Textile, Leather, Paper and Industrial Chemicals

BUTYLTRIGLYCOL 
Triglycol Monobutyl Ether; Butoxytriglycol; BTG; 2-(2-(2-Butoxyethoxy)ethoxy)ethanol; 3,6,9-Trioxatridecan-1-ol; Butyl Triglycol Ether; cas no:143-22-6
Butyric acid
SYNONYMS Butanic Acid; Butanoic Acid; Propylformic Acid; Butyrate; CAS NO. 107-92-6
BUTYROSPERMUM PARKII BUTTER
SYNONYMS C12-C14 Alcohols ethoxylated propoxylated;Alcohols, C12-14, ethoxylated propoxylated;Ethoxylated propoxylated C12-14 alcohols CAS NO:68439-51-0
C 12 14 ALCOHOL 6 EO
C 12 14 ALCOHOL 6 EO Alcohols, C12-14, ethoxylated 1 - 2.5 moles ethoxylated Regulatory process names 1 IUPAC names 30 Trade names 377 Other identifiers 25 Print infocardOpen Brief Profile Substance identity Help EC / List no.: 500-213-3 CAS no.: 68439-50-9 Mol. formula: (C2H4O)1-3(CH2)10-12C2H6O formula Hazard classification & labelling Help Warning! According to the classification provided by companies to ECHA in REACH registrations C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is very toxic to aquatic life and is harmful to aquatic life with long lasting effects. About C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Helpful information C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is manufactured and/or imported in the European Economic Area in 100 000 - 1 000 000 tonnes per year. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used by consumers, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, plant protection products, fertilisers, lubricants and greases, air care products and fuels. Other release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters) and outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids). Article service life ECHA has no public registered data on the routes by which C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed. Widespread uses by professional workers C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products and polishes and waxes. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following areas: formulation of mixtures and/or re-packaging, municipal supply (e.g. electricity, steam, gas, water) and sewage treatment and health services. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used for the manufacture of: chemicals. Other release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Formulation or re-packing C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, lubricants and greases, metal working fluids, fertilisers and cosmetics and personal care products. Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: formulation of mixtures, in processing aids at industrial sites and formulation in materials. Uses at industrial sites C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, metal surface treatment products, lubricants and greases and metal working fluids. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following areas: formulation of mixtures and/or re-packaging and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used for the manufacture of: chemicals, machinery and vehicles and fabricated metal products. Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: in processing aids at industrial sites, of substances in closed systems with minimal release and formulation of mixtures. Manufacture of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: manufacturing of the substance. How to use C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) safely Help ECHA has no data from registration dossiers on the precautionary measures for using C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). Guidance on the safe use of the substance provided by manufacturers and importers of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 7 EO non-ionic surfactant. Latronol L 7 is a colorless and odorless liquid and efficient (O/W) oil in water emulsifier. It is also biodegradable. Can be used in homecare, textile, paintings/coatings and agricultural applications. C12-14 Alcohol Ethoxylates (7EO) (C12-14 AE7) oleochemical non-ionic surfactant Substance Identification IUPAC Name Alcohols, C12-14(even numbered), ethoxylated CAS Number 68439-50-9 Other Names Lauryl Alcohol Ethoxylate Molecular Formula of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) UVCB substance (substances of Unknown or Variable composition, Complex reaction products or Biological materials), no univocal molecular formula available Structural formula of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO): Physical/Chemical Properties of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) [1,2] Molecular Weight of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 494.70 -522.75 g/mol Physical state of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO): Liquid Appearance of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Colourless, homogenous and opaque Odour of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Slight characteristic Density of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 0.9 g/cm³ at 20 °C (proxy from C12-14 AE2) Melting Points of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 25 - 35 °C Boiling point of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 266.95 °C at 101.4 kPa (proxy from C12-14 AE2) Flash Point of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 149 °C at 101.4 kPa (proxy from C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) , ethoxylated (1-2.5 EO)) Vapour Pressure of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 0.014 - 0.11 Pa at 25°C Water Solubility C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 15 mg/l at 25°C Flammability C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) No data available Explosive Properties C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) No data available Surface Tension C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 27 mN/m at 20°C (proxy from C12-14 AE2) Octanol/water Partition coefficient (Kow) log KOW = 4.63 - 5.71 Product and Process Description C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a non-ionic surfactant, belonging to the group of alcohol ethoxylates, with 7 moles of cradle-to-gate production for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a petrochemical surfactant. The ERASM SLE project recommends to use the data provided in a full ‘cradle-to-grave' life cycle context of the surfactant in a real application. Further information on the ERASM SLE project and the source of these datasets can be found in [3]. The full LCI can be accessed via www.erasm.org or via http://lcdn.thinkstep.com/Node/ Goal and Scope of ERASM SLE Project [3] The main goal was to update the existing LCI inventories [4,6] for the production of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and its main precursors/intermediates. Temporal Coverage Data collected represents a 12 month averages of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production in the year 2011, to compensate seasonal influence of data. The dataset is considered to be valid until substantial technological changes in the production chain occur. Geographical Coverage Current data were based on three suppliers representing C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production in Europe. The geographical representativeness for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) was considered ‘good' Technological Coverage The technological representativeness for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) was considered ‘good'. Figure 1 provides a schematic overview of the production process of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). Representativeness for market volume >60% (Represented market volume (in mass) covered by primary data used in ERASM SLE project) Declared Unit In ERASM SLE project the declared unit (functional unit) and reference flow is one thousand kilogram (1000 kg) of surfactant active ingredient. This was the reference unit also used in [4]. Functional Unit: 1 metric tonne of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 100% active substance. Allocation For C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production, allocation was not applied to the foreground system. The high value for carbon uptake of the C12-C14 alcohol ethoxylate is due to the main precursor C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) based on palm kernel oil and coconut oil. As C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) has a lower GWP than the alcohol, a higher share of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) in C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) results in a lower GWP than for C12-14 AE3. The alcohol ethoxylates based on fatty alcohols from natural sources have a lower global warming potential compared to those based on petrochemical feedstock C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a non-ionic surfactant, belonging to the group of alcohol ethoxylates, with 7 moles of ethylene oxide. The alcohol ethoxylates with seven ethylene oxide units are produced by the reaction of C12-C14 fatty alcohols (oleo) with ethylene oxide. The addition of ethylene oxide to C12-14 fatty alcohols leads to a distribution of homologue polyethylene glycol ether groups. The ethoxylation reaction can be catalyzed by alkaline catalysts as e.g. potassium hydroxide or by acidic catalysts as e.g. boron trifluoride or zinc chloride. For detergent range alcohol ethoxylates, the alkaline catalysis is normally used. The intermediate ethylene oxide is industrially produced by direct oxidation of ethylene in the presence of silver catalyst (Further details of the ethylene oxide production are explained in the Eco Profile fact sheet of the precursor ethylene oxide. Applications of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Personal Care: Foaming Agent in Shampoos and Bath Gels. Detergents: Wetting Agent in Detergents, Laundry Pre-spotters and Hard Surface Cleaners Surfactants and Esters: Surfactant Intermediate, Sulfonated to Make SLES (Sodium Lauryl Ether Sulfate). Used both in household and industrial products. cradle-to-gate production for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a petrochemical surfactant. The ERASM SLE project recommends to use the data provided in a full ‘cradle-to-grave' life cycle context of the surfactant in a real application. Further information on the ERASM SLE project and the source of these datasets can be found in Based on the LCI data an environmental impact assessment was performed for the indicators Primary Energy Demand (PED) and Global Warming Potential (GWP). Other impacts may be calculated from the full LCI dataset. Primary Energy Demand (PED): An analysis of the inventory data showed that the main contribution comes from the main raw materials C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and ethylene oxide (together about 90% contributions). Electricity and thermal energy generation each cause 3-5% of the PED. Direct process emissions, other chemicals, utilities, process waste treatment, and transport do not have relevant influence (each smaller 0.5%). The alcohol ethoxylates based on fatty alcohols from natural sources have a lower primary energy demand compared to those based on petrochemical feedstock. Global Warming Potential (GWP): An analysis of the inventory data showed that the main contribution comes from the main raw materials C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and ethylene oxide (together about 90% contributions). Electricity and thermal energy generation each cause 3-5% of the GWP. Direct process emissions, other chemicals, utilities, process waste treatment, and transport do not have relevant influence (each smaller 0.5%). The high value for carbon uptake of the C12-C14 alcohol ethoxylate is due to the main precursor C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) based on palm kernel oil and coconut oil. As EO has a lower GWP than the alcohol, a higher share of EO in C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) results in a lower GWP than for C12-14 AE3. The alcohol ethoxylates based on fatty alcohols from natural sources have a lower global warming potential compared to those C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) consumption by adult women is consistently associated with risk of breast cancer. Several questions regarding alcohol and breast cancer need to be addressed. Menarche to first pregnancy represents a window of time when breast tissue is particularly susceptible to carcinogens. Youth alcohol consumption is common in the USA, largely in the form of binge drinking and heavy drinking. Whether alcohol intake acts early in the process of breast tumorigenesis is unclear. This review aims to focus on the influences of timing and patterns of alcohol consumption and the effect of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) on intermediate risk markers. We also review possible mechanisms underlying the alcohol-breast cancer association. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO)l is considered by the International Agency for Research on Cancer to be causally related to breast cancer risk [1], with a 7-10% increase in risk for each 10 g (~1 drink) alcohol consumed daily by adult women [2-4]. This association is observed in both premenopausal and postmenopausal women. Compared with other organs, breast appears to be more susceptible to carcinogenic effects of alcohol. The risk of breast cancer is significantly increased by 4-15% for light alcohol consumption (?1 drink/day or ?12.5 g/day) [2,5,6] which does not significantly increase cancer risk in other organs of women [7]. This raises a clinical and public health concern because nearly half of women of child-bearing age drink alcohol and 15% of drinkers at this age have four or more drinks at a time [8]. Approximately 4-10% of breast cancers in the USA are attributable to alcohol consumption [2,5,6], accounting for 9000-23,000 new invasive breast cancer cases each year. Therefore, better understanding of how alcohol consumption increases breast cancer risk is crucial for developing breast cancer prevention strategies. As previous meta-analyses and systemic reviews comprehensively summarized the association between adult alcohol consumption and breast cancer risk [3,5,9,10], here we reviewed the recent epidemiologic evidence, with special emphasis on timing and patterns of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) on sumption and the effect of alcohol on intermediate markers. In addition, we discussed up-to-date mechanisms that have been proposed to explain the association and provide guidance for clinicians on preventive messages. Production of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) The process was developed at the Ludwigshafen laboratories of I.G. Farben by Conrad Schöller and Max Wittwer during the 1930s.[3][4] Alcohol ethoxysulfates C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) found in consumer products generally are linear alcohols, which could be mixtures of entirely linear alkyl chains or of both linear and mono-branched alkyl chains.[17][page needed] A high-volume example of these is sodium laureth sulfate a foaming agent in shampoos and toothpastes, as well as industrial detergents. Alcohol ethoxylates (AEs) Human health Alcohol ethoxylates are not observed to be mutagenic, carcinogenic, or skin sensitizers, nor cause reproductive or developmental effects.[18] One byproduct of ethoxylation is 1,4-dioxane, a possible human carcinogen.[19] Undiluted C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can cause dermal or eye irritation. In aqueous solution, the level of irritation is dependent on the concentration. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) are considered to have low to moderate toxicity for acute oral exposure, low acute dermal toxicity, and have mild irritation potential for skin and eyes at concentrations found in consumer products.[16] Aquatic and environmental aspects C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) are usually released down the drain, where they may be adsorbed into solids and biodegrade through anaerobic processes, with ~28-58% degraded in the sewer.[20][non-primary source needed] The remaining C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) are treated at waste water treatment plants and biodegraded via aerobic processes with less than 0.8% of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) released in effluent.[20] If released into surface waters, sediment or soil, C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) will degrade through aerobic and anaerobic processes or be taken up by plants and animals. Toxicity to certain invertebrates has a range of EC50 values for linear AE from 0.1 mg/l to greater than 100 mg/l. For branched alcohol exthoxylates, toxicity ranges from 0.5 mg/l to 50 mg/l.[16] The EC50 toxicity for algae from linear and branched AEs was 0.05 mg/l to 50 mg/l. Acute toxicity to fish ranges from LC50 values for linear AE of 0.4 mg/l to 100 mg/l, and branched is 0.25 mg/l to 40 mg/l. For invertebrates, algae and fish the essentially linear and branched C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) are considered to not have greater toxicity than Linear AE.[16] Alcohol ethoxysulfates (AESs) Biodegradation The degradation of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) proceeds by ?- or ß-oxidation of the alkyl chain, enzymatic hydrolysis of the sulfate ester, and by cleavage of an ether bond in the AES producing alcohol or alcohol ethoxylate and an ethylene glycol sulfate. Studies of aerobic processes also found C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) to be readily biodegradable.[12] The half-life of both AE and C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) in surface water is estimated to be less than 12 hours.[21][non-primary source needed] The removal of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) due to degradation via anaerobic processes is estimated to be between 75 and 87%. Aquatic Flow-through laboratory tests in a terminal pool of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) with mollusks found the NOEC of a snail, Goniobasis and the Asian clam, Corbicula to be greater than 730 ug/L. Corbicula growth was measured to be affected at a concentration of 75 ug/L.[22][non-primary source needed] The mayfly, genus Tricorythodes has a normalized density NOEC value of 190 ug/L.[23][non-primary source needed] Human Safety C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) has not been found to be genotoxic, mutagenic, or carcinogenic. Alcohols, C12-14, ethoxylated 1 - 2.5 moles ethoxylated Regulatory process names 1 IUPAC names 30 Trade names 377 Other identifiers 25 Print infocardOpen Brief Profile Substance identity Help EC / List no.: 500-213-3 CAS no.: 68439-50-9 Mol. formula: (C2H4O)1-3(CH2)10-12C2H6O formula Hazard classification & labelling Help Warning! According to the classification provided by companies to ECHA in REACH registrations C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is very toxic to aquatic life and is harmful to aquatic life with long lasting effects. About C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Helpful information C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is manufactured and/or imported in the European Economic Area in 100 000 - 1 000 000 tonnes per year. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used by consumers, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, plant protection products, fertilisers, lubricants and greases, air care products and fuels. Other release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters) and outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids). Article service life ECHA has no public registered data on the routes by which C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed. Widespread uses by professional workers C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products and polishes and waxes. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following areas: formulation of mixtures and/or re-packaging, municipal supply (e.g. electricity, steam, gas, water) and sewage treatment and health services. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used for the manufacture of: chemicals. Other release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use. Formulation or re-packing C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, lubricants and greases, metal working fluids, fertilisers and cosmetics and personal care products. Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: formulation of mixtures, in processing aids at industrial sites and formulation in materials. Uses at industrial sites C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following products: washing & cleaning products, metal surface treatment products, lubricants and greases and metal working fluids. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used in the following areas: formulation of mixtures and/or re-packaging and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is used for the manufacture of: chemicals, machinery and vehicles and fabricated metal products. Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: in processing aids at industrial sites, of substances in closed systems with minimal release and formulation of mixtures. Manufacture of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Release to the environment of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) can occur from industrial use: manufacturing of the substance. How to use C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) safely Help ECHA has no data from registration dossiers on the precautionary measures for using C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). Guidance on the safe use of the substance provided by manufacturers and importers of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 7 EO non-ionic surfactant. Latronol L 7 is a colorless and odorless liquid and efficient (O/W) oil in water emulsifier. It is also biodegradable. Can be used in homecare, textile, paintings/coatings and agricultural applications. C12-14 Alcohol Ethoxylates (7EO) (C12-14 AE7) oleochemical non-ionic surfactant Substance Identification IUPAC Name Alcohols, C12-14(even numbered), ethoxylated CAS Number 68439-50-9 Other Names Lauryl Alcohol Ethoxylate Molecular Formula of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) UVCB substance (substances of Unknown or Variable composition, Complex reaction products or Biological materials), no univocal molecular formula available Structural formula of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO): Physical/Chemical Properties of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) [1,2] Molecular Weight of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 494.70 -522.75 g/mol Physical state of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO): Liquid Appearance of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Colourless, homogenous and opaque Odour of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Slight characteristic Density of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 0.9 g/cm³ at 20 °C (proxy from C12-14 AE2) Melting Points of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 25 - 35 °C Boiling point of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 266.95 °C at 101.4 kPa (proxy from C12-14 AE2) Flash Point of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 149 °C at 101.4 kPa (proxy from C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) , ethoxylated (1-2.5 EO)) Vapour Pressure of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 0.014 - 0.11 Pa at 25°C Water Solubility C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 15 mg/l at 25°C Flammability C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) No data available Explosive Properties C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) No data available Surface Tension C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 27 mN/m at 20°C (proxy from C12-14 AE2) Octanol/water Partition coefficient (Kow) log KOW = 4.63 - 5.71 Product and Process Description C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a non-ionic surfactant, belonging to the group of alcohol ethoxylates, with 7 moles of cradle-to-gate production for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a petrochemical surfactant. The ERASM SLE project recommends to use the data provided in a full ‘cradle-to-grave' life cycle context of the surfactant in a real application. Further information on the ERASM SLE project and the source of these datasets can be found in [3]. The full LCI can be accessed via www.erasm.org or via http://lcdn.thinkstep.com/Node/ Goal and Scope of ERASM SLE Project [3] The main goal was to update the existing LCI inventories [4,6] for the production of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and its main precursors/intermediates. Temporal Coverage Data collected represents a 12 month averages of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production in the year 2011, to compensate seasonal influence of data. The dataset is considered to be valid until substantial technological changes in the production chain occur. Geographical Coverage Current data were based on three suppliers representing C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production in Europe. The geographical representativeness for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) was considered ‘good' Technological Coverage The technological representativeness for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) was considered ‘good'. Figure 1 provides a schematic overview of the production process of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). Representativeness for market volume >60% (Represented market volume (in mass) covered by primary data used in ERASM SLE project) Declared Unit In ERASM SLE project the declared unit (functional unit) and reference flow is one thousand kilogram (1000 kg) of surfactant active ingredient. This was the reference unit also used in [4]. Functional Unit: 1 metric tonne of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) 100% active substance. Allocation For C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) production, allocation was not applied to the foreground system. The high value for carbon uptake of the C12-C14 alcohol ethoxylate is due to the main precursor C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) based on palm kernel oil and coconut oil. As C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) has a lower GWP than the alcohol, a higher share of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) in C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) results in a lower GWP than for C12-14 AE3. The alcohol ethoxylates based on fatty alcohols from natural sources have a lower global warming potential compared to those based on petrochemical feedstock C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a non-ionic surfactant, belonging to the group of alcohol ethoxylates, with 7 moles of ethylene oxide. The alcohol ethoxylates with seven ethylene oxide units are produced by the reaction of C12-C14 fatty alcohols (oleo) with ethylene oxide. The addition of ethylene oxide to C12-14 fatty alcohols leads to a distribution of homologue polyethylene glycol ether groups. The ethoxylation reaction can be catalyzed by alkaline catalysts as e.g. potassium hydroxide or by acidic catalysts as e.g. boron trifluoride or zinc chloride. For detergent range alcohol ethoxylates, the alkaline catalysis is normally used. The intermediate ethylene oxide is industrially produced by direct oxidation of ethylene in the presence of silver catalyst (Further details of the ethylene oxide production are explained in the Eco Profile fact sheet of the precursor ethylene oxide. Applications of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) Personal Care: Foaming Agent in Shampoos and Bath Gels. Detergents: Wetting Agent in Detergents, Laundry Pre-spotters and Hard Surface Cleaners Surfactants and Esters: Surfactant Intermediate, Sulfonated to Make SLES (Sodium Lauryl Ether Sulfate). Used both in household and industrial products. cradle-to-gate production for C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO). C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) is a petrochemical surfactant. The ERASM SLE project recommends to use the data provided in a full ‘cradle-to-grave' life cycle context of the surfactant in a real application. Further information on the ERASM SLE project and the source of these datasets can be found in Based on the LCI data an environmental impact assessment was performed for the indicators Primary Energy Demand (PED) and Global Warming Potential (GWP). Other impacts may be calculated from the full LCI dataset. Primary Energy Demand (PED): An analysis of the inventory data showed that the main contribution comes from the main raw materials C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and ethylene oxide (together about 90% contributions). Electricity and thermal energy generation each cause 3-5% of the PED. Direct process emissions, other chemicals, utilities, process waste treatment, and transport do not have relevant influence (each smaller 0.5%). The alcohol ethoxylates based on fatty alcohols from natural sources have a lower primary energy demand compared to those based on petrochemical feedstock. Global Warming Potential (GWP): An analysis of the inventory data showed that the main contribution comes from the main raw materials C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) and ethylene oxide (together about 90% contributions). Electricity and thermal energy generation each cause 3-5% of the GWP. Direct process emissions, other chemicals, utilities, process waste treatment, and transport do not have relevant influence (each smaller 0.5%). The high value for carbon uptake of the C12-C14 alcohol ethoxylate is due to the main precursor C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) based on palm kernel oil and coconut oil. As EO has a lower GWP than the alcohol, a higher share of EO in C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) results in a lower GWP than for C12-14 AE3. The alcohol ethoxylates based on fatty alcohols from natural sources have a lower global warming potential compared to those C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) consumption by adult women is consistently associated with risk of breast cancer. Several questions regarding alcohol and breast cancer need to be addressed. Menarche to first pregnancy represents a window of time when breast tissue is particularly susceptible to carcinogens. Youth alcohol consumption is common in the USA, largely in the form of binge drinking and heavy drinking. Whether alcohol intake acts early in the process of breast tumorigenesis is unclear. This review aims to focus on the influences of timing and patterns of alcohol consumption and the effect of C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO) on intermediate risk markers. We also review possible mechanisms underlying the alcohol-breast cancer association. C 12 14 Alcohol 6 EO(C 12 14 Alkol 6 EO)l is considered by the International Agency for Research on Cancer to be causally related to breast cancer risk [1], with a 7-10% increase in risk for each 10 g (~1 drink) alcohol consumed daily by adult women [2-4]. This association is observed in both premenopausal and p
C 12 15 ALKYL LACTATE
DESCRIPTION:

C 12 15 alkyl lactate is a well-established emollient that can deliver a variety of benefits to sunscreens, lip balms, color cosmetics, creams and lotions and other personal care products.
C 12 15 alkyl lactate is Used to reduce the tackiness and greasiness of components such as petrolatum, C 12 15 alkyl lactate imparts a non-oily lubricity to hydro-alcoholic products.
C 12 15 alkyl lactate is easy to emulsify and is compatible with many systems.

CAS Number 93925-36-1
EINECS/ELINCS No: 300-338-1
Molecular Weight: 194.19 g/mol
Chem/IUPAC Name: Propanoic acid, 2-hydroxy-, C12-15-alkyl esters

C 12 15 alkyl lactate can be used to enhance many types of personal care products but is best used in pH-neutral formulations.
C12-15 Alkyl Lactate is used as an emollient in a variety of personal care products.
C 12 15 alkyl lactate is Compatible with many systems, C12-15 Alkyl Lactate provides lubricity to hydro-alcoholic products, with a non-oily feel.

C 12 15 alkyl lactate is Best used in pH neutral formulations.
C 12 15 alkyl lactate is Reduced tackiness and greasiness in formulations and provides lather creaminess.

C 12 15 alkyl lactate in personal care formulations (washing), is a kind of anti irritant agents.
C 12 15 alkyl lactate has a low adding volume and strong anti irritant; obvious lipid rich effect and moisturizing effect; improve the stability of the pearlescing agent products containing.
C 12 15 alkyl lactate can be used for transparent products, hand washing detergent formulation and soap products.

C 12 15 alkyl lactate can dissolve the role of the protease.
C 12 15 alkyl lactate combineing tridecyl salicylate has obvious antidandruff synergistic effect and can be compared to soften the cuticle, loosing horny layer, touching the cuticle peeling off macromolecules of antidandruff agents more turn into hair follicle sterilization agent, thereby greatly reducing the dosage of antidandruff agent.
C 12 15 alkyl lactate can improve the sterilization agent for hair dry sense, providing along the slippery hair dry hair, the brightness of the elegant feeling and hair.

C 12 15 alkyl lactate is a multi-functional emollient.
C 12 15 alkyl lactate is made up of lactic acid ester, which is made up of special fatty alcohol and reflects many characteristics of lactic acid derivatives.
C 12 15 alkyl lactate can be successfully used in cosmetics as C 12 15 alkyl lactate is dissolved in different solvents, such as hydrocarbons, lipids, silicone oil, ethanol, propylene glycol and etc.

C 12 15 alkyl lactate is used for skin care products with moisturizing emollients which has a very good moisturizing effect.
C 12 15 alkyl lactate is a kind of natural enzyme deodorant with stopping sweat agent or other deodorants synergistic effect and safety inhibit body odor which shows the effects of long-term (24 h).


CHEMICAL AND PHYSICAL PROPERTIES OF C 12 15 ALKYL LACTATE:
Appearance: Light yellow liquid
Function:Rinse-off personal care products, suitable for the soothing care of sun-stressed skin damaged skin, baby skin, liquid soap, shampoo, bath foam, and intimate hygiene detergents.
Storage: Keep away of heating sources and close tightly after use.
Origin: Synthetic
Shelf life: 1 year from mfg. date when stored properly
Freight Classification: NMFC 43940 SUB 2 CLASS 85
Kosher Status: Not Kosher
Flash Point: >130 øC
API: NO
Allergen: NO
Hazmat: NO
Molecular Weight: 194.19 g/mol
Use: for any skin care products
Mixing method: dissolved in oil
Usage rate: 1-10%
Product characteristics: : light yellow liquid
Solubility: can dissolve in oil
Storage: For long term storage Store at room temperature Aged at least 24 months
INCI Name : C12-15 Alkyl Lactate
Molecular Formula: C15H30O3
Molar Mass: 258.3969
Density: 0.9[at 20℃]
Boling Point: 325℃[at 101 325 Pa]
Water Solubility: 1.1mg/L at 25℃
Vapor Presure: 0.1Pa at 25℃
Refractive Index: 1.437


APPLICATIONS OF C 12 15 ALKYL LACTATE:
C 12 15 alkyl lactate is used to Moisturize the skin
C 12 15 alkyl lactate Gently exfoliate the skin and don't throw it away)

C 12 15 alkyl lactate Can help kill germs.
Therefore, C 12 15 alkyl lactate is commonly used in underarm formulas or deodorant
C 12 15 alkyl lactate Reduce itching/irritation of the scalp.
C 12 15 alkyl lactate is used as Hair-conditioning effect

Applications and the proposed amount:
Moisturizing Shower Gel:0.5-1%
Body shower gel and common soap:0.5-1%
Ordinary shampoo have dandruff shampoo:0.3-1%
Skin Care:3-5%
Deodorant:2%
Lipstick (disperse emollients): 5-20%
Bath oil and skin care oil:10-30%
Soap products (reduced stimulation, moisturizing):0.3-1.5%


USES OF C 12 15 ALKYL LACTATE:
C 12 15 alkyl lactate is Primarily used as an emollient and solvent.
The emolliency of C 12 15 alkyl lactate helps give many lotions their desired creamy texture and thickness.

As a moisturizer, C 12 15 alkyl lactate provides a non-oily lubrication that reduces the greasiness and tackiness of other ingredients, such as petroleum.
In fact, C 12 15 alkyl lactate is often used as a substitute for mineral oil because of its excellent moisturizing capabilities.

C 12 15 alkyl lactate should be sealed storage in cool, dry and ventilated place, avoid the sun and rain, storage temperature is not higher than 35 DEG, at the end of the opening of the packaging under, the shelf life for two years (from the date of production count)

SAFETY INFORMATION ABOUT C 12 15 ALKYL LACTATE:

First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product.


SYNONYMS OF C 12 15 ALKYL LACTATE:
C12-15 Alkyl Lactate
Ceraphyl 41
Uniphyl 41
2-Hydroxypropanoic Acid C12-15-Alkyl Esters
Propanoic acid, 2-hydroxy-, C12-15-alkyl esters
C12-13 ALKYL LACTATE
C12-15 ALKYL LACTATE
2-Hydroxypropanoic acid C12-15-alkyl esters
Di C12-13 Alkyl Lactate


C 12 C 14 - FATTY ALCOHOL 6 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL 5 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL 6 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL 7 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL 8 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL 9 EO
SYNONYMS alcohols,c12-18,ethoxylated; Alcohols,C12-18-ethoxylated; alfonic1218-70; alfonic1218-70l; belitem3; cemulsoldb311; dehydol100;FATTY ALCOHOL POLYGLYCOL ETHER;(C12-C18) Alkyl alcohol ethoxylate; C12-18 Alkyl alcohol ethoxylate; EC 500-201-8; Ethoxylated C12-18 alcohols; Poly(oxy-1,2-ethanediyl), alpha-(C12-C18) alkyl-omega-hydroxy-; Systematic Name Alcohols, C12-18, ethoxylated;Superlist Names Alcohols, C12-18, ethoxylated; alpha-Alkyl-omega-hydroxypoly(oxypropylene) and/or poly(oxyethylene) CAS NO:68213-23-0
C 12 C 18 - FATTY ALCOHOL APPROX 7 EO %90
SYNONYMS alcohols C13-15 branched & linear;Alcohols, C13-15-branched and linear; Alcohols, C13-15-branched and linear;alcohols C13-15 branched & linear;Einecs 287-625-4 CAS NO:85566-16-1
C 13 C 15 - OXO ALCOHOL 11 EO
SYNONYMS alcohols C13-15 branched & linear;Alcohols, C13-15-branched and linear; Alcohols, C13-15-branched and linear;alcohols C13-15 branched & linear;Einecs 287-625-4 CAS NO:85566-16-1
C 13 C 15 - OXO ALCOHOL 3 EO
SYNONYMS alcohols C13-15 branched & linear;Alcohols, C13-15-branched and linear; Alcohols, C13-15-branched and linear;alcohols C13-15 branched & linear;Einecs 287-625-4 CAS NO:85566-16-1
C 13 C 15 - OXO ALCOHOL 5 EO
SYNONYMS alcohols C13-15 branched & linear;Alcohols, C13-15-branched and linear; Alcohols, C13-15-branched and linear;alcohols C13-15 branched & linear;Einecs 287-625-4 CAS NO:85566-16-1
C 13 C 15 - OXO ALCOHOL 7 EO
SYNONYMS alcohols C13-15 branched & linear;Alcohols, C13-15-branched and linear; Alcohols, C13-15-branched and linear;alcohols C13-15 branched & linear;Einecs 287-625-4 CAS NO:85566-16-1
C 13 C 15 - OXO ALCOHOL 8 EO
SYNONYMS alcohols,c16-18,ethoxylated;Alcohols,C16-18-ethoxylated;AliphaticC16-18-alcohol,ethoxylated;C16-18-Alkylalcohol,ethoxylate;C16-18-Alkylalcoholethoxylate;cremophor¨a25;ethoxylatedfattyalcohols(c16-18);CETEARETH-2 CAS NO:68439-49-6
C 16 C 18 - FATTY ALCOHOL 11 EO
SYNONYMS alcohols,c16-18,ethoxylated;Alcohols,C16-18-ethoxylated;AliphaticC16-18-alcohol,ethoxylated;C16-18-Alkylalcohol,ethoxylate;C16-18-Alkylalcoholethoxylate;cremophor¨a25;ethoxylatedfattyalcohols(c16-18);CETEARETH-2 CAS NO:68439-49-6
C 16 C 18 - FATTY ALCOHOL 25 EO
SYNONYMS alcohols,c16-18,ethoxylated;Alcohols,C16-18-ethoxylated;AliphaticC16-18-alcohol,ethoxylated;C16-18-Alkylalcohol,ethoxylate;C16-18-Alkylalcoholethoxylate;cremophor¨a25;ethoxylatedfattyalcohols(c16-18);CETEARETH-2 CAS NO:68439-49-6
C 16 C 18 - FATTY ALCOHOL 50 EO
SYNONYMS alcohols,c16-18,ethoxylated;Alcohols,C16-18-ethoxylated;AliphaticC16-18-alcohol,ethoxylated;C16-18-Alkylalcohol,ethoxylate;C16-18-Alkylalcoholethoxylate;cremophor¨a25;ethoxylatedfattyalcohols(c16-18);CETEARETH-2 CAS NO:68439-49-6
C 16 C 18 - FATTY ALCOHOL 80 EO
C10-rich ethoxylated; Alcohols(C9-11-iso, C10-rich) ethoxylates; Ethoxylated Alcohol CAS NO: 78330-20-8
C10 Alcohol 3,5,6,8(Ethoxylated)
C10-rich ethoxylated; Alcohols(C9-11-iso, C10-rich) ethoxylates; Ethoxylated Alcohol CAS NO: 78330-20-8
C10 Alcohol 3,6,7,8(Ethoxylated)
C10-rich ethoxylated; Alcohols(C9-11-iso, C10-rich) ethoxylates; Ethoxylated Alcohol CAS NO: 78330-20-8
C10-12 ALKANE/CYCLOALKANE
Nom INCI : C10-16 ALKYL GLUCOSIDE. Nom chimique : C10-16 Alkyl Glucoside is the product obtained by the condensation of C10-16 alcohols with glucose. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C10-16 ALKYL GLUCOSIDE
C10-18 TRIGLYCERIDES, N° CAS : 85665-33-4, Nom INCI : C10-18 TRIGLYCERIDES, N° EINECS/ELINCS : 288-123-8. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état. Solvant : Dissout d'autres substances
C10-18 TRIGLYCERIDES
Nom INCI : C10-C18 FATTY ALCOHOL 7 EO Classification : Composé éthoxylé, Tensioactif non ionique Ses fonctions (INCI) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C10-C18 FATTY ALCOHOL 7 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 10 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 14 EO 80%
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 3 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 4 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 5 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 6 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 6 EO %85
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 7 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 7 EO %85
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 8 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 8 EO %85
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 9 EO
SYNONYMS alpha-isodecyl-omega-hydroxypoly(oxy-1,2-ethanediyl);emulphogene DA 530;ethylan CD 109;heloxyl CMN II;igepal DA 530;makon DA-;2-(8-methylnonoxy)ethanol (poly);poly(oxy-1,2-ethanediyl), alpha-isodecyl-omega-hydroxy-;rhodasurf DA 630;synperonic KB;trycol LF 1 CAS NO:61827-42-7
C10-GUERBET ALCOHOL 9 EO %85
C11 (6 Mol EO +4 Mol Po); c11 6eo, 4po; C 11 Alcohol 6 ethoxylate 4 propoxylate; alcohol ethoxylate CAS-No: 68439-50-9
C11 (6 Mol EO +4 Mol Po)
C11-15 PARETH-12, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-12, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation.Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-12
C11-15 PARETH-40, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-40, Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-40
C11-15 PARETH-5, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-5, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-5
C11-15 PARETH-7, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-7
C11-15 PARETH-9, N° CAS : 68131-40-8, Nom INCI : C11-15 PARETH-9, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools secondaires (C11-C15) éthoxylés (liquides). Noms anglais : ALCOHOLS, C11-15-SECONDARY, ETHOXYLATED (LIQUIDS); LINEAR RANDOM SECONDARY ALCOHOL (C11-C15) ETHOXYLATE (LIQUID); LINEAR SECONDARY(C11-C15)ALCOHOL, ETHOXYLATE (LIQUID). Utilisation: Agent dispersant
C11-15 PARETH-9
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C12 14 Alcohol 2,6,7 (Ethoxylated)
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C12 14 Alcohol 3,5,6,8 (Ethoxylated)
Alcohols C12-14 ethoxylated; 2-[2-[2-(dodecyloxy)ethoxy]ethoxy]ethanol; Laureth 3; Laureth 4; Laureth 6; CAS NO: 3055-94-5/ 3055-95-6/ 3055-96-7/ 3055-98-9
C12-13 ALCOHOLS ( Dodecanol)
Nom INCI : C12-13 ALKYL ETHYLHEXANOATE, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
C12-13 ALKYL ETHYLHEXANOATE
Nom INCI : C12-13 ALKYL LACTATE, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état
C12-13 ALKYL LACTATE
Alcohols, C12-13, ethoxylated (9 mol EO average molar ratio); C12-13 PARETH-9; CAS Number‎: ‎66455-14-9
C12-13 ALKYL LACTATE
DESCRIPTION:

C12-13 Alkyl Lactate is a moisturizer for the skin and hair that also acts to soften the surface.
C12-13 Alkyl Lactate works in different formulations to decrease the greasiness and tackiness of other ingredients.
In its natural form, C12-13 Alkyl Lactate appears as a pale yellow liquid that can also be added to products in order to thicken them.

Chem/IUPAC Name: Propanoic acid, 2-hydroxy-, C12-13-alkyl esters

C12-13 Alkyl Lactate can be used as a substitute for mineral oil because of its excellent moisturizing properties.
The chemical formula of C12-13 Alkyl Lactate is C15H30O3.


C12-13 Alkyl Lactate is a versatile, polar multifunctional emollient, which allows C12-13 Alkyl Lactate to exhibit most of the peculiar characteristics of lactic acid derivatives, such as moisturizing and a mild keratolytic effect, making C12-13 Alkyl Lactate suitable for skin care products targeted for different types of skin, from dry to greasy.
C12-13 Alkyl Lactate is also used as a wetting and dispersing agent in makeup.
C12-13 Alkyl Lactate has a thickening effect on SLES/Betaine systems as well as anti-irritant properties and can be used in a wide range of personal care products including lines for delicate and atopic skin.


C12-13 Alkyl Lactate is a mild body odor reducing agent which allows for decreased percentages of other common actives in antiperspirant/deodorants.
In anti-dandruff formulations, C12-13 Alkyl Lactate reduces irritation and itching, improves formulation stability and viscosity.
Adding glycerin to an alcohol-based disinfectant gives back some moisture but makes the formulation sticky.
Replacing a portion of the glycerin with C12-13 Alkyl Lactate solves the problem.

Adding glycerin to an alcohol-based disinfectant gives back some moisture but makes the formulation sticky.
Replacing a portion of the glycerin with C12-13 Alkyl Lactate solves the problem.


C12-13 Alkyl Lactate is a mix of esters of alkyl alcohols with 12 and 13 carbon atom chains and lactic acid (lauryl lactate and Tridecyl lactate), used in skin care applications to reduce tackiness and greasiness of other ingredients, such as petrolatum.
In addition, C12-13 Alkyl Lactate imparts non-oily lubricity to hydro-alcoholic products.

Easy to emulsify, C12-13 Alkyl Lactate works best at neutral pH.
C12-13 Alkyl Lactate provides viscosity building and lather creaminess to shampoos and body washes.

In addition, C12-13 Alkyl Lactate is an effective solubilizer for other active ingredients in sunscreens.
Thanks to the hydroxy group, alkyl lactates can exhibit a mild peeling effect common to AHAs.

C12-13 Alkyl Lactate is versatile polar emollient suitable for both personal cleansing and skin care formulations.
This ester exhibits some peculiar activities of lactic acid derivatives, as moisturizing and mild keratolytic effect, and therefore C12-13 Alkyl Lactate is suitable for skin care products targeted for different types of skin, from dry to greasy.
C12-13 Alkyl Lactate shows also thickening effect on SLES-Betaine system as well as anti-irritant properties and can be used for various personal care products, including lines for delicate and atopic skins.

USES OF C12-13 ALKYL LACTATE:
C12-13 Alkyl Lactate is used in personal care and cosmetics primarily as a moisturizing agent.
C12-13 Alkyl Lactate can be found in products such as creams, shampoos, mascaras and hydrating masks.
Apart from being a moisturizer, C12-13 Alkyl Lactate is a good dispersing agent that allows the other ingredients to mix well in a formulation and result in a better textured product.

C12-13 Alkyl Lactate is also used to reduce the greasiness offered by other ingredients.
Skin care:
In skin care products, C12-13 Alkyl Lactate acts as a good hydrating ingredient.
C12-13 Alkyl Lactate also thickens the formulations to allow for better spreadability and increased performance

C12-13 Alkyl Lactate Moisturizes the skin
C12-13 Alkyl Lactate Gently exfoliate the skin and don't throw it away)
C12-13 Alkyl Lactate Can help kill germs Therefore, it is commonly used in underarm formulas. or deodorant

C12-13 Alkyl Lactate Reduces itching/irritation of the scalp.
C12-13 Alkyl Lactate has Hair-conditioning effect



ORIGIN OF C12-13 ALKYL LACTATE:
C12-13 Alkyl Lactate is a synthetic ingredient made by the mixture of esters derived from lactic acid and alkyl alcohols with 12 and 13 carbon atom chains.
C12-13 Alkyl Lactate is a slightly viscous liquid that appears pale yellow in color.

WHAT DOES C12-13 ALKYL LACTATE DO IN A FORMULATION?
• Moisturising
APPLICATIONS AND THE PROPOSED AMOUNT OF C12-13 ALKYL LACTATE:
Moisturizing Shower Gel:0.5-1%
Body shower gel and common soap:0.5-1%
Ordinary shampoo have dandruff shampoo:0.3-1%
Skin Care:3-5%
Deodorant:2%
Lipstick (disperse emollients): 5-20%
Bath oil and skin care oil:10-30%
Soap products (reduced stimulation, moisturizing):0.3-1.5%
C12-13 alkyl lactate


PROPERTIES OF C12-13 ALKYL LACTATE:
C12-13 alkyl lactate in personal care formulations (washing), is a kind of anti irritant agents.
C12-13 alkyl lactate has a low adding volume and strong anti irritant; obvious lipid rich effect and moisturizing effect; improve the stability of the pearlescing agent products containing.
C12-13 alkyl lactate can be used for transparent products, hand washing detergent formulation and soap products.

C12-13 alkyl lactate can dissolve the role of the protease.
C12-13 alkyl lactate combineing tridecyl salicylate has obvious antidandruff synergistic effect and can be compared to soften the cuticle, loosing horny layer, touching the cuticle peeling off macromolecules of antidandruff agents more turn into hair follicle sterilization agent, thereby greatly reducing the dosage of antidandruff agent.

C12-13 alkyl lactate can improve the sterilization agent for hair dry sense, providing along the slippery hair dry hair, the brightness of the elegant feeling and hair.
C12-13 alkyl lactate is a multi-functional emollient.
C12-13 alkyl lactate is made up of lactic acid ester, which is made up of special fatty alcohol and reflects many characteristics of lactic acid derivatives.

C12-13 alkyl lactate can be successfully used in cosmetics as C12-13 alkyl lactate is dissolved in different solvents, such as hydrocarbons, lipids, silicone oil, ethanol, propylene glycol and etc.
C12-13 alkyl lactate is used for skin care products with moisturizing emollients which has a very good moisturizing effect.
C12-13 alkyl lactate is a kind of natural enzyme deodorant with stopping sweat agent or other deodorants synergistic effect and safety inhibit body odor which shows the effects of long-term (24 h).

C12-13 Alkyl Lactate is used for production of personal care formulations with obvious lipid rich effect and moisturizing effect, etc.
C12-13 Alkyl Lactate is also used for anti-functional emollients, made up of latic acid ester, which is made up of special fatty alcohol and reflects many characteristics of latic acid derivatives.
For cosmetics, C12-13 Alkyl Lactate is dissolved in different solvents.



SAFETY INFORMATION ABOUT C12-13 ALKYL LACTATE:
First aid measures:
Description of first aid measures:
General advice:
Consult a physician.
Show this safety data sheet to the doctor in attendance.
Move out of dangerous area:

If inhaled:
If breathed in, move person into fresh air.
If not breathing, give artificial respiration.
Consult a physician.
In case of skin contact:
Take off contaminated clothing and shoes immediately.
Wash off with soap and plenty of water.
Consult a physician.

In case of eye contact:
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
Continue rinsing eyes during transport to hospital.

If swallowed:
Do NOT induce vomiting.
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
Consult a physician.

Firefighting measures:
Extinguishing media:
Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas

Advice for firefighters:
Wear self-contained breathing apparatus for firefighting if necessary.
Accidental release measures:
Personal precautions, protective equipment and emergency procedures
Use personal protective equipment.

Avoid breathing vapours, mist or gas.
Evacuate personnel to safe areas.

Environmental precautions:
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Methods and materials for containment and cleaning up:
Soak up with inert absorbent material and dispose of as hazardous waste.
Keep in suitable, closed containers for disposal.

Handling and storage:
Precautions for safe handling:
Avoid inhalation of vapour or mist.

Conditions for safe storage, including any incompatibilities:
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.
Storage class (TRGS 510): 8A: Combustible, corrosive hazardous materials

Exposure controls/personal protection:
Control parameters:
Components with workplace control parameters
Contains no substances with occupational exposure limit values.
Exposure controls:
Appropriate engineering controls:
Handle in accordance with good industrial hygiene and safety practice.
Wash hands before breaks and at the end of workday.

Personal protective equipment:
Eye/face protection:
Tightly fitting safety goggles.
Faceshield (8-inch minimum).
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection:
Handle with gloves.
Gloves must be inspected prior to use.
Use proper glove
removal technique (without touching glove's outer surface) to avoid skin contact with this product.
Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.

Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatril (KCL 740 / Aldrich Z677272, Size M)
It should not be construed as offering an approval for any specific use scenario.

Body Protection:
Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection:
Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls.

If the respirator is the sole means of protection, use a full-face supplied air respirator.
Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).
Control of environmental exposure
Prevent further leakage or spillage if safe to do so.
Do not let product enter drains.
Discharge into the environment must be avoided.

Stability and reactivity:
Chemical stability:
Stable under recommended storage conditions.
Incompatible materials:
Strong oxidizing agents:
Hazardous decomposition products:
Hazardous decomposition products formed under fire conditions.
Carbon oxides, Nitrogen oxides (NOx), Hydrogen chloride gas.

Disposal considerations:
Waste treatment methods:
Product:
Offer surplus and non-recyclable solutions to a licensed disposal company.
Contact a licensed professional waste disposal service to dispose of this material.
Contaminated packaging:
Dispose of as unused product









CHEMICAL AND PHYSICAL PROPERTIES OF C12-13 ALKYL LACTATE:
Boiling Point 325°C
Melting Point -20°C
Solubility Soluble in water
Viscosity Viscous
INCI Name: C12-13 Alkyl Lactate
Function: Dispersant, Emollient, Moisturizing Agent, Wetting Agent, Viscosity Modifier, Re-Fatting Agent, Surfactant (Nonionic), Surfactant
Use: for any skin care products
Mixing method: dissolved in oil
Usage rate: 1-10%
Product characteristics: : light yellow liquid
Solubility: can dissolve in oil
Storage: For long term storage Store at room temperature Aged at least 24 months
INCI Name : C12-13 Alkyl Lactate
Appearance Pale yellow liquid
Ester Content 85% Min
Free Alcohol 15% Max
Acid Value (mgKOH/g) 2 Max
Water (%) 0.5 Max
Storage: Store under room temperature. Avoid Heat & Light.
Shelf Life: 24Months from manufacturing or testing date (Current Lot will expire: 12/2024)
Dosage (Range): 1% - 10%
Mix Method: Add into oil phase. Heat tolerant.
Heat Resistance: Heat Tolerant
Stable in pH range: 3 - 7
Solubility: Oil
Assay: 95.00 to 100.00
Soluble in water, 6.301 mg/L @ 25 °C (est)
Name:C12-13 alkyl lactate
Propanoic acid, 2-hydroxy-, C12-15-alkyl esters
Trade Name:COSMACOL/ELI;CERAPHYL.® 41
Formula:C15-18H29-35O3
Molecular Weight:257.39-299.46
CAS-No:93925-36-1
Form:liquid; 20ºC ; 1.013 hPa
Colour:Colorless to light yellow, transparent
Melting point/range:ca. -20ºC; 1.013 hPa
Boiling point/range:> 250ºC; 1.013 hPa
Flash point:ca. 158ºC; 1.013 hPa
Density:ca. 0,915 g/cm3; 20ºC; 1.013 hPa
Water solubility:20ºC; 1.013 hPa; negligible
Solubility in other:20ºC,Alcohol:negligible;Acetone:partly soluble;Hydrocarbons:soluble
Ester content::≥85%
Alcohol Free:≤15%
Acid value:≤2mgKOH/g
Moisture:≤0.5%



C12-13 ALKYL LACTATE
C12-13 Alkyl Lactate is a versatile, polar multifunctional emollient, which allows it to exhibit most of the peculiar characteristics of lactic acid derivatives, such as moisturizing and a mild keratolytic effect, making it suitable for skin care products targeted for different types of skin, from dry to greasy.
C12-13 Alkyl Lactate is also used as a wetting and dispersing agent in makeup.
C12-13 Alkyl Lactate has a thickening effect on SLES/Betaine systems as well as anti-irritant properties and can be used in a wide range of personal care products including lines for delicate and atopic skin.

CAS: 93925-36-1
MF: C15H30O3
MW: 258.3969
EINECS: 300-338-1

Synonyms
C12-15 ALKYL LACTATE;Propanoic acid, 2-hydroxy-, C12-15-alkyl esters;C12-13 ALKYL LACTATE;2-Hydroxypropanoic acid C12-15-alkyl esters;Di C12-13 Alkyl Lactate;C12-15-alkyl esters

C12-13 Alkyl Lactate is a moisturizer for the skin and hair that also acts to soften the surface.
C12-13 Alkyl Lactate works in different formulations to decrease the greasiness and tackiness of other ingredients.
In its natural form, C12-13 Alkyl Lactate appears as a pale yellow liquid that can also be added to products in order to thicken them.
C12-13 Alkyl Lactate can be used as a substitute for mineral oil because of its excellent moisturizing properties.
The chemical formula of C12-13 Alkyl Lactate is C15H30O3.

C12-13 Alkyl Lactate is a mix of esters of alkyl alcohols with 12 and 13 carbon atom chains and lactic acid (lauryl lactate and Tridecyl lactate), used in skin care applications to reduce tackiness and greasiness of other ingredients, such as petrolatum.
In addition, C12-13 Alkyl Lactate imparts non-oily lubricity to hydro-alcoholic products.
Easy to emulsify, C12-13 Alkyl Lactate works best at neutral pH.
C12-13 Alkyl Lactate provides viscosity building and lather creaminess to shampoos and body washes.
In addition, C12-13 Alkyl Lactate is an effective solubilizer for other active ingredients in sunscreens.
Thanks to the hydroxy group, C12-13 Alkyl Lactate can exhibit a mild peeling effect common to AHAs.

Features
1. In the formulation of personal care products (washing), C12-13 Alkyl Lactate is an anti-irritant emollient, with low dosage and strong anti-irritation; obvious fat-enriching effect and moisturizing effect; improve the product containing pearlescent agent stability; can be used in clear products, hand wash formulations and soap-based products.
2. C12-13 Alkyl Lactate has the effect of keratinase.
C12-13 Alkyl Lactate has obvious anti-dandruff synergistic effect in combination with tridecyl salicylate, which can soften the stratum corneum, loosen the stratum corneum, and touch the exfoliation of the stratum corneum to make macromolecules.
The anti-dandruff agent also enters the hair follicle bactericide, thereby greatly reducing the dosage of the anti-dandruff agent, which can improve the dry feeling of the bactericide on the hair, and provide a smooth dry combing feeling, elegant feeling and hair brightness.

3. C12-13 Alkyl Lactate is a polar emollient with various functions.
C12-13 Alkyl Lactate is a lactic acid ester esterified by a special fatty alcohol, which reflects many characteristics of lactic acid derivatives.
Since C12-13 Alkyl Lactate is soluble in different solvents, such as hydrocarbons, lipids, silicone oil, ethanol, propylene glycol, etc., it can be successfully used in cosmetics.
4. C12-13 Alkyl Lactate works with tridecyl salicylate (ESI) and dodecyl-tridecyl maleate (EMI) to inhibit acne and balance oil secretion.
C12-13 Alkyl Lactate also relieves erythema.
5. C12-13 Alkyl Lactate is used in skin care products as a keratin-soluble protein and a moisturizing emollient, which has a good moisturizing effect.
6. C12-13 Alkyl Lactate is a natural enzymatic deodorant that can act synergistically with antiperspirants or other deodorants to safely suppress body odor and show long-term effects (24 hours).

C12-13 Alkyl Lactate Chemical Properties
Boiling point: 325℃[at 101 325 Pa]
Density: 0.9[at 20℃]
Vapor pressure: 0.1Pa at 25℃
Water Solubility: 1.1mg/L at 25℃
LogP: 4.73 at 20℃

C12-13 Alkyl Lactate is a mild body odor reducing agent which allows for decreased percentages of other common actives in antiperspirant/deodorants.
In anti-dandruff formulations, C12-13 Alkyl Lactate reduces irritation and itching, improves formulation stability and viscosity.
Adding glycerin to an alcohol-based disinfectant gives back some moisture but makes the formulation sticky.
Replacing a portion of the glycerin with COSMACOL ELI solves the problem.
Adding glycerin to an alcohol-based disinfectant gives back some moisture but makes the formulation sticky.
Replacing a portion of the glycerin with COSMACOL ELI solves the problem.

Use
C12-13 Alkyl Lactate is used in personal care and cosmetics primarily as a moisturizing agent.
C12-13 Alkyl Lactate can be found in products such as creams, shampoos, mascaras and hydrating masks.
Apart from being a moisturizer, C12-13 Alkyl Lactate is a good dispersing agent that allows the other ingredients to mix well in a formulation and result in a better textured product.
C12-13 Alkyl Lactate is also used to reduce the greasiness offered by other ingredients.
Skin care: In skin care products, C12-13 Alkyl Lactate acts as a good hydrating ingredient.
C12-13 Alkyl Lactate also thickens the formulations to allow for better spreadability and increased performance.
C12-13 ALKYL LACTATE (EMOLLIENT)
C12-13 Alkyl Lactate (Emollient) is a moisturizer for the skin and hair that also acts to soften the surface.
C12-13 Alkyl Lactate (Emollient) works in different formulations to decrease the greasiness and tackiness of other ingredients.
In its natural form, C12-13 Alkyl Lactate (Emollient) appears as a pale yellow liquid that can also be added to products in order to thicken them.

CAS: 93925-36-1
MF: C15H30O3
MW: 258.3969
EINECS: 300-338-1

Synonyms
C12-15 ALKYL LACTATE;Propanoic acid, 2-hydroxy-, C12-15-alkyl esters;C12-13 ALKYL LACTATE;2-Hydroxypropanoic acid C12-15-alkyl esters;Di C12-13 Alkyl Lactate;C12-15-alkyl esters

C12-13 Alkyl Lactate (Emollient) can be used as a substitute for mineral oil because of its excellent moisturizing properties.
The chemical formula of C12-13 Alkyl Lactate (Emollient) is C15H30O3.
C12-13 Alkyl Lactate is a mix of esters of alkyl alcohols with 12 and 13 carbon atom chains and lactic acid (lauryl lactate and Tridecyl lactate), used in skin care applications to reduce tackiness and greasiness of other ingredients, such as petrolatum.
In addition, C12-13 Alkyl Lactate (Emollient) imparts non-oily lubricity to hydro-alcoholic products.
Easy to emulsify, C12-13 Alkyl Lactate (Emollient) works best at neutral pH.
C12-13 Alkyl Lactate (Emollient) provides viscosity building and lather creaminess to shampoos and body washes.

In addition, C12-13 Alkyl Lactate (Emollient) is an effective solubilizer for other active ingredients in sunscreens.
Thanks to the hydroxy group, C12-13 Alkyl Lactate (Emollient) can exhibit a mild peeling effect common to AHAs.
COSMACOL ELI (INCI: C12-13 ALKYL LACTATE) is a versatile, polar multifunctional emollient, which allows C12-13 Alkyl Lactate (Emollient) to exhibit most of the peculiar characteristics of lactic acid derivatives, such as moisturizing and a mild keratolytic effect, making it suitable for skin care products targeted for different types of skin, from dry to greasy.
C12-13 Alkyl Lactate (Emollient) is also used as a wetting and dispersing agent in makeup.
C12-13 Alkyl Lactate (Emollient) has a thickening effect on SLES/Betaine systems as well as anti-irritant properties and can be used in a wide range of personal care products including lines for delicate and atopic skin.
C12-13 Alkyl Lactate (Emollient) is a mild body odor reducing agent which allows for decreased percentages of other common actives in antiperspirant/deodorants.

In anti-dandruff formulations, C12-13 Alkyl Lactate (Emollient) reduces irritation and itching, improves formulation stability and viscosity.
Adding glycerin to an alcohol-based disinfectant gives back some moisture but makes the formulation sticky.
Replacing a portion of the glycerin with COSMACOL ELI solves the problem.
C12-13 Alkyl Lactate (Emollient) is a monoester formed by the isomer of lactic acid and single branched C12/13 primary alcohol, belonging to a type of lactic acid carrier oil.
Specific good mildness, straight chain, and low polarity molecules can reduce the irritation caused by surfactants.
C12-13 Alkyl Lactate (Emollient) can enhance skin barrier function, repair skin sebum film, provide moisturizing effect while providing a very gentle skin feel, improve the thickening effect of NaCl, and can be formulated as a product without coconut oil amide DEA.

C12-13 Alkyl Lactate (Emollient) Chemical Properties
Boiling point: 325℃[at 101 325 Pa]
Density: 0.9[at 20℃]
Vapor pressure: 0.1Pa at 25℃
Water Solubility: 1.1mg/L at 25℃
LogP: 4.73 at 20℃

Uses
C12-13 Alkyl Lactate (Emollient) is used in personal care and cosmetics primarily as a moisturizing agent.
C12-13 Alkyl Lactate (Emollient) can be found in products such as creams, shampoos, mascaras and hydrating masks.
Apart from being a moisturizer, C12-13 Alkyl Lactate (Emollient) is a good dispersing agent that allows the other ingredients to mix well in a formulation and result in a better textured product.
C12-13 Alkyl Lactate (Emollient) is also used to reduce the greasiness offered by other ingredients.
Skin care: In skin care products, C12-13 Alkyl Lactate (Emollient) acts as a good hydrating ingredient.
C12-13 Alkyl Lactate (Emollient) also thickens the formulations to allow for better spreadability and increased performance.

1. Moisturizing Shower Gel:0.5-1%
2. Body shower gel and common soap:0.5-1%
3. Ordinary shampoo have dandruff shampoo:0.3-1%
4. Skin Care:3-5%
5. Deodorant:2%
6. Lipstick (disperse emollients): 5-20%
7. Bath oil and skin care oil:10-30%
8. Soap products (reduced stimulation, moisturizing):0.3-1.5%

Function
1. In the formula of personal care products (in terms of washing), C12-13 Alkyl Lactate (Emollient) is a moisturizer with low dosage and strong resistance; Significant fat rich and moisturizing effects; Improve the stability of products containing pearlescents; Can be used in transparent products, hand care detergent formulas, and soap based products.
2. C12-13 Alkyl Lactate (Emollient) has the function of dissolving keratinase, and when combined with dodecyl salicylate, it has a significant anti dandruff and synergistic effect.
3. C12-13 Alkyl Lactate (Emollient) is a multifunctional moisturizer, which is a lactate ester formed by esterification of special fatty alcohols, reflecting many characteristics of lactate derivatives.
Due to its solubility in different solvents such as hydrocarbons, lipids, silicone oil, ethanol, etc., C12-13 Alkyl Lactate (Emollient) can be successfully applied in cosmetics.
4. C12-13 Alkyl Lactate (Emollient) has a good inhibitory effect on balanced oil secretion when combined with thirteen alkyl salicylate (ESI) and twelve thirteen alkyl maleic acid ester (EMI).
5. C12-13 Alkyl Lactate (Emollient) is used in skincare products as a gradually soothing keratin and moisturizing moisturizer, with excellent moisturizing and moisturizing effects.
6. C12-13 Alkyl Lactate (Emollient) is an enzyme deodorizer that can work in synergy with antiperspirants or other deodorants to inhibit body odor and display long-term effects (24 hours).
C12-13 PARET-9
C12-13 PARETH-15, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-15, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools (C12-C13) éthoxylés. Noms anglais :ALCOHOLS, C12-13, ETHOXYLATED. Utilisation: Fabrication de détergents. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-15
C12-13 PARETH-23, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-23, Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-23
C12-13 PARETH-3, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-3 , Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension, interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-3
C12-13 PARETH-4, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-4, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension, interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-4
C12-13 PARETH-9, N° CAS : 66455-14-9, Nom INCI : C12-13 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-13 PARETH-9
C12-14 PARETH-12, N° CAS : 68439-50-9, Nom INCI : C12-14 PARETH-12, N° EINECS/ELINCS : 500-213-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-12
C12-14 PARETH-3, N° CAS : 68439-50-9 (generic), Nom INCI : C12-14 PARETH-3, N° EINECS/ELINCS : 500-213-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Alcohols, C12-13, ethoxylated (1-2.5 mol EO); Alcohols, C12-13, ethoxylates, 1-2.5 EO; Alcohols, C12-15, ethoxylated, 3-5 EO; alcohols,C12-13,ethoxylated; alcohos, C12-13, ethoxylated; Neodol 23 ethoxylates (<2.5 EO)
C12-14 PARETH-3
C12-14 PARETH-5, Nom INCI : C12-14 PARETH-5, Agent nettoyant : Aide à garder une surface propre, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-5
C12-14 PARETH-7, N° CAS : 68439-50-9, Nom INCI : C12-14 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 PARETH-7
Nom INCI : C12-14 SEC-PARETH-12, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile); Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-12
C12-14 SEC-PARETH-30, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-30, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-30
C12-14 SEC-PARETH-5, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-5, Anti-moussant : Supprime la mousse lors de la fabrication / réduit la formation de mousse dans des produits finis liquides, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile),Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-5
C12-14 SEC-PARETH-7, Nom INCI : C12-14 SEC-PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-7
C12-14 SEC-PARETH-9, N° CAS : 84133-50-6, Nom INCI : C12-14 SEC-PARETH-9, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools, C12-14, éthoxylés. Noms anglais : ALCOHOLS, C12-14, ETHOXYLATED; LINEAR (C12 AND C14) ALKYL ALCOHOLS, ETHOXYLATED; Alcohols C12-14, ethoxylated (>2-5EO)
C12-14 SEC-PARETH-9
Accueil Ingrédients C12-15 ALCOHOLS, C12-15 ALCOHOLS, N° CAS : 63393-82-8, Nom INCI : C12-15 ALCOHOLS, N° EINECS/ELINCS : 264-118-6, Emollient : Adoucit et assouplit la peau Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques; Alcohols, C12-15
C12-15 ALCOHOLS
C12-15 ALKYL BENZOATE, N° CAS : 68411-27-8, Nom INCI : C12-15 ALKYL BENZOATE, N° EINECS/ELINCS : 270-112-4, Le C12-15 Alkyl benzoate est utilisé en cosmétique en tant qu'émollient (adoucissant). Il est souvent aussi utilisé en tant qu'agent antimicrobien dans les crèmes solaires. C'est un ester de faible poids moléculaire d'acide benzoïque et d'alcools en C12-C15. On le retrouve dans de très nombreux produits pour la peau et les cheveux en raison de ses facultés à rendre le toucher soyeux et doux.Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état. Benzoic acid, C12-15-alkyl esters. : Benzoic acid, C12-15 alkyl esters; C12 C15 alkyl benzoate; C12-C15 alkyl benzoate. Esterification product of alcohols, C12-15 (linear and branched) and benzoic acid ; s: CHINT: Benzoic (FA C12-15)E; Cosmacol EBI; Cosmacol EBL; Dub B1215; Finsolv TN ; LINCOL BAS; SABODERM AB; Tegosoft TN
C12-15 ALKYL BENZOATE
Dodecyl/pentadecyl benzoate; Alkyl (C12-15) benzoate [usan]; Einecs 270-112-4.; ALKYL BENZOATE; Lauryl Benzoate; Benzoic acid, C12-15-alkyl esters; C12-15 ALKYL BENZOATE; Benzoesure, Alkyl(C12-C15)ester cas no: 68411-27-8
C12-15 ALKYL ETHYLHEXANOATE
C12-15 ALKYL LACTATE; PENTADECYL LACTATE; Propanoic acid, 2-hydroxy-, C12-15-alkyl esters; CERAPHYL 41; PARYOL ALKYLAT; Dermol 25L; C12-15 ALKYL LACTATE, N° CAS : 93925-36-1, Nom INCI : C12-15 ALKYL LACTATE, N° EINECS/ELINCS : 300-338-1, Emollient : Adoucit et assouplit la peau, Agent d'entretien de la peau : Maintient la peau en bon état. (2R)-2-Hydroxypropanoate de pentadécyle [French] ; Pentadecyl (2R)-2-hydroxypropanoate ; Pentadecyl-(2R)-2-hydroxypropanoat [German] ; Propanoic acid, 2-hydroxy-, pentadecyl ester, (2R)- [ACD/Index Name]; 258269-67-9 [RN]; 93925-36-1 [RN];
C12-15 ALKYL LACTATE
C12-15 PARETH-10, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-10, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-10
C12-15 PARETH-12, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-12, Ses fonctions (INCI), Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI); C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-12
C12-15 PARETH-2, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-2, N° EINECS/ELINCS : 500-195-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-2
C12-15 PARETH-3, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-3, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-3
C12-15 PARETH-3 PHOSPHATE, Nom INCI : C12-15 PARETH-3 PHOSPHATE, Agent nettoyant : Aide à garder une surface propre, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-15 PARETH-3 PHOSPHATE
C12-15 PARETH-5, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-5, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-5
C12-15 PARETH-7, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-7, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-7
C12-15 PARETH-9, N° CAS : 68131-39-5, Nom INCI : C12-15 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : ALCOOL C12-C15 ETHOXYLE (9 E.O.); ALCOOL GRAS ETHOXYLE; ALCOOLS C12-15 ETHOXYLES (9.O E.O.); ALCOOLS C12-C15 ETHOXYLES; Alcools C12-C15 éthoxylés. Noms anglais : Alcohols, C12-15, ethoxylated; ALCOHOLS, C12-15-ALKYL, ETHOXYLATED; LINEAR (C12-C15) ALKYL ALCOHOLS, ETHOXYLATED; LINEAR PRIMARY ALCOHOL (C12-C15) ETHOXYLATE; POLYETHOXYLATED (C12-C15) LINEAR PRIMARY SATURATED ALCOHOLS; POLYETHYLENE GLYCOL, LINEAR (C12-C15)ALKYL ALCOHOLS ETHER ALCOHOL C12-C15, POLY (3) ETHOXYLATE. Alcohols (C12 - 15 Ln saturated) ethoxylate; alcohols ,C12-15,ethoxylated; ALCOHOLS C12-15 ETHOXYLATED; Alcohols C12-15, ethoxylated; Alcohols, C12-15, ethoxylated (1-2.5 mol EO); Alcohols, C12-15, ethoxylated <2.5 EO; Alcohols, C12-15, ethoxylated, 5-12 EO; Alcohols, C12-C15, ethoxylated; C12-15 Alcohol ethoxylate; C12-15 Alcohol, ethoxylated; C12-15 ethoxylated alcohols; Ethoxylated fatty alcohol; Neodol 25-ethoxylated ; Adekatol SO 160; Alcools en C12-15, éthoxylés; Alcs., C12-15, ethoxylated; Alfonic 1012-40; Alkohole, C12-15, ethoxyliert ; Bn Rö 175; 2,07-EO; Bn Rö 278; 3-EO; C 1215AE30; C12-15 Pareth Series; C12-15 pareth-11; C12-15 pareth-11 (INCI); C12-15 pareth-12; C12-15 pareth-12 (INCI); C12-15 pareth-2; C12-15 pareth-2 (INCI); C12-15 pareth-3; C12-15 pareth-3 (INCI); C12-15 pareth-4; C12-15 pareth-4 (INCI); C12-15 pareth-5; C12-15 pareth-5 (INCI); C12-15 pareth-7 ;C12-15 pareth-7 (INCI) ; C12-15 pareth-9; C12-15 pareth-9 (INCI); C12/15-Oxoalkohol + 10 EO; 10-EO; C12/15-Oxoalkohol + 11,2 EO; 11,2-EO; C12/15-Oxoalkohol + 19,2 EO; 19,2-EO; C12/15-Oxoalkohol + 2.07 EO; 2,07-EO; C12/15-Oxoalkohol + 3,2 EO; 3,2-EO; C12/15-Oxoalkohol + 3,3 EO und C12/15 Oxoalkohol + 7,2 EO,; C12/15-Oxoalkohol + 3.6 EO; 3,6-EO; C12/15-Oxoalkohol + 7,2 EO; 7,2-EO; C12/15-Oxoalkohol + 9 EO; 9-EO; CJL 403; 3-EO; 100% Active Matter; active substance
C12-15 PARETH-9
tetradecan-1-ol; C12-16 ALCOHOLS; N° CAS : 68855-56-1; Nom INCI : C12-16 ALCOHOLS; N° EINECS/ELINCS : 272-490-6; Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface, Emollient : Adoucit et assouplit la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Alcohols, C12-16; ; Alcohols C12-16; Fatty Alcohol C12-16; Fatty alcohol, C12-16; tetradecan-1-ol
C12-16 ALCOHOLS
C12-16 PARETH-5, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-5, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-5
C12-16 PARETH-7, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-7, Classification : Composé éthoxylé, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-7
C12-16 PARETH-9, N° CAS : 68551-12-2, Nom INCI : C12-16 PARETH-9, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216. Noms français : Alcools C12-C16 éthoxylés; Noms anglais :Alcohols, C12-16, ethoxylated; a-(dodecyl - hexadecyl)-oxy)-w-(2-hydroxyethyl)poly(ethane-1,2-diyloxy); Alcohols (C12-16), ethoxylated; Alcohols, C12-16 (even numbered), ethoxylated; Alcohols, C12-16, ethoxylated (3-EO); Alcohols, C12-16, ethoxylated (>2-5EO); alcohols, C12-C16, ethoxylated; Alcohols,C12-16, ethoxylated; ethoxylated alcohol; Leunapon-F 1216
C12-16 PARETH-9
C12-18 ACID TRIGLYCERIDE, N° CAS : 67701-26-2, Nom INCI : C12-18 ACID TRIGLYCERIDE, N° EINECS/ELINCS : 266-944-2, Emollient : Adoucit et assouplit la peau Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Agent d'entretien de la peau : Maintient la peau en bon état, Solvant : Dissout d'autres substances, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
C12-18 ACID TRIGLYCERIDE
Amines, di-C12-18-alkyl; n-pentadecylpentadecan-1-amine; (C12-C18) Dialkylamine cas no: 68153-95-7
C12-18 ALKYL AMINES
Nom INCI : C12-18 ALKYL GLUCOSIDE, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion
C12-18 ALKYL GLUCOSIDE
C12-18 FATTY ALCOHOL 7 EO, N° CAS : 100843-23-0, 106232-81-9, 106232-82-0, Nom INCI : C12-18 FATTY ALCOHOL 7 EO, Classification : Composé éthoxylé, Tensioactif non ionique
C12-18 FATTY ALCOHOL 7 EO
C12-18 PARETH-7, N° CAS : 68213-23-0, Nom INCI : C12-18 PARETH-7, Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-18 PARETH-7
C12-20 ALKYL GLUCOSIDE, Nom INCI : C12-20 ALKYL GLUCOSIDE, Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile), Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
C12-20 ALKYL GLUCOSIDE
C12-C14 (5 Mol EO +4 Mol Po); c12 14 5eo, 4po; C 12 14 Alcohol 5 ethoxylate 4 propoxylate; alcohol ethoxylate CAS-No: 68439-50-9
C12-C14 (5 Mol EO +4 Mol Po)
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12–C14 ALCOHOL GLYCIDYL ETHER
C12–C14 alcohol glycidyl ether, also known as AGE, is a clear, colorless, oily liquid with a mild odor.
C12–C14 alcohol glycidyl ether has low volatility, low toxicity, low color, excellent substrate and filler wetting ability.
C12-C14 alcohol glycidyl ether is a chemical compound that falls under the category of glycidyl ethers.

CAS Number: 68609-97-2
Molecular Formula: C48H96O6
Molecular Weight: 769.27
EINECS Number: 271-846-8

C12–C14 alcohol glycidyl ethers participates in the synthesis of high molecular weight poly(ethylene oxide)-b-poly(alkylglycidyl ether) diblock copolymers.
The recommended maximum dosage of C12–C14 alcohol glycidyl ether is 20% of the resin formulation.
C12–C14 alcohol glycidyl ether is typically derived from a mixture of alcohols with carbon chain lengths ranging from C12 to C14, which means they have between 12 and 14 carbon atoms in their molecular structure.

The term "glycidyl ether" indicates the presence of a glycidyl group (-CH2-CH-O-) in the molecule.
These glycidyl ethers are commonly used in various industrial applications, including as reactive diluents in epoxy resin formulations.
They can serve as a stabilizer, a viscosity modifier, or a co-reactant in epoxy systems.

C12–C14 alcohol glycidyl ether can improve the handling characteristics and performance of epoxy resins, making them more suitable for specific applications such as adhesives, coatings, and composite materials.
C12–C14 alcohol glycidyl ether is an organic chemical in the glycidyl ether family.
C12–C14 alcohol glycidyl ether is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated.

C12–C14 alcohol glycidyl ether is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction.
C12–C14 alcohol glycidyl ether has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane.
Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

C12–C14 alcohol glycidyl ether is a non-ionic surfactant that contains a hydrophilic head and a hydrophobic tail.
C12–C14 alcohol glycidyl ether is used in wastewater treatment, as well as in polycarboxylic acid synthesis.
C12–C14 alcohol glycidyl ether has been shown to be reactive and can form hydrogen bonds with other molecules.

C12–C14 alcohol glycidyl ether also has high solubility in water, which makes it suitable for use in high salt solutions. The hydrophobic effect of this molecule means it is more likely to dissolve in oils or fats than in water. This product exhibits fluorescence when illuminated with ultraviolet light and can be detected by magnetic resonance spectroscopy.

C12-C14 alcohol glycidyl ether is an organic chemical in the glycidyl ether family.
C12-C14 alcohol glycidyl ether is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been
glycidated.
C12-C14 alcohol glycidyl ether is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction.

C12-C14 alcohol glycidyl ether has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane.
Other names include dodecyl and tetradecyl glycidyl ethers and C12-C14 alcohol glycidyl ether.
A fatty alcohol mixture rich in C12-C14 alcohol glycidyl ethers is placed in a reactor with a Lewis acid catalyst.

Then epichlorohydrin is added slowly to control exotherm which results in the formation of the halohydrins.
This is followed by a caustic dehydrochlorination, to form C12-C14 alcohol glycidyl ether.
The waste products are water and sodium chloride and excess caustic soda.

One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.
C12-C14 alkyl glycidyl ether is an epoxy reactive diluent with low viscosity and toxicity.
C12-C14 alkyl glycidyl ether is used in many paint and coatings applications such as appliance paint, boat paint, building coating, car paint, paper coating, plastic coating, and rubber coating.

A fatty alcohol mixture rich in C12–C14 alcohol glycidyl ether is placed in a reactor with a Lewis acid catalyst.
Then epichlorohydrin is added slowly to control exotherm which results in the formation of the halohydrins.
This is followed by a caustic dehydrochlorination, to form C12-C14 alcohol glycidyl ether.

The waste products are water and sodium chloride and excess caustic soda.
One of the quality control tests would involve measuring the Epoxy value by determination of the epoxy equivalent weight.
C12–C14 alcohol glycidyl ether participates in the synthesis of high molecular weight poly(ethylene oxide)-bpoly(alkylglycidyl ether) diblock copolymers.

C12-C14 alcohol glycidyl ether is a clear, colorless, oily liquid with a mild odor.
C12-C14 alcohol glycidyl ether has low volatility, low toxicity, low color, excellent substrate and filler wetting ability.
The recommended maximum dosage of C12-C14 alcohol glycidyl ether is 20% of the resin formulation.

Aliphatic glycidyl ether, based on the epoxidation of C12-C14 aliphatic alcohol.
C12-C14 alcohol glycidyl ether is a mono-functional diluent used to reduce the viscosity of epoxy resin systems.
C12-C14 alcohol glycidyl ether provides good flexibility and adhesion on nonpolar surfaces and shows excellent wetting characteristics.

C12-C14 alcohol glycidyl ether is mainly as a reactive diluent for high viscosity epoxy resins, compatible in all concentrations with epoxy resin, and as toughening agents.
Widely used in high quality epoxy floor coatings, food grade epoxy paints, epoxy potting materials, casting materials, adhesives, insulation material and floor coatings.
C12-C14 alcohol glycidyl ether is a colorless transparent liquid.

C12-C14 alcohol glycidyl ether is mainly used as a reactive diluent for high viscosity epoxy resins, compatible in all concentrations epoxy resin, and as toughening agents.
C12-C14 alcohol glycidyl ether is used as specialty epoxy solvent used in the manufacture of epoxy resins and adhesives.
C12-C14 alcohol glycidyl ether is a complex mixture of synthetic ethers and heterocyclic compounds that generally conform to the formula: C48H96O6.

Reactive diluents like C12-C14 alcohol glycidyl ether are formulated to reduce the viscosity of typical epoxy resins without significantly impacting performance properties.
Incorporating reactive diluent C12-C14 alcohol glycidyl ether into your resin will improve handling and ease of application due to the reduced viscosity.
Reactive diluent C12-C14 alcohol glycidyl ether is broadly used in metal coatings, concrete coatings, repair and bonding compounds, adhesives and composites.

Reactive Diluents are epoxy group-containing functional products which are low viscosity C12–C14 alcohol glycidyl ethers that can react with the curing agents to become the part of the cross-linked epoxy system.
Reactive diluents are mainly used to reduce the viscosity of the base resin based on Bisphenol A, F and EPN resins to improve handling and ease of processing in various applications.
C12-C14 alcohol glycidyl ether is used in formulating solvent free paint and coating compounds as well as additives in combination with other polymers to improve adhesion, stabilization against degeneration reactions.

C12-C14 alcohol glycidyl ether can be also used to optimize performance properties such as impact strength, adhesion, flexibility, filler-loading and solvent resistance of the epoxy system.
C12-C14 alcohol glycidyl ether significantly lowers surface tension of standard aromatic liquid epoxy resins which results in excellent surface wetting, adhesion and lower viscosity at given filler loading.
The aliphatic chain of C12-C14 alcohol glycidyl ether reactive diluent typically increases pot life as well as flexibility (impact resistance).

Although the reactive diluent C12-C14 alcohol glycidyl ether limits the solvent resistance somewhat, acid resistance is improved.
C12-C14 alcohol glycidyl ether is an epoxy reactive diluent with low viscosity and toxicity.
C12-C14 alcohol glycidyl ether is used in many paint and coatings applications such as appliance paint, boat paint, building coating, car paint, paper coating, plastic coating, and rubber coating.

C12-C14 alcohol glycidyl ether is used as a reactive diluent for epoxy resins.
C12-C14 alcohol glycidyl ether is used as a resin and polymer manufacturing intermediate.
Applications of C12-C14 alcohol glycidyl ether include a wide variety of coatings for the automotive and civil engineering industries.

C12-C14 alcohol glycidyl ether provides good flexibility and adhesion on nonpolar surfaces and shows excellent wetting characteristics.
Mainly as a reactive diluent for high viscosity epoxy resins,compatible in all concentrations with epoxy resin, and as toughening agents.
Widely used in high quality epoxy floor coatings, food grade epoxy paints, epoxy potting materials, casting materials, adhesives, insulation material and floor coatings.

C12-C14 alcohol glycidyl ether is an epoxy reactive diluent with low viscosity and toxicity.
C12-C14 alcohol glycidyl ether is used in many paint and coatings applications such as appliance paint, boat paint, building coating, car paint, paper coating, plastic coating, and rubber coating.
C12-C14 alcohol glycidyl ether is mainly applied as diluting agent for epoxy floor coating, diluting the epoxy coating of food grade products.

Aliphatic glycidyl ether is made from C12~14 alkyl alcohol and Epichlorohydrin by scientific technique, its Chemical name is C12~14 alkyl glycidyl ether(AGE).
C12-C14 alcohol glycidyl ether is used to lower the viscosity of liquid epoxy resin, to be used as floor material, concrete repairing material, filling material, flexility material, embedding material, to be used in diluent and tougheness improvement, and winding–forming.
C12-C14 alcohol glycidyl ether provides good flexibility and adhesion on nonpolar surfaces and shows excellent wetting characteristics.

C12-C14 alcohol glycidyl ether is mainly as a reactive diluent for high viscosity epoxy resins,compatible in all concentrations with epoxy resin, and as toughening agents.
C12-C14 alcohol glycidyl ether is widely used in high quality epoxy floor coatings, food grade epoxy paints, epoxy potting materials, casting materials, adhesives, insulation material and floor coatings.
C12-C14 alcohol glycidyl ether acts as a solvent and curing agent. AGE has low virulence, slight color and low viscosity.

C12-C14 alcohol glycidyl ether is well miscible with all kinds of epoxy resins, used in epoxy resin products to decrease their viscosity.
C12-C14 alcohol glycidyl ether has active epoxy group which can join cure reaction.
C12–C14 alcohol glycidyl ether has low volatility which improves the performance and quality of the product.

C12-C14 alcohol glycidyl ether improves flexibility of curing products.
C12-C14 alcohol glycidyl ether is projected to grow at a CAGR of 4.5% during the 2021-2030 period.
The increasing demand for adhesives and sealants, composites, marine, and protective coatings, potting, and encapsulation in end-users such as automotive, aerospace, and defense industries is expected to drive the growth of the market over the forecast period.

C12-C14 alcohol glycidyl ether is a low boiling point, high molecular weight alcohol of glycerine.
C12-C14 alcohol glycidyl ether has good thermal stability and neutral color which makes it ideal for use in the production of epoxy resin systems.
Industrial grade C12-C14 alcohol glycidyl ether is a type of nonionic surfactant that has the ability to reduce surface tension between water and oil.

C12–C14 alcohol glycidyl ether can be used in cleaning products, paints, coatings, adhesives, and sealants for marine applications.
C12-C14 alcohol glycidyl ether is used in potting and encapsulation due to its high adhesion properties.
C12-C14 alcohol glycidyl ether is highly reactive, hence they cure quickly at room temperature when exposed to atmospheric moisture.

C12-C14 alcohol glycidyl ether has a very low viscosity which makes it easy for mixing with other resins such as epoxy resin or polyurethane (PU).
C12-C14 alcohol glycidyl ether is driven by the rise in demand for adhesives and sealants.
The containment of hazardous solvents such as benzene, xylene, toluene, etc., has led to a new generation of water-based adhesive formulations which includes alkyl C12-C14 glycidyl ether.

Further, increasing environmental concerns globally have also contributed to this development.
C12-C14 alcohol glycidyl ether is a form of an organic compound which is used extensively in chemical, industrial and construction.
The major usage is defined as for polymerization processes as an industrial grade monomer, used as sealant in construction related material and as an adhesive for various purposes.

C12-C14 alcohol glycidyl ether is logically a by product of an condensation reaction between glycidol and allyl alcohol.
Because of the presence of both epoxide and an alkene, they can be manipulated to react separately in a group while maintaining the other processes intact.
C12-C14 alcohol glycidyl ether may cause sensitization by inhalation and skin contact.

C12–C14 alcohol glycidyl ether is a glycidyl ether compound with a general chemical structure similar to this:
CH3-(CH2)n-O-CH2-CHO, where 'n' represents the number of carbon atoms in the alkyl chain (C12 to C14 in this case).

C12–C14 alcohol glycidyl ether is known for its epoxy functionality, meaning it contains epoxy groups (oxirane rings) within its molecular structure.
These epoxy groups are reactive and can undergo cross-linking reactions with amines, acids, or other compounds, forming strong and durable thermosetting materials.
Chemical compounds like C12–C14 alcohol glycidyl ethers may be subject to regulatory restrictions and guidelines in different countries due to potential health and environmental concerns.

Manufacturers and users should be aware of and comply with these regulations.
There can be variations of C12-C14 alcohol glycidyl ether based on the specific carbon chain lengths, purity levels, and other properties.
These variations may be tailored for specific applications or market requirements.

Density: 0.89 g/mL at 25 °C(lit.)
vapor pressure: 0.018Pa at 20℃
refractive index: n20/D 1.447(lit.)
Flash point: >230 °F
Water Solubility: 483μg/L at 30℃
LogP: 6 at 20℃

C12-C14 alcohol glycidyl ether is limited evidence of a carcinogenic effect.When you use it , wear suitable protective clothing and gloves.
C12-C14 alcohol glycidyl ether is used as a viscosity reducing modifier in epoxy resin formulations.
C12-C14 alcohol glycidyl ether has low color and provides excellent substrate and filler wetting ability.

C12-C14 alcohol glycidyl ether is useful for resinous floor toppings, casting compounds, coatings, adhesives and electrical encapsulation systems.
C12-C14 alcohol glycidyl ether is mainly applied to diluting agent, toughener, epoxy floor coating, diluting the epoxy coating of food grade.
Combined with liquid epoxy resin, suitable for epoxy embedding material, casting material, encapsulating material, coating material, and adhesive.

C12-C14 alcohol glycidyl ether provides good flexibility and adhesion on nonpolar surfaces and shows excellent wetting characteristics.
Mainly as a reactive diluent for high viscosity epoxy resins, compatible in all concentrations with epoxy resin, and as toughening agents.
Widely used in high quality epoxy floor coatings, food grade epoxy paints, epoxy potting materials and floor coatings.

C12-C14 alcohol glycidyl ether is formulated under the guidance and assistance of talented researchers who have a wide knowledge in this.
C12-C14 alcohol glycidyl ether is able to improve the properties of flexibility and adhesion of the cured resin.
C12-C14 alcohol glycidyl ether is mostly appropriate in textile industries.

C12-C14 alcohol glycidyl ether aids as a monomer for polymerization reactants.
C12-C14 alcohol glycidyl ether is an agent of a stabilizer for chlorinated compound.
C12–C14 alcohol glycidyl ether is an epoxy reactive diluent with low viscosity and toxicity.

C12-C14 alkyl glycidyl ether is used in many paint and coatings applications such as appliance paint, boat paint, building coating, car paint, paper coating, plastic coating, and rubber coating.
C12–C14 alcohol glycidyl ethers are a class of compounds characterized by the presence of the glycidyl group (-CH2-CH-O-) within their molecular structure.

This group is also known as an epoxy group or oxirane ring.
C12–C14 alcohol glycidyl ethers are widely used in the chemical industry for various applications due to their ability to undergo polymerization reactions, which result in the formation of thermosetting materials with excellent mechanical and chemical properties.

The epoxy functionality in C12-C14 alkyl glycidyl ethers makes them highly reactive.
When C12-C14 alkyl glycidyl ethers are mixed with curing agents such as amines, acids, or anhydrides, they undergo a chemical reaction called epoxy curing.
This curing process leads to the formation of a cross-linked polymer network, resulting in materials with enhanced strength and durability.

C12-C14 alkyl glycidyl ethers are commonly used as key components in epoxy resin systems.
Epoxy resins are versatile and find applications in various industries, including construction, aerospace, electronics, automotive, and more.
They are used for coatings, adhesives, composites, and encapsulation due to their excellent adhesive properties, chemical resistance, and mechanical strength.

C12-C14 alkyl glycidyl ether, and their properties can vary based on their chemical structure and the length of the alkyl or aryl chains attached to the glycidyl group.
Some common glycidyl ethers include C12-C14 alkyl glycidyl ether, phenyl glycidyl ether, and the C12-C14 alcohol glycidyl ether mentioned earlier.
Each type may have unique characteristics and applications.

C12-C14 alkyl glycidyl ethers like the C12-C14 alcohol glycidyl ether, can also serve as solvents or diluents in epoxy formulations.
They help reduce the viscosity of epoxy resins, making them easier to handle and apply.
The choice of C12-C14 alkyl glycidyl ether can impact the curing kinetics and final properties of the epoxy system.

C12-C14 alkyl glycidyl ethers offer valuable properties, it's essential to consider their potential environmental and health impacts.
Some glycidyl ethers may be subject to regulations and restrictions due to concerns about toxicity and environmental persistence.
C12-C14 alkyl glycidyl ether's important to use and dispose of these compounds responsibly and in compliance with relevant regulations.

The development of new C12-C14 alkyl glycidyl ethers and epoxy formulations is an active area of research and innovation.
Scientists and engineers continually seek to improve epoxy materials for a wide range of applications, from advanced composites to high-performance coatings.

C12-C14 alkyl glycidyl ethers are used in the synthesis of pharmaceutical compounds due to their versatile chemical reactivity.
C12-C14 alkyl glycidyl ethers can serve as surfactants or emulsifiers in various formulations, including personal care products and industrial processes.

C12-C14 alkyl glycidyl ether can be used as additives in polymers to modify properties like flexibility, adhesion, and impact resistance.
Chemists can modify C12-C14 alkyl glycidyl ethers through various reactions to create specialized derivatives with specific properties.
These derivatives may have applications in niche industries and research.

C12-C14 alkyl glycidyl ether, it's crucial to follow safety guidelines and understand potential health hazards.
C12-C14 alkyl glycidyl ether may be irritants to the skin, eyes, and respiratory system.
Proper ventilation, personal protective equipment, and safe handling practices are essential to minimize exposure.

Regulatory agencies in different countries, such as the Environmental Protection Agency (EPA) in the United States, often regulate the use, labeling, and disposal of C12-C14 alkyl glycidyl ethers and related compounds.
C12-C14 alkyl glycidyl ether users should be aware of and adhere to these regulations to ensure safe and compliant use.

Ongoing research seeks to develop C12-C14 alkyl glycidyl ethers and epoxy resin systems with improved performance, sustainability, and reduced environmental impact.
This includes the exploration of bio-based or renewable sources for glycidyl ethers.
The properties of C12-C14 alkyl glycidyl ethers can vary significantly based on their chemical structure and manufacturing process.

C12-C14 alkyl glycidyl ether's essential to select the appropriate glycidyl ether for a specific application based on the desired properties and performance criteria.
Various industry standards and specifications exist for C12-C14 alkyl glycidyl ethers and epoxy resin systems, especially in sectors such as aerospace and electronics.
Adhering to these standards is essential to ensure product quality and safety.

C12-C14 alkyl glycidyl ether, it's important to consider their compatibility with other chemicals and additives in the system.
Compatibility testing is often performed to assess how different components interact and whether they achieve the desired properties.

Proper disposal and waste management of C12-C14 alkyl glycidyl ether and epoxy formulations are critical to prevent environmental contamination.
Many regions have specific guidelines for the disposal of hazardous materials, and adherence to these guidelines is necessary.

Uses
As an epoxy modifier C12-C14 alkyl glycidyl ether is classed as an epoxy reactive diluent.
C12-C14 alkyl glycidyl ether is one of a family of glycidyl ethers available used for viscosity reduction of epoxy resins.
These are then further formulated into coatings, sealants, adhesives, and elastomers.

Resins with this diluent tend to show improved workability.
C12-C14 alkyl glycidyl ether is also used to synthesize other molecules.
The use of the diluent does effect mechanical properties and microstructure of epoxy resins.

C12-C14 alkyl glycidyl ether is primarily used as a viscosity reducing modifier in epoxy resin formulations.
C12-C14 alkyl glycidyl ether is useful for resinous floor toppings, casting compounds, coatings, adhesives and electrical encapsulation systems.
C12-C14 alkyl glycidyl ether is used as a chemical intermediate.

C12-C14 alkyl glycidyl ether is used in the following products: fillers, putties, plasters, modelling clay, coating products, adhesives and sealants and polymers.
C12-C14 alkyl glycidyl ether has an industrial use resulting in manufacture of another substance (use of intermediates).
C12-C14 alkyl glycidyl ether is used in the following areas: formulation of mixtures and/or re-packaging and mining.

C12-C14 alkyl glycidyl ether is used for the manufacture of: chemicals, plastic products, rubber products, mineral products (e.g. plasters, cement), electrical, electronic and optical equipment and machinery and vehicles.
Release to the environment of C12-C14 alkyl glycidyl ether can occur from industrial use: in the production of articles, formulation of mixtures and as an intermediate step in further manufacturing of another substance (use of intermediates).
Other release to the environment of C12-C14 alkyl glycidyl ether is likely to occur from: indoor use.

C12-C14 alkyl glycidyl ether is often used as a reactive diluent or co-monomer in epoxy resin formulations.
C12-C14 alkyl glycidyl ether can reduce the viscosity of the epoxy system, making it easier to handle and apply.
C12-C14 alkyl glycidyl ether is used in the formulation of epoxy-based adhesives, which are valued for their high strength, chemical resistance, and durability.

These adhesives find applications in various industries, including construction, automotive, and aerospace.
In the field of coatings, this glycidyl ether can be used as a modifier to enhance the performance of epoxy-based coatings.
C12-C14 alkyl glycidyl ether can improve adhesion, impact resistance, and corrosion resistance.

C12-C14 alcohol glycidyl ether can be used in the manufacture of composite materials, where its epoxy functionality is essential for bonding and reinforcement.
Glycidyl ethers, including C12-C14 alcohol glycidyl ether, are often used as components in epoxy resin formulations.
They serve several purposes in epoxy systems:

They reduce the viscosity of epoxy resins, making them easier to handle and apply.
Glycidyl ethers react with curing agents (e.g., amines or acids) to form cross-linked networks, imparting strength and durability to epoxy products.
They can modify the mechanical, thermal, and chemical properties of the cured epoxy, depending on the specific glycidyl ether used.

C12-C14 alkyl glycidyl ether is employed in the formulation of epoxy-based adhesives.
These adhesives are known for their high bond strength and resistance to various environmental conditions, making them suitable for bonding a wide range of materials in industries like automotive, construction, and aerospace.
C12-C14 alkyl glycidyl ether can be used in epoxy-based coatings, such as protective coatings for industrial equipment, floors, and pipelines.

C12-C14 alkyl glycidyl ethers provide excellent corrosion resistance, chemical resistance, and durability.
In the aerospace, automotive, and sporting goods industries, C12-C14 alcohol glycidyl ether can be used in the production of composite materials.
Epoxy composites are valued for their lightweight, high-strength properties and are used to manufacture components like aircraft parts, automotive body panels, and sporting equipment.

In the electronics industry, glycidyl ethers are used to encapsulate electronic components, providing protection against moisture, chemicals, and physical damage.
Epoxy-based sealants are used in construction and manufacturing for sealing joints and gaps.
C12-C14 alcohol glycidyl ether can be part of the formulation to enhance adhesive and sealing properties.

In the molding industry, epoxy molding compounds are used for encapsulating electronic components and creating molded parts with excellent dimensional stability and thermal properties.
C12-C14 alkyl glycidyl ether can be used to treat fibers, enhancing their compatibility with epoxy resins.
These treated fibers are then used to reinforce epoxy composites, improving their strength and stiffness.

C12-C14 alkyl glycidyl ethers are also used in research and development settings to create new epoxy formulations with tailored properties for specific applications.
C12-C14 alkyl glycidyl ethers are used in marine applications, such as boat building and repair.
They provide a strong and water-resistant bond, making them suitable for laminating fiberglass and other materials.

C12-C14 alkyl glycidyl ethers are used for aircraft components, including wings, fuselages, and interior structures.
These materials offer high strength-to-weight ratios, which are critical in aviation.
C12-C14 alkyl glycidyl ether are used in automotive manufacturing.

They can be found in components like lightweight carbon fiber-reinforced composites, structural adhesives for vehicle assembly, and coatings for engine parts.
C12-C14 alkyl glycidyl ethers are used in the production of printed circuit boards (PCBs).
They serve as an insulating material and help protect electronic components from moisture and environmental factors.

C12-C14 alkyl glycidyl ethers are used by artists and craftsmen for creating sculptures, jewelry, and various art pieces.
They are valued for their clarity, durability, and ease of use in casting and coating applications.
Epoxy-based coatings and adhesives can be found in various consumer products, such as appliances, sporting goods, and home improvement materials.

In the renewable energy sector, C12-C14 alkyl glycidyl ether are used in wind turbine blades and solar panel manufacturing due to their lightweight and durable properties.
C12-C14 alkyl glycidyl ether, when appropriately modified and cured, can be used as coatings in food packaging materials, providing a protective barrier and improving packaging integrity.
C12-C14 alkyl glycidyl ether are commonly available for DIY home repairs, including fixing cracks in concrete, repairing leaky pipes, and patching holes in various materials.

C12-C14 alkyl glycidyl ethers continue to be integral in the development of advanced materials, including high-performance composites, coatings with enhanced properties, and nanomaterials.
Ongoing research focuses on developing C12-C14 alkyl glycidyl ethers from renewable sources, aligning with green chemistry principles to reduce environmental impact.

C12-C14 alkyl glycidyl ether users should be aware of regulations and guidelines regarding the use of glycidyl ethers, especially in sensitive applications like food contact materials or medical devices.
Compliance with these regulations is crucial to ensure product safety and consumer health.

Safety Considerations:
As with any chemical compound, it is essential to follow safety guidelines and use appropriate protective measures when handling C12-C14 alcohol glycidyl ether.
This includes wearing appropriate personal protective equipment (PPE) and working in a well-ventilated area to minimize exposure.

C12-C14 alcohol glycidyl ether can be irritating to the skin and eyes upon contact.
Skin exposure may result in redness, itching, or dermatitis, while eye contact can cause irritation, redness, and discomfort.
Prolonged or repeated exposure may worsen these effects.

Inhalation of vapors or mists of C12-C14 alcohol glycidyl ether may irritate the respiratory system, leading to symptoms such as coughing, shortness of breath, and throat irritation.
C12-C14 alkyl glycidyl ether may also cause headaches or dizziness if exposed to high concentrations in poorly ventilated areas.
When improperly handled or stored, C12-C14 alkyl glycidyl ethers can undergo hazardous reactions, such as polymerization or decomposition, especially when exposed to elevated temperatures or incompatible substances.

Synonyms
68609-97-2
Lauryl glycidyl ether
DODECYL GLYCIDYL ETHER
Glycidyl Lauryl Ether
2-(dodecoxymethyl)oxirane
N-Dodecyl glycidyl ether
2-[(Dodecyloxy)methyl]oxirane
Ether, dodecyl 2,3-epoxypropyl
((Dodecyloxy)methyl)oxirane
Propane, 1-(dodecyloxy)-2,3-epoxy-
Oxirane, ((dodecyloxy)methyl)-
laurylglycidylether
dodecylglycidyl ether
CCRIS 2635
HSDB 5462
1-Dodecyl glycidyl ether
EINECS 219-554-1
[(Dodecyloxy)methyl]oxirane
DTXSID0025494
Oxirane, [(dodecyloxy)methyl]-
UNII-84653J97E3
Oxirane, 2-((dodecyloxy)methyl)-
84653J97E3
2-((Dodecyloxy)methyl)oxirane
Oxirane, 2-[(dodecyloxy)methyl]-
C12Ge cpd
glycidyl dodecyl ether
DSSTox_CID_5494
DENACOL EX 192
2-(dodecyloxymethyl)oxirane
DSSTox_RID_78656
DSSTox_GSID_28774
SCHEMBL15970
DTXCID605494
GLYCIDYL N-DODECYL ETHER
CHEMBL1574716
2-[(Dodecyloxy)methyl]oxirane #
Tox21_200787
Tox21_303452
MFCD00022344
STL453740
DODECYL ALCOHOL GLYCIDYL ETHER
AKOS024332807
DODECYL 2,3-EPOXYPROPYL ETHER
LS-1057
1-DODECYL GLYCIDYL ETHER [HSDB]
NCGC00091870-01
NCGC00091870-02
NCGC00257384-01
NCGC00258341-01
1,2-EPOXY-3-(DODECYLOXY)PROPANE
AS-60945
CAS-2461-18-9
CAS-68609-97-2
CS-0320613
G0448
T72150
6-AMINO-2-METHYL-2-HEPTANOLHYDROCHLORIDE
Q27269499
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 1 EO
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 2 EO %28
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 2 EO %70
SYNONYMS Alcohols, C12-14(even numbered), ethoxylated < 2.5 EO, sulfates, sodium salts;Soudium POE(2) Lauryl Ether Sulfate;Soudium Diethylene Glycol Lauryl Ether Sulfate; Sodium Lauryl Ether Sulfate; 2-(2-dodecyloxyethoxy)Ethyl Sodium Sulfate; Diethylene Glycol Monododecyl Ether Sulfate Sodium Salt; Lauristyl Diglycol Ether Sulfate Sodium Salt; Lauryl Diethylene Glycol Ether Sulfonate Sodium; CAS NO:68891-38-3
C12C14  FATTY ALCOHOL ETHER SULPHATE,SODIUM SALT 3 EO
N° CAS : 68411-27-8, Le C12-15 Alkyl benzoate est utilisé en cosmétique en tant qu'émollient (adoucissant). Il est souvent aussi utilisé en tant qu'agent antimicrobien dans les crèmes solaires. C'est un ester de faible poids moléculaire d'acide benzoïque et d'alcools en C12-C15. On le retrouve dans de très nombreux produits pour la peau et les cheveux en raison de ses facultés à rendre le toucher soyeux et doux. Benzoic acid, C12-15-alkyl esters; C12 C15 alkyl benzoate; C12-C15 alkyl benzoate;Esterification product of alcohols, C12-15 (linear and branched) and benzoic acid
C12-C15 alkyl benzoate
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3
C13 Alcohol 3,5,6,8(Ethoxylated)
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3
C13 Alcohol 3,5,6,8,12,20 (Ethoxylated)
alpha-tridecyl-omega-hydroxy-poly(oxy-1,2-ethanediyl); Polyoxyethylene (3) tridecyl ether; Polyoxyethylene tridecyl alcohol; POE Tridecyl alcohol; Polyoxyethylene Tridecyl Ether; CAS NO:68439-54-3