Системa очистки воды , Химикаты для металла и буровой системы

Sodium Metasilicate
Metso Beads, Silicic acid, disodium salt; Sodium-m-Silicate; Orthosil; Disodium metasilicate; Disodium Monosilicate; Waterglass; Disodium trioxosilicate; CAS NO:6834-92-0 CAS NO:pentahydrate: 10213-79-3 CAS NO:nonhydrate: 13517-24-3
Sodium Metasilicate Anhydrous
Sodium silicate, disodium oxosilanediolate, Sodium siliconate, Sodium polysilicate, Sodium water glass, Sodium sesquisilicate, Disodium metasilicate, Disodium silicate, Sodium silicon oxide, Disodium monosilicate, disodium oxosilanediolate, silanediolate, 1-oxo-, sodium salt (1:2); silanediolate, oxo-, disodium salt; Silicic acid, sodium salt; CAS Number : 6834-92-0
Sodium Metasilicate Pentahydrate
Sodium Metasilicate Pentahydrate; Metso Beads, Silicic acid, disodium salt; Sodium-m-Silicate; Orthosil; Disodium metasilicate; Disodium Monosilicate; Waterglass; Disodium trioxosilicate; cas no: 10213-79-3
Sodium Methylate
methylparaben; Methyl 4-hydroxybenzoate, sodium salt; Sodium 4-(methoxycarbonyl)phenolate; Natrium-4-(methoxycarbonyl)phenolat; 4-(metoxicarbonil)fenolato de sodio; 4-(méthoxycarbonyl)phénolate de sodium; Methyl paraben sodium salt; Sodium methyl 4-hydroxybenzoate; methyl-4-oxide-benzoate, sodium salt; Methyl p-hydroxybenzoate, sodium salt; cas no: 5026-62-0
sodium methylparaben
synonyme : paraben / PAO / parahydroxybenzoate, Inci : sodium methylparaben, Cas : 5026-62-0. Benzoic acid, 4-hydroxy-, methyl ester, sodium salt; Benzoic acid, p-hydroxy-, methyl ester, sodium deriv.; Bonomold OMNa; Methyl p-hydroxybenzoate, sodium salt; Methylparaben sodium; Methylparaben, sodium salt; Preserval MS; Sodium 4-(methoxycarbonyl)phenolate; Sodium 4-carbomethoxyphenolate; Sodium methyl p-hydroxybenzoate; Sodium methylparaben; Sodium p-methoxycarbonylphenoxide; Sodium, (p-carboxyphenoxy)-, methyl ester (7CI); Solparol; Benzoic acid, 4-hydroxy-, methyl ester, sodium salt (1:1); methyl 4-hydroxybenzoate; Methyl 4-hydroxybenzoate Sodium salt; Methyl paraben sodium; Methylparaben sodium salt; Nipasept Sodium; Sodium 4-(methoxycarbonyl) phenolate; sodium 4-(methoxycarbonyl)benzen-1-olate; Sodium 4-methoxycarbonylphenolate; Sodium methyl-4-hydroxybenzoate; Sodium methylparabenSodium 4-(methoxycarbonyl)phenolate; sodium;4-methoxycarbonylphenolate. Benzoic acid, 4-hydroxy-, methyl ester, sodium salt; Benzoic acid, p-hydroxy-, methyl ester, sodium deriv.; Bonomold OMNa; Methyl p-hydroxybenzoate, sodium salt; Methylparaben sodium; Methylparaben, sodium salt; Preserval MS;Sodium 4-(methoxycarbonyl)phenolate;Sodium 4-carbomethoxyphenolate;Sodium methyl p-hydroxybenzoate;Sodium methylparaben;Sodium p-methoxycarbonylphenoxide;Sodium, (p-carboxyphenoxy)-, methyl ester (7CI); Solparol; Benzoic acid, 4-hydroxy-, methyl ester, sodium salt (1:1); methyl 4-hydroxybenzoate; Methyl 4-hydroxybenzoate Sodium salt; Methyl paraben sodium; Methylparaben sodium salt; Nipasept Sodium; Sodium 4-(methoxycarbonyl) phenolate; sodium 4-(methoxycarbonyl)benzen-1-olate; Sodium 4-methoxycarbonylphenolate; Sodium methyl-4-hydroxybenzoate; Sodium methylparabenSodium 4-(methoxycarbonyl)phenolate; sodium;4-methoxycarbonylphenolate
Sodium Monochloroacetate
Chloroacetic acid, sodium salt; Aceticacid,chloro-,sodiumsalt; chloro-aceticacisodiumsalt; chloroctansodny; dowdefoliant; monoxone; sma; smca; Sodum chloroacetate; Monochloroacetic Acid Sodium; Natriumchloracetat; Sodium salt of chloroacetic acid; Chloroacetate sodium; sodium salt of chloroacetic acid sodium chloroacetate CAS NO:3926-62-3
Sodium naphthalenesulfonate
Sodium Nitrate; Soda Niter; Cubic Niter; Chile Saltpeter; Sodium(I) NitrateNitrate of Soda; Nitrate de sodium; Nitric acid sodium salt cas no: 7631-99-4
Sodium nitrilotriacetate ( TRISODIUM NTA)
Sodium Nitrite; Azotyn sodowy ; Dusitan sodny; Natrium nitrit; Nitrite de sodium; Nitrito sodico; Nitrous acid sodium salt CAS NO:7632-00-0
Sodium Nitrite
Sodium Nitrite; Azotyn sodowy ; Dusitan sodny; Natrium nitrit; Nitrite de sodium; Nitrito sodico; Nitrous acid sodium salt CAS NO:7632-00-0
Sodium Nitrobenzoate
PESA; polyepoxysuccinic acid; Polyepoxysuccinic Acid(PESA); Epoxysuccinic acid homopolymer; Polyoxirane-2,3-Dicarboxylic Acid; 2,3-oxiranedicarboxylic acid homopolymer; Poly(1-oxacyclopropane-2,3-dicarboxylic acid); CAS No. 51274-37-4
Sodium of Polyepoxysuccinic Acid (PESA)
Sodium oleate; osteum; oleic acid sodium salt; oleic acid; sodium salt CAS NO: 143-19-1
Sodium oleate
Sodium oleate; osteum; oleic acid sodium salt; oleic acid; sodium salt CAS NO: 143-19-1
Sodium Omadine 40 %
Perboric acid, sodium salt, tetrahydrate; Metaborate; Sodium peroxyborate; Tetrahidrato de Percarbonato Sódico (Spanish); Tetrahydrate de perborate de soude (French); sodium peroxoborate CAS NO:7632-04-4 (Anhydrous); 11138-47-9 (Hydrate); 10332-33-9 (Monohydrate); 10486-00-7 (Tetrahydrate)
Sodium perborate
Perboric acid (HBO), sodium salt, monohydrate; Perboric acid, sodium salt, monohydrate; Sodium borate monohydrate; Monohydrate de perborate de soude (French); Sodium peroxyborate; sodium peroxoborate; Peroxiborato de sodio; peroxoborato de sodio; Monohidrato de Percarbonato Sódico (Spanish) CAS NO: 10332-33-9
Sodium Perborate Monohydrate
Sodium Perborate Monohydrate; Perboric acid (HBO), sodium salt, monohydrate; Perboric acid, sodium salt, monohydrate; Sodium borate monohydrate; Monohydrate de perborate de soude (French); Sodium peroxyborate; sodium peroxoborate; Peroxiborato de sodio; peroxoborato de sodio; Monohidrato de Percarbonato Sódico; CAS NO: 10332-33-9
Sodium Perborate Tetrahydrate
Sodium Perborate Tetrahydrate; Perboric acid, sodium salt, tetrahydrate; Metaborate; Sodium peroxyborate; Tetrahidrato de Percarbonato Sódico (Spanish); Tetrahydrate de perborate de soude (French); sodium peroxoborate; CAS NO: 10486-00-7
Sodium Percabonate ( Percarbonate de sodium)
Sodium Percarbonate; Sodium Carbonate Peroxyhydrate; Carbonic acid disodium salt, compound with hydrogen peroxide(2:3); PCS; Sodium Carbonate Peroxide cas no: 15630-89-4
Sodium Percarbonate
Sodium Carbonate Peroxyhydrate; Carbonic acid disodium salt, compound with hydrogen peroxide(2:3); PCS; Sodium Carbonate Peroxide; sodium carbonate sesquiperhydrate; PCS; SPC; solid hydrogen peroxide; Sodium carbonate hydrogen peroxide CAS NO:15630-89-4
Sodium peroxodisulphate (NPS)
cas no:7775-27-1 Peroxydisulfuric acid, disodium salt; disodium peroxodisulfate; Sodium peroxydisulfate; Dinatriumperoxodisulfat (German); Peroxodisulfato de disodio (Spanish); Peroxodisulfate de disodium (French);
Sodium Petroleum Sulfonate
Sulfonic acids petroleum sodium Salt; Petroleum sulfonic Acid; Mineral oil Sulfonic Acd soidum salts CAS:68608-26-4
Sodium polyacrylate (MW 2000)
Poly(sodium prop-2-enoate); partial sodium salt-graft-poly(ethylene oxide); Sodium polyacryla; Aronvis GL; Marpozol RA 40; Super Slurry B CAS NO:9003-04-7
Sodium Polymethacrylate
2-methyl-2-propenoic acid homopolymer sodium salt; comet; komet; pma-na; kometa; acrynax; darvan7; daxad30; osakryls; vinamuln3311; polymethakrylatsodny; polymethakrylatsodny; polymethacrylatesodium; SODIUM POLY METHACRYLATE; 2-Propenoicacid,2-methyl-,homopolymer,sodiumsalt CAS NO:54193-36-1
sodium propylparaben
paraben / PAO / parahydroxybenzoate, Inci : sodium propylparaben,Cas : 35285-69-9, EC : 252-488-1
Sodium pyrithione
Sodium pyrophosphate; Tetrasodium pyrophosphate; TETRASODIUM PYROPHOSPHATE, N° CAS : 7722-88-5 - Pyrophosphate de sodium. Origine(s) : Synthétique. Nom INCI : TETRASODIUM PYROPHOSPHATE, Nom chimique : Tetrasodium pyrophosphate, N° EINECS/ELINCS : 231-767-1, Additif alimentaire : E450. Ses fonctions (INCI): Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure. Régulateur de pH : Stabilise le pH des cosmétiques. Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Agent d'hygiène buccale : Fournit des effets cosmétiques à la cavité buccale (nettoyage, désodorisation et protection); Noms français : ANHYDROUS SODIUM PYROPHOSPHATE; ANHYDROUS TETRASODIUM PYROPHOSPHATE; DIPHOSPHATE TETRASODIQUE; DIPHOSPHORIC ACID TETRASODIUM SALT; DIPHOSPHORIC ACID, TETRASODIUM SALT; PYROPHOSPHATE DE SODIUM; PYROPHOSPHATE DE SODIUM ANHYDRE; PYROPHOSPHATE DE TETRASODIUM; PYROPHOSPHATE DE TETRASODIUM ANHYDRE; Pyrophosphate de tétrasodium; PYROPHOSPHATE TETRASODIQUE ; PYROPHOSPHORIC ACID, TETRASODIUM SALT; Sodium pyrophosphate; TETRASODIUM DIPHOSPHATE; Tetrasodium pyrophosphate; TETRASODIUM PYROPHOSPHATE ANHYDROUS ; Noms anglais : Sodium pyrophosphate; Tetrasodium pyrophosphate. Utilisation et sources d'émission : Agent dispersant, agent d'adoucissement; Anhydrous tetrasodium pyrophosphate ; Diphosphoric acid, sodium salt (1:4); Diphosphoric acid, tetrasodium salt; tetrasodyum pirofosfat; Natrium pyrophosphat; Phosphotex; Pyrophosphoric acid tetrasodium salt; Sodium diphosphate (Na4P2O7); Sodium diphosphate, anhydrous; Sodium phosphate (Na4P2O7); Sodium pyrophosphate; Sodium pyrophosphate (Na4P2O7); Sodium pyrophosphate, tetrabasic; Tetranatriumpyrophosphat; Tetrasodium diphosphate; Tetrasodium pyrophosphate; Tetrasodium pyrophosphate, anhydrous; TSPP. IUPAC names Sodium diphosphate tetrabasic, Tetrasodium pyrophosphate, TSPP, tetra-Sodium diphosphate ; tetrasodium (phosphonatooxy)phosphonate; tetrasodium (phosphonooxy)phosphonate; tetrasodium phosphonato phosphate; tetrasodium pyrophosphate (TSPP); Tetrasodium pyrophosphate decahydrate; tetrasodium;phosphonato phosphate. Trade names : pirofosforan czterosodowy ; Prayphos TSPP TG; PURON; Tetranatriumdiphosphat; TETRON; TNPP
Sodium pyrophosphate ( Tetrasodium pyrophosphate- TSPP) Pyrophosphate de sodium
Synonymssucra;dagutan;madhurin;kristallose;willosetten;cristallose;crystallose;SYNCAL (R) GS;solublegluside;saccharinnatrium CAS No.128-44-9
Sodium Saccharin
sodium saccharine; saccharin sodium; sodium saccharin; saccharin; sodium CAS NO : 128-44-9
Sodium salt of 1,2,3-Benzotriazole (BTA•Na)
Sodium mercaptobenzothiazole nacap;duodex;NA-MBT;NACAP(R);sodiummbt;2-(Sodiothio)benzothiazole;MERCAPTOBENZOTHIAZOLESODIUM;sodiumbenzothiazolethiolate;sodium2-benzothiazolethioate;(2-benzothiazolylthio)-sodium CAS No. 2492-26-4
Sodium salt of 2-Mercaptobenzothiazole (MBT•Na)
Tetrasodium iminodisuccinate; tetrasodium;2-(1,2-dicarboxylatoethylamino)butanedioate CAS NO:144538-83-0
Sodium Salt of Iminodisuccinic Acid (IDS)
SYNONYM Sodium Salt of Polyaspartic Acid; PASP; 2-Butenedioic acid (2Z)-, ammonium salt (1:?), homopolymer, hydrolyzed, sodium salts CAS No. 181828-06-8
Sodium Salt of Polyaspartic Acid (PASP)
TTA50;COBRATEC(R) TT-85;PMC Cobratec TT-85;COBRATEC(R) TT-50 S;Tolytriazole sodium;SODIUM TOLYLTRIAZOLE;TOLYTRIAZOLE SODIUM SALT;Tolyltriazole,sodiumsalt;Tolytriazole50%SodiumSalt;Tolyltriazole Sodium (TTA- S) CAS No. 64665-57-2
Sodium salt of Tolyltriazole (TTA•Na)
Water glass; Soluble glass; Silicate of soda; Silicic Acid Sodium Salt; Sodium silicate glass; Sodium Silicate Solution; Kieselsäure, Natriumsalz (German); ácido silícico, sal de sodio (Spanish); Acide silicique, sel de sodium (French) CAS NO: 1344-09-8
Sodium Silicate
Sodium Silicate; Water glass; Soluble glass; Silicate of soda; Silicic Acid Sodium Salt; Sodium silicate glass; Sodium Silicate Solution; Kieselsäure, Natriumsalz; ácido silícico, sal de sodio; Acide silicique, sel de sodium cas no: 1344-09-8
Sodium Silicoflouride
E201, E 201; SODIUM SORBATE; 2,4-Hexadienoic acid, sodium salt; 2,4-Hexadienoic acid, sodium salt, (E,E)-; Sodium (E,E)-hexa-2,4-dienoate; Sodium 2,4-hexadienoate, (E,E)-; Sodium sorbate; Sorban sodny; Sorbic acid, sodium salt. IUPAC names: sodium (2E,4E)-hexa-2,4-dienoate; sodium;(2E,4E)-hexa-2,4-dienoate; (2E,4E)-2,4-Hexadiénoate de sodium [French] ; 2,4-Hexadienoic acid, sodium salt, (2E,4E)- (1:1) ; 231-819-3 [EINECS]; 7757-81-5 [RN] ; MFCD00058995; Natrium-(2E,4E)-2,4-hexadienoat [German] ; Sodium (2E,4E)-2,4-hexadienoate [ACD/IUPAC Name]; Sodium 2,4-hexadienoate [ACD/IUPAC Name]; Sodium Sorbate; [7757-81-5]; 2,4-Hexadienoic acid, sodium salt; 2,4-Hexadienoic acid, sodium salt, (2E,4E)-; 2,4-Hexadienoic acid, sodium salt, (E,E)-; 42788-83-0 [RN]; EINECS 231-819-3; sodium (2E,4E)-hexa-2,4-dienoate; sodium (E,E)-hexa-2,4-dienoate; Sodium 2,4-hexadienoate, (E,E)-; SodiuMSorbate; Sorban sodny [Czech] ; Sorban sodny [Czech]; Sorbic Acid Sodium Salt; SORBIC ACID SODIUM SALT 98+%; Sorbic acid, sodium salt; SORBICACIDSODIUMSALT; N° CAS : 7757-81-5 - Sorbate de sodium ; Origine(s) : Naturelle, Synthétique; Nom INCI : SODIUM SORBATE; Nom chimique : Sodium (E,E)-hexa-2,4-dienoate; N° EINECS/ELINCS : 231-819-3; Additif alimentaire : E201; Classification : Règlementé, Conservateur. SODIUM SORBATE; N° CAS : 7757-81-5 - Sorbate de sodium; Origine(s) : Naturelle, Synthétique; Nom INCI : SODIUM SORBATE; Nom chimique : Sodium (E,E)-hexa-2,4-dienoate; N° EINECS/ELINCS : 231-819-3; Additif alimentaire : E201; Classification : Règlementé, Conservateur. Ses fonctions (INCI). Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.
Sodium sorbate (  Sorbate de sodium )
Octadecanoic acid, sodium salt; Stearic acid, sodium salt; Natriumstearat (German); Estearato de sodio (Spanish); Stéarate de sodium (French) CAS NO: 822-16-2
Sodium Stearate
sodium octadecanoate; Sodium stearate is the sodium salt of stearic acid. This white solid is the most common soap. It is found in many types of solid deodorants, rubbers, latex paints, and inks. It is also a component of some food additives and food flavorings. Characteristic of soaps, sodium stearate has both hydrophilic and hydrophobic parts, the carboxylate and the long hydrocarbon chain, respectively. These two chemically different components induce the formation of micelles, which present the hydrophilic heads outwards and their hydrophobic (hydrocarbon) tails inwards, providing a lipophilic environment for hydrophobic compounds. The tail part dissolves the grease (or) dirt and forms the micelle. It is also used in the pharmaceutical industry as a surfactant to aid the solubility of hydrophobic compounds in the production of various mouth foams. Sodium stearate is produced as a major component of soap upon saponification of oils and fats. The percentage of the sodium stearate depends on the ingredient fats. Tallow is especially high in stearic acid content (as the triglyceride), whereas most fats only contain a few percent. The idealized equation for the formation of sodium stearate from stearin (the triglyceride of stearic acid) follows: (C18H35O2)3C3H5 + 3 NaOH → C3H5(OH)3 + 3 C18H35O2Na Purified sodium stearate can be made by neutralizing stearic acid with sodium hydroxide. octadécanoate de sodium, stéarate de soude,sodium octadecanoate, No CAS: 822-16-2, Le stéarate de sodium ou octadécanoate de sodium est le sel de sodium de l'acide stéarique. Il est obtenu par hydrolyse en milieu basique ou saponification de la stéarine. À température ambiante, c'est une poudre blanche qui est un des composés des savons durs. C'est une substance utilisée pour ses propriétés tensioactives. Outre les savons, elle est présente dans des préparations à destination de l'industrie chimique, pharmaceutique ou agroalimentaire. On la trouve dans de nombreux produits finis comme des bâtons de colle, sticks déodorants, crèmes à raser, préparations pour gâteaux ou crèmes glacées. SODIUM STEARATE 822-16-2 Sodium octadecanoate Octadecanoic acid, sodium salt Stearates Prodhygine Flexichem B Stearic acid, sodium salt Bonderlube 235 Stearic acid sodium salt UNII-QU7E2XA9TG Sodium stearate, pure HSDB 5759 Sodium stearate [NF] EINECS 212-490-5 MFCD00036404 QU7E2XA9TG Octadecanoic acid, sodium salt (1:1) AI3-19808 Sodium stearate (NF) Sodium stearate (a mixture of stearate and palmitate) odium stearate PubChem12866 ACMC-209pno Rashayan Sodium Stearate SCHEMBL5773 C18H35NaO2 Octadecanoic acid sodium salt
Sodium sulfate anhydrous
Disodium monosulfate; Sulfuric acid sodium salt; Disodium sulfate; Sodium sulfate; Sulfuric acid sodium salt; Sulfuric acid disodium salt; Sulfuric acid disodium salt; Salt cake; Bisodium sulfate; Sodium sulfate (2:1); Thenardite; Natriumsulfat; Trona; Dibasic sodium sulfate CAS NO:7757-82-6
Sodium Sulfhydrate
Sodium Sulfite; Sodium sulfite anhydrous; disodium sulfite; Natrii Sulphis; Natrium Sulfurosum; Natriumsulfit; sulfurous acid, disodium salt; exsiccated sodium sulfite; Sodium sulfite (2:1); Sulfurous acid, sodium salt (1:2); cas no: 7757-83-7
Sodium Sulfite
Sodium Sulfonate; carbazochrome sodium sulfonate; 1,2-Naphthoquinone-4-sulfonic acid sodium salt; 3,4-Dihydro-3,4-dioxo-1-naphthalenesulfonic acid sodium salt, Folin’s reagent, Sodium 1,2-naphthoquinone-4-sulfonate
Sodium Sulfonate
Disodium monosulfate; Sulfuric acid sodium salt; Disodium sulfate; Sodium sulfate; Sulfuric acid sodium salt; Sulfuric acid disodium salt; Sulfuric acid disodium salt; Salt cake; Bisodium sulfate; Sodium sulfate (2:1); Thenardite; Natriumsulfat; Trona; Dibasic sodium sulfate CAS NO:7757-82-6 (Anhydrous); 7727-73-3 (Decahydrate)
Sodium sulphate
cas no:7757-82-6 Disodium sulfate; Sodium sulfate; Sulfuric acid sodium salt; Sulfuric acid disodium salt; Sulfuric acid disodium salt; Salt cake; Bisodium sulfate; Sodium sulfate (2:1); Thenardite; Natriumsulfat; Trona; Dibasic sodium sulfate;
Sodium Tolyltriazole
Sodium Tolyltriazole; Tolutriazole; Methyl-1H-benzotriazole; Metil-1H-benzotriazol; 5-Methylbenzotriazole; 5-Methyl-1,2,3-benzotriazole; Méthyl-1H-benzotriazole; Tolyltriazole; Methylbenzotriazole; 4(or 5)-Methyl-1H-benzotriazole; Stabinol MBTZ; CAS NO: 64665-57-2
Sodium Tripolyphosphate (STTP)
Sodium tripolyphosphate; Sodium triphosphate; Triphosphoric acid pentasodium salt; Sodium Phosphate Tripoly; Tripolyphosphate de sodium; Pentasodium triphosphate; Pentasodium Tripolyphosphate; Natriumtripolyphosphate; Sodium triphosphate; Triphosphoric acid pentasodium salt; Sodium Phosphate Tripoly; STPP; Tripolyphosphate de sodium; Pentasodium triphosphate; Pentasodium Tripolyphosphate; Natriumtripolyphosphat; Pentanatriumtriphosphat ; Trifosfato de pentasodio; Triphosphate de pentasodium CAS NO:7758-29-4
Sodium Tripolyphosphate (STTP)
SVS; Sodium ethenesulfonate; Sodium ethylene sulphonate; Ethenesulphonic acid, sodium salt CAS NO: 3039-83-6
Sodium Vinyl Sulfonate
Sodium Vinyl Sulfonate; ethenesulfonic acid; unsaturated sulfonic acid; Ethylenesulfonic acid sodium salt; Sodium vinylsulfonate solution; Vinylsulfonic acid sodium salt cas no: 3039-83-6
sodium xylene sulfonate
sodium xylene sulfonate; Xylenesulfonic acid, sodium salt; Sodium m-xylenesulfonate; Dimethylbenzenesulfonic acid, sodium salt; Sodium Dimethylbenzenesulfonate; cas no: 1300-72-7
Sodyum Bikarbonat
SYNONYMS baking soda; Sodium acid carbonate;Sodium Hydrogen Carbonate; Carbonic acid monosodium salt; carbonic acid sodium salt (1:1); monosodium hydrogen carbonate; monosodium carbonate; meylon; Bicarbonate of soda; CAS NO:144-55-8
Sodyum glukonat
SYNONYMS D-Gluconic acid monosodium salt;D-Gluconic acid, monosodium salt;D-Gluconic acid, sodium salt (1:1);D-Glulonic acid, monosodium salt;Disparlight DV;Glonsen;Gluconate de sodium;GLUCONATE SODIUM CAS NO:527-07-1
Sodyum Siklamat
Octadecanoic acid, sodium salt; Stearic acid, sodium salt; Natriumstearat (German); Estearato de sodio (Spanish); Stéarate de sodium (French) cas no: 822-16-2
SODYUM STEARAT 
Modified polyacrylic acid, sodium salt cas no:7732-18-5
SOKALAN CP 10 -POLYACRYLIC ACID,SODIUM SALT 
Modified polyacrylic acid, sodium salt cas no:7732-18-5
SOKALAN CP 10 S -POLYACRYLIC ACID,MODIFIED
Maleic acid-acrylic acid copolymer cas no:7732-18-5
SOKALAN CP 12 S -MALEIC ACID/ACRYLIC ACID COPOLYMER 
Modified polyacrylic acid; 2-propenoic acid homopolymer cas no :9003-01-4
SOKALAN CP 13 S -POLYACRYLIC ACID,MODIFIED
Modified polyacrylic acid cas no:37199-81-8
SOKALAN CP 42 GRANULES -POLYCARBOXYLATED MODIFIED,SODIUM SALT
Modified polyacrylic acid cas no:37199-81-8
SOKALAN CP 42 -POLYCARBOXYLATED MODIFIED,SODIUM SALT
Maleic acid/acrylic acid copolymer, sodium salt cas no:68479-09-4, 7732-18-5
SOKALAN CP 5 GRANULES -MALEIC ACID/ACRYLIC ACID COPOLYMER,SODIUM SALT
Maleic acid/acrylic acid copolymer, sodium salt cas no:68479-09-4, 7732-18-5
SOKALAN CP 5 -MALEIC ACID/ACRYLIC ACID COPOLYMER,SODIUM SALT
Polycarboxylate, modified, sodium salt cas no:37199-81-8
SOKALAN CP 50 GRANULES -POLYCARBOXYLATED MODIFIED,SODIUM SALT
Polycarboxylate, modified, sodium salt cas no:37199-81-8
SOKALAN CP 50 -POLYCARBOXYLATED MODIFIED,SODIUM SALT
Maleic acid/acrylic acid copolymer, sodium salt
SOKALAN CP 7 GRANULES -MALEIC ACID/ACRYLIC ACID COPOLYMER,SODIUM SALT
Maleic acid/acrylic acid copolymer, sodium salt
SOKALAN CP 7 -MALEIC ACID/ACRYLIC ACID COPOLYMER,SODIUM SALT
Maleic acid-olefin copolymer, sodium salt cas no:52255-49-9
SOKALAN CP 9 GRANULES -MALEIC ACID/OLEFIN COPOLYMER,SODIUM SALT
Maleic acid-olefin copolymer, sodium salt cas no:52255-49-9
SOKALAN CP 9 -MALEIC ACID/OLEFIN COPOLYMER,SODIUM SALT
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 110 S -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 15 -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 20 PN (ACID FORM) -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 25 CL GRANULES -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 25 CL PN (ACID FORM)-POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 30 CL GRANULES -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 30 CL -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 40 -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 70 PN (ACID FORM)-POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA 80 S -POLYACRYLIC ACID,SODIUM SALT 
polyacrylic acid, sodium salt; polyacrylic acid, Na salt; cas no:114739-92-3
SOKALAN PA X PN (HIGH MOLECULER ACID FORMS ) -POLYACRYLIC ACID,SODIUM SALT 
SOLUBLE COLLAGEN Nom INCI : SOLUBLE COLLAGEN Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état
SOLKETAL
SOLKETAL Solketal is a protected form of glycerol with an isopropylidene acetal group joining two neighboring hydroxyl groups. Solketal contains a chiral center on the center carbon of the glycerol backbone, and so can be purchased as either the racemate or as one of the two enantiomers. Solketal has been used extensively in the synthesis of mono-, di- and triglycerides by ester bond formation. The free hydroxyl groups of solketal can be esterified with a carboxylic acid to form the protected monoglyceride, where the isopropylene group can then be removed using an acid catalyst in aqueous or alcoholic medium. The unprotected diol can then be esterified further to form either the di- or triglyceride. Abstract Commercial solketal is known as AugeoTM SL 191 s which stands out as a slow evaporation solvent derived from glycerin which is considered a renewable source. It has low toxicity to human health and the environment. It is a good solvent for resins and polymers, replacing solvents derived from petroleum, and can be used as an additive of (bio) fuels. This work aimed to study acidy zeolites (H-BEA, H-MOR, H-MFI, and H-FER) as new heterogeneous catalysts of solketal production, through the ketalization reaction of glycerol with acetone. The catalytic activity showed H-BEA > H-MOR = H-MFI > H-FER after 180 min, in kinetics study. The major conversion was 85% for H-BEA. It was also verified that all the catalysts can be reused four times without washing or pretreatment among reactions in batch reactor. The solketal produced in this work was characterized by comparing it with its commercial standard, obtaining very similar characteristics transformation of glycerol into solketal (isopropylidene glycerol or 2,2-dimethyl-1,3-dioxolan-4-yl methanol) (green solvent) through the ketalization reaction of glycerol with acetone. The reaction for solketal production is facilitated by major homogeneous and heterogeneous acid catalysts (Figure 3). The ketalization of glycerol with ketones generates branched oxygenates, solketal (2,2-dimethyl-[1,3] dioxan-4-yl methanol), and 2,2-dimethyl-[1,3] dioxane-5-ol; however, when the reaction is carried out with acetone, the selectivity is higher for the solketal molecule, which has a five-membered ring [5]. Solketal is an excellent component for the formulation of gasoline, diesel, and biodiesel. it occurs that the output of the remaining acetone and water between 70 and 120°C plus a fraction containing solketal is distilled. Glycerol is only removed when the system reaches 200°C. The yield of the distillation was 60% by mass of solketal over the initial blend (solketal-water-glycerol-traces of acetone). The solketal fraction is colorless but with a lower viscosity than glycerol. Figure 12 shows the appearance of the solketal GreenTec fraction after distillation of the initial blend. FTIR analysis was used to confirm the presence of solketal in the distilled product and to compare it with its Sigma-Aldrich standard. The FTIR spectrum of the solketal GreenTec and solketal Sigma-Aldrich samples is shown in Figure 13. When analyzing Table 4, it is observed that both solketal Sigma-Aldrich and solketal GreenTec present very close densities and viscosities. Table 5 shows that only in the analysis of humidity a significant difference between the solketal samples was noticed. Solketal GreenTec presents 56.41% more humidity than solketal Sigma-Aldrich. To remove this moisture, anhydrous sodium sulfate may be added among other drying agents, and/or the solketal GreenTec fraction is withdrawn from 75°C. Glycerol to solketal transformation is possible to carry out using zeolite acidic catalysts, such as H-BEA, H-MOR, H-MFI, and H-FER, showing a very good activity (conversion 85%) and selectivity (98%). H-BEA presented a larger area, major SAR, and a bigger ratio of the strong:weak sites than the other zeolites. This characteristic contributes to a higher catalytic activity for H-BEA catalyst. All the catalysts can be reused for four times without washing or pretreatment among reactions in batch reactor, but the best catalyst is still the H-BEA zeolite for being more active and showing constant solketal selectivity. The solketal produced in this work was characterized by comparing it with its commercial standard, obtaining very similar characteristics. Solketal: Green and catalytic synthesis and its classification as a solvent - 2,2-dimethyl-4-hidroxymethyl-1,3-dioxolane, an interesting green solvent produced through heterogeneous catalysis Most solvents have been labelled as toxic or hazardous substances, but the use of glycerol derivatives could help solve these and other problems. An alternative, green synthesis of 2,2dimethyl-4-hidroxymethyl-1,3-dioxolane (solketal), using solid acid catalysts, has been developed. It is shown that using auxiliary solvents is not essential to get good results, and that the solid catalyst can be recovered and reused, improving the productivity. Moreover solketal has been characterized by determining its polarity and hydrophobicity parameters, which allow identifying possible solvent substitution applications more easily. Abstract Solvent-free reactions are the systems of choice in green chemistry. In addition to contributing to lowering the environmental impact of chemical processes, solvent-free systems can reduce production costs, reaction times, and the dimensions of reactors, thereby decreasing investment costs. An improved procedure to prepare 2,2-dimethyl-4-hydroxymethyl-1,3-dioxolane (solketal) fatty esters from soybean seeds has been developed. Yields higher than 90% were achieved by combining 15 h of hydrolysis with 6 h of esterification with a stepwise addition of solketal. The synthesis was performed in a solvent-free medium, and the final extraction was accomplished using supercritical CO2 . Hence, we have successfully prepared these esters from soybean beans without using organic solvents. In addition, given the non-toxicity of Rhizopus oryzae and the composition of the remaining solid, it might be used as a raw material for feedstock production. Applications Solketal is useful for synthesis of mono-, di- and triglycerides. It is used as the starting reagent for synthesis of tulipaline derivatives. It acts as a fuel additive in gasoline. It is an inhibitor of Methyl ethyl ketone . Notes Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Incompatible materials are acids, Strong oxidizing agents. Ketalization of glycerol with acetone to synthesize solketal-a potential fuel additive is one of the most promising routes for valorization of glycerol. In this article, state-of-the-art of glycerol ketalization is reviewed, focusing on innovative and potential technologies towards sustainable production of solketal. The glycerol ketalization processes developed in both batch and continuous reactors and performance of some typical catalysts are compared. The mechanisms for the acid-catalyzed conversion of glycerol into solketal are presented. The main operation issues related to catalytic conversion of crude glycerol in a continuous-flow process and the direct use of crude glycerol are discussed. Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts Abstract: Biodiesel has been successfully commercialized in numerous countries. Glycerol, as a byproduct in biodiesel production plant, has been explored recently for fuel additive production. One of the most prospective fuel additives is solketal, which is produced from glycerol and acetone via an acetalization reaction. This manuscript reviewed recent progress on heterogeneous catalysts used in the exploratory stage of glycerol conversion to solketal. The effects of acidity strength, hydrophobicity, confinement effect, and others are discussed to find the most critical parameters to design better catalysts for solketal production. Among the heterogeneous catalysts, resins, hierarchical zeolites, mesoporous silica materials, and clays have been explored as effective catalysts for acetalization of glycerol. Challenges with each popular catalytic material are elaborated. Future works on glycerol to solketal will be improved by considering the stability of the catalysts in the presence of water as a byproduct. The presence of water and salt in the feed is certainly destructive to the activity and the stability of the catalysts. Keywords: fuel additives; biodiesel; glycerol; solketal; solid acid catalysts. This mini review paper aims to emphasize the potential exploration of catalytic materials for the conversion of glycerol to solketal by analyzing recent papers, especially open literature from after 2010. Rahmat et al. (2010) [15] wrote an overview of glycerol conversion to fuel additives, with an emphasis on reaction parameters (catalyst, reactant, temperature, and reaction time). In the range of 2009 to 2018, Cornejo et al. [16] wrote a review in 2017 on glycerol valorization to fuel additives over different co-reactants. These included second feeds, such as formaldehyde, acetaldehyde, butanal, and acetone, and many others. Nanda et al. [17] published a review on solketal as a fuel additive, with an emphasis on the historical and future context. This paper also summarized the effect of acidity, reactor models, kinetics and reactor kinetics, and the daily procedure to use glycerol to solketal. Many scenarios were conducted for the conversion of glycerol to different value-added chemicals, such as propane-acrolein, 1, 3-diol, propane-1,2-diol, acetal or ketal, polyols and polyurethane foams, glycerol carbonate, etc. [10,11,18]. Table 1 shows that among these glycerol conversions, the conversion of glycerol to solketal by acetalization is an interesting route. Solketal is one of the glycerol acetalization products together with glycerol acetal and glycerol formal (GlyF). Similar to other acetalization products, solketal can be used directly as a fuel additive for the reduction of soot and gum formation [19]. Solketal addition to a gasoline blend showed better fuel properties with a higher octane number [19]. Other applications of solketal are in solvents, inks, pharmaceuticals, and paints [20]. Table 1. Different conversion routes from glycerol to value-added products. As shown in Table 2 and Figure 1, different types of catalyst materials were reported for the solketal production consisting of zeolites, clays, resins, heteropolyacids, and others. Each catalyst has both advantages and drawbacks. A homogeneous catalyst, such as H2SO4, offers high activity, however, these homogenous catalysts are corrosive, not recyclable, difficult to separate, and considerably more expensive. Similarly, chloride, such as tin chloride (SnCl2), is also unwanted due to its corrosion tendency [30]. Reusability is also an important part of studies. Reusability is a factor which is studied as a typical sustainable principle. The basic mechanism of the metal salt catalysis is a nucleophilic attack by the hydroxyl group of glycerol to the carbocation obtained from the protonation step, resulting in the formation of the intermediate, followed by a water elimination step. The carbocation is produced from the Lewis or Brønsted acid sites, which activates the ketone carbonyl group through a protonation step (i.e., Brønsted acids) or polarization. Energies 12 02872 g001 550Figure 1. Popularity of different types of catalytic materials for solketal production from 2014 to 2018. (Source: Web of Knowledge, https://www.webofknowledge.com, November 2018). Table 2. Classification of heterogeneous catalysts for solketal production. However, homogeneous catalysts are not considered as environmental-friendly for the reaction system. Another challenge in the utilization of heterogeneous catalysts in solketal production is the byproduct (water) formed during the reaction, which induces a reversible reaction. Heterogeneous catalysts are regenerated easily and are more easily handled. Many resin catalysts exhibited excellent conversion of glycerol to solketal and selectivity, where the best catalytic performance was obtained by amberlyst. However, it is not feasible for a higher scale of production due to the limitation of thermal stability, so it is not easy to regenerate. The higher thermal stability can be found in hierarchical zeolite. The highest conversion of glycerol to solketal of 72% and the selectivity of 72% are reached by using H-Beta (BEA framework) under the condition of 60 °C, stirring at 700 rpm, 5% of catalyst, and molar ratio of glycerol:acetone of 1:4 for H-BEA. Within the zeolite materials, MFI zeolite showed 80%, which is a lower catalytic activity in comparison with amberlyst, but with almost 100% selectivity. The lower conversion is due to the relatively narrow channel size that affects the transport of the reactant carried out and the shape selectivity. 2. Glycerol-to-Solketal Over Resin Catalysts Overall, the most important properties of solid acid catalysts for the conversion glycerol to solketal production was the Brønsted acidity of solid acids [31]. The conversion of glycerol to solketal with resin catalysts has been carried out [32,33,34,35,36]. Table 3 summarizes the conversion of glycerol to solketal over resin catalysts. A typical resin catalyst (i.e., amberlyst) catalyzed the reaction of glycerol with acetone to produce above 80% of the glycerol conversion. Guidi et al. [36] reported that a resin, amberlyst-36, which was applied at different reaction temperatures from 25 to 70 °C, was an excellent catalyst to convert glycerol with a conversion of 85% to 97% to solketal with a selectivity of 99%. The catalyst is also active at lower pressures with similar reaction parameters either in pure glycerol or in an equimolar reactant. According to some references, the high conversion was influenced not only by the surface acidity but also by the resin structure. Moreover, the surface acidity was an important parameter that played a crucial role in improving the selectivity and the conversion in the production of solketal. Although amberlyst-46 and amberlyst-36 is a similar material, both types of resins have a different acid capacity and structure morphology. Furthermore, all resins showed good selectivity to solketal (>80%), and the important catalytic parameter of the resin to conversion glycerol is the acid capacity (oversulfonated resin). With the highest acid capacity (sulfonic acid), these catalyst materials can improve not only the selectivity to solketal production but also the conversion of raw glycerol to above 90%. Another important thing to be highlighted as a limitation of the catalyst activity is the presence of NaCl as a poison for the surface acidity, which is possibly due to the impurities in glycerol. Table 3. Glycerol-to-solketal over resin catalysts. Table 3. Glycerol-to-Solketal over Mesoporous Silica Koranyi et al. [37] reported the superiority of hafnium and zirconium modified TUD-1 as superior catalysts for the conversion of glycerol to solketal. These two catalysts (Hf-TUD-1 and Zr-TUD-1) were more active than Sn-MCM-41 and Al-TUD-1. The Zr and Hf-TUD-1 are examples of active metal-modified mesoporous silica in which Hf and Zr are in the framework. Their activity was higher than FAU(USY) and Al(TUD-1). The highest conversion of glycerol to solketal was more than 50%. The catalytic activity was a function of (i) the number of acid sites, (ii) the presence of mesopores, (iii) the existence of a large surface area, and (iv) the hydrophobicity of the catalyst [38]. The later, the hydrophobicity of the catalyst, was crucial to prevent the hydrolysis of solketal [37,38,39,40,41]. According to Table 4, Cs 2.5/KIT-6 catalyst was one of the best catalysts for the conversion of glycero-to-solketal [42]. KIT-6 was selected because of its large surface area (600-1000 m2/g), active sites, and accessible pores [42]. Table 4. Glycerol-to-solketal over mesoporous silica. Numerous references reported that mesoporous silica catalysts have the advantage of high stability in the conversion of glycerol to solketal, resulting in products with a relatively large percentage of conversion (95%) and selectivity to solketal (98%) [37,42,43,44,45,46]. The mesoporous structure with an activated surface by sulfonic acid might be applied efficiently for the conversion of glycerol to fuel additive [37,43,47]. A sulfonic acid-functionalized mesoporous polymer (MP-SO3H) contains a high acidity surface (1.88 mmol/g). The surface acidity of catalytic materials can accelerate the formation products of solketal via ketalization reactions as shown in Figure 2. Energies 12 02872 g002 550Figure 2. Scheme of mechanism for the ketalization reaction of glycerol and acetone. 4. Ketalization of Glycerol over Clay Minerals Malaya et al. [17,48] studied different clay-based catalysts with different acid strengths ranging from 0.12 to 5.7 meq/g [17]. The results show that a stronger acidity improved the conversion of glycerol up to ca. 80%. As shown in Table 5, solketal production from glycerol used two different sources, namely acetone or formaldehyde over solid acid catalysts [49,50,51,52]. Based on the conversion of glycerol and selectivity to solketal, the clay catalyst which showed the optimum results was reported by Timofeeva et al. in a batch reactor with activated catalyst by nitric acid of 0.5 M [53]. In the activated K10 montmorillonite by acid solution, this impact causes an increasing rate of reaction with the acid site of the material. It is well-known that the acid activation of natural montmorillonite with nitric acid can change the structure of montmorillonite (leaching of Al3+ cations from the octahedral to increase the surface area and microporosity of catalyst materials) [54,55,56]. The reaction of solketal production is shown in Figure 3. The use of formaldehyde as the major source of solketal production has a lower conversion value (only 83% glycerol conversion), with the K10 montmorillonite used as a catalyst. It may be due to the formation of the hemiacetal or hemicetal via two different pathways. The reaction between glycerol and acetone is preferred as it produces a more stable intermediate, hemicetal compound, with a tertiary carbenium ion [37]. While, in the reaction between glycerol with formaldehyde, the produced hemiacetal formation is not a stable carbenium ion. Thus, the conversion value for the glycerol-formaldehyde system is relatively small as compared to the reaction where acetone is used as a co-reactant [57,58,59]. Energies 12 02872 g003 550Figure 3. Synthesis scheme of glycerol to solketal. Table 5. Glycerol-to-solketal over clay minerals. Koranyi et al. (2012) [37] reported the effect of water as an impurity in the acetalization of glycerol. The presence of water reduced the activity ca. 50% lower than the one with the model compound (pure glycerol). A high number of Brønsted and Lewis sites does not correspond directly to a high activity. Dealumination FAU and Al-TUD-1 with a high Brønsted and Lewis acidity were poor in the acetalization of glycerol [37]. Hydrophobic catalysts, such as hafnium and TUD-1 zirconium on TUD-1, are very prospective for glycerol to solketal. Ammaji et al. (2017) [62] also reported a similar observation, as the Zr-SBA-15 was the most active and selective catalyst. 5. Perspective on Ketalization of Glycerol over Hierarchical Zeolites Dmitriev et al. (2016) [63] reported that zeolite beta was the most active solid acid catalyst as compared to amberlist-35 and cation-exchange resin (KU-2-8) [62]. The zeolite beta applied was a commercial one from zeolyst with SiO2/Al2O3 of 25 and a zeolite beta made by Angarsk. Kowalska et al. [64,65] studied the effect of (i) different zeolite topologies (MFI, BEA, and MOR), (ii) Si/Al ratio from 9.2 to 25.8, and (iii) mesoporosity. Two parent MFI zeolites with different Si/Al were applied (Si/Al = 12 and Si/Al = 27) [64]. The hierarchical zeolites were obtained by desilication using 0.2 M NaOH and dealumination using citric acid (0.5 M) and nitric acid (0.5 M). The diffusion limitation of the parent zeolites was considered as the highest activity of the parent MFI was significantly lower than the one from the hierarchical MFI. A high selectivity (up to 100%) to solketal was obtained with an acetone:glycerol ratio of 1. A higher acetone to glycerol ratio was obtained over a higher acetone to glycerol ratio. Both desilication and dealumination are very effective in improving the catalyst stability of zeolite based catalyst [66,67,68]. Rossa et al. [69] conducted the kinetics study of acetalization of glycerol with acetone to produce solketal with optimization of the kinetics parameters. Zeolite beta with an Si/Al of 19 was applied to find the best parameters: (i) External mass transfer (stirring rate), (ii) temperature, (iii) catalyst amount, and (iv) glycerol to acetone ratio. The targeted goals were glycerol conversion and solketal selectivity. The experimental design for beta zeolite showed that the suggested reaction parameters are: Temperature at 60 °C, stirring rate of 700 rpm, catalyst loading of 5%, and glycerol to acetone ratio of 1:3. A higher acetone content will increase the conversion of glycerol [24,70]. However, an increase of the acetone to glycerol ratio will increase the exergy destruction rate due to a reduction in the rate of formation toward the product and a higher consumption of electrical exergy to the acetalization reactor [20,71,72,73,74,75,76,77,78,79,80]. Hierarchical zeolite shows excellent glycerol conversion and selectivity to solketal through acetalization reactions. The catalytic materials show a higher glycerol conversion (until more than an 80% glycerol conversion) as compared to other porous and non-porous catalysts due to a large pore size and easy molecular diffusivity. The enhancement of the catalytic activity of zeolites in glycerol acetalization, through the generation of a hierarchical porosity, has been applied by different authors as shown in Table 6. Based on the literature, the crystallite size was one of the most determining factors in the activity of hierarchical zeolite as a catalyst [64,81,82,83,84,85]. The smaller the crystal size of zeolite, the easier the diffusion of the reactant and products though the zeolite pores [73,86,87]. The pore structure of the zeolite can be changed through the dealumination and desilication processes. The process not only can change the mesopore materials but also can increase the catalytic activity (improving the accessibility and mass transfer on the surface) [88]. Hierarchical zeolites with different topologies, such as ZSM-5 (MFI) [67,89,90], beta (BEA) [81,91,92], and Y (FAU) [64], have also been used in the acetalization of glycerol, and the results show that smaller pores can produce high glycerol conversion and selectivity to selectivity (almost 100% selective for solketal formation). However, overall, all materials displayed very good catalytic performance when reacting equimolar mixtures of glycerol and acetone [37,39]. From the experiments on H-beta zeolite, it was found that dealumination resulted in a decrease of strong acid sites, thus decreasing the catalytic activity. Table 6. Glycerol-to-solketal over hierarchical zeolite catalysts. 6. Solketal Synthesis over Carbon/Activated Carbon-Based Catalyst Considering the abundant source of biomass as carbon and activated-carbon precursor, activated carbons were functionalized with acid groups for solketal synthesis [93,94]. Some papers showed the excellent performance of activated carbon for catalyzing the conversion of glycerol to solketal (Table 7) and some of these exhibited a high activity and selectivity under green conditions (solvent-free conditions at a mild temperature). The high surface area of activated carbon preserves the higher surface acid sites by some modification, including acid, metal, and composite modifications [24,95,96,97]. Therefore, they are promising candidates as heterogeneous catalysts for the acetalization of acetone with glycerol. From the utilization of acid functionalized activated carbon, the superior catalytic activity of the four acid-treated carbons was underlined as compared to the untreated activated carbon, confirming the importance of the higher number and strength of acid sites generated by the acid treatments. The catalysts were prepared by HNO3 and H2SO4 treatment to activated carbon. The catalytic activity of the catalyst showed excellent performance due to the high conversion and selectivity at room temperature. Table 7. Glycerol-to-solketal over carbon/activated carbon-based catalyst. From the acid-modified carbon catalyst, it was found that the presence of acid groups, mainly sulfonic groups, was the key factor for the improved catalytic performance. A similar pattern also appeared from the Ni-Zr support on the activated carbon [100], in which the active metal contributes by enhancing the catalyst acidity. Another factor affecting the catalytic activity was the higher total acid density, the large mesopore of the carbon structure, and the activity of the metals. 7. Perspective and Conclusions This mini review highlighted the recent development on solid catalysts for the conversion of glycerol-to-solketal. The product is an additive for fuels, which are very useful to reduce GHGs and to improve the economic viability of biodiesel business [6,8,16,20,34,101,102,103,104,105]. Tailor-made heterogeneous catalyst for an optimal conversion of glycerol is developed and required. Five major heterogeneous catalysts were emphasized in this study: Resins, mesoporous silica, zeolites, clays, and activated carbons. The stability of catalysts is one of the main hurdles for the commercialization of glycerol to solketal. Even though the reaction temperature was considered as mild, the stability of most of the solid catalysts decayed in the presence of water as a byproduct and other impurities (NaCl, methanol) from the glycerol source. The deactivation rate is even higher when the raw glycerol (contaminated with water) was fed to the reactor [106,107,108,109]. Therefore, the viability of the commercial plant depends on (i) the source of feeds [110], (ii) availability of glycerol and other feeds, and (iii) cost of glycerol as the feed. Acidity is agreed as an important properties of zeolite catalysts for glycerol to solketal. Strong acidity and medium hydrophobicity were expected in the design of the reactor. Based on some limitations of the catalyst performance, the utilization of raw glycerol directly will reduce the stability of the catalyst. This review described how a better material should be designed for the optimum conversion of glycerol (and generally polyol) to solketal. Hydrophobic catalysts, such as hafnium/TUD-1 and zirconium/TUD-1, are very prospective for glycerol to solketal. Extended works on low aluminum mesoporous silica materials are expected in the coming years. Conflicts of Interest The authors declare no conflict of interest. Solketal is a protected form of glycerol with an isopropylidene acetal group joining two neighboring hydroxyl groups. Solketal contains a chiral center on the center carbon of the glycerol backbone, and so can be purchased as either the racemate or as one of the two enantiomers. Solketal has been used extensively in the synthesis of mono-, di- and triglycerides by ester bond formation. The free hydroxyl groups of solketal can be esterified with a carboxylic acid to form the protected monoglyceride, where the isopropylene group can then be removed using an acid catalyst in aqueous or alcoholic medium. The unprotected diol can then be esterified further to form either the di- or triglyceride. Due to the high growth of biodiesel production, glycerol, a major by-product from transesterification, is also produced at the same growing rate, resulting in its oversupply. This situation brings the price of glycerol to drop dramatically. Solketal, a derivative from glycerol, can be utilized by blending with gasoline or biodiesel as an additive. This work studies the synthesis of solketal from glycerol and acetone using homogeneous acid catalyst. The reaction progresses successfully when using the acetone in excess. Subsequently, the prepared solketal is used for synthesizing benzyl solketal ether by performing reaction with benzyl alcohol. However, several other products such as benzyl glycerol ether, dibenzyl ether and glycerol are formed. It was found that the high ratio of solketal to benzyl alcohol is required to increase selectivity toward benzyl solketal ether. In the first generation biodiesel production, triglyceride from vegetable oil and methanol are reacted by transesterification reaction to produce fatty acid methyl ester or biodiesel and also obtain glycerol as an unavoidable by-product. Since the production of biodiesel has been increasing rapidly, this causes the glycerol obtained as a by-product to be oversupplied, leading to the price drop of glycerol. Therefore, finding the way to utilize glycerol is suggested to help the overall economic of biodiesel production. Solketal is a derivative which the two adjacent hydroxyl groups of glycerol are reacted via condensation acetone [1]. Solketal can be blended for fuel additives in gasoline [2] or biodiesel [3]. Nowadays solketal can be produced by condensation reaction of glycerol and acetone with acid catalyst [2]. The interesting derivative from solketal is benzyl solketal ether. Benzyl solketal ether is the oxygenated compound and also can be use for fuel additives. Currently, benzyl solketal ether was produced by organic synthesis. In this organic synthesis, solketal is reacted with benzyl chloride with solvents [4]. The problem is using a lot of solvents in the synthesis of benzyl solketal ether. The purpose of this work is divided into two parts. First is the solketal production from glycerol and acetone. Subsequently, the synthesis of benzyl solketal ether from solketal and benzyl alcohol is investigated in the system without solvent. The effect of molar ratio is studied in this part and the optimum condition to produce benzyl solketal ether is investigated. Glycerol and acetone are the raw materials used for producing solketal by condensation reaction. Solketal or isopropylidene glycerol contains the center of glycerol backbone which an isopropylidene group bound to two neighboring hydroxyl group as shown in Fig. 1. Benzyl solketal ether is derived from etherification between solketal and benzyl alcohol (Fig. 3). Benzyl solketal ether can be used as fuel additive. Moreover benzyl solketal ether can be deprotected to obtained benzyl glycerol ether with the ether group at D position of glycerol. In general, benzyl solketal ether is synthesized by reacting benzyl chrolide or benzyl bromide and solketal with solvent [5]. But there are many disadvantages from this organics synthesis for example: a lot of waste from used solvent. In this work, the etherification reaction between solketal and benzyl alcohol without solvent is investigated. However, there were several by-products, which are glycerol, acetone, benzyl solketal ether, benzyl glycerol ether and dibenzyl ether. Fig. 3 is shown the possible reactions and products from reaction of solketal and benzyl alcohol. The main reaction is the reaction between solketal and benzyl alcohol to produce benzyl solketal ether and water (Fig. 3 (1)). From the acid catalyst, solketal could be able to be decomposed to produce acetone and glycerol (Fig. 3 (2)). Benzyl alcohol is also reacted with each other to produce dibenzyl ether and water (Fig. 3 (3)). Glycerol from the deprotection is able to react with benzyl alcohol to produce benzyl glycerol ether (Fig. 3 (4)). Fortunately, the di- and tri- benzyl glycerol ether are not observed from the GC×GC time of flight mass spectroscopy. In this case, glycerol reacted with acetone back to produce solketal to protected glycerol before reacted with other benzyl alcohol. The last suggested reaction is benzyl solketal ether is depotected by the water in the system to produce benzyl glycerol ether (Fig. 3 (5)). The solketal to benzyl alcohol molar ratio is first set at 1:1 solketal to benzyl alcohol molar ratio. Fig. 4 shows the relationships between benzyl alcohol conversion, selectivity and time. As observed, after 2 hours, the benzyl alcohol quickly converts to 57.5% conversion and then continuously converts to 92.9% after 12 hours. The selectivity of dibenzyl ether is very high at 2 hour (59.
SOLUBLE COLLAGEN
SOLUBLE KERATIN Nom INCI : SOLUBLE KERATIN Ses fonctions (INCI) Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
SOLUBLE KERATIN
POTASSIUM SORBATE, N° CAS : 24634-61-5 / 590-00-1 - Sorbate de Potassium. Origine(s) : Synthétique. Autres langues : Kaliumsorbat, Sorbato de potasio, Sorbato di potassio, Nom INCI : POTASSIUM SORBATE. Nom chimique : Potassium (E,E)-hexa-2,4-dienoate. N° EINECS/ELINCS : 246-376-1 / -. Additif alimentaire : E202. Classification : Règlementé, Conservateur. Compatible Bio (Référentiel COSMOS). Le sorbate de potassium est utilisé en cosmétique en tant que conservateur. On le retrouve assez souvent en alimentaire (E202) dans les produits laitiers (yaourts, fromages...). Ce sel de potassium de l'acide sorbique est présent à l'état naturel dans le Sorbier. Il est autorisé en Bio.Ses fonctions (INCI): Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : 2,4-HEXADIENOIC ACID POTASSIUM SALT; 2,4-HEXADIENOIC ACID, (E,E')-, POTASSIUM SALT; 2,4-HEXADIENOIC ACID, POTASSIUM SALT, (E,E)-; HEXADIENOATE-2,4 DE POTASSIUM; HEXADIENOATE-2,4 DE POTASSIUM (TRANS, TRANS-); POTASSIUM (E,E)-2,4-HEXADIENOATE; POTASSIUM 2,4-HEXADIENOATE; Sorbate de potassium; TRANS,TRANS-2,4-HEXADIENOIC ACID, POTASSIUM SALT. Noms anglais : POTASSIUM (E,E')-SORBATE; POTASSIUM SORBATE; SORBIC ACID POTASSIUM SALT; SORBIC ACID, POTASSIUM SALT. Utilisation et sources d'émission: Agent de préservation alimentaire, ingrédient cosmétique; 2,4-Hexadienoic acid, potassium salt, (2E,4E)- potassium (E,E)-hexa-2,4- dienoate; Potassium (E,E)-hexa-2,4-dienoate; Potassium sorbate. Translated names : (E,E)-esa-2,4-dienoato di potassio (Sorbato di potassio) (it); (E,E)-heksa-2,4-dienonian potasu (sorbinian potasu) (pl); (E,E)-hexa-2,4-dienoato de etilo (sorbato de potássio) (pt); (E,E)-Hexa-2,4-dienoato de potasio (sorbato de potasio) (es); (E,E)-hexa-2,4-diénoate de potassium (sorbate de potassium) (fr); (E,E)-εξα-2,4-διενοϊκό κάλιο (σορβικό κάλιο) (el); Kaalium-(E,E)-heksa-2,4-dienaat (kaaliumsorbaat) (et); Kalijev (E, E)-heksa-2,4-dienoat (kalijev sorbat) (hr) ; kalijev (E,E)-heksa-2,4-dienoat (cs); Kalijev (E,E)-heksa-2,4-dienoat (kalijev sorbat) (sl); Kalio (E,E)-heksa-2,4-dienoatas (kalio sorbatas) (lt); Kalium-(E,E)-heksa-2,4-dienoaatti (kaliumsorbaatti) (fi); Kalium-(E,E)-hexa-2,4-dienoaat (kaliumsorbaat) (nl); kalium-(E,E)-hexa-2,4-dienoat (kaliumsorbat) (da); kalium-(E,E)-hexa-2,4-dienoát (sorbát draselný) (cs); kálium-(E,E)-hexa-2,4-dienoát (sorban draselný) (sk); Kálium-(E,E)-hexa.2,4-dieonát (Kálium-szorbát) (hu); Kālija (E,E)-heksa-2,4-diēnoāts (kālija sorbāts) (lv); Potasiu (E,E)-hexa-2,4-dienoat (Sorbat de potasiu) (ro); Potassium (E,E)-hexa-2,4-dienoate (Potassium Sorbate) (mt); Калиев (E,E)-хекса-2,4-диеноат (калиев сорбат) (bg). CAS names: 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- . : (2E,4E)-2,4-Hexadiénoate de potassium; 2,4-Hexadienoic acid potassium salt (E,E); 2,4-Hexadienoic acid potassium salt, (E,E)-; 2,4-Hexadienoic acid, potassium salt, (E,E)- ; Kalium (2E,4E) - hexa-2,4-dienoate; POTASSIUM (2E, 4E)-HEXA-2,4-DIENOATE; Potassium (2E,4E)-hexa-2,4-2,4-dienoate; Potassium (2E,4E)-hexa-2,4-dienoate; Potassium (E,E) hesa-2,4-dienoate (CAS 24634-61-5); potassium (E,E)-Exa-2,4-dienoate; Potassium (E,E)-sorbate; potassium E,E)-hexa2,4-dienoate; potassium hexa-2,4-dienoate; Potassium-2,4-hexadienoate ; Szorbinsav kálium só, Potassium sorbate; (2E,4E)-2,4-Hexadiénoate de potassium [French] [ACD/IUPAC Name]; 1VPU26JZZ4; 2,4-Hexadienoic acid potassium salt; 2,4-Hexadienoic acid, (E,E)-, potassium salt; 2,4-Hexadienoic acid, potassium salt; 2,4-Hexadienoic acid, potassium salt, (2E,4E)-; 2,4-Hexadienoic acid, potassium salt, (2E,4E)- (1:1) [ACD/Index Name]; 24634-61-5 [RN] 246-376-1 [EINECS]; 5357554; Kalium-(2E,4E)-2,4-hexadienoat [German] ; MFCD00016546 [MDL number]; Potassium (2E,4E)-2,4-hexadienoate [ACD/IUPAC Name]; Potassium (2E,4E)-hexa-2,4-dienoate; Potassium (E,E)-2,4-hexadienoate; Potassium (E,E)-hexa-2,4-dienoate; Potassium (E,E)-sorbate; Potassium sorbate; sorbic acid potassium salt; Sorbic acid, potassium salt ; Sorbic acid, potassium salt, (E,E)-; trans,trans-2,4-Hexadienoic acid potassium salt; WG2170000; "POTASSIUM HEXA-2,4-DIENOATE"; (2E,4E)-2,4-Hexadienoic acid, potassium salt ; [24634-61-5]; 2,4-Hexadienoic acid, potassium salt, (E,E)- (9CI); EINECS 246-376-1; Potassium [ACD/Index Name] [ACD/IUPAC Name]; Potassium (E,E')-sorbate; Potassium 2,4-hexadienoate, (E,E)-; potassium and (2E,4E)-hexa-2,4-dienoate; potassium hexa-2,4-dienoate; Potassium sorbate (E); potassium trans,trans-2,4-hexadienoate; potassium trans,trans-sorbate; potassium;(2E,4E)-hexa-2,4-dienoate; Sorbistat potassium; Sorbistat-K; Sorbistat-potassium; trans-trans-Sorbic acid potassium; trans-trans-Sorbic acid potassium salt; UNII:1VPU26JZZ4; UNII-1VPU26JZZ4; 山梨酸钾 [Chinese]
Sorbate de Potassium ( POTASSIUM SORBATE)
SORBETH-20 N° CAS : 53694-15-8 Nom INCI : SORBETH-20 Classification : Composé éthoxylé Ses fonctions (INCI) Solvant : Dissout d'autres substances Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SORBETH-20
SORBETH-30 N° CAS : 53694-15-8 Nom INCI : SORBETH-30 Classification : Composé éthoxylé Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Solvant : Dissout d'autres substances Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
SORBETH-30
cas no 110-44-1 (E,E)-2,4-Hexadienoic acid; 2-Propenylacrylic acid; alpha-trans-gamma-trans-Sorbic acid; trans,trans-Sorbic acid; Preservastat; Sorbistat; Hexadienoic acid; 1,3-Pentadiene-1-carboxylic acid; Panosorb; (2-Butenylidene)acetic acid; Crotylidene acetic acid; Acide sorbique; Kyselina 1,3-Pentadien-1-karboxylova; Kyselina sorbova; Hexa-2,4-dienoic acid
SORBIC ACID
IUPAC name: (2E,4E)-Hexa-2,4-dienoic acid
CAS Number: 110-44-1
EC Number: 203-768-7
Chemical formula: C6H8O2
Molar mass: 112.128 g


Sorbic acid, or 2,4-hexadienoic acid, is a natural organic compound used as a food preservative.
Sorbic acid has the chemical formula CH3(CH)4CO2H. Sorbic acid is a colourless solid that is slightly soluble in water and sublimes readily.
Sorbic acid was first isolated from the unripe berries of the Sorbus aucuparia (rowan tree), hence its name.

Production
The traditional route to sorbic acid involves condensation of malonic acid and trans-butenal.
Sorbic acid can also be prepared from isomeric hexadienoic acids, which are available via a nickel-catalyzed reaction of allyl chloride, acetylene, and carbon monoxide.
The route used commercially, however, is from crotonaldehyde and ketene.
An estimated 30,000 tons are produced annually.

History
Sorbic acid was isolated in 1859 by distillation of rowanberry oil by A. W. von Hofmann.
This affords parasorbic acid, the lactone of sorbic acid, which he converted to sorbic acid by hydrolysis.
Sorbic acid's antimicrobial activities were discovered in the late 1930s and 1940s, and it became commercially available in the late 1940s and 1950s.
Beginning in the 1980s, sorbic acid and its salts were used as inhibitors of Clostridium botulinum in meat products to replace the use of nitrites, which can produce carcinogenic nitrosamines.

Properties and uses
With a pKa of 4.76, it is about as acidic as acetic acid.

Sorbic acid and its salts, such as sodium sorbate, potassium sorbate, and calcium sorbate, are antimicrobial agents often used as preservatives in food and drinks to prevent the growth of mold, yeast, and fungi.
In general the salts are preferred over the acid form because they are more soluble in water, but the active form is the acid.

The optimal pH for the antimicrobial activity is below pH 6.5. Sorbates are generally used at concentrations of 0.025% to 0.10%. Adding sorbate salts to food will, however, raise the pH of the food slightly so the pH may need to be adjusted to assure safety.
Sorbic acid is found in foods such as cheeses and breads.

The E numbers are:

E200 Sorbic acid
E201 Sodium sorbate
E202 Potassium sorbate
E203 Calcium sorbate
Some molds (notably some Trichoderma and Penicillium strains) and yeasts are able to detoxify sorbates by decarboxylation, producing trans-1,3-pentadiene.
The pentadiene manifests as a typical odor of kerosene or petroleum.
Other detoxification reactions include reduction to 4-hexenol and 4-hexenoic acid.

Sorbic acid can also be used as an additive for cold rubber, and as an intermediate in the manufacture of some plasticizers and lubricants.

Density: 1.204 g/cm3
Melting point: 135 °C (275 °F; 408 K)
Boiling point: 228 °C (442 °F; 501 K)
Solubility in water: 1.6 g/L at 20 °C
Acidity (pKa): 4.76 at 25 °C
XLogP3: 1.3
Hydrogen Bond Donor Count: 1
Hydrogen Bond Acceptor Count: 2
Rotatable Bond Count: 2
Exact Mass: 112.052429494
Monoisotopic Mass: 112.052429494
Topological Polar Surface Area: 37.3 Ų
Heavy Atom Count: 8
Complexity: 123
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 2
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes

Sorbic acid is a hexadienoic acid with double bonds at C-2 and C-4; it has four geometrical isomers, of which the trans,trans-form is naturally occurring.
Sorbic acid is a hexadienoic acid, a polyunsaturated fatty acid, a medium-chain fatty acid and an alpha,beta-unsaturated monocarboxylic acid.
Sorbic acid is a conjugate acid of a sorbate.

Sorbic acid is a naturally occurring compound that’s become the most commonly used food preservative in the world, and it makes the global food chain possible.
Sorbic acid’s highly effective at inhibiting the growth of mold, which can spoil food and spread fatal diseases.

For example, when sorbic acid is sprayed on the exterior of a country ham, there won’t be any mold growth for 30 days.
This allows for food to be shipped and stored all over the globe.

Sorbic acid is a preferred preservative compared to nitrates, which can form carcinogenic byproducts.
Sorbic acid’s applied to food by either spraying or dipping the food with a solution of sorbic acid and water.

Sorbic acid is most commonly found in foods, animal feeds, pharmaceutical drugs, and cosmetics.

When it comes to human foods, sorbic acid is most commonly used in:
wines
cheeses
baked goods
fresh produce
refrigerated meat and shellfish

Sorbic acid is used to preserve meats because of its natural antibiotic capabilities.
In fact, its earliest use was against one of the deadliest toxins known to mankind, the bacteria Clostridium botulinum, which can cause botulism. Sorbic acids use saved countless lives by preventing bacterial growth while allowing meats to be transported and stored safely.

Because of its anti-fungal properties, sorbic acid is also used in canned goods, including pickles, prunes, maraschino cherries, figs, and prepared salads.

Sorbic acid and its calcium, potassium, and sodium salts are used as preservatives in a wide range of food, including dairy, meat, fish, vegetables, fruit, bakery, emulsions, beverages, and so on.

Sorbic acid and its potassium salt are widely used antimicrobial preservatives in foods, especially for preventing mold growth on food products.
Sorbates have been infrequently implicated in adverse reactions, especially by the oral route.

Many of the studies on sorbate have the same methodologic flaws as described for tartrazine.
Among 226 patients with chronic urticaria who were challenged with 50 to 200 mg of sorbic acid, none had responses.

Sorbic acid, potassium sorbate, and calcium sorbate are novel, highly efficient, safe, and nonpoisonous food preservatives.
They are the substitute for the benzoic acid as a traditional preservative.

Sorbic acid, potassium sorbate, and calcium sorbate approved worldwide are often now successfully used as standard products in many branches of the food industry.
As they are acidic preservatives, it is better to use them at pH 5–6.

Sorbic acid, potassium sorbate, and calcium sorbate are unsaturated fatty acids and salts of unsaturated fatty acids, which participate in the normal fat metabolism in human body and are oxidized into carbon dioxide and finally water.
They do not accumulate in the human body.

Sorbic acid derives its name from Sorbus aucuparia, because it was from berries of this tree that it was first isolated.
Seventy years later its potential as an antimicrobial agent was discovered, and sorbic acid and its salts (generally called sorbate) are now used as preservatives in a variety of foods in many countries.

Sorbic acid is an unsaturated aliphatic straight-chain monocarboxylic fatty acid, 2,4-hexadienoic acid.
Salts and esters form by reaction with the carboxyl group; reactions also occur via its conjugated double bond.
The acid and its sodium, calcium and potassium salts are used in food.

The potassium salt is commonly used because it is more stable and easier to produce.
Furthermore, its greater solubility extends the use of sorbate to solutions appropriate for dipping and spraying.
Other derivatives with antimicrobial capabilities (sorboyl palmitate, sorbamide, ethyl sorbate, sorbic anhydride) have limited use because they are more insoluble, toxic and unpalatable.

Sorbate has several advantages as a preservative in food.
Initially thought to have only antimycotic activity, it is now known to also inhibit bacteria. Effective concentrations do not normally alter the taste or odour of products.

In addition it has more activity at less acidic values (> pH 6.0) than propionate or benzoate. Sorbate is also considered harmless. Following thorough toxicological testing it was generally recommended as safe (GRAS).

Metabolism of sorbate in the body is by β-oxidation (as for other fatty acids), forming CO2 and water. Sorbic acid has a yield of 28 kJ g−1 (of which 50% is biologically usable) and a half-life in the body of 40–110 min.

Sorbic acids acceptable daily intake (ADI) of 25 mg kg−1 body weight is higher than that of other preservatives.
Sorbic acid is considered less toxic than NaCl, with a median lethal dose (LD50) of 10 g kg−1, compared with 5 g kg−1 for NaCl.

Sorbic acid is the most common food preservative against molds, bacteria, fungi, and yeasts.
Sorbic acid is favored for its organoleptic neutrality, safety, and efficacy in low moisture foods such as cheeses, and bakery.

Sorbic acid is a carboxylic acid that is slightly soluble in water and is available as a powder, granules, or microcapsules.
Sorbic acid can be applied to foods using various methods:

Dipping and spraying finished products with solutions.
Dusting with powdered sorbic acid
Mixing into formula dry ingredients
Treatment of packaging material

Origin
Natural sorbic acid was first isolated in 1859 from unripe berries of the rowan tree (Sorbus aucuparia) in the form of the lactone parasorbic acid which was converted to sorbic acid.

In 1900, this acid was first synthesized from the condensation of crotonaldehyde and malonic acid.
Sorbic acids antimicrobial activity was recognized in the late 1930s.
Sorbic acids proven efficacy in treating meats against the bacteria Clostridium botulinum in meats encourage its large scale production in the 1950’s.

Commercial Production
Several routes are known for the commercial production mainly the reaction of crotonaldehyde and ketene.

Alternate methods include the condensation of malonic acid and trans-butenal or derivation from isomeric hexadienoic acids produced by catalytic reactions of allyl chloride, acetylene and carbon monoxide.
Powdered acid can be granulated via extrusion or pelletization to enhance its solubility.

Function
Microbial inhibition by sorbic acid is variable and depends on species, strains, composition of food, pH, aw, processing, temperature, and concentration of sorbate.
In baking, it is used in sliced and packaged bread, bagels and pita as well as in par-baked, baked goods and frozen doughs.

Optimal antimicrobial activity is at pH below 6.5 (maximum activity at pH 4.76), an advantage compared to benzoic and propionic acids which lose their activities at pH 4.5 – 5.5.

Practical considerations when using this acid in baking:

Sorbic acid has a water solubility of around 0.16g/100 ml which increases with temperature but is reduced in the presence of sugars.4
This acid inhibits yeasts strains differently, as some strains are more tolerant to its effects than others.
Sodium sorbate, calcium sorbate, and potassium sorbates are more soluble in water than sorbic acid. So, they are more commonly used in foods.
However, they may raise the pH slightly, therefore some medium adjustments may be necessary.

Sorbic acid, is a reliable preservative that is highly effective and absolutely safe for the consumer.
Sorbic acid provides strong protection against numerous molds, yeast and many bacteria.
Growth of several mycotoxin-forming molds is also inhibited.
Sorbic acid is a fatty acid similar to those found naturally in foods.

Sorbic acid is only sparingly soluble in water.
Therefore, sorbic acid is mainly used in products with low water content e.g., in baked goods or in fatty media.
Upon request, Nutrinova Sorbic Acid is available in pharmaceutical grade.

Advantages at a glance:

outstanding mold and yeast protection
purity and quality exceed the highest international requirements
excellent storage stability
neutral taste and odor
easy and economical to use
fully degradable, similar to fatty acids found naturally in foods

The antimicrobial action of sorbic acid, first manufactured by Hofmann from rowan berry oil in 1859, was discovered in Germany by Muller in 1939 and inde- pendently, a few months later, by Gooding in the USA.

Sorbic acid first became available from industrial production in the mid-1950s and has since been used to a growing extent for food preservation throughout the world.
Sorbic acid is now increasingly preferred to other preservatives because of its physiological harmlessness and organoleptic neutrality.

Available Forms, Derivatives
Sorbic acid is used both as a free acid and as its potassium and calcium salts in various forms (powder, granules, solutions).
The esters of sorbic acid with low aliphatic alcohols, which likewise have a preservative action, are of no importance as food preservatives, owing to their powerful self-odor.

Properties
CH3-CH=CH-CH=CH-COOH, molar mass 112.13, white monoclinic crystals with a faint specific odor and sour taste which melt at 132 to 135°C. At room tempera- ture 0.16 g sorbic acid dissolve in 100 g water and 0.07 g in 100 g 10% sodium chloride solution.
Some 13 g sorbic acid dissolve in 100 g anhydrous ethanol or in 100 g glacial acetic acid.

Sorbic acids solubility in fatty oils is 0.5 to 1g per 100 g, depending on the type of oil in question.
Potassium sorbate, molar mass 150.22, white powder or granules.
The most readily soluble of the sorbates.
At room temperature, 138 g potassium sorbate dissolves in 100 g water.

Up to 54 g potassium sorbate dissolves in 100 g 10% sodium chlo- ride solution.
Calcium sorbate, white, odorless and tasteless powder resembling talcum.
Solubility in water 1.2 g/100 g.

In solid form, sorbic acid, potassium sorbate and especially calcium sorbate are very stable, despite the two double bonds in the molecule.
In solutions, the pre- sence of oxygen causes oxidative degradation which may result in brown dis- coloration (Thakur et al. 1994).

In commercial food preservation this is of no importance, since treated foods are generally consumed before any appreciable degradation occurs. Many other food ingredients, e. g. fat and flavorings, are in any case much more sensitive to oxidation than sorbic acid.

Analysis
Because of its volatility in steam, sorbic acid can be quantitatively isolated by acid steam distillation from the food to be investigated.
The criterion used for qualita- tive detection and quantitative determination is the red coloration that sorbic acid produces with 2-thiobarbituric acid after oxidation with potassium dichromate (Schmidt 1960).

As a polyunsaturated compound, sorbic acid displays a pronounc- ed absorption maximum at some 260 nm (depending on the pH of the solution), which can be likewise used for quantitative determination (Luckmann and Mel- nick 1955).
HPLC has emerged as the preferred method for determining sorbic acid and is sometimes used in multimethods, which can be employed for detecting benzoic acid, salicylic acid, parabens and sorbic acid simultaneously.

In most cases RP-18 phases are used as stationary phases, with UV detection at wavelengths of 230 nm.
Methods have been published both for detecting sorbic acid in foods in general (Bui and Kooper 1987, Hagenauer-Hener et al. 1990, Reifschneider et al. 1994) and for detecting sorbates and other preservatives specifically in cheese (Kuppers 1988), yogurt (Olea Serrano et al. 1991), fruit juices (Kantasubrata and Imamkhasani 1991) and wine (Flak and Schaber 1988).

Standardized methods of detecting sorbates (GC, TLC and HPLC) have been published in the revised edition of the Swiss Foodstuffs Manual (1992).
There is also a method for detecting them in liquid tabletop sweeteners in accordance with § 35 of the Federal German food law (1.57.22.99).

Rather unconventional techni- ques of detecting sorbic acid by ion chromatography or capillary isotachophore- sis (Karovicova et al. 1991) have not so far become established in routine use. X-ray structural analysis of sorbic acid has also been described (Cox 1994).

Production
Nowadays the only industrial production method used for sorbic acid is that em- ploying ketene and crotonaldehyde.
A polymeric ester forms as an intermediate (Luck 1993).
The production of sorbic acid by the oxidation of 2,4-hexadienal has ceased to be of any significance.

Sorbic acid, an unsaturated six-carbon fatty acid, is a naturally occurring preservative that is used less in food compared to its potassium salt – potassium sorbate (E202) due to the slight solubility in water.
This ingredient can be used in low water content food such as baked goods, cheese, dried fruits, meat and fatty media.

Sorbic acid is generally used to inhibit the growth of molds (also mycotoxin-forming molds), yeast and some bacteria.
The European food additive number for it is E200.

Sorbic acid is commercially synthesized from the condensation between ketene and crotonaldehyde instead of extracted from berries.
The manufacturing process is described in the first three steps of production of potassium sorbate.

The bacteriostatic or bactericidal mechanism of sorbic acid are the same as that of potassium sorbate.
When added to water, potassium sorbate dissociates into sorbic acid and potassium ions.
Sorbic acid is the sorbic acid that is active as an antimicrobial preservative.

Like benzoic acid, sorbic acid is a lipid-soluble weak acid that:

enters into the cell of microbial through the cell membrane
then accumulates and finally influences the internal PH of microbial
eventually disrupts its transport functions and metabolic activity
result in the death of the microbial

Food
Sorbic acid can prevent the spoilage of yeast, mold, and some bacteria in food and therefore prolong food shelf life.
Sorbic acid can be used to preserve foods with low water content and the following food may contain it:

cheese
dried fruit
yogurt
pet foods
dried meats
baked goods.

Solubility

In water
Slightly soluble in water (solubility 0.16 g/100 mL at 20 °C) so it is not suitable to use it in food with much water content.
Generally, it is made into salts form, potassium sorbate, which is the commonly utilized form.

In organic solvent
Soluble in ethanol, ether, propylene glycol, peanut oil, glycerin and glacial acetic acid.

Ph
The antimicrobial activity of sorbic acid generates when it is in the form of a molecule, the condition of undissociated.

The PKa of sorbic acid is 4.76.
That’s to say, its inhibitory activity rises as pH value (below 4.76) decreases as the percentage of the undissociated sorbic acid goes up, this leads to the enhanced antimicrobial activity.

The optimal pH for the antimicrobial activity is from 3.0 to 6.5.

What’re the Uses of Sorbic Acid?
Sorbic acid and potassium sorbate have become the primary preservatives in food application due to its good antimicrobial activity & effectiveness in the weak acid pH range and their safety over benzoic acid and sodium benzoate.

Mostly, it protects food from yeast and mold spoilage and commonly added with usage from 0.025% to 0.10%.

Sorbic acid is a short-chained unsaturated (has double bonds) fatty acid. Sorbic acids iupac name is 2,4 hexadienoic acid and its chemical formula is C6H8O2.
Sorbic acid has a carboxylic tail which has a pKa of 4.76. Sorbic acids melting and boiling points are 136 and 228 degrees Celsius, respectively.

Sorbic acid is commonly used by the food industry as a preservative because its mineral salts have antimicrobial properties in acidic solutions.
Sorbic acids undissociated form is several degrees more antimicrobial then its dissociated form and is a function of pH, yet both have antimicrobial properties.

Sorbic acid is particularly effective against fungi and has the advantage of not diminishing overtime.
Generally, a fungistatic dose in the presence of ethanol and sulfur is roughly 200 mg/L.
Sorbic acid can also be used to remove mineral deposits.
Sorbic acid by itself has subtle sensory characteristics, but a portion of the population finds it particularly offensive.

Sorbic acid (C6H8O2) is a natural preservative that comes from the rowan berries, Sorbus aucuparia (family Rosaceae). Sorbic acid is also prepared synthetically.
Sorbic acid inhibits growth of fungi, yeast, mold and some bacteria and is nearly nontoxic to humans.
Sorbic acid is safe to use in a wide range of foods, drugs, and cosmetic products.
Sorbic acid and its salts, sodium sorbate, potassium sorbate and calcium sorbate are often used in food products as preservatives.

Synonyms:
110-44-1
(2E,4E)-hexa-2,4-dienoic acid
2,4-Hexadienoic acid
2E,4E-Hexadienoic acid
Panosorb
Sorbistat
Hexadienoic acid
2-Propenylacrylic acid
trans,trans-Sorbic acid
2,4-Hexadienoic acid, (2E,4E)-
Hexa-2,4-dienoic acid
(E,E)-2,4-Hexadienoic acid
alpha-trans-gamma-trans-Sorbic acid
Preservastat
(E,E)-Sorbic acid
trans,trans-2,4-Hexadienoic acid
2,4-Hexadienoic acid, (E,E)-
Crotylidene acetic acid
Kyselina sorbova
Acetic acid, crotylidene-
Acidum sorbicum
Acetic acid, (2-butenylidene)-
trans-trans-2,4-Hexadienoic acid
(E,E)-1,3-pentadiene-1-carboxylic acid
(2E,4E)-2,4-Hexadienoic acid
Hexadienoic acid, (E,E)
(2-Butenylidene)acetic acid
C6:2n-2,4
Sorbic acid (NF)
Sorbic acid [NF]
UNII-X045WJ989B
1,3-Pentadiene-1-carboxylic acid
1,3-Pentadiene-1-carboxylic acid, (E,E)-
E 200Kyselina 1,3-pentadien-1-karboxylova
(2-butenylidene) acetic acid
22500-92-1
CHEBI:38358
X045WJ989B
MFCD00002703
NCGC00091737-01
DSSTox_CID_1277
5309-56-8
2,4-Hexadienoic acid, (2E,4E)-, homopolymer
DSSTox_RID_76053
DSSTox_GSID_21277
Hexadienic acid
Caswell No. 801
34344-66-6
CAS-110-44-1
Sorbic acid solution
CCRIS 5748
HSDB 590
(2E)-2,4-Hexadienoic acid
EINECS 203-768-7
Sorbic acid, (E,E)-
EPA Pesticide Chemical Code 075901
Sorbinsaeure
Sorbinsaure
sorbic-acid
NSC49103
AI3-14851
E-sorbic acid
trans,trans-SA
(E,E)-Sorbic acid; Sorbic acid
Sorbic Acid FCC
Hexa-2,4-dienoic acid, (E,E)-
2,4-Hexadiensaeure
NSC 35405
NSC 49103
NSC 50268
Crotylidene-Acetic acid
EC 203-768-7
SCHEMBL1647
Sorbic acid, >=99.0%
91751-55-2
MLS002152937
(2-butenylidene)-Acetic acid
(E,E)-SA
CHEMBL250212
(e,e)-hexa-2,4-dienoic acid
DTXSID3021277
Sorbic acid, analytical standard
CHEBI:35962
FEMA 3921
HMS3039E13
Sorbic acid, potassium salt
HY-N0626
STR09707
ZINC1558385
Tox21_111164
Tox21_201719
Tox21_300182
2,4-SA
LMFA01030100
s4983
(2E,4E)-2,4-Hexadienoic acid #
2, 4-Hexadienoic acid potassium salt
AKOS000119456
CCG-266056
2,4-Hexadienoic acid, >=99%, FCC
.alpha.-trans-.gamma.-trans-Sorbic acid
NCGC00091737-02
NCGC00091737-03
NCGC00091737-05
NCGC00253957-01
NCGC00259268-01
E200
P891
SMR001224532
Sorbic acid, tested according to Ph.Eur.
Sorbic acid, SAJ first grade, >=98.5%
CS-0009618
S0053
Sorbic acid 1000 microg/mL in Acetonitrile
Sorbic acid, Vetec(TM) reagent grade, 98%
Sorbic acid, for synthesis, 99.0-101.0%
alpha-trans-Laquo gammaRaquo -trans-sorbic acid
D05892
Hexadienoic acid1,3-pentadiene-1-carboxylic acid
A829400
AN-651/40229308Q407131
J-002425
J-524281
F8886-8255

SORBITAN CAPRYLATE
SORBITAN COCOATE N° CAS : 68154-36-9 Nom INCI : SORBITAN COCOATE N° EINECS/ELINCS : 268-910-2 Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
SORBITAN COCOATE
SORBITAN DIOLEATE N° CAS : 29116-98-1 Nom INCI : SORBITAN DIOLEATE N° EINECS/ELINCS : 249-448-0 Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
SORBITAN DIOLEATE
SORBITAN DISTEARATE N° CAS : 36521-89-8 Nom INCI : SORBITAN DISTEARATE N° EINECS/ELINCS : 253-084-8 Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau
SORBITAN DISTEARATE
SORBITAN ISOSTEARATE N° CAS : 71902-01-7 Nom INCI : SORBITAN ISOSTEARATE N° EINECS/ELINCS : 276-171-2 Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
SORBITAN ISOSTEARATE
SORBITAN LAURATE; N° CAS : 1338-39-2; Nom INCI : SORBITAN LAURATE; N° EINECS/ELINCS : 215-663-3/931-434-7; Noms français : MONODODECANOATE DE SORBITANNE; MONOLAURATE DE SORBITANNE. Noms anglais : SORBITAN LAURATE; SORBITAN MONOLAURATE; SORBITAN, MONODODECANOATE; SORBITAN, MONOLAURATE. Utilisation et sources d'émission: Agent dispersant. Ses fonctions (INCI): Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). (2R)-2-[(2R,3R,4S)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl dodecanoate; 1,4-anhydro-6-O-dodecanoyl-D-glucitol; Dodecanoic acid [2-[(2R,3R,4S)-3,4-dihydroxy-2-tetrahydrofuranyl]-2-hydroxyethyl] ester; NONION LP-20R; SML; Sorbitan monododecanoate. Trade names; (4ξ)-1,4-Anhydro-6-O-dodecanoyl-D-xylo-hexitol [German] ; (4ξ)-1,4-Anhydro-6-O-dodecanoyl-D-xylo-hexitol [ACD/IUPAC Name]; (4ξ)-1,4-Anhydro-6-O-dodecanoyl-D-xylo-hexitol [French] [ACD/IUPAC Name]; 1338-39-2 [RN]; 5959-89-7 [RN]; D-GLUCITOL, 1,4-ANHYDRO-, 6-DODECANOATE ; D-xylo-Heξtol, 1,4-anhydro-6-O-(1-oxododecyl)-, (4ξ)- [ACD/Index Name]; Sorbitan, monododecanoate; Sorbitan laurate; sorbitan monolaurate
SORBITAN LAURATE (MONOLAURATE DE SORBITANNE )
cas : 1338-39-2, cas : 1338-39-2, Monolaurate de sorbitane, E493, Le monolaurate de sorbitane est un émulsifiant. Il est employé dans le même type de denrées alimentaires que le monostéarate de sorbitane (E491), marmelades et gelées en plus.Exemples de produits d'emploi: Produits laitiers fermentés aromatisés, sauces, produits de boulangerie, confiseries, chewing-gum, crèmes glacées, alimentation destinée à des fins médicales spéciales, produits de régime, levure de boulanger, compléments alimentaires, gelées et marmelades notamment. Sorbitan laurate; Sorbitan monolaurate; Sorbitan, monododecanoate; SML; Sorbitan monododecanoate; Noms français : MONODODECANOATE DE SORBITANNE MONOLAURATE DE SORBITANNE Noms anglais : SORBITAN LAURATE SORBITAN MONOLAURATE SORBITAN, MONODODECANOATE SORBITAN, MONOLAURATE Utilisation et sources d'émission Agent dispersant
SORBITAN MONOLAURATE ( MONOLAURATE DE SORBITAN)
SYNONYMS Sorbitan Monolaurate; Sorbitan Monoldodecanoate;CAS NO. 1338-39-2
SORBITAN MONOLAURATE (SPAN 20)
cas no 1338-43-8 Span 80; Sorbitan, mono-(9Z)-9-octadecenoate; Arlacel 80; 1,4-anhydro-6-O-[(9Z)-octadec-9-enoyl]-D-glucitol;
SORBITAN MONOOLEATE
EC / List no.: 215-665-4; CAS no.: 1338-43-8; Mol. formula: C24H44O6; Sorbitane monooleate, sorbitan oleate, Sorbitan oleate; Span 80; Arlacel 80 Span 80; SORBITAN OLEATE; Sorbitan, mono-(9Z)-9-octadecenoate; 1,4-anhydro-6-O-[(9Z)-octadec-9-enoyl]-D-glucitol; Glycomul O; Sorbitan O; Alkamuls SMO; Armotan MO; Dehymuls SMO; Lonzest SMO; Kosteran O 1; Crill 4; Sorbester P 17; Disponil 100; Montan 80; Newcol 80; Nonion OP80R; Sorgen 40İ Sorgen 40A; Montane 80 VGA; Radiasurf 7155; Rheodol AO 10; Atmer 05 ; Emasol 410; Emasol O 10; Emasol O 10; Kemmat S 80; Nikkol SO 10; Nikkol SO-15; Rheodol SP-O 10; Rikemal O 250; Sorbitan, mono-9-octadecenoate, (Z)-; Sorbon S 80; Ionet S-80; Emsorb 2500; Sorbitan oleate;S 271 (surfactant); CAS-1338-43-8; Nissan Nonion OP 80R; Anhydrosorbitol monooleate; Monodehydrosorbitol monooleate; Sorbitan monooleic acid ester; Sorbitani oleas [INN-Latin]; Sorbitan, mono-9-octadecenoate; ML 55F; MO 33F; S-MAX 80; Oleate de sorbitan [INN-French]; Oleato de sorbitano [INN-Spanish]; Sorbitani oleas; EINECS 215-665-4; Oleate de sorbitan; Oleato de sorbitano; S 80; Sorbitan esters, mono(Z)-9-octadecenoate; 1,4-Anhydro-D-glucitol, 6-(9-octadecenoate); Span-80; D-Glucitol, 1,4-anhydro-, 6-(9-octadecenoate); Mannide monooleate, liquid; Dianhydromannitol monooleate; Span(R) 80, for GC; Mannide monooleate, from plant; Sorbitan monooleate [USAN:NF]; Sorbitan monooleate. (Compound usually contains also associated fatty acids.); Span(R) 80, nonionic surfactant; 1,4-Anhydro-D-glucitol 6-oleate; Sorbitan monooleate, SAJ ; Noms français : MONOOLEATE DE SORBITANNE Noms anglais : MONODEHYDROSORBITOL MONOOLEATE SORBITAN MONO-9-OCTADECENOATE SORBITAN MONOOLEATE SORBITAN MONOOLEIC ACID ESTER SORBITAN OLEATE SORBITAN, MONOOLEATE Utilisation et sources d'émission Agent dispersant
SORBITAN MONOOLEATE (SPAN 80)
cas no 9005-66-7 Tween® 40; POE (20) sorbitan monopalmitate; Polysorbate 40; Polyoxyethylene Sorbitan Monopalmitate;
SORBITAN MONOPALMITATE
SYNONYMS D-Glucitol, anhydro-, monohexadecanoate; Span 40; Anhydrosorbitol Palmitate; Sorbitan monohexadecanoate; Sorbitan Monopalmitate;Sorbitol, Fatty acid CAS NO. 26266-57-9
SORBITAN MONOPALMITATE (SPAN 40)
cas no 1338-41-6 Span 60; Sorbitan stearate;
SORBITAN MONOSTEARATE
SYNONYMS D-Glucitol, anhydro-, monooctadecanoate; Anhydrosorbitol Stearate; Sorbitan, monooctadecanoate; Sorbitan Monostearate;CAS NO. 1338-41-6
SORBITAN MONOSTEARATE (SPAN 60)
SORBITAN OLIVATE N° CAS : 223706-40-9 "Bien" dans toutes les catégories. Nom INCI : SORBITAN OLIVATE Compatible Bio (Référentiel COSMOS) Ses fonctions (INCI) Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
SORBITAN OLIVATE
SORBITAN PALMATE Nom INCI : SORBITAN PALMATE Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion
SORBITAN PALMATE
SYNONYMS D-Glucitol, anhydro-, monooctadecanoate; Anhydrosorbitol Stearate; Sorbitan, monooctadecanoate; Sorbitan Monostearate; CAS NO. 1338-41-6
SORBITAN STEARATE
POE (20) sorbitan monostearate; Polysorbate 60; Polyoxyethylene Sorbitan Monostearate; cas no: 9005-67-8
SORBITAN TRIISOSTEARATE
SORBITAN TRIOLEATE; N° CAS : 26266-58-0; Nom INCI : SORBITAN TRIOLEATE; Nom chimique : Anhydro-D-glucitol trioleate; N° EINECS/ELINCS : 247-569-3; Noms français : SORBITAN, TRI-9-OCTADECENOATE, (Z,Z,Z)-; TRIOLEATE DE SORBITANNE. Noms anglais : SORBITAN TRIOLEATE; SORBITAN, TRIOLEATE. Utilisation et sources d'émission: Agent dispersant; Anhydro-D-glucitol trioleate; Sorbitan trioleate. CAS names: Sorbitan, tri-(9Z)-9-octadecenoate. IUPAC names: (2R)-2-[(2R,3R,4S)-3,4-bis[(9Z)-octadec-9-enoyloxy]oxolan-2-yl]-2-hydroxyethyl (9Z)-octadec-9-enoate (2R)-2-[(2R,3R,4S)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl (9Z)-octadec-9-enoate (2R)-2-hydroxy-2-[(2R,3R,4S)-3-hydroxy-4-[(9Z)-octadec-9-enoyloxy]oxolan-2-yl]ethyl (9Z)-octadec-9-enoate; 1,4-anhydro-2,3,6-tri-O-oleoyl-L-iditol; [(2R)-2-[(3R,4S)-4-hydroxy-3-[(Z)-octadec-9-enoyl]oxyoxolan-2-yl]-2-[(Z)-octadec-9-enoyl]oxyethyl] (Z)-octadec-9-enoate; Kosteran-O/3 VL ;Reaction products of oleic acid and sorbitol; Span 85 (=Sorbitan Trioleate). Trade names: sorbitan trioleate; Registration dossie; 1,4-Anhydro-2,6-di-O--(9Z)-9-octadecenoyl-3-O-oleoyl-D-glucitol ; 1,4-Anhydro-2,6-di-O--(9Z)-9-octadecenoyl-3-O-oleoyl-D-glucitol [German] [ACD/IUPAC Name]; 1,4-Anhydro-2,6-di-O--(9Z)-9-octadecenoyl-3-O-oleoyl-D-glucitol [French] 247-569-3 [EINECS]; 26266-58-0 [RN]; D-Glucitol, 1,4-anhydro-2,6-bis-O-[(9Z)-1-oxo-9-octadecen-1-yl]-3-O-(1-oxo-9-octadecen-1-yl)- [ACD/Index Name]; MFCD00133820 [MDL number] ; Sorbitane trioleate [MDL number]; Span(R) 85. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)
SORBITAN TRIOLEATE
SORBITAN TRISTEARATE; N° CAS : 26658-19-5; Nom INCI : SORBITAN TRISTEARATE; N° EINECS/ELINCS : 247-891-4. Compatible Bio (Référentiel COSMOS). Ses fonctions (INCI); Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile); Anhydrosorbitol tristearate; Sorbitan tristearate ; Sorbitan, trioctadecanoate; Sorbitani tristearas; Triestearato de sorbitano; Tristearate de sorbitan