Other Industries

Kalsiyum karbonat
SYNONYMSCalwhite;Duramite;Hydrocarb;Kotamite;Microcarb;CALCIUM CARBONATE;Calcite;Carbonic acid calcium salt (1:1);Calcium carbonate (1:1) CAS NO:471-34-1
Kalsiyum laktat
SYNONYMS calcium dilactate;Calcium DL-lactate;Calcium lactate;Calciumdilactat;CALCIUMLACTAT;Calphosan;Conclyte Ca;Dilactate de calcium;dilactato de calcio;E 327;LACTATE, CALCIUM CAS NO:814-80-2
Kalsiyum Propiyonat
SYNONYMS Propionic acid calcium salt;CALCIUM PROPIONATE FOOD GRADE ;CALCIUM PROPIONATE 95% CAS NO:4075-81-1
Kalsiyum sitratlar
SYNONYMS Citric acid calcium salt; Tricalcium citrate;2-Hydroxy-1,2,3-Propanetricarboxylic acid, calcium salt (2:3); Tricalcium dicitrate; Citrical; 柠檬酸钙 (Chinese); Calciumcitraat (Dutch); Citrate De Calcium (French); Kalziumzitrat ( German); Citrato Del Calcio (Italian); Citrato Do Calcio (Portuguese); Citrato Del Calcio (Spanish); CAS NO:813-94-5
Kamelya Kisi Yağı
CAMELLIA KISSI OIL; Camellia Kissi Seed Oil is the fixed oil derived from the seeds of Camellia kissi, Theaceae; luo ban you cha seed oil CAS NO:94333-92-3
Kantaron Ekstraktı
Hypericum Perforatum Flower/Leaf Extract ;extract of the flowers and leaves of the st. john's wort, hypericum perforatum l., hypericaceae; st. john's wort flower/leaf extract cas no:84082-80-4
KAOLINE 3
Inci : kaolin, Cas : 1332-58-7, EC : 310-194-1, Ce produit est du silicate naturel d’aluminium raffiné qui contient un agent dispersant approprié,
Kaolin light BP
C-8 Acid; Neo-fat 8; n-Caprylic Acid; Capryloate; Octoic acid; Octic acid; 1-Heptanecarboxylic acid; n-Octanoic Acid; n-Octic acid; n-Octylic acid; Octanoic Acid cas no: 124-07-2
KAOWAX EB-G
Kaowax EB-G is a kind of waxy amides with high melting point and low viscosity in molten state.
Kaowax EB-G is white granule powder.
In the molten state at high temperature, the resin and solvent, Kaowax EB-G, have good compatibility.


CAS Number: 110-30-5
Chemical name: Ethylene Bis-Stearamide (EBS)
Chemical family: Amide


Kaowax EB-G is a lubricant and release agent, mainly used in thermal plastics such as: ABS resin, PS , PVC and so on.
Kaowax EB-G is a white solid that provides a slippery coating for a variety of applications.
Kaowax EB-G has minimum impact to low temperature properties.


Kaowax EB-G's industrial products are slightly yellow particles or white powder, non-toxic, and have no side effects on the human body.
Kaowax EB-G is a white solid of low toxicity that provides a slippery coating for a variety of applications.
Kaowax EB-G is derived from stearic acid and ethylenediamine.


Kaowax EB-G has high stiffening of the asphalt binder.
Kaowax EB-G increase Performance Grade (PG) of asphalt.
Kaowax EB-G powder is an amide wax of type N,N-bis-stearyl ethylenediamine with particularly good thermostability.


Kaowax EB-G has no influence on the transparency of the Polymers.
Kaowax EB-G is a waxy white solid and is also found as powder or beads that is widely used as a form release agent.
Kaowax EB-G is derived from the reaction of ethylenediamine and stearic acid.


Kaowax EB-G is a white solid of low toxicity that provides a slippery coating for a variety of applications.
Kaowax EB-G is based on a non-vegetable origin, secondary bis-amide.
Kaowax EB-G offers mold release benefits in polyamides (nylon).


Kaowax EB-G improves viscosity of asphalt at different ranges of temperatures.
Kaowax EB-G is a secondary bis-amide additive.
Kaowax EB-G has good anti-blocking properties in polyolefins.


Kaowax EB-G is a waxy white solid and is also found as powder or beads that is widely used as a form release agent.
Kaowax EB-G is derived from the reaction of ethylenediamine and stearic acid.
Kaowax EB-G is fine solid powder @25°C.


Kaowax EB-G is a synthetic wax with high melting point.
Kaowax EB-G is a hard and brittle white high melting point wax.
Kaowax EB-G has a shelf life of 365 days.


Kaowax EB-G is also available in bead form.
Kaowax EB-G is an amide wax.
Kaowax EB-G by MLA Group has low acid value ( free fatty acid ), high melting point, and excellent white colour, and high purity.


Synthhetic wax having high melting point, Kaowax EB-G has some functions as internal and external lubricant, releasing and dispersion agent of pigment for the most thermosetting and thermoplastic resins.
Kaowax EB-G is white granule powder.


Kaowax EB-G is a hard and brittle white high melting point wax, it's industrial products are slightly yellow fine particles, insoluble in most solvents at room temperature, stable to acids and bases, and aqueous media, soluble in hot chlorinated hydrocarbons and aromatic hydrocarbons solvents, it’s powder slippery feeling strong, above 80 ℃ to water with wettability of the compound.


Kaowax EB-G is a synthetic wax that has fatty amide groups that can interact with the surface of a variety of nanoparticles.
Kaowax EB-G is white spherical particle, non-toxic and no side effect on humans.
Kaowax EB-G is insoluble in most organic solvents at room temperature.


Kaowax EB-G is stable to acid, alkali and water medium.
Kaowax EB-G is soluble in hot chlorinated hydrocarbons and aromatic hydrocarbon solvents.
Kaowax EB-G is a waxy white solid and is also found as powder or beads that is widely used as a form release agent.


Kaowax EB-G is derived from the reaction of ethylenediamine and stearic acid.
Kaowax EB-G also functions as an external lubricant for PVC and a process aid for polyolefins.
Kaowax EB-G is suitable for composites, styrenics and rubber.


Kaowax EB-G is white or slight yellow powder or granule
Kaowax EB-G is a waxy white solid and is also found as powder or beads that is widely used as a form release agent.
Kaowax EB-G is derived from the reaction of ethylenediamine and stearic acid.


Kaowax EB-G acts as a slip and anti-block additive.
Kaowax EB-G disperses evenly through the polymer in the melt phase, and migrates to the surface where it forms a thin lubricating layer that reduces coefficient of friction between surfaces and reduces unwanted adhesion.


Kaowax EB-G is ethylene-bis-stearamide of non-vegetable origin.
Kaowax EB-G is a secondary bis amide effective as an anti-block agent and process aid for polyolefins.
Kaowax EB-G is an amide wax of type N,N-bis-stearyl ethylenediamine with particularly good thermostability.


Kaowax EB-G is an amide wax of type Kaowax EB-G.
Kaowax EB-G is compatible with styrene & styrenic copolymer, PVC, PO and PS.
Kaowax EB-G exhibits good thermostability and excellent slip properties.



USES and APPLICATIONS of KAOWAX EB-G:
Kaowax EB-G is used as a lubricant in ABS, PS, PP, engineering plastics, PVC and thermosetting plastics.
Kaowax EB-G is used Anti-Blocking Agent, Release Agent, Slip Agent, Flow Promoter, and Hot-Melt Adhesive
Kaowax EB-G provides typical slip and anti-blocking characteristics to all polymers.


The recommended dosage levels are 500-2000 ppm in films and 0.2-1.0% in molding applications.
Kaowax EB-G powder does not affect the transparency of polymers and acts as lubricant in a wide variety of polymers like PVC, PO, PS and engineering plastics.


Kaowax EB-G is added in the coating production to increase the uniform dispersion of pigment and filler, improve the surface leveling property of baking paint, prevent the stripping off of paint film and improve water-proof and acid-resistant and alkali-resistant property.
Kaowax EB-G improves flow and has no influence on transparency of polymers.


Kaowax EB-G is used as processing auxiliary of rubber. Besides the lubricant demoulding property and modifying performance of filler surface, it can raise the surface fineness of rubber pipes and rubber plates to act as rubber surface polishing agent.
Kaowax EB-G acts as a lubricant, release & antiblocking agent for all engineering resins and dispersing agent for masterbatch applications.


Kaowax EB-G is a synthetic wax used as a dispersing agent or internal/external lubricant for benefits in plastic applications to facilitate and stabilize the dispersion of solid compounding materials to enhance processability, to decrease friction and abrasion of the polymer surface, and to contribute color stability and polymer degradation.


Kaowax EB-G is used as lubricant with good inner or outer lubricant action and has good coordination when used together with other lubricants as high grade alcohols, aliphatic acid esters, calcium stearate and paraffin.
Kaowax EB-G has apparent melting point of wax and asphalt.


Kaowax EB-G is used as nucleation transparency agent to reduce the nucleating time in compounds such as polyolefins, polyformaldehyde and polyamide, promote the structure of resin to become fine, thus improve the mechanical property and transparency of the products.
Kaowax EB-G is used in powder metallurgy.


Kaowax EB-G derived from stearic acid with ethylene diamine is a synthetic was used as a dispersing agent or internal/external lubricant for benefits in plastic applications to facilitate and stabilize the dispersion of solid compounding materials to enhance processability.
Kaowax EB-G is used as defoamer in latex, paper processing and fiber processing.


Lubrication performance is excellent, anti-calcium salt ability is strong, drag reduction effect is good, used for drilling in saturated brine to reduce power consumption.
Kaowax EB-G is used in the following products: washing & cleaning products, lubricants and greases, coating products, inks and toners and polishes and waxes.


Kaowax EB-G is used in the following areas: formulation of mixtures and/or re-packaging.
Kaowax EB-G is also used as a release agents, antistats, and antifoaming agent.
Kaowax EB-G is used as defoamer/ anti-foaming agent and coating component of paper for paper-making industry.


An addition of 0.5-1 % of Kaowax EB-G can not only prevent the occurrence of air bubbles but also make the plastic bags be slippery so as to be opened easily.
Kaowax EB-G is used as a dispersant in masterbatches and flame retardant materials.


Kaowax EB-G is used as additive EBS can be incorporated directly into polymers to prevent any unwanted adhesion.
Adhesive pellets or film often develop adhesion between the polymer pellets or layers when exposed to elevated temperatures and pressures.
Chemical pigments are lubricated in plastics, inks, coatings, anti-caking, etc., dispersing performance, defoaming agent in powder metallurgy, demoulding in molds.


Kaowax EB-G migrates to the surface of the polymer where it forms a thin lubricating layer.
As Kaowax EB-G has good wearable performance and smoothing performance, fits for improving polishing performance of lacquer, air release of surface with holes, Kaowax EB-G is also well used as dulling agent for polishing furniture and printing ink.


Functions in plastics: lubrication, dispersion, hanging foam, anti-caking , demoulding ; processing technology: extrusion, injection molding, calendering, fine particle size 325 mesh, low addition amount, 0.5%~1%.
Application of Kaowax EB-G: Water treatment


Kaowax EB-G is used to prevent adhesive granulate from sticking together during storage, or to prevent adhesive film layers to attract dirt or stick together before application by reactivation or melting.
Kaowax EB-G can also be used as a process aid, for example to improve dispersion of fillers.


Kaowax EB-G is also used as release agents, antistatic agents, and antifoaming agents.
Kaowax EB-G is used as an internal and external slip agent in many thermoplastic and thermosetting plastics, the most representative ones are ABS, PS, ABS, PVC, also used in PE, PP, PVAC, cellulose, Accurate, Nylon, phenolic-Resin, amino plastics.


Kaowax EB-Ghas a good finish and good film release.
Kaowax EB-G is used in the following products: adhesives and sealants, lubricants and greases, coating products, polishes and waxes and washing & cleaning products.


Kaowax EB-G is used for the manufacture of: rubber products and plastic products.
Kaowax EB-G is used for the manufacture of: rubber products, textile, leather or fur, machinery and vehicles and chemicals.
Kaowax EB-G is also used in process industries as release agent and antistatic agent for the production of thermoplastics,and wiring.


Kaowax EB-G is used in various industries as internal/external lubricant, mold release agent, dispersant and slip- and anti-blocking-agent.
Because of it's excellent lubricating properties, Kaowax EB-G is widely used internally and/or externally in most plastics such as ABS, PS, PP etc.
Kaowax EB-G is used as processing aid for resins and polymers and as defoaming agent.


Kaowax EB-G is a synthetic wax used as a dispersing agent or internal/external lubricant for benefits.
Kaowax EB-G is used in the following products: washing & cleaning products, lubricants and greases, coating products, inks and toners and polishes and waxes.


Kaowax EB-G is used in the following areas: formulation of mixtures and/or re-packaging and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment.
Kaowax EB-G is used for the manufacture of: rubber products, textile, leather or fur, machinery and vehicles and chemicals.


Kaowax EB-G is used in various industries as internal/external lubricant, mold release agent, dispersant and slip- and anti-blocking-agent.
Because of its excellent lubricating properties Kaowax EB-G is widely used internally and/or externally in most plastics such as ABS, PS, PP etc.
Kaowax EB-G is non-toxic and can be dispersed evenly through the polymer in the melt phase.


Kaowax EB-G is traditionally used as lubricant and binder for cold compaction of powdered metal parts.
Kaowax EB-G is used in the following products: polymers, lubricants and greases, metal working fluids, pharmaceuticals and cosmetics and personal care products.


As a lubricant of polyformaldehyde, the addition amount is 0.5%, which improves the melt flow rate and the film release, and the whiteness, thermal stability and physical index of polyformaldehyde all reach the superior index.
Adhesive pellets or film often develop adhesion between the polymer pellets or layers when exposed to elevated temperatures and pressures.


Kaowax EB-G not only has good external lubrication effect, but also has good internal lubrication effect, which improves the fluidity and demoulding property of melted plastic in plastic molding process, thus improving the yield of plastic processing, reducing energy consumption, and making the product obtain high surface smoothness and smoothness.


Cosmetic Uses of Kaowax EB-G: viscosity controlling agents
Kaowax EB-G can be found in industrial use: in processing aids at industrial sites, formulation in materials and as processing aid.
Kaowax EB-G is traditionally used as lubricant and binder for cold compaction of powdered metal parts.


Kaowax EB-G is a synthetic wax used as a dispersing agent or internal/external lubricant for benefits in plastic applications to facilitate and stabilize the dispersion of solid compounding materials to enhance processability, to decrease friction and abrasion of the polymer surface, and to contribute color stability and polymer degradation.


Kaowax EB-G is an internal additive and can be incorporated into resin as supplied or via masterbatch / pre-blend.
Kaowax EB-G can be found in: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.


Kaowax EB-G has proven mold release benefits in nylon and is a lubricant for PVC.
Kaowax EB-G is used in the following products: polymers, lubricants and greases, metal working fluids, pharmaceuticals and cosmetics and personal care products.


Kaowax EB-G is used as a processing aid for resins and polymers and as a defoaming agent.
Kaowax EB-G is a synthetic wax used as a dispersing agent or internal/external lubricant for benefits in plastic applications to facilitate and stabilize the dispersion of solid compounding materials to enhance processability, to decrease friction and abrasion of the polymer surface, and to contribute color stability and polymer degradation.


Kaowax EB-G is used to prevent adhesive granulate from sticking together during storage, or to prevent adhesive film layers to attract dirt or stick together before application by reactivation or melting.
Kaowax EB-G can also be used as a process aid, for example to improve dispersion of fillers.


Kaowax EB-G is used as an additive for hot melt adhesives.
Kaowax EB-G provides typical slip and anti-blocking characteristics to all polymers e.g. in films.
Kaowax EB-G is an ethylenebisstearamide, specifically developed to afford low, consistent viscosities and superior cost performance in paper pulp defoamer applications.


Useful as defoamer for paper making and textile processing .
Kaowax EB-G can be found in industrial use: in processing aids at industrial sites, as processing aid, in the production of articles, formulation in materials, formulation of mixtures and of substances in closed systems with minimal release.


Kaowax EB-G is used in various industries as internal/external lubricant, mold release agent, dispersant and slip- and anti-blocking-agent.
Because of it's excellent lubricating properties, Kaowax EB-G is widely used internally and/or externally in most plastics such as ABS, PS, PP, etc.
Kaowax EB-G is also used in process industries as release agent and antistatic agent for the production of thermoplastics,and wiring.


Kaowax EB-G is compared with traditional lubricants such as paraffin wax, polyethylene wax, stearate, etc.
Kaowax EB-G is used as additive Ethylenebisstearamide can be incorporated directly into polymers to prevent any unwanted adhesion.
Kaowax EB-G is used as Release agent and flow promoter for all engineering resins, Styrenics and their copolymers.


Kaowax EB-G is used Dispersing agent for masterbatch applications, preferably for engineering resins and PVC, and Modifier in textile auxiliaries
In the processing of ABS, AS, hard PVC, polyformaldehyde, polycarbonate, polyurethane and phenolformaldehyde resins, Kaowax EB-G is used as lubricant demoulding agent with a quantity of 0.5~1.5 %.


Kaowax EB-G is used as anti-adhesive agent for various polymer film or sheets.
Kaowax EB-G can remarkably enhance the heat-resistant and weather-resistant properties while coordinating with chief stabilizer in formulation of inorganic filler for PVC and polyolefin.


Kaowax EB-G can decrease the viscosity of asphalt and improve it’s softening point and weathering resistance when added to asphalt.
Added in the manufacturing process of dope and oil paint to enhance salt mist and dampproof effect and to improve performance of paint remover.
Kaowax EB-G can be used for a wide range of applications such as lubricants, activators and dispersing agents that reduce the friction in the system and increase the rate of processing.


Kaowax EB-G is also used in process industries as release agent and antistatic agent for the production of thermoplastics,and wiring.
Kaowax EB-G is used in powder metallurgy.
Kaowax EB-G is used as additive Kaowax EB-G can be incorporated directly into polymers to prevent any unwanted adhesion.


Kaowax EB-G can be found in products with material based on: rubber (e.g. tyres, shoes, toys) and fabrics, textiles and apparel (e.g. clothing, mattress, curtains or carpets, textile toys).
Kaowax EB-G is used to prevent the adhesive granulate from sticking together during storage, or to prevent adhesive film layers to attract dirt or stick together before application by reactivation or melting.


Experience has shown that simple manual mixing prior to processing will normally give an acceptable dispersion though, mechanical means are preferred.
Typical addition levels vary depending on polymer and lubrication required.
Kaowax EB-G acts as a slip and anti-block agent, mold release agent and lubricant for PVC.


Chemical fiber: Kaowax EB-G can improve the heat and weather resistance, fluidity of polyester, polyamide fiber, and give a certain anti-static effect.
Hot-Melt Adhesive Applications of Kaowax EB-G: Release agent and flow promoter for all engineering resins, Styrenics and their copolymers.
Kaowax EB-G can also be a binder in the precise engineering metal part.


Due to it's good dispersing ability and surface migration Kaowax EB-G can be used in printing inks.
A field of application is the bitumen industry: When used in asphalt binder for road making (asphalt modifiers), Kaowax EB-G increases its softening point and enhances its visco-elasticity.


Kaowax EB-G can help to increase the melting point of petroleum products; lubricant and corrosive agent of metal wire drawing.
Kaowax EB-G is used for lubricant of plastic and metal molding, adhesion preventives, viscosity modifier, anti-corrosion of wax, water resistance of coating and spray paint.


Kaowax EB-G is used in the following areas: formulation of mixtures and/or re-packaging.
Kaowax EB-G is used for the manufacture of: rubber products and plastic products.
Kaowax EB-G can be found in industrial use: formulation of mixtures, formulation in materials, as processing aid, manufacturing of the substance and in processing aids at industrial sites.


Kaowax EB-G can be found in: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners).
Kaowax EB-G can also be used as a process aid, for example to improve dispersion of fillers.
Kaowax EB-G is a bis-amide polymer additive that lowers the temperature at which the asphalt softens.


Kaowax EB-G is a bis-amide polymer additive that lowers the temperature at which the asphalt softens.
Kaowax EB-G is used as processing aid for resins and polymers and as defoaming agent.
Kaowax EB-G is an effective lubricant, processing aid, slip additive and pigment dispersant aid for most polymers.


Kaowax EB-G is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.
Kaowax EB-G has proven mould release action in polyamides, and is a lubricant for PVC.


Kaowax EB-G is a bis-amide anti-blocking additive used to prevent blocking and as anti-tack of adhesives.
In synthetic fiber industry, Kaowax EB-G can improve the heat-resistant, weather-resistant property of polyester and polyamide and bring about certain antistatic effects.


Kaowax EB-G is used in the spinning of antistatic nylon fiber as additive and also is able to reduce the breaking of yarn.
Kaowax EB-G improves the kneading, processing and vulcanization performance of rubber grains in the processing of rubber.
In nitrocellulose lacquers, Kaowax EB-G can bring about the flatting action.


Kaowax EB-G is used as lubricant in powder metallurgy (PM) steels to reduce the inter-particle and die-wall friction during pressing and hence improve powder compressibility and ejection of the component from the compaction tool.
Kaowax EB-G can help to increase the smoothness and fineness for insulator layer of electric power and cable.


Chemical fiber: Kaowax EB-G can improve heat and weather resistance performance of polyester and polyamide fiber, and has some anti-static effect.
Kaowax EB-G can be found in: outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)).


Kaowax EB-G is used in the following products: adhesives and sealants, lubricants and greases, coating products, polishes and waxes and washing & cleaning products.
Pigment and filler: Kaowax EB-G can be used as pigment dispersant of plastic , fiber, such as ABS, PS, polypropylene fibre and PET fiber and other color masterbatch.


Kaowax EB-G is used in the following products: lubricants and greases, polymers, washing & cleaning products, inks and toners, metal working fluids, textile treatment products and dyes and coating products.
Kaowax EB-G is used Lubricant in powder metal molding, rubber, adhesives, coatings, wire drawing, wood plastic composite, Defoamer in paper, Lubricant for Polyacetals, Water repellent for paper, Intermediate for defoamers, and Delustering agent for furniture finishes and printing inks.


As Kaowax EB-G has strong cohesions with pigment or other filler, Kaowax EB-G can improve the dispersion and coupling property of fillers in the polymers to enhance the commercial value of the products.
Kaowax EB-G is added to oil based defoamers to improve foam knock down.


Kaowax EB-G can also be used as a process aid, for example to improve dispersion of fillers.
Kaowax EB-G is used internal and external lubricants with sexual and non-sexual functions are more conductive to lubrication, anti-blocking agents, high gloss and excellent antistatic properties.


Kaowax EB-G is used to prevent adhesive granulate from sticking together during storage, or to prevent adhesive film layers to attract dirt or stick together before application by reactivation or melting.
Kaowax EB-G is used in powder metallurgy.


Kaowax EB-G is used Raw materials, Ethylenediamine Trap Stearic acid, Preparation Products, defoaming agent OTD
Kaowax EB-G, a new plastic lubricant developed in recent years, is widely used in the molding and processing of PVC products, ABS, high impact polystyrene, polyolefin, rubber and plastic products.


-Paint, Ink:
*Adding 0.5~2% Kaowax EB-G can improve the effect of salt spray and moisture resistance in the manufacture of paint and lacquer.
*Adding Kaowax EB-G in the paint can improve the performance of the paint stripper and can improve the leveling of the baked enamel surface.
*Kaowax EB-G can be used as a matting agent in furniture polishing agents and printing ink.
*After micronization (particle size: d50 about 6μ, d 90 about 12μ), Kaowax EB-G has excellent anti-abrasion and smoothness and can be used in lacquer systems to improve polishability and degassing on a porous surface.


-Other uses of Kaowax EB-G:
*Melting point rising agent for petroleum products
*Lubricant and anti-corrosion agent for metal drawing
*Potting material for electrical components; defoaming agent and paper coating ingredient for paper industry
*Kaowax EB-G is used as a defoaming agent and permanent water pulling agent for dyeing works in textile dyeing and finishing
*Adding this product in asphalt can reduce the viscosity of asphalt and improve the softening point, water-resistance and weather resistance of asphalt.


-Pigment, filler dispersant:
*Kaowax EB-G is used as a pigment dispersant for plastic.
*Pigment dispersant for chemical fiber masterbatches, such as ABS, PS, polypropylene, polyester masterbatches.
*Kaowax EB-G can also be used as diffusion powder for plastic color matching.
*Depending on the amount of pigment and filler added, the addition amount is 0.5~5%.


-Plastic uses of Kaowax EB-G:
Lubricants inside or outside many plastics such as ABS, PS, AS, PVC, PE, PP, PVAC, cellulose acetate, nylon, phenolic resin and amino plastics.
Kaowax EB-G has a good surface quality and demoulding performance.


-Consumer Goods:
*Appliances & Electronics
*Adhesives & Sealants: Industrial & *Assembly Adhesives
*Electronics Adhesives
*Industrial Manufacturing
*Healthcare & Pharma — Medical
*Medical Tapes & Adhesives
*Electrical & Electronics — Packaging & Assembly
*Adhesives & Sealants
*Adhesive & Sealant Type


-Mode of action:
Kaowax EB-G can be dispersed evenly through the polymer in the melt phase.
Kaowax EB-G migrates to the surface of the polymer where it forms a thin lubricating layer.
This layer reduces the coefficient of friction between surfaces and prevents any unwanted adhesion.


-Rubber:
Synthetic resin and rubber will have good anti-adhesive and anti-caking effect by adding Kaowax EB-G in their emulsion.
Kaowax EB-G has a good effect to the increase surface gloss when added to rubber products.


-Release agent:
Phenolic resin for sand casting with Kaowax EB-G can be used as a release agent.
-Powder Coating:
Kaowax EB-G can be used as flow additives for powder coatings.


-Applications of Kaowax EB-G:
*Adhesives & sealants
*Composites
*Inks


-Coatings and printing ink:
When manufacturing coating and painting, Kaowax EB-G can improve the effect of salt spray and moistureproof by adding Kaowax EB-G.
Kaowax EB-G can help to improve the paint stripper performance of paint when added, and to increase the leveling performance of baking enamel varnish.


-Applications of Kaowax EB-G:
*Intended resin (Lubricant use)
*ABS, PS, PVC, Phenol resin, Engineering plastics
*Lubricant for ABS resin, polystyrene and copolymers, PVC and polyolefin.
*Lubricant for Shell molding



PROPERTIES OF KAOWAX EB-G:
*Typical lubricants for improving flowability of ABS and PS.
*They prevent blocking of flexible PVC.



BENEFITS of KAOWAX EB-G:
-Excellent slip and anti-blocking properties when used in PVC, engeneering resins, PO film and compounds
-Good release properties in PVC and thermoplastics
-Improves flow of polymers
-No influence on transparency of polymers
-Wide food approval



PHYSICAL and CHEMICAL PROPERTIES of KAOWAX EB-G:
Appearance: White, waxy crystals
Odor: Odourless
Melting point: 144 to 146 °C (291 to 295 °F; 417 to 419 K)
Flash point: 280 °C (536 °F; 553 K)
Physical state: Beads
Color: white
Odor: odorless
Melting point/range: 144 - 146 °C - lit.
Initial boiling point and boiling range: 260 °C at 1.013 hPa
Flammability (solid, gas): No data available
Upper/lower flammability or explosive limits: No data available
Flash point: ca.270 °C - DIN 51758
Autoignition temperature: ca.380 °C at 1.013 hPa - DIN 51794
Decomposition temperature: > 200 °C -
pH: No data available
Viscosity Viscosity, kinematic: No data available
Viscosity, dynamic: ca.10 mPa.s at 150 °C
Water solubility at 20 °C: insoluble

Partition coefficient: n-octanol/water log Pow: 13,98 at 25 °C
Vapor pressure: Not applicable
Density: 1 g/cm3 at 20 °C
Relative density: No data available
Relative vapor density: No data available
Particle characteristics: No data available
Explosive properties: No data available
Oxidizing properties: none
Other safety information: No data available
Assay: 95.00 to 100.00
Food Chemicals Codex Listed: No
Boiling Point: 720.34 °C. @ 760.00 mm Hg (est)
Flash Point: 213.00 °F. TCC ( 100.70 °C. ) (est)
logP (o/w): 14.787 (est)
Soluble in: water, 2.049e-010 mg/L @ 25 °C (est)

Molecular Weight: 593.0
XLogP3-AA: 15.7
Hydrogen Bond Donor Count: 2
Hydrogen Bond Acceptor Count: 2
Rotatable Bond Count: 35
Exact Mass: 592.59067967
Monoisotopic Mass: 592.59067967
Topological Polar Surface Area: 58.2 Ų
Heavy Atom Count: 42
Formal Charge: 0
Complexity: 503
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes

Melting point: 144-146 °C(lit.)
Boiling point: 646.41°C (rough estimate)
Density: 1 g/cm3 (20℃)
vapor pressure: 0.000023 Pa (20 °C)
refractive index: 1.4670 (estimate)
Flash point: 280℃
storage temp.: 2-8°C
solubility: ketones, alcohols and aromatic solvents at their boiling points: soluble
pka: 15.53±0.46(Predicted)
form: beads
Appearance: Powdery
Smell: No smell
Color (Gardner): ≤3#
Melting Point (℃): 141.5-146.5
Acid Value (mgKOH/g): ≤7.50
Amine value (mgKOH/g): ≤2.50
Moisture (wt%): ≤0.30
Mechanical impurity: Φ0.1-0.2mm(individual/10g)



FIRST AID MEASURES of KAOWAX EB-G:
-Description of first-aid measures:
*After inhalation:
Fresh air.
*In case of skin contact:
Take off immediately all contaminated clothing.
Rinse skin with water/ shower.
*After eye contact:
Rinse out with plenty of water.
Remove contact lenses.
*After swallowing:
Make victim drink water (two glasses at most).
-Indication of any immediate medical attention and special treatment needed:
No data available



ACCIDENTAL RELEASE MEASURES of KAOWAX EB-G:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Cover drains.
Collect, bind, and pump off spills.
Take up dry.
Dispose of properly.



FIRE FIGHTING MEASURES of KAOWAX EB-G:
-Extinguishing media:
*Suitable extinguishing media:
Water
Foam
Carbon dioxide (CO2)
Dry powder
*Unsuitable extinguishing media:
For this substance/mixture no limitations of extinguishing agents are given.
-Further information:
Prevent fire extinguishing water from contaminating surface water or the ground water system.



EXPOSURE CONTROLS/PERSONAL PROTECTION of KAOWAX EB-G:
-Control parameters
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Use Safety glasses
*Skin protection:
Full contact:
Material: Nitrile rubber
Minimum layer thickness: 0,11 mm
Break through time: 480 min
Splash contact:
Material: Nitrile rubber
Minimum layer thickness: 0,11 mm
Break through time: 480 min
-Control of environmental exposure:
Do not let product enter drains.



HANDLING and STORAGE of KAOWAX EB-G:
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Tightly closed.
Dry.



STABILITY and REACTIVITY of KAOWAX EB-G:
-Chemical stability:
The product is chemically stable under standard ambient conditions (room temperature) .



SYNONYMS:
N,N-ethylenedi(stearamide)
1,2-distearamidoethane
N,N-Ethylenebisoctadecanamide
N,N'-ethylene bis-stearamide
N,N'-ethane-1,2-diyldioctadecanamide
2,5-dihexadecylhexanediamide
1,2-Bis(stearoylamino) ethane
N,N′-1,2-Ethanediylbisoctadecanamide
N,N′-Ethylenedi(stearamide)
Ethylene distearylamide
N,N′-(Ethane-1,2-diyl)di(octadecanamide)
ETHYLENE-BIS-STEARAMIDE
waxc
EBSA
advawax
acrawaxc
acrowaxc
lubrolea
5-AC-13C4
acrawaxct
110-30-5
N,N'-Ethylenebis(stearamide)
Plastflow
Ethylene distearamide
N,N'-(Ethane-1,2-diyl)distearamide
Advawax
Acrowax C
Acrawax CT
Lubrol EA
Ethylenedistearamide
Microtomic 280
Advawachs 280
Ethylenebis(stearylamide)
Abril wax 10DS
Carlisle 280
Nopcowax 22-DS
Ethylenebisstearoamide
Advawax 275
Advawax 280
Carlisle Wax 280
Armowax ebs-P
Ethylenebis(stearamide)
Octadecanamide, N,N'-1,2-ethanediylbis-
N,N'-Ethylenebisoctadecanamide
1,2-Bis(octadecanamido)ethane
Chemetron 100
N,N'-ETHYLENE DISTEARYLAMIDE
N,N'-Ethylenedistearamide
Ethylenediamine steardiamide
Ethylenediamine bisstearamide
N,N'-Distearoylethylenediamine
Ethylenebisstearamide
N,N'-Ethylenebisstearamide
NN'-Ethylenebis(stearamide)
Stearic acid, ethylenediamine diamide
Ethylenebisoctadecanamide
Octadecanamide, N,N'-ethylenebis-
UNII-603RP8TB9A
N-[2-(octadecanoylamino)ethyl]octadecanamide
N,N-Ethylenebis(stearamide)
603RP8TB9A
N,N'-ethane-1,2-diyldioctadecanamide
Acrawax C
Kemamide W 40
N,N'-Ethylenedi(stearamide)
WAX C
N,N-Ethylenebisstearamide
CCRIS 2293
ethylene bisstearamide
HSDB 5398
Ethylene bis stearamide
Ethylene bis(stearamide)
EINECS 203-755-6
NSC 83613
N,N'-Ethylene bisstearamide
AI3-08515
N,N'-ethylene-bis-stearic amide
Abluwax EBS
Armowax EBS
Dorset WAX
C38H76N2O2
N,N'-ethylenebis
Glycowax 765
Kemamide W-39
Kemamide W-40
N,N'-1,2-Ethanediylbisoctadecanamide
Uniwax 1760
EC 203-755-6
Ethylene Bis Stearamide SF
SCHEMBL19975
Octadecanamide,N'-ethylenebis-
DTXSID4026840
NSC83613
MFCD00059224
NSC-83613
ZINC85733714
AKOS015915120
Octadecanamide,N'-1,2-ethanediylbis-
DS-6811
E0243
FT-0629590
V0595
D70357
N,N'-Ethylenebis(stearamide), beads, A802179
Q5404472
W-108690
2,5-dihexadecylhexanediamide
N,N'-(Ethane-1,2-diyl)distearamide
Plastic additive 03, European Pharmacopoeia (EP)
n,n'-ethylenebisoctadecanamide (mixture of fatty acid amides) (consists of c14, c16 and c18)
N,N'-Ethylenedi(stearamide)
1,2-Bis(stearoylamino) ethane
N,N′-1,2-Ethanediylbisoctadecanamide
Ethylene distearylamide
Ethylene bisstearamide
Ethylene distearamide
EBS
1,2- Bis(octadecanamido)ethane
Ethylenebisoctadecanamide
Ethylenebis(stearylamide)
Ethylenediamine bisstearamide
N-[2-(octadecanoylamino)ethyl]octadecanamide
N-(2-stearamidoethyl)stearamide
N,N'-Distearoylethylenediamine
N,N'-ethane-1,2-diyldioctadecanamide
N,N'-Ethylenedistearamide
n,n'-Ethylene distearylamide
Octadecanamide


KAPRIK/KAPRILIK ASIT 
KERATIN, N° CAS : 68238-35-7, Nom INCI : KERATIN, N° EINECS/ELINCS : 269-409-1, Ses fonctions (INCI): Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance.Agent d'entretien de la peau : Maintient la peau en bon état
Kara Mürver Ekstrakt
Salvadora Persica Stem Extract or Salvadora Persica Bark/Root Extract ;salvadora persica bark root extract; extract of the roots and bark of the mustard tree, salvadora persica l., moraceae; mswaki extract; mustard tree extract; peelu bark extract;toothbrush tree extract CAS NO:8007-40-7
Karabiber Ekstraktı
Piper Nigrum fruit extract; black piper nigrum fruit extract ; pepper extract ;black pepper extract cas no: 84929-41-9
Karabiber Yağı
BLACK PEPPER OIL; black pepper oil; black piper nigrum fruit oil; pepper - black oil; pepper oil CAS NO:8006-82-4
KARADUT AROMASI
black mulberry flavor;morus nigra fruit flavor
Karahindiba Ekstrakt
Taraxacum Officinale Extract ;actiphyte of dandelion extract; extract obtained from the dandelion, taraxacum officinale, asteraceae; lechuguilla extract; leontodon taraxacum extract;taraxacum officinale var. palustre extract; taraxacum retroflexum extract cas no:68990-74-9
KARAMEL AROMASI
caramel flavor; caramel flavor organic; caramel flavor powder; salted caramel flavor
KARANFİL AROMASI
carnation flavor
Karanfil Ekstraktı
Eugenia Caryophyllata Extract ;syzygium aromaticum extract acetylated ; caryophyllus aromaticus extract acetylated; clove extract acetylated ; jambosa caryophyllus extract acetylated; myrtus caryophyllus extract acetylated cas no:84961-50-2
Karanfil Tomurcuğu Yağı
CLOVE BUD OIL; clove bud oil; essential oil steam-distilled from the dried flower buds of the clove, syzygium aromaticum, syn. eugenia caryophyllus, myrtaceae CAS NO:8000-34-8
Karanfil Yaprağı Yağı
CLOVE LEAF OIL ; essential oil steam-distilled from the leaves of the clove, eugenia caryophyllus, myrtaceae; caryophyllus aromaticus leaf oil; eugenia aromatica leaf oil; eugenia caroyphyllus leaf oil ; syzygium aromaticum leaf oil; syzygium aromaticum leaf oil CAS NO:8000-34-8
KARBOMER
Jöle, ultrason jel, yüz jeli gibi transparan jel formülasyonlarında kullanılır. Jelleştirici madde
Karmozin
SYNONYMS C.I. Food Red 3; Brillantcarmoisin O;2-(4-Sulfo-1-Napthylazo)-1-Naphthol-4-Sulfonic Acid) disodium Salt;4-Hydroxy-3-(4- sulfonato-1-naphthylazo) naphthalene-1-sulfonate disodium Salt; Mordant Blue 79; Azorubine; Acid Red 14; C.I. 14720; Azorubin S; C.I. 14720; C.I. Acid Red 14; Disodium 4-hydroxy-3-((4-sulfo-1-naphthalenyl)azo)-1-naphthalenesulfonate; Mordant Blue 79 CAS NO:3567-69-9
Karnauba mumu T1
SYNONYMS COPERNICIA CERIFERA (CARNAUBA) WAX;Carnaba Wax;Carnaubawachs;CARNAUBA(COPERNICIACERIFERA)WAX;CARNAUBA WAX PURE REFINED;CARNAUBAWAX,YELLOWNO.1,FLAKES;CARNAUBA WAX YELLOW FLAKES;CARNAUBA WAX YELLOW POWDER CAS NO:8015-86-9
Karnauba mumu T3
SYNONYMS COPERNICIA CERIFERA (CARNAUBA) WAX;Carnaba Wax;Carnaubawachs;CARNAUBA(COPERNICIACERIFERA)WAX;CARNAUBA WAX PURE REFINED;CARNAUBAWAX,YELLOWNO.1,FLAKES;CARNAUBA WAX YELLOW FLAKES;CARNAUBA WAX YELLOW POWDER CAS NO:8015-86-9
KARPUZ AROMASI
Watermelon Flavor; watermelon flavor for confectionery; watermelon flavor natural
Karpuz Ekstratı
WATERMELON EXTRACT; citrullus lanatus fruit extract; watermelon extract CAS NO:90244-99-8
Karragenan
SYNONYMS Vegetable gelatin CAS NO:9000-07-1
KATHON
SYNONYMS 3(2H)-Isothiazolone, 5-chloro-2-methyl-, mixt. with 2-methyl-3(2H)-isothiazolone, 55965-84-9, 5-chloro-2-methyl-1,2-thiazol-3-one; 2-methyl-1,2-thiazol-3-one, 5-chloro-2-methyl-isothiazol-3-one; 2-methylisothiazol-3-one, 70294-89-2, 72980-78-0, 96118-96-6, Bio-Perge, C8H9ClN2O2S2, CCRIS 4652, EPA Pesticide Chemical Code 107103, EPA Pesticide Chemical Code 107104, ISOTHIAZOLINONE, Isothiazolinone chloride, Kathon 886, Kathon 886MW, CAS NO:229619-22-1
KATHON 893
Kathon 893 This product is a powerful fungicidal compound, which can be used as an additive in aqueous metalworking fluids. KATHON 893 MW offers excellent anti-fungal protection at use rates of 55 to 170 ppm on a post-addition basis. KATHON 893 MW is also compatible with KATHON 886 MW.STORAGE AND HANDLINGThe expected shelf life for this product is 2 years under normal storage conditions. This product, like most chemicals, should be stored out of direct sun light in an area where the temperature is between 40ºF (4.4ºC) and 110ºF (43ºC).SAFETY DATAThis product is very hazardous and proper handling and storage is critical. Avoid contact with skin and eyes. Prior to using this product, please consult the Material Safety Data Sheet for instructions regarding safe handling. EPA approved, fully tested and widely used/accepted standard of the industry Can be used in a maintenance dose or in a kill dose Quickly disperses for immediate impact on fungi Compatible with KATHON 886 MW, will not deactivate any active ingredients in the full-spectrum biocide. Soluble, synthetic, and semi-synthetic metalworking fluids or coolants provide an excellent environment for the growth of various microorganisms, including bacteria, mold, and yeast. If allowed to grow, these organisms can have detrimental effects on the fluids. For example, bacteria, which can grow very quickly, can destroy the integrity of the fluid by discoloration, destroying lubricity characteristics, and causing emulsions to split. Bacteria can also reduce the pH of the fluid, which can promote corrosion. Some forms of bacteria have objectionable odors. Fungi typically grow more slowly than bacteria, but can form large masses which clog filters and lines and in some cases lead to system shutdown; fungi also generate foul odors and can cause corrosion. The increased use of synthetic fluids over the past few years has led to an even greater need for the enhanced fungal control that Kathon 893 MW Biocide can provide. Product Name Kathon 893 Synonyms 2-Octyl-4-isothiazolin-3-one 3(2H)-Isothiazolone, 2-octyl- Kathon LP Preservative Octhilinone Ultrafresh DM 25 Vinyzene IT 3000DIDP CAS 26530-20-1 Formula C11H19NOS Molecular Weight 213.34 EINECS 247-761-7 RTECS NX8156900 RTECS Class Agricultural Chemical and Pesticide; Drug; Primary Irritant Merck 12,6853 Beilstein/Gmelin 1211137 EC Index Number 613-112-00-5 EC Class Toxic; Harmful; Corrosive; Sensitising; Dangerous for the Environment Physical and Chemical Properties Appearance Clear dark amber liquid. Solubility in water Insoluble Boiling Point 120 Vapor Pressure 3 Density 1.040 g/cm3 (20 C) Usage Used to kill fungus. For Tankside and Concentrate Kathon 893 MW Biocide is a broad-spectrum fungicide that has been recommended and widely used for tankside control of fungi in metalworking central systems. Kathon 893 MW is also an effective fungicide for use in many metalworking fluid concentrates with the appropriate stabilizer package. Due to the wide variations in metalworking fluid formulations, laboratory or small-scale tests are recommended to evaluate Kathon 893 MW in usedilution and concentrate metalworking fluids before they are commercialized. Kathon 893 MW is a highly effective, industrial fungicide that exhibits excellent fungistatic and fungicidal activity against fungi, including yeasts and mold, and Gram-Positive bacteria, and limited activity against Gram-Negative bacteria. Commonly known as octhilinone, 2-n-octyl-4-isothiazolin-3-one is the active ingredient of Kathon 893 MW. It is supplied as a 45 percent active liquid in propylene glycol. The information in this brochure has been compiled to familiarize the reader with Kathon 893 MW technology, to communicate the tremendous benefits of this product, and to provide directions for safe and efficient use of the product. By following the precautions outlined in this brochure, on the product label, and on the Dow Safety Data Sheet (SDS), Kathon 893 MW can be safely handled. The following are typical properties of Kathon 893 MW Biocide; they are not to be considered product specifications. Appearance: ..................................................................................... Yellow to amber liquid Color (VCS): .............................................................................................................. 8 max. Odor: ................................................................................................................. Mildly sweet Specific gravity @ 24°C: .............................................................................................. 1.03 Flash point, °C (Pensky Martens Closed Cup): ............................................................... 93 Viscosity Brookfield @ 20°C, cps: ................................................................................... 40 Melting point, °C: ............................................................................................................ -40 Boiling point, °C: ............................................................................................................ 188 Vapor pressure, active ingredient @ 25°C: ................................................... 3.7 x 10-5 torr Solubility The solubility data provided below were determined at ambient temperatures (20 to 25°C). The solubility and stability of the active ingredient may be affected when the temperature is lowered to 0°C or increased to 60°C. • Kathon 893 MW Biocide is soluble in methanol, ethanol, propylene glycol, acetone, ethyl ether, ethyl acetate, chloroform, butyl Cellosolve, corn oil, and mineral oil. • The solubility of Kathon 893 MW in toluene is 25% w/v. • The solubility of Kathon 893 MW in water at 25°C is 480 ppm (active ingredient), although this may be increased by using suitable surfactants and emulsifiers. • Kathon 893 MW is insoluble in heptane. Compatibility In concentrate and use-dilution metalworking fluids, the compatibility of Kathon 893 MW Biocide is concentration-dependent and varies from formulation to formulation. It is compatible with most metalworking fluid additives, including surfactants and amines. Compatibility with amines may vary by the type, concentration and pH. Strong reducing agents, such as sulfides, mercaptans, bisulfites and metabisulfites, or strong oxidizing agents, such as hypochlorites, may affect the efficacy of Kathon 893 MW. Laboratory or small-scale tests are recommended in order to evaluate Kathon 893 MW compatibility in use-dilution or concentrate metalworking fluids prior to commercialization. Kathon 893 MW is compatible with most other metalworking fluid biocides, including KATHON 886 MW and KATHON CC (methylchlorosiothiazolone), KORDEK™ LX5000 (methylisothiazolone), ROCIMA™ BT 2S biocides (benzisothiazolone), triazine and formaldehyde-releasers, IPBC (iodopropynylbutylcarbamate) and sodium Pyrithione. Stability In-Use Stability: Kathon 893 MW Biocide has excellent stability in end use dilutions of metalworking fluids. It is stable over a wide pH range (4-10) in water and in metalworking fluid systems. Concentrate Stability: Kathon 893 MW Biocide stability, in metalworking fluid concentrates, is variable. We recommend checking stability and performance before commercialization of products. Dow has several recommended stabilizers to improve stability and compatibility in many types of concentrates. Storage Stability: In general, the storage stability of the Kathon 893 MW Biocide product is excellent. The shelf life of the product is nominally twelve years at 25°C. It is strongly recommended, however, that both the stability and compatibility of Kathon 893 MW Biocide in metalworking fluid formulations or systems be thoroughly examined before commercialization. Method of Addition Kathon 893 MW Biocide should be directly dispensed into metalworking fluid concentrates or use-dilution metalworking fluids using a metering pump or other point-of-use device where possible and uniformLy dispersed throughout the fluid. Fluid Concentrate Kathon 893 MW Biocide should be added to metalworking fluid concentrates at a level that ensures the final use-dilution fluid will contain 55 to 167 ppm of product (25 to 75 ppm active ingredient). Kathon 893 MW stability in a given concentrate should be determined prior to commercialization. Contact your local Dow representative for assistance in selecting one of several recommended stabilizers to enhance the performance and compatibility of Kathon 893 MW in your metalworking fluid concentrate. Use-Dilution Fluid We highly recommend grossly contaminated systems be cleaned before treatment is begun. Initial Dose: For a noticeably fouled system, add 0.47 to 1.44 lbs (7 to 21 fl oz) of Kathon 893 MW Biocide per 1,000 gallons of fluid. This will provide 25 to 75 ppm active ingredient. Repeat until control is achieved. Subsequent Dose: For maintenance of a non-fouled system, add 0.09 to 0.58 lbs (1.3 to 8.6 fl oz) of Kathon 893 MW Biocide per 1,000 gallons of fluid every four weeks. This will provide 5 to 30 ppm active ingredient. A higher dose range and/or increased frequency of treatment may be required, depending upon the rate of dilution of the preservative with the makeup fluid, the nature and severity of contamination, level of control required, filtration effectiveness, system design, etc. General Practices When Using Kathon 893 Biocides • Know the size of your system and dose at the recommended use levels. • To improve performance and longevity, add Kathon 893 MW Biocide on the clean side of the filters. It may be necessary to occasionally add Kathon 893 MW to the dirty side of the filters if large populations of microorganisms are detected there. • Minimize contamination: – Eliminate or minimize dead spots – Disconnect unused portions of the system – Do not throw trash in sumps • Always remember to triple rinse (or equivalent) empty containers to avoid incidental contact. • Post placard with safety information and deactivation protocol near biocide handling area. Additional guidelines for maximizing the performance of Kathon 893 MW Biocide are as follows: • Kathon 893 MW stability and performance is improved with lower pH. Whenever possible, maintain the pH of system below pH 9.2. Lower pH also makes amines and amine-containing compounds less aggressive. • For systems with pH greater than 9.5, we strongly recommend determination of biological efficacy and chemical stability prior to use. • Avoid adding highly basic additives (alkaline materials with pH of 10-12) immediately prior to or after adding Kathon 893 MW to your system. If a highly basic additive must be added, allow sufficient time (at least 30 minutes) between additions. Minimize levels of diethanolamine (DEA) in your system. If possible use 99% triethanolamine (TEA) or monoethanolamine (MEA) instead of DEA, and use these at as low a level as possible. • Always add Kathon 893 MW directly to the metalworking fluid sump. Never use Kathon 893 MW in a spray bottle. • Avoid charging Kathon 893 MW in high temperature zones, since increasing temperatures accelerate other degradation effects. Ideally, add Kathon 893 MW to the fluid below 60°C (140°F). • Avoid adding Kathon 893 MW and incompatible corrosion inhibitors directly to the tank at the same time. How Does Kathon 893 MW Biocide Work? Kathon 893 MW Biocide utilizes a two-step mechanism involving rapid growth inhibition leading to a loss of cell viability. Growth inhibition is the result of rapid disruption of the central metabolic pathways of the cell by inhibition of several specific enzymes, including dehydrogenases. The critical enzymes which are affected are associated with the Krebs cycle, nutrient metabolism and energy generation. The key physiological activities that are rapidly inhibited in microbial cells are respiration (oxygen consumption), energy generation (ATP synthesis), and growth (assimilation). Many of these key enzymes are present in both aerobic and anaerobic microorganisms, which explains why Kathon 893 MW is such a broad spectrum biocide. Inhibition of cellular activity and growth is rapid (within minutes), whereas cell death (cidal activity) is observed after several hours’ contact. In general, the higher the concentration of biocide, the shorter the contact time required for more complete kill. Cell death results from the progressive loss of protein thiols in the cell from one of multiple pathways. As cell metabolism is disrupted, free radicals are produced which also results in cell death. This unique mechanism results in the broad spectrum of activity of Kathon 893 MW Biocide, low use levels for microbial control, and difficulty in attaining resistance by mutation. See technical bulletin (CS-632) for more detailed information. How Rapidly Does Kathon 893 MW Biocide Work? Within minutes after addition of Kathon 893 MW Biocide to a metalworking fluid sump, the metabolic activity of the microorganisms in the system shuts down. This includes cellular respiration (oxygen uptake), growth, energy generation, and nutrient uptake. The microorganisms, although still alive, are no longer able to reproduce or metabolize metalworking fluid components. After 24 to 48 hours of contact with a lethal dose of the biocide, most of the microorganisms have been killed. How Long Does Kathon 893 MW Biocide Last? Kathon 893 MW Biocide has excellent in-use stability and generally retains its antimicrobial efficacy in metalworking fluid systems for 2 to 4 weeks. Variables such as degree of fluid contamination, effectiveness of the filtration system, system turnover time, compatibility between the microbicide and the metalworking fluid components, and other system additives involved, can affect the life of the microbicide in a system. Is Kathon 893 MW Biocide Effective in Reducing Fungal Biofilms? YES. Kathon 893 MW Biocide has been shown to reduce microbial fouling and prevent biofilm development in metalworking fluid systems. The benefits of reduced fungal biofouling include improved system performance, reduced filter plugging, reduced biocorrosion, and improved microbial control. Is Kathon 893 MW Biocide Effective When Used in Concentrates? YES. Kathon 893 MW Biocide may be used in certain fluid concentrates to provide efficacy in the final use dilutions. Although Kathon 893 MW stability may not be suitable for all concentrates, we have had success with the biocide alone or in combination with one of our recommended stabilizers. How Can I Improve Kathon 893 MW Biocide Stability in Concentrates? We recommend testing Kathon 893 MW Biocide in concentrates prior to commercialization. Dow technical staff can assist you in formulating products. We have years of experience and a range of recommended stabilizers to prolong the lifetime and improve compatibility of Kathon 893 MW in concentrates. Contact your sales representative for assistance. Anti-Microbial Properties of Kathon 893 MW Biocide Initial determinations of the efficacy of any biocidal product are made via minimum inhibitory concentration (MIC) measurements. The MIC test yields valuable information about the product’s inherent antimicrobial efficacy and spectrum of activity. The MIC for any product is the lowest level at which the active ingredient inhibits the growth of various microorganisms. This method is a useful tool for screening antimicrobial agents under standardized laboratory conditions, in nutrient-rich growth conditions. In interpreting the data, remember that low values correspond to high activity. Table 2 indicates that Kathon 893 MW Biocide possesses outstanding antimicrobial activity against a broad range of fungi (both yeasts and molds). Kathon 893 MW has very low MIC values for most of the fungi tested and there is no gap in the spectrum of activity among the organisms tested. Kathon 893 MW Biocide was evaluated as a tankside fungicide in a wide variety of metalworking fluids, including synthetics, semi-synthetics, and soluble-oil fluids. In a oneweek eradication study described below, a total of 16 fluids from various manufacturers in the United States, Europe, and Japan were tested. Test Procedure The actual test systems were run in volumes of 50 mL, which consisted of 40 mL of virgin metalworking fluid (generally diluted 20:1) and 10 mL of the adapted inoculum as described above. Prior to inoculation, the fluids containing fungal growth were blended for two minutes at high speed in a Waring blender. Most samples contained 0.5 g of iron filings. At time zero, the following active levels of Kathon 893 MW Biocide were added: 5 ppm, 10 ppm, 25 ppm, 50 ppm, 75 ppm, and 100 ppm. Additionally, samples were run containing 50 ppm and 100 ppm active sodium Pyrithione. Once fluids were dosed with biocide and inoculated, they were mechanically shaken for one week and plated on sabouraud dextrose agar. Results Kathon 893 MW Biocide was completely effective in all fluids at levels ranging from 5 to 75 ppm active ingredient. In all but one of the fluids, it was effective at concentrations in the range of 5 to 50 ppm active ingredient. In synthetic fluids, which are prone to fungal growth, Kathon 893 MW was effective in the range of 5 to 10 ppm. Sodium Pyrithione was not very effective at recommended use levels of 50 to 100 ppm active ingredient. A long-term study was done to compare the fungicidal activity of Kathon 893 MW Biocide and sodium Pyrithione in a synthetic metalworking fluid, use-dilution 1:30. The concentration of Kathon 893 MW studied ranged from 10 to 75 ppm active ingredient and the concentration of sodium pyrithione ranged from 50 to 200 ppm active ingredient. Test Procedure The test samples were inoculated at zero time and again every two weeks with fungal inoculum isolated from naturally contaminated synthetic metalworking fluid and maintained in the same fluid employed in the test. Results Results, provided in Table 4, show that particularly high fungal counts were not achieved in the untreated control for this particular fluid (note: Due to the inherent mycelial clumping common to most fungal species when growing in liquid substrates, plate counts of colonyforming units carried out on the aliquots of the liquid are not always indicative of the degree of fungal contamination present). In spite of this, sodium Pyrithione allowed fungal survival at all levels at which it was tested. Kathon 893 MW Biocide, however, exhibited complete fungal control at significantly lower levels. There is usually a need to control both bacteria and fungi in metalworking fluid systems. Bacteria and fungi, however, are not always controlled by one biocide. For example, Kathon 893 886 MW Biocide is a broad-spectrum biocide that controls the growth of bacteria and fungi, including molds and yeast, in many metalworking fluid systems and therefore can usually be used alone. Some fluids, however, contain aggressive components which may decrease the stability of KATHON 886 MW and therefore reduce its efficacy for controlling microorganisms. If such fluids are especially prone to fungal growth, use of KATHON 893 MW in conjunction with KATHON 886 MW, KORDEK™ LX5000, or ROCIMA™ BT 2S biocides is recommended. These products are completely compatible and provide excellent cost performance. Kathon 893 MW is also compatible with other bactericides, including triazine and formaldehyde releasers, and other fungicides. The use of Kathon 893 MW in the same system as KATHON 886 MW, KORDEK LX5000, and a number of other biocides are covered in several Dow patents. The efficacy of Kathon 893 MW Biocide in a use-dilution synthetic metalworking fluid was evaluated under actual use conditions during a five-month field trial in a 200,000-gallon system. At the start of the trial, fungal mats covered the walls of the flumes and weirs of the system and filters which required constant maintenance to prevent clogging (see Figure 1). Fungal slime was also present on and around many of the machines supplied by the system. The bacterial population of the fluid was between 103 and 104 cfu/mL (colonyforming units per mL), and the fungal population was between 380 and 790 cfu/mL. During the first 45 days of the trial, the level of Kathon 893 MW Biocide was maintained at approximately 25 ppm active ingredient. For the remaining 3 months of the trial, the level of Kathon 893 MW was maintained between 30 ppm and 10 ppm active ingredient. The results of the trial showed that the regimen of Kathon 893 MW addition chosen provided essentially complete control of fungal organisms in the fluid itself and also destroyed the fungal organisms comprising the mats covering the walls of the flumes and weirs of the system. These fungal mats lost their integrity and gradually sloughed off the surfaces to which they were attached (see Figure 2). The microbial slime present on and around the machines also disappeared. The bacterial populations of the fluid remained in the range of 102 to 104 cfu/mL, throughout the trial. In addition, the amount of makeup fluid required to maintain the desired characteristics of the fluid was reduced significantly (42 percent) during the trial. Handling The procedures used for handling concentrated biocide solutions are similar to those used for handling concentrated acids and alkalis. The purpose is to prevent all eye and skin contact, including inhalation of mists, and thereby prevent possible injury and sensitization. Personnel handling Kathon 893 MW Biocide as supplied should always wear protective clothing, which includes chemical splash goggles, an impervious apron or rain suit, and impervious rubber gloves. We recommend that employees working with Kathon 893 MW as supplied thoroughly wash with soap and water at the end of a shift or prior to eating, drinking, smoking, or applying cosmetics. Special care should be taken to avoid contamination of surfaces or materials that may later be handled by unprotected personnel, for example, door and tap handles. Storage Kathon 893 MW Biocide is packaged in polyethylene or polyethylene-lined containers. It should not be stored in unlined metal containers since it is a corrosive material. Normal recommended storage temperatures are in the range of 10° to 25°C (50° to 80°F). Shelf life ~12 years (packaging should be evaluated and replaced as needed for transport compliance over the duration of product shelf life). Storage at >120°F for extended periods of time can result in degradation of the active ingredient. Decontamination Solutions Kathon 893 MW Biocide can be decontaminated with a 5% solution of sodium hypochlorite (NaOCl) containing 2-5% sodium bicarbonate (NaHCO3 ). Solutions should be freshly prepared. Employees preparing or handling decontamination solutions should wear chemical splash goggles, an impervious apron or rain suit, and impervious rubber gloves. Note: Do not use decontamination solution to treat skin, eyes or clothing which have come in contact with Kathon 893 MW. Decontamination of Equipment Equipment used in the handling of Kathon 893 MW Biocide, such as mix tanks, lines, pumps, etc., must be decontaminated before carrying out maintenance or used for other service. To decontaminate this equipment, estimate the volume of Kathon 893 MW remaining in the well-drained system. Prepare 10 volumes of decontamination solution per volume of Kathon 893 MW (45%) and circulate the mixture throughout the equipment. Be certain that the Kathon 893 MW and decontamination solution mix well. Wait at least 30 minutes to ensure complete reaction. Drain and rinse with clean water or detergent solution. Decontamination solution runoffs should be drained to a chemical sewer unless prohibited by state or local regulations. Drips, minor spills and exposed wet areas should be cleaned up promptly with the hypochlorite/bicarbonate mixture. Contaminated surfaces should be swabbed with decontamination solution and allowed to stand for 30 minutes before rinsing thoroughly with water. Decontaminated solutions should be drained to a chemical sewer unless prohibited by state or local regulations. Note: Because of the high level of activity of Kathon 893 MW, a relatively small quantity could have a damaging impact on the effectiveness of waste treatment bio-systems. Laboratory or plant spills should be decontaminated with decontamination solution before being released to a biological waste treatment system. Cleanup of Spills Procedures provided in the Safe Handling Section should be followed when cleaning spills of Kathon 893 MW Biocide. 1. Wear impervious rubber gloves, chemical splash goggles, protective clothing and overshoes. 2. Dike and adsorb the spilled material on an inert solid, such as clay or vermiculite or with spill control pillows. 3. Transfer the adsorbent or pillows and surrounding surface soil into a pail or drum. This container should be no more than two-thirds full. 4. Treat the contents of the container with 10 volumes of decontamination solution per estimated volume of spilled Kathon 893 MW. 5. Treat the surrounding spill area with excess decontamination solution. Flush after a minimum of 30 minutes into a chemical sewer. 6. Do not discharge spills and cleaning runoffs into open bodies of water, because of a potential adverse impact on the environment. 7. Carefully remove the contaminated gloves and place them in the container (peel off the gloves by pulling on the outside of the glove sleeve turning them inside out as they are removed). After 48 hours, seal the container and dispose of it by landfilling in accordance with local, state, and federal regulations. Bulletin CS-561, which is available on request, contains methods for determining the presence of Kathon 893 MW Biocide’s active ingredient in use dilution metalworking fluids by high performance liquid chromatography (HPLC). This bulletin also contains HPLC procedures for determining KATHON 886 MW active ingredients in use-dilution metalworking fluids. Dow maintains Safety Data Sheets (SDS) for all of its products. These sheets contain pertinent information that you may need to protect your employees and customers against any known health or safety hazards associated with our products.We recommend that you obtain and review Safety Data Sheets (SDS) for our products from your distributor or Dow technical representative before using our products in your facility. We also suggest that you contact your supplier of other materials recommended for use with our product for appropriate health and safety precautions before using them. Dow Sales Service and Technical Service departments have over twenty-five years’ experience evaluating Kathon 893 biocides’ performance in a variety of applications. In the area of metalworking fluids we can advise on determining KATHON biocide stability and efficacy in use-dilution as well as concentrate metalworking fluids, and we can make recommendations on how to evaluate the level and type of system contamination you may be experiencing. In addition, Dow personnel can assist you with questions on KATHON biocides’ toxicology, environmental issues, safe storage, handling and use. Finally, Dow has available for your use a videotape on the safe use and handling of the family of KATHON and KORDEK™ biocides for the metalworking industry, including Kathon 893 MW, KATHON 886 MW and KORDEK LX5000 biocides. For further information, contact your local Dow KATHON biocide representative or contact Dow. Kathon 893 MW Biocide 45% solution is available in 5-gallon pails (44 lbs), 30-gallon drums (44 lbs), and cartons (22 lbs) containing two 1-gallon jugs. To obtain samples, technical assistance, a Safety Data Sheet (SDS), or to have a technical representative call for an appointment, contact the nearest Dow office. Kathon 893 MW Biocide is a biocidal product intended for use in accordance with Product Type 13 (Metalworking fluid preservatives) of the Biocidal Products Directive 98/8/ EC (BPD). Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products – from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.
KATHON 893 MW
KATHON 893 MW Biocide Metalworking Fluid Fungicide for Water-Based Cutting Fluids EPA Reg. No.: 707-195 Soluble, synthetic, and semi-synthetic metalworking fluids or coolants provide an excellent environment for the growth of various microorganisms, including bacteria, mold, and yeast. If allowed to grow, these organisms can have detrimental effects on the fluids. For example, bacteria, which can grow very quickly, can destroy the integrity of the fluid by discoloration, destroying lubricity characteristics, and causing emulsions to split. Bacteria can also reduce the pH of the fluid, which can promote corrosion. Some forms of bacteria have objectionable odors. Fungi typically grow more slowly than bacteria, but can form large masses which clog filters and lines and in some cases lead to system shutdown; fungi also generate foul odors and can cause corrosion. The increased use of synthetic fluids over the past few years has led to an even greater need for the enhanced fungal control that KATHON 893 MW Biocide can provide. For Tankside and Concentrate KATHON 893 MW Biocide is a broad-spectrum fungicide that has been recommended and widely used for tankside control of fungi in metalworking central systems. KATHON 893 MW is also an effective fungicide for use in many metalworking fluid concentrates with the appropriate stabilizer package. Due to the wide variations in metalworking fluid formulations, laboratory or small-scale tests are recommended to evaluate KATHON 893 MW in usedilution and concentrate metalworking fluids before they are commercialized. KATHON 893 MW is a highly effective, industrial fungicide that exhibits excellent fungistatic and fungicidal activity against fungi, including yeasts and mold, and Gram-Positive bacteria, and limited activity against Gram-Negative bacteria. Commonly known as octhilinone, 2-n-octyl-4-isothiazolin-3-one is the active ingredient of KATHON 893 MW. It is supplied as a 45 percent active liquid in propylene glycol. The information in this brochure has been compiled to familiarize the reader with KATHON 893 MW technology, to communicate the tremendous benefits of this product, and to provide directions for safe and efficient use of the product. By following the precautions outlined in this brochure, on the product label, and on the Dow Safety Data Sheet (SDS), KATHON 893 MW can be safely handled. H O C3H8 -n C C N S C H 2-n-octyl-4-isothiazolin-3-one 45% minimum Propylene glycol (inert) 50% minimum The following are typical properties of KATHON 893 MW Biocide; they are not to be considered product specifications. Appearance: Yellow to amber liquid Color (VCS): 8 max. Mildly sweet Specific gravity @ 24°C: 1.03 Flash point, °C (Pensky Martens Closed Cup): 93 Viscosity Brookfield @ 20°C, cps: 40 Melting point, °C: -40 Boiling point, °C: 188 Vapor pressure, active ingredient @ 25°C: 3.7 x 10-5 torr Solubility The solubility data provided below were determined at ambient temperatures (20 to 25°C). The solubility and stability of the active ingredient may be affected when the temperature is lowered to 0°C or increased to 60°C. • KATHON 893 MW Biocide is soluble in methanol, ethanol, propylene glycol, acetone, ethyl ether, ethyl acetate, chloroform, butyl Cellosolve, corn oil, and mineral oil. • The solubility of KATHON 893 MW in toluene is 25% w/v. • The solubility of KATHON 893 MW in water at 25°C is 480 ppm (active ingredient), although this may be increased by using suitable surfactants and emulsifiers. • KATHON 893 MW is insoluble in heptane. Compatibility In concentrate and use-dilution metalworking fluids, the compatibility of KATHON 893 MW Biocide is concentration-dependent and varies from formulation to formulation. It is compatible with most metalworking fluid additives, including surfactants and amines. Compatibility with amines may vary by the type, concentration and pH. Strong reducing agents, such as sulfides, mercaptans, bisulfites and metabisulfites, or strong oxidizing agents, such as hypochlorites, may affect the efficacy of KATHON 893 MW. Laboratory or small-scale tests are recommended in order to evaluate KATHON 893 MW compatibility in use-dilution or concentrate metalworking fluids prior to commercialization. KATHON 893 MW is compatible with most other metalworking fluid biocides, including KATHON 886 MW and KATHON CC (methylchlorosiothiazolone), KORDEK LX5000 (methylisothiazolone), ROCIMA BT 2S biocides (benzisothiazolone), triazine and formaldehyde-releasers, IPBC (iodopropynylbutylcarbamate) and sodium Pyrithione. Stability In-Use Stability: KATHON 893 MW Biocide has excellent stability in end use dilutions of metalworking fluids. It is stable over a wide pH range (4-10) in water and in metalworking fluid systems. Concentrate Stability: KATHON 893 MW Biocide stability, in metalworking fluid concentrates, is variable. We recommend checking stability and performance before commercialization of products. Dow has several recommended stabilizers to improve stability and compatibility in many types of concentrates. Storage Stability: In general, the storage stability of the KATHON 893 MW Biocide product is excellent. The shelf life of the product is nominally twelve years at 25°C. It is Physical Properties PS strongly recommended, however, that both the stability and compatibility of KATHON 893 MW Biocide in metalworking fluid formulations or systems be thoroughly examined before commercialization. Table 1 The many advantages of protecting your metalworking fluids with KATHON 893 MW Biocide fungicide include: Features Benefits Highly effective microbicide Extends metalworking fluid life, reduces downtime, reduces makeup fluid use and reduces fluid disposal costs Broad spectrum activity Kills fungi and prevents the return of slime caused by fungal microorganisms, eliminates clogged lines and filters and musty odors caused by fungi Patented combinations of KATHON 886 MW or KORDEK LX5000 biocides with KATHON 893 MW Biocide Synergistic combinations that enhance the already wide spectrum of bioactivity. Enhanced activity present even if KATHON 893 MW is added in the concentrate and KATHON 886 MW added tankside Good temperature and pH stability Works well in a variety of metalworking conditions up to 60°C (140°F) and pH 10 Highly soluble in water and does not foam Easy to dose Provides long lasting fungal control Cost effective versus competitive tankside treatments Fast acting Quickly controls growth and activity of odor-causing fungi Effective at low use rates and biodegradable Better for the environment Does not contain, release or generate formaldehyde Not subject to concern about formaldehyde, a known carcinogen Method of Addition KATHON 893 MW Biocide should be directly dispensed into metalworking fluid concentrates or use-dilution metalworking fluids using a metering pump or other point-of-use device where possible and uniformLy dispersed throughout the fluid. Fluid Concentrate KATHON 893 MW Biocide should be added to metalworking fluid concentrates at a level that ensures the final use-dilution fluid will contain 55 to 167 ppm of product (25 to 75 ppm active ingredient). KATHON 893 MW stability in a given concentrate should be determined prior to commercialization. Contact your local Dow representative for assistance in selecting one of several recommended stabilizers to enhance the performance and compatibility of KATHON 893 MW in your metalworking fluid concentrate. Use-Dilution Fluid We highly recommend grossly contaminated systems be cleaned before treatment is begun. Initial Dose: For a noticeably fouled system, add 0.47 to 1.44 lbs (7 to 21 fl oz) of KATHON 893 MW Biocide per 1,000 gallons of fluid. This will provide 25 to 75 ppm active ingredient. Repeat until control is achieved. Subsequent Dose: For maintenance of a non-fouled system, add 0.09 to 0.58 lbs (1.3 to 8.6 fl oz) of KATHON 893 MW Biocide per 1,000 gallons of fluid every four weeks. This will provide 5 to 30 ppm active ingredient. A higher dose range and/or increased frequency of treatment may be required, depending upon the rate of dilution of the preservative with the makeup fluid, the nature and severity of contamination, level of control required, filtration effectiveness, system design, etc. Key Features & Benefits Applications/ Directions for Use General Practices When Using KATHON Biocides • Know the size of your system and dose at the recommended use levels. • To improve performance and longevity, add KATHON 893 MW Biocide on the clean side of the filters. It may be necessary to occasionally add KATHON 893 MW to the dirty side of the filters if large populations of microorganisms are detected there. • Minimize contamination: – Eliminate or minimize dead spots – Disconnect unused portions of the system – Do not throw trash in sumps • Always remember to triple rinse (or equivalent) empty containers to avoid incidental contact. • Post placard with safety information and deactivation protocol near biocide handling area. Additional guidelines for maximizing the performance of KATHON 893 MW Biocide are as follows: • KATHON 893 MW stability and performance is improved with lower pH. Whenever possible, maintain the pH of system below pH 9.2. Lower pH also makes amines and amine-containing compounds less aggressive. • For systems with pH greater than 9.5, we strongly recommend determination of biological efficacy and chemical stability prior to use. • Avoid adding highly basic additives (alkaline materials with pH of 10-12) immediately prior to or after adding KATHON 893 MW to your system. If a highly basic additive must be added, allow sufficient time (at least 30 minutes) between additions. Minimize levels of diethanolamine (DEA) in your system. If possible use 99% triethanolamine (TEA) or monoethanolamine (MEA) instead of DEA, and use these at as low a level as possible. • Always add KATHON 893 MW directly to the metalworking fluid sump. Never use KATHON 893 MW in a spray bottle. • Avoid charging KATHON 893 MW in high temperature zones, since increasing temperatures accelerate other degradation effects. Ideally, add KATHON 893 MW to the fluid below 60°C (140°F). • Avoid adding KATHON 893 MW and incompatible corrosion inhibitors directly to the tank at the same time. How Does KATHON 893 MW Biocide Work? KATHON 893 MW Biocide utilizes a two-step mechanism involving rapid growth inhibition leading to a loss of cell viability. Growth inhibition is the result of rapid disruption of the central metabolic pathways of the cell by inhibition of several specific enzymes, including dehydrogenases. The critical enzymes which are affected are associated with the Krebs cycle, nutrient metabolism and energy generation. The key physiological activities that are rapidly inhibited in microbial cells are respiration (oxygen consumption), energy generation (ATP synthesis), and growth (assimilation). Many of these key enzymes are present in both aerobic and anaerobic microorganisms, which explains why KATHON 893 MW is such a broad spectrum biocide. Inhibition of cellular activity and growth is rapid (within minutes), whereas cell death (cidal activity) is observed after several hours’ contact. In general, the higher the concentration of biocide, the shorter the contact time required for more complete kill. Cell death results from the progressive loss of protein thiols in the cell from one of multiple pathways. As cell metabolism is disrupted, free radicals are produced which also results in cell death. This unique mechanism results in the broad spectrum of activity of KATHON 893 MW Biocide, low use levels for microbial control, and difficulty in attaining resistance by mutation. See technical bulletin (CS-632) for more detailed information. How Rapidly Does KATHON 893 MW Biocide Work? Within minutes after addition of KATHON 893 MW Biocide to a metalworking fluid sump, the metabolic activity of the microorganisms in the system shuts down. This includes cellular respiration (oxygen uptake), growth, energy generation, and nutrient uptake. The microorganisms, although still alive, are no longer able to reproduce or metabolize metalworking fluid components. After 24 to 48 hours of contact with a lethal dose of the biocide, most of the microorganisms have been killed. How Long Does KATHON 893 MW Biocide Last? KATHON 893 MW Biocide has excellent in-use stability and generally retains its antimicrobial efficacy in metalworking fluid systems for 2 to 4 weeks. Variables such as degree of fluid contamination, effectiveness of the filtration system, system turnover time, compatibility between the microbicide and the metalworking fluid components, and other system additives involved, can affect the life of the microbicide in a system. Is KATHON 893 MW Biocide Effective in Reducing Fungal Biofilms? YES. KATHON 893 MW Biocide has been shown to reduce microbial fouling and prevent biofilm development in metalworking fluid systems. The benefits of reduced fungal biofouling include improved system performance, reduced filter plugging, reduced biocorrosion, and improved microbial control. Is KATHON 893 MW Biocide Effective When Used in Concentrates? YES. KATHON 893 MW Biocide may be used in certain fluid concentrates to provide efficacy in the final use dilutions. Although KATHON 893 MW stability may not be suitable for all concentrates, we have had success with the biocide alone or in combination with one of our recommended stabilizers. How Can I Improve KATHON 893 MW Biocide Stability in Concentrates? We recommend testing KATHON 893 MW Biocide in concentrates prior to commercialization. Dow technical staff can assist you in formulating products. We have years of experience and a range of recommended stabilizers to prolong the lifetime and improve compatibility of KATHON 893 MW in concentrates. Contact your sales representative for assistance. Anti-Microbial Properties of KATHON 893 MW Biocide Initial determinations of the efficacy of any biocidal product are made via minimum inhibitory concentration (MIC) measurements. The MIC test yields valuable information about the product’s inherent antimicrobial efficacy and spectrum of activity. The MIC for any product is the lowest level at which the active ingredient inhibits the growth of various microorganisms. This method is a useful tool for screening antimicrobial agents Efficacy Data Page under standardized laboratory conditions, in nutrient-rich growth conditions. In interpreting the data, remember that low values correspond to high activity. Table 2 indicates that KATHON 893 MW Biocide possesses outstanding antimicrobial activity against a broad range of fungi (both yeasts and molds). KATHON 893 MW has very low MIC values for most of the fungi tested and there is no gap in the spectrum of activity among the organisms tested. Table 2 Fungistatic Activity of KATHON 893 MW Biocide Organism ATCC Number (Strain) MIC* in PPM Active Ingredient Alternaria dianthicola 11782 1 Aspergillus niger 9642 8 Aspergillus oryzae 10196 2 Aspergillus repens 9294 2 Aureobasidium pullulans 9348 0.3 Candida albicans (yeast) 11651 2 Chaetomium globosum 6205 4 Cladosporium resinae 11274 0.5 Lenzites lepideus 12653 2 Lenzites trabea 11539 2 Penicillium funiculosum 9644 1 Phoma glomerata 6735 120°F for extended periods of time can result in degradation of the active ingredient. Store away from direct sunlight. Decontamination and Spill Procedures Decontamination Solutions KATHON 893 MW Biocide can be decontaminated with a 5% solution of sodium hypochlorite (NaOCl) containing 2-5% sodium bicarbonate (NaHCO3 ). Solutions should be freshly prepared. Employees preparing or handling decontamination solutions should wear chemical splash goggles, an impervious apron or rain suit, and impervious rubber gloves. Note: Do not use decontamination solution to treat skin, eyes or clothing which have come in contact with KATHON 893 MW. Decontamination of Equipment Equipment used in the handling of KATHON 893 MW Biocide, such as mix tanks, lines, pumps, etc., must be decontaminated before carrying out maintenance or used for other service. To decontaminate this equipment, estimate the volume of KATHON 893 MW remaining in the well-drained system. Prepare 10 volumes of decontamination solution per volume of KATHON 893 MW (45%) and circulate the mixture throughout the equipment. Be certain that the KATHON 893 MW and decontamination solution mix well. Wait at least 30 minutes to ensure complete reaction. Drain and rinse with clean water or detergent solution. Decontamination solution runoffs should be drained to a chemical sewer unless prohibited by state or local regulations. Drips, minor spills and exposed wet areas should be cleaned up promptly with the hypochlorite/bicarbonate mixture. Contaminated surfaces should be swabbed with decontamination solution and allowed to stand for 30 minutes before rinsing thoroughly with water. Decontaminated solutions should be drained to a chemical sewer unless prohibited by state or local regulations. Note: Because of the high level of activity of KATHON 893 MW, a relatively small quantity could have a damaging impact on the effectiveness of waste treatment bio-systems. Laboratory or plant spills should be decontaminated with decontamination solution before being released to a biological waste treatment system. Cleanup of Spills Procedures provided in the Safe Handling Section should be followed when cleaning spills of KATHON 893 MW Biocide. 1. Wear impervious rubber gloves, chemical splash goggles, protective clothing and overshoes. 2. Dike and adsorb the spilled material on an inert solid, such as clay or vermiculite or with spill control pillows. 3. Transfer the adsorbent or pillows and surrounding surface soil into a pail or drum. This container should be no more than two-thirds full. 4. Treat the contents of the container with 10 volumes of decontamination solution per estimated volume of spilled KATHON 893 MW. 5. Treat the surrounding spill area with excess decontamination solution. Flush after a minimum of 30 minutes into a chemical sewer. 6. Do not discharge spills and cleaning runoffs into open bodies of water, because of a potential adverse impact on the environment. 7. Carefully remove the contaminated gloves and place them in the container (peel off the gloves by pulling on the outside of the glove sleeve turning them inside out as they are removed). After 48 hours, seal the container and dispose of it by landfilling in accordance with local, state, and federal regulations. Safety Data Sheets Dow Technical Support Shipping Information Biocidal Product Directive Compliance Product Stewardship Bulletin CS-561, which is available on request, contains methods for determining the presence of KATHON 893 MW Biocide’s active ingredient in use dilution metalworking fluids by high performance liquid chromatography (HPLC). This bulletin also contains HPLC procedures for determining KATHON 886 MW active ingredients in use-dilution metalworking fluids. Dow maintains Safety Data Sheets (SDS) for all of its products. These sheets contain pertinent information that you may need to protect your employees and customers against any known health or safety hazards associated with our products. We recommend that you obtain and review Safety Data Sheets (SDS) for our products from your distributor or Dow technical representative before using our products in your facility. We also suggest that you contact your supplier of other materials recommended for use with our product for appropriate health and safety precautions before using them. Dow Sales Service and Technical Service departments have over twenty-five years’ experience evaluating KATHON biocides’ performance in a variety of applications. In the area of metalworking fluids we can advise on determining KATHON biocide stability and efficacy in use-dilution as well as concentrate metalworking fluids, and we can make recommendations on how to evaluate the level and type of system contamination you may be experiencing. In addition, Dow personnel can assist you with questions on KATHON biocides’ toxicology, environmental issues, safe storage, handling and use. Finally, Dow has available for your use a videotape on the safe use and handling of the family of KATHON and KORDEK biocides for the metalworking industry, including KATHON 893 MW, KATHON 886 MW and KORDEK LX5000 biocides. For further information, contact your local Dow KATHON biocide representative or contact Dow. KATHON 893 MW Biocide 45% solution is available in 5-gallon pails (44 lbs), 30-gallon drums (44 lbs), and cartons (22 lbs) containing two 1-gallon jugs. To obtain samples, technical assistance, a Safety Data Sheet (SDS), or to have a technical representative call for an appointment, contact the nearest Dow office. KATHON 893 MW Biocide is a biocidal product intended for use in accordance with Product Type 13 (Metalworking fluid preservatives) of the Biocidal Products Directive 98/8/ EC (BPD). Dow has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with Dow products – from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.
Katı Aloe Yağı
ALOE BUTTER; Coconut Oil, Aloe Leaf Extract; Cocos Nucifera Oil, Aloe Barbadensis Leaf Extract CAS NO:85507-69-3
Katı Avokado Yağı
AVOCADO BUTTER ; BUTYROSPERMUM PARKII NUT EXTRACT; Persea Gratissima oil; Fats and Glyceridic oils, avocado ; lipobutter persea prima CAS NO:8024-32-6
Katı Bacuri Yağı
BACURI BUTTER ; Platonia Insignis Seed Butter CAS NO: N/A
Katı Cupuacu Yağı
Cupuacu Butter; Theobroma Grandiflorum Seed Butter; THEOBROMA GRANDIFLORUM SEED BUTTER CAS NO:394236-97-6
Katı Çam Fıstığı Yağı
PISTACHIO BUTTER ; PISTACIA VERA SEED OIL; oil obtained from the nuts of the pistachio, pistacia vera l., anacardiaceae CAS NO:129871-01-8
Katı Hemp Yağı
HEMP SEED BUTTER ; Cannabis Sativa Seed Oil; choco/hemp ; eupatorium cannabinum seed extract CAS NO:89958-21-4
Katı İllipe Yağı
ILLIPE BUTTER ; fat obtained from the fruit of the tree bassia latifolia, sapotaceae; bassia latifolia butter; Shorea Stenoptera Seed Butter CAS NO:91770-65-9
Katı Kahve Yağı
COFFEE BUTTER ; Coffea Arabica (Coffee) Seed Oil ; HELIANTHUS ANNUUS SEED OIL; COB; CAS NO:84650-00-0
Katı Kuşburnu Yağı
ROSEHIP BUTTER; ROSA CANINA FRUIT EXTRACT ; volatile oil obtained from the flowers of the hip rose, rosa canina l., rosaceaedog-brier flower butter; rose flower butter CAS NO:84696-47-9
Katı Mango Yağı
MANGO BUTTER; Mangifera Indica (Mango) Seed Butter; MANGIFERA INDICA SEED BUTTER ; fruit of the mango, mangifera indica l., anacardiaceae; mango fruit butter ; mango pulp butter; mango seed butter CAS NO:90063-86-8
Katı Murumuru Yağı
MURUMURU BUTTER ;astrocaryum murumuru flower extract; Astrocaryum Murumuru Seed Butter; Brazilian Amazon tree; extract of the flowers of astrocaryum murumuru; murumuru tree flower butter; Astrocaryum Murumuru CAS NO:356065-49-1
KATI PARAFİN
SYNONYMS Paradium SS;Paraffin;PARAFFIN;Paraffin 5203;Paraffin 6214;Paraffin wax;Paraffin wax (petroleum);Paraffin wax and other hydrocarbon waxes;Paraffin waxes;Paraffin waxes and Hydrocarbon waxes;Paraffinwachse und Kohlenwasserstoffwachse;Parafilm CAS NO:8002-74-2
Katı Pirinç Kepeği Yağı
RICE BRAN BUTTER ; rice bran oil; fixed oil expressed from the bran of the rice, oryza sativa l., poaceae; oryza sativa bran oil; ORYZA SATIVA BRAN OIL CAS NO:68553-81-1
Katı Poppy Yağı
POPPY BUTTER ;poppy seed butter; papaver somniferum seed butter; butter poppy CAS NO:8002-11-7
Katı Shea Yağı
SHEA BUTTER REFINED ; Butyrospermum Parkii (Shea) Butter; Butyrospermum Parkii Butter Extract is an extract obtained from the Shea Tree, Butyrospermum parkii, Sapotaceae; Butyrospermum parkii butter extract; BUTYROSPERMUM PARKII (SHEA BUTTER);Fats and Glyceridic oils, shea butter;BUTYROSPERMUM PARKII (SHEA BUTTER LIQUID);SHEA BUTTER BUTYROSPERMUM PARKII; Shea Butter Powder;Shea Butter SB-I;Shea Liquid; extract obtained from the shea tree, butyrospermum parkii, sapotaceae; shea tree butter extract CAS NO:91080-23-8
Katı Şeftali Çekirdeği Yağı
PEACH KERNEL BUTTER; peach kernel oil; oil expressed from the kernels of the peach, prunus persica, rosaceae; persic butter; lipobutter peach CAS NO:8023-98-1
Katı Tucuma Yağı
TUCUMA BUTTER; HELIANTHUS ANNUUS SEED OIL; Astrocaryum Tucuma Seed Butter ; astrocaryum tucumoides seed butter; fat obtained from the seeds of astrocaryum tucuma, arecaceae CAS NO:8001-21-6
Katı Ucuuba Yağı
UCUUBA BUTTER; VIROLA SEBIFERA NUT OIL; SMA Ucuuba Butter; UCUUBA BUTTER VIROLA SEBIFERA CAS NO: 356065-37-7
KATI VAZELİN
SYNONYMS Petrolatum, melting range 45 - 60;Petrolatum Yollew vaseline;pennsolinesoftyellow;penrecowhite;perfecta;petrolatumusp;protopet,alba;protopet,white1s CAS NO:8009-03-8
Katı Yabanmersini Yağı
CRANBERRY BUTTER ;VACCINIUM MACROCARPON SEED OIL; BUTYROSPERMUM PARKII SEEDCAKE EXTRACT; Cranberry Seed; vaccinium macrocarpon seed CAS NO:91770-88-6
Katı Zeytin Yağı
OLIVE BUTTER ; olive butter; Olea Europaea Fruit Oil is the fixed oil obtained from the ripe fruit of the Olive; olea europaea butter; cropure olive; lipobutter olive CAS NO:8001-25-0
KAVUN AROMASI
melon flavor; melon flavor natural; melon flavor organic-compliant; melon fruit powder
KAYISI AROMASI
apricot flavor; apricot compound natural; apricot flavor for confectionery; apricot flavor for pharmaceuticals; apricot flavor natural; apricot flavor natural powder; apricot flavor organic
Kayısı Çekirdeği Yağı
APRICOT KERNEL OIL; apricot kernel oil; apricot oil turkey organic; nikkol apricot kernel oil; persic oilprunus armeniaca kernel oil; prunus armeniaca kernel oil; armeniaca vulgaris kernel oil; fixed oil expressed from the kernels of the apricot, prunus armeniaca l., rosaceae CAS NO:72869-69-3
Kayısı Ekstraktı
Prunus Armeniaca Extract; prunus armeniaca fruit extract; extract of the fruits of the apricot, prunus armeniaca l., rosaceae ;apricot alcoholate (Firmenich); apricot dry fruit extract; apricot extract; apricot extract (prunus armeniaca); apricot extract 60%; apricot fruit extract; actiphyte of apricot fruit extract; extrapone apricot milk (Symrise); armeniaca vulgaris fruit extract; armeniaca vulgaris var. vulgaris fruit extract; extract of the fruits of the apricot, prunus armeniaca l., rosaceae cas no68650-44-2
Kayısı Taşı
APRICOT STONE ;Apricot Kernel Oil ; Persic Oil, Prunus Armeniaca L. ; prunus armeniaca l. kernel oil CAS NO:72869-69-3
KAYMAK AROMASI
cream flavor ; cream flavor natural; cream flavor organic; cream type flavor
Keçi Boynuzu Ekstrakt
Ceratonia Siliqua Fruit Extract; st. johns bread fruit extract (ceratonia siliqua); carob bean extract; carob kiinote (Omega); locust bean extract (ceratonia siliqua) cas no: 84961-45-5
Kedi Otu Ekstrakt
Valeriana Officinalis Root Extract; extract of the roots from the valerian, valeriana officinalis l., valerianaceae; valerian extract; valerian root extract cas no:8057-49-6
KEKİK AROMASI
thyme flavor
Kekik Ekstraktı
Thymus Vulgaris Leaf Extract; extract of the leaves of the thyme, thymus vulgaris l., lamiaceae; thyme leaf extract cas no:84929-51-1
Kekik Yağı Beyaz
THYME OIL WHITE; white thymus vulgaris oil; hydroessential thymus; thyme white ess; thymus vulgaris oil; thyme white essential oil CAS NO:8007-46-3
Keklik Üzümü Yağı
WINTERGREEN ; wintergreen oil ; gaultheria procumbens leaf oil; oil wintergreen; squaw vine leaf oil ; volatile oil obtained from the leaves of the wintergreen, gaultheria procumbens l., ericaceae CAS NO:68917-75-9
KERATIN
HYDROLYZED KERATIN, N° CAS : 69430-36-0 - Kératine hydrolysée. Autres langues : Cheratina idrolizzata, Hydrolysiertes Keratin, Queratina hidrolizada. Nom INCI : HYDROLYZED KERATIN N° EINECS/ELINCS : 274-001-1, La kératine est une protéine fibreuse qui se trouve dans les cheveux, les plumes, la laine et les ongles. Cette protéine utilisée en cosmétique est d'origine animale et provient le plus souvent de la laine de mouton. La version végétale de la kératine se nomme Phytokératine et est plus connue dans la liste INCI sous le terme : "HYDROLYZED WHEAT PROTEIN".Dans les cosmétiques, la kératine est utilisée pour lisser et hydrater la cuticule des cheveux endommagés. Elle permet de combler les fissures et élimine les frisottis liés au dessèchement.Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
KERATIN
Keratin is a group of proteins that form 10 nm intermediate filaments in all epithelial cells covering the inner and outer surfaces of the body, are insoluble in water and play an important role in hair, nail or skin care.
Keratin is a member of the scleroprotein family of fibrous structural proteins.


CAS 68238-35-7


Keratin oil frequently helps to shield epithelial cells from harm and stress.
In both water and organic solvents, keratin is highly insoluble.
Keratin monomers package into intermediate filaments that are durable and form heavy unmineralized epidermal appendages in birds, reptiles, mammals and amphibians.


Keratin is a member of the scleroprotein family of fibrous structural proteins.
In vertebrates, keratin is a form of keratin.
Scales, horns, fur, feathers, nails, paws, calluses, hooves, and the external layer of the skin are all made of Keratin.


Keratin is a type of protein found in our teeth, nails and hair, making your hair look smooth, vibrant and full.
The flexible structure of our hair is protected thanks to keratin.
Put an end to the tangle after the shower and the frizz that occurs during the day.


Keratin is used in more than 7,000 hair salons in Turkey and is the keratin care product with the highest satisfaction rate.
Keratin is a type of fibrous, acidic or basic protein found in epithelial cells covering the inner and outer surfaces of the body and in tissues such as hair and nails.


Keratin, which has 54 types in the body, helps support the skin, heal wounds, and keep nails and hair healthy.
In addition to being produced naturally in the body, you can also meet the body's keratin needs by using keratin care products or consuming keratin-rich foods.


Keratin is a group of proteins that form 10 nm intermediate filaments in all epithelial cells covering the inner and outer surfaces of the body, are insoluble in water and play an important role in hair, nail or skin care.
Keratin, the general name for a group of proteins naturally produced in the body, helps support the skin, heal wounds, and keep your nails and hair healthier and stronger.


There are 54 types of keratin in the body, 28 of which are type 1 and 26 are type 2.
Keratin, which is found in hair, nails and the epidermis, the outer layer of the skin, can also be found in glands and organs in the body.
Keratin (/ˈkɛrətɪn/) is one of a family of structural fibrous proteins also known as scleroproteins.


Alpha-keratin (α-keratin) is a type of keratin found in vertebrates.
Keratin is the key structural material making up scales, hair, nails, feathers, horns, claws, hooves, and the outer layer of skin among vertebrates.
Keratin also protects epithelial cells from damage or stress.


Keratin is extremely insoluble in water and organic solvents.
Keratin monomers assemble into bundles to form intermediate filaments, which are tough and form strong unmineralized epidermal appendages found in reptiles, birds, amphibians, and mammals.


Excessive keratinization participate in fortification of certain tissues such as in horns of cattle and rhinos, and armadillos' osteoderm.
The only other biological matter known to approximate the toughness of keratinized tissue is chitin.
Keratin comes in two types, the primitive, softer forms found in all vertebrates and harder, derived forms found only among sauropsids (reptiles and birds).


Spider silk is classified as keratin, although production of the protein may have evolved independently of the process in vertebrates.
Keratin is the main component of skin and nails, as well as hair.
There is keratin protein in both the outer structure of the hair, called the cortex, and its inner structure.


Keratin is the main ingredient of hair strands.
Keratin in the hair is depleted due to external factors such as sun, pollution or chemicals, or changes in your lifestyle.
This loss results in dry, damaged and dull hair.


That's why it is necessary to get keratin support from outside.
Hair strands damaged by dye, blow dryer or straightener lose keratin and the hair acquires a bad and damaged appearance.



USES and APPLICATIONS of KERATIN:
Keratin uses the endoplasm of fish scales as raw material, and extracts the keratin essence in the fish scales by biotechnology.
Keratin has strong anti-stretching properties and acts as a cross-linking function in the protein peptide chain.
Keratin has high mechanical strength.


Keratin can be well absorbed by the skin.
The use of keratin keeps the skin elastic, soft and moisturised, prevents dry skin, reduces wrinkles and delays aging.
Keratin is suitable for skin care lotions, skin creams, firming creams, sunscreens and masks in cosmetics.


Keratin is the type of protein that makes up your hair, skin, and nails. Keratin can also be found in your internal organs and glands.
Keratin is a protective protein, less prone to scratching or tearing than other types of cells your body produces.
Keratin can be derived from the feathers, horns, and wool of different animals and used as an ingredient in hair cosmetics.


Since keratin is the structural building block of your hair, some people believe that keratin supplements, products, and treatments can help strengthen your hair and make it look healthier.
It is a hair care product we developed to help increase the flexibility of hair strands and make hair softer, smoother and more well-groomed, thanks to keratin and natural oils.


In addition to preserving the shape and volume of the hair by providing Keratin support to the hair, it aims to help the hair be easily combed and prevent frizz with the moisturizing support of Shea, Coconut, Argan and Avocado oils.
Keratin aims to support the care of hair loss and breakage with its Aloe Vera, Pine Turpentine and Sweet Almond oil content.


Keratin adds vitality to the hair, gives it strength and makes it look brighter.
Keratin, a powerful protein group, has a significant effect on hair when found naturally in the body.
Keratin, which is a beneficial protein when used as a supplement or taken through food, adds vitality to the hair, gives it strength and makes it look brighter.


Keratin, which is naturally present in the body and plays a role in improving hair, nail and skin health, is also often enriched with keratin in cosmetic treatments.
Keratin is also found naturally in some foods and can be taken as a supplement to meet the body's keratin needs.


Keratin prevents hair from frizzing and strengthens the hair shaft.
Keratin, a compound rich in both protein and sulfur, prevents hair from frizzing and supports healthy hair growth by strengthening the hair shaft.
Keratin prevents skin damage and helps keep skin fresh.


Keratin, in addition to its benefits for hair, is also an important protein for skin health.
Keratin, which naturally helps the skin stay fresher, prevents skin damage when used as a supplement and creates a healthier skin structure.
Keratin prevents nail breakage and makes nails look stronger.


Keratin, which is found in hair, the outer layer of the skin, glands and some organs, is also found in nails.
Nail breakage on headKeratin, which has the ability to make nails look stronger, especially against nail breakage, has a role in supporting nail
Keratin soothes and straightens wavy, curly and frizzy hair, including dyed hair.


Keratin is applied to the hair on the same day, making it washable and styleable.
Keratin does not require any extra chemicals or equipment during application.
With its effect lasting up to 4 months, hair becomes softer, brighter and healthier.


Keratin is applied to the hair to restore the hair strands to their former healthy appearance.
Thus, the hair looks brighter, softer and more well-groomed.


-Cosmetic Use:
*Creams for skins that aren't well-protected
*Treatments for nutrition and restructuring.
*Treatments for eyelashes with make-up.
*Shampoos and conditioners for hair that is prone to breakage.
*Hair items that are ideal for your hair.



APPLICATION OF KERATIN:
Keratin is for use by adults over 16 years of age and before application, test it on a small area of ​​your skin to avoid allergic reactions.
Take a sufficient amount from the bottle marked STEP 1 on damp hair and apply by massaging from the roots to the ends.
Rinse your hair with plenty of water and repeat the process.

Dry your hair and make sure it is not damp.
Shake the bottle labeled STEP 2 before use and divide your hair into 4 equal sections before application.
Apply Keratin to every section of hair you have separated, starting from 2 centimeters from the hair roots to the ends of the hair.

Comb your hair and make sure it is distributed evenly.
15 minutes for frizzy hair,
25 minutes for curly and wavy hair,

For very curly hair, leave it on for 40 minutes.
Dry your hair by combing it with the help of a blow dryer and a straightening brush so that it does not remain damp.
Straighten your hair from root to tip with the help of hair straightening tongs.

Rinse your hair with water for 5 minutes.
Take a small amount from the bottle labeled STEP 3, apply it to your hair and distribute it evenly with the help of a comb.
Leave it on for 10 minutes for thin hair, 15 minutes for normal hair, 20 minutes for thick hair for it to take effect.

Rinse with plenty of water for 8 minutes.
Dry your hair and style it as you wish.
Do not repeat the procedure for 10-14 days.
Do not apply for 10 days before or after hair dyeing.



BENEFITS AND RESULTS OF KERATIN:
People who use keratin on their hair report that their hair is smoother and easier to manage as a result.
The effects vary greatly depending on whether your hair is healthy to begin with, what the natural thickness of your hair is, and what kind of keratin treatment you use.
Keratin works by smoothing down the cells that overlap to form your hair strands.
The layers of cells, called the hair cuticle, theoretically absorb the keratin, resulting in hair that looks full and glossy.
Keratin also claims to make curly hair less frizzy, easier to style, and straighter in appearance.



THINGS YOU SHOULD PAY ATTENTION TO AFTER KERATIN CARE:
You should avoid washing your hair for a few days.
Since chlorinated or salty water will reduce the effect of keratin, you can take a break from activities such as pool or sea for a while.
You should prevent your scalp from sweating for 3 days immediately following the keratin treatment.
You should also make sure that the care products you use contain natural ingredients.
You can wait 1-2 weeks to continue your hair care routine and use hair masks.



DOES KERATIN TREATMENT STRAIGHTEN HAIR?
Keratin treatment does not completely straighten the hair.
Keratin treatment, which is often confused with a Brazilian blow dry, does not change your natural hair structure by preventing the hair from becoming more easily shaped and frizzy.
Brazilian blow dry is a process that is made with keratin but with a different technique and allows the hair to remain straight for up to 6 months.



HOW MANY DAYS SHOULD KERATIN CARE NOT BE WASHED?
After the keratin treatment, it is recommended not to wash your hair for a while so that the keratin loaded into your hair is accepted by all your hair strands.
Generally, this period is known as 2-3 days.
If your hair gets wet during this period, it is also recommended to dry Keratin and go over it with a straightener.



HAIT KERATIN:
Hair keratin is a protein that can be found in your skin, hair, and nails. Keratin is also present in the organs and glands of the body.
Keratin is a defensive protein that is less likely to be scratched or torn than other forms of cells produced by your body.



KERATIN POWDER
Keratin therapy users say that their hair is cleaner and easier to handle as a result of using it.
The results differ significantly based on whether your hair is safe, to begin with, how thick your hair is natural, and the keratin therapy you use.
Keratin functions by smoothing out the overlapping cells that make up your hair strands.
The hair cuticle, which is made up of layers of cells, absorbs the keratin, giving hair a full and shiny appearance.
Keratin is often said to make curly hair less frizzy, easy to style, and look straighter.



KERATIN TREATMENT
Keratin treatment is a hairstyling process that requires straightening and flattening of hair to offer it a smooth, straight, streamlined, and elegant look.
It has been used since the 1890s. During the 1950s, smoothing keratin was very common among black males and females of almost all races.



BIO KERATIN:
Peptides derived from hydrolyzed keratin with a high homology and bio-affinity for the keratin found in the hair, skin, and nails.
Heavy amount of hydrophobic amino acids, that improves moisture retention capability.



HOW TO USE KERATIN?
You can use Keratin whenever you need by spraying it on your hair from a distance of 15-20 cm.
Keratin is suitable for all hair types.
You can use Keratin before or after a shower.



WHAT IS KERATIN CARE?
In fact, the body naturally produces keratin for hair and nails.
The reason why your hair is shiny and your nails are vibrant depends on this keratin.
Keratin is loaded by professionals on hair that is damaged, has lost its vitality and has become dull due to various reasons.
This process, which makes the hair look more vibrant and healthy, is called keratin care.



WHAT DOES KERATIN CARE DO?
Thanks to keratin care, the hair looks more vibrant and shiny.
Problems such as frizz and frizz disappear for a few months.



KERATIN CARE BENEFITS
Of course, keratin treatment not only makes the hair shine, but also contains many benefits for the hair.
Moving on to what these benefits are;

*Smooth and shiny hair:
Keratin, which cares for the hair strands one by one, prevents the hair from becoming frizzy and frizzy, making it brighter.
Keratin also prevents the appearance of split hair ends.

*Long-term results:
If you take care of your hair care, Keratin will last up to 3-4 months.
During this period, your hair will be more vibrant and easier to shape.

*Healthy hair growth:
Thanks to keratin, which is a substance that the hair needs, the revitalized hair grows in a healthier way.
Strengthening the hair strands prevents breakage and ensures that the hair is well-groomed.



WHAT IS KERATIN CARE, HOW IS KERATIN HAIR CARE DONE?
-3 - Hair Care Beauty
How to do keratin care?
Keratin care, which is generally recommended to be done professionally, has recently become one of the treatments that most women do themselves at home.

Keratin care begins with washing your hair with a special shampoo.
This shampoo provides deep cleansing of the hair.
Keratin is then applied to the hair.

The hair is divided into several equal parts to penetrate each strand of hair.
Keratin is applied to the hair with a brush and spreads by combing to the ends of the hair.
After application, keratin is left on the hair for 20-30 minutes.

For fixation, the hair is dried with a blow dryer and the hair is blow dried.
*At this point, if you are doing it yourself at home, you should definitely use a hygienic mask.
The smoke and odor that emerges when keratin comes into contact with heat can burn your throat.

You should also be very careful when blow-drying your hair roots.
You can burn your scalp with a hot blow dryer to dry the keratin, which takes a while to dry.
This causes dandruff-like dead skin to appear over time.



FUNCTIONS OF KERATIN:
*effective safety from environmental threats
*Enhances and restores the micro-relief of the skin.
*Excellent hair conditioner and protectant.
*Strengthens the hair scales' cohesion.



WHAT IS KERATIN USED FOR?
Keratin helps form the epidermis, which is the outer layer of hair, nails and skin, strengthens the nail structure and increases its durability, and ensures that the hair has a shiny and healthy appearance.
Keratin also maintains the skin's elasticity and firmness.



THE BENEFITS OF KERATIN CAN BE LISTED AS FOLLOWS:
Keratin adds vitality to the hair, gives it strength and makes it look brighter.
Keratin prevents hair from frizzing and strengthens the hair shaft
Keratin prevents skin damage and helps keep skin fresh
Keratin prevents nail breakage and makes nails look stronger



WHAT IS KERATIN CARE?
Keratin care is a process applied to help straighten, smooth and revitalize hair, especially hair that is curly or damaged as a result of external factors.
Keratin is a protein produced naturally by the body, but it can also be obtained through supplements or foods.
In addition, keratin care is good for skin and nail health as well as hair.

What are the Keratin Types?
Keratin, which has 54 types in the body, is divided into two types. These are divided into type 1 and type 2.

Type 1:
28 of the 54 types of keratin in the human body are type I. 17 of these are skin cell (epithelial) keratins and 11 are hair keratins.
Most type I keratins (cytokeratins) consist of acidic and low-weight proteins.
Keratinv has many functions, including skin and hair health, including helping protect cells from internal forces in the body (mechanical stress).

Type 2:
The other 26 types of keratin in the human body are type II.
20 of these are skin cell keratins and 6 are hair keratins.
They consist of basic-neutral, high-weight proteins.
Their basic-neutral pH helps balance type I keratins and manage cell activity.



IN WHICH FOODS IS KERATIN FOUND?
Keratin, which is naturally found in the body, is also included in some foods, and it is possible to meet the body's keratin needs by consuming these foods.

Here are some foods containing keratin:
*Egg
*Carrot
*Mango
*Sweet potato
*Salmon



EXAMPLES OF OCCURRENCE OF KERATIN:
Alpha-keratins (α-keratins) are found in all vertebrates.
They form the hair (including wool), the outer layer of skin, horns, nails, claws and hooves of mammals, and the slime threads of hagfish.
The baleen plates of filter-feeding whales are also made of keratin.

Keratin filaments are abundant in keratinocytes in the hornified layer of the epidermis; these are proteins which have undergone keratinization.
They are also present in epithelial cells in general.
For example, mouse thymic epithelial cells react with antibodies for keratin 5, keratin 8, and keratin 14.

These antibodies are used as fluorescent markers to distinguish subsets of mouse thymic epithelial cells in genetic studies of the thymus.
The harder beta-keratins (β-keratins) are found only in the sauropsids, that is all living reptiles and birds.
They are found in the nails, scales, and claws of reptiles, in some reptile shells (testudines, such as tortoise, turtle, terrapin), and in the feathers, beaks, and claws of birds.

These keratins are formed primarily in beta sheets. However, beta sheets are also found in α-keratins.
Recent scholarship has shown that sauropsid β-keratins are fundamentally different from α-keratins at a genetic and structural level.
The new term corneous beta protein (CBP) has been proposed to avoid confusion with α-keratins.

Keratins (also described as cytokeratins) are polymers of type I and type II intermediate filaments that have been found only in chordates (vertebrates, amphioxus, urochordates).
Nematodes and many other non-chordate animals seem to have only type VI intermediate filaments, fibers that structure the nucleus.



GENES OF KERATIN:
The human genome encodes 54 functional keratin genes, located in two clusters on chromosomes 12 and 17.
This suggests that they originated from a series of gene duplications on these chromosomes.

The keratins include the following proteins of which KRT23, KRT24, KRT25, KRT26, KRT27, KRT28, KRT31, KRT32, KRT33A, KRT33B, KRT34, KRT35, KRT36, KRT37, KRT38, KRT39, KRT40, KRT71, KRT72, KRT73, KRT74, KRT75, KRT76, KRT77, KRT78, KRT79, KRT8, KRT80, KRT81, KRT82, KRT83, KRT84, KRT85 and KRT86 have been used to describe keratins past 20



WHAT SHOULD WE DO AFTER KERATIN CARE?
First of all, we should leave our hair keratinized for a few days and not wash it immediately.
In this way, keratin will penetrate into our hair thoroughly.
In the days after the care, Keratin is important for our scalp to breathe and not sweat.

That's why we should be careful not to let our scalp sweat.
As always, we should not use shampoos and hair care products that contain harmful chemicals.
After having a keratin treatment, we should avoid contact of our hair with salty or chlorinated water for a while.

For this reason, we can choose to do keratin care after the sea and pool season.
We should stop our classical daily or weekly hair care routines for a while.



ARE KERATIN TREATMENT AND BRAZILIAN BLOW DRY THE SAME THING?
One of the topics we often hear and wonder about is whether the two are the same thing.
While Brazilian blow dry is a method used by people who want to wear their hair straight for a while, keratin treatment is a treatment we use to make our hair look healthier and more well-groomed.

However, since the main ingredient used for Brazilian blow dry is mostly keratin, keratin care and Brazilian blow dry can be confused.
The distinction here is the application method of keratin treatment and Brazilian blow dry.
In this way, keratin care provides a deep care to the hair, while Brazilian blow dry creates a straightening effect for up to 6 months.



KERATIN CARE AT HOME?
If this is the question on your mind, the answer is right below.
Keratin care for your hair at home, step by step in this article.

Anti-hair loss shampoos , creams that provide easy combing, serums that nourish the roots, strengthening masks and much more...
All of these constitute the preferred products to obtain well-groomed hair and protect them sustainably.
If you want to take good care of your hair and ensure that they are healthy without going to the hairdresser, this article is for you.
By reading the rest of this article, where we talk about keratin care at home,you can learn what keratin is and how it benefits your hair.



WHAT ARE KERATINS BENEFITS FOR HAIR?
Keratin is actually an acid found naturally in humans and other vertebrates.
One of the functions of this acid is to provide energy support by reducing fat in muscle cells.
The benefits of keratin, which plays an important role in the structure of hair, skin, nails and other body tissues, for hair are listed below.

Elasticity:
Keratin provides elasticity to the hair strands.
In this way, the hair becomes more flexible, more resistant to external influences and can be shaped easily.

Strengthening:
Keratin strengthens hair strands and prevents breakage, wear and breakage.
Keratinprovides a stronger structure to the hair and supports the hair strands to be more durable.

Maintaining Moisture Balance:
Keratin helps hair strands maintain their natural moisture balance.
This ensures that the hair remains moisturized and protected from drying out.
Keratin can also reduce dry hair problems by helping the hair retain moisture better.

Resistance to Breakage:
Keratin protects the hair strands against external factors.
Keratin protects the hair exposed to factors such as sunlight, heat styling tools and chemical processes, preventing them from breaking and getting damaged.

Repair:
Keratin helps regenerate and repair hair strands.
Keratin repairs damage to hair, promotes healthy hair growth and can reduce hair loss.
After all this general information, we can move on to our main topic, keratin care at home.
If you are ready, we start.



KERATIN CARE STAGES:
Before you attempt this job , it is natural for you to have questions about how to do keratin care at home .
We aim to answer this question with this article.
By continuing reading, you can get an idea about doing keratin care at home .


*First Stage: Cleaning
Before starting keratin care, you need to clean your hair well.
Wash and rinse your hair with a suitable shampoo before keratin treatment.
Removing product residues and oil accumulated in your hair will increase the effect of keratin care.
It's up to us to say.


*Second stage: Dehumidification
Gently dry your hair with a towel; but do not use a hair dryer to dry it completely.
A slightly damp hair is more suitable for the keratin treatment.
Those who do keratin care at home know how important this process is.


*It's Time for Application
To perform keratin treatment with ingredients at home, choose one of the products you have purchased before.
At this stage, a keratin mask or keratin hair serum is generally preferred.
Apply the product to your hair according to the instructions and ensure that the keratin is thoroughly distributed throughout your hair.
Finally, leave the keratin product on your hair for the specified time.


*Optional: Straightening
Keratin treatment is usually completed with a straightening process.
You can use heat styling tools like a hair straightener or curling iron to straighten your hair.
To ensure full absorption of the keratin product, divide your hair into thin sections and smooth each section.
Be careful not to damage your hair by doing the process carefully.
If you do not intend to flatten it, you can skip this part.


*Wait
After completing your keratin treatment, you may need to let your hair rest for a certain period of time.
This time is necessary for the keratin product to penetrate the hair better.
A period of 24 to 72 hours is generally recommended for leaving the keratin product in the hair.
Just know that you should not wash your hair during this period.


*Rinsing and Styling
You can rinse your hair after the waiting time specified in the previous step is completed.
Style your hair after the first rinse.
After keratin treatment, your hair will be smoother and straighter.

What are you waiting for to style your hair with methods such as curling iron or blow dryer to give the desired shape?
Now that we have answered the question of how to do natural keratin care at home , it is time to take a look at the foods containing keratin.
Below you can find detailed information about which foods contain keratin .



WHICH FOODS CONTAIN KERATIN?
The important point here is to note that keratin is not found directly in foods because it is a protein naturally produced in the body.
However, it is very important to consume foods that contain the nutrients the body needs for healthy keratin production.
Here are the important nutritional sources for keratin production:

*Protein Sources:
Proteins, which are the main components of keratin; It is found in animal and plant sources such as meat, chicken, fish, eggs, dairy products and legumes.
These foods provide the basic building blocks for the body's keratin production.

*Biotin:
Biotin is an important nutrient for hair, skin and nail health.
It is found in foods such as eggs, avocados, almonds, walnuts, mushrooms, milk, yoghurt and fish.
Biotin deficiency can cause hair weakening and breakage.

*Zinc:
Zinc is important for maintaining healthy hair and hair follicles.
Eggs , red meat, seafood, pumpkin seeds, beans, almonds and nuts are sources of zinc.

*Iron:
Iron deficiency can cause hair loss.
Consuming iron-rich foods such as spinach, red meat, turkey, beans, lentils, tofu, grains and dried fruits is beneficial for hair health.

*Vitamin A:
Vitamin A is important for scalp health and sebum production.
It is found in foods such as carrots, sweet potatoes, spinach, kale, apricots, mangoes and salmon.

*Vitamin E:
Vitamin E preserves the moisture of the hair and is beneficial for scalp health.
It is found in foods such as almonds, hazelnuts, peanuts, sunflower oil, olive oil and avocado.

Including various protein sources and other nutrients necessary for keratin production in the diet can support hair health.
However, for healthy hair, Keratin is extremely important to pay attention not only to nutrition but also to general lifestyle.
A healthy lifestyle includes factors such as regular sleep, adequate water consumption and stress management.



HOW OFTEN SHOULD KERATIN TREATMENT BE DONE?
So, how often should keratin care be done ?
Here is the answer!

*Keratin care frequency;
Keratin may vary depending on hair type, hair condition and properties of the product used.
The effect of keratin treatment usually decreases over time and the hair returns to its previous state.
Therefore, it is important to repeat keratin care regularly.
Here are the recommended frequencies for keratin care:

*Professional Keratin Care:
Professional keratin care is generally recommended for a period of 2 to 4 months.
This time may vary depending on the hair growth rate, the quality of the keratin product and personal preferences.
Some people may experience effective results for longer periods of time, while others may prefer to repeat it more frequently.

*Keratin Care at Home:
The effect of keratin care products used at home may last shorter than professional applications.
It is important to act in accordance with the instructions for use of home keratin care products.
Keratin treatment at home can be repeated every 2 to 3 weeks.


The important thing here is to observe the condition of your hair and act according to your hair's needs to decide how often you should do keratin care.
Experts recommend that you should care for your hair regularly to keep it healthier and smoother.
Additionally, using shampoo, conditioner and other hair care products suitable for your hair type will also support your hair health.



KERATIN CARE BENEFITS
Now we come to the benefits of keratin care .
You can see what keratin contributes to your hair in the following items.

Keratin provides strength and durability to hair strands.
Keratin supports the hair to be more resistant to breakage, wear and breakage.

Keratin treatment ensures that the hair stays straight for longer when straightened.
Wavy or frizzy hair is reduced, providing a smoother appearance for a longer time after straightening.

Keratin care increases the shine of hair.
Hair looks healthier and more vibrant.

Keratin protects the hair strands against external factors.
Keratin protects the hair exposed to factors such as sunlight, heat styling tools and chemical processes, preventing them from breaking and getting damaged.

Keratin helps hair strands maintain their natural moisture balance.
Keratin preserves the moisture of the hair, prevents it from drying out and ensures better moisture retention.
If you have obtained detailed information about whether keratin care can be done at home , it is time to enlighten yourself about summer hair care.



PROTEIN STRUCTURE OF KERATIN:
The first sequences of keratins were determined by Israel Hanukoglu and Elaine Fuchs (1982, 1983).
These sequences revealed that there are two distinct but homologous keratin families, which were named type I and type II keratins.

By analysis of the primary structures of these keratins and other intermediate filament proteins, Hanukoglu and Fuchs suggested a model in which keratins and intermediate filament proteins contain a central ~310 residue domain with four segments in α-helical conformation that are separated by three short linker segments predicted to be in beta-turn conformation.
This model has been confirmed by the determination of the crystal structure of a helical domain of keratins.

*Type 1 and 2 Keratins:
The human genome has 54 functional annotated Keratin genes, 28 are in the Keratin type 1 family, and 26 are in the Keratin type 2 family.
Fibrous keratin molecules supercoil to form a very stable, left-handed superhelical motif to multimerise, forming filaments consisting of multiple copies of the keratin monomer.

The major force that keeps the coiled-coil structure is hydrophobic interactions between apolar residues along the keratins helical segments.
Limited interior space is the reason why the triple helix of the (unrelated) structural protein collagen, found in skin, cartilage and bone, likewise has a high percentage of glycine.

The connective tissue protein elastin also has a high percentage of both glycine and alanine.
Silk fibroin, considered a β-keratin, can have these two as 75–80% of the total, with 10–15% serine, with the rest having bulky side groups.

The chains are antiparallel, with an alternating C → N orientation.
A preponderance of amino acids with small, nonreactive side groups is characteristic of structural proteins, for which H-bonded close packing is more important than chemical specificity.


*Disulfide bridges:
In addition to intra- and intermolecular hydrogen bonds, the distinguishing feature of keratins is the presence of large amounts of the sulfur-containing amino acid cysteine, required for the disulfide bridges that confer additional strength and rigidity by permanent, thermally stable crosslinking—in much the same way that non-protein sulfur bridges stabilize vulcanized rubber.

Human hair is approximately 14% cysteine.
The pungent smells of burning hair and skin are due to the volatile sulfur compounds formed.
Extensive disulfide bonding contributes to the insolubility of keratins, except in a small number of solvents such as dissociating or reducing agents.

The more flexible and elastic keratins of hair have fewer interchain disulfide bridges than the keratins in mammalian fingernails, hooves and claws (homologous structures), which are harder and more like their analogs in other vertebrate classes.

Hair and other α-keratins consist of α-helically coiled single protein strands (with regular intra-chain H-bonding), which are then further twisted into superhelical ropes that may be further coiled.
The β-keratins of reptiles and birds have β-pleated sheets twisted together, then stabilized and hardened by disulfide bridges.

Thiolated polymers (=thiomers) can form disulfide bridges with cysteine substructures of keratins getting covalently attached to these proteins.
Thiomers exhibit therefore high binding properties to keratins found in hair, on skin and on the surface of many cell types.


*Filament formation:
It has been proposed that keratins can be divided into 'hard' and 'soft' forms, or 'cytokeratins' and 'other keratins'.
That model is now understood to be correct.
A new nuclear addition in 2006 to describe keratins takes this into account.


*Keratin filaments are intermediate filaments.
Like all intermediate filaments, keratin proteins form filamentous polymers in a series of assembly steps beginning with dimerization; dimers assemble into tetramers and octamers and eventually, if the current hypothesis holds, into unit-length-filaments (ULF) capable of annealing end-to-end into long filaments.



WHAT IS IT HAIR CARE AND WHAT DOES KERATIN CARE DO?
When it comes to hair care, one of the treatments that comes to our mind is keratin care.
Topic today is keratin hair care, which we apply to our hair in hairdressers or at home.



SO WHAT IS THIS KERATIN HAIR CARE?
It produces keratin naturally for the body, hair and nails.
In this way, our nails become strong and vibrant, and our hair becomes healthy and shiny.
When this naturally produced keratin is not enough for our hair for various reasons, we can apply keratin care as an external supplement.
In this way, our hair looks more vibrant, well-groomed and healthy.



WHAT ARE THE BENEFITS OF KERATIN CARE FOR HAIR?
As we mentioned, keratin treatment is a process that will make our hair look brighter and healthier.
With correct application, Keratin repairs hair damage and protects the hair. With keratin care, our hair gains a shiny structure and a shine and vitality that lasts for 3-4 months. It also makes the hair more voluminous.



HOW IS KERATIN CARE DONE?
Keratin care can be done professionally at the hairdresser, or it can be done at home with care kits.
Depending on your preference and needs, you can have keratin treatment at a hairdresser at regular intervals or you can do it at home.



KERATIN CARE AT THE HAIRDERSSER:
It starts with thoroughly cleaning and purifying your hair by washing it with a shampoo suitable for your hair structure.
Then, the hair is divided into pieces and keratin is applied to each piece with a brush, touching every strand.
Afterwards, the keratin is left on the hair for a while and the hair is straightened with a straightener or the keratin is allowed to penetrate into the hair with the help of a blow dryer to ensure that it is thoroughly processed and fixed.



KERATIN CARE AT HOME:
The difference between keratin treatment done at a hairdresser is generally related to the products we use.
While professional products are used in hairdressers, we can use a keratin care product with quality ingredients to perform keratin care at home.

Hair is cleaned and purified.
Afterwards, the hair is divided into pieces and keratin is applied.
After waiting for a while, the keratin is ensured to penetrate thoroughly into the hair with the help of a straightener or blow dryer.

One of the things we need to pay attention to in this regard is that we should be careful to use a mask when doing keratin care at home and when applying a straightener or blow dryer to our keratin hair.
If possible, let's open the ventilation or windows.
Because the smoke that comes out when we heat keratin hair can disturb us.



WHAT ARE THE BENEFITS OF KERATIN CARE?
Hair is exposed to many damaging factors such as seasonal changes, heat treatments, dyeing and lightening processes, styling sprays and creams we use, and therefore it becomes weak and worn out.
Moreover, irregular diet or unhealthy diet causes the hair to weaken and the keratin in the hair to disappear.

If your hair has become weak, damaged and faded due to these factors, keratin care comes to your rescue.
Keratin care provides protection against external factors by surrounding the hair strands like a protection shield.
The stronger hair strand is less affected by external factors.

With care products containing keratin, the keratin that the hair needs and lost is recharged.
In particular, split ends are repaired and the hair becomes more vibrant, brighter, softer and smoother.
Most importantly, hair grows healthier and stronger.
Thus, there is an increase in hair growth rate.



WHICH HAIR NEEDS KERATIN?
If your hair strands have become thinner or you notice that they are getting thinner, if your hair is more dull and lost its color, if you are losing a lot of hair and even break off in clumps, and if it is hard, difficult to comb, and even more difficult to style, it means that your hair needs this care.



HOW TO MAKE A KERATIN MASK?
Doing this care, which will repair your damaged hair and return Keratin to its former strong and vibrant state, is not as difficult as it seems.
You can also do Keratin is left on the hair for 15-20 minutes, and the hair is supported to absorb the product with a blow dryer, provided that the recommended temperatures are not too high.

Then, the hair is washed and dried, and a layer of hair is blow-dried with a machine such as a blow dryer or straightener.
When the treatment is completed, the keratin in your hair increases and the change is visible and your hair gets a great shine.
Applying this care to your hair periodically will be beneficial for the continuity of the proteins in your hair structure.



HOW TO PERFORM KERATIN CARE?
Generally, when keratin care is mentioned, everyone thinks of hair straightening procedures performed at the hairdresser.
However, keratin is a very important substance for hair, and keratin-containing care products should be used regularly in order for the hair to grow healthy and without breakage.
You should apply the herbal keratin shampoo by massaging it into your scalp, and apply the hair care cream by concentrating on the ends of your hair.



PRODUCTION OF KERATIN:
production of small proline-rich (SPRR) proteins and transglutaminase which eventually form a cornified cell envelope beneath the plasma membrane

*terminal differentiation:
loss of nuclei and organelles, in the final stages of cornification
Metabolism ceases, and the cells are almost completely filled by keratin.

During the process of epithelial differentiation, cells become cornified as keratin protein is incorporated into longer keratin intermediate filaments.
Eventually the nucleus and cytoplasmic organelles disappear, metabolism ceases and cells undergo a programmed death as they become fully keratinized.
In many other cell types, such as cells of the dermis, keratin filaments and other intermediate filaments function as part of the cytoskeleton to mechanically stabilize the cell against physical stress.

Keratin does this through connections to desmosomes, cell–cell junctional plaques, and hemidesmosomes, cell-basement membrane adhesive structures.
Cells in the epidermis contain a structural matrix of keratin, which makes this outermost layer of the skin almost waterproof, and along with collagen and elastin gives skin its strength.

Rubbing and pressure cause thickening of the outer, cornified layer of the epidermis and form protective calluses, which are useful for athletes and on the fingertips of musicians who play stringed instruments.
Keratinized epidermal cells are constantly shed and replaced.

These hard, integumentary structures are formed by intercellular cementing of fibers formed from the dead, cornified cells generated by specialized beds deep within the skin.
Hair grows continuously and feathers molt and regenerate.

The constituent proteins may be phylogenetically homologous but differ somewhat in chemical structure and supermolecular organization.
The evolutionary relationships are complex and only partially known.
Multiple genes have been identified for the β-keratins in feathers, and this is probably characteristic of all keratins.


*Silk:
The silk fibroins produced by insects and spiders are often classified as keratins, though it is unclear whether they are phylogenetically related to vertebrate keratins.
Silk found in insect pupae, and in spider webs and egg casings, also has twisted β-pleated sheets incorporated into fibers wound into larger supermolecular aggregates.

The structure of the spinnerets on spiders’ tails, and the contributions of their interior glands, provide remarkable control of fast extrusion.
Spider silk is typically about 1 to 2 micrometers (µm) thick, compared with about 60 µm for human hair, and more for some mammals.
The biologically and commercially useful properties of silk fibers depend on the organization of multiple adjacent protein chains into hard, crystalline regions of varying size, alternating with flexible, amorphous regions where the chains are randomly coiled.

A somewhat analogous situation occurs with synthetic polymers such as nylon, developed as a silk substitute.
Silk from the hornet cocoon contains doublets about 10 µm across, with cores and coating, and may be arranged in up to 10 layers, also in plaques of variable shape.
Adult hornets also use silk as a glue, as do spiders.


Glue:
Glues made from partially-hydrolysed keratin include hoof glue and horn glue.


*Clinical significance
Abnormal growth of keratin can occur in a variety of conditions including keratosis, hyperkeratosis and keratoderma.
Keratin is highly resistant to digestive acids if ingested.
Cats regularly ingest hair as part of their grooming behavior, leading to the gradual formation of hairballs that may be expelled orally or excreted.
In humans, trichophagia may lead to Rapunzel syndrome, an extremely rare but potentially fatal intestinal condition.


*Diagnostic use
Keratin expression is helpful in determining epithelial origin in anaplastic cancers.
Tumors that express keratin include carcinomas, thymomas, sarcomas and trophoblastic neoplasms.

Furthermore, the precise expression-pattern of keratin subtypes allows prediction of the origin of the primary tumor when assessing metastases.
For example, hepatocellular carcinomas typically express CK8 and CK18, and cholangiocarcinomas express CK7, CK8 and CK18, while metastases of colorectal carcinomas express CK20, but not CK7



PHYSICAL and CHEMICAL PROPERTIES of KERATIN:
Appearance: light yellow powder
Moisture: ≤6.0%
PH value: 4.5 ~ 6.5 (5% aqueous solution)
Mercury: ≤0.5mg/kg
Arsenic: ≤0.5mg/kg
Lead: ≤1.0mg/kg
Total bacteria: ≤1000cfu/g
Coliform: ≤30MPN/100g
Pathogenic bacteria: not detected
Protein content: ≥90.0%



FIRST AID MEASURES of KERATIN:
-Description of first-aid measures:
*If inhaled:
If breathed in, move person into fresh air.
*In case of skin contact:
Wash off with soap and plenty of water.
*In case of eye contact:
Flush eyes with water as a precaution.
*If swallowed:
Never give anything by mouth to an unconscious person.
Rinse mouth with water.
-Indication of any immediate medical attention and special treatment needed:
No data available



ACCIDENTAL RELEASE MEASURES of KERATIN:
-Environmental precautions:
Do not let product enter drains.
-Methods and materials for containment and cleaning up:
Keep in suitable, closed containers for disposal.



FIRE FIGHTING MEASURES of KERATIN:
-Extinguishing media:
*Suitable extinguishing media:
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
-Further information:
No data available



EXPOSURE CONTROLS/PERSONAL PROTECTION of KERATIN:
-Control parameters:
--Ingredients with workplace control parameters:
-Exposure controls:
--Personal protective equipment:
*Eye/face protection:
Use equipment for eye protection.
*Skin protection:
Handle with gloves.
Wash and dry hands.
*Body Protection:
Impervious clothing
*Respiratory protection:
Respiratory protection not required.
-Control of environmental exposure:
Do not let product enter drains.



HANDLING and STORAGE of KERATIN:
-Conditions for safe storage, including any incompatibilities:
*Storage conditions:
Store in cool place.
Keep container tightly closed in a dry and well-ventilated place.
Containers which are opened must be carefully resealed and kept upright to prevent leakage.



STABILITY and REACTIVITY of KERATIN:
-Reactivity:
No data available
-Chemical stability:
Stable under recommended storage conditions.
-Possibility of hazardous reactions:
No data available
-Conditions to avoid:
No data available

Kératine hydrolysée
Coco fatty acid ;coconut acid; fatty acids, coco; coconut fatty acid cas no: 61788-47-4
Kereviz Ekstrakt
Celery Extract ; Apium Graveolens Extract; extract obtained from the whole plant of the celery, apium graveolens l., apiceae; apium vulgare extract; carum graveolens extract; celeri graveolens extract; seseli graveolens extract; sium apium extract cas no:89997-35-3
KETÇAP AROMASI
ketchup flavor; catsup flavor; ketchup concentrate flavor
Keten Tohumu Ekstraktı
Linum Usitatissimum Seed Extract; extract of the seeds of the linseed, linum usitatissimum l., linaceae; flaxseed extract (linum usitatissimum); linseed extract cas no:8001-26-1
Keten Tohumu&Çekirdeği
FLAX SEED & MEAL; linseed; aceite de linaza; boiled linseed oil; solin oil; linum usitatissimum seed CAS NO:8001-26-1
Kırmızı Biber Ekstrakt
Capsicum Extract ;Capsicum Frutescens Extract cas no: 85940-30-3
Kırmızı Dut Ekstraktı
Morus nigra fruit extract ;extract of the fruit of the black mulberry, morus nigra l., moraceae; black mulberry extract cas no:90064-11-2
KIRMIZI ŞEFTALİ AROMASI
red wine flavor; wine (red) type flavor natural; savornotes red wine flavor; wine flavor (red); red wine flavor powder; natural red wine type flavor; red wine type flavor
Kırmızıbiber Yağı
CHILLI OIL; Capsicum annum; Hot Pepper Seed (Chili Seed) Essential Oil; Capsicum frutescens Fruit Extract; Cayenne Pepper Oil; Capsicum frutescens; PEPPER, RED CAS NO:85940-30-3
Kimyon Ekstraktı
Cuminum Cyminum Fruit Extract; extract obtained from the fruits of the cumin, cuminum cyminum l., umbelliferae; cumin extract; jeera extract; jira extract; zi ran qin extract cas no:84775-51-9
KİRAZ AROMASI
cherry flavor; cherry filling; cherry flavor natural
Kiraz Ekstraktı
Aronia Melanocarpa Fruit Extract ;extract of the fruit of aronia melanocarpa, rosaceae; black choke berry extract cas no: 1197991-17-5
Kişniş Ekstrakt
Coriandrum Sativum Extract; extract of the fruit and leaves of the coriander, coriandrum sativum; coriander extract cas no:84775-50-8
KİVİ AROMASI
Kiwi Flavor; kiwi fruit powder
Kivi Ekstrakt
Actinidia Chinensis Fruit Extract; extract of the fruit of the kiwi, actinidia chinensis, actinidiaceae; fruitapone kiwi; actiphyte of kiwi fruit extract cas no:92456-63-8
KLOR (CL)
chlor element; chlorine; Dichlorine; Molecular Chlorine; Chlorinated Water; Bertholite; Chloor (Dutch); Chlor (German); Chlore (French); Cloro (Italian); cas no:7782-50-5
KOBALT (CO)
cobalt element; Cobalt powder cas no:7440-48-4
KOENZİM Q10 / UBİQİNON
bidecarenone; Ubiquinone 10; Ubiquinone 50; Udekinon; (all-E)-2-(3,7,11,15,19,23,27,31,35,39-decamethyl-2,6,10,14,18,22,26,30,34,38- tetracontadecaenyl)-5,6-dimethoxy-3-methyl-2,5-cyclohexadiene-1,4-dione; 2-(3,7,11,15,19,23,27,31,35,39-Decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecae nyl)-5,6- dimethoxy-3-methyl-p-benzoquinone; 2-(3,7,11,15,19,23,27,31,35,39-Dec amethyl- 2,6,10,14,18,22,26,30,34,38-tetracontadecaenyl)-5,6- dimethoxy- 3-methyl-p- benz oquinone; Ubiquinone 50; CoQ10 ; Emitolon; Heartcin; Inokiten; Justquinon; Luvacor; Neuquinon; Neuquinone; Ubidecarenona; Ubidecarenone; Ubiquinone Q10; cas no: 303-98-0
KOKO AMFODİASETAT %40
Yumuşak, göz yakmayan, cilde zarar vermeyen, iyi köpüklü, düşük irritasyonlu amfoterik yüzey aktif.Bebe şampuanlarında ve normal şampuanlarda kullanılır
KOKO YAĞI ASIDI
SYNONYM Fats and Glyceridic oils, fish; Fish Oil is the oil obtained from the head, tail and stomach of various species of fish CAS #8016-13-5
KOKODİETANOL AMİDE %85
Her türlü temizlik malzemesinde kıvam verme ve köpük stabilizasyonu amaçlı noniyonik yüzey aktif madde.Kozmetik ve deterjan sektörlerinde kullanılır.şampuan(%1-2),Sıvı sabun(%1-2),Sıvı deterjan(%1-2)
KOLA AROMASI
cola flavor; natural cola flavor; cola flavor for confectionery; cola flavor for pharmaceuticals; kola flavor
KOLLIPHOR TPGS
Kolliphor TPGS Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS): Solution for insolubility Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) – D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) – is a water-soluble derivative of vitamin E that can directly enhance the bioavailability of poorly soluble actives. TPGS is commonly used in pharmaceutical and nutraceutical formulations. Key Features of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) Based on natural-source vitamin E from BASF Conforms to USP-NF monograph “Vitamin E Polyethylene Glycol Succinate” Produced according to IPEC-PQG GMP guidelines No chlorinated solvents used Detailed technical and regulatory information available Enhanced delivery of life-saving drugs Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) directly increases the bioavailability and delivery of poorly soluble drugs. TPGS can be used in oral, topical and parenteral dosage forms. It is also used in dietary supplements, cosmetic applications and food. Key benefits for customers Cognis is a leading supplier of natural-source vitamin E and pharma-grade excipients, and has considerable expertise in solubilizers. Using its own vitamin E feedstocks, BASF guarantees consistent quality and a competitive, reliable supply of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS). In accordance with stringent industry requirements, BASF maintains the highest manufacturing standards, with full supporting documentation. TPGS from BASF offer high solubilisation effectiveness. BASF offers a global sales network plus technical and regulatory support. Applications of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS): -Drug solubilizer -Absorption enhancer -Emulsifier -Vehicle for lipid-based drug delivery -Source of natural vitamin E -Antioxidant BASF will transfer the pharmaceutical production of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) (Speziol TPGS Pharma, vitamin E polyethylene glycol succinate), manufactured at the company’s Kankakee, Illinois (USA), site, to its Minden, Germany, facility. The transition is expected to be completed by the first quarter of 2014. “Expanding the Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) manufacturing capacity at our Minden site is another example of BASF’s commitment to the pharmaceutical and dietary supplement market. The relocation creates a more centralized production facility, reduces complexity in the production setup, and provides room for future expansion,” said Dr. Thorsten Schmeller, Head of Global Marketing New Products at BASF’s Global Business Unit Pharma Ingredients & Services. The Minden site has manufactured active pharmaceutical ingredients (APIs) and excipients under cGMP for more than 70 years and is regularly inspected by the FDA and European health authorities. Schmeller: “Thanks to the ICH Q7 quality management standards at our Minden site, we will be able to offer a Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) grade that fulfills the requirements of an API.” Commitment to a seamless transition Until the production in Minden is fully operational, BASF will continue to manufacture Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) at the Kankakee site, which will fully support pharmaceutical and nutraceutical customers during the transition. “We have scheduled a generous supply overlap that we expect allows for a seamless transition,” added Schmeller. “Our projection also takes into account the appropriate qualification period required to transition products used in pharmaceutical applications.” Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) production at the Minden site is expected to start in the first quarter of 2013. The Kankakee site remains an important production facility for BASF’s nutrition and health business. Besides food ingredients, the company manufactures ingredients for soaps, shampoos, detergents, coatings, inks and adhesives at the site. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is a water-soluble derivative of vitamin E that can directly enhance the bioavailability of poorly soluble active substances. It is commonly used in pharmaceutical and nutritional formulations, but also in cosmetics. Additionally it has plasticizing effects that are very beneficial for emerging platform technologies in the pharmaceutical industry such as hot melt extrusion (HME). Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is a water-soluble derivative of vitamin E that can directly improve the bioavailability of poorly soluble active substances. BASF Global Business Unit Pharma Ingredients & Services Global Marketing New Products head Thorsten Schmeller said the relocation creates a centralized production facility, reducing complexity in the production setup, while providing room for future expansion. The company said until the production in Minden is fully operational, it will continue to manufacture Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) at the Kankakee site. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is commonly used in pharmaceutical and nutritional, as well as in cosmetic formulations. The production of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) at the Minden site is likely to begin in the first quarter of 2013 with the completion scheduled to Q1, 2014. D-ɑ-tocopheryl polyethylene glycol succinate (Vitamin E Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) or Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)) has been approved by FDA as a safe adjuvant and widely used in drug delivery systems. The biological and physicochemical properties of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) provide multiple advantages for its applications in drug delivery like high biocompatibility, enhancement of drug solubility, improvement of drug permeation and selective antitumor activity. Notably, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can inhibit the activity of ATP dependent P-glycoprotein and act as a potent excipient for overcoming multi-drug resistance (MDR) in tumor. In this review, we aim to discuss the recent advances of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) in drug delivery including Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) based prodrugs, nitric oxide donor and polymers, and unmodified Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) based formulations. These potential applications are focused on enhancing delivery efficiency as well as the therapeutic effect of agents, especially on overcoming MDR of tumors. It also demonstrates that the clinical translation of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) based nanomedicines is still faced with many challenges, which requires more detailed study on Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) properties and based delivery system in the future. Vitamin E has been identified as an essential factor for reproduction since 1922 1. With further investigation, it has been found with other functions involving antioxidant, anti-thrombolytic and other therapeutic effects 2, 3. However, the poor water solubility of vitamin E has greatly limited its application 4. Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (simply as Vitamin E Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) or Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)), synthesized by esterification of vitamin E succinate with poly(ethylene glycol) (PEG) 1000, is a water-soluble derivative of natural vitamin E 5. It has an amphiphilic structure comprising hydrophilic polar head portion and lipophilic alkyl tail. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can be functionalized as an excellent solubilizer, emulsifier, permeation and bioavailability enhancer of hydrophobic drugs 6. Meanwhile, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can act as an anticancer agent, which has been demonstrated to induce apoptogenic activity against many cancer types. It can target the mitochondria of cancer cells, resulting in the mitochondrial destabilisation for activation of mitochondrial mediators of apoptosis 7. Interestingly, it has been documented that Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can selectively induce apoptosis in tumor cells while exhibited nontoxicity to normal cells and tissues 8. Multi-drug resistance (MDR) remains as a significant impediment to successful chemotherapy in clinical cancer treatment. What's worse, decades of research has identified that this phenomenon exists in nearly every effective drug, even the newest therapeutic agents 9. Therefore, how to effectively reverse drug resistance plays a critical role in achieving satisfied therapeutic effect in cancer treatment. It has been demonstrated that various mechanisms are involved in MDR including decreased drug influx, increased drug efflux, changed drug metabolism and promoted anti-apoptotic mechanism 10. Among them, the drug efflux mediated by ATP-binding cassette transporter P-glycoprotein (ABCB1) is one of the most investigated and characterized mechanisms for MDR. P-glycoprotein (P-gp) has 12 transmembrane regions to bind hydrophobic substrate drugs and two ATP-binding sites to transport drug molecules 11. It can pump out P-gp substrate drugs to the extracellular space and thus decrease the intracellular drug accumulation. Over the past few decades, considerable efforts have been devoted to exploring P-gp inhibitors for overcoming MDR. Several nonionic surfactants such as Pluronic, Tweens, Span and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) have been found with the ability to inhibit P-gp activity 12, 13. Though the exact mechanism of P-gp inhibition by these surfactants remains unclear, steric blocking of substrate binding 14, alteration of membrane fluidity 15 and inhibition of efflux pump ATPase 16, 17 have been proposed as the potential mechanisms. As a widely used adjuvant in drug delivery, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) has been shown as the most potent and commercially available P-gp inhibitor among these surfactants 18. As a membrane transporter of ATP-binding cassette family, P-gp can pump out the substrate drug via an ATP-dependent mechanism 19. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can target the mitochondria and cause its dysfunction, resulting in the depletion of intracellular ATP. The reduced ATP level can then influence the activity of P-gp and decrease the drug efflux to extracellular space 20. Besides, the hydrolysis of ATP by ATPase is critical for converting the P-gp transporter to an active conformational state for substrate drug efflux 16. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) itself cannot stimulate ATPase activity as it is not a substrate of P-gp, but can inhibit the substrate induced ATPase activity 21. In our previous works, we have demonstrated that Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can significantly enhance the intracellular accumulation and cytotoxicity of chemotherapeutics to drug resistant breast adenocarcinoma cells (MCF-7/ADR) and human ovarian cancer cells (A2780/T) 22-24. Since Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) has been approved by the FDA as a safe pharmaceutical adjuvant, it has been extensively used in drug delivery systems as surfactant, solubilizer, stabilizer and P-gp inhibitor for enhancing bioavailability and reversing MDR. In our previous reviews 5, 6, we discussed Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) as a molecular biomaterial and its original application in drug delivery. In this review, we focused on the progress of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) in drug delivery in recent five years, which took advantages of the P-gp inhibiting ability and other basic properties. We summarized the applications of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) based prodrugs, nitric oxide (NO) donor and polymers for overcoming MDR and delivering therapeutic agents. We also discussed the unmodified Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) based formulations applied in reversing MDR, improving oral availability and enhancing drug permeation. We expect this review will give new inspiration for the application of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) in overcoming MDR and drug delivery. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) as a surfactant Poor water solubility and/or poor permeability remain as the major obstacles for therapeutic drugs to exert maximum activity. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can be applied as solubilizer, absorption and permeation enhancer, emulsifier as well as surface stabilizer in drug delivery. It has been widely used in fabricating nanodrugs or other formulations for many poorly water-soluble or permeable drugs, especially for biopharmaceutics classification system (BCS) class Ⅱ and Ⅳ drugs 5, 6. In addition, it has been reported that Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) exhibited strong enhancement on the secretion of chylomicrons at low concentration and enhanced the intestinal lymphatic transport 25, which would further improve drug absorption ability. As a surfactant, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) shows outstanding capability to increase drug absorption through different biological barriers. For example, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) was used to fabricate repaglinide nanocrystals for enhancing saturation solubility and oral bioavailability up to 25.7-fold and 15.0-fold compared with free drug, respectively 26. In Ussing chambers transport studies, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can enhance drug permeation in colonic tissue 27. In addition, the influence of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) on the intestinal absorption ability of icariside Ⅱ was investigated in Caco-2 monolayer model and a four-site rat intestinal perfusion model. In Caco-2 monolayer model, the apparent permeability coefficients value of icariside Ⅱ was increased and the efflux ratio was remarkably reduced owing to the effect of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS). The four-site rat intestinal perfusion model investigation further showed significantly increased permeability of icariside Ⅱ in ileum and colon 28. Similar results were found in Caco-2 monolayer model with rhodamine123 (Rh123) in the presence of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) 29. Interestingly, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can also act as a pore-forming agent in the fabrication of nanoparticles with high drug encapsulation efficiency, small particle size and fast drug release 30. Besides, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can be used as emulsifier or surface stabilizer for the preparation of drug formulations as the hydrophobic portion can entrap hydrophobic drug and the hydrophilic part can stabilize the formulations. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) as a P-gp inhibitor for overcoming MDR Drug resistance of cancer cells can restrict the therapeutic efficacy in chemotherapeutic treatment. As the ATP dependent membrane transporter, P-gp has been one of primary causes for MDR. It can pump out the P-gp substrate drugs to decrease intracellular drug accumulation, thus reducing the cytotoxic effect of chemotherapeutic drugs in drug resistant cancer treatment. Over the past decades, there have been continuous interests to combine P-gp substrate drugs with inhibitor or some polymer with P-gp inhibiting capability in formulations for overcoming MDR 31. Rh123, a P-gp substrate, is usually used as the model drug to study the intracellular retention of drug in MDR tumor cells. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can significantly increase the intracellular accumulation of Rh123 in drug-resistant tumor cells compared with free Rh123, which was evidenced from the flow cytometry and confocal microscope analysis 32. It seems that Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can effectively inhibit the activity of P-gp to overcome MDR. Since the efflux transporter P-gp is ATP-dependent, the depletion of ATP plays a very important role in overcoming MDR. The MDR reversing effect of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is mainly attributed to its dual actions, the inhibition of mitochondrial respiratory complex Ⅱ for shorting ATP supply and the suppression of substrate induced P-gp ATPase activity for blocking ATP utilization 20, 21, 33, 34. Mitochondrial respiratory complex Ⅱ, also called succinate dehydrogenase, plays an important role in mitochondrial electron transport, which is an essential part in the tricarboxylic acid cycle as well as the mitochondrial respiratory chain 35. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can bind with mitochondrial respiratory complex Ⅱ and induce subsequent mitochondrial dysfunction, resulting in significant depletion of intracellular energy 20, 36. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can accumulate in mitochondria and inhibit the activity of complex Ⅱ, and consequently disrupt the electron transfer and activate calcium channel, which would result in the overload of calcium and ensuing dysfunction of mitochondria. Mitochondrial dysfunction is characterized by the dissipating effect on mitochondrial membrane potential, decreased ATP level and increased reactive oxygen species (ROS) generation 37. Furthermore, the mitochondrial targeting ability of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) may accelerate the mitochondrial dysfunction 32, 38. Substrate induced P-gp ATPase activity suppression is another mechanism for Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) to decrease drug efflux 21. ATPase activity can be stimulated by the binding of substrate to transmembrane regions of P-gp 39. Subsequently, ATP is transformed into adenosine diphosphate (ADP) for the energy supply of drug efflux. Unlike the classical P-gp inhibitor verapamil, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is not a substrate of P-gp and shows no competitive inhibition effect of substrate binding. The steric blocking function of the binding site and/or allosteric modulation of P-gp appear to be the ATPase inhibition mechanism. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) as a selective anticancer agent for synergistic antitumor effects Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can induce apoptosis and exhibits selective cytotoxic effects against cancer cells, which can be combined with chemotherapeutic drugs for reducing side effect and increasing treatment efficiency. There is significant different response on normal immortalized breast cells and cancer cells after Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) treatment. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can trigger the apoptotic signaling pathways and induce G1/S cell cycle arrest in breast cancer cells MCF-7 and MDA-MB-231, but no remarkable effect on non-tumorigenic cells MCF-10A and MCF-12F 40. Coincidentally, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can induce apoptosis on T cell acute lymphocytic leukemia Jurkat clone E6-1 cells, but not on human peripheral blood lymphocytes. The apoptosis was evidenced by increased nuclear DNA fragmentation, enhanced cell cycle arrest and reduced mitochondrial membrane potential 41. The selective apoptosis mechanisms of cancer cells mediated by Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) are complicated and can be listed as follows: ROS inducer Similar to α-tocopheryl succinate (α-TOS), Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can induce cancer cell apoptosis through the destruction and inhibition of mitochondrial respiratory complex Ⅱ 33, 41. The subsequent electron transfer chain disruption can promote ROS generation 20. The escalated intracellular ROS, a mediator of apoptosis, can induce DNA damage and the oxidation of lipid, protein and enzyme, leading to cell destruction 42. Besides, it has been demonstrated that ROS-mediated apoptosis mechanism was correlated with the selective anticancer activity as tumor cells could be more sensitive to ROS than normal cells 43-45. Compared with TOS, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) exhibited enhanced ROS generation capability 46. Downregulation of anti-apoptotic proteins Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can inhibit the phosphorylation of protein kinase B (PKB or AKT) and then downregulate the anti-apoptotic proteins Survivin and Bcl-2, which can induce the activation of caspase-3 and -7 for caspase-dependent programmed cell death 40. Concurrently, caspase-independent programmed cell death and G1/S phase cell cycle arrest also occurred 40, 41. Survivin and Bcl-2 are usually overexpressed in most cancer cells while remarkably reduced in normal cells 47. This may be the main reason for the selective cytotoxicity of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS). DNA damage Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can induce both caspase-dependent and caspase-independent DNA damage. This kind of DNA damage was observed in androgen receptor positive (AR+) LNCaP cells but not in AR- DU145 and PC3 cells, which was related to the cellular microenvironment 48. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX conjugate Doxorubicin (DOX) is a P-gp substrate and broad spectrum anticancer drug. However, the acquired drug resistance of DOX is an obstacle to its clinical applications in the progress of cancer therapy. Bao et al. 23 developed a pH-sensitive Schiff base-linked prodrug, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CH=N-DOX (also called TD), by conjugating DOX with Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) for overcoming MDR. This prodrug can self-assemble into stable micelles in physiological condition and realize in vivo tumor targeting and long blood circulation by introducing a PEGylated lipid. It was the first time to provide a “molecular economical” way to combat tumor as the system combined the tumor targeting from the integrin receptor ligand peptide cyclic RGD (cRGD), long circulation property from PEGylated lipid, overcoming MDR from the material Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) and stimuli-responsive release from Schiff based linker. The formulated hybrid micelles showed pH-sensitive drug release profile and obvious particles size change in pH 5.0 buffer which simulated the endo/lysosomal acidic environment. It also demonstrated increased DOX uptake by flow cytometry and confocal microscope analysis, and enhanced retention through in vivo pharmacokinetics compared with free drug. DOX exhibited good retention in drug sensitive MCF-7 cells during incubation. On the contrary, free drug showed much low DOX content and remarkably reduced retention in MCF-7/ADR cells even with extended incubation time. Both the P-gp inhibitors of verapamil and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) can increase the drug accumulation in MCF-7/ADR cells. The prodrug micelles achieved the similar drug uptake and retention trend with the admixture of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) and DOX in MCF-7/ADR cells. It seems that the rapidly dissociated Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) from the internalized micelles can inhibit the P-gp activity and retain DOX for subsequent cytotoxicity against MDR tumors. The enhanced cytotoxicity and apoptosis was induced by the hybrid micelles in MCF-7/ADR cells compared with free DOX as the half-maximal inhibitory concentrations (IC50) of hybrid micelles was 95-fold lower than that of free drug after 72 h incubation. The mechanism of antitumor efficacy was further investigated through the analysis of intracellular ROS production, change of mitochondrial membrane potential (ΔΨm) and intracellular ATP level (Figure ​Figure22B). The accumulation of ROS, decreased mitochondrial membrane potential and decreased ATP generation from the hybrid micelles may contribute to the P-gp inhibition by Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) with cutting off the energy supply from the 'cellular power plants' of mitochondria. The prodrug exhibited significant growth inhibition on MCF-7/ADR tumor (Figure ​Figure22C) and also tumor growth/metastasis inhibition on murine melanoma B16F10 and hepatocarcinoma H22 with cRGD decorated on the hybrid micelles. It provided a safe and simple prodrug platform to relieve the burden from delivery system and improve the therapeutic efficiency of nanomedicine through the rational design of prodrug for effective cancer treatment. Some other Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX prodrugs were also designed and constructed 55-57. Feng's group 55 developed Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX prodrug by directly conjugating succinic anhydride modified Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) with DOX. The prodrug showed improved cell uptake and cytotoxicity. Compared with free drug, 4.5- and 24-fold of half-life (t1/2) and area under curve (AUC) were found in Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX prodrug, respectively. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX-folic acid conjugate (Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX-FOL) was further introduced for targeted chemotherapy with higher therapeutic effects and fewer side effects 56. Moreover, the prodrug of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX can also be applied to package drug for combinational therapy. Hou et al. 57 constructed an acid-sensitive Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX prodrug by firstly synthesizing a pH-sensitive cis-aconitic anhydride-modified DOX and then conjugating with Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS). The prodrug can self-assemble into nanoparticles. Photosensitizer chlorin e6 (Ce6) was loaded in this Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-DOX prodrug nanoparticles for near-infrared fluorescence imaging and combination of chemotherapy and photodynamic therapy against tumor. The nanoparticles exhibited pH-responsive DOX and Ce6 release characteristics, which was caused by the acid-sensitive linker between Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) and DOX. It also demonstrated synergistic effects on cell uptake, cancer cell apoptosis and significant growth suppression in non-small cell lung cancer (A549). Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-PTX conjugate Paclitaxel (PTX) is a BCS class Ⅳ drug with poor solubility and permeability as well as a P-gp substrate, which hinders the effective drug delivery and MDR tumor therapy. Zhang's group 58 synthesized a redox-sensitive prodrug Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-SS-PTX, which could be rapidly dissociated in intracellular redox environment (high GSH concentration) to release PTX for cytotoxicity against tumor and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) active ingredient for P-gp inhibition. The prodrug can self-assemble to stable micelles and realize the passive tumor targeting through the enhanced permeation and retention (EPR) effect. Compared with non-responsive ester bond conjugated PTX prodrug Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CC-PTX, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-SS-PTX exhibited better stability and in vitro sustained drug release triggered by intracellular reductive environment. The increased stability of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-SS-PTX micelles may be attributed to the soft sulfurs linker between Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) and PTX in comparison to the only two carbon linker of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CC-PTX. Compared with the clinical formulation of Taxol® and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CC-PTX, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-SS-PTX micelles exhibited increased intracellular PTX accumulation for drug-resistant A2780/T cells, which may be caused by the rapid dissociated Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) from the redox-sensitive prodrug. Rh123 was used as a model drug of P-gp substrate to evaluate the drug retention in MDR tumor. When the cells treated with verapamil or prodrugs, Rh123 fluorescence intensity was increased compared with free Rh123. In particular, much higher fluorescence intensity was exhibited in Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-SS-PTX compared with Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CC-PTX, which further confirmed the P-gp inhibition property from dissociated Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS). As expected, this functional prodrug micelle increased the cytotoxicity of PTX in A2780/T cells. Compared with the uncleavable Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-CC-PTX prodrug and Taxol®, the stimuli-responsive prodrug reduced the IC50 and increased the apoptosis/necrosis of MDR tumor. In vivo evaluation further demonstrated the potential of this prodrug micelle on cancer treatment as the increased AUC, extended t1/2, enhanced drug distribution in tumor and significant tumor growth inhibition with reduced side effects. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin conjugate Cisplatin is widely used in testicular, ovarian, cervical, head and neck, and non-small-cell lung cancers. However, the clinical application is limited for low solubility, nephrotoxicity, severe peripheral neurotoxicity, inherent and acquired drug resistance 59. Feng's group 60 developed Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin prodrug to improve the water-solubility and reduce the neurotoxicity of cisplatin. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin can self-assemble to micelles with high drug loading capability. The higher cell uptake and cytotoxicity against HepG2 hepatocarcinoma cells were found in Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin prodrug compared with free drug. The prodrug micelles also showed significant neuroprotective effects with higher IC50 value for the SH-SY5Y neuroblast-like cells in comparison to free cisplatin. In addition, Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) is a powerful anticancer agent when dealing with breast cancer with high level of human epidermal growth factor receptor 2 (HER2) expression 61. It may be related to the inhibition effect of mitochondrial respiratory complex Ⅱ and the ensuing ROS generation, resulting in cell apoptosis via the HER2 receptor tyrosine kinase signaling pathway 33. Mi and coworkers 62 developed a targeted delivery system of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin prodrug nanoparticles for the co-delivery of cisplatin, docetaxel (DTX) and Herceptin for good tumor inhibition in HER2 overexpressed breast cancers. Poly(lactic acid) (PLA)-Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS), Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-COOH and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-cisplatin were mixed to fabricate nanoparticles for the multimodality treatment of breast cancer. The multidrug-loaded nanoparticles exhibited much lower IC50 value for SK-BR-3 cells with high expression of HER2 compared with the admixture of free drugs. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-5-FU conjugate Liu's group 63, 64 developed multifunctional nanoparticles for co-delivery of hydrophobic drug PTX and hydrophilic drug 5-fluorouracil (5-FU) to overcome MDR. Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-5-FU was synthesized by simply conjugating succinoylated Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) with 5-FU. The nanoparticles, composed of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-5-FU prodrug and PTX, showed enhanced cytotoxicity against MDR tumor compared with individual agent treatment 64. They further developed nanoemulsions with PTX-Vitamin E and Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS)-5-FU prodrug. The nanoemulsions with drugs co-delivery exhibited synergistic effect of overcoming PTX resistance in human epidermal carcinoma cell line KB-8-5 63. The effective anticancer activity was resulted from the P-gp inhibition effect of Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) and the synergistic effect of PTX and 5-FU which can simultaneously target diverse signaling pathways for cancer killing. Targeting ligand conjugated Kolliphor TPGS (VITAMIN E TPGS, E vitamini TPGS) RGD has been applied as a potential targeting ligand in cancer treatment for tumors with αvβ3 integrin receptors overexpression. Li's group 112 formulated PTX and Survivin shRNA co-loaded targeted nanoparticles by mixing Pluronic P85-polyethyleneimine, Kolliphor TPGS (VITAMIN E
KONDROİTİN SÜLFAT KEMİK
Chondroitin sulfate sodium salt from shark cartilage; sodium chondroitin sulfate; chondroitin, hydrogen sulfate, sodium salt cas no: 9082-07-9
KONJUGE LİNOLEİK ASİT
CLA;Conjugated (10E,12Z)-Linoleic acid solution; (10E,12Z)-10,12-Octadecadienoic acid, 10E,Z12-CLA, Linoleic acid (10-trans, 12-cis); Conjugated Linoleic Acid cas no:2420-56-6
KONTROİTİN SÜLFAT KÖPEK BALIĞI
Chondroitin sulfate sodium salt from shark cartilage; sodium chondroitin sulfate; chondroitin, hydrogen sulfate, sodium salt cas no: 9082-07-9
KORTACID 1299
Kortacid 1299 is a natural fatty acid that can act as a cleanser and surfactant.
Kortacid 1299 is primarily used in the cosmetics industry as an emulsifier in facial creams and lotions.

CAS Number: 209-647-6.
EC Number: 209-647-6



APPLICATIONS


Kortacid 1299 finds applications in various industries, including:

Cosmetics industry - as an emulsifier in facial creams and lotions
Personal care industry - as a cleanser and surfactant in soaps and toiletries
Pharmaceutical industry - as an ingredient in topical formulations for treating skin diseases
Food industry - as a food additive, mainly as a flavoring agent in baked goods, confectionery, and dairy products
Industrial applications - as a raw material for producing surfactants, detergents, and other chemical products


Overall, Kortacid 1299 is a versatile compound that finds use in various industries due to its emulsifying, cleansing, and surfactant properties.


Kortacid 1299 is commonly used as an emulsifier in the production of cosmetic creams and lotions.
Kortacid 1299 is often added to facial products due to its moisturizing and cleansing properties.

Kortacid 1299 can also be used as a surfactant in the production of soaps and toiletries.
Kortacid 1299 can be used in hair care products as a conditioning agent.

Kortacid 1299 is often used in the production of natural and organic cosmetic products.
Kortacid 1299 is commonly used in the production of personal care products due to its biodegradability.

Kortacid 1299 can be used as a foam booster in the production of shaving creams and foams.
Kortacid 1299 can also be used as a thickener in the production of cosmetic products.
Kortacid 1299 is an effective emulsifying agent in the production of oil-in-water emulsions.

Kortacid 1299 can be used as a lubricant in the production of cosmetic products.
Kortacid 1299 is often added to lipsticks to improve their texture and application.

Kortacid 1299 can be used as a surfactant in the production of household cleaning products.
Kortacid 1299 can be added to laundry detergents as a surfactant and cleaning agent.

Kortacid 1299 is often used in the production of industrial lubricants.
Kortacid 1299 is commonly used in the production of food and pharmaceuticals.

Kortacid 1299 can be used in the production of plasticizers and resins.
Kortacid 1299 can be used in the production of metalworking fluids and cutting oils.
Kortacid 1299 is commonly used as a raw material in the production of other chemicals.

Kortacid 1299 can be used as a dispersing agent in the production of pigments and dyes.
Kortacid 1299 is often added to leather processing agents to improve their performance.

Kortacid 1299 can be used in the production of biodegradable lubricants and hydraulic fluids.
Kortacid 1299 can be used in the production of paints and coatings.

Kortacid 1299 can be used as an emulsifying agent in the production of emulsion polymers.
Kortacid 1299 is often added to adhesive formulations to improve their performance.
Kortacid 1299 can be used in the production of candles as a hardening agent.

Kortacid 1299 is used in the formulation of hair care products such as shampoos and conditioners as a foam booster and thickener.
Kortacid 1299 can be used as a lubricant in the production of various products, including rubber and plastics.

Kortacid 1299 can be used as a raw material for the production of various esters.
Kortacid 1299 is used in the manufacture of surfactants and emulsifiers for various applications.

Kortacid 1299 is used in the production of various personal care products such as bath gels and body washes as a foam booster.
Kortacid 1299 is used in the manufacture of detergents as a surfactant.

Kortacid 1299 is used as a wetting agent and emulsifier in the formulation of insecticides and herbicides.
Kortacid 1299 can be used in the manufacture of textile auxiliaries as a softening agent.

Kortacid 1299 is used in the production of metalworking fluids as a lubricant.
Kortacid 1299 is used in the formulation of leather products such as shoe polishes and leather conditioners as a softening agent.
Kortacid 1299 is used in the production of lubricants as a base oil.

Kortacid 1299 can be used as an emollient in the formulation of cosmetics such as creams and lotions.
Kortacid 1299 is used as a raw material for the production of various fragrances and flavors.

Kortacid 1299 can be used in the formulation of adhesives as a tackifier.
Kortacid 1299 is used in the manufacture of agricultural chemicals as a solvent.

Kortacid 1299 is used in the production of plasticizers as a raw material.
Kortacid 1299 is used as a lubricant in the production of various metal products such as wires and cables.
Kortacid 1299 can be used in the production of candles as a raw material.

Kortacid 1299 is used as a corrosion inhibitor in the production of metal products.
Kortacid 1299 is used in the manufacture of paper and pulp products as a sizing agent.

Kortacid 1299 is used as a raw material for the production of various resins and polymers.
Kortacid 1299 can be used as a flotation agent in the mining industry.

Kortacid 1299 is used in the production of rubber products as a plasticizer.
Kortacid 1299 is used as a mold release agent in the production of various products, including rubber and plastics.
Kortacid 1299 can be used in the formulation of lubricating oils as a viscosity modifier.


As a raw material, Kortacid 1299 can be used in a variety of products across industries.
Some examples of products that may use Kortacid 1299 in their production process include:

Cosmetics, such as facial creams and lotions, as an emulsifier and surfactant
Soaps and toiletries, as a surfactant
Detergents and cleaning products, as a surfactant and cleanser
Food products, as an additive in the production of flavors and fragrances
Pharmaceutical products, as a component in certain drug formulations
Textile industry, as an additive in fabric softeners and other textile treatments
Plastic and rubber industry, as a lubricant and release agent in the production process
Metalworking industry, as a lubricant and corrosion inhibitor in metalworking fluids
Paper industry, as a sizing agent to improve paper strength and stability
Adhesive industry, as a component in certain adhesive formulations
Paint and coatings industry, as a component in certain paint and coating formulations
Agricultural industry, as a component in certain pesticide formulations
Automotive industry, as a component in certain lubricants and additives for engine oils
Construction industry, as a component in certain concrete and mortar formulations
Petroleum industry, as a component in certain drilling muds and fluids.



DESCRIPTION


Kortacid 1299 is a natural fatty acid that can act as a cleanser and surfactant.
Kortacid 1299 is primarily used in the cosmetics industry as an emulsifier in facial creams and lotions.

Due to its biodegradable nature, Kortacid 1299 is a preferred ingredient in eco-friendly cosmetic formulations.
Additionally, Kortacid 1299 can also be used as a surfactant in soaps and toiletries.

Kortacid 1299 is a white, waxy, and odorless solid at room temperature.
Kortacid 1299 is a medium-chain fatty acid with a 12-carbon chain length, specifically lauric acid, with a purity of over 99%.

Kortacid 1299 is insoluble in water but soluble in organic solvents such as ethanol, ether, and chloroform.
Kortacid 1299 has a faint odor and a mild taste, and is often used as a flavoring agent in the food industry.
Kortacid 1299 is readily and rapidly biodegradable, making it an environmentally friendly choice for use in various applications.



PROPERTIES


Molecular formula: C12H24O2
Molecular weight: 200.32 g/mol
Melting point: 44.2 °C (111.6 °F)
Boiling point: 298 °C (568 °F)
Density: 0.89 g/cm³ at 25 °C (77 °F)
Solubility: Soluble in ethanol, ether, chloroform, and benzene, but insoluble in water
Biodegradability: Rapidly and readily biodegradable, making it an environmentally friendly ingredient.



FIRST AID


Inhalation:

Move the person to fresh air.
If the person is not breathing, call for emergency medical attention immediately and administer artificial respiration.
If breathing is difficult, give oxygen.
Get medical attention if symptoms persist.


Skin Contact:

Take off contaminated clothing and shoes immediately.
Wash affected areas thoroughly with soap and plenty of water for at least 15 minutes.
Seek medical attention if irritation or symptoms of an allergic reaction occur.


Eye Contact:

Flush eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids occasionally.
Seek medical attention if irritation or symptoms of an allergic reaction occur.


Ingestion:

Do not induce vomiting.
Rinse mouth with water.
Drink plenty of water.

Seek medical attention immediately.
Never give anything by mouth to an unconscious person.


Note to Physician:

Treat symptomatically.


General Advice:

If you feel unwell, seek medical advice (show the label or SDS where possible).
Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.
Show this safety data sheet to the doctor in attendance.



HANDLING AND STORAGE


Handling:

Use appropriate protective equipment, such as gloves and safety goggles, when handling Kortacid 1299 to avoid skin and eye contact.
Avoid breathing in the dust or mist of Kortacid 1299, as it may cause respiratory irritation.

Store Kortacid 1299 in a cool, dry, and well-ventilated area away from incompatible substances, such as strong oxidizing agents.
When transferring Kortacid 1299, use closed systems or adequate ventilation to prevent the release of dust or mist.
Avoid generating dust during handling or transfer of Kortacid 1299.


Storage:

Store Kortacid 1299 in a tightly closed container in a cool, dry, and well-ventilated area away from heat, sparks, and flames.
Keep Kortacid 1299 away from sources of ignition, such as open flames and heat sources.
Store Kortacid 1299 separately from strong oxidizing agents and reducing agents.

Do not store Kortacid 1299 near food, feed, or beverages.
Keep Kortacid 1299 in its original container with a tight-fitting lid and store it in a safe location, away from children and pets.



SYNONYMS


Dodecanoic acid
Laurostearic acid
n-Dodecanoic acid
1-Undecanecarboxylic acid
C12:0 (referring to its 12-carbon chain length)
C12 fatty acid (referring to its 12-carbon chain length and fatty acid nature)
Coconut oil acid (since it is a major component of coconut oil)
Dodecanoic acid
Duodecylic acid
C12:0 fatty acid
Coco fatty acid
Cocos nucifera oil
N-dodecanoic acid
Laurostearic acid
Vulvic acid
Lauroic acid, zinc salt
Lauroic acid, lithium salt
Lauroic acid, sodium salt
Lauroic acid, potassium salt
Lauroic acid, magnesium salt
Lauroic acid, calcium salt
1-dodecoic acid
Dodecoic acid
Dodecylenic acid
n-Lauroic acid
Lipoic acid
Laurinsäure (German)
Acide laurique (French)
Acido laurico (Italian, Spanish)
Lauric acid, coconut oil
Lauric acid, palm oil
Lauric acid, animal fats
Univol U-215
Cerasynt L 30
Prifac 2954
Pelemol LA
Cithrol 10MSA
NAA 50
Coco nut oil fatty acid
Coco palm kernel oil fatty acid
Coco butter fatty acid
Coco lauric acid
Decanoic acid
Dodecoic acid
Dodecylic acid
Hydrofol acid 1299
Hydrofol acid 1299P
Kortacid 1299LA
Laurex 1299
Lauric acid, coconut oil fatty acid
NAA C-50
NAA L-50
Lauric acid (natural)
KOSTERAN-S3 G
KOSTERAN-S/3 G IUPAC Name [2-(4-hydroxy-3-octadecanoyloxyoxolan-2-yl)-2-octadecanoyloxyethyl] octadecanoate KOSTERAN-S/3 G InChI=1S/C60H114O8/c1-4-7-10-13-16-19-22-25-28-31-34-37-40-43-46-49-56(62)65-53-55(67-57(63)50-47-44-41-38-35-32-29-26-23-20-17-14-11-8-5-2)60-59(54(61)52-66-60)68-58(64)51-48-45-42-39-36-33-30-27-24-21-18-15-12-9-6-3/h54-55,59-61H,4-53H2,1-3H3 KOSTERAN-S/3 G InChI Key IJCWFDPJFXGQBN-UHFFFAOYSA-N KOSTERAN-S/3 G Canonical SMILES CCCCCCCCCCCCCCCCCC(=O)OCC(C1C(C(CO1)O)OC(=O)CCCCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCCCC KOSTERAN-S/3 G Molecular Formula C60H114O8 KOSTERAN-S/3 G CAS 26658-19-5 KOSTERAN-S/3 G EC Number 247-891-4 KOSTERAN-S/3 G E number E492 (thickeners, ...) KOSTERAN-S/3 G Molar mass 963.54 g/mol KOSTERAN-S/3 G Appearance Waxy solid KOSTERAN-S/3 G Physical Description Liquid; OtherSolid KOSTERAN-S/3 G Form Hard, waxy solid KOSTERAN-S/3 G Colour Light cream to Tan KOSTERAN-S/3 G Acid Value Max 7 mgKOH/gm KOSTERAN-S/3 G Saponification Value 176-188 mgKOH/gm KOSTERAN-S/3 G Moisture content Max 1% KOSTERAN-S/3 G Hydroxyl Value 66-80 mgKOH/gm KOSTERAN-S/3 G Heavy Metals (as Pb) Less than 10mg/kg KOSTERAN-S/3 G Arsenic Less than 3 mg/kg KOSTERAN-S/3 G Cadmium Less than 1mg/kg KOSTERAN-S/3 G Mercury Less than 1 mg/kg KOSTERAN-S/3 G Molecular Weight 963.5 g/mol KOSTERAN-S/3 G XLogP3-AA 24.3 KOSTERAN-S/3 G Hydrogen Bond Donor Count 1 KOSTERAN-S/3 G Hydrogen Bond Acceptor Count 8 KOSTERAN-S/3 G Rotatable Bond Count 56 KOSTERAN-S/3 G Exact Mass 962.851371 g/mol KOSTERAN-S/3 G Monoisotopic Mass 962.851371 g/mol KOSTERAN-S/3 G Topological Polar Surface Area 108 Ų KOSTERAN-S/3 G Heavy Atom Count 68 KOSTERAN-S/3 G Formal Charge 0 KOSTERAN-S/3 G Complexity 1100 KOSTERAN-S/3 G Isotope Atom Count 0 KOSTERAN-S/3 G Defined Atom Stereocenter Count 0 KOSTERAN-S/3 G Undefined Atom Stereocenter Count 4 KOSTERAN-S/3 G Defined Bond Stereocenter Count 0 KOSTERAN-S/3 G Undefined Bond Stereocenter Count 0 KOSTERAN-S/3 G Covalently-Bonded Unit Count 1 KOSTERAN-S/3 G Compound Is Canonicalized Yes Kosteran-S/3 G is composed of Sorbitan Tristeareate. It functions as a W/O-emulsifier. This product is suitable for skin care creams and lotions, natural care, and colour cosmetics.KOSTERAN-S/3 G is a nonionic surfactant. It is variously used as a dispersing agent, emulsifier, and stabilizer, in food and in aerosol sprays. As a food additive, it has the E number E492. Brand names for polysorbates include Alkest, Canarcel, and Span. The consistency of KOSTERAN-S/3 G is waxy; its color is light cream to tan.KOSTERAN-S/3 G , also known as E492 or sorbester P38, belongs to the class of organic compounds known as tricarboxylic acids and derivatives. These are carboxylic acids containing exactly three carboxyl groups. KOSTERAN-S/3 G is considered to be a practically insoluble (in water) and relatively neutral molecule. Within the cell, KOSTERAN-S/3 G is primarily located in the membrane (predicted from logP).KOSTERAN-S/3 G is a nonionic surfactant. It is variously used as a dispersing agent, emulsifier, and stabilizer, in food and in aerosol sprays. As a food additive, it has the E number E492. Brand names for polysorbates include Alkest, Canarcel, and Span. The consistency of KOSTERAN-S/3 G is waxy; its color is light cream to tan.Pernetti et al. (2007) showed the structuring of edible oils using a mixture of sunflower lecithin and KOSTERAN-S/3 G (STS). Individually, neither of these components was by itself capable of inducing gelation even at concentrations as high as 20% w/w. However, when a mixture was used, structuring was achieved at concentrations of approximately 4% w/w. The mixture composition that resulted in structuring ranged between 2:3 lecithin:KOSTERAN-S/3 G to 3:2 lecithin:KOSTERAN-S/3 G . Microscopy of the gels showed the presence of needle-like crystals with lengths of approximately 10 μm. Preparations of only KOSTERAN-S/3 G in oil also showed the presence of crystalline particles, although these crystals had a lower aspect ratio (less needle-like) than when lecithin was present in the mixture. Lecithin was surmised to modify the crystal habit of the KOSTERAN-S/3 G crystals such that a more needle-like morphology resulted, which is more efficient at structuring oil. However, these gels melted at a low temperature (approximately 15°C) and were very sensitive to the addition of water, both of which would limit their utility in water-rich foods.Individually both lecithin (Lec) and KOSTERAN-S/3 G (STS) are incapable of forming oil gels at concentration between 6 and 20 %wt in absence of a polar solvent. However, when mixed in specific ratios between 40:60 to 60:40, Lec:KOSTERAN-S/3 G can form firm gels at a total concentration as low as 4 %wt (Pernetti et al., 2007). The crystalline units formed in these systems are based on KOSTERAN-S/3 G , while Lec plays an important role in influencing both the morphology of the crystalline units as well as the network junctions among the formed units. The gel however has limited use as hardstock fat replacer as it starts softening at temperature above 15 °C and undergoes complete collapse at 30 °C (Pernetti et al., 2007).In chocolate formulations surface-active substances are often used, for instance to reduce viscosity. Popular additives are KOSTERAN-S/3 G (STS), sorbitan monoesters, lecithin, mono- and diacylglycerols. Since roughly two-thirds of the chocolate recipe contains non-fat-soluble substances such as sugar and cocoa powder, the lecithin acts as a lubricant. The polar part of the lecithin covers the sugar particles, while the hydrophobic part faces the fat phase. Roughly 0.5 % is needed to cover the sugar and cocoa powder particles. The covered particles reduce the viscosity of the chocolate mass which is favourable. Lecithin itself is known to reduce the crystallization rate of fat indicating that the amount of lecithin should be controlled (Guth et al., 1989). Diacylglycerols also have a negative effect on the crystallization rate and on polymorphic transformation. However, there are several types of diacylglycerols each with different properties (Siew and Ng, 2000). For instance, it has been shown that 1.3-dipalmitin increases the melting point of the palm oil while 1.2-dipalmitin decreases the melting point.KOSTERAN-S/3 G is a component often used in CBR and CBS applications to stabilize β′ crystals (Wilson, 1999). It is shown to be one of the most effective emulsifiers for improving both initial gloss as well as bloom stability (Weyland, 1994). However, KOSTERAN-S/3 G also seems to have a negative effect on crystallization rate in these applications. Sorbitan monoesters and monoacylglycerols improve the crystallization rate in CBR and CBS systems because they are insoluble in the fat phase and act as nucleation agents. However, bloom stability does not seem to improve.In summary, the minor components in a fat play a crucial part in fat crystallization, yet there is inadequate understanding of the mechanisms behind their influence. The reason is that the levels are low and individual components often influence each other.KOSTERAN-S/3 G is a component often used in CBR and CBS applications to stabilize β′ crystals (Wilson, 1999). It is shown to be one of the most effective emulsifiers for improving both initial gloss as well as bloom stability (Weyland, 1994). However, KOSTERAN-S/3 G also seems to have a negative effect on crystallization rate in these applications.Lipophilic emulsifiers in the form of KOSTERAN-S/3 G (STS) are used as crystal-modifying agents in fats, where they prevent the formation of the high-melting β-crystal. The function of KOSTERAN-S/3 G is assumed to be due to its ability to co-crystallise with triacylglycerides in the β'-crystal form, preventing a solid-state crystal transition to the higher-melting β-crystal form during storage.7 Other emulsifiers, such as LACTEM or CITREM, provide a similar crystal-modifying function in cocoa butter substitutes (CBS) or cocoa butter replacers (CBR), but are less efficient than KOSTERAN-S/3 G .In the case of the transition from beta (V) into beta (VI), there are a number of possibilities. KOSTERAN-S/3 G (used to inhibit bloom in CBR and CBS systems as well) and similar emulsifiers reportedly slow the polymorphic transformation (Garti et al., 1986). If the desire is to avoid unnecessary items on the label, TAG solutions exist. Milk fat is well known for its bloom inhibiting effect; dark chocolate often has a small amount of milk fat added for this reason. More effective are bloom retarding fats that incorporate saturated TAG having mixed long (C16, C18) and medium (C10-C14) chain fatty acids (Cain et al., 1995). Thus, they are a specific type of lauric fat. They are stable in the beta′ polymorph.KOSTERAN-S/3 G (abbreviation STS), also known as Span 65, a nonionic surfactant that can be used as an emulsifier and stabilizer in food with the European food additive number E492. Its main functions are to retard fat bloom in chocolates and prevent cloudy appearance in cooking oils.Vegetable sourced stearic acid is the most used in the manufacturing process of KOSTERAN-S/3 G and other sorbitan esters of fatty acids. KOSTERAN-S/3 G is used as a water in oil (W/O) emulsifier and when used in combination with polysorbates they can stabilize oil in water (O/W) emulsions. The formulation of the Span/Polysorbate ratio can produce emulsifying systems with various HLB values. KOSTERAN-S/3 G is mainly used as an anti-bloom agent of fat, and also maintains the color and gloss in chocolates.KOSTERAN-S/3 G and lecithin are often used as surface-active substances to reduce viscosity in chocolate formulations. In chocolate, KOSTERAN-S/3 G adjusts sugar crystallization and appearance, also it can reduce stickiness.KOSTERAN-S/3 G is used as an emulsifier that can be used to retard fat bloom by preventing β’ crystals from converting to β crystals when exposed to excessive heat conditions, which tend to migrate to the chocolate surface and thus cause fat bloom. KOSTERAN-S/3 G can be used as an anti-crystallization agent in cooking oils (e.g. palm oil, coconut oil) to prevent oils cloudy appearance which are formed by harden-fast fractions under colder temperatures. KOSTERAN-S/3 G functions as a surfactant in cosmetics and personal care products. Its concentrations typically range between 0.1% and 5% (up to 10%). KOSTERAN-S/3 G has almost no side effects when used as a food additive. It is approved as an indirect food additive by the FDA.Yes, KOSTERAN-S/3 G would be halal, kosher and vegan if the raw material – stearic acid is from natural vegetable oils. However, some manufacturing processes may use stearic acid from animal fats and oils.KOSTERAN-S/3 G is used as an emulsifier and stabiliser. It is produced by the esterification of sorbitol with commercial stearic acid derived from food fats and oils.It is a mixture of the partial esters of sorbitol and its mono- and dianhydride with edible stearic acid.KOSTERAN-S/3 G is produced by the esterification of Sorbitol with commercial edible fatty acids and consists of approximately 95% of a mixture of the esters of Sorbitol and its mono and di-anhydrides.KOSTERAN-S/3 G is an effective emulsifier to retard fat bloom in chocolate. Fat used in chocolate, particularly cocoa butter, forms as a tightly packed β’ polymorph/crystal which is an unstable crystal but is vital for the functional and aesthetic quality of chocolate. If chocolate is not tempered properly or is exposed to excessive heat, these β’ crystals convert to β crystals which are less tightly packed but are more stable. These β crystals tend to migrate to the surface causing fat bloom to occur and also having a negative impact on the aesthetics of the chocolate.KOSTERAN-S/3 G ’s structure mimics the β’ crystals and bonds with such fat crystals and retards their conversion to the less desirable β crystals.KOSTERAN-S/3 G is used as a crystal inhibitor in oils which contain fractions that harden faster during colder temperatures making the oils look cloudy. This cloudy oil is perceived by many as deteriorated oil which it actually is not. It is just aesthetically unacceptable.The addition of KOSTERAN-S/3 G retards the harder fractions from nucleating at lower temperatures and causing cloudiness in oils.KOSTERAN-S/3 G has a structure more similar to a triglyceride than to an emulsifier.KOSTERAN-S/3 G has a structure more similar to a triglyceride than to an emulsifier.In 1947, Krantzconducted life-span studies with Sorbitan palmitate, Sorbitan stearate, KOSTERAN-S/3 G , and Sorbitan oleate. The study reports were only available as secondary source and therefore very limited in documentation of examinations and results. In each study, 30 male rats were exposed to a dietary concentration of 5% test substance in their daily diet, corresponding to 5000 mg/kg bw/d (calculation based on the assumption of an average body weight of 200 g and a daily average food consumption of 20 g). No treatment-related mortality or clinical signs as well as effects on body weights and histopathology were observed. Therefore, a NOAEL of≥5000 mg/kg bw/day was determined for Sorbitan palmitate, Sorbitan stearate, KOSTERAN-S/3 G , and Sorbitan oleate. Likewise, Sorbitan laurate was tested: male rats were fed the test substance in diet for 20.5 months at 5% and for 2 years at 10%, corresponding to 5000 and 10000 mg/kg bw/day (calculation based on the assumption of an average body weight of 200 g and a daily average food consumption of 20 g) (Barboriak 1970). Diarrhea and retarded growth were observed in the animals of the 10% dose group. No effects were observed at histopathology, therefore, a NOAEL was therefore set at 5000 mg/kg bw/d. The same NOAEL was determined in a second chronic study with rats that were fed 5% of the test substance in diet for 2 years (Krantz 1970). Again, no clinical signs were observed and mortality, body weight gain, haematology and histopathology were unaffected.
Kovucu Pres Üzüm Çekirdeği Yağı
GRAPESEED OIL EXPELLER PRESSED; grapeseed oil; vitis vinifera seed oil; grape seed oil; fixed oil, consisting primarily of the glycerides of the fatty acids, obtained by pressing the seeds of the grape, vitis vinifera l., vitaceae CAS NO: 8024-22-4
Kozmetik Kalite Üzüm Çekirdeği Yağı
GRAPESEED OIL COSMETIC GRADE;grapeseed oil; vitis vinifera seed oil; grape seed oil; fixed oil, consisting primarily of the glycerides of the fatty acids, obtained by pressing the seeds of the grape, vitis vinifera l., vitaceae CAS NO: 8024-22-4
KÖPÜK KESİCİ
Deterjanda köpük kesici olarak. Deterjanda (%0.05-2)
KÖPÜK KESİCİ %30
Deterjanda köpük kesici olarak. Deterjanda (%0.05-2)
KRILL OIL
Krill oil is a substance obtained from the sea creature called "Euphausia superba" that lives in the oceans.
Krill oil contains a high amount of Omega 3 fatty acids, and these fatty acids are in the form of phospholipids.
Additionally, Krill Oil is a dietary supplement containing astaxanthin, vitamin A and vitamin E.


SYNONYMS:
Aceite de Krill, Acide Docosahexaénoïque, Acides Gras Oméga 3, Acides Gras N-3, Acides Gras Polyinsaturés, Acides Gras W3, Antarctic Krill Oil, Concentré de Protéines Marines, DHA, Docosahexanoic Acid, EPA, Euphausia Superba Oil, Euphausiacé, Euphausiids Oil, Huile d' Euphausia Superba, Huile de Krill, Huile de Krill Antarctique, Huile d'Oméga 3, Marine Protein Concentrate, n-3 Fatty Acids, Omega 3, Omega-3 Fatty Acids, Omega-3, Oméga 3, Omega-3 Fatty Acids, Omega-3 Oil, Polyunsaturated Fatty Acids, W-3 Fatty Acids



Astaxanthin is a substance with strong antioxidant properties.
Omega 3 fatty acid supplements; It is known to be important in mental development, hyperlipidemia, premenstrual syndromes, inflammatory and cardiological diseases.


Omega-3 fatty acids, which nourish and support the building blocks of our body, cannot be produced by the body.
Omega-3 deficiency can manifest itself in many different ways, especially in productivity and quality of life .
At this point, you may want to use nutritional supplements for a body whose needs are met from head to toe.


Although most of the nutritional supplements containing omega-3 are produced from fish oil, it is now possible to find different sources of omega-3.
Krill oil comes from krill, tiny shrimp-like creatures that live in very cold ocean waters.
Studies show that krill oil might have health benefits similar to those of fish oil.


Shrimp-like crustaceans from the Euphausiacea family are generally called 'Krill' and consist of 86 species.
Euphausia superba, also known as the “Antarctic Krill,” is the most common Krill species in the pristine oceans surrounding Antarctica.
They are at the bottom of the food chain because they feed many marine creatures.


Krill oil, like fish oil, contains omega-3 acids EPA and DHA.
However, krill oil and fish oil differ in the chemical structures of the fatty acids they contain.
Unlike the bright golden yellow color of fish oil that we are used to, krill oil has a red tone color.


Krill oil owes its unique red color to a natural antioxidant it contains.
Krill oil also fights against free radicals with its natural antioxidant content.
Krill oil is the oil of the shellfish, also known as Antarctic krill.


Krill Oil also contains EPA and DHA fatty acids.
Due to its structure, Krill Oil is red in color.
Krill oil can be taken as a supplement when necessary.


Krill Oil is a source of Omega 3 in phospholipid form.
Krill oil is one of the most powerful antioxidants in nature with its natural astaxanthin content.
In addition, risks such as leakage, explosion and oxidation have been minimized with Licaps (liquid capsule) technology, which is produced using fish gelatin.


Krill oil is an oil obtained from a small, shrimp-like, aquatic sea creature called euphausia superba, which contains omega 3 fatty acids.
Krill oil, which offers many health benefits as it contains omega 3 fatty acids, reduces inflammation and relieves arthritis and joint pain, as well as being a powerful source of antioxidants.


Due to these properties, krill oil is also considered as an alternative to fish oil.
Krill is a shrimp-like crustacean.
Krill oil, unlike fish oil, has a phospholipid structure and contains "astaxanthin"


Krill oil, an alternative to fish oil , is rich in omega 3 fatty acids.
Although krill oil and fish oil both contain two omega 3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the omega 3 fatty acids found in krill oil are considered to have a higher bioavailability and absorption rate in the body than fish oil.


Krill oil is an extract prepared from a species of Antarctic krill, Euphausia superb.
Processed krill oil is commonly sold as a dietary supplement.
Krill oil, rich in Omega 3 fatty acids, is an oil obtained from a small sea creature called Euphausia superb.


Two components of krill oil are omega-3 fatty acids similar to those in fish oil, and phospholipid-derived fatty acids (PLFA), mainly phosphatidylcholine (alternatively referred to as marine lecithin).
Fishing for krill where previously the focus was on marine life of higher trophic level is an example of fishing down the food web.


While the word krill means “small fish” in Norwegian, the tiny crustaceans pack a big punch with their sources of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), two omega-3 fatty acids only found in marine life.


Krill Oil contains high levels of eicospentanoic acid (EPA) and docosahexaenoic acid (DHA) also known as long-chain omega 3 fatty acids which is essential for good health.
Krill Oil contains the beneficial omega-3 fatty acids EPA and DHA, and a good level of the sought after astaxanthin.


The EPA and DHA in krill oil are bound to phospholipids, which means they are rapidly and readily uptaken into cell membranes, more efficiently than EPA and DHA on triglyceride carriers, such as in fish oils.
Krill Oil is a source of fatty acids that helps to maintain normal blood pressure and heart health.


Krill is a small crustacean with an appearance similar to shrimp.
They are found in the colder waters of the ocean.
Krill primarily serve as a food source for other animals in the ocean, for example - whales, seals, penguins, squid and fish.


Krill is found in the oceans off of Antarctica, Canada, and Japan.
Harvesting of krill is controversial.
There is concern that commercial harvesting of Krill for use in Krill Oil supplements could threaten the species that consume it for food, including whales.


All krill oil sold in nutritional supplements is harvested out of the open ocean, upsetting the natural balance of food supplies for larger marine animals.
Commercial uses of Krill include salmon aquaculture farming, harvesting for use in Krill Oil capsules, as food for home aquariums, and as a human food source.


Krill, known as Okiami has been harvested by the Japanese as a human food source since the 19th century, and is also consumed in South Korea and Taiwan.
Krill has a pink or red appearance due to the plankton that they consume as a food source in the ocean.
Krill Oil is derived from Antarctic krill, small shrimp-like creatures that thrive in the frigid waters of the Southern Ocean.


These minuscule crustaceans form a crucial part of the marine food chain, serving as a primary food source for various marine species, including whales, seals, and penguins.
Krill oil, rich in Omega 3 fatty acids, is an oil obtained from a small sea creature called Euphausia superb.



USES and APPLICATIONS of KRILL OIL:
Krill Oil is an astaxanthin-derived supplement containing 1000 mg of krill oil obtained from a small shrimp-like shellfish that lives in the oceans.
Krill Oil offers high bioavailability due to its phospholipid omega 3 structure.
Krill Oil is recommended to consume 2 capsules a day for adults.


A unique formula extracted from Antarctic Krill to deliver essential omega-3 (EPA & DHA), choline, phospholipids and astaxanthin with proven effects to improve human health.
Krill Oil has also been used to treat high blood pressure, stroke, cancer, osteoarthritis, depression and premenstrual syndrome (PMS), although high quality studies with adequately sized populations validating these uses are lacking.


Krill Oil may also be used for purposes not listed in this medication guide.
Krill Oil is obtained through a meticulous extraction process that ensures the preservation of its potent nutritional profile, making it a valuable addition to the realm of dietary supplements.



BENEFITS OF KRILL OIL:
1. Krill Oil provides a Rich Source of Omega-3:
Omega-3 fatty acids, which cannot be produced by our body, are important for individuals of all ages, from 7 to 70.
You can choose fish oil supplements to meet your DHA and EPA needs, with benefits ranging from muscle development to skin beauty.

However, krill oil appears as a unique option for those who cannot consume fish oil due to complaints such as fishy smell and indigestion.
Additionally, research shows that the fatty acids contained in krill oil are more easily absorbed by the body than fish oils.
Krill oil, in phospholipid form, can be easily absorbed by the body and used more effectively.


2. Krill Oil supports the Healing of Inflammatory Diseases:
Compared to marine omega-3 products, krill oil provides higher protection against inflammatory diseases due to its easy absorption.
There are important studies showing that the natural antioxidant called axanthaxin contained in krill oil is a powerful anti-inflammatory.
With this feature, krill oil can help reduce inflammation and have positive effects on rheumatoid arthritis and joint pain.


3. Krill Oil helps Control Cholesterol:
Experts often emphasize the positive effect of omega-3 fatty acids against cardiovascular diseases.
Today, there are studies showing that krill oil is more effective than fish oil in reducing triglycerides and LDL cholesterol, known as bad cholesterol.
Similarly, krill oil may help reduce the risks of heart disease with its positive effects on insulin resistance.


4. Krill Oil supports Anti-Aging Fight with Antioxidant Content:
Supports Anti-Aging Fight with Antioxidant Content:
Antioxidants protect our body by fighting against free radicals that cause cell aging.

Free radicals can cause signs of premature aging, such as loss of elasticity on the skin surface.
Vitamins A and E contained in krill oil help maintain skin beauty and improve its general appearance.


5. Krill Oil helps Reduce PMS (Premenstrual Syndrome) Symptoms:
Research also reveals that omega-3 fatty acids have pain-relieving properties.
Studies on improving PMS symptoms have shown that krill oil may be more effective than other omega-3 sources.
Krill oil can significantly reduce painkiller use in women diagnosed with PMS.


6. Krill Oil supports the Immune System
Regular omega-3 intake is essential for a strong immune system. Krill oil, which can be easily absorbed by the intestine in its phospholipid form, supports the immune system.

Krill oil helps strengthen the immune system against diseases that increase as a result of the slowing down of the body's defense mechanism, especially during seasonal transitions.
In regular use, Krill Oil supports the body in having a more vigorous and healthy immune system.

As with all nutritional supplements, do not forget to consult your doctor before using nutritional supplements containing krill oil.
If you are allergic to any shellfish, do not use supplements containing krill oil without expert advice.



FEATURES OF KRILL OIL:
*Omega 3 in phospholipid form rich in DHA and EPA
*Formula with high bioavailability
*Free of sweeteners, lactose and gluten



ABOUT KRILL OIL:
•Krill is a small, shrimp-like shellfish and is found in all the world's oceans.
They live in flocks and feed on phytoplankton, which is a high source of Omega 3, to survive.

•These creatures feed only on microscopic algae; Due to their small size, short lifespan and diet, they do not accumulate toxins and heavy metals in their bodies.

•Krill Oil contains Superba Boost as a patented raw material and is obtained from Euphausia Superba, also called Antarctic Krill.

•Superba Boost uses Flexitech, a patented technology developed specifically for krill, to obtain high concentrations of active ingredients and to remove any unwanted content.

•Krill oil contains Omega 3 together with choline in phospholipid form.
Phospholipids are the building blocks of our cells and ensure the integrity and flexibility of our cell membranes.

•Krill oil also contains astaxanthin, one of the most powerful antioxidants in the world, in its natural structure.



WHICH DISEASES DOES KRILL OIL BENEFIT?
Research into the potential health benefits of Krill Oil spans a broad spectrum of diseases and conditions, showcasing its versatility as a therapeutic agent.
Some of the notable areas where Krill Oil has shown promise include:


*Cardiovascular Health:
The omega-3 fatty acids EPA and DHA present in Krill Oil have been extensively studied for their cardioprotective effects.

These fatty acids help reduce triglyceride levels, lower blood pressure, improve endothelial function, and decrease the risk of thrombosis, thereby promoting overall cardiovascular health and reducing the incidence of cardiovascular events such as heart attacks and strokes.


*Joint Health:
The anti-inflammatory properties of Krill Oil, attributed to its omega-3 fatty acids and astaxanthin content, make it a promising adjunctive therapy for managing inflammatory joint conditions such as rheumatoid arthritis and osteoarthritis.

By modulating inflammatory pathways and attenuating joint inflammation, Krill Oil may help alleviate pain, improve joint function, and enhance overall quality of life for individuals living with these debilitating conditions.


*Cognitive Function:
Omega-3 fatty acids, particularly DHA, are essential components of brain cell membranes and play crucial roles in neurotransmission, synaptic plasticity, and cognitive function.

Studies suggest that regular consumption of Krill Oil may support brain health and cognitive function, reducing the risk of cognitive decline and age-related neurodegenerative disorders such as Alzheimer's disease.


*Skin Health:
The antioxidant properties of astaxanthin, coupled with the anti-inflammatory effects of omega-3 fatty acids, make Krill Oil a promising agent for promoting skin health and combating various dermatological conditions.

Astaxanthin protects skin cells from oxidative damage induced by UV radiation, while omega-3 fatty acids help maintain skin barrier function, reduce inflammation, and support overall skin hydration and elasticity.


*Women's Health:
Krill Oil may offer unique benefits for women's health, particularly during pregnancy and menopause.
Omega-3 fatty acids play critical roles in fetal development, supporting healthy brain and eye development in the developing fetus.

Additionally, Krill Oil may help alleviate symptoms of menopausal transition, such as hot flashes and mood disturbances, due to its hormonal balancing and anti-inflammatory effects.



BENEFITS OF KRILL OIL:
Krill Oil is also possible to explain the details of the benefits of krill oil as follows:

*Krill oil is a powerful source of antioxidants

*Krill oil, which carries the potential benefits of both fish oil and omega 3, stands out as a powerful source of antioxidants.
These powerful antioxidants play an effective role in fighting free radicals in the body.


*Krill Oil reduces inflammation thanks to Omega 3 and astaxanthin:
Krill oil has a reducing effect on inflammation and inflammation in the body, thanks to the omega 3 and astaxanthin it contains.
Astaxanthin is also considered to have anti-inflammatory and antioxidant benefits that can help combat the negative effects of free radicals on the brain and nervous system.


*Krill oil reduces arthritis and joint pain:
Studies have shown that arthritis and joint pain decrease in people who use krill oil.


*Krill oil supports heart health
Krill oil is a form of oil that supports heart health as it is an effective source of reducing total cholesterol and triglycerides.
At the same time, krill oil can increase levels of good cholesterol, known as HDL .


*Krill Oil lowers bad cholesterol:
Offering many health benefits, krill oil can also prevent some possible diseases, especially heart diseases, by lowering bad cholesterol.


*Krill Oil helps build a healthy immune system
Rich in antioxidants, containing omega 3 fatty acids, reducing inflammation in the body and lowering bad cholesterol levels, krill oil helps create a healthy immune system.


*Krill Oil can reduce anxiety levels
Since it is evaluated that there is a connection between the intake of Omega 3 and the decrease in anxiety level, it is evaluated that krill oil may also be effective in reducing anxiety.


*Krill Oil is a source of vitamins A and E.
Krill oil also offers effective benefit potential, especially for eye health, thanks to the vitamins A and E it contains.



WHAT ARE THE BENEFITS OF KRILL OIL?
The nutritional profile of Krill Oil makes it a veritable treasure trove of health-enhancing compounds.
Krill Oil's most notable constituents include omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which play pivotal roles in various physiological processes.

These fatty acids are renowned for their anti-inflammatory properties, which can help alleviate symptoms associated with conditions such as arthritis and promote cardiovascular health by reducing the risk of coronary artery disease and supporting optimal lipid profiles.

Additionally, Krill Oil boasts a potent antioxidant arsenal, including astaxanthin, a carotenoid pigment responsible for the vibrant red hue of krill and various marine organisms.

Astaxanthin exhibits exceptional antioxidant activity, scavenging free radicals and combating oxidative stress, thereby protecting cells from damage and promoting overall health and longevity.



HOW IS KRILL OIL CONSUMED?
Krill Oil is predominantly available in the form of softgel capsules, which are encapsulated to preserve the integrity of the oil and enhance its shelf life.
These capsules are designed for oral consumption, offering a convenient and hassle-free way to incorporate Krill Oil into your daily regimen.
The softgel form also ensures easy digestion and absorption, minimizing any potential discomfort often associated with consuming fish oil supplements.



HOW MUCH KRILL OIL SHOULD BE CONSUMED DAILY?
Determining the optimal dosage of Krill Oil is essential to maximize its health benefits while minimizing the risk of adverse effects.
While individual requirements may vary based on factors such as age, gender, and overall health status, a general guideline suggests a daily intake of 1 to 3 grams of Krill Oil.
However, it is crucial to consult with a qualified healthcare professional to assess your specific needs and tailor the dosage accordingly.



KEY BENEFITS OF KRILL OIL:
*Source of the omega-3 fatty acids EPA and DHA
*Supports heart and brain health
*Anti-inflammatory; supports joint health
*Source of the antioxidant astaxanthin



KRILL OIL ALSO CONTAINS:
*Phospholipid-derived fatty acids (PLFA), which may result in better absorption, and marine lethicin
*A carotenoid antioxidant called astaxanthin.
Antioxidants inhibit oxidation and may neutralize the oxidant effect of free radicals and other substances in body tissues that may lead to disease.



BENEFITS OF KRILL OIL:
Studies have shown krill oil may have a variety of health benefits.
Here are some possible ways it can help you.

*Krill Oil may help your heart
Research shows that krill oil may be effective in reducing total cholesterol and triglycerides.
It may also increase HDL (good) cholesterol levels.

*Krill Oil may reduce inflammation
Research shows that omega-3 fatty acids, which are found in krill oil, may decrease blood pressure in some individuals.

Krill oil also contains astaxanthin, a pigment that’s found in carotenoids (it’s also what gives salmon its pink-red color).
Astaxanthin has been shown to also have anti-inflammatory and antioxidant benefits, which may help fight the negative effects of free radicals on your brain and nervous system.

*Krill Oil may reduce arthritis and joint pain
Another study examined how krill oil may reduce the symptoms of rheumatoid arthritis.
Those who took 300 milligrams of krill oil each day for 30 days saw an improvement in symptom reduction and used less rescue medication.

*Krill Oil can also help with pain.
A small study gave participants with mild knee pain krill oil for 30 days.
The results showed a significant reduction in pain while they were standing or sleeping.

*Krill Oil may help with PMS symptoms
For those who deal with PMS, using krill oil may help alleviate period pain and other symptoms.
A study compared fish oil to krill oil and while both supplements improved symptoms for those with PMS, the individuals taking krill oil needed less pain medication.



KRILL OIL CONTAINS:
Krill oil contains a natural combination and concentration of the following four key nutrients: Omega-3 (EPA & DHA), Phospholipids, Choline, Astaxanthin

*Brain:
Phospholipids assist in the transportation of omega-3 DHA across the blood-brain barrier.

*Heart:
Krill oil has been shown to lower fasting triglycerides which are a risk factor for cardiovascular disease.

*Liver:
Choline and omega-3s are important for maintaining healthy liver function and aid fat metabolism.

*Eyes:
Omega-3s are especially important to help keep your eyes healthy, with the highest concentration of DHA in the body found in the retina.

*Skin:
Omega-3s play a role in modulating the hydration and elasticity of the skin.

*Joints:
Omega-3s play an important role in regulating inflammation in the body, which can have a crucial impact in protecting our joints throughout life.



FEATURES OF KRILL OIL:
Krill is a tiny crustacean that is best known as a significant source of omega 3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
These fatty acids contribute to a healthy heart, mind and body.

They have many roles in the body, including:
*Being raw materials for building cell membranes (DHA is particularly important for retina, brain and sperm cells)
*Making eicosanoids - signalling molecules that direct traffic in the world of inflammation, cardiovascular and lung function, and the immune and endocrine systems
*Specifically, helping to lower blood triglycerides and reducing the risk of blockages linked to heart disease
*Providing a source of energy


Krill oil also contains phospholipids.
Phospholipids, like phosphatidylcholine, are an important component of all our cell membranes, and are particularly important in brain cells and cell communication.

When attached to omega 3 fatty acids like in krill oil, phospholipids are responsible for carrying the fatty acids into cells and significantly increase the potency and bioavailability of both EPA and DHA.
This allows us to take less krill oil to get the same benefit as a higher amount of fish oil.

Antarctic krill, like that found in Organika’s Krill Oil, is also rich in the natural antioxidant astaxanthin.
The deep red colour of each capsule is due to this astaxanthin content.

Recognized for the health-promoting suppression of free radicals, astaxanthin helps to keep the oil fresh and protects the omega-3 fatty acids from oxidation and going rancid.
This means no additives are necessary to maintain the long-term stability of the oil.



WHAT ARE THE BENEFITS OF KRILL OIL?
Krill oil contains fatty acids similar to fish oil and is a rich source of omega 3, supports immunity thanks to the antioxidant astaxanthin , can help reduce inflammation as well as arthritis and joint pain, and protects heart health.

Krill oil benefits can be listed as follows:
*Krill oil is a powerful source of antioxidants.
*Krill Oil strengthens immunity and protects the body against free radicals.
*Krill Oil reduces inflammation thanks to Omega 3 and astaxanthin.
*Krill oil may reduce arthritis and joint pain
*Krill Oil supports heart health.
*Krill Oil lowers bad cholesterol.
*Krill Oil helps build a healthy immune system.
*Krill Oil can reduce anxiety levels.
*Krill oil contains vitamins A and E.



HOW MUCH KRILL OIL SHOULD YOU TAKE?
Since krill oil is not an established treatment, there's no standard dose.
Talk to your healthcare provider to see if krill oil is right for you.



CAN YOU GET KRILL OIL NATURALLY FROM FOODS?
The only source of krill oil is krill.



DIFFERENCE BETWEEN KRILL OIL AND FISH OIL:
Krill oil and oceanic fish oil are rich in omega-3 fatty acids, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
While both contain some EPA and DHA as free fatty acids, krill oil contains particularly rich amounts of choline-containing phospholipids and a phosphatidylcholine concentration of 34 grams per 100 grams of oil.

Krill oil also contains appreciable content of astaxanthin at 0.1 to 1.5 mg/ml, depending on processing methods, which is responsible for its red color.
While fish oil is generally golden yellow in colour, krill oil tends to be reddish.
Krill Oil is generally more expensive to buy as compared to fish oil.



WHAT IS IN KRILL OIL?
Krill contains an oil that is similar to the oils found in fish oils, the omega-3 fatty acids.
Omega-3 fatty acids are recommended for use in lowering triglyceride levels.
Krill Oil use as a supplement to lower blood lipids is increasing in popularity.



KRILL OIL CONTAINS:
The omega-3 polyunsaturated fatty acids EPA (Eicosapentaenoic Acid) and DHA (Docosahexaenoic).
Omega-3 polyunsaturated fatty acids are also found in oils from certain types of fish, vegetables, and other plant sources.
Unlike fish oil, the omega-3 fatty acids in Krill oil are absorbed and carried to the body's cells in phospholipid form.

Omega-3 fatty acids, in combination with diet and exercise, work by lowering the body's production of “bad”, low density lipoprotein (LDL) and triglycerides, and may raise high density lipoprotein (HDL) “good” cholesterol.

High levels of cholesterol and triglycerides can lead to coronary artery disease, heart disease, and stroke.
Supportive, but not conclusive research shows that consumption of EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease.



WHAT ARE THE BENEFITS OF KRILL OIL?
In the realm of natural supplements, one name has been garnering increasing attention for its myriad health benefits: Krill Oil.

*Extracted from tiny crustaceans found in the icy waters of the Antarctic, Krill Oil has emerged as a powerhouse of essential nutrients, particularly renowned for its omega-3 fatty acid content.

But what exactly is Krill Oil, how does one incorporate it into their daily routine, and what wonders does it hold for our health?
Let's embark on a deep dive into the world of Krill Oil.



HEALTH BENEFITS OF KRILL OIL:
Krill oil's phospholipid-complex of omega-3 and choline provides support to the heart, brain, liver and eyes, with recent research showing benefits in skin and sports segments.



HOW TO USE KRILL OIL:
RECOMMENDED DOSE — (ORAL) ADULTS ONLY:
Take 1 to 2 softgel capsules three times per day.



WHY DO PEOPLE TAKE KRILL OIL?
Krill oil contains EPA and DHA, the same omega-3 fatty acids in fish oil, although usually in smaller amounts.
The effects of krill oil have not been researched as thoroughly as those of fish oil.

But a few preliminary studies suggest that krill oil could be superior in some ways.
Krill oil might be better absorbed in the body than fish oil.

One small study found that krill oil, like omega-3s in general, could improve rheumatoid arthritis and osteoarthritis symptoms such as pain, stiffness, and functional impairment.
It also lowered levels of C-reactive protein, a marker for inflammation in the body that's been linked with heart disease.

In addition, krill oil eased symptoms of premenstrual syndrome in another small study.
Because some studies indicate that the fatty acid DHA may benefit a developing child’s brain, krill oil is sometimes taken by pregnant women or given to children.



6 SCIENCE-BASED HEALTH BENEFITS OF KRILL OIL:
1. Excellent Source of Healthy Fats:
Both krill oil and fish oil contain the omega-3 fats EPA and DHA.

However, some evidence suggests that the fats found in krill oil may be easier for the body to use than those from fish oil, since most omega-3 fats in fish oil are stored in the form of triglycerides.

On the other hand, a large portion of the omega-3 fats in krill oil can be found in the form of molecules called phospholipids, which may be easier to absorb into the bloodstream.

A few studies found that krill oil was more effective than fish oil at raising omega-3 levels, and hypothesized that their differing forms of omega-3 fats might be why.

Another study carefully matched the amounts of EPA and DHA in krill oil and fish oil, and found that the oils were equally effective at raising levels of omega-3s in the blood.
More research is needed to determine whether krill oil is actually a more effective, bioavailable source of omega-3 fats than fish oil.


2. Can Help Fight Inflammation
Omega-3 fatty acids like those found in krill oil have been shown to have important anti-inflammatory functions in the body.
In fact, krill oil may be even more effective at fighting inflammation than other marine omega-3 sources because it appears to be easier for the body to use.

What’s more, krill oil contains a pink-orange pigment called astaxanthin, which has anti-inflammatory and antioxidant effects.
A few studies have begun to explore the specific effects of krill oil on inflammation.
One test-tube study found that it reduced the production of inflammation-causing molecules when harmful bacteria were introduced to human intestinal cells.


3. Might Reduce Arthritis and Joint Pain
Because krill oil seems to help reduce inflammation, it may also improve arthritis symptoms and joint pain, which often result from inflammation.
In fact, a study that found krill oil significantly reduced a marker of inflammation also found that krill oil reduced stiffness, functional impairment and pain in patients with rheumatoid or osteoarthritis.


4. Could Improve Blood Lipids and Heart Health
Omega-3 fats, and DHA and EPA specifically, are considered heart-healthy.

Research has shown that fish oil may improve blood lipid levels, and krill oil appears to be effective as well.
Studies have shown it may be particularly effective at lowering levels of triglycerides and other blood fats.
One study compared the effects of krill oil and purified omega-3s on cholesterol and triglyceride levels.

Only krill oil raised “good” high-density-lipoprotein (HDL) cholesterol.
It was also more effective at decreasing a marker of inflammation, even though the dosage was much lower.
On the other hand, the pure omega-3s were more effective at lowering triglycerides.

A recent review of seven studies concluded that krill oil is effective at lowering “bad” LDL cholesterol and triglycerides, and may increase “good” HDL cholesterol, too.

Another study compared krill oil to olive oil and found that krill oil significantly improved insulin resistance scores, as well as the function of the lining of the blood vessels.
More long-term studies are needed to investigate how krill oil affects the risk of heart disease.


5. Krill Oil may Help Manage PMS Symptoms
In general, consuming omega-3 fats may help decrease pain and inflammation.
Several studies have found that taking omega-3 or fish oil supplements can help decrease period pain and symptoms of premenstrual syndrome (PMS), in some cases enough to decrease the use of pain medication.

It appears that krill oil, which contains the same types of omega-3 fats, may be just as effective.
One study compared the effects of krill oil and fish oil in women diagnosed with PMS.

The study found that while both supplements resulted in statistically significant improvements in symptoms, women taking krill oil took significantly less pain medication than women taking fish oil.
This study suggests that krill oil may be at least as effective as other sources of omega-3 fats at improving PMS symptoms.


6. Krill Oil’s Easy to Add to Your Routine
Taking krill oil is a simple way to increase your EPA and DHA intake.
Krill Oil’s widely available and can be purchased online or at most pharmacies.
The capsules are typically smaller than those of fish oil supplements, and may be less likely to cause belching or a fishy aftertaste.

Krill oil is also typically considered to be a more sustainable choice than fish oil, because krill are so abundant and reproduce quickly.
Unlike fish oil, Krill Oil also contains astaxanthin.



KRILL OIL VS. FISH OIL:
While krill and fish oil both have DHA and EPA, it’s believed that those omega-3 fatty acids found in krill oil have a higher bioavailability — or rate of absorption in your body — than fish oil.

It might have something to do with the DHA and EPA being found as molecules called phospholipids in krill oil.
In fish oil, the DHA and EPA are stored in the form of triglycerides.
More research is needed to determine the exact reason krill oil might be absorbed more easily.


Kristal Mentol
MENTHOL; dl-Menthol; 2-Isopropyl-5-methylcyclohexanol; Cyclohexanol, 5-methyl-2-(1-methylethyl)- CAS NO : 1490-04-6