Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4.
Titanium isopropoxide is a diamagnetic tetrahedral molecule.
CAS Number: 546-68-9
EC Number: 208-909-6
MDL number: MFCD00008871
Chemical formula: C12H28O4Ti
SYNONYMS:
titanium tetraisopropanolate, titanium iv isopropoxide, tetraisopropyl orthotitanate, titanium isopropoxide, titanium tetraisopropylate, titanium isopropylate, ti isopropylate, tetraisopropoxytitanium iv, isopropyl orthotitanate, tetraisopropyl titanate, Isopropyl Alcohol Titanium(4+) Salt Titanium Isopropoxide (Ti(OC3H7)4) (7CI), 5N, 5N (titanate), A 1, A 1 (titanate), AKT 872, Bistrater H-NDH 510C, Isopropyl Orthotitanate, Isopropyl Titanate(IV) ((C3H7O)4Ti), NDH 510C, Orgatix TA 10, TA 10, TIPT, TPT, TPTA 1, Tetraisopropanolatotitanium, Tetraisopropoxytitanium, Tetraisopropoxytitanium(IV), Tetraisopropyl Orthotitanate, Tetraisopropyl Titanate, Tetrakis(isopropanolato)titanium, Tetrakis(isopropoxy)titanium, Tetrakis(isopropylato)titanium(IV), Tetrakis(isopropyloxy)titanium, Tilcom TIPT, Titaium tetraisopropoxide, Titanium Isopropoxide, Titanium Isopropylate, Titanium Tetraisopropoxide, Titanium Tetraisopropylate, Titanium Tetrakis(iso-propoxide), Titanium Tetrakis(isopropoxide), Titanium(4+) Isopropoxide, Titanium(IV) isopropoxide, Tetra, Titanium isopropoxide, Tetraisopropyl titanate, Titanium(IV) i-propoxide, Titanium tetraisopropoxide, Tetraisopropyl orthotitanate, Tetraisopropyl orthotitanate, Titanium tetraisopropoxide, Isopropyl orthotitanate, Isopropyl titanate(IV) Tetraisopropoxide titanium, Tetraisopropoxytitanium, Tetraisopropyl orthotitanate, Tetraisopropyl titanate, TTIP, Titanium isopropoxide, titanium i-propoxide, titanium ipropoxide, tetraisopropyl titanate, titanium tetraisopropoxide, tetraisopropyl orthotitanate, tetraisopropyltitanate, TiTP, titanium tetraisopropanolate,titanium iv isopropoxide,tetraisopropyl orthotitanate, titanium isopropoxide,titanium tetraisopropylate,titanium isopropylate,ti isopropylate,tetraisopropoxytitanium iv,isopropyl orthotitanate,tetraisopropyl titanate, TPT, Isopropyltitanate, ISOPROPYL TITANATE, TITANIUM ISOPROPOXIDE, Titanium isopropoxide, ISOPROPYL TITANATE(IV), TITANIUM ISO-PROPYLATE, Tetraisopropyl titanate, Titanium(IV) i-propoxide, Titanium(IV) isopropoxide, TITANIUM (IV) I-PROPOXIDE, TITANIUM(IV) ISOPROPOXIDE, Titanium tetraisopropoxide, Tetraisopropoxytitanium(IV), tetraisopropyl orthotitanate, TITANIUM(IV) TETRAISOPROPOXIDE, TITANIUM (IV) TETRA-I-PROPOXIDE, titanium(4+) tetrapropan-2-olate, tetra-iso-Propyl orthotitanate, Titanium(IV) i-propoxide, tetra-iso-Propyl titanate, 2-Propanol, titanium(4+) salt, Isopropyl alcohol titanium(4+) salt, Isopropyl orthotitanate, Isopropyl titanate(IV) ((C3H7O)4Ti), Tetraisopropoxytitanium, Tetrakis(isopropoxy)titanium, Ti Isopropylate, Titanic acid isopropyl ester, Titanium isopropoxide (Ti(OC3H7)4), Titanium isopropylate, Titanium tetraisopropoxide, Titanium tetraisopropylate, Titanium(4+) isopropoxide, Titanium, tetrakis(1-methylethoxy)-, Tyzor TPT, Isopropyl titanate (IV), Tetraisopropoxide titanium, Titanium tetra-n-propoxide, Titanium, tetrakis(isopropoxy)-, A 1 (titanate), Orgatix TA 10, Tetraisopropanolatotitanium, Tetraisopropoxytitanium(IV), Titanium isopropoxide, Titanium tetrakis(isopropoxide), titanium tetraisopropanolate, TTIP, Titanium(IV) i-propoxide, Titanium tetraisopropanolate, Tetraisopropyl orthotitanate, Titanium tetraisopropoxide, titanium tetraisopropanolate, titanium iv isopropoxide, tetraisopropyl orthotitanate, titanium isopropoxide, titanium tetraisopropylate, titanium isopropylate, ti isopropylate, tetraisopropoxytitanium iv, isopropyl orthotitanate, tetraisopropyl titanate,
2-Propanol, titanium(4+) salt, A 1 (titanate), Isopropyl alcohol titanium(4+) salt, Isopropyl orthotitanate, Isopropyl titanate (IV), Isopropyl titanate(IV) ((C3H7O)4Ti), Orgatix TA 10, Tetraisopropanolatotitanium, Tetraisopropoxide titanium, Tetraisopropoxytitanium, Tetraisopropoxytitanium(IV), Tetrakis(isopropoxy)titanium, Ti Isopropylate, Titanic acid isopropyl ester, Titanium isopropoxide, Titanium isopropoxide (Ti(OC3H7)4), Titanium isopropylate,
Titanium tetra-n-propoxide, Titanium tetraisopropylate, Titanium tetrakis(isopropoxide), Titanium(4+) isopropoxide, Titanium(IV) i-propoxide, Titanium, tetrakis(1-methylethoxy)-, Titanium, tetrakis(isopropoxy)-, Tyzor TPT, tetra-iso-Propyl orthotitanate, tetra-iso-Propyl titanate, tetraisopropyl titanate, titanium tetraIsopropoxide, titanium tetraisopropanolate, titanium(IV) 2-propanolate, titanium(IV) i-propoxide, isopropyl titanate, tetraisopropyl titanate, tetraisopropyl orthotitanate, titanium tetraisopropylate, orthotitanic acid tetraisopropyl ester, Isopropyl titanate(IV), titanic acid tetraisopropyl ester, isopropyltitanate, titanium(IV) isopropoxide, titanium tetraisopropoxide, iso-propyl titanate, titanium tetraisopropanolate, tetraisopropoxytitanium(IV), tetraisopropanolatotitanium, tetrakis(isopropoxy) titanium, tetraksi(isopropanolato) titanium, titanic acid isopropyl ester, titanic acid tetraisopropyl ester, titanium isopropoxide, titanium isopropylate, tetrakis(1-methylethoxy)titanium, Tetraisopropyl Orthotitanate, Isopropyl Titanate, Titanium(IV) Tetraisopropoxide, tetraisopropyl orthotitanate, Titanium tetraisopropoxide, Tetraisopropyl titanate, Isopropyltitanate, Titanium isopropoxide, Titanium(IV) i-propoxide, Tetraisopropoxytitanium(IV), TITANIUM ISO-PROPYLATE, titanium(4+) tetrapropane-2-olate, propan-2-ol - titanium (4:1), TPT, ISOPROPYL TITANATE, Titanium tetraisopropanolate, Titanium tetraisopropylate, Titanium isopropoxide, Titanium isopropylate, 2-Propanol, titanium(4+) salt, Isopropyl alcohol titanium(4+) salt, Isopropyl alcohol, titanium salt, Isopropyl orthotitanate, Isopropyl titanate(IV), Isopropyl titanate(IV) ((C3H7O)4Ti), Orgatix TA 10, Tetraisopropanolatotitanium, Tetraisopropoxide titanium, Tetraisopropoxytitanium, Tetraisopropoxytitanium(IV), Tetraisopropyl orthotitanate, Tetrakis(isopropoxy)titanium, Tetraksi(isopropanolato)titanium, Ti Isopropylate, Tilcom TIPT, Titanic acid isopropyl ester, Titanic acid tetraisopropyl ester, Titanic(IV) acid, tetraisopropyl ester, Titanium isopropoxide (Ti(OCH7)4), Titanium isopropylate, Titanium isopropylate (VAN), Titanium tetra-n-propoxide, Titanium tetraisopropoxide, Titanium tetraisopropylate, Titanium tetrakis(isopropoxide), Titanium(4+) isopropoxide, Titanium(IV) isopropoxide, Titanium, tetrakis(1-methylethoxy)-, Tetra isoprobyl titanate (TIPT), Titanium(IV) isopropoxide, Tetraisopropyl titanate, Titanium(IV) i-propoxide, Titanium tetraisopropoxide, Tetraisopropyl orthotitanate, TITANIUM ISOPROPOXIDE,TITANIUM(IV) ISOPROPOXIDE,TITANIUM TETRAISOPROPOXIDE, TTIP, tetraisopropoxytitanium, TETRAISOPROPYL TITANATE, ISOPROPYL TITANATE, Titanium(Ⅳ) isopropoxide, TETRAISOPROPYL ORTHOTITANATE, TITANIUM(IV) TETRAISOPROPOXIDE, 2-Propanol, titanium(4+) salt, A 1 (titanate), Isopropyl alcohol titanium(4+) salt, Isopropyl alcohol, titanium salt, Isopropyl orthotitanate, Isopropyl titanate(IV), Isopropyl titanate(IV) ((C3H7O)4Ti), Orgatix TA 10, TA 10, Tetraisopropanolatotitanium, Tetraisopropoxide titanium, Tetraisopropoxytitanium, Tetraisopropoxytitanium(IV), Tetraisopropyl orthotitanate, Tetrakis(isopropoxy)titanium, Tetrakis(isopropanolato)titanium, Ti Isopropylate, Tilcom TIPT, Titanic acid isopropyl ester, Titanic acid tetraisopropyl ester, Titanic(IV) acid, tetraisopropyl ester, Titanium isopropoxide (Ti(OC3H7)4), Titanium isopropylate, Titanium isopropylate (VAN), Titanium tetraisopropoxide, Titanium tetraisopropylate, Titanium tetrakis(isopropoxide), Titanium(4+) isopropoxide, Titanium(IV) isopropoxide, Titanium, tetrakis(1-methylethoxy)-, Tyzor TPT, [ChemIDplus] UN2413, Titanium (IV) isopropoxide, Tetraisopropyl Orthotitanate, Isopropyl Titanate, 2-Propanol, titanium(4+) salt, Tetraisopropyl titanate, Titanium tetraisopropoxide, Tetraisopropoxy titanium, ISOPROPYL TITANATE, ISOPROPYL TITANATE(IV), TITANIUM ISOPROPOXIDE, TITANIUM ISO-PROPYLATE, TITANIUM (IV) I-PROPOXIDE, TITANIUM(IV) ISOPROPOXIDE, TITANIUM (IV) TETRA-I-PROPOXIDE, TITANIUM(IV) TETRAISOPROPOXIDE, Isopropyl orthotitanate, Isopropyl titanate(IV) ((C3H7O)4Ti), Tetraisopropanolatotitanium, Tetraisopropoxytitanium, Tetraisopropoxytitanium(IV), Tetraisopropyl orthotitanate, Tetraisopropyl titanate, Tetrakis(isopropanolato)titanium, Tetrakis(isopropoxide)titanium, Tetrakis(isopropoxy)titanium, Tetrakis(isopropylato)titanium(IV), Tetrakis(isopropyloxy)titanium, TIPT, Titanium isopropoxide, Titanium isopropylate, Titanium tetraisopropoxide, Titanium tetraisopropylate, Titanium tetrakis(iso-propoxide), Titanium tetrakis(isopropoxide), Titanium(4+) isopropoxide, Titanium(IV) isopropoxide, TETRAISOPROPYL TITANATE (FLAMMABLE LIQUIDS, N.O.S.), A 1, A 1 (TITANATE), ISOPROPYL ALCOHOL, TITANIUM(4+) SALT, ISOPROPYL ORTHOTITANATE, ISOPROPYL TITANATE(IV) ((C3H7O)4TI), ORGATIX TA 10, TETRAISOPROPANOLATOTITANIUM, TETRAISOPROPOXYTITANIUM, TETRAISOPROPYL ORTHOTITANATE, TETRAISOPROPYL TITANATE, TETRAKIS(ISOPROPOXY)TITANIUM, TETRAKIS(ISOPROPYLATO)TITANIUM(IV), TETRAKIS(ISOPROPYLOXY)TITANIUM, TILCOM TIPT, TITANIUM ISOPROPOXIDE, TITANIUM ISOPROPOXIDE (TI(OC3H7)4), TITANIUM ISOPROPYLATE, TITANIUM TETRAISOPROPOXIDE, TITANIUM TETRAISOPROPYLATE, TITANIUM TETRAKIS(ISO-PROPOXIDE), TITANIUM TETRAKIS(ISOPROPOXIDE), TITANIUM(4+) ISOPROPOXIDE, TITANIUM(IV) ISOPROPOXIDE, TITANIUM, TETRAKIS(1-METHYLETHOXY)-, TPT, TYZOR TPT, Titanium tetraisopropanolate, 546-68-9, Titanium isopropoxide, Titanium isopropylate, Titanium tetraisopropylate, Tetraisopropyl orthotitanate, Tilcom TIPT, Titanium tetraisopropoxide, Ti Isopropylate, Tetraisopropoxytitanium(IV), Isopropyl orthotitanate, Tetraisopropoxytitanium, Tetraisopropanolatotitanium, TETRAISOPROPYL TITANATE, propan-2-olate; titanium(4+), A 1 (titanate), Orgatix TA 10, Tetrakis(isopropoxy)titanium, Tyzor TPT, Isopropyl Titanate, TTIP, Tetraisopropoxide titanium, Titanium tetra-n-propoxide, Titanium(4+) isopropoxide, Titanic acid isopropyl ester, Titanium, tetrakis(1-methylethoxy)-, Isopropyl alcohol, titanium(4+) salt, Titanium tetrakis(isopropoxide), Isopropyl titanate(IV) ((C3H7O)4Ti), 2-Propanol, titanium(4+) salt, titanium(IV) propan-2-olate, 2-Propanol, titanium(4+) salt (4:1), Titanium(IV) Tetraisopropoxide, Isopropyl alcohol titanium(4+) salt, 76NX7K235Y, titanium(4+) tetrakis(propan-2-olate), Isopropyl titanate(IV), titanium tetra(isopropoxide), Titanium isopropylate (VAN), TITANIUM (IV) ISOPROPOXIDE, titanium(4+) tetrapropan-2-olate, HSDB 848, Tetraksi(isopropanolato)titanium, NSC-60576, Isopropyl alcohol, titanium salt, Titanic acid tetraisopropyl ester, Titanium isopropoxide (Ti(OC3H7)4), EINECS 208-909-6, Titanium isopropoxide (Ti(OCH7)4), NSC 60576, Titanic(IV) acid, tetraisopropyl ester, titanium(IV)tetraisopropoxide, C12H28O4Ti, UNII-76NX7K235Y, TIPT, Ti(OiPr)4, tetraisopropoxy titanium, tetraisopropoxy-titanium, titaniumtetraisopropoxide, titaniumtetraisopropylate, titanium(IV)isopropoxide, tetra-isopropoxy titanium, titanium (IV)isopropoxide, tetra-iso-propoxy titanium, titanium tetra-isopropoxide, titanium-tetra-isopropoxide, EC 208-909-6, titanium (4+) isopropoxide, Titanium isopropoxide(TTIP), VERTEC XL 110, tetraisopropoxytitanium (IV), titanium tetra (isopropoxide), titanium(IV)tetraisopropoxide, titanium(IV) tetraisopropoxide, TITANUM-(IV)-ISOPROPOXIDE, CHEBI:139496, AKOS015892702, TITANIUM TETRAISOPROPOXIDE [MI], TITANIUM TETRAISOPROPANOLATE [HSDB], T0133, Q2031021, 2923581-56-8,
Titanium isopropoxide is a chemical compound with the formula Ti(OCH(CH)) (i-Pr).
Titanium isopropoxide is an organotitanium compound that reacts with water to form titanium hydroxide.
Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4.
Titanium isopropoxide is a colourless, slightly yellowish liquid that is very sensitive to moisture.
Titanium isopropoxide is a colourless to light yellow liquid.
Titanium isopropoxide is a colourless to light yellow liquid.
Titanium isopropoxide is a titanium coordination entity consisting of a titanium(IV) cation with four propan-2-olate anions as counterions.
Titanium isopropoxide appears as a water-white to pale-yellow liquid with an odor like isopropyl alcohol.
Titanium isopropoxide is a titanium alkoxide.
Titanium isopropoxide is a highly reactive catalyst & can be used in direct & transesterification reactions.
Titanium isopropoxide is a titanium alkoxide.
Titanium isopropoxide appears as a colorless to pale yellow liquid with a mild odor.
The basic structure of Titanium isopropoxide consists of four isopropanol groups attached to a central titanium atom.
Titanium isopropoxide is soluble in organic solvents such as ethanol and acetone, but insoluble in water.
This alkoxide of titanium(IV) is used in organic synthesis and materials science.
Titanium isopropoxide is a diamagnetic tetrahedral molecule.
Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides.
Titanium isopropoxide is a highly reactive catalyst & can be used in direct & transesterification reactions.
Titanium isopropoxide is a type of very lively primary alcohol titanium oxide; it hydrolyzes when contacted with moisture in air.
Titanium isopropoxide belongs to the product group of organic titanates, which are known to be highly reactive organics that can be used in a broad range of processes and applications.
Titanium isopropoxide is a colourless, slightly yellowish liquid that is very sensitive to moisture.
Typical users in plasticizer, acrylate and methacrylate manufacturers.
Titanium isopropoxide appears as a water-white to pale-yellow liquid with an odor like isopropyl alcohol.
Titanium isopropoxide appears as a colorless to pale yellow liquid with a mild odor.
Titanium isopropoxide, with the chemical formula C12H28O4Ti, has the CAS number 546-68-9.
Titanium isopropoxide, with the chemical formula C12H28O4Ti, has the CAS number 546-68-9.
Titanium isopropoxide is important to handle this chemical with caution and use appropriate protective measures to avoid any potential harm.
The structures of the titanium alkoxides are often complex.
Crystalline titanium methoxide is tetrameric with the molecular formula C12H28O4Ti.
Titanium isopropoxide has a low vapor pressure and a high melting point, which makes it well suited for use in high temperature environments.
Titanium isopropoxide is a titanium coordination entity consisting of a titanium(IV) cation with four propan-2-olate anions as counterions.
Titanium isopropoxide is an alkoxy titanate with a high level of reactivity.
Titanium isopropoxide belongs to organic titanates group.
Titanium isopropoxide is a highly reactive organic widely used in different applications as well as processes.
This slighty yellow to colorless liquid, Titanium isopropoxide is highly-sensitive to moisture.
Titanium isopropoxide is an organic titanate that has a wide range of applications across several industries.
Titanium isopropoxide is a colorless to slightly yellow liquid that is typically stored under an inert atmosphere, such as nitrogen or argon, to prevent degradation.
Moreover, Titanium isopropoxide is often supplied in amber glass or metal containers, which protect against chemical and photochemical degradation.
Titanium isopropoxide belongs to the product group of organic titanates, which are known to be highly reactive organics that can be used in a broad range of processes and applications.
Titanium isopropoxide is a colorless, slighty yellowish liquid that is very sensitive to moisture.
Titanium isopropoxide is an organic compound composed of titanium and isopropyl groups (-C(CH3)2).
Special handling equipment is necessary to exclude any contact with air or moisture causing premature hydrolysis of the compound.
Ultimately, the production and use of Titanium isopropoxide is a complex process that demands a high degree of precision, safety, and quality control.
Titanium isopropoxide is mainly a monomer in nonpolar solvents.
Titanium isopropoxide has a complex structure.
Titanium isopropoxide is a chemical compound with the formula Ti{OCH(CH3)2}4.
The structures of the titanium alkoxides are often complex.
Crystalline titanium methoxide is tetrameric with the molecular formula Ti4(OCH3)16.
Alkoxides derived from bulkier alcohols such isopropanol aggregate less.
Titanium isopropoxide is mainly a monomer in nonpolar solvents.
Titanium isopropoxide is a diamagnetic tetrahedral molecule.
Alkoxides derived from bulkier alcohols such as isopropyl alcohol aggregate less.
Titanium isopropoxide is mainly a monomer in nonpolar solvents.
The primary method of synthesis involves the reaction of titanium tetrachloride with isopropanol.
This reaction is exothermic and produces corrosive coproducts such as hydrogen chloride and must be controlled carefully to prevent overheating and associated ignition and corrosion risks.
Through continuous research and innovation, methods are continually being refined to enhance the efficiency, increase yield, eliminate unwanted byproducts and safety of these processes by reduction of toxicity when used to replace traditional catalysts.
Titanium isopropoxide is colorless to light yellow transparent liquid.
Titanium isopropoxide is water rapid hydrolysis, soluble in alcohol, ether, ketone, benzene and other organic solvents.
Titanium isopropoxide has a complex structure.
In crystalline state, Titanium isopropoxide is a tetramer.
Non-polymerized in non-polar solvents, Titanium isopropoxide is a tetrahedral diamagnetic molecule.
Isopropyl titanate, also known as Titanium isopropoxide, titanium tetraisopropoxide is the isopropoxide of titanium (IV), used in organic synthesis and materials science.
Titanium isopropoxide has a complex structure.
In crystalline state, Titanium isopropoxide is a tetramer.
Non-polymerized in non-polar solvents, it is a tetrahedral diamagnetic molecule.
Isopropyl titanate, also known as Titanium isopropoxide, titanium tetraisopropoxide is the isopropoxide of titanium (IV), used in organic synthesis and materials science.
Titanium isopropoxide is a precursor for the preparation of Titania.
USES and APPLICATIONS of TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is used as a precursor for the preparation of titanium and barium-strontium-titanate thin films.
Titanium isopropoxide is used as an auxiliary agent and chemical product intermediate.
Titanium isopropoxide is used to make adhesives, as a catalyst for transesterification and polymerization reactions.
Titanium isopropoxide is used for ester exchange reaction
Titanium isopropoxide is used as additive and intermediate of chemical products
Titanium isopropoxide is used for making adhesives, as catalysts for transesterification reaction and polymerization reaction.
Titanium isopropoxide is used for making metal and rubber, metal and plastic binder, also used as ester exchange reaction and polymerization reaction catalyst and pharmaceutical industry raw materials.
Titanium isopropoxide is used polymerization catalyst.
Titanium isopropoxide is used transesterification.
Titanium isopropoxide can adhere paint, rubber, plastic to metal.
Binders for preparing metals and rubber, metals and plastics, Titanium isopropoxide is also used as catalysts for transesterification and polymerization reactions and raw materials for the pharmaceutical industry.
Titanium isopropoxide is useful to make porous titanosilicates and potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide can be used directly or in directly as a catalyst or catlyst additive,as a coating primer or added to formulation as a adhesion promoter and as the base material in the formation fo sol-get systems or nanoparticle systems or products.
Titanium isopropoxide can be used as sharpless oxidation catalyst.
Titanium isopropoxide is used synthesize all kinds of titanate coupling agent, cross-linking agent and dispersant.
Titanium isopropoxide is a type of very lively primary titanium oxide; it hydrolyzes when contacted with moisture in air.
Titanium isopropoxide is mainly used as catalyst in esterification reaction or transesterification, also being used as catalyst of polyolefin.
Titanium isopropoxide is an active component of sharpless epoxidation as well as involved in the synthesis of chiral epoxides.
In Kulinkovich reaction, Titanium isopropoxide is involved as a catalyst in the preparation of cyclopropanes.
Titanium isopropoxide can also be used as raw materials for the pharmaceutical industry and the preparation of metal and rubber, metal and plastic adhesives.
Titanium isopropoxide can also be used as surface modifier, adhesion promoter and paraffin and oil additives.
nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.
Titanium isopropoxide is used for ester exchange reaction.
Titanium isopropoxide can be used to improve the adherence and crosslinking of resin having group or carboxyl group, used in heat resistant and corrosion resistant coating.
Titanium isopropoxide also can be used in the manufacture of glass and glass fiber.
Titanium isopropoxide can only be used in oil system.
Coating: Glass, metals, fillers and pigments can be treated with Titanium isopropoxide to give increased surface hardness; adhesion promotion; heat, chemical and scratch resistance; coloring effects; light reflection; iridescence; and corrosion resistance
Paint additive: Titanium isopropoxide can be used as an additive in paints to cross-link -OH functional polymers or binders; to promote adhesion; or to act as a binder itself.
Titanium isopropoxide is mainly used as catalyst in esterification reaction or transesterification,also being used as catalyst of polyolefin.
Titanium isopropoxide is used as a precursor for the preparation of titanium and barium-strontium-titanate thin films.
Titanium isopropoxide is useful to make porous titanosilicates and potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide is applied in the formation of a heterosupermolecule consisting of a TiO2
Titanium isopropoxide can be used to improve the adherence and crosslinking of resin having alcohol group or carboxyl group, used in heat resistant and corrosion resistant coating.
Titanium isopropoxide also can be used in the manufacture of glass and glass fiber.
Titanium isopropoxide can only be used in oil system.
Titanium isopropoxide is used catalyst especially for asymmetric induction in organic syntheses; in preparation of nanosized TiO2.
Titanium isopropoxide is used complexing agent in sol-gel process.
Titanium isopropoxide is used catalyst for esterification reactions, and transesterification reactions of acrylic acid and other esters.
Titanium isopropoxide is used as Ziegler (Ziegler Natta) catalyst in polymerization reactions such as epoxy resin, phenolic plastic, silicone resin, polybutadiene, etc.
Titanium isopropoxide is used as a precursor for the preparation of titanium and barium-strontium-titanate thin films.
Titanium isopropoxide is useful to make porous titanosilicates and potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide is an active component of Sharpless epoxidation as well as involved in the synthesis of chiral epoxides.
In Kulinkovich reaction, Titanium isopropoxide is involved as a catalyst in the preparation of cyclopropanes.
Titanium isopropoxide is used catalyst to produce plasticizers, polyesters and methacrylic esters.
Titanium isopropoxide is used adhesion promoter.
Titanium isopropoxide has been proved that it can undergo light-induced electron transfer.
Titanium isopropoxide is mainly used for transesterification and condensation reactions in organic synthesis Catalyst.
Titanium isopropoxide is often used as a precursor to prepare titanium dioxide (TiO2).
Titanium isopropoxide is used cross-linking for polymers.
Titanium isopropoxide is used coatings.
Titanium isopropoxide is used surface modification (metal, glass)
Titanium isopropoxide is used manufacture of scratch resistant glass.
Titanium isopropoxide is used in cross linking agent in wire enamel.
Titanium isopropoxide is used in chelates of ink & Plasticizers Ind.
Titanium isopropoxide is used for heat-resistant surface coatings in paints, lacquers, and plastics; for hardening and cross-linking of epoxy, silicon, urea, melamine, and terephthalate resins and adhesives; and for adhesion of paints, rubber, and plastics to metals.
Titanium isopropoxide is also used in catalysts, glass surface treatments, flue gas sorbents, controlled-release pesticides, and dental compositions (to bond to enamel).
Titanium isopropoxide is useful to make porous titanosilicates and potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide is an active component of Sharpless epoxidation as well as involved in the synthesis of chiral epoxides.
Titanium isopropoxide is an active component of sharpless epoxidation as well as involved in the synthesis of chiral epoxides.
In Kulinkovich reaction, Titanium isopropoxide is involved as a catalyst in the preparation of cyclopropanes.
Novel metal oxide/phosphonate hybrids were formed from Titanium isopropoxide in a two-step sol-gel process.
Titanium isopropoxide is used to make nano-sized titanium dioxide.
Titanium isopropoxide can be used as an adhesion promoting and cross-linking agent for hydroxylic compounds or heat and corrosion resistant coatings.
Titanium isopropoxide is most suitable for use in the glass and glass fiber manufacturing.
Titanium isopropoxide can be used directly or in directly as a catalyst or catlyst additive,as a coating primer or added to formulation as a adhesion promoter and as the base material in the formation fo sol-get systems or nanoparticle systems or products.
Starting material for barium-strontium-titanate thin films.
Titanium isopropoxide is also used to promote the adhesion of the coating to the surface.
Titanium isopropoxide can be directly used as a material surface modifier, adhesive promoter.
Titanium isopropoxide is used as a chemical additive and an intermediate in chemical products.
Titanium isopropoxide is used as a precursor for the preparation of titanium and barium-strontium-titanate thin films.
In Kulinkovich reaction, Titanium isopropoxide is involved as a catalyst in the preparation of cyclopropanes.
Titanium isopropoxide is used exchange Reaction for Esters
Titanium isopropoxide is used as additives and intermediates in chemical products
Titanium isopropoxide is used polymerization catalyst.
A new metal oxide/phosphonate hybrid can be formed from titanium tetraisopropoxide by sol-gel two-step method.
The raw material of barium strontium titanate film.
Titanium isopropoxide can be used as sharpless oxidation catalyst.
Titanium isopropoxide is used synthesize all kinds of titanate coupling agent, cross-linking agent and dispersant.
Titanium isopropoxide is most commonly used as a Lewis acid and a Ziegler–Natta catalyst.
Titanium isopropoxide is used catalyst to produce plasticizers, polyesters and methacrylic esters.
Titanium isopropoxide is used adhesion promoter, Cross-linking for polymers, Coatings, Surface modification (metal, glass)
Titanium isopropoxide is ideal to be used as a catalyst to develop polyesters and plasticizers.
Titanium isopropoxide is used to prepare porous titanosilicates, which are potential ion exchange materials for the removal of radioactive wastes.
Titanium isopropoxide is used to form heterogeneous supramolecules composed of TiO2 nanocrystals-violet essence electron acceptor complexes, which have been shown to be capable of light-induced electron transfer.
In addition to this, Titanium isopropoxide is also used as adhesion promoter, coater, etc.
Titanium isopropoxide can be used as an esterification catalyst for plasticizers, polyesters, methacrylic esters, resins, polycarbonates, polyolefins and RTV silicone sealants.
Titanium isopropoxide can also be used for coating chemicals as a cross linker for wire enamel varnish, glass and zinc flake coatings.
Titanium isopropoxide is most suitable for use in the glass and glass fiber manufacturing.
Titanium isopropoxide may be used as an adhesion promoter for packaging ink such as flexo and gravure.
Novel metal oxide/phosphonate hybrids were formed from Titanium isopropoxide in a two-step sol-gel process.
Starting material for barium-strontium-titanate thin films.
Titanium isopropoxide is used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes.
Applied in the formation of a heterosupermolecule consisting of a TiO2 nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.
Titanium isopropoxide is used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide has a wide range of applications in various industries.
Pigment production: Titanium isopropoxide is used as a precursor for the production of titanium dioxide (TiO2), a white pigment widely used in the paint, cosmetic, and food industries.
Organic synthesis: Titanium isopropoxide is used as a catalyst in organic synthesis reactions, such as the production of pharmaceuticals, agrochemicals, and other specialty chemicals.
Polymer synthesis: Titanium isopropoxide is used as an initiator for the polymerization of vinyl monomers and as a coupling agent for polymer-polymer and polymer-inorganic material interactions.
Adhesion promoter: Titanium isopropoxide can act as an adhesion promoter, improving the adhesion of coatings and adhesives to various substrates.
Electronics: Titanium isopropoxide is used in the production of thin-film capacitors and in the fabrication of metal-insulator-metal capacitors.
Surface treatment: Titanium isopropoxide can be used for the surface treatment of metals, ceramics, and glass to improve their properties, such as corrosion resistance and adhesion.
Titanium isopropoxide is used as a catalyst for transesterification reaction with various alcohols under neutral conditions.
Titanium isopropoxide can be formed by a sol-gel two-step method.
Titanium isopropoxide is used new metal oxide/phosphonate hybrid.
Applied in the formation of a heterosupermolecule consisting of a TiO2 nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.
Novel metal oxide/phosphonate hybrids were formed from Titanium isopropoxide in a two-step sol-gel process.
These are some of the common applications of Titanium isopropoxide, and its use may vary depending on the specific needs of each industry.
Titanium isopropoxide is used catalyst to produce plasticizers, polyesters, and methacrylic esters.
Titanium isopropoxide is used adhesion promoter, Cross-linking for polymers, Coatings, and Surface modification (metal, glass).
Titanium isopropoxide is used as a precursor for the production of titanium dioxide (TiO2), a white pigment widely used in paint, cosmetics, and food industries.
Titanium isopropoxide is also used as a starting material in the synthesis of other titanium compounds and as a catalyst in organic synthesis.
Starting material for barium-strontium-titanate thin films.
Titanium isopropoxide is used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide is commonly used as a precursor for the preparation of Titania (TiO2)
Titanium isopropoxide is a titanium-based coordination compound, commonly used in the asymmetric
Sharpless epoxidation reaction of allylic alcohols.
Titanium isopropoxide is also used as a catalyst in Kulinkovich reaction for the synthesis of cyclopropanes.
Titanium isopropoxide is used Chemical Synthesis, Industrial Chemicals, Organic Intermediates.
Titanium isopropoxide is commonly used as a precursor for the preparation of Titania (TiO2).
Novel metal oxide/phosphonate hybrids were formed from Titanium isopropoxide in a two-step sol-gel process.
Titanium isopropoxide is used to make adhesives and as catalysts for transesterification and polymerization
Titanium isopropoxide can be used to prepare adhesives for metal and rubber, metal and plastics, catalysts for transesterification and polymerization, and raw materials for pharmaceutical industry.
Titanium isopropoxide is used industrial catalyst, pesticide intermediates, plastic rubber auxiliaries, pharmaceutical raw materials.
Titanium isopropoxide is mainly used as catalyst for esterification and polymerization of organic synthesis.
Titanium isopropoxide is also used as adhesive for metal and rubber, metal and plastic, and used as coating additive and medical organic synthesis.
Starting material for barium-strontium-titanate thin films.
Titanium isopropoxide is used to make porous titanosilicates, potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide can be used as an additive to improve the corrosion resistance of metal surfaces, such as steel and copper.
Titanium isopropoxide has high stereoselectivity.
In the paint, Titanium isopropoxide is used a variety of polymers or resins play a cross-linking role, improving the anti-corrosion ability of the coating, etc.
Titanium isopropoxide is used for transesterification.
Titanium isopropoxide is used for titanate coupling agent、crosslinking agent and dispersant synthesis.
Titanium isopropoxide is mainly used as a catalyst for ester exchange and condensation reactions in organic synthesis.
Titanium isopropoxide is often used as a precursor for the preparation of titanium dioxide (TiO2).
A new type of metal oxide/phosphonate hybrid can be formed from Titanium isopropoxide by a two-step sol-gel process.
Titanium isopropoxide can adhere paint, rubber and plastic to metal.
Titanium isopropoxide is used as an additive for the Sharpless asymmetric epoxidation reaction of allyl alcohol.
Applied in the formation of a heterosupermolecule consisting of a TiO2 nanocrystallite-viologen electron acceptor complex whose light-induced electron transfer has been demonstrated.
This alkoxide of titanium(IV) is used in organic synthesis and materials science.
Titanium isopropoxide is used as a precursor for the preparation of titanium and barium-strontium-titanate thin films.
Titanium isopropoxide is useful to make porous titanosilicates and potential ion-exchange materials for cleanup of radioactive wastes.
Titanium isopropoxide is an active component of Sharpless epoxidation as well as involved in the synthesis of chiral epoxides.
In Kulinkovich reaction, Titanium isopropoxide is involved as a catalyst in the preparation of cyclopropanes.
Titanium isopropoxide is used for the preparation of adhesives, as a catalyst for transesterification and polymerization
Titanium isopropoxide is a the raw material for the strontium barium titanate thin film.
Titanium isopropoxide is used to prepare porous titanium silicate, which is a potential ion exchange material for removing radioactive waste.
Titanium isopropoxidet has been demonstrated that heterogeneous supramolecules composed of TiO2 nanocrystals and viologen electron acceptor complexes can undergo photo induced electron transfer.
Titanium isopropoxide is perfect for use as a synthesis catalyst and as an ingredient for pharmaceutical coatings.
Industry uses of Titanium isopropoxide: Ceramics, Coatings, Polymers (Chemical/Industrial Manufacturing)
Titanium isopropoxide can be used as a precursor for ambient conditions vapour phase deposition such as infiltration into polymer thin films.
The production and use of Titanium isopropoxide requires precision, expertise, and adherence to strict safety guidelines.
Titanium isopropoxide is a versatile chemical used in various applications such as catalysis, polymerization, and surface treatment of materials.
Titanium isopropoxide is commonly used as a precursor for the synthesis of titanium oxide nanoparticles, which are widely used in nanotechnology applications.
Titanium isopropoxide comes in a 500mL bottle and should be handled with care due to its flammable nature.
Titanium isopropoxide should be stored in a cool, dry place away from sources of ignition or heat.
Proper protective equipment must be worn when handling Titanium isopropoxide.
Titanium isopropoxide’s wide-ranging applications span several industries.
Its primary use lies within the domain of material science, where Titanium isopropoxide is utilized in the creation of ceramics, glasses, and other materials.
No significant environmental impacts have been reported for Titanium isopropoxide if handled properly.
Titanium isopropoxide is a type of very lively primary alcohol titanium oxide; it hydrolyzes when contacted with moisture in air.
Titanium isopropoxide is mainly used as catalyst in esterification reaction or transesterification,also being used as catalyst of polyolefin.
Titanium isopropoxide can be used to improve the adherence and crosslinking of resin having alcohol group or carboxyl group, used in heat resistant and corrosion resistant coating.
Titanium isopropoxide also can be used in the manufacture of glass and glass fiber.
Titanium isopropoxide’s use to prepare porous titanosilicates, has been utilized to form ion exchange media to treat nuclear wastes in the removal of soluble forms of cesium-137 (137Cs).
Titanium isopropoxide also has been shown to have synergistic effects when combined with other additives, such as metal hydroxides or methyl glycosides.
Titanium isopropoxide can only be used in oil system.
Titanium isopropoxide is used to the ester exchange reaction
Intermediates, Titanium isopropoxide is used as fertilizer and chemical products
Titanium isopropoxide is used for making adhesives, used as ester exchange reaction and polymerization catalyst
Titanium isopropoxide is used for making metal and rubber, metal and plastic adhesive
Titanium isopropoxide is a type of very lively primary alcohol titanium oxide; it hydrolyzes when contacted with moisture in air.
Titanium isopropoxide is used as a raw material for barium strontium titanate film.
Titanium isopropoxide is used to prepare porous titanosilicate, which is a potential ion exchange material for removing radioactive waste.
Titanium isopropoxide is used to form heterogeneous supramolecules composed of TiO2 nanocrystals-violet essence electron acceptor complexes.
Titanium isopropoxide is mainly used as catalyst in esterification reaction or transesterification,also being used as catalyst of polyolefin.
Titanium isopropoxide can be used to improve the adherence and crosslinking of resin having alcohol group or carboxyl group, used in heat resistant and corrosion resistant coating.
Titanium isopropoxide also can be used in the manufacture of glass and glass fiber.
In the chemical industry, Titanium isopropoxide serves as a catalyst or a precursor to other catalysts in processes like the Sharpless epoxidation, a process used to synthesize 2,3-epoxyalcohols from primary and secondary allylic alcohols.
The pharmaceutical industry also harnesses the catalytic properties of Titanium isopropoxide for certain types of organic reactions, such as transesterification, condensation, addition reactions and polymerization.
-TiO2 pigments and films:
Micro- or nano-scale TiO2 pigments can be formed from Titanium isopropoxide.
Titanium isopropoxide can also be used to create a polymeric TiO2 film on surfaces via pyrolytic or hydrolytic processes.
-Hair-making uses of Titanium isopropoxide:
Titanium isopropoxide, isopropyl alcohol, and liquid ammonia were heated and dissolved in toluene as a solvent to undergo an esterification reaction.
The reaction product was filtered off by-product ammonium chloride by suction, and the product was obtained by distillation.
-Titanium isopropoxide is mainly used as catalyst for transesterification and condensation in organic synthesis.
Titanium isopropoxide is often used as precursor to prepare titanium dioxide (titanium dioxide).
A new type of metal oxide / phosphonate hybrids can be formed from four isopropanol titanium by sol-gel two step process.
Raw materials for barium strontium titanate thin films.
Porous titanium silicate is a potential ion exchange material for the removal of radioactive waste.
Photoinduced electron transfer has been demonstrated to occur in heterogeneous supramolecules consisting of nanocrystalline titanium dioxide and viologen electron acceptor complexes.
-Coating Industry uses of Titanium isopropoxide:
Titanium isopropoxide is commonly used as a catalyst in the coating industry.
Titanium isopropoxide's purpose in this field involves promoting the curing process of coatings and improving their overall performance.
The mechanism of action in coatings involves the initiation and acceleration of chemical reactions, leading to the formation of a durable and protective coating layer.
-Polymer Industry uses of Titanium isopropoxide:
Titanium isopropoxide is also utilized in the polymer industry as a crosslinking agent.
Titanium isopropoxide's purpose in this field involves creating strong chemical bonds between polymer chains, resulting in enhanced mechanical properties and stability of the polymers.
The mechanism of action in polymer crosslinking involves the formation of covalent bonds between the Titanium isopropoxide and the polymer chains, leading to a three-dimensional network structure.
PREPARATION OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is prepared by treating titanium tetrachloride with isopropanol.
Hydrogen chloride is formed as a coproduct:
TiCl4 + 4 (CH3)2CHOH → Ti{OCH(CH3)2}4 + 4 HCl
PROPERTIES OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide reacts with water to deposit titanium dioxide:
Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH
This reaction is employed in the sol-gel synthesis of TiO2-based materials in the form of powders or thin films.
Typically water is added in excess to a solution of the alkoxide in an alcohol.
The composition, crystallinity and morphology of the inorganic product are determined by the presence of additives (e.g. acetic acid), the amount of water (hydrolysis ratio), and reaction conditions.
Titanium isopropoxide is also used as a catalyst in the preparation of certain cyclopropanes in the Kulinkovich reaction.
Prochiral thioethers are oxidized enantioselectively using a catalyst derived from Ti(O-i-Pr)4.
SOLUBILITY OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is soluble in anhydrous ethanol, ether, benzene and chloroform.
TITANIUM ISOPROPOXIDE USAGE IN GLASS INDUSTRY:
Titanium isopropoxide is commonly used as a cross-linking agent and catalyst in the glass industry.
*Anti-reflective coatings:
Titanium isopropoxide is often used as a cross-linking agent in anti-reflective coatings for glass.
The coating helps to reduce glare and improve visibility, making Titanium isopropoxide ideal for applications like eyeglasses, camera lenses, and flat panel displays.
*Self-cleaning coatings:
Titanium isopropoxide is also used to create self-cleaning coatings for glass.
When exposed to sunlight, the coating reacts with oxygen to produce free radicals that break down organic matter on the surface of the glass.
This helps to keep the glass clean and reduces the need for manual cleaning.
*Pigments:
As I mentioned earlier, Titanium isopropoxide is used as a precursor for the synthesis of titanium dioxide (TiO2) nanoparticles.
These nanoparticles are used as pigments in glass and ceramic applications, providing improved optical properties and color saturation.
They are often used in products like decorative glassware, ceramic tiles, and automotive glass.
*Scratch-resistant coatings:
Titanium isopropoxide can also be used to create scratch-resistant coatings for glass.
When added to the coating, Titanium isopropoxide reacts with the hydroxyl groups on the surface of the glass to create a durable, cross-linked network.
This network helps to protect the glass from scratches, abrasion, and chemical damage, making Titanium isopropoxide ideal for applications like smartphone screens and protective eyewear.
TITANIUM ISOPROPOXIDE USAGE IN INK INDUSTRY:
Titanium isopropoxide is commonly used in the ink industry as a cross-linking agent and as a catalyst for polymerization reactions.
Here are some specific ways that Titanium isopropoxide is used in the ink industry:
*UV-curable inks:
Titanium isopropoxide is often used as a cross-linking agent in UV-curable inks.
When exposed to UV light, the ink undergoes a polymerization reaction that cross-links the ink molecules and hardens the ink film. Titanium isopropoxide can be added to the ink formulation to promote cross-linking and improve the ink’s adhesion, durability, and resistance to abrasion and chemical attack.
*Pigment dispersions:
Titanium isopropoxide is also used as a dispersant in pigment dispersions for ink formulations.
Titanium isopropoxide helps to stabilize the pigment particles and prevent them from settling out of the ink.
This improves the color consistency and print quality of the ink.
*Metal printing:
Titanium isopropoxide can be used as a catalyst for the polymerization of acrylic resins used in metal printing.
The resin is applied to the metal substrate as an ink and then cured using Titanium isopropoxide as a catalyst.
This creates a durable and scratch-resistant coating on the metal surface.
*Inkjet printing:
Titanium isopropoxide can be added to inkjet inks as a cross-linking agent to improve the ink’s adhesion and durability on various substrates, such as paper, plastic, and metal.
Overall, Titanium isopropoxide is a valuable tool in the ink industry, helping to improve the performance and quality of ink formulations.
Titanium isopropoxide's ability to promote cross-linking, stabilize pigments, and catalyze polymerization reactions makes it a versatile material for ink manufacturers.
NOTES OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is moisture sensitive.
Store Titanium isopropoxide in cool place.
Keep Titanium isopropoxide container tightly closed in a dry and well-ventilated place.
Titanium isopropoxide is incompatible with strong oxidizing agents and strong acids.
Titanium isopropoxide reacts with water to produce titanium dioxide.
PROPERTIES OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is soluble in anhydrous ethanol, ether, benzene and chloroform.
FEATURES OF TITANIUM ISOPROPOXIDE:
*Organic compound composed of titanium and isopropyl groups
*Colorless liquid with a low melting point
*Low toxicity and is considered relatively safe to handle
*Reacts readily with water and air
BENEFITS OF TITANIUM ISOPROPOXIDE:
*Versatile:
Titanium isopropoxide is a versatile compound that can be used in various industries, including pigment production, organic synthesis, and polymer synthesis.
*Efficient:
As a catalyst, Titanium isopropoxide can facilitate organic reactions in a fast and efficient manner.
*High-quality products:
Titanium isopropoxide is used as a precursor for the production of high-quality titanium dioxide pigment used in paints, cosmetics, and food products.
*Precursor for other compounds:
Titanium isopropoxide is used as a starting material for the synthesis of other titanium compounds.
*Adhesion promoter:
Titanium isopropoxide can also act as an adhesion promoter, improving the adhesion of coatings and adhesives to various substrates.
Overall, the features and benefits of Titanium isopropoxide make it a valuable compound in various industries, providing an efficient and versatile solution for the production of high-quality products.
SHELF LIFE OF TITANIUM ISOPROPOXIDE:
Under proper storage conditions, the shelf life of Titanium isopropoxide is 12 months.
NOTES OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is moisture sensitive.
Store Titanium isopropoxide in cool place.
Keep Titanium isopropoxide container tightly closed in a dry and well-ventilated place.
Titanium isopropoxide is incompatible with strong oxidizing agents and strong acids.
Titanium isopropoxide reacts with water to produce titanium dioxide.
REACTIONS OF TITANIUM ISOPROPOXIDE:
*Catalyst for the synthesis of acyclic epoxy alcohols and allylic epoxy alcohols.
*Useful for diastereoselective reduction of alpha-fluoroketones.
*Catalyzes the asymmetric allylation of ketones.
*Reagent for the synthesis of cyclopropylamines from aryl and alkenyl nitriles.
*Useful for racemic and/or enantioselective addition of nucleophiles to aldehydes, ketones and imines.
*Catalytic intramolecular formal [3+2] cycloaddition.
*Catalyst for the synthesis of cyclopropanols from esters and organomagnesium reagents
KEY FEATURES OF TITANIUM ISOPROPOXIDE:
*Balanced pH value, Purity
*Non-toxic
*Safe to use
AIR AND WATER REACTIONS OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide fumes in the air.
Titanium isopropoxide is soluble in water.
Titanium isopropoxide decomposes rapidly in water to form flammable isopropyl alcohol.
REACTIVITY PROFILE OF TITANIUM ISOPROPOXIDE:
Metal alkyls, such as Titanium isopropoxide, are reducing agents and react rapidly and dangerously with oxygen and with other oxidizing agents, even weak ones.
Thus, they are likely to ignite on contact with alcohols.
SUMMARY OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide, often abbreviated TTIP, is a crucial compound used in many modern industrial processes that rely on organic synthesis and materials science.
More specifically, Titanium isopropoxide is frequently used in the asymmetric Sharpless epoxidation reaction of allylic alcohols, and as a catalyst in the Kulinkovich reaction for the synthesis of cyclopropanes.
Most commonly, Titanium isopropoxide serves as a precursor for the production of titanium dioxide (TiO2), a substance found in a multitude of applications from paint to sunscreen.
However, Titanium isopropoxide’s flammability and sensitivity to moisture and air presents challenges for its storage and transport.
With the use of appropriate packaging and transport solutions, as well as meticulous environmental control, Titanium isopropoxide’s possible to overcome this challenge.
PURIFICATION METHODS OF TITANIUM ISOPROPOXIDE:
Dissolve Titanium isopropoxide in dry *C6H6 , filter if a solid separates, evaporate and fractionate.
Titanium isopropoxide is hydrolysed by H2O to give solid Ti2O(iso-OPr)2 m ca 48o
PRODUCTION METHODS OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide reacts with water to deposit titanium dioxide:
Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH
This reaction is employed in the sol-gel synthesis of TiO2-based materials.
Typically water is added to a solution of the alkoxide in an alcohol.
The nature of the inorganic product is determined by the presence of additives (e.g. acetic acid), the amount of water, and the rate of mixing.
Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides.
Titanium isopropoxide is also used as a catalyst for the preparation of certain cyclopropanes in the Kulinkovich reaction.
Prochiral thioethers are oxidized enantioselectively using catalyst derived from Ti(O-i-Pr)4.
PREPARATION OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide is prepared by treating titanium tetrachloride with isopropanol.
Hydrogen chloride is formed as a coproduct:
TiCl4 + 4 (CH3)2CHOH → Ti{OCH(CH3)2}4 + 4 HCl
BACKGROUND OF TITANIUM ISOPROPOXIDE:
Titanium isopropoxide has a rich history in the realm of chemical synthesis.
First discovered in the 1950s, Titanium isopropoxide quickly became an essential tool due to its unique chemical properties.
As an alkoxide of titanium, Titanium isopropoxide is an organometallic compound, meaning it is part of a class of compounds that contain a metal directly bonded to an organic molecule, which gives them unique properties.
Titanium isopropoxide is often used in a process known as sol-gel synthesis.
In this method, a solution (sol) is gradually transitioned to a solid (gel) form.
Titanium isopropoxide is used in this process because it can be easily hydrolyzed (reacted with moisture/water) and condensed to first form a colloidal structure and upon further condensation, a connected porous network of titanium dioxide.
This gel can be further aged and dried through supercritical (aerogel), thermal (xerogel) or freeze drying (cryogel) to form a solid powder end product with multiple levels of structure, functionality, and porosity.
Moreover, Titanium isopropoxide is instrumental in metal-organic chemical vapor deposition (MOCVD).
In this process, a volatile precursor like Titanium isopropoxide is used to produce high-quality, thin film materials with atomic level precision control of thickness with uniformity and high repeatability.
These materials are then used in a variety of applications, from microelectronics to solar cells.
While the value of Titanium isopropoxide is well-established, its flammability and sensitivity to moisture and air while beneficial in the sol-gel or MOCVD processes pose significant handling challenges.
It is essential that Titanium isopropoxide's transport and storage be carefully controlled to avoid inherent hazards and also contamination and degradation.
In response to these challenges, the industry has developed specialized handling equipment and stringent environmental control measures to maintain the safety and integrity of this important chemical precursor.
The evolution of Titanium isopropoxide reflects the wider trends in the chemical industry: the constant pursuit of better and safer synthetic methods, the adaptation to increasingly stringent environmental standards, and the development of cutting-edge applications in high-tech industries.
Through its versatile applications, Titanium isopropoxide is significantly contributing to enhancing chemical synthesis, material science, and sustainability in economic and environmental efforts."
CHEMICAL AND PHYSICAL PROPERTIES OF TITANIUM ISOPROPOXIDE:
Character light yellow liquid, smoke in humid air.
boiling point 102~104 ℃
freezing point 14.8 ℃
relative density 0.954g/cm3
refractive index 1.46
soluble in a variety of organic solvents.
PHYSICAL and CHEMICAL PROPERTIES of TITANIUM ISOPROPOXIDE:
CAS Number: 546-68-9
Molecular Formula: C12H28O4Ti
Molecular Weight: 284.22
Physical Properties:
Appearance: Liquid
Color: Colorless to pale yellow
Density: 0.95 to 0.98 g/ml at 20°C
Composition:
Assay (TiO2 Content): 27.8 - 28.6%
Assay (Ti Content): 16.6% to 16.9%
Storage and Handling:
Storage Temperature: +20°C (Room Temperature)
Storage Conditions: Ambient
Shelf Life: 60 Months
Regulatory Information:
Chemical formula: C12H28O4Ti
Molar mass: 284.219 g•mol−1
Appearance: colorless to light-yellow liquid
Density: 0.96 g/cm3
Melting point: 17 °C (63 °F; 290 K) approximation
Boiling point: 232 °C (450 °F; 505 K)
Solubility in water: Reacts to form TiO2
Solubility: soluble in ethanol, ether, benzene, chloroform
Refractive index (nD): 1.46
CAS Number: 546-68-9
Molecular Weight: 284.22 g/mol
Appearance: Colorless liquid
Melting Point: 14-17 C
Boiling Point: 232 C
Density: 0.96 g/mL
Einecs Number: 208-909-6
HMIS: 2-3-1-X
Molecular Formula: C12H28O4Ti
Molecular Weight (g/mol): 284.25
TSCA: Yes
Delta H Vaporization (kJ/mol): 14.7 kcal/mole
Boiling Point (˚C/mmHg): 58/1
Density (g/mL): 0.937
Flash Point (˚C): 25 °C
Melting Point (˚C): 15-19°
Refractive Index @ 20˚C: 1.4654
Viscosity at 25 ˚C (cSt): 2
Viscosity: 2 cSt
ΔHform: -377 kcal/mol
ΔHvap: 14.7 kcal/mol
Metal content: 16.6-16.9% Ti
Vapor pressure, 50 °C: 0.9 mm
Vapor pressure, 100 °C: 19 mm
Soluble: heptane, isopropanol
Molecular complexity: 1.4
Physical state: liquid
Color: colorlesslight yellow
Odor: alcohol-like
Melting point/freezing point:
Melting point/range: 14 - 17 °C - lit.
Initial boiling point and boiling range: 232 °C - lit.
Flammability (solid, gas): No data available
Upper/lower flammability or explosive limits: No data available
Flash point: 41 °C
Autoignition temperature: No data available
Decomposition temperature: No data available
pH: No data available
Viscosity
Viscosity, kinematic: No data available
Viscosity, dynamic: 3 mPa.s at 25 °C
Water solubility: insoluble
Molecular Formula: C12H28O4Ti
Molecular Weight: 284.22
Storage: Room Temperature
Shelf Life: 60 Months
HSN Code: 29051990
Appearance (Clarity): Clear
Appearance (Colour): Colourless to pale yellow
Appearance (Form): Liquid
Assay (TiO2 content): 27.8 - 28.6%
Density (g/ml) @ 20°C: 0.96 - 0.98
Partition coefficient: n-octanol/water: No data available
Vapor pressure: 1,33 hPa at 63 °C
Density: 0,96 g/cm3 at 20 °C - lit.
Relative density: 0,96 at 25 °C
Relative vapor density: No data available
Particle characteristics: No data available
Explosive properties: No data available
Oxidizing properties: none
Other safety information: No data available
Compound Formula: C12H28O4Ti
Molecular Weight: 284.22
Appearance: Colorless to yellow liquid
Melting Point: 14-17 °C
Boiling Point: 232 °C
Density: 0.96 g/mL
Solubility in H2O: Reacts to form TiO2
Refractive Index: 1.4640
Exact Mass: N/A
Monoisotopic Mass: 284.147003
Charge: N/A
Melting Point: 16°C to 20°C
Density: 0.955
Boiling Point: 232°C
Flash Point: 46°C (115°F)
Linear Formula: Ti[OCH(CH3)2]4
Refractive Index: 1.464
UN Number: UN2413
Beilstein: 3679474
Sensitivity: Moisture sensitive
Merck Index: 14,9480
Solubility Information: Soluble in anhydrous ethanol,ether,benzene and chloroform.
Formula Weight: 284.23
Percent Purity: 95%
Chemical Name or Material: Titanium(IV) isopropoxide
Formula: C₁₂H₂₈O₄Ti
MW: 284,23 g/mol
Boiling Pt: 240 °C (760 mmHg)
Melting Pt: >15 °C
Density: 0,95 g/cm³
Flash Pt: 46 °C
Storage Temperature: Ambient
MDL Number: MFCD00008871
CAS Number: 546-68-9
EINECS: 208-909-6
UN: 2413
ADR: 3,III
Merck Index: 12,09614
Appearance: Clear liquid (May darken on storage)
Infrared spectrum: Conforms
Melting point: ≥15 °C
Assay: 16.6 to 17.3 % (Ti)
Color scale: ≤100 APHA
CAS Number: 546-68-9
Assay (purity): 97%
Purity method: by gravimetric assay
Molecular weight: 284.22
Form: liquid
Appearance: colorless liquid
Melting point: 14-17C
Boiling point: 232C
Gravimetric assay: %Ti=27.5-28.3
Molecular formula: C12H28O4Ti
Linear formula: Ti[OCH(CH3)2]4
Flash Point: 46°C
Infrared Spectrum: Authentic
Assay Percent Range: 16.6 to 17.3% (Ti)
Linear Formula: Ti[OCH(CH3)2]4
Refractive Index: 1.4654 to 1.4684
Beilstein: 01,II,382
Fieser: 11,92; 12,90; 13,13; 14,61; 15,308; 16,54; 17,347
Merck Index: 15,9636
Specific Gravity: 0.95
Solubility Information: Solubility in water: hydrolysis.
Other solubilities: soluble in most common organic solvents
Viscosity: 4.3 mPa.s (25°C)
Formula Weight: 284.26
Percent Purity: 98+%
Physical Form: Liquid
Chemical Name or Material: Titanium(IV) isopropoxide
FIRST AID MEASURES of TITANIUM ISOPROPOXIDE:
-Description of first-aid measures:
*General advice:
Show this material safety data sheet to the doctor in attendance.
*If inhaled:
After inhalation:
Fresh air.
Call in physician.
*In case of skin contact:
Take off immediately all contaminated clothing.
Rinse skin with water/ shower.
*In case of eye contact:
After eye contact:
Rinse out with plenty of water.
Call in ophthalmologist.
Remove contact lenses.
*If swallowed:
After swallowing:
Immediately make victim drink water (two glasses at most).
Consult a physician.
-Indication of any immediate medical attention and special treatment needed:
No data available
ACCIDENTAL RELEASE MEASURES of TITANIUM ISOPROPOXIDE:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Cover drains.
Collect, bind, and pump off spills.
Observe possible material restrictions.
Take up with liquid-absorbent material.
Dispose of properly.
Clean up affected area.
FIRE FIGHTING MEASURES of TITANIUM ISOPROPOXIDE:
-Extinguishing media:
*Suitable extinguishing media:
Foam
Carbon dioxide (CO2)
Dry powder
*Unsuitable extinguishing media:
For this substance/mixture no limitations of extinguishing agents are given.
-Further information:
Remove container from danger zone and cool with water.
Prevent fire extinguishing water from contaminating surface water or the ground water system.
EXPOSURE CONTROLS/PERSONAL PROTECTION of TITANIUM ISOPROPOXIDE:
-Control parameters:
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Use equipment for eye protection.
Safety glasses
*Skin protection:
required
*Body Protection:
Flame retardant antistatic protective clothing.
*Respiratory protection:
Recommended Filter type: Filter type ABEK
-Control of environmental exposure:
Do not let product enter drains.
HANDLING and STORAGE of TITANIUM ISOPROPOXIDE:
-Precautions for safe handling:
*Advice on safe handling:
Take precautionary measures against static discharge.
*Hygiene measures:
Change contaminated clothing.
Wash hands after working with substance.
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Handle under nitrogen, protect from moisture.
Store under nitrogen.
Keep container tightly closed in a dry and well-ventilated place.
Keep away from heat and sources of ignition.
Hydrolyzes readily.
STABILITY and REACTIVITY of TITANIUM ISOPROPOXIDE:
-Chemical stability:
The product is chemically stable under standard ambient conditions (room temperature) .
-Possibility of hazardous reactions:
No data available