CARBON BLACK N330

Carbon Black N330 Carbon black N330 (karbon siyahı N330) is most widely used type of high abrasion furnace black. Carbon black N330 (karbon siyahı N330) is a kind of good carbon black reinforcing performance, and can give a good rubber tensile properties, tear resistance, abrasion resistance and flexibility. Carbon black N330 (karbon siyahı N330) is a material produced by the incomplete combustion of heavy petroleum products such as FCC tar, coal tar, or ethylene cracking tar.Carbon black N330 (karbon siyahı N330) is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon.Carbon black N330 (karbon siyahı N330) is dissimilar to soot in its much higher surface-area-to-volume ratio and significantly lower (negligible and non-bioavailable) polycyclic aromatic hydrocarbon (PAH) content. However,Carbon black N330 (karbon siyahı N330) is widely used as a model compound for diesel soot for diesel oxidation experiments.Carbon black N330 (karbon siyahı N330) is mainly used as a reinforcing filler in tires and other rubber products. In plastics, paints, and inks,Carbon black N330 (karbon siyahı N330) is used as a color pigment. Carbon black N330 (karbon siyahı N330) is possibly carcinogenic to humans.Short-term exposure to high concentrations of Carbon black N330 (karbon siyahı N330) dust may produce discomfort to the upper respiratory tract, through mechanical irritation.Common uses: Total production was around 8,100,000 metric tons (8,900,000 short tons) in 2006. Global consumption of Carbon black N330 (karbon siyahı N330), estimated at 13.2 million metric tons, valued at US$13.7 billion,in 2015, is expected to reach 13.9 million metric tons, valued at US$14.4 billion in 2016. Global consumption is forecast to maintain a CAGR (compound annual growth rate) of 5.6% between 2016 and 2022, reaching 19.2 million metric tons, valued at US$20.4 billion, by 2022.The most common use (70%) of Carbon black N330 (karbon siyahı N330) is as a pigment and reinforcing phase in automobile tires.Carbon black N330 (karbon siyahı N330) also helps conduct heat away from the tread and belt area of the tire, reducing thermal damage and increasing tire life. About 20% of world production goes into belts, hoses, and other non-tire rubber goods. The balance is mainly used as a pigment in inks, coatings and plastics.For example,Carbon black N330 (karbon siyahı N330) is added to polypropylene because Carbon black N330 (karbon siyahı N330) absorbs ultraviolet radiation, which otherwise causes the material to degrade.Carbon black N330 (karbon siyahı N330) particles are also employed in some radar absorbent materials, in photocopier and laser printer toner, and in other inks and paints.The high tinting strength and stability of Carbon black N330 (karbon siyahı N330) has also provided use in coloring of resins and films. Carbon black N330 (karbon siyahı N330) has been used in various applications for electronics. A good conductor of electricity, Carbon black N330 (karbon siyahı N330) is used as a filler mixed in plastics, elastomer, films, adhesives, and paints.Carbon black N330 (karbon siyahı N330) is used as an antistatic additive agent in automobile fuel caps and pipes.Carbon black N330 (karbon siyahı N330) from vegetable origin is used as a food coloring.Carbon black N330 (karbon siyahı N330) is approved for use as additive 153 (Carbon blacks or Vegetable carbon) in Australia and New Zealand but has been banned.The color pigment Carbon black N330 (karbon siyahı N330) has been widely used for many years in food and beverage packaging.Carbon black N330 (karbon siyahı N330) is used in multi-layer milk bottles and in items like microwavable meal trays and meat trays.The Canadian Government's extensive review of Carbon black N330 (karbon siyahı N330) in 2011 concluded that Carbon black N330 (karbon siyahı N330) should continue to be used in products - including food packaging for consumers - in Canada. This was because "in most consumer products carbon black is bound in a matrix and unavailable for exposure, for example as a pigment in plastics and rubbers" and "it is proposed that carbon black is not entering the environment in a quantity or concentrations or under conditions that constitute or may constitute a danger in Canada to human life or health."Within Australasia, the color pigment Carbon black N330 (karbon siyahı N330) in packaging must comply with the requirements of either the EU or US packaging regulations.Carbon black N330 (karbon siyahı N330) grades are aqueous pigment dispersion based on polymeric dispersants and inkjet quality pigments. Carbon black N330 (karbon siyahı N330) is an aqueous nano-dispersed high performance standard black pigment preparation.Carbon black N330 (karbon siyahı N330) has very low viscosity and very narrow particle size distribution. Offers high color strength, high transparency and brilliancy. Exhibits excellent light fastness, excellent water fastness and excellent jettability. Provides no sedimentation and good compatibility with acrylic resins and with a wide range of solvents. Carbon black N330 (karbon siyahı N330) is based on polymeric dispersants and ink jet quality pigments.Carbon black N330 (karbon siyahı N330) is developed for ink-jet applications.Carbon black N330 (karbon siyahı N330) Melting point 3550 °C(lit.)- Boiling point 500-600 °C(lit.) / idensity ~1.7 g/mL at 25 °C(lit.) / Carbon black N330 (karbon siyahı N330) solubility H2O: soluble0.1mg/m Carbon black N330 (karbon siyahı N330) color : Clear colorless / Specific Gravity bulk 0.10/g/cm3 / Carbon black N330 (karbon siyahı N330) Water Solubility Insoluble / Carbon black N330 (karbon siyahı N330) Stability: Stable. Combustible. Carbon black N330 (karbon siyahı N330) Properties : Chemical formula: C Molar mass: 12.011 g·mol-1 Appearance: Black solid Density: 1.8-2.1 g/cm3 (20 °C)[1] Solubility in water: Practically insoluble Reinforcing Carbon black N330 (karbon siyahı N330): The highest volume use of Carbon black N330 (karbon siyahı N330) is as a reinforcing filler in rubber products,especially tires. While a pure gum vulcanization of styrene-butadiene has a tensile strength of no more than 2 MPa and negligible abrasion resistance, compounding it with 50% Carbon black N330 (karbon siyahı N330) by weight improves its tensile strength and wear resistance as shown in the table below.Carbon black N330 (karbon siyahı N330) is used often in the aerospace industry in elastomers for aircraft vibration control components such as engine mounts.Practically all rubber products where tensile and abrasion wear properties are important use Carbon black N330 (karbon siyahı N330), so they are black in color. Where physical properties are important but colors other than black are desired, such as white tennis shoes, precipitated or fumed silica has been substituted for Carbon black N330 (karbon siyahı N330). Silica-based fillers are also gaining market share in automotive tires because they provide better trade-off for fuel efficiency and wet handling due to a lower rolling loss. Traditionally silica fillers had worse abrasion wear properties, but the technology has gradually improved to a point where they can match Carbon black N330 (karbon siyahı N330) abrasion performance.Pigment: Carbon black N330 (karbon siyahı N330) is the name of a common black pigment, traditionally produced from charring organic materials such as wood or bone.Carbon black N330 (karbon siyahı N330) appears black because it reflects very little light in the visible part of the spectrum, with an albedo near zero. The actual albedo varies depending on the source material and method of production.Carbon black N330 (karbon siyahı N330) is known by a variety of names, each of which reflects a traditional method for producing carbon black:Ivory black was traditionally produced by charring ivory or bones (see bone char).Vine black was traditionally produced by charring desiccated grape vines and stems.Lamp black was traditionally produced by collecting soot from oil lamps.All of these types of Carbon black N330 (karbon siyahı N330) were used extensively as paint pigments since prehistoric times.Rembrandt, Vermeer, Van Dyck, and more recently, Cézanne, Picasso and Manet employed carbon black pigments in their paintings.A typical example is Manet's "Music in the Tuileries" where the black dresses and the men's hats are painted in ivory black.Newer methods of producing Carbon black N330 (karbon siyahı N330) have largely superseded these traditional sources. For artisanal purposes,Carbon black N330 (karbon siyahı N330) produced by any means remains common.Surface and surface chemistry: All Carbon black N330 (karbon siyahı N330) have chemisorbed oxygen complexes (i.e., carboxylic, quinonic, lactonic, phenolic groups and others) on their surfaces to varying degrees depending on the conditions of manufacture.These surface oxygen groups are collectively referred to as volatile content.Carbon black N330 (karbon siyahı N330) is also known to be a non-conductive material due to its volatile content.The coatings and inks industries prefer grades of Carbon black N330 (karbon siyahı N330) that are acid-oxidized. Acid is sprayed in high-temperature dryers during the manufacturing process to change the inherent surface chemistry of the black. The amount of chemically-bonded oxygen on the surface area of the black is increased to enhance performance characteristics. Carbon black N330 (karbon siyahı N330) is considered possibly carcinogenic to humans and classified as Group2B carcinogen because there is sufficient evidence in experimental animals with inadequate evidence in human epidemiological studies.The evidence of carcinogenicity in animal studies comes from two chronic inhalation studies and two intratracheal instillation studies in rats, which showed significantly elevated rates of lung cancer in exposed animals.An inhalation study on mice did not show significantly elevated rates of lung cancer in exposed animals.Epidemiologic data comes from three cohort studies of Carbon black N330 (karbon siyahı N330) production workers.Two studies with over 1,000 workers in each study group showed elevated mortality from lung cancer.A third study of over 5,000 Carbon black N330 (karbon siyahı N330) workers did not show elevated mortality.Newer findings of increased lung cancer mortality in an update from study suggest that Carbon black N330 (karbon siyahı N330) could be a late-stage carcinogen.However, a more recent and larger study from Germany did not confirm this hypothesis.Occupational safety: There are strict guidelines available and in place to ensure employees who manufacture Carbon black N330 (karbon siyahı N330) are not at risk of inhaling unsafe doses of carbon black in its raw form.Respiratory personal protective equipment is recommended to properly protect workers from inhalation of Carbon black N330 (karbon siyahı N330). The recommended type of respiratory protection varies depending on the concentration of Carbon black N330 (karbon siyahı N330) used.People can be exposed to Carbon black N330 (karbon siyahı N330) in the workplace by inhalation and contact with the skin or eyes. The Occupational Safety and Health Administration (OSHA) has set the legal limit (Permissible exposure limit) for Carbon black N330 (karbon siyahı N330) exposure in the workplace at 3.5 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 3.5 mg/m3 over an 8-hour workday. At levels of 1750 mg/m3, Carbon black N330 (karbon siyahı N330) is immediately dangerous to life and health. Benefits of Carbon black N330 (karbon siyahı N330): -Aqueous pigment dispersion -Suitable for water-based inkjet systems -High optical density -Standard black -Outstanding light fastness -Excellent water fastness -Excellent jettability, sedimentation and viscosity properties -Good compatibility with acrylic resins and a wide range of organic solvents/humectants -Narrow particle size distribution Carbon black N330 (karbon siyahı N330) is one of the oldest industrial products.In ancient times, china has already applied incomplete combustion of vegetable oil for making pigment Carbon black N330 (karbon siyahı N330).In 1872, the United States first used natural gas as raw material to produce carbon black using tank method and mainly used Carbon black N330 (karbon siyahı N330) as a coloring agent.Carbon black N330 (karbon siyahı N330) was not the reinforcement effect Carbon black N330 (karbon siyahı N330) on the rubber before the carbon black industry had gotten rapid development. Then Carbon black N330 (karbon siyahı N330) had successively developed of a variety of process methods. At present, oil furnace method is the most efficient and most economical method with the oil furnace black production amount accounting for 70-90% of the total Carbon black N330 (karbon siyahı N330) production. There are mainly furnace, slot method, thermal cracking, three methods.Carbon black N330 (karbon siyahı N330) is obtained by the carbonization of the plant material such as peat.Carbon black N330 (karbon siyahı N330) can also be derived from the carbonization of cocoa shell and beef bone or from the combustion of vegetable oil. Uses Carbon black N330 (karbon siyahı N330): 1. Carbon black N330 (karbon siyahı N330) is edible black pigment.Carbon black N330 (karbon siyahı N330) can be used for pastry with the usage amount of 0.001% to 0.1%. 2. Carbon Black can be used for food coloring agent. China provides that Carbon black N330 (karbon siyahı N330) can be used for rice, flour products, candy, biscuits and pastries with the maximum usage amount of 5.0g/kg. 3. Rubber industry uses Carbon black N330 (karbon siyahı N330) as a reinforcing filler. 2.Paint Inks applies Carbon black N330 (karbon siyahı N330) as coloring pigments in paint inks. 3. Used for the manufacturing of black paper such as packaging materials for photographic materials and the black paper made of high-conductivity black carbon in the radio equipment. 4. Carbon paper and typewriter; it is used when it is required for darker colors and can remain on the carrier. 5. Plastic coloring, ink, phonograph records, shoe polish, paint cloth, leather coatings, colored cement, electrodes, electronic brushes, batteries and so on. 4. As electric conductive agent of lithium ion battery 5. Mainly used for rubber, paint, ink and other industries 6. Used for the reinforcement of car tread and sidewall, hose, groove, industrial rubber products as well as conveyor belt. 7. Used for tire tread, surface tire repair, automotive rubber parts, conveyor belts, conveyor pads, etc., The vulcanized glue of this Carbon black N330 (karbon siyahı N330) shows excellent tensile strength and abrasion resistance 8. Carbon black N330 (karbon siyahı N330) is mainly used for the reinforcement of tire belt, sidewall, solid tires, outer layer of roller, hose surface, industrial rubber products and car tire tread. 9. Carbon black N330 (karbon siyahı N330) is used for the reinforcement of the tire tread of car and truck, surface of conveyor belt and industrial rubber products. 10. For rubber reinforcement, coloring agent, metallurgy, rocket propellant 11. For rubber products to fill and reinforcement. 12. For rubber products, carcass, valves and other filling . 13. For paints and inks, plastics and other industries. 14. Mainly used for raw materials of battery as well as for conductive and anti-static rubber products. 15. In the rubber industry,Carbon black N330 (karbon siyahı N330) is used as the reinforcing agent and filter for the manufacturing of natural rubber and butyl rubber, being able to endow the vulcanized rubber with excellent tensile strength, elongation and tear resistance and so on. It should be mostly used for natural rubber-based large-scale engineering tires and a variety of off-road tires as well as being used for carcass and sidewall. In addition, it can also be used for high-strength conveyor belt, cold rubber products and drilling device. In light industry, it can be used as the filter of the paint, ink, enamel and plastic products. Toxicity: Carbon black N330 (karbon siyahı N330) has not yet been specified.Carbon black N330 (karbon siyahı N330) is listed as substance allowed to be in temporary contact with food.Carbon black N330 (karbon siyahı N330) can not be digested and absorbed, so oral administration should be non-toxic, but given the incorporation of 3, 4-benzopyrene during the carbonization,Carbon black N330 (karbon siyahı N330) is basically not used now.Carbon black N330 (karbon siyahı N330) appears as black powdery particles with a particle size of 0 to 500 μm. The relative density of Carbon black N330 (karbon siyahı N330) is 1.8 to 2.1. It is insoluble in water and organic solvents.Toxicity classification of Carbon black N330 (karbon siyahı N330) is: Low toxicity; Acute Toxicity Oral-Rat LD50:> 15400 mg/kg.Carbon black N330 (karbon siyahı N330) is combustible in case of heat and strong oxidant. Storage and transportation characteristics Treasury: low temperature, ventilated and dry.Chemical Properties of Carbon black N330 (karbon siyahı N330) are:finely divided black dust or powder, Carbon black N330 (karbon siyahı N330) is a black or brown liquid or solid (powder). Odorless solid. Carbon black oil is flammable and has a petroleum odor.Physical properties :Carbon black N330 (karbon siyahı N330) is virtually pure elemental carbon (diamond and graphite are other forms of nearly pure carbon) in the form of near-spherical colloidal particles that are produced by incomplete combustion or thermal decomposition of gaseous or liquid hydrocarbons. Its physical appearance is that of a black, finely divided pellet or powder, the latter sometimes small enough to be invisible to the naked eye. Its use in tires, rubber and plastic products, printing inks and coatings is related to the properties of specific surface area, particle size and structure, conductivity and color.Carbon black N330 (karbon siyahı N330) is in the top 50 industrial chemicals manufactured worldwide, based on annual tonnage. Current worldwide production is about 15 billion pounds per year (6.81 million metric tons). Approximately 90% of Carbon black N330 (karbon siyahı N330) is used in rubber applications, 9% as a pigment, and the remaining 1% as an essential ingredient in hundreds of diverse applications. Modern Carbon black N330 (karbon siyahı N330) products are direct descendants of early "lampblack", first produced in China over 3500 years ago.These early lampblacks were not very pure and differed greatly in their chemical composition from current Carbon black N330 (karbon siyahı N330).Since the mid-1970s most Carbon black N330 (karbon siyahı N330) has been produced by the oil furnace process, which is most often referred to as furnace black.Unlike diamond and graphite, which are crystalline carbons, Carbon black N330 (karbon siyahı N330) is an amorphous carbon composed of fused particles called aggregates. Properties, such as surface area, structure, aggregate diameter and mass differentiate the various carbon black grades.A finely divided form of carbon, practically all of which is made by burning vaporized heavy-oil frac- tions in a furnace with 50% of the air required for complete combustion (partial oxidation). This type is also called furnace black.Carbon black N330 (karbon siyahı N330) can also be made from methane or natural gas by crack- ing (thermal black) or direct combustion (channel black), but these methods are virtually obsolete. All types are characterized by extremely fine particle size, which accounts for their reinforcing and pig- menting effectiveness.A finely divided form of carbon producedby the incomplete combustion of such hydrocarbon fuels as natural gas or petroleum oil. Carbon black N330 (karbon siyahı N330) is used as a black pigment in inks and as a filler for rubber in tire manufacture.Carbon black N330 (karbon siyahı N330) is fine carbon powdermade by burning hydrocarbons in insufficientair. Carbon black N330 (karbon siyahı N330) is used as a pigmentand afiller (e.g. for rubber).Safety Profile : Mildly toxic by ingestion, inhalation, and skin contact. Questionable carcinogen.A nuisance dust in high concentrations.Tiny particulates of Carbon black N330 (karbon siyahı N330) contain some molecules of carcinogenic materials, the carcinogens are apparently held tightly and are not eluted by hot or cold water, gastric juices, or blood plasma.Carbon black N330 (karbon siyahı N330) used as reinforcing agent and filler for rubber; colorants for ink, paint, and plastics. Workers in carbon black production or in its use in rubber compounding, ink and paint manufacture, plastics compounding, drycell battery manufacture.Shipping Carbon black N330 (karbon siyahı N330) oil: UN1993 Flammable liquids, n.o.s., Hazard Class: 3; Labels: 3-Flammable liquid, Technical Name Required.Carbon black N330 (karbon siyahı N330) containing over 8% volatiles may pose an explosion hazard. Dust can form an explosive mixture in air. A reducing agent; keep away from strong oxidizers, such as chlorates, bromates, nitrates. Carbon black N330 (karbon siyahı N330) Preparation Products And Raw materials. Carbon black N330 (karbon siyahı N330) is a black special chemical, which is available as powder or beads.Carbon black N330 (karbon siyahı N330) gets manufactured in highly controlled processes and contains more than 95% pure carbon. Other components are oxygen, hydrogen and nitrogen. The black particles are 10nm to approximately 500nm big and fuse into chain-like aggregates, which define the structure of individual Carbon black N330 (karbon siyahı N330) grades. Depending on the production process Carbon Black types differ in size, surface chemistry, porosity and many other characteristics. During the after-treatment process the oxygen percentage within the Carbon black N330 (karbon siyahı N330) can be changed according to the required needs. Carbon black N330 (karbon siyahı N330) is used in a multitude of industries. By enhancing the physical, electrical and optical properties of various materials it brings the final product to the top of its performance. It can either get blended with additives, elastomers or binding agents and integrates itself into customers formula or Carbon black N330 (karbon siyahı N330) can already be pre-processed in form of a so called "preparation". This product is a mixture of Carbon black N330 (karbon siyahı N330) and certain additives and saves the customer many production steps.The properties of most Carbon black N330 (karbon siyahı N330) grades are determined by industry-wide standards which have been developed by the German Institute for Standardization (DIN), the International Organization for Standardization (ISO) and the American Society for Testing and Materials (ASTM), with the latter being the most widely used, especially for Rubber Carbon Black grades. These standards are not only used as a measure by which types of Carbon black N330 (karbon siyahı N330) are characterized but also as a quality assurance tool for the production process.Several chemical and physical properties serve to determine the differences between the various Carbon black N330 (karbon siyahı N330). Aggregation, or structuring, refers to the way in which the carbon particals are permanently fused together in a random branching structure, or chain, and impacts rheology reinforcement as well as light scattering properties. The particle size is one criterion to distinguish Carbon black N330 (karbon siyahı N330) types. Small particles lead to a very high tinting strength, high jetness level, excellent UV-protection and better conductivity. Big particles improve the viscosity and dipersibility properties within the application. Another parameter is the structure of these aggregates. The primary particles can either be bond loosely together or piled up in a very complex construct. A high structure, meaning a complex system, lead to a very strong reinforcement power of Carbon Black, while a low structure achieves very good results in the gloss of coatings and inks. The third main criterion to distinguish Carbon black N330 (karbon siyahı N330) types is the chemical characteristics of the particle surface, which can either be acidic or basic depending on the type of volatile components on the surface.Acidic volatile components improve the dispersibility of Carbon black N330 (karbon siyahı N330). This is also the reason, why our after-treatment processing has been established to further enhance the performance of our products and adapt it to the customer's needs.Like all other aspects, the purity level on the surface of the Carbon black N330 (karbon siyahı N330) and the particle distribution depend on the production process. Purity refers to the quantities of other substances which are incorporated into the Carbon Black next to pure Carbon, like nitrogen, hydrogen and oxygen.Carbon black N330 (karbon siyahı N330) is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon.Carbon black is mainly used as a reinforcing filler in tires and other rubber products. In plastics, paints, and inks, carbon black is used as a color pigment.According to the criteria in OSHA HCS (2012) for classifying hazardous substances, Carbon Black is not classified for any toxicological or eco-toxicological endpoint. As a combustible dust it is designated by OSHA as a hazardous chemical. Carbon black N330 (karbon siyahı N330), any of a group of intensely black, finely divided forms of amorphous carbon, usually obtained as soot from partial combustion of hydrocarbons, used principally as reinforcing agents in automobile tires and other rubber products but also as extremely black pigments of high hiding power in printing ink,...How do you make Carbon black N330 (karbon siyahı N330) ? : Carbon black N330 (karbon siyahı N330) is produced by the reaction of a hydrocarbon fuel such as oil or gas with a limited supply of combustion air at temperatures of 1320 to 1540°C (2400 to 2800°F). The unburned carbon is collected as an extremely fine black fluffy particle, 10 to 500 nanometers (nm) in diameter.What is the difference between "blackest black" and " Carbon black N330 (karbon siyahı N330) "? The difference is the type of pigment that is used.Black iron oxides are naturally occurring minerals and vary on the shade their "blackness" where the carbon black is much more consistently deep black.Carbon black N330 (karbon siyahı N330) is produced with the thermal decomposition method or the partial combustion method using hydrocarbons such as oil or natural gas as raw material. The characteristics of carbon black vary depending on manufacturing process, and therefore Carbon black N330 (karbon siyahı N330) is classified by manufacturing process.Carbon black N330 (karbon siyahı N330) is a rubber-reinforcing additive used in a multitude of rubber products. In particular, in case of vehicles, large amounts of Carbon black N330 (karbon siyahı N330) are used for tires. In addition,Carbon black N330 (karbon siyahı N330) is used with rubber to dampen earthquake vibration, in the soles of shoes and in many other products.Carbon black N330 (karbon siyahı N330) may be washed from the skin using mild soap+water along with gentle scrubbing action. Repeat washing may be necessary to remove Carbon black N330 (karbon siyahı N330). A protective barrier cream on exposed skin surfaces may also be an effective method for minimizing dermal exposure.Graphite is a layered planar structure, typically tens of microns in length, and is conductive primarily along its planes.Carbon black N330 (karbon siyahı N330) on the other hand is a sub-micron scale high surface area particle with a roughly spherical shape The key difference between Carbon black N330 (karbon siyahı N330) and activated carbon is that the surface-area-to-volume ratio of Carbon black N330 (karbon siyahı N330) is lower than that of activated carbon. ... Besides, Carbon black N330 (karbon siyahı N330) produced from incomplete combustion of heavy petroleum products while activated carbon is produced from charcoal.Carbon black N330 (karbon siyahı N330) may not be obvious that carbon black is burning unless the material is stirred and sparks are apparent.Carbon black N330 (karbon siyahı N330) containing more than 8% volatile materials may form an explosive dust-air mixture.Almost all rubber compounds use Carbon black N330 (karbon siyahı N330) (CB) as a filler.Carbon black N330 (karbon siyahı N330) filler functions to strengthen, increase the volume, improve the physical properties of rubber, and strengthen vulcanization. The results of the rubber compound can be useful in making shoe soles, gloves, and motorized vehicle tires.Inhalation of Carbon black N330 (karbon siyahı N330) is associated with health problems including respiratory and cardiovascular disease, cancer, and even birth defects.Carbon black N330 (karbon siyahı N330) also contributes to climate change causing changes in patterns of rain and clouds.