of coffee.A 2017 systematic review on caffeine toxicology found evidence supporting that caffeine consumption up to 300 mg/day for pregnant women is generally not associated with adverse reproductive or developmental effect. There are conflicting reports in the scientific literature about caffeine use during pregnancy.A 2011 review found that caffeine during pregnancy does not appear to increase the risk of congenital malformations, miscarriage or growth retardation even when consumed in moderate to high amounts.Other reviews, however, concluded that there is some evidence that higher caffeine intake by pregnant women may be associated with a higher risk of giving birth to a low birth weight baby,and may be associated with a higher risk of pregnancy loss.A systematic review, analyzing the results of observational studies, suggests that women who consume large amounts of caffeine (greater than 300 mg/day) prior to becoming pregnant may have a higher risk of experiencing pregnancy loss. Adverse effects ->CAFFEINE Physical Coffee and caffeine can affect gastrointestinal motility and gastric acid secretion.Caffeine in low doses may cause weak bronchodilation for up to four hours in asthmatics.In postmenopausal women, high caffeine consumption can accelerate bone loss. Acute ingestion of caffeine in large doses (at least 250-300 mg, equivalent to the amount found in 2-3 cups of coffee or 5-8 cups of tea) results in a short-term stimulation of urine output in individuals who have been deprived of caffeine for a period of days or weeks. This increase is due to both a diuresis (increase in water excretion) and a natriuresis (increase in saline excretion); it is mediated via proximal tubular adenosine receptor blockade.The acute increase in urinary output may increase the risk of dehydration. However, chronic users of caffeine develop a tolerance to this effect and experience no increase in urinary output. Psychological ->CAFFEINE Minor undesired symptoms from caffeine ingestion not sufficiently severe to warrant a psychiatric diagnosis are common and include mild anxiety, jitteriness, insomnia, increased sleep latency, and reduced coordination.Caffeine can have negative effects on anxiety disorders.According to a 2011 literature review, caffeine use is positively associated with anxiety and panic disorders.At high doses, typically greater than 300 mg, caffeine can both cause and worsen anxiety.For some people, discontinuing caffeine use can significantly reduce anxiety.In moderate doses, caffeine has been associated with reduced symptoms of depression and lower suicide risk. Reinforcement disorders ->CAFFEINE Addiction Whether caffeine can result in an addictive disorder depends on how addiction is defined. Compulsive caffeine consumption under any circumstances has not been observed, and caffeine is therefore not generally considered addictive.However, some diagnostic models, such as the ICDM-9 and ICD-10, include a classification of caffeine addiction under a broader diagnostic model.Some state that certain users can become addicted and therefore unable to decrease use even though they know there are negative health effects. Caffeine does not appear to be a reinforcing stimulus, and some degree of aversion may actually occur, with people preferring placebo over caffeine in a study on drug abuse liability published in an NIDA research monograph.Some state that research does not provide support for an underlying biochemical mechanism for caffeine addiction.Other research states it can affect the reward system. "Caffeine addiction" was added to the ICDM-9 and ICD-10. However, its addition was contested with claims that this diagnostic model of caffeine addiction is not supported by evidence.The American Psychiatric Association's DSM-5 does not include the diagnosis of a caffeine addiction but proposes criteria for the disorder for more study. Dependence and withdrawal Main article: Caffeine dependence See also: Caffeine-induced anxiety disorder, caffeine-induced sleep disorder, and caffeinism Withdrawal can cause mild to clinically significant distress or impairment in daily functioning. The frequency at which this occurs is self-reported at 11%, but in lab tests only half of the people who report withdrawal actually experience it, casting doubt on many claims of dependence.Mild physical dependence and withdrawal symptoms may occur upon abstinence, with greater than 100 mg caffeine per day, although these symptoms last no longer than a day.Some symptoms associated with psychological dependence may also occur during withdrawal.The diagnostic criteria for caffeine withdrawal require a previous prolonged daily use of caffeine.Following 24 hours of a marked reduction in consumption, a minimum of 3 of these signs or symptoms is required to meet withdrawal criteria: difficulty concentrating, depressed mood/irritability, flu-like symptoms, headache, and fatigue.Additionally, the signs and symptoms must disrupt important areas of functioning and are not associated with effects of another condition
Caffeine
ACETIC ACID, CALCIUM SALT; CALCIUM ACETATE; Calcium acetate-dried; CALCIUM DIACETATE; FEMA 2228; MAGGRAN(R) CA; MAGNESIA 87219; acetatedecalcium; Aceticacid,calciunsalt; brownacetate; brownacetateoflime[qr]; grayacetate; grayacetateoflime[qr]; limeacetate; limepyrolignite; sorbo-calcion; teltozan; vinegarsalts; CALCIUM ACETATE EXTRA PURE, FCC, E 263; CALCIUM ACETATE HYDRATE PURE CAS NO:62-54-4
CALCIUM ACETATE
CALCIUM ACETATE, N° CAS : 62-54-4 - Acétate de calcium, Nom INCI : CALCIUM ACETATE, Nom chimique : Calcium di(acetate), N° EINECS/ELINCS : 200-540-9, Additif alimentaire : E263 Ses fonctions (INCI), Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
CALCIUM ALUMINATE
L'aluminate de calcium se présente sous la forme d'une poudre blanche et présente une forme cristalline monoclinique.
L'aluminate de calcium fait référence à une classe de composés dérivés de la combinaison d'oxyde de calcium (chaux) et d'oxyde d'aluminium (alumine).
L'aluminate de calcium est fabriqué en fusionnant ou en frittant de l'alumine et de la calcia contribuant aux minéraux pour produire des clinkers d'aluminate monocalcique (CaAl2O4) qui sont ensuite réduits en poudre.

Numéro CAS : 12042-68-1
La Formule 1 : AlCaH7O
Poids moléculaire : 90,11
Numéro EINECS : 234-931-0

12042-68-1, Aluminate de calcium, Oxyde de calcium et d'aluminium, calcium ; oxydo(oxo)alumane, ALUMINATE DE CALCIUM, MFCD00049722, Tétraoxyde de calcium dialuminium, calcium,oxydo(oxo)alumane, EINECS 234-931-0, dialuminate de calcium, Oxyde d'aluminium et de calcium (Al2CaO4), Aluminate monocalcique, XFWJKVMFIVXPKK-UHFFFAOYSA-N, J-004335, Q6901369

La densité de l'aluminate de calcium est de 2,98 g/cc et son point de fusion est de 1605 °C.
Le composé d'aluminate de calcium le plus courant est le ciment aluminate de calcium (CAC), qui est un matériau cimentaire hydraulique.
Les principaux composants du ciment aluminate de calcium sont les phases d'aluminate de calcium, généralement l'aluminate monocalcique (CA) et l'aluminate dicalcique (CA2).
Ces composés contribuent aux propriétés et aux performances du ciment.

Les aluminates de calcium sont une gamme de matériaux obtenus en chauffant ensemble de l'oxyde de calcium et de l'oxyde d'aluminium à haute température.
On les rencontre dans la fabrication des réfractaires et des ciments.
Les réfractaires à base d'aluminate de calcium sont couramment utilisés pour le revêtement des répartiteurs dans le processus de fabrication de l'acier.

Les aluminates de calcium sont des récipients utilisés pour contrôler l'écoulement du métal fondu pendant la coulée continue.
L'aluminate de calcium est parfois utilisé comme catalyseur dans la production de peroxyde d'hydrogène.
L'aluminate de calcium aide à la conversion des dérivés de l'anthraquinone en peroxyde d'hydrogène.

Certaines formes d'aluminate de calcium peuvent servir de matériau de support pour les catalyseurs dans divers processus chimiques.
Dans la production d'acide sulfurique, l'aluminate de calcium peut être utilisé dans la construction de revêtements résistants aux acides pour les équipements en raison de sa résistance aux conditions acides.
Les aluminates de calcium, qui sont utilisés dans des applications à haute température, peuvent contenir de l'aluminate de calcium comme composant clé.

L'aluminate de calcium a été étudié pour son utilisation potentielle dans la stabilisation des déchets dangereux, aidant à immobiliser certains contaminants.
Le ciment aluminate de calcium peut être utilisé dans la formulation de mélanges de béton à haute résistance, contribuant à une résistance à la compression et à une durabilité accrues.
Dans le domaine de la construction, les coulis sans retrait contenant du ciment à base d'aluminate de calcium peuvent être utilisés pour des applications où un changement de volume minimal est souhaité, comme dans la litière des machines.

Certaines formulations de ciment à base d'aluminate de calcium sont utilisées dans la cimentation des puits de pétrole.
Ces ciments peuvent offrir une résistance aux températures élevées et une prise rapide dans la construction de puits de pétrole.
Les ciments aluminate de calcium peuvent être utilisés dans la production de matériaux isolants électriques en raison de leur capacité à résister à des températures élevées.

En géotechnique, l'aluminate de calcium est parfois utilisé pour stabiliser le sol et améliorer sa capacité portante.
Les composés à base d'aluminate de calcium peuvent être utilisés dans la formulation de mastics chimiques pour diverses applications industrielles et de construction.
Dans certaines formulations, le ciment aluminate de calcium est utilisé dans les revêtements conçus pour fournir une protection contre la corrosion dans les structures métalliques.

Les ciments aluminate de calcium sont des ciments constitués principalement d'aluminates de calcium hydrauliques.
D'autres noms sont « ciment alumineux », « ciment à haute teneur en alumine » et « Ciment fondu » en français.
Ils sont utilisés dans un certain nombre d'applications spécialisées à petite échelle.

Le ciment aluminate de calcium inventé en 1908 par Bied[2] est sans sulfate et durcit pour donner principalement des aluminates de calcium hydratés ou des carboaluminates (phases AFm : phases mono-substituées de ferrite d'aluminium), parfois accompagnés de C-S-H comme composant mineur, tandis que le Ca(OH)2 (portlandite) est absent.
Le ciment à l'aluminate de calcium ne doit pas être confondu avec le ciment au sulfo-aluminate de calcium (CSA) contenant du sulfate de calcium et inventé plus tard en 1936.
Le principal constituant, et aussi la phase la plus réactive, des ciments aluminate de calcium est l'aluminate monocalcique (CaAl2O4 = CaO · Al2O3, également écrit CA dans la notation de chimiste du ciment).

L'aluminate de calcium contient généralement d'autres aluminates de calcium ainsi qu'un certain nombre de phases moins réactives dérivant d'impuretés dans les matières premières.
On rencontre plutôt une large gamme de compositions, en fonction de l'application et de la pureté de la source d'aluminium utilisée.
L'aluminate de calcium est un matériau super réfractaire.

L'aluminate de calcium est de loin supérieur au ciment Portland dans ses propriétés de prise et sa capacité à résister aux températures élevées et aux attaques chimiques.
Le ciment aluminate de calcium est un type de ciment fabriqué à partir d'un mélange d'alumine et de calcaire à haute température. Il a une longue histoire d'utilisation réussie dans les applications de ciment spécialisées, en particulier là où une résistance aux températures très élevées, aux sulfates et aux acides et alcalis doux est nécessaire.

Le ciment à base d'aluminate de calcium peut également bien fonctionner lorsqu'un renforcement solide est nécessaire.
Le ciment aluminate de calcium se compose principalement d'aluminate monocalcique, d'autres aluminates de calcium et de quelques phases moins réactives obtenues à partir des impuretés des matières premières.
Lorsqu'il est appliqué comme liant spécial, l'aluminate de calcium présente une excellente résistance à la corrosion, à la chaleur et à l'abrasion

Le ciment aluminate de calcium, les ciments d'alumine ou les ciments à haute teneur en alumine sont obtenus par la réaction à haute température de la chaux (à partir du calcaire) et de l'alumine (contenue dans des minéraux naturels comme la bauxite).
Le ciment aluminate obtenu après refroidissement est un minéral dur : le clinker d'aluminate de calcium.
Broyé en une poudre fine, le clinker devient du ciment aluminate de calcium (CAC) qui forme une pâte lorsqu'il est mélangé à de l'eau.

Le ciment aluminate a la capacité de durcir très rapidement : il forme un solide rigide en 24 heures.
L'aluminium et l'oxyde de calcium sont chauffés à haute température pour créer un groupe de minéraux connus sous le nom d'aluminates de calcium.
Selon le niveau de pureté requis, la chaux et l'alumine ou le calcaire et la bauxite sont combinés pour créer des aluminates de calcium qui, une fois refroidis, laissent derrière eux des clinkers durs d'aluminate de calcium.

L'aluminate de calcium peut être utilisé comme agrégat lorsqu'il est broyé ou tamisé, la composition et la couleur dépendant de la quantité et de la pureté de chaque ingrédient source.
Le clinker peut durcir très rapidement mais de manière contrôlée dans les formulations lorsqu'il est broyé en une poudre fine et utilisé comme liant, ce qui crée une pâte lorsqu'il est combiné avec de l'eau.
De plus, l'aluminate de calcium contient des traces de phosphore, de magnésium, de fer, de silicium et de manganèse.

De l'aluminate de calcium est ajouté au mélange pour fournir aux produits en béton une durabilité supplémentaire à haute résistance.
Le ciment aluminate de calcium (CAC) est une classe unique de ciment qui est différente du ciment Portland ordinaire (OPC), notamment en raison de sa composition chimique.
L'aluminate de calcium contient une quantité beaucoup plus importante d'alumine et une quantité beaucoup moins importante de silice.

L'aluminate de calcium est généralement immédiatement disponible dans la plupart des volumes.
Les aluminates sont des composés composés d'un ion alumine chargé négativement et d'un oxyde métallique avec diverses applications industrielles telles que le traitement de l'eau et la fabrication de céramiques.
En décembre 2012, une équipe de chercheurs a créé un type unique de pigment hautement réfléchissant composé d'aluminate de cobalt dopé aux terres rares qui pourrait être utilisé comme revêtement extérieur économe en énergie.

Des formes de haute pureté, submicroniques et nanopoudres peuvent être envisagées.
American Elements produit selon de nombreuses qualités standard, le cas échéant, y compris Mil Spec (qualité militaire) ; ACS, réactif et qualité technique ; Qualité alimentaire, agricole et pharmaceutique ; Qualité optique, USP et EP/BP (Pharmacopée européenne/Pharmacopée britannique) et suit les normes de test ASTM applicables.
Des emballages typiques et personnalisés sont disponibles.

Des informations techniques, de recherche et de sécurité (FDS) supplémentaires sont disponibles, ainsi qu'un calculateur de référence pour convertir les unités de mesure pertinentes.
Le clinker d'aluminate de calcium est produit en brûlant les matières premières de la bauxite alumineuse brute de haute qualité et du calcaire dans un four à arc.
Le ciment aluminate de calcium est un ciment formé à partir de la combinaison de calcaire et d'alumine à haute température.

L'aluminate de calcium est utilisé dans les applications de ciment spécialisées où une résistance aux températures extrêmes, aux acides et alcalis doux, aux sulfates et à l'eau est nécessaire.
L'aluminate de calcium est également utilisé dans les situations où un renforcement rapide est nécessaire.
Les ciments aluminate de calcium sont des ciments hydrauliques obtenus par pulvérisation d'une masse fondue solidifiée ou d'un clinker constitué principalement d'aluminates de calcium hydrauliques formés à partir de mélanges proportionnés de matériaux alumineux et calcaires.

Ils sont généralement divisés en trois groupes en fonction de la teneur en alumine et en oxyde de fer (Faible pureté, Pureté intermédiaire et Haute pureté).
Les ciments à plus forte teneur en alumine conviennent aux applications à haute température.
L'aluminate de calcium peut être connu sous de nombreux autres noms tels que ciment alumineux ou ciment à haute teneur en alumine (HAC).

L'aluminate de calcium a été développé suite à la demande de produire des ciments résistants aux sulfates.
Les ciments à base d'aluminate de calcium ont été identifiés comme d'excellents matériaux pour la dentisterie, en particulier pour les procédures dentaires entrant en contact avec la pulpe dentaire ou le système racinaire.
Les ciments silicate de calcium et aluminate de calcium provoquent tous deux la biominéralisation (précipitation des phénomènes d'hydroxyapatite [HA] et protègent les tissus dentaires du ciment sous-jacent (un corps étranger).

Le ciment aluminate de calcium est connu pour ses propriétés hydrauliques, ce qui signifie qu'il peut durcir sous l'eau.
Cela le rend adapté à diverses applications où le ciment Portland conventionnel peut ne pas être idéal.
Le ciment aluminate de calcium a un temps de prise rapide par rapport au ciment Portland ordinaire.

Cette caractéristique de prise rapide peut être avantageuse dans certaines applications de construction et de réparation.
Le ciment aluminate de calcium présente une bonne résistance aux températures élevées.
L'aluminate de calcium est souvent utilisé dans les applications où l'exposition à des températures élevées est préoccupante, comme dans les matériaux réfractaires pour les fours industriels.

L'une des principales utilisations de l'aluminate de calcium est la production de matériaux réfractaires.
Les réfractaires fabriqués �� partir de ciment aluminate de calcium sont utilisés dans des industries telles que la sidérurgie, où la résistance aux températures élevées et aux conditions difficiles est essentielle.
Le ciment aluminate de calcium peut être utilisé dans la formulation de mélanges de béton spécialisés, tels que ceux requis pour les réparations rapides, les applications d'égout ou d'autres situations où une prise rapide et une résistance chimique élevée sont nécessaires.

Le ciment aluminate de calcium sert de liant dans la formulation de bétons à haute teneur en alumine utilisés pour le revêtement des fours, des fours et d'autres équipements à haute température.
Le ciment aluminate de calcium est connu pour sa résistance à certains types de corrosion chimique, ce qui le rend adapté à une utilisation dans des environnements où les ciments conventionnels peuvent être vulnérables aux attaques d'acides ou de sulfates.

Point de fusion 1600°C
Densité : 2.981
solubilité : réagit avec H2O
forme : Poudre
Densité : 2.981
couleur : Blanc
Solubilité dans l'eau : Insoluble dans l'eau.
Sensible : Hygroscopique

Les ciments aluminate de calcium sont un type spécial de ciments dont la composition est principalement dominée par la présence d'aluminates monocalciques.
Les ciments aluminate de calcium sont une classe spéciale de ciments résistants à la chaleur solides et performants.
Les ciments aluminate de calcium (CAC) ont des propriétés chimiques, physiques et minéralogiques différentes de celles des ciments Portland (OPC).

Les principales matières premières du ciment Portland sont le calcaire et l'argile.
Les oxydes primaires dérivés des matières premières sont le CaO et le SiO2.
Dans la production de ciment aluminate de calcium, en revanche, la bauxite est la matière première et la source d'alumine.

L'agrégat de béton produit par la combinaison de l'aluminate de calcium peut être à des températures plus basses dans le ciment réfractaire.
Le béton peut également présenter une résistance accrue à l'abrasion ainsi qu'à l'attaque des sulfates.
Les ciments à base d'aluminate de calcium (AC) sont similaires aux ciments Portland plus familiers en ce sens qu'ils nécessitent tous deux de l'eau pour s'hydrater, qu'ils forment tous deux des bétons qui durcissent à peu près au même moment et qu'ils nécessitent tous deux des conceptions de mélange et des techniques de placement similaires.

Il existe cependant des différences importantes entre les deux ciments.
Tout d'abord, les ciments Portland sont fabriqués en faisant réagir du calcaire et de l'argile pour produire des silicates de calcium, tandis que les ciments aluminate de calcium (également appelés ciments à haute teneur en alumine) sont fabriqués en faisant réagir un matériau contenant de la chaux avec un matériau alumineux pour produire des aluminates de calcium.
Le ciment aluminate de calcium est couramment utilisé dans la construction et la réparation des systèmes d'égouts.

L'aluminate de calcium a des propriétés de prise rapide, ce qui le rend adapté aux applications où une remise en service rapide est nécessaire.
Dans certaines applications de béton, le ciment aluminate de calcium peut être utilisé dans la formulation de mélanges pour joints de dilatation.
Ces joints permettent la dilatation et la contraction du béton dues aux variations de température.

Le ciment aluminate de calcium est utilisé dans les revêtements de tablier de pont, en particulier dans les situations où le béton à prise rapide est nécessaire pour une construction ou une réparation rapide.
Lorsqu'il est combiné avec d'autres matériaux, le ciment aluminate de calcium peut contribuer à la production de béton à haute performance avec des propriétés d'ingénierie spécifiques, telles qu'une résistance et une durabilité accrues.
Le ciment aluminate de calcium est un composant clé dans la production de réfractaires monolithiques, qui sont des matériaux résistants à la chaleur utilisés dans les revêtements d'équipements industriels à haute température comme les fours et les fours.

Dans les environnements où le béton est exposé à des acides ou à des produits chimiques agressifs, des formulations contenant du ciment aluminate de calcium peuvent être utilisées pour améliorer la résistance du matériau aux attaques chimiques.
L'aluminate de calcium est également impliqué dans la production d'alumine (oxyde d'aluminium).
Dans le procédé Bayer, qui est une méthode courante d'extraction de l'alumine du minerai de bauxite, l'aluminate de calcium est formé comme sous-produit.

Le ciment aluminate de calcium est utilisé dans diverses applications dans les industries chimiques et pétrochimiques où la résistance aux températures élevées et aux environnements chimiques difficiles est cruciale.
Dans les industries de la céramique et du verre, le ciment aluminate de calcium peut être utilisé comme liant ou matériau réfractaire dans la production de produits spécialisés.
Les ciments aluminate de calcium gagnent en résistance plus rapidement que le ciment Portland ordinaire (OPC).

Parfois, un ralentisseur est nécessaire pour assurer une maniabilité plus longue.
Contrairement aux ciments Portland, les ciments à base d'aluminate de calcium ne libèrent pas d'hydroxyde de calcium (Ca(OH)2, portlandite ou chaux) lors de leur hydratation.
Les réactions d'hydratation des ciments aluminate de calcium sont très complexes.

Les phases de développement de la résistance sont l'aluminate monocalcique (CA), l'hepta-aluminate dodéca-calcique (C12A7) et la bélite (C2S), un silicate dicalcique.
L'aluminoferrite de calcium (C4AF), le dialuminate monocalcique (CA2), la gehlénite et la pléochroïte contribuent peu à la résistance du béton.
Le ciment est fabriqué en fusionnant un mélange d'un matériau contenant du calcium (normalement de l'oxyde de calcium provenant du calcaire) et d'un matériau contenant de l'aluminium (normalement de la bauxite à des fins générales, ou de l'alumine raffinée pour les ciments blancs et réfractaires).

La fusion du mélange est réalisée à 1600 °C et demande de l'énergie.
La température plus élevée explique en partie ses coûts de production plus élevés que pour le clinker du ciment Portland ordinaire fritté à 1450 °C.
Le mélange liquéfié refroidit en un clinker vésiculaire, semblable à du basalte, qui est broyé seul pour produire le produit fini.

Étant donné que la fusion complète a généralement lieu, des matières premières sous forme de morceaux peuvent être utilisées.
Un arrangement typique de four comprend un four à réverbère muni d'un préchauffeur d'arbre dans lequel les gaz d'échappement chauds passent vers le haut lorsque le mélange de matières premières en morceaux passe vers le bas.
Le préchauffeur récupère la majeure partie de la chaleur contenue dans les gaz de combustion, déshydrate et déshydroxyle la bauxite et décarbonate le calcaire.

Le matériau calciné tombe dans la « partie froide » du bain de fusion.
La masse fondue déborde de l'extrémité chaude du four dans des moules dans lesquels elle refroidit et se solidifie.
Le système est alimenté avec du charbon ou du mazout pulvérisé.

Les lingots de clinker refroidis sont broyés et broyés dans un broyeur à boulets.
Dans le cas des ciments réfractaires à haute teneur en alumine, où le mélange ne fait que fritter, un four rotatif peut être utilisé.
Les propriétés particulières des ciments aluminate de calcium les rendent précieux dans les industries de la construction, de l'exploitation minière et des réfractaires.

Ce livre rassemble de nouvelles informations de recherche internationales sur leur performance. En plus d'une revue de l'état de l'art, il comprend des rapports sur des études portant sur : la minéralogie, l'hydratation et la microstructure ; rhéologie des pâtes, mortiers et coulis ; adjuvants et mélangés ; Durabilité des systèmes de béton de ciment à haute teneur en alumine.
En plus d'être utilisé comme liant, le ciment aluminate de calcium est un composant clé dans la formulation de réfractaires coulables à haute teneur en alumine.
Ces réfractaires sont utilisés dans diverses industries pour le revêtement des fours, des fours et d'autres équipements à haute température.

Le ciment aluminate de calcium est souvent utilisé dans la production de mortiers de réparation, en particulier dans les situations où des propriétés de prise rapide et de haute résistance sont requises pour les réparations structurelles.
Les mélanges de gunning, qui sont des matériaux réfractaires appliqués à l'aide d'un pistolet pneumatique, peuvent contenir du ciment aluminate de calcium.
Ces mélanges sont utilisés pour la réparation ou le revêtement de revêtements réfractaires dans diverses applications industrielles.

Dans les applications de fonderie, le ciment aluminate de calcium peut faire partie de matériaux réfractaires spéciaux utilisés pour le revêtement des poches de coulée et d'autres équipements dans le processus de coulée des métaux.
L'aluminate de calcium peut être utilisé dans les applications de stabilisation des sols.
L'aluminate de calcium peut améliorer ses propriétés techniques, telles que la résistance et la durabilité.

Dans certaines applications de béton, le ciment aluminate de calcium est utilisé pour contrôler le taux d'hydratation.
Cela peut être particulièrement utile dans les situations où un temps de prise retardé ou prolongé est souhaité.
Le ciment aluminate de calcium est utilisé dans les applications de coulis chimiques, où il est utilisé pour créer une barrière durable et imperméable dans le sol ou la roche.

Le ciment aluminate de calcium est parfois utilisé dans la formulation de composés ignifuges pour diverses applications, y compris les matériaux de construction et les revêtements.
Certaines études explorent l'utilisation de matériaux à base d'aluminate de calcium dans des applications biomédicales, telles que les ciments osseux pour les chirurgies orthopédiques.
Le ciment aluminate de calcium peut être un composant des adhésifs utilisés pour la fixation des carreaux de céramique.

Les propriétés de prise rapide sont avantageuses dans les applications où une liaison rapide est nécessaire.
Les ciments aluminate de calcium sont utilisés dans certains matériaux de restauration dentaire, y compris les ciments dentaires utilisés pour le collage.

Histoire:
La méthode de fabrication du ciment à partir de calcaire (CaCO3) et de bauxite à faible teneur en silice (Al2O3) a été brevetée en France en 1908 par Bied de la société Pavin de Lafarge.
Le développement initial a été le résultat de la recherche d'un ciment offrant une résistance aux sulfates.
Le ciment était connu sous le nom de « Ciment fondu » et « Ciment électro-fondu » en français.

Comme l'indique Bied (1922), inventeur de ce type de ciment, les termes « Ciment fondu » et « Ciment électro-fondu » ne désignent que le procédé de fabrication impliquant la fusion des matériaux de base (CaO obtenu après décarbonatation du CaCO3, et Al2O3).
En effet, il n'y a pas de plage de température dans laquelle il est possible d'observer le ramollissement et le clinkerisation progressifs de ces matériaux, comme c'est le cas avec le ciment Portland à environ 1450 °C.
En l'absence de température de ramollissement, les aluminates de calcium sont obtenus directement par fusion des matériaux précurseurs, et Bied (1922) a clairement indiqué sa préférence pour l'appellation « ciment alumineux » se référant à sa composition plutôt qu'à un procédé de fabrication.

Par la suite, d'autres propriétés spéciales ont été découvertes, ce qui a conduit à son avenir dans des applications de niche.
Dans les années 2010, le produit a été trouvé sur le marché américain sous le nom de ciment FONDAG (FOND Aluminous Aggregate), parfois appelé ALAG (ALuminous AGgregate).
Le ciment FONDAG est un mélange contenant jusqu'à 40 % d'alumine et est stable à des températures élevées et à des cycles thermiques de −184 à 1 093 °C (−300 à 2 000 °F ; 89 à 1 400 K ; 160 à 2 500 °R)

Utilise:
L'utilisation principale de l'aluminate de calcium trouvé pour CaAl2O4 a été comme ciment hydraté.
D'autres noms sont « ciment alumineux », « ciment à haute teneur en alumine » (HAC) et « Ciment fondu ».
Ils sont utilisés dans un certain nombre d'applications spécialisées à petite échelle.

L'oxyde de calcium et d'aluminium est utilisé comme précurseur dans la production de catalyseurs de reformage à la vapeur de naphta, de catalyseurs de reformage à la vapeur de gaz de raffinerie, de chlorhydrate d'aluminium, de catalyseurs de reformage à la vapeur d'hydrocarbures secondaires.
L'aluminate de calcium est également utilisé dans la production de réfractaires et de ciments.
Le ciment aluminate de calcium est souvent utilisé comme revêtements et revêtements pour les tuyaux d'égout et les applications de traitement des eaux usées.

Ils offrent également une résistance accrue à l'abrasion, à l'acide et à la corrosion biogène, ce qui peut aider à prolonger la durée de vie des tuyaux d'égout.
La résistance à l'aluminate de calcium est appliquée dans les tuyaux en fonte ductile pour les eaux usées, les tuyaux en béton pour l'assainissement et la réhabilitation des infrastructures d'égouts.
Le ciment aluminate de calcium peut être utilisé comme liant dans les applications réfractaires à haute température nécessitant une résistance élevée.

Ces liants sont également utilisés pour réguler les applications résistantes aux acides et les mélanges à prise rapide.
L'aluminate de calcium est utilisé comme catalyseur dans la production de peroxyde d'hydrogène, facilitant la conversion des dérivés de l'anthraquinone en peroxyde d'hydrogène.
Certaines formulations d'aluminate de calcium sont utilisées dans la production de réfractaires liés au phosphate, qui trouvent des applications dans les procédés à haute température.

Dans l'industrie pétrolière et gazière, le ciment à base d'aluminate de calcium peut être utilisé dans les boues de forage de puits de pétrole pour contrôler les propriétés des fluides.
L'aluminate de calcium peut servir de catalyseur dans la synthèse organique, contribuant à diverses transformations chimiques.
L'aluminate de calcium est utilisé dans certains procédés de production de papier, en particulier dans les applications où une résistance aux températures élevées est requise.

L'aluminate de calcium peut être incorporé dans des produits abrasifs, offrant dureté et résistance à l'usure.
L'aluminate de calcium est utilisé dans la formulation de bétons isolants, qui sont des matériaux conçus pour fournir une isolation thermique dans des environnements à haute température.
Les composés d'aluminate de calcium peuvent trouver des applications dans l'industrie pharmaceutique pour des formulations spécifiques.

Inclus dans les adhésifs utilisés pour la fixation des carreaux de céramique, en profitant de ses propriétés de prise rapide.
Les composés d'aluminate de calcium peuvent servir d'agents antiagglomérants dans certains produits en poudre ou en granulés pour prévenir l'agglutination.
Utilisé dans la production de mortiers de réparation pour les réparations structurelles où la prise rapide et les propriétés de haute résistance sont cruciales.

L'aluminate de calcium peut être impliqué dans les catalyseurs de craquage catalytique utilisés dans l'industrie du raffinage du pétrole.
Étudié pour des applications potentielles dans les dispositifs électrochimiques, y compris les batteries et les condensateurs.
La recherche a exploré l'utilisation de matériaux à base d'aluminate de calcium dans des applications biomédicales, telles que les ciments osseux pour les chirurgies orthopédiques.

L'aluminate de calcium est utilisé dans la formulation de coulis de construction pour diverses applications, y compris le remplissage des espaces et des vides.
Inclus dans la production de matériaux d'isolation haute température pour une utilisation dans diverses industries.
Le ciment aluminate de calcium est utilisé dans une large gamme de produits de chimie du bâtiment, y compris la colle à carrelage, les coulis à carrelage, les chapes à plancher rapide, les mortiers de literie, les scellants et les composés de nivellement des sols.

L'aluminate de calcium est mélangé au ciment Portland pour créer la base minérale de ces produits chimiques.
La base minérale peut inclure un mélange d'adjuvants, de polymères, de scories, de chaux et de matières calcaires légères.
L'aluminate de calcium est également largement utilisé pour créer du béton résistant aux produits chimiques, souvent utilisé dans des matériaux tels que les revêtements de sol industriels.

De plus, l'aluminate de calcium peut être ajouté au béton de construction qui a besoin d'un développement robuste de la résistance, même à basse température.
Les ciments aluminate de calcium utilisés dans l'industrie des eaux usées sont généralement fabriqués avec le procédé de fusion.
L'aluminate de calcium est souvent utilisé comme réactifs minéraux ou liants spécialisés haute performance dans divers secteurs.

En raison de leur résistance à l'abrasion, à la chaleur et à la corrosion, de leur durcissement rapide et de leur facilité de contrôle des variations de calibrage, les aluminates de calcium servent de liants spécialisés dans le béton et les mortiers pour des applications spécialisées.
En les mélangeant avec d'autres composants de haute qualité, il est possible de créer des liants hydrauliques uniques.
Ils peuvent également être trouvés dans les systèmes non hydrauliques car ils sont utilisés comme réactifs minéraux.

En raison de leurs propriétés de fusion à basse température et de leur capacité à absorber les impuretés dans le métal en fusion, certaines qualités d'aluminate de calcium, par exemple, sont utilisées dans les traitements métallurgiques (fonderie, sidérurgie).
L'aluminate de calcium est principalement utilisé dans la poche de raffinage pour éliminer les impuretés sulfurées du liquide en acier et maintenir une bonne fluidité des scories.
L'aluminate de calcium est un additif rentable dans les aciéries pour la formation et la désulfuration des scories.

L'aluminate de calcium est largement utilisé par les sidérurgistes soucieux de la qualité dans le monde entier.
Le ciment aluminate de calcium est utilisé comme ciment hydraulique, capable de durcir et de durcir sous l'eau.
L'aluminate de calcium offre une prise rapide par rapport au ciment Portland ordinaire.

Une application majeure est la production de matériaux réfractaires utilisés dans des environnements à haute température tels que les fours, les fours et les opérations de fusion des métaux.
L'aluminate de calcium est utilisé dans la construction et la réparation des systèmes d'égouts en raison de ses propriétés de prise rapide.
L'aluminate de calcium est utilisé dans les revêtements pour les tabliers de pont, offrant des propriétés de prise rapide pour une construction ou une réparation rapide.

L'aluminate de calcium est utilisé pour améliorer les propriétés techniques du sol, améliorant ainsi sa résistance et sa durabilité.
Indispensable pour la production de réfractaires coulables à haute teneur en alumine, qui tapissent les équipements industriels à haute température.
L'aluminate de calcium est utilisé dans les fonderies pour fabriquer des matériaux réfractaires spécialisés qui tapissent les poches de coulée et d'autres équipements de moulage des métaux.

Les formulations contenant de l'aluminate de calcium sont utilisées dans des environnements où le béton est exposé à des acides ou à des produits chimiques agressifs.
L'aluminate de calcium est utilisé dans la formulation de composés ignifuges pour diverses applications, y compris les matériaux de construction et les revêtements.
Inclus dans les mélanges de gunning utilisés pour la réparation ou le revêtement des revêtements réfractaires dans les applications industrielles.

L'aluminate de calcium est utilisé dans les applications de coulis chimiques pour créer des barrières durables et imperméables dans le sol ou la roche.
L'aluminate de calcium est utilisé dans certains matériaux de restauration dentaire, y compris les ciments dentaires utilisés pour le collage.
Généralement, l'aluminate de calcium est utilisé pour le revêtement des répartiteurs dans le processus de fabrication de l'acier.

Certaines formes d'aluminate de calcium peuvent servir de matériau de support pour les catalyseurs dans divers processus chimiques.
Étudié pour son utilisation potentielle dans la stabilisation des déchets dangereux.
L'aluminate de calcium est utilisé dans la formulation de mélanges de béton à haute résistance.

L'aluminate de calcium est utilisé pour les applications où un changement de volume minimal est souhaité, comme dans la litière des machines.
L'aluminate de calcium est utilisé dans certaines formulations pour la cimentation des puits de pétrole, offrant une résistance aux températures élevées et une prise rapide.
L'aluminate de calcium est utilisé dans la production de matériaux isolants électriques en raison de sa capacité à résister à des températures élevées.

L'aluminate de calcium est utilisé pour stabiliser le sol et améliorer sa capacité portante en géotechnique.
Inclus dans la formulation de mastics chimiques pour diverses applications de construction et industrielles.
L'aluminate de calcium est utilisé dans les revêtements conçus pour assurer une protection contre la corrosion dans les structures métalliques.

Les composés d'aluminate de calcium peuvent être utilisés dans certaines formulations de peintures et de revêtements, offrant des propriétés spécifiques telles que la résistance à la corrosion et aux températures élevées.
Des études sur l'utilisation de l'aluminate de calcium pour des applications photocatalytiques ont été rapportées, mettant en évidence son potentiel dans les processus liés à l'environnement et à l'énergie.
Dans la formulation d'adhésifs pour applications à haute température, l'aluminate de calcium peut être inclus pour améliorer les performances de l'adhésif à des températures élevées.

Certains composés d'aluminate de calcium peuvent être utilisés comme pigments métalliques dans les revêtements, contribuant ainsi à l'aspect visuel et à la résistance à la corrosion de la surface revêtue.
L'aluminate de calcium est utilisé dans le processus de fusion du magnésium, où il aide à contrôler les impuretés dans la production de magnésium métallique.
L'aluminate de calcium peut faire partie des glaçures céramiques, contribuant aux propriétés esthétiques et fonctionnelles de la glaçure.

Dans les procédés de traitement de l'eau, les composés d'aluminate de calcium peuvent être utilisés pour des applications spécifiques, telles que l'ajustement du pH ou l'élimination des impuretés.
Les matériaux à base d'aluminate de calcium ont été explorés pour leur utilisation potentielle dans les systèmes de stockage d'énergie thermique, où ils peuvent absorber et libérer de la chaleur.
L'aluminate de calcium est utilisé dans la formulation de revêtements pour les équipements résistants aux produits chimiques, offrant une protection contre les substances corrosives.

Dans certaines applications de construction et industrielles, l'aluminate de calcium peut être utilisé dans la production de matériaux d'insonorisation.
Les composés d'aluminate de calcium sont utilisés dans des processus spécifiques au sein de l'industrie du verre, contribuant à la qualité et aux caractéristiques du produit verrier final.
Dans le procédé Bayer pour la production d'alumine, l'aluminate de calcium est formé en tant que sous-produit.

Les composés d'aluminate de calcium peuvent être impliqués dans certains processus liés à la production d'engrais.
L'aluminate de calcium peut être utilisé comme agent d'expansion dans les formulations de béton, aidant à contrôler les changements de volume pendant la prise et le durcissement.

L'aluminate de calcium peut être utilisé comme additif dans les électrolytes pour certaines applications électrochimiques.
Dans la production de béton, l'aluminate de calcium peut être inclus comme entraîneur d'air pour améliorer la résistance au gel-dégel du béton.

Profil d'innocuité :
Les composés d'aluminate de calcium peuvent être irritants pour les yeux et la peau.
Le contact direct peut provoquer une irritation, une rougeur ou une éruption cutanée.
Il est important d'utiliser un équipement de protection individuelle approprié, tel que des gants et des lunettes de sécurité, lors de la manipulation de ces matériaux.

De la poussière ou de fines particules d'aluminate de calcium peuvent être générées lors de la manipulation ou du traitement.
L'inhalation de ces particules peut irriter les voies respiratoires.
Une ventilation adéquate et une protection respiratoire peuvent être nécessaires dans les situations où des particules en suspension dans l'air sont présentes.

Dans certaines conditions, l'aluminate de calcium peut se décomposer pour libérer des gaz dangereux.
Par exemple, l'exposition à des acides forts peut entraîner la libération d'hydrogène gazeux.
Des précautions doivent être prises pour éviter les substances et les conditions incompatibles qui peuvent entraîner des réactions dangereuses.
CALCIUM BEHENATE
ARAGONITE CALCII CARBONAS CALCITE CALCIUM CARBONATE CALCIUM CARBONATE, LIGHT CALCIUM (II) CARBONATE CARBONIC ACID CALCIUM SALT CHALK CHALK, PRECIPITATED ENGLISH WHITE FORMAXX(R) CALCIUM CARBONATE GROUND LIMESTONE ICELAND SPAR KALKSPAR LIME LIMESTONE MAGGRAN(R) CC MAGGRAN(R) CCPLUS MAGNESIA 84460 MAGNESIA 84470 CAS:471-34-1
CALCIUM CARBONATE
CALCIUM CARBOXYMETHYL CELLULOSE, N° CAS : 9050-04-8, Nom INCI : CALCIUM CARBOXYMETHYL CELLULOSE, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français :SEL CALCIQUE DU CARBOXYMETHYLCELLULOSE; Noms anglais :CELLULOSE, CARBOXYMETHYL ETHER, CALCIUM SALT
CALCIUM CARBOXYMETHYL CELLULOSE
Calcosan; Calcium Dichloride; complexometric; Calplus; Caltac; Dowflake; Liquidow; Peladow; Snomelt; Superflake Anhydrous; Cloruro de calcio (Spanish); Chlorure de calcium; CALCII CHLORIDUM; CALCIUM ATOMIC SPECTROSCOPY STANDARD; CALCIUM CHLORIDE; CALCIUM CHLORIDE 0-2H2O; CALCIUM CHLORIDE 2H2O; CALCIUM CHLORIDE 2-HYDRATE; CALCIUM CHLORIDE DEHYDRATED; CALCIUM CHLORIDE DIHYDRATE; Calcium chloride fused; CALCIUM CHLORIDE SOLUTION; CALCIUM CHLORIDE STANDARD; CALCIUM CHLORIDE TS; CALCIUM (II) CHLORIDE; CALCIUM ION STANDARD; CHLORO CALCIUM; PELADOW(R) SNOW AND ICE MELT; Anhydrous calcium chloride; anhydrouscalciumchloride CAS NO:10043-52-4, 139468-93-2 (Anhydrous); 10035-04-8 (Dihydrate); 7774-34-7 (Hexahydrate)
CALCIUM CHLORIDE
Calcosan; Calcium Dichloride; complexometric; Calplus; Caltac; Dowflake; Liquidow; Peladow; Snomelt; Superflake Anhydrous; CAS NO. 10043-52-4, 139468-93-2 (Anhydrous) 10035-04-8 (Dihydrate) 7774-34-7 (Hexahydrate)
CALCIUM CHLORIDE
CAS NO:10043-52-4
EC NO:233-140-8


Calcium chloride is an inorganic compound, a salt with the chemical formula CaCl2.
Calcium chloride is a white coloured crystalline solid at room temperature, and Calcium chloride is highly soluble in water.
Calcium chloride can be created by neutralising hydrochloric acid with calcium hydroxide.
Calcium chloride can help replenish calcium and can be an antidote for magnesium poisoning.
Calcium chloride is also a pH adjuster/water softener, which is why Calcium chloride is commonly used as a brine in refrigeration plants, as well as a tool for ice and dust control on roads.
Calcium chloride absorbs moisture from the air, and when Calcium chloride’s added to liquids Calcium chloride absorbs water.

Calcium chloride is commonly encountered as a hydrated solid with generic formula CaCl2(H2O)x, where x = 0, 1, 2, 4, and 6.
These compounds are mainly used for de-icing and dust control.
Because the anhydrous salt is hygroscopic, Calcium chloride is used as a desiccant.

Uses of Calcium chloride:
By depressing the freezing point of water, calcium chloride is used to prevent ice formation and is used to de-ice.
This application consumes the greatest amount of calcium chloride.
Calcium chloride is relatively harmless to plants and soil.
As a deicing agent, Calcium chloride is much more effective at lower temperatures than sodium chloride.
When distributed for this use, Calcium chloride usually takes the form of small, white spheres a few millimeters in diameter, called prills.
Solutions of calcium chloride can prevent freezing at temperatures as low as −52 °C (−62 °F), making Calcium chloride ideal for filling agricultural implement tires as a liquid ballast, aiding traction in cold climates.
Calcium chloride is also used in domestic and industrial chemical air dehumidifiers.

Road surfacing
Calcium chloride was sprayed on this road to prevent weathering, giving Calcium chloride a wet appearance even in dry weather.
The second largest application of calcium chloride exploits Calcium chlorides hygroscopic nature and the tackiness of Calcium chlorides hydrates;
Calcium chloride is highly hygroscopic and Calcium chlorides hydration is an exothermic reaction.
A concentrated solution keeps a liquid layer on the surface of dirt roads, which suppresses the formation of dust.
Calcium chloride keeps the finer dust particles on the road, providing a cushioning layer.
If these are allowed to blow away, the large aggregate begins to shift around and the road breaks down.
Using calcium chloride reduces the need for grading by as much as 50% and the need for fill-in materials as much as 80%.

Food
The average intake of calcium chloride as food additives has been estimated to be 160–345 mg/day.
Calcium chloride is permitted as a food additive in the European Union for use as a sequestrant and firming agent with the E number E509.
Calcium chloride is considered as generally recognized as safe (GRAS) by the U.S. Food and Drug Administration.
Calcium chloride is use in organic crop production is generally prohibited under the US National Organic Program.

In marine aquariums, calcium chloride is one way to introduce bioavailable calcium for calcium carbonate-shelled animals such as mollusks and some cnidarians.
Calcium hydroxide (kalkwasser mix) or a calcium reactor can also be used.

As a firming agent, calcium chloride is used in canned vegetables, in firming soybean curds into tofu and in producing a caviar substitute from vegetable or fruit juices.
Calcium chloride is commonly used as an electrolyte in sports drinks and other beverages, including bottled water.
The extremely salty taste of calcium chloride is used to flavor pickles without increasing the food's sodium content.
Calcium chloride's freezing-point depression properties are used to slow the freezing of the caramel in caramel-filled chocolate bars.
Also, Calcium chloride is frequently added to sliced apples to maintain texture.

In brewing beer, calcium chloride is sometimes used to correct mineral deficiencies in the brewing water.
Calcium chloride affects flavor and chemical reactions during the brewing process, and can also affect yeast function during fermentation.

In cheesemaking, calcium chloride is sometimes added to processed (pasteurized/homogenized) milk to restore the natural balance between calcium and protein in casein.
Calcium chloride is added before the coagulant.
Calcium chloride is used to prevent cork spot and bitter pit on apples by spraying on the tree during the late growing season.

Laboratory and related drying operations
Drying tubes are frequently packed with calcium chloride.
Kelp is dried with calcium chloride for use in producing sodium carbonate.
Anhydrous calcium chloride has been approved by the FDA as a packaging aid to ensure dryness (CPG 7117.02).
The hydrated salt can be dried for re-use but will dissolve in its own water of hydration if heated quickly and form a hard amalgamated solid when cooled.

Miscellaneous applications
Calcium chloride is used in concrete mixes to accelerate the initial setting, but chloride ions lead to corrosion of steel rebar, so it should not be used in reinforced concrete.
The anhydrous form of calcium chloride may also be used for this purpose and can provide a measure of the moisture in concrete.
Calcium chloride is included as an additive in plastics and in fire extinguishers, in blast furnaces as an additive to control scaffolding (clumping and adhesion of materials that prevent the furnace charge from descending), and in fabric softener as a thinner.
The exothermic dissolution of calcium chloride is used in self-heating cans and heating pads.

In the oil industry, calcium chloride is used to increase the density of solids-free brines.
Calcium chloride is also used to provide inhibition of swelling clays in the water phase of invert emulsion drilling fluids.

CaCl2 acts as flux material, decreasing the melting point, in the Davy process for the industrial production of sodium metal through the electrolysis of molten NaCl.
Similarly, CaCl2 is used as a flux and electrolyte in the FFC Cambridge process for titanium production, where it ensures the proper exchange of calcium and oxygen ions between the electrodes.
Calcium chloride is also used in the production of activated charcoal.
Calcium chloride can be used to precipitate fluoride ions from water as insoluble CaF2.
Calcium chloride is also an ingredient used in ceramic slipware.

Calcium chloride suspends clay particles so that they float within the solution, making Calcium chloride easier to use in a variety of slipcasting techniques.
Calcium chloride dihydrate (20 percent by weight) dissolved in ethanol (95 percent ABV) has been used as a sterilant for male animals.
The solution is injected into the testes of the animal. Within one month, necrosis of testicular tissue results in sterilization.
Cocaine producers in Colombia import tons of Calcium Chloride to recover solvents that are on the INCB Red List and are more tightly controlled.

Properties
Calcium chloride dissolves in water, producing chloride and the aquo complex [Ca(H2O)6]2+.
In this way, these solutions are sources of "free" calcium and free chloride ions.
This description is illustrated by the fact that these solutions react with phosphate sources to give a solid precipitate of calcium phosphate:
3 CaCl2 + 2 PO3−4 → Ca3(PO4)2 + 6 Cl−
Calcium chloride has a very high enthalpy change of solution, indicated by considerable temperature rise accompanying dissolution of the anhydrous salt in water.
This property is the basis for its largest-scale application.
Molten calcium chloride can be electrolysed to give calcium metal and chlorine gas:
CaCl2 → Ca + Cl2

Preparation
In much of the world, calcium chloride is derived from limestone as a by-product of the Solvay process, which follows the net reaction below:

2 NaCl + CaCO3 → Na2CO3 + CaCl2
North American consumption in 2002 was 1,529,000 tonnes (3.37 billion pounds).
In the US, most of calcium chloride is obtained by purification from brine.

As with most bulk commodity salt products, trace amounts of other cations from the alkali metals and alkaline earth metals and other anions from the halogens (group 17) typically occur, but the concentrations are trifling.

Calcium chloride is a white to off-white solid. Sinks and mixes with water.
Calcium chloride is a calcium salt and an inorganic chloride.
Calcium chloride has a role as a fertilizer.

Use
Deicing
Dust control, road stabilization
Insustrial (refrigerant, coal thawing, etc.)
Oil and gas drilling fluids
Concrete
Tire ballast
Miscellaneous

Calcium chloride is an odorless, white, crystalline solid compound that is highly soluble in water.
A type of salt, this chemical is hygroscopic, which means it can attract and absorb water molecules from its surroundings.
Calcium chloride has a variety of applications and can lead to potential health risks if handled improperly.
These are some important tips for handling and storing calcium chloride safely.

Common Uses of Calcium Chloride
Calcium chloride is used in a wide range of industries.
Namely, this material is used to make road de-icing agents and brine. Other common applications include:

Dust control
Desiccation
Salt-based dehumidifiers
Calcifying aquarium water
Increasing water hardness in swimming pools
Food additive

Calcium Chloride is a mineral indicated in the immediate treatment of hypocalcemic tetany (abnormally low levels of calcium in the body that cause muscle spasm).
Calcium chloride injection is also used in cardiac resuscitation, arrhythmias, hypermagnesemia, calcium channel blocker overdose, and beta-blocker overdose.
Calcium Chloride is available under the following different brand or other names: CaCl and CaCl2.

General description
Calcium chloride hexahydrate is a non-toxic salt hydrate that can be used in phase change heat storage of low temperature heat.
Calcium chloride has a latent heat of fusion as high as 170-190 kJ/Kg and a melting temperature of 29-30°C.

Application
Calcium chloride hexahydrate is a phase changing material (PCM) that is widely used in solar energy storage and building applications.

Calcium chloride is an ionic compound of calcium and chlorine.
Calcium chloride is highly soluble in water and it is deliquescent.
Calcium chloride is a salt that is solid at room temperature, and it behaves as a typical ionic halide.
Calcium chloride has several common applications such as brine for refrigeration plants, ice and dust control on roads, and in cement.
Calcium chloride can be produced directly from limestone, but large amounts are also produced as a by-product of the Solvay process.
Because of its hygroscopic nature, it must be kept in tightly-sealed containers.

Formula: CaCl2
Molecular mass: 111.0
Boiling point: 1670°C
Melting point: 772°C
Density (at 25°C): 2.2 g/cm³
Solubility in water, g/100ml at 20°C: 74.5 (good)

The greatest amount is consumed in preventing ice formation and in de-icing.
Calcium chloride is also widely used in the food industry and finds use as a firming agent in canned vegetables, in cheese making and as an electrolyte in energy drinks.

INDUSTRIES
-Pharma
-Lubricants
-Water Treatment
-Oil & Gas
-Cleaning
-Animal Nutrition
-Coatings & Construction
-Food and Nutrition
-Agriculture
-Cosmetics
-Polymers
-Rubber

Calcium Chloride will help with store bought milk, cold stored raw milk and goats milk produce a firmer setting curd.
A firmer curd is easier to cut and produces a larger yield.

Calcium chloride is manufactured as a soda ash co-product and Tokuyama is the sole producer in Japan.
Calcium chloride is one type of inorganic salt.
Calcium chloride generates a large amount of heat in reaction to water and significantly lowers the freezing point of water, making it effective as a strong and immediate-acting antifreeze as well as a snow and ice melting agent.
Calcium Chloride is also used as a food and beverage additive, mainly for controlling the hardness of beer and soft drinks, and in bittern for tofu production.

General applications
Antifreeze/snow-melting agent for roads
Dustproof for grounds and unpaved roads
Dehumidifying agent
Brine
Wastewater treatment(fluorine removal, neutralization)
Food additives

Definition and Usage Areas:
Calcium sector production and production, an increased aquo in water (lH 2 O) 6 ] 2+ .
In these tracts, these solutions are sources of "free" calcium and salikan irrigations.
This explanation helps with these solvents reacting with phosphate sources to give calcium phosphate a precipitate:
3 CaC 2 + 2 PO 3-
4 Ca → 3 (PO 4 ) 2 + 6 Cl -
The calcite level shows a very high enthalpy display with a high temperature rise from anhydrous in water.
Molten soluble, calcium metal and chlorine gas can be removed.
CaC 2 , Ca + Cl → 2

Usage areas
As a powder coating in constructions, as it is hygroscopic.
As plastic material material
As material in fire dusts
Melting ice on roads (does not equip like regular salt)
Concrete/Cement:
Calcium Chloride dries the concrete quickly, especially in cold weather, and provides durability and strength to the concrete.

In treatment: In reducing high fluorine in drinking water.
Also, in the treatment of wastewater from industrial facilities such as oil refineries, aluminum factories.

Oil Exploration/Drilling:
Calcium Chloride is used extensively.
in sports
In canned food (in meals)
In some chocolates
In milk, cheese (as a calcium supplement)
In brewing (as enzyme)
In ice cream: As a freezer
In Animal Feed: Fever in dairy cattle, reducing milk and preventing disease
Giving plants math
On a low budget
Harvest calendar to give importance to the shelf of fruits and vegetables

What Is Calcium chloride?
Calcium chloride is a naturally occurring salt derived from limestone.
Calcium chloride is a white solid and can also be produced synthetically.
Calcium chloride is solid at room temperature and dissolves in water.

What Does Calcium chloride Do in Our products?
Calcium chloride is often used as a nutrient supplement, stabilizer, thickener, and texturizer in food; Calcium chloride is frequently found in baked goods, dairy products, beverages, juices, coffee, tea, condiments, jellies, meat products, and other products.
For this reason, Calcium chloride is a drying agent.
Calcium chloride is present in dozens of personal care products, including bath oils, deodorant, sunscreen, conditioner, and makeup.

Calcium chloride occurs naturally in limestone; its production is primarily a reaction of limestone with hydrochloric acid.
Calcium chloride is often commercially produced as a byproduct in the ammonia-soda process (called the Solvay process).
Calcium chloride can also be made by substitution reactions with other calcium and chloride salts, and in the United States Calcium chloride can be made by concentrating and purifying brines from salt lakes and salt deposits.

Uses
Calcium chloride has a variety of applications:
Because Calcium chloride is strongly hygroscopic, air or other gases may be channeled through a column of calcium chloride to remove moisture.
In particular, calcium chloride is usually used to pack drying tubes to exclude atmospheric moisture from a reaction set-up while allowing gases to escape.
Calcium chloride can also be added to liquids to remove suspended or dissolved water.

In this capacity, Calcium chloride is known as a drying agent or desiccant.
Calcium chloride is converted to a brine as Calcium chloride absorbs the water or water vapor from the substance to be dried:
CaCl2 + 2 H2O → CaCl2·2H2O
The dissolving process is highly exothermic and rapidly produces temperatures of around 60° C (140° F).
This can result in burns if humans or other animals eat dry calcium chloride pellets.
Small children are more susceptible to burns than adults, and calcium chloride pellets should be kept out of their reach.
Aided by the intense heat evolved during Calcium chlorides dissolution, calcium chloride is also used as an ice-melting compound.
Unlike the more-common sodium chloride (rock salt or halite), Calcium chloride is relatively harmless to plants and soil.

Calcium chloride is also more effective at lower temperatures than sodium chloride.
When distributed for this use, Calcium chloride usually takes the form of small white balls a few millimetres in diameter, called prills (see picture at top of page).
Calcium chloride is used in concrete mixes to help speed up the initial setting.
However chloride ion leads to corrosion of steel rebars, so Calcium chloride should not be used in reinforced concrete.
Calcium chloride is used for dust control on some highways, as its hygroscopic nature keeps a liquid layer on the surface of the roadway, which holds dust down.
Calcium chloride tastes extremely salty and is used an ingredient in some foods, especially pickles, to give a salty taste while not increasing the food's sodium content.
Calcium chloride's also used as an ingredient in canned vegetables to maintain firmness.

Used as an additive in plastics.
Used as a drainage aid for wastewater treatment.
Aqueous Calcium Chloride is used in genetic transformation of cells by increasing the cell membrane permeability.
This allows DNA fragments to enter the cell more readily.

Tire ballast
Additive in fire extinguishers
Additive to control scaffolding in blast furnaces
Calcium chloride can be used to make ersatz caviar from vegetable or fruit juices.
Calcium chloride is used in Smartwater and some sports drinks as an Electrolyte

About this substance
Helpful information
Calcium chloride is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 100 000 to < 1 000 000 tonnes per annum.
Calcium chloride is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
Calcium chloride is used in the following products: washing & cleaning products, anti-freeze products, fertilisers, plant protection products, adsorbents, water treatment chemicals and heat transfer fluids. Other release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Article service life
Release to the environment of Calcium chloride can occur from industrial use: manufacturing of the substance.
Other release to the environment of Calcium chloride is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and outdoor use as processing aid.
Calcium chloride can be found in products with material based on: paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper), fabrics, textiles and apparel (e.g. clothing, mattress, curtains or carpets, textile toys) and plastic (e.g. food packaging and storage, toys, mobile phones).

Widespread uses by professional workers
Calcium chloride is used in the following products: laboratory chemicals, washing & cleaning products, pH regulators and water treatment products, adsorbents, anti-freeze products, non-metal-surface treatment products, inks and toners, paper chemicals and dyes and polymers.
Calcium chloride is used in the following areas: health services, agriculture, forestry and fishing, building & construction work and formulation of mixtures and/or re-packaging.
Calcium chloride is used for the manufacture of: chemicals, mineral products (e.g. plasters, cement) and textile, leather or fur.
Release to the environment of Calcium chloride can occur from industrial use: manufacturing of the substance, formulation of mixtures, in processing aids at industrial sites and as an intermediate step in further manufacturing of another substance (use of intermediates).
Other release to the environment of Calcium chloride is likely to occur from: outdoor use and indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners).

Formulation or re-packing
Calcium chloride is used in the following products: washing & cleaning products, laboratory chemicals, polymers, fertilisers, inks and toners and pH regulators and water treatment products.
Release to the environment of Calcium chloride can occur from industrial use: formulation of mixtures, manufacturing of the substance, in processing aids at industrial sites and as an intermediate step in further manufacturing of another substance (use of intermediates).
Other release to the environment of this substance is likely to occur from: indoor use as processing aid and outdoor use as processing aid.

Uses at industrial sites
Calcium chloride is used in the following products: pH regulators and water treatment products, laboratory chemicals, washing & cleaning products, adsorbents, anti-freeze products, non-metal-surface treatment products, inks and toners, paper chemicals and dyes and polymers.
Calcium chloride has an industrial use resulting in manufacture of another substance (use of intermediates).
Calcium chloride is used in the following areas: mining and agriculture, forestry and fishing.
Calcium chloride is used for the manufacture of: chemicals, textile, leather or fur, food products, pulp, paper and paper products, metals, plastic products, rubber products, mineral products (e.g. plasters, cement) and fabricated metal products.
Release to the environment of Calcium chloride can occur from industrial use: in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates), manufacturing of the substance and formulation of mixtures.
Other release to the environment of Calcium chloride is likely to occur from: indoor use as processing aid and outdoor use as processing aid.

Manufacture
Release to the environment of this substance can occur from industrial use: manufacturing of the substance, formulation of mixtures, as an intermediate step in further manufacturing of another substance (use of intermediates) and in processing aids at industrial sites.
Other release to the environment of Calcium chloride is likely to occur from: indoor use as processing aid and outdoor use as processing aid.

Calcium Chloride (CaCl2) is an inorganic compound, marketed as 36% solution, 75-78% flakes or 94-97% granules, used for roads de-icing, dust control, brine refrigeration, dehumidification, setting time reduction in concrete, petroleum oil extraction and food processing.
Calcium chloride production process basically consists of limestone reaction with hydrochloric acid.
Calcium chloride can be also produced as by-product from Solvay process for soda ash and, only in the U.S., by the concentration and purification of naturally occurring brines from salt lakes and salt deposits.
Consito developed know-how and technologies for Calcium Chloride production units as 36% solution, 75-78% flakes or 94-97% granules, basing on reaction between limestone and hydrochloric acid.

Calcium chloride dihydrate is a moisture resistant, cheap and commonly available calcium salt.
Calcium chloride is efficacy as a chiral catalyst for various asymmetric organic reactions has been evaluated.
Calcium chloride dihydrate has been used as a calcium supplement for the DMEM (Dulbecco′s modified Eagle′s medium) for use in cell culture studies and to prepare the synthetic brine solution.
Calcium chloride may be used in the preparation of calcium-alginate beads and can be used in combination with sodium borohydride for the asymmetric reduction of 1-(2,2-dimethyl-4H-1,3-benzodioxin-6-yl)-2-[(1S)-2-hydroxy-1-phenylethylamino]ethanone to form (1R)-1-(2,2-dimethyl-4H-1,3-benzodioxin-6-yl)-2-[(1S)-2-hydroxy-1-phenylethylamino]ethanol.
Calcium chloride (CaCl₂) is one of the most versatile chemicals with endless applications.
Nedmag produces high quality calcium chloride suitable for technical, feed and food applications.

Applications of calcium chloride
Calcium chloride is used in many applications.
Calcium chloride food grade is used as food ingredient in the food industry (a.o. cheese production).
While other grades are used in the oil and gas industry, in fertilisers or animal feed and in road maintenance.

Calcium chloride is used heavily in baking for many reasons, including salt replacement.
Calcium chloride is solid at room temperature but highly soluble in water.
Calcium chloride, CaC12, is colorless deliquescent solid that is soluble in water and ethanol.
Calcium chloride is formed from the reaction of calcium carbonate and hydrochloric acid or calcium hydroxide and ammonium chloride.
Calcium chloride is used in medicine, as an antifreeze, and as a coagulant.

Uses
Calcium chloride (CaCl2) has many uses.
Calcium chloride is used as a drying agent and to melt ice and snow on highways, to control dust, to thaw building materials (sand, gravel, concrete, and so on).
Calcium chloride is also used in various food and pharmaceutical industries and as a fungicide.

Chemical Properties
Calcium chloride, CaC12, is colorless deliquescent solid that is soluble in water and ethanol.
Calcium chloride is formed from the reaction of calcium carbonate and hydrochloric acid or calcium hydroxide and ammonium chloride.
Calcium chloride is used in medicine, as an antifreeze, and as a coagulant.

Chemical Properties
Calcium chloride occurs as a white or colorless crystalline powder, granules, or crystalline mass, and is hygroscopic (deliquescent).

Physical properties
White crystal, powder or flake; highly hygroscopic; the compound and its solutions absorb moisture from the air at various rates depending on calcium chloride concentrations, relative humidity and vapor pressure of water in the air, temperature, surface area of exposed material, and the rate of air circulation; at 40% and 95% relative humidity and 25°C, one gram anhydrous calcium chloride may absorb about 1.4 g and 17 g water, respectively. (Shearer, W. L. 1978 . In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 4, pp. 432-6. New York: Wiley Interscience); density 2.15, 2.24, 1.85, 1.83 and 1.71 g/cm3 for the anhydrous salt and its mono-, di-, tetra- and hexahydrates, respectively; anhydrous salts melts at 772°C, while the mono-, di-, tetra- and hexahydrates decompose at 260°, 175°, 45.5° and 30°C, respectively; the anhydrous salt vaporizes at 1,935°C; highly soluble in water, moderate to high solubility in alcohol.

Occurrence
Calcium chloride may be found in nature as the mineral tachhydrite, CaCl2?2MgCl2?12H2O.
Calcium chloride also is found in other minerals.
Calcium chloride is concentration in sea water is about 0.15%.
Calcium chloride has several industrial applications.
The major applications of this compound are in deicing of roads, dust control, imparting stability to roads and buildings, and to improve traction in tractor tires.
Calcium chloride is mixed with ice to make freezing mixtures. Hexahydrate mixed with crushed ice can lower the temperature of the cooling bath to below -50°C.
Calcium chloride also is used as a desiccant for dehydrating gases and liquids.
Calcium chloride is added to cement in various proportions to manufacture different types of concrete.
Other uses are in adhesives, to lower gel temperatures, and as a calcium source in liquid feed supplements for dairy cattle.
Also, the compound is used to control particle size development and reduce coalescence in plastics.

Uses
Calcium chloride is one of the most versatile of the basic chemicals.
Calcium chloride has several common applications such as brine for refrigeration plants, ice and dust control on roads, and in concrete.
The anhydrous salt is also widely used as a desiccant, where it will absorb so much water that it will eventually dissolve in its own crystal lattice water (water of hydration).
Calcium chloride can be produced directly from limestone, but large amounts are also produced as a by-product of the “Solvay Process” (which is a process to produce soda ash from brine).

Calcium chloride is also commonly used as an additive in swimming pool water as it increases the “calcium hardness” value for the water.Other industrial applications include use as an additive in plastics, as a drainage aid for wastewater treatment, as an additive in fire extinguishers, as an additive in control scaffolding in blast furnaces, and as a thinner in “fabric softeners”.
Calcium chloride is commonly used as an “electrolyte” and has an extremely salty taste, as found in sports drinks and other beverages such as Nestle bottled water.
Calcium chloride can also be used as a preservative to maintain firmness in canned vegetables or in higher concentrations in pickles to give a salty taste while not increasing the food’s sodium content.
Calcium chloride is even found in snack foods, including Cadbury chocolate bars.
In brewing beer, calcium chloride is sometimes used to correct mineral deficiencies in the brewing water.
Calcium chloride affects flavor and chemical reactions during the brewing process, and it can also affect yeast function during fermentation.
Calcium chloride can be injected as intravenous therapy for the treatment of “hypocalcemia” (low serum calcium).
Calcium chloride can be used for insect bites or stings (such as Black Widow spider bites), sensitivity reactions, particularly when characterized by “urticaria” (hives).

Uses
Calcium Chloride is a general purpose food additive, the anhydrous form being readily soluble in water with a solubility of 59 g in 100 ml of water at 0°c.
Calcium chloride dissolves with the liberation of heat.
Calcium chloride also exists as calcium chloride dihydrate, being very soluble in water with a solubility of 97 g in 100 ml at 0°c.
Calcium chloride is used as a firming agent for canned tomatoes, potatoes, and apple slices. in evaporated milk, it is used at levels not more than 0.1% to adjust the salt balance so as to prevent coagulation of milk during sterilization.
Calcium chloride is used with disodium edta to protect the flavor in pickles and as a source of calcium ions for reaction with alginates to form gels.
Obtained as a by-product in the manufacture of potassium chlorate.

The white crystals, soluble in water and alcohol, are deliquesc
CALCIUM CITRATE
CALCIUM DISODIUM EDTA, N° CAS : 62-33-9, Nom INCI : CALCIUM DISODIUM EDTA, Nom chimique : Calciate(2-), [[N,N'-1,2-ethanediylbis[N-(carboxymethyl)glycinato]](4-)-N,N',O,O',O(N)-,O(N')-]-, disodium, N° EINECS/ELINCS : 200-529-9, Classification : EDTA, Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques
CALCIUM DISODIUM EDTA
Formic acid calcium salt; Calcium diformate; Calcoform; Calciumdiformiat; Diformiato de calcio; Diformiate de calcium; Mravencan vapenaty; calciumformate(ca(hco2)2); calcoform; formatedecalcium; mravencanvapenaty; mravencanvapenaty(czech); Calciumformiat; Calciumformate,98%; Calcium formate, pure, 98%; Ca-formate; Bayer Latibon; Calciun formate; CALCIUM FORMATE, 98%, PURE; Bis(methanoic acid)calcium salt; Bisformic acid calcium salt; Diformic acid calcium salt CAS NO:544-17-2
CALCIUM GLYCEROPHOSPHATE
CALCIUM GLYCINATE, N° CAS : 35947-07-0, Nom INCI : CALCIUM GLYCINATE, N° EINECS/ELINCS : 252-809-5, Régulateur de pH : Stabilise le pH des cosmétiques Agent d'entretien de la peau : Maintient la peau en bon état
CALCIUM GLYCINATE
BETA-GLYCEROPHOSPHATE CALCIUM SALT; CALCIUM GLYCEROPHOSPHATE; CALCIUM GLYCERYLPHOSPHATE; GLYCEROPHOSPHORIC ACID CALCIUM SALT; 1,2,3-Propanetriol,mono(dihydrogenphosphate),calciumsalt(1:1); Calucium Glycerophosphate; Calcium glycerinophosphate; CALCIUMGLYCEROPHOSPHATE,FCC; neurosin; CALCIUM GLYCEROPHOSPHATE POWDER CAS NO:27214-00-2
CALCIUM LABSA
Calcium LABSA CLASSIFICATION Anionic Surfactant DESCRIPTION OF Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene sulphonic acid is the largest-volume synthetic surfactant because of its relatively low cost, good performance, the fact that it can be dried to a stable powder and the biodegradable environmental friendliness as it has straight chain. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is an anionic surfactants with molecules characterized by a hydrophobic and a hydrophilic group. Alpha-olefin sulfonates (AOS) alkyl sulfates (AS) are also examples of commercial anionic surfactants. They are nonvolatile compounds produced by sulfonation. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) are complex mixtures of homologues of different alkyl chain lengths (C10 to C13 or C14) and phenyl positional isomers of 2 to 5-phenyl in proportions dictated by the starting materials and reaction conditions, each containing an aromatic ring sulfonated at the para position and attached to a linear alkyl chain at any position with the exception of terminal one (1-phenyl). The properties of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) differ in physical and chemical properties according to the alkyl chain length, resulting in formulations for various applications. The starting material Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) (linear alkylbenzene) is produced by the alkylation of benzene with n-paraffins in the presence of hydrogen fluoride (HF) or aluminium chloride (AlCl3) as a catalyst. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is produced by the sulfonation of LAB with oleum in batch reactors. Other sulfonation alternative reagents are sulfuric acid, diluted sulfur trioxide, chlorosulfonic acid and sulfamic acid on falling film reactors. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) are then neutralized to the desired salt (sodium, ammonium, calcium, potassium, and triethanolamine salts). Surfactants are widely used in the industry needed to improve contact between polar and non-polar media such as between oil and water or between water and minerals. Linear alkyl benzene sulphonic acid is mainly used to produce household detergents including laundry powders, laundry liquids, dishwashing liquids and other household cleaners as well as in numerous industrial applications like as a coupling agent and as an emulsifier for agricultural herbicides and in emulsion polymerization. PHYSICAL AND CHEMICAL PROPERTIES Household detergents including laundry powders, laundry liquids, dishwashing liquids and other household cleaners. Industrial applications of wetting agent, emulsifier for agricultural herbicides and in polymerization. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is prepared commercially by sulfonating linear alkylbenzene (LAB). Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA), the world's largest-volume synthetic surfactant, which includes the various salts of sulfonated alkylbenzenes, is widely used in household detergents as well as in numerous industrial applications. The Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) market is driven by the markets for Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA), primarily household detergents. Linear alkylbenzene sulfonate was developed as a biodegradable replacement for nonlinear (branched) alkylbenzene sulfonate (BAS) and has largely replaced BAS in household detergents throughout the world. The pattern of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) consumption demonstrates the overwhelming preference by consumers for liquid laundry detergents in North America, whereas powders continue to be the dominant products in Western Europe, Japan, and China. Comparable and reliable data in other world regions are generally unavailable. In these less-developed world areas, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is essentially used only in laundry powders (particularly in India and Indonesia) and hand dishwashing liquids. The latter are often used as general-purpose cleaners. The following pie chart shows world consumption of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA): About 82-87% of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is used in household detergents, including laundry powders, laundry liquids, dishwashing liquids, and other household cleaners. Industrial, institutional, and commercial cleaners account for most of the other applications, but Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is also used as an emulsifier (e.g., for agricultural herbicides and in emulsion polymerization) and as a wetting agent. Very small volumes are also used in personal care applications. Demand in the North American household segment fell sharply in 2000-11, as a result of several developments, including reformulations away from Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) to alternative surfactants because of cost considerations, the greater use of enzymes, and adverse economic conditions that resulted in lower overall surfactant levels in detergents. However, consumption stabilized during 2011-17. Although consumption of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) will likely stabilize or decline slightly in the highly developed regions, it will increase by 3.0-5.0% in some less-developed regions or countries, such as the Middle East, Africa, India, and China, as well as Southeast Asia. As a result of the rapid growth of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) demand in the Asia Pacific region, demand in the region accounted for over half of global demand in 2017. The worldwide growth of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) will be negatively impacted by the efforts of detergent manufacturers to reduce the active content in their surfactant formulations, by the shift to liquid detergents in some countries (which benefits competing surfactants), and by less consumer overdosing (particularly in North America with unit dose laundry products, assuming they continue to take some market share from traditional liquid detergents). However, consumption of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) will be positively affected in countries/regions such as India, China, Africa, and the Middle East, where powder detergents are still a very large part of the laundry detergent market. Linear alkylbenzene sulfonate competes with several other major surfactants for use in household detergents. Some of the competitive surfactants have greater hard-water tolerance and better compatibility with enzymes and are milder than Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA). Historically, however, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) has most often been lower in cost and has had other more favorable properties compared with competing surfactants. During 2002-06, very high crude oil prices made Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) far less competitive than had been true in most years since its introduction. During 2007-11, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) prices tracked more closely those of the competitive surfactants. This led to a more stable pattern of consumption, even as prices for all surfactants continued to be very volatile. From late 2014 through 2017, low crude oil prices helped Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) become more competitive. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)/LAS production is impacted by the supply situation for competing products-mainly alcohol ether sulfates (AES). Shortages in AES supply or its high price has usually favored the use of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)/LAS. In the developing world, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) competes with soaps. Alkylbenzene sulfonates are a class of anionic surfactants, consisting of a hydrophilic sulfonate head-group and a hydrophobic alkylbenzene tail-group. Along with sodium laureth sulfate they are one of the oldest and most widely used synthetic detergents and may be found in numerous personal-care products (soaps, shampoos, toothpaste etc.) and household-care products (laundry detergent, dishwashing liquid, spray cleaner etc.).[1] They were first introduced in the 1930s in the form of branched alkylbenzene sulfonates (BAS) however following environmental concerns these were replaced with linear alkylbenzene sulfonates (Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)) during the 1960s.[2] Since then production has increased significantly from about 1 million tons in 1980, to around 3.5 million tons in 2016, making them most produced anionic surfactant after soaps. Contents 1 Branched alkylbenzene sulfonates 2 Linear alkyl benzene Sulphonic Acid sulfonates 3 Structure property relationships 4 Environmental fate 5 References Branched alkylbenzene sulfonates An example of a branched alkylbenzene sulfonate (BAS) Branched alkylbenzene sulfonates (BAS) were first introduced in the early 1930s and saw significant growth from the late 1940s onwards,[3] in early literature these synthetic detergents are often abbreviated as syndets. They were prepared by the Friedel-Crafts alkylation of benzene with 'propylene tetramer' (also called tetrapropylene) followed by sulfonation. Propylene tetramer being a broad term for a mixture of compounds formed by the oligomerization of propene, its use gave a mixture of highly branched structures.[4] Compared to traditional soaps BAS offered superior tolerance to hard water and better foaming.[5] However, the highly branched tail made it difficult to biodegrade.[6] BAS was widely blamed for the formation of large expanses of stable foam in areas of wastewater discharge such as lakes, rivers and coastal areas (sea foams), as well as foaming problems encountered in sewage treatment[7] and contamination of drinking water.[8] As such BAS was phased out of most detergent products during the 1960s, being replaced with linear alkylbenzene sulfonates (Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)). It is still important in certain agrochemical and industrial applications, where rapid biodegradability is of reduced importance. Linear alkylbenzene sulfonates An example of a linear alkylbenzene sulfonate (LAS) Linear alkylbenzene sulfonates (LAS) are prepared industrially by the sulfonation of linear alkylbenzenes (Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)), which can themselves be prepared in several ways.[2] In the most common route benzene is alkylated by long chain monoalkenes (e.g. dodecene) using hydrogen fluoride as a catalyst.[9] The purified dodecylbenzenes (and related derivatives) are then sulfonated with sulfur trioxide to give the sulfonic acid.[10] The sulfonic acid is subsequently neutralized with sodium hydroxide.[1] The term "linear" refers to the starting alkenes rather than the final product, perfectly linear addition products are not seen, in-line with Markovnikov's rule. Thus, the alkylation of linear alkenes, even 1-alkenes such as 1-dodecene, gives several isomers of phenyldodecane.[11] Structure property relationships Under ideal conditions the cleaning power of BAS and Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is very similar, however Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) performs slightly better in normal use conditions, due to it being less affected by hard water.[12] Within Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) itself the detergency of the various isomers are fairly similar,[13][14] however their physical properties (Krafft point, foaming etc.) are noticeably different.[15][16] In particular the Krafft point of the high 2-phenyl product (i.e. the least branched isomer) remains below 0 °C up to 25% Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) whereas the low 2-phenyl cloud point is ∼15 °C.[17] This behavior is often exploited by producers to create either clear or cloudy products. Environmental fate Biodegradability has been well studied,[6][18][19] and is affected by isomerization, in this case, branching. The salt of the linear material has an LD50 of 2.3 mg/liter for fish, about four times more toxic than the branched compound; however the linear compound biodegrades far more quickly, making it the safer choice over time. It is biodegraded rapidly under aerobic conditions with a half-life of approximately 1-3 weeks;[18] oxidative degradation initiates at the alkyl chain.[1] Under anaerobic conditions it degrades very slowly or not at all, causing it to exist in high concentrations in sewage sludge, but this is not thought to be a cause for concern as it will rapidly degrade once returned to an oxygenated environment. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear Alkyl Benzene Sulphonic Acid Product Information Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid is a chemical which is colorless and have viscous properties. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene sulphonic acid mainly using in detergent formulations. It is one of the most important and cheapest surfactants in powder formulation and detergent fluids. It has excellent cleansing properties. Usages of Linear Alkyl Benzene Sulphonic Acid Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear Alkyl Benzene sulphonic acid is a batch of organic sulfur compounds that are used in most home detergents, dishwashing detergents, detergent powder, cleaning powder, washing powders, detergent cake, liquid soap, soaps etc. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA), sulfonic acid compound is used as a foaming agent, cleaning agent in more formulations and toilet soaps for foaming. Sulfonic acid, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is using in detergent industries, in textile industry as a washing agent, pesticides industries to improve the quality of spray. Sulfonic acid, Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is not inflammable substance and can dissolve in water, but not in organic solvent. Application of Linear Alkyl Benzene Sulphonic Acid Linear alkyl benzene Sulphonic Acid used in the industry to increase the contact of polar and non-polar phases, such as oil, water, or water and minerals. Linear alkyl benzene Sulphonic Acid sulfonate is mainly used for the manufacture of household detergents such as laundry powder, washing liquid, dishwashing liquid and other household cleaners and other industrial uses. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid uses in produce sulfonic acid. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is an additive as a lubricating agent oils and have as corrosion and rust prevention. his product is a very effective intermediate surfactant. Characteristics of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid packing Basekim Chemical Production can supply Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid with drum. Each drum can take 220 kg and 80 drum can easily load in a container. It also depends on customer demands as well. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid is a chemical which is colorless and have viscous properties. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid mainly using in detergent formulations. It is one of the most important and cheapest surfactants in powder formulation and detergent fluids. It has excellent cleansing properties. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid in the formulation of anionic, non-anionic, and amphoteric surfactants, and it is extremely important for its degradability in nature. It is soluble in water and emulsifying agent. Linear Alkyl benzene sulphonic acid is one of the most widely used anionic surfactants due to its low cost, high efficiency and biocompatibility due to its linear chain. This anionic surfactant has hydrophilic and hydrophobic groups. These are non-volatile compounds produced by the sulfonation process. These compounds consist of mixtures of carbon chains of 10 to 14 carbon lengths that are a phenyl group with a sulfonate group Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid application The properties of Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid depend on the length of the alkane chains that give them different functionality. Surfactants are used in the industry to increase the contact of polar and non-polar phases, such as oil, water, or water and minerals. Linear alkyl benzene Sulphonic Acid sulfonate is mainly used for the manufacture of household detergents such as laundry powder, washing liquid, dishwashing liquid and other household cleaners and other industrial uses. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid uses in produce sulfonic acid. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) is an additive as an lubricating agent oils and have as corrosion and rust prevention. his product is a very effective intermediate surfactant. It is usually neutralized with alkali types and forms sulphonates used in different fields. This product can be used in acidic environments. Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid packing can supply Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid with drum . Each drum can take 220 kg and 80 drum can easily load in a container Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Linear alkyl benzene Sulphonic Acid PACKING Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) Specification Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA) properties: Trade Name: Sulfonic Acid COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS LINEAR ALKYL BENZENE SULPHONIC ACIDS SUMMARY REPORT (1) 1. Linear alkyl benzene sulphonic acids (Calcium LABSA (Calcium linear alkyl benzene sulphonic acid, Kalsiyum LABSA, CALCIUM LABSA)) are anionic surfactants. Linear alkyl benzene sulphonic acids are a mixtures of benzene sulphonic acids containing linear alkyl chains of different lengths (C9: less than 1%, C10: 8 to 16%, C11: 26 to 38%, C12: 26 to 38%, C13: 15 to 27% and longer than C13: less than 2.5%). The amount of linear alkyl benzene sulphonic acid in the products is 2% and these products are indicated for post-dipping or teat-spraying of dairy cows. The average dose per teat is assumed to be about 1 ml of the product, which equals to 80 mg of linear alkyl benzene sulphonic acid per cow per milking. Linear alkyl benzene sulphonic acids are commonly used as cleaning agents (household and personal care products). Linear alkyl benzene sulphonic acid is included as surface active agent in Commission establishing an inventory and a common nomenclature of ingredients employed in cosmetic products. The occupational and environmental exposure to linear alkyl benzene sulphonic acid has been assessed by WHO in 1996: The worldwide consumption of linear alkyl benzene sulphonic acids in 1990 was about 2 million tonnes. Linear dodecyl benzene sulphonic acid, under the synonym sodium dodecyl benzene sulphonate, has been included in 1987 on the food additive list of the Food and Drug Administration (FDA) of the United States of America as a surface active agent in commercial detergents used in washing fruits and vegetables or to assist in lye peeling these products. The tolerance limit has been set on equal to or less than 0.2% in wash water. 2. Hydrophobic and hydrophilic groups of the molecule are both essential for action of surfactants in detergents. According to a published study on the in vitro germicidal activity of teat dips the linear alkyl benzene sulphonic acid-containing product (1.94%) was shown to be completely effective against suspensions of Escherichia coli, Staphylococcus aureus and Streptococcus agalactiae containing bacteria/ml each following a contact time of 2 minutes. According to a published review document on in vitro studies, the 50% haemolytic concentration for linear alkyl benzene sulphonic acid was 9 mg/l and the 50% inhibitory concentration for prothrombin time was 0.05 mmol/l (16.3 mg/l). Linear alkyl benzene sulphonic acid influenced the thermal denaturation of proteins in vitro indicating protein-linear alkyl benzene sulphonic acid interaction. 3. Pharmacokinetic data are presented based on published reports. In rats, 14C-labelled alkyl benzene sulphonate was administered daily in the diet at a concentration of 1.4 mg/kg feed (dose per kg bw not given) to 12 male Wistar rats (120 to 140 g) for 5 weeks. Radioactivity was mostly excreted in faeces (52%) and in urine (29%) during the 5-week feeding period. After a single intraperitoneal administration of 14C-labelled alkyl benzene sulphonate (384.7 µg/rat), 85% of the dose was excreted during the first 24 hours and 95% within 10 days follow-up period. The main elimination route was via urine (50% of radioactivity), while 35% was excreted into faeces. However, during days 2 to 10 the percentage of radioactivity excreted into faeces was higher than that excreted into urine. No parent compound could be detected in faeces or urine but radioactivity was found in polar metabolites which were not further characterised. In another study, 35S-labelled linear alkyl benzene Sulphonic Acid was administered to male albino rats (Charles River strain, 150 to 200 g bodyweight) as a single per oral dose of 0.6, 1.2, 8 and 40 mg/rat (3 to 5 rats/group). During the 3-day follow-up period, 40 to 58% of radioactivity was excreted in urine and 39 to 56% in faeces. In faeces, the proportion of parent compound was 19% of total radioactivity. About 70% of linear alkyl benzene Sulphonic Acid was absorbed after oral administration. Two urine metabolites chemically close to methyl 4-(4'-methylsulfophenyl)- pentanoate were identified and were found to be a mixture of sulfophenyl butanoic acids and sulfophenyl pentanoic acids. Decomposition of linear alkyl benzene Sulphonic Acid sulphonate in rats was suggested to occur by ϖ-oxidation followed by catabolism through a β-oxidation mechanism. In vitro studies have not shown any penetration of 14C-labelled linear alkyl benzene sulphonic acid through intact rat or human skin. In in vivo studies in rats, 0.2 ml of 3 mM 14C linear alkyl benzene sulphonic acid (equivalent to 250 µg) was applied on 7.5 cm2 area of skin. These studies revealed deposition of 14C-labelled linear alkyl benzene sulphonic acid on the skin surface and in the upper regions of the hair follicles, however, no penetration of the substance could be detected after an exposure of 15 minutes. 4. The oral toxicity of linear alkyl benzene sulphonic acid is not very high. LD50 values for rats and mice range from 404 to 1525 mg/kg bw and 1575 to 1950 mg/kg bw, respectively. Both species showed diarrhoea and death occurred within 24 hours. 5. Repeated dose toxicity have been carried out using linear alkyl benzene sulphonic acids or their sodium salts containing alkyl chains of different lengths. Repeated dose toxicity has been documented on rats using 5 published articles, one of which was done in rats (60 females and 60 males/group) using only 1 dose level (0 and 100 mg of linear alkyl benzene sulphonic acid (chain length varying between C10 to C14)/l drinking water for 100 weeks). No differences were seen between test and control groups. No NOEL can be established due to deficiencies in the study design. Wistar rats (about 150 g, 10 per sex and group) received the test product (dishwashing detergent containing linear alkyl benzene sulphonic acid) was mixed into drinking water at corresponding to 0, 0.015, 0.075 and 0.375 ml linear alkyl benzene sulphonic acid/kg bw for 6 months. In the 3rd group the dose was increased after 9 weeks to 0.563 and again after 8 weeks to 0.75 ml/kg bw for 9 weeks. No differences were seen in haematological urine examinations between control and treated animals. Males showed decreased weight gain in the 3rd dose group, but the change was reversible once the treatment was stopped. Organ weights of the third group animals (5 per sex) killed immediately after the treatment were lower than those of the controls. Only control and the 3rd treatment groups were examined histologically. The animals in 3rd treatment group had small petechial bleedings (kidney, myocardium, lungs) and mucosal necrotis spots in gastrointestinal canal. They also had massive atrophy in adrenal glands and some atrophy in thymus. It is not possible to assess if changes showed correlation with dose or not, because only highest group was studied. No NOEL can be drawn from the study due to limited data available. Albino rats (FDRL strain, 15 animals per sex and group) received linear alkyl benzene sulphonic acid in feed at 0, 50 and 250 mg/kg bw for 12 weeks. Growth responses and food intake, haematological and urinary examinations showed no abnormalities. Histological findings revealed no abnormalities in lower dose group compared with control. Females in higher dose group had higher liver weight to body weight ratio than controls (p<0.01). The lower dose-group of 50 mg/kg bw/day showed no treatment-related changes. No NOEL can be established due to limited data available. Sprague-Dawley rat (10 animals per sex and group) received linear alkyl benzene sulphonic acid in feed (0, 0.02, 0.1 and 0.5%) for 90 days (corresponding to 8.8, 44 and 220 mg/kg bw). No statistically significant differences were seen in weight gains, food utilisation, haematological and urinary examinations. Organ to body ratios as well as macroscopic and microscopic findings were comparable in treated and control groups. No NOEL can be established due to limited data available. Charles River rat (50 animals per sex and group) received linear alkyl benzene sulphonic acid in feed (0, 0.02, 0.1 and 0.5%) for 2 years (dose per kg bw is not given). No statistically significant differences were seen in weight gains and food utilisation during the first 12 weeks. Organ to body ratios did not show any statistically significant differences when control and highest dose group were compared. At 8 months, male rats in 0.02 and 0.1% group had lower liver weight to bw ratios but this was not seen at later time points and never in the highest dose group. Haematological examinations revealed no treatment related changes. No abnormal macroscopic findings were seen and microscopic findings did not differ between the groups. No NOEL can be established due to limited data available. The highest dose (0.5% in feed for 2 years) did not show any treatment-related changes. A published repeated dose toxicity study has been carried out using 6 to 7 months old Beagle dogs (2 animals per sex and group). A linear alkyl benzene sulphonic acid-containing product (15% linear alkyl benzene sulphonic acid) was administered in doses of 0, 10, 100 and 1000 mg/kg bw daily for 6 months by gavage (corresponding to 0, 1.5, 15, and 150 mg linear alkyl benzene sulphonic acid/kg bw). Lowest dose group showed no treatment-related changes. One female dog in middle dose level group had drooling from the second week forward and one animal regurgitated part of one dose which lead to sedation and decreased appetite. In the highest dose group, 3 to 4 animals had marked salivation. No animals died. In the highest dose group feed intake was moderately reduced. Marked reduction in weight gain was only seen in the highest dose group (more pronounced in females). No changes were seen in blood and urinary tests. Eyes and hearing were normal in all groups. In highest dose group mucosal erosions were found in stomach (mainly in cardia) of one male and one female. Presence of haemosiderosis in spleen was more pronounced in highest dose group. One dog in the same group had small necroses in pancreas and 2 dogs had some iron-free pigment in kidneys. No NOEL can be established due to small number of animals and limited data available. According to a WHO report, minimal effects, including biochemical and histopathological changes in the liver, have been reported in subchronic studies in which rats were administered linear alkyl benzene sulphonic acid in the diet or drinking water at concentrations equivalent to doses greater than 120 mg/kg bw per day. These changes appeared to be reversible. In the absence of the original data, no firm conclusion on the data reported in the WHO report can be drawn. 6. Tolerance in dairy cows was studied using commercial teat dip containing 2% linear alkyl benzene sulphonic acid. The product was used post-milking twice daily for 10 days. The product was well-tolerated. 7. Effects on reproduction have been documented using 2 published articles, one of which described a study in rats (10 females and 10 males/group) using only one dose level of linear alkyl benzene Sulphonic Acid sulphonic acid (0 and 100 mg/l drinking water). The data provided are too limited for the assessment. Charles River rat (20 males and 20 females/group) received linear alkyl benzene sulphonic acid in feed (0, 0.02, 0.1 and 0.5% daily) in the 3-generation study (dose per kg bw is not given). No gross abnormalities were noted in pups. Rats of the F1 and F2 generations had similar growth patterns and organ to body weight ratios in control and test groups. No abnormalities were seen in histological examinations. In haematological studies, a statistically significant difference (level of significance not indicated) was seen in red blood cell count between control and females of highest test group. F3-weanlings were normal with respect to growth, organ to body weight ratios, macroscopic and microscopic examinations. Haematological values showed no treatment related trend or pattern in this study. The studie