Textile, Leather, Paper and Industrial Chemicals

PVP K 30/K 90 (Polyvinylpyrrolidone)
PVP; Povidone; PVPP; Crospovidone; Polyvidone; PNVP; Poly[1-(2-oxo-1-pyrrolidinyl)ethylen]; 1-Ethenyl-2-pyrrolidon homopolymer; 1-Vinyl-2-pyrrolidinon-Polymere CAS NO: 9003-39-8
PVP K 60
PVP K 60 Applications and Usage Notes Adhesives – pressure-sensitive and water-remoistenable types, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks. Ceramics – binder in high temperature fire-prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier. Coatings/lnks – digital printing coating, ball-point inks, water colors for commercial art, temporary protective coatings, paper coatings. Lithography and Photography – foil emulsions, etch coatings, plate storage, gumming of lithographic plates, dampener roll solutions, photo and laser imaging processes. Metallurgy – processing for both ferrous and non-ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum, used in metal quenchant baths. Paper – inorganic papers, cellulose papers, rag stock, rag stripping, coloring and beating operations, copying paper, printing paper and electric insulating papers, paper adhesives. PVP K 60 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 60) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. Application of PVP K 60 Polyvinylpyrrolidone solution (PVP) is also known as K60 and can be used in a variety of applications such as biomedical, tissue engineering, and medical materials. To fit more application areas, the E- and I-series of PVP K 60 copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. PVP K 60 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 60 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. PVP K 60 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. PVP K 60 is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 60 W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Other uses of PVP K-60 solution PVP K 60 binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP K 60 is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions. PVP K 60 is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP K 60 is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP K 60 can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP K 60 is useful for making an aqueous mounting medium. PVP K 60 can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production. Safety of PVP K 60 The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses, and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP K 60 has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP K 60 component of the solution. A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP. In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP. Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP K 60 instead. Plasticizers and polymers: Most PVP K 60 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 60, PVP K 60 E-535 and PVP K 60 E-335. In general, PVP K 60 is less hygroscopic than PVP. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Storage and handling of PVP K 60 PVP K 60 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. PVP K-60 20% Solution is a film former in hair styling products. It has an average molecular weight of 1,300,000 in Daltons. Polyvinylpyrrolidone. PVP K-60 solution is a film former. It is suggested for use in hair styling formualations. PVP K-60 solution is a 20 percent solution. It stabilizes emulsions, dispersions and suspensions. It forms clear, hard & glossy film. In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP K 60) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP K 60 , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. The advantages of using PVP K 60 copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP K 60 copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties Key Attributes of PVP K 60 -Polyvinylpyrrolidone (PVP) can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the pyrrolidone ring. -High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts. -Dispersancy, where components in a mixture are uniformly distributed through the use of polyvinylpyrrolidone. -Hydrophilicity, where the water solubility of PVP is its dominant feature and frequently a factor along with other properties valuable in numerous applications. -Adhesion, taking advantage of the higher molecular weight PVP formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application. -Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques. Applications and Usage Notes of PVP K 60 -Adhesives – pressure-sensitive and water-remoistenable types, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks. -Ceramics – binder in high temperature fire-prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier. -Coatings/lnks – digital printing coating, ball-point inks, protective colloid and leveling agent for emulsion polymers/ coatings/ printing inks, pigment dispersant, water colors for commercial art, temporary protective coatings, paper coatings, waxes and polishes. -Electronic Applications – storage batteries, printed circuits, cathode ray tubes, binder for metal salts or amalgams in batteries, gold, nickel, copper and zinc plating, a thickener for solar gel ponds and as an adhesive to prevent leakage of batteries, serves as an expander in cadmium-type electrodes, binder in sintered-nickel powder plates. -Membranes – macroporous, multiporous, desalination, gas separating, liquid ultrafiltration, hemodialysis, selective permeability types of membranes, hollow fiber membranes. -Metallurgy – processing for both ferrous and non-ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum, used in metal quenchant baths. -Paper – cellulose papers, rag stock, rag stripping, copying paper, printing paper and electric insulating papers, paper adhesives. -Polymerizations – acrylic monomers, unsaturated polyesters, olefins, including PVC, polystyrene beads, substrate for graft polymerization, template in acrylic polymerization. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. PVP K 60 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP K 60 acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP K 60 finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP K 60 thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP K 60 used in industrial, specialty and imaging coatings, printing inks and paints. PVP K 60 provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP K 60 is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene. PVP K 60 is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP K 60 monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives. Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone. PVP K 60 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP K 60 (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP K 60 tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP K 60 Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. PVP K 60 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 60) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 60 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 60 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. PVP K 60 is a 70/30 copolymer of PVP K 60 and vinyl acetate supplied as a 50% solution in water. PVP K 60 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 60 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Uses of PVP K-60 solution Medical uses of PVP K-60 solution PVP K 60 was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP K 60 is used as a binder in many pharmaceutical tablets; it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption. The long-term effects of crospovidone or povidone within the lung are unknown.) PVP K 60 added to iodine forms a complex called povidone-iodine that possesses disinfectant properties. This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP K 60 is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost. PVP K 60 is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Properties of PVP K 60 PVP K 60 is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol, as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin). When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP K 60 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 60 E-735 copolymer, PVP K 60 E-535 copolymer and PVP K 60 E- 335 copolymer. In general, PVP K 60 copolymer is less hygroscopic than PVP. USES of PVP K 60 It is used in as an adhesive in glue stick and hot-melt adhesives It is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP K 60 is used in as an emulsifier and disintegrant for solution polymerization It is used in increase resolution in photoresists for cathode ray tubes (CRT) PVP K 60 is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters It is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating It is used in as a thickening agent in tooth whitening gels PVP K 60 is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation It is used in as an additive to Doro's RNA extraction buffer It is used in as a liquid-phase dispersion enhancing agent in DOSY NMR PVP K 60 is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly PVP K 60 is used in as a stabilizing agent in all inorganic solar cells PVP K 60 copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP K 60 copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP K 60 copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP K 60 copolymer is used as a binder to allow the aqueous processing of photoresists. History of PVP K 60 PVP K 60 was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP K 60 was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. The PVP K 60 copolymer PVP K 60 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. PVP K 60 copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 60 W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution.
PVP K 85
PVP K 85 PVP K 85 Solution is a hygroscopic, amorphous polymer supplied as a clear aqueous solution. It can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. This product is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. PVP products are recommended for dishwashing, fabric care, household cleaning, and industrial and institutional cleaning applications. Polyvinylpyrrolidone (PVP K 85). It is in form of aqueous solution. It is linear, random and is produced by the free-radical polymerization. It is hygroscopic and amorphous. It has high polarity, dispersany, adhesion and cohesion. It forms hard, glossy and oxygen permeable film. It is soluble in water and polar solvents. Insoluble in esters, ethers, ketones and hydrocarbons. Suitable for digital ink-jet printing. PVP K 85 100% Powder is soluble in water and many organic solvents and it forms hard, transparent, glossy film. PVP is compatible with most inorganic salts and many resins. PVP stabilizes emulsions, dispersions and suspensions. While PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K 85 100% Powder appears as a white powder. PVP (Polyvinylpyrrolidone) K-85 polymer is a hygroscopic, amorphous polymer. They are linear nonionic polymers that are soluble in water and organic solvents and are pH stable. PVP K 85 forms hard glossy transparent films and have adhesive, cohesive and dispersive properties. Key Attributes of PVP K 85  Polyvinylpyrrolidone (PVP) can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the pyrrolidone ring.  High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.  Dispersancy, where components in a mixture are uniformly distributed through the use of polyvinylpyrrolidone.  Hydrophilicity, where the water solubility of PVP is its dominant feature and frequently a factor along with other properties valuable to numerous applications.  Adhesion, taking advantage of the molecular weight PVP formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.  Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques. Applications and Usage Notes  Adhesives – pressure-sensitive and water-remoistenable types of adhesives, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks.  Ceramics – binder in high temperature fire prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier.  Glass and Glass Fibers – acts as a binder, lubricant and coating agent.  Coatings/lnks – digital printing coating, ball-point inks, protective colloid and leveling agent for emulsion polymers/ coatings/ printing inks, pigment dispersant, water-colors for commercial art, temporary protective coatings, paper coatings, waxes and polishes.  Electronic Applications – storage batteries, printed circuits, cathode ray tubes, binder for metal salts or amalgams in batteries, gold, nickel, copper and zinc plating, a thickener for solar gel ponds and as an adhesive to prevent leakage of batteries, serves as an expander in cadmium-type electrodes, binder in sintered-nickel powder plates.  Lithography and Photography – foil emulsions, etch coatings, plate storage, gumming of litho- graphic plates, dampener roll solutions, photo and laser imaging processes, microencapsulation, thermal recording, carrier, finisher preserver of lithographic plates, thermal transfer recording ribbons and optical recording discs.  Fibers and Textiles – synthetic fibers, dyeing and printing, fugitive tinting, dye stripping and dispersant, scouring, delustering, sizing and finishing, greaseproofing aid, soil release agent. Widely used as dye dispersant and to disperse titanium dioxide.  Membranes – macroporous, multiporous, desalination, gas separating, liquid ultrafiltration, hemodialysis, selective permeability types of membranes, hollow fiber membranes.  Metallurgy – processing for both ferrous and non ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum.  Paper – inorganic papers, cellulose papers, rag stock, rag stripping, coloring and beating operations, copying paper, printing paper and electric insulating papers, paper adhesives.  Polymerizations – acrylic monomers, unsaturated polyesters, olefins, including PVC, styrene beads, substrate for graft polymerization, template in acrylic polymerization.  Water and Waste Treatment, and Hygiene – clogging of reverse osmosis membranes, water treatment in fish hatchery ponds, removal of oil, dyes from waste water and waste water clarifier in papermaking, in deodorants for neutralization of irritant and poisonous gas, in air conditioning filters. Polyvinylpyrrolidone (PVP K 85) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/85 to 85/70 vinyl acetate to vinylpyrrolidone. PVP K 85 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (85, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 85 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. What is PVP K 85 Copolymer? PVP K 85 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP K 85 copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP K 85 copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP K 85 copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP K 85 E and I copolymer Series To fit many application areas, the E and I series of PVP K 85 copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. The PVP K 85 copolymer PVP K 85 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. The PVP K 85 W copolymers PVP K 85 copolymer is a 70/85 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 85 W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP K 85 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 85 E-735 copolymer, PVP K 85 E-535 copolymer and PVP K 85 E- 335 copolymer. In general, PVP K 85 copolymer is less hygroscopic than PVP. PVP K 85 copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP K 85 copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP K 85 copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP K 85 copolymer is used as a binder to allow the aqueous processing of photoresists. Storage and handling PVP K 85 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 85 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 85 ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/85 to 85/70 vinyl acetate to vinylpyrrolidone. PVP K 85 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (85, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 85 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP K 85 E- and I-series To fit more application areas, the E- and I-series of PVP K 85 copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP K 85 W copolymers PVP K 85 is a 70/85 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 85 W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 85 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 85, PVP K 85 E-535 and PVP K 85 E-335. In general, PVP K 85 is less hygroscopic than PVP. Abstract In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP K 85 ) copolymer compositions (70/85, 60/40, 50/50 and 85/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP K 85 , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP K 85 acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP K 85 finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP K 85 thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP K 85 used in industrial, specialty and imaging coatings, printing inks and paints. PVP K 85 provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP K 85 is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene.[2] PVP K 85 is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP K 85 monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives.[2] Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone. PVP K 85 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP K 85 (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP K 85 tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP K 85 Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. The PVP K 85 E and I copolymer Series To fit many application areas, the E and I series of PVP K 85 copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-735, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Storage and handling PVP K 85 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 85 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 85 ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/85 to 85/70 vinyl acetate to vinylpyrrolidone. PVP K 85 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (85, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 85 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP K 85 W copolymers PVP K 85 is a 70/85 copolymer of PVP K 85 and vinyl acetate supplied as a 50% solution in water. PVP K 85 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 85 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. USES Medical PVP K 85 was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP K 85 is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP K 85 added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP K 85 is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP K 85 is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical PVP K 85 is used in as an adhesive in glue stick and hot-melt adhesives PVP K 85 is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP K 85 is used in as an emulsifier and disintegrant for solution polymerization PVP K 85 is used in increase resolution in photoresists for cathode ray tubes (CRT)[9] PVP K 85 is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP K 85 is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP K 85 is used in as a thickening agent in tooth whitening gels[10] PVP K 85 is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP K 85 is used in as an additive to Doro's RNA extraction buffer[citation needed] PVP K 85 is used in as a liquid-phase dispersion enhancing agent in DOSY NMR [11] PVP K 85 is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] PVP K 85 is used in as a stabilizing agent in all inorganic solar cells[13] Other uses PVP K 85 binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP K 85 is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP K 85 is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP K 85 is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP K 85 can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP K 85 is useful for making an aqueous mounting medium.[16] PVP K 85 can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety of PVP K 85 The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP K 85 has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP K 85 component of the solution.[19] A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.[20] In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP.[21] Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP K 85 instead. Properties of PVP K 85 PVP K 85 is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,[24] as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).[25] When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP K 85 and its oxidized hydrolyzate. History of PVP K 85 PVP K 85 was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP K 85 was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production.
PVP K 90
PVP K 90 PVP K 90 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. What is PVP K 90 Copolymer? PVP K 90 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Storage and handling of PVP K 90 PVP K 90 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. The PVP K 90 E- and I-series To fit more application areas, the E- and I-series of PVP K 90 copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP K 90 W copolymers PVP K 90 is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90, PVP K 90 E-535 and PVP K 90 E-335. In general, PVP K 90 is less hygroscopic than PVP. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. PVP K-90 20% Solution is a film former in hair styling products. It has an average molecular weight of 1,300,000 in Daltons. Polyvinylpyrrolidone. PVP K-90 solution is a film former. It is suggested for use in hair styling formualations. PVP K-90 solution is a 20 percent solution. It stabilizes emulsions, dispersions and suspensions. It forms clear, hard & glossy film. Key Attributes of PVP K 90 Polyvinylpyrrolidone (PVP) can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the pyrrolidone ring. High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts. Dispersancy, where components in a mixture are uniformly distributed through the use of polyvinylpyrrolidone. Hydrophilicity, where the water solubility of PVP is its dominant feature and frequently a factor along with other properties valuable in numerous applications. Adhesion, taking advantage of the higher molecular weight PVP formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application. Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques. Applications and Usage Notes of PVP K 90 Adhesives – pressure-sensitive and water-remoistenable types, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks. Ceramics – binder in high temperature fire-prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier. Coatings/lnks – digital printing coating, ball-point inks, protective colloid and leveling agent for emulsion polymers/ coatings/ printing inks, pigment dispersant, water colors for commercial art, temporary protective coatings, paper coatings, waxes and polishes. Electronic Applications – storage batteries, printed circuits, cathode ray tubes, binder for metal salts or amalgams in batteries, gold, nickel, copper and zinc plating, a thickener for solar gel ponds and as an adhesive to prevent leakage of batteries, serves as an expander in cadmium-type electrodes, binder in sintered-nickel powder plates. Membranes – macroporous, multiporous, desalination, gas separating, liquid ultrafiltration, hemodialysis, selective permeability types of membranes, hollow fiber membranes. Metallurgy – processing for both ferrous and non-ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum, used in metal quenchant baths. Paper – cellulose papers, rag stock, rag stripping, copying paper, printing paper and electric insulating papers, paper adhesives. Polymerizations – acrylic monomers, unsaturated polyesters, olefins, including PVC, polystyrene beads, substrate for graft polymerization, template in acrylic polymerization. Abstract of PVP K-90 solution In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP K 90) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP K 90 , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. The advantages of using PVP K 90 copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP K 90 copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP K 90 E and I copolymer Series To fit many application areas, the E and I series of PVP K 90 copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. PVP K 90 copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 90 copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. PVP K 90 is a 70/30 copolymer of PVP K 90 and vinyl acetate supplied as a 50% solution in water. PVP K 90 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP K 90 acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP K 90 finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP K 90 thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP K 90 used in industrial, specialty and imaging coatings, printing inks and paints. PVP K 90 provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP K 90 is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene. PVP K 90 is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP K 90 monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives. Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone. PVP K 90 Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP K 90 (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP K 90 tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP K 90 Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. Uses of PVP K-90 solution Medical uses of PVP K-90 solution PVP K 90 was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP K 90 is used as a binder in many pharmaceutical tablets; it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption. The long-term effects of crospovidone or povidone within the lung are unknown.) PVP K 90 added to iodine forms a complex called povidone-iodine that possesses disinfectant properties. This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP K 90 is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost. PVP K 90 is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Properties of PVP K 90 PVP K 90 is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol, as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin). When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP K 90 and its oxidized hydrolyzate. History of PVP K 90 PVP K 90 was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP K 90 was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. The PVP K 90 copolymer PVP K 90 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. PVP K 90 copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP K 90 copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90 E-735 copolymer, PVP K 90 E-535 copolymer and PVP K 90 E- 335 copolymer. In general, PVP K 90 copolymer is less hygroscopic than PVP. PVP K 90 copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP K 90 copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP K 90 copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP K 90 copolymer is used as a binder to allow the aqueous processing of photoresists. USES PVP K 90 is used in as an adhesive in glue stick and hot-melt adhesives PVP K 90 is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP K 90 is used in as an emulsifier and disintegrant for solution polymerization PVP K 90 is used in increase resolution in photoresists for cathode ray tubes (CRT) PVP K 90 is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP K 90 is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP K 90 is used in as a thickening agent in tooth whitening gels PVP K 90 is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP K 90 is used in as an additive to Doro's RNA extraction buffer PVP K 90 is used in as a liquid-phase dispersion enhancing agent in DOSY NMR PVP K 90 is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly PVP K 90 is used in as a stabilizing agent in all inorganic solar cells Other uses of PVP K-90 solution PVP K 90 binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP K 90 is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions. PVP K 90 is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP K 90 is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP K 90 can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP K 90 is useful for making an aqueous mounting medium. PVP K 90 can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production. Safety of PVP K 90 The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses, and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP K 90 has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP K 90 component of the solution. A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP. In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP. Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP K 90 instead.
PVP K 90
PVP K 90 is soluble in water and many organic solvents and it forms hard, transparent, glossy film.
PVP K 90 is compatible with most inorganic salts and many resins.
PVP K 90 stabilizes emulsions, dispersions and suspensions.

CAS: 9003-39-8
MF: CH4
MW: 16.04246
EINECS: 1312995-182-4

PVP K 90, also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone.
PVP K 90 is available in a range of molecular weights and related viscosities, and can be selected according to the desired application properties.
While PVP K 90 is used as a film former in hair styling products, PVP K 90 can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP K 90 can be used in toothpastes and mouthwashes.
PVP K 90 appears as a white powder.

PVP K 90 is abbreviated as PVP, and is the polymer of vinylpyrrolidone.
According to the different degree of polymerization, PVP K 90 is further classified into soluble PVP and insoluble PVPP (polyvinyl polypyrrolidone).
Molecular weight of the soluble PVP K 90 is 8,000 to 10,000.
The soluble PVP K 90 can be used as a precipitating agent which can be settle down through its action with polyphenols.
Using this method, PVP K 90 is easily to have residual PVP in the alcohol.
Due to the savings effect of PVP K 90 inside the human body, the World Health Organization doesn’t recommend to apply this substance.

In recent years, the use of soluble PVP K 90 has been rare.
Insoluble PVP K 90 system had began to be used in the beer industry since the early 1960s.
PVP K 90 has a relative molecule weight greater than the relative mass greater than 700,000.
PVP K 90 is a insoluble polymer derived from the further cross-linking and polymerization of PVP and can be used as an adsorbent of polyphenols with a good efficacy.

PVP K 90 is one of the three major pharmaceutical new excipients and can be used as the co-solvent of tablets, granules, and injection, as the glidant of capsules, as the dispersant agent of liquid preparations and the colorant, as the stabilizer of enzyme and heat sensitive drug, as the co-precipitating agent of poorly soluble drugs, and as the detoxicant of ophthalmic drugs and lubricants.
PVP K 90 is industrially used as expanded polystyrene additive, as the gelling agents for suspension polymerization, stabilizer, and fiber treating agents, paper processing aids, adhesives, and thickening agents.

PVP K 90 and its copolymers CAP is an important raw material of cosmetics, mainly used for hair retaining agent.
The film PVP K 90 formed in the hair is elastic and shiny, and has excellent carding property as well as being free of dust.
Adopting different category of resin can meet various kinds of relative humidity climatic conditions.
Therefore, PVP K 90 is an indispensable raw material in styling hair cream, hair gel, and mousse.
PVP K 90 can also be used for the cosmetics of skin moisturizing agents and the dispersants for grease based hair dying, also as foam stabilizers, and can improve the consistency of the shampoo.
Insoluble PVP K 90 is the stabilizer of beer and juice which can improve its transparency, color, and flavor.

PVP K 90 is a water soluble polyamide.
Commercially available PVP K 90 is divided into four viscosity grades according to its press K value (Fikentscher K value): K-15, K-30, K-60, K-90, with the average molecular weight being 10,000, 40000,160000, and 360000, respectively.
K value or molecular weight is an important factor which decides the various properties of PVP.
PVP K 90 is dissolved in water, chlorinated solvents, alcohol, amine, nitro-paraffin and low molecular weight fatty acids, and is mutually soluble with most inorganic salts and a variety of resin; insoluble in acetone and ether.

PVP K 90 used for the matrix of dropping pill matrix is odorless, tasteless, white to pale yellow waxy solid with the relative density being 1.062, and its 5% aqueous solution pH being 3 to 7.
PVP K 90 is hygroscopic and of good thermal stability, and can be dissolved in various kinds of organic solvents, and has high melting point.
Adding certain natural or synthetic polymers or organic compounds can effectively adjust the PVP K 90’s hygroscopicity and softness.
PVP K 90 is not prone to have chemical reaction.
Under normal storage conditions, dry PVP K 90 is quite stable.
PVP K 90 has excellent physical inertia and biocompatibility and has not stimulation to skin, eyes no stimulation with no allergic reactions and being non-toxic.

Because of the hydrogen bonding or complexation effect, PVP K 90’s viscosity is increased and this further inhibits the formation and growth of crystallized nuclei of drugs, making the drug being in the amorphous state.
The dropping pill whose matrix is PVP K 90 can enhance the dissolution and bioavailability of poorly soluble drugs.
In general, the greater the PVP K 90 amount, the higher dissolution and solubility of drug in the medium.
Susana et al have studied the dissolution of the PVP K 90 solid dispersant of the slightly soluble drug albendazole.
The increased amount of PVP K 90 can increase the dissolution rate and efficiency of drug inside the solid dispersant.

Teresa et al have studied the dissolution of the poorly soluble drugs, flunarizine in PVP K 90 solid dispersant and obtained similar conclusion.
PVP K 90 also found that the higher the content, the more significant increase in dissolution.
IR has showed that flunarizine and PVP K 90 has no chemical reaction except in some cases that a best dissolution efficacy is obtained only in certain ratio between some drugs with the PVP.
Tantishaiyakul et al has found that: when the ratio of piroxicam: PVP K 90 is 1:5 and 1:6, the dissolution of the solid dispersant is the largest with a 40 times as high as that of single drug within 5min.
PVP K 90 can also be dissolved in another molten dropping pill matrix, such as polyethylene glycol (PEG), polyoxyethylene monostearate (S-40), poloxamer and stearyl acid, glyceryl monostearate, etc for making complex matrix.

PVP K 90, a polymer of vinylpyrrolidinone, is an excipient used as a suspending and dispersing agent.
Injectable preparations containing polymers with a molecular weight in the order of 12,000 have caused painful local granulomatous lesions.
This has led to the withdrawal of PVP K 90 from such preparations in some countries.
PVP K 90 was formerly also used as a plasma expander but, because it was sequestered within the liver and spleen, this use has been discontinued.
However, PVP K 90 remains widely used as a vehicle for ophthalmic preparations, and as the major component of artificial tears.

PVP K 90 Chemical Properties
Melting point: >300 °C
Boiling point: 90-93 °C
Density: 1,69 g/cm3
Storage temp.: 2-8°C
Solubility H2O: soluble100mg/mL
Form: powder
Color: White to yellow-white
PH: 3.0-5.0
Water Solubility: Soluble in water.
Sensitive: Hygroscopic
Merck: 14,7697
Stability: Stable. Incompatible with strong oxidizing agents.
Light sensitive. Hygroscopic.
InChI: InChI=1S/C8H15NO/c1-3-7(2)9-6-4-5-8(9)10/h7H,3-6H2,1-2H3
InChIKey: FAAHNQAYWKTLFD-UHFFFAOYSA-N
IARC: 3 (Vol. 19, Sup 7, 71) 1987
EPA Substance Registry System: PVP K 90 (9003-39-8)

Commonly used PVP K 90 level in the cosmetic industry is K-30.
Commercialized PVP K 90 is white and free flowing powder or solids with its content in the mass fraction of 20%, 30%, 45% and 50% aqueous solution.
PVP K 90 is soluble in water and is hygroscopic with a moisture equilibrium being 1/3 of the relative humidity of the environment.
Similar as the protein hydration action, each monomer associates with 0.5mol water.
PVP K 90 is not easy to have chemical reaction.

When stored at normal conditions, dry PVP K 90 is quite stable.
Solution undergone mildew treatment is also stable.
When heated in air to 150 °C or mixed with ammonium persulfate to heat at 90 °C for 30min, PVP K 90 will be exchanged to become a water-insoluble compound.
In the presence of azo compound or a dichromate oxidizing agent, light will cause PVP K 90 solution to become gel.
The co-heating of PVP K 90 solution with strong base (such as sodium silicate or trisodium phosphate) will generate precipitation.
Many different compounds can generate complexes with PVP.

For example, the complexes of PVP and iodine is very stable and have a good bactericidal effect and can reduce its toxicity; Adding the copolymers of the polyacrylic acid, tannic acid or methyl vinyl ether and maleic acid to the aqueous solution of PVP K 90 will generate insoluble complexes which are insoluble in water, alcohols and ketones.
But when being treated with base for neutralize the poly-acid can reverse the reaction; complexation between PVP K 90 and toxins, drugs and toxic chemicals can reduce their toxicity; some kinds of dyes can also form a strong complex with PVP K 90, which is the basis for using PVP K 90 as a dye bleaching agent.

PVP K 90 is the cross-linked homopolymer of pure vinylpyrrolidone.
PVP K 90 is hygroscopic and free-flowing white or off-white powder.
PVP K 90 has a slight foul smell.
PVP K 90 is insoluble in common solvents such as water, ethanol and ether.
So PVP K 90's molecule weight range can’t be measured.
However, PVP K 90 has ability to form complex with various kinds of substances (such as “Hu” class substance which can lead to the discoloration of a variety of wines and beverages discoloration).

Also PVP K 90 is easily to be removed after filtration because of its insolubility.
PVP K 90 occurs as a fine, white to creamy-white colored, odorless or almost odorless, hygroscopic powder.
PVP K 90 with K-values equal to or lower than 30 are manufactured by spray-drying and occur as spheres.
PVP K 90 and higher K-value povidones are manufactured by drum drying and occur as plates.

PVP K 90 is soluble in water and other polar solvents.
For example, PVP K 90 is soluble in various alcohols, such as methanol and ethanol, as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).
When dry PVP K 90 is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water.
In solution, PVP K 90 has excellent wetting properties and readily forms films.
This makes PVP K 90 good as a coating or an additive to coatings.
A 2014 study found fluorescent properties of PVP K 90 and its oxidized hydrolyzate.

Uses
In the early 1950s, older, with shellac and oil-based hairspray had been rapidly replaced by PVP K 90 sprays which are still widely used until now.
PVP K 90 can form wet, transparent film on the hair which is shiny and has good lubrication effect.
PVP K 90 has good compatibility with a variety of good propellant and also has corrosion resistance.
PVP K 90 is widely used in hair styling, as the film former in combing products, as the creatinine and stabilizer of skin care lotions and creams, as the base stock material for eye and facial cosmetics and lipstick base, and also as hair dye dispersants and shampoo foam stabilizer.

PVP K 90 has detoxification effect and can reduce the irritation effects of other preparation on the skin and eyes.
PVP K 90 is also used as toothpaste detergents, gelling agents and antidotes.
The main drawback of PVP K 90 is its sensitivity to moisture.
However, this issue can be tackled by using its vinyl acetate copolymer in order to mitigate the effects of moisture and humidity.
In addition, PVP K 90 also has wide application in the pharmaceutical, beverage and textile industries.

Clarifying agent; pigment stabilizer; colloidal stabilizer; PVP K 90 is mainly used for beer clarifying and quality stabilizing (reference amount 8~20g/100L, maintained for 24h and remove it by filtration), and can also be applied in combination with enzymes (protease) and protein adsorbents.
PVP K 90 is also used to clarify the wine and as a stabilizer to prevent discoloration (reference amount 24~72g/100L).
Clarifying agents; stabilizers; thickeners agent; tablet fillers; dispersants; PVP K 90 of molecular weight 360,000 are often used as the clarifying agent of beer, vinegar, and grape wine.
Used as the fixing liquid for gas chromatography.

PVP K 90 is used as a colloidal stabilizer and clarifying agent for beer clarification. Apply proper amount according the demands of production.
PVP K 90 can be used for pharmacy, aquaculture, and livestock disinfectant for the sterilization of the skin and mucous.
PVP K 90 molecule has an amide bond for absorbing the hydroxyl groups located in polyphenol molecule to form hydrogen bonds, and therefore, can be used as the stabilizer of beer, fruit wine/grape wine, and drinking wine to extend their shelf life and improve the transparency, color and taste.
The products have two specifications: disposable type and regeneration type.
Disposable products are suitable for application by SMEs; renewable products demand the purchase of special filtration equipment; but since PVP K 90 is recyclable, it is suitable for large breweries for recycle application.

In daily cosmetics, PVP K 90 and its copolymer has good dispersion property and filming property, and thus being able to be used as a setting lotion, hair spray and styling mousse, as opacifiers for hair care agents, as the stabilizer of shampoo foam, as wave styling agent and as the dispersants and affinity agents in hair dye.
Adding PVP K 90 to cream, sunscreen, and hair removal agent can enhance wetting and lubricating effect.
Taking advantage of the excellent properties of PVP K 90 such as surface activity, film-forming and non-irritating to the skin, no allergic reactions, etc., has broad prospects in its application in hair care and skin care products.

PVP K 90 is used as an adhesive in glue sticks; an emulsifier and a disintegrant for solution polymerization; an additive to Doro's RNA extraction buffer; as a liquid-phase dispersion enhancing agent in diffusion-ordered spectroscopy (DOSY) NMR and as a thickening agent in tooth whitening gels.
PVP K 90 finds use in personal care products like shampoos and toothpastes, in ink for inkjet printers as well as in contact lens solutions.
PVP K 90 is used as a food additive and in the wine industry as a fining agent for white wine.
PVP K 90 is used as a capping agent to synthesize silver nanowires through a polyol process.

Pharmaceutical Applications
Although PVP K 90 is used in a variety of pharmaceutical formulations, it is primarily used in solid-dosage forms.
In tableting, PVP K 90 solutions are used as binders in wet-granulation processes.
PVP K 90 is also added to powder blends in the dry form and granulated in situ by the addition of water, alcohol, or hydroalcoholic solutions.
PVP K 90 is used as a solubilizer in oral and parenteral formulations, and has been shown to enhance dissolution of poorly soluble drugs from solid-dosage forms.

PVP K 90 solutions may also be used as coating agents or as binders when coating active pharmaceutical ingredients on a support such as sugar beads.
PVP K 90 is additionally used as a suspending, stabilizing, or viscosity-increasing agent in a number of topical and oral suspensions and solutions.
The solubility of a number of poorly soluble active drugs may be increased by mixing with povidone.
Special grades of pyrogen-free PVP K 90 are available and have been used in parenteral formulations.

Medical
PVP K 90 is used as a binder in many pharmaceutical tablets; it simply passes through the body when taken orally.
PVP K 90 added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.
PVP K 90 is used in various products such as solutions, ointment, pessaries, liquid soaps, and surgical scrubs.
PVP K 90 is sold under the trade names Pyodine and Betadine, among others.
PVP K 90 is used in pleurodesis (fusion of the pleura because of incessant pleural effusions).
For this purpose, PVP K 90 is as effective and safe as talc, and may be preferred because of easy availability and low cost.

PVP K 90 is used in some contact lenses and their packaging solutions.
PVP K 90 reduces friction, thus acting as a lubricant, or wetting agent, built into the lens.
PVP K 90 is used as a lubricant in some eye drops, e.g. Bausch & Lomb's Soothe.
PVP K 90 was used as a plasma volume expander for trauma victims after the 1950s.

PVP K 90 is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping.
Autopsies have found that PVP K 90 contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.
The long-term effects of crospovidone or povidone within the lung are unknown.

Technical
PVP K 90 is also used in many technical applications:
as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process,
as an emulsifier and disintegrant for solution polymerization,
to increase resolution in photoresists for cathode ray tubes (CRT),
in aqueous metal quenching,
for production of membranes, such as dialysis and water purification filters,
as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating,
as a thickening agent in tooth whitening gels,
as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms,(syrups, soft gelatine capsules) and as an inhibitor of recrystallisation,
as an additive to Doro's RNA extraction buffer,
as a liquid-phase dispersion enhancing agent in DOSY NMR,
as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle, synthesis and their self-assembly,
as a stabilizing agent in all inorganic solar cells.

Other uses
PVP K 90 binds to polar molecules exceptionally well, owing to its polarity.
This has led to PVP K 90's application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers.
PVP K 90 is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes.
PVP K 90 has also been used in contact lens solutions and in steel-quenching solutions.
PVP K 90 is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some.
As a food additive, PVP K 90 is a stabilizer and has E number E1201.
PVPP (crospovidone) is E1202.

PVP K 90 is also used in the wine industry as a fining agent for white wine and some beers.
In in-vitro fertilisation laboratories, PVP K 90 is used to slow down spermatozoa in order to capture them for e.g. ICSI.
In molecular biology, PVP K 90 can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer.
PVP K 90 is also exceptionally good at absorbing polyphenols during DNA purification.
Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR.
In microscopy, PVP is useful for making an aqueous mounting medium.
PVP K 90 can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.

Identification Test
Solubility: soluble in water, ethanol and chloroform and insoluble in ether.
This is measured by the OT-42 method.
Dichromate precipitation test: in 5 mL of2% sample solution, add 5 mL dilute hydrochloric acid solution (TS-117), further add 5 mL of water plus 2 mL of 10% potassium dichromate solution and 2ml.
This should form an orange precipitate.
Take 75 mg of cobalt nitrate and 300 mg of ammonium thiocyanate for being dissolved in 2ml of water; add 5 mL of 2% aqueous sample solution; after the mixing, add dilute hydrochloric acid test solution (TS-117) for acidification.
This should form light blue precipitate.
Take 5 mL of 2% sample solution; add 1 mL of 25% hydrochloric acid, 5 mL of 5% barium chloride and 1 mL 5% molybdenum tungsten phosphoric acid solution.

This should generate a lot of white precipitate which gradually turns blue in the sunlight.
The pH value of 5% sample solution should be 3.0 to 3.7.
This is measured by conventional means.
Adding a few drops of iodine test solution (TS-124) to 5 mL of 0.5% sample solution should produce a deep red color.
Take 1 g of sample, add water to 10 ml as a suspension, add 0.1 mL of iodine test solution (TS-124), after mixing by shaking for 30s, iodine test solution should fade (to distinguish polyvinylpyrrolidone due to that polyvinylpyrrolidone can form red color).
Add 1 mL of starch test solution (TS-235), after shaking and mixing, there should be no blue color formed. to produce blue.

Production method
PVP K 90's crude product comes from the polymerization of vinylpyrrolidone under basic catalyst or the existence of N, N'-divinyl amidine and further cross-inking reaction.
Then use water, 5% acetic acid and 50% ethanol for reflux to until extract ≤50mg/kg (for over 3h).
The 30% to 60% aqueous solution of the purified 1-vinyl-2-pyrrolidone, in the presence of ammonia or amines and also with hydrogen peroxide as the catalyst, has cross-linking and homo-polymerization reaction at a temperature of 50 °C and subject to further purification to obtain the final product.

PVP K 90 is manufactured by the Reppe process.
Acetylene and formaldehyde are reacted in the presence of a highly active copper acetylide catalyst to form butynediol, which is hydrogenated to butanediol and then cyclodehydrogenated to form butyrolactone.
PVP K 90 is produced by reacting butyrolactone with ammonia.
This is followed by a vinylation reaction in which pyrrolidone and acetylene are reacted under pressure.
The monomer, vinylpyrrolidone, is then polymerized in the presence of a combination of catalysts to produce povidone.

Contact Allergens
PVP K 90 is widely used as is in cosmetics such as hair care products and in medical products.
PVP K 90 acts as iodophor in iodine-polyvinylpyrrolidone.
PVP K 90 is an irritant and has been claimed as the allergen in some cases of dermatitis from iodine-polyvinylpyrrolidone (although iodine is more likely the hapten).
PVP K 90 may cause type I contact urticaria or anaphylaxis.

Biochem/physiol Actions
PVP K 90 can bind to polyphenol.
Thus, PVP K 90 is known to be used for RNA isolation from plants rich in polyphenols.
PVP K 90 is extensively used in the synthesis of nanoparticles.

Synonyms
N-VINYL-2-PYRROLIDONE
88-12-0
1-vinylpyrrolidin-2-one
N-Vinylpyrrolidone
1-Vinyl-2-pyrrolidone
9003-39-8
N-Vinyl-2-pyrrolidinone
1-Vinyl-2-pyrrolidinone
Vinylpyrrolidone
Povidone
1-ethenylpyrrolidin-2-one
N-Vinylpyrrolidinone
2-Pyrrolidinone, 1-ethenyl-
1-Vinylpyrrolidone
Vinylbutyrolactam
Vinylpyrrolidinone
V-Pyrol
Luviskol
Plasdone
1-Vinylpyrrolidinone
25249-54-1
Vinyl-2-pyrrolidone
N-Vinyl pyrrolidone
1-Ethenyl-2-pyrrolidinone
N-Vinylpyrrolidone-2
2-Pyrrolidinone, 1-vinyl-
1-Vinyl-2-pyrrolidinone, monomer
PVP
NSC 10222
MPK 90
PVP 40
DTXSID2021440
143 RP
AT 717
1-vinyl-pyrrolidin-2-one
K 15
K 90
PVP-40
CHEBI:82551
MFCD00003197
NSC-10222
76H9G81541
DTXCID101440
WLN: /T5NVTJ AY*1*/
MFCD01076626
CAS-88-12-0
K 25
K 115
HSDB 7231
EINECS 201-800-4
BRN 0110513
CCRIS 8581
PovidonePVP
vinyl pyrrolidone
UNII-76H9G81541
N-vinyl-pyrrolidone
N -vinylpyrrolidinone
1-vinyl-2-pyrrolidon
POVIDONE MONOMER
VINYLBUTYLOLACTAM
N-vinylpyrrolidin-2-one
N-vinyl pyrrolidin-2-one
N-vinyl-pyrrolidin-2-one
PVP K3O
Crospovidone ~40,000
EC 201-800-4
SCHEMBL10869
WLN: T5NVTJ A1U1
PVP K15
PVP K30
PVP-K30
POVIDONE MONOMER [MI]
VINYL PYRROLIDONE (VP)
CHEMBL1878943
PVP - K-30 (Pharm Grade)
N-VINYL PYRROLIDONE [INCI]
1-Vinyl-2-pyrrolidone(stabilized with 200ppm Ammonium hydroxide)
NSC10222
Tox21_202462
Tox21_300073
NSC114022
NSC142693
NSC683040
N-Vinyl-2-pyrrolidone, optical grade
Polyvinylpyrrolidone (MW ~40,000)
AKOS000119985
N-VINYL-2-PYRROLIDONE [IARC]
AT18510
CS-W020981
FG-0420
NSC-114022
NSC-142693
NSC-683040
NCGC00166252-01
NCGC00166252-02
NCGC00166252-03
NCGC00254200-01
NCGC00260011-01
2-PYRROLIDINONE, 1-ETHENYL- [HSDB]
FT-0608329
FT-0645144
FT-0655284
V0026
EN300-19745
C19548
A817742
A843417
Q420628
SR-01000944531
J-015891
SR-01000944531-1
W-100417
1-Vinyl-2-pyrrolidinone, SAJ first grade, >=99.0%
F8881-5579
Z104475034
3-CHLORO-5,6-DIFLUORO-1-BENZOTHIOPHENE-2-CARBONYLCHLORIDE
1-Vinyl-2-pyrrolidinone, contains sodium hydroxide as inhibitor, >=99%
1-Vinyl-2-pyrrolidinone, Pharmaceutical Secondary Standard; Certified Reference Material
1-Vinyl-2-pyrrolidone (stabilized with N,N'-Di-sec-butyl-p-phenylenediamine)
PVP K 90 SOLUTION
PVP K 90 Solution PVP K-90 20% Solution is a film former in hair styling products. It has an average molecular weight of 1,300,000 in Daltons. Polyvinylpyrrolidone. PVP K-90 solution is a film former. It is suggested for use in hair styling formualations. PVP K-90 solution is a 20 percent solution. It stabilizes emulsions, dispersions and suspensions. It forms clear, hard & glossy film. Key Attributes of PVP K 90 solution  Polyvinylpyrrolidone (PVP) can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the pyrrolidone ring.  High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.  Dispersancy, where components in a mixture are uniformly distributed through the use of polyvinylpyrrolidone.  Hydrophilicity, where the water solubility of PVP is its dominant feature and frequently a factor along with other properties valuable in numerous applications.  Adhesion, taking advantage of the higher molecular weight PVP formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.  Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques. Applications and Usage Notes of PVP K 90 solution  Adhesives – pressure-sensitive and water-remoistenable types, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks.  Ceramics – binder in high temperature fire-prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier.  Coatings/lnks – digital printing coating, ball-point inks, protective colloid and leveling agent for emulsion polymers/ coatings/ printing inks, pigment dispersant, water colors for commercial art, temporary protective coatings, paper coatings, waxes and polishes.  Electronic Applications – storage batteries, printed circuits, cathode ray tubes, binder for metal salts or amalgams in batteries, gold, nickel, copper and zinc plating, a thickener for solar gel ponds and as an adhesive to prevent leakage of batteries, serves as an expander in cadmium-type electrodes, binder in sintered-nickel powder plates.  Membranes – macroporous, multiporous, desalination, gas separating, liquid ultrafiltration, hemodialysis, selective permeability types of membranes, hollow fiber membranes.  Metallurgy – processing for both ferrous and non-ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum, used in metal quenchant baths.  Paper – cellulose papers, rag stock, rag stripping, copying paper, printing paper and electric insulating papers, paper adhesives.  Polymerizations – acrylic monomers, unsaturated polyesters, olefins, including PVC, polystyrene beads, substrate for graft polymerization, template in acrylic polymerization. What is PVP K 90 solution Copolymer? PVP K 90 solution Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Storage and handling of PVP K 90 solution PVP K 90 solution copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 solution polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 90 solution copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 solution copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP K 90 solution E- and I-series To fit more application areas, the E- and I-series of PVP K 90 solution copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP K 90 solution W copolymers PVP K 90 solution is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 solution copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90 solution, PVP K 90 solution E-535 and PVP K 90 solution E-335. In general, PVP K 90 solution is less hygroscopic than PVP. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP K 90 solution copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP K 90 solution copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP K 90 solution copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP K 90 solution E and I copolymer Series To fit many application areas, the E and I series of PVP K 90 solution copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Abstract of PVP K-90 solution In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP K 90 solution , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP K 90 solution acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP K 90 solution finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP K 90 solution thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP K 90 solution used in industrial, specialty and imaging coatings, printing inks and paints. PVP K 90 solution provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP K 90 solution is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene. PVP K 90 solution is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP K 90 solution monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives. Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone. PVP K 90 solution Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP K 90 solution (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP K 90 solution tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP K 90 solution Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. PVP K 90 solution copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 solution polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 90 solution copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 solution copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. PVP K 90 solution is a 70/30 copolymer of PVP K 90 solution and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 solution copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Uses of PVP K-90 solution Medical uses of PVP K-90 solution PVP K 90 solution was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP K 90 solution is used as a binder in many pharmaceutical tablets; it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption. The long-term effects of crospovidone or povidone within the lung are unknown.) PVP K 90 solution added to iodine forms a complex called povidone-iodine that possesses disinfectant properties. This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP K 90 solution is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost. PVP K 90 solution is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical uses of PVP K-90 solution PVP K 90 solution is used in as an adhesive in glue stick and hot-melt adhesives PVP K 90 solution is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP K 90 solution is used in as an emulsifier and disintegrant for solution polymerization PVP K 90 solution is used in increase resolution in photoresists for cathode ray tubes (CRT) PVP K 90 solution is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP K 90 solution is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP K 90 solution is used in as a thickening agent in tooth whitening gels PVP K 90 solution is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP K 90 solution is used in as an additive to Doro's RNA extraction buffer PVP K 90 solution is used in as a liquid-phase dispersion enhancing agent in DOSY NMR PVP K 90 solution is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly PVP K 90 solution is used in as a stabilizing agent in all inorganic solar cells Other uses of PVP K-90 solution PVP K 90 solution binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP K 90 solution is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions. PVP K 90 solution is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP K 90 solution is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP K 90 solution can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP K 90 solution is useful for making an aqueous mounting medium. PVP K 90 solution can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production. Safety of PVP K 90 solution The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses, and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP K 90 solution has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP K 90 solution component of the solution. A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP. In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP. Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP K 90 solution instead. Properties of PVP K 90 solution PVP K 90 solution is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol, as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin). When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP K 90 solution and its oxidized hydrolyzate. History of PVP K 90 solution PVP K 90 solution was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP K 90 solution was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. The PVP K 90 solution copolymer PVP K 90 solution copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. PVP K 90 solution copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP K 90 solution copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90 solution E-735 copolymer, PVP K 90 solution E-535 copolymer and PVP K 90 solution E- 335 copolymer. In general, PVP K 90 solution copolymer is less hygroscopic than PVP. PVP K 90 solution copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP K 90 solution copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP K 90 solution copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP K 90 solution copolymer is used as a binder to allow the aqueous processing of photoresists.
PVP K 90 SOLUTION 20%
PVP K 90 Solution 20% PVP K 90 Solution 20% is a film former in hair styling products. PVP is an emulsion stabilizer in creams and lotions. PVP can also be a dispersant for hair colorants. PVP K 90 is available as 100% powder and as 20% aqueous solution. PVP (Polyvinylpyrrolidone) K-90 polymer is a hygroscopic, amorphous polymer. PVP K 90 solution 20% is a linear nonionic polymer that is soluble in water and organic solvents and is pH stable. PVP K 90 solution 20% forms hard glossy transparent films and have adhesive and cohesive properties. Ashland Specialty Ingredients has the capability to dial the K-value to meet specific customer needs. PVP K-90 20% Solution is a film former in hair styling products. It has an average molecular weight of 1,300,000 in Daltons. Polyvinylpyrrolidone. PVP K-90 solution by Ashland Specialty Chemical is a film former. It is suggested for use in hair styling formualations. PVP K-90 solution is a 20 percent solution. It stabilizes emulsions, dispersions and suspensions. It forms clear, hard & glossy film. Key Attributes of PVP K 90 solution 20%  Polyvinylpyrrolidone (PVP) can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the pyrrolidone ring.  High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.  Dispersancy, where components in a mixture are uniformly distributed through the use of polyvinylpyrrolidone.  Hydrophilicity, where the water solubility of PVP is its dominant feature and frequently a factor along with other properties valuable in numerous applications.  Adhesion, taking advantage of the higher molecular weight PVP formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.  Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques. Applications and Usage Notes of PVP K 90 solution 20%  Adhesives – pressure-sensitive and water-remoistenable types, food packaging (indirect food contact), metal adhesives, abrasives, sandcore binder, rubber to metal adhesives and glue sticks.  Ceramics – binder in high temperature fire-prepared products such as clay, pottery, porcelain, brick product, dispersant for ceramic media slurries and viscosity modifier.  Coatings/lnks – digital printing coating, ball-point inks, protective colloid and leveling agent for emulsion polymers/ coatings/ printing inks, pigment dispersant, water colors for commercial art, temporary protective coatings, paper coatings, waxes and polishes.  Electronic Applications – storage batteries, printed circuits, cathode ray tubes, binder for metal salts or amalgams in batteries, gold, nickel, copper and zinc plating, a thickener for solar gel ponds and as an adhesive to prevent leakage of batteries, serves as an expander in cadmium-type electrodes, binder in sintered-nickel powder plates.  Membranes – macroporous, multiporous, desalination, gas separating, liquid ultrafiltration, hemodialysis, selective permeability types of membranes, hollow fiber membranes.  Metallurgy – processing for both ferrous and non-ferrous metals, coating ingredient to aid or remove material from metal surfaces such as copper, nickel, zinc and aluminum, used in metal quenchant baths.  Paper – cellulose papers, rag stock, rag stripping, copying paper, printing paper and electric insulating papers, paper adhesives.  Polymerizations – acrylic monomers, unsaturated polyesters, olefins, including PVC, polystyrene beads, substrate for graft polymerization, template in acrylic polymerization. What is PVP K 90 solution 20% Copolymer? PVP K 90 solution 20% Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Storage and handling PVP K 90 solution 20% copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 solution 20% polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution 20% ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 90 solution 20% copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 solution 20% copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP K 90 solution 20% E- and I-series To fit more application areas, the E- and I-series of PVP K 90 solution 20% copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP K 90 solution 20% W copolymers PVP K 90 solution 20% is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution 20% W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 solution 20% copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90 solution 20%, PVP K 90 solution 20% E-535 and PVP K 90 solution 20% E-335. In general, PVP K 90 solution 20% is less hygroscopic than PVP. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP K 90 solution 20% copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP K 90 solution 20% copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP K 90 solution 20% copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP K 90 solution 20% E and I copolymer Series To fit many application areas, the E and I series of PVP K 90 solution 20% copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Abstract In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution 20% ) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP K 90 solution 20% , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP K 90 solution 20% acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP K 90 solution 20% finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP K 90 solution 20% thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP K 90 solution 20% used in industrial, specialty and imaging coatings, printing inks and paints. PVP K 90 solution 20% provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP K 90 solution 20% is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene.[2] PVP K 90 solution 20% is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP K 90 solution 20% monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives.[2] Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone. PVP K 90 solution 20% Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP K 90 solution 20% (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP K 90 solution 20% tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP K 90 solution 20% Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. The PVP K 90 solution 20% E and I copolymer Series To fit many application areas, the E and I series of PVP K 90 solution 20% copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-735, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Storage and handling PVP K 90 solution 20% copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP K 90 solution 20% polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP K 90 solution 20% ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP K 90 solution 20% copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP K 90 solution 20% copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP K 90 solution 20% W copolymers PVP K 90 solution 20% is a 70/30 copolymer of PVP K 90 solution 20% and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution 20% is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP K 90 solution 20% copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Uses Medical PVP K 90 solution 20% was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP K 90 solution 20% is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP K 90 solution 20% added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP K 90 solution 20% is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP K 90 solution 20% is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical PVP K 90 solution 20% is used in as an adhesive in glue stick and hot-melt adhesives PVP K 90 solution 20% is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP K 90 solution 20% is used in as an emulsifier and disintegrant for solution polymerization PVP K 90 solution 20% is used in increase resolution in photoresists for cathode ray tubes (CRT)[9] PVP K 90 solution 20% is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP K 90 solution 20% is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP K 90 solution 20% is used in as a thickening agent in tooth whitening gels[10] PVP K 90 solution 20% is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP K 90 solution 20% is used in as an additive to Doro's RNA extraction buffer[citation needed] PVP K 90 solution 20% is used in as a liquid-phase dispersion enhancing agent in DOSY NMR [11] PVP K 90 solution 20% is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] PVP K 90 solution 20% is used in as a stabilizing agent in all inorganic solar cells[13] Other uses PVP K 90 solution 20% binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP K 90 solution 20% is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP K 90 solution 20% is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP K 90 solution 20% is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP K 90 solution 20% can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP K 90 solution 20% is useful for making an aqueous mounting medium.[16] PVP K 90 solution 20% can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety of PVP K 90 solution 20% The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP K 90 solution 20% has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP K 90 solution 20% component of the solution.[19] A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.[20] In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP.[21] Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP K 90 solution 20% instead. Properties of PVP K 90 solution 20% PVP K 90 solution 20% is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,[24] as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).[25] When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP K 90 solution 20% and its oxidized hydrolyzate. History of PVP K 90 solution 20% PVP K 90 solution 20% was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP K 90 solution 20% was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. The PVP K 90 solution 20% copolymer PVP K 90 solution 20% copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. The PVP K 90 solution 20% W copolymers PVP K 90 solution 20% copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP K 90 solution 20% W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP K 90 solution 20% copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP K 90 solution 20% E-735 copolymer, PVP K 90 solution 20% E-535 copolymer and PVP K 90 solution 20% E- 335 copolymer. In general, PVP K 90 solution 20% copolymer is less hygroscopic than PVP. PVP K 90 solution 20% copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP K 90 solution 20% copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP K 90 solution 20% copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP K 90 solution 20% copolymer is used as a binder to allow the aqueous processing of photoresists.
PVP K 90 SOLUTION 20%

PVP K90 (Polyvinylpyrrolidone K90) solution 20% is a liquid formulation containing 20% Polyvinylpyrrolidone with a specific average molecular weight, commonly known as PVP K90.
PVP K 90 solution 20% is a water-soluble polymer derived from the polymerization of vinylpyrrolidone monomers.

CAS Number: 9003-39-8
EC Number: 284-724-8

Polyvinylpyrrolidone, PVP, Povidone, Polyvidone, PVP K90, PVP K30, PVP-I, N-Vinylpyrrolidone polymer, Povidone K90, Povidone K30, Povidone K15, Povidone K17, Povidone K25, Povidone K29/32, Povidone K60, Povidone K85, Polyvinylpyrrolidone K90, Polyvinylpyrrolidone K30, Polyvinylpyrrolidone K15, Polyvinylpyrrolidone K17, Polyvinylpyrrolidone K25, Polyvinylpyrrolidone K29/32, Polyvinylpyrrolidone K60, Polyvinylpyrrolidone K85, PVP iodine complex, PVP/VA copolymer, PVP/VA S-630, PVP/VA 64, PVP/VA W-735, PVP/VA E-335, PVP/VA 73W, PVP/VA 64P, PVP/VA S-630 (W), PVP/VA 73W (W), PVP/VA 735, PVP/VA W-735 (W), PVP/VA 64L, PVP/VA 735L, PVP/VA E-335 (W), PVP/VA S-333, PVP/VA E-335 (W) (W), PVP/VA 73L, PVP/VA W-930, PVP/VA 923, PVP/VA 64L (W), PVP/VA W-930 (W), PVP/VA 923L, PVP/VA 64P (W), PVP/VA E-335 (W) (W), PVP/VA S-630 (W) (W), PVP/VA 73W (W) (W), PVP/VA 64L (W) (W), PVP/VA W-735 (W) (W), PVP/VA 735L (W) (W), PVP/VA W-930 (W) (W), PVP/VA 923L (W) (W), PVP/VA S-630, PVP/VA E-335, PVP/VA W-930, PVP/VA 923.



APPLICATIONS


PVP K 90 solution 20% is widely used in the pharmaceutical industry as a binder in tablet formulations, enhancing the cohesion of the tablets.
PVP K 90 solution 20% serves as a disintegrant in pharmaceutical tablets, aiding in the quick disintegration of the tablet in the digestive system.
PVP K 90 solution 20% is utilized in the production of fast-dissolving oral films, providing a convenient and effective drug delivery method.

In oral care products, such as toothpaste and mouthwash, PVP contributes to stability, texture, and consistency.
The film-forming properties of PVP make it valuable in the cosmetic industry, especially in the formulation of hairsprays and styling gels.
PVP K 90 solution 20% is a common ingredient in topical formulations, where it stabilizes and enhances the consistency of ointments, creams, and gels.

PVP K 90 solution 20% is employed in transdermal drug delivery systems to improve the absorption of drugs through the skin.
PVP K 90 solution 20% is used as an antiseptic in healthcare and first aid products, such as wound care solutions.

The pharmaceutical industry utilizes different grades of PVP, such as PVP K30 and PVP K90, based on specific molecular weight requirements.
PVP K 90 solution 20% is a key component in the production of contact lens solutions, providing lubricating and cleaning properties.
PVP K 90 solution 20% is found in over-the-counter medications for its pharmaceutical and therapeutic properties.

PVP K 90 solution 20% contributes to the stability and shelf life of certain formulations due to its stabilizing effects.
In the food industry, PVP is used as a clarifying agent in the production of beverages.
PVP K 90 solution 20% is employed in the creation of specialty coatings for pharmaceutical tablets, ensuring uniformity and stability.
PVP K 90 solution 20% is used in the production of wound care products, such as dressings and adhesive tapes.

PVP K 90 solution 20% is included in the formulation of instant cold packs, contributing to the gel-like consistency when activated.
PVP K 90 solution 20% is a valuable component in the cosmetic industry, contributing to the formulation of mascara for its film-forming characteristics.
PVP K 90 solution 20% is utilized in the creation of adhesives, enhancing their viscosity and adhesive properties.

The construction industry uses PVP K 90 solution 20% in cement formulations to improve workability and reduce water demand.
PVP K 90 solution 20% is found in the textile industry as a dye dispersant and for its film-forming properties in sizing agents.
PVP K 90 solution 20% is included in the formulation of paints and coatings, contributing to film formation and dispersing properties.

PVP K 90 solution 20% is employed in the creation of hydrogels for medical applications, such as wound dressings and drug delivery systems.
PVP K 90 solution 20% is utilized in the paper industry to improve paper strength and reduce linting.
PVP K 90 solution 20% is part of the excipients used to improve the bioavailability of poorly water-soluble drugs.
In the agricultural sector, PVP is used in crop protection formulations, ensuring the uniform distribution of active ingredients.

PVP K 90 solution 20% is employed in the production of specialty inks for screen printing, ensuring durability and adhesion on various surfaces.
In the agricultural sector, PVP is included in seed coatings to improve germination rates and protect seeds from environmental stress.
The cosmetic industry uses PVP K 90 solution 20% in the creation of nail polishes for its film-forming and adhesive properties.

PVP K 90 solution 20% is found in the formulation of detergents and cleaning products, improving stability and viscosity.
PVP K 90 solution 20% is used in the creation of adhesives for postage stamps, ensuring secure bonding and adhesion to envelopes.

PVP K 90 solution 20% is included in the formulation of smoke-generating formulations for firefighting training exercises and signaling devices.
In the printing industry, PVP is utilized as a binder in ink formulations, improving adhesion to various surfaces.
PVP K 90 solution 20% is employed in the manufacturing of photographic emulsions as a protective colloid for the dispersion of light-sensitive silver halide crystals.

The semiconductor industry uses PVP in the production of photoresists, facilitating the patterning process in microfabrication.
PVP K 90 solution 20% is utilized in the formulation of lubricating eye drops, providing comfort and moisture to dry eyes.
In the production of ophthalmic solutions, PVP is used as a stabilizer to maintain the clarity and stability of the solution.

PVP K 90 solution 20% is found in the formulation of fuel additives, where it acts as a dispersant to prevent the formation of deposits in engines.
The textile industry uses PVP in sizing agents to improve fiber cohesion and reduce yarn breakage during weaving.
PVP K 90 solution 20% is employed in the creation of chromatography resins, aiding in the separation of biomolecules in bioprocessing.
In the manufacturing of ion exchange resins, PVP contributes to their stability and ion absorption capabilities.

PVP K 90 solution 20% is included in the formulation of wound sealants, providing a protective barrier and promoting tissue adhesion.
PVP K 90 solution 20% is utilized in the development of air fresheners and deodorizing products for its ability to encapsulate and release fragrances.
PVP K 90 solution 20% is found in the formulation of hydrogels for medical applications, such as wound dressings and drug delivery systems.

PVP K 90 solution 20% is employed in the creation of antistatic coatings for plastics and textiles, helping prevent the buildup of static electricity.
The paint and coatings industry uses PVP as a thickening agent, enhancing the viscosity and application properties of coatings.
PVP K 90 solution 20% is included in the formulation of imaging agents for medical diagnostic purposes, improving contrast in imaging techniques.

In the production of ceramics, PVP serves as a binder, contributing to the green strength of molded ceramic articles.
PVP K 90 solution 20% is utilized in the creation of anti-aging skincare products, contributing to the texture and effectiveness of the formulations.
The creation of anti-fog coatings for eyeglasses and camera lenses involves the use of PVP for its film-forming properties.
PVP K 90 solution 20% is continuously explored for emerging applications, showcasing its adaptability and versatility in various industries.

PVP K 90 solution 20% is employed in the production of photovoltaic devices to improve the stability and efficiency of perovskite solar cells.
The cosmetic industry utilizes PVP K 90 solution 20% in the creation of hair care products like shampoos and conditioners for its conditioning and film-forming properties.

In the formulation of battery electrolytes, PVP is used to contribute to the stability and performance of the electrolyte solution.
PVP K 90 solution 20% is included in the production of latex gloves, where it serves as a coating agent to facilitate easy donning and doffing.
PVP K 90 solution 20% is used in the formulation of antifreeze products, aiding in the prevention of scale and corrosion in cooling systems.

PVP K 90 solution 20% is found in the creation of film coatings for pharmaceutical tablets, providing a protective and aesthetically pleasing layer.
The semiconductor industry employs PVP K 90 solution 20% in the production of inkjet inks to enhance color stability and prevent clogging of printheads.
In the agricultural sector, PVP is included in crop protection formulations to ensure the uniform distribution of active ingredients.

PVP K 90 solution 20% is used in the manufacturing of imaging agents for medical diagnostic purposes, improving contrast in imaging techniques.
The construction industry utilizes PVP in the production of concrete admixtures to improve workability and reduce water demand.

PVP K 90 solution 20% is part of the formulation of antistatic coatings for plastics and textiles, preventing the buildup of static electricity.
The creation of hydrogels for medical applications, such as wound dressings and drug delivery systems, involves the use of PVP.
PVP K 90 solution 20% is utilized in the development of inkjet inks to enhance color stability and prevent nozzle clogging.

The production of firefighting foam involves the use of PVP as a stabilizing agent for the foam.
PVP K 90 solution 20% is included in the creation of adhesives for specialty applications, such as postage stamps and specialty packaging.
The textile industry uses PVP as a dye carrier, improving color uniformity in dyeing processes.

PVP K 90 solution 20% is employed in the formulation of detergents and cleaning products, improving stability and viscosity.
In the manufacturing of ion exchange resins, PVP contributes to their stability and ion absorption capabilities.

PVP K 90 solution 20% is used in the formulation of air fresheners and deodorizing products for its ability to encapsulate and release fragrances.
PVP K 90 solution 20% is found in the production of firefighting training exercises, where it contributes to the formulation of smoke-generating formulations.
In the creation of antifog coatings for eyeglasses and camera lenses, PVP is used for its film-forming properties.

The semiconductor industry employs PVP in the production of photoresists, facilitating the patterning process in microfabrication.
PVP K 90 solution 20% is included in the formulation of wound care products like adhesive tapes, providing secure and comfortable adhesion.
The cosmetic industry utilizes PVP K 90 solution 20% in the formulation of specialty inks for screen printing, ensuring durability and adhesion.
PVP K 90 solution 20% is continually explored for emerging applications, showcasing its adaptability and versatility in various industries.



DESCRIPTION


PVP K90 (Polyvinylpyrrolidone K90) solution 20% is a liquid formulation containing 20% Polyvinylpyrrolidone with a specific average molecular weight, commonly known as PVP K90.
PVP K 90 solution 20% is a water-soluble polymer derived from the polymerization of vinylpyrrolidone monomers.

In the context of PVP K90 solution 20%, the "20%" indicates the concentration of the PVP K90 polymer in the solution.
It means that 20% of the solution's total weight is composed of PVP K90, while the remaining 80% typically consists of water.
The specific properties and applications of the solution depend on the concentration and molecular weight of the PVP K90 used.

PVP K 90 solution 20% is a versatile polymer with various applications in industries such as pharmaceuticals, cosmetics, personal care, and others.
Its properties, including water solubility, film-forming capabilities, and biocompatibility, make it valuable in formulations for different purposes.
The 20% solution format allows for easy incorporation into formulations without the need for additional dissolution steps.

PVP K 90 solution 20% is a versatile water-soluble polymer widely used in various industries.
PVP K 90 solution 20% is known for its exceptional solubility in water, producing clear and colorless solutions.

PVP K 90 solution 20% is derived from the polymerization of vinylpyrrolidone monomers.
PVP K 90 solution 20% has film-forming properties, making it valuable in coatings and pharmaceutical applications.
The chemical structure of PVP consists of repeating units of 1-ethenyl-2-pyrrolidinone.
PVP K 90 solution 20% is biocompatible and widely employed in pharmaceuticals, cosmetics, and personal care products.

PVP K 90 solution 20% exhibits hygroscopic behavior, absorbing and retaining moisture from the environment.
PVP K 90 solution 20% is often used as a stabilizing agent, contributing to the shelf life of certain formulations.
In the pharmaceutical industry, different grades like PVP K30 and PVP K90 offer specific molecular weight ranges.

PVP K 90 solution 20% serves as a binder in tablet formulations, enhancing their cohesion and disintegration properties.
PVP K 90 solution 20% finds application in oral care products, contributing to stability and consistency in mouthwashes and toothpaste.
PVP K 90 solution 20%'s film-forming characteristics make it beneficial in cosmetic formulations, including hairsprays.

As a disintegrant in tablets, PVP aids in the quick disintegration of pharmaceuticals in the digestive system.
PVP K 90 solution 20% is used in the production of fast-dissolving oral films, improving drug delivery.
PVP K 90 solution 20% is employed as a stabilizing agent in ointments, creams, and gels in the pharmaceutical and cosmetic industries.
PVP K 90 solution 20% iodine complex serves as an antiseptic in various healthcare and first aid products.

PVP K 90 solution 20% is utilized in transdermal drug delivery systems for controlled release applications.
PVP K 90 solution 20% contributes to the clarity and stability of solutions in ophthalmic and contact lens products.

In the food industry, PVP clarifies beverages and aids in the removal of haze-forming substances.
PVP K 90 solution 20% is a common ingredient in the production of specialty coatings for pharmaceutical tablets.

Its hygroscopic nature makes PVP suitable for formulations requiring moisture retention.
The cosmetic industry utilizes PVP in various products, such as mascaras, for its film-forming properties.
PVP K 90 solution 20% is employed in the creation of adhesives, contributing to their viscosity and bonding strength.

PVP K 90 solution 20%'s water solubility allows for easy incorporation into a variety of aqueous formulations.
PVP K 90 solution 20% continues to be an essential component in a wide range of applications due to its diverse and beneficial properties.



PROPERTIES


Chemical Formula: (C6H9NO)n, where n represents the number of repeating units in the polymer chain.
Molecular Weight: Varies depending on the specific grade of PVP (e.g., PVP K30, PVP K90).
Chemical Structure: Consists of repeating units of 1-ethenyl-2-pyrrolidinone.
CAS Number: 9003-39-8.
Solubility: Highly soluble in water, forming clear and colorless solutions.
Appearance: Typically white or off-white powder or solid.
Odor: Generally odorless.
Melting Point: Decomposes before reaching a specific melting point.
Boiling Point: Decomposes under high temperatures.
Density: Varies depending on the molecular weight and specific form of Povidone.
pH: PVP solutions are typically neutral.
Hygroscopicity: Exhibits hygroscopic behavior, absorbing and retaining moisture from the environment.
Film-Forming: Possesses film-forming properties, contributing to its use in various coatings and applications.
Biocompatibility: Generally considered biocompatible and safe for use in pharmaceuticals and medical applications.
Stability: Stable under normal storage conditions but may be affected by extreme temperatures and humidity.
Viscosity: The viscosity of PVP solutions can be adjusted based on concentration.
Compatibility: Compatible with a wide range of other substances, including drugs, polymers, and cosmetic ingredients.
Refractive Index: Varies depending on the molecular weight and concentration of the PVP solution.
Flash Point: Not applicable as it is not a flammable substance.



FIRST AID


Inhalation:

If PVP dust or aerosol is inhaled and respiratory discomfort occurs, move the affected person to an area with fresh air.
If breathing difficulties persist, seek medical attention.
Provide respiratory support if necessary, such as administering oxygen by a trained professional.


Skin Contact:

In case of skin contact, promptly wash the affected area with soap and water.
Remove contaminated clothing and ensure thorough rinsing of the skin.
If irritation or allergic reactions occur, seek medical advice.
If there is a significant exposure, use appropriate protective clothing to prevent further contact.


Eye Contact:

If PVP comes into contact with the eyes, immediately flush the eyes with gently flowing water for at least 15 minutes, holding the eyelids open.
Seek medical attention if irritation persists or if there is any sign of injury.
Remove contact lenses, if applicable, after the initial eye rinse.


Ingestion:

If PVP is ingested accidentally, rinse the mouth with water.
Ingesting PVP is generally not harmful, but seek medical attention if there are concerns or if large amounts are ingested.
Do not induce vomiting unless instructed to do so by medical professionals.


General First Aid Measures:

If any adverse reactions, such as skin irritation or respiratory discomfort, occur after exposure to PVP, seek medical assistance promptly.
If seeking medical attention, provide healthcare professionals with details about the specific PVP product and the nature of exposure.
Be prepared to provide information on the concentration and form of PVP involved in the exposure.
If available, have the safety data sheet (SDS) or product information accessible for medical professionals.



HANDLING AND STORAGE


Handling:

Personal Protective Equipment (PPE):
Wear appropriate PPE, including gloves and safety goggles, when handling PVP.
Use chemical-resistant gloves to minimize skin contact.
In case of prolonged or repeated exposure, consider wearing protective clothing.

Ventilation:
Work in a well-ventilated area or use local exhaust ventilation to control airborne concentrations.
If handling in an enclosed space, ensure proper ventilation systems are in place to minimize inhalation risks.

Avoidance of Contact:
Avoid direct skin and eye contact with PVP.
Take precautions to prevent inhalation of dust or aerosols.
Minimize exposure through the use of engineering controls and personal protective equipment.

Handling Procedures:
Follow good manufacturing and laboratory practices when working with PVP.
Use appropriate tools and equipment to minimize the generation of dust or aerosols during handling.

Spill Response:
In case of a spill, use suitable absorbent materials to contain and clean up the spilled substance.
Dispose of waste according to local regulations and in accordance with the product's safety data sheet (SDS).

Storage Compatibility:
Store PVP away from incompatible materials, such as strong acids, bases, and oxidizing agents.
Check compatibility with storage containers to prevent chemical reactions.

Labeling:
Ensure containers are properly labeled with the correct product information, hazard symbols, and safety precautions.
Maintain clear and visible labeling on secondary containers in case of transfer.


Storage:

Temperature:
Store PVP in a cool, dry place.
Avoid exposure to extreme temperatures, as excessive heat or cold may affect the stability of the substance.

Container Integrity:
Ensure that storage containers are tightly sealed to prevent contamination or evaporation.
Regularly inspect containers for any signs of damage or leaks.

Ventilation During Storage:
If stored in an enclosed area, provide adequate ventilation to prevent the accumulation of vapors.

Storage Conditions:
Store PVP in accordance with the manufacturer's recommendations.
Keep the substance away from direct sunlight and incompatible materials.

Separation from Food and Feed:
Store PVP away from food, beverages, and animal feed.
Use separate storage areas to avoid cross-contamination.

Handling Precautions:
Follow proper handling procedures when transferring PVP between containers or dispensing it for use.
Minimize the risk of spills during storage and handling.

Fire Prevention:
PVP is generally not flammable, but it's advisable to keep it away from open flames, sparks, or potential ignition sources.
Store in areas compliant with fire safety regulations.

Emergency Response:
Have appropriate emergency response equipment, such as spill containment materials and fire extinguishers, readily available.
PVP K-30
CAS NUMBER: 9003-39-8 Linear Formula (C6H9NO)n MDL number MFCD00149016 3D model (JSmol) Interactive image Abbreviations PVP, PVPP, NVP, PNVP ChEMBL ChEMBL1909074 ☒ ChemSpider none ECHA InfoCard 100.111.937 E number E1201 (additional chemicals) SMILES Properties Chemical formula (C6H9NO)n Molar mass 2,500 - 2,500,000 g·mol-1 Appearance white to light yellow, hygroscopic, amorphous powder Density 1.2 g/cm3 Melting point 150 to 180 °C (302 to 356 °F; 423 to 453 K) (glass temperature) Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). Appearance (Colour) White to off - white Appearance (Form) Crystalline powder Solubility (Turbidity) 10% aq. solution Clear Nitrogen content (N) 11.5 - 12.5% pH (5% aq. solution) 3.0 - 7.0 Sulphated Ash max. 0.1% Heavy Metals (Pb) max. 0.001% K-value ~ 30 Vinyl pyrrolidone max. 0.8% Water (KF) max. 5% PVP K-30 is a hygroscopic, amorphous polyvinylpyrrolidone. Used in industrial, specialty and imaging coatings & paints and as a media component in digital ink jet-printing. Offers high polarity, dispersancy, hydrophilicity, adhesion, cohesivity and high glass transition temperature. PVP K-30 can be plasticized with water and most common organic plasticizers. They are linear nonionic polymers thar are soluble in water and organi solvents and are pH stable. PVP K-30 forms hard glossy transparent films and have adhesive, cohesive and dispersive properties. PVP K-30 100% Powder is soluble in water and many organic solvents and it forms hard, transparent, glossy film. PVP is compatible with most inorganic salts and many resins. PVP stabilizes emulsions, dispersions and suspensions. While PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-30 100% Powder appears as a white powder. Applications adhesives, ceramics, glass (fibers), coating/inks, electronic appliations, lithography and photography, fibers and textiles, membranes, metallurgy, paper, polymerizations, water and waste teratment, and hygiene. Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone: PVP was used as a plasma volume expander for trauma victims after the 1950s. It is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. It is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Examples of this use include Bausch & Lomb's Ultra contact lenses with MoistureSeal Technology[6] and Air Optix contact lens packaging solution (as an ingredient called "copolymer 845").[7] PVP is used as a lubricant in some eye drops, Soothe.[8] Technical PVP is also used in many technical applications: as an adhesive in glue stick and hot-melt adhesivesas a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process as an emulsifier and disintegrant for solution polymerization to increase resolution in photoresists for cathode ray tubes (CRT)[9] in aqueous metal quenching for production of membranes, such as dialysis and water purification filters as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating as a thickening agent in tooth whitening gels[10] as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation as an additive to Doro's RNA extraction buffer[citation needed] as a liquid-phase dispersion enhancing agent in DOSY NMR [11] as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] as a stabilizing agent in all inorganic solar cells[13] Other uses PVP binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP is useful for making an aqueous mounting medium.[16] PVP can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP component of the solution.[19] A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.[20] In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP.[21] Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP instead.[22][23] Properties PVP is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,[24] as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).[25] When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP and its oxidized hydrolyzate.[26] History PVP was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production Vinylpyrrolidone polymer Polyvinylpyrrolidone is abbreviated as PVP, and is the polymer of vinylpyrrolidone. According to the different degree of polymerization, it is further classified into soluble PVP and insoluble PVPP (polyvinyl polypyrrolidone). Molecular weight of the soluble PVP is 8,000 to 10,000.The soluble PVP can be used as a precipitating agent which can be settle down through its action with polyphenols. Using this method, it is easily to have residual PVP in the alcohol. Due to the savings effect of PVP inside the human body, the World Health Organization doesn't recommend to apply this substance. In recent years, the use of soluble PVP has been rare. Insoluble PVPP system had began to be used in the beer industry since the early 1960s. It has a relative molecule weight greater than the relative mass greater than 700,000. It is a insoluble polymer derived from the further cross-linking and polymerization of PVP and can be used as an adsorbent of polyphenols with a good efficacy. The molecular formula of Polyvinylpyrrolidone The molecular formula of Polyvinylpyrrolidone Polyvinylpyrrolidone PVP is one of the three major pharmaceutical new excipients and can be used as the co-solvent of tablets, granules, and injection, as the glidant of capsules, as the dispersant agent of liquid preparations and the colorant, as the stabilizer of enzyme and heat sensitive drug, as the co-precipitating agent of poorly soluble drugs, and as the detoxicant of ophthalmic drugs and lubricants. It is industrially used as expanded polystyrene additive, as the gelling agents for suspension polymerization, stabilizer, and fiber treating agents, paper processing aids, adhesives, and thickening agents. Polyvinylpyrrolidone PVP and its copolymers CAP is an important raw material of cosmetics, mainly used for hair retaining agent. The film it formed in the hair is elastic and shiny, and has excellent carding property as well as being free of dust. Adopting different category of resin can meet various kinds of relative humidity climatic conditions. Therefore, it is an indispensable raw material in styling hair cream, hair gel, and mousse. It can also be used for the cosmetics of skin moisturizing agents and the dispersants for grease based hair dying, also as foam stabilizers, and can improve the consistency of the shampoo. Insoluble PVP is the stabilizer of beer and juice which can improve its transparency, color, and flavor. Water-soluble polyamides Polyvinyl pyrrolidone (PVP) is a water soluble polyamide. Commercially available PVP is divided into four viscosity grades according to its press K value (Fikentscher K value): K-15, K-30, K-60, K-90, with the average molecular weight being 10,000, 40000,160000, and 360000, respectively. K value or molecular weight is an important factor which decides the various properties of PVP. Polyvinyl pyrrolidone (PVP) is dissolved in water, chlorinated solvents, alcohol, amine, nitro-paraffin and low molecular weight fatty acids, and is mutually soluble with most inorganic salts and a variety of resin; insoluble in acetone and ether. PVP used for the matrix of dropping pill matrix is odorless, tasteless, white to pale yellow waxy solid with the relative density being 1.062, and its 5% aqueous solution pH being 3 to 7. PVP is hygroscopic and of good thermal stability, and can be dissolved in various kinds of organic solvents, and has high melting point. Adding certain natural or synthetic polymers or organic compounds can effectively adjust the PVP's hygroscopicity and softness. PVP is not prone to have chemical reaction. Under normal storage conditions, dry PVP is quite stable. PVP has excellent physical inertia and biocompatibility and has not stimulation to skin, eyes no stimulation with no allergic reactions and being non-toxic. Because of the hydrogen bonding or complexation effect, PVP's viscosity is increased and this further inhibits the formation and growth of crystallized nuclei of drugs, making the drug being in the amorphous state. The dropping pill whose matrix is PVP can enhance the dissolution and bioavailability of poorly soluble drugs. In general, the greater the PVP amount, the higher dissolution and solubility of drug in the medium. Susana et al have studied the dissolution of the PVP solid dispersant of the slightly soluble drug albendazole. The increased amount of PVP (k30) can increase the dissolution rate and efficiency of drug inside the solid dispersant. Teresa et al have studied the dissolution of the poorly soluble drugs, flunarizine in PVP solid dispersant and obtained similar conclusion. PVP also found that the higher the content, the more significant increase in dissolution. IR has showed that flunarizine and PVP has no chemical reaction except in some cases that a best dissolution efficacy is obtained only in certain ratio between some drugs with the PVP. Tantishaiyakul et al has found that: when the ratio of piroxicam: PVP is 1:5 and 1:6, the dissolution of the solid dispersant is the largest with a 40 times as high as that of single drug within 5min. PVP can also be dissolved in another molten dropping pill matrix, such as polyethylene glycol (PEG), polyoxyethylene monostearate (S-40), poloxamer and stearyl acid, glyceryl monostearate, etc for making complex matrix. The above information is edited by the Chemicalbook of Dai Xiongfeng. Physical and chemical properties Commonly used PVP level in the cosmetic industry is K-30. Commercialized PVP is white and free flowing powder or solids with its content in the mass fraction of 20%, 30%, 45% and 50% aqueous solution. PVP is soluble in water and is hygroscopic with a moisture equilibrium being 1/3 of the relative humidity of the environment. Similar as the protein hydration action, each monomer associates with 0.5mol water.Chart 1 and Chart 2 lists the reference quality standard of various types of polyvinylpyrrolidone PVP: Food grade and pharmaceutical grade polyvinylpyrrolidone PVP Chart 1: Food grade and pharmaceutical grade polyvinylpyrrolidone PVP Cosmetics and industrial polyvinylpyrrolidone PVP (Luvikol K, BASF) Chart 2: Cosmetics and industrial polyvinylpyrrolidone PVP (Luvikol K, BASF) PVP is not easy to have chemical reaction. When stored at normal conditions, dry PVP is quite stable. Solution undergone mildew treatment is also stable. When heated in air to 150 °C or mixed with ammonium persulfate to heat at 90 °C for 30min, PVP will be exchanged to become a water-insoluble compound. In the presence of azo compound or a dichromate oxidizing agent, light will cause PVP solution to become gel. The co-heating of PVP solution with strong base (such as sodium silicate or trisodium phosphate) will generate precipitation. Many different compounds can generate complexes with PVP. For example, the complexes of PVP and iodine is very stable and have a good bactericidal effect and can reduce its toxicity; Adding the copolymers of the polyacrylic acid, tannic acid or methyl vinyl ether and maleic acid to the aqueous solution of PVP will generate insoluble complexes which are insoluble in water, alcohols and ketones. But when being treated with base for neutralize the poly-acid can reverse the reaction; complexation between PVP and toxins, drugs and toxic chemicals can reduce their toxicity; some kinds of dyes can also form a strong complex with PVP, which is the basis for using PVP as a dye bleaching agent. The use of polyvinylpyrrolidone In the early 1950s, older, with shellac and oil-based hairspray had been rapidly replaced by PVP sprays which are still widely used until now. It can form wet, transparent film on the hair which is shiny and has good lubrication effect. PVP has good compatibility with a variety of good propellant and also has corrosion resistance. It is widely used in hair styling, as the film former in combing products, as the creatinine and stabilizer of skin care lotions and creams, as the base stock material for eye and facial cosmetics and lipstick base, and also as hair dye dispersants and shampoo foam stabilizer. PVP has detoxification effect and can reduce the irritation effects of other preparation on the skin and eyes. It is also used as toothpaste detergents, gelling agents and antidotes. The main drawback of PVP is its sensitivity to moisture. However, this issue can be tackled by using its vinyl acetate copolymer in order to mitigate the effects of moisture and humidity. In addition, PVP also has wide application in the pharmaceutical, beverage and textile industries. Rheological properties of solutions Water and methanol is the preferred solvent of PVP. pH value has little effect on the viscosity of the aqueous solution of PVP, for example, at 25 °C, pH range: 0.1~10, aqueous solution of PVP K-30 with a mass fraction of 5% concentration has a viscosity of 2.3~2.4mPa • s; in concentrated hydrochloric acid, this is 4.96mPa • s. Effect of temperature on the viscosity of the PVP aqueous solution is also relatively not obvious. Un-cross-linked PVP solution is not particularly thixotropic unless under very high concentration and display a short relaxation time. The chart 3 below lists the viscosity of PVP K-30 in a variety of solvents. Viscosity of PVP K-30 in various organic solvents (w %) (At room temperature) Chart 3: Viscosity of PVP K-30 in various organic solvents (w %) (At room temperature) Reference: Edited by Binyi Qiu, "Compendium of cosmetic chemistry and technology" Volume 1 Beijing: China Light Industry Press, 1997. Compatibility Polyvinylpyrrolidone is mainly used as pharmaceutical excipient, blood compatibilizer, cosmetics thickening agents, latex stabilizers, and clarifying agent of beer brewing. Not matter whether in solution or in the form of film, PVP always has a high degree of compatibility. It has good compatibility with various kinds of inorganic salt solution, many natural and synthetic resins and other chemical compatibility. Examples of their compatibility are seen at chart 4 and Figure 5. The compatibility of PVP and some other substances in water and ethanol Chart 4: The compatibility of PVP and some other substances in water and ethanol The solubility and compatibility of PVP in various solvents Chart 5: The solubility and compatibility of PVP in various solvents Safety PVP is physiologically inert. Acute oral toxicity of PVP: LD50 > 100g/kg. It does not irritate the skin or eyes, do not cause skin allergies. A large number of long-term toxicology studies have confirmed that polyvinylpyrrolidone (PVP) can tolerate intraperitoneal, intramuscular, intravenous administration and parenteral applications. Subacute and chronic toxicity result was negative. Identification test Solubility: soluble in water, ethanol and chloroform and insoluble in ether. This is measured by the OT-42 method. Dichromate precipitation test: in 5 mL of2% sample solution, add 5 mL dilute hydrochloric acid solution (TS-117), further add 5 mL of water plus 2 mL of 10% potassium dichromate solution and 2ml. This should form an orange precipitate. Take 75 mg of cobalt nitrate and 300 mg of ammonium thiocyanate for being dissolved in 2ml of water; add 5 mL of 2% aqueous sample solution; after the mixing, add dilute hydrochloric acid test solution (TS-117) for acidification. This should form light blue precipitate. Take 5 mL of 2% sample solution; add 1 mL of 25% hydrochloric acid, 5 mL of 5% barium chloride and 1 mL 5% molybdenum tungsten phosphoric acid solution. This should generate a lot of white precipitate which gradually turns blue in the sunlight. The pH value of 5% sample solution should be 3.0 to 3.7. This is measured by conventional means. Adding a few drops of iodine test solution (TS-124) to 5 mL of 0.5% sample solution should produce a deep red color. Take 1 g of sample, add water to 10 ml as a suspension, add 0.1 mL of iodine test solution (TS-124), after mixing by shaking for 30s, iodine test solution should fade (to distinguish polyvinylpyrrolidone due to that polyvinylpyrrolidone can form red color). Add 1 mL of starch test solution (TS-235), after shaking and mixing, there should be no blue color formed. to produce blue. Content Analysis Estimated from the nitrogen content according to the following index of quality. Toxicity ADI 0~50 (FAO/WHO, 2001) LD50> 100g/kg (rat, oral). ADI does not make special provision (FAO/WHO, 2001). It is safe for food (FDA, §121.1110, §173.50, 2000). LD50:12g/kg (mice, abdominal injection). Limited use GB 2760-1996: beer GMP. Chemical Properties It is the cross-linked homopolymer of pure vinylpyrrolidone. It is hygroscopic and free-flowing white or off-white powder. It has a slight foul smell. It is insoluble in common solvents such as water, ethanol and ether. So its molecule weight range can't be measured. However, PVP has ability to form complex with various kinds of substances (such as "Hu" class substance which can lead to the discoloration of a variety of wines and beverages discoloration). Also it is easily to be removed after filtration because of its insolubility. Uses Clarifying agent; pigment stabilizer; colloidal stabilizer; It is mainly used for beer clarifying and quality stabilizing (reference amount 8~20g/100L, maintained for 24h and remove it by filtration), and can also be applied in combination with enzymes (protease) and protein adsorbents. It is also used to clarify the wine and as a stabilizer to prevent discoloration (reference amount 24~72g/100L). Clarifying agents; stabilizers; thickeners agent; tablet fillers; dispersants; PVP of molecular weight 360,000 are often used as the clarifying agent of beer, vinegar, and grape wine. Used as the fixing liquid for gas chromatography. It is used as a colloidal stabilizer and clarifying agent for beer clarification. Apply proper amount according the demands of production. It can be used for pharmacy, aquaculture, and livestock disinfectant for the sterilization of the skin and mucous. PolyFilterTM molecule has an amide bond for absorbing the hydroxyl groups located in polyphenol molecule to form hydrogen bonds, and therefore, can be used as the stabilizer of beer, fruit wine/grape wine, and drinking wine to extend their shelf life and improve the transparency, color and taste. The products have two specifications: disposable type and regeneration type. Disposable products are suitable for application by SMEs; renewable products demand the purchase of special filtration equipment; but since it is recyclable, it is suitable for large breweries for recycle application. In daily cosmetics, PVP and its copolymer has good dispersion property and filming property, and thus being able to be used as a setting lotion, hair spray and styling mousse, as opacifiers for hair care agents, as the stabilizer of shampoo foam, as wave styling agent and as the dispersants and affinity agents in hair dye. Adding PVP to cream, sunscreen, and hair removal agent can enhance wetting and lubricating effect. Taking advantage of the excellent properties of PVP such as surface activity, film-forming and non-irritating to the skin, no allergic reactions, etc., has broad prospects in its application in hair care and skin care products. Production method Its crude product comes from the polymerization of vinylpyrrolidone under basic catalyst or the existence of N, N'-divinyl amidine and further cross-inking reaction. Then use water, 5% acetic acid and 50% ethanol for reflux to until extract ≤50mg/kg (for over 3h). The 30% to 60% aqueous solution of the purified 1-vinyl-2-pyrrolidone, in the presence of ammonia or amines and also with hydrogen peroxide as the catalyst, has cross-linking and homo-polymerization reaction at a temperature of 50 °C and subject to further purification to obtain the final product. Chemical Properties Hygroscopic, white or yellowish-white powder or flakes. Chemical Properties Povidone occurs as a fine, white to creamy-white colored, odorless or almost odorless, hygroscopic powder. Povidones with K-values equal to or lower than 30 are manufactured by spray-drying and occur as spheres. Povidone K-90 and higher K-value povidones are manufactured by drum drying and occur as plates. Uses suitable for gene delivery Definition ChEBI: A vinyl polymer composed of repeating -CH2-CR- units where R is a 2-oxopyrrolidin-1-yl group. Production Methods Povidone is manufactured by the Reppe process. Acetylene and formaldehyde are reacted in the presence of a highly active copper acetylide catalyst to form butynediol, which is hydrogenated to butanediol and then cyclodehydrogenated to form butyrolactone. Pyrrolidone is produced by reacting butyrolactone with ammonia. This is followed by a vinylation reaction in which pyrrolidone and acetylene are reacted under pressure. The monomer, vinylpyrrolidone, is then polymerized in the presence of a combination of catalysts to produce povidone. brand name Kollidon CL (BASF); Kollidon CLM (BASF); Polyplasdone (International Specialty Products);Acu-dyne;Adapettes;Adsorbobase;Adsovbotear;Agent at 717;Albigen a;Aldacol q;Amiorel eritro;Amyderm s;Andrestrac 2-10;Anexa;B 7509;Betaisod;Bridine;Clinidine;Final step;Frepp/sepp;Ganex p 804;Ga-pvp-101;Gyno-bidex;Isoplasma;Jodoplex;K 115;Kollidon 17;Kollidon 25;Kollidon 30;Kollidon 90;Kollidon ce 50/50;Kollidon k 25;Kollidon k 30;Luviskol k 17;Luviskol k 25;Luviskol k 30;Luviskol k 90;Luvisteol;Medicort;Molycu;Mundidon;Neojodin;Oftan flurekain;Peragal st;Periston-n-toxobin;Pevidine;Plasmadone;Plasmoid;Plassint;Podiodine;Polyclar at;Polyclar h;Polyclar l;Polyplasdone xl;Polyvidone-escupient;Polyvinyl pyrrolidone;Povadyne;Povidone k 29-32;Pvp 50;Pvp0;Pvp-k 15;Pvp-k 25;Pvp-k 30;Pvp-k 60;Pvp-k 90;Pvp-macrose;Pvp-macrox;Rocmuth;Sd 13;Soft-care;Tears plus;Venostasin retard;Vetedine;Yodiplexin. World Health Organization (WHO) Polyvidone, a polymer of vinylpyrrolidinone, is an excipient used as a suspending and dispersing agent. Injectable preparations containing polymers with a molecular weight in the order of 12,000 have caused painful local granulomatous lesions. This has led to the withdrawal of polyvidone from such preparations in some countries. Polyvidone was formerly also used as a plasma expander but, because it was sequestered within the liver and spleen, this use has been discontinued. However, it remains widely used as a vehicle for ophthalmic preparations, and as the major component of artificial tears. General Description White powder. Compatible with a wide range of hydrophilic and hydrophobic resins. Air & Water Reactions Hygroscopic. Water soluble. Reactivity Profile Polyvinylpyrrolidone is a polymeric material and probably has low reactivity. Polyvinylpyrrolidone reacts as a weak base. Hazard Questionable carcinogen. Health Hazard SYMPTOMS: Polyvinylpyrrolidone may cause interstitial fibrosis in the lungs. Lesions regress when patient is no longer being exposed to the compound. Fire Hazard Flash point data for Polyvinylpyrrolidone are not available, but Polyvinylpyrrolidone is probably non-flammable. Pharmaceutical Applications Although povidone is used in a variety of pharmaceutical formulations, it is primarily used in solid-dosage forms. In tableting, povidone solutions are used as binders in wet-granulation processes.Povidone is also added to powder blends in the dry form and granulated in situ by the addition of water, alcohol, or hydroalcoholic solutions. Povidone is used as a solubilizer in oral and parenteral formulations, and has been shown to enhance dissolution of poorly soluble drugs from solid-dosage forms. Povidone solutions may also be used as coating agents or as binders when coating active pharmaceutical ingredients on a support such as sugar beads. Povidone is additionally used as a suspending, stabilizing, or viscosity-increasing agent in a number of topical and oral suspensions and solutions. The solubility of a number of poorly soluble active drugs may be increased by mixing with povidone. Special grades of pyrogen-free povidone are available and have been used in parenteral formulations; Contact allergens Polyvinylpyrrolidone is widely used as is in cosmetics such as hair care products and in medical products. It acts as iodophor in iodine-polyvinylpyrrolidone. PVP is an irritant and has been claimed as the allergen in some cases of dermatitis from iodine-polyvinylpyrrolidone (although iodine is more likely the hapten). It may cause type I contact urticaria or anaphylaxis. Safety Profile Mtldly toxic by intraperitoneal and intravenous routes. Questionable carcinogen. When heated to decomposition it emits toxic fumes of NOx. Safety Povidone has been used in pharmaceutical formulations for many years, being first used in the 1940s as a plasma expander, although it has now been superseded for this purpose by dextran. Povidone is widely used as an excipient, particularly in oral tablets and solutions. When consumed orally, povidone may be regarded as essentially nontoxic since it is not absorbed from the gastrointestinal tract or mucous membranes.Povidone additionally has no irritant effect on the skin and causes no sensitization. exists that povidone may accumulate in the organs of the body following intramuscular injection. A temporary acceptable daily intake for povidone has been set by the WHO at up to 25 mg/kg body-weight. (mouse, IP): 12 g/kg storage Povidone darkens to some extent on heating at 150°C, with a reduction in aqueous solubility. It is stable to a short cycle of heat exposure around 110-130°C; steam sterilization of an aqueous solution does not alter its properties. Aqueous solutions are susceptible to mold growth and consequently require the addition of suitable preservatives. Povidone may be stored under ordinary conditions without undergoing decomposition or degradation. However, since the powder is hygroscopic, it should be stored in an airtight container in a cool, dry place. Purification Methods Purify it by dialysis, and freeze-drying. Also by precipitation from CHCl3 solution by pouring into ether. Dry it in a vacuum over P2O5. For the crosslinked polymer purification is by boiling for 10minutes in 10% HCl and then washing with glass-distilled water until free from Cl ions. Finally, Cl ions are removed more readily by neutralising with KOH and continued washing. Incompatibilities Povidone is compatible in solution with a wide range of inorganic salts, natural and synthetic resins, and other chemicals. It forms molecular adducts in solution with sulfathiazole, sodium salicylate, salicylic acid, phenobarbital, tannin, and other compounds; see Section 18. The efficacy of some preservatives, e.g. thimerosal, may be adversely affected by the formation of complexes with povidone. Traditional High-Efficient Rheology Modifier Carbomer Efficient Rheology Modifier For Home Care Traditional Long-Flow Property Carbomer Improved Type - Easy To Disperse Carbomer Improved Type -Self-Wetting Carbomer Improved Type Carbomer Liquid Carbomer Pharmaceutical Grade Carbomer Home Care Carbomer High Carlity Traditional Carbomer Benzen Free Carbomer Homopolymer Of Vinylpyrrolidone NM-PVP K-30 Chemical Name: Homopolymer of Vinylpyrrolidone CTFA Name :Polyvinylpyrrolidone NM-PVP K-30 can dissolve in water and grain alcohol, isopropyl alcohol or chloroform, but not in acetone or diethyl ether. Have good absorption moisture, film-forming, complex ability. It is a high performance, versatile polymer widely used in pharmaceutical field, cosmetics field, beer, water treatment membrane, detergents, paints and other fields. Application 1. Pharma application: Used as binder for tablet and pellet, dissolving assistant for injection, flowing assistant capsule, dispersant for liquid medicine and pigment, stabilizer for enzyme and heat sensitive drug. 2. Cosmetic application: Used extensively in a wide range hair care, skin care &oral care products. The products are particularly suitable for formulation where viscosity modification and film forming properties are required. 3. Tech application: As surface coating agent, dispersing agent, thickener, binder, porogen in water treatment membrane ( hollow fiber m
PVP K30 POWDER COSMETIC GRADE
PVP/VA Copolymer; Poly(1-vinylpyrrolidone-co-Vinyl Acetate); Polectron 845; Luviskol VA 28I; Vinyl acetate-vinylpyrrolidone polymer; Vinylpyrrolidinone-vinyl acetate polymer CAS NO: 25086-89-9
PVP K-90
Povidone-Iodine is an iodophor solution containing a water-soluble complex of iodine and PVP K-90 (PVP) with broad microbicidal activity. Free iodine, slowly liberated from the polyvinylpyrrolidone iodine (PVPI) complex in solution, kills eukaryotic or prokaryotic cells through iodination of lipids and oxidation of cytoplasmic and membrane compounds. This agent exhibits a broad range of microbicidal activity against bacteria, fungi, protozoa, and viruses. Slow release of iodine from the PVPI complex in solution minimizes iodine toxicity towards mammalian cells.Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. WHEN GIVEN PARENTERALLY, UNEXCRETED PARTICLES ARE PHAGOCYTIZED BY CELLS OF RETICULOENDOTHELIAL SYSTEM & DEPOSITED IN STORAGE SITES IN LIVER, SPLEEN, LUNG, BONE MARROW...In 12 nonpregnant women, total iodine, protein-bound iodine, inorganic iodine, and thyroxine values were measured in serum before and 15, 30, 45 or 60 minutes after a two-minute vaginal disinfection with povidone-iodine (Betadine). Only 15 minutes after application, serum iodine levels were raised and remained significantly elevated 30, 45 and 60 minutes after disinfection. Serum concentrations of total iodine and inorganic iodine were increased up to fivefold to 15-fold, respectively; during the relative short period of observation, thyroxine levels were not altered.The disposition of N-[14C]-vinyl-2-pyrrolidone has been studied in male Sprague-Dawley rats following a single iv injection. ...Up to 6 hr after dosing, the highest tissue concentrations of radioactivity were found in the liver and small intestines. By that time, about 19% of the dose had been excreted in bile, yet, by 12 hr, only about 0.4% had been excreted in feces while about 75% had been excreted in urine. Thus, there appeared to be substantial enterohepatic recirculation of biliary metabolites. Very small quantities of the administered material were excreted unchanged. In a single rat, 12% of the urinary radioactivity was present as acetic acid. Other metabolites were not identified.Following ingestion /1-vinyl-2-pyrrolidinone/ is mainly distributed in the liver and small intestine. It is partially excreted in the urine in an acetate form, but it is mostly (88%) combined with water-soluble acid compounds. Following iv injection, 14C-1-vinyl-2-pyrrolidinone was cleared from the blood with a half-life of about 2 hr. Unchanged /1-vinyl-2-pyrrolidinone/ accounted for <0.6% of the dose administered.The disposition of N-[14C-vinyl]-2-pyrrolidinone was studied in male Sprague-Dawley rats following a single iv injection. Plasma levels of the intact compound dropped rapidly within the first 6 hours after dosing... . Urinary excretion by 12 hours represented 74.9% of a 5 microCi dose while 18.7% was excreted into the bile by 6 hours. 14C-activity attributed to the intact compound was found to be <0.59% of the dose in the urine and <0.46% in the bile. Tissue distribution studies showed that the liver and small intestines and contents contained the highest accumulation of 14C-activity up to 6 hours after administration of N-[14C-vinyl]-2-pyrrolidinone. Urine analyses performed for metabolite elucidation indicated that 12% of the radioactivity dosed was incorporated into acetate and the major remaining portion in species which appeared to be water soluble acidic compounds.The toxic effects of vinylpyrrolidone /and/ vinylacetate (VP-VA) were examined in rats. Female Wistar-rats, under ether narcosis, were given endotracheally 0.5 mL of a standard solution of VP-VA (10 g in 15 mL of physiological sodium-chloride solution). Other rats received up to 7 times the 2 mL standard solution daily under the skin of the back; between 1.1 and 45.0 g/kg VP-VA were injected. The animals were sacrificed between 1 and 365 days following the application of the VP-VA solution. Tissues were stained and examined by electron microscopy. One to 2 days after endotracheal injection, the alveoli were closely packed with macrophages. Four to 6 months after the last injection, there was still VP-VA in the lungs with the attendent macrophages. Animals killed 1 yr after the last injection showed no VP-VA in the lungs. After sc injection, most of the VP-VA was stored in the spleen. There were occasional, large macrophages found in the interstitial tissue of the lung. During the 1 yr period of observation, there was no evidence of tumors or systemic disease.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films. Povidone-Iodine is an iodophor solution containing a water-soluble complex of iodine and PVP K-90 (PVP) with broad microbicidal activity. Free iodine, slowly liberated from the polyvinylpyrrolidone iodine (PVPI) complex in solution, kills eukaryotic or prokaryotic cells through iodination of lipids and oxidation of cytoplasmic and membrane compounds. This agent exhibits a broad range of microbicidal activity against bacteria, fungi, protozoa, and viruses. Slow release of iodine from the PVPI complex in solution minimizes iodine toxicity towards mammalian cells.Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. WHEN GIVEN PARENTERALLY, UNEXCRETED PARTICLES ARE PHAGOCYTIZED BY CELLS OF RETICULOENDOTHELIAL SYSTEM & DEPOSITED IN STORAGE SITES IN LIVER, SPLEEN, LUNG, BONE MARROW...In 12 nonpregnant women, total iodine, protein-bound iodine, inorganic iodine, and thyroxine values were measured in serum before and 15, 30, 45 or 60 minutes after a two-minute vaginal disinfection with povidone-iodine (Betadine). Only 15 minutes after application, serum iodine levels were raised and remained significantly elevated 30, 45 and 60 minutes after disinfection. Serum concentrations of total iodine and inorganic iodine were increased up to fivefold to 15-fold, respectively; during the relative short period of observation, thyroxine levels were not altered.The disposition of N-[14C]-vinyl-2-pyrrolidone has been studied in male Sprague-Dawley rats following a single iv injection. ...Up to 6 hr after dosing, the highest tissue concentrations of radioactivity were found in the liver and small intestines. By that time, about 19% of the dose had been excreted in bile, yet, by 12 hr, only about 0.4% had been excreted in feces while about 75% had been excreted in urine. Thus, there appeared to be substantial enterohepatic recirculation of biliary metabolites. Very small quantities of the administered material were excreted unchanged. In a single rat, 12% of the urinary radioactivity was present as acetic acid. Other metabolites were not identified.Following ingestion /1-vinyl-2-pyrrolidinone/ is mainly distributed in the liver and small intestine. It is partially excreted in the urine in an acetate form, but it is mostly (88%) combined with water-soluble acid compounds. Following iv injection, 14C-1-vinyl-2-pyrrolidinone was cleared from the blood with a half-life of about 2 hr. Unchanged /1-vinyl-2-pyrrolidinone/ accounted for <0.6% of the dose administered.The disposition of N-[14C-vinyl]-2-pyrrolidinone was studied in male Sprague-Dawley rats following a single iv injection. Plasma levels of the intact compound dropped rapidly within the first 6 hours after dosing... . Urinary excretion by 12 hours represented 74.9% of a 5 microCi dose while 18.7% was excreted into the bile by 6 hours. 14C-activity attributed to the intact compound was found to be <0.59% of the dose in the urine and <0.46% in the bile. Tissue distribution studies showed that the liver and small intestines and contents contained the highest accumulation of 14C-activity up to 6 hours after administration of N-[14C-vinyl]-2-pyrrolidinone. Urine analyses performed for metabolite elucidation indicated that 12% of the radioactivity dosed was incorporated into acetate and the major remaining portion in species which appeared to be water soluble acidic compounds.The toxic effects of vinylpyrrolidone /and/ vinylacetate (VP-VA) were examined in rats. Female Wistar-rats, under ether narcosis, were given endotracheally 0.5 mL of a standard solution of VP-VA (10 g in 15 mL of physiological sodium-chloride solution). Other rats received up to 7 times the 2 mL standard solution daily under the skin of the back; between 1.1 and 45.0 g/kg VP-VA were injected. The animals were sacrificed between 1 and 365 days following the application of the VP-VA solution. Tissues were stained and examined by electron microscopy. One to 2 days after endotracheal injection, the alveoli were closely packed with macrophages. Four to 6 months after the last injection, there was still VP-VA in the lungs with the attendent macrophages. Animals killed 1 yr after the last injection showed no VP-VA in the lungs. After sc injection, most of the VP-VA was stored in the spleen. There were occasional, large macrophages found in the interstitial tissue of the lung. During the 1 yr period of observation, there was no evidence of tumors or systemic disease.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films.PVP is used as a film former in hair styling products, PVP can also be used as an emulsion stabilizer in creams and lotions and as a dispersant for hair colorants. Additionally, pharmaceutical grade PVP can be used in toothpastes and mouthwashes. PVP K-90 100% Powder appears as a white powder. PVP K-90 is a component of Denhardt's Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution. PVP K-90 is a hygroscopic, amorphous polymer supplied as a white, free-flowing powder or a clear aqueous solution. Available in several molecular weight grades, they are characterized by K-value, and used in a great variety of applications. PVP K-90 can be plasticized with water and most common organic plasticizers. It is considered to be physiologically inert. Applications take advantage of one or more properties inherent in the polymer, typically due to the lactam ring.High polarity and the resultant propensity to form complexes with hydrogen donors, such as phenols and carboxylic acids, as well as anionic dyes and inorganic salts.Dispersancy, where components in a mixture are uniformly distributed through the use of PVP K-90.Hydrophilicity, where the substantial water solubility of PVP K-90 is its dominant feature and frequently a factor along with other properties valuable to numerous applications.Adhesion, taking advantage of the higher molecular weight PVP K-90s formulating in aqueous media, then evaporating sufficient water to generate a solid product for the desired application.Cohesivity, where cohesive strength is achieved through a variety of dry blending and granulation techniques.PVP K-90 is cross-linkable to a water insoluble, swellable material either in the course of vinylpyrrolidone polymerization, by addition of an appropriate multifunctional comonomer or by post-reaction, typically through hydrogen abstraction chemistry. acts as rheology modifier. is a highly adhesive tablet binder. stabilizes emulsion and structures liquid products. provides anti-soil redeposition, enzyme stabilization and dye transfer inhibition. functions as binder and protective coating for enzymes. provides surface shine enhancement. forms hard, transparent, glossy films.
PVP VA 64
PVP VA 64 is a 6:4 linear random copolymer of N-vinylpyrrolidone and vinyl acetate.
The vinyl acetate component of PVP VA 64 reduces the hydrophilicity and glass transition temperature (Tg) compared to povidone homopolymers of similar molecular weight.
As a result, PVP VA 64 is the ultimate tablet binder that extends its excellent adhesive property in wet granulation, as well as in dry granulation and direct compression.

CAS: 25086-89-9
MF: C10H15NO3
MW: 197.23

Due to its spherical, hollow particle morphology and high plasticity, PVP VA 64 performs exceptionally well as a binder for direct compression.
In addition, a lower Tg makes PVP VA 64 an ideal polymer matrix for solid dispersions/solutions via hot melt extrusion, which enhances the dissolution of poorly soluble drug actives.
PVP VA 64 is used widely in pharmaceutical formulations and is generally regarded as nontoxic.
However, PVP VA 64 is moderately toxic by ingestion, producing gastric disturbances.
PVP VA 64 has no irritating or sensitizing effects on the skin.

A study was conducted to look at the carcinogenicity and chronic toxicity of PVP VA 64 (Kollidon VA 64) in Wistar rats and Beagle dogs.
The results of these studies demonstrated the absence of any significant toxicological findings of high dietary levels of copodivone in rats and dogs, resulting in noobserved- adverse-effect levels of 2800 mg/kg body-weight/day in rats and 2500 mg/kg body-weight/day in dogs, the highest doses tested.

PVP VA 64 copolymer functions as a binder, film former and hair fixative in cosmetic products.
PVP VA 64 is a more important ingredient from a formulation than a skincare standpoint.
As a binding agent, PVP VA 64 helps to bind or hold together the ingredients of a cosmetic product in the form of a compressed cake or tablet of a product.

Ingredients in dry form are mixed using a minimal amount of binder and then compressed to the desired effect.
This method prevents other ingredients in the product from breaking down.
As a film-forming agent, when applied to hair or skin, they form a continuous, cohesive, flexible layer.

This layer/film has water retention properties that leave a silky smooth effect on the skin. PVP VA 64 is also used in hair sprays and gels.
When used, PVP VA 64 forms a thin layer or film on the surface of the hair.
Considering its structure, PVP VA 64 also has several chemical groups that form temporary bonds that not only help to form a film, but also help to attach to the hair shaft and maintain the hairstyle.
PVP VA 64 prevents the hair from absorbing moisture and helps you maintain the style.
PVP VA 64 is used in formulas for styling products and other hair care products.

Benefits:
Suitability for use in direct compression, dry granulation, wet granulation, hot melt extrusion, and film coating,
Good flowability,
Large surface area due to hollow particle morphology – enhances particle bonding and good compressibility,
Ideal glass transition temperature (Tg) for hot melt extrusion.

PVP VA 64 Chemical Properties
Density: 1.27 g/mL at 25 °C(lit.)
Refractive index: 1.4300 to 1.4380
Fp: 72 °F
Solubility: Greater than 10% solubility in 1,4-butanediol, glycerol, butanol, chloroform, dichloromethane, ethanol (95%), glycerol, methanol, polyethylene glycol 400, propan-2-ol, propanol, propylene glycol, and water.
Less than 1% solubility in cyclohexane, diethyl ether, liquid paraffin, and pentane.
Form: powder
Color: White
Stability: Stable. Combustible, especially in powdered form. Incompatible with strong oxidising agents, strong reducing agents.
LogP: 0.370 (est)
EPA Substance Registry System: PVP VA 64 (25086-89-9)

PVP VA 64 is a white to yellowish-white amorphous powder.
PVP VA 64 is typically spray-dried with a relatively fine particle size.
PVP VA 64 has a slight odor and a faint taste.

Uses
PVP VA 64 is a water-soluble polymer used to improve the uptake and drug loading of various pharmaceutical agents, including contraceptive patches.

The main raw materials of cosmetics are used for hair gel, mousse, shampoo, etc., as well as surfactants, medicine and other industries.
PVP VA 64 mainly used as water-soluble adhesives and dry adhesives in granulation and direct tabletting technology, as film-forming materials in film coating, and as pore forming materials in flavoring agents.
PVP VA 64 is applied to sugar coating to prevent lobes, and the bottom coating is used to prevent moisture.

PVP VA 64 copolymer series products are mainly used as film forming agents and shaping agents in the field of cosmetics, especially in hair spray, hair spray, mousse and shampoo series products.
They play an important role as film-forming agents and hair styling agents.
If they are used in conjunction with PVP K30, they will enhance their use effect.

Production Methods
PVP VA 64 is manufactured by free-radical polymerization of vinylpyrrolidone and vinyl acetate in a ratio of 6 : 4.
The synthesis is conducted in an organic solvent owing to the insolubility of vinyl acetate in water.

Pharmaceutical Applications
PVP VA 64 is used as a tablet binder, a film-former, and as part of the matrix material used in controlled-release formulations.
In tableting, PVP VA 64 can be used as a binder for direct compression and as a binder in wet granulation.
PVP VA 64 is often added to coating solutions as a film-forming agent.
PVP VA 64 provides good adhesion, elasticity, and hardness, and can be used as a moisture barrier.

Synonyms
25086-89-9
Polectron 845
Luviskol VA 28I
Luviskol VA 37E
Luviskol VA 64
Kolima 10
Kolima 35
ethenyl acetate;1-ethenylpyrrolidin-2-one
Gantron S 860
PVP-VA
Ganex E 535
GAF-S 630
Luviskol VA 281
Luviskol VA 28 I
Luviskol VA 37 E
I 535
I 635
I 735
S 630
MFCD00134018
Luviskol VA-64
SCHEMBL29127
Copovidone (Technical Grade)
vinylpyrrolidone/vinyl acetate
Vinyl Pyrrolidone/Vinyl Acetate
N-vinylpyrrolidone/vinyl acetate
1-vinylpyrrolidone vinyl acetate
BCP31918
NSC114023
NSC114024
NSC114025
NSC114026
AKOS015898247
NSC-114023
NSC-114024
NSC-114025
NSC-114026
1-ethenylpyrrolidin-2-one; ethenyl acetate
ethenyl ethanoate; 1-ethenylpyrrolidin-2-one
FT-0659810
A817635
acetic acid ethenyl ester; 1-ethenyl-2-pyrrolidinone
733045-73-3
PVP VA 64
PVP VA 64 is a 6:4 linear random copolymer of N-vinylpyrrolidone and vinyl acetate.
The vinyl acetate component of PVP VA 64 reduces the hydrophilicity and glass transition temperature (Tg) compared to povidone homopolymers of similar molecular weight.
As a result, PVP VA 64 is the ultimate tablet binder that extends its excellent adhesive property in wet granulation, as well as in dry granulation and direct compression.

CAS: 25086-89-9
MF: C10H15NO3
MW: 197.23

Due to its spherical, hollow particle morphology and high plasticity, PVP VA 64 performs exceptionally well as a binder for direct compression.
In addition, a lower Tg makes PVP VA 64 an ideal polymer matrix for solid dispersions/solutions via hot melt extrusion, which enhances the dissolution of poorly soluble drug actives.
PVP VA 64 is used widely in pharmaceutical formulations and is generally regarded as nontoxic.
However, PVP VA 64 is moderately toxic by ingestion, producing gastric disturbances.
PVP VA 64 has no irritating or sensitizing effects on the skin.

A study was conducted to look at the carcinogenicity and chronic toxicity of PVP VA 64 (Kollidon VA 64) in Wistar rats and Beagle dogs.
The results of these studies demonstrated the absence of any significant toxicological findings of high dietary levels of copodivone in rats and dogs, resulting in noobserved- adverse-effect levels of 2800 mg/kg body-weight/day in rats and 2500 mg/kg body-weight/day in dogs, the highest doses tested.

PVP VA 64 copolymer functions as a binder, film former and hair fixative in cosmetic products.
PVP VA 64 is a more important ingredient from a formulation than a skincare standpoint.
As a binding agent, PVP VA 64 helps to bind or hold together the ingredients of a cosmetic product in the form of a compressed cake or tablet of a product.

Ingredients in dry form are mixed using a minimal amount of binder and then compressed to the desired effect.
This method prevents other ingredients in the product from breaking down.
As a film-forming agent, when applied to hair or skin, they form a continuous, cohesive, flexible layer.

This layer/film has water retention properties that leave a silky smooth effect on the skin. PVP VA 64 is also used in hair sprays and gels.
When used, PVP VA 64 forms a thin layer or film on the surface of the hair.
Considering its structure, PVP VA 64 also has several chemical groups that form temporary bonds that not only help to form a film, but also help to attach to the hair shaft and maintain the hairstyle.
PVP VA 64 prevents the hair from absorbing moisture and helps you maintain the style.
PVP VA 64 is used in formulas for styling products and other hair care products.

Benefits:
Suitability for use in direct compression, dry granulation, wet granulation, hot melt extrusion, and film coating,
Good flowability,
Large surface area due to hollow particle morphology – enhances particle bonding and good compressibility,
Ideal glass transition temperature (Tg) for hot melt extrusion.

PVP VA 64 Chemical Properties
Density: 1.27 g/mL at 25 °C(lit.)
Refractive index: 1.4300 to 1.4380
Fp: 72 °F
Solubility: Greater than 10% solubility in 1,4-butanediol, glycerol, butanol, chloroform, dichloromethane, ethanol (95%), glycerol, methanol, polyethylene glycol 400, propan-2-ol, propanol, propylene glycol, and water.
Less than 1% solubility in cyclohexane, diethyl ether, liquid paraffin, and pentane.
Form: powder
Color: White
Stability: Stable. Combustible, especially in powdered form. Incompatible with strong oxidising agents, strong reducing agents.
LogP: 0.370 (est)
EPA Substance Registry System: PVP VA 64 (25086-89-9)

PVP VA 64 is a white to yellowish-white amorphous powder.
PVP VA 64 is typically spray-dried with a relatively fine particle size.
PVP VA 64 has a slight odor and a faint taste.

Uses
PVP VA 64 is a water-soluble polymer used to improve the uptake and drug loading of various pharmaceutical agents, including contraceptive patches.

The main raw materials of cosmetics are used for hair gel, mousse, shampoo, etc., as well as surfactants, medicine and other industries.
PVP VA 64 mainly used as water-soluble adhesives and dry adhesives in granulation and direct tabletting technology, as film-forming materials in film coating, and as pore forming materials in flavoring agents.
PVP VA 64 is applied to sugar coating to prevent lobes, and the bottom coating is used to prevent moisture.

PVP VA 64 copolymer series products are mainly used as film forming agents and shaping agents in the field of cosmetics, especially in hair spray, hair spray, mousse and shampoo series products.
They play an important role as film-forming agents and hair styling agents.
If they are used in conjunction with PVP K30, they will enhance their use effect.

Production Methods
PVP VA 64 is manufactured by free-radical polymerization of vinylpyrrolidone and vinyl acetate in a ratio of 6 : 4.
The synthesis is conducted in an organic solvent owing to the insolubility of vinyl acetate in water.

Pharmaceutical Applications
PVP VA 64 is used as a tablet binder, a film-former, and as part of the matrix material used in controlled-release formulations.
In tableting, PVP VA 64 can be used as a binder for direct compression and as a binder in wet granulation.
PVP VA 64 is often added to coating solutions as a film-forming agent.
PVP VA 64 provides good adhesion, elasticity, and hardness, and can be used as a moisture barrier.

Synonyms
25086-89-9
Polectron 845
Luviskol VA 28I
Luviskol VA 37E
Luviskol VA 64
Kolima 10
Kolima 35
ethenyl acetate;1-ethenylpyrrolidin-2-one
Gantron S 860
PVP-VA
Ganex E 535
GAF-S 630
Luviskol VA 281
Luviskol VA 28 I
Luviskol VA 37 E
I 535
I 635
I 735
S 630
MFCD00134018
Luviskol VA-64
SCHEMBL29127
Copovidone (Technical Grade)
vinylpyrrolidone/vinyl acetate
Vinyl Pyrrolidone/Vinyl Acetate
N-vinylpyrrolidone/vinyl acetate
1-vinylpyrrolidone vinyl acetate
BCP31918
NSC114023
NSC114024
NSC114025
NSC114026
AKOS015898247
NSC-114023
NSC-114024
NSC-114025
NSC-114026
1-ethenylpyrrolidin-2-one; ethenyl acetate
ethenyl ethanoate; 1-ethenylpyrrolidin-2-one
FT-0659810
A817635
acetic acid ethenyl ester; 1-ethenyl-2-pyrrolidinone
733045-73-3
PVP/VA 64
DESCRIPTION:
PVP/VA 64 is a 6:4 linear random copolymer of N-vinylpyrrolidone and vinyl acetate.
The vinyl acetate component of PVP/VA 64 reduces the hydrophilicity and glass transition temperature (Tg) compared to povidone homopolymers of similar molecular weight.
As a result, PVP/VA 64 is the ultimate tablet binder that extends its excellent adhesive property in wet granulation, as well as in dry granulation and direct compression.

CAS-No: 25086-89-9
INCI name: VP/VA Copolymer
Molecular Formula: (C6H9NO.C4H6O2)x

CHEMICAL AND PHYSICAL PROPERTIES OF PVP/VA 64:
Appearance : White – Cream Powder
K value(1% in ethanol): 26.0-34.0
Vinyl pyrrolidone: 60
Vinyl acetate: 40
pH (10% solution) 4-7
Solids content: 95%
Versatile film-formers for formulating of hair styling products.
Properties and differentiation are determined by the VP/VAratio in the polymer.
The series includes alcoholic (Ethanol, Isopropanol), aqueous and powder products.
•Medium to strong hold; Nonionic, no neutralization required
•Water-soluble or dispersable; Easy to wash out
•Non-forming; Easy to handle; Easy to comb out
•Compatible with ionic (anionic as well as cationic) additives
•Makes the hair shiny; Propane/butane compatibility 20-45%
•DME compatibility>70%

PVP/VA 64 is an easy-to-use aqueous solution that is compatible with carbomers, and is particularly suitable for alcohol-free formulations, forming a clear solution in water.
Due to its spherical, hollow particle morphology and high plasticity, PVP/VA 64 performs exceptionally well as a binder for direct compression.
In addition, a lower Tg makes PVP/VA 64 an ideal polymer matrix for solid dispersions/solutions via hot melt extrusion, which enhances the dissolution of poorly soluble drug actives.

PVP/VA 64 is a copolymer of vinylpyrrolidone with vinyl acetate in an an easy-to-use aqueous solution.
PVP/VA 64 is preserved with 0.05% max. dodecyl trimethyl ammonium chloride.
PVP/VA 64 is an excellent film-former and hair styling agent.

VP/VA copolymer.
PVP/VA 64 Acts as a film-forming agent and fixative in hair care.
PVP/VA 64 Is a copolymer of 1-vinyl-2-pyrrolidone & vinyl acetate in ratio of 60:40 in the form of powder.
PVP/VA 64 is Suitable for hair sprays and hair set lotion.

BENEFITS OF PVP/VA 64:
PVP/VA 64 is Suitable for use in direct compression, dry granulation, wet granulation, hot melt extrusion, and film coating.
PVP/VA 64 has Good flowability
PVP/VA 64 has Large surface area due to hollow particle morphology – enhances particle bonding and good compressibility
PVP/VA 64 has Ideal glass transition temperature (Tg) for hot melt extrusion.


FUNCTIONS OF PVP/VA 64:
• Binding.
• Film forming.
• Hair fixing.
• Viscosity controlling.


APPLICATIONS OF PVP/VA 64:
OF PVP/VA 64 İS Used in hair care like aerosol sprays, non-aerosol products, liquid hair setting products, gels and mousses.

RECOMMENDED DOSAGE:
The following concentrations are recommended (solids):
˗ Aerosol hair spray 2 - 6%
˗ Pump spray 3 - 7%
˗ Setting lotions 1 - 5%
˗ Setting mousse 1 - 5%
˗ Gels 1 - 5%
˗ Hair waxes 1 - 5%

STORAGE OF OF PVP/VA 64:
Store at a cool, dry and well ventilated place.

SAFETY INFORMATION ABOUT PVP/VA 64:
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.


PVP/VA Copolymer
Poly(1-vinylpyrrolidone-co-vinyl acetate); Copovidone; Poly(1-vinylpyrrolidone-co-Vinyl Acetate); Vinyl acetate-vinylpyrrolidone copolymer; PVP/VA Copolymer; Vinyl acetate-vinylpyrrolidinone polymer; Vinylpyrrolidinone-vinyl acetate polymer;
PVP/VA COPOLYMER
DESCRIPTION:
PVP/VA Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor.
So PVP/VA Copolymer is very common in most Hairsprays but also found in gel’s, wax’s, pomades and styling creams.
PVP/VA Copolymer is a synthetic ingredient that is derived from petroleum.

CAS NO.: 25086-89-9
Molecular Weight: 197.23415000
Formula:(C6H9NO) x (C4H6O2)y
CTFA NOMENCLATURE: PVP/VA copolymer


CHEMICAL AND PHYSICAL PROPERTIES OF PVP/VA COPOLYMER:
Solubility: Water (Heats accelerates hydration)
Use rate: 0.5 – 6.0% (Recommended use rate 3.0 – 5.0% for gels, creams, mousses and styling lotions)
Temperature tolerance: Avoid temperatures above 80°C
pH Stability: 4.0 – 7.0
Appearance: white to slightly yellowish, fine to coarse grained powder.
Assay: 60% VP (vinylpyrrolidone) / 40% VA (vinyl acetate) is available in powder form.
Storage: Store in a cool, dark, and dry place
Assay: 95.00 to 100.00
Food Chemicals Codex Listed: No
Specific Gravity: 0.95800 @ 25.00 °C.
Boiling Point: 217.60 °C. @ 760.00 mm Hg (est)
Vapor Pressure: 0.132000 mmHg @ 25.00 °C. (est)
Flash Point: 72.00 °F. TCC ( 22.22 °C. )
logP (o/w): 0.370 (est)

PVP/VA (Also known as VP/VA), is a film forming agent that offers a strong, stiff hold in hair care.
PVP/VA Copolymer offers curl retention in high humidity.
PVP/VA Copolymer forms transparent, flexible, and breathable films

PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s.
PVP/VA Copolymer worked as a hairspray because it was soluble in water.
This meant PVP/VA Copolymer could be rinsed out when you wash your hair.
PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties.

PVP/VA Copolymer was fixed with the help of another polymer, a silicone called polydimethylsiloxane.
To understand how this silicone made a better hairspray, it helps to understand how the hairsprayworks in the first place.
When you spray PVP/VA Copolymer on, the polyvinylpyrrolidone forms a thin coating on the hair.
This coating is stiff and keeps the hair from moving around.
FEATURES OF PVP/VA COPOLYMER:
• Excellent curl retention
• Strong hold
• Transparency
• Anti-static
• Binding
• Emulsion stabilizing
• Film forming
• 60% VP (vinylpyrrolidone) / 40% VA (vinyl acetate) is available in powder form.


Pvp/va polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals.
Polyvinylpyrrolidone/vinyl acetate (pvp/va) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone.

Pvp/va copolymers are available as white powders or clear solutions in ethanol, isopropanol and water.
Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol.
The pvp/va copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions.


CHARACTERS:
In the form of powder, PVP/VA Copolymer is 50% aqueous solution or alcohol solution..
PVP/VA Copolymer is Able to form stiff, bright and washable film.
PVP/VA Copolymer is Soluble in most common organic solvents.

APPLICATIONS OF PVP/VA COPOLYMER:
PVP/VA Copolymer is used in Film-formers and stiffeners in hair care products.
PVP/VA Copolymer is used as Film formers in skin care preparations, suitable for eye and face dressings.

PVP/VA Copolymer is used as Rewettable Adhesives and adhesives for paper.
PVP/VA Copolymer is used as Thickeners and protective colloids for printing inks.
PVP/VA Copolymer is used as Dispersants and stabilizers for all kinds of suspensions and emulsions.

PVP/VA Copolymer is used in Hairsprays, mousses, coloring products, mousses, gels, styling lotions and conditioners.

What is PVP/VA COPOLYMER used for?
PVP/VA Copolymer has a number of benefits to offer in the world of cosmetics and personal care.
PVP/VA Copolymer can mainly be found in hair care products, followed by cosmetics and a few skin care products.

Skin care:
PVP/VA Copolymer is responsible for forming a thin layer on the skin that feels smooth to the touch and makes the surface look flawless.
PVP/VA Copolymer also retains moisture on the skin and doesn't allow it to run dry for longer durations of time.

Hair care:
PVP/VA Copolymer is mainly used in hair care products for hair setting.
PVP/VA Copolymer does not allow the shafts to absorb any further moisture and thus lose any styling done on them.
PVP/VA Copolymer also forms a thin coat on hair that helps them retain its shape.

Decorative cosmetics:
PVP/VA Copolymer is also added to cosmetic products like nail polish and mascara because it dries up to form a film that inhibits the surface from absorbing any moisture and thus keeps it styled impeccably.


ORIGIN OF PVP/VA COPOLYMER:
PVP/VA Copolymer is made by the monomers of vinylpyrrolidone and vinyl acetate.
PVP/VA Copolymer appears as a white free-flowing powder and is the result of very small chemical compounds combining to form a large molecule.


WHAT DOES PVP/VA COPOLYMER DO IN A FORMULATION?
• Film forming
• Hair fixing
• Moisturising

SAFETY PROFILE OF PVP/VA COPOLYMER:
PVP/VA Copolymer has been termed safe for use under the prescribed concentrations - any higher than that can cause side effects like irritation to the skin and scalp.
A patch test should be done before full usage.
Further, PVP/VA Copolymer is vegan.


SAFETY INFORMATION ABOUT PVP/VA COPOLYMER:

First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.
PVP/VA COPOLYMER
DESCRIPTION:
PVP/VA Copolymer is a film former produced by the free-radical polymerization on monomers in 70/30 VP/VA ratio.
PVP/VA Copolymer is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water.

CAS: 25086-89-9
European Community (EC) Number: 607-540-1
IUPAC Name: ethenyl acetate;1-ethenylpyrrolidin-2-one
Molecular Formula: C10H15NO3


SYNONYMS OF PVP/VA COPOLYMER:

Copovidone,Kollidon VA64,poly(V-co-V-Ac),poly(vinyl pyrrolidone-co-vinyl acetate),poly(vinylpyrrolidone-co-vinyl-acetate),polyvidone-vinylacetate 64,PVP VA64,PVP-VA,PVPVA 64,25086-89-9,PVP-VA,Polectron 845,Luviskol VA 28I,Luviskol VA 37E,Luviskol VA 64,Kolima 10,Kolima 35,ethenyl acetate;1-ethenylpyrrolidin-2-one,Gantron S 860,Ganex E 535,GAF-S 630,Luviskol VA 281,Luviskol VA 28 I,Luviskol VA 37 E,I 535,I 635,I 735,S 630,MFCD00134018,Copovidone (Technical Grade),Luviskol VA-64,SCHEMBL29127,vinylpyrrolidone/vinyl acetate,Vinyl Pyrrolidone/Vinyl Acetate,N-vinylpyrrolidone/vinyl acetate,1-vinylpyrrolidone vinyl acetate,FYUWIEKAVLOHSE-UHFFFAOYSA-N,BCP31918,NSC114023,NSC114024,NSC114025,NSC114026,AKOS015898247,NSC-114023,NSC-114024,NSC-114025,NSC-114026,1-ethenylpyrrolidin-2-one; ethenyl acetate,ethenyl ethanoate; 1-ethenylpyrrolidin-2-one,FT-0659810,A817635,acetic acid ethenyl ester; 1-ethenyl-2-pyrrolidinone,733045-73-3



PVP/VA Copolymer acts as a film forming agent.
PVP/VA Copolymer forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal.
PVP/VA Copolymer offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility.

PVP/VA Copolymer finds application in formulating hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers.
PVP/VA Copolymer is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in ethanol.
PVP/VA Copolymer is produced by the free-radical polymerization of monomers in the ratio of 70/30 (VP/VA).


PVP/VA Copolymer is a film forming ingredient that works well in both skin/hair care products and cosmetics.
PVP/VA Copolymer forms a film on the surface to trap and retain moisture for longer durations.

PVP/VA Copolymer is found primarily in most hair care products, mascaras, nail polishes and also some skin care products.
The full form of VP/VA Copolymer is vinylpyrrolidone/vinyl acetate copolymer, which appears as a white powder in its raw form.



FEATURES & BENEFITS OF PVP/VA COPOLYMER:
PVP/VA Copolymer is Strong, stiff hold
PVP/VA Copolymer has Enhanced high humidity curl retention

PVP/VA Copolymer is has Good propellant compatibility
PVP/VA Copolymer is Vegan suitable


CHEMICAL AND PHYSICAL PROPERTIES OF PVP/VA COPOLYMER:
Form: Aqueous viscous liquid
VP/VA Ratio: 70/30
50% solution in water
Color (APHA) - as is: 80 max.
K-Value (1% in EtOH): 25-34
Use Level: 0.5 - 6.0% solids
Primary Chemistry: VP/VA Copolymer
Molecular Weight
197.23 g/mol
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
3
Exact Mass
197.10519334 g/mol
Monoisotopic Mass
197.10519334 g/mol
Topological Polar Surface Area
46.6Ų
Heavy Atom Count
14
Formal Charge
0
Complexity
186
Isotope Atom Count
0
Defined Atom Stereocenter Count
0
Undefined Atom Stereocenter Count
0
Defined Bond Stereocenter Count
0
Undefined Bond Stereocenter Count
0
Covalently-Bonded Unit Count
2
Compound Is Canonicalized
Yes
SAFETY INFORMATION ABOUT PVP/VA COPOLYMER:
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product
PVP/VA I-535
PVP/VA I-535 (Polyvinylpyrrolidone Vinyl Acetate) VP/VA Copolymer. PVP-VA I-535 acts as a film forming agent. PVP-VA I-535 is produced by the free-radical polymerization of monomers in the ratio of 50/50 (VP/VA). Shows good propellant compatibility. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. PVP-VA I-535 finds application in formulating hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. PVP-VA I-535 offers strong & stiff hold, enhanced high humidity curl retention. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is a film former produced by the free-radical polymerization on monomers in 70/30 VP/VA ratio. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. PVP/VA W-Series copolymers are linear, random copolymers produced by the free-radical polymerization of the monomers varying from 30/70 to 40/60 vinyl acetate (VA) to vinylpyrrolidone (VP), supplied in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. What is PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer? PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) S copolymer PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) S-630 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W copolymers PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-735 copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-735 copolymer, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-535 copolymer and PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E- 335 copolymer. In general, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymer is less hygroscopic than PVP. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) S-630 copolymer is used as a binder to allow the aqueous processing of photoresists. Storage and handling PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E- and I-series To fit more application areas, the E- and I-series of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W copolymers PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-735 is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-735, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-535 and PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-335. In general, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is less hygroscopic than PVP. Abstract In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate), N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) used in industrial, specialty and imaging coatings, printing inks and paints. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene.[2] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives.[2] Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone.[1] What is PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer? PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-735, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Storage and handling PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E- and I-series To fit more application areas, the E- and I-series of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-735, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W copolymers PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-735 is a 70/30 copolymer of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) and vinyl acetate supplied as a 50% solution in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) W-735 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-735, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-535 and PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) E-335. In general, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is less hygroscopic than PVP. Uses Medical PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as an adhesive in glue stick and hot-melt adhesives PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as an emulsifier and disintegrant for solution polymerization PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in increase resolution in photoresists for cathode ray tubes (CRT)[9] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a thickening agent in tooth whitening gels[10] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as an additive to Doro's RNA extraction buffer[citation needed] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a liquid-phase dispersion enhancing agent in DOSY NMR [11] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is used in as a stabilizing agent in all inorganic solar cells[13] Other uses PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is useful for making an aqueous mounting medium.[16] PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) component of the solution.[19] A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.[20] In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP.[21] Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) instead.[22][23] Properties of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,[24] as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).[25] When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) and its oxidized hydrolyzate. History of PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. VP/VA Copolymer. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is a film former. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is produced by the free-radical polymerization of monomers in the ratio of 70/30 (VP/VA). PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) copolymer in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) is a film former produced by the free-radical polymerization on monomers in 70/30 VP/VA ratio. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. PVP/VA W-Series copolymers are linear, random copolymers produced by the free-radical polymerization of the monomers varying from 30/70 to 40/60 vinyl acetate (VA) to vinylpyrrolidone (VP), supplied in water. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA I-535 (polyvinylpyrrolidone vinyl acetate) copolymers
PVP/VA W-635
PVP/VA W-635 VP/VA Copolymer. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is a film former. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is produced by the free-radical polymerization of monomers in the ratio of 70/30 (VP/VA). PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) ) copolymer in water. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is a film former produced by the free-radical polymerization on monomers in 70/30 VP/VA ratio. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. PVP/VA W-Series copolymers are linear, random copolymers produced by the free-radical polymerization of the monomers varying from 30/70 to 40/60 vinyl acetate (VA) to vinylpyrrolidone (VP), supplied in water. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. What is PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) Copolymer? PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) S copolymer PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) S-630 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W copolymers PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-735 copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-735 copolymer, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-535 copolymer and PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E- 335 copolymer. In general, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymer is less hygroscopic than PVP. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) S-630 copolymer is used as a binder to allow the aqueous processing of photoresists. Storage and handling PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E- and I-series To fit more application areas, the E- and I-series of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W copolymers PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-735 is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-735, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-535 and PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-335. In general, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is less hygroscopic than PVP. Abstract In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) ) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) , N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) used in industrial, specialty and imaging coatings, printing inks and paints. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene.[2] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives.[2] Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone.[1] What is PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) Copolymer? PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-735, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Storage and handling PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) ) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E- and I-series To fit more application areas, the E- and I-series of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-735, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W copolymers PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-735 is a 70/30 copolymer of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) and vinyl acetate supplied as a 50% solution in water. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) W-735 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-735, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-535 and PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) E-335. In general, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is less hygroscopic than PVP. Uses Medical PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as an adhesive in glue stick and hot-melt adhesives PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as an emulsifier and disintegrant for solution polymerization PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in increase resolution in photoresists for cathode ray tubes (CRT)[9] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a thickening agent in tooth whitening gels[10] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as an additive to Doro's RNA extraction buffer[citation needed] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a liquid-phase dispersion enhancing agent in DOSY NMR [11] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is used in as a stabilizing agent in all inorganic solar cells[13] Other uses PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is useful for making an aqueous mounting medium.[16] PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) component of the solution.[19] A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.[20] In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP.[21] Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) instead.[22][23] Properties of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,[24] as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).[25] When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) and its oxidized hydrolyzate. History of PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP/VA W-635 (Polyvinylpyrrolidone Vinyl Acetate) was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production.
PVP/VA W-735
PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate) VP/VA Copolymer. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is a film former. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is produced by the free-radical polymerization of monomers in the ratio of 70/30 (VP/VA). PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat)) copolymer in water. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is a film former produced by the free-radical polymerization on monomers in 70/30 VP/VA ratio. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. PVP/VA W-Series copolymers are linear, random copolymers produced by the free-radical polymerization of the monomers varying from 30/70 to 40/60 vinyl acetate (VA) to vinylpyrrolidone (VP), supplied in water. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. What is PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer? PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. Here at we do not use this ingredient in ANY of our products and especially not in our Hairspray. Our Grapefruit and Lemon Grass Hairspray is not only kind to you but is also kind to the environment by not having an aerosol and instead having an environmentally friendly trigger spray. This beautiful product contains a natural UV protector and hold factor which means no petro-chemicals, plastics or polymers. This gentle formula also means no more eye and scalp irritations. Ashland offers formulators a series of vinylpyrrolidone/vinyl acetate copolymers. Members of the PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymer series serve as primary film formers in a variety of products demanding different degrees of water resistance. These copolymers feature specific affinity for hair, skin and smooth surfaces such as wood, glass, paper, and metal, yet do not require solvents for removal. The advantages of using PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers as film formers are: • film flexibility • good adhesion • water remoistenability • hardness These properties make PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers suitable for a variety of industrial, personal care, and pharmaceutical products. The major industrial applications are in hot melt adhesives, photoresist binders and coatings for inkjet media paper, plastic film and other substrates. • Linear, random copolymers • Increasing vinyl acetate content - increasing hydrophobicity, decreasing hygroscopicity, decreasing Tg • Hydrophilic, transparent, flexible thermoplastic, oxygen permeable films which adhere to glass, plastics and metals • Soluble in alcohols, esters, and ketones, insoluble in ethers and aliphatic hydrocarbons. Soluble in water when VP content greater than 50% • Adhesive and cohesive properties • E = ethanol (EtOH), I = isopropanol, W = water, S = solid The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-635, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) S copolymer PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) S-630 copolymer, a white, odorless powder, is also available at a 60/40 VP/VA weight ratio. It is a high molecular weight, solvent and water soluble copolymer exhibiting a minimum critical solution temperature of approximately 70°C. Films cast from solutions are glossy, translucent and rewettable by water. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W copolymers PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-735 copolymer is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-635 copolymer is a 60/40 copolymer also supplied as a 50% aqueous solution. VA (vinyl acetate) is a more hydrophobic molecule than VP (vinylpyrrolidone). Thus increasing VA content of the copolymer causes an increase in hydrophobicity and consequently a decrease in water solubility and hygroscopicity relative to the VP homopolymer. Plasticizers and Polymers: Most PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of Films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-735 copolymer, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-535 copolymer and PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E- 335 copolymer. In general, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymer is less hygroscopic than PVP. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are widely used for their excellent film forming properties in the following applications and markets: In hot melt adhesives, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are used in a variety of water remoistenable or water removable adhesives as listed below. Here they offer the formulators performance advantages in film flexibility, adhesiveness and water remoistenability. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are also used in coatings for ink-jet media including paper, plastic films and other substrates to enhance dye receptivity. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) S-630 copolymer is used as a binder to allow the aqueous processing of photoresists. Storage and handling PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E- and I-series To fit more application areas, the E- and I-series of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-635, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W copolymers PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-735 is a 70/30 copolymer of PVP and vinyl acetate supplied as a 50% solution in water. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-635 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-735, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-535 and PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-335. In general, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is less hygroscopic than PVP. Abstract In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat)) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat), N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as copolymers could be customized to provide optimal drug-polymer solubility and physical stability. PVP/VA Copolymer. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) acts as a film forming agent. It forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal. It offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) finds application in formulating alcohol-free and hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers. It is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in water. It is produced by the free-radical polymerization of monomers in the ratio of 60/40 (VP/VA). PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) thermoplastic, linear, random vinylpyrrolidone/vinylacetate copolymer. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) used in industrial, specialty and imaging coatings, printing inks and paints. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) provides transparency, flexibility, oxygen permeability and adhesion to glass, plastics and metals. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is produced industrially by vinylation of 2-pyrrolidone, i.e. the base-catalyzed reaction with acetylene.[2] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is the precursor to polyvinylpyrrolidone (PVP), an important synthetic material. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) monomer is commonly used as a reactive diluent in ultraviolet and electron-beam curable polymers applied as inks, coatings or adhesives.[2] Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone.[1] What is PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer? PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer is the ingredient found in most mainstream hair care products that provides the hold factor. So it is very common in most Hairsprays but also found in gel's, wax's, pomades and styling creams. It is a synthetic ingredient that is derived from petroleum. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) (also known as Polyvinylpyrrolidone) was the main ingredient in the first really successful hairsprays in the early 1950s. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) tended to absorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. (See image below) Unfortunately no one was aware of the dangers that came with this Polymer. If particles of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) Copolymer are inhaled, it can cause damage to the lungs in sensitive individuals. It can be considered toxic, since particles may contribute to foreign bodies in the lungs of people. Up until a few years ago, this ingredient was considered safe to use however now it is definitely an ingredient that is better to avoid. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E and I copolymer Series To fit many application areas, the E and I series of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as 50% solutions in ethanol and in isopropanol2, respectively. There are four distinct copolymers in the E group: E- 335, E-535, E-735, E-735, and three in the I group: 1-335, 1-535, 1-735. Each differs in monomer ratio and, therefore, in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility, and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios. Storage and handling PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are stable for at least one year under normal conditions of storage but strict precautions should be taken to avoid moisture pickup. The E and I series have flash points in the range of 50-55°F (10-13°C) and are classified as flammable (DOT Flammable) materials. For safety reasons and to prevent moisture pickup due to drum breathing with changes in temperature, store in a dry place below 100°F (38°C) and repack or use in explosion- proof facilities. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) polymers produce transparent, flexible, oxygen permeable films which adhere to glass, plastics and metals. Polyvinylpyrrolidone/vinyl acetate (PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat)) resins are linear, random copolymers produced by the free-radical polymerization of the monomers in ratios varying from 70/30 to 30/70 vinyl acetate to vinylpyrrolidone. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as white powders or clear solutions in ethanol, isopropanol and water. Polymers in the four ranges of vinylpyrrolidone content (30, 50, 60 and 70 percent), are produced in ethanol or isopropanol. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers with 60 and 70 percent vinylpyrrolidone content are available as solids or as 50 percent aqueous solutions. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E- and I-series To fit more application areas, the E- and I-series of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are available as 50% solutions in ethanol and in isopropanol**, respectively. There are four distinct copolymers in the E group: E-335, E-535, E-735, E-735, and three in the I group: I-335, I-535, I-735. Each differs in monomer ratio, and therefore in properties - water sensitivity, viscosity, softening point, etc. This affords formulators considerable flexibility in creating new products for specific applications. The transparent films formed by all of these copolymers are characterized by adhesion, luster, hardness and water rewettability. Good compatibility with many modifiers and plasticizers permits wide freedom in formulation and broadens the range of hygroscopicity, film flexibility and abrasion resistance. Unmodified copolymers having the lower ratios of vinylpyrrolidone to vinyl acetate exhibit more moisture resistance than products with high ratios of VP to VA. The PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W copolymers PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-735 is a 70/30 copolymer of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) and vinyl acetate supplied as a 50% solution in water. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) W-735 is a 60/40 copolymer also supplied as a 50% aqueous solution. They are ideal nonionic fixative resins for alcohol-free mousses and gels. They offer formulators outstanding curl and style retention properties without build-up, flaking or dulling of hair. Plasticizers and polymers: Most PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) copolymers are compatible with a variety of nonionic and cationic polymers. Compatibility with anionic copolymers can be achieved through neutralization prior to mixing. Hygroscopicity of films: The inherent water sensitivity of PVP/ VA copolymer films varies with the monomer ratio. Typical data are shown below for PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-735, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-535 and PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) E-335. In general, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is less hygroscopic than PVP. Uses Medical PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) was used as a plasma volume expander for trauma victims after the 1950s.It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used as a binder in many pharmaceutical tablets;[2] it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.[3] The long-term effects of crospovidone or povidone within the lung are unknown.) PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.[4] This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost.[5] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Technical PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as an adhesive in glue stick and hot-melt adhesives PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as an emulsifier and disintegrant for solution polymerization PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in increase resolution in photoresists for cathode ray tubes (CRT)[9] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in aqueous metal quenching for production of membranes, such as dialysis and water purification filters PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a thickening agent in tooth whitening gels[10] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as an additive to Doro's RNA extraction buffer[citation needed] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a liquid-phase dispersion enhancing agent in DOSY NMR [11] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly[12] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is used in as a stabilizing agent in all inorganic solar cells[13] Other uses PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.[14][15] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) is useful for making an aqueous mounting medium.[16] PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production.[17] Safety of PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,[18] and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP/VA W-735 (Polyvinylpyrrolidone Vinyl Acetate, Polivinilpirolidon Vinil Asetat) component of the solution.[19] A woman, who had previ
PVP/VA W-735 - PVP/VA W-635
PYRIDOXINE HCL, N° CAS : 58-56-0 / 12001-77-3 - Pyridoxine hydrochloride. Nom INCI : PYRIDOXINE HCL. Nom chimique : 3,4-Pyridinedimethanol, 5-hydroxy-6-methyl-, hydrochloride, N° EINECS/ELINCS : 200-386-2 / -. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
PVP-VA E-535
DESCRIPTION:

PVP-VA E-535 acts as a film forming agent.
PVP-VA E-535 is produced by the free-radical polymerization of monomers in the ratio of 50/50 (VP/VA).

PVP-VA E-535 is a 50% solution of linear and random polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer in ethanol.


CAS Number:64-17-5
European Community (EC) Number: 607-540-1
Molecular Formula: C10H15NO3
IUPAC Name: ethenyl acetate;1-ethenylpyrrolidin-2-one


SYNONYMS OF PVP-VA E-535:
Copovidone,Kollidon VA64,poly(V-co-V-Ac),poly(vinyl pyrrolidone-co-vinyl acetate),poly(vinylpyrrolidone-co-vinyl-acetate),polyvidone-vinylacetate 64,PVP VA64,PVP-VA,PVPVA 64,25086-89-9,PVP-VA,Polectron 845,Luviskol VA 28I,Luviskol VA 37E,Luviskol VA 64,Kolima 10,Kolima 35,ethenyl acetate;1-ethenylpyrrolidin-2-one,Gantron S 860,Ganex E 535,Copovidone (Technical Grade),GAF-S 630,Luviskol VA 281,Luviskol VA 28 I,Luviskol VA 37 E,I 535,I 635,I 735,S 630,MFCD00134018,Luviskol VA-64,SCHEMBL29127,vinylpyrrolidone/vinyl acetate,Vinyl Pyrrolidone/Vinyl Acetate,N-vinylpyrrolidone/vinyl acetate,1-vinylpyrrolidone vinyl acetate,BCP31918,NSC114023,NSC114024,NSC114025,NSC114026,AKOS015898247,NSC-114023,NSC-114024,NSC-114025,NSC-114026,1-ethenylpyrrolidin-2-one; ethenyl acetate,ethenyl ethanoate; 1-ethenylpyrrolidin-2-one,FT-0659810,50% in ethanol pound copolymer,3:7 pound(c),A817635,acetic acid ethenyl ester; 1-ethenyl-2-pyrrolidinone,733045-73-3

PVP-VA E-535 offers strong & stiff hold, enhanced high humidity curl retention and good propellant compatibility.
PVP-VA E-535 forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal.
PVP-VA E-535 finds application in formulating hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers.


Series of copolymers covering a range of VP/VA ratios.
PVP/VA S-630 is a white powder while the others are 50% solutions in ethanol (E), isopropanol (I) or water (W).

PVP-VA I-535 by Ashland Specialty Chemical acts as a film forming agent.
PVP-VA E-535 is produced by the free-radical polymerization of monomers in the ratio of 50/50 (VP/VA).
PVP-VA E-535 Shows good propellant compatibility.

PVP-VA E-535 forms transparent, flexible and oxygen permeable films which adhere to glass, plastic and metal.
PVP-VA I-535 finds application in formulating hair care products like hairsprays, colorants, mousses, gels, styling lotions/creams and novelty stylers.
PVP-VA E-535 offers strong & stiff hold, enhanced high humidity curl retention.



CHEMICAL AND PHYSICAL PROPERTIES OF PVP-VA E-535:
Molecular Weight
197.23 g/mol
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Hydrogen Bond Donor Count
0
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Hydrogen Bond Acceptor Count
3
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Rotatable Bond Count
3
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Exact Mass
197.10519334 g/mol
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Monoisotopic Mass
197.10519334 g/mol
Computed by PubChem 2.2 (PubChem release 2021.10.14)
Topological Polar Surface Area
46.6Ų
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Heavy Atom Count
14
Computed by PubChem
Formal Charge
0
Computed by PubChem
Complexity
186
Computed by Cactvs 3.4.8.18 (PubChem release 2021.10.14)
Isotope Atom Count
0
Computed by PubChem
Defined Atom Stereocenter Count
0
Computed by PubChem
Undefined Atom Stereocenter Count
0
Computed by PubChem
Defined Bond Stereocenter Count
0
Computed by PubChem
Undefined Bond Stereocenter Count
0
Computed by PubChem
Covalently-Bonded Unit Count
2
Computed by PubChem
Compound Is Canonicalized
Yes



SAFETY INFORMATION ABOUT PVP-VA E-535:
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.




PYLENE GLYCOL
Pylene glycol is a specific raw material used by manufacturers of green cosmetic products.
Pylene glycol is a synthetic compound in the chemical group called 1,2 glycol.
Pylene glycol is a clear, slightly viscous, colorless, odorless liquid and soluble in water.

CAS Number: 5343-92-0
EC Number: 226-285-3
Molecular Formula (Pylene glycol): C5H12O2
Molecular Weight: 104.15 g/mol

1,2-Pentanediol, Pentane-1,2-diol, 1,2-Dihydroxypentane, 5343-92-0, Pylethylene Glycol, glycol, Glycol, Green Protector, 1,2-Dihydroxypentane, MFCD00010736, 1,a2-aPentanediol, EINECS 226-285-3, BRN 1719151, AI3-03317, NSC 513, 108340-61-0, ACMC-20mbh5, ACMC-1AXDB, EC 226-285-3, 1,2-Pentanediol, 96%, SCHEMBL62155, 3-01-00-02191 (Beilstein Handbook Reference), 1,2-Pentanediol, (2R)-, NSC513, WCVRQHFDJLLWFE-UHFFFAOYSA-, DTXSID10863522, NSC-513, AKOS009156977, AS-40006, SY032914, CS-0017222, FT-0606477, FT-0690841, P1178, 3-(2-NITRO-PHENYL)-ISOXAZOL-5-YLAMINE, 98484-EP2372017A1, A829586, Q3374899

Pylene glycol is a synthetic compound that belongs to the chemical group called 1,2 glycol.
Pylene glycol is a transparent liquid, slightly viscous, colorless, odorless and soluble in water as well as oil.

Pylene glycol is naturally derived from sugar cane.
Pylene glycol is used in many cosmetic products.
Pylene glycol is also referred to by the names 1,2- dihydroxypentane, 1,2-pentanediol, and pentane-1,2-diol.

Pylene glycol is a natural polyhydric alcohol and therefore has the ability to bind water.
This property can be used to moisturize the skin.

Skin is better hydrated, looks significantly brighter and feels better.
At the same time, Pylene glycol naturally helps inhibit the growth of microorganisms on the skin and can therefore be used as an alternative preservative.

Pylene glycol is soluble in water, acts as an extractant and solvent, is biodegradable, can be used in the pH range of 3-10, and is colorless and odorless.
Pylene glycol is made from natural sugar cane bagasse and is therefore ideal for natural cosmetics.

Pylene glycol is a specific raw material used by manufacturers of green cosmetic products.
The most important feature of this preservative is that Pylene glycol is obtained from agricultural products. For example, corn and sugar cane.
Pylene glycol is also commonly called Pentylene glycol.

Pylene glycol is a synthetic compound in the chemical group called 1,2 glycol.
There are two alcohol groups attached to the 1st and 2nd carbon.

Pylene glycol is a clear, slightly viscous, colorless, odorless liquid and soluble in water.
Pylene glycol is also obtained naturally from sugar cane.
Pylene glycol is also fat-soluble and used in many cosmetic products.

Pylene glycol is a natural diol derived from sugar cane bagasse's remaining waste, but a cheap synthetic analog also available in the market.
This multifunctional ingredient is a colorless, odorless, slightly viscous liquid that serves as a moisturizer, solubilizer, preservative, emulsion stabilizer, etc.

Pylene glycol is a well-known moisturizer due to the humectant properties of the molecule, proven scientifically by in-vivo studies.
Also, Pylene glycol is an excellent solubilizer, as Pylene glycol helps to solubilize many challenging ingredients, including fragrances.
Pylene glycol can also increase the clarity of translucent formulations like aqueous gels and toners.

Pylene glycol protects products from harmful bacteria and improves shelf-life, working synergistically with many preservatives, boosting their efficacy and thus helping to reduce their dose.
In addition, Pentane-1,2-diol stabilizes formulations, especially oil-in-water emulsions (as a co-emulsifier with an HLB value of 8.4), which helps reduce the particle size of emulsions, thus providing less coalescence and better stability.

This diol enhances the bioavailability of other ingredients (proven by ex-vivo study), boosting the activity of both lipophilic and hydrophilic actives.
Furthermore, Pylene glycol improves pigment distribution, makes whiter and shinier emulsions, promotes penetration into the skin, and improves the efficiency of cooling agents.

Incorporated in sun care applications, Pylene glycol enhances water resistance and the entire safety of the formula used even in SPF 50+ products.
Pylene glycol also can control the viscosity and texture of the final product.
In skin and hair care products and decorative cosmetics, Pylene glycol concentration can reach up to 5%.

Pylene glycol is used in formulations as an emulsion stabilizer, solvent and a broad spectrum antimicrobial.
Pylene glycol also helps moisturize and has a light, elegant feel to it.

Pylene glycol will leave the skin soft and smooth.
Pylene glycol can help to solubilize and stabilize lipophilic ingredients in aqueous solutions.

Pylene glycol shows a broad spectrum antimicrobial activity against yeasts, moulds, and bacteria.
Pylene glycol disturbs the integrity of microbial cell membranes, a mechanism of action that is unlikely to be affected by resistance.

Being a non-ionic ingredient, the anti-microbial effect of Pylene glycol is largely pH-independent.
Pylene glycol can act as a standalone antimicrobial protection agent.

In addition, Pylene glycol can be easily combined with other classical or non-classical antimicrobial agents, to boost their preservation effects.
Pylene glycol a synthetic, low molecular weight solvent and skin-conditioning agent.

Pylene glycol is commonly used as a skin conditioning agent, due to Pylene glycol (1,2 pentanediol)’s ability to help the skin attract and retain moisture.
As such, Pylene glycol falls into a category of skin care ingredients called humectants.

Pylene glycol is synthetic humectant used in cosmetics and beauty products that is also secondarily used as a solvent and preservative.
Pylene glycol is both water and oil-soluble and Pylene glycol can have moisture-binding and Pylene glycol can have antimicrobial properties.

Pylene glycol also has some anti microbial properties, which can make Pylene glycol a valuable addition to products that are susceptible to contamination of microorganisms.
Pylene glycol is used as a solvent in chemicals produced to soften and smooth the skin in the cosmetic industry.

Pylene glycol is used in sunscreens.
Pylene glycol is a skin moisturizer.

Pylene glycol preserves moisture in the skin, helps to preserve elasticity and moisture of the skin.
Pethylene glycol has an antimicrobial effect.
Pethylene glycol Lipid and dissolved lipophilic actives can be used in penetration enhancing creams and lotions.

Pethylene glycol Hydrogenated phosphotidylcholine is a high viscosity base composed of protected lipids and glycerol.
Pylene glycol is an antimicrobial, chemically produced emulsifier.

Pentilen Glycol has been included in the German Pharmaceutical Codex since 2009.
However, Pylene glycol is not only approved in Germany, but Pylene glycol is also approved as a cosmetic active ingredient worldwide.

Pylene glycol is initially based on the immature juice of sugar beets, while synthetic production is standard.
Pylene glycol is used in day and night creams.

Pylene glycol is a complex system for paraben esters-free cosmetic and personal care products.
Pylene glycol is a multifunctional agent that has excellent efficacy as a biostatic and fungistatic agent.
Pylene glycol can reduce irritation and sensitivity and has a wide broad-spectrum antimicrobial effect.

Pylene glycol is an ingredient which is found naturally in some plants (such as sugar beets and corn cobs) but is most frequently lab-derived when used in cosmetics.
Pylene glycol is a humectant, meaning it binds well to water, making Pylene glycol a good hydrating agent and solvent to aid penetration of other ingredients.
Pylene glycol also helps improve the texture of skin care formulas and has mild preservative properties when used in amounts between 1-5%.

There have been some reports that Pylene glycol (along with other glycols) is a skin sensitizer; however, as with many ingredients, the amount and how it’s used are key.

Pylene glycol is a chemical compound commonly used in the cosmetics and personal care industry as a skincare and beauty product ingredient.
Pylene glycol is also known by its chemical formula C5H12O2.
Pylene glycol is a type of glycol, which is a class of organic compounds that contain multiple hydroxyl (OH) groups.

Pylene glycol proves multifunctional in skincare and cosmetic formulations, offering a spectrum of benefits.
With its hydrating properties, Pylene glycol serves as an effective moisturizer, aiding in maintaining skin moisture levels, particularly beneficial for individuals with dry or dehydrated skin.

Acting as a solvent, Pylene glycol ensures a consistent and uniform texture in products by dissolving other ingredients.
Pylene glycol antimicrobial properties contribute to its role as a preservative, preventing the growth of bacteria and fungi and enhancing Pylene glycol's longevity.

Recognized for Pylene glycol mild and non-irritating nature, Pylene glycol is considered suitable for sensitive skin.
Additionally, Pylene glycol facilitates the penetration of active ingredients, amplifying the efficacy of skincare formulations.
Overall, Pylene glycol is a versatile ingredient, addressing various aspects of skincare, from hydration and preservation to compatibility with different skin types.

Pylene glycol is generally recognized as safe for use in cosmetics and skincare products when used in accordance with regulations and guidelines.
However, as with any ingredient, individual reactions or sensitivities may vary, so it's essential to check Pylene glycol's ingredients list and perform a patch test if you have sensitive skin or allergies.

Uses of Pylene glycol:
Pylene glycol is used as an emulsion stabilizer, humectant, solvent and a broad-spectrum antimicrobial.
Pylene glycol improves texture of the product.

Pylene glycol has all the characteristics of a solvent.
Pylene glycol is not reactive and can dissolve many other compounds.

Pylene glycol is also known to have antimicrobial properties.

Pylene glycol offers a double advantage:
Pylene glycol protects the skin from harmful bacteria, which could otherwise cause body odor and acne problems on the skin.
Secondly, Pylene glycol protects the product from any microbial growth, so Pylene glycol can show the same quality during its use and shelf life.

Skin care:
Due to the two -OH groups, Pylene glycol has a natural tendency to attract water.
Pylene glycol also retains water, which is especially helpful for dry skin.

Pylene glycol is used as a humectant and skin conditioning agent, for Pylene glycol ability to retain moisture.
Pylene glycol is used in moisturizer, baby sunscreen, around-eye cream, antiperspirant/deodorant, serums & essences, hand cream, anti-aging, facial moisturizer/treatment, detanning products, bath oil/salts/soak, body oil, body firming lotion, cuticle treatment, body wash/cleanser, tanning oil, recreational sunscreen

Hair care:
Pylene glycol is used in various hair care products such as hair treatment/serum, hair spray, hair styling aide, shampoo, detangler, beard care, shaving cream, beard oil, conditioner, hair color and bleaching, styling gel/lotion, mask, setting powder/spray

Decorative cosmetics:
Pylene glycol is used in cosmetics such as lipstick, concealer, eye shadow, foundation, CC cream, blush, lip balm, facial powder, bronzer/highlighter, lip gloss, BB cream, makeup primer, brow liner, lip liner, eye liner, lip plumper, lip balm, makeup remover

Uses Area of Pylene glycol:
Pylene glycol is used as a solvent in chemicals produced in the cosmetic industry to soften and smooth the skin.
Pylene glycol has a softening and smoothing effect in this area of use.

Pylene glycol is used together with steroidal hormones in the manufacture of dermatological products.
In these applications, 1,3-butylene glycol and Mono Pentylene glycol are also used as solvents.

This is because 1,3-butylene glycol and Mono Pentylene glycol do not have completely toxic effects.
Pylene glycol is used by combining anti-inflammatory hydrocortisone with Pentylene glycol to relieve minor skin irritation, temporary itching and inflammation.

Pylene glycol is used in the production of allergy medications.
Pylene glycol has antimicrobial properties because Pylene glycol is Dihydric Alcohol.

Pylene glycol helps prevent unwanted microorganisms due to Pylene glycol antimicrobial effect.
Pylene glycol is preferred in the production of quality cosmetic products because Pylene glycol allergic effects are very low.

Pylene glycol is used in the manufacture of daily skin care products due to Pylene glycol moisturizing effect on the skin.
By retaining water on the skin, Pylene glycol makes the skin more vibrant, smooth and plump.

Pylene glycol is used as a solvent in chemicals produced to soften and smooth the skin in the cosmetics industry.
Pylene glycol has a softening and smoothing effect in this area of ​​use.

Pylene glycol is used together with steroidal hormones in the manufacture of dermatological products.
In these applications, Pylene glycol and Mono Pentylene glycol are also used as solvents.

This is because Pylene glycol and Mono Pentylene glycol do not have exactly the toxic effects.
Pylene glycol is used to relieve minor skin irritation, temporary itching and inflammation, by combining the anti-inflammatory hydrocortisone with pylenylene glycol.

Pylene glycol is used in the production of allergy medicines.
Pylene glycol has antimicrobial properties due to being dihydric alcohol.
Due to Pylene glycol antimicrobial effect, Pylene glycol helps to prevent unwanted microorganisms.

Pylene glycol is preferred in the manufacture of quality cosmetic products because of Pylene glycol very low allergic effects.
Pylene glycol is used in the manufacture of daily skin care products due to its moisturizing effect on the skin.
By keeping the water on the skin, Pylene glycol makes the skin more lively, smooth and full.

Applications of Pylene glycol:
Pylene glycol has a wide range of applications.
Intermediate finds applications in Initial product for chemical syntheses, Inks and coatings, Plasticizers and Solvent, Industrial chemicals.

Pylene glycol is used as a plasticizer in cellulose products and adhesives.
Pylene glycol is used as a brake fluid additive.

Pylene glycol reacts with 3,4-dihydro-2H-pyran to get 5-tetrahydropyran-2-yloxy-pentan-1-ol.
Pylene glycol is also used to prepare polyesters for emulsifying agents and resin intermediates.

Pylene glycol is used in ink, toner and colorant products.
In addition to this, Pylene glycol is used in brake fluid compositions.

Pylene glycol is used to produce materials made of polyester or polyurethane, for the manufacturing of monomers, for the manufacture of polyester polyols, polycarbonatedioles and acrylic monomers, for the production of delta valerolactone and for molecules that act as reactive diluents, for the production of halogenated substances and for the production of adhesives, putties and sealing compounds, cleaners and auxiliary agents.
Pylene glycol is used in the processes to produce hydrogen, hydrogen peroxide, sodium perborate and peroxyacetic acid and as an intermediate for pharmaceutical products.
Pylene glycol is used as an ingredient for the production of polymeric thickeners, plasticizers for polyvinyl chloride, sizing agents, surfactants, for starches and chemically modified starch for application in the paper, textile and food industry, for personal hygiene products like shampoo, creams, and for paints.

Benefits of Pylene glycol:
Pylene glycol naturally tends to attract water because Pylene glycol has two -OH groups.
Pylene glycol also retains water, which is especially beneficial for dry skin.

Pylene glycol is used as a humidifier due to its moisture retention capacity.
Pylene glycol has all the properties of a solvent.

Pylene glycol is non-reactive and can dissolve many other compounds.
As mentioned before, due to Pylene glycol ability to naturally retain moisture in the skin, Pylene glycol also nourishes the skin and hair.

Pylene glycol is also known to have antimicrobial properties.
Pylene glycol offers a double advantage – Pylene glycol protects the skin from harmful bacteria that can otherwise cause body odor and acne problems on the skin.

Secondly, Pylene glycol protects the product from microbial growth, so that Pylene glycol can maintain the same quality throughout its use and shelf life.
Pylene glycol is used in the formulations of creams, lotions, moisturizers, cleansers and other skin care products.

Pylene glycol offers several benefits when used in skincare and cosmetic products:

Moisturization:
Pylene glycol helps to hydrate the skin by retaining moisture, making Pylene glycol beneficial for individuals with dry or dehydrated skin.

Solvent:
Pylene glycol serves as a solvent for various cosmetic ingredients, ensuring that the product has a uniform texture and consistency.

Preservation:
Pylene glycol has antimicrobial properties, which help prevent the growth of harmful microorganisms like bacteria and fungi in cosmetic products, extending their shelf life.

Skin-Friendly:
Pylene glycol is known for being mild and non-irritating, making Pylene glycol suitable for sensitive skin types and reducing the risk of skin irritation or allergic reactions.

Enhanced Ingredient Penetration:
Pylene glycol can improve the absorption of other active ingredients into the skin, increasing the effectiveness of skincare formulations.

Peoduction of Pylene glycol:
Pylene glycol is produced synthetically from corn and sugar cane.

Origin of Pylene glycol:
Pylene glycol is based on by-products from manufacturing processes based on sugarcane residues and corn spindles.
However, Pylene glycol is manufactured in the lab as the consumption is relatively high.

Effect of Pylene glycol in the formulation:
antimicrobial
Emulsion stabilization
Moisturizer
Solvent

Physical And Chemical Properties of Pylene glycol:
Pylene glycol is a physically colorless oil-free liquid.
The density of Pylene glycol is 0.994 g/mol.

The melting point of Pylene glycol is -18 °C.
Pylene glycol is a stable chemical.

Pylene glycol should be stored at room temperature.
Pylene glycol is soluble in water.

Safety profile of Pylene glycol:
Pylene glycol does not have any evidence to suggest hazardous to health, toxicity, or carcinogenicity.
Pylene glycol has been found to cause mild irritation to the eyes and skin in skin types that are already sensitized or prone to irritation.

Health Effect of Pylene glycol:
Pylene glycol is a semi-synthetic component.
The starting raw materials are of natural origin, but are transformed into a different form than their original state using various processes under laboratory conditions.
These are raw materials obtained without using animal sources (propolis, honey, beeswax, lanolin, collagen, snail extract, milk, etc.).

Pylene glycol is a criterion that should be taken into consideration for those who want to use vegan products.
Studies have concluded that different effects can be seen on each skin type.

For this reason, the allergy/irritation effect may vary from person to person.
However, Pylene glycol may cause reactions such as stinging, tingling, itching, redness, irritation, skin flaking and swelling, especially in people with sensitive skin types.

Identifiers of Pylene glycol:
CAS Number: 5343-92-0
Chem/IUPAC Name: 2-heptanoyloxypentyl heptanoate
EINECS/ELINCS No: 226-285-3
COSING REF No: 58983

Molecular Formula (Pylene glycol): C5H12O2
Molecular Weight: 104.15 g/mol
Chemical Name: 1,2-Pentanediol
CAS Number: 5343-92-0

Properties of Pylene glycol:
form: solution
mol wt: Mr ~1500
packaging: pkg of 10 × 4 mL
manufacturer/tradename: Roche
shipped in: wet ice
storage temp.: 2-8°C
SMILES string: C(CO)O
InChI: 1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2
InChI key: LYCAIKOWRPUZTN-UHFFFAOYSA-N

Other Names of Pylene glycol:

IUPAC Names:
1,5-Pentanediol
1,5-pentanediol
Pentamethylene glycol
pentane,-1,5-diol
Pentane-1,5-diol
pentane-1,5-diol
Pentane-1,5-diol
pentane-1,5-diol
Pentanediol
PYRIDINE-2,6-DICARBOXYLIC ACID (DIPICOLINIC ACID)
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a chemical compound which plays a role in the heat resistance of bacterial endospores.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is also used to prepare dipicolinato ligated lanthanide and transition metal complexes for ion chromatography.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a pyridinedicarboxylic acid carrying two carboxy groups at positions 2 and 6.

CAS: 499-83-2
MF: C7H5NO4
MW: 167.12
EINECS: 207-894-3

Synonyms
Pyridine-2,6-dicarboxylic acid 98%;2,6-Pyridinedicarboxylic acid solution, Eluent concentrate for IC, 0.02M in water;2,6-PyridinedicarboxylicAcid99%;Pyridine-2,6-dicarboxylicacid,98%;IFLAB-BB F0451-0137;LABOTEST-BB LT00848023;RARECHEM AL BO 1335;PYRIDINE;2,6-DICARBOXYLIC ACID;2,6-Pyridinedicarboxylic acid;499-83-2;PYRIDINE-2,6-DICARBOXYLIC ACID;Dipicolinic acid;2,6-Dipicolinic acid;Dipicolinate;2,6-Dicarboxypyridine;2,6-pyridinedicarboxylate;MFCD00006299;UE81S5CQ0G;CHEMBL284104;DTXSID7022043;CHEBI:46837;NSC-176;2,6-Pyridinedicarboxylic acid, 99%;NSC 176;EINECS 207-894-3;UNII-UE81S5CQ0G;2,6-pyridine dicarboxylic acid;pyridine-2;pydcH2;4ih3;pyridine carboxylate, 6d;2,6-pyridinedicarboxylic acid (dipicolinic acid);Oprea1_533632;SCHEMBL34595;2,6-DIPICLINIC ACID;MLS000080748;6-CARBOXYPICOLINIC ACID;DTXCID602043;IFLab1_001781;NSC176;Dipicolinic acid, Beauveria sp.;BDBM26116;2,6-DI-CARBOXY-PYRIDINE;Pyridinedicarboxylic acid-(2,6);HMS1417A21;HMS2231H20;HY-Y1024;Tox21_301129;AC-704;BBL012080;CCG-44216;CL0252;STK092939
;PYRIDINE-2,6-DICARBOXYLICACID;AKOS000112829;AM82010;DB04267;PS-8736;NCGC00071864-02;NCGC00255028-01;CAS-499-83-2;SMR000034075;SY001460;DB-015930;A7431;CS-0016012;EU-0033484;NS00013573;P0554;EN300-18133;Q417164;2,6-Pyridinedicarboxylic acid-2,6-dipicolinic acid;SR-01000600024-2;W-105996;L-042,134;Z57202012;B63A70CE-B9AB-4EA2-834A-6C7634226BB0;F0451-0137;2,6-Pyridinedicarboxylic acid, for ion chromatography, >=99.5% (T);InChI=1/C7H5NO4/c9-6(10)4-2-1-3-5(8-4)7(11)12/h1-3H,(H,9,10)(H,11,12

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) has a role as a bacterial metabolite.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is a conjugate acid of a dipicolinate(1-).
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) contains two carboxylic groups on each side of the pyridine ring.
Both groups form rigid 120° angles with the pyridine.
Carboxylic functionality could be complex and bind with metals under certain conditions.
Numerous metal organic frameworks, metal complexes, drugs, and CPs based on PDCA were developed for applications related to gas storage, separation, catalysis, magnetism, and sensing.

Shao et al. researched the solubility of Pyridine-2,6-dicarboxylic acid (dipicolinic acid) in methanol, ethanol, n-propanol, isopropanol, THF, 1,4-dioxane, acetic acid, formic acid, acetonitrile, ethyl acetate, and toluene.
They found that Pyridine-2,6-dicarboxylic acid (dipicolinic acid) solubility was the highest in methanol but the lowest in acetonitrile.
This certified eluent concentrate for ion chromatography is traceable by potentiometric titration to NIST Standard Reference Material.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is certified in accordance with ISO Guide 31.
All details about exact content, uncertainty, traceability and expiry date are described in the certificate.

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) Chemical Properties
Melting point: 248-250 °C (dec.)(lit.)
Boiling point: 295.67°C (rough estimate)
Density: 1.5216 (rough estimate)
Vapor pressure: Refractive index: 1.6280 (estimate)
Fp: 188 °C
Storage temp.: Store below +30°C.
Solubility H2O: 1%, clear
pka: 2.16(at 25℃)
Form: Crystalline Powder
Color: White
PH: 2.0 (5g/l, H2O, 20℃)
Water Solubility: 5 g/L (20 ºC)
BRN: 131629
InChIKey: WJJMNDUMQPNECX-UHFFFAOYSA-N
LogP: 0.3 at 25℃ and pH1.8
CAS DataBase Reference: 499-83-2(CAS DataBase Reference)
NIST Chemistry Reference: 2,6-Pyridinedicarboxylic acid(499-83-2)
EPA Substance Registry System: Pyridine-2,6-dicarboxylic acid (dipicolinic acid) (499-83-2)

Uses
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is used in the preparation of dipicolinato ligated lanthanide and transition metal complexes.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) acts as a chelating agent for chromium, zinc, manganese, copper, iron and molybdenum.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid)'s calcium-dipcolinic acid complex is used to protect deoxyribonucleic acid (DNA) from heat denaturation which enhances the DNA stability.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) plays an important role as a marker for the effectiveness of sterilization.

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is an amphoteric polar metabolite produced by many bacterial and fungal species.
Prior to its discovery as a microbial metabolite, dipicolinic acid had long been recognised as a chelating agent for many metal ions.
Wide distribution of dipicolinic acid among microbes makes Pyridine-2,6-dicarboxylic acid (dipicolinic acid) an important dereplication standard in discovery.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) reaches high concentrations (~10% w/w) in Bacillus endospores aiding heat resistance and is used in laboratories as a marker for the effectiveness of sterilisation.

Biological role
Dipicolinic acid composes 5% to 15% of the dry weight of Bacillus subtilis spores.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been implicated as responsible for the heat resistance of the endospore, although mutants resistant to heat but lacking dipicolinic acid have been isolated, suggesting other mechanisms contributing to heat resistance are at work.
Two genera of bacterial pathogens are known to produce endospores: the aerobic Bacillus and anaerobic Clostridium.

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) forms a complex with calcium ions within the endospore core.
This complex binds free water molecules, causing dehydration of the spore.
As a result, the heat resistance of macromolecules within the core increases.
The calcium-dipicolinic acid complex also functions to protect DNA from heat denaturation by inserting itself between the nucleobases, thereby increasing the stability of DNA.

Detection
The high concentration of DPA in and specificity to bacterial endospores has long made Pyridine-2,6-dicarboxylic acid (dipicolinic acid) a prime target in analytical methods for the detection and measurement of bacterial endospores.
A particularly important development in this area was the demonstration by Rosen et al. of an assay for Pyridine-2,6-dicarboxylic acid (dipicolinic acid) based on photoluminescence in the presence of terbium, although this phenomenon was first investigated for using DPA in an assay for terbium by Barela and Sherry.

Preparation
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) was synthesized by hydrolyzing of ester prepared by coupling of diethyl 4-hydroxypyridine-2,6-dicarboxylate to bis-halohydrocarbon or bis-halide.

Environmental Behavior
Simple substituted pyridines vary significantly in environmental fate characteristics, such as volatility, adsorption, and biodegradation.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is among the least volatile, least adsorbed by soil, and most rapidly degraded of the simple pyridines.
A number of studies have confirmed dipicolinic acid is biodegradable in aerobic and anaerobic environments, which is consistent with the widespread occurrence of the compound in nature.
With a high solubility (5g/liter) and limited sorption (estimated Koc = 1.86), utilization of Pyridine-2,6-dicarboxylic acid (dipicolinic acid) as a growth substrate by microorganisms is not limited by bioavailability in nature.
PYRITHIONE ZINC

Pyrithione zinc, also known by its chemical name Pyrithione zinc (ZPT), is an organic compound that contains zinc.
Its chemical formula is C10H8N2O2S2Zn.
Pyrithione zinc is commonly used as an active ingredient in various anti-dandruff shampoos and skincare products due to its antifungal and antibacterial properties.

CAS Number: 13463-41-7
EC Number: 236-671-3

Pyrithione zinc, ZPT, bis(pyridine-2-thionato)zinc, 2-pyridinethiol-1-oxide zinc salt, 1-hydroxy-2(1H)-pyridinethione zinc complex, zinc 2-mercaptopyridine-N-oxide, zinc 2-pyridinethiol 1-oxide, zinc pyridinethione, zinc bis(2-pyridylthio)oxide, zinc pyridinethiolate, zinc dithiopyridine oxide, zinc bis(2-pyridylsulfide)oxide, zinc 1-hydroxy-2-pyridinethione, zinc 2-mercaptopyridine N-oxide, zinc 2-pyridinethione 1-oxide, zinc bis(pyridine-2(1H)-thionato-O,S)Zn, Pyrithione zinc oxide, zinc bis(1-hydroxy-2(1H)-pyridinethione), zinc bis(2-pyridylsulfide)1-oxide, zinc bis(pyridin-2(1H)-thionato)1-oxide, zinc bis(2(1H)-pyridylthio)oxide, zinc 1-hydroxy-2(1H)-pyridinethione, zinc 2-hydroxymercaptopyridine N-oxide, zinc 2-mercaptopyridine-N-oxide complex, zinc 2-pyridinethione oxide, zinc bis(pyridin-2-thionato)1-oxide, zinc bis(pyridin-2-thionato-O,S)oxide, zinc bis(pyridin-2-thionato-S)oxide



APPLICATIONS


Pyrithione zinc is commonly used as an active ingredient in anti-dandruff shampoos.
Pyrithione zinc is applied topically to control and reduce flaking and itching associated with dandruff.
Skincare formulations often include Pyrithione zinc to address seborrheic dermatitis.

Medicated shampoos containing this compound are recommended for treating scalp conditions.
Pyrithione zinc is utilized in various over-the-counter hair care products for its anti-fungal properties.

Pyrithione zinc is an essential component in formulations designed to combat scalp dryness.
Pyrithione zinc is incorporated into skincare products, such as creams and lotions, for treating certain skin disorders.
Pyrithione zinc's antifungal action makes it effective in addressing fungal infections on the skin.

Pyrithione zinc is applied in the development of anti-acne skincare products due to its antimicrobial properties.
Pyrithione zinc plays a role in formulations aimed at alleviating symptoms of psoriasis and eczema.
Pyrithione zinc is found in specialized soaps formulated for individuals with sensitive or problematic skin.

Pyrithione zinc is utilized in foot care products to address fungal infections like athlete's foot.
Pyrithione zinc is included in some sunscreens and sun care products for its antibacterial attributes.
Pyrithione zinc's effectiveness against certain fungi makes it valuable in treating ringworm infections.

Pyrithione zinc is applied in the production of wound care products for its antimicrobial properties.
Hair conditioners and treatments may contain this compound to promote a healthier scalp.
Pyrithione zinc is explored for its potential in formulations targeting acne-related skin concerns.

Pyrithione zinc is utilized in personal care products for both its therapeutic and cosmetic benefits.
Pyrithione zinc is employed in the manufacturing of anti-itch creams and lotions.
Pyrithione zinc is used in skincare regimens to maintain a balanced and healthy skin microbiome.

Pyrithione zinc finds application in veterinary products for addressing fungal infections in animals.
Pyrithione zinc's broad-spectrum antimicrobial activity contributes to its versatility in formulations.
Pyrithione zinc is an active ingredient in some face cleansers and exfoliating products.

Pyrithione zinc is applied in the development of specialized products for individuals with sensitive scalps.
Pyrithione zinc is featured in various cosmetic and therapeutic formulations, showcasing its widespread applications.

Pyrithione zinc is often found in formulations for baby shampoos, providing a gentle solution for delicate scalps.
Pyrithione zinc is utilized in hair tonics and serums to promote a healthy scalp environment.
Some facial cleansers incorporate Pyrithione zinc to address skin conditions such as rosacea.

Scalp masks containing this compound are used for deep conditioning and dandruff control.
Pyrithione zinc is applied in leave-in hair products for continuous scalp care.
Pyrithione zinc is featured in anti-aging creams for its potential in maintaining skin health.

Pyrithione zinc is included in deodorants for its antimicrobial properties that help control odor.
Pyrithione zinc is used in formulations for body washes targeting fungal and bacterial skin infections.

Pyrithione zinc is employed in the textile industry to impart antimicrobial properties to fabrics.
Some laundry detergents utilize this compound to enhance their antibacterial capabilities.
Pyrithione zinc is incorporated into hand sanitizers and antibacterial hand soaps for added efficacy.

Pyrithione zinc is explored for its potential in wound dressings to prevent infections.
Pyrithione zinc is featured in foot powders and sprays to combat fungal growth and foot odor.
Pyrithione zinc is applied in the development of anti-aging skincare products for its skin-regenerating properties.

Pyrithione zinc is utilized in hair color protection products to maintain scalp health.
Pyrithione zinc finds application in pet shampoos for addressing skin conditions in animals.
Pyrithione zinc is used in the manufacturing of textiles to prevent microbial growth and odors.

Pyrithione zinc is explored for its potential use in oral care products for its antibacterial effects.
Pyrithione zinc is incorporated into wound healing ointments to prevent bacterial contamination.

Pyrithione zinc is utilized in the production of facial masks for its purifying properties.
Pyrithione zinc is applied in the development of acne spot treatments for targeted skincare.
Some antiperspirants feature Pyrithione zinc to enhance their antibacterial properties.
Pyrithione zinc is used in hair styling products to promote scalp health while styling hair.

Pyrithione zinc is incorporated into intimate hygiene products for its antimicrobial benefits.
Pyrithione zinc is featured in cosmetic formulations to address skin redness and irritation.

Pyrithione zinc is commonly added to facial moisturizers to provide both hydration and antibacterial benefits.
Pyrithione zinc finds use in exfoliating scrubs, contributing to a comprehensive skincare routine.
Some nail care products contain Pyrithione zinc to address fungal infections around the nails.

Pyrithione zinc is utilized in the formulation of anti-itch creams and lotions for various skin irritations.
Pyrithione zinc is incorporated into makeup remover solutions for its skin-conditioning properties.
Pyrithione zinc is applied in the production of scalp masks to nourish and soothe the skin.

Pyrithione zinc is found in pre-shave products to help prevent irritation and ingrown hairs.
Pyrithione zinc is used in the manufacturing of acne cleansers for its antimicrobial action.
Pyrithione zinc is added to intimate washes to maintain a balanced microbial environment.

Pyrithione zinc is utilized in barrier creams to protect the skin from external irritants.
Pyrithione zinc is employed in foot creams for its antifungal effects on cracked heels.
Pyrithione zinc is featured in anti-chafing products to prevent skin irritation during physical activities.

Pyrithione zinc is explored for potential use in scalp serums promoting hair growth.
Pyrithione zinc is applied in the development of antifungal powders for various skin regions.
The compound is used in bath additives to address skin conditions such as eczema.
Pyrithione zinc is included in antifungal ointments for treating skin infections.

Pyrithione zinc is found in wound care sprays, aiding in the prevention of infections in minor cuts and abrasions.
Pyrithione zinc is applied in the formulation of dermatologically tested sunscreens.
Pyrithione zinc is used in antiperspirant creams for its bacteria-controlling properties.

Pyrithione zinc is explored for its potential in eye creams to address concerns like redness and puffiness.
Pyrithione zinc is utilized in acne patches for targeted treatment of blemishes.
Pyrithione zinc is featured in aftershave products to soothe and protect the skin.
Pyrithione zinc is applied in the production of lip balms to address chapped or irritated lips.

The compound is found in anti-cellulite creams for its skin-toning effects.
Pyrithione zinc is included in hair growth formulations for its potential scalp health benefits.



DESCRIPTION


Pyrithione zinc, also known by its chemical name Pyrithione zinc (ZPT), is an organic compound that contains zinc.
Its chemical formula is C10H8N2O2S2Zn.
Pyrithione zinc is commonly used as an active ingredient in various anti-dandruff shampoos and skincare products due to its antifungal and antibacterial properties.

Pyrithione zinc is effective in controlling the growth of yeast-like fungi, including Malassezia, which is associated with dandruff and seborrheic dermatitis.
Pyrithione zinc works by inhibiting the growth of these microorganisms, helping to alleviate symptoms such as flaking and itching of the scalp.

Pyrithione zinc is an organometallic complex containing zinc and sulfur.
Pyrithione zinc exhibits potent antifungal properties.
Known for its role in anti-dandruff formulations, Pyrithione zinc helps control scalp conditions.
Pyrithione zinc is effective against the growth of yeast-like fungi, particularly Malassezia.

Pyrithione zinc is commonly used in shampoos designed to treat seborrheic dermatitis.
Pyrithione zinc inhibits the reproduction of microorganisms associated with skin flaking and itching.
With its antibacterial attributes, Pyrithione zinc contributes to maintaining a healthy scalp.

Pyrithione zinc is often found in skincare products aimed at treating various dermatological conditions.
Pyrithione zinc has a complex molecular structure, involving pyridine and thiol groups.

Pyrithione zinc is synthesized to create a stable and effective solution for topical applications.
Its unique formulation makes it suitable for incorporation into a variety of personal care products.
The efficacy of Pyrithione zinc lies in its ability to disrupt the cell membranes of fungi.

Pyrithione zinc acts as a preventative measure against the recurrence of dandruff and related issues.
Pyrithione zinc has been extensively studied for its safety and efficacy in skincare formulations.

Pyrithione zinc is a key ingredient in medicated shampoos recommended by dermatologists.
Pyrithione zinc's mechanism of action involves targeting specific enzymes critical for fungal growth.
Pyrithione zinc is widely recognized for its role in improving the overall health of the scalp.

As an active ingredient, it is included in various over-the-counter and prescription products.
Pyrithione zinc is known to provide relief from itching and redness associated with certain skin conditions.
Pyrithione zinc is a versatile compound used in both cosmetic and therapeutic applications.

Pyrithione zinc has been employed in the development of formulations for treating psoriasis and eczema.
Pyrithione zinc's antifungal properties make it a valuable addition to anti-acne skincare products.
Pyrithione zinc is often recommended by healthcare professionals for its efficacy in addressing skin issues.

Pyrithione zinc's ability to regulate skin flora contributes to its widespread use in skincare.
With its well-established safety profile, Pyrithione zinc remains a trusted ingredient in personal care formulations.



PROPERTIES


Chemical formula: C10H8N2O2S2Zn
Molar mass: 317.70 g/mol
Appearance: colourless solid
Melting point: 240 °C (464 °F; 513 K) (decomposition)[1]
Boiling point: decomposes
Solubility in water: 8 ppm (pH 7)



FIRST AID


Inhalation:

Move the affected person to fresh air if they have inhaled the compound.
If breathing difficulties persist, seek immediate medical attention.
Provide artificial respiration if the person is not breathing.


Skin Contact:

Remove contaminated clothing and rinse the affected skin with plenty of water.
Wash the skin thoroughly with mild soap and water.
If irritation or redness persists, seek medical attention.
If there is prolonged or massive skin contact, use appropriate protective measures to avoid further exposure.


Eye Contact:

Rinse eyes gently with water for at least 15 minutes, holding the eyelids open.
Seek medical attention if irritation, redness, or other symptoms persist.
Remove contact lenses if easily removable after rinsing.


Ingestion:

If the compound is ingested, do not induce vomiting unless instructed to do so by medical personnel.
Rinse the mouth with water and drink plenty of water.
Seek immediate medical attention.
Provide medical personnel with information on the ingested substance.


General Advice:

Keep the affected person calm.
If medical attention is needed, provide relevant information on the compound, including its name (Pyrithione zinc) and, if possible, the concentration.
In case of exposure to high concentrations or unusual symptoms, contact a poison control center or seek medical advice promptly.



HANDLING AND STORAGE


Handling:

Personal Protective Equipment (PPE):
Wear appropriate protective clothing, including gloves and safety goggles or a face shield.
Use protective equipment as specified in the product's safety data sheet (SDS) or other safety documentation.

Ventilation:
Use the compound in a well-ventilated area to minimize inhalation exposure.
If handling in an enclosed space, ensure adequate local exhaust ventilation.

Avoid Contact:
Avoid direct skin and eye contact with the undiluted substance.
In case of contact, promptly wash the affected area with water.

Handling Procedures:
Follow good industrial hygiene practices.
Do not eat, drink, or smoke while handling the substance.
Wash hands thoroughly after handling.

Spill and Leak Procedures:
In the event of a spill, contain the material and absorb with an inert material (e.g., sand or vermiculite).
Collect the spilled material in an appropriate container for disposal.


Storage:

Storage Conditions:
Store Pyrithione zinc in a cool, dry, and well-ventilated area.
Keep containers tightly closed when not in use to prevent contamination and moisture absorption.

Temperature Control:
Avoid exposure to extreme temperatures. Store at temperatures recommended by the manufacturer.

Compatibility:
Store away from incompatible materials and substances.
Follow the manufacturer's recommendations regarding compatibility with other chemicals.

Container Material:
Use containers made of materials compatible with Pyrithione zinc.
Check for container integrity regularly to prevent leaks or spills.

Handling of Containers:
Handle containers with care to prevent damage.
Do not drag or slide containers, as this may cause damage and compromise integrity.

Labeling:
Ensure proper labeling of containers with product names, hazard information, and handling instructions.
Clearly mark storage areas with appropriate signage.

Segregation:
Segregate Pyrithione zinc from incompatible substances and materials.
Follow regulations and guidelines for the storage of chemicals in your location.

Fire Precautions:
Keep away from ignition sources and open flames.
Follow fire safety regulations in the storage area.

Emergency Response Information:
Keep emergency response information, such as contact numbers for emergency services and relevant healthcare professionals, readily available.

Pyridine
Plasdone’, PVP, Polyvidone, Povidone CAS # : 9003-39-8
Pyridine-triphenylborane complex
PYRIDINE-TRIPHENYLBORANE COMPLEX; Pyridine-triphenylborane; Pyridine-triPhenylborate; Pyridine-triphenylborane(1/1); Pyridine-triphenylbo; Triphenyl(pyridin-1-iuM-1-yl)borate; T6NJ &RBR&R; Boron,triphenyl(pyridine)-, (T-4)- CAS NO:971-66-4
Pyridoxine hydrochloride
DISODIUM PYROPHOSPHATE, N° CAS : 7758-16-9 - Pyrophosphate disodique. Origine(s) : Synthétique. Nom INCI : DISODIUM PYROPHOSPHATE. N° EINECS/ELINCS : 231-835-0. Le pyrophosphate disodique se présente sous la forme d'une poudre cristalline blanche. Dans les cosmétiques, on s'en sert d'agent tampon, de chélateur et d'anti-corrosif. Ses fonctions (INCI): Anticorrosif : Empêche la corrosion de l'emballage Régulateur de pH : Stabilise le pH des cosmétiques Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques
Pyrophosphate disodique
219-574-0 [EINECS]; 2466-09-3 [RN]; Acide diphosphorique [French] [ACD/IUPAC Name]; Diphosphoric acid ; Diphosphorsäure [German] [ACD/IUPAC Name]; hydrogen pyrophosphate; MFCD00011343 [MDL number]; phosphoric anhydride; Pyrophosphic acid; Pyrophosphoric Acid; (phosphonooxy)phosphonic acid [2466-09-3] 03.09.2466 1314-56-3 [RN] 14000-31-8 [RN] 2-(5-Chloro-2-methoxyphenyl)pyrrolidine [ACD/IUPAC Name] 2',3'-Dideoxycytidine 5'-triphosphate 215-236-1 [EINECS] 2'-Deoxyadenosine 5'-triphosphate 33943-49-6 [RN] 3-methylbut-3-enyl trihydrogen diphosphate 69639-93-6 [RN] 7722-88-5 [RN] ADENOSINE-5'-DIPHOSPHATE Adenosine-5'-triphosphate ADP ATP CTP CYTIDINE-5'-TRIPHOSPHATE dCt dimethylallyl diphosphate Diphosphorsaeure DMA DPO DTP IPE MFCD02663458 [MDL number] Oxy-1,1-diphosphonic acid phosphono dihydrogen phosphate Phosphonooxyphosphonic acid Phosphoricanhydride Phosphotex POP PPV Pyrophosphoricacid Pyrophosphorsaeure THYMIDINE-5'-TRIPHOSPHATE TTP μ-oxido-bis(dihydroxidooxidophosphorus) 焦磷酸 [Chinese]
Pyrophosphoric Acid ( Acide diphosphorique)
PYRUVIC ACID, N° CAS : 127-17-3, Nom INCI : PYRUVIC ACID, Nom chimique : Propanoic Acid, 2-oxo, N° EINECS/ELINCS : 204-824-3. Ses fonctions (INCI). Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit
PYRUVIC ACID
Quartemine; 1-Hexadecanaminium, N,N,N-trimethyl-, chloride cas no: 112-02-7
Quartemine
Quartemine; 1-Hexadecanaminium, N,N,N-trimethyl-, chloride cas no: 112-02-7
QUARTZ
Didecyl Dimethyl Ammonium Carbonate; Didecyl Dimethyl Ammonium Bicarbonate; Carboquat™ H;
QUATERNIUM-14 ( Dodecyldimethyl(ethylbenzyl)ammonium chloride )
QUATERNIUM-15, N° CAS : 4080-31-3 / 51229-78-8. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-15, Nom chimique : Methenamine 3-chloroallylochloride, N° EINECS/ELINCS : 223-805-0 / 426-020-3. Classification : Ammonium quaternaire, Règlementé, Libérateur de Formaldéhyde, Conservateur. Restriction en Europe : La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de 0,2 %. Interdit en Europe à partir du 12 juin 2019. Ses fonctions (INCI): Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Quaternium-15 (systematic name: hexamethylenetetramine chloroallyl chloride) is a quaternary ammonium salt used as a surfactant and preservative in many cosmetics and industrial substances. It acts as an antimicrobial agent because it acts as a formaldehyde releaser,[2][3] though doing so can also cause contact dermatitis, a symptom of an allergic reaction, especially in those with sensitive skin. Noms français : 1-(3-CHLORO-2-PROPENYL)-3,5,7-TRIAZA-1-AZONIATRICYCLO(3.3.1.1(3,7))DECANE CHLORIDE 1-(3-CHLOROALLYL)-3,5,7-TRIAZA-1-AZONIAADAMANTANE CHLORIDE 3,5,7-TRIAZA-1-AZONIAADAMANTANE, 1-(3-CHLOROALLYL)-, CHLORIDE 3,5,7-TRIAZA-1-AZONIATRICYCLO(3.3.1.1(3,7)DECANE, 1-(3-CHLORO-2-PROPENYL)-, CHLORIDE 3,5,7-TRIAZA-1-AZONIATRICYCLO(3.3.1.13,7)DECANE, 1-(3-CHLORO-2-PROPENYL)-, CHLORIDE 3-Chloroallylochlorure de méthenamine CCTA Chlorure de 1-(3-chloroallyl)-3,5,7-triaza-1-azonia-adamantane Chlorure de N-(chloro-3 allyl) hexaminium Chlorure de N-(chloro-3 allyl) hexaminium (Quaternium 15) N-(3-CHLOROALLYL)HEXAMINIUM CHLORIDE N-(CHLORO-3 ALLYL) HEXAMINIUM, CHLORURE DE Noms anglais :Methenamine 3-chloroallylochloride; Utilisation et sources d'émission : Bactéricide, fabrication de cosmétiques. 1-(3-Chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride 3,5,7-Triaza-1-azoniaadamantane, 1-(3-chloroallyl)-, chloride 3,5,7-Triaza-1-azoniatricyclo(3.3.1.13,7)decane, 1-(3-chloro-2-propen-1-yl)-, chloride (1:1) 3,5,7-Triaza-1-azoniatricyclo(3.3.1.13,7)decane, 1-(3-chloro-2-propenyl)-, chloride Cinartc 200 Dowco 184 Dowicide Q Dowicil 100 Dowicil 75 Hexamethylenetetramine chloroallyl chloride Methenamine 3-chloroallylochloride N-(3-Chloroallyl)hexaminium chloride Quaternium-15 XD-1840 Translated names 1-(3-chlorallyl)-3,5,7-triaza-1-azoniaadamantan-chlorid (CTAC) (cs) 3-chloroallylochlorure de méthénamine (CTAC) (fr) 3-Cloroalilcloreto de metenamina (CTAC) (pt) 3-Cloroalilocloruro de metenamina (CTAC) (es) 3-cloroallilocloruro di metenamina (CTAC) (it) 3-Kloroalliloklorur tal-metenammina (CTAC) (mt) 3-χλωραλλυλοχλωρίδιο της μεθεναμίνης (CTAC) (el) Chlorek 3-chloroallilometenaminy (CTAC) (pl) Meteenamiin-3-kloroallülokloriid (CTAC) (et) Metenamiini-3-klooriallyylokloridi (CTAC) (fi) Metenamin 3-cloroaliloclorură (CTAC) (ro) Metenamin 3-kloroaliloklorid (CTAC) (hr) Metenamin-3-kloroallylklorid (CTAC) (sv) Metenamino 3-chloralilochloridas (CTAC) (lt) Methenamin-3-chlorallylchlorid (CTAC) (de) methenamin-3-chlorallylochlorid (CTAC) (da) Methenamine 3-chloroallylochloride (CTAC) (no) Methenamine-3-chloorallylchloride (CTAC) (nl) Metén-amin-3-klór-allil-klorid (CTAC) (hu) meténamín-3-chlóralylchlorid (CTAC) (sk) Metēnamīna 3-hloralilhlorīds (CTAC) (lv) Метенаминов 3-хлороалилохлорид (CTAC) (bg) 1-(3-chloroprop-2-en-1-yl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.1~3,7~]decane chloride 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane,1-(3-chloro-2-propenyl)-, chloride 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane,1-(3-chloro-2-propenyl)-, chloride (9CI) 3,5,7-TRIAZA-1-AZONIATRICYCLODECANE-1-(3-CHLORO-2-PROPENYL)-,CHLORIDE CHLOROALLYLTRIAZAAZONIAADAMANTANE CHLORIDE. 1-(3-Chloro-2-propenyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane Chloride 1-[(2E)-3-Chlor-2-propen-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decanchlorid [German] [ACD/IUPAC Name] 1-[(2E)-3-Chloro-2-propen-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane chloride [ACD/IUPAC Name] 1-[(2E)-3-Chloroprop-2-en-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane chloride 1-[(2E)-3-chloroprop-2-en-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane chloride 2W5B4VJ152 3,5,7-Triaza-1-azoniaadamantane, 1- (3-chloroallyl)-, chloride 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane, 1-[(2E)-3-chloro-2-propen-1-yl]-, chloride (1:1) [ACD/Index Name] 3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane, 1-[(2E)-3-chloro-2-propenyl]-, chloride 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane, 1-(3-chloro-2-propenyl)-, chloride 4080-31-3 [RN] Chlorure de 1-[(2E)-3-chloro-2-propén-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]décane [French] [ACD/IUPAC Name] Quaternium-15 [Wiki] QUATERNIUM-15 TRANS-FORM 1-(3-Chloroallyl)-1,3,5,7-tetraazaadamantan-1-ium chloride 1-(3-CHLOROALLYL)-3,5,7-TRIAZA-1-AZONIAADAMANTANECHLORIDE 1-(3-Chloroallyl)-3,5,7-triazo-1-azoniaadamantane chloride 3,5,7-Triaza-1-azoniaadamantane, 1-(3-chloroallyl)-, chloride 3,5,7-Triaza-1-azoniatricyclo(3.3.1.13,7)decane, 1-(3-chloro-2-propenyl)-, chloride 51229-78-8 [RN] Chloroallyl methenamine chloride Cinartc 200 DOWICIDE Q Dowicil 100 Dowicil 100[1-(3-chloroallyl)-3,5,7-triazo-1-azoniaadamantane chloride] Dowicil 200 Dowicil 75 Dowicil75 EINECS 223-805-0 Hexamethylenetetramine chloroallyl chloride Methenamine 3-chloroallylochloride N-(3-CHLORALLYL)HEXAMINIUM CHLORIDE N-(3-Chloroallyl)hexaminium chloride quaternium 15
QUATERNIUM-15
QUATERNIUM-16, N° CAS : 64425-88-3 / 35239-12-4, Origine(s) : Synthétique, Nom INCI : QUATERNIUM-16, N° EINECS/ELINCS : 264-890-4 / -. Classification : Ammonium quaternaire: Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Quaternary ammonium compounds, tris(hydroxyethyl)tallow alkyl, chlorides; 1-Octadecanaminium, N,N,N-tris(2-hydroxyethyl)-, chloride (1:1) [ACD/Index Name] 35239-12-4 [RN] Chlorure de N,N,N-tris(2-hydroxyéthyl)-1-octadécanaminium [French] [ACD/IUPAC Name] N,N,N-Tris(2-hydroxyethyl)-1-octadecanaminium chloride [ACD/IUPAC Name] N,N,N-Tris(2-hydroxyethyl)-1-octadecanaminiumchlorid [German] [ACD/IUPAC Name] QUATERNIUM-16 TRIS(2-HYDROXYETHYL)(OCTADECYL)AZANIUM CHLORIDE
QUATERNIUM-15
Quaternium-15 is also known by other names, such as Dowicil 100, Methenamine 3-chloroallylochloride, and several others listed in the previous response.
Quaternium-15 is commonly used in personal care products such as cosmetics, soaps, and shampoos.
Quaternium-15 releases small amounts of formaldehyde, which can cause skin irritation and allergic reactions in some individuals.

CAS Number: 51229-78-8
Molecular Formula: C9H16Cl2N4
Molecular Weight: 251.16

Synonyms: Quaternium-15, Quaternium-15 trans-form, 4080-31-3, Quaternim-15 trans-form, Methenamine 3-chloroallylochloride, Dowicil 100, UNII-2W5B4VJ152, 194805-30-6, Hexamethylenetetramine chloroallyl chloride, Dowicide Q, Quaternium 15, 2W5B4VJ152, Dowicil 75, Cinartc 200, 1-(3-Chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, N-(3-Chloroallyl)hexaminium chloride, Dowco 184, XD-1840, 3,5,7-Triaza-1-azoniatricyclo[3.3.1.13,7]decane, 1-(3-chloro-2-propenyl)-, chloride, Caswell No. 181, CHEBI:59607, UNII-E40U03LEM0, CCRIS 1398, HSDB 6820, 3,5,7-Triaza-1-azoniatricyclo(3.3.1.13,7)decane, 1-(3-chloro-2-propenyl)-, chloride, 1-[(2E)-3-chloroprop-2-en-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane chloride, EINECS 223-805-0, EPA Pesticide Chemical Code 017901, NSC 172971, E40U03LEM0, 1-(3-chloro-2-propenyl)-3,5,7-triaza-1-azoniatricyclo(3.3.1.13,7)decane chloride, 3,5,7-Triaza-1-azoniaadamantane, 1-(3-chloroallyl)-, chloride, AKOS016009992, n-(3-chloroallyl) hexaminium chloride, LS-13676, EN300-18430961, 3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane, Q27255687, (E)-1-(3-Chloroallyl)-1,3,5,7-tetraazaadamantan-1-ium chloride, 1-(3-chloroprop-2-en-1-yl)-1,3,5,7-tetraazatricyclo[3.3.1.1,3,7]decan-1-ium chloride, 1-[3-chloroprop-2-en-1-yl]-3,5,7-triaza-1-azoniatricyclo[3.3.1.1(3),(7)]decanium chloride, 3,5,7-TRIAZA-1-AZONIATRICYCLO(3.3.1.13,7)DECANE, 1-((2E)-3-CHLORO-2-PROPEN-1-YL)-, CHLORIDE (1:1), 3,5,7-Triaza-1-azoniatricyclo(3.3.1.13,7)decane, 1-(3-chloro-2-propen-1-yl)-, chloride (1:1)

Quaternium-15 has been banned in the EU since 2017 and a bill was introduced in the US in 2017 to require the FDA to investigate its safety.
Its use is regulated in many countries due to its potential health effects, and there are restrictions on the maximum allowable concentration in cosmetic products.
Quaternium-15 commonly found in shampoos, conditioners, lotions, creams, and makeup products.

Quaternium-15 is an allergen, and can cause dermatitis.
Many of those with an allergy to quaternium-15 are also allergic to formaldehyde.
At low pHs, Quaternium-15 would be expected to release significant amounts of formaldehyde due to acid hydrolysis via the Delepine reaction.

Allergic sensitivity to quaternium-15 can be detected using a patch test.
Quaternium-15 is the single most often found cause of allergic contact dermatitis of the hands (16.5% in 959 cases).
In 2005–06, Quaternium-15 was the fourth-most-prevalent allergen in patch tests (10.3%).

Although quaternium-15 releases low amounts of formaldehyde.
Even so, Johnson & Johnson announced plans to phase out its use of quaternium-15 in cosmetic products by 2015 in response to consumer pressure.
Quaternium-15, a known skin toxicant and allergen, may be especially dangerous for hairdressers and janitors, who are sometimes exposed to this formaldehyde-releasing
chemical at regular doses for long periods of time.

Quaternium-15 refers to any polymer that has been modified by a process called quaternization.
This process results in changes to molecules that improve the performance of body care products.
Quaternium-15 may also be referred to as quaternary ammonium compounds (QACs) or simply quats.

Quaternium-15 is a known human skin toxicant and allergen and possible eye irritant.
Quaternium-15 is also a formaldehyde-releasing preservative.
Quaternium-15 is often the culprit of skin irritation and allergic reactions.

Quaternium-15 is used in many cosmetics and pharmaceutical preparations.
Quaternium-15 is also used as a preservative in many commercial and industrial products. The table below shows some of the products that may contain quaternium-15.
Hair conditioners, hair styling products, creams, lotions, cleansers, shaving products, eye drops contact solutions and household cleaning products.

Benzalkonium chloride, Quaternium-15, quaternium-15, centrimonium bromide, polyquaternium – followed by a number (i.e. polyquaternium-7).
Polyquaternium refers to any polymer that has been modified by a process called quaternization.
This process results in changes to molecules that improve the performance of body care products.

Polyquaternium may also be referred to as quaternary ammonium compounds (QACs) or simply quats.
Quaternium-15 is an odorless, colorless, water-soluble, antimicrobial agent that is active against bacteria more so than yeast and molds.
Quaternium-15 is a quaternary ammonium salt used as a surfactant and preservative in many products including cosmetics.

Quaternium-15 is an anti-microbial agent by virtue of being a formaldehyde releaser, however this can also cause contact dermatitis, a symptom of an allergic reaction, especially in those with sensitive skin.
In 2005, Quaternium-15 was named in the top 15 most frequently positive allergens identified in patch tests by the North American Contact Dermatitis Group (NACDG).
Sensitivity to Quaternium-15 may be identified with a clinical patch test.

Quaternium-15 is commonly used in personal care products such as cosmetics, soaps, and shampoos.
Quaternium-15 also is found in industrial polishes, waxes, inks, paints, and metal working fluids.
Quaternium-15 belongs to a group of preservatives known as formaldehyde-releasing agents

Quaternium-15 is a quaternary ammonium salt prepared by reaction of hexamethylenetetramine and 1,3-dichloropropene.
Quaternium-15 is a cream-colored powder with a pungent odor.
In addition to its use in cosmetic products, it is also used in the formulation of metal cutting fluids, paints, adhesives, and glues.

Quaternium-15 tension between two components of the product like two liquids or a liquid and a solid.
Lower the surface tension, better mixing capability of that particular ingredient.
Quaternium-15 contains a water-loving end and fat-loving core in a single molecule.

Quaternium-15 attracts dirt, oil, and other impurities accumulated on the surface of the skin with an oil-loving end which then can be washed off easily with water via a water-loving end.
Quaternium-15 also possesses anti-microbial properties.
Quaternium-15 kills the microorganism and stops them from coming back by stopping reproduction.

Quaternium-15 inhibits the growth of molds and fungus in cosmetic products.
Quaternium-15 is also used as an anti-static agent.
Quaternium-15 prevents the build of static charge in the product because of its special chemical structure.

Quaternium-15 is used in formulations of creams, lotions, gels, make-up products, shampoos, baby products, and other skin and hair care products.
Quaternium-15 is a preservative found in a variety of cosmetics, topical pharmaceutical preparations, and industrial substances.
As a preservative, it has activity against bacteria, fungi, and molds.

Quaternium-15 is most frequently found in hair-care products such as conditioners, rinses, and shampoos as well as several popular moisturizing lotions and a number of cosmetic products.
Quaternium-15 is commonly used in personal care products such as cosmetics, soaps, and shampoos.
Quaternium-15 also is found in industrial polishes, waxes, inks, paints, and metal working fluids.

Quaternium-15 belongs to a group of preservatives known as formaldehyde-releasing agents.
Quaternium-15 is a quaternary ammonium salt derived from hexamethylenetetramine; used as a preservative in many cosmetics and industrial substances.
Also acts as a disinfectant and allergenic agent.

Quaternium-15 has a role as a disinfectant and an antibacterial agent.
Quaternium-15 is a quaternary ammonium salt and an organochlorine compound.
Quaternium-15 uses and applications include: Antimicrobial, preservative in adhesives, latex emulsions, paints, cutting fluids, topical pharmaceuticals; preservative in cosmetics, food packaging adhesives, food-contact PU resins; preservative for pigment slurries and latexes used as pigment binders in food-contact paperpaperboard

Quaternium-15 works by releasing formaldehyde, a potent antimicrobial agent.
The formaldehyde released can penetrate the cell walls of microorganisms and disrupt their function, effectively killing them or inhibiting their growth.
Quaternium-15 found in a variety of products including moisturizers, foundations, sunscreens, shampoos, conditioners, and hair dyes.

Quaternium-15 is used in cleaning products and industrial formulations to prevent microbial contamination.
Helps in maintaining the shelf life and efficacy of these products by preventing microbial growth.
Quaternium-15 is known to release formaldehyde, which can cause allergic reactions, contact dermatitis, and other skin irritations.

Due to these health concerns, its use is regulated.
Different regions have set limits on the permissible concentration of Quaternium-15 in products.
The European Union has set a maximum concentration limit of 0.2% in cosmetic products.

The United States Food and Drug Administration (FDA) also monitors its use, but does not have specific concentration limits.
Products containing Quaternium-15 must be labeled appropriately to inform consumers of its presence.
Evidence presented in animal and human studies show that other quaternary ammonium compounds may lead to contact dermatitis.

Quaternium-15 use of products containing quats may contribute significantly to cases of contact dermatitis.
Studies estimate 13 percent[4] to 34 percent of contact dermatitis cases may be linked to quats.
Concentrated solutions of quats may cause burns to the skin as well.

In rare cases, quat use may elicit more severe health symptoms.
Quaternium-15 a study performed on hairdressers, who are routinely exposed to quaternary ammonium compounds in hair products found hairdressers had almost five times as many antibodies to quats.
Increased levels of this antibody relate to an increased risk of allergic reactions to anesthesia, a serious concern since allergic reactions to anesthesia can lead to life-threatening reactions.

A case study reported that a woman suffered from cutaneous cell death after applying a quat-containing antiseptic.
Yet another case study described a man with a pre-existing skin condition who developed dermatitis due to a quaternary ammonium Quaternium-15 in his deodorant, suggesting that quats have the potential to induce sensitivity, especially on damaged skin.
Quaternium-15 is a quaternary ammonium salt used as a surfactant and preservative in many cosmetics and industrial substances.

Quaternium-15 acts as an antimicrobial agent because it acts as a formaldehyde releaser, though doing so can also cause contact dermatitis, a symptom of an allergic reaction, especially in those with sensitive skin.
Quaternium-15 can be found under a variety of names, most commonly those of the Dow Chemical Company: Dowicil 200 (cis isomer only), Dowicil 75 and Dowicil 100 (both a mix of cis and trans isomers).
Quaternium-15 can be prepared by reacting hexamethylenetetramine with 1,3-dichloropropene to produce the product as a mixture of cis and trans isomers.

The isolated cis-Quaternium-15 is used primarily in cosmetic applications, with a maximum permitted concentration in the EU of 0.2%.
The mixed product (cis- and trans-) is used in a wider range of formulations such as: emulsifiable metal-cutting fluids; latex and emulsion paints; liquid floor polishes and floor waxes; glues and adhesives.
Quaternium-15 is a formaldehyde-releasing preservative.

Quaternium-15 also is found in industrial polishes, waxes, inks, paints, and metal working fluids.
Quaternium-15 belongs to a group of preservatives known as formaldehyde-releasing agents.
It is a derivative of hexamethylenetetramine chloroallyl chloride.

Quaternium-15 acts as an antimicrobial agent because it slowly releases formaldehyde, which is a preservative with biocidal properties.
Both quaternium-15 and formaldehyde release agents have been the subjects of controversy.
They are often banned in US and Europe.

Quaternium-15 can be found under a variety of names, including Dow Chemical Company: Dowicil 200 (cis isomer only), Dowicil 75 and Dowicil 100 (both a mix of cis and trans isomers).
Quaternium-15 can be prepared by treating hexamethylenetetramine with 1,3-dichloropropene.
A mixture of cis and trans isomers are produced.

Quaternium-15 is a quaternary ammonium compound used as a preservative in many cosmetics and personal care products.
Quaternium-15 functions by releasing formaldehyde, which acts as an antimicrobial agent, helping to prevent the growth of bacteria, fungi, and other microorganisms in the products.
Quaternium-15 is a quaternary ammonium salt that has been used as a surfactant and preservative.

storage temp.: under inert gas (nitrogen or Argon) at 2-8°C
solubility: DMSO (Slightly), Methanol (Slightly)
form: Solid
color: White to Pale Yellow
Stability: Stable, but moisture sensitive. Incompatible with strong oxidizing agents.
InChI: InChI=1S/C9H16ClN4.ClH/c10-2-1-3-14-7-11-4-12(8-14)6-13(5-11)9-14;/h1-2H,3-9H2;1H/q+1;/p-1/b2-1-;
InChIKey: UKHVLWKBNNSRRR-ODZAUARKSA-M
SMILES: [N+]12(C/C=C\Cl)CN3CN(CN(C3)C1)C2.[Cl-]

Quaternium-15 belongs to a group of preservatives known as formaldehydereleasing agents.
Quaternium-15 is a cream colored powder with a pungent odor.
1-(cis-3-Chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, also known as quaternium-15, is used as a preservative in some cosmetics and other industrial products.

Quaternium-15 is included in cosmetic formulations as an antimicrobial agent.
Quaternium-15 is used as a preservative in adhesives and food packaging materials and is regulated by the FDA as an indirect food additive.
Quaternium-15 is also utilized as an antimicrobial agent in water-based metalworking fluids.

Quaternium-15 is a preservative found in many cosmetics and industrial substances that releases formaldehyde.
Quaternium-15 can be found in numerous sources, including but not limited to: mascara, eyeliner, moisturizer, lotion, shampoo, conditioner, nail polish, personal lubricants, soaps, body wash, baby lotion or shampoo, facial cleanser, tanning oil, self-tanning cream, sunscreen, powder, shaving products, ointments, personal wipes or cleansers, wipes, paper, inks, paints, polishes, waxes and industrial lubricants.

Quaternium-15 can cause contact dermatitis, a symptom of an allergic reaction, especially in those with sensitive skin, on an infant's skin, or on sensitive areas such as the genitals.
Quaternium-15s chemical formula is C9H16Cl2N4.
Quaternium-15 can be found under a variety of names, including: Dowicil 75; Dowicil 100; Dowco 184; Dowicide Q; 1-(3-Chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride; N-(3-chloroallyl) hexaminium chloride; hexamethylenetetramine chloroallyl chloride; 3,5,7-Triaza-1-azoniaadamantane; 1-(3-chloroallyl)-chloride.

Quaternium-15s CAS number is and its SMILES structure is ClC=C/C[N+]23CN1CN(C3)CN(C2)C1.[Cl-].
Quaternium-15 doesn't occur naturally in the environment.
Quaternium-15 may be used in some self-care products (cosmetics, natural health products, over-the-counter drugs), cleaning products, paints and coatings.

Quaternium-15 's also used in the automotive, aircraft and transportation industry.
Quaternium-15 is a formaldehyde releasing preservative used in personal care products usually cosmetics.
Quaternium-15 is also used as a biocide in household and industrial products.

Quaternium-15 is found in many cosmetics, shampoos and skin care products, as well as in household and industrial products.
Examples of cosmetic products and toiletries are lotions, creams, moisturizers, emollients, foundations, powders, concealers, bronzers, self-tanners, makeup removers, blushes, eye shadows, eyeliners, eyebrow makeup and mascaras and sunscreens as well as shampoos, soaps etc. Adhesives, paper, paperboard, inks, polishes and latex paints may contain Quaternium-15.
Industrial cutting fluid may contain Quaternium-15 as a preservative.

Formaldehyde-releasing preservative used in cosmetics.
Quaternium-15 can aggravate skin, as can all preservatives, although quaternium-15’s ability to do so is very low if the amount in a product is less than 0.2%.
Quaternium-15 is a quaternary ammonium salt used as a surfactant and preservative in many products including cosmetics.

Helps slow the growth of microorganisms on the skin and opposes the growth of microbes
Inhibits the development of microorganisms in cosmetic products.
Quaternium-15 is a broad-spectrum preservative found in many cosmetics and personal care products.

Quaternium-15 is one of the formaldehyde-releasing preservatives that include imidazolidinyl urea, diazolidinyl urea, 2-bromo-2- nitropropane-l,3-diol, DMDM (dimethylolmethyl)hydantoin, and tris (hydroxymethyl) nitromethane.
Although quaternium-l 5 does release small amounts of formaldehyde, not all patients who are allergic to quaternium-15 are allergic to formaldehyde and vice versa.
Quaternium-15 can cause contact dermatitis, a symptom of an allergic reaction, especially in those with sensitive skin, on an infant's skin, or on sensitive areas such as the genitals.

Quaternium-15 releases formaldehyde therefore, repeated use products containing quaternium-15 may cause contact dermatitis.
Can cause skin sensitization leading to allergic contact dermatitis, particularly in individuals with formaldehyde sensitivity.
Inhalation of vapors or dusts containing formaldehyde can cause respiratory irritation and other issues.

Formaldehyde is classified as a human carcinogen by several health organizations, including the International Agency for Research on Cancer (IARC).
Quaternium-15 is not readily biodegradable, and its persistence in the environment can contribute to pollution.
Toxic to aquatic organisms, which can have detrimental effects on aquatic ecosystems.

Due to health and environmental concerns, there is a growing trend to replace Quaternium-15 with safer preservatives.
Quaternium-15 is a commonly used in personal care products such as cosmetics, soaps and shampoos.
Quaternium-15 is readily soluble in water and practically insoluble in mineral oil.

Uses:
Quaternium-15 is used as an antimicrobial preservative in cosmetic, soaps and shampoos. International restrictions 0.1 to 1% - other use; surfactant, hair conditioning, adhesives, binding, lacquers and varnishes.
Commerical use; cutting fluids, lubricants, hydraulic fluids, additives, cleaning, pesticides, bacteriasides, food additives, paper, pharmaceuticals (antiarrhythmic and anticonvulsant agents).

Quaternium-15 is a quaternary ammonium salt derived from hexamethylenetetramine; used as a preservative in many cosmetics and industrial substances. Also acts as a disinfectant and allergenic agent.
Quaternium-15 has a role as a disinfectant, an antibacterial agent, a hapten and an allergen.
Quaternium-15 found in baby shampoos and lotions, although its use in baby products is increasingly scrutinized due to potential sensitization risks.

Included in various household cleaners to prevent bacterial and fungal growth.
Quaternium-15 helps preserve the formulation and effectiveness of the detergent.
Quaternium-15 prevents microbial growth in the product, ensuring it remains effective over time.

Quaternium-15 is used in formulations to enhance antimicrobial efficacy.
Quaternium-15 is used as a preservative to prevent the growth of microbes that can degrade the product.
Prevents microbial contamination, ensuring the adhesive maintains its properties and effectiveness.

Helps preserve the fluid and prevent microbial growth that can cause spoilage and degradation.
Prevents microbial contamination that can affect performance.
Quaternium-15 is used to treat fabrics to prevent microbial growth and odors, enhancing the durability and freshness of the textiles.

Added to paper products to prevent microbial degradation and extend shelf life.
Quaternium-15 is used in formulations to prevent the growth of mold, mildew, and other microorganisms that can damage wood products.
Helps preserve leather products by preventing microbial growth that can cause deterioration.

Quaternium-15 is used as a preservative in some topical pharmaceutical formulations to maintain sterility and efficacy.
Added to food packaging materials to prevent microbial contamination and extend the shelf life of packaged foods.
Quaternium-15 is a quaternary ammonium salt and an organochlorine compound.

Quaternium-15 derives from a hexamethylenetetramine.
Quaternium-15 is an antimicrobial agent used in cosmetics as a cosmetic preservative and antistatic agent.
Formaldehyde-releasing preservative in hand creams, lotions, face creams, shampoos, latex paints, topical medicaments, polishes, metal working fluids, adhesives, inks, etc

Quaternium-15 is used as a preservative and antistatic agent in cosmetics.
Quaternium-15 can be found in a wide variety of products, including eye shadows, foundations, facial powders, body washes, mascaras, shampoos, conditioner, hair colors, facial cleansers, bronzers and nail treatments.
Quaternium-15 is a quaternary ammonium salt used as a preservative in many cosmetics and industrial substances.

Quaternium-15 acts as a formaldehyde releaser.
Quaternium-15 can cause contact dermatitis in sensitive individuals.

Quaternium-15's toxicity is also due to it's ability to react and release formaldehyde and nitrosamines, both of which are believed to be carcinogenic.
Quanternium-15 is a type of preservative which is widely used in many cosmetic and industrial products.

Quaternium-15 may be used as a formaldehyde releaser to investigate the influence of formaldehyde in dermatitis patients with or without contact allergy to formaldehyde through baseline patch test series.
Quaternium-15 is used to preserve water-based formulations against microbial contamination.
Ensures product stability and prevents the growth of bacteria and fungi.

Maintains product efficacy and extends shelf life by preventing microbial growth.
Found in nail polishes and treatments to keep formulations free from microbial contamination.
Quaternium-15 is used in some mouthwashes and toothpastes to prevent bacterial growth, though less common due to oral sensitivity concerns.

Ensures the longevity and effectiveness of cleaning products used on various surfaces.
Preserves the formula to prevent spoilage and maintain cleaning efficacy.
Helps in maintaining the integrity of liquid air fresheners by preventing microbial growth.

Occasionally used in formulations to provide antimicrobial properties.
Quaternium-15 is used in drilling fluids and other formulations to prevent bacterial contamination that can lead to corrosion and other issues.
Found in certain pesticides and fungicides to prevent microbial contamination and enhance stability.

Incorporated into textiles to prevent the growth of odor-causing bacteria and extend the freshness of fabrics used in sportswear, medical garments, and home textiles.
Quaternium-15 is used in the finishing process of textiles to impart antimicrobial properties.
Ensures the integrity of paper-based packaging by preventing microbial growth.

Quaternium-15 is used in the production of specialty papers that require antimicrobial properties, such as medical-grade papers and currency papers.
Applied to wood used in construction to prevent mold and mildew growth, thereby extending the life and durability of the materials.
Used in the preservation of wood furniture to prevent microbial damage and maintain appearance and structural integrity.

Quaternium-15 is used during the tanning process to preserve leather and prevent microbial degradation.
Helps maintain the quality of finished leather goods, including shoes, bags, and jackets, by preventing mold and mildew.
Occasionally used in eye drops to prevent microbial contamination, though alternatives are preferred due to sensitivity concerns.

Used in some topical medications to maintain sterility and efficacy over time.
Quaternium-15 is used in the production of antimicrobial films for food packaging to extend the shelf life of perishable goods by preventing microbial contamination.
Added to plastic and other materials used for food storage to prevent the growth of bacteria and fungi.

Quaternium-15 is used in certain inks and dyes to prevent microbial growth that can affect the quality and consistency of the products.
Helps maintain the integrity of sealants and caulks by preventing microbial degradation.
Found in some automotive cleaning and maintenance products to preserve formulations and prevent microbial growth.

Quaternium-15 is used in cleaning products for electronics to prevent microbial contamination and ensure product efficacy.
Quaternium-15 is a formaldehyde-releasing preservative in hand creams, lotions, face creams, shampoos, latex paints, topical medicaments, polishes, metal-working fluids, adhesives, inks, etc.; quatemium-15.
Prevents microbial contamination and extends the shelf life.

Quaternium-15 acts as a preservative to prevent the growth of bacteria and fungi.
Found in foundations, powders, and eyeliners to maintain product integrity.
Quaternium-15 is used to preserve formulations against microbial growth.

Quaternium-15 is used in a wide variety of cosmetic products as a surfactant and preservative.
As a surfactant, Quaternium-15 lowers the surface.
Quaternium-15 may be used as a formaldehyde releaser to investigate the influence of formaldehyde in dermatitis patients with or without contact allergy to formaldehyde through baseline patch test series.

Quaternium-15 is a quaternary ammonium salt used as a preservative in many cosmetics and industrial substances.
Quaternium-15 acts as a formaldehyde releaser.
Preservative in cosmetics, hair care products, soaps, adhesives.

Safety Profile:
Prolonged exposure to products containing Quaternium-15 can lead to skin irritation, even in individuals who are not formally allergic.
This can manifest as dryness, itching, and rash.
Inhalation of vapors or dust containing Quaternium-15 can irritate the respiratory tract, leading to symptoms such as coughing, sneezing, and throat irritation.

People with asthma or other respiratory conditions may experience exacerbated symptoms upon exposure.
Quaternium-15 can cause allergic contact dermatitis in sensitive individuals.

Symptoms include redness, itching, and inflammation of the skin.
People sensitive to formaldehyde may experience more severe reactions, including hives and blistering.

QUATERNIUM-16
QUATERNIUM-18, N° CAS : 61789-80-8, Origine(s) : Synthétique. Nom INCI : QUATERNIUM-18, N° EINECS/ELINCS : 263-090-2. Classification : Ammonium quaternaire, Libérateur de Formaldéhyde. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : DIHYDROGENATEDTALLOW DIMETHYL AMMONIUM CHLORIDE; N,N-DIHYDROGENATEDTALLOW N,N-DIMETHYL AMMONIUM CHLORIDE Noms anglais : BIS(HYDROGENATED TALLOW)DIMETHYLAMMONIUM CHLORIDE; QUATERNARY AMMONIUM COMPOUNDS, BIS(HYDROGENATED TALLOW ALKYL)DIMETHYL, CHLORIDES. Quaternary ammonium compounds, bis(hydrogenated tallow alkyl)dimethyl, chlorides; bis(hydrogenated tallow alkil)dimethyl, chlorides; Bis(hydrogenated tallow alkyl)dimethylammonium chlorides; Distearyldimethylammonium chloride; N,N-Dimethyl-N,N-di-n-alkyl(C16-18)-ammoniumchloride; Quaternary ammonium compounds, bis(hydrogenated tallow alkyl)dimethyl chlorides. 107-64-2 [RN] 1-Octadecanaminium, N,N-dimethyl-N-octadecyl-, chloride (1:1) [ACD/Index Name] 203-508-2 [EINECS] Aliquat 207 Ammonium, dimethyldioctadecyl-, chloride BQ1923000 Chlorure de N,N-diméthyl-N-octadécyl-1-octadécanaminium [French] [ACD/IUPAC Name] Dimethyl dioctadecyl ammonium chloride DIMETHYL DIOCTADECYLAMMONIUM CHLORIDE Dimethyldioctadecylammonium chloride [Wiki] Dimethyldistearylammonium Chloride Di-n-octadecyldimethylammonium chloride dioctadecyl dimethyl ammonium chloride dioctadecyldimethylammonium chloride Distearyl dimethylammonium chloride DISTEARYLDIMETHYLAMMONIUM CHLORIDE Distearyldimonium chloride DODAC MFCD00055540 [MDL number] N,N-Dimethyl-N-octadecyl-1-octadecanaminium chloride [ACD/IUPAC Name] N,N-Dimethyl-N-octadecyl-1-octadecanaminiumchlorid [German] [ACD/IUPAC Name] N,N-Dimethyl-N-octadecyloctadecan-1-aminium chloride OM9573ZX3X [107-64-2] 12677-13-3 [RN] 129119-79-5 [RN] 134191-39-2 [RN] 14357-21-2 [RN] 1-Octadecanaminium, N,N-dimethyl-N-octadecyl-, chloride 263-090-2 [EINECS] 59111-82-9 [RN] 61789-80-8 [RN] 66359-86-2 [RN] 76723-98-3 [RN] Adogen TA 100 Ammonyx 2200P100 Arosurf TA 100 Arosurf TA-100 Arquad 218-100 Arquad 218-100P Arquad R 40 Cation DS Cedequat TD 75 Dehyquart DAM Dimethyl distearylammonium chloride dimethyl(dioctadecyl)azanium and chloride Dimethyldi-n-octadecylammonium chloride dimethyldioctadecylamine, chloride dimethyl-dioctadecylammonium chloride dimethyl-dioctadecyl-ammonium chloride dimethyldioctadecylammoniumchloride dimethyl-dioctadecylazanium chloride dimethyl-dioctadecyl-azanium chloride DIMETHYLDIOCTADECYLAZANIUM CHLORIDE dimethyl-distearyl-ammonium chloride Dioctadecyldimethylammoniumchloride Distearyl dimethyl ammonium chloride DODA(Cl) EINECS 203-508-2 Genamin DSAC Jsp000681 Kemamine Q 9702CLP N,N-dimethyl-dioctadecyl ammonium chloride N,N-Dimethyl-N-octadecyl-1-octadecanaminiumchloride N,N-Dioctadecyl-N,N-dimethylammonium chloride Q-D 86P Quartamin D 86 Quartamin DM 86P Quaternium 5 QUATERNIUM-18 Quaternium-5 Sokalan 9200 Surfroyal DSAC Talofloc Varisoft 100 Varisoft TA 100
QUATERNIUM-18
QUATERNIUM-22, N° CAS : 51812-80-7 / 82970-95-4. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-22. Nom chimique : 3-(D-Gluconoylamino)propyl(2-hydroxyethyl)dimethylammonium chloride. N° EINECS/ELINCS : 257-440-3. Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. -(D-gluconoylamino)propyl(2-hydroxyethyl)dimethylammonium chloride; (2-hydroxyethyl)dimethyl{3-[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanamido]propyl}azanium chloride; 1-Propanaminium, 3-(D-gluconoylamino)-N-(2-hydroxyethyl)-N,N-dimethyl-, chloride; CERAPHYL® 60 (ca. 60% substance in water). Jump to main contentJump to site nav Home About us Web APIs Help Sign in ChemSpider Search and share chemistry Search ChemSpider For medical information relating to Covid-19, please consult the World Health Organisation or local healthcare provision. Simple Structure Advanced History Found 1 result Search term: 51812-80-7 (Found by approved synonym) COMMENT ON THIS RECORD ChemSpider 2D Image | QUATERNIUM-22 | C13H29ClN2O7Save3DZoom QUATERNIUM-22 Molecular FormulaC13H29ClN2O7 Average mass360.832 Da Monoisotopic mass360.166321 Da ChemSpider ID36681 defined stereocentres - 4 of 4 defined stereocentres More details: This record has not been tagged. TAG Names Properties Searches Spectra Vendors Articles More Names and SynonymsDatabase ID(s) Validated by Experts, Validated by Users, Non-Validated, Removed by Users 257-440-3 [EINECS] 51812-80-7 [RN] Chlorure de N-(2-hydroxyéthyl)-N,N-diméthyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminium [French] [ACD/IUPAC Name] Chlorure de N-(2-hydroxyéthyl)-N,N-diméthyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminium (non-preferred name) [French] [ACD/IUPAC Name] N-(2-Hydroxyethyl)-N,N-dimethyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminium chloride [ACD/IUPAC Name] N-(2-Hydroxyethyl)-N,N-dimethyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminium chloride (non-preferred name) [ACD/IUPAC Name] N-(2-Hydroxyethyl)-N,N-dimethyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminiumchlorid [German] [ACD/IUPAC Name] N-(2-Hydroxyethyl)-N,N-dimethyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminiumchlorid (non-preferred name) [German] [ACD/IUPAC Name] QUATERNIUM-22 (2-HYDROXYETHYL)DIMETHYL{3-[(2R,3S,4R,5R)-2,3,4,5,6-PENTAHYDROXYHEXANAMIDO]PROPYL}AZANIUM CHLORIDE (α-Gluconamidopropyl)dimethyl-2-hydroxyethylammonium chloride [51812-80-7] 149358-34-9 [RN] 1-Propanaminium, 3-(D-gluconoylamino)-N-(2-hydroxyethyl)-N,N-dimethyl-, chloride 3-(D-Gluconoylamino)-N-(2-hydroxyethyl)-N,N-dimethyl-1-propanamin- ium chloride 3-(D-Gluconoylamino)propyl(2-hydroxyethyl)dimethylammonium chloride 82970-95-4 [RN] N-(2-Hydroxyethyl)-N,N-dimethyl-3-{[(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoyl]amino}-1-propanaminiumchloride QUATERNIUM 22 γ-Gluconamidopropyl dimethyl 2-hydroxyethyl ammonium chloride
QUATERNIUM-22
Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Octyl decyl dimethyl ammonium chloride; QUATERNIUM-24, N° CAS : 32426-11-2, Origine(s) : Synthétique. Nom INCI : QUATERNIUM-24. Nom chimique : Decyldimethyloctylammonium chloride. N° EINECS/ELINCS : 251-035-5, Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes, Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : 1-DECANAMINIUM, N,N-DIMETHYL-N-OCTYL-, CHLORIDE; Chlorure de décyldiméthyloctylammonium; DECYLOCYTLDIMETHYLAMMONIUM CHLORIDE. OCTYL DECYL DIMETHYL AMMONIUM CHLORIDE. Noms anglais : 1-Decaminium N-octyl-N,N-dimethyl-, chloride; Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Decyldimethyloctylammonium chloride; Octyl decyl dimethyl ammonium chloride; 1-Decanaminium, N,N-dimethyl-N-octyl-, chloride (1:1) [ACD/Index Name] ; 251-035-5 [EINECS] ; 32426-11-2 [RN]; Chlorure de N,N-diméthyl-N-octyl-1-décanaminium [French] [ACD/IUPAC Name]; Decyloctyldimethylammonium chloride; N,N-Dimethyl-N-octyl-1-decanaminium chloride [ACD/IUPAC Name]; N,N-Dimethyl-N-octyl-1-decanaminiumchlorid [German] [ACD/IUPAC Name]; N,N-Dimethyl-N-octyldecan-1-aminium chloride; Quaternium-24 ; 1-Decaminium, N-octyl-N,N-dimethyl-, chloride; 1-Decanaminium, N,N-dimethyl-N-octyl-, chloride; Ammonium, decyldimethyloctyl, chloride; Decyl dimethyl octyl ammonium chloride; decyl-dimethyl-octylammonium chloride; decyl-dimethyl-octyl-ammonium chloride; DECYLDIMETHYLOCTYLAMMONIUM CHLORIDE; decyl-dimethyl-octylazanium and chloride; decyl-dimethyl-octylazanium chloride; decyl-dimethyl-octyl-azanium chloride; DECYLDIMETHYLOCTYLAZANIUM CHLORIDE; decyl-dimethyl-octylazanium;chloride; Decylocytldimethylammonium chloride ; Di-(Octyl-decyl)dimethylammonium chloride; EINECS 251-035-5; N,N-Dimethyl-N-octyl-1-decanaminiumchloride; N-Octyl-N-decyl-N-dimethylammonium chloride; N-Octyl-N-decyl-N-dimethyl-ammonium chloride; Octyl Decyldimethyl Ammonium Chloride; Quaternium 24
QUATERNIUM-24 ( Chlorure de décyldiméthyloctylammonium ) Decyldimethyloctylammonium chloride
QUATERNIUM-26, N° CAS : 68953-64-0 / 64156-20-3, Origine(s) : Synthétique. Nom INCI : QUATERNIUM-26, N° EINECS/ELINCS : 273-222-0. Classification : Ammonium quaternaire Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. 1-Propanaminium, 3-amino-N-(2-hydroxyethyl)-N,N-dimethyl-, N-mink-oil acyl derivs., chlorides; EC Inventory, ; 1-Propanaminium, 3-amino-N-(2-hydroxyethyl)-N,N-dimethyl-, N-mink-oil acyl derivs, chlorides; CERAPHYL 65 ; Quaternium-26
QUATERNIUM-26
QUATERNIUM-27, N° CAS : 68122-86-1. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-27. N° EINECS/ELINCS : 268-531-2. Classification : Ammonium quaternaire. Ses fonctions (INCI), Antistatique : Réduit l'��lectricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Noms français : Méthylsulfate de composés imidazolium du dihydro-4,5 méthyl-1 alkyle de suif nor-2 (amidoéthyl-2 de suif)-1 Noms anglais : 1-(2-TALLOW AMIDOETHYL)-1-METHYL-2-NOR(TALLOW ALKYL)-2-IMIDAZOLINIUM METHYL SULFATE 1-(2-TALLOWAMIDOETHYL)-1-METHYL-2-TALLOWALKYLIMIDAZOLINIUM METHYLSULFATE 1-METHYL-1-(2-TALLOWAMIDOETHYL)-2-TALLOWIMIDAZOLINIUM METHYLSULFATE 1-METHYL-1-TALLOWALKYLAMIDOETHYL-2-TALLOWALKYLIMIDAZOLINE METHOSULFATE IMIDAZOLIUM COMPOUNDS, 4,5-DIHYDRO-1-METHYL-2-NORTALLOW ALKYL-1-(2-TALLOW AMIDOETHYL), ME SULFATES; Imidazolium compounds, 4,5-dihydro-1-methyl-2-nortallow alkyl-1-(2-tallow amidoethyl), Me sulfates.
QUATERNIUM-27
QUATERNIUM-33, N° CAS : 72102-40-0 / 86221-07-0, Origine(s) : Synthétique, Nom INCI : QUATERNIUM-33, N° EINECS/ELINCS : 276-339-5. Classification : Ammonium quaternaire: Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. 1-Propanaminium, 3-amino-N-ethyl-N,N-dimethyl-, N-lanolin acyl derivs., Et sulfates; Lanolin acids, APMA amide, di-Et sulfate; Quaternium-33; iso and antiso C10-40 AAP EDM-ES
QUATERNIUM-33
QUATERNIUM-45; N° CAS : 21034-17-3; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-45; Nom chimique : 3,4-Dimethyl-2-[2-(phenylamino)vinyl]oxazolium iodide; N° EINECS/ELINCS : 244-158-0; Classification : Ammonium quaternaire. Ses fonctions (INCI). 3,4-dimethyl-2-[2-(phenylamino)vinyl]oxazolium iodide. : 3,4-dimethyl-2-[(E)-2-(phenylamino)ethenyl]-1,3-oxazol-3-ium iodide. Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. 2-[(E)-2-Anilinovinyl]-3,4-dimethyl-1,3-oxazol-3-ium iodide [ACD/IUPAC Name] ; 2-[(E)-2-Anilinovinyl]-3,4-dimethyl-1,3-oxazol-3-iumiodid [German] [ACD/IUPAC Name]; 244-158-0 [EINECS]; Iodure de 2-[(E)-2-anilinovinyl]-3,4-diméthyl-1,3-oxazol-3-ium [French] [ACD/IUPAC Name]; Oxazolium, 3,4-dimethyl-2-[(E)-2-(phenylamino)ethenyl]-, iodide (1:1) [ACD/Index Name]; 21034-17-3 [RN]; 3,4-Dimethyl-2-(2-(phenylamino)vinyl)oxazolium iodide; 3,4-DIMETHYL-2-[2-(PHENYLAMINO)ETHENYL]-1,3-OXAZOL-3-IUM IODIDE; 3,4-dimethyl-2-[2-(phenylamino)vinyl]oxazolium iodide; Kankohso 401; Kankohso 401 [Japanese]; Oxazolium, 2-(2-anilinovinyl)-3,4-dimethyl-, iodide; Oxazolium, 3,4-dimethyl-2-(2-(phenylamino)ethenyl)-, iodide (9CI); Quaternium-45
QUATERNIUM-45
QUATERNIUM-51; N° CAS : 1463-95-2; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-51; N° EINECS/ELINCS : 215-976-5. Classification : Ammonium quaternaire; 2-[2-[(5-bromo-2-pyridyl)amino]vinyl]-1-ethyl-6-methylpyridinium iodide; : 2-[(E)-2-[(5-bromopyridin-2-yl)amino]ethenyl]-1-ethyl-6-methylpyridin-1-ium iodide. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. 2-{(E)-2-[(5-Brom-2-pyridinyl)amino]vinyl}-1-ethyl-6-methylpyridiniumiodid [German] [ACD/IUPAC Name]; 2-{(E)-2-[(5-Bromo-2-pyridinyl)amino]vinyl}-1-ethyl-6-methylpyridinium iodide [ACD/IUPAC Name]; 2-{(E)-2-[(5-Bromopyridin-2-yl)amino]vinyl}-1-ethyl-6-methylpyridinium iodide ;215-976-5 [EINECS]; Iodure de 2-{(E)-2-[(5-bromo-2-pyridinyl)amino]vinyl}-1-éthyl-6-méthylpyridinium [French] [ACD/IUPAC Name]; Pyridinium, 2-[(E)-2-[(5-bromo-2-pyridinyl)amino]ethenyl]-1-ethyl-6-methyl-, iodide (1:1) [ACD/Index Name]; 1463-95-2 [RN]; 2-(2-((5-Bromo-2-pyridyl)amino)vinyl)-1-ethyl-6-methylpyridinium iodide; 2-[(E)-2-[(5-BROMOPYRIDIN-2-YL)AMINO]ETHENYL]-1-ETHYL-6-METHYLPYRIDIN-1-IUM IODIDE; 2-[2-[(5-bromo-2-pyridyl)amino]vinyl]-1-ethyl-6-methylpyridinium iodide; Pyridinium, 2-(2-((5-bromo-2-pyridinyl)amino)ethenyl)-1-ethyl-6-methyl-, iodide ;Pyridinium,2-[2-[(5-bromo-2-pyridinyl)amino]ethenyl]-1-ethyl-6-methyl-, iodide (1:1); Quaternium-51
QUATERNIUM-51
QUATERNIUM-52, N° CAS : 58069-11-7. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-52. Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Poly(oxy-1,2-ethanediyl), α,α',α''-[(octadecylnitrilio)tri-2,1-ethanediyl]tris[ω-hydroxy-, phosphate (1:1); Talgaminphosphat, ethoxyliert
QUATERNIUM-52
QUATERNIUM-53; N° CAS : 68410-69-5; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-53; N° EINECS/ELINCS : 268-762-9; Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Noms français : Méthylsulfate de dérivés méthylés de suif et de diéthylènetriamine,polyéthoxylés. Noms anglais :METHYL TALLOW DIETHYLENETRIAMINE CONDENSATE, POLYETHOXYLATED, METHYL SULFATE; Poly(oxy-1,2-ethanediyl),alpha-(2-(bis(2-aminoethyl)methylammonio- )ethyl)-omega-hydroxy, N,N'-ditallow acyl derivs, methyl sulfates; ; Noms français : Méthylsulfate de dérivés méthylés de suif et de diéthylènetriamine,polyéthoxylés. Noms anglais : METHYL TALLOW DIETHYLENETRIAMINE CONDENSATE, POLYETHOXYLATED, METHYL SULFATE; Poly(oxy-1,2-ethanediyl),alpha-(2-(bis(2-aminoethyl)methylammonio- )ethyl)-omega-hydroxy, N,N'-ditallow acyl derivs, methyl sulfates
QUATERNIUM-53
QUATERNIUM-60 Origine(s) : Synthétique Nom INCI : QUATERNIUM-60 Classification : Ammonium quaternaire Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-60
QUATERNIUM-70; N° CAS : 68921-83-5; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-70; Nom chimique : Dimethyl[3-[(1-oxooctadecyl)amino]propyl][2-oxo-2-(tetradecyloxy)ethyl]ammonium chloride; N° EINECS/ELINCS : 272-964-2; Classification : Ammonium quaternaire; Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface ; Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Dimethyl[3-[(1-oxooctadecyl)amino]propyl][2-oxo-2-(tetradecyloxy)ethyl]ammonium chloride; Ceraphyl 70 ; dimethyl(3-octadecanamidopropyl)[2-oxo-2-(tetradecyloxy)ethyl]azanium chloride; 1-Propanaminium, N,N-dimethyl-3-[(1-oxooctadecyl)amino]-; N-[2-oxo-2-(tetradecyloxy)ethyl]-, chloride (1:1) [ACD/Index Name]; 272-964-2 [EINECS]; 68921-83-5 [RN]; Chlorure de N,N-diméthyl-N-[2-oxo-2-(tétradécyloxy)éthyl]-3-(stearoylamino)-1-propanaminium [French] [ACD/IUPAC Name]; N,N-Dimethyl-N-[2-oxo-2-(tetradecyloxy)ethyl]-3-(stearoylamino)-1-propanaminium chloride [ACD/IUPAC Name]; N,N-Dimethyl-N-[2-oxo-2-(tetradecyloxy)ethyl]-3-(stearoylamino)-1-propanaminiumchlorid [German] [ACD/IUPAC Name]; N,N-Dimethyl-N-[2-oxo-2-(tetradecyloxy)ethyl]-3-(stearoylamino)propan-1-aminium chloride; Quaternium-70; (2-keto-2-myristyloxy-ethyl)-dimethyl-(3-stearamidopropyl)ammonium chloride; (3-Stearamidopropyl)dimethylmyristoyloxycarbonylmethylammonium chloride ; 1-Propanaminium, N,N-dimethyl-3-((1-oxooctadecyl)amino)-N-(2-oxo-2-(tetradecenylox- y)ethyl)-, chloride; 1-Propanaminium, N,N-dimethyl-3-((1-oxooctadecyl)amino)-N-(2-oxo-2-(tetradecyloxy)ethyl)-, chloride; Dimethyl(3-((1-oxooctadecyl)amino)propyl)(2-oxo-2-(tetradecyloxy)ethyl)ammonium chloride; DIMETHYL(3-OCTADECANAMIDOPROPYL)[2-OXO-2-(TETRADECYLOXY)ETHYL]AZANIUM CHLORIDE; dimethyl-[3-(1-oxooctadecylamino)propyl]-(2-oxo-2-tetradecoxyethyl)ammonium chloride; dimethyl-[3-(octadecanoylamino)propyl]-(2-oxo-2-; tetradecoxy-ethyl)ammonium chloride; dimethyl-[3-(octadecanoylamino)propyl]-(2-oxo-2-tetradecoxyethyl)azanium chloride; dimethyl-[3-(octadecanoylamino)propyl]-(2-oxo-2-tetradecoxy-ethyl)azanium chloride; dimethyl[3-[(1-oxooctadecyl)amino]propyl][2-oxo-2-(tetradecyloxy)ethyl]ammonium chloride, EINECS 272-964-2; N,N-Dimethyl-3-((1-oxooctadecyl)amino)-N-(2-oxo-2-(tetradecenylox- y)ethyl)-1-propanaminium chloride; Stearamidopropyl dimethyl (myristyl acetate) ammonium chloride
QUATERNIUM-70
QUATERNIUM-73; N° CAS : 15763-48-1; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-73; Nom chimique : 3-Heptyl-2-[(3-heptyl-4-methyl-3H-thiazol-2-ylidene)methyl]-4-methylthiazolium iodide; 3-heptyl-2-[(3-heptyl-4-methyl-3H-thiazol-2-ylidene)methyl]-4-methylthiazolium iodide; 3-heptyl-2-{[(2Z)-3-heptyl-4-methyl-2,3-dihydro-1,3-thiazol-2-ylidene]methyl}-4-methyl-1,3-thiazol-3-ium iodide; N° EINECS/ELINCS : 239-852-5. Classification : Ammonium quaternaire; Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surfa. 239-852-5 [EINECS] 3-Heptyl-2-[(3-heptyl-4-methyl-1,3-thiazol-2(3H)-ylidene)methyl]-4-methyl-1,3-thiazol-3-ium iodide 3-Heptyl-2-[(E)-(3-heptyl-4-methyl-1,3-thiazol-2(3H)-yliden)methyl]-4-methyl-1,3-thiazol-3-iumiodid [German] [ACD/IUPAC Name] 3-Heptyl-2-[(E)-(3-heptyl-4-methyl-1,3-thiazol-2(3H)-ylidene)methyl]-4-methyl-1,3-thiazol-3-ium iodide [ACD/IUPAC Name] Iodure de 3-heptyl-2-[(E)-(3-heptyl-4-méthyl-1,3-thiazol-2(3H)-ylidène)méthyl]-4-méthyl-1,3-thiazol-3-ium [French] [ACD/IUPAC Name] thiazolium, 3-heptyl-2-[(3-heptyl-4-methyl-2(3H)-thiazolylidene)methyl]-4-methyl-, iodide (1:1) Thiazolium, 3-heptyl-2-[(E)-(3-heptyl-4-methyl-2(3H)-thiazolylidene)methyl]-4-methyl-, iodide (1:1) [ACD/Index Name] 15763-48-1 [RN] 3-Heptyl-2-((3-heptyl-4-methyl-3H-thiazol-2-ylidene)methyl)-4-methylthiazolium iodide 3-Heptyl-2-((3-heptyl-4-methyl-4-thiazolin-2-ylidene)methyl)-4-methylthiazolium iodide 3-HEPTYL-2-[(3-HEPTYL-4-METHYL-1,3-THIAZOL-2-YLIDENE)METHYL]-4-METHYL-1,3-THIAZOL-3-IUM IODIDE 3-heptyl-2-[(3-heptyl-4-methyl-3H-thiazol-2-ylidene)methyl]-4-methylthiazolium iodide 3-HEPTYL-2-{[(2E)-3-HEPTYL-4-METHYL-1,3-THIAZOL-2-YLIDENE]METHYL}-4-METHYL-1,3-THIAZOL-3-IUM IODIDE Kankohso 201 MFCD01680792 Pionin Quaternium 73 QUATERNIUM-73 Thiazolium, 3-heptyl-2-((3-heptyl-4-methyl-2(3H)-thiazolylidene)methyl)-4-methyl-, iodide Thiazolium, 3-heptyl-2-((3-heptyl-4-methyl-4-thiazolin-2-ylidene)methyl)-4-methyl-, iodide
QUATERNIUM-73
QUATERNIUM-75 Origine(s) : Synthétique Nom INCI : QUATERNIUM-75 Classification : Ammonium quaternaire Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-75
QUATERNIUM-8; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-8. Classification : Ammonium quaternaire. Ses fonctions (INCI); Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance; It helps make drying easier, whilst it totally respects hair structure. It protects the hair from the heat damage caused by hairdryer or hair iron, as well from mechanical stress. It has softening, conditioning and antistatic proprieties.
QUATERNIUM-8
QUATERNIUM-80, N° CAS : 134737-05-6. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-80. Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface : Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Quaternium-80 is the quaternary ammonium salt with the alkyl groups derived from coconut oil; Siloxanes and Silicones, di-Me, 3-[3-[(3-coco amidopropyl)dimethylammonio]-2-hydroxypropoxy]propyl group-terminated, acetates (salts); Siloxanes and silicones, di-Me, 3-{3-[(3-Cocoamidopropyl) -dimethylammonia]-2-hydroxy-propoxy}propyl group terminated, acetates (salts)
QUATERNIUM-80
QUATERNIUM-82, N° CAS : 65059-61-2 / 173833-36-8. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-82. N° EINECS/ELINCS : 265-339-0 / -. Classification : Ammonium quaternaire. Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. [2-[bis(2-hydroxypropyl)amino]ethyl]bis(2-hydroxypropyl)(methyl)ammonium methyl sulphate, dioleate (ester); (2-hydroxypropyl)({2-[(2-hydroxypropyl)({2-[(9E)-octadec-9-enoyloxy]propyl})amino]ethyl})methyl({2-[(10E)-octadec-10-enoyloxy]propyl})azanium methyl sulfate; 2-Hydroxy-N-{2-[(2-hydroxypropyl){2-[(9E)-9-octadecenoyloxy]propyl}amino]ethyl}-N-methyl-N-{2-[(10E)-10-octadecenoyloxy]propyl}-1-propanaminium methyl sulfate [ACD/IUPAC Name] 2-Hydroxy-N-{2-[(2-hydroxypropyl){2-[(9E)-9-octadecenoyloxy]propyl}amino]ethyl}-N-methyl-N-{2-[(10E)-10-octadecenoyloxy]propyl}-1-propanaminiummethylsulfat [German] [ACD/IUPAC Name] Sulfate de 2-hydroxy-N-{2-[(2-hydroxypropyl){2-[(9E)-9-octadecenoyloxy]propyl}amino]éthyl}-N-méthyl-N-{2-[(10E)-10-octadecenoyloxy]propyl}propane et de méthyle [French] [ACD/IUPAC Name] (2-(Bis(2-hydroxypropyl)amino)ethyl)bis(2-hydroxypropyl)(methyl)ammonium methyl sulphate, dioleate (ester) (2-HYDROXYPROPYL)({2-[(2-HYDROXYPROPYL)({2-[(9E)-OCTADEC-9-ENOYLOXY]PROPYL})AMINO]ETHYL})METHYL({2-[(10E)-OCTADEC-10-ENOYLOXY]PROPYL})AZANIUM METHYL SULFATE(1-) 1-Propanaminium, N-(2-(bis(2-hydroxypropyl)amino)ethyl)-2-hydroxy-N-(2-hydroxypropyl)-N-methyl-, di-(9Z)-9-octadecenoate (ester), methyl sulfate (salt) 265-339-0 [EINECS] 65059-61-2 [RN]
QUATERNIUM-82
QUATERNIUM-83, N° CAS : 91723-55-6. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-83. N° EINECS/ELINCS : 294-563-1. Classification : Ammonium quaternaire. Ses fonctions (INCI): Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-83
QUATERNIUM-87, N° CAS : 92201-88-2. Origine(s) : Synthétique. Nom INCI : QUATERNIUM-87. N° EINECS/ELINCS : 931-745-8. Classification : Ammonium quaternaire. Ses fonctions (INCI): Agent nettoyant : Aide à garder une surface propre. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
QUATERNIUM-87
QUATERNIUM-88, Origine(s) : Synthétique. Nom INCI : QUATERNIUM-88. Classification : Ammonium quaternaire. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-88
QUATERNIUM-89 Origine(s) : Synthétique Nom INCI : QUATERNIUM-89 Classification : Ammonium quaternaire Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-89
QUATERNIUM-90, Origine(s) : Synthétique, Nom INCI : QUATERNIUM-90. Classification : Ammonium quaternaire. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface
QUATERNIUM-90
QUATERNIUM-91 Origine(s) : Synthétique Nom INCI : QUATERNIUM-91 Classification : Ammonium quaternaire Ses fonctions (INCI) Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
QUATERNIUM-91
QUATERNIUM-95; N° CAS : 1030827-59-8; Origine(s) : Synthétique; Nom INCI : QUATERNIUM-95. Classification : Ammonium quaternaire. Ses fonctions (INCI). Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV
QUATERNIUM-95
QUATERNIUM-96, Origine(s) : Synthétique. Nom INCI : QUATERNIUM-96. Classification : Ammonium quaternaire. Ses fonctions (INCI). Agent nettoyant : Aide à garder une surface propre. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
QUATERNIUM-96
SYNONYMS C.I.Acid Yellow 3; C.I. 47005; Quinoline Yellow, water soluble; Food Yellow 13; Sodium 2-(1,3-dioxoindan-2-yl)quinolinedisulfonate; 2-(1,3-Dioxoindan-2-yl) quinolinedisulfonic acid sodium salt; Sodium 2-(2-quinolyl) indan-1,3-dione-disulfonates; Quinoline Yellow;CAS NO 8004-92-0
QUERCETIN

Quercetin is a flavonoid found naturally in many fruits, vegetables, and grains, known for its powerful antioxidant, anti-inflammatory, and immune-boosting properties.
Quercetin is widely recognized for its ability to neutralize free radicals, reduce inflammation, and support cardiovascular health, making it a valuable ingredient in dietary supplements, skincare products, and wellness formulations.
This versatile compound offers numerous health benefits, including enhanced immune defense, reduced allergy symptoms, and protection against oxidative stress.

CAS Number: 117-39-5
EC Number: 204-187-1

Synonyms: Quercetin, Quercetin Dihydrate, Quercetol, Sophoretin, Meletin, Quercetine, Quercetin Bioflavonoid, 3,3',4',5,7-Pentahydroxyflavone, Quercetin Phytocomplex, Quercetin Bioactive, Quercetol Phytocomplex, Flavonoid Quercetin



APPLICATIONS


Quercetin is extensively used in dietary supplements for its antioxidant properties, providing support for neutralizing free radicals and reducing oxidative stress, which contributes to overall health and longevity.
Quercetin is favored in the formulation of immune-boosting supplements, where it enhances the body’s natural defenses and helps reduce the duration and severity of colds and infections.
Quercetin is utilized in allergy-relief supplements, offering natural antihistamine effects that help reduce allergy symptoms such as sneezing, congestion, and itchy eyes.

Quercetin is widely used in cardiovascular health supplements, where it supports healthy blood circulation, reduces blood pressure, and helps to lower LDL cholesterol levels.
Quercetin is employed in the creation of anti-inflammatory supplements, providing relief from chronic inflammation and supporting overall joint health.
Quercetin is essential in the development of sports recovery supplements, where it helps reduce muscle soreness and enhance athletic performance by decreasing oxidative stress in the muscles.

Quercetin is utilized in the production of respiratory health products, offering benefits for reducing asthma symptoms and improving lung function, particularly in individuals with chronic respiratory issues.
Quercetin is a key ingredient in wellness products designed to support healthy aging, where it helps protect cells from oxidative damage and promotes longevity.
Quercetin is used in the development of weight management supplements, where it supports fat metabolism and helps regulate glucose levels, making it a valuable component in managing obesity and metabolic disorders.

Quercetin is applied in the formulation of skincare products for its anti-aging and anti-inflammatory benefits, offering protection against UV-induced skin damage and helping to reduce redness, irritation, and inflammation.
Quercetin is employed in the production of creams and lotions for sensitive skin, providing antioxidant protection while soothing irritation and helping to repair damaged skin.
Quercetin is used in wellness supplements to support brain health, providing neuroprotective benefits and helping to improve cognitive function and memory by reducing oxidative stress in the brain.

Quercetin is widely utilized in the creation of detox products, where it helps to eliminate toxins and support liver function, contributing to overall wellness and vitality.
Quercetin is a key component in supplements designed to support vascular health, helping to strengthen blood vessels, improve circulation, and reduce the risk of cardiovascular diseases.
Quercetin is used in the production of eye health supplements, providing antioxidant support to protect the eyes from oxidative stress and helping to reduce the risk of cataracts and age-related macular degeneration.

Quercetin is employed in the formulation of supplements that support metabolic health, helping to regulate blood sugar levels and improve insulin sensitivity.
Quercetin is applied in natural remedies for reducing the symptoms of prostate inflammation and supporting overall prostate health.
Quercetin is utilized in the creation of anti-aging supplements, where it helps to reduce wrinkles, improve skin elasticity, and promote youthful-looking skin.

Quercetin is found in sports nutrition products, helping to reduce oxidative stress during exercise, enhance recovery, and improve endurance in athletes.
Quercetin is used in the development of natural antihistamines for individuals suffering from seasonal allergies, providing relief from common symptoms like nasal congestion, sneezing, and watery eyes.
Quercetin is a key ingredient in supplements designed to support healthy blood pressure, providing natural benefits for managing hypertension and improving cardiovascular health.



DESCRIPTION


Quercetin is a flavonoid found naturally in many fruits, vegetables, and grains, known for its powerful antioxidant, anti-inflammatory, and immune-boosting properties.
Quercetin is widely recognized for its ability to neutralize free radicals, reduce inflammation, and support cardiovascular health, making it a valuable ingredient in dietary supplements, skincare products, and wellness formulations.

Quercetin offers additional benefits such as supporting respiratory health, improving circulation, and promoting longevity by protecting cells from oxidative damage.
Quercetin is often incorporated into formulations designed to support immune function, improve allergy symptoms, and reduce inflammation, providing a comprehensive approach to wellness.
Quercetin is recognized for its ability to help prevent and manage chronic conditions such as heart disease, diabetes, and neurodegenerative disorders.

Quercetin is commonly used in both traditional and modern wellness formulations, providing a reliable solution for supporting the immune system, improving heart health, and promoting overall vitality.
Quercetin is valued for its ability to reduce oxidative stress, which plays a crucial role in preventing premature aging and promoting healthy skin and overall well-being.
Quercetin is a versatile ingredient that can be used in a variety of products, including supplements, capsules, creams, lotions, and skincare products.

Quercetin is an ideal choice for products targeting immune support, inflammation reduction, and cardiovascular health, providing natural and effective care for these concerns.
Quercetin is known for its compatibility with other antioxidant-rich and anti-inflammatory ingredients, making it easy to integrate into multi-functional formulations.
Quercetin is often chosen for formulations requiring a balance between immune support, inflammation relief, and heart health, ensuring comprehensive wellness benefits.

Quercetin enhances the overall effectiveness of wellness products by providing natural support for immune defense, inflammation reduction, and oxidative stress protection.
Quercetin is a reliable ingredient for creating products that offer noticeable improvements in immune function, allergy relief, and cardiovascular health.
Quercetin is an essential component in innovative wellness and beauty products known for their performance, safety, and ability to support immune health, skin protection, and overall vitality.



PROPERTIES


Chemical Formula: C15H10O7
Common Name: Quercetin
Molecular Structure:
Appearance: Yellow crystalline powder
Density: Approx. 1.8 g/cm³
Melting Point: 316 °C (601 °F)
Solubility: Soluble in ethanol, methanol; slightly soluble in water
Flash Point: Not applicable
Reactivity: Stable under normal conditions; no known reactivity issues
Chemical Stability: Stable under recommended storage conditions
Storage Temperature: Store between 15-25°C in a cool, dry place
Vapor Pressure: Low



FIRST AID


Inhalation:
If Quercetin is inhaled, move the affected person to fresh air immediately.
If breathing difficulties persist, seek immediate medical attention.
If the person is not breathing, administer artificial respiration.
Keep the affected person warm and at rest.

Skin Contact:
Wash the affected area with soap and water.
If skin irritation persists, seek medical attention.

Eye Contact:
In case of eye contact, flush the eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids.
Seek immediate medical attention if irritation or redness persists.
Remove contact lenses if present and easy to do; continue rinsing.

Ingestion:
If Quercetin is ingested, do not induce vomiting unless directed to do so by medical personnel.
Rinse the mouth thoroughly with water.
Seek immediate medical attention.
If the person is conscious, give small sips of water to drink.

Note to Physicians:
Treat symptomatically.
No specific antidote.
Provide supportive care.



HANDLING AND STORAGE


Handling:
Personal Protection:
Wear appropriate personal protective equipment (PPE) such as gloves and safety goggles if handling large quantities.
Use in a well-ventilated area to avoid inhalation of dust.

Ventilation:
Ensure adequate ventilation when handling large amounts of Quercetin to control airborne concentrations below occupational exposure limits.

Avoidance:
Avoid direct contact with eyes and prolonged skin contact.
Do not eat, drink, or smoke while handling Quercetin.
Wash hands thoroughly after handling.

Spill and Leak Procedures:
Contain spills to prevent further release and minimize exposure.
Absorb with inert material (e.g., sand, vermiculite) and collect for disposal.
Dispose of in accordance with local regulations.

Storage:
Store Quercetin in a cool, dry, well-ventilated area away from incompatible materials (see SDS for specific details).
Keep containers tightly closed when not in use to prevent contamination.
Store away from heat sources, direct sunlight, and ignition sources.

Handling Cautions:
Avoid inhalation of dust and direct contact with skin and eyes.
Use explosion-proof equipment in areas where dust or vapors may be present.

QUINOLINE YELLOW
ood Yellow 13; Sodium 2-(1,3-dioxoindan-2-yl)quinolinedisulfonate; 2-(1,3-Dioxoindan-2-yl) quinolinedisulfonic acid sodium salt; Sodium 2-(2-quinolyl) indan-1,3-dione-disulfonates CAS:8004-92-0
Quinoline
Quartemine; 1-Hexadecanaminium, N,N,N-trimethyl-, chloride cas no: 112-02-7
RACEMIC ACID
Racemic acid is an organic acid found in many vegetables and fruits such as bananas, and grapes, but also in bananas, citrus, and tamarinds.
Racemic acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes, but also in tamarinds, bananas, avocados and citrus.
Naturally occurring Racemic acid is a useful raw material in organic chemical synthesis.

CAS Number: 87-69-4
EC Number: 205-695-6
Molecular Formula: C4H6O6
Molecular Weight (g/mol): 150.09

Synonyms: (+)-L-Tartaric acid, (+)-Tartaric acid, 87-69-4, L-(+)-Tartaric acid, L-Tartaric acid, L(+)-Tartaric acid, tartaric acid, (2R,3R)-2,3-dihydroxysuccinic acid, (2R,3R)-2,3-dihydroxybutanedioic acid, (R,R)-Tartaric acid, Threaric acid, L-threaric acid, Dextrotartaric acid, Natural tartaric acid, Acidum tartaricum, DL-Tartaric acid, (2R,3R)-(+)-Tartaric acid, (+)-(R,R)-Tartaric acid, Tartaric acid, L-, Rechtsweinsaeure, Kyselina vinna, (2R,3R)-Tartaric acid, (R,R)-(+)-Tartaric acid, tartrate, Succinic acid, 2,3-dihydroxy, Weinsteinsaeure, L-2,3-Dihydroxybutanedioic acid, 133-37-9, (2R,3R)-rel-2,3-Dihydroxysuccinic acid, 1,2-Dihydroxyethane-1,2-dicarboxylic acid, EINECS 201-766-0, (+)-Weinsaeure, NSC 62778, FEMA No. 3044, INS NO.334, DTXSID8023632, UNII-W4888I119H, CHEBI:15671, Kyselina 2,3-dihydroxybutandiova, AI3-06298, Lamb protein (fungal), INS-334, (+/-)-Tartaric Acid, Butanedioic acid, 2,3-dihydroxy- (2R,3R)-, (R,R)-tartrate, NSC-62778, W4888I119H, Tartaric acid (VAN), Kyselina vinna [Czech], DTXCID203632, E 334, E-334, RR-tartaric acid, (+)-(2R,3R)-Tartaric acid, Tartaric acid, L-(+)-, EC 201-766-0, TARTARIC ACID (L(+)-), Tartaric acid [USAN:JAN], Weinsaeure, BAROS COMPONENT TARTARIC ACID, L-2,3-DIHYDROXYSUCCINIC ACID, MFCD00064207, C4H6O6, L-tartarate, 4J4Z8788N8, 138508-61-9, (2R,3R)-2,3-Dihydroxybernsteinsaeure, TARTARIC ACID COMPONENT OF BAROS, Resolvable tartaric acid, d-alpha,beta-Dihydroxysuccinic acid, TARTARIC ACID (II), TARTARIC ACID [II], 144814-09-5, Kyselina 2,3-dihydroxybutandiova [Czech], REL-(2R,3R)-2,3-DIHYDROXYBUTANEDIOIC ACID, TARTARIC ACID (MART.), TARTARIC ACID [MART.], (1R,2R)-1,2-Dihydroxyethane-1,2-dicarboxylic acid, TARTARIC ACID (USP-RS), TARTARIC ACID [USP-RS], BUTANEDIOIC ACID, 2,3-DIHYDROXY-, (R-(R*,R*))-, Tartaric acid D,L, Butanedioic acid, 2,3-dihydroxy- (R-(R*,R*))-, TARTARIC ACID (EP MONOGRAPH), TARTARIC ACID [EP MONOGRAPH], Tartarate, DL-TARTARICACID, 132517-61-4, L(+) tartaric acid, (2RS,3RS)-Tartaric acid, 2,3-dihydroxy-succinic acid, Traubensaeure, Vogesensaeure, Weinsaure, acide tartrique, acido tartarico, tartaric-acid, para-Weinsaeure, L-Threaric aci, 4ebt, NSC 148314, NSC-148314, (r,r)-tartarate, (+)-tartarate, l(+)tartaric acid, Tartaric acid; L-(+)-Tartaric acid, Tartaric acid (TN), (+-)-Tartaric acid, Butanedioic acid, 2,3-dihydroxy-, (R*,R*)-, L-(+) tartaric acid, (2R,3R)-Tartarate, 1d5r, DL TARTARIC ACID, TARTARICUM ACIDUM, 2,3-dihydroxy-succinate, TARTARIC ACID,DL-, SCHEMBL5762, TARTARIC ACID, DL-, Tartaric acid (JP17/NF), TARTARIC ACID [FCC], TARTARIC ACID [JAN], d-a,b-Dihydroxysuccinic acid, TARTARIC ACID [INCI], MLS001336057, L-TARTARIC ACID [MI], TARTARIC ACID [VANDF], DL-TARTARIC ACID [MI], CCRIS 8978, L-(+)-Tartaric acid, ACS, TARTARIC ACID [WHO-DD], CHEMBL1236315, L-(+)-Tartaric acid, BioXtra, TARTARICUM ACIDUM [HPUS], UNII-4J4Z8788N8, (2R,3R)-2,3-tartaric acid, CHEBI:26849, HMS2270G22, Pharmakon1600-01300044, TARTARIC ACID, DL- [II], TARTARIC ACID, (+/-)-, TARTARIC ACID,DL- [VANDF], HY-Y0293, STR02377, TARTARIC ACID [ORANGE BOOK], EINECS 205-105-7, Tox21_300155, (2R,3R)-2,3-dihydroxysuccinicacid, NSC759609, s6233, AKOS016843282, L-(+)-Tartaric acid, >=99.5%, CS-W020107, DB09459, NSC-759609, (2R,3R)-2,3-dihydroxy-succinic acid, Butanedioic acid, 2,3-dihydroxy-; Butanedioic acid, 2,3-dihydroxy-, (R-(R*,R*))-, CAS-87-69-4, L-(+)-Tartaric acid, AR, >=99%, (R*,R*)-2,3-dihydroxybutanedioic acid, NCGC00247911-01, NCGC00254043-01, BP-31012, SMR000112492, SBI-0207063.P001, (2R,3R)-rel-2,3-dihydroxybutanedioic acid, NS00074184, T0025, EN300-72271, (R*,R*)-(+-)-2,3-dihydroxybutanedioic acid, C00898, D00103, D70248, L-(+)-Tartaric acid, >=99.7%, FCC, FG, L-(+)-Tartaric acid, ACS reagent, >=99.5%, L-(+)-Tartaric acid, BioUltra, >=99.5% (T), J-500964, J-520420, L-(+)-Tartaric acid, ReagentPlus(R), >=99.5%, L-(+)-Tartaric acid, SAJ first grade, >=99.5%, L-(+)-Tartaric acid, tested according to Ph.Eur., Butanedioic acid, 2,3-dihydroxy-, (R*,R*)-(+-)-, L-(+)-Tartaric acid, JIS special grade, >=99.5%, L-(+)-Tartaric acid, natural, >=99.7%, FCC, FG, L-(+)-Tartaric acid, p.a., ACS reagent, 99.0%, L-(+)-Tartaric acid, Vetec(TM) reagent grade, 99%, Q18226455, F8880-9012, Z1147451717, Butanedioic acid, 2,3-dihydroxy-, (theta,theta)-(+-)-, 000189E3-11D0-4B0A-8C7B-31E02A48A51F, L-(+)-Tartaric acid, puriss. p.a., ACS reagent, >=99.5%, L-(+)-Tartaric acid, certified reference material, TraceCERT(R), Tartaric acid, United States Pharmacopeia (USP) Reference Standard, L-(+)-Tartaric acid, anhydrous, free-flowing, Redi-Dri(TM), ACS reagent, >=99.5%, L-(+)-Tartaric acid, p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99.5%, Tartaric Acid, Pharmaceutical Secondary Standard; Certified Reference Material

Racemic acid is an organic acid found in many vegetables and fruits such as bananas, and grapes, but also in bananas, citrus, and tamarinds.
Racemic acid is also known as 2,3-dihydroxysuccinic acid or Tartaric acid.

Racemic acid is used to generate carbon dioxide.
Racemic acid is a diprotic aldaric acid which is crystalline white.
Baking powder is a mixture of Racemic acid with sodium bicarbonate.

Racemic acid is widely used in the field of pharmaceuticals.
High doses of Racemic acid can lead to paralysis or death.

Racemic acid is one of the least antimicrobial of the organic acids known to inactivate fewer microorganisms and inhibit less microbial growth in comparison with most other organic acids (including acetic, ascorbic, benzoic, citric, formic, fumaric, lactic, levulinic, malic, and propionic acids) in the published scientific literature.

Racemic acid is a tetraric acid, which is butanedioic acid substituted with hydroxy groups at the 2 and 3 positions.
Racemic acid has a role as a human xenobiotic metabolite and a plant metabolite.
Racemic acid is a conjugate acid of 3-carboxy-2,3-dihydroxypropanoate.

Racemic acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes, but also in tamarinds, bananas, avocados and citrus.
Racemic acid salt, potassium bitartrate, commonly known as cream of tartar, develops naturally in the process of fermentation.

Racemic acid is commonly mixed with sodium bicarbonate and is sold as baking powder used as a leavening agent in food preparation.
Racemic acid itself is added to foods as an antioxidant E334 and to impart Racemic acid distinctive sour taste.

Racemic acid is an organic acid that naturally occurs in many fruits, most notably in grapes but also in bananas and citrus fruits.
Racemic acid is a white, crystalline solid which can easily be dissolved in water.

Approx. 50 % of the produced Racemic acid is subsequently used by the food and pharmaceutical industry, the other half is used in technical applications.
When added to food or beverage products, Racemic acid is denoted by E-number E 334.

Besides that, Racemic acid and its derivatives are often used in the field of pharmaceuticals or as a chelating agent in the farming and metal industry.

Naturally occurring Racemic acid is a useful raw material in organic chemical synthesis.
Racemic acid, an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics, and is a dihydroxyl derivative of succinic acid.

Racemic acid is a white crystalline organic acid that occurs naturally in many plants, most notably in grapes.
2,3-dihydroxybutanedioic is an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics, and is a dihydroxyl derivative of succinic acid.

Racemic acid is a white crystalline organic acid that occurs naturally in many plants, most notably in grapes.
2,3-dihydroxybutanedioic is an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics, and is a dihydroxyl derivative of succinic acid.

Racemic acid is a white crystalline diprotic organic acid.
Racemic acid occurs naturally in many plants, particularly in grapes, bananas, and tamarinds.
Racemic acid is also one of the main acids found in wine.

Racemic acid can be added to food when a sour taste is desired.
Racemic acid is also used as an antioxidant.

Salts of Racemic acid are known as tartarates.
Racemic acid is a dihydroxy derivative of succinic acid.

Racemic acid is found in cream of tartar and baking powder.
Racemic acid is used in silvering mirrors, tanning leather, and in Rochelle Salt.
In medical analysis, Racemic acid is used to make solutions for the determination of glucose.

Racemic acid is a naturally occurring dicarboxylic acid containing two stereocenters.
Racemic acid exists as a pair of enantiomers and an achiral meso compound.

Racemic acid is present in many fruits (fruit acid), and Racemic acid monopotassium salt is found as a deposit during the fermentation of grape juice.

Racemic acid is a historical compound, dating back to when Louis Pasteur separated Racemic acid into two enantiomers with a magnifying lens and a pair of tweezers more than 160 years ago.

Racemic acid has a stronger, sharper taste than citric acid.
Although Racemic acid is renowned for its natural occurrence in grapes, Racemic acid also occurs in apples, cherries, papaya, peach, pear, pineapple, strawberries, mangos, and citrus fruits.

Racemic acid is used preferentially in foods containing cranberries or grapes, notably wines, jellies, and confectioneries.
Commercially, Racemic acid is prepared from the waste products of the wine industry and is more expensive than most acidulants, including citric and malic acids.

Racemic acid is one of the least antimicrobial of the organic acids known to inactivate fewer microorganisms and inhibit less microbial growth in comparison with most other organic acids (including acetic, ascorbic, benzoic, citric, formic, fumaric, lactic, levulinic, malic, and propionic acids) in the published scientific literature.
Furthermore, when dissolved in hard water, undesirable insoluble precipitates of calcium tartrate can form.

Racemic acid is an abundant constituent of many fruits such as grapes and bananas and exhibits a slightly astringent and refreshing sour taste.
Racemic acid is one of the main acids found in wine.

Racemic acid is added to other foods to give a sour taste and is normally used with other acids such as citric acid and malic acid as an additive in soft drinks, candies, and so on.
Racemic acid is produced by acid hydrolysis of calcium tartrate, which is prepared from potassium tartrate obtained as a by-product during wine production.
Optically active Racemic acid is used for the chiral resolution of amines and also as an asymmetric catalyst.

Racemic acid is the most water-soluble of the solid acidulants.
Racemic acid contributes a strong tart taste that enhances fruit flavors, particularly grape and lime.

Racemic acid is often used as an acidulant in grape- and lime-flavored beverages, gelatin desserts, jams, jellies, and hard sour confectionery.

Racemic acid, a dicarboxylic acid, one of the most widely distributed of plant acids, with a number of food and industrial uses.
Along with several of Racemic acid salts, cream of tartar (potassium hydrogen tartrate) and Rochelle salt (potassium sodium tartrate), Racemic acid is obtained from by-products of wine fermentation.

Study of the crystallographic, chemical, and optical properties of the Racemic acids by French chemist and microbiologist Louis Pasteur laid the basis for modern ideas of stereoisomerism.

Racemic acid is widely used as an acidulant in carbonated drinks, effervescent tablets, gelatin desserts, and fruit jellies.
Racemic acid has many industrial applications—e.g., in cleaning and polishing metals, in calico printing, in wool dyeing, and in certain photographic printing and development processes.
Racemic acid is used in silvering mirrors, in processing cheese, and in compounding mild cathartics.

Racemic acid is incorporated into baking powders, hard candies, and taffies; and Racemic acid is employed in the cleaning of brass, the electrolytic tinning of iron and steel, and the coating of other metals with gold and silver.

Racemic acid is an organic acid.
Racemic acid is also known as 2,3-dihydroxysuccinic acid or Tartaric acid.
Racemic acid is in use to generate carbon dioxide.

Racemic acid is a diprotic aldaric acid.
Racemic acid is an alpha-hydroxy-carboxylic acid and is a dihydroxyl derivative of succinic acid.

Racemic acid is widely in use in the field of pharmaceuticals.
A High dose of Racemic acid can affect our body to a great extent.

Racemic acid is a white and crystalline that occurs naturally in many fruits and vegetables and most notably in grapes.
Racemic acid is also present in bananas, tamarinds, and citrus.

Racemic acid is commonly mixed with sodium bicarbonate and is sold as a baking powder that is in use as a leavening agent in food preparation.
The Racemic acid is added to foods being an antioxidant i.e., E334 and to impart Racemic acid distinctive sour taste.

Racemic acid, sometimes called Tartaric acid, is an organic compound that naturally occurs in plants, wine, and many fruits, such as grapes, tamarinds, citrus, and bananas.
The acid is available as a white solid that’s soluble in water.
Racemic acid salt, commonly referred to as cream of tartar, is created naturally through fermentation.

Racemic acid is made from potassium acid tartrate obtained from different by-products of the wine industry, such as lees, argol, and press cakes from fermented grape juice.
This dibasic acid is usually mixed with sodium bicarbonate and is available as baking powder commonly used as a food additive.

Uses of Racemic acid:
Racemic acid is Levo form of dextrorotatory Racemic acid.
Racemic acid is found throughout nature and classified as a fruit acid.

Racemic acid is used in soft drinks and foods, as an acidulant, complexing agent, pharmaceutic aid (buffering agent), in photography, tanning, ceramics, and to make tartrates.
Diethyl and dibutyl ester derivatives are commercially significant for use in lacquers and in textile printing.

Racemic acid is used as an intermediate, in construction and ceramics applications, in cleaning products, cosmetics/personal care products, and metal surface treatments (including galvanic and electroplating products).
Racemic acid is used as a flavoring agent, anticaking agent, drying agent, firming agent, humectant, leavening agent, and pH control agent for foods.

Racemic acid is used to improve the taste of oral medications.
Racemic acid is used to chelate metal ions such as magnesium and calcium.

Racemic acid is used in recipes as a leavening agent along with baking soda.
Racemic acid is used as an antioxidant.

Racemic acid is as one of the important acids in wine.
Racemic acid is used in foods to give a sour taste.

Racemic acid is sometimes used to induce vomiting.
Racemic acid is used to make silver mirrors.

In its ester form, Racemic acid is used in the dyeing of textiles.
Racemic acid is used in the tanning of leather.

Racemic acid is used in candies.
In its cream form, Racemic acid is used as a stabilizer in food.

Food industry:
Racemic acid is used as acidifier and natural preservative for marmalades, ice cream, jellies, juices, preserves, and beverages.
Racemic acid is used as effervescent for carbonated water.
Racemic acid is used as emulsifier and preservative in the bread-making industry and in the preparation of candies and sweets.

Oenology:
Racemic acid is used as an acidifier.
Racemic acid is used in musts and wines to prepare wines that are more balanced from the point of view of taste, the result being an increase in their degree of acidity and a decrease in their pH content.

Pharmaceuticals industry:
Racemic acid is used as an excipient for the preparation of effervescent tablets.

Construction industry:
Racemic acid is used in cement, plaster, and plaster of Paris to retard drying and facilitate the handling of these materials.

Cosmetics industry:
Racemic acid is used as a basic component of many natural body crèmes.

Chemical sector:
Racemic acid is used in galvanic baths.
Racemic acid is used in electronics industry.

Racemic acid is used as mordant in the textile industry.
Racemic acid is used as an anti-oxidant in industrial greases.

Industry Uses:
Processing aids not otherwise specified

Consumer Uses:
Processing aids not otherwise specified

Industrial Processes with risk of exposure:
Electroplating
Painting (Pigments, Binders, and Biocides)
Leather Tanning and Processing
Photographic Processing
Textiles (Printing, Dyeing, or Finishing)

Usage Areas of Racemic acid:
Racemic acid, this crystalline acid, is commonly seen in plants and fruits.
The chemical formula of Racemic acid, an organic acid, is C4H6O6 and its density is 1.788g/cm.

Racemic acid is used in different branches of industry, especially industry.
Racemic acid is generally preferred for the fermentation of wine and is formed as a byproduct of potassium during fermentation.

Racemic acid is frequently used in wool dyeing, polishing, gelatin, desserts and sodas.
Racemic acid, which is mostly found in grape fruits, also occurs in some fruits other than grapes.

Racemic acid, which is formed from the mixture of raceme, is called levo.
Racemic acids are among the water-soluble dicarboxylic acids.

Racemic acid is used to give a sour taste to foods.
Racemic acid, E334, is a good antioxidant.

The most common use of Racemic acid is in soda production.
Racemic acid, which is used to flavor soda, is an indispensable component of soda.

Racemic acid is preferred for dyeing wool.
Racemic acid can be used for polishing, polishing and cleaning metals.

Racemic acid is used to release carbon dioxide in bakery products.
Racemic acid, an indispensable ingredient in gelatin desserts, is generally preferred as a thickener in products such as meringue, Turkish delight and whipped cream.

The form of Racemic acid obtained from grapes is generally preferred in pastry.
Racemic acid can be preferred over baking powder for rising cakes.

Racemic acid, which is frequently found in fruits and has a tart and strong taste, is preferred for winemaking and fermentation of wine.
Racemic acid is used in making marmalade and jams.

Applications of Racemic acid:
Racemic acid and its derivatives have a plethora of uses in the field of pharmaceuticals.
For example, Racemic acid has been used in the production of effervescent salts, in combination with citric acid, to improve the taste of oral medications.

Racemic acid also has several applications for industrial use.

The acid has been observed to chelate metal ions such as calcium and magnesium.
Therefore, the acid has served in the farming and metal industries as a chelating agent for complexing micronutrients in soil fertilizer and for cleaning metal surfaces consisting of aluminium, copper, iron, and alloys of these metals, respectively.

Racemic acid is used in fuels and fuel additives, laboratory chemicals, lubricants and lubricant additives, coating agents and surface treatment agents.
Racemic acid is used in processing aids and petroleum production specific processing aids.

Racemic acid is used in ink, toner and coloring products, laboratory use, lubricants and greases.
Racemic acid is found in cream of tartar, which is used in making candies and frostings for cakes.

Racemic acid is also used in baking powder where Racemic acid serves as the source of acid that reacts with sodium bicarbonate (baking soda).
This reaction produces carbon dioxide gas and lets products “rise,” but Racemic acid does so without the “yeast” taste that can result from using active yeast cultures as a source of the carbon dioxide gas.

Racemic acid is used in silvering mirrors, tanning leather, and in the making of Rochelle Salt, which is sometimes used as a laxative.
Blue prints are made with ferric tartarte as the source of the blue ink.

In medical analysis, Racemic acid is used to make solutions for the determination of glucose.
Common esters of Racemic acid are diethyl tartarate and dibutyl tartrate.
Both are made by reacting Racemic acid with the appropriate alcohol, ethanol or n-butanol.

Racemic acid in wine:
Racemic acid may be most immediately recognizable to wine drinkers as the source of "wine diamonds", the small potassium bitartrate crystals that sometimes form spontaneously on the cork or bottom of the bottle.

Racemic acid plays an important role chemically, lowering the pH of fermenting "must" to a level where many undesirable spoilage bacteria cannot live, and acting as a preservative after fermentation.
In the mouth, Racemic acid provides some of the tartness in the wine, although citric and malic acids also play a role.

Racemic acid in fruits:
Grapes and tamarinds have the highest levels of Racemic acid concentration.
Other fruits with Racemic acid are bananas, avocados, prickly pear fruit, apples, cherries, papayas, peaches, pears, pineapples, strawberries, mangoes and citrus fruits.

Results from a study showed that in citrus (oranges, lemons and mandarins), fruits produced in organic farming contain higher levels of Racemic acid than fruits produced in conventional agriculture.

Trace amounts of Racemic acid have been found in cranberries and other berries.
Racemic acid is also present in the leaves and pods of Pelargonium plants and beans.

Retarding Agent:
Racemic acid is widely used as a retarding agent in oilfield applications as well as in cementitious-based systems.
Racemic acid works by slowing the setting of cement by impeding certain reactions during the hydration of the cement process.
Racemic acid retards various steps, including ettringite formation and C3A hydration.

Food Additive:
Racemic acid also has many uses in the food industry.
As an acidulant, Racemic acid offers a pleasant sour taste and gives food a sharp flavor.

Racemic acid also serves as a preservative food agent and can help set gels.
Racemic acid is usually added to most products, including carbonated beverages, gelatin, fruit jellies, and effervescent tablets.
This acid is also used as an ingredient in candy and various brands of baking powders and leavening systems to make goods rise.

Industrial Applications:
Racemic acid has many industrial applications.
Racemic acid’s used in gold and silver plating, making blue ink for blueprints, tanning leather, and cleaning and polishing metals.
Racemic acid’s also one of the ingredients in Rochelle Salt, which is luxuriant and reacts with silver nitrate to form the silvering in mirrors.

Commercial Application:
The by-products obtained from the fermentation of wine during the production of Racemic acid are heated with calcium hydroxide.
This causes calcium tartrate to develop a residue, which is further treated with sulfuric acid to form a mixture of Racemic acid and calcium sulfate.
Once the mixture is separated, Racemic acid is purified and used for commercial production.

Other Racemic acid uses include pharmaceutical applications to produce effervescent salt that helps enhance the taste of oral medications.
Racemic acid’s also used in the metals and farming industry as a chelating agent for cleaning metal surfaces and adding nutrients to the soil.

Derivatives of Racemic acid:

Important derivatives of Racemic acid include:
Sodium ammonium tartrate, the first material separated into Racemic acid enantiomers
Cream of tartar (potassium bitartrate), used in cooking
Rochelle salt (potassium sodium tartrate), which has unusual optical properties
Tartar emetic (antimony potassium tartrate), a resolving agent.
Diisopropyl tartrate is used as a co-catalyst in asymmetric synthesis.

Racemic acid is a muscle toxin, which works by inhibiting the production of malic acid, and in high doses causes paralysis and death.
As a food additive, Racemic acid is used as an antioxidant with E number E334; Racemic acids are other additives serving as antioxidants or emulsifiers.

Production of Racemic acid:
Racemic acid is industrially produced in the largest amounts.
Racemic acid is obtained from lees, a solid byproduct of fermentations.
The former byproducts mostly consist of potassium bitartrate (KHC4H4O6).

This potassium salt is converted to calcium tartrate (CaC4H4O6) upon treatment with calcium hydroxide "milk of lime" (Ca(OH)2):
KH(C4H4O6) + Ca(OH)2 -> Ca(C4H4O6) + KOH + H2O

In practice, higher yields of calcium tartrate are obtained with the addition of calcium chloride.

Calcium tartrate is then converted to Racemic acid by treating the salt with aqueous sulfuric acid:
Ca(C4H4O6) + H2SO4 -> H2(C4H4O6) + CaSO4

Racemic Racemic acid:
Racemic Racemic acid can be prepared in a multistep reaction from maleic acid.

In the first step, the maleic acid is epoxidized by hydrogen peroxide using potassium tungstate as a catalyst.
HO2CC2H2CO2H + H2O2 → OC2H2(CO2H) 2

In the next step, the epoxide is hydrolyzed.
OC2H2(CO2H)2 + H2O → (HOCH)2(CO2H)2

meso-Racemic acid:
A mixture of racemic acid and meso-Tartaric acid is formed when dextro-Racemic acid is heated in water at 165 °C for about 2 days.

meso-Racemic acid can also be prepared from dibromosuccinic acid using silver hydroxide:
HO2CCHBrCHBrCO2H + 2 AgOH → HO2CCH(OH)CH(OH)CO2H + 2 AgBr

meso-Tartaric acid can be separated from residual racemic acid by crystallization, the racemate being less soluble.

General Manufacturing Information of Racemic acid:

Industry Processing Sectors:
Computer and Electronic Product Manufacturing
Construction
Not Known or Reasonably Ascertainable

Stereochemistry of Racemic acid:
Naturally occurring form of the acid is dextro Racemic acid.
Because Racemic acid is available naturally, Racemic acid is cheaper than its enantiomer and the meso isomer.

Dextro and levo form monoclinic sphenoidal crystals and orthorhombic crystals.
Racemic Racemic acid forms monoclinic and triclinic crystals (space group P1).

Anhydrous meso Racemic acid form two anhydrous polymorphs: triclinic and orthorhombic.
Monohydrated meso Racemic acid crystallizes as monoclinic and triclinic polymorphys depending on the temperature at which crystallization from aqueous solution occurs.
Racemic acid in Fehling's solution binds to copper(II) ions, preventing the formation of insoluble hydroxide salts.

History of Racemic acid:
Racemic acid has been known to winemakers for centuries.
However, the chemical process for extraction was developed in 1769 by the Swedish chemist Carl Wilhelm Scheele.

Racemic acid played an important role in the discovery of chemical chirality.
This property of Racemic acid was first observed in 1832 by Jean Baptiste Biot, who observed Racemic acid ability to rotate polarized light.

Louis Pasteur continued this research in 1847 by investigating the shapes of sodium ammonium tartrate crystals, which he found to be chiral.
By manually sorting the differently shaped crystals, Pasteur was the first to produce a pure sample of levoRacemic acid.

Pharmacology and Biochemistry of Racemic acid:

Pharmacodynamics:
Racemic acid is used to generate carbon dioxide through interaction with sodium bicarbonate following oral administration.
Carbon dioxide extends the stomach and provides a negative contrast medium during double contrast radiography.
In high doses, this agent acts as a muscle toxin by inhibiting the production of malic acid, which could cause paralysis and maybe death.

Route of Elimination:
Only about 15-20% of consumed Racemic acid is secreted in the urine unchanged.

Metabolism / Metabolites:
Most tartarate that is consumed by humans is metabolized by bacteria in the gastrointestinal tract, primarily in the large instestine.

Human Metabolite Information of Racemic acid:

Tissue Locations:
Adipose Tissue
Platelet
Prostate

Cellular Locations:
Cytoplasm

Reactivity of Racemic acid:
Racemic acid, can participate in several reactions.

As shown the reaction scheme below, dihydroxymaleic acid is produced upon treatment of Racemic acid with hydrogen peroxide in the presence of a ferrous salt.
HO2CCH(OH)CH(OH)CO2H + H2O2 → HO2CC(OH)C(OH)CO2H + 2 H2O

Dihydroxymaleic acid can then be oxidized to Racemic acid with nitric acid.

Accidental Release Measures of Racemic acid:

Spillage Disposal:

Personal protection:
Particulate filter respirator adapted to the airborne concentration of Racemic acid.
Sweep spilled substance into covered containers.

If appropriate, moisten first to prevent dusting.
Store and dispose of according to local regulations.

Identifiers of Racemic acid:
CAS Number:
R,R-isomer: 87-69-4
S,S-isomer: 147-71-7
racemic: 133-37-9
meso-isomer: 147-73-9
ChEBI: CHEBI:15674

ChEMBL:
ChEMBL333714
ChEMBL1200861

ChemSpider: 852
DrugBank: DB01694
ECHA InfoCard: 100.121.903
E number: E334 (antioxidants, ...)
KEGG: C00898
MeSH: tartaric+acid
PubChem CID: 875 unspecified isomer
UNII: W4888I119H
CompTox Dashboard (EPA): DTXSID5046986
InChI: InChI=1S/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)
Key: FEWJPZIEWOKRBE-UHFFFAOYSA-N
InChI=1/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)
Key: FEWJPZIEWOKRBE-UHFFFAOYAZ
SMILES: O=C(O)C(O)C(O)C(=O)O

CAS number: 147-71-7
EC number: 205-695-6
Hill Formula: C₄H₆O₆
Chemical formula: HOOCCH(OH)CH(OH)COOH
Molar Mass: 150.09 g/mol
HS Code: 2918 12 00

CAS: 87-69-4
Molecular Formula: C4H6O6
Molecular Weight (g/mol): 150.09
MDL Number: MFCD00064207
InChI Key: FEWJPZIEWOKRBE-UHFFFAOYNA-N
PubChem CID: 444305
ChEBI: CHEBI:15671
SMILES: OC(C(O)C(O)=O)C(O)=O

Properties of Racemic acid:
Chemical formula:
C4H6O6 (basic formula)
HO2CCH(OH)CH(OH)CO2H (structural formula)

Molar mass: 150.087 g/mol
Appearance: White powder

Density:
1.737 g/cm3 (R,R- and S,S-)
1.79 g/cm3 (racemate)
1.886 g/cm3 (meso)

Melting point:
169, 172 °C (R,R- and S,S-)
206 °C (racemate)
165-6 °C (meso)

Solubility in water:
1.33 kg/L (L or D-tartaric)
0.21 kg/L (DL, racemic)
1.25 kg/L ("meso")

Acidity (pKa): L(+) 25 °C: pKa1= 2.89, pKa2= 4.40
meso 25 °C: pKa1= 3.22, pKa2= 4.85
Conjugate base: Bitartrate
Magnetic susceptibility (χ): −67.5·10−6 cm3/mol

Density: 1.8 g/cm3 (20 °C)
Flash point: 210 °C
Ignition temperature: 425 °C
Melting Point: 172 - 174 °C
Solubility: 1394 g/l

grade: ACS reagent
Quality Level: 200
vapor density: 5.18 (vs air)
Assay: ≥99.5%

form:
crystalline powder
crystals

optical activity: [α]20/D +12.4°, c = 20 in H2O
optical purity: ee: 99% (GLC)
autoignition temp.: 797 °F

impurities:
≤0.002% S compounds
≤0.005% insolubles

ign. residue: ≤0.02%
mp: 170-172 °C (lit.)

anion traces:
chloride (Cl-): ≤0.001%
oxalate (C2O42-): passes test
phosphate (PO43-): ≤0.001%

cation traces:
Fe: ≤5 ppm
heavy metals (as Pb): ≤5 ppm

SMILES string: O[C@H]([C@@H](O)C(O)=O)C(O)=O
InChI: 1S/C4H6O6/c5-1(3(7)8)2(6)4(9)10/h1-2,5-6H,(H,7,8)(H,9,10)/t1-,2-/m1/s1
InChI key: FEWJPZIEWOKRBE-JCYAYHJZSA-N

Molecular Weight: 150.09 g/mol
XLogP3-AA: -1.9
Hydrogen Bond Donor Count: 4
Hydrogen Bond Acceptor Count: 6
Rotatable Bond Count: 3
Exact Mass: 150.01643791 g/mol
Monoisotopic Mass: 150.01643791 g/mol
Topological Polar Surface Area: 115Ų
Heavy Atom Count: 10
Complexity: 134
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 2
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes

Specifications of Racemic acid:
Assay (acidimetric): ≥ 99.0 %
Melting range (lower value): ≥ 166 °C
Melting range (upper value): ≤ 169 °C
Spec. rotation [α²0/D (c=10 in water): -14.0 - -12.0 °
Identity (IR): passes test

Melting Point: 168.0°C to 172.0°C
Color: White or Colorless
Assay Percent Range: 99+%
Linear Formula: HO2CCH(OH)CH(OH)CO2H
Solubility Information: Solubility in water: 1390g/L (20°C).
Other solubilities: soluble in methanol, ethanol, propanol and, glycerol, 4g/L ether, insoluble in chloroform
IUPAC Name: Racemic acid
Formula Weight: 150.09
Percent Purity: ≥99%
Quantity: 500 g
Flash Point: 210°C
Infrared Spectrum: Authentic
Loss on Drying: 0.5% (1g, 105°C) max.
Packaging: Plastic bottle
Physical Form: Crystals or Crystalline Powder
Chemical Name or Material: L(+)-Tartaric acid

Related compounds of Racemic acid:
2,3-Butanediol
Cichoric acid

Other cations:
Monosodium tartrate
Disodium tartrate
Monopotassium tartrate
Dipotassium tartrate

Related carboxylic acids:
Butyric acid
Succinic acid
Dimercaptosuccinic acid
Malic acid
Maleic acid
Fumaric acid

Names of Racemic acid:

Preferred IUPAC name:
Racemic acid

Other names:
Tartaric acid
2,3-Dihydroxysuccinic acid
Threaric acid
Tartaric acid
Uvic acid
Paratartaric acid
Winestone
RADIA 7513
Radia 7513 is the ester obtained from the reaction of tridecyl alcohol combined with stearic acid.


CAS Number: 95912-88-2
EC Number: 306-084-8
Chemical name : isotridecyl stearate
chemical name : Fatty acids, C16-18, isotridecyl esters


In raw material form, Radia 7513 is described as a clear oily liquid that may have a light-yellow hue.
Radia 7513 has been deemed safe by the Cosmetic Ingredient Review Expert Panel.


Radia 7513 contains tridecyl alcohol (1-tridecanol) as alcoholic component.
Stearates are salts or esters of stearic acid (octadecanoic acid).
Radia 7513 is the ester obtained from the reaction of tridecyl alcohol combined with stearic acid.



USES and APPLICATIONS of RADIA 7513:
Radia 7513 is used Ingredients for skincare.
Radia 7513 or 11-methyldodecyl octadecanoate or Octadecanoic acid is isotridecyl ester.
Radia 7513 is used in Skin care products, Raw material for spin finishes and oiling agent for textile, Rubber processing agent, Plastic lubricant, Paint & Ink additive.


Radia 7513 is ester used as a processing additive in polymers.
Radia 7513 is used raw material for spin finishes and oiling agent for textile, Rubber processing agent, Plastic lubricant, Paint & Ink additive.
Radia 7513’s used in cosmetics as a texture-enhancer/thickening agent and emollient and may be animal-derived or synthetic (Paula’s Choice uses the latter).



RADIA 7513 AT A GLANCE:
*The ester obtained from the reaction of tridecyl alcohol combined with stearic acid
*Works as a texture-enhancer/thickening agent and skin-softening emollient
*Touted for its quick absorption and velvety after feel
*Described as a clear oily liquid in raw material form



FUNCTIONS OF RADIA 7513 IN COSMETIC PRODUCTS:
*SKIN CONDITIONING
Radia 7513 maintains the skin in good condition



PHYSICAL and CHEMICAL PROPERTIES of RADIA 7513:
Appearance : light yellow oily liquid
acid value : max 1 mg KOH/g
other : iodine value: max 1 gI2/100 g
viscosity at 40 °C: 14-18 mm²/s
Moisture : max 0,1%
Density : 0,85:
Flashpoint: >210 °C
Molecular Weight: 466.8 g/mol
XLogP3-AA: 14.4
Hydrogen Bond Donor Count: 0
Hydrogen Bond Acceptor Count: 2
Rotatable Bond Count: 28
Exact Mass: 466.47498122 g/mol
Monoisotopic Mass: 466.47498122 g/mol
Topological Polar Surface Area: 26.3Ų
Heavy Atom Count: 33

Formal Charge: 0
Complexity: 377
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes
LogP: 14.386 (est)
EWG's Food Scores: 1
Appearance: Clear colorless to light yellow liquid.
Purity: 96% minimum.
Boiling point: 490C.
Flash point: 255C.
Relative density: about 0.9
Acid value: 1.0 maximum.
Saponification value: 120 – 130
Hydroxyl value: 3 maximum.
Color: 50 apha maximum.
Moisture: 0.1% maximum.



FIRST AID MEASURES of RADIA 7513:
-Description of first-aid measures:
*If inhaled:
If breathed in, move person into fresh air.
*In case of skin contact:
Wash off with soap and plenty of water.
*In case of eye contact:
Flush eyes with water as a precaution.
*If swallowed:
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
-Indication of any immediate medical attention and special treatment needed:
No data available



ACCIDENTAL RELEASE MEASURES of RADIA 7513:
-Environmental precautions:
No special environmental precautions required.
-Methods and materials for containment and cleaning up:
Keep in suitable, closed containers for disposal.



FIRE FIGHTING MEASURES of RADIA 7513:
-Extinguishing media:
*Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
-Further information:
No data available



EXPOSURE CONTROLS/PERSONAL PROTECTION of RADIA 7513:
-Control parameters:
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Use equipment for eye protection
*Skin protection:
Handle with gloves.
Wash and dry hands.
Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0,4 mm
Break through time: 480 min
Splash contact:
Material: Nitrile rubber
Minimum layer thickness: 0,4 mm
Break through time: 480 min
*Body Protection:
Impervious clothing.
*Respiratory protection:
Respiratory protection not required.
-Control of environmental exposure:
No special environmental precautions required



HANDLING and STORAGE of RADIA 7513:
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Store in cool place.
Keep container tightly closed in a dry and well-ventilated place.



STABILITY and REACTIVITY of RADIA 7513:
-Reactivity:
No data available
-Chemical stability:
Stable under recommended storage conditions.
-Possibility of hazardous reactions:
No data available
-Conditions to avoid:
No data available



SYNONYMS:
Fettsuren, C16-18-, Isotridecylester
Fatty acids, C16-18, isotridecyl esters
Fatty acids, C16-18, isotridecyl esters
Isotridecyl stearate
31565-37-4
11-methyldodecyl octadecanoate
Octadecanoic acid, isotridecyl ester
Octadecanoic acid,isotridecyl ester
J8793TKA30
Stearic acid, isotridecyl ester
EINECS 250-703-3
UNII-J8793TKA30
EXCEPARL TD-S
SCHEMBL2699239
ISOTRIDECYL STEARATE [INCI]
W-110802
Q27281337
Isotridecylstearat
isotridecyl stearate
11-methyldodecyl octadecanoate
Stearic acid, isotridecyl ester
Octadecanoic acid, isotridecyl ester


RADIACID 0907
RADIACID 0907 is derived from 100% vegetable origin.
Due to their branched structure the RADIACID 0907 has a characteristic emollient feel
RADIACID 0907 has a non-greasy feel


CAS NUMBER: 2724-58-5

EC NUMBER: 250-178-0

MOLECULAR FORMULA: C18H36O2

MOLECULAR WEIGHT: 284.5 g/mol

IUPAC NAME: 16-methylheptadecanoic acid


RADIACID 0907 has a highly substantive lipid film
Soft skin feel and leaves a glossy appearance to the skin

RADIACID 0907 is used in colour cosmetics, deodorants and personal care products, where it provides film-forming and spreading functions.
RADIACID 0907 is an exceptionally good emollient with a pleasant feel, and is used widely in skin and body care products.

RADIACID 0907 is used in the following products:
-washing & cleaning products
-adhesives and sealants
-fuels
-lubricants and greases
-coating products
-fertilisers

RADIACID 0907 is used in biocides (e.g. disinfectants, pest control products)
RADIACID 0907 is also used in pH regulators and water treatment products

RADIACID 0907 can be used in laboratory chemicals, plant protection products, water softeners and water treatment chemicals.
RADIACID 0907 is used in formulation of mixtures
RADIACID 0907 is used for the manufacture of chemicals.

RADIACID 0907 is prepared from soybean oil and tallow.
RADIACID 0907 comes as white to pale yellow, clear oily liquid.

RADIACID 0907 is liquid at room temperature.
RADIACID 0907 is chemically, a carboxyl group attached to alkyl chain, methylated, branched at various carbons makes it much more stable compared to other linear chain fatty acids, including oxidation potential.

RADIACID 0907 is a yellow solution and its chemical formula is C18H36O2.
RADIACID 0907 is a saturated carbon solution.
RADIACID 0907 is found naturally in meat products and vegetable oils.

RADIACID 0907 can be used as a lubricant, that can improve flow of a powder mixture.
RADIACID 0907 has excellent spreadability without oiliness

RADIACID 0907 is a fatty acid molecule with an 18-carbon atom chain backbone.
RADIACID 0907 is an isomer of stearic acid, meaning that they both have a chemical formula of C18H36O2, but differ in the arrangement of their atoms.

RADIACID 0907 is used in personal care products
RADIACID 0907 is also used in cosmetic industry

RADIACID 0907 has lubricating or adhesive properties
RADIACID 0907 is also used in paper products.

While stearic acid has a linear carbon chain with 18 carbon atoms, isosteric acid as a carbon chain with 17 atoms and a single carbon branch at the 16th carbon atom. Its chemical structure can be represented as (CH3)2CH(CH2)14CO2H.
RADIACID 0907 is found naturally in meat products and vegetable oils.

RADIACID 0907 has a wide range of industrial uses.
RADIACID 0907 is mainly used as an additive in adhesives or lubricants for both paints and personal care products.

RADIACID 0907 is an important raw material in the preparation of speciality surfactants for consumer care products.
RADIACID 0907 (RADIACID 0907) is used in the synthesis of methyl-branched poly(hydroxyalkanoate)s, biosurfactants and silver nanoparticles

RADIACID 0907 is a lightly-branched, liquid fatty acid produced by the reaction of oleic acid with a natural mineral catalyst
There is no chemical addition in this reaction, RADIACID 0907 is based 100% on the parent oil or fat.

RADIACID 0907 is used in applications which require a liquid fatty acid with exceptional stability: thermal stability in the case of a lubricant, odour stability for a cosmetic formulation, and oxidation stability for products with long shelf-life requirements.
The branching structure of RADIACID 0907 also enhances its dispersing power

RADIACID 0907 has high performance lubricants with excellent cold stability
RADIACID 0907 is used in metal rolling fluids

Being a fatty acid, RADIACID 0907 is also amphiphilic, meaning it is a molecule with a hydrophobic end and a hydrophilic end.
As such, RADIACID 0907 can have favorable interactions with both polar and non-polar molecules, enabling it to act as a surfactant.

RADIACID 0907 is also soluble in many oils, which allows it to be used as an emulsifier or dispersant.
With this set of properties, RADIACID 0907 is a useful additive in a variety of applications, including:

-Adhesives
-Coatings and paints
-Finishing agents
-Lubricants
-Sealants
-Solvents
-Surfactants
-Viscosity adjusters

RADIACID 0907 is used as a cosmetic esters
RADIACID 0907 is used in manufacturing of soaps

RADIACID 0907 is a long-chain fatty acid
RADIACID 0907 is functionally related to a heptadecanoic acid.
RADIACID 0907 is a natural product found in Aristolochia grandiflora, Streptomyces, and other organisms with data available.


PHYSICAL PROPERTIES:

-Molecular Weight: 284.5 g/mol

-XLogP3: 7.2

-Exact Mass: 284.271530387 g/mol

-Monoisotopic Mass: 284.271530387 g/mol

-Topological Polar Surface Area: 37.3Ų

-Physical Description: Colorless Liquid

-Boiling Point: 400 °C

-Melting Point: 69.5 °C

-Solubility: 0.007116 mg/L

-LogP: 7.674

-Refractive Index: 1.4440 (estimate)

-Storage Temperature: 2-8°C

-pka: 4.78


RADIACID 0907 is used in cosmetic and industrial applications for the stabilisation of pigments and mineral particles in oils and solvents.
RADIACID 0907 is used for a cosmetic formulations

RADIACID 0907 can be used in industrial applications for the stabilisation of pigments mineral particles in oils and solvents
RADIACID 0907 differs from other C18 fatty acids of the same category in a number of ways.


CHEMICAL PROPERTIES:

-Hydrogen Bond Donor Count: 1

-Hydrogen Bond Acceptor Count: 2

-Rotatable Bond Count: 15

-Heavy Atom Count: 20

-Formal Charge: 0

-Complexity: 212

-Isotope Atom Count: 0

-Defined Atom Stereocenter Count: 0

-Undefined Atom Stereocenter Count: 0

-Defined Bond Stereocenter Count: 0

-Undefined Bond Stereocenter Count: 0

-Covalently-Bonded Unit Count: 1

-Compound Is Canonicalized: Yes


RADIACID 0907 is also used in paper products
RADIACID 0907 is a methyl-branched fatty acid that is heptadecanoic acid (margaric acid) substituted by a methyl group at position 16.
RADIACID 0907 is used in the synthesis of methyl-branched poly(hydroxyalkanoate)s, biosurfactants and silver nanoparticles.

RADIACID 0907 is a lightly-branched, liquid fatty acid produced by the reaction of oleic acid with a natural mineral catalyst - there is no chemical addition in this reaction, RADIACID 0907 is based 100% on the parent oil or fat.
RADIACID 0907's is a light yellow liquid

APPLICATIONS:
Synthetic lubricants – RADIACID 0907 has good thermal and oxidative stability

Lubricant additives – RADIACID 0907 is derivatized to isostearyl amide to provide boundary lubrication and detergency

Coatings – RADIACID 0907 imparts flexibility and durability properties to industrial coatings

Metalworking – RADIACID 0907 has good surface activity for protective coatings and thermal stability for rolling and stamping

Personal care products – RADIACID 0907 is derivatized to isostearyl alcohol to impart feel and texture to creams and lotions.

RADIACID 0907 is used in personal care formulations for its function as both an emollient and co-emulsifier.
RADIACID 0907 is a synthetically created fatty acid most often used as a binder in skin and beauty products, although it is also seen in products as a surfactant and emulsifier.

RADIACID 0907 is a unique fatty acid.
RADIACID 0907 combines the best properties of stearic acid with the best properties of oleic acid.

RADIACID 0907 is an 18-carbon branched-chain fatty acid naturally found in plants and animals.
However, RADIACID 0907's a blend of many octadecanoic acids, found in vegetables and animals fat.

RADIACID 0907 is used to thicken most formulas as a binder and emulsifier.
RADIACID 0907 is a lightly-branched, liquid fatty acid produced by the reaction of oleic acid with a natural mineral catalyst.
RADIACID 0907 serves as a smooth, dry feeling emollient able to assist the skin in replenishing its natural moisture.

RADIACID 0907 can be easily used in a cosmetic which not only moisturizes skin but also does not leave any oily feel.
However, in cosmetic formulation RADIACID 0907 is used as a binder to form cake-like compact powder or eye shadow.
RADIACID 0907 is also used in cleansing and emulsifying agent, because of presence of both ionic and nonionic groups.

RADIACID 0907 is used in varieties of cosmetic and personal care products.
RADIACID 0907 is a synthetically created fatty acid
RADIACID 0907 is used as a binder in skin and beauty products

RADIACID 0907 is a clear, oily liquid that is used in a wide variety of cosmetics and personal care products.
RADIACID 0907 (16-Methylheptadecanoic acid) is used in the synthesis of methyl-branched poly(hydroxyalkanoate)s, biosurfactants and silver nanoparticles.
RADIACID 0907 is a fatty acid that is used as an emollient in pharmaceutical preparations.
RADIACID 0907 has been shown to have skin-moisturizing and anti-inflammatory properties, which are due to its ability to inhibit the activity of phospholipase A2.

RADIACID 0907 is a fatty acid molecule with an 18-carbon atom chain backbone.
RADIACID 0907 is an isomer of stearic acid
RADIACID 0907's chemical formula is C18H36O2

RADIACID 0907 is a liquid fatty acid created from oleic acid.
RADIACID 0907's claimed to have great odour, thermal and oxidation stability and is great for the stabilization of pigments and mineral particles in oils and solvents.

RADIACID 0907's quite popular in foundations.
RADIACID 0907 is our unique, highly branched, saturated fatty acid.

RADIACID 0907 has some features that are transparent and odorless, unlike straight chain fatty acids.
Additionally, RADIACID 0907 has excellent heat stability, oxidation resistance, pigment dispensing ability, defoaming property and is compatible with various organic solvents.

RADIACID 0907 is a fatty acid which contains 18-carbon atom chain.
The IUPAC name of RADIACID 0907 is octadecanoic acid.

RADIACID 0907 is a yellow solution and its chemical formula is C18H36O2.
RADIACID 0907 is a saturated carbon solution.

RADIACID 0907 is found naturally in meat products and vegetable oils.
The molecular mass of RADIACID 0907 is 284.48 g/mol.

RADIACID 0907 is soluble in many oils
RADIACID 0907 is used as an emulsifier or dispersant.

RADIACID 0907 is derived from renewable sources, offering unique characteristics such as high oxidation resistance and excellent cold temperature properties.
Applications include additives or base stock for the fuel and lubricants industry and emollients for personal care.

RADIACID 0907 is a high quality 16-Methylheptadecanoic acid used in synthesis.
This product has been used as molecular tool for various biochemical applications.
RADIACID 0907 has also been used in a wide array of other chemical and immunological applications.


SYNONYMS:

RADIACID 0907
Radiacid 0907
jaric I-18CG
jaric I-18IG
jaric I-18LG
liponate ISA
ISOOCTADECANOIC ACID
isostearic
16-METHYLHEPTADECANOIC ACID
Isostearinsure
ISOSTEARIC ACID
16-methyl-heptadecanoicaci
Heptadedecanoicacid,16-Methyl
ISOSTEARIC ACID MIXED ISOMERS
Heptadecanoic acid, 16-methyl-
heptadecanoic acid, 16-methyl-
jaric I-18CG
jaric I-18IG
jaric I-18LG
liponate ISA
16-methyl heptadecanoic acid
16-methyl margaric acid
16-methylheptadecanoic acid
isooctadecanoic acid
prisorine 3505
prisorine 3515
isostearicacid
ISOSTEARIC ACID
Isooctadecanoic acid
16-METHYLHEPTADECANOIC ACID
2724-58-5
30399-84-9
Prisorine 3509
Heptadecanoic acid, 16-methyl-
16-methyl margaric acid
16-methyl-heptadecanoic acid
LZM5XA0ILL
CHEBI:84896
(+)-Isostearic acid
UNII-LZM5XA0ILL
EINECS 220-336-3
16-methylmargaric acid
EMERSOL 873
SCHEMBL15489
CHEMBL1865303
DTXSID1040790
16-METHYLHEPTADECANOICACID
LMFA01020014
HY-W127433
NCGC00164392-01
NCGC00164392-02
NCGC00255115-01
AS-57253
CAS-30399-84-9
CS-0185665
Isostearic acid
16-Methylheptadecanoic acid
220-336-3
250-178-0
2724-58-5
30399-84-9
Heptadecanoic acid, 16-methyl-
Isooctadecanoic acid
MFCD00044082
MI3875000
X33R8U0062
(+)-isostearic acid
16-methyl margaric acid
16-methyl-heptadecanoic acid
16-methylmargaric acid
2-methyl-heptadecanoic acid
2-Methylheptadecanoic acid
Heptadecanoic acid, 2-methyl-
λ-Isostearic acid
Isostearic acid
16-Methylheptadecanoic acid
220-336-3
250-178-0
2724-58-5
30399-84-9
Acide 16-méthylheptadécanoïque
Heptadecanoic acid, 16-methyl-
Isooctadecanoic acid
MI3875000
X33R8U0062
(+)-isostearic acid
16-methyl margaric acid
16-methyl-heptadecanoic acid
16-methylmargaric acid
2-methyl-heptadecanoic acid
2-Methylheptadecanoic acid
Heptadecanoic acid, 2-methyl-
λ-Isostearic acid

RADIASURF 7403
DESCRIPTION:

Radiasurf 7403 acts as a non-ionic surfactant and emulsifier for o/w emulsions.
Radiasurf 7403 is non-toxic, non-irritating, non-exhaustive, fully biodegradable and environment friendly in nature.
Radiasurf 7403 is an electrolyte tolerant, high molecular weight member and is used as viscosity builder in detergent systems.



CAS NUMBER: 9004-96-0

EC NUMBER: 500-015-7

MOLECULAR FORMULA: C18H33O2.(C2H4O)n.H



DESCRIPTION:

Radiasurf 7403 can also be used for melting point control and is suitable for use in antiperspirants.
Radiasurf 7403 finds application in formulating facial-, body-, baby- and sun-care products.
Radiasurf 7403 is an ingredient commonly used in cosmetic and personal care products.

Radiasurf 7403 is a polyethylene glycol (PEG) derivative of oleic acid, which is a naturally occurring fatty acid found in various vegetable oils.
Radiasurf 7403 is created by reacting oleic acid with ethylene oxide, resulting in a compound that has emulsifying and surfactant properties.
In cosmetic formulations, Radiasurf 7403 functions as an emulsifier, helping to mix oil and water-based ingredients together.

Radiasurf 7403 is often used in skincare products, such as lotions, creams, and cleansers, to create a smooth and stable texture.
Additionally, Radiasurf 7403 can act as a mild cleansing agent and can help improve the spreadability of products on the skin.
It's worth noting that Radiasurf 7403 compounds, have been subject to some controversy due to their potential to be contaminated with impurities called 1,4-dioxane, which is considered a possible human carcinogen.

Radiasurf 7403 is the polyethylene glycol ester of oleic acid.
Radiasurf 7403 is used as an emulsifier for personal care and water treatment and as a processing aid in textile industry.
Radiasurf 7403 is a mid-range HLB, surface active agent suggested for use in animal feed, cosmetics, textile chemicals, lubricant, softener, scouring agent), coatings and industrial degreasers.



USAGE AREAS:

Radiasurf 7403 is used in a variety of cosmetic and personal care products due to its emulsifying, cleansing, and texture-enhancing properties.


-Skincare Products:

Radiasurf 7403 is frequently found in lotions, creams, moisturizers, and serums, where it helps to create smooth and stable formulations.
Radiasurf 7403 contributes to the texture, spreadability, and absorption of these products.


-Cleansing Products:

Radiasurf 7403 can be used in facial cleansers, body washes, and soaps.
Radiasurf 7403 aids in the removal of dirt, oils, and impurities from the skin while providing a mild cleansing action.


-Hair Care Products:

Radiasurf 7403 is sometimes included in hair care formulations such as shampoos, conditioners, and styling products.
Radiasurf 7403 can assist in improving the texture and manageability of the hair.


-Makeup Products:

Radiasurf 7403 can be found in various cosmetic formulations, including foundations, primers, and creams.
Radiasurf 7403 helps to create a smooth and blendable texture and can enhance the spreadability and application of these products.


-Sunscreen and Sun Care Products:

Radiasurf 7403 can be used in sunscreens and sun care products to aid in the dispersion and even distribution of UV filters.
Radiasurf 7403 can contribute to the overall stability and performance of these products.




PHYSICAL AND CHEMICAL PROPERTIES:

-Cloud Point: ≤ 6 °C
-Lovibond 1", Yellow: ≤ 10
-Lovibond 1", Red: ≤ 2.5
-Kinematic viscosity at 100°C: ca. 9.5 mm²/s
-Kinematic viscosity at 40°C: ca. 49 mm²/s
-Flash Point: ca. 260 °C
-Pour point: ca. -3 °C



BENEFITS:


-Emulsifying Agent:

Radiasurf 7403 acts as an emulsifier, helping to blend oil and water-based ingredients together.
This property allows for the creation of stable formulations, ensuring that the product remains well-mixed and consistent.


-Improved Texture:

Radiasurf 7403 helps to enhance the texture and spreadability of skincare products.
Radiasurf 7403 can provide a smooth and silky feel when applied to the skin, contributing to a pleasant sensory experience.


-Mild Cleansing:

Radiasurf 7403 can also function as a mild cleansing agent.
Radiasurf 7403 helps to remove dirt, oils, and impurities from the skin's surface without excessive drying or stripping of natural oils.


-Enhanced Skin Penetration:

Due to its emulsifying properties, Radiasurf 7403 can improve the delivery and penetration of active ingredients into the skin.
This can potentially enhance the effectiveness of other beneficial ingredients in a formulation.


-Compatibility with Various Formulations:

Radiasurf 7403 is compatible with a wide range of cosmetic ingredients, making it suitable for use in various formulations such as lotions, creams, serums, and cleansers.




PHYSICAL AND CHEMICAL PROPERTIES:

-Boiling point: >260 °C(lit.)
-density: 1.034 g/mL at 25 °C
-refractive index: n20/D 1.468
-Fp: 113 °C
-storage temp.: Amber Vial, Refrigerator
-solubility: toluene, ethanol and acetone: soluble (dispersible in water)
-form: Oil
-color: Colourless to Light Beige
-Hydrophilic-Lipophilic Balance (HLB): 15.1
-Stability: Light Sensitive
-LogP: 7.185 (est)




STORAGE:

Radiasurf 7403 should be stored at room temperature, typically between 20°C and 25°C (68°F and 77°F).



SYNONYM:

Polyethylene Glycol 8 Oleate
PEG-8 Esters of Oleic Acid
Polyethylene Glycol 8 Monooleate
Macrogol 8 Oleate
Polyoxyethylene (8) Oleate
crodet
hydroxyethyl (Z)-octadec-9-enoate (peg-8)
pegosperse 400 MO
poly(oxy-1,2-ethanediyl), .alpha.-(1-oxo-9-octadecenyl)-.omega.-hydroxy-, (Z)- (8 mol EO average molar ratio)
polyethylene glycol (8) monooleate
polyethylene glycol (8) oleate
polyoxyethylene (8) monooleate
polyoxyethylene (8) oleate
nonisol200
nopalcol1-0
Poly(oxy-1,2-ethanediyl), .alpha.-[(9Z)-1-oxo-9-octadecen-1-yl]-. omega.-hydroxy-
PEG-8 OLEATE
PEG-9 OLEATE
PEG-10 OLEATE
PEG-11 OLEATE
PEG-12 OLEATE










RAPESEED ACID
RESORCINOL, N° CAS : 108-46-3 - Résorcine. Nom INCI : RESORCINOL. Nom chimique : Resorcinol (CI 76505). N° EINECS/ELINCS : 203-585-2. Ses fonctions (INCI). Agent colorant pour cheveux : Colore les cheveux; Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Dénaturant : Rend les cosmétiques désagréables. Principalement ajouté aux cosmétiques contenant de l'alcool éthylique. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 1,3-BENZENEDIOL; 1,3-DIHYDROXYBENZENE; META-DIHYDROXYBENZENE; RESORCINE; Résorcinol. Noms anglais : Resorcinol: Utilisation et sources d'émission; Fabrication de produits pharmaceutiques, fabrication de résines. 1,3-Benzenediol 1,3-dihydroxybenzene resorcinol; 1,3-benzenediol Translated names 1,3-bencenodiol (es) 1,3-benseendiool (et) 1,3-Bentseenidioli (fi) 1,3-benzeendiol (nl) 1,3-benzen diol (ro) 1,3-benzendiol (da) 1,3-benzendiolis (lt) 1,3-benzenodiol (pt) 1,3-benzodiols (lv) 1,3-benzoldiol (hu) 1,3-benzènediol (fr) 1,3-dihidroksibenzen (sl) 1,3-dihydroksybenzen (pl) 1,3-Dihydroxybenzol (de) 1,3-diidrossibenzene (it) 1,3-diidroxibenzeno (pt) 1,3-διυδροξυβενζόλιο ρεσορκινόλ (el) 1,3-бензендиол (bg) benzene-1,3-diol (cs) benzeno-1,3-diol (pl) benzén-1,3-diol (sk) Resorcin (de) resorcina (it) resorcinol (cs) Resorsinoli (fi) resortsinool (et) rezorcin (hu) rezorcinol (hr) rezorcinolis (lt) rezorcyna (pl) rezorcynol (pl) rezorcīns (lv) résorcinol (fr) резорцинол (bg) 1,3 benzenediol 1,3-dihydroxybenzene ( resorcinol) 1,3-dihydroxybenzene; 1-3-dihydroxybenzene benzene 1,3-diol Resourcinol Trade names 1,3-Benzenediol (9CI) 1,3-BENZENEDIOL 1,3 DIHYDROXYBENZENE 1,3-Benzoldiol; Resorcin 3-Hydroxyphenol C.I. 76505 C.I. Developer 4 C.I. Oxidation Base 31 Developer O Developer RS dihydroxybenzol Durafur Developer G Fouramine RS Fourrine 79 Jarocol RL RES Resorcinol (8CI); 1,3-Benzenediol [ACD/Index Name] 1,3-dihydroxybenzene 108-46-3 [RN] 203-585-2 [EINECS] 906905 [Beilstein] Benzol-1,3-diol Resorcin [German] [ACD/IUPAC Name] Resorcino Resorcinol [ACD/IUPAC Name] [USP] [Wiki] Résorcinol [French] [ACD/IUPAC Name] Resorcinolum 1,3-Dihydroxy-Benzene 1,3-Dihydroxybenzol 26982-54-7 [RN] 3-benzosemiquinone 3-Hydroxycyclohexadien-1-one 3-Hydroxyphenol 40248-84-8 [RN] 4-06-00-05658 (Beilstein Handbook Reference) [Beilstein] 6025-45-2 [RN] 70938-00-0 [RN] 953390-31-3 [RN] Acnomel Benzene, 1,3-dihydroxy- Benzene, m-dihydroxy- benzene-1,3-diol C.I. Developer 4 C.I. Oxidation Base 31 Developer O Developer RS Dihydroxybenzol Durafur developer G Eskamel Fouramine RS Fourrine 79 Fourrine EW m-Benzenediol m-dihydroxybenzene m-Dioxybenzene m-Hydroquinone m-hydroxyphenol m-Hydroxy-Phenol Nako TGG Pelagol Grey RS Pelagol RS Phenol, m-hydroxy- RCO Resorcin (JAN) [JAN] Resorcin (TN) Resorcin;1,3-Benzenediol Resorcine Resorcinol (USP) Resorcinol 10 µg/mL in Methanol Resorzin Rezamid Rezorsine Rodol RS Sulforcin WLN: QR CQ α-Resorcinol 间苯二酚 [Chinese]
RAPESEED OIL FATTY ACID METHYLESTER
cas no 85586-25-0 fatty acids, rape-oil, me esters; Rübfettsuremethylester, erucaarm; Fatty acids, rape-oil Methyl esters;
REACTIVE SILICONE FLUID EMULSION
Reactive silicone fluid emulsion is a type of silicone-based emulsion that contains reactive groups, such as hydroxyl or epoxy groups, on the silicone polymer chains.
These reactive groups allow the emulsion to crosslink with other materials, leading to improved adhesion, durability, and other enhanced properties.



APPLICATIONS


Reactive silicone fluid emulsion is used as a hydrophobic and water-repellent coating for fabrics, papers, and leather.
Reactive silicone fluid emulsion provides an excellent release and anti-stick properties to molds, metal surfaces, and plastics.

Reactive silicone fluid emulsion enhances the water resistance, oil resistance, and anti-fouling properties of coatings and paints.
Reactive silicone fluid emulsion is used as a lubricant for plastic gears, electronic devices, and automotive parts.

Reactive silicone fluid emulsion acts as a softener and anti-static agent for textiles and plastics.
Reactive silicone fluid emulsion is used as a defoaming agent in various industrial processes such as papermaking, coatings, and adhesives.

Reactive silicone fluid emulsion enhances the stability and durability of emulsions and suspensions.
Reactive silicone fluid emulsion improves the compatibility between different materials, such as pigments and resins.

Reactive silicone fluid emulsion increases the elasticity, durability, and heat resistance of rubber and silicone products.
Reactive silicone fluid emulsion is used as an anti-corrosion agent for metals in various industries such as automotive, aerospace, and marine.

Reactive silicone fluid emulsion provides anti-fogging properties to optical lenses, mirrors, and glass surfaces.
Reactive silicone fluid emulsion is used as a hydrophobic agent for construction materials such as concrete, bricks, and tiles.
Reactive silicone fluid emulsion acts as a water-repellent and moisture barrier for packaging materials.

Reactive silicone fluid emulsion enhances the thermal stability and heat resistance of polymers.
Reactive silicone fluid emulsion is used as a leveling and wetting agent for coatings and inks.
Reactive silicone fluid emulsion provides anti-blocking properties to plastic films and coatings.

Reactive silicone fluid emulsion enhances the water resistance and dimensional stability of paper and cardboard.
Reactive silicone fluid emulsion is used as a slip agent for polyolefin films and sheets.

Reactive silicone fluid emulsion provides anti-graffiti properties to building surfaces.
Reactive silicone fluid emulsion acts as a foam control agent for various industrial processes such as oil and gas drilling, fermentation, and water treatment.

Reactive silicone fluid emulsion is used as a coating and sealant for electronics and electrical components.
Reactive silicone fluid emulsion provides lubrication and protection to metal surfaces in cutting and machining processes.

Reactive silicone fluid emulsion enhances the anti-soiling properties of carpets and fabrics.
Reactive silicone fluid emulsion is used as a hydrophobic agent for wood and wood-based materials.
Reactive silicone fluid emulsion provides anti-blocking and slip properties to printing inks and coatings.


Reactive silicone fluid emulsion has a wide range of applications in various industries.
Here are some of the common applications:

As a coating material for textiles and fabrics to improve water repellency and softness.
As a release agent for molds in the production of rubber and plastic parts.
As a water-resistant and breathable coating for leather products.
As a waterproofing agent for building materials such as concrete, brick, and stone.
As a lubricant in the automotive and industrial sectors, to reduce friction and wear.
As a surfactant and stabilizer in personal care and cosmetic products such as shampoos, lotions, and creams.
As a crosslinker in the production of silicone elastomers, resins, and adhesives.
As a foam control agent in various processes, including paper production, water treatment, and fermentation.
As a coating for electronic components, to protect against moisture and environmental factors.
As a binder and water repellent in the production of mineral-based building materials such as plaster and mortar.


Reactive silicone fluid emulsion can be used in the production of sealants and adhesives for industrial and construction applications.
Reactive silicone fluid emulsion can be used as a lubricant in various mechanical processes.
Reactive silicone fluid emulsion is used in the formulation of mold release agents for the manufacturing of plastic and rubber products.

Reactive silicone fluid emulsion can be used in the formulation of printing inks and coatings for paper and textile substrates.
Reactive silicone fluid emulsion can be used as a surface modifier for various substrates, including glass, metal, and plastic.

Reactive silicone fluid emulsion can be used as a water-repellent agent for textiles and leather products.
Reactive silicone fluid emulsion is used as an anti-foaming agent in various industrial processes, such as fermentation and wastewater treatment.

Reactive silicone fluid emulsion can be used as an additive in personal care products, such as shampoos, conditioners, and lotions, to improve the wetting and conditioning properties.
Reactive silicone fluid emulsion is used in the production of automotive and industrial coatings to improve the scratch and abrasion resistance.

Reactive silicone fluid emulsion can be used as a binder in the formulation of pressure-sensitive adhesives.
Reactive silicone fluid emulsion is used as a release agent for the production of composite materials.
Reactive silicone fluid emulsion can be used as an additive in the formulation of emulsion polymers to improve the stability and performance.

Reactive silicone fluid emulsion can be used as a coating for electronic components to provide insulation and protection from moisture.
Reactive silicone fluid emulsion is used as a surfactant in the formulation of detergent and cleaning products.

Reactive silicone fluid emulsion can be used in the formulation of flame retardants for various substrates, including textiles and plastics.
Reactive silicone fluid emulsion can be used as an additive in the formulation of paints and coatings to improve the weatherability and UV resistance.

Reactive silicone fluid emulsion is used in the production of silicone rubber products, such as gaskets, O-rings, and seals.
Reactive silicone fluid emulsion can be used as a water-repellent agent for masonry and concrete substrates.
Reactive silicone fluid emulsion can be used as a sizing agent in the production of glass fibers.

Reactive silicone fluid emulsion is used in the formulation of high-performance greases and lubricants for various applications, including aerospace and automotive.
Reactive silicone fluid emulsion can be used as a release agent in the production of polyurethane foam products.

Reactive silicone fluid emulsion can be used as a binder in the production of ceramic products, such as tiles and refractories.
Reactive silicone fluid emulsion is used as a surfactant in the formulation of crop protection products, such as herbicides and fungicides.

Reactive silicone fluid emulsion can be used as an additive in the formulation of oil and gas drilling fluids to improve the lubricity and reduce friction.
Reactive silicone fluid emulsion can be used as a water-repellent agent for wood and wood-based products.
Reactive silicone fluid emulsion is used as a coating for optical lenses to improve the scratch resistance and clarity.

Reactive silicone fluid emulsion can be used as an additive in the formulation of concrete admixtures to improve the workability and durability.
Reactive silicone fluid emulsion can be used as a release agent in the production of rubber products, such as tires and conveyor belts.

Reactive silicone fluid emulsion is used in the formulation of thermal interface materials for electronic devices, such as heat sinks and thermal pads.
Reactive silicone fluid emulsion can be used as a water-repellent agent for glass and ceramic substrates.


Some applications of Reactive silicone fluid emulsion:

Textile industry
Paper industry
Paints and coatings
Adhesives and sealants
Personal care and cosmetics
Agriculture
Construction materials
Electronics and electricals
Automotive industry
Leather industry
Packaging materials
Metalworking
Plastic and rubber industry
Petroleum industry
Water treatment
Printing and ink industry
Wood industry
Glass industry
Renewable energy industry
Food processing
Medical devices and implants
Aerospace and defense industry
Marine and offshore industry
Sports and recreation industry
Household cleaning and maintenance
Mining industry
Chemical manufacturing
Ceramics industry
Pharmaceuticals industry
Environmental protection and remediation.



DESCRIPTION


Reactive silicone fluid emulsion is a type of silicone-based emulsion that contains reactive groups, such as hydroxyl or epoxy groups, on the silicone polymer chains.
These reactive groups allow the emulsion to crosslink with other materials, leading to improved adhesion, durability, and other enhanced properties.

Reactive silicone fluid emulsion is used in a wide range of applications, including coatings, adhesives, sealants, and elastomers.
Reactive silicone fluid emulsion is often used as an additive in formulations to improve the properties of the end product.

In coatings, reactive silicone fluid emulsion can be used as a surface modifier to improve the wetting and adhesion of the coating to the substrate.
Reactive silicone fluid emulsion can also improve the scratch resistance, durability, and water repellency of the coating.

In adhesives and sealants, reactive silicone fluid emulsion can be used to improve the bonding strength and flexibility of the adhesive.
Reactive silicone fluid emulsion can also improve the heat resistance and chemical resistance of the adhesive or sealant.

In elastomers, reactive silicone fluid emulsion can be used as a processing aid to improve the flow properties of the elastomer during manufacturing.
Reactive silicone fluid emulsion can also improve the tear resistance, elasticity, and low-temperature properties of the elastomer.
Reactive silicone fluid emulsion is also used in the textile industry as a softener and in the personal care industry as an emollient and conditioning agent.

Overall, reactive silicone fluid emulsion is a versatile material with a wide range of applications in various industries. Its unique properties and crosslinking capabilities make it a valuable additive for improving the performance and properties of many different types of formulations.

Reactive silicone fluid emulsion is a type of silicone emulsion that contains reactive groups, such as epoxy or vinyl groups, that can react with other materials to form crosslinked networks.
Reactive silicone fluid emulsion is commonly used as a coating or adhesive in a variety of industries, including automotive, electronics, and construction.
Reactive silicone fluid emulsions can be formulated to have a range of properties, including low or high viscosity, fast or slow curing times, and different levels of adhesion or flexibility.

Because of their reactive nature, Reactive silicone fluid emulsions require careful handling and storage to prevent premature crosslinking or degradation.
Reactive silicone fluid emulsions are often used to improve the adhesion and durability of coatings and adhesives on a variety of substrates, including metals, plastics, and composites.

Reactive silicone fluid emulsions can also be used as a mold release agent or as a surface treatment to improve the water and oil resistance of materials.
Reactive silicone fluid emulsions can be blended with other polymers or additives to achieve specific properties, such as improved scratch resistance or UV stability.

Reactive silicone fluid emulsions can be applied by a variety of methods, including spray, dip, or brush, depending on the substrate and desired coating thickness.
Reactive silicone fluid emulsions are often used in high-performance applications where durability, flexibility, and adhesion are critical, such as in the aerospace or marine industries.
Proper formulation and application of reactive silicone fluid emulsions can result in coatings and adhesives with excellent weatherability, chemical resistance, and thermal stability.


Here are some more properties of Reactive silicone fluid emulsion:

Good thermal stability
High lubricity
Non-toxic and non-corrosive
Excellent water repellency
Low surface tension
High surface energy
High chemical stability
Good electrical insulation properties
Resistant to oxidation and weathering
Low volatility
Good adhesion to various substrates
Compatible with a wide range of materials
Low foaming tendency
Good wetting properties
High boiling point
High flash point
High viscosity
Non-flammable
Good emulsifying properties
Low toxicity
Resistant to UV radiation
Good release properties
Excellent slip and leveling properties
Good spreading properties
Good compatibility with solvents and other additives
Low pour point
Good film-forming properties
Excellent thermal stability at high temperatures
High refractive index
Good defoaming properties
Excellent dielectric properties



PROPERTIES


Appearance: white or off-white liquid
Odor: odorless
pH: neutral
Solubility: emulsifiable in water
Viscosity: typically low to moderate
Flash point: not applicable
Stability: stable under normal conditions
Density: typically between 1.0-1.2 g/cm3
Boiling point: typically above 100°C
Chemical formula: varies depending on the specific type of reactive silicone fluid emulsion



FIRST AID


It is important to handle Reactive Silicone Fluid Emulsion with care to avoid any potential hazards.
If accidental exposure or ingestion occurs, the following first aid measures should be taken:

Inhalation:

Move the person to fresh air immediately.
If the person is not breathing, perform artificial respiration and seek medical attention immediately.
If the person is breathing, but experiencing difficulty, provide oxygen and seek medical attention.


Skin Contact:

Remove contaminated clothing and wash the affected area with plenty of soap and water for at least 15 minutes.
If skin irritation persists, seek medical attention.


Eye Contact:

Rinse the affected eye with plenty of water for at least 15 minutes while keeping the eyelid open.
If eye irritation persists, seek medical attention.


Ingestion:

Rinse mouth with water immediately.
Do not induce vomiting unless instructed to do so by a medical professional.
Seek medical attention immediately.


It is important to seek immediate medical attention in case of any doubt or serious symptoms.
Always have a copy of the Safety Data Sheet (SDS) available for reference.



HANDLING AND STORAGE


Reactive silicone fluid emulsion should be handled and stored with care to ensure its quality and safety.
Here are some general guidelines for handling and storage:

Handling:

Use appropriate personal protective equipment (PPE), such as gloves and safety goggles, when handling reactive silicone fluid emulsion.
Avoid contact with skin, eyes, and clothing.
In case of contact, immediately flush the affected area with plenty of water for at least 15 minutes and seek medical attention.

Avoid inhaling mist or vapors. Use adequate ventilation and respiratory protection in poorly ventilated areas.
Do not smoke, eat, or drink while handling the emulsion.


Storage:

Store reactive silicone fluid emulsion in a cool, dry, well-ventilated area, away from heat, flames, and other sources of ignition.
Do not store near oxidizing agents, acids, or alkalis.
Keep containers tightly closed and upright to prevent leakage or spills.

Store away from direct sunlight or other sources of ultraviolet light.
Follow the manufacturer's recommendations for storage temperature and shelf life.
Do not reuse empty containers.


Always consult the safety data sheet (SDS) and follow the manufacturer's instructions for safe handling and storage of reactive silicone fluid emulsion.



SYNONYMS


Reactive polysiloxane emulsion
Reactive silicone emulsion
Reactive silicone fluid dispersion
Reactive silicone oil emulsion
Reactive silicone surfactant emulsion
Crosslinkable silicone emulsion
Crosslinkable polysiloxane emulsion
Crosslinkable silicone fluid dispersion
Crosslinkable silicone oil emulsion
Crosslinkable silicone surfactant emulsion
Reactive polydimethylsiloxane emulsion
Reactive methylsilicone emulsion
Crosslinkable polydimethylsiloxane emulsion
Crosslinkable methylsilicone emulsion
Reactive silicone polymer emulsion
Crosslinkable silicone polymer emulsion
Modified silicone emulsion
Modified polysiloxane emulsion
Modified silicone fluid dispersion
Modified silicone oil emulsion
Modified silicone surfactant emulsion
Silanol-functionalized silicone emulsion
Silanol-modified silicone emulsion
Alkoxy-functionalized silicone emulsion
Alkoxy-modified silicone emulsion
Hydroxyl-functionalized silicone emulsion
Hydroxyl-modified silicone emulsion
Epoxy-functionalized silicone emulsion
Epoxy-modified silicone emulsion
Vinyl terminated silicone emulsion
Reactive silicone fluid dispersion
Reactive polydimethylsiloxane emulsion
Reactive silicone polymer emulsion
Reactive silicone copolymer emulsion
Reactive silicone surfactant emulsion
Reactive silicone emulsion
Reactive silicone fluid suspension
Vinyl functionalized silicone emulsion
Vinyl modified silicone emulsion
Vinyl silicone emulsion
Vinyl siloxane emulsion
Vinyl-terminated polydimethylsiloxane emulsion
Vinyl-terminated silicone emulsion
Methacrylate-functionalized silicone emulsion
Methacrylate-modified silicone emulsion
Methacryloxypropyl terminated silicone emulsion
Methacryloxypropyl-functionalized silicone emulsion
Methacryloxypropyl-modified silicone emulsion
Acrylate-functionalized silicone emulsion
Acrylate-modified silicone emulsion
Acryloxypropyl terminated silicone emulsion
Acryloxypropyl-functionalized silicone emulsion
Acryloxypropyl-modified silicone emulsion
Epoxy-functionalized silicone emulsion
Epoxy-modified silicone emulsion
Epoxy-terminated silicone emulsion
Epoxide-functionalized silicone emulsion
Epoxide-modified silicone emulsion
Epoxide-terminated silicone emulsion
RED CLOVER FLOWER EXTRACT

Red Clover Flower Extract, derived from the flowers of Trifolium pratense, is known for its estrogen-like effects, antioxidant, and anti-inflammatory properties.
Red Clover Flower Extract is widely recognized for its ability to support women’s health, alleviate menopausal symptoms, and improve skin health, making it a valuable ingredient in dietary supplements and skincare formulations.
This versatile extract offers both therapeutic and cosmetic benefits, helping to maintain hormonal balance, improve skin elasticity, and provide antioxidant support.

CAS Number: 85085-25-2
EC Number: 285-356-7

Synonyms: Red Clover Extract, Trifolium pratense Flower Extract, Red Clover Bioactive Extract, Trifolium Extract, Trifolium pratense Herbal Extract, Red Clover Phytocomplex, Red Clover Blossom Extract, Red Clover Blossom Phytocomplex, Trifolium pratense Active, Clover Flower Extract



APPLICATIONS


Red Clover Flower Extract is extensively used in women’s health supplements, offering natural relief from menopausal symptoms such as hot flashes, night sweats, and mood swings.
Red Clover Flower Extract is favored in the formulation of hormonal balance supplements, where it helps to regulate estrogen levels, making it a popular ingredient for women experiencing perimenopause and menopause.
Red Clover Flower Extract is utilized in the development of supplements designed to support bone health, providing natural phytoestrogens that help maintain bone density and reduce the risk of osteoporosis.

Red Clover Flower Extract is widely used in skincare products for its antioxidant properties, which help to protect the skin from free radical damage and promote a youthful appearance.
Red Clover Flower Extract is employed in the creation of anti-aging creams, where it helps improve skin elasticity, reduce fine lines, and restore firmness.
Red Clover Flower Extract is essential in the development of lotions designed to soothe and hydrate the skin, providing antioxidant care and improving overall skin texture.

Red Clover Flower Extract is utilized in the production of cardiovascular health supplements, offering benefits for improving blood circulation, reducing cholesterol levels, and supporting heart health.
Red Clover Flower Extract is a key ingredient in detox products, where it helps to cleanse the body, eliminate toxins, and promote healthy skin.
Red Clover Flower Extract is used in the development of respiratory health products, where it helps to reduce inflammation in the respiratory tract and improve lung function.

Red Clover Flower Extract is applied in the formulation of supplements designed to improve hair health, providing phytoestrogen support for reducing hair thinning and promoting hair growth in women.
Red Clover Flower Extract is employed in the production of creams and lotions for sensitive skin, offering soothing and anti-inflammatory benefits, making it suitable for skin conditions such as eczema and rosacea.
Red Clover Flower Extract is used in the development of herbal teas, offering benefits for supporting women’s hormonal health and providing antioxidant protection.

Red Clover Flower Extract is widely utilized in the formulation of natural remedies for skin irritation and redness, helping to calm sensitive skin and improve skin tone.
Red Clover Flower Extract is a key component in wellness supplements that support detoxification, helping to cleanse the liver and promote healthy digestion.
Red Clover Flower Extract is used in the creation of supplements designed to reduce inflammation throughout the body, supporting joint health and providing relief from arthritis symptoms.

Red Clover Flower Extract is employed in the formulation of weight management supplements, where it helps regulate metabolism and improve the body’s fat-burning capabilities.
Red Clover Flower Extract is applied in the development of breast health supplements, offering phytoestrogen support for maintaining breast tissue health and reducing the risk of breast-related conditions.
Red Clover Flower Extract is utilized in the creation of products designed to support prostate health, helping to reduce inflammation and improve overall prostate function in men.

Red Clover Flower Extract is found in the formulation of stress-relief supplements, where it helps reduce anxiety and improve mood by balancing hormone levels.
Red Clover Flower Extract is used in the production of beauty supplements, offering benefits for improving skin texture, hair growth, and overall appearance.
Red Clover Flower Extract is a key ingredient in supplements designed to reduce symptoms of PMS, offering natural support for hormonal balance and mood regulation.

Red Clover Flower Extract is employed in the creation of wellness beverages, providing benefits for hormone regulation, detoxification, and antioxidant protection.
Red Clover Flower Extract is applied in natural remedies for reducing the risk of cardiovascular diseases, offering benefits for improving circulation, lowering blood pressure, and reducing cholesterol levels.
Red Clover Flower Extract is utilized in supplements that promote cognitive function, offering support for reducing memory loss and improving focus and concentration.



DESCRIPTION


Red Clover Flower Extract, derived from the flowers of Trifolium pratense, is known for its estrogen-like effects, antioxidant, and anti-inflammatory properties.
Red Clover Flower Extract is widely recognized for its ability to support women’s health, alleviate menopausal symptoms, and improve skin health, making it a valuable ingredient in dietary supplements and skincare formulations.

Red Clover Flower Extract offers additional benefits such as improving cardiovascular health, enhancing detoxification processes, and reducing inflammation throughout the body.
Red Clover Flower Extract is often incorporated into formulations designed to support bone health, improve skin elasticity, and provide relief from menopausal symptoms such as hot flashes and mood swings.
Red Clover Flower Extract is recognized for its ability to protect the skin from free radical damage, helping to reduce the signs of aging and improve overall skin health.

Red Clover Flower Extract is commonly used in both traditional and modern wellness formulations, providing a reliable solution for maintaining hormonal balance, promoting heart health, and supporting healthy skin.
Red Clover Flower Extract is valued for its ability to provide phytoestrogen support, which helps balance estrogen levels in women and alleviate symptoms related to menopause and hormonal imbalances.
Red Clover Flower Extract is a versatile ingredient that can be used in a variety of products, including supplements, creams, lotions, teas, and detox products.

Red Clover Flower Extract is an ideal choice for products targeting women’s health, anti-aging, and cardiovascular support, providing natural and effective care for these concerns.
Red Clover Flower Extract is known for its compatibility with other phytoestrogen-rich and antioxidant ingredients, making it easy to integrate into multi-functional formulations.
Red Clover Flower Extract is often chosen for formulations requiring a balance between hormone regulation, anti-aging care, and cardiovascular support, ensuring comprehensive wellness benefits.

Red Clover Flower Extract enhances the overall effectiveness of wellness and skincare products by providing natural support for hormonal balance, detoxification, and antioxidant protection.
Red Clover Flower Extract is a reliable ingredient for creating products that offer noticeable improvements in skin health, hormonal balance, and cardiovascular wellness.
Red Clover Flower Extract is an essential component in innovative wellness products known for their performance, safety, and ability to support women’s health, heart function, and overall vitality.



PROPERTIES


Chemical Formula: N/A (Natural extract)
Common Name: Red Clover Flower Extract (Trifolium pratense Flower Extract)
Molecular Structure:
Appearance: Yellow-brown powder or liquid extract
Density: Approx. 1.00-1.05 g/cm³ (for powder)
Melting Point: N/A (powder form)
Solubility: Soluble in water and ethanol; insoluble in oils
Flash Point: >100°C (for powder)
Reactivity: Stable under normal conditions; no known reactivity issues
Chemical Stability: Stable under recommended storage conditions
Storage Temperature: Store between 15-25°C in a cool, dry place
Vapor Pressure: Low (for liquid extract)



FIRST AID


Inhalation:
If Red Clover Flower Extract is inhaled, move the affected person to fresh air immediately.
If breathing difficulties persist, seek immediate medical attention.
If the person is not breathing, administer artificial respiration.
Keep the affected person warm and at rest.

Skin Contact:
Wash the affected area with soap and water.
If skin irritation persists, seek medical attention.

Eye Contact:
In case of eye contact, flush the eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids.
Seek immediate medical attention if irritation or redness persists.
Remove contact lenses if present and easy to do; continue rinsing.

Ingestion:
If Red Clover Flower Extract is ingested, do not induce vomiting unless directed to do so by medical personnel.
Rinse the mouth thoroughly with water.
Seek immediate medical attention.
If the person is conscious, give small sips of water to drink.

Note to Physicians:
Treat symptomatically.
No specific antidote.
Provide supportive care.



HANDLING AND STORAGE


Handling:

Personal Protection:
Wear appropriate personal protective equipment (PPE) such as gloves and safety goggles if handling large quantities.
Use in a well-ventilated area to avoid inhalation of dust.

Ventilation:
Ensure adequate ventilation when handling large amounts of Red Clover Flower Extract to control airborne concentrations below occupational exposure limits.

Avoidance:
Avoid direct contact with eyes and prolonged skin contact.
Do not eat, drink, or smoke while handling Red Clover Flower Extract.
Wash hands thoroughly after handling.

Spill and Leak Procedures:
Contain spills to prevent further release and minimize exposure.
Absorb with inert material (e.g., sand, vermiculite) and collect for disposal.
Dispose of in accordance with local regulations.

Storage:
Store Red Clover Flower Extract in a cool, dry, well-ventilated area away from incompatible materials (see SDS for specific details).
Keep containers tightly closed when not in use to prevent contamination.
Store away from heat sources, direct sunlight, and ignition sources.

Handling Cautions:
Avoid inhalation of dust and direct contact with skin and eyes.
Use explosion-proof equipment in areas where dust or vapors may be present.





REOFOS 35
DESCRIPTION:
REOFOS 35 is a low viscosity triarylphosphate ester which is recommended for use in PVC plastisols for fabric coating and other applications where its low, stable viscosity offers improved processing.
REOFOS 35 can give a drier finish to coated fabrics than other standard triaryl phosphate esters.
REOFOS 35 has a high plasticizing efficiency that enable formulaters to achieve better flame retardance at lower costs.
REOFOS 35 is also designed for use as a flame retardant in phenolic laminates.

CAS No. 68937-41-7
Molecular formula C18H15R3O4P
Molecular weight 390


SYNONYMS OF REOFOS 35:
Isopropylated Triphenyl Phosphate (IPPP, Reofos 35/50/65), [68937-41-7]; MFCD01705485; SUM OF ISOMERS; TRIS(ISOBUTANE); Triphenyl phosphate; TRIS(2-METHYLPROPANE); Phenolphosphateisopropylated; Triarylphosphatisopropylated; isopropylated phenol phosphate; ISOPROPYLATED TRIPHENYL PHOSPHATE; triisopropylated phenyl phosphate; Phenol,isopropylated,phosphate(3:1); Triphenyl phosphate - isobutane (1:3); TRIS(ISOPROPYLPHENYL)PHOSPHATE-1M ALKYL; Tris(o,m,p-isopropylphenyl) phosphate, tech.; Phosphoric acid, triphenyl ester, compd. with 2-methylpropane (1:3); TRISISOPROPYLTRISPHENYL PHOSPHATE, TIPPP PURIFIED ION M/Z 452 OF TECHNICAL GRADE; tris(4-propan-2-ylphenyl) phosphate


REOFOS 35 is a flame retardant in plastisols.
This synthetic isopropylated triaryl phosphate ester can give a drier finish to coated fabrics than other standard triaryl phosphate esters.

REOFOS 35 has a high plasticizing efficiency that enable to achieve better flame retardance at lower cost.
REOFOS 35 is used in applications where low, stable viscosity offers improved processing.

REOFOS 35 is a low viscosity synthetic isopropylated triaryl phosphate ester which widely used as a flame-retardant plasticizer.


REOFOS 35 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.

REOFOS 35 is a flame retardant plasticizer used primarily in PVC and phenolic resins.

REOFOS 35 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.


APPLICATIONS of REOFOS 35:
They are used because of their plasticizing properties mainly in PVC and PUR.
Additionally they are applicable in TPU, in phenolic resins, synthetic rubber, resins and other applications.
Typical end uses are soft PVC, PUR foams, adhesives, sealants and coatings.

We are happy to consult you in choosing and applying phosphorus flame retardants.
Additionally we offer brominated flame retardants, other halogen free flame retardants, synergists and smoke suppressants.


REOFOS 35 improves the characteristics of the coated fabrics (compared to other additives, it gives a drier finish) and has a high plasticizing efficiency combined with flame retardant properties.
REOFOS 35 is also used as a flame retardant additive in phenolic resins.

PVC industry: cable, windows and door, sheet, decorating sheet, agricultural membrane, floor membrane etc.
Other synthetic material industry: used as light-heat stabilizer or oxide-heat stabilizer.
Other industry: complex liquid and ointment compound stabilizer etc.

As a plasticizer or flame retardant added in PVC, PU, PE, PP, PC/ABS, PPO/HIPS, PVAC, PS, fabric coatings, circuit boards, spinning Chemicalbook fabrics, phenolic resin, polyethylene, artificial leather, film, plate, conveyor belt, air pipe, floor material cable, synthetic resin, plastic, rubber and fiber to increase the process performance of the product.


USES OF REOFOS 35:

REOFOS 35 Is Used For Rubber Products
REOFOS 35 Is Used For PVC Plastic Flame Retardant Conveyor Belt
REOFOS 35 Is Used For Cable
REOFOS 35 Is Used For Chloroprene Rubber

REOFOS 35 Is Used For Rubber And Other Synthetic Rubber Flame Retardant Plasticizer
REOFOS 35 Is Used For Fabric Coating
REOFOS 35 Is Used For Circuit Boards

REOFOS 35 Is Used For Flooring
REOFOS 35 Is Used For Textiles
REOFOS 35 Is Used For PVC
REOFOS 35 Is Used For Phenolic Resin


CHEMICAL AND PHYSICAL PROPERTIES OF REOFOS 35:
Basic Elements Of The Product:
Chemical Name: Triary Phosphate Isopropylated(IPPP35)
Product Name: IPPP
Cas Number.: 68937-41-7
Same Name: flame Retardant IPPP
Industrial: Plastic

Application: REOFOS 35 Phosphorus Flame Retardant is a flame retardant plasticizer for PVC applications.
Packaging Details: 200kg drum IBC ISO tank
Production Capacity: 15 tons per day
Hs Code: 29199000902
Reach: Full Registration
Appearance.

Colorless transparent liquid.

Viscosity (25 °C,CP)

42-65

Specific Gravity (20°C)

1.183

Flashing point °C

220 min.

P%

8.60

Acid Value (mg KOH/g)

0.10max.

Chroma (APHA)

50.0 max.

Water content %

0.10 max.

The Isopropylphenyl phosphate,Flame Retardant ippp35,Reofos 35 Quality Description:
Traits: Colorless Or Light Yellow Transparent Liquid
Density Density (D20) :: 1.183
Flash Point Flash Point: 220 ℃ MIN
Viscosity Viscosity (25 ° C, CP): 42-50
Acid Value (MgKOH / G): 0.1 MAX
Refractive Index Refractive Index (N23): 1.546-1.555
Color Value: ≤ 50
Moisture% Water Content: 0.1% MAX
Phosphate Content: BY8.6%
Appearance Colorless or light yellow transparent liquid
Specific gravity(20/20℃) 1.183
Acid value(mgKOH/g) Less than 0.2
Chroma(APAH PT-CO) Less than 80
Viscosity 35-50
Color(Pt-Co): ≤50
Density: 1.183-1.192
Refractive index: 1.585-1.590
Solidification point°C: 19-24
Oxide(Cl- %): ≤0.20
Boiling point 400ºC[at 101 325 Pa]
density 1.168[at 20ºC]
vapor pressure 0Pa at 25ºC
storage temp. Hygroscopic, Refrigerator, under inert atmosphere
solubility Benzene (Slightly), Chloroform (Slightly), DMSO (Slightly), Methanol (Slightly)
form Oil
color Colourless



SAFETY INFORMATION ABOUT REOFOS 35
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.
REOFOS 50
DESCRIPTION:
REOFOS 50 is a low viscosity triarylphosphate ester which is recommended for use in PVC plastisols for fabric coating and other applications where its low, stable viscosity offers improved processing.
REOFOS 50 can give a drier finish to coated fabrics than other standard triaryl phosphate esters.
REOFOS 50 has a high plasticizing efficiency that enable formulaters to achieve better flame retardance at lower costs.
REOFOS 50 is also designed for use as a flame retardant in phenolic laminates.

CAS No. 68937-41-7
Molecular formula C18H15R3O4P
Molecular weight 390


SYNONYMS OF REOFOS 50:
Isopropylated Triphenyl Phosphate (IPPP, REOFOS 50/50/65), [68937-41-7]; MFCD01705485; SUM OF ISOMERS; TRIS(ISOBUTANE); Triphenyl phosphate; TRIS(2-METHYLPROPANE); Phenolphosphateisopropylated; Triarylphosphatisopropylated; isopropylated phenol phosphate; ISOPROPYLATED TRIPHENYL PHOSPHATE; triisopropylated phenyl phosphate; Phenol,isopropylated,phosphate(3:1); Triphenyl phosphate - isobutane (1:3); TRIS(ISOPROPYLPHENYL)PHOSPHATE-1M ALKYL; Tris(o,m,p-isopropylphenyl) phosphate, tech.; Phosphoric acid, triphenyl ester, compd. with 2-methylpropane (1:3); TRISISOPROPYLTRISPHENYL PHOSPHATE, TIPPP PURIFIED ION M/Z 452 OF TECHNICAL GRADE; tris(4-propan-2-ylphenyl) phosphate


REOFOS 50 is a flame retardant in plastisols.
This synthetic isopropylated triaryl phosphate ester can give a drier finish to coated fabrics than other standard triaryl phosphate esters.

REOFOS 50 has a high plasticizing efficiency that enable to achieve better flame retardance at lower cost.
REOFOS 50 is used in applications where low, stable viscosity offers improved processing.

REOFOS 50 is a low viscosity synthetic isopropylated triaryl phosphate ester which widely used as a flame-retardant plasticizer.


REOFOS 50 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.

REOFOS 50 is a flame retardant plasticizer used primarily in PVC and phenolic resins.

REOFOS 50 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.


APPLICATIONS of REOFOS 50:
They are used because of their plasticizing properties mainly in PVC and PUR.
Additionally they are applicable in TPU, in phenolic resins, synthetic rubber, resins and other applications.
Typical end uses are soft PVC, PUR foams, adhesives, sealants and coatings.

We are happy to consult you in choosing and applying phosphorus flame retardants.
Additionally we offer brominated flame retardants, other halogen free flame retardants, synergists and smoke suppressants.


REOFOS 50 improves the characteristics of the coated fabrics (compared to other additives, it gives a drier finish) and has a high plasticizing efficiency combined with flame retardant properties.
REOFOS 50 is also used as a flame retardant additive in phenolic resins.

PVC industry: cable, windows and door, sheet, decorating sheet, agricultural membrane, floor membrane etc.
Other synthetic material industry: used as light-heat stabilizer or oxide-heat stabilizer.
Other industry: complex liquid and ointment compound stabilizer etc.

As a plasticizer or flame retardant added in PVC, PU, PE, PP, PC/ABS, PPO/HIPS, PVAC, PS, fabric coatings, circuit boards, spinning Chemicalbook fabrics, phenolic resin, polyethylene, artificial leather, film, plate, conveyor belt, air pipe, floor material cable, synthetic resin, plastic, rubber and fiber to increase the process performance of the product.


USES OF REOFOS 50:

REOFOS 50 Is Used For Rubber Products
REOFOS 50 Is Used For PVC Plastic Flame Retardant Conveyor Belt
REOFOS 50 Is Used For Cable
REOFOS 50 Is Used For Chloroprene Rubber

REOFOS 50 Is Used For Rubber And Other Synthetic Rubber Flame Retardant Plasticizer
REOFOS 50 Is Used For Fabric Coating
REOFOS 50 Is Used For Circuit Boards

REOFOS 50 Is Used For Flooring
REOFOS 50 Is Used For Textiles
REOFOS 50 Is Used For PVC
REOFOS 50 Is Used For Phenolic Resin


CHEMICAL AND PHYSICAL PROPERTIES OF REOFOS 50:
Basic Elements Of The Product:
Chemical Name: Triary Phosphate Isopropylated(IPPP35)
Product Name: IPPP
Cas Number.: 68937-41-7
Same Name: flame Retardant IPPP
Industrial: Plastic

Application: REOFOS 50 Phosphorus Flame Retardant is a flame retardant plasticizer for PVC applications.
Packaging Details: 200kg drum IBC ISO tank
Production Capacity: 15 tons per day
Hs Code: 29199000902
Reach: Full Registration
Appearance.

Colorless transparent liquid.

Viscosity (25 °C,CP)

42-65

Specific Gravity (20°C)

1.183

Flashing point °C

220 min.

P%

8.60

Acid Value (mg KOH/g)

0.10max.

Chroma (APHA)

50.0 max.

Water content %

0.10 max.

The Isopropylphenyl phosphate,Flame Retardant ippp35,REOFOS 50 Quality Description:
Traits: Colorless Or Light Yellow Transparent Liquid
Density Density (D20) :: 1.183
Flash Point Flash Point: 220 ℃ MIN
Viscosity Viscosity (25 ° C, CP): 42-50
Acid Value (MgKOH / G): 0.1 MAX
Refractive Index Refractive Index (N23): 1.546-1.555
Color Value: ≤ 50
Moisture% Water Content: 0.1% MAX
Phosphate Content: BY8.6%
Appearance Colorless or light yellow transparent liquid
Specific gravity(20/20℃) 1.183
Acid value(mgKOH/g) Less than 0.2
Chroma(APAH PT-CO) Less than 80
Viscosity 35-50
Color(Pt-Co): ≤50
Density: 1.183-1.192
Refractive index: 1.585-1.590
Solidification point°C: 19-24
Oxide(Cl- %): ≤0.20
Boiling point 400ºC[at 101 325 Pa]
density 1.168[at 20ºC]
vapor pressure 0Pa at 25ºC
storage temp. Hygroscopic, Refrigerator, under inert atmosphere
solubility Benzene (Slightly), Chloroform (Slightly), DMSO (Slightly), Methanol (Slightly)
form Oil
color Colourless



SAFETY INFORMATION ABOUT REOFOS 50
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.



REOFOS 65
DESCRIPTION:
REOFOS 65 is a low viscosity triarylphosphate ester which is recommended for use in PVC plastisols for fabric coating and other applications where its low, stable viscosity offers improved processing.
REOFOS 65 can give a drier finish to coated fabrics than other standard triaryl phosphate esters.
REOFOS 65 has a high plasticizing efficiency that enable formulaters to achieve better flame retardance at lower costs.
REOFOS 65 is also designed for use as a flame retardant in phenolic laminates.

CAS No. 68937-41-7
Molecular formula C18H15R3O4P
Molecular weight 390


SYNONYMS OF REOFOS 65:
Isopropylated Triphenyl Phosphate (IPPP, REOFOS 65/50/65), [68937-41-7]; MFCD01705485; SUM OF ISOMERS; TRIS(ISOBUTANE); Triphenyl phosphate; TRIS(2-METHYLPROPANE); Phenolphosphateisopropylated; Triarylphosphatisopropylated; isopropylated phenol phosphate; ISOPROPYLATED TRIPHENYL PHOSPHATE; triisopropylated phenyl phosphate; Phenol,isopropylated,phosphate(3:1); Triphenyl phosphate - isobutane (1:3); TRIS(ISOPROPYLPHENYL)PHOSPHATE-1M ALKYL; Tris(o,m,p-isopropylphenyl) phosphate, tech.; Phosphoric acid, triphenyl ester, compd. with 2-methylpropane (1:3); TRISISOPROPYLTRISPHENYL PHOSPHATE, TIPPP PURIFIED ION M/Z 452 OF TECHNICAL GRADE; tris(4-propan-2-ylphenyl) phosphate


REOFOS 65 is a flame retardant in plastisols.
This synthetic isopropylated triaryl phosphate ester can give a drier finish to coated fabrics than other standard triaryl phosphate esters.

REOFOS 65 has a high plasticizing efficiency that enable to achieve better flame retardance at lower cost.
REOFOS 65 is used in applications where low, stable viscosity offers improved processing.

REOFOS 65 is a low viscosity synthetic isopropylated triaryl phosphate ester which widely used as a flame-retardant plasticizer.


REOFOS 65 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.

REOFOS 65 is a flame retardant plasticizer used primarily in PVC and phenolic resins.

REOFOS 65 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.


APPLICATIONS of REOFOS 65:
They are used because of their plasticizing properties mainly in PVC and PUR.
Additionally they are applicable in TPU, in phenolic resins, synthetic rubber, resins and other applications.
Typical end uses are soft PVC, PUR foams, adhesives, sealants and coatings.

We are happy to consult you in choosing and applying phosphorus flame retardants.
Additionally we offer brominated flame retardants, other halogen free flame retardants, synergists and smoke suppressants.


REOFOS 65 improves the characteristics of the coated fabrics (compared to other additives, it gives a drier finish) and has a high plasticizing efficiency combined with flame retardant properties.
REOFOS 65 is also used as a flame retardant additive in phenolic resins.

PVC industry: cable, windows and door, sheet, decorating sheet, agricultural membrane, floor membrane etc.
Other synthetic material industry: used as light-heat stabilizer or oxide-heat stabilizer.
Other industry: complex liquid and ointment compound stabilizer etc.

As a plasticizer or flame retardant added in PVC, PU, PE, PP, PC/ABS, PPO/HIPS, PVAC, PS, fabric coatings, circuit boards, spinning Chemicalbook fabrics, phenolic resin, polyethylene, artificial leather, film, plate, conveyor belt, air pipe, floor material cable, synthetic resin, plastic, rubber and fiber to increase the process performance of the product.


USES OF REOFOS 65:

REOFOS 65 Is Used For Rubber Products
REOFOS 65 Is Used For PVC Plastic Flame Retardant Conveyor Belt
REOFOS 65 Is Used For Cable
REOFOS 65 Is Used For Chloroprene Rubber

REOFOS 65 Is Used For Rubber And Other Synthetic Rubber Flame Retardant Plasticizer
REOFOS 65 Is Used For Fabric Coating
REOFOS 65 Is Used For Circuit Boards

REOFOS 65 Is Used For Flooring
REOFOS 65 Is Used For Textiles
REOFOS 65 Is Used For PVC
REOFOS 65 Is Used For Phenolic Resin


CHEMICAL AND PHYSICAL PROPERTIES OF REOFOS 65:
Basic Elements Of The Product:
Chemical Name: Triary Phosphate Isopropylated(IPPP35)
Product Name: IPPP
Cas Number.: 68937-41-7
Same Name: flame Retardant IPPP
Industrial: Plastic

Application: REOFOS 65 Phosphorus Flame Retardant is a flame retardant plasticizer for PVC applications.
Packaging Details: 200kg drum IBC ISO tank
Production Capacity: 15 tons per day
Hs Code: 29199000902
Reach: Full Registration
Appearance.

Colorless transparent liquid.

Viscosity (25 °C,CP)

42-65

Specific Gravity (20°C)

1.183

Flashing point °C

220 min.

P%

8.60

Acid Value (mg KOH/g)

0.10max.

Chroma (APHA)

50.0 max.

Water content %

0.10 max.

The Isopropylphenyl phosphate,Flame Retardant ippp35,REOFOS 65 Quality Description:
Traits: Colorless Or Light Yellow Transparent Liquid
Density Density (D20) :: 1.183
Flash Point Flash Point: 220 ℃ MIN
Viscosity Viscosity (25 ° C, CP): 42-50
Acid Value (MgKOH / G): 0.1 MAX
Refractive Index Refractive Index (N23): 1.546-1.555
Color Value: ≤ 50
Moisture% Water Content: 0.1% MAX
Phosphate Content: BY8.6%
Appearance Colorless or light yellow transparent liquid
Specific gravity(20/20℃) 1.183
Acid value(mgKOH/g) Less than 0.2
Chroma(APAH PT-CO) Less than 80
Viscosity 35-50
Color(Pt-Co): ≤50
Density: 1.183-1.192
Refractive index: 1.585-1.590
Solidification point°C: 19-24
Oxide(Cl- %): ≤0.20
Boiling point 400ºC[at 101 325 Pa]
density 1.168[at 20ºC]
vapor pressure 0Pa at 25ºC
storage temp. Hygroscopic, Refrigerator, under inert atmosphere
solubility Benzene (Slightly), Chloroform (Slightly), DMSO (Slightly), Methanol (Slightly)
form Oil
color Colourless



SAFETY INFORMATION ABOUT REOFOS 65
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.




REOFOS 95
DESCRIPTION:
REOFOS 95 is a low viscosity triarylphosphate ester which is recommended for use in PVC plastisols for fabric coating and other applications where its low, stable viscosity offers improved processing.
REOFOS 95 can give a drier finish to coated fabrics than other standard triaryl phosphate esters.
REOFOS 95 has a high plasticizing efficiency that enable formulaters to achieve better flame retardance at lower costs.
REOFOS 95 is also designed for use as a flame retardant in phenolic laminates.

CAS No. 68937-41-7
Molecular formula C18H15R3O4P
Molecular weight 390


SYNONYMS OF REOFOS 95:
Isopropylated Triphenyl Phosphate (IPPP, REOFOS 95/50/65), [68937-41-7]; MFCD01705485; SUM OF ISOMERS; TRIS(ISOBUTANE); Triphenyl phosphate; TRIS(2-METHYLPROPANE); Phenolphosphateisopropylated; Triarylphosphatisopropylated; isopropylated phenol phosphate; ISOPROPYLATED TRIPHENYL PHOSPHATE; triisopropylated phenyl phosphate; Phenol,isopropylated,phosphate(3:1); Triphenyl phosphate - isobutane (1:3); TRIS(ISOPROPYLPHENYL)PHOSPHATE-1M ALKYL; Tris(o,m,p-isopropylphenyl) phosphate, tech.; Phosphoric acid, triphenyl ester, compd. with 2-methylpropane (1:3); TRISISOPROPYLTRISPHENYL PHOSPHATE, TIPPP PURIFIED ION M/Z 452 OF TECHNICAL GRADE; tris(4-propan-2-ylphenyl) phosphate


REOFOS 95 is a flame retardant in plastisols.
This synthetic isopropylated triaryl phosphate ester can give a drier finish to coated fabrics than other standard triaryl phosphate esters.

REOFOS 95 has a high plasticizing efficiency that enable to achieve better flame retardance at lower cost.
REOFOS 95 is used in applications where low, stable viscosity offers improved processing.

REOFOS 95 is a low viscosity synthetic isopropylated triaryl phosphate ester which widely used as a flame-retardant plasticizer.


REOFOS 95 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.

REOFOS 95 is a flame retardant plasticizer used primarily in PVC and phenolic resins.

REOFOS 95 is a synthetic isopropylated triaryl phosphate ester flame retardant, which can be used in a wide variety of resins, particularly PVC.


APPLICATIONS of REOFOS 95:
They are used because of their plasticizing properties mainly in PVC and PUR.
Additionally they are applicable in TPU, in phenolic resins, synthetic rubber, resins and other applications.
Typical end uses are soft PVC, PUR foams, adhesives, sealants and coatings.

We are happy to consult you in choosing and applying phosphorus flame retardants.
Additionally we offer brominated flame retardants, other halogen free flame retardants, synergists and smoke suppressants.


REOFOS 95 improves the characteristics of the coated fabrics (compared to other additives, it gives a drier finish) and has a high plasticizing efficiency combined with flame retardant properties.
REOFOS 95 is also used as a flame retardant additive in phenolic resins.

PVC industry: cable, windows and door, sheet, decorating sheet, agricultural membrane, floor membrane etc.
Other synthetic material industry: used as light-heat stabilizer or oxide-heat stabilizer.
Other industry: complex liquid and ointment compound stabilizer etc.

As a plasticizer or flame retardant added in PVC, PU, PE, PP, PC/ABS, PPO/HIPS, PVAC, PS, fabric coatings, circuit boards, spinning Chemicalbook fabrics, phenolic resin, polyethylene, artificial leather, film, plate, conveyor belt, air pipe, floor material cable, synthetic resin, plastic, rubber and fiber to increase the process performance of the product.


USES OF REOFOS 95:

REOFOS 95 Is Used For Rubber Products
REOFOS 95 Is Used For PVC Plastic Flame Retardant Conveyor Belt
REOFOS 95 Is Used For Cable
REOFOS 95 Is Used For Chloroprene Rubber

REOFOS 95 Is Used For Rubber And Other Synthetic Rubber Flame Retardant Plasticizer
REOFOS 95 Is Used For Fabric Coating
REOFOS 95 Is Used For Circuit Boards

REOFOS 95 Is Used For Flooring
REOFOS 95 Is Used For Textiles
REOFOS 95 Is Used For PVC
REOFOS 95 Is Used For Phenolic Resin


CHEMICAL AND PHYSICAL PROPERTIES OF REOFOS 95:
Basic Elements Of The Product:
Chemical Name: Triary Phosphate Isopropylated(IPPP35)
Product Name: IPPP
Cas Number.: 68937-41-7
Same Name: flame Retardant IPPP
Industrial: Plastic

Application: REOFOS 95 Phosphorus Flame Retardant is a flame retardant plasticizer for PVC applications.
Packaging Details: 200kg drum IBC ISO tank
Production Capacity: 15 tons per day
Hs Code: 29199000902
Reach: Full Registration
Appearance.

Colorless transparent liquid.

Viscosity (25 °C,CP)

42-65

Specific Gravity (20°C)

1.183

Flashing point °C

220 min.

P%

8.60

Acid Value (mg KOH/g)

0.10max.

Chroma (APHA)

50.0 max.

Water content %

0.10 max.

The Isopropylphenyl phosphate,Flame Retardant ippp35,REOFOS 95 Quality Description:
Traits: Colorless Or Light Yellow Transparent Liquid
Density Density (D20) :: 1.183
Flash Point Flash Point: 220 ℃ MIN
Viscosity Viscosity (25 ° C, CP): 42-50
Acid Value (MgKOH / G): 0.1 MAX
Refractive Index Refractive Index (N23): 1.546-1.555
Color Value: ≤ 50
Moisture% Water Content: 0.1% MAX
Phosphate Content: BY8.6%
Appearance Colorless or light yellow transparent liquid
Specific gravity(20/20℃) 1.183
Acid value(mgKOH/g) Less than 0.2
Chroma(APAH PT-CO) Less than 80
Viscosity 35-50
Color(Pt-Co): ≤50
Density: 1.183-1.192
Refractive index: 1.585-1.590
Solidification point°C: 19-24
Oxide(Cl- %): ≤0.20
Boiling point 400ºC[at 101 325 Pa]
density 1.168[at 20ºC]
vapor pressure 0Pa at 25ºC
storage temp. Hygroscopic, Refrigerator, under inert atmosphere
solubility Benzene (Slightly), Chloroform (Slightly), DMSO (Slightly), Methanol (Slightly)
form Oil
color Colourless



SAFETY INFORMATION ABOUT REOFOS 95
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.




RESIFLOW FL 2
RESIFLOW FL 2 Resiflow FL 2 is a silicone free, polymeric flow control agent and resin modifier used as an additive to correct imperfections in coatings and printing ink formulations. Craters, pin holes and fisheyes may be eliminated or substantially reduced by incorporating 0.2 - 2.0% of the agent into total formulation. Resiflow FL 2 is designed for powder coatings, solvent based coatings, high solids, coil coatings and UV-coatings. Printing inks based on flexographic or silk screen have also shown improved characteristics. Resiflow FL 2-50 Silicone free acrylic flow control agent for solvent based and solvent free coatings based on alkyd, polyester, acrylic, vinyl, epoxy and polyurethane resin. Resiflow FL 2 Resiflow FL 2 is a silicone free, polymeric flow control agent and resin modifier used as additive to correct imperfections in coatings and printing ink formulations. Craters, pin holes and fisheyes may be eliminated or substantially reduced by incorporating 0.2 - 2.0% of the agent into total formulation. The initial and recoating adhesion is normally not affected by addition of Resiflow FL 2. Resiflow FL 2 is stable to UV-radiation. The unique chemical structure of this product renders it suitable for epoxy, polyester, acrylic, vinyl, alkyd, urethane resins and other systems. Technical Data of Resiflow FL 2: Non volatile content, 1h/125 °C, DIN EN ISO 3251 min. 98% Appearance of Resiflow FL 2 colourless, high viscous liquid Viscosity of Resiflow FL 2, 20 °C, delivery form, DIN 53015, ball 6 30 - 50 Paּs Density of Resiflow FL 2 , 20 °C, DIN EN ISO 2811-1 approx. 1.0 g/cm³ Application and Properties of Resiflow FL 2: Resiflow FL 2 is designed for powder coatings, solvent based coatings, high solids, coil coatings and UV-coatings. Printing inks based on flexographic or silk screen have also shown improved characteristics. A small addition of Resiflow FL 2 into vinyl organosols and polyester gel coats improves their performance. In powder coating applications best results are obtained when the flow control agent is used as master batch consisting of 90 - 95% resin and 5 - 10% Resiflow FL 2. The compatibility of powder coatings containing different flow control agents could be critical. Therefore we recommend corresponding preliminary trials. Durability of Resiflow FL 2: Stored in original containers and at room temperature Resiflow FL 2 has a shelf life of min. 12 months. Resiflow FL 2 Resiflow FL 2 is a silicone free, polymeric flow control agent and resin modifier used as additive to correct imperfections in coatings and printing ink formulations. Craters, pin holes and fisheyes may be eliminated or substantially reduced by incorporating 0.2 - 2.0% of the agent into total formulation. The initial and recoating adhesion is normally not affected by addition of Resiflow FL 2. Resiflow FL 2 is stable to UV-radiation. The unique chemical structure of this product renders it suitable for epoxy, polyester, acrylic, vinyl, alkyd, urethane resins and other systems Resiflow FL 2 is designed for powder coatings, solvent based coatings, high solids, coil coatings and UV-coatings. Printing inks based on flexographic or silk screen have also shown improved characteristics. A small addition of Resiflow FL 2 into vinyl organosols and polyester gel coats improves their performance. In powder coating applications best results are obtained when the flow control agent is used as master batch consisting of 90 - 95% resin and 5 - 10% Resiflow FL 2. The compatibility of powder coatings containing different flow control agents could be critical. Therefore we recommend corresponding preliminary trials. Resiflow FL 2 Addition (calc. on total form.) 0,4 - 4,0 Appearance Farblose Flüssigkeit Chemical Specification Polyacrylat Forms of delivery Article number Sample Liquid 114001-00271 Order
RESORCINOL
RETINYL ACETATE, N° CAS : 127-47-9. Nom INCI : RETINYL ACETATE. Nom chimique : Retinyl acetate. N° EINECS/ELINCS : 204-844-2. Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état
Resorcinol Bis(diphenyl Phosphate)
SYNONYMS C.I.Acid Yellow 3; C.I. 47005; Quinoline Yellow, water soluble; Food Yellow 13; Sodium 2-(1,3-dioxoindan-2-yl)quinolinedisulfonate; 2-(1,3-Dioxoindan-2-yl) quinolinedisulfonic acid sodium salt; Sodium 2-(2-quinolyl) indan-1,3-dione-disulfonates; Quinoline Yellow;CAS NO 8004-92-0
RETINOL
Retinol, retinal and retinoic acid are the aldehyde, alcohol and acid forms of vitamin A.
Retinol is well-known for its potential benefits in skincare.
Retinol, in the form of retinal, combines with opsin to form rhodopsin which is vital for low-light and color vision.

CAS Number: 68-26-8
Molecular Formula: C20H30O
Molecular Weight: 286.45
EINECS No.: b200-683-7

Retinol is biologically active in a wide range of processes.
Retinol is a group of unsaturated nutritional organic compounds, including vitamin A, retinal, retinoic acid, provitamin A carotenoids, and beta-carotene.
As retinoic acid,Retinol functions as a hormone-like growth factor that supports epithelial cells.

Retinol also shows lipoperoxy radical scavenging activity, and has antioxidant and fluorescent properties.
Retinol is a form of vitamin A, which is a fat-soluble vitamin essential for various bodily functions, including vision, immune system support, and skin health.
Retinol, specifically, is a derivative of vitamin A that is commonly used in skincare products and is known for its beneficial effects on the skin.

Human Retinol is derived from the natural food.
Natural Retinol exists in dif ferent forms.
The human immune system is unable to grow and develop without Retinol.

The retinoids exist as many geometric isomers due to the unsaturated bonds in the aliphatic chain.
Retinol, also called vitamin A1, is a fat-soluble vitamin in the vitamin A family that is found in food and used as a dietary supplement.
Therefore, food is the main source of Retinol.

As early as 1000 years ago, the Qian Jin Yao Fang written by Sun Simiao in Tang Dynasty recorded that animal liver can cure night blindness.
This is the early recognition in vitamin A supplementation.
The traditional Chinese medicine books also recorded that nourishing the liver can improve eyesight.

Researches on the therapy of vitamin A deficient-diseases are mainly related to nourishing the liver and kidney, supplementing essence and blood, and activating qi.
In animal tissues, Retinol is present in the form of retinoids.
Retinol or other forms of vitamin A are needed for vision, cellular development, maintenance of skin and mucous membranes, immune function and reproductive development.

Dietary sources include fish, dairy products, and meat.
As a supplement it is used to treat and prevent Retinol deficiency, especially that which results in xerophthalmia.
High doses may cause enlargement of the liver, dry skin, and hypervitaminosis A.

High doses during pregnancy may harm the fetus.
The body converts retinol to retinal and retinoic acid, through which it acts.
Collagen is a protein that helps maintain skin's elasticity and firmness, making it an effective ingredient for reducing the appearance of wrinkles and fine lines.

Retinol encourages skin cell turnover, which means it helps shed old, damaged skin cells and promotes the growth of new, healthy skin cells.
This can lead to smoother and more youthful-looking skin.
Retinol is used to treat acne by preventing the formation of clogged pores, promoting the shedding of dead skin cells, and reducing inflammation associated with acne breakouts.

Retinol can help fade dark spots and hyperpigmentation, such as age spots and sunspots, by inhibiting the production of melanin in the skin.
Retinol has a mild exfoliating effect, which can help unclog pores and improve skin texture.
Similar results were obtained using as co-solvents (with the liquid ammonia) ethylene diamine and ether; pentane; tetrahydrofuran; diethylamine and hexamethylphosphoramide.

Retinol and its derivatives exhibit anti-aging properties.
Retinol is used for treating wrinkles and signs of aging.
However, due to its photo instability and skin irritation potency, Retinol is hardly used in cosmetic formulations.

Retinol is also used as a therapeutic for dermatoses.
Retinol deficiency leads to xerosis and follicular hyperkeratosis.
Principal dietary sources of Retinol are milk fat (cheese and butter) and eggs.

Since it is stored in the liver, inclusion of liver in the diet also provides Retinol.
A plant pigment, carotene, is a precursor for Retinol and is present in highly pigmented vegetables, such as carrots, rutabaga, and red cabbage.
Retinol can increase the skin's sensitivity to UV radiation, so it is crucial to use sunscreen daily when using products containing retinol.

Sun protection helps prevent sunburn and further sun damage.
Retinol often takes several weeks to months of consistent use to see noticeable improvements in the skin.
Prescription versions, such as tretinoin, are generally more potent but may also be associated with more side effects.

OTC products are milder and are suitable for many people without a prescription.
Retinol can cause skin irritation, redness, dryness, and peeling, especially when first starting to use it.
One group at great risk are children from low-income families, who are likely to lack fresh vegetables (carotene) and dairy products (vitamin A) in the diet.

Retinol or other forms of vitamin A are needed for eyesight, maintenance of the skin, and human development.
Other than for vision, the active compound is all-trans-retinoic acid, synthesized from retinal, in turn synthesized from retinol.
Retinol is part of a family of compounds known as retinoids.

The retinoid family includes various forms of Retinol, such as retinyl palmitate, retinol, retinaldehyde, and prescription-strength retinoids like tretinoin (Retin-A) and isotretinoin (Accutane).
Retinols vary in potency, with prescription-strength options typically being more potent than over-the-counter retinol.
When using a retinol product, a pea-sized amount is often recommended for the entire face.

Retinol using too much can increase the risk of skin irritation.
Retinol is typically applied at night as it can break down in sunlight and may become less effective.
Applying it before bedtime allows for maximum absorption and benefits.

Retinol can be used in combination with other skincare ingredients like hyaluronic acid, niacinamide, and antioxidants to address multiple skin concerns.
For best results, it's important to use retinol consistently over time.
Skipping applications can delay or reduce its effectiveness.

Retinol's advisable to start with a lower concentration product and gradually increase the strength as skin builds tolerance.
This can help minimize initial irritation.

Retinol's a good idea to consult with a dermatologist.
They can provide personalized recommendations and may even prescribe stronger retinoid formulations if needed.
Retinol may not be suitable for everyone, especially those with certain skin conditions or sensitivities.

Pregnant or nursing individuals are typically advised to avoid retinol products due to potential risks to the developing fetus or infant.
Adapalene is another Retinol that is often available over-the-counter and by prescription.
Retinol is known for its effectiveness in treating acne and is typically gentler on the skin compared to some other retinoids.

The efficacy of retinol can vary from person to person, depending on factors like skin type, the concentration of retinol in the product, and the frequency of use.
Retinol is essential to follow product instructions and introduce retinol gradually into your skincare routine to minimize these side effects.
Manufacturing process for Retinol includes these steps as follows: Step A: Synthesis of Preparation of ethyl ether of ethynyl-β-ionol;Step B: Coupling Reaction; Step C:Semi-
Hydrogenation of Coupling Product;Step D:Hydrolysis of Semi-Hydrogenated Coupling Product.

Separation of Retinol from the product obtained was achieved by acetylating the total reaction product using pyridine-acetic anhydride at room temperature and chromatographing on alumina neutralized with acetic acid.
The Retinol acetate fraction was sufficiently pure to become crystallized from pentane at -15°C when seeded with a pure Vitamin A acetate crystal.
When the Retinol acetate was converted to the alcohol form of Vitamin A, the final product showed the characteristic infrared and ultraviolet absorption curves for Retinol.

Retinol is available in various skincare products, including creams, serums, and oils.
The concentration of retinol in these products can vary, so it's essential to choose the right product for your skin type and concerns.
There are both over-the-counter (OTC) and prescription-strength retinol products.

Retinol was discovered in 1909, isolated in 1931, and first made in 1947.
Retinol is on the World Health Organization's List of Essential Medicines.
Retinol is available as a generic medication and over the counter.

Retinol is used to address a range of skin concerns, including fine lines, wrinkles, uneven skin tone, acne, and sun damage.
Retinol stimulates collagen production in the skin.
Retinol is taken by mouth or by injection into a muscle.

As an ingredient in skin-care products, it is used to reduce wrinkles and other effects of skin aging.
Retinol at normal doses is well tolerated.
However, in plants, the form of Retinol called carotenoids is contained in the green, orange, and yellow plant tissue.

Retinol compounds such as vitamin A, reti nal, carotene, and so on from these foods can be converted to vitamin A in the human body.
Beyond addressing specific skin concerns, retinol is often used for anti-aging and as part of a long-term skincare routine to maintain healthy and youthful-looking skin.
This vitamin plays an essential role in vision, particularly night vision, normal bone and tooth development, reproduction, and the health of skin and mucous membranes (the mucus-secreting layer that lines body regions such as the respiratory tract).

Retinol also acts in the body as an antioxidant, a protective chemical that may reduce the risk of certain cancers.
There are two sources of dietary Retinol.
Active forms, which are immediately available to the body are obtained from animal products.

These are known as retinoids and include retinaldehyde and retinol.
Precursors, also known as provitamins, which must be converted to active forms by the body, are obtained from fruits and vegetables containing yellow, orange and dark green pigments, known as carotenoids, the most well-known being β-carotene.

For this reason, amounts of Retinol are measured in Retinol Equivalents (RE).
Approximately 250,000 to 500,000 malnourished children in the developing world go blind each year from a deficiency of Retinol.
Retinol deficiency in expecting mothers increases the mortality rate of children shortly after childbirth.

Night blindness is one of the first signs of vitamin A deficiency.
Retinol deficiency contributes to blindness by making the cornea very dry and damaging the retina and cornea.
Retinol is one of the animal forms of vitamin A.

Retinol is a diterpenoid and an alcohol.
Commercial production of retinol typically requires retinal synthesis through reduction of a pentadiene derivative and subsequent acidification/hydrolysis of the resulting isomer to produce retinol.
Pure retinol is extremely sensitive to oxidization and is prepared and transported at low temperatures and oxygen free atmospheres.

All retinoid forms of vitamin A are used in cosmetic and medical applications applied to the skin.
One RE is equivalent to 0.001 mg of retinol, or 0.006 mg of β-carotene, or 3.3 International Units of vitamin A.
In the intestine, vitamin A is protected from being chemically changed by vitamin E.

Retinol is fat-soluble and can be stored in the body.
Retinol, or Vitamin A, is essential for the proper maintenance of the functional and structural integrity of epithelial cells, and it plays a major role in epithelial differentiation.
Bone development and growth in children have also been linked to adequate vitamin A intake.

Retinol, when reduced to the aldehyde 11-cis-retinal, combines with opsin to produce the visual pigment rhodopsin.
This pigment is present in the rods of the retina and is partly responsible for the process of dark adaptation.

Melting point: 61-63 °C(lit.)
Boiling point: 368.81°C (rough estimate)
Density: 0.9933 (rough estimate)
refractive index: 1.641
Flash point: -26 °C
storage temp.: -20°C
solubility: Chloroform (Slightly), Methanol (Slightly)
pka: 14.09±0.10(Predicted)
form: crystalline
color: yellow to orange
Water Solubility: Practically insoluble inwaterorglycerol; soluble in absolute alcohol,methanol,℃hloroform, ether, fats and oils.
Sensitive: Moisture & Light Sensitive
Merck: 13,10073
BRN: 403040
Stability: Stable, but light and air sensitive. Incompatible with strong acids, strong oxidizing agents.
LogP: 5.680
CAS DataBase Reference: 68-26-8(CAS DataBase Reference)
FDA 21 CFR: 184.1930; 582.5930; 101.9; 104.20; 107.10; 107.100; 310.545
Substances Added to Food (formerly EAFUS): VITAMIN A

Retinol plays an important role in main taining healthy skin.
Retinol deficiency disrupts human keratin cell terminal dif ferentiation and makes the skin rough, dry, scaly, and clogged.
Retinol is reported that vitamin A can degrade malignant melanoma and T-cell lymphoma epidermal transfer, reduce the oil secretion of the common acne and the number of bacteria in the epidermis and capillaries, and inhibit immune response of monocytes and neutrophils.

Retinol plays an important role as an important function material in the body system, such as hematopoietic function, bone development, tumor prevention, and so on.
Therefore, supplement of Retinol is necessary for health requirements.

Acute hypervitaminosis A results in drowsiness, headache, vomiting, papilledema, and a bulging fontanel in infants.
Retinol deficiency can lead to animal death.
Retinol functions in reproduction and embryonic development.

Retinol plays an important role in the reproductive process of sperm production and ovula tion, but its biochemical basis is unclear.
Retinol plays a key role in the develop ment of embryos and organism and maintenance of tissue function. The main organs affected by vitamin A deficiency are the heart, eye tissue, circulatory system, geni tourinary system, and respiratory system. Retinol is necessary for embryonic development.

Retinol functions on immune function.
The lymphoid organs, cell distribu tion, histology, lymphocytes, and other characteristics will change when the ani mals lack Retinol.
Retinol deficiency can lead to immune function decrease, induce inflammation, and exacerbate inflammatory symptoms.

Retinol functions in dermatology.
Intake of vitamin A precursors, such as carotenoids, retinyl esters, retinol, and reti nal, can maintain the epithelial cell differentiation, normal proliferation, and visual function.
All of these substances can be metabolized into retinol, retinal, and reti noic acid.

But unlike retinol and retinal, retinoic acid cannot be reduced to retinol and retinal.
Intake of retinoic acid can only maintain the systemic function of Retinol.
Visual and vitamin A, 11-cis-retinal plays an important role as a photographic group of retinal cones and visual pigments in rod cells.

11-cis-retinal would be transformed into all-trans-retinal form under the light induction.
The symptoms of chronic toxicity include scaly skin, hair loss, brittle nails, and hepatosplenomegaly.
Anorexia, irritability, and swelling of the bones have been seen in children.

Retardation of growth also may occur.
Liver toxicity has been associated with excessive Retinol intake.
Retinol is teratogenic in large amounts, and supplements should not be given during a normal pregnancy.

The IOM has reported the UL of vitamin A to be 3,000 μg/day.
Retinol is an essential compound in the cycle of light-activated chemical reactions called the "visual cycle" that underlies vertebrate vision.
Retinol is converted by the protein RPE65 within the pigment epithelium of the retina into 11-cis-retinal.

This molecule is then transported into the retina's photoreceptor cells (the rod or cone cells in mammals) where it binds to an opsin protein and acts as a light-activated molecular switch.
When 11-cis-retinal absorbs light it isomerizes into all-trans-retinal.
The change in the shape of the molecule in turn changes the configuration of the opsin in a cascade that leads to the neuronal firing, which signals the detection of light.

The opsin then splits into the protein component (such metarhodopsin) and the cofactor all-trans-retinal.
The regeneration of active opsin requires conversion of all-trans-retinal back to 11-cis-retinal via retinol.
The regeneration of 11-cis-retinal occurs in vertebrates via conversion of all-trans-retinol to 11-cis-retinol in a sequence of chemical transformations that occurs primarily in the pigment epithelial cells.

Without adequate amounts of retinol, regeneration of rhodopsin is incomplete and night blindness occurs.
Night blindness, the inability to see well in dim light, is associated with a deficiency of Retinol, a class of compounds that includes retinol and retinal.
In the early stages of vitamin A deficiency, the more light-sensitive and abundant rods, which have rhodopsin, have impaired sensitivity, and the cone cells are less affected.

The cones are less abundant than rods and come in three types, each contains its own type of iodopsin, the opsins of the cones.
The cones mediate color vision, and vision in bright light.
The skin around the eyes is thinner and more delicate, making it more prone to irritation.

Retinol's usually best to avoid applying retinol directly to the eyelids or too close to the eye area. Instead, use a specially formulated eye cream if you want to address concerns in that area.
Retinol using sunscreen daily is crucial when using retinol or any retinoid product.
Retinol can increase the skin's sensitivity to UV radiation, so sunscreen helps protect the skin from sun damage and reduces the risk of skin irritation.

Incorporating a moisturizer into your skincare routine can help combat the dryness and peeling that can occur with retinol use.
Look for a gentle, hydrating moisturizer that works well with your skin type.

Retinol's important to be patient when using retinol.
Results may not be immediately visible, and skin improvement can take several weeks to months.
Start with a lower concentration and gradually increase it as skin becomes more accustomed to the product.

While using retinol, it's advisable to avoid harsh or abrasive skincare products, such as strong exfoliants or scrubs, which can exacerbate skin sensitivity.
Pregnant or nursing individuals should avoid retinol and most other retinoids due to the potential risks to the fetus or infant.
Consult with a healthcare professional for safe skincare alternatives during this time.

Deficiencies in Retinol have been linked to an increased susceptibility to skin infection and inflammation.
Retinol appears to modulate the innate immune response and maintains homeostasis of epithelial tissues and mucosa through its metabolite, retinoic acid (RA).
As part of the innate immune system, toll-like receptors in skin cells respond to pathogens and cell damage by inducing a pro-inflammatory immune response which includes increased RA production.

The epithelium of the skin encounters bacteria, fungi and viruses.
Keratinocytes of the epidermal layer of the skin produce and secrete antimicrobial peptides (AMPs).
The dissociation of all-trans Retinol and opsin was coupled with the nerve stimulation of the brain’s visual center.

By a series of biochemical processes, nerve impulses format in the rod cells at the end of synapse, and then the optic nerve conducts the nerve impulses along.
The visual process is a component renewable cycle, and all-trans-retinal can be enzymatically modified to 11-cis form in dark conditions.
The systemic effects of Retinol.

Retinol not only significantly affects visual function but also has a greater physiological impact than visual function.
Retinol deficiency destroys the visual cycle, leads to dark adaptation damage (night blind ness or nyctalopia), and destroys systemic function which is necessary to maintain life (e.g., corneal injury, infection, and hypoplasia).

History:
The vitamin research is the great achievement in the development of life sciences, while human beings only took half a century to discover and understand vitamins.
However, everything is still very difficult for scientists in the early stage of vitamin discovery.
From 1913 to 1915, Elmer McCollum and Marguerite Davis indicated that the growth rate was maintained by at least two different kinds of growth factors: one can be separated from eggs or butter, and the other one which multiple neuritis of chicks and pigeons can be extracted by water; thus they were named fat-soluble Retinol and water-soluble vitamin B.

In 1919, the researchers demonstrated that fat-soluble Retinol not only sup ported the rate of growth but also prevented eye dryness and night blindness in the process of property study.
In 1920, Dr. J.C. Drummond named this active lipid as vitamin A.
Retinol exists in cod liver oil and prevents the occurrence of eye dryness and night blindness.

Uses:
Retinol can be used in combination with other skincare ingredients like hyaluronic acid, vitamin C, and peptides to address multiple skin concerns and provide a comprehensive skincare routine.
Retinol is often used in combination with other active ingredients to create a well-rounded skincare routine.
For example, combining retinol with antioxidants like vitamin C can provide added protection against environmental damage.

They help prevent clogged pores, reduce inflammation, and encourage the shedding of dead skin cells, which can lead to fewer breakouts and clearer skin.
Retinol can fade hyperpigmentation, including dark spots, sunspots, and melasma.

Retinol inhibits the production of melanin and encourages the turnover of pigmented skin cells, resulting in a more even skin tone.
Retinol can help improve skin texture by reducing roughness and promoting smoother, softer skin.
Retinol is often used to address issues like uneven skin texture and large pores.

Some people use retinol as a preventative measure to maintain healthy and youthful-looking skin and to delay the signs of aging.
Retinol may help improve the appearance of certain types of scars, such as acne scars, by promoting skin cell turnover and collagen production.
Retinol can contribute to overall skin health by promoting a more vibrant and youthful appearance.

Retinol is often incorporated into skincare routines to support healthy and radiant skin.
When compared to retinoic acid, retinol has an increased penetration potential and is less irritating, making it an effective ingredient for anti-aging products.
The anti-aging benefits of topically treating skin with retinol are based on its penetration ability, which allows it to reach the sites in the skin requiring treatment.

When used on sensitive skin for a prolonged period of time or in concentrations that are too high, retinol can cause dermatitis.
Through dietary modification involving the adjustment of menu choices of affected persons from available food sources to optimize Retinol content.
Enriching commonly eaten and affordable foods with Retinol, a process called fortification.

Retinol involves addition of synthetic vitamin A to staple foods like margarine, bread, flours, cereals, and infant formula during processing.
By giving high-doses of Retinol to the targeted deficient population, a method known as supplementation.
In regions where deficiency is common, a single large dose is recommended to those at high risk twice a year.

Retinol is widely recognized for its anti-aging properties.
Retinol helps reduce the appearance of fine lines, wrinkles, and age spots by stimulating collagen production, promoting skin cell turnover, and improving skin texture.
Retinol's generally recommended to apply retinol products in the evening as part of your nighttime skincare routine.

This allows the product to work while you sleep and minimizes potential sun sensitivity during the day.
Reiterating the importance of daily sunscreen use is crucial when using retinol or retinoids.
Sunscreen helps protect the skin from UV damage, which can exacerbate skin issues and increase the risk of sunburn.

While retinol can be effective, it may also lead to dryness or flakiness, especially in the initial stages of use.
Incorporating a hydrating moisturizer into your routine can help combat these side effects and keep the skin barrier healthy.
The frequency of retinol use depends on the product's concentration and your skin's tolerance.

Some individuals start by using retinol products every other night or a few times a week and gradually increase usage as their skin adapts.
Avoid using harsh or abrasive cleansers when using retinol.
Opt for a gentle, hydrating cleanser that won't strip the skin of its natural oils.

Achieving desired results with retinol often requires patience.
Retinol may take several weeks to months before significant improvements are visible, so consistency in use is important.
Some individuals experience a temporary worsening of skin issues, such as increased breakouts or redness, when they first start using retinol.

This is often referred to as the "retinol purge" and can be a normal part of the adjustment period.
Many users find that incorporating retinol into their skincare routine is a long-term commitment for maintaining healthy, youthful-looking skin.
Consistency in use can help sustain results over time.

There are various retinol and retinoid products available, ranging from lower to higher concentrations.
Start with a product that matches your skin type and concerns.
Individuals with sensitive skin may need to be particularly cautious when using retinol.

For those with complex skincare concerns or specific goals, working with a dermatologist to create a customized skincare plan can yield the best results.
They can provide insights on retinol usage as part of a holistic approach to skincare.
Retinol can be particularly effective in smoothing rough skin, such as the skin on the elbows, knees, and heels.

Specialized body creams containing retinol can help improve the texture of these areas.
Some individuals use retinol products to reduce the appearance of stretch marks.
While it may not completely eliminate them, retinol's ability to stimulate collagen production and improve skin texture can contribute to a reduction in the visibility of stretch marks.

Dermatologists often recommend retinol or retinoid products as part of post-procedure skincare routines.
These products can help promote healing, reduce redness, and maintain the results of procedures like chemical peels or laser treatments.
Retinol products can be effective for addressing "bacne" or acne on the back.

They work similarly to their role in treating facial acne by unclogging pores and reducing inflammation.
Retinol can have anti-inflammatory properties, which can be beneficial for individuals with certain skin conditions, such as rosacea.
However, the use of Retinol in these cases should be carefully monitored by a dermatologist.

Retinol and retinoids can contribute to an overall improvement in skin tone and texture.
This includes reducing redness, improving skin elasticity, and providing a smoother, more youthful appearance.
Even after achieving desired results, many people continue to use retinol or retinoid products in their skincare routine to maintain healthy and youthful-looking skin as part of their long-term skincare strategy.

Retinol and retinoid products come in various formulations, including creams, serums, gels, and oils.
Choosing the right formulation depends on individual preferences and skin type.
Some individuals incorporate retinol into their skincare routine at a younger age to prevent the signs of aging from appearing prematurely.

This can be part of a proactive approach to skincare.
For those with specific skin concerns or conditions, consulting with a dermatologist is highly recommended before starting a retinol or Retinol regimen.
Many people incorporate retinol into their skincare routine to maintain a youthful complexion.

Retinol and some retinoid derivatives are effective in treating acne.
Retinol) is the fat-soluble vitamin a which is required for new cell growth and prevention of night blindness.
There is no appreciable loss by heating or freezing, and it is stable in the absence of air.

Sources include liver, fortified margarine, egg, and milk.
Retinol palmitate can be found in frozen egg substitute.
Occurs preformed only in animals; metabolized from carotenoids, such β-carotene, in the intestinal mucosa.

Dietary sources include liver, milk, butter, cheese, eggs and fish liver oils or as carotenoi s from fruits and vegetables.
Stored primarily in the liver in esterified form; transported in the blood by retinol binding protein (RBP).
Retinol is a retinoid considered to be a skin revitalizer.

Retinol is reported to enhance skin radiance and treat conditions associated with chronological aging, such as wrinkles and fine lines, as well as dermatological disorders, including acne, follicular and lesion papules, actinic keratosis, oily skin, and rosacea.
According to clinical dermatologists, retinol is one of the few substances with a demonstrated ability to reduce and prevent fine lines and wrinkles.

Retinol is able to alter the behavior of aged cells so they act in a more youthful manner.
Retinol is considered necessary for normal epidermal cell growth and differentiation and stimulates the production of new blood vessels in the skin, improving skin tone.
In addition, retinol has anti-oxidant capacities and protects dermal fibers by counteracting the increased activity of enzymes that degrade collagen and elastin when the skin is exposed to uV rays.

Retinol can be drying to the skin when used for a prolonged period of time or in concentrations that are too high.
A weaker retinoid than retinoic acid, retinol converts to retinoic acid once on the skin.

Safety Profile:
Retinol ngestions of greater than 1 million IU in adults and greater than 300 000 IU in children have resulted in the development of increased intracranial pressure (symptoms described include headache, dizziness, vomiting, visual changes, and bulging fontanel in infants).
Acute ingestions of greater than 12 000 IU per kilogram are also considered toxic.

Toxicity is more frequently seen with chronic ingestion of high doses of 30 000–50 000 IU per day.
Retinol toxicity in children develops following chronic ingestion of 410 times the recommended daily allowance for weeks to months.
The exact mechanism leading to toxicity is not known.

Both acute and chronic toxicity may occur.
Acute toxicity is uncommon in adults.
Moderately toxic by ingestion.

Hepatic toxicity typically requires months or years of daily high doses of Retinol.
There are no known cases of vitamin A toxicity associated with beta-carotene ingestion.
Human teratogenic effects by ingestion: developmental abnormalities of the craniofacial area and urogenital system.

Synonyms:
retinol
Vitamin A
all-trans-Retinol
68-26-8
Vitamin A1
Alphalin
Chocola A
Alphasterol
Apostavit
Aquasynth
Axerophthol
Epiteliol
Prepalin
Testavol
Veroftal
Afaxin
Agiolan
Agoncal
Anatola
Apexol
Dofsol
Myvpack
Vaflol
Vitpex
Aoral
trans-retinol
Vitamin A alcohol
Disatabs Tabs
Oleovitamin A
Bentavit A
Dohyfral A
Alcovit A
Anatola A
Vogan-Neu
all-trans-Retinyl alcohol
A-Mulsal
Biosterol
Ophthalamin
Plivit A
Vi-Alpha
A-Vitan
All-trans retinol
Atars
Avibon
Avitol
Axerol
Vafol
Vogan
Retrovitamin A
Lard Factor
all-trans-Vitamin A alcohol
Homagenets Aoral
Sehkraft A
Testavol S
Hi-A-Vita
Vitamin A1 alcohol
A-Sol
all-trans-Vitamin A
A-Vi-Pel
ACON
ATAV
Super A
Solu-A
11103-57-4
Nio-A-Let
Vio-A
Vi-Dom-A
Anti-infective vitamin
Antixerophthalmic vitamin
Vitavel A
Del-VI-A
Wachstumsvitamin
Vitamine A
Vitavel-A
Axerophtholum
Retinolo
Retinolum
Thalasphere
beta-Retinol
Vitamin A1, all-trans-
Vitamin A alcohol, all-trans-
Vitaminum A
Hydrovit A
trans-Vitamin A alcohol
Retinolo [DCIT]
Cylasphere
Vi-alpha; Vi-alpha
Retinol, all trans-
Antixerophthalmisches Vitamin
Rovimix A 500
all-trans-Vitamin A1
Retinol [INN:BAN]
Retinolum [INN-Latin]
Vitamin A1 alcohol, all trans
All Trans Retinol
Ro-a-vit
tROL
Vitamin A alcohol (VAN)
Retinol (Vit A)
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol
Aquasol A Parenteral
CCRIS 5444
HSDB 815
C20H30O
Vitamin-A
UNII-G2SH0XKK91
.beta.-Retinol
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraen-1-ol
EINECS 200-683-7
G2SH0XKK91
[11,12-3H]-Retinol
NSC 122759
NSC-122759
UNII-81G40H8B0T
BRN 0403040
Vitamin A (USP)
(all-E)-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol
DTXSID3023556
Vitamin A [Natural]
Vitamin A1 alcohol, all-trans-
ophthalamin (obsolete)
Retin-11,12-t2-ol (9CI)
2,4,6,8-Nonatetraen-1-ol, 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)-
EINECS 234-328-2
CHEMBL986
M.V.C. 9+3
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclchexen-1-yl)-2,4,6,8-nonatetraen-1-ol
DTXCID203556
trans-Retinol acid (Vitamin A)
CHEBI:17336
EC 200-683-7
all-trans-13,14-Dihydro retinol
4-06-00-04133 (Beilstein Handbook Reference)
VITAMINA
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)-
LPK
Vitamin A (Natural)
NCGC00017343-07
Retinol-(cellular-retinol-binding-protein)
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonate-traen-1-ol
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol
3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)-Isomer
Alcohol 9,13-dimethyl-7-(1,1,5-trimethyl-6-cyclohexen-5-yl)-7,9,11,13-nonatetraen-15-ol
Vi-a
ALL-TRANS RETINOL (SEE ALSO RETINOID PROJECT 1)
Homagenets aorl
Vogan-nu
Vitamin A cryst
Zinosan N
CAS-68-26-8
all-trans-Retinol;(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol
SMR000112036
Vitamin A (Feed)
9-cis,13-cis-Retinol
SR-01000763813
MFCD00001552
CHEBI:50211
Tricyclics
lard-factor
Tegosphere VitA
vitamins A
.alpha.sterol
b-Retinol
Retinol-
.alpha.lin
Retinyl A
1rbp
vitamin A vitamer
Vitamin-A alcohol
Vitamin-A1
vitamin A vitamers
Vi-.alpha.
(9Z)-Retinol
LUTAVIT A
MICROVIT A
VIATMIN A
1gx8
RETINOL [HSDB]
RETINOL [INCI]
RETINOL [INN]
retinolum densatum oleosum
Spectrum5_000993
Spectrum5_001997
VITAMIN A [MI]
RETINOL [WHO-DD]
D0AO6P
D0S7WX
Retinol, 95%, synthetic
all-trans vitamin A alcohol
SCHEMBL3112
VITAMIN A (MART.)
all-trans-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol
Retinol, all-trans-(8CI)
VITAMIN A CONCENTRATE
BIDD:PXR0102
MLS001066379
MLS001074751
MLS006010008
Retinol, all-trans- (8CI)
SPECTRUM1501203
(ALL-E)-
GTPL4053
HMS501I08
A11CA01
D10AD02
R01AX02
S01XA02
VITAMIN A (EP MONOGRAPH)
3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol
VITAMIN A (USP MONOGRAPH)
81G40H8B0T
DTXSID301014459
HMS1921B04
HMS2092L13
HMS2270C05
Pharmakon1600-01501203
VITAMIN A, UNSPECIFIED FORM
BCP06593
HY-B1342
Tox21_110818
Tox21_202441
Tox21_300287
BDBM50092056
CCG-38864
LMPR01090001
NSC122759
NSC758150
s5592
3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-nona-2,4,6,8-tetraen-1-ol
AKOS015902578
DB00162
LS-1578
NSC-758150
SDCCGMLS-0066724.P001
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetr aen-1-ol
IDI1_000486
SMP2_000102
NCGC00017343-02
NCGC00017343-03
NCGC00017343-04
NCGC00017343-05
NCGC00017343-06
NCGC00017343-08
NCGC00017343-09
NCGC00017343-11
NCGC00091784-01
NCGC00091784-02
NCGC00091784-03
NCGC00091784-04
NCGC00091784-05
NCGC00091784-06
NCGC00254024-01
NCGC00259990-01
AC-11701
BS-17906
SBI-0051690.P002
CS-0013091
C00473
C17276
D06543
AB00052248_05
EN300-6733268
A836068
Q424976
Retinol, >=95.0% (HPLC), ~2700 U/mg
Retinol, synthetic, >=95% (HPLC), crystalline
J-014834
J-017515
Q-201926
SR-01000763813-2
SR-01000763813-4
W-104683
BRD-K22429181-001-06-8
BRD-K64634304-001-01-5
WLN: L6UTJ A1 B1U1Y1&U2U1Y1&U2Q C1 C1
Retinol, BioXtra, >=97.5% (HPLC), ~3100 U/mg
Z2315574891
3,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol
2,4,6,8-NONATETRAEN-1-OL, 3,7-DIMETHYL-9-(2,6,6-TRIMETHYL-1-CYCLOHEXEN-1-YL)-
2,6,8-Nonatetraen-1-ol, 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)-
3,7-Dimethyl-9-(2,6, 6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, all (E)-
3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonatetraen-1-ol
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-1-nona-2,4,6,8-tetraenol
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)nona-2,4,6,8-tetraen-1-ol
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetraen-1-ol
(2Z,4Z,6Z,8Z)-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetren-1-ol
RETINYL ACETATE
RETINYL LINOLEATE, N° CAS : 631-89-0, Nom INCI : RETINYL LINOLEATE. Nom chimique : Retinol, 9,12-octadecadienoate, (Z,Z)-. N° EINECS/ELINCS : 426-960-4. Ses fonctions (INCI), Agent d'entretien de la peau : Maintient la peau en bon état
RETINYL ACETATE
Retinyl acetate (retinol acetate, vitamin A acetate) is a natural form of vitamin A.
Retinyl acetate consists of yellow crystals which are greasy or sticky.
Retinyl acetate has potential antineoplastic and chemo-preventive activities.

CAS Number: 127-47-9
Molecular Formula: C22H32O2
Molecular Weight: 328.49
EINECS Number: 204-844-2

Retinyl acetate is an acetate ester.
Retinyl acetate is functionally related to an all-trans-retinol.
Retinyl acetate is the acetate ester of retinol.

Retinyl acetate has a mild, characteristic odor.
Retinyl acetate can be used to fortify food with vitamin A.
As vitamin A acetate can induce cell differentiation and inhibit cell proliferation, it is used in skin-conditioning agent.

Retinyl acetate is a synthetic compound that belongs to the family of retinoids, which are chemical derivatives of vitamin A.
Retinyl acetate is often used in dietary supplements, cosmetics, and skin care products.
Retinyl acetate can be converted into retinol (the active form of vitamin A) in the body.

Vitamin A and its derivatives like retinyl acetate are important for various biological processes, including maintaining healthy skin, promoting good vision, and supporting the immune system.
In skin care products, retinyl acetate is sometimes included for its potential benefits in reducing the appearance of wrinkles, fine lines, and other signs of aging, as well as for improving skin texture and tone.
Retinyl acetate is considered a milder form of retinoid compared to stronger derivatives like retinol and retinoic acid, which can be more irritating to the skin.

Retinyl acetate (retinol acetate, vitamin A acetate) is a natural[dubious – discuss] form of vitamin A which is the acetate ester of retinol.
Retinyl acetate has potential antineoplastic and chemopreventive activities.
In the United States, retinyl acetate is classified generally recognized as safe (GRAS) in the amounts used to fortify foods with vitamin A.

Retinyl acetate is suitable for use in the retention identification of the analyte when using HPLC and GC.
Not intended for use as an activity reference standard.
Retinyl acetate has been thoroughly evaluated to ensure the utmost quality.

Retinyl acetate, a natural preform of vitamin A, is classified as generally recognized as safe in the amounts used to fortify foods with vitamin A and is especially recommended for maternal supplementation during pregnancy.
Retinyl Acetate promotes collagen synthesis and can reduce the appearance of fine lines and wrinkles.
Additionally, it helps keep pores clear and remove the oil that can lead to blemishes.

Add Retinyl Acetate to your skincare routine with this ingredient.
Use this powder to include everyday skin cream or any oil-based product to help with oil and blemish control.
Retinyl acetate, a variant of vitamin A, holds multifaceted applications in the realms of medicine, science, and industry.

Retinyl acetate is characteristics include being a colorless, slightly viscous liquid with solubility in most organic solvents.
Naturally occurring, retinyl acetate serves as a precursor to the biologically active form of vitamin A known as retinoic acid.
Its primary uses revolve around dietary supplementation and its longstanding presence in the cosmetics industry.

The precise mechanism of action behind retinyl acetate remains incompletely understood.
However, it is believed to scavenge free radicals.
Retinyl acetate is thought to exert influence over gene expression and affect the activity of specific enzymes and proteins.

Retinyl acetate and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response.
Retinyl acetate is derived from a variety of carotenoids found in plants.
Retinyl acetate is enriched in the liver, egg yolks, and the fat component of dairy products.

Retinyl acetate is the acetate ester of retinol and it is commercially used as a vitamin A supplement.
Retinyl acetate exhibits antibiotic, anti-diabetic, anti-inflammatory, and anticancer chemotherapeutic activities.
Retinyl acetate modulates Ca2+ signaling in vitro and is occasionally used to improve embryo production in livestock.

Retinyl acetate displays antibacterial efficacy against Mycobacterium in vitro.
In vivo, retinyl acetate decreases incidence of diabetes and suppresses LPS-stimulated TNF-α expression.
In animal models of colorectal cancer, retinyl acetate upregulates expression of TRAIL receptors, inhibiting tumor growth and increasing survival rates.

Retinyl acetate is effective for the treatment of Vitamin A deficiency.
Retinyl acetate refers to a group of fat-soluble substances that are structurally related to and possess the biological activity of the parent substance of the group called all-trans retinol or retinol.
Retinyl acetate plays vital roles in vision, epithelial differentiation, growth, reproduction, pattern formation during embryogenesis, bone development, hematopoiesis and brain development.

Retinyl acetate is also important for the maintenance of the proper functioning of the immune system.
Retinyl acetate is converted in the retina to the 11-cis-isomer of retinaldehyde or 11-cis-retinal.
Retinyl acetate functions in the retina in the transduction of light into the neural signals necessary for vision.

Retinyl acetate, while attached to opsin in rhodopsin is isomerized to all-trans-retinal by light.
This is the event that triggers the nerve impulse to the brain which allows for the perception of light.
All-trans-retinal is then released from opsin and reduced to all-trans-retinol.

All-trans-retinol is isomerized to 11-cis-retinol in the dark, and then oxidized to Retinyl acetate.
Retinyl acetate recombines with opsin to re-form rhodopsin.
Night blindness or defective vision at low illumination results from a failure to re-synthesize 11-cis retinal rapidly.

Epithelial differentiation: The role of Retinyl acetate in epithelial differentiation, as well as in other physiological processes, involves the binding of Vitamin A to two families of nuclear retinoid receptors (retinoic acid receptors, RARs; and retinoid-X receptors, RXRs).
These receptors function as ligand-activated transcription factors that modulate gene transcription.
When there is not enough Retinyl acetate to bind these receptors, natural cell differentiation and growth are interrupted.

Retinyl acetate plays an important role as an important function material in the body system, such as hematopoietic function, bone development, tumor prevention, and so on.
Therefore, supplement of Retinol is necessary for health requirements.
Acute hypervitaminosis A results in drowsiness, headache, vomiting, papilledema, and a bulging fontanel in infants.
Retinyl acetate plays an important role in main taining healthy skin.

Retinyl acetate deficiency disrupts human keratin cell terminal dif ferentiation and makes the skin rough, dry, scaly, and clogged.
Retinyl acetate is reported that vitamin A can degrade malignant melanoma and T-cell lymphoma epidermal transfer, reduce the oil secretion of the common acne and the number of bacteria in the epidermis and capillaries, and inhibit immune response of monocytes and neutrophils.
Retinyl acetate deficiency can lead to animal death.

Retinyl acetate functions in reproduction and embryonic development.
Retinyl acetate plays an important role in the reproductive process of sperm production and ovula tion, but its biochemical basis is unclear.
Retinyl acetate plays a key role in the develop ment of embryos and organism and maintenance of tissue function. The main organs affected by vitamin A deficiency are the heart, eye tissue, circulatory system, geni tourinary system, and respiratory system. Retinol is necessary for embryonic development.

Retinyl acetate functions on immune function.
Retinyl acetate's advisable to start with a lower concentration product and gradually increase the strength as skin builds tolerance.
This can help minimize initial irritation.

Retinyl acetate's a good idea to consult with a dermatologist.
They can provide personalized recommendations and may even prescribe stronger retinoid formulations if needed.

Retinyl acetate may not be suitable for everyone, especially those with certain skin conditions or sensitivities.
Pregnant or nursing individuals are typically advised to avoid Retinyl acetate products due to potential risks to the developing fetus or infant.

Melting point: 57-58 °C
Boiling point: 406.22°C (rough estimate)
Density: 1.0474 (rough estimate)
refractive index: 1.547-1.555
Flash point: 14℃
storage temp.: 2-8°C
solubility: absolute ethanol: 25 mg/mL
form: solid or viscous liquid
color: Yellow powder
Odor: Amine like
Water Solubility: soluble
Sensitive: Light & Air Sensitive & Hygroscopic
Merck: 14,10013
BRN: 1915439
Stability: Hygroscopic, Light Sensitive
InChIKey: QGNJRVVDBSJHIZ-QHLGVNSISA-N
LogP: 9.4 at 25℃

Retinyl acetates provide pools of vitamin A that are converted into retinol and other retinoids as required.
Retinyl acetate is used in a wide range of biological applications.
Retinyl acetate acts as a chemopreventive agent.

Retinyl acetate also has antineoplastic property.
Retinyl acetate is an essential compound in the cycle of light-activated chemical reactions called the "visual cycle" that underlies vertebrate vision.
Retinol is converted by the protein RPE65 within the pigment epithelium of the retina into 11-cis-retinal.

This molecule is then transported into the retina's photoreceptor cells (the rod or cone cells in mammals) where it binds to an opsin protein and acts as a light-activated molecular switch.
Retinyl acetate absorbs light it isomerizes into all-trans-retinal.
The change in the shape of the molecule in turn changes the configuration of the opsin in a cascade that leads to the neuronal firing, which signals the detection of light.

The opsin then splits into the protein component (such metarhodopsin) and the cofactor Retinyl acetate.
The regeneration of active opsin requires conversion of all-trans-retinal back to Retinyl acetate.
The regeneration of 11-cis-retinal occurs in vertebrates via conversion of Retinyl acetate in a sequence of chemical transformations that occurs primarily in the pigment epithelial cells.

Without adequate amounts of Retinyl acetate, regeneration of rhodopsin is incomplete and night blindness occurs.
Night blindness, the inability to see well in dim light, is associated with a deficiency of Retinyl acetate, a class of compounds that includes retinol and retinal.
In the early stages of Retinyl acetate deficiency, the more light-sensitive and abundant rods, which have rhodopsin, have impaired sensitivity, and the cone cells are less affected.

The cones are less abundant than rods and come in three types, each contains its own type of iodopsin, the opsins of the cones.
The cones mediate color vision, and vision in bright light.
The skin around the eyes is thinner and more delicate, making it more prone to irritation.

Retinyl acetate's usually best to avoid applying retinol directly to the eyelids or too close to the eye area.
Instead, use a specially formulated eye cream if you want to address concerns in that area.
A plant pigment, carotene, is a precursor for Retinyl acetate and is present in highly pigmented vegetables, such as carrots, rutabaga, and red cabbage.

Retinyl acetate can increase the skin's sensitivity to UV radiation, so it is crucial to use sunscreen daily when using products containing retinol.
Sun protection helps prevent sunburn and further sun damage.
Retinyl acetate often takes several weeks to months of consistent use to see noticeable improvements in the skin.

Prescription versions, such as tretinoin, are generally more potent but may also be associated with more side effects.
Retinyl acetate products are milder and are suitable for many people without a prescription.
Retinyl acetate can cause skin irritation, redness, dryness, and peeling, especially when first starting to use it.

One group at great risk are children from low-income families, who are likely to lack fresh vegetables (carotene) and dairy products (vitamin A) in the diet.
Retinyl acetate or other forms of vitamin A are needed for eyesight, maintenance of the skin, and human development.
Other than for vision, the active compound is Retinyl acetate, synthesized from retinal, in turn synthesized from retinol.

Adapalene is another Retinyl acetate that is often available over-the-counter and by prescription.
Retinyl acetate is known for its effectiveness in treating acne and is typically gentler on the skin compared to some other retinoids.
The efficacy of Retinyl acetate can vary from person to person, depending on factors like skin type, the concentration of retinol in the product, and the frequency of use.

Retinyl acetate is essential to follow product instructions and introduce retinol gradually into your skincare routine to minimize these side effects.
Manufacturing process for Retinyl acetate includes these steps as follows: Step A: Synthesis of Preparation of ethyl ether of ethynyl-β-ionol;Step B: Coupling Reaction; Step C:Semi-Hydrogenation of Coupling Product;Step D:Hydrolysis of Semi-Hydrogenated Coupling Product.

As part of the innate immune system, toll-like receptors in skin cells respond to pathogens and cell damage by inducing a pro-inflammatory immune response which includes increased RA production.
The epithelium of the skin encounters bacteria, fungi and viruses.
Keratinocytes of the epidermal layer of the skin produce and secrete antimicrobial peptides (AMPs).

The dissociation of Retinyl acetate and opsin was coupled with the nerve stimulation of the brain’s visual center.
By a series of biochemical processes, nerve impulses format in the rod cells at the end of synapse, and then the optic nerve conducts the nerve impulses along.
The visual process is a component renewable cycle, and Retinyl acetate can be enzymatically modified to 11-cis form in dark conditions.

Retinyl acetate not only significantly affects visual function but also has a greater physiological impact than visual function.
Retinyl acetate deficiency destroys the visual cycle, leads to dark adaptation damage (night blind ness or nyctalopia), and destroys systemic function which is necessary to maintain life (e.g., corneal injury, infection, and hypoplasia).
Separation of Retinyl acetate from the product obtained was achieved by acetylating the total reaction product using pyridine-acetic anhydride at room temperature and chromatographing on alumina neutralized with acetic acid.

The Retinyl acetate fraction was sufficiently pure to become crystallized from pentane at -15°C when seeded with a pure Vitamin A acetate crystal.
When the Retinyl acetate was converted to the alcohol form of Vitamin A, the final product showed the characteristic infrared and ultraviolet absorption curves for Retinol.
Retinyl acetate is taken by mouth or by injection into a muscle.

As an ingredient in skin-care products, Retinyl acetate is used to reduce wrinkles and other effects of skin aging.
Retinyl acetate at normal doses is well tolerated.

However, in plants, the form of Retinyl acetate called carotenoids is contained in the green, orange, and yellow plant tissue.
Retinyl acetate compounds such as vitamin A, reti nal, carotene, and so on from these foods can be converted to vitamin A in the human body.

Uses:
Retinyl acetate is used control diet to study its effect at different developmental periods in fish larvae to study its inhibitory effects on Mycobacterium avium.
This certified solution standard is suitable for use as an internal standard in chromatographic or MS-based methods in clinical testing applications such as assessment of Retinyl acetate deficiency or in food and nutrition testing applications of Retinyl acetate supplements and fortified foods.

Retinyl acetate can be used in combination with other skincare ingredients like hyaluronic acid, vitamin C, and peptides to address multiple skin concerns and provide a comprehensive skincare routine.
Retinyl acetate is used as a dietary supplement to provide the body with vitamin A.
Retinyl acetate is essential for various bodily functions, including maintaining healthy skin and vision, supporting the immune system, and promoting overall health.

In the realm of cosmetics and skin care, retinyl acetate is often included in various products such as creams, serums, and lotions.
Retinyl acetate may help stimulate collagen production, which can improve skin elasticity and reduce the appearance of wrinkles.
Some acne products contain Retinyl acetate derivatives, including retinyl acetate, to help unclog pores, reduce inflammation, and prevent acne breakouts.

Retinyl acetate can contribute to smoother and more even skin texture by promoting cell turnover.
Retinyl acetate may help fade dark spots and pigmentation irregularities.
Retinyl acetate, including that obtained from retinyl acetate, is crucial for maintaining good vision and eye health.

Retinyl acetate plays a role in the functioning of photoreceptor cells in the retina.
Retinyl acetate can be used to treat vitamin A deficiencies when taken under the guidance of a healthcare professional.
Retinyl acetate supports the health of hair and nails, and retinyl acetate may be found in hair and nail care products.

Retinyl acetate is often used in combination with other active ingredients to create a well-rounded skincare routine.
For example, combining Retinyl acetate with antioxidants like vitamin C can provide added protection against environmental damage.
They help prevent clogged pores, reduce inflammation, and encourage the shedding of dead skin cells, which can lead to fewer breakouts and clearer skin.

Retinyl acetate can fade hyperpigmentation, including dark spots, sunspots, and melasma.
Retinyl acetate inhibits the production of melanin and encourages the turnover of pigmented skin cells, resulting in a more even skin tone.
Retinyl acetate can help improve skin texture by reducing roughness and promoting smoother, softer skin.

Retinyl acetate is often used to address issues like uneven skin texture and large pores.
Some people use Retinyl acetate as a preventative measure to maintain healthy and youthful-looking skin and to delay the signs of aging.
Retinyl acetate may help improve the appearance of certain types of scars, such as acne scars, by promoting skin cell turnover and collagen production.

Retinyl acetate can contribute to overall skin health by promoting a more vibrant and youthful appearance.
Retinyl acetate is often incorporated into skincare routines to support healthy and radiant skin.
When compared to retinoic acid, Retinyl acetate has an increased penetration potential and is less irritating, making it an effective ingredient for anti-aging products.

The anti-aging benefits of topically treating skin with Retinyl acetate are based on its penetration ability, which allows it to reach the sites in the skin requiring treatment.
When used on sensitive skin for a prolonged period of time or in concentrations that are too high, retinol can cause dermatitis.
Through dietary modification involving the adjustment of menu choices of affected persons from available food sources to optimize Retinyl acetate content.

Enriching commonly eaten and affordable foods with Retinyl acetate, a process called fortification.
Retinyl acetate involves addition of synthetic vitamin A to staple foods like margarine, bread, flours, cereals, and infant formula during processing.
Retinyl acetate solution may be used as a certified reference material (CRM) for the determination of the analyte in biological samples, dairy foods and pharmaceutical formulations by chromatography techniques.

Retinyl acetate may take several weeks to months before significant improvements are visible, so consistency in use is important.
Some individuals experience a temporary worsening of skin issues, such as increased breakouts or redness, when they first start using Retinyl acetate.
This is often referred to as the "Retinyl acetate purge" and can be a normal part of the adjustment period.

Many users find that incorporating Retinyl acetate into their skincare routine is a long-term commitment for maintaining healthy, youthful-looking skin.
Consistency in use can help sustain results over time.
There are various Retinyl acetate and retinoid products available, ranging from lower to higher concentrations.

Start with a Retinyl acetate that matches your skin type and concerns.
Individuals with sensitive skin may need to be particularly cautious when using Retinyl acetate.
For those with complex skincare concerns or specific goals, working with a dermatologist to create a customized skincare plan can yield the best results.

They can provide insights on Retinyl acetate usage as part of a holistic approach to skincare.
Retinyl acetate can be particularly effective in smoothing rough skin, such as the skin on the elbows, knees, and heels.
Specialized body creams containing retinol can help improve the texture of these areas.

Some individuals use Retinyl acetate products to reduce the appearance of stretch marks.
While it may not completely eliminate them, Retinyl acetate's ability to stimulate collagen production and improve skin texture can contribute to a reduction in the visibility of stretch marks.
Dermatologists often recommend Retinyl acetate or retinoid products as part of post-procedure skincare routines.

Retinyl acetate and its derivatives, including retinyl acetate, act as antioxidants, helping to protect the skin from damage caused by free radicals.
This can help prevent premature aging and maintain healthy skin.
Retinyl acetate is sometimes used in the treatment of skin conditions like psoriasis and eczema.

Retinyl acetate can help to reduce inflammation and support the healing process of damaged skin.
In addition to preventing and treating acne, Retinyl acetate derivatives like retinyl acetate can also assist in minimizing the appearance of acne scars over time by promoting skin renewal and collagen production.
Retinyl acetate is sometimes included in products designed to address the effects of sun damage on the skin, such as sunspots and photodamage.

Retinyl acetate can help improve the overall health and appearance of the skin.
Retinyl acetate is often combined with other skincare ingredients like hyaluronic acid, vitamin C, and peptides to create comprehensive anti-aging and skin-rejuvenating products.
These combinations can enhance the effectiveness of the product.

When using products containing retinyl acetate, it's advisable to start with a lower concentration and gradually increase the dosage to allow the skin to acclimate and minimize potential irritation.
Retinyl acetate's also recommended to use sunscreen during the day when using retinoids, as they can make the skin more sensitive to UV radiation.
Stronger retinoid formulations, such as those containing Retinyl acetate, are typically available by prescription and may be used to address more severe skin issues.

Retinyl acetate, on the other hand, is often found in OTC products and is generally milder.
These products can help promote healing, reduce redness, and maintain the results of procedures like chemical peels or laser treatments.

Retinyl acetate has anti-oxidant capacities and protects dermal fibers by counteracting the increased activity of enzymes that degrade collagen and elastin when the skin is exposed to uV rays.
Retinyl acetate can be drying to the skin when used for a prolonged period of time or in concentrations that are too high.

Safety Profile:
Moderately toxic by ingestion.
Experimental teratogenic and reproductive effects.
Questionable carcinogen with experimental neoplastigenic data.

When heated to decomposition it emits acrid smoke and irritating fumes.
One of the most common side effects of using products containing retinyl acetate is skin irritation.
This can manifest as redness, peeling, dryness, and sensitivity.

To mitigate this, it's advisable to start with a lower concentration of retinyl acetate and gradually increase its use to allow the skin to adapt.
Retinyl acetate and other retinoids can make the skin more sensitive to UV radiation.
Without adequate sun protection, this can lead to an increased risk of sunburn and sun damage.

Retinyl acetate's essential to use sunscreen daily when using retinoids.
Excessive use of retinyl acetate or other vitamin A derivatives can lead to adverse effects, including allergic reactions and severe skin irritation.
World Health Organization recommendation on Maternal Supplementation During Pregnancy states that "health benefits are expected for the mother and her developing fetus with little risk of detriment to either, from a daily supplement not exceeding 10,000 IU Retinyl acetate (3000mcg RE) at any time during pregnancy.

Synonyms:
RETINYL ACETATE
Vitamin A acetate
Retinol acetate
127-47-9
Retinol, acetate
all-trans-Retinyl acetate
Crystalets
Vitamin A1 acetate
all-trans-Retinol acetate
Vitamin A alcohol acetate
Davitan A 650
Vitamin A ester
all-trans-Vitamin A acetate
Retinol, acetate, all-trans-
O~15~-acetylretinol
NSC 122045
trans-Retinyl acetate
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-yl acetate
RO 1-5275
Retinol acetate [JAN]
trans-Vitamin A acetate
[(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenyl] acetate
Myvak (VAN)
Myvax (VAN)
3LE3D9D6OY
all-trans-Retinylacetate
DTXSID6021240
CHEBI:32095
Vitamin A acetate (VAN)
Acetic acid, retinyl ester
9-cis,13-cis-Retinol15-Acetate
NSC-122045
NSC-122760
NCGC00090756-09
Retinol Acetate/All-trans-retinyl Acetate
VitaminAacetate
Vitamin A acetate (tritiated)
DTXCID701240
Vitamin A, acetate
Retinol, acetate, labeled with tritium
O(15)-acetylretinol
9-cis Retinol Acetate
Retinyl acetate, all-trans-
CAS-127-47-9
CCRIS 1907
trans-Retinol Acetate
SR-05000001431
EINECS 204-844-2
UNII-3LE3D9D6OY
BRN 1915439
Retinol acetate;Vitamin A acetate
retinyl-acetate
WLN: L6UTJ A1 B1U1Y1 & U2U1Y1 & U2OV1 C1 C1
Vitamin A acetat
29444-27-7
MFCD00019413
ORISTAR RA
9-cis-Retinol acetate;9-cis-Vitamin A acetate
Spectrum5_001195
Spectrum5_002001
Retinol acetate (JP17)
Retinyl (Retinol) Acetate
EC 204-844-2
retinol, O~15~-acetyl-
BSPBio_002833
SPECTRUM1503051
RETINYL ACETATE [INCI]
C22H32O2 (retinol acetate)
CHEMBL486193
VITAMIN A ACETATE [MI]
CHEBI:94695
HMS501K04
RETINOL ACETATE [WHO-DD]
RETINYL ACETATE [USP-RS]
VITAMIN A ACETATE [VANDF]
HMS1922A19
HMS2089G20
Pharmakon1600-01503051
AMY13865
HY-N0679
Retinyl acetate, analytical standard
Tox21_113549
Tox21_201423
Tox21_302737
BDBM50442911
CCG-39564
LMPR01090012
NSC122045
NSC122760
NSC758220
s4083
AKOS015914999
Tox21_113549_1
CS-8187
NSC-758220
3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-yl acetate
IDI1_000522
NCGC00090756-01
NCGC00090756-02
NCGC00090756-03
NCGC00090756-05
NCGC00090756-06
NCGC00090756-07
NCGC00090756-08
NCGC00090756-10
NCGC00090756-11
NCGC00090756-12
NCGC00256509-01
NCGC00258974-01
VITAMIN A (AS ACETATE) [VANDF]
64536-04-5
AC-19999
ALL-(E)-RETINOL ACETATE [WHO-IP]
SBI-0051756.P002
VITAMIN A ACETATE 1.5 M.I.U./G
RO-1-5275
A16783
D01621
H12041
Vitamin A acetate 10 microg/mL in Acetonitrile
AB00052305-02
AB00052305_03
EN300-18533003
EN300-25359996
Vitamin A acetate in gelatin, 500,000 I.U./g
Q7316808
SR-05000001431-1
SR-05000001431-3
W-108382
BRD-K65331431-001-01-3
Vitamin A (acetate), meets USP testing specifications
VITAMIN A (AS ACETATE & BETA CAROTENE) [VANDF]
Retinol acetate, European Pharmacopoeia (EP) Reference Standard
Retinyl acetate, synthetic, crystalline solid or supercooled liquid
Retinyl acetate, United States Pharmacopeia (USP) Reference Standard
Retinyl acetate, solid or viscous liquid, BioReagent, synthetic, suitable for cell culture
Retinyl acetate, synthetic, matrix dispersion, 475,000-650,000 USP units/g
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetraenyl acetate
3,7-Dimethyl-9-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol acetate, (all trans)-
InChI=1/C22H32O2/c1-17(9-7-10-18(2)14-16-24-20(4)23)12-13-21-19(3)11-8-15-22(21,5)6/h7,9-10,12-14H,8,11,15-16H2,1-6H3/b10-7+,13-12+,17-9+,18-14
Retinyl Acetate (Vitamin A Acetate), Pharmaceutical Secondary Standard; Certified Reference Material
RETINYL LINOLEATE
SYNONYMS Vitamin A palmitate, all−trans−Retinol palmitate;Optovit A;Palmitate de retinyle;palmitato de retinilo;Palmitic acid, ester with retinol CAS NO:79-81-2
RETINYL PALMITATE
RETINYL PALMITATE N° CAS : 79-81-2 Nom INCI : RETINYL PALMITATE Nom chimique : Retinol, hexadecanoate N° EINECS/ELINCS : 201-228-5 Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état
RETINYL PROPIONATE
RETINYL RETINOATE N° CAS : 15498-86-9 Nom INCI : RETINYL RETINOATE Nom chimique : Retinoic acid, retinyl ester Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état
RETINYL RETINOATE
VITAMIN A; VITAMIN A ALCOHOL; VITAMIN A ALCOHOL; RETINOL, N° CAS : 68-26-8 / 11103-57-4 - Rétinol (Vitamine A). Origine(s) : Synthétique. Autres langues : Vitamin A, Vitamin A., Vitamina A, Vitamina a. Nom INCI : RETINOL. Nom chimique : Retinol; vitamin A, N° EINECS/ELINCS : 200-683-7 / 234-328-2. Le rétinol est produit par synthèse, mais il est présent naturellement dans les graisses animales, dans l'huile de foie de poisson et dans les plantes contenant du bêta-carotène. Le rétinol est une forme naturelle de la vitamine A, qui agit en réduisant l'apparence des rides et en renforçant l'épaisseur et l'élasticité de la peau. Il est interdit en bio.Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état. Noms français : (ALL-E)-3,7-DIMETHYL-9-(2,6,6-TRIMETHYL-1-CYCLOHEXEN-1-YL)-2,4,6,8-NONATETRAEN-1-OL; 2,4,6,8-NONATETRAEN-OL, 3,7-DIMETHYL-9-(2,6,6,TRIMETHYL-1-CYCLOHEXEN-1-YL)-, (ALL-E)-; 3,7-DIMETHYL-9-(2,6,6-TRIMETHYL-1-CYCLOHEXEN-1-YL)-2,4,6,8-NONATETRAEN-1-OL; DIMETHYL-3,7 (TRIMETHYL-2,6,6 CYCLOHEXEN-1 YL-1)-9NONATETRAEN-2,4,6,8 OL-1, (E); RETINOL; VITAMINE A Noms anglais : ALL-TRANS-RETINOL; ALL-TRANS-RETINYL ALCOHOL; ALL-TRANS-VITAMIN A; ALL-TRANS-VITAMIN A ALCOHOL; ALL-TRANS-VITAMIN A1; RETINOL, ALL-TRANS ; TRANS-RETINOL; TRANS-VITAMIN A ALCOHOL; VITAMIN A; VITAMIN A ALCOHOL; VITAMIN A ALCOHOL, ALL-TRANS-; VITAMIN A1; VITAMIN A1 ALCOHOL; VITAMIN A1 ALCOHOL, ALL-TRANS-; VITAMIN A1; ALL-TRANS-. Utilisation et sources d'émission: Vitamine; 200-683-7 [EINECS]; 203-777-6 [EINECS]; 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol; 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonatetraen-1-ol; 403040 [Beilstein]; 68-26-8 [RN]; all-trans-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol all-trans-retinol; Alphalin; Axerophthol; Lard-factor; MFCD00001552 [MDL number]; Retinol ; Retinol [German] ; Rétinol [French] ; trans-retinol; TRANS-VITAMIN A ALCOHOL ; VI-a; Vitamin A [USP] ; Vitamin A (USP); Vitamin A1; Vitamin A1 alcohol, all-trans-; Vitamine A; Vitaminum A; b-Retinol; β-Retinol (2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-1-nona-2,4,6,8-tetraenol (2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)nona-2,4,6,8-tetraen-1-ol (2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol (2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetr aen-1-ol (2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2,4,6,8-tetraen-1-ol (4E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol (6E,8E)-3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)nona-2,4,6,8-tetraen-1-ol (all-E)-3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol [RN] 11103-57-4 [RN] 13123-33-6 secondary RN [RN] 17104-91-5 secondary RN [RN] 2,4,6,8-Nonatetraen-1-ol, 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (all-E)- 3,7-Dimethyl-9-(2,6, 6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclchexen-1-yl)-2,4,6,8-nonatetraen-1-ol 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonate-traen-1-ol 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)- 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-E)-Isomer 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, all (E)- 3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)nona-2,4,6,8-tetraen-1-ol 3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol 3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8-tetraen-1-ol 4-06-00-04133 [Beilstein] 5979-23-7 secondary RN [RN] 9-cis-Retinol ACON AFAXIN Agiolan Agoncal Alcovit A All Trans Retinol All-trans retinol all-trans retinyl alcohol all-trans-retinyl alcohol all-trans-Vitamin A all-trans-vitamin A alcohol all-trans-Vitamin A1 Alphasterol A-Mulsal Anatola Anatola A Anti-infective vitamin Antixerophthalmic vitamin Antixerophthalmisches Vitamin Aoral Apexol Aphalin Apostavit Aquasol A Aquasynth A-Sol ATAV Avibon A-Vi-Pel Avita A-Vitan Avitol Axerol Axerophtholum Bentavit A Biosterol Chocola A Cylasphere DB00162 DEL-VI-A Disatabs Tabs Dofsol Dohyfral A Epiteliol HI-A-Vita Homagenets Aoral Hydrovit A L6UTJ A1 B1U1Y1&U2U1Y1&U2Q C1 C1 [WLN] Lard factor LPK MFCD16037113 [MDL number] Myvpack Nio-A-let Oleovitamin A Ophthalamin PHENOL,2-(AMINOMETHYL)-5-FLUORO-,HYDROCHLORIDE (1:1) Plivit A Prepalin RET Retinal [ACD/Index Name] [ACD/IUPAC Name] [Wiki] Retinol (Vit A) Retinolum [Latin] Retinyl A Retrovitamin A Ro-a-vit Rovimix A 500 RTL Sehkraft A Solu-A Super A Tegosphere VitA Testavol Testavol S Thalasphere tROL Vaflol Vafol Veroftal VI-DOM-A Vio-A Vitamin A 1 Vitamin A alcohol (VAN) Vitavel A Vitavel-A Vitpex Vi-α VI-α Wachstumsvitamin α-Retinol α-sol 维生素A [Chinese]
Rétinol (Vitamine A)
C.I. Basic Violet 10; C.I. 45170; Tetraethylrhodamine,hydrochloride; 9-(2-carboxyphenyl)-3,6-bis(diethylamino) xanthylium chloride; N-[9-(2-carboxyphenyl)-6-(diethylamino)- 3H-xanthen-3- ylidene]- N-ethyl- Ethanaminium chloride; [9-(o-carboxyphenyl)-6-(diethylamino)- 3H-xanthen-3- ylidene]diethyl-Ammonium chloride; C.I. Food Red 15; (9-(o-Carboxyphenyl)-6-(diethyl amino)-3H- xanthen-3-ylidene) diethylammonium chloride CAS NO:81-88-9
REWOCID SB U 185 KE
REWOCID SB U 185 KE (REWOCİD SB U 185 KE) REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is a mild surfactant recommended for application in anti-dandruff shampoos as presents synergism with anti-dandruff agents like zinc pyrithion. Good skin compatibility. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is used in anti-dandruff shampoos, foam baths, foot shampoos, body shampoos and shower shampoos. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) offers good skin compatibility. Provides substantivity and mildness to hair and skin. Advantages of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): good skin compatibility, Provides substantivity and mildness to hair and skin Other Application sof REWOCID SB U 185 KE (REWOCİD SB U 185 KE): Toiletries (Shower & Bath, Oral care...) > Foot care Toiletries (Shower & Bath, Oral care...) > Shower & bath > Foam bath Hair care (Shampoos, Conditioners & Styling) > Shampoos Skin care (Facial care, Facial cleansing, Body care, Baby care) > Body care Storage of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Storage at temperatures below 10 °C may lead to cloudiness which does not mean a loss of quality. This product should be homogenized prior to use. Handling of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Use Level: 4.0-10% Molecular Weight of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): 451.44732856 Formula of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): C17 H27 N Na2 O8 S Functions of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Cleansing of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): Helps to keep a clean surface Foam boosting of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): Improves the quality of the foam produced by a system by increasing one or more of the following properties: volume, texture and/or stability Hydrotrope of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): Increases the solubility of a substance that is poorly soluble in water. Surfactant of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): Reduces the surface tension of cosmetics and contributes to the even distribution of the product when it is used Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is a Disodium salt of a substituted ethanolamide half ester of sulfosuccinic acid REWOCID SB U 185 KE (REWOCİD SB U 185 KE) uses and applications include: Surfactant, detergent, foaming agent, antimicrobial for antidandruff shampoos, pharmaceuticals, medicated treatments; fungicide, detergent, foaming agent for personal care products. APPEARANCE of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Light to yellow liquid with characteristic odor. DESCRIPTION of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Mild surfactant recommended for application in anti-dandruff shampoos. Good skin compatibility. FUNCTION of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Used in anti-dandruff shampoos, foam baths, foot shampoos, body shampoos, and shower shampoos. SYNONYMS of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Disodium Undecylenamido MEA-Sulfosuccinate; Unimate DMS; Rewocid SB U 185; Butanedioicacid, sulfo-, 4-[2-[(1-oxo-10-undecenyl)amino]ethyl] ester, disodium salt(9CI); Succinic acid, sulfo-, 4-ester with N-(2-hydroxyethyl)-10-undecenamide STORAGE of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Keep in sealed, unopened, original containers at 60ø – 80ø F. Avoid conditions of high humidity and temperature. Properties Appearance of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): (1), solid; (2), liquid. Solubility of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): soluble in water. Stability of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): stable in weak alkali, weak acid, hard water. Under strong acid or strong alkali, easily hydrolyze. Easily oxidized. Risk of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Solid form: flammable material; irritation, low irritation to skin, eye. Harmful products of combustion are CO, CO2 and so on. Contact with strong oxidants, can cause to burn. Ecology of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): may be hazardous to environment. Water body should be given special attention. Biodegradability of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): biodegradable. Characteristics of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): excellent emulsifying, dispersing, wetting, cleansing, foaming, solubilizing, permeating abilities. Good lime soap dispersing power. Suitable for neutral formula system. Synthesis of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) (1), Esterification reaction Maleic anhydride reacts with undecylenamido-MEA, obtain undecylenamido-MEA maleate. (2), Sulfonation reaction Undecylenamido-MEA maleate reacts with sodium bisulfite, then obtain this product. Test Methods of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) (1), Heavy metals (as Pb) Safety and Technical Standards for Cosmetics (2015 Edition) GB/T 30799 The test method of food detergents - Determination of heavy metals (2), As Safety and Technical Standards for Cosmetics (2015 Edition) GB/T 30797 The test method of food detergents - Determination of total arsenic Product standards of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) QB/T 4085 Disodium sulfosuccinate Further explanation (a), On physical and chemical indexes: firstly, shall be indicated carbon atom distribution; secondly, shall be indicated average molecular weight. (b), Used in cosmetics, should be test for harmful substances; or furtherly test for microorganisms. Major Uses of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) 1, Typical Applications Use as wetting agent, permeating agent. Use as emulsifying agent, dispersing agent. Use as hydrotrope. 2, Textile, leather Use as wetting agent, permeating agent. 3, Household detergents Use as wetting agent, emulsifying agent. 4, Industrial cleaning agents Use as wetting agent, emulsifying agent, hydrotrope. 5, Personal care products Use as cleansing agent, hydrotrope, foam stabilizing agent. disodium undecylenamido MEA-sulfosuccinate = anti bacterial balancing for mucosal (cleaning, foam-enhancing, hydrotropic, surfactant) REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is an amphoteric surfactant for use in biocidal products for terminal disinfectants, sanitizers and detergent sanitizers for all hard surfaces in household and industry. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) can be used in aqueous and alcoholic formulations, and REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is a special amphoteric compound in aqueous solution. When formulated in biocide products, REWOCID SB U 185 KE (REWOCİD SB U 185 KE) provides full spectrum of efficacy, safe handling, good biodegradability, and good compatibility with hard water and other surfactants. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is also a good cleaner, and REWOCID SB U 185 KE (REWOCİD SB U 185 KE) dissolves fat, possesses good soil carrying capacity and is well-tolerated by common materials. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) contains no aldehydes, active chlorine or alkali. Properties Properties REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is a quaternary surfactant, which is soluble in water and water/alcohol mixtures. It is easily combined with amphoteric and non-ionic surfactants and with anionic surfactants at low levels. Application Application REWOCID SB U 185 KE (REWOCİD SB U 185 KE) has good mucous membrane compatibility in 1 % solutions. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is used in the following applications of REWOCID SB U 185 KE (REWOCİD SB U 185 KE): • Conditioning shampoos • Liquid soaps • Hair rinses • Skin creams and lotions Suggested usage concentration Suggested usage concentration of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) 1 - 3 % REWOCID SB U 185 KE (REWOCİD SB U 185 KE) Storage of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) A longer storage time, esp. at low temperatures, may lead to small changes of the appearance. This does not mean a loss of quality. In this case it is recommended to homogenize the product prior to usage under moderate agitation at 25-30°C. In general we recommend to use the complete container. Packaging Packaging 800 kg pallet (4 x 200 kg) Hazardous goods classification Hazardous goods classification Information concerning REWOCID SB U 185 KE (REWOCİD SB U 185 KE) • classification and labelling according to regulations for transport and for dangerous substances • protective measures for storage and handling • measures in accidents and fires • toxicity and ecological effects is given in our material safety data sheets. Description of REWOCID SB U 185 KE (REWOCİD SB U 185 KE) REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is a quaternary surfactant recommended for use in anti-dandruff shampoos and as a conditioning agent in hair care and in special skin cleansing formulations. REWOCID UTM 185 is a quaternary surfactant, which is soluble in water and water/alcohol mixtures. It is easily combined with amphoteric and non-ionic surfactants and with anionic surfactants at low levels. Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) (CAS 26650-05-5) Market Research Report 2020 presents comprehensive data on Disodium undecylenamido MEA-sulfosuccinate markets globally and regionally (Europe, Asia, North America etc.) The report includes Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) description, covers its application areas and related patterns. It overviews Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) market, names Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) producers and indicates its suppliers. In addition to the above the report determines Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) consumers in the market. We can analyze the following elements for each chemical product in any country or region: Disodium undecylenamido MEA-sulfosuccinate REWOCID SB U 185 KE (REWOCİD SB U 185 KE) (CAS 26650-05-5) Market Research Report 2020 can feature: market condition and estimations, market forecast, chemical product ranges, trademarks, analogous products, application areas, regional and global producers, consumers and traders (including contact details). REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is an amphoteric surfactant for use in biocidal products for terminal disinfectants, sanitizers and detergent sanitizers for all hard surfaces in household and industry. It can be used in aqueous and alcoholic formulations, and it is a special amphoteric compound in aqueous solution. When formulated in biocide products, it provides full spectrum of efficacy, safe handling, good biodegradability, and good compatibility with hard water and other surfactants. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) is also a good cleaner, and it dissolves fat, possesses good soil carrying capacity and is well-tolerated by common materials. REWOCID SB U 185 KE (REWOCİD SB U 185 KE) contains no aldehydes, active chlorine or alkali.
REWOPAL PEG 6000 DS A MB
Rewopal PEG 6000 DS A MB is an extremely effective additive for difficult to thicken surfactant systems.
Rewopal PEG 6000 DS A MB is a thickening agent.



CAS Number: 9005-08-7
EINECS: Polymer Exempt
MDL Number: MFCD00081839
INCI Name: PEG-150 Distearate
Chem/IUPAC Name: Poly (oxy-1,2-ethanediyl),. alpha. -(1-oxooctadecyl)-. omega. -[(1-oxooctadecyl)oxy]-
Molecular Formula : C19H40O4



Macrogol 6000, Polyethylenglycol 6000, Polyethylenglykol 6000 Distearat, Polyoxyethylen(150), Polyoxyethylen(150)distearat, THOX P-6000 DS, PEG-150 DISTEARATE, PEG-150 DISTEARATE [II], PEG-150 DISTEARATE [INCI], POLYETHYLENE GLYCOL 6000 DISTEARATE, POLYOXYL 150 DISTEARATE, UNIPEG-6000 DS, PEG-150 DISTEARATE, POE (150) DISTEARATE, KESSCO PEG 6000 DISTEARATE, Glycols,polyethylene, distearate (8CI), Stearic acid, diester with polyethylene glycol(8CI), 62S, 62S (lubricant), Aculyn 60, Atlas G 1821, CDS 400, CDS 6000P, CRL1095, Cithrol 10DS, Cithrol 4DS, Cithrol 60DS, Cutina TS, Cyclo PEG (400)DS, Dispeg 200, EL 1821, Emalex 200di-S, Emalex 600di-S, Emalex di-S, Emanon 3299, Emanon 3299R, Emanon 3299RV, Emanon 3299V, Emerest 2642, Emerest 2712, Emulgen3299, Emulmin 862, Estol 3734, Estol EO 4DS3724, Eumulgin EO 33, Gelucire55/18, Genapol TS Powder, Hetoxamate 6000, Hetoxamate 6000DS, Hetoxamate 6000DSSpecial, Ionet DS 1000, Ionet DS 300, Ionet DS 400, Ionet DS 4000, Kessco PEG400DS, Kessco PEG 6000DS, Lionon DT 600S, Lipal 15DS, Lipal 400DS, Lipopeg 4DS, Lipopeg 6000DS, Mapeg 1540DS, Mapeg 400DS, Mapeg 6000DS, Mazol 6000DS, NikkolCDS 6000P, Nissan Nonion DS 60HN, Noigen DS 601, Nonex 80, Nonion DS 60HN, Nonisol 300, PEG 150 distearate, PEG 1540 distearate, PEG 1540DS, PEG 6000distearate, PEG 6000DS, PEG 8 distearate, PEG distearate, PEG-2 Distearate, PEG-20 Distearate, Pegnol PDS 60, Pegosperse 400DS, Pionin D 2410D, Poly(oxyethylene) distearate, Polyethylene glycol dioctadecanoate, Polyethyleneglycol distearate, Polyethylene glycol distearoyl ester, Polyethylene glycolstearic acid diester, Polyethylene oxide distearate, Rewopal PEG 6000DS, Ritapeg 150DS, S 1009, S 1013, Stabogel, Polyethylene glycol distearate, PEG400 Distearate, heptadecanoic acid - ethane-1,2-diol (1:1), PEG 6000 Distearate Powder, PEG 6000 Distearate, Unipeg 6000DS, Lipopeg 6000 DS, Protamate 6000 DS, T/N: Lumulse 602-S, T/N: Acipol Di 15018 B, Polyethylene glycol distearate, Polyoxyethylene Distearate ester, POE(150) Distearate, Poly(oxy-1,2-ethanediyl), .alpha.-(1-oxooctadecyl)-.omega.-[(1-oxooctadecyl)oxy]-



Rewopal PEG 6000 DS A MB is a hydrophilic surfactant thickening agent.
Rewopal PEG 6000 DS A MB is an extremely effective additive for difficult to thicken surfactant systems.
Rewopal PEG 6000 DS A MB is a thickening agent.


Rewopal PEG 6000 DS A MB offers a distinctive viscosity modifying effect.
Rewopal PEG 6000 DS A MB is an extremely effective additive for difficult to thicken surfactant systems.
Rewopal PEG 6000 DS A MB is a polyethylene glycol diester of stearic acid.


Rewopal PEG 6000 DS A MB is an off-white flake
Rewopal PEG 6000 DS A MB is a white to yellowish pellets.
Rewopal PEG 6000 DS A MB is a hydrophilic emulsifier; thickener.


Rewopal PEG 6000 DS A MB is a polyethylene glycol diester of stearic acid.
Rewopal PEG 6000 DS A MB is an off-white flake
Rewopal PEG 6000 DS A MB is a white to yellowish pellets.


This thickening agent, Rewopal PEG 6000 DS A MB, has garnered appreciation for its widespread use in personal care products, cosmetics, paints, and dyes.
Rewopal PEG 6000 DS A MB is produced by the esterification of stearic acid which is derived from palm kernel oil or other vegetable oils.
Rewopal PEG 6000 DS A MB is an efficient thickening agent for shampoos, body washes or foam baths.
Even at low levels, Rewopal PEG 6000 DS A MB results in a high viscosity modifying effect.


Rewopal PEG 6000 DS A MB is polyethylene glycol diester of stearic acid.
Rewopal PEG 6000 DS A MB is a thickening agent.
Rewopal PEG 6000 DS A MB is easy to handle and shows distinctive viscosity modifying effects.


Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.
Rewopal PEG 6000 DS A MB is a white to off-white powder.


Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.
Rewopal PEG 6000 DS A MB is particularly effective for the thickening of clear, mild, amphoteric-containing surfactant systems, such as shampoos, body washes, bubble baths, baby baths, vapor baths, and shower gels.


Rewopal PEG 6000 DS A MB is an emulsifying agent (O/W) and thickener (aqueous).
Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.


Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.
Rewopal PEG 6000 DS A MB is a polyether compound that is used in a wide variety of fields including pharmaceutical manufacturing as an excipient and active ingredient.


Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.
Rewopal PEG 6000 DS A MB is an efficient thickening agent for shampoos, body washes or foam baths.



USES and APPLICATIONS of REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is used Skin care (Facial care, Facial cleansing, Body care, Baby care) > Baby care > Baby shampoos,
Toiletries (Shower & Bath, Oral care...) > Shower & bath > Foam bath
Skin care (Facial care, Facial cleansing, Body care, Baby care) > , Facial cleansing > Cleansing lotions & toners, and


Hair care (Shampoos, Conditioners & Styling) > Shampoos.
Rewopal PEG 6000 DS A MB is used in baby shampoos, mild hair shampoos, foam baths, shower shampoos and skin cleansing lotions
Rewopal PEG 6000 DS A MB is used thickening agent for cleansing formulations, especially shampoo, shower and bath preparations.


Rewopal PEG 6000 DS A MB is used Antiperspirants & Deodorants, Baby Care and Cleansing, Face Cleansing, Liquid Soap, Shampoo, and Shower/Bath Products.
Rewopal PEG 6000 DS A MB is a non-ionic surfactant with low irritation to the skin and eyes with excellent thickening power, in addition to acting positively on foam formation and increasing the viscosity response of other surfactants in the formulations.


This thickening agent, Rewopal PEG 6000 DS A MB has garnered appreciation for its widespread use in personal care products, cosmetics, paints, and dyes.
Rewopal PEG 6000 DS A MB is produced by the esterification of stearic acid which is derived from palm kernel oil or other vegetable oils.
Rewopal PEG 6000 DS A MB is an ester made from the reaction of triple pressed stearic acid and polyethylene glycol.


Rewopal PEG 6000 DS A MB is commonly used to thicken mild, amphoteric-containing surfactant systems, such as baby shampoos, lotions, pet shampoos, bubble baths, cleansing products, and hair conditioners.
Rewopal PEG 6000 DS A MB is recommended for baby-, mild hair- & shower shampoos, foam baths and skin cleansing lotions.


The shelf life of Rewopal PEG 6000 DS A MB is 12 months.
Rewopal PEG 6000 DS A MB is particularly effective for the thickening of clear, mild, amphoteric-containing surfactant systems, such as shampoos, body washes, bubble baths, baby baths, vapor baths and shower gels.


Rewopal PEG 6000 DS A MB can also be used to thicken facial scrubs, facial cleansers, body scrubs and shaving foams, and finds application in color cosmetics as an auxiliary emulsifer (HLB ~18.4).
The typical use level of Rewopal PEG 6000 DS A MB is 2 – 4%.


Rewopal PEG 6000 DS A MB is in the form of solid, white to off-white waxy flakes and used as a thickener, emulsifier, solubilizer in cosmetics and personal care products.
Typical concentration of Rewopal PEG 6000 DS A MB is 0.5-50%.


Rewopal PEG 6000 DS A MB is an efficient thickening agent for shampoos, body washes or foam baths.
Even at low levels, Rewopal PEG 6000 DS A MB results in a high viscosity modifying effect.
Rewopal PEG 6000 DS A MB is used in formulations which are difficult to thicken.


Rewopal PEG 6000 DS A MB is used in formulations which are difficult to thicken.
Industry Primarily Used of Rewopal PEG 6000 DS A MB: Cosmetics, Pharmaceuticals, Inks & Coatings
Rewopal PEG 6000 DS A MB is particularly effective for the thickening of clear, mild, amphoteric-containing surfactant systems, such as shampoos, body washes, bubble baths, baby baths, vapor baths, and shower gels.


Rewopal PEG 6000 DS A MB can also be used to thicken facial scrubs, facial cleansers, body scrubs, and shaving foams, and finds application in color cosmetics as an auxiliary emulsifier (HLB ~18.4).
The typical use level of Rewopal PEG 6000 DS A MB is 2 – 4%.


Rewopal PEG 6000 DS A MB is commonly used to thicken mild, amphoteric-containing surfactant systems, such as baby shampoos, baby bath and facial scrubs.
Rewopal PEG 6000 DS A MB is also used in deodorants, facial cleansers, facial color cosmetics, liquid hand soaps, shampoos, shaving products and shower gels/body washes.


Rewopal PEG 6000 DS A MB is commonly used to thicken mild, amphoteric-containing surfactant systems, such as baby shampoos, baby baths, facial scrubs, facial cleansers, body washes, body scrubs and shaving foams.
Rewopal PEG 6000 DS A MB also finds application in color cosmetics as an auxiliary emulsifer/


Due to its low toxicity Rewopal PEG 6000 DS A MB can be used as a lubricating coating for various surfaces in aqueous and non-aqueous environments, a reagent in biochemistry to create very high osmotic pressures, a polar stationary phase for gas chromatography and as a binder.



FUNCTION OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is commonly used to thicken mild, amphoteric-containing surfactant systems, such as baby shampoos, baby baths, facial scrubs, facial cleansers, body washes, body scrubs and shaving foams.
Rewopal PEG 6000 DS A MB also finds application in color cosmetics as an auxiliary emulsifer (HLB ~18.4).



CHARACTERISTICS OF REWOPAL PEG 6000 DS A MB:
Extremely effective additive for difficult to thicken surfactant
systems.



ADVANTAGES OF REWOPAL PEG 6000 DS A MB:
*easy to handle
*shows distinctive viscosity modifying effects



FEATURES & BENEFITS OF REWOPAL PEG 6000 DS A MB:
*Emulsifying Agent (O/W)
*Thickener (aqueous)



WHAT IS REWOPAL PEG 6000 DS A MB USED FOR?
Rewopal PEG 6000 DS A MB is used mainly as a thickener in products like shampoos, conditioners, shower gels, face washes, hand washes, shaving creams, baby-care products etc.
*Skin care:
Rewopal PEG 6000 DS A MB is used as an emulsifier in creams and lotions
*Hair care:
Rewopal PEG 6000 DS A MB is used as an anti-static agent in conditioners



ORIGIN OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is produced by the esterification of stearic acid which is derived from palm kernel oil or other vegetable oils.



WHAT DOES REWOPAL PEG 6000 DS A MB DO IN A FORMULATION?
*Emulsifying
*Viscosity controlling



SAFETY PROFILE OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is designated as safe to be used in products at a concentration of 5.0%.



FUNCTIONS OF REWOPAL PEG 6000 DS A MB:
*Thickener,
*Viscosity Modifier,
*Viscosity Stabilizer



BENEFIT CLAIMS OF REWOPAL PEG 6000 DS A MB:
*Rich Feel



BENEFITS AND USES OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is used to thicken products like shampoos, conditioners, shower gels, hand washes, shaving creams, etc.
Rewopal PEG 6000 DS A MB is an excellent emulsifier and is usually added to creams and lotions.

Rewopal PEG 6000 DS A MB mixes well with water and oil and enables them to clean dirt and grime from the surface.
Rewopal PEG 6000 DS A MB forms a film on the hair and reduces static and is therefore used in conditioners.
When added to paints and dyes, Rewopal PEG 6000 DS A MB thickens their consistency and emulsifies them.



HOW REWOPAL PEG 6000 DS A MB WORKS?
Rewopal PEG 6000 DS A MB works by acting as a solubilizer for water-insoluble ingredients.
Rewopal PEG 6000 DS A MB reduces the surface tension of the substances and helps form emulsions.



CONCENTRATION AND SOLUBILITY OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is used at a concentration of 0.5% to 5% of the formulation.
Rewopal PEG 6000 DS A MB is soluble in water and ethanol and is insoluble in vegetable and mineral oil.



HOW TO USE REWOPAL PEG 6000 DS A MB?
Heat Rewopal PEG 6000 DS A MB with other surfactants at 60oC and melt it completely.
Mix this blend into the water phase at 35oC and stir.
Add oil phase and adjust the pH.



FUNCTIONS OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is an ester made from the reaction of vegetable-derived triple-pressed grade stearic acid and a defined high molecular weight polyethylene glycol.
Rewopal PEG 6000 DS A MB is commonly used to thicken mild, amphoteric-containing surfactant systems, such as baby shampoos, baby baths, facial scrubs, facial cleansers, body washes, body scrubs and shaving foams.



STORAGE OF REWOPAL PEG 6000 DS A MB:
Keep Rewopal PEG 6000 DS A MB container tightly closed.



BENEFITS / APPLICATION OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB is a high molecular weight distearate of polyethyleneglycol that provides excellent properties of thickening to formulations based on surfactants agents.

Rewopal PEG 6000 DS A MB is a differentiated thickener with excellent suavity.
Rewopal PEG 6000 DS A MB can be used in many cosmetic formulations, such as shampoos for adults, for children, foam bath, liquid soaps, etc.

Rewopal PEG 6000 DS A MB is a versatile product that can be used as the unique
thickening agent or even associated to alkanolamides, etoxilated
fatty alcohols, and betaines.

Due to the ethylene oxide groups in its molecule, Rewopal PEG 6000 DS A MB acts improving the viscosity of surfactants usually used in soft formulations.
Therefore, surfactants such as sorbitan monolaurate, sulfosuccinates, and betaines have Rewopal PEG 6000 DS A MB's thickener profile improved.

When associated to etoxilated fatty alcohols Rewopal PEG 6000 DS A MB shows a
special synergy that allows that alkanol amides be partially or totally
substituted.

Rewopal PEG 6000 DS A MB should be added under agitation to the water of formulation – total or part of the water – at 70-80°C.
In cold processing, Rewopal PEG 6000 DS A MB must be previously dissolved before
incorporate it to the formulation.

It is better elaborate an aqueous solution at 10% and heat this solution until 70-80°C or Rewopal PEG 6000 DS A MB can be solubilized in the amide associated to an amphoteric, heating to 65-75°C.
After this step, the cold processing can continue.



MAIN PROPERTIES OF REWOPAL PEG 6000 DS A MB:
*Surfactant
*Viscosity Controller



INDICATIONS OF REWOPAL PEG 6000 DS A MB:
Rewopal PEG 6000 DS A MB can be incorporated into shampoos, children's shampoos, liquid soaps and bubble baths.



PHYSICAL and CHEMICAL PROPERTIES of REWOPAL PEG 6000 DS A MB:
Color: 1 Gard Max
Acid Value: 9.0 Max
Saponification Value: 14 - 20
Hydroxyl Value: 2.5 Max
Appearence: Off-white solid
Moisture: 1.0% Max
pH: 4.0 - 7.0 (@ 3% Solution Distilled)
Boiling Point: 492-497°C
Melting Point: 52-57°C
Hydroxyl Value: 5 max.
Solubility: Soluble in water and ethanol
Insoluble in mineral and vegetable oil
Saponification Value: 165-175 mgKOH/g
Appearance Form: solid
Odor: No data available
Odor Threshold: No data available

pH: No data available
Melting point/freezing point:
Melting point/range: 35 - 37 °C
Initial boiling point and boiling range: No data available
Flash point: > 113,00 °C - closed cup
Evaporation rate: No data available
Flammability (solid, gas): No data available
Upper/lower flammability or explosive limits: No data available
Vapor pressure: No data available
Vapor density: No data available
Density: No data available
Relative density: No data available
Water solubility: No data available
Partition coefficient: n-octanol/water: No data available
Autoignition temperature: No data available

Decomposition temperature: No data available
Viscosity
Viscosity, kinematic: No data available
Viscosity, dynamic: No data available
Explosive properties: No data available
Oxidizing properties: No data available
Other safety information: No data available
Appearance: Flakes/Solid
Color: White to slight yellowish
Acid value: 0 – 9 mg KOH/g
Iodine value: 0 – 1 g I2/100 g
Saponification value: 14 – 25 mg KOH/g
Name: PEG 6000 DISTEARATE
CAS Registry Number: 9005-08-7
Cloud Point: 83C (1% AQ. SOLN.)
Comments: NONIONIC

Density (Specific Gravity)= (25C): 1.075
HLB Number: 18.4
Instrument Name:DIGILAB FTS-40
Melting Point: 55C
Sample Description: OFF-WHITE FLAKES
EINECS: N/A
CAS No.: 9005-08-7
Density: N/A
PSA: 77.76000
LogP: 4.91340
Solubility: N/A
Melting Point: 35-37 °C
Formula: (C2H4O)n.C36H70O3
Boiling Point: 495.3oC at 760 mmHg
Molecular Weight: 332.51900
Flash Point: >230 °F
Transport Information: N/A
Appearance: Solid
Safety: Risk Codes: N/A
Hazard Symbols: N/A



FIRST AID MEASURES of REWOPAL PEG 6000 DS A MB:
-Description of first-aid measures:
*If inhaled:
After inhalation:
Fresh air.
*In case of skin contact:
Take off immediately all contaminated clothing.
Rinse skin with water/ shower.
*In case of eye contact:
After eye contact:
Rinse out with plenty of water.
Remove contact lenses.
*If swallowed:
After swallowing:
Make victim drink water.
Consult doctor if feeling unwell.
-Indication of any immediate medical attention and special treatment needed:
No data available



ACCIDENTAL RELEASE MEASURES of REWOPAL PEG 6000 DS A MB:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Cover drains.
Collect, bind, and pump off spills.
Dispose of properly.
Clean up affected area.



FIRE FIGHTING MEASURES of REWOPAL PEG 6000 DS A MB:
-Extinguishing media:
*Suitable extinguishing media:
Water
Foam
Carbon dioxide (CO2)
Dry powder
*Unsuitable extinguishing media:
For this substance/mixture no limitations of extinguishing agents are given.



EXPOSURE CONTROLS/PERSONAL PROTECTION of REWOPAL PEG 6000 DS A MB:
-Control parameters:
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Safety glasses.
*Skin protection:
Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0,11 mm
Break through time: 480 min
Splash contact:
Material: Nitrile rubber
Minimum layer thickness: 0,11 mm
Break through time: 480 min
-Control of environmental exposure:
Do not let product enter drains.



HANDLING and STORAGE of REWOPAL PEG 6000 DS A MB:
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Tightly closed.
Recommended storage temperature see product label.



STABILITY and REACTIVITY of REWOPAL PEG 6000 DS A MB:
-Chemical stability:
The product is chemically stable under standard ambient conditions (room temperature) .
-Incompatible materials:
no information available


RHEOCARE HSP 1180
DESCRIPTION:

RHEOCARE HSP 1180 is a polyacrylamidomethylpropane sulfonic acid homopolymer of acrylamidomethyl-propane sulfonic acid.
RHEOCARE HSP 1180 has been designed to provide cosmetic formulations with a high degree of lubricity both during and after use even at low concentrations.
In this manner, its effect is two-fold.

CAS numbers: 27119-07-9
Chemical description: Polysulfonic acid solution
INCI name(s) Polyacrylamidomethylpropane Sulfonic Acid



First, the consumer perceives an elegant, aesthetically pleasing slip during the application and second, a talc-like residual feel later on.
Additionally, RHEOCARE HSP 1180 will act as an auxiliary-thickening agent particularly in hydro alcoholic systems which are resistant to viscosity build-up.
Furthermore, because RHEOCARE HSP 1180 contains, as part of its molecular structure, sulfonic acid groups, it is soluble in strong acids and strong bases (where it can be effectively neutralized by a host of alkaline cations).

RHEOCARE HSP 1180 is ideally suited for application in creams and lotions, liquid (i.e. roll-ons) antiperspirants, shaving creams, nail polish removers, liquid and bar soaps, after-bath splash, and other areas where lubricious effects and/or viscosity effects are desired.
Aesthetically pleasing slip during application and has a talc-like residual feel later on.
RHEOCARE HSP 1180 is soluble in strong acids.


RHEOCARE HSP 1180 has a lubricious sensation during application and a soft and plush after-feel even at low concentrations.
The anionic polymer is free of preservatives and suitable for cold processing.
RHEOCARE HSP 1180 is ideal for innovative face- and body-care concepts that offer a luxurious sensory experience.

RHEOCARE HSP 1180 is an anionic polymer with high slip/ lubricity for wide range of cosmetic applications, especially hair care.
RHEOCARE HSP 1180 has a lubricious sensation during application and a soft and plush after-feel even at low concentrations.
The anionic polymer is free of preservatives and suitable for cold processing.
RHEOCARE HSP 1180 is ideal for innovative face- and body-care concepts that offer a luxurious sensory experience.

RHEOCARE HSP 1180 is a sensory modifier and anionic conditioning agent.
RHEOCARE HSP 1180 offers plush, lubricity and soft after-feel.
RHEOCARE HSP 1180 is cold-processable, suitable for EO-free formulations and does not contain preservatives.

RHEOCARE HSP 1180 is used in antiperspirants, deodorants, after-sun and body-, face & color care products.
RHEOCARE HSP 1180 is also used in face cleansing, personal care wipes, sun protection and self-tanning products.

USES OF RHEOCARE HSP 1180:
RHEOCARE HSP 1180 is a polyacrylamidomethylpropane sulfonic acid homopolymer of acrylamidomethyl -propane sulfonic acid.
RHEOCARE HSP 1180 has been designed to provide cosmetic formulations with a high degree of lubricity both during and after use even at low concentrations.
In this manner, its effect is two-fold.

First, the consumer perceives an elegant, aesthetically pleasing slip during application and second, a talc-like residual feel later on.
Additionally, RHEOCARE HSP 1180 will act as an auxiliary-thickening agent particularly in hydro alcoholic systems which are resistant to viscosity build-up.

Furthermore, because RHEOCARE HSP 1180 contains, as part of its molecular structure, sulfonic acid groups, it is soluble in strong acids and strong bases (where it can be effectively neutralized by a host of alkaline cations).
RHEOCARE HSP 1180 is ideally suited for application in creams and lotions, liquid (i.e. rollons) antiperspirants, shaving creams, nail polish removers, liquid and bar soaps, after-bath splashes, and other areas where lubricious effects and/or viscosity effects are desired

FEATURES OF RHEOCARE HSP 1180:
RHEOCARE HSP 1180 is Anionic polymer with high slip/ lubricity for wide range of cosmetic applications, especially hair care
RHEOCARE HSP 1180 is Cold processable
RHEOCARE HSP 1180 Does not contain preservatives
RHEOCARE HSP 1180 is Suitable for EO-free solutions


APPLICATIONS OF RHEOCARE HSP 1180:
• After Sun
• Antiperspirants & Deodorants
• Body Care
• Color Care
• Conditioning
• Face Care Face Cleansing
• Personal Care Wipes
• Self Tanning
• Sun Protection


SAFETY INFORMATION ABOUT RHEOCARE HSP 1180:
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product




CHEMICAL AND PHYSICAL PROPERTIES OF RHEOCARE HSP 1180:
Appearance Conforms to standard
Acid Value (MG KOH/G), IN H2O 37.00 - 48.00
pH, 1% Solution 1.00 - 3.00
Solids, % 14.00 - 18.00
Viscosity, CPS, 25C, RVT#7, 2.5RPM 200000 - 600000.
Trade name:
Rheocare® HSP-1180
Inci :
Polyacrylamidomethlpropane Sulfonic Acid
Application :
Thickener
Appearance :
Clear, slightly yellow viscous liquid
Origin BASF Germany
Packing 25kg/bag
Supplier: BASF
Details:
- RHEOCARE HSP 1180 is a homopolymer that has been designed to provide high degree of lubricity for elegant, aesthetically pleasing slip during application and plush after-feel.
RHEOCARE HSP 1180 can act as an auxiliary- thickening agent particularly in hydro-alcoholic systems which are resistant to viscosity build-up.

- RHEOCARE HSP 1180is ideally suited for application in:
* Creams and lotions
* Liquid (i.e. roll-ons) antiperspirants,
* Shaving creams, nail polish removers
* Shampoos, facial washes,
* Liquid and bar soaps, after-bath splashes, and other areas where lubricious effects and/or viscosity effects are desired.

RHEOCARE HSP 1180can also be used in hair styling products to increase the application time and ensure a smooth distribution from root to tip.
RHEOCARE HSP 1180is applicable at a broad pH range (pH 2-12).




RHEOLON CMC
RHEOLON CMC belongs to the class of anionic linear structured cellulose.
RHEOLON CMC's components consist of polysaccharide composed of fibrous tissues of plants.
RHEOLON CMC is a water soluble polymer which can be used as a polyelectrolyte cellulose derivative.

CAS: 9004-32-4
MF: C6H7O2(OH)2CH2COONa
MW: 0
EINECS: 618-378-6

Synonyms
9004-32-4, sodium;2,3,4,5,6-pentahydroxyhexanal;acetate, Carboxymethylcellulose sodium (USP), Carboxymethylcellulose cellulose carboxymethyl ether, Celluvisc (TN), Carmellose sodium (JP17), CHEMBL242021, SCHEMBL25311455, C.M.C. (TN), CHEBI:31357, Sodium carboxymethyl cellulose (MW 250000), D01544, M.W. 700000(DS=0.9), 2500 - 4500mPa.s

RHEOLON CMC are organic depressants commonly used in physico-chemical mineral flotation processes where non-valuable (gangue) minerals are separated from valuable minerals.
Functioning as a depressant reagent, during the process, RHEOLON CMC depress the unwanted mineral particles by adsorbing on them, making them hydrophilic, consequently non-floatable, whereas valuable minerals are adsorbed by reagents called collectors, making them hydrophobic, consequently floatable to the surface by air bubbles.
RHEOLON CMC can be used as an organic binder in Iron Ore Pelletization, being a substitute to what is traditionally used, Bentonite.

RHEOLON CMC(9004-32-4) is a water-soluble polymer.
As a solution in water, RHEOLON CMC has thixotropic properties.
RHEOLON CMC is useful in helping to hold the components of pyrotechnic compositions in aqucous suspension (e.g., in the making of black match).
RHEOLON CMC is also an especially effective binder that can be used in small amounts in compositions, where the binder can intcrfere with the intended effect (e.g., in strobe compositions).

However, RHEOLON CMC sodium content obviously precludes its use in most color compositions.
RHEOLON CMC is manufactured from cellulose by various proccsses that replacc some of the hy drogen atoms in the hydroxyl[OH] groups of the cellulose molecule with acidic carboxymethyl [-CH2CO.OH] groups,which are neutralized to form the corresponding sodium salt.
RHEOLON CMC is white when pure; industrial grade material may be grayish-white or cream granules or powder.

RHEOLON CMC Chemical Properties
Melting point: 274 °C (dec.)
Density: 1,6 g/cm3
FEMA: 2239
Storage temp: room temp
Solubility: H2O: 20 mg/mL, soluble
Form: low viscosity
Pka: 4.30(at 25℃)
Color: White to light yellow
Odor: Odorless
PH Range: 6.5 - 8.5
PH: pH (10g/l, 25℃) 6.0~8.0
Water Solubility: soluble
Merck: 14,1829
Stability: Stable. Incompatible with strong oxidizing agents.
EPA Substance Registry System: RHEOLON CMC (9004-32-4)

Detergent uses
Detergent Grade RHEOLON CMC is a cornerstone ingredient in modern cleaning products.
RHEOLON CMC is used for its thickening and stabilizing properties, enhancing the texture and efficiency of detergents.
RHEOLON CMC plays an important role in improving soil suspension and preventing redeposition, making it essential for high-performance laundry and dishwashing detergents.
With a tailored viscosity range, RHEOLON CMC ensures detergents maintain optimal consistency, crucial for both liquid and powder formulas.
RHEOLON CMCs compatibility with diverse detergent ingredients, including surfactants and builders, allows for versatile applications.

Laundry Detergents: Incorporate 5% RHEOLON CMC to improve soil suspension and fabric care.
Blend with surfactants, builders, and fragrance.
This formulation ensures efficient cleaning and fabric protection, making laundry detergents more effective.

Dishwashing Liquids: Use 3% RHEOLON CMC for enhanced grease removal and suds stability.
Combine with cleaning agents and scents.
This mix results in a powerful dishwashing liquid that cuts through grease and leaves dishes spotless.

Powdered Detergents: Add 4% CRHEOLON CMC to prevent caking and ensure smooth texture.
Mix with cleaning agents, brighteners, and fragrance.
This formulation keeps powdered detergents free-flowing and effective.

Hand Washes: Blend 2% RHEOLON CMC for a luxurious, moisturizing feel.
Include cleansing agents and essential oils.
This composition creates hand washes that clean effectively while being gentle on the skin.

Surface Cleaners: Incorporate 1.5% RHEOLON CMC to enhance cleaning power and leave a streak-free finish.
Mix with disinfectants and fragrances.
This formula is ideal for multi-surface cleaners that effectively clean and freshen surfaces.

Car Wash Solutions: Use 2% RHEOLON CMC to remove tough dirt and grime.
Combine with cleaning agents and wax for shine.
This formulation results in a car wash solution that cleans effectively without damaging the vehicle’s finish.

Fabric Softeners: Add 3% RHEOLON CMC to fabric softeners for improved texture and fabric conditioning.
Blend with softening agents and scents. This formula makes fabrics feel soft and smell fresh.

Toilet Bowl Cleaners: Incorporate 2% RHEOLON CMC for enhanced cling to bowl surfaces.
Mix with disinfectants and cleaning agents. This formula ensures a thorough clean and lasting freshness in toilet bowl cleaners.

Textile uses
Textile Grade RHEOLON CMC is an essential component in the textile industry, widely used for its diverse applications.
Primarily, RHEOLON CMC’s employed as a thickening agent in textile printing, constituting about 2-3% of printing pastes, to achieve sharp, clear designs.
In dyeing processes, RHEOLON CMC, at a concentration of 1-2%, aids in uniform dye dispersion and fixation, ensuring vibrant and consistent colors.
RHEOLON CMC’s also used in fabric finishing, at about 0.5-1%, to enhance fabric hand feel and texture.
Additionally, RHEOLON CMC serves as a binding agent in non-woven fabrics, contributing to the strength and stability of the material.
In sizing applications, about 1-3% of RHEOLON CMC is used to protect yarns during weaving, reducing breakages.
RHEOLON CMC’s role in fabric softening and conditioning is pivotal, improving the overall quality and wearability of textiles.

Textile Printing: Mix 3% RHEOLON CMC to create thickened printing pastes, ensuring precise and vibrant prints on fabrics. Blend with dyes and water to achieve desired consistency.
This application results in sharp, clear textile designs that are visually appealing.

Fabric Dyeing: Use 2% RHEOLON CMC for even dye distribution and improved color fixation in fabric dyeing.
Combine with fabric dyes and water, ensuring uniform application.
This leads to consistently colored fabrics with long-lasting hues.

Fabric Finishing: Incorporate 1% RHEOLON CMC in finishing solutions to enhance fabric feel and appearance.
Mix with finishing agents and apply to textiles.
This application gives fabrics a soft, luxurious texture and improves wear resistance.

Yarn Sizing: Apply 3% RHEOLON CMC in sizing mixtures to protect yarn during weaving.
Blend with starches and size mixtures, enhancing yarn strength and reducing breakages in the loom.
This ensures smoother weaving and higher-quality textiles.

Non-Woven Fabric Production: Use 2% RHEOLON CMC as a binder in non-woven fabrics for increased strength and stability.
Combine with fibrous materials, creating durable and cohesive non-woven textiles used in various applications.

Fabric Softening: Add 1.5% RHEOLON CMC to softening solutions for a softer fabric hand feel.
Mix with softeners and apply to textiles, resulting in comfortable and pleasant-to-touch fabrics, ideal for clothing and home textiles.

Textile Coatings: Incorporate 2.5% RHEOLON CMC in coating formulations to improve fabric coating uniformity.
Blend with coating materials, enhancing the protective properties of coated fabrics used in specialty applications.

Printing Thickener Replacement: Use RHEOLON CMC as an eco-friendly alternative to synthetic thickeners in printing pastes.
Mix 3% RHEOLON CMC to achieve the desired viscosity, providing a sustainable and effective solution for textile printing.

Synthesis
RHEOLON CMC is formed when cellulose reacts with mono chloroacetic acid or its sodium salt under alkaline condition with presence of organic solvent, hydroxyl groups substituted by Sodium carboxymethyl groups in C2, C3 and C6 of glucose, which substitution slightly prevails at C2 position.
Generally, there are two steps in manufacturing process of sodium carboxymethyl cellulose, alkalinization and etherification.
Step 1: Alkalinization
Disperse the raw material cellulose pulp in alkali solution (generally sodium hydroxide, 5–50%) to obtain alkali cellulose.
Cell-OH+NaOH →Cell·O-Na+ +H2O
Step 2: Etherification
Etherification of alkali cellulose with sodium monochloroacetate (up to 30%) in an alcohol-water medium.
The mixture of alkali cellulose and reagent is heated (50–75°C) and stirred during the process.
ClCH2COOH+NaOH→ClCH2COONa+H2O
Cell·O-Na+ +ClCH2COO- →Cell-OCH2COO-Na
The DS of the sodium RHEOLON CMC can be controlled by the reaction conditions and use of organic solvents (such as isopropanol).
RHEOSOLVE T 633
Rheosolve T 633 is milky white liquid, but creates transparent formulations.
Rheosolve T 633 is a white, and opaque flowing dispersion.


CAS Number: 999999-89-7
INCI: Acrylates/Beheneth-25 Methacrylate


Rheosolve T 633 is an acrylic thickener in aqueous dispersion specifically designed for the household, industrial and institutional detergent industry.
Rheosolve T 633 is easy to use and provides instantaneous thickening effect.
Rheosolve T 633 do not freeze , properties are irreversible after freezing.


Rheosolve T 633 must be protected from the elements and stored at temperatures between 5 and 40 °C and protected from direct sunlight.
Rheosolve T 633 is an acrylic thickener which produces low viscosity formulations with excellent suspending properties.
Rheosolve T 633 is suitable for high pH applications and is compatible with 30% NaOH (eg. for Oven cleaners).


Rheosolve T 633’s high yield stress and pseudoplastic properties, mean that it is ideal for application onto vertical surfaces where it shows little sagging.
Rheosolve T 633 is milky white liquid, but creates transparent formulations.


Rheosolve T 633 is an acrylic thickener which produces low viscosity formulations with excellent suspending properties.
Rheosolve T 633 is a copolymer of the ester of methacrylic acid and Beheneth-25 and one or more monomers of acrylic acid, methacrylic acid, or one of their simple esters.


Rheosolve T 633 is a white, and opaque flowing dispersion.
Rheosolve T 633 functions as an aqueous viscosity increasing agent.
Rheosolve T 633 works as a rheology modifier or viscosity controller in cosmetics and personal care products.
Rheosolve T 633 in hair products is commonly found in clear shampoos, hair conditioners, and hair dye developers.



USES and APPLICATIONS of RHEOSOLVE T 633:
Rheosolve T 633 is used highly alkaline formulations.
Rheosolve T 633 can be used to efficiently thicken highly alkaline formulations (such as sodium or potassium hydroxide.
Rheosolve T 633 is an acrylic thickener in aqueous dispersion specifically designed for the household, industrial and institutional detergent industry.


Rheosolve T 633 is easy to use and provides instantaneous thickening effect.
Rheosolve T 633 is thickens formulations with high pH 7-14 and alcohol mixtures.
Rheosolve T 633 is an effective acrylic thickener for neutral, slightly alkaline and highly alkaline formulations.


These products have good heat stability, are compatible with sodium hypochlorite, stabilizer suspensions and can be used to produce a wide range of formulations such as bleaches, disinfectants, alcohol solutions, abrasive pastes and creams, Rheosolve T 633 is also used in products such as oven and grill cleaners , high alkaline cleaners.


Rheosolve T 633 is easy to use.
Rheosolve T 633 has instant thickening effect.
Recipes based on them have pseudo-plasticity, which Rheosolve T 633 also allows them to be effectively used for processing vertical surfaces.


Rheosolve T 633 is used to stabilize highly concentrated suspensions such as calcium carbonate and eco-labeled products.
Rheosolve T 633 is an acrylic thickener in aqueous dispersion for the household, industrial and institutional detergent industry.
Rheosolve T 633 is specifically designed to thicken high pH formulations.


Rheosolve T 633 is easy to use and provides instantaneous thickening effect.
Rheosolve T 633 is an acrylic thickener in aqueous dispersion for the household, industrial and institutional detergent industry.
Rheosolve T 633 is specifically designed to thicken high pH formulations.


Rheosolve T 633 is easy to use and provides instantaneous thickening effect.
Rheosolve T 633 is used in abrasives pastes, scrubbing creams, all-purpose cleaners (hard surfaces, oven, grill cleaners, acid formulations) and for the stabilization of highly concentrated suspension such as calcium carbonate.


Rheosolve T 633 is used in gels, input from 4.5%
Product performance and application of Rheosolve T 633: particle stabilizer, suitable for highly alkaline systems.
Rheosolve T 633 is suitable for high pH applications and is compatible with 30% NaOH (eg. for Oven cleaners).


Rheosolve T 633’s high yield stress and pseudoplastic properties, mean that it is ideal for application onto vertical surfaces where it shows little sagging.
Rheosolve T 633 is used in abrasives pastes, scrubbing creams, all-purpose cleaners (hard surfaces, oven, grill cleaners, acid formulations) and for the stabilization of highly concentrated suspension such as calcium carbonate.


Rheosolve T 633 in skin care is found in bath and body care products, sun care products, soaps, eye contour products, etc.
Rheosolve T 633 has been found to be used at a maximum concentration of 0.3-1.7% in leave-on products and 0.05-1% in rinse-off products.



ADVANTAGES OF RHEOSOLVE T 633:
Highly Versatile Thickener at high pH Rheosolve T 633 allows an accurate adjustment of the rheology solving then many formulation issues even in very alkaline media.
Contribute to the granting of Rheosolve T 633 is non hazardous and also exempt from REACH.



WHAT DOES RHEOSOLVE T 633 DO IN A FORMULATION?
*Viscosity controlling



SAFETY PROFILE OF RHEOSOLVE T 633:
The Cosmetic Ingredient Review (CIR) Expert Panel reviewed available scientific data supporting the safety of 126 acrylates copolymers including Rheosolve T 633 and concluded that they are safe in cosmetics and personal care products in the present practices of use and concentration when formulated to be non-irritating to skin.



ALTERNATIVES OF RHEOSOLVE T 633:
*ACRYLATES C10 30 ALKYL METHACRYLATE COPOLYMER, *ACRYLATES ETHYLHEXYL ACRYLATE COPOLYMER,
*LAURYL ACRYLATE CROSSPOLYMER



PROPERTIES OF RHEOSOLVE T 633:
For thickening alkaline formulations of household chemicals, including those containing abrasives.



STORAGE OF RHEOSOLVE T 633:
Rheosolve T 633 – do not freeze, properties are irreversible after freezing.
Rheosolve T 633 must be protected from the elements and stored at temperatures between 5 and 40 °C and protected from direct sunlight.



HANDLING & STORAGE OF RHEOSOLVE T 633:
Rheosolve T 633 can be irreversibly altered by frost.
Rheosolve T 633 should be protected from the effects of weathering and stored between 5 and 40°C and protected from direct sun exposure.
Once opened, packaging should be resealed immediately after use.

Film-forming at the surface of Rheosolve T 633 and/or sedimentation at the bottom of the packaging may happen.
These phenomenon are normal and have no impact on the level of performances as long as the product meet the specifications.
It is recommended to filter Rheosolve T 633 prior to use with a 400μm or 40 mesh filter.
In these conditions, Rheosolve T 633 should be used within 6 months from delivery.



PHYSICAL and CHEMICAL PROPERTIES of RHEOSOLVE T 633:
Nature: Acrylic copolymer in aqueous dispersion
Appearance (20°C): Low viscous white milky liquid
Solids content (%): 30
pH (20°C): 4
Specific gravity (20°C): 1.06
Nature: Acrylic copolymer
Appearance: Milky liquid
Solid Content (%): 30
pH: 4
Specific gravity: 1.06
Melting Point: >100°C
Solubility: Insoluble in water at pH 2-3; soluble in water at pH 6-8



FIRST AID MEASURES of RHEOSOLVE T 633:
-Description of first-aid measures:
*If inhaled:
If breathed in, move person into fresh air.
*In case of skin contact:
Wash off with soap and plenty of water.
*In case of eye contact:
Flush eyes with water as a precaution.
*If swallowed:
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
-Indication of any immediate medical attention and special treatment needed:
No data available



ACCIDENTAL RELEASE MEASURES of RHEOSOLVE T 633:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Keep in suitable, closed containers for disposal.



FIRE FIGHTING MEASURES of RHEOSOLVE T 633:
-Extinguishing media:
*Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
-Further information:
No data available



EXPOSURE CONTROLS/PERSONAL PROTECTION of RHEOSOLVE T 633:
-Control parameters:
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Use equipment for eye protection.
*Skin protection:
Handle with gloves.
Wash and dry hands.
*Body Protection:
Impervious clothing
*Respiratory protection:
Respiratory protection not required.
-Control of environmental exposure:
Do not let product enter drains.



HANDLING and STORAGE of RHEOSOLVE T 633:
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Store in cool place.
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.



STABILITY and REACTIVITY of RHEOSOLVE T 633:
-Reactivity:
No data available
-Chemical stability:
Stable under recommended storage conditions.
-Possibility of hazardous reactions:
No data available
-Conditions to avoid:
No data available


RHEOVIS PU 1215



Rheovis PU 1215 is an innovative synthetic polyurethane polymer system engineered to enhance the properties of latex coatings and adhesives.
When incorporated into paint systems, Rheovis PU 1215 exhibits a unique trait of reduced shear thinning compared to traditional cellulosic thickeners.



APPLICATIONS


In maintenance coatings, Rheovis PU 1215 ensures even application, extending the lifespan of protective finishes.
Concrete coatings formulated with the polymer achieve smoother application on concrete surfaces, enhancing their visual appeal.
Rheovis PU 1215 plays a crucial role in achieving high-quality finishes in both retail and high-end paints.

Rheovis PU 1215 aids in the formulation of pool coatings, ensuring uniform application and enhancing the pool's appearance and durability.
Rheovis PU 1215 is essential in creating barrier coatings that effectively shield surfaces from moisture, chemicals, and pollutants.

Its controlled application benefits sports surface coatings, providing consistent playing conditions and aesthetics.
Rheovis PU 1215 is used in coating repair solutions, enabling precise touch-ups and maintaining the integrity of coated surfaces.
Rheovis PU 1215 contributes to the formulation of fire-retardant coatings, enhancing adherence and effectiveness in fire protection.

Artists use Rheovis PU 1215 to achieve precise brush drags and controlled flow in their paintings, enhancing their creative expression.
DIY coating kits benefit from the polymer's inclusion, allowing consumers to achieve professional-level application results at home.


Some of its key applications include:

Latex Paints:
Rheovis PU 1215 finds primary application as an additive in latex paints, where it enhances flow, leveling, and brush drags for improved coating quality.

Adhesive Formulations:
Rheovis PU 1215 is utilized to enhance the performance of adhesive formulations, enabling better application and bonding properties.

Architectural Coatings:
Rheovis PU 1215 is a valuable ingredient in architectural coatings, ensuring consistent and high-quality finishes for buildings.

Interior Wall Paints:
Rheovis PU 1215 is commonly used in interior wall paints to achieve a smooth appearance and enhanced application characteristics.

Exterior House Paints:
In exterior house paints, Rheovis PU 1215 contributes to durability and weather resistance, ensuring long-lasting protection.

Decorative Coatings:
Rheovis PU 1215 enhances the aesthetics of decorative coatings by providing excellent flow, leveling, and an even application.

Wood Coatings:
Rheovis PU 1215 is incorporated into wood coatings to improve their workability and deliver uniform coverage on various wood surfaces.

Furniture Finishes:
Rheovis PU 1215 plays a role in furniture finishes, offering improved flow for a more polished and professional look.

Automotive Coatings:
Rheovis PU 1215 can be found in automotive coatings, contributing to a smooth finish and enhancing the overall appearance of vehicles.

Industrial Coatings:
Rheovis PU 1215 is used in industrial coatings to optimize application properties, ensuring consistent results in demanding environments.

Maintenance Coatings:
Maintenance coatings benefit from Rheovis PU 1215's properties, achieving effective application and extended protection.

Architectural Paints:
Rheovis PU 1215 is an essential component in architectural paints, allowing for controlled application and a uniform finish on various surfaces.

Metal Coatings:
Rheovis PU 1215 is employed in metal coatings to improve the coating's appearance and provide enhanced resistance against environmental factors.

Roof Coatings:
Rheovis PU 1215 contributes to the formulation of roof coatings that offer excellent flow and durability, protecting buildings from the elements.

Masonry Coatings:
In masonry coatings, Rheovis PU 1215 ensures uniform application and improved adhesion to diverse substrates.

Floor Coatings:
Rheovis PU 1215 enhances the performance of floor coatings, offering better leveling and surface coverage for durable and visually appealing results.

Specialty Coatings:
Specialty coatings, such as those used in artistic and creative applications, benefit from Rheovis PU 1215's unique flow and control properties.

Textured Coatings:
Textured coatings gain improved application characteristics, resulting in more controlled texture creation and a consistent finish.

Retail Paints:
Rheovis PU 1215 contributes to retail paints' attractiveness by ensuring smoother application, even for DIY consumers.

Environmental Coatings:
Rheovis PU 1215 is utilized in environmental coatings designed to withstand harsh outdoor conditions and provide lasting protection.

High-End Finishes:
Rheovis PU 1215 is an asset in achieving high-end finishes, offering superior brush drags and excellent flow for meticulous results.

Facade Coatings:
Rheovis PU 1215 enhances the performance of facade coatings, which need to withstand weathering and pollution while maintaining a clean appearance.

Protective Coatings:
In protective coatings, Rheovis PU 1215 ensures even application, improving the coating's ability to shield surfaces from damage.

Roofing Sealants:
Rheovis PU 1215 is incorporated into roofing sealants to enhance their application and ensure effective sealing against moisture and the elements.

Coating Repair Solutions:
Rheovis PU 1215 aids in coating repair solutions, allowing for precise and uniform touch-ups to maintain the integrity of coated surfaces.

Elastomeric Coatings:
In elastomeric coatings, Rheovis PU 1215 contributes to flexible and durable finishes, adapting to substrate movements without compromising appearance.

Concrete Coatings:
Rheovis PU 1215 is utilized in concrete coatings to achieve smoother and more controlled application on concrete surfaces, enhancing their visual appeal.

Stain Blockers:
Rheovis PU 1215 is integrated into stain-blocking coatings, ensuring uniform coverage and effective resistance against various stains.

Stucco Coatings:
In stucco coatings, Rheovis PU 1215 improves the coating's ability to adhere to textured surfaces, delivering consistent coverage.

Graffiti-Resistant Coatings:
Rheovis PU 1215 enhances the formulation of graffiti-resistant coatings, providing both functional protection and aesthetic appeal.

Undercoats and Primers:
Rheovis PU 1215 is incorporated into undercoats and primers to improve their leveling and adhesion properties, enhancing topcoat application.

Barrier Coatings:
Barrier coatings benefit from Rheovis PU 1215's even application, creating an effective barrier against moisture, chemicals, and pollutants.

Roof Waterproofing:
Rheovis PU 1215 aids in roof waterproofing coatings by improving the coating's ability to adhere to the surface and provide lasting waterproofing protection.

Anti-Corrosion Coatings:
Rheovis PU 1215 enhances anti-corrosion coatings, contributing to an even application that prevents rust and deterioration.

Agricultural Coatings:
Rheovis PU 1215 is utilized in agricultural coatings for equipment and structures, ensuring proper coverage and protection against outdoor conditions.

Playground Surface Coatings:
In coatings for playground surfaces, Rheovis PU 1215 provides consistent coverage and protection for safe and durable play areas.

Sports Surface Coatings:
Sports surface coatings benefit from Rheovis PU 1215's controlled application, maintaining consistent playing conditions and aesthetics.

Traffic Paints:
Rheovis PU 1215 is used in traffic paints to ensure uniform application on roadways, contributing to clear and durable road markings.

Marine Coatings:
Rheovis PU 1215 enhances marine coatings' ability to adhere to various surfaces, protecting them from water exposure and environmental factors.

Pool Coatings:
In pool coatings, it aids in achieving smooth and even finishes, enhancing the pool's appearance and durability.

Faux Finishes:
Rheovis PU 1215 plays a role in faux finishes, enabling controlled application techniques to create intricate patterns and designs.

Metallic Coatings:
Rheovis PU 1215 contributes to consistent application in metallic coatings, ensuring even distribution of metallic pigments for a striking finish.

Electrostatic Coatings:
In electrostatic coatings, it enhances even deposition of the coating material, improving adhesion and surface coverage.

Reflective Coatings:
Reflective coatings benefit from Rheovis PU 1215's ability to maintain consistent thickness, ensuring uniform reflectivity and appearance.

HVAC Coatings:
Rheovis PU 1215 is used in coatings for HVAC systems to ensure uniform application on complex surfaces, enhancing durability and corrosion resistance.

Soundproofing Coatings:
Rheovis PU 1215 contributes to the formulation of soundproofing coatings, providing smooth coverage on surfaces while reducing noise transmission.

Fire-Retardant Coatings:
In fire-retardant coatings, it enhances the coating's adherence to surfaces, improving its effectiveness in fire protection.



DESCRIPTION


Rheovis PU 1215 is an innovative synthetic polyurethane polymer system engineered to enhance the properties of latex coatings and adhesives.
When incorporated into paint systems, Rheovis PU 1215 exhibits a unique trait of reduced shear thinning compared to traditional cellulosic thickeners.
Its less elastic behavior enhances the application experience, enabling controlled paint application through brushes and rollers.
Paints enriched with Rheovis PU 1215 offer superior brush drags, enabling smoother and more effective applied film build during coating.


Rheovis PU 1215 has several important features:

Aesthetic Enhancement:
Rheovis PU 1215 contributes to excellent flow and leveling, resulting in a refined appearance and uniform surface texture.

Spatter Control:
Users can expect minimal roller spatter during application, ensuring a cleaner and more efficient painting process.

Durability and Maintenance:
With its good scrub resistance, paints containing Rheovis PU 1215 can withstand cleaning and maintenance without compromising quality.

High-Performance Formulation:
Recommended for high-volume solids paints, Rheovis PU 1215 is particularly suitable for applications where performance quality is paramount.

Interior and Exterior Applications:
Its attributes shine in both interior and exterior trade sales coatings, offering essential benefits for brush and roller application properties.

Collaborative Thickening:
Rheovis PU 1215 works optimally when formulated alongside auxiliary thickeners like attapulgite clays, low molecular weight cellulosics, or biogums.

Customizable Viscosity:
While Rheovis PU 1215 can be directly added to paint, Rheovis PU 1215's viscosity can be tailored for easier handling through dilution with water-soluble coalescents.



PROPERTIES


Physical Properties:

Appearance: Opaque white liquid
Viscosity: 3,000 cps
Activity (%):
By weight: 20.0%
By volume: 17.9%
pH (2% aqueous solution): 7.0
Density:
lb/gal: 8.65
g/ml: 1.035


Product Range:

Viscosity (cps): 1,500 – 4,000 (N-114)
Solids (%): 28.5 – 31.5 (JC-111)
Specific Gravity: 1.020 – 1.050 (N-226)
pH (2% in water): 6.5 – 7.5 (N-117)



FIRST AID


First Aid Measures:

Inhalation:

If inhaled, move the person to fresh air immediately.
If breathing is difficult, provide oxygen if available and seek medical attention.


Skin Contact:

Remove contaminated clothing and shoes.
Wash the affected skin area thoroughly with soap and water.
If irritation persists, seek medical attention.


Eye Contact:

Rinse the eyes gently with water for at least 15 minutes, while keeping the eyelids open.
Remove contact lenses if present and easy to do so.
Seek medical attention if irritation or redness persists.


Ingestion:

Do not induce vomiting unless directed to do so by medical personnel.
Rinse the mouth thoroughly with water.
Seek medical attention immediately, and provide the doctor with information about the product.


Notes to Physicians:

Treat symptomatically and supportively.
In case of inhalation of significant amounts of fumes or vapors, provide appropriate supportive care.

RHEOVIS PU 1256
Rheovis PU 1256



APPLICATIONS


Rheovis PU 1256 is used in aqueous paint formulations allows to achieve these advantages:

Improved flow
Improved gloss
Increased hiding power
Reduced splattering when paint is applied by roller
Increased resistance to washing and scrubbing
Long open time


Rheovis PU 1256 is film-forming.
Furthermore, Rheovis PU 1256 has a good pigment-binding capacity.

Rheovis PU 1256 is outstandingly resistant to UV radiation.
Moreover, Rheovis PU 1256 is an associative polyurethane thickener.

Rheovis PU 1256 İS designed to modify the rheology in aqueous polymer emulsions.
Besides, Rheovis PU 1256 is more effective in anionic emulsion types and pure acrylics.
Rheovis PU 1256 is also effective in styrene-acrylic systems than in protective colloid emulsions such as VeoVa 1.


Rheovis PU 1256 is recommended for use in:

House paints
Synthetic plasters
Emulsion paints
Adhesives
Fillers
Anti-corrosive paints


Rheovis PU 1256 can be formulated with other thickeners such as cellulose derivatives and acrylate thickener.

The recommended dosage of Rheovis PU 1256 is 1 – 3% on total formulation.
However, this depends on pigmentation, dispersion type, amount of binder and co-solvents used.

Rheovis PU 1256 may be added at any stage of paint manufacture.
However, it is recommended to incorporate Rheovis PU 1256 while stirring – without any dilution – directly to the pigment paste before the grinding stage.

Rheovis PU 1256 can also be added at the final stage of the paint manufacture.
In addition, Rheovis PU 1256 should then be prediluted 1:1 – 1:5 in propylene glycol or butyl glycol to achieve perfect incorporation into the system.

Rheovis PU 1256 is recommended for use in house paints, synthetic plasters, emulsion paints, adhesives, fillers and anti-corrosive paints. Additionally, Rheovis PU 1256 can be formulated with other thickeners such as cellulose derivatives and acrylate thickener.


Applications of Rheovis PU 1256:


ACE
Automotive coatings
Architectural coatings
Building materials
Construction coatings
Elastomeric roof coatings
Furniture and wood coatings
Industrial coatings
Marine coatings
Nonwovens
Overprint varnish (OPV)
Printing and packaging


Key features & benefits of Rheovis PU 1256:

Broad range of rheology profiles
Highly efficient across many resin types
Improved wash and scrub resistance
Excellent leveling
Reduced spattering
Not susceptible to microbial attack


Rheovis PU 1256 is a mid-shear thickener.
More to that, Rheovis PU 1256 is slightly pseudoplastic.


Advantages of Rheovis PU 1256:

Imparts no negative effects in gloss.
Offers improved flow and increment of hiding power.
Exhibits splashing reduction during roller application.
Provides increment of wash and scrub resistance and pH-independent properties.
Shows very good film forming properties, good pigment wetting and a high UV stability.


Other Applications of Rheovis PU 1256:

Front coatings
Synthetic plasters
Emulsion paints
Fillers and anti-corrosive paints
Marine /Anti-Corrosive / Protective



DESCRIPTION


Rheovis PU 1256 is an associative polyurethane thickener.
Further to that, Rheovis PU 1256 gives aqueous systems a pseudoplastic behavior.
The properties of Rheovis PU 1256 are independent of the pH.

The chemical nature of Rheovis PU 1256 is solution of a polyurethane in water/liquefier.
Rheovis PU 1256 (formerly DSX 3256) is a non-ionic mid-shear solvent-free rheology additive for aqueous coatings.
Furthermore, Rheovis PU 1256 is an associative polyurethane thickener that gives aqueous systems a pseudoplastic behavior.

The properties of Rheovis PU 1256 are independent of the pH.
Rheovis PU 1256 is more effective in anionic emulsion types, pure acrylics and styrene-acrylic systems than in protective colloid emulsions such as VeoVa™ 1.

Rheovis PU 1256 (Old Name: DSX 3256) is an associative polyurethane thickener that gives aqueous systems a pseudoplastic behavior.
Moreover, Rheovis PU 1256 is a non-ionic mid-shear solvent-free rheology additive for aqueous coatings.
Rheovis PU 1256 exhibits improved flow, gloss, increased hiding power and long open time.

Besides, Rheovis PU 1256 provides reduced splattering when paint is applied by roller.
Rheovis PU 1256 offers increased resistance to washing and scrubbing.

In addition, Rheovis PU 1256 is film-forming, has a good pigment-binding capacity and is outstandingly resistant to UV radiation.
Rheovis PU 1256 is recommended for house paints, emulsion paints and anti-corrosive paints.

Rheovis PU 1256 has a shelf life of 1 year.
Recommended dosage of Rheovis PU 1256 is 1-3% on total formulation.

Rheovis PU 1256 is a solution of a polyurethane in water/diluent.
Additionally, Rheovis PU 1256 acts as an associative polyurethane thickener for aqueous coatings.



PROPERTIES


Physical form of Rheovis PU 1256 is viscous liquid.

Typical properties of Rheovis PU 1256:

solids content: ~ 43 %
density at 20 °C: (68 °F) ~ 1.08 g/cm3
Brookfield viscosity at 23 °C: (73 °F) ~ 20,000 mPa. s



HANDLING AND STORAGE


Shelf life OF Rheovis PU 1256:

When stored under the usual appropriate storage conditions, Rheovis PU 1256 can be stored for 1 year.



SYNONYMS


DSX 3256
Rhodamine B
RIBOFLAVIN TETRABUTYRATE N° CAS : 752-56-7 Nom INCI : RIBOFLAVIN TETRABUTYRATE Nom chimique : Riboflavin, 2',3',4',5'-tetrabutanoate N° EINECS/ELINCS : 212-034-5 Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état
RHODAPON LS 94RPB
Rhodapon LS 94RPB is a high-purity Sodium Lauryl Sulphate (SLS), offering a white to creamish powder appearance at 25°C, making it suitable for a range of applications, particularly in dental products where it serves as an efficient foaming agent.
In coatings, Rhodapon LS 94RPB stands out as an APE (alkylphenol ethoxylate)-free, high-concentration (solid version) SLS utilized in emulsion polymerization for various polymer systems.
Rhodapon LS 94RPB offers several key benefits, such as improving latex stability, and it contributes to sustainability by being APE-free and enhancing polymer stability, leading to increased durability.
Additionally, Rhodapon LS 94RPB promotes resource efficiency by reducing troubles in the production process.

CAS Number: 68585-47-7
EC Number: 271-557-7



APPLICATIONS


Rhodapon LS 94RPB is widely employed in dental products, serving as a foaming agent in toothpaste formulations.
Rhodapon LS 94RPB's high purity and efficiency make it an ideal choice for enhancing the foaming properties in dental care products.

In hair care formulations, Rhodapon LS 94RPB contributes to the luxurious lathering effect in shampoos, providing a pleasant user experience.
Foam baths benefit from the inclusion of Rhodapon LS 94RPB, creating rich and stable foam for an indulgent bathing experience.

Shower products, including shower gels and body washes, utilize Rhodapon LS 94RPB to enhance foam consistency and quality.
Liquid soaps leverage the surfactant's properties to achieve effective cleansing with a desirable foaming texture.
Creams and lotions in the cosmetic industry incorporate Rhodapon LS 94RPB to improve texture and provide a smooth application.

Rhodapon LS 94RPB finds application in toilet bars, contributing to the foaming and cleansing properties of solid soap formulations.
Rhodapon LS 94RPB is a versatile ingredient in personal care products, catering to a range of formulations for diverse consumer needs.
Its APE-free composition aligns with sustainable practices, making it a responsible choice for environmentally conscious formulations.

In the coatings industry, Rhodapon LS 94RPB is utilized as an APE-free high-concentration solid version SLS in emulsion polymerization.
Rhodapon LS 94RPB plays a crucial role in improving latex stability, contributing to the overall quality of polymer systems.
Its use in emulsion polymerization enhances the durability and performance of coatings, ensuring long-lasting and resilient finishes.
Rhodapon LS 94RPB's resource efficiency reduces production challenges, streamlining manufacturing processes in the coatings sector.

Rhodapon LS 94RPB's anionic ionic character makes it well-suited for various applications, ensuring compatibility with different systems.
Beyond its role in coatings and personal care, Rhodapon LS 94RPB finds utility in diverse formulations across industries.

Its presence in dental and personal care products underscores its importance in delivering desired sensory and performance attributes.
Rhodapon LS 94RPB contributes to the overall aesthetic appeal of formulations, enhancing the user experience in various products.
Rhodapon LS 94RPB's effectiveness in creating stable foam makes it an essential ingredient in a broad spectrum of consumer goods.

Rhodapon LS 94RPB's applications extend to different polymer systems, showcasing its versatility and adaptability in various industries.
Sustainable features, such as being APE-free, make Rhodapon LS 94RPB a preferred choice for manufacturers aiming for eco-friendly formulations.

Its compatibility with different materials and formulations underscores its role as a versatile and adaptable surfactant.
Rhodapon LS 94RPB's standardized specifications and high purity make it a reliable component in formulations across the personal care and coatings sectors.
Rhodapon LS 94RPB's contribution to resource efficiency and stability aligns with modern industry demands for sustainable and effective ingredients.
From toothpaste to coatings, Rhodapon LS 94RPB demonstrates its efficacy and versatility, making it a valuable component in diverse formulations.

RHODAPON LS 94RPB is a high purity Sodium Lauryl Sulphate, which is suitable for use in dental products as foaming agents.
Rhodapon LS 94RPB is used in following formulations:
Toothpaste
Hair shampoos
Foam baths
Shower products
Liquid soaps
Creams and lotions
Toilet bars

Rhodapon LS 94RPB finds a crucial role in toothpaste formulations, ensuring not only efficient foaming but also providing a consistent texture during brushing.
Its high active content of 94% minimum makes Rhodapon LS 94RPB an impactful ingredient in dental care products, where precise formulations are essential.
Hair shampoos benefit from Rhodapon LS 94RPB's ability to generate rich foam, imparting a sense of luxury and effectiveness in cleansing.

Foam baths incorporating Rhodapon LS 94RPB create a luxurious bathing experience, where stable and long-lasting foam enhances the overall product appeal.
Rhodapon LS 94RPB is an integral part of shower products, contributing to their effectiveness in cleansing and ensuring a pleasing foaming sensation.
Liquid soaps formulated with Rhodapon LS 94RPB exhibit enhanced lathering properties, making them suitable for various personal and industrial applications.

In creams and lotions, Rhodapon LS 94RPB improves the overall texture, facilitating smooth application and absorption into the skin.
The inclusion of Rhodapon LS 94RPB in toilet bars ensures a pleasant foaming effect, making solid soap formulations effective and user-friendly.

Its versatility in personal care applications extends to various cosmetic formulations, adding value to diverse beauty and skincare products.
Rhodapon LS 94RPB's APE-free composition aligns with the growing demand for environmentally conscious ingredients in personal care formulations.
Coatings benefit from Rhodapon LS 94RPB as an APE-free high-concentration solid version SLS in emulsion polymerization, improving stability and durability.

Rhodapon LS 94RPB's contribution to latex stability in emulsion polymerization enhances the quality and performance of coatings, ensuring lasting results.
Rhodapon LS 94RPB's role in coatings goes beyond aesthetics, impacting the fundamental properties that contribute to the durability of painted surfaces.
Its application in emulsion polymerization supports resource efficiency, reducing challenges in the production processes of coatings.

The anionic ionic character of Rhodapon LS 94RPB ensures compatibility with various polymers, contributing to its versatility in coatings.
Rhodapon LS 94RPB's adaptability makes it suitable for different polymer systems, showcasing its efficacy in various coating applications.
Rhodapon LS 94RPB's presence in dental and personal care formulations highlights its versatility, ensuring a seamless fit across a range of consumer products.

Beyond functionality, Rhodapon LS 94RPB contributes to the sensory experience of formulations, enhancing the overall feel and appeal of products.
Stable foam generation is a hallmark of Rhodapon LS 94RPB, making it a sought-after ingredient for its contribution to the aesthetic qualities of formulations.

Its applications extend beyond traditional personal care and coatings, finding utility in diverse formulations where effective foaming is desired.
The sustainability features of Rhodapon LS 94RPB make it a preferred choice for manufacturers aiming to create environmentally friendly formulations.
Compatibility with different materials and formulations underscores the surfactant's adaptability, allowing it to cater to evolving industry needs.

Rhodapon LS 94RPB's standardized specifications ensure consistent quality in formulations, meeting the stringent requirements of various industries.
In coatings, Rhodapon LS 94RPB showcases its efficacy not just in enhancing appearance but also in ensuring the longevity and performance of painted surfaces.
Rhodapon LS 94RPB stands out as a versatile and reliable component in formulations, contributing to the success of products across diverse industries.



DESCRIPTION


Rhodapon LS 94RPB is a high-purity Sodium Lauryl Sulphate (SLS), offering a white to creamish powder appearance at 25°C, making it suitable for a range of applications, particularly in dental products where it serves as an efficient foaming agent.
In coatings, Rhodapon LS 94RPB stands out as an APE (alkylphenol ethoxylate)-free, high-concentration (solid version) SLS utilized in emulsion polymerization for various polymer systems.
Rhodapon LS 94RPB offers several key benefits, such as improving latex stability, and it contributes to sustainability by being APE-free and enhancing polymer stability, leading to increased durability.
Additionally, Rhodapon LS 94RPB promotes resource efficiency by reducing troubles in the production process.

Standard applications of Rhodapon LS 94RPB encompass its use in dental products as a foaming agent, finding application in toothpaste, hair shampoos, foam baths, shower products, liquid soaps, creams and lotions, as well as toilet bars.
Rhodapon LS 94RPB is conveniently packaged in 25 Kg net polyethylene-lined HDPE laminated bags, with alternative packing sizes available upon request.
With a shelf life of 365 days, Rhodapon LS 94RPB is designed to maintain its quality and efficacy over an extended period.

Rhodapon LS 94RPB is a high-purity Sodium Lauryl Sulphate, appearing as a white to creamish powder at 25°C.
Rhodapon LS 94RPB is specifically designed for use in dental products, serving as an efficient foaming agent to enhance product performance.
With an active content of 94% minimum, Rhodapon LS 94RPB showcases a high level of purity and effectiveness in various formulations.

Its unsulphated matter is limited to 1.5%, ensuring a clean and well-defined chemical composition.
The pH of Rhodapon LS 94RPB ranges from 8.5 to 10.5 in a 1% aqueous solution, providing versatility in applications.
With a sodium chloride content not exceeding 0.5%, it meets stringent quality standards for certain applications.

The sodium sulfate content is kept at a maximum of 3.0%, contributing to the stability of the product.
Rhodapon LS 94RPB exhibits a bulk density ranging from 0.16 to 0.22 g/cm³ at 25°C, indicating its physical characteristics.

Possessing an anionic ionic character, this surfactant is well-suited for various applications in different industries.
The mean molecular weight of Rhodapon LS 94RPB is 298, indicating its molecular size and structure.
Rhodapon LS 94RPB is APE (alkylphenol ethoxylate)-free, aligning with sustainable practices and environmental considerations.

In the realm of coatings, Rhodapon LS 94RPB stands out as a high-concentration solid version SLS used in emulsion polymerization.
Its key benefits include the improvement of latex stability, contributing to the overall quality of polymer systems.

Sustainability features, such as being APE-free, make Rhodapon LS 94RPB a responsible choice for environmentally conscious applications.
Rhodapon LS 94RPB enhances polymer stability, resulting in improved durability and performance in various formulations.
Resource efficiency is achieved as Rhodapon LS 94RPB reduces troubles in production processes, optimizing manufacturing practices.
Standard applications include its use in dental products, acting as a foaming agent in toothpaste formulations.

Beyond dental care, Rhodapon LS 94RPB finds its place in hair shampoos, foam baths, shower products, and liquid soaps.
Its versatility extends to the cosmetic industry, where it is utilized in the formulation of creams, lotions, and toilet bars.
Rhodapon LS 94RPB is conveniently packaged in 25 Kg net polyethylene-lined HDPE laminated bags, ensuring ease of handling.

Alternative packing sizes are available upon request, offering flexibility based on specific production needs.
With a shelf life of 365 days, Rhodapon LS 94RPB maintains its quality and efficacy over an extended period, ensuring reliability.
Rhodapon LS 94RPB showcases a commitment to quality with specifications like active content, pH, and bulk density meeting defined standards.

Rhodapon LS 94RPB embodies a balance between performance, sustainability, and ease of use, making it a versatile choice in various applications.
As a critical component in formulations, Rhodapon LS 94RPB plays a significant role in delivering the desired properties and performance characteristics to end products.



PROPERTIES


Appearance: White to creamish powder at 25°C.
Active Content (%): 94 min.
Unsulphated Matter (%): 1.5 max.
pH (1% Aqueous Solution): 8.5 – 10.5.
Sodium Chloride (%): 0.5 max.
Sodium Sulphate (%): 3.0 max.
Bulk Density @ 25°C (g/cm³): 0.16 – 0.22.
Ionic Character: Anionic.
Mean Molecular Weight: 298.



FIRST AID


Inhalation:

If inhaled, move the person to fresh air.
If breathing is difficult, provide oxygen.
Seek medical attention if symptoms persist.


Skin Contact:

Wash affected skin with plenty of water.
Remove contaminated clothing.
If irritation occurs or persists, seek medical advice.


Eye Contact:

Rinse eyes thoroughly with water for at least 15 minutes, holding eyelids open.
Seek medical attention if irritation persists.


Ingestion:

Rinse mouth with water.
Do not induce vomiting unless directed by medical personnel.
Seek immediate medical attention.


General First Aid:

If a person is unconscious, not breathing, or experiencing severe symptoms, call emergency services immediately.
Keep a copy of the product's SDS readily available for emergency responders.



HANDLING AND STORAGE


Handling:

Personal Protection:
Use appropriate personal protective equipment (PPE), including gloves and safety goggles, when handling Rhodapon LS 94RPB.

Ventilation:
Ensure adequate ventilation in the working area to minimize inhalation exposure.
Consider the use of local exhaust systems.

Avoidance of Contact:
Avoid skin and eye contact.
In case of contact, promptly wash affected areas with water.

Avoid Ingestion:
Do not eat, drink, or smoke in areas where Rhodapon LS 94RPB is being handled.
Wash hands thoroughly after handling.


Storage:

Temperature:
Store Rhodapon LS 94RPB in a cool, dry place at temperatures recommended by the manufacturer.

Ventilation:
Provide proper ventilation in storage areas to prevent the accumulation of vapors.

Separation:
Store away from incompatible materials, such as strong acids or oxidizing agents.

Containers:
Keep the product in its original container, tightly closed when not in use.

Handling Precautions:
Follow proper handling procedures to prevent spills or leaks during storage.

Storage Segregation:
Segregate Rhodapon LS 94RPB from other chemicals based on compatibility and reactivity.

Labeling:
Ensure containers are properly labeled with product information and safety precautions.


Emergency Measures:

Emergency Procedures:
Familiarize yourself and personnel with emergency procedures, including spill response and first aid measures.

Emergency Contact:
Keep emergency contact information, including poison control and medical assistance, readily available.



SYNONYMS


C10-C16 alkyl alcohol sulfuric acid sodium salt
rhodapon LS 92 RN
rhodapon LS 94RPB
sodium tridecyl sulfate- methane(1:1:1)
sodium;methane;tridecyl sulfate
stepanol LCP
sulfuric acid mono-C10-16-alkyl esters sodium salts
sulfuric acid, mono-C10-16-alkyl esters, sodium salts
RHODAPON LS-92/RN
Rhodapon LS-92/RN is a common surfactant found in many cosmetics and personal care products.
Rhodapon LS-92/RN is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4).
Rhodapon LS-92/RN is made from coconut or palm kernel oil for use primarily in shampoos and body-wash as a foaming agent.

CAS Number: 68081-96-9
EINECS Number: 268-364-5

Synonyms: Ammonium dodecyl sulfate, 2235-54-3, AMMONIUM LAURYL SULFATE, Presulin, azanium;dodecyl sulfate, Ammonium dodecyl sulphate, Sulfuric acid, monododecyl ester, ammonium salt, 68081-96-9, Q7AO2R1M0B, DTXSID2027462, Sinopon, Texapon special, Conco sulfate A, Maprofix NH, Richonol AM, Sterling AM, Neopon LAM, Akyposal als 33, Montopol LA 20, Siprol L22, Siprol 422, Texapon A 400, Lauryl ammonium sulfate, Sipon LA 30, Caswell No. 044B, Texa pon A 400, Dodecyl ammonium sulfate, Ammonium n-dodecyl sulfate, Lauryl sulfate ammonium salt, HSDB 2101, EINECS 218-793-9, UNII-Q7AO2R1M0B, EPA Pesticide Chemical Code 079028, Dodecyl sulfate ammonium salt, Sulfuric acid, lauryl ester, ammonium salt, Ammoniumdodecylsulfate, ammonium lauryl sulphate, SCHEMBL23132, 30% in H2O, C12H29NO4S, DTXCID107462, Tox21_202561, AMMONIUM LAURYL SULFATE [II], AMMONIUM LAURYL SULFATE [HSDB], AMMONIUM LAURYL SULFATE [INCI], AMMONIUM LAURYL SULFATE [VANDF], NCGC00164423-01, NCGC00260110-01, CAS-2235-54-3, DB-229811, NS00082878, D70166, A878582, Sulfuric acid, monododecyl ester, ammonium salt (1:1), ALS.

Rhodapon LS-92/RN finds extensive use in various cosmetic products, particularly in shampoos and hair care items.
Its exceptional surfactant properties allow it to effectively remove dirt, excess oil, and impurities from the hair and scalp, leaving a clean and refreshed feeling.
Moreover, Rhodapon LS-92/RN creates a rich lather, enhancing the overall shampooing experience.

Rhodapon LS-92/RN is very high-foam surfactants that disrupt the surface tension of water in part by forming micelles at the surface-air interface.
This versatile ingredient helps create luxurious lather, enhancing the cleansing and foaming properties of shampoos, body washes, and facial cleansers, providing a pleasant and refreshing experience.
The anion consists of a nonpolar hydrocarbon chain and a polar sulfate end group.

This surfactant is widely used in various personal care products, including toothpaste, hair shampoos, foam baths, shower products, liquid soaps, creams, lotions, and toilet bars.
Above the critical micelle concentration, the anions organize into a micelle, in which they form a sphere with the polar, hydrophilic heads of the sulfate portion on the outside (surface) of the sphere and the nonpolar, hydrophobic tails pointing inwards towards the center.
The water molecules around the micelle in turn arrange themselves around the polar heads, which disrupts their ability to hydrogen bond with other nearby water molecules.

The overall effect of these micelles is a reduction in surface tension of the solution, which affords a greater ability to penetrate or "wet out" various surfaces, including porous structures like cloth, fibers, and hair.
Accordingly, this structured solution allows the solution to more readily dissolve soils, greases, etc. in and on such substrates.
Rhodapon LS-92/RN however exhibit poor soil suspending capacity.

This ingredient's versatility extends beyond hair care, as it can also be found in certain skin care products, where it aids in creating cleansing and foaming properties.
Rhodapon LS-92/RN, produced by Solvay (formerly Rhodia), is a high-purity, anionic surfactant in the form of free-flowing, dust-free needles.
Rhodapon LS-92/RN is primarily composed of Sodium C12-14 Lauryl Sulfate with the CAS number 68585-47-7.

This surfactant is well-known for its excellent foaming and detergent properties, making it suitable for various personal care products such as toothpaste, hair shampoos, foam baths, shower products, liquid soaps, creams, lotions, and toilet bars.
Rhodapon LS-92/RN is typically produced by reacting lauryl alcohol with sulfur trioxide gas to form lauryl sulfate, which is then neutralized with ammonium hydroxide to create Ammonium Lauryl Sulfate.

This process results in a versatile surfactant widely used in cosmetics for its excellent cleansing and foaming properties.
Rhodapon LS-92/RN is an organic compound that belongs to the family of alkyl sulfates.
Rhodapon LS-92/RN is a clear, colorless or pale yellow liquid that is commonly used as a foaming agent and surfactant in many personal care and cleaning products.

Rhodapon LS-92/RN is derived from lauryl alcohol, which is obtained from coconut oil or palm kernel oil, and sulfuric acid.
Rhodapon LS-92/RN is commonly used in shampoos, body washes, and other personal care products to create a lathering effect and to help remove dirt, oil, and other impurities from the skin and hair.
Rhodapon LS-92/RN is a strong surfactant, which means that it is able to penetrate and break down the surface tension of oils and other substances, allowing them to be more easily washed away.

Rhodapon LS-92/RN is also a potent irritant, and can cause skin and eye irritation in some people when used in high concentrations or over prolonged periods of time.
Despite its potential for irritation, Rhodapon LS-92/RN is generally considered to be safe for use in personal care products when used according to recommended guidelines and in appropriate concentrations.
Rhodapon LS-92/RN is also biodegradable and does not accumulate in the environment, making it a more sustainable choice for cleaning and personal care applications.

Rhodapon LS-92/RN appears as white to creamish needles and has a pH range of 8.5 to 10.5 in a 1% aqueous solution.
Rhodapon LS-92/RN contains more than 92% active ingredients, with minimal impurities such as less than 0.5% sodium chloride and 3% sodium sulfate.
Its molecular weight is approximately 298 g/mol, and it has a shelf life of 12 months​.

Rhodapon LS-92/RN is a mild anionic surfactant suitable for use in formulations of neutral or slightly acidic personal care products and cosmetics such as body and hair shampoos, bubble baths and liquid soaps.
The product exhibits copious foam, outstanding detergency, wetting and emulsifying properties and easy viscosity-control.
Owing to its unique foaming properties Rhodapon LS-92/RN is also used in a number of technical applications such as fire-fighting, emulsion polymerization or oil fields.

Rhodapon LS-92/RN is an ammonium salt of ethoxylated lauryl sulfate, a surfactant that contains PEG (polyethylene glycol) in its structure.
Rhodapon LS-92/RN is classified as an alkyl sulfate and is an anionic surfactantfound primarily in shampoos and body-wash as a foaming agent.
May be contaminated with potentially toxic manufacturing impurities such as 1,4-dioxane.

Rhodapon LS-92/RN is added to products as a foaming agent, and as a detergent.
Rhodapon LS-92/RN is used in many shampoos, toothpastes, and skin cleansers.
Rhodapon LS-92/RN can cause moderate to severe skin and eye irritation.

Rhodapon LS-92/RN can also be contaminated with 1,4-Dioxane a suspected carcinogen.
The severity of the irritation to increases directly with the concentration of ALES in a product.
When combined with other chemicals, Rhodapon LS-92/RN can create nitrosamines, which are a potent class of carcinogens.

Rhodapon LS-92/RN may also damage skin’s immune system by causing skin layers to separate, inflame and age.
Rhodapon LS-92/RN is a salt classified as a sulfate ester.
Rhodapon LS-92/RN is integral to the cosmetics and personal care product industry.

Its high-foaming characteristics make it desirable in products that consumers equate with a lathering or bubbling action, such as shampoos, body washes, and bubble baths.
Its application also extends to toothpaste, facial cleansers, and shaving creams, where it aids in product distribution and enhances the overall user experience.
Rhodapon LS-92/RN can be derived from coconut and is used primarily as a detergent cleansing agent.

Rhodapon LS-92/RN is considered to be gentle and effective.
Rhodapon LS-92/RN is an anionic surfactant.
This means it lowers the surface tension of water, making the water spread more easily.

Rhodapon LS-92/RN is added to products as a foaming agent and as a detergent.
Rhodapon LS-92/RN must be used in a low-pH shampoo or shower gel since high-pH systems smell of ammonia.
Rhodapon LS-92/RN is typically used at 20-35%.

It is designed for low-pH shampoos, bath products, and cleansers requiring dense, rich foam, low color, and low odor.
Rhodapon LS-92/RN is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4).
The dodecyl signifies the presence of a 12-member carbon chain in the molecular backbone which allows the molecule to bond with non-polar portions of molecules while the highly polar sulfate head allows the molecule to bond with polar molecules such as water.

Rhodapon LS-92/RN is classified as an alkyl sulfate and is an anionic surfactant found primarily in shampoos and body-wash as a foaming agent.
Rhodapon LS-92/RN is very high-foam surfactants that disrupt the surface tension of water by forming micelles around the polar water molecules.
Rhodapon LS-92/RN, an accepted contraction of sodium lauryl ether sulfate (SLES), also called sodium alkylethersulfate, is an anionic detergent and surfactant found in many personal care products (soaps, shampoos, toothpaste, etc.) and for industrial uses.

Rhodapon LS-92/RN is an inexpensive and very effective foaming agent.
Rhodapon LS-92/RN, sodium lauryl sulfate (SLS), Rhodapon LS-92/RN, and sodium pareth sulfate are surfactants that are used in many cosmetic products for their cleaning and emulsifying properties.
Rhodapon LS-92/RN is derived from palm kernel oil or coconut oil.

In herbicides, Rhodapon LS-92/RN is used as a surfactant to improve absorption of the herbicidal chemicals and reduces time the product takes to be rainfast, when enough of the herbicidal agent will be absorbed.
Its chemical formula is CH3(CH2)11(OCH2CH2)nOSO3Na.
Sometimes the number represented by n is specified in the name, for example laureth-2 sulfate.

Rhodapon LS-92/RN is heterogeneous in the number of ethoxyl groups, where n is the mean.
Rhodapon LS-92/RN is the most common one in commercial products.
Rhodapon LS-92/RN is a fantastic cleanser and foam booster that will improve the efficacy and texture of your DIY product.

Rhodapon LS-92/RN will give your formulation a rich and creamy texture, as well as thick and fluffy bubbles.
Because it is natural and organic, it is ideal for people with pH-sensitive skin.
Rhodapon LS-92/RN is a fantastic substitute for sulphate products, allowing formulation to be sulphate-free.

Rhodapon LS-92/RN is also effective with hard water.
Rhodapon LS-92/RN may be added to solid or cream goods without boiling the solution.
Rhodapon LS-92/RN is a high-purity, dust-free anionic surfactant in needle form, primarily composed of Sodium C12-14 Lauryl Sulfate (CAS: 68585-47-7).

Rhodapon LS-92/RN is known for its excellent foaming and detergent properties and is easy to disperse in water.
The combination of nonpolar and polar groups confers surfactant properties to the anion: Rhodapon LS-92/RN facilitates dissolution of both polar and non-polar materials.

Rhodapon LS-92/RN plays a crucial role in these formulations by reducing the surface tension between different substances, allowing them to mix effectively.
Rhodapon LS-92/RN is derived from lauryl alcohol, making it plant-derived in some cases.

Boiling Point: 418°C
pH: 6.5-7.5
Solubility: Soluble in water
Viscosity: Low

Rhodapon LS-92/RN, like any other surfactant, makes a good base for cleansers because of the way it disrupts the hydrogen bonding in water.
Hydrogen bonding is the primary contributor to the high surface tension of water.
In solution, the Rhodapon LS-92/RN anions and the ammonium cations separate.

Rhodapon LS-92/RN, like any other surfactant, makes a good base for cleansers because of the way it disrupts the hydrogen bonding in water.
The former align themselves into what is known as a micelle, in which the ions form a sphere, with the polar heads (the sulfate) on the surface of the sphere and the nonpolar hydrophobic tails pointing inwards towards the center.
The water molecules around the micelle arrange themselves around the polar heads, but this disrupts their hydrogen bonding with the water surrounding them.

The overall effect of having these micelles in an aqueous (water) environment is that the water becomes more able to penetrate things like cloth fibers or hair, and also becomes more readily available to solvate anything coming off the aforementioned substance.
Rhodapon LS-92/RN is prepared by ethoxylation of dodecyl alcohol, which is produced industrially from palm kernel oil or coconut oil.

The resulting ethoxylate is converted to a half ester of sulfuric acid, which is neutralized by conversion to the sodium salt.
The related surfactant Rhodapon LS-92/RN is produced similarly, but without the ethoxylation step.
Rhodapon LS-92/RN is commonly used alternatives to SLES in consumer products.

Rhodapon LS-92/RN works by removing the dirt and impurities mixed with oils in your skin and hair.
Rhodapon LS-92/RN works by allowing the mixing of these oils with water, which can now be easily rinsed away, hence cleansing the desired area.
Rhodapon LS-92/RN is recommended that it should be used at a concentration of 30% for best results.

It is soluble in water and alcohols but insoluble in volatile oils.
Rhodapon LS-92/RN is widely available across multiple regions including Asia Pacific, Europe, Latin America, and North America, and is typically used in concentrations exceeding 92% active substance.
Rhodapon LS-92/RN has minimal impurities, with sodium chloride content under 0.5% and unsulfated matter under 2%​

Hydrogen bonding is the primary contributor to the high surface tension of water.
In solution, the Rhodapon LS-92/RN anions and the ammonium cations separate.
Rhodapon LS-92/RN is another compound from a large group of surfactants playing a key role primarily in the cosmetics industry.

Rhodapon LS-92/RN (which is the INCI name of this substance) is an anionic compound that belongs to the group of alkyl sulphates.
The chemical name of this surfactant is Rhodapon LS-92/RN.
Rhodapon LS-92/RN is another surfactant found in most cosmetic products.

Due to its very good cleaning and foaming properties, as well as a milder effect on the skin and hair (vs. SLS), it is often chosen for the production of shampoos, shower gels, shaving foams and many others.
Information circulating around the Internet has raised questions about the safety of SLS (Sodium Lauryl Sulfate).
This information that is circulating also has used Rhodapon LS-92/RN as a synonym for Sodium Laureth Sulfate.

Rhodapon LS-92/RN actually stands for Sodium Lauryl Sulfate, which a different chemical.
The following information is provided from the Cosmetic Ingredient Review safety assessments of both Rhodapon LS-92/RN and SLS (Sodium Lauryl Sulfate).
Due to the fact that Rhodapon LS-92/RN is much less irritating in comparison with a popular surfactant, Sodium Lauryl Sulphate (SLS), it is a good substitute for this component, e.g. in dishwashing liquids and other household detergents.

As a washing component, Rhodapon LS-92/RN is also included in detergents dedicated to industrial applications, such as motor vehicle cleaning and maintenance.
In the construction industry, Rhodapon LS-92/RN is used in agents reducing the weight of plasterboards and in air-entraining/plasticizing admixtures.
In the chemical industry, especially in emulsion polymerization processes, it provides excellent stabilization of the polymer dispersion under lower pH ranges.

Thanks to this, it becomes possible to design the particle size, including acrylic, styrene-acrylic or VaE dispersions.
Rhodapon LS-92/RN is an indirect food additive based on lists published by the US Food and Drug Administration (FDA).

Uses:
Rhodapon LS-92/RN acts as a foaming agent that helps distribute the toothpaste more evenly while brushing and aids in cleaning the teeth effectively​​.
Rhodapon LS-92/RN is used for its ability to produce rich lather, which helps in cleaning the scalp and hair by removing oils and dirt​.
Its excellent foaming capabilities make it ideal for use in products like bubble baths and shower gels, providing a luxurious lather that enhances the user experience​.

The surfactant helps in emulsifying oils and suspending dirt particles, making it easier to wash them away with water.
In these products, Rhodapon LS-92/RN can help improve texture and consistency, allowing for easier application and better absorption by the skin.
Used in soap bars, it helps in producing a creamy lather that cleanses the skin effectively​​.

As a foaming agent, it enhances the distribution and effectiveness of the toothpaste, aiding in thorough cleaning of the teeth​.
Rhodapon LS-92/RN creates a rich lather that helps remove oils, dirt, and impurities from hair and scalp, making it a staple in hair care products​.
Its ability to produce a luxurious foam improves the sensory experience while ensuring effective cleansing​​.

In liquid hand soaps, it helps in emulsifying oils and suspending dirt, making it easier to rinse them off with water.
Rhodapon LS-92/RN improves the texture and consistency, aiding in better spreadability and absorption into the skin​.
Rhodapon LS-92/RN is used in toilet bars for its ability to produce a creamy, cleansing lather​.

Its powerful detergent properties make it effective in removing grease and grime from surfaces, hence used in various household cleaning products.
Suitable for use in heavy-duty cleaning products designed for industrial applications due to its strong emulsifying capabilities​.
Rhodapon LS-92/RN is used to stabilize emulsions, helping to mix oils and water effectively in products ranging from cosmetics to industrial cleaners.

Rhodapon LS-92/RN is used in the textile industry for processes like scouring and wetting of fabrics due to its ability to lower surface tension.
Rhodapon LS-92/RN is known for its high purity (>92% active substance), ensuring consistent performance in formulations​.
Its physical form as free-flowing, dust-free needles makes it easy to handle and incorporate into various product formulations​.

Excellent foaming properties make it a preferred ingredient in personal care and cleaning products​​.
Easily dispersible in water, which facilitates its use in aqueous formulations​.
Rhodapon LS-92/RN is an anionic surfactant which can be used in the preparation of porous building ceramics by gelcasting and formulation of cosmetic products.

Rhodapon LS-92/RN can also be used as a corrosion inhibitor for carbon steel in acidic solution.
Rhodapon LS-92/RN is commonly used in hand soaps as a foaming agent and surfactant.
Rhodapon LS-92/RN helps to create a rich lather that effectively removes dirt, oil, and other impurities from the skin.

In hand sanitizers, Rhodapon LS-92/RN is not typically used as it can be an irritant to the skin.
Instead, hand sanitizers typically contain alcohol or other antimicrobial agents that kill bacteria and viruses without the need for a foaming agent.
Rhodapon LS-92/RN’s worth noting that there are some concerns about the use of ALS in personal care products, as it can be an irritant to the skin and eyes in some people.

However, when used in appropriate concentrations and according to recommended guidelines, it is generally considered to be safe for use in personal care products.
Rhodapon LS-92/RN has a chemical structure due to which it is classified as a member of a large group of compounds called surfactants.
Surfactant particles surround dirt, which makes its particles detach from the cleaned surface, from which they are then rinsed off with water.

In addition, the good foaming properties of this compound enhance the cleansing effect and the feeling of freshness after application.
The cleaning properties of Rhodapon LS-92/RN are directly related to its ability to produce large amounts of stable foam.
The ability to produce dense and stable foam allows to obtain fine and evenly distributed air bubbles.

Foam is a system where air (or other gas) is dispersed in a liquid.
Pure liquids do not have the ability to foam, but after adding surfactants, foam formation is observed in such systems.
The foaming capacity of Rhodapon LS-92/RN largely depends on its concentration, the pH value of the solution and the hardness of the water.

Importantly, the good cleaning and foaming properties of Rhodapon LS-92/RN are preserved even in the presence of an excessive amount of sebum.
Rhodapon LS-92/RN is very often used as a substitute for irritating detergents such as SLS (Sodium Lauryl Sulphate).
However, Rhodapon LS-92/RN can also be irritating to the skin and mucous membranes, which is why it is most often used together with other substances that balance its effects.

Rhodapon LS-92/RN is a mild cleanser and surfactant that is used as a foaming agent in shampoos, shaving foam, toothpaste, and other skincare products.
It is extremely beneficial for people with sensitive skin and mild skin issues.

Safety profile:
Rhodapon LS-92/RNs exhibit low acute oral toxicity, no toxicity through exposure to the skin, concentration dependent skin irritation, and concentration dependent eye-irritation.
They do not sensitize the skin and did not appear to be carcinogenic in a two-year study on rats.
The report found that longer carbon chains (16–18) were less irritating to the skin than chains of 12–15 carbons in length.

In addition, concentrations below 1% were essentially non-irritating while concentrations greater than 10% produced moderate to strong irritation of the skin.
Rhodapon LS-92/RN is considered safe for cosmetic use when used in appropriate concentrations.
However, in high concentrations, it may cause mild skin and eye irritation for some individuals.

Therefore, proper regulation during manufacturing and patch testing before use becomes important.
Rhodapon LS-92/RN is an innocuous detergent.
A 1983 report by the Cosmetic Ingredient Review, shampoos containing up to 31% Rhodapon LS-92/RN registered 6 health complaints out of 6.8 million units sold.

These complaints included two of scalp itch, two allergic reactions, one hair damage and one complaint of eye irritation.
The CIR report concluded that both sodium and ammonium lauryl sulfate "appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin.

In products intended for prolonged use, concentrations should not exceed 1%".
The Human and Environmental Risk Assessment (HERA) project performed a thorough investigation of all alkyl sulfates, as such the results they found apply directly to Rhodapon LS-92/RN.


RHODIOLA ROSEA EXTRACT

Rhodiola Rosea Extract, derived from the root of Rhodiola rosea, is known for its adaptogenic, antioxidant, and anti-fatigue properties.
Rhodiola Rosea Extract is widely recognized for its ability to reduce stress, improve cognitive function, and enhance physical endurance, making it a valuable ingredient in dietary supplements and wellness formulations.
This versatile extract offers both therapeutic and wellness benefits, helping to support mental clarity, improve energy levels, and enhance overall resilience to stress.

CAS Number: 97404-52-9
EC Number: 307-922-2

Synonyms: Rhodiola Extract, Rhodiola Rosea Root Extract, Golden Root Extract, Arctic Root Extract, Rosavin Extract, Rhodiola Herbal Extract, Rhodiola Phytocomplex, Rhodiola Bioactive Extract, Golden Root Phytocomplex, Rhodiola Rosea Root Active



APPLICATIONS


Rhodiola Rosea Extract is extensively used in stress-relief supplements, offering adaptogenic benefits that help the body cope with physical and mental stress while promoting overall relaxation.
Rhodiola Rosea Extract is favored in the formulation of energy-boosting supplements, where it helps to improve stamina, reduce fatigue, and enhance physical endurance, making it popular among athletes and active individuals.
Rhodiola Rosea Extract is utilized in the development of cognitive function supplements, providing benefits for enhancing focus, memory, and mental clarity.

Rhodiola Rosea Extract is widely used in dietary supplements for its ability to support mental well-being, helping to alleviate symptoms of anxiety and depression by balancing neurotransmitter levels.
Rhodiola Rosea Extract is employed in the creation of mood-enhancing supplements, offering natural support for reducing mood swings and promoting emotional stability.
Rhodiola Rosea Extract is essential in the development of nootropic products, where it helps to boost mental performance and increase resistance to cognitive fatigue during stressful situations.

Rhodiola Rosea Extract is utilized in the production of supplements designed to improve immune function, providing antioxidant protection and enhancing the body’s resilience to infections and illness.
Rhodiola Rosea Extract is a key ingredient in wellness supplements aimed at enhancing overall vitality, reducing burnout, and improving general well-being.
Rhodiola Rosea Extract is used in the development of adaptogen complexes, where it is combined with other adaptogenic herbs to provide comprehensive support for stress management and energy balance.

Rhodiola Rosea Extract is applied in the formulation of anti-fatigue supplements, where it helps to reduce exhaustion and improve recovery times after physical exertion or mental strain.
Rhodiola Rosea Extract is employed in the production of anti-stress teas and beverages, offering adaptogenic support to help the body resist the damaging effects of stress.
Rhodiola Rosea Extract is used in the development of brain health supplements, where it supports neuroprotection, enhances cognitive function, and promotes long-term brain health.

Rhodiola Rosea Extract is widely utilized in anti-aging supplements for its antioxidant properties, helping to protect cells from oxidative damage and promote healthy aging.
Rhodiola Rosea Extract is a key component in weight management supplements, where it helps to regulate metabolism, reduce stress-related cravings, and support healthy weight loss.
Rhodiola Rosea Extract is used in sleep-support supplements, helping to improve sleep quality and reduce insomnia by calming the nervous system and reducing stress.

Rhodiola Rosea Extract is employed in the formulation of post-exercise recovery products, providing support for muscle recovery, reducing soreness, and improving endurance for future activities.
Rhodiola Rosea Extract is applied in supplements designed to boost physical performance, offering athletes and fitness enthusiasts enhanced stamina, reduced fatigue, and improved strength during workouts.
Rhodiola Rosea Extract is utilized in the creation of wellness drinks, offering benefits for increasing energy, promoting relaxation, and enhancing mental clarity.

Rhodiola Rosea Extract is found in mood-regulating supplements, where it helps to balance hormone levels and reduce symptoms of stress-related disorders, such as adrenal fatigue.
Rhodiola Rosea Extract is used in the production of mental resilience supplements, offering support for maintaining cognitive function under high-stress conditions.
Rhodiola Rosea Extract is a key ingredient in supplements designed to support overall resilience to emotional and physical stress, making it an ideal choice for individuals experiencing chronic stress or burnout.

Rhodiola Rosea Extract is employed in the development of supplements for improving work performance, offering benefits for enhancing focus, concentration, and productivity.
Rhodiola Rosea Extract is applied in natural remedies for reducing the symptoms of depression and anxiety, offering natural support for mental health.
Rhodiola Rosea Extract is utilized in wellness products aimed at improving cardiovascular health, where it helps to regulate blood pressure and support healthy circulation.

Rhodiola Rosea Extract is found in supplements for reducing stress-related digestive issues, such as indigestion, bloating, and stomach discomfort.
Rhodiola Rosea Extract is used in post-trauma recovery supplements, helping to reduce mental and emotional exhaustion following physically or emotionally demanding situations.
Rhodiola Rosea Extract is a key ingredient in nootropic formulas that support mental alertness, cognitive flexibility, and problem-solving under pressure.



DESCRIPTION


Rhodiola Rosea Extract, derived from the root of Rhodiola rosea, is known for its adaptogenic, antioxidant, and anti-fatigue properties.
Rhodiola Rosea Extract is widely recognized for its ability to reduce stress, improve cognitive function, and enhance physical endurance, making it a valuable ingredient in dietary supplements and wellness formulations.

Rhodiola Rosea Extract offers additional benefits such as boosting mental clarity, improving mood, and supporting immune health.
Rhodiola Rosea Extract is often incorporated into formulations designed to enhance physical and mental performance, making it an ideal choice for athletes and individuals dealing with high levels of stress.
Rhodiola Rosea Extract is recognized for its ability to protect cells from oxidative damage, helping to prevent premature aging and improve overall vitality.

Rhodiola Rosea Extract is commonly used in both traditional and modern wellness formulations, providing a reliable solution for managing stress, enhancing energy levels, and improving cognitive performance.
Rhodiola Rosea Extract is valued for its ability to improve the body's resilience to physical and emotional stress, making it an ideal ingredient for stress-management and anti-fatigue products.
Rhodiola Rosea Extract is a versatile ingredient that can be used in a variety of products, including supplements, teas, capsules, and nootropic formulations.

Rhodiola Rosea Extract is an ideal choice for products targeting stress relief, cognitive enhancement, and physical endurance, providing natural and effective care for these concerns.
Rhodiola Rosea Extract is known for its compatibility with other adaptogenic and cognitive-supporting ingredients, allowing it to be easily integrated into multi-functional formulations.
Rhodiola Rosea Extract is often chosen for formulations requiring a balance between mental and physical stress relief, energy enhancement, and immune support, ensuring comprehensive wellness benefits.

Rhodiola Rosea Extract enhances the overall effectiveness of wellness products by providing natural support for reducing fatigue, improving mental performance, and promoting relaxation.
Rhodiola Rosea Extract is a reliable ingredient for creating products that offer noticeable improvements in stress management, cognitive function, and physical endurance.
Rhodiola Rosea Extract is an essential component in innovative wellness products known for their performance, safety, and ability to support stress resilience, cognitive health, and overall vitality.



PROPERTIES


Chemical Formula: N/A (Natural extract)
Common Name: Rhodiola Rosea Extract (Rhodiola rosea Extract)
Molecular Structure:
Appearance: Yellow-brown powder or liquid extract
Density: Approx. 1.00-1.05 g/cm³ (for powder)
Melting Point: N/A (powder form)
Solubility: Soluble in water and ethanol; insoluble in oils
Flash Point: >100°C (for powder)
Reactivity: Stable under normal conditions; no known reactivity issues
Chemical Stability: Stable under recommended storage conditions
Storage Temperature: Store between 15-25°C in a cool, dry place
Vapor Pressure: Low (for liquid extract)



FIRST AID


Inhalation:
If Rhodiola Rosea Extract is inhaled, move the affected person to fresh air immediately.
If breathing difficulties persist, seek immediate medical attention.
If the person is not breathing, administer artificial respiration.
Keep the affected person warm and at rest.

Skin Contact:
Wash the affected area with soap and water.
If skin irritation persists, seek medical attention.

Eye Contact:
In case of eye contact, flush the eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids.
Seek immediate medical attention if irritation or redness persists.
Remove contact lenses if present and easy to do; continue rinsing.

Ingestion:
If Rhodiola Rosea Extract is ingested, do not induce vomiting unless directed to do so by medical personnel.
Rinse the mouth thoroughly with water.
Seek immediate medical attention.
If the person is conscious, give small sips of water to drink.

Note to Physicians:
Treat symptomatically.
No specific antidote.
Provide supportive care.



HANDLING AND STORAGE


Handling:

Personal Protection:
Wear appropriate personal protective equipment (PPE) such as gloves and safety goggles if handling large quantities.
Use in a well-ventilated area to avoid inhalation of dust.

Ventilation:
Ensure adequate ventilation when handling large amounts of Rhodiola Rosea Extract to control airborne concentrations below occupational exposure limits.

Avoidance:
Avoid direct contact with eyes and prolonged skin contact.
Do not eat, drink, or smoke while handling Rhodiola Rosea Extract.
Wash hands thoroughly after handling.

Spill and Leak Procedures:
Contain spills to prevent further release and minimize exposure.
Absorb with inert material (e.g., sand, vermiculite) and collect for disposal.
Dispose of in accordance with local regulations.

Storage:
Store Rhodiola Rosea Extract in a cool, dry, well-ventilated area away from incompatible materials (see SDS for specific details).
Keep containers tightly closed when not in use to prevent contamination.
Store away from heat sources, direct sunlight, and ignition sources.

Handling Cautions:
Avoid inhalation of dust and direct contact with skin and eyes.
Use explosion-proof equipment in areas where dust or vapors may be present.


RHODODENDRON (SECT. TSUTSUSI) EXTRACT

Rhododendron (sect. Tsutsusi) Extract, derived from the Rhododendron species in the Tsutsusi section, is known for its antioxidant, anti-inflammatory, and antimicrobial properties.
Rhododendron (sect. Tsutsusi) Extract is widely recognized for its ability to protect skin from environmental damage, reduce inflammation, and promote healing, making it a valuable ingredient in skincare, wellness, and traditional medicinal formulations.
This versatile extract offers both therapeutic and cosmetic benefits, helping to soothe irritated skin, improve skin elasticity, and support overall wellness.

CAS Number: N/A (specific CAS number for extract varies by processing method)
EC Number: N/A (specific EC number for extract varies by processing method)

Synonyms: Rhododendron Extract, Tsutsusi Extract, Rhododendron sect. Tsutsusi Extract, Azalea Extract, Rhododendron Herbal Extract, Tsutsusi Phytocomplex, Rhododendron Bioactive Extract, Azalea Phytocomplex, Rhododendron Active, Tsutsusi Flower Extract



APPLICATIONS


Rhododendron (sect. Tsutsusi) Extract is extensively used in skincare formulations for its antioxidant properties, helping to protect the skin from free radical damage and environmental stressors like pollution and UV rays.
Rhododendron (sect. Tsutsusi) Extract is favored in anti-aging creams, where it helps to improve skin elasticity, reduce fine lines, and restore firmness by promoting collagen production.
Rhododendron (sect. Tsutsusi) Extract is utilized in the development of soothing lotions, offering relief from inflammation and irritation, making it suitable for sensitive or reactive skin.

Rhododendron (sect. Tsutsusi) Extract is widely used in traditional herbal remedies for its antimicrobial properties, which help to reduce infections, improve wound healing, and promote skin health.
Rhododendron (sect. Tsutsusi) Extract is employed in the creation of herbal teas and wellness beverages, offering antioxidant benefits and supporting overall immune function.
Rhododendron (sect. Tsutsusi) Extract is essential in the development of products designed to calm and heal skin conditions such as eczema, rosacea, and dermatitis, offering natural anti-inflammatory relief.

Rhododendron (sect. Tsutsusi) Extract is utilized in the production of anti-inflammatory supplements, offering natural support for reducing chronic inflammation and improving joint health.
Rhododendron (sect. Tsutsusi) Extract is a key ingredient in holistic wellness products designed to detoxify the skin, providing cleansing benefits and promoting overall skin health.
Rhododendron (sect. Tsutsusi) Extract is used in the development of skin-brightening creams, where it helps to even out skin tone and lighten hyperpigmentation caused by sun exposure or aging.

Rhododendron (sect. Tsutsusi) Extract is applied in the formulation of toners and serums, offering hydration, calming effects, and antioxidant protection to keep the skin looking youthful and refreshed.
Rhododendron (sect. Tsutsusi) Extract is employed in the creation of anti-redness treatments, helping to reduce visible signs of inflammation, irritation, and sensitivity in the skin.
Rhododendron (sect. Tsutsusi) Extract is used in wellness supplements that support immune health, offering benefits for boosting the body’s natural defenses and improving overall vitality.

Rhododendron (sect. Tsutsusi) Extract is widely utilized in the formulation of anti-pollution skincare products, where it helps to protect the skin from environmental pollutants and promote detoxification.
Rhododendron (sect. Tsutsusi) Extract is a key component in herbal compresses and topical treatments designed to soothe inflamed skin and promote wound healing.
Rhododendron (sect. Tsutsusi) Extract is used in the production of after-sun care products, providing relief from UV-induced skin damage and helping to repair sunburned skin.

Rhododendron (sect. Tsutsusi) Extract is employed in the creation of scalp treatments for sensitive skin, providing soothing, anti-inflammatory benefits and promoting a healthy scalp.
Rhododendron (sect. Tsutsusi) Extract is applied in the development of body creams and lotions aimed at improving skin texture, elasticity, and hydration for dry and mature skin types.
Rhododendron (sect. Tsutsusi) Extract is utilized in the production of cosmetic products that promote skin regeneration, offering benefits for reducing scars and accelerating skin healing.

Rhododendron (sect. Tsutsusi) Extract is found in wellness products aimed at enhancing respiratory health, offering natural support for reducing symptoms of bronchitis, colds, and other respiratory infections.
Rhododendron (sect. Tsutsusi) Extract is used in detoxifying beauty masks, helping to draw out impurities, clear clogged pores, and leave the skin feeling refreshed and purified.
Rhododendron (sect. Tsutsusi) Extract is a key ingredient in bath soaks and oils, providing soothing and calming effects that help to relax the body and relieve muscle tension.



DESCRIPTION


Rhododendron (sect. Tsutsusi) Extract, derived from the Rhododendron species in the Tsutsusi section, is known for its antioxidant, anti-inflammatory, and antimicrobial properties.
Rhododendron (sect. Tsutsusi) Extract is widely recognized for its ability to protect skin from environmental damage, reduce inflammation, and promote healing, making it a valuable ingredient in skincare, wellness, and traditional medicinal formulations.

Rhododendron (sect. Tsutsusi) Extract offers additional benefits such as improving skin tone, reducing redness, and providing relief from inflammatory skin conditions.
Rhododendron (sect. Tsutsusi) Extract is often incorporated into formulations designed to promote skin regeneration, protect against UV-induced skin damage, and support overall skin health.
Rhododendron (sect. Tsutsusi) Extract is recognized for its ability to soothe sensitive skin, making it ideal for formulations aimed at reducing redness and irritation caused by environmental aggressors.

Rhododendron (sect. Tsutsusi) Extract is commonly used in both traditional and modern wellness formulations, providing a reliable solution for protecting the skin, promoting healing, and reducing inflammation.
Rhododendron (sect. Tsutsusi) Extract is valued for its ability to offer antimicrobial benefits, helping to treat and prevent skin infections while supporting wound healing.
Rhododendron (sect. Tsutsusi) Extract is a versatile ingredient that can be used in a variety of products, including creams, serums, toners, supplements, and wellness teas.

Rhododendron (sect. Tsutsusi) Extract is an ideal choice for products targeting inflammation, oxidative stress, and environmental protection, providing natural and effective care for these concerns.
Rhododendron (sect. Tsutsusi) Extract is known for its compatibility with other skin-soothing and antioxidant-rich ingredients, allowing it to be easily integrated into multi-functional formulations.
Rhododendron (sect. Tsutsusi) Extract is often chosen for formulations requiring a balance between calming, healing, and antimicrobial care, ensuring comprehensive skin protection and wellness benefits.

Rhododendron (sect. Tsutsusi) Extract enhances the overall effectiveness of skincare and wellness products by providing natural support for protecting the skin, calming irritation, and promoting detoxification.
Rhododendron (sect. Tsutsusi) Extract is a reliable ingredient for creating products that offer noticeable improvements in skin clarity, elasticity, and overall radiance.
Rhododendron (sect. Tsutsusi) Extract is an essential component in innovative skincare and wellness products known for their performance, safety, and ability to support sensitive skin, wound healing, and overall vitality.



PROPERTIES


Chemical Formula: N/A (Natural extract)
Common Name: Rhododendron Extract (Rhododendron sect. Tsutsusi Extract)
Molecular Structure:
Appearance: Yellow-brown to amber liquid or powder extract
Density: Approx. 1.00-1.05 g/cm³ (for powder)
Melting Point: N/A (powder form)
Solubility: Soluble in water and ethanol; insoluble in oils
Flash Point: >100°C (for powder)
Reactivity: Stable under normal conditions; no known reactivity issues
Chemical Stability: Stable under recommended storage conditions
Storage Temperature: Store between 15-25°C in a cool, dry place
Vapor Pressure: Low (for liquid extract)



FIRST AID


Inhalation:
If Rhododendron (sect. Tsutsusi) Extract is inhaled, move the affected person to fresh air immediately.
If breathing difficulties persist, seek immediate medical attention.
If the person is not breathing, administer artificial respiration.
Keep the affected person warm and at rest.

Skin Contact:
Wash the affected area with soap and water.
If skin irritation persists, seek medical attention.

Eye Contact:
In case of eye contact, flush the eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids.
Seek immediate medical attention if irritation or redness persists.
Remove contact lenses if present and easy to do; continue rinsing.

Ingestion:
If Rhododendron (sect. Tsutsusi) Extract is ingested, do not induce vomiting unless directed to do so by medical personnel.
Rinse the mouth thoroughly with water.
Seek immediate medical attention.
If the person is conscious, give small sips of water to drink.

Note to Physicians:
Treat symptomatically.
No specific antidote.
Provide supportive care.



HANDLING AND STORAGE


Handling:

Personal Protection:
Wear appropriate personal protective equipment (PPE) such as gloves and safety goggles if handling large quantities.
Use in a well-ventilated area to avoid inhalation of dust.

Ventilation:
Ensure adequate ventilation when handling large amounts of Rhododendron (sect. Tsutsusi) Extract to control airborne concentrations below occupational exposure limits.

Avoidance:
Avoid direct contact with eyes and prolonged skin contact.
Do not eat, drink, or smoke while handling Rhododendron (sect. Tsutsusi) Extract.
Wash hands thoroughly after handling.

Spill and Leak Procedures:
Contain spills to prevent further release and minimize exposure.
Absorb with inert material (e.g., sand, vermiculite) and collect for disposal.
Dispose of in accordance with local regulations.

Storage:
Store Rhododendron (sect. Tsutsusi) Extract in a cool, dry, well-ventilated area away from incompatible materials (see SDS for specific details).
Keep containers tightly closed when not in use to prevent contamination.
Store away from heat sources, direct sunlight, and ignition sources.

Handling Cautions:
Avoid inhalation of dust and direct contact with skin and eyes.
Use explosion-proof equipment in areas where dust or vapors may be present.