Химикаты для сельского хозяйства,пищевой промышленности,корм и ароматизаторов

Polyhydric alcohol phosphate ester (PAPE)
PAPE; PAE; Polyol phosphate ester; Polyhydric alcohol phosphate ester CAS NO:8619-19-2
POLYISOBUTENE
cas no 9003-27-4 1-Propene, 2-methyl-, homopolymer; 1-Propene, 2-methyl-, homopolymer(C4H8)x, x = 17; 2-Methyl-1-propene, homopolymer; 2-Methylpropene polymer.
POLYISOBUTYLENE
POLYISOPRENE N° CAS : 9003-31-0. Origine(s) : Synthétique Nom INCI : POLYISOPRENE Nom chimique : Homopolymer of 2-methyl-1,3-butadiene Classification : Polymère de synthèse Ses fonctions (INCI) Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
POLYMER POLYVINYLPYRROLIDONE (PVP)
PVP/VA Copolymer; Poly(1-vinylpyrrolidone-co-Vinyl Acetate) cas no:25086-89-9
POLYMER VP/VA COPOLYMER
POLYMETHACRYLAMIDOPROPYLTRIMONIUM CHLORIDE N° CAS : 68039-13-4 Origine(s) : Synthétique Nom INCI : POLYMETHACRYLAMIDOPROPYLTRIMONIUM CHLORIDE Nom chimique : 1-Propanaminium, N,N,N-trimethyl-3-[(2-methyl-1-oxo-2-propenyl)amino]-, chloride, homopolymer Classification : Ammonium quaternaire Ses fonctions (INCI) Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles
POLYMETHYL METHACRYLATE
POLYMETHYL METHACRYLATE; N° CAS : 9011-14-7; Noms français : 2-METHYL-2-PROPENOIC ACID METHYL ESTER HOMOPOLYMER; 2-PROPENOIC ACID, 2-METHYL-, METHYL ESTER, HOMOPOLYMER; METHACRYLIC ACID METHYL ESTER, POLYMERS; METHYL METHACRYLATE HOMOPOLYMER; POLY(METHYL METHACRYLATE); POLYMETHYL METHACRYLATE; Polyméthacrylate de méthyle. Noms anglais : Methyl methacrylate polymer; METHYL METHACRYLATE RESIN. Origine(s) : Synthétique; Nom INCI : POLYMETHYL METHACRYLATE; Nom chimique : 2-Propenoic acid, 2-methyl-, methyl ester, homopolymer; Classification : Polymère de synthèse; Ses fonctions (INCI); Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Utilisation: Le méthacrylate de méthyle est principalement utilisé seul ou avec d'autres acrylates pour la préparation de polymères et de copolymères. Sous forme de polyméthacrylate de méthyle, il est utilisé essentiellement pour fabriquer : des feuilles de matière plastique des poudres à mouler et à extruder des résines pour traitement de surface des polymères en émulsion des produits de dentisterie des fibres des encres des films des colles Le polyméthacrylate de méthyle trouve également une application dans la production de polymères connus sous les noms de Plexiglas®, Perspex® et de Lucite®. Ces matériaux ont été introduits sur le marché comme produits de remplacement du verre (identifiés comme verre incassable). Ils sont utilisés pour la confection : de prothèses dentaires et orthopédiques de lentilles intraoculaires (implant oculaire) et de verres de contact rigides de colles
POLYOXYETHYLENE SORBITAN MONOLAURATE
SYNONYMS Tween® 80; Polyoxyethylene Sorbitan Monooleate; POE (20) sorbitan monooleate; Polysorbate 80; CAS NO. 9005-65-6
POLYOXYETHYLENE SORBITAN OLEATE
SYNONYMS Tween® 60; POE (20) sorbitan monostearate; Polysorbate 60; Polyoxyethylene Sorbitan Monostearate; CAS NO. 9005-67-8
POLYOXYETHYLENE SORBITAN STEARATE
POLYOXYETHYLENE STEARATE N° CAS : 9004-99-3 Nom INCI : POLYOXYETHYLENE STEARATE
Polyoxyl 40 Stearate
POLYOXYMETHYLENE UREA N° CAS : 68611-64-3 / 9011-05-6 Nom INCI : POLYOXYMETHYLENE UREA N° EINECS/ELINCS : 271-898-1 Ses fonctions (INCI) Agent de foisonnement : Réduit la densité apparente des cosmétiques
Polyphosphoric Acid
PPA; orthophosphoric acid; E338; antioxidant CAS NO: 8017-16-1
POLYPROPYLENE FİBER 6mm
Polypropylene Fiber(Polipropilen Elyaf) IUPAC Name 12-[(2S,3R)-3-octyloxiran-2-yl]dodecanoic acid Polypropylene Fiber(Polipropilen Elyaf) InChI InChI=1S/C22H42O3/c1-2-3-4-5-11-14-17-20-21(25-20)18-15-12-9-7-6-8-10-13-16-19-22(23)24/h20-21H,2-19H2,1H3,(H,23,24)/t20-,21+/m1/s1 Polypropylene Fiber(Polipropilen Elyaf) InChI Key NSYDMBURIUSUDH-RTWAWAEBSA-N Polypropylene Fiber(Polipropilen Elyaf) Canonical SMILES CCCCCCCCC1C(O1)CCCCCCCCCCCC(=O)O Polypropylene Fiber(Polipropilen Elyaf) Isomeric SMILES CCCCCCCC[C@@H]1[C@@H](O1)CCCCCCCCCCCC(=O)O Polypropylene Fiber(Polipropilen Elyaf) Molecular Formula C22H42O3 Polypropylene Fiber(Polipropilen Elyaf) CAS 9003-07-0 Polypropylene Fiber(Polipropilen Elyaf) DSSTox Substance ID DTXSID00872805 Polypropylene Fiber(Polipropilen Elyaf) MeSH Entry Terms celgard Polypropylene Fiber(Polipropilen Elyaf) Physical Description Polypropylene is a tan to white odorless solid. Less dense than water and insoluble in water. Hence floats on water. Polypropylene Fiber(Polipropilen Elyaf) Color/Form TRANSLUCENT WHITE SOLID Polypropylene Fiber(Polipropilen Elyaf) Odor ODORLESS Polypropylene Fiber(Polipropilen Elyaf) Density 0.9 at 68 °F Polypropylene Fiber(Polipropilen Elyaf) Stability/Shelf Life POOR RESISTANCE TO SUNLIGHT WHEN UNSTABILIZED /ISOTACTIC FORM/ Polypropylene Fiber(Polipropilen Elyaf) Molecular Weight 354.6 g/mol Polypropylene Fiber(Polipropilen Elyaf) XLogP3-AA 8.3 Polypropylene Fiber(Polipropilen Elyaf) Hydrogen Bond Donor Count 1 Polypropylene Fiber(Polipropilen Elyaf) Hydrogen Bond Acceptor Count 3 Polypropylene Fiber(Polipropilen Elyaf) Rotatable Bond Count 19 Polypropylene Fiber(Polipropilen Elyaf) Exact Mass 354.313395 g/mol Polypropylene Fiber(Polipropilen Elyaf) Monoisotopic Mass 354.313395 g/mol Polypropylene Fiber(Polipropilen Elyaf) Topological Polar Surface Area 49.8 Ų Polypropylene Fiber(Polipropilen Elyaf) Heavy Atom Count 25 Polypropylene Fiber(Polipropilen Elyaf) Formal Charge 0 Polypropylene Fiber(Polipropilen Elyaf) Complexity 316 Polypropylene Fiber(Polipropilen Elyaf) Isotope Atom Count 0 Polypropylene Fiber(Polipropilen Elyaf) Defined Atom Stereocenter Count 2 Polypropylene Fiber(Polipropilen Elyaf) Undefined Atom Stereocenter Count 0 Polypropylene Fiber(Polipropilen Elyaf) Defined Bond Stereocenter Count 0 Polypropylene Fiber(Polipropilen Elyaf) Undefined Bond Stereocenter Count 0 Polypropylene Fiber(Polipropilen Elyaf) Covalently-Bonded Unit Count 1 Polypropylene Fiber(Polipropilen Elyaf) Compound Is Canonicalized Yes Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar. Its properties are similar to polyethylene, but it is slightly harder and more heat resistant. It is a white, mechanically rugged material and has a high chemical resistance.Polypropylene is the second-most widely produced commodity plastic (after polyethylene). In 2019, the global market for polypropylene was worth $126.03 billion.Revenues are expected to exceed US$145 billion by 2019. The sales of this material are forecast to grow at a rate of 5.8% per year until 2021.Phillips Petroleum chemists J. Paul Hogan and Robert Banks first demonstrated the polymerization of propylene in 1951.The stereoselective polymerization to the isotactic was discovered by Giulio Natta and Karl Rehn in March 1954.This pioneering discovery led to large-scale commercial production of isotactic polypropylene by the Italian firm Montecatini from 1957 onwards.Syndiotactic polypropylene was also first synthesized by Natta.Polypropylene is in many aspects similar to polyethylene, especially in solution behaviour and electrical properties. The methyl group improves mechanical properties and thermal resistance, although the chemical resistance decreases.The properties of polypropylene depend on the molecular weight and molecular weight distribution, crystallinity, type and proportion of comonomer (if used) and the isotacticity.[7] In isotactic polypropylene, for example, the methyl groups are oriented on one side of the carbon backbone. This arrangement creates a greater degree of crystallinity and results in a stiffer material that is more resistant to creep than both atactic polypropylene and polyethylene.The density of (PP) is between 0.895 and 0.92 g/cm³. Therefore, PP is the commodity plastic with the lowest density. With lower density, moldings parts with lower weight and more parts of a certain mass of plastic can be produced. Unlike polyethylene, crystalline and amorphous regions differ only slightly in their density. However, the density of polyethylene can significantly change with fillers.The Young's modulus of PP is between 1300 and 1800 N/mm².Polypropylene is normally tough and flexible, especially when copolymerized with ethylene. This allows polypropylene to be used as an engineering plastic, competing with materials such as acrylonitrile butadiene styrene (ABS). Polypropylene is reasonably economical.[citation needed]Polypropylene has good resistance to fatigue.The melting point of polypropylene occurs in a range, so the melting point is determined by finding the highest temperature of a differential scanning calorimetry chart. Perfectly isotactic PP has a melting point of 171 °C (340 °F). Commercial isotactic PP has a melting point that ranges from 160 to 166 °C (320 to 331 °F), depending on atactic material and crystallinity. Syndiotactic PP with a crystallinity of 30% has a melting point of 130 °C (266 °F).[9] Below 0 °C, PP becomes brittle.The thermal expansion of PP is very large, but somewhat less than that of polyethylene.Polypropylene at room temperature is resistant to fats and almost all organic solvents, apart from strong oxidants. Non-oxidizing acids and bases can be stored in containers made of PP. At elevated temperature, PP can be dissolved in nonpolar solvents such as xylene, tetralin and decalin. Due to the tertiary carbon atom PP is chemically less resistant than PE (see Markovnikov rule).Most commercial polypropylene is isotactic and has an intermediate level of crystallinity between that of low-density polyethylene (LDPE) and high-density polyethylene (HDPE). Isotactic & atactic polypropylene is soluble in p-xylene at 140 °C. Isotactic precipitates when the solution is cooled to 25 °C and atactic portion remains soluble in p-xylene.The melt flow rate (MFR) or melt flow index (MFI) is a measure of molecular weight of polypropylene. The measure helps to determine how easily the molten raw material will flow during processing. Polypropylene with higher MFR will fill the plastic mold more easily during the injection or blow-molding production process. As the melt flow increases, however, some physical properties, like impact strength, will decrease.There are three general types of polypropylene: homopolymer, random copolymer, and block copolymer. The comonomer is typically used with ethylene. Ethylene-propylene rubber or EPDM added to polypropylene homopolymer increases its low temperature impact strength. Randomly polymerized ethylene monomer added to polypropylene homopolymer decreases the polymer crystallinity, lowers the melting point and makes the polymer more transparent. It is theoretically possible to add an agent that strengthens the fibers before they degrade too far to enable the removal of the mesh. This idea has not been tested or verified. The concept is not dissimilar to adding super glue to a spiderweb so that it doesn't fall apart when removed from its place of creation. If this concept is approved it could help many who have had their lives change with the degradation of vaginal pelvic meshes.The term tacticity describes for polypropylene how the methyl group is oriented in the polymer chain. Commercial polypropylene is usually isotactic. This article therefore always refers to isotactic polypropylene, unless stated otherwise. The tacticity is usually indicated in percent, using the isotactic index (according to DIN 16774). The index is measured by determining the fraction of the polymer insoluble in boiling heptane. Commercially available polypropylenes usually have an isotactic index between 85 and 95%. The tacticity effects the polymers physical properties. As the methyl group is in isotactic propylene consistently located at the same side, it forces the macromolecule in a helical shape, as also found in starch. An isotactic structure leads to a semi-crystalline polymer. The higher the isotacticity (the isotactic fraction), the greater the crystallinity, and thus also the softening point, rigidity, e-modulus and hardness.Atactic polypropylene, on the other hand, lacks any regularity which makes it unable to crystallize and amorphous.Crystal structure of polypropylene.Isotactic polypropylene has a high degree of crystallinity, in industrial products 30–60%. Syndiothactic polypropylene is slightly less crystalline, atactic PP is amorphous (not crystalline).Isotactic polypropylene (iPP) Isotactic polypropylene can exist in various crystalline modifications which differ by the molecular arrangement of the polymer chains. The crystalline modifications are categorized into the α-, β- and γ-modification as well as mesomorphic (smectic) forms.The α-modification is predominant in iPP. Such crystals are built from lamellae in the form of folded chains. A characteristic anomaly is that the lamellae are arranged in the so-called "cross-hatched" structure.The melting point of α-crystalline regions is given as 185 to 220 °C, the density as 0.936 to 0.946 g·cm−3. The β-modification is in comparison somewhat less ordered, as a result of which it forms faster and has a lower melting point of 170 to 200 °C. The formation of the β-modification can be promoted by nucleating agents, suitable temperatures and shear stress.The γ-modification is hardly formed under the conditions used in industry and is poorly understood. The mesomorphic modification, however, occurs often in industrial processing, since the plastic is usually cooled quickly. The degree of order of the mesomorphic phase ranges between the crystalline and the amorphous phase, its density is with 0.916 g·cm−3 comparatively. The mesomorphic phase is considered as cause for the transparency in rapidly cooled films (due to low order and small crystallites).Syndiotactic polypropylene (sPP) Syndiotactic polypropylene was discovered much later than isotactic PP and could only be prepared by using metallocene catalysts. Syndiotactic PP has a lower melting point, with 161 to 186 °C, depending on the degree of tacticity.Atactic polypropylene (aPP) Atactic polypropylene is amorphous and has therefore no crystal structure. Due to its lack of crystallinity, it is readily soluble even at moderate temperatures, which allows to separate it as by-product from isotactic polypropylene by extraction. However, the aPP obtained this way is not completely amorphous but can still contain 15% crystalline parts. Atactic polypropylene can also be produced selectively using metallocene catalysts, atactic polypropylene produced this way has a considerably higher molecular weight.Atactic polypropylene has lower density, melting point and softening temperature than the crystalline types and is tacky and rubber-like at room temperature. It is a colorless, cloudy material and can be used between −15 and +120 °C. Atactic polypropylene is used as a sealant, as an insulating material for automobiles and as an additive to bitumen.Copolymers Polypropylene copolymers are in use as well. A particularly important one is polypropylene random copolymer (PPR or PP-R), a random copolymer with polyethylene used for plastic pipework.PP-RCT Polypropylene random cristallinity temperature (PP-RCT), also used for plastic pipework, is a new form of this plastic. It achieves higher strength at high temperature by β-crystallization.Degradation Effect of UV exposure on polypropylene rope Polypropylene is liable to chain degradation from exposure to temperatures above 100 °C. Oxidation usually occurs at the tertiary carbon centers leading to chain breaking via reaction with oxygen. In external applications, degradation is evidenced by cracks and crazing. It may be protected by the use of various polymer stabilizers, including UV-absorbing additives and anti-oxidants such as phosphites (e.g. tris(2,4-di-tert-butylphenyl)phosphite) and hindered phenols, which prevent polymer degradation.[1]Microbial communities isolated from soil samples mixed with starch have been shown to be capable of degrading polypropylene.[31] Polypropylene has been reported to degrade while in human body as implantable mesh devices. The degraded material forms a tree bark-like layer at the surface of mesh fibers.[32]Optical properties PP can be made translucent when uncolored but is not as readily made transparent as polystyrene, acrylic, or certain other plastics. It is often opaque or colored using pigments.The properties of PP are strongly affected by its tacticity, the orientation of the methyl groups (CH3 in the figure) relative to the methyl groups in neighboring monomer units. A Ziegler–Natta catalyst is able to restrict linking of monomer molecules to a specific orientation, either isotactic, when all methyl groups are positioned at the same side with respect to the backbone of the polymer chain, or syndiotactic, when the positions of the methyl groups alternate. Commercially available isotactic polypropylene is made with two types of Ziegler-Natta catalysts. The first group of the catalysts encompasses solid (mostly supported) catalysts and certain types of soluble metallocene catalysts. Such isotactic macromolecules coil into a helical shape; these helices then line up next to one another to form the crystals that give commercial isotactic polypropylene many of its desirable properties.A ball-and-stick model of syndiotactic polypropylene.Another type of metallocene catalysts produce syndiotactic polypropylene. These macromolecules also coil into helices (of a different type) and crystallize. Atactic polypropylene is an amorphous rubbery material. It can be produced commercially either with a special type of supported Ziegler-Natta catalyst or with some metallocene catalysts.Modern supported Ziegler-Natta catalysts developed for the polymerization of propylene and other 1-alkenes to isotactic polymers usually use TiCl4 as an active ingredient and MgCl2 as a support.The catalysts also contain organic modifiers, either aromatic acid esters and diesters or ethers. These catalysts are activated with special cocatalysts containing an organoaluminum compound such as Al(C2H5)3 and the second type of a modifier. The catalysts are differentiated depending on the procedure used for fashioning catalyst particles from MgCl2 and depending on the type of organic modifiers employed during catalyst preparation and use in polymerization reactions. Two most important technological characteristics of all the supported catalysts are high productivity and a high fraction of the crystalline isotactic polymer they produce at 70–80 °C under standard polymerization conditions. Commercial synthesis of isotactic polypropylene is usually carried out either in the medium of liquid propylene or in gas-phase reactors.Commercial synthesis of syndiotactic polypropylene is carried out with the use of a special class of metallocene catalysts. They employ bridged bis-metallocene complexes of the type bridge-(Cp1)(Cp2)ZrCl2 where the first Cp ligand is the cyclopentadienyl group, the second Cp ligand is the fluorenyl group, and the bridge between the two Cp ligands is -CH2-CH2-, >SiMe2, or >SiPh2.These complexes are converted to polymerization catalysts by activating them with a special organoaluminum cocatalyst, methylaluminoxane (MAO).[38]Traditionally, three manufacturing processes are the most representative ways to produce polypropylene.Hydrocarbon slurry or suspension: Uses a liquid inert hydrocarbon diluent in the reactor to facilitate transfer of propylene to the catalyst, the removal of heat from the system, the deactivation/removal of the catalyst as well as dissolving the atactic polymer. The range of grades that could be produced was very limited. (The technology has fallen into disuse).Bulk slurry (or bulk): Uses liquid propylene instead of liquid inert hydrocarbon diluent. The polymer does not dissolve into a diluent, but rather rides on the liquid propylene. The formed polymer is withdrawn and any unreacted monomer is flashed off.Gas phase: Uses gaseous propylene in contact with the solid catalyst, resulting in a fluidized-bed medium.Melting process of polypropylene can be achieved via extrusion and molding. Common extrusion methods include production of melt-blown and spun-bond fibers to form long rolls for future conversion into a wide range of useful products, such as face masks, filters, diapers and wipes.The most common shaping technique is injection molding, which is used for parts such as cups, cutlery, vials, caps, containers, housewares, and automotive parts such as batteries. The related techniques of blow molding and injection-stretch blow molding are also used, which involve both extrusion and molding.The large number of end-use applications for polypropylene are often possible because of the ability to tailor grades with specific molecular properties and additives during its manufacture. For example, antistatic additives can be added to help polypropylene surfaces resist dust and dirt. Many physical finishing techniques can also be used on polypropylene, such as machining. Surface treatments can be applied to polypropylene parts in order to promote adhesion of printing ink and paints.Expanded Polypropylene (EPP) has been produced through both solid and melt state processing. EPP is manufactured using melt processing with either chemical or physical blowing agents. Expansion of PP in solid state, due to its highly crystalline structure, has not been successful. In this regard, two novel strategies were developed for expansion of PP. It was observed that PP can be expanded to make EPP through controlling its crystalline structure or through blending with other polymers.Biaxially oriented polypropylene (BOPP) When polypropylene film is extruded and stretched in both the machine direction and across machine direction it is called biaxially oriented polypropylene. Biaxial orientation increases strength and clarity.BOPP is widely used as a packaging material for packaging products such as snack foods, fresh produce and confectionery. It is easy to coat, print and laminate to give the required appearance and properties for use as a packaging material. This process is normally called converting. It is normally produced in large rolls which are slit on slitting machines into smaller rolls for use on packaging machines.As polypropylene is resistant to fatigue, most plastic living hinges, such as those on flip-top bottles, are made from this material. However, it is important to ensure that chain molecules are oriented across the hinge to maximise strength.Polypropylene is used in the manufacturing of piping systems, both ones concerned with high purity and ones designed for strength and rigidity (e.g., those intended for use in potable plumbing, hydronic heating and cooling, and reclaimed water).This material is often chosen for its resistance to corrosion and chemical leaching, its resilience against most forms of physical damage, including impact and freezing, its environmental benefits, and its ability to be joined by heat fusion rather than gluing.A polypropylene chair. Many plastic items for medical or laboratory use can be made from polypropylene because it can withstand the heat in an autoclave. Its heat resistance also enables it to be used as the manufacturing material of consumer-grade kettles[citation needed]. Food containers made from it will not melt in the dishwasher, and do not melt during industrial hot filling processes. For this reason, most plastic tubs for dairy products are polypropylene sealed with aluminum foil (both heat-resistant materials). After the product has cooled, the tubs are often given lids made of a less heat-resistant material, such as LDPE or polystyrene. Such containers provide a good hands-on example of the difference in modulus, since the rubbery (softer, more flexible) feeling of LDPE with respect to polypropylene of the same thickness is readily apparent. Rugged, translucent, reusable plastic containers made in a wide variety of shapes and sizes for consumers from various companies such as Rubbermaid and Sterilite are commonly made of polypropylene, although the lids are often made of somewhat more flexible LDPE so they can snap onto the container to close it. Polypropylene can also be made into disposable bottles to contain liquid, powdered, or similar consumer products, although HDPE and polyethylene terephthalate are commonly also used to make bottles. Plastic pails, car batteries, wastebaskets, pharmacy prescription bottles, cooler containers, dishes and pitchers are often made of polypropylene or HDPE, both of which commonly have rather similar appearance, feel, and properties at ambient temperature. A diversity of medical devices are made from PP.[47]Polypropylene items for laboratory use, blue and orange closures are not made of polypropylene.A common application for polypropylene is as biaxially oriented polypropylene (BOPP). These BOPP sheets are used to make a wide variety of materials including clear bags. When polypropylene is biaxially oriented, it becomes crystal clear and serves as an excellent packaging material for artistic and retail products.Polypropylene, highly colorfast, is widely used in manufacturing carpets, rugs and mats to be used at home.Polypropylene is widely used in ropes, distinctive because they are light enough to float in water.[49] For equal mass and construction, polypropylene rope is similar in strength to polyester rope. Polypropylene costs less than most other synthetic fibers.Polypropylene is also used as an alternative to polyvinyl chloride (PVC) as insulation for electrical cables for LSZH cable in low-ventilation environments, primarily tunnels. This is because it emits less smoke and no toxic halogens, which may lead to production of acid in high-temperature conditions.Polypropylene is also used in particular roofing membranes as the waterproofing top layer of single-ply systems as opposed to modified-bit systems.Polypropylene is most commonly used for plastic moldings, wherein it is injected into a mold while molten, forming complex shapes at relatively low cost and high volume; examples include bottle tops, bottles, and fittings.It can also be produced in sheet form, widely used for the production of stationery folders, packaging, and storage boxes. The wide color range, durability, low cost, and resistance to dirt make it ideal as a protective cover for papers and other materials. It is used in Rubik's Cube stickers because of these characteristics.The availability of sheet polypropylene has provided an opportunity for the use of the material by designers. The light-weight, durable, and colorful plastic makes an ideal medium for the creation of light shades, and a number of designs have been developed using interlocking sections to create elaborate designs.Polypropylene sheets are a popular choice for trading card collectors; these come with pockets (nine for standard-size cards) for the cards to be inserted and are used to protect their condition and are meant to be stored in a binder.Expanded polypropylene (EPP) is a foam form of polypropylene. EPP has very good impact characteristics due to its low stiffness; this allows EPP to resume its shape after impacts. EPP is extensively used in model aircraft and other radio controlled vehicles by hobbyists. This is mainly due to its ability to absorb impacts, making this an ideal material for RC aircraft for beginners and amateurs.Polypropylene is used in the manufacture of loudspeaker drive units. Its use was pioneered by engineers at the BBC and the patent rights subsequently purchased by Mission Electronics for use in their Mission Freedom Loudspeaker and Mission 737 Renaissance loudspeaker.Polypropylene fibres are used as a concrete additive to increase strength and reduce cracking and spalling.In some areas susceptible to earthquakes (e.g., California), PP fibers are added with soils to improve the soil's strength and damping when constructing the foundation of structures such as buildings, bridges, etc.Polypropylene fibres are also used in drywall joint compound for reinforcement. It can increase the flexibility and dimensional stability of the joint compound and reduce shrinkage and cracking when it dries.Polypropylene is used in polypropylene drums.In June 2016, a study showed that a mixture of polypropylene and durable superoleophobic surfaces created by two engineers from Ohio State University can repel liquids such as shampoo and oil. This technology could make it easier to remove all of the liquid contents from polypropylene bottles, particularly those that have high surface tension such as shampoo or oil.[52]Clothing Various polypropylene yarns and textiles Polypropylene is a major polymer used in nonwovens, with over 50% used[citation needed] for diapers or sanitary products where it is treated to absorb water (hydrophilic) rather than naturally repelling water (hydrophobic). Other non-woven uses include filters for air, gas, and liquids in which the fibers can be formed into sheets or webs that can be pleated to form cartridges or layers that filter in various efficiencies in the 0.5 to 30 micrometre range. Such applications occur in houses as water filters or in air-conditioning-type filters.
POLYPROPYLENE GLYCOL
cas no 25322-69-4 Polypropylene glycol; Poly (propylene oxide); PPG;
POLYPROPYLENE GLYCOL 1000
Polypropylene Glycol 1000 Polypropylene glycols are liquids, mostly insoluble in water, used to suppress foaming in industrial processes and for making polyurethane resins, hydraulic fluids, and various other materials. Polypropylene Glycol 1000 or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG). The term Polypropylene Glycol 1000 or Polypropylene Glycol 1000 is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high molar mass polymer when end-groups no longer affect polymer properties. In 2003, 60% of the annual production of propylene oxide of 6.6×106 tonnes was converted into the polymer. What is Polypropylene Glycol 1000? Polypropylene Glycol 1000 is a synthetic liquid substance that absorbs water. Polypropylene Glycol 1000 is also used to make polyester compounds, and as a base for deicing solutions. Polypropylene Glycol 1000 is used by the chemical, food, and pharmaceutical industries as an antifreeze when leakage might lead to contact with food. The Food and Drug Administration (FDA) has classified Polypropylene Glycol 1000 as an additive that is "generally recognized as safe" for use in food. It is used to absorb extra water and maintain moisture in certain medicines, cosmetics, or food products. It is a solvent for food colors and flavors, and in the paint and plastics industries. Polypropylene Glycol 1000 is also used to create artificial smoke or fog used in fire-fighting training and in theatrical productions. Other names for Polypropylene Glycol 1000 are 1,2-dihydroxypropane, 1,2-propanediol, methyl glycol, and trimethyl glycol. Polypropylene Glycol 1000 is clear, colorless, slightly syrupy liquid at room temperature. It may exist in air in the vapor form, although Polypropylene Glycol 1000 must be heated or briskly shaken to produce a vapor. Polypropylene Glycol 1000 is practically odorless and tasteless. 1.2 What happens to Polypropylene Glycol 1000 when it enters the environment? Waste streams from the manufacture of Polypropylene Glycol 1000 are primarily responsible for the releases into the air, water, and soil. Polypropylene Glycol 1000 can enter the environment when it is used as a runway and aircraft de-icing agent. Polypropylene Glycol 1000 can also enter the environment through the disposal of products that contains it. It is not likely to exist in large amounts in the air. We have little information about what happens to Polypropylene Glycol 1000 in the air. The small amounts that may enter the air are likely to break down quickly. If it escapes into the air, it will take between 24 and 50 hours for half the amount released to break down. Polypropylene Glycol 1000 can mix completely with water and can soak into soil. It can break down relatively quickly (within several days to a week) in surface water and in soil. Polypropylene Glycol 1000 can also travel from certain types of food packages into the food in the package. 1.3 How might I be exposed to Polypropylene Glycol 1000? Polypropylene Glycol 1000 has been approved for use at certain levels in food, cosmetics, and pharmaceutical products. If you eat food products, use cosmetics, or take medicines that contain it, you will be exposed to Polypropylene Glycol 1000, but these amounts are not generally considered harmful. People who work in industries that use Polypropylene Glycol 1000 may be exposed by touching these products or inhaling mists from spraying them. These exposures tend to be at low levels, however. Polypropylene Glycol 1000 is used to make artificial smoke and mists for fire safety training, theatrical performances, and rock concerts. These artificial smoke products may also be used by private citizens. These products are frequently used in enclosed spaces, where exposure may be more intense. 1.4 How can Polypropylene Glycol 1000 ether enter and leave my body? Polypropylene Glycol 1000 can enter your bloodstream if you breathe air containing mists or vapors from this compound. It can also enter your bloodstream through your skin if you come in direct contact with it and do not wash it off. If you eat products that contain Polypropylene Glycol 1000, it may enter your bloodstream. Exposure of the general population to Polypropylene Glycol 1000 is likely since many foods, drugs, and cosmetics contain it. Polypropylene Glycol 1000 breaks down in the body in about 48 hours. However, studies of people and animals show that if you have repeated eye, skin, nasal, or oral exposures to Polypropylene Glycol 1000 for a short time, you may develop some irritation. 1.5 How can Polypropylene Glycol 1000 affect my health? Polypropylene Glycol 1000 breaks down at the same rate as ethylene glycol, although it does not form harmful crystals when it breaks down. Frequent skin exposure to Polypropylene Glycol 1000 can sometimes irritate the skin. 1.6 Is there a medical test to determine whether I have been exposed to Polypropylene Glycol 1000? Polypropylene Glycol 1000 is generally considered to be a safe chemical, and is not routinely tested for, unless specific exposure, such as to a medicine or cosmetic, can be linked with the observed bad symptoms. Since Polypropylene Glycol 1000 breaks down very quickly in the body, it is very difficult to detect. 1.7 What recommendations has the federal government made to protect human health? The government has developed regulations and guidelines for Polypropylene Glycol 1000. These are designed to protect the public from potential adverse health effects. The Food and Drug Administration (FDA) has classified Polypropylene Glycol 1000 as "generally recognized as safe," which means that it is acceptable for use in flavorings, drugs, and cosmetics, and as a direct food additive. According to the World Health Organization, the acceptable dietary intake of Polypropylene Glycol 1000 is 25 mg of Polypropylene Glycol 1000 for every kilogram (kg) of body weight. Polymerization Polypropylene Glycol 1000 is produced by ring-opening polymerization of propylene oxide. The initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear. With a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out. Polypropylene Glycol 1000 Conventional polymerization of propylene oxide results in an atactic polymer. The isotactic polymer can be produced from optically active propylene oxide, but at a high cost. A salen cobalt catalyst was reported in 2005 to provide isotactic polymerization of the prochiral propylene oxide[2] Cobalt catalyst for isotactic polypropylene oxide Properties Polypropylene Glycol 1000 has many properties in common with polyethylene glycol. The polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass. Secondary hydroxyl groups in Polypropylene Glycol 1000 are less reactive than primary hydroxyl groups in polyethylene glycol. Polypropylene Glycol 1000 is less toxic than PEG, so biotechnologicals are now produced in Polypropylene Glycol 1000. Polypropylene Glycol 1000 (IUPAC name: propane-1,2-diol) is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Its chemical formula is CH3CH(OH)CH2OH. Containing two alcohol groups, it is classed as a diol. It is miscible with a broad range of solvents, including water, acetone, and chloroform. In general, glycols are non-irritating and have very low volatility. It is produced on a large scale primarily for the production of polymers. In the European Union, it has E-number E1520 for food applications. For cosmetics and pharmacology, the number is E490. Polypropylene Glycol 1000 is also present in Polypropylene Glycol 1000 alginate, which is known as E405. Polypropylene Glycol 1000 is a compound which is GRAS (generally recognized as safe) by the US FDA (Food and Drug Administration) under 21 CFR x184.1666, and is also approved by the FDA for certain uses as an indirect food additive. Polypropylene Glycol 1000 is approved and used as a vehicle for topical, oral, and some intravenous pharmaceutical preparations in the U.S. and in Europe. Structure The compound is sometimes called (alpha) α-Polypropylene Glycol 1000 to distinguish it from the isomer propane-1,3-diol, known as (beta) β-Polypropylene Glycol 1000. Polypropylene Glycol 1000 is chiral. Commercial processes typically use the racemate. The S-isomer is produced by biotechnological routes. Production Industrial Industrially, Polypropylene Glycol 1000 is mainly produced from propylene oxide (for food-grade use). According to a 2018 source, 2.16 M tonnes are produced annually.[4] Manufacturers use either non-catalytic high-temperature process at 200 °C (392 °F) to 220 °C (428 °F), or a catalytic method, which proceeds at 150 °C (302 °F) to 180 °C (356 °F) in the presence of ion exchange resin or a small amount of sulfuric acid or alkali. Final products contain 20% Polypropylene Glycol 1000, 1.5% of diPolypropylene Glycol 1000, and small amounts of other polyPolypropylene Glycol 1000s.[6] Further purification produces finished industrial grade or USP/JP/EP/BP grade Polypropylene Glycol 1000 that is typically 99.5% or greater. Use of USP (US Pharmacopoeia) Polypropylene Glycol 1000 can reduce the risk of Abbreviated New Drug Application (ANDA) rejection.[7] Polypropylene Glycol 1000 can also be obtained from glycerol, a byproduct from the production of biodiesel.[4] This starting material is usually reserved for industrial use because of the noticeable odor and taste that accompanies the final product. Laboratory S-Propanediol is synthesized from via fermentation methods. Lactic acid and lactaldehyde are common intermediates. Dihydroxyacetone phosphate, one of the two products of breakdown (glycolysis) of fructose 1,6-bisphosphate, is a precursor to methylglyoxal. This conversion is the basis of a potential biotechnological route to the commodity chemical 1,2-propanediol. Three-carbon deoxysugars are also precursor to the 1,2-diol.[4] Applications Polymers Forty-five percent of Polypropylene Glycol 1000 produced is used as a chemical feedstock for the production of unsaturated polyester resins. In this regard, Polypropylene Glycol 1000 reacts with a mixture of unsaturated maleic anhydride and isophthalic acid to give a copolymer. This partially unsaturated polymer undergoes further crosslinking to yield thermoset plastics. Related to this application, Polypropylene Glycol 1000 reacts with propylene oxide to give oligomers and polymers that are used to produce polyurethanes.[4] Polypropylene Glycol 1000 is used in waterbased acrylic architectural paints to extend dry time which it accomplishes by preventing the surface from drying due to its slower evaporation rate compared to water. Food Polypropylene Glycol 1000 is also used in various edible items such as coffee-based drinks, liquid sweeteners, ice cream, whipped dairy products and soda. Vaporizers used for delivery of pharmaceuticals or personal-care products often include Polypropylene Glycol 1000 among the ingredients. In alcohol-based hand sanitizers, it is used as a humectant to prevent the skin from drying.[11] Polypropylene Glycol 1000 is used as a solvent in many pharmaceuticals, including oral, injectable, and topical formulations. Many pharmaceutical drugs which are insoluble in water utilize Polypropylene Glycol 1000 as a solvent and carrier; benzodiazepine tablets are one example.[12] Polypropylene Glycol 1000 is also used as a solvent and carrier for many pharmaceutical capsule preparations. Additionally, certain formulations of artificial tears use proplyene glycol as an ingredient. Polypropylene Glycol 1000 is commonly used to de-ice aircraft Antifreeze The freezing point of water is depressed when mixed with Polypropylene Glycol 1000. It is used as aircraft de-icing fluid.[4][14] Water-Polypropylene Glycol 1000 mixtures dyed pink to indicate the mixture is relatively nontoxic are sold under the name of RV or marine antifreeze. Polypropylene Glycol 1000 is frequently used as a substitute for ethylene glycol in low toxicity, environmentally friendly automotive antifreeze. It is also used to winterize the plumbing systems in vacant structures.[15] The eutectic composition/temperature is 60:40 Polypropylene Glycol 1000:water/-60 °C. The −50 °F/−45 °C commercial product is, however, water rich; a typical formulation is 40:60.[18] Electronic cigarettes liquid Polypropylene Glycol 1000 is often used in electronic cigarettes. Along with vegetable glycerin as the main ingredient (<1–92%) in e-liquid used in electronic cigarettes, where it is aerosolized to resemble smoke. It serves as both the carrier for substances like nicotine and cannabinoids, as well as for creating a vapor which resembles smoke. Miscellaneous applications A bottle of flavored e-liquid for vaping shows Polypropylene Glycol 1000 as one of the main ingredients along with vegetable glycerin. Polypropylene Glycol 1000 (often abbreviated 'PPG') has many applications. Some common applications see Polypropylene Glycol 1000 used: As a solvent for many substances, both natural and synthetic. As a humectant (E1520). As a freezing point depressant for slurry ice. In veterinary medicine as an oral treatment for hyperketonaemia in ruminants. In the cosmetics industry, where Polypropylene Glycol 1000 is very commonly used as a carrier or base for various types of makeup. For trapping and preserving insects (including as a DNA preservative).[23] For the creation of theatrical smoke and fog in special effects for film and live entertainment. So-called 'smoke machines' or 'hazers' vaporize a mixture of Polypropylene Glycol 1000 and water to create the illusion of smoke. While many of these machines use a Polypropylene Glycol 1000-based fuel, some use oil. Those which use Polypropylene Glycol 1000 do so in a process that is identical to how electronic cigarettes work; utilizing a heating element to produce a dense vapor. The vapor produced by these machines has the aesthetic look and appeal of smoke, but without exposing performers and stage crew to the harms and odors associated with actual smoke. As an additive in PCR to reduce the melting temperature of nucleic acids for targeting of GC rich sequences. Safety in humans When used in average quantities, Polypropylene Glycol 1000 has no measurable effect on development and/or reproduction on animals and probably does not adversely affect human development or reproduction.[26] The safety of electronic cigarettes—which utilize Polypropylene Glycol 1000-based preparations of nicotine or THC and other cannabinoids—is the subject of much controversy.- Oral administration The acute oral toxicity of Polypropylene Glycol 1000 is very low, and large quantities are required to cause perceptible health effects in humans; in fact, Polypropylene Glycol 1000 is three times less toxic than ethanol.[30] Polypropylene Glycol 1000 is metabolized in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion),[31] and propionaldehyde (a potentially hazardous substance). According to the Dow Chemical Company, The LD50 (Lethal Dose that kills in 50% of tests) for rats is 20 g/kg (rat/oral). Toxicity generally occurs at plasma concentrations over 4 g/L, which requires extremely high intake over a relatively short period of time, or when used as a vehicle for drugs or vitamins given intravenously or orally in large bolus doses.[37] It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of Polypropylene Glycol 1000, except for alcoholic beverages in the US which are allowed 5 percent = 50g/kg.[38] Cases of Polypropylene Glycol 1000 poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. In an NTP continuous breeding study, no effects on fertility were observed in male or female mice that received Polypropylene Glycol 1000 in drinking water at doses up to 10,100 mg/kg bw/day. No effects on fertility were seen in either the first or second generation of treated mice.[26] In a 2-year study, 12 rats were provided with feed containing as much as 5% Polypropylene Glycol 1000, and showed no apparent ill effects.[40] Because of its low chronic oral toxicity, Polypropylene Glycol 1000 was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive, including frozen foods such as ice cream and frozen desserts. The GRAS designation is specific to its use in food, and does not apply to other uses. Skin, eye and inhalation contact Polypropylene Glycol 1000 is essentially non-irritating to the skin.[43] Undiluted Polypropylene Glycol 1000 is minimally irritating to the eye, producing slight transient conjunctivitis; the eye recovers after the exposure is removed. A 2018 human volunteer study found that 10 male and female subjects undergoing 4 hours exposures to concentrations of up to 442 mg/m3 and 30 minutes exposures to concentrations of up to 871 mg/m3 in combination with moderate exercise did not show pulmonary function deficits, or signs of ocular irritation, with only slight symptoms of respiratory irritation reported.[44] Inhalation of Polypropylene Glycol 1000 vapors appears to present no significant hazard in ordinary applications.[45] Due to the lack of chronic inhalation data, it is recommended that Polypropylene Glycol 1000 not be used in inhalation applications such as theatrical productions, or antifreeze solutions for emergency eye wash stations.[46] Recently, Polypropylene Glycol 1000 (commonly alongside glycerol) has been included as a carrier for nicotine and other additives in e-cigarette liquids, the use of which presents a novel form of exposure. The potential hazards of chronic inhalation of Polypropylene Glycol 1000 or the latter substance as a whole are as-yet unknown. According to a 2010 study, the concentrations of Polypropylene Glycol 1000Es (counted as the sum of Polypropylene Glycol 1000 and glycol ethers) in indoor air, particularly bedroom air, has been linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers. However, the study authors write that glycol ethers and not Polypropylene Glycol 1000 are the likely culprit. Polypropylene Glycol 1000 has not caused sensitization or carcinogenicity in laboratory animal studies, nor has it demonstrated genotoxic potential. Intravenous administration Studies with intravenously administered Polypropylene Glycol 1000 have resulted in LD50 values in rats and rabbits of 7 mL/kg BW.[53] Ruddick (1972) also summarized intramuscular LD50 data for rat as 13-20 mL/kg BW, and 6 mL/kg BW for the rabbit. Adverse effects to intravenous administration of drugs that use Polypropylene Glycol 1000 as an excipient have been seen in a number of people, particularly with large bolus dosages. Responses may include CNS depression, "hypotension, bradycardia, QRS and T abnormalities on the ECG, arrhythmia, cardiac arrhythmias, seizures, agitation, serum hyperosmolality, lactic acidosis, and haemolysis".[54] A high percentage (12% to 42%) of directly-injected Polypropylene Glycol 1000 is eliminated or secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases,[55] which may be due to Polypropylene Glycol 1000's mild anesthetic / CNS-depressant -properties as an alcohol.[56] In one case, intravenous administration of Polypropylene Glycol 1000-suspended nitroglycerin to an elderly man may have induced coma and acidosis.[57] However, no confirmed lethality from Polypropylene Glycol 1000 was reported. Animals Polypropylene Glycol 1000 is an approved food additive for dog and sugar glider food under the category of animal feed and is generally recognized as safe for dogs,[58] with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg).[59] However, it is prohibited for use in food for cats due to links to Heinz body formation and a reduced lifespan of red blood cells.[60] Heinz body formation from MPolypropylene Glycol 1000 has not been observed in dogs, cattle, or humans. Environmental Polypropylene Glycol 1000 occurs naturally, probably as the result of anaerobic catabolism of sugars in the human gut. It is degraded by vitamin B12-dependent enzymes, which convert it to propionaldehyde.[68] Polypropylene Glycol 1000 is expected to degrade rapidly in water from biological processes, but is not expected to be significantly influenced by hydrolysis, oxidation, volatilization, bioconcentration, or adsorption to sediment.[69] Polypropylene Glycol 1000 is readily biodegradable under aerobic conditions in freshwater, in seawater and in soil. Therefore, Polypropylene Glycol 1000 is considered as not persistent in the environment. Polypropylene Glycol 1000 exhibits a low degree of toxicity toward aquatic organisms. Several guideline studies available for freshwater fish with the lowest observed effect concentration of 96-h LC50 value of 40,613 mg/l in a study with Oncorhynchus mykiss. Similarly, the effect concentration determined in marine fish is a 96-h LC50 of >10,000 mg/l in Scophthalmus maximus. Allergic reaction Estimates on the prevalence of Polypropylene Glycol 1000 allergy range from 0.8% (10% Polypropylene Glycol 1000 in aqueous solution) to 3.5% (30% Polypropylene Glycol 1000 in aqueous solution). The North American Contact Dermatitis Group (NACDG) data from 1996 to 2006 showed that the most common site for Polypropylene Glycol 1000 contact dermatitis was the face (25.9%), followed by a generalized or scattered pattern (23.7%).[61] Investigators believe that the incidence of allergic contact dermatitis to Polypropylene Glycol 1000 may be greater than 2% in patients with eczema or fungal infections, which are very common in countries with lesser sun exposure and lower-than-normal vitamin D balances. Therefore, Polypropylene Glycol 1000 allergy is more common in those countries. Because of its potential for allergic reactions and frequent use across a variety of topical and systemic products, Polypropylene Glycol 1000 was named the American Contact Dermatitis Society's Allergen of the Year for 2018.[65][66] Recent publication from The Mayo Clinic reported 0.85% incidence of positive patch tests to Polypropylene Glycol 1000 (100/11,738 patients) with an overall irritant rate of 0.35% (41/11,738 patients) during a 20-year period of 1997–2016.[67] 87% of the reactions were classified as weak and 9% as strong. The positive reaction rates were 0%, 0.26%, and 1.86% for 5%, 10%, and 20% Polypropylene Glycol 1000 respectively, increasing with each concentration increase. The irritant reaction rates were 0.95%, 0.24%, and 0.5% for 5%, 10%, and 20% Polypropylene Glycol 1000, respectively. Polypropylene Glycol 1000 skin sensitization occurred in patients sensitive to a number of other concomitant positive allergens, most common of which were: Myroxylon pereirae resin, benzalkonium chloride, carba mix, potassium dichromate, neomycin sulfate; for positive Polypropylene Glycol 1000 reactions, the overall median of 5 and mean of 5.6 concomitant positive allergens was reported. For Polypropylene Glycol 1000 (USEPA/OPP Pesticide Code: 068602) there are 0 labels match. /SRP: Not registered for current use in the U.S., but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Of all polyether polyols (incl Polypropylene Glycol 1000, polyethylene glycol, and propylene oxide-ethylene oxide copolymers), 65% were used in polyurethane flexible foam; 9% in polyurethane rigid foam; 7% in noncellular polyurethane applications; 8% for surface-active agents; 8% for lubricants and functional fluids; & 3% for misc applications. There are 2 active ingredients in reregistration case 3123 for Polypropylene Glycol 1000. The RED evaluates the only active ingredient in this case with currently registered products; therefore, only butoxyPolypropylene Glycol 1000 (BPG), PC Code 011901/CAS No. 9003-13-8, 57 active products as of September, 2001/ was assessed. The other active ingredient in this case /poly(oxy(methyl-1,2ethanediyl)), alpha-hydro-omegahydroxy,CAS No. 25322-69-4 / has no product registrations /last pesticide product cancelled October 10, 1989/ and is not being supported for reregistration. This active ingredient would be evaluated only if and when new registration applications were to be submitted for new products. Method for determination of Polypropylene Glycol 1000 at sub-ppm levels in aqueous and organic media by gas-liquid chromatography or by gas chromatography-mass spectroscopy. Polypropylene Glycol 1000 is an alcohol. Flammable and/or toxic gases are generated by the combination of alcohols with alkali metals, nitrides, and strong reducing agents. They react with oxoacids and carboxylic acids to form esters plus water. Oxidizing agents convert them to aldehydes or ketones. Alcohols exhibit both weak acid and weak base behavior. They may initiate the polymerization of isocyanates and epoxides. This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Polypropylene Glycol 1000 is produced, as an intermediate or a final product, by process units covered under this subpart. Polypropylene Glycol 1000 (minimum molecular weight 150) is an indirect food additive for use only as a component of adhesives. Acute Exposure/ Propylene glycol was relatively harmless (LD50 = 21 g/kg) in acute oral toxicity studies involving rats. Acute oral toxicity studies on Polypropylene Glycol 1000s of various molecular weights (300 to 3900 Da) have indicated LD50 values (rats) ranging from 0.5 to >40g/kg. LABORATORY ANIMALS: Acute Exposure/ Single and repeated applications of Polypropylene glycol 425, Polypropylene glycol 1025, and Polypropylene glycol 2025 did not cause skin irritation in the rabbit. Repeated applications of Polypropylene glycol 1200 to rabbits caused mild reactions at abraded skin sites and no reactions at intact sites. Results were negative for 100% PG in a mouse external ear swelling sensitization test. The results of a guinea pig maximization, open epicutaneous, and Finn chamber tests indicated no sensitization reactions to 70%PG. In another maximization test, PG was classified as a potentially weak sensitizer. The results of six other guinea pig sensitization tests indicated that PG was not an allergen. NIOSH (NOES Survey 1981-1983) has statistically estimated that 217,886 workers (30,699 of these were female) were potentially exposed to Polypropylene Glycol 1000 in the US(1). Occupational exposure to Polypropylene Glycol 1000 may occur through inhalation where mists are formed from violent agitation or high temperatures, and dermal contact with this compound at workplaces where Polypropylene Glycol 1000 is produced or used(2). General description of Polypropylene Glycol 1000 Polypropylene Glycol 1000 is an aliphatic alcohol. It is an addition polymer of Polypropylene Glycol 1000 and water represented as H[OCH3]nOH in which n represents the average number of oxypropylene groups. Application of Polypropylene Glycol 1000 Polypropylene Glycol 1000 (PPG) may be used as a viscosity decreasing agent, a solvent and a fragrance ingredient in cosmetics. Polypropylene Glycol 1000 may be used as a good swelling agent for the synthesis of large pore mesoporous materials. What Is It? Polypropylene Glycol 1000, also known as 1,2-propanediol, is a synthetic (i.e., man-made) alcohol that attracts/absorbs water. It is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Polypropylene Glycol 1000 is one of the most widely used ingredients in cosmetics and personal care products, including facial cleansers, moisturizers, bath soaps, shampoos and conditioners, deodorants, shaving preparations, and fragrances. In addition to its use as an ingredient in cosmetic and personal care products, it is used in numerous food items such as beer, packaged baked goods, frozen dairy products, margarine, coffee, nuts, and soda. It is also used as an inactive ingredient (e.g., solvent) in many drugs. FDA has approved its use at concentrations as high as 98% in drugs applied to the skin and 92% in drugs taken orally. Why is it used in cosmetics and personal care products? Because Polypropylene Glycol 1000 attracts water it functions as a humectant and is used in moisturizers to enhance the appearance of skin by reducing flaking and restoring suppleness. Other reported uses include skin-conditioning agent, viscosity-decreasing agent, solvent, and fragrance ingredient. Polypropylene Glycol 1000 was reported to be used in 14,395 products, according to 2019 data in U.S. FDA’s Voluntary Cosmetic Registration Program (VCRP). Polypropylene Glycol 1000 is an alcohol. Flammable and/or toxic gases are generated by the combination of alcohols with alkali metals, nitrides, and strong reducing agents. They react with oxoacids and carboxylic acids to form esters plus water. Oxidizing agents convert them to aldehydes or ketones. Alcohols exhibit both weak acid and weak base behavior. Polypropylene Glycol 1000 may initiate the polymerization of isocyanates and epoxides. In dilute aqueous solution unimers of Pluronic F127 associate to form micelles. In more concentrated solution, micelles pack to form high-modulus gels. Our interest is the effect of addition of 10–30 wt % low molecular weight Polypropylene Glycol 1000 on the micellization and gelation of solutions of F127. DLS was used to determine the apparent size of the micelles (rh,app). The critical micelle concentration (cmc) using the dye solubilization method of F127 in Polypropylene Glycol 1000 solutions was studied. Visual observation was carried out to detect gel formation in concentrated solutions and the onset of clouding and turbidity, as the temperature was raised. Oscillatory rheometry was used to confirm the formation of high-modulus gels and provide values of elastic moduli (G′max) over a wide temperature range. SAXS was used to determine gel structure. Our results for the hydrophobic adduct Polypropylene Glycol 1000 were compared with literature values for the hydrophilic adduct PEG6000.
POLYPROPYLENE GLYCOL 2000
Polypropylene Glycol 2000 Polypropylene glycols are liquids, mostly insoluble in water, used to suppress foaming in industrial processes and for making polyurethane resins, hydraulic fluids, and various other materials. Polypropylene glycol 2000 or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG). The term Polypropylene glycol 2000 or Polypropylene glycol 2000 is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high molar mass polymer when end-groups no longer affect polymer properties. Structure The compound is sometimes called (alpha) α-Polypropylene glycol 2000 to distinguish it from the isomer propane-1,3-diol, known as (beta) β-Polypropylene glycol 2000. Polypropylene glycol 2000 is chiral. Commercial processes typically use the racemate. The S-isomer is produced by biotechnological routes. Production Industrial Industrially, Polypropylene glycol 2000 is mainly produced from propylene oxide (for food-grade use). According to a 2018 source, 2.16 M tonnes are produced annually.[4] Manufacturers use either non-catalytic high-temperature process at 200 °C (392 °F) to 220 °C (428 °F), or a catalytic method, which proceeds at 150 °C (302 °F) to 180 °C (356 °F) in the presence of ion exchange resin or a small amount of sulfuric acid or alkali. Final products contain 20% Polypropylene glycol 2000, 1.5% of diPolypropylene glycol 2000, and small amounts of other polyPolypropylene glycol 2000s.[6] Further purification produces finished industrial grade or USP/JP/EP/BP grade Polypropylene glycol 2000 that is typically 99.5% or greater. Use of USP (US Pharmacopoeia) Polypropylene glycol 2000 can reduce the risk of Abbreviated New Drug Application (ANDA) rejection.[7] Polypropylene glycol 2000 can also be obtained from glycerol, a byproduct from the production of biodiesel.[4] This starting material is usually reserved for industrial use because of the noticeable odor and taste that accompanies the final product. Laboratory S-Propanediol is synthesized from via fermentation methods. Lactic acid and lactaldehyde are common intermediates. Dihydroxyacetone phosphate, one of the two products of breakdown (glycolysis) of fructose 1,6-bisphosphate, is a precursor to methylglyoxal. This conversion is the basis of a potential biotechnological route to the commodity chemical 1,2-propanediol. Three-carbon deoxysugars are also precursor to the 1,2-diol.[4] Applications Polymers Forty-five percent of Polypropylene glycol 2000 produced is used as a chemical feedstock for the production of unsaturated polyester resins. In this regard, Polypropylene glycol 2000 reacts with a mixture of unsaturated maleic anhydride and isophthalic acid to give a copolymer. This partially unsaturated polymer undergoes further crosslinking to yield thermoset plastics. Related to this application, Polypropylene glycol 2000 reacts with propylene oxide to give oligomers and polymers that are used to produce polyurethanes.[4] Polypropylene glycol 2000 is used in waterbased acrylic architectural paints to extend dry time which it accomplishes by preventing the surface from drying due to its slower evaporation rate compared to water. Food Polypropylene glycol 2000 is also used in various edible items such as coffee-based drinks, liquid sweeteners, ice cream, whipped dairy products and soda. Vaporizers used for delivery of pharmaceuticals or personal-care products often include Polypropylene glycol 2000 among the ingredients. In alcohol-based hand sanitizers, it is used as a humectant to prevent the skin from drying.[11] Polypropylene glycol 2000 is used as a solvent in many pharmaceuticals, including oral, injectable, and topical formulations. Many pharmaceutical drugs which are insoluble in water utilize Polypropylene glycol 2000 as a solvent and carrier; benzodiazepine tablets are one example.[12] Polypropylene glycol 2000 is also used as a solvent and carrier for many pharmaceutical capsule preparations. Additionally, certain formulations of artificial tears use proplyene glycol as an ingredient. Polymerization Polypropylene glycol 2000 is produced by ring-opening polymerization of propylene oxide. The initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear. With a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out. Polypropylene glycol 2000 Conventional polymerization of propylene oxide results in an atactic polymer. The isotactic polymer can be produced from optically active propylene oxide, but at a high cost. A salen cobalt catalyst was reported in 2005 to provide isotactic polymerization of the prochiral propylene oxide[2] Cobalt catalyst for isotactic polypropylene oxide Properties Polypropylene glycol 2000 has many properties in common with polyethylene glycol. The polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass. Secondary hydroxyl groups in Polypropylene glycol 2000 are less reactive than primary hydroxyl groups in polyethylene glycol. Polypropylene glycol 2000 is less toxic than PEG, so biotechnologicals are now produced in Polypropylene glycol 2000. Uses Polypropylene glycol 2000 is used in many formulations for polyurethanes. It is used as a rheology modifier. Polypropylene glycol 2000 is used as a surfactant, wetting agent, dispersant in leather finishing. Polypropylene glycol 2000 is also employed as a tuning reference and calibrant in mass spectrometry. Polypropylene glycol 2000 is used as a primary ingredient in the making of paintballs. Polypropylene glycol 2000 is used as a primary ingredient in the making of some laxatives[3]. Polypropylene glycol 2000 (IUPAC name: propane-1,2-diol) is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Its chemical formula is CH3CH(OH)CH2OH. Containing two alcohol groups, it is classed as a diol. It is miscible with a broad range of solvents, including water, acetone, and chloroform. In general, glycols are non-irritating and have very low volatility. It is produced on a large scale primarily for the production of polymers. In the European Union, it has E-number E1520 for food applications. For cosmetics and pharmacology, the number is E490. Polypropylene glycol 2000 is also present in Polypropylene glycol 2000 alginate, which is known as E405. Polypropylene glycol 2000 is a compound which is GRAS (generally recognized as safe) by the US FDA (Food and Drug Administration) under 21 CFR x184.1666, and is also approved by the FDA for certain uses as an indirect food additive. Polypropylene glycol 2000 is approved and used as a vehicle for topical, oral, and some intravenous pharmaceutical preparations in the U.S. and in Europe. Polypropylene glycol 2000 is commonly used to de-ice aircraft Antifreeze The freezing point of water is depressed when mixed with Polypropylene glycol 2000. It is used as aircraft de-icing fluid.[4][14] Water-Polypropylene glycol 2000 mixtures dyed pink to indicate the mixture is relatively nontoxic are sold under the name of RV or marine antifreeze. Polypropylene glycol 2000 is frequently used as a substitute for ethylene glycol in low toxicity, environmentally friendly automotive antifreeze. It is also used to winterize the plumbing systems in vacant structures.[15] The eutectic composition/temperature is 60:40 Polypropylene glycol 2000:water/-60 °C. The −50 °F/−45 °C commercial product is, however, water rich; a typical formulation is 40:60.[18] Electronic cigarettes liquid Polypropylene glycol 2000 is often used in electronic cigarettes. Along with vegetable glycerin as the main ingredient (<1–92%) in e-liquid used in electronic cigarettes, where it is aerosolized to resemble smoke. It serves as both the carrier for substances like nicotine and cannabinoids, as well as for creating a vapor which resembles smoke. Miscellaneous applications A bottle of flavored e-liquid for vaping shows Polypropylene glycol 2000 as one of the main ingredients along with vegetable glycerin. Polypropylene glycol 2000 (often abbreviated 'PPG') has many applications. Some common applications see Polypropylene glycol 2000 used: As a solvent for many substances, both natural and synthetic. As a humectant (E1520). As a freezing point depressant for slurry ice. In veterinary medicine as an oral treatment for hyperketonaemia in ruminants. In the cosmetics industry, where Polypropylene glycol 2000 is very commonly used as a carrier or base for various types of makeup. For trapping and preserving insects (including as a DNA preservative).[23] For the creation of theatrical smoke and fog in special effects for film and live entertainment. So-called 'smoke machines' or 'hazers' vaporize a mixture of Polypropylene glycol 2000 and water to create the illusion of smoke. While many of these machines use a Polypropylene glycol 2000-based fuel, some use oil. Those which use Polypropylene glycol 2000 do so in a process that is identical to how electronic cigarettes work; utilizing a heating element to produce a dense vapor. The vapor produced by these machines has the aesthetic look and appeal of smoke, but without exposing performers and stage crew to the harms and odors associated with actual smoke. As an additive in PCR to reduce the melting temperature of nucleic acids for targeting of GC rich sequences. Safety in humans When used in average quantities, Polypropylene glycol 2000 has no measurable effect on development and/or reproduction on animals and probably does not adversely affect human development or reproduction.[26] The safety of electronic cigarettes—which utilize Polypropylene glycol 2000-based preparations of nicotine or THC and other cannabinoids—is the subject of much controversy.- Oral administration The acute oral toxicity of Polypropylene glycol 2000 is very low, and large quantities are required to cause perceptible health effects in humans; in fact, Polypropylene glycol 2000 is three times less toxic than ethanol.[30] Polypropylene glycol 2000 is metabolized in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion),[31] and propionaldehyde (a potentially hazardous substance). According to the Dow Chemical Company, The LD50 (Lethal Dose that kills in 50% of tests) for rats is 20 g/kg (rat/oral). Toxicity generally occurs at plasma concentrations over 4 g/L, which requires extremely high intake over a relatively short period of time, or when used as a vehicle for drugs or vitamins given intravenously or orally in large bolus doses.[37] It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of Polypropylene glycol 2000, except for alcoholic beverages in the US which are allowed 5 percent = 50g/kg.[38] Cases of Polypropylene glycol 2000 poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. In an NTP continuous breeding study, no effects on fertility were observed in male or female mice that received Polypropylene glycol 2000 in drinking water at doses up to 10,100 mg/kg bw/day. No effects on fertility were seen in either the first or second generation of treated mice.[26] In a 2-year study, 12 rats were provided with feed containing as much as 5% Polypropylene glycol 2000, and showed no apparent ill effects.[40] Because of its low chronic oral toxicity, Polypropylene glycol 2000 was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive, including frozen foods such as ice cream and frozen desserts. The GRAS designation is specific to its use in food, and does not apply to other uses. Skin, eye and inhalation contact Polypropylene glycol 2000 is essentially non-irritating to the skin.[43] Undiluted Polypropylene glycol 2000 is minimally irritating to the eye, producing slight transient conjunctivitis; the eye recovers after the exposure is removed. A 2018 human volunteer study found that 10 male and female subjects undergoing 4 hours exposures to concentrations of up to 442 mg/m3 and 30 minutes exposures to concentrations of up to 871 mg/m3 in combination with moderate exercise did not show pulmonary function deficits, or signs of ocular irritation, with only slight symptoms of respiratory irritation reported.[44] Inhalation of Polypropylene glycol 2000 vapors appears to present no significant hazard in ordinary applications.[45] Due to the lack of chronic inhalation data, it is recommended that Polypropylene glycol 2000 not be used in inhalation applications such as theatrical productions, or antifreeze solutions for emergency eye wash stations.[46] Recently, Polypropylene glycol 2000 (commonly alongside glycerol) has been included as a carrier for nicotine and other additives in e-cigarette liquids, the use of which presents a novel form of exposure. The potential hazards of chronic inhalation of Polypropylene glycol 2000 or the latter substance as a whole are as-yet unknown. According to a 2010 study, the concentrations of Polypropylene glycol 2000Es (counted as the sum of Polypropylene glycol 2000 and glycol ethers) in indoor air, particularly bedroom air, has been linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers. However, the study authors write that glycol ethers and not Polypropylene glycol 2000 are the likely culprit. Polypropylene glycol 2000 has not caused sensitization or carcinogenicity in laboratory animal studies, nor has it demonstrated genotoxic potential. Intravenous administration Studies with intravenously administered Polypropylene glycol 2000 have resulted in LD50 values in rats and rabbits of 7 mL/kg BW.[53] Ruddick (1972) also summarized intramuscular LD50 data for rat as 13-20 mL/kg BW, and 6 mL/kg BW for the rabbit. Adverse effects to intravenous administration of drugs that use Polypropylene glycol 2000 as an excipient have been seen in a number of people, particularly with large bolus dosages. Responses may include CNS depression, "hypotension, bradycardia, QRS and T abnormalities on the ECG, arrhythmia, cardiac arrhythmias, seizures, agitation, serum hyperosmolality, lactic acidosis, and haemolysis".[54] A high percentage (12% to 42%) of directly-injected Polypropylene glycol 2000 is eliminated or secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases,[55] which may be due to Polypropylene glycol 2000's mild anesthetic / CNS-depressant -properties as an alcohol.[56] In one case, intravenous administration of Polypropylene glycol 2000-suspended nitroglycerin to an elderly man may have induced coma and acidosis.[57] However, no confirmed lethality from Polypropylene glycol 2000 was reported. Animals Polypropylene glycol 2000 is an approved food additive for dog and sugar glider food under the category of animal feed and is generally recognized as safe for dogs,[58] with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg).[59] However, it is prohibited for use in food for cats due to links to Heinz body formation and a reduced lifespan of red blood cells.[60] Heinz body formation from MPolypropylene glycol 2000 has not been observed in dogs, cattle, or humans. Environmental Polypropylene glycol 2000 occurs naturally, probably as the result of anaerobic catabolism of sugars in the human gut. It is degraded by vitamin B12-dependent enzymes, which convert it to propionaldehyde.[68] Polypropylene glycol 2000 is expected to degrade rapidly in water from biological processes, but is not expected to be significantly influenced by hydrolysis, oxidation, volatilization, bioconcentration, or adsorption to sediment.[69] Polypropylene glycol 2000 is readily biodegradable under aerobic conditions in freshwater, in seawater and in soil. Therefore, Polypropylene glycol 2000 is considered as not persistent in the environment. Polypropylene glycol 2000 exhibits a low degree of toxicity toward aquatic organisms. Several guideline studies available for freshwater fish with the lowest observed effect concentration of 96-h LC50 value of 40,613 mg/l in a study with Oncorhynchus mykiss. Similarly, the effect concentration determined in marine fish is a 96-h LC50 of >10,000 mg/l in Scophthalmus maximus. For Polypropylene glycol 2000 (USEPA/OPP Pesticide Code: 068602) there are 0 labels match. /SRP: Not registered for current use in the U.S., but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Of all polyether polyols (incl Polypropylene glycol 2000, polyethylene glycol, and propylene oxide-ethylene oxide copolymers), 65% were used in polyurethane flexible foam; 9% in polyurethane rigid foam; 7% in noncellular polyurethane applications; 8% for surface-active agents; 8% for lubricants and functional fluids; & 3% for misc applications. There are 2 active ingredients in reregistration case 3123 for Polypropylene glycol 2000. The RED evaluates the only active ingredient in this case with currently registered products; therefore, only butoxyPolypropylene glycol 2000 (BPG), PC Code 011901/CAS No. 9003-13-8, 57 active products as of September, 2001/ was assessed. The other active ingredient in this case /poly(oxy(methyl-1,2ethanediyl)), alpha-hydro-omegahydroxy,CAS No. 25322-69-4 / has no product registrations /last pesticide product cancelled October 10, 1989/ and is not being supported for reregistration. This active ingredient would be evaluated only if and when new registration applications were to be submitted for new products. Method for determination of Polypropylene glycol 2000 at sub-ppm levels in aqueous and organic media by gas-liquid chromatography or by gas chromatography-mass spectroscopy. Polypropylene glycol 2000 is an alcohol. Flammable and/or toxic gases are generated by the combination of alcohols with alkali metals, nitrides, and strong reducing agents. They react with oxoacids and carboxylic acids to form esters plus water. Oxidizing agents convert them to aldehydes or ketones. Alcohols exhibit both weak acid and weak base behavior. They may initiate the polymerization of isocyanates and epoxides. This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Polypropylene glycol 2000 is produced, as an intermediate or a final product, by process units covered under this subpart. Polypropylene glycol 2000 (minimum molecular weight 150) is an indirect food additive for use only as a component of adhesives. Acute Exposure/ Propylene glycol was relatively harmless (LD50 = 21 g/kg) in acute oral toxicity studies involving rats. Acute oral toxicity studies on Polypropylene glycol 2000s of various molecular weights (300 to 3900 Da) have indicated LD50 values (rats) ranging from 0.5 to >40g/kg. LABORATORY ANIMALS: Acute Exposure/ Single and repeated applications of Polypropylene glycol 425, Polypropylene glycol 1025, and Polypropylene glycol 2025 did not cause skin irritation in the rabbit. Repeated applications of Polypropylene glycol 1200 to rabbits caused mild reactions at abraded skin sites and no reactions at intact sites. Results were negative for 100% PG in a mouse external ear swelling sensitization test. The results of a guinea pig maximization, open epicutaneous, and Finn chamber tests indicated no sensitization reactions to 70%PG. In another maximization test, PG was classified as a potentially weak sensitizer. The results of six other guinea pig sensitization tests indicated that PG was not an allergen. NIOSH (NOES Survey 1981-1983) has statistically estimated that 217,886 workers (30,699 of these were female) were potentially exposed to Polypropylene glycol 2000 in the US(1). Occupational exposure to Polypropylene glycol 2000 may occur through inhalation where mists are formed from violent agitation or high temperatures, and dermal contact with this compound at workplaces where Polypropylene glycol 2000 is produced or used(2). General description of Polypropylene glycol 2000 Polypropylene glycol 2000 is an aliphatic alcohol. It is an addition polymer of Polypropylene glycol 2000 and water represented as H[OCH3]nOH in which n represents the average number of oxypropylene groups. Application of Polypropylene glycol 2000 Polypropylene glycol 2000 (PPG) may be used as a viscosity decreasing agent, a solvent and a fragrance ingredient in cosmetics. Polypropylene glycol 2000 may be used as a good swelling agent for the synthesis of large pore mesoporous materials. What Is It? Polypropylene glycol 2000, also known as 1,2-propanediol, is a synthetic (i.e., man-made) alcohol that attracts/absorbs water. It is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Polypropylene glycol 2000 is one of the most widely used ingredients in cosmetics and personal care products, including facial cleansers, moisturizers, bath soaps, shampoos and conditioners, deodorants, shaving preparations, and fragrances. In addition to its use as an ingredient in cosmetic and personal care products, it is used in numerous food items such as beer, packaged baked goods, frozen dairy products, margarine, coffee, nuts, and soda. It is also used as an inactive ingredient (e.g., solvent) in many drugs. FDA has approved its use at concentrations as high as 98% in drugs applied to the skin and 92% in drugs taken orally. Why is it used in cosmetics and personal care products? Because Polypropylene glycol 2000 attracts water it functions as a humectant and is used in moisturizers to enhance the appearance of skin by reducing flaking and restoring suppleness. Other reported uses include skin-conditioning agent, viscosity-decreasing agent, solvent, and fragrance ingredient. Polypropylene glycol 2000 was reported to be used in 14,395 products, according to 2019 data in U.S. FDA’s Voluntary Cosmetic Registration Program (VCRP). Polypropylene glycol 2000 is an alcohol. Flammable and/or toxic gases are generated by the combination of alcohols with alkali metals, nitrides, and strong reducing agents. They react with oxoacids and carboxylic acids to form esters plus water. Oxidizing agents convert them to aldehydes or ketones. Alcohols exhibit both weak acid and weak base behavior. Polypropylene glycol 2000 may initiate the polymerization of isocyanates and epoxides. In dilute aqueous solution unimers of Pluronic F127 associate to form micelles. In more concentrated solution, micelles pack to form high-modulus gels. Our interest is the effect of addition of 10–30 wt % low molecular weight Polypropylene glycol 2000 on the micellization and gelation of solutions of F127. DLS was used to determine the apparent size of the micelles (rh,app). The critical micelle concentration (cmc) using the dye solubilization method of F127 in Polypropylene glycol 2000 solutions was studied. Visual observation was carried out to detect gel formation in concentrated solutions and the onset of clouding and turbidity, as the temperature was raised. Oscillatory rheometry was used to confirm the formation of high-modulus gels and provide values of elastic moduli (G′max) over a wide temperature range. SAXS was used to determine gel structure. Our results for the hydrophobic adduct Polypropylene glycol 2000 were compared with literature values for the hydrophilic adduct PEG6000. What is Polypropylene glycol 2000? Polypropylene glycol 2000 is a synthetic liquid substance that absorbs water. Polypropylene glycol 2000 is also used to make polyester compounds, and as a base for deicing solutions. Polypropylene glycol 2000 is used by the chemical, food, and pharmaceutical industries as an antifreeze when leakage might lead to contact with food. The Food and Drug Administration (FDA) has classified Polypropylene glycol 2000 as an additive that is "generally recognized as safe" for use in food. It is used to absorb extra water and maintain moisture in certain medicines, cosmetics, or food products. It is a solvent for food colors and flavors, and in the paint and plastics industries. Polypropylene glycol 2000 is also used to create artificial smoke or fog used in fire-fighting training and in theatrical productions. Other names for Polypropylene glycol 2000 are 1,2-dihydroxypropane, 1,2-propanediol, methyl glycol, and trimethyl glycol. Polypropylene glycol 2000 is clear, colorless, slightly syrupy liquid at room temperature. It may exist in air in the vapor form, although Polypropylene glycol 2000 must be heated or briskly shaken to produce a vapor. Polypropylene glycol 2000 is practically odorless and tasteless. 1.2 What happens to Polypropylene glycol 2000 when it enters the environment? Waste streams from the manufacture of Polypropylene glycol 2000 are primarily responsible for the releases into the air, water, and soil. Polypropylene glycol 2000 can enter the environment when it is used as a runway and aircraft de-icing agent. Polypropylene glycol 2000 can also enter the environment through the disposal of products that contains it. It is not likely to exist in large amounts in the air. We have little information about what happens to Polypropylene glycol 2000 in the air. The small amounts that may enter the air are likely to break down quickly. If it escapes into the air, it will take between 24 and 50 hours for half the amount released to break down. Polypropylene glycol 2000 can mix completely with water and can soak into soil. It can break down relatively quickly (within several days to a week) in surface water and in soil. Polypropylene glycol 2000 can also travel from certain types of food packages into the food in the package. 1.3 How might I be exposed to Polypropylene glycol 2000? Polypropylene glycol 2000 has been approved for use at certain levels in food, cosmetics, and pharmaceutical products. If you eat food products, use cosmetics, or take medicines that contain it, you will be exposed to Polypropylene glycol 2000, but these amounts are not generally considered harmful. People who work in industries that use Polypropylene glycol 2000 may be exposed by touching these products or inhaling mists from spraying them. These exposures tend to be at low levels, however. Polypropylene glycol 2000 is used to make artificial smoke and mists for fire safety training, theatrical performances, and rock concerts. These artificial smoke products may also be used by private citizens. These products are frequently used in enclosed spaces, where exposure may be more intense. 1.4 How can Polypropylene glycol 2000 ether enter and leave my body? Polypropylene glycol 2000 can enter your bloodstream if you breathe air containing mists or vapors from this compound. It can also enter your bloodstream through your skin if you come in direct contact with it and do not wash it off. If you eat products that contain Polypropylene glycol 2000, it may enter your bloodstream. Exposure of the general population to Polypropylene glycol 2000 is likely since many foods, drugs, and cosmetics contain it. Polypropylene glycol 2000 breaks down in the body in about 48 hours. However, studies of people and animals show that if you have repeated eye, skin, nasal, or oral exposures to Polypropylene glycol 2000 for a short time, you may develop some irritation. 1.5 How can Polypropylene glycol 2000 affect my health? Polypropylene glycol 2000 breaks down at the same rate as ethylene glycol, although it does not form harmful crystals when it breaks down. Frequent skin exposure to Polypropylene glycol 2000 can sometimes irritate the skin. 1.6 Is there a medical test to determine whether I have been exposed to Polypropylene glycol 2000? Polypropylene glycol 2000 is generally considered to be a safe chemical, and is not routinely tested for, unless specific exposure, such as to a medicine or cosmetic, can be linked with the observed bad symptoms. Since Polypropylene glycol 2000 breaks down very quickly in the body, it is very difficult to detect. 1.7 What recommendations has the federal government made to protect human health? The government has developed regulations and guidelines for Polypropylene glycol 2000. These are designed to protect the public from potential adverse health effects. The Food and Drug Administration (FDA) has classified Polypropylene glycol 2000 as "generally recognized as safe," which means that it is acceptable for use in flavorings, drugs, and cosmetics, and as a direct food additive. According to the World Health Organization, the acceptable dietary intake of Polypropylene glycol 2000 is 25 mg of Polypropylene glycol 2000 for every kilogram (kg) of body weight. Allergic reaction Estimates on the prevalence of Polypropylene glycol 2000 allergy range from 0.8% (10% Polypropylene glycol 2000 in aqueous solution) to 3.5% (30% Polypropylene glycol 2000 in aqueous solution).[61][62][63] The North American Contact Dermatitis Group (NACDG) data from 1996 to 2006 showed that the most common site for Polypropylene glycol 2000 contact dermatitis was the face (25.9%), followed by a generalized or scattered pattern (23.7%).[61] Investigators believe that the incidence of allergic contact dermatitis to Polypropylene glycol 2000 may be greater than 2% in patients with eczema or fungal infections, which are very common in countries with lesser sun exposure and lower-than-normal vitamin D balances. Therefore, Polypropylene glycol 2000 allergy is more common in those countries. Because of its potential for allergic reactions and frequent use across a variety of topical and systemic products, Polypropylene glycol 2000 was named the American Contact Dermatitis Society's Allergen of the Year for 2018.[65][66] Recent publication from The Mayo Clinic reported 0.85% incidence of positive patch tests to Polypropylene glycol 2000 (100/11,738 patients) with an overall irritant rate of 0.35% (41/11,738 patients) during a 20-year period of 1997–2016.[67] 87% of the reactions were classified as weak and 9% as strong. The positive reaction rates were 0%, 0.26%, and 1.86% for 5%, 10%, and 20% Polypropylene glycol 2000 respectively, increasing with each concentration increase. The irritant reaction rates were 0.95%, 0.24%, and 0.5% for 5%, 10%, and 20% Polypropylene glycol 2000, respectively. Polypropylene glycol 2000 skin sensitization occurred in patients sensitive to a number of other concomitant positive allergens, most common of which were: Myroxylon pereirae resin, benzalkonium chloride, carba mix, potassium dichromate, neomycin sulfate; for positive Polypropylene glycol 2000 reactions, the overall median of 5 and mean of 5.6 concomitant positive allergens was reported.
POLYPROPYLENE GLYCOL 400
POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) IUPAC Name 2-(2-hydroxypropoxy)propan-1-ol POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) InChI InChI=1S/C6H14O3/c1-5(8)4-9-6(2)3-7/h5-8H,3-4H2,1-2H3 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) InChI Key DUFKCOQISQKSAV-UHFFFAOYSA-N POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Canonical SMILES CC(CO)OCC(C)O POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Molecular Formula C6H14O3 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) CAS 25322-69-4 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) European Community (EC) Number 500-039-8 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) RTECS Number TR5250000 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) UNII WNY0H4G53Q POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) DSSTox Substance ID DTXSID9027863 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Physical Description Polypropylene glycol appears as colorless liquid that is odorless or has a mild sweet odor. May float or sink in water. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Color/Form Clear, lightly colored, slightly oily, viscous liquids POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Melting Point -58 °F POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Flash Point 390 to 495 °F POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Solubility Lower molecular weight members are sol in water POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Density 1.012 at 68 °F POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Vapor Pressure <0.01 mm Hg at 20 °C /contains 130-190 ppm proprietary phenolic antioxidant/ POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Stability/Shelf Life Quite stable chemically POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) pH Noncorrosive POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Odor Threshold 340 ppm POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Molecular Weight 134.17 g/mol POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) XLogP3 -0.7 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Hydrogen Bond Donor Count 2 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Hydrogen Bond Acceptor Count 3 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Rotatable Bond Count 4 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Exact Mass 134.094294 g/mol POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Monoisotopic Mass 134.094294 g/mol POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Topological Polar Surface Area 49.7 Ų POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Heavy Atom Count 9 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Formal Charge 0 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Complexity 65.3 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Isotope Atom Count 0 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Defined Atom Stereocenter Count 0 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Undefined Atom Stereocenter Count 2 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Defined Bond Stereocenter Count 0 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Undefined Bond Stereocenter Count 0 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Covalently-Bonded Unit Count 1 POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Compound Is Canonicalized Yes Chemical Name: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Synonyms: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400); Poly (propylene oxide).CAS No.: 25322-69-4 Appearance: Colorless viscous liquid Product description: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) (PPG) POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG). The term POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or PPG is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high molar mass polymer when end-groups no longer affect polymer properties. In 2003, 60% of the annual production of propylene oxide of 6.6×106 tonnes was converted into the polymer.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is produced by ring-opening polymerization of propylene oxide. The initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear. With a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) has many properties in common with polyethylene glycol. The polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass. Secondary hydroxyl groups in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) are less reactive than primary hydroxyl groups in polyethylene glycol. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is less toxic than PEG, so biotechnologicals are now produced in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400).Uses POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used in many formulations for polyurethanes. It is used as a rheology modifier.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a surfactant, wetting agent, dispersant in leather finishing.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is also employed as a tuning reference and calibrant in mass spectrometry.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of paintballs.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of some laxatives.It is used in cosmetic and pharmaceutical preparations and in the manufacture of emulsifying or wetting agents and lubricants,suppress foaming in industrial processes and for making polyurethane resins, hydraulic fluids, and various other materials. It acts as swelling agent for the preparation and characterization of organo-modified SBA-15. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) and tetraethoxysilane precursors play an important role for the preparation of superhydrophobic silica-based surfaces.In dilute aqueous solution unimers of Pluronic F127 associate to form micelles. In more concentrated solution, micelles pack to form high-modulus gels. Our interest is the effect of addition of 10–30 wt % low molecular weight POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 on the micellization and gelation of solutions of F127. DLS was used to determine the apparent size of the micelles (rh,app). The critical micelle concentration (cmc) using the dye solubilization method of F127 in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 solutions was studied. Visual observation was carried out to detect gel formation in concentrated solutions and the onset of clouding and turbidity, as the temperature was raised. Oscillatory rheometry was used to confirm the formation of high-modulus gels and provide values of elastic moduli (G′max) over a wide temperature range. SAXS was used to determine gel structure. Our results for the hydrophobic adduct POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 were compared with literature values for the hydrophilic adduct PEG6000.Crystallization grade POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400 for formulating screens or for optimization.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 2,000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 2000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 400WHAT IS POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC AND HOW DOES IT WORK? Polyethylene glycol 400/propylene glycol ophthalmic is an over-the-counter (OTC) product used to treat dry eyes.Polyethylene glycol 400/propylene glycol ophthalmic is available under the following different brand names: Systane Gel Drops, Systane Preservative-Free, Systane Ultra Preservative-Free, Systane Lubricant Eye Drops, and Systane Ultra.Dosages of Polyethylene Glycol 400/Propylene Glycol Ophthalmic:Dosage Forms and Strengths Ophthalmic Drops 0.4%/0.3% Dosage Considerations – Should be Given as Follows:Dry Eyes Shake well before use.Instill 1-2 drop(s) in affected eye(s) as needed.Safety and efficacy not established in pediatric patients.WHAT ARE SIDE EFFECTS ASSOCIATED WITH USING POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC? Side effects of polyethylene glycol 400/propylene glycol ophthalmic include A POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated, 400 molecular weight homopolymer diol. It is a multipurpose short diol, which can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings, adhesives and sealants with a variety of end uses such as elastomers, adhesives, coatings, and sealants.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated. Can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings.Chemical Name: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Synonyms: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400); Poly (propylene oxide).CAS No.: 25322-69-4 Appearance: Colorless viscous liquid Product description: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) (PPG) POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG). The term POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or PPG is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high molar mass polymer when end-groups no longer affect polymer properties. In 2003, 60% of the annual production of propylene oxide of 6.6×106 tonnes was converted into the polymer.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is produced by ring-opening polymerization of propylene oxide. The initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear. With a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) has many properties in common with polyethylene glycol. The polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass. Secondary hydroxyl groups in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) are less reactive than primary hydroxyl groups in polyethylene glycol. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is less toxic than PEG, so biotechnologicals are now produced in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400).Uses POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used in many formulations for polyurethanes. It is used as a rheology modifier.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a surfactant, wetting agent, dispersant in leather finishing.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is also employed as a tuning reference and calibrant in mass spectrometry.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of paintballs.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of some laxatives.It is used in cosmetic and pharmaceutical preparations and in the manufacture of emulsifying or wetting agents and lubricants,suppress foaming in industrial processes and for making polyurethane resins, hydraulic fluids, and various other materials. It acts as swelling agent for the preparation and characterization of organo-modified SBA-15. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) and tetraethoxysilane precursors play an important role for the preparation of superhydrophobic silica-based surfaces.In dilute aqueous solution unimers of Pluronic F127 associate to form micelles. In more concentrated solution, micelles pack to form high-modulus gels. Our interest is the effect of addition of 10–30 wt % low molecular weight POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 on the micellization and gelation of solutions of F127. DLS was used to determine the apparent size of the micelles (rh,app). The critical micelle concentration (cmc) using the dye solubilization method of F127 in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 solutions was studied. Visual observation was carried out to detect gel formation in concentrated solutions and the onset of clouding and turbidity, as the temperature was raised. Oscillatory rheometry was used to confirm the formation of high-modulus gels and provide values of elastic moduli (G′max) over a wide temperature range. SAXS was used to determine gel structure. Our results for the hydrophobic adduct POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 were compared with literature values for the hydrophilic adduct PEG6000.Crystallization grade POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400 for formulating screens or for optimization.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 2,000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 2000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 400WHAT IS POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC AND HOW DOES IT WORK? Polyethylene glycol 400/propylene glycol ophthalmic is an over-the-counter (OTC) product used to treat dry eyes.Polyethylene glycol 400/propylene glycol ophthalmic is available under the following different brand names: Systane Gel Drops, Systane Preservative-Free, Systane Ultra Preservative-Free, Systane Lubricant Eye Drops, and Systane Ultra.Dosages of Polyethylene Glycol 400/Propylene Glycol Ophthalmic:Dosage Forms and Strengths Ophthalmic Drops 0.4%/0.3% Dosage Considerations – Should be Given as Follows:Dry Eyes Shake well before use.Instill 1-2 drop(s) in affected eye(s) as needed.Safety and efficacy not established in pediatric patients.WHAT ARE SIDE EFFECTS ASSOCIATED WITH USING POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC? Side effects of polyethylene glycol 400/propylene glycol ophthalmic include A POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated, 400 molecular weight homopolymer diol. It is a multipurpose short diol, which can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings, adhesives and sealants with a variety of end uses such as elastomers, adhesives, coatings, and sealants.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated. Can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings.Chemical Name: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) Synonyms: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400); Poly (propylene oxide).CAS No.: 25322-69-4 Appearance: Colorless viscous liquid Product description: POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) (PPG) POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG). The term POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) or PPG is reserved for low to medium range molar mass polymer when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high molar mass polymer when end-groups no longer affect polymer properties. In 2003, 60% of the annual production of propylene oxide of 6.6×106 tonnes was converted into the polymer.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is produced by ring-opening polymerization of propylene oxide. The initiator is an alcohol and the catalyst a base, usually potassium hydroxide. When the initiator is ethylene glycol or water the polymer is linear. With a multifunctional initiator like glycerine, pentaerythritol or sorbitol the polymer branches out.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) has many properties in common with polyethylene glycol. The polymer is a liquid at room temperature. Solubility in water decreases rapidly with increasing molar mass. Secondary hydroxyl groups in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) are less reactive than primary hydroxyl groups in polyethylene glycol. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is less toxic than PEG, so biotechnologicals are now produced in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400).Uses POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used in many formulations for polyurethanes. It is used as a rheology modifier.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a surfactant, wetting agent, dispersant in leather finishing.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is also employed as a tuning reference and calibrant in mass spectrometry.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of paintballs.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) is used as a primary ingredient in the making of some laxatives.It is used in cosmetic and pharmaceutical preparations and in the manufacture of emulsifying or wetting agents and lubricants,suppress foaming in industrial processes and for making polyurethane resins, hydraulic fluids, and various other materials. It acts as swelling agent for the preparation and characterization of organo-modified SBA-15. POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) and tetraethoxysilane precursors play an important role for the preparation of superhydrophobic silica-based surfaces.In dilute aqueous solution unimers of Pluronic F127 associate to form micelles. In more concentrated solution, micelles pack to form high-modulus gels. Our interest is the effect of addition of 10–30 wt % low molecular weight POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 on the micellization and gelation of solutions of F127. DLS was used to determine the apparent size of the micelles (rh,app). The critical micelle concentration (cmc) using the dye solubilization method of F127 in POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 solutions was studied. Visual observation was carried out to detect gel formation in concentrated solutions and the onset of clouding and turbidity, as the temperature was raised. Oscillatory rheometry was used to confirm the formation of high-modulus gels and provide values of elastic moduli (G′max) over a wide temperature range. SAXS was used to determine gel structure. Our results for the hydrophobic adduct POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400)400 were compared with literature values for the hydrophilic adduct PEG6000.Crystallization grade POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400 for formulating screens or for optimization.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 2,000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), DIOL TYPE, 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) P 400;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 700;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 2000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 1000;POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400) 400WHAT IS POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC AND HOW DOES IT WORK? Polyethylene glycol 400/propylene glycol ophthalmic is an over-the-counter (OTC) product used to treat dry eyes.Polyethylene glycol 400/propylene glycol ophthalmic is available under the following different brand names: Systane Gel Drops, Systane Preservative-Free, Systane Ultra Preservative-Free, Systane Lubricant Eye Drops, and Systane Ultra.Dosages of Polyethylene Glycol 400/Propylene Glycol Ophthalmic:Dosage Forms and Strengths Ophthalmic Drops 0.4%/0.3% Dosage Considerations – Should be Given as Follows:Dry Eyes Shake well before use.Instill 1-2 drop(s) in affected eye(s) as needed.Safety and efficacy not established in pediatric patients.WHAT ARE SIDE EFFECTS ASSOCIATED WITH USING POLYETHYLENE GLYCOL 400/PROPYLENE GLYCOL OPHTHALMIC? Side effects of polyethylene glycol 400/propylene glycol ophthalmic include A POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated, 400 molecular weight homopolymer diol. It is a multipurpose short diol, which can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings, adhesives and sealants with a variety of end uses such as elastomers, adhesives, coatings, and sealants.POLYPROPYLENE GLYCOL 400 (POLİPROPİLEN GLİKOL 400), propylene glycol initiated. Can be blended with other polyols for the production of two component compact or foamed systems and one component prepolymer based products for coatings.Follow all directions on the product package. If you have any questions, ask your doctor or pharmacist. Do not use a solution that has changed color or is cloudy. Certain brands (containing glycerin with polysorbates, among other ingredients) may have a milky appearance. This is okay as long as the solution does not change color. Some eye drops need to be shaken before use. Check the label to see if you should shake your product before using.Usually, drops may be used as often as needed. Ointments are usually used 1 to 2 times daily as needed. If using an ointment once a day, it may be best to use it at bedtime.To apply eye ointment/drops/gels: Wash hands first. To avoid contamination, be careful not to touch the dropper or top of the ointment tube or let it touch your eye. Always replace the cap tightly after each use. Tilt your head back, look up, and pull down the lower eyelid to make a pouch. For drops/gels, place the dropper directly over the eye and squeeze out 1 or 2 drops as needed. Look down and gently close your eye for 1 or 2 minutes. Place one finger at the corner of the eye near the nose and apply gentle pressure. This will prevent the medication from draining away from the eye. For an ointment, hold the tube directly over the eye and gently squeeze a small strip (one-fourth of an inch or roughly 6 millimeters) of ointment into the pouch. Release the eyelid, close the eye, and slowly roll your eye in all directions to spread the medication. Blot away any extra ointment from around the eye with a clean tissue.If you are also using another kind of eye medication (e.g., drops or ointments), wait at least 5 minutes before applying other medications. Use eye drops before eye ointments to allow the eye drops to enter the eye.If you wear contact lenses, remove them before using most kinds of eye lubricants. Ask your doctor or pharmacist when you may replace your contact lenses. There are a few types of eye lubricants (some that contain polysorbates) that can be used while wearing contact lenses. Check the package to see if you can wear your contact lenses while using your product.Tell your doctor if your condition persists or worsens after 3 days.Vision may be temporarily blurred when this product is first used. Also, minor burning/stinging/irritation may temporarily occur. If any of these effects persist or worsen, tell your doctor or pharmacist promptly.If your doctor has directed you to use this medication, remember that he or she has judged that the benefit to you is greater than the risk of side effects. Many people using this medication do not have serious side effects.Tell your doctor right away if any of these unlikely but serious side effects occur: eye pain, change in vision, continued eye redness/irritation.A very serious allergic reaction to this drug is rare. However, seek immediate medical attention if you notice any symptoms of a serious allergic reaction, including: rash, itching/swelling (especially of the face/tongue/throat), severe dizziness, trouble breathing.This is not a complete list of possible side effects. If you notice other effects not listed above, contact your doctor or pharmacist.Before using this product, tell your doctor or pharmacist if you are allergic to it; or if you have any other allergies. This product may contain inactive ingredients, which can cause allergic reactions or other problems. Talk to your pharmacist for more details.If you have any health problems, consult your doctor or pharmacist before using this product.This product (especially ointments) may temporarily cause blurred vision right after being placed in the eye(s). Do not drive, use machinery, or do any activity that requires clear vision until you are sure you can perform such activities safely.Consult your pharmacist or physician.If you are using this product under your doctor's direction, your doctor or pharmacist may already be aware of any possible drug interactions and may be monitoring you for them. Do not start, stop, or change the dosage of any medicine before checking with your doctor or pharmacist first.Before using this product, tell your doctor or pharmacist of all prescription and nonprescription/herbal products you may use, especially of: other eye medications.This document does not contain all possible interactions. Therefore, before using this product, tell your doctor or pharmacist of all the products you use. Keep a list of all your medications with you, and share the list with your doctor and pharmacist./Used in/ polyurethanes, surfactants, and the medical area ... used as lubricants, dispersants, antistatic agents, foam control agents, in printing inks, in printing processes, and as solubilizers... used in aqueous hydraulic fluids and in coolant compositions... in secondary oil recovery operations, as plastic additives, in nonpolyurethane adhesives, and in propellant compositions. In the medical field they find applications as protective bandages, in drug delivery systems, in organ preservation, in dental compositions, and as a fat substitute.Used as lubricants, solvents, plasticizers, softening agents, antifoaming agents, mold-release agents, and intermediates in the production of resins, surface-active agents, and a large series of ethers and esters. They are widely used in hydraulic fluid compositions.Of all polyether polyols (incl polypropylene glycol, polyethylene glycol, and propylene oxide-ethylene oxide copolymers), 65% were used in polyurethane flexible foam; 9% in polyurethane rigid foam; 7% in noncellular polyurethane applications; 8% for surface-active agents; 8% for lubricants and functional fluids; & 3% for misc applications.Wastewater from contaminant suppression, cleaning of protective clothing/equipment, or contaminated sites should be contained and evaluated for subject chemical or decomposition product concentrations. Concentrations shall be lower than applicable environmental discharge or disposal criteria. Alternatively, pretreatment and/or discharge to a permitted wastewater treatment facility is acceptable only after review by the governing authority and assurance that "pass through" violations will not occur. Due consideration shall be given to remediation worker exposure (inhalation, dermal and ingestion) as well as fate during treatment, transfer and disposal. If it is not practicable to manage the chemical in this fashion, it must be evaluated in accordance with EPA 40 CFR Part 261, specifically Subpart B, in order to determine the appropriate local, state and federal requirements for disposal.Criteria for land treatment or burial (sanitary landfill) disposal practices are subject to significant revision. Prior to implementing land disposal of waste residue (including waste sludge), consult with environmental regulatory agencies for guidance on acceptable disposal practices.POLYPROPYLENE GLYCOL is an alcohol. Flammable and/or toxic gases are generated by the combination of alcohols with alkali metals, nitrides, and strong reducing agents. They react with oxoacids and carboxylic acids to form esters plus water. Oxidizing agents convert them to aldehydes or ketones. Alcohols exhibit both weak acid and weak base behavior. They may initiate the polymerization of isocyanates and epoxides.This action promulgates standards of performance for equipment leaks of Volatile Organic Compounds (VOC) in the Synthetic Organic Chemical Manufacturing Industry (SOCMI). The intended effect of these standards is to require all newly constructed, modified, and reconstructed SOCMI process units to use the best demonstrated system of continuous emission reduction for equipment leaks of VOC, considering costs, non air quality health and environmental impact and energy requirements. Polypropylene glycol is produced, as an intermediate or a final product, by process units covered under this subpart.Low molecular weight polypropylene glycols (200 to 1200) have appreciable acute oral toxicity, are mildly irritating to the eyes, are not irritating to the skin, and although they are absorbed through the skin to some extent, skin penetration does not present a serious industrial hazard. The inhalation of mists or vapors from heated material, particularly low molecular weight material, could be hazardous. These materials ... are rapidly absorbed from the gastrointestinal tract, are potent CNS stimulants, and readily cause cardiac arrhythmias. The higher molecular weight materials whose average molecular weights are 2000 or more have very low toxicity by all routes and do not have the stimulant effect upon the CNS typical of the lower molecular weight materials.
POLYPROPYLENE GLYCOL 400/2000/1000
cas no 68610-92-4 Polymer JR; Quaternium-19; 2-(2-Hydroxy-3-(trimethylammonio)propoxy) ethyl cellulose, chloride; Cellulose, omega-ether with ethoxylated 2-hydroxy-3-(trimethylammonio)propanol, chloride; Hydroxyethylcellulose ethoxylate, quaternized;
POLYQUATERNIUM 10
cas no 53633-54-8 2-Propenoic acid, 2-methyl-; 2-(dimethylamino)ethyl ester; polymer with 1-ethenyl-2-pyrrolidinone, compd. with diethyl sulphate;
POLYQUATERNIUM 11
cas no 25136-75-8 2-Propenamide; polymer with N, N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride and 2-propenoic acid;
POLYQUATERNIUM 37
Polyquaternium 37 Polyquaternium 37 is a polymeric quaternary ammonium salt. It is used in hair care products as an anti-static agent, film former and fixative. Polyquaternium 37 is classified as : Antistatic Film forming CAS Number of Polyquaternium 37: 26161-33-1 COSING REF No of Polyquaternium 37: 79206 Chem/IUPAC Name of Polyquaternium 37: Ethanaminium, N, N, N-trimethyl-2-((2-methyl-1-oxo-2-propenyl)oxy)- chloride homopolymer Functions of Polyquaternium 37: Polyquaternium 37 is one of the most widely-used members of the Polyquaternium group (similar ingredients with different numbers to indicate their chemical compositions) and is an anti-static agent and film former seen primarily in hair care products. A patent filed by a European beauty company notes that Polyquaternium 37 (in conjunction with fatty alcohol and a surfactant) provides "hair conditioning composition with excellent body enhancing and volume up effect especially for fine hair and also gives hair excellent combability, elasticity and shine;" it goes on to say that it does not way hair down either. Polyquaternium 37 works by providing a positive charge to counteract the negative charge often found in shampoos and other hair care products. They bond ionically to the hair and "and provide conditioning benefits such as ease of combing, hair alignment, elasticity and shine," according to the Hairlicious blog. Safety Measures/Side Effects of Polyquaternium 37: Polyquaternium 37 is considered a low hazard ingredient by the Cosmetics Database, which only notes data gaps and bioaccumulation as a concern. No other studies were found that reported any negative side effects or adverse reactions. Details of Polyquaternium 37: A cationic polymer molecule (a big molecule with repeated subunits and a positive charge) that acts both as a film-former and conditioning ingredient as well as a thickening agent. A cationic thickening and stabilizing polymer Excellent conditioning properties for skin and hair coupled with a great sensory profile add up to a winning combination in modern hair care products. Polyquaternium 37 delivers in all areas, and is even suitable for clear formulations. The cationic polymer thickens and stabilizes, and can be processed cold or hot at various manufacturing phases. Polyquaternium 37 is free of preservatives, effective at low concentration and suitable for EO-free concepts, giving it attractive sustainability properties. Functions of Polyquaternium 37: Conditioning Polymer Rheology Modifier Form of Delivery of Polyquaternium 37: Powder Chemical Description of Polyquaternium 37: Cationic homopolymer in powder form INCI Polyquaternium 37 Appearance / Product characteristics of Polyquaternium 37: White powder with slight characteristic odor Use of Polyquaternium 37: Thickening and stabilizing agent for cosmetic formulations, especially suitable for cationic systems, acidic media and transparent gel formulations, conditioner, excellent sensorics Sustainability Benefits of Polyquaternium 37: Cold processable Does not contain preservative Suitable for EO-free solutions High efficiency at low concentration Application After Sun Baby Care and Cleansing Body Care Color Care Conditioning Face Care Face Cleansing Hair Coloring Personal Care Wipes Self Tanning Styling Sun Protection Product Groups Conditioning Polymers Rheology Modifiers Polyquaternium 37 is a synthetic cationic polymer that can be used in cosmetic applications as a thickening, suspending, and conditioning agent. Polyquaternium 37 is compatible with a wide range of cationic and nonionic surfactants. Polyquaternium Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry. Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer. INCI has approved at least 40 different polymers under the polyquaternium designation. Different polymers are distinguished by the numerical value that follows the word "polyquaternium". Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer. The numbers are assigned in the order in which they are registered rather than because of their chemical structure. Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions. Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat. Their positive charges also ionically bond them to hair and skin. Some have antimicrobial properties. List of Polyquaterniums[1] Polyquaternium Chemical Identity Polyquaternium-1 Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine Polyquaternium-2 Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polyquaternium-4 Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer Polyquaternium-5 Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate Polyquaternium-6 Poly(diallyldimethylammonium chloride) Polyquaternium-7 Copolymer of acrylamide and diallyldimethylammonium chloride Polyquaternium-8 Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2] Polyquaternium-9 Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane Polyquaternium-10 Quaternized hydroxyethyl cellulose Polyquaternium-11 Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate Polyquaternium-12 Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-13 Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-14 Trimethylaminoethylmethacrylate homopolymer Polyquaternium-15 Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer Polyquaternium-16 Copolymer of vinylpyrrolidone and quaternized vinylimidazole Polyquaternium-17 Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-18 Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-19 Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine Polyquaternium-20 Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine Polyquaternium-22 Copolymer of acrylic acid and diallyldimethylammonium Chloride Polyquaternium-24 Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide. Polyquaternium-27 Block copolymer of Polyquaternium-2 and Polyquaternium-17 Polyquaternium-28 Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium Polyquaternium-29 Chitosan modified with propylen oxide and quaternized with epichlorhydrin Polyquaternium-30 Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate Polyquaternium-31 N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile Polyquaternium-32 Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride) Polyquaternium-33 Copolymer of trimethylaminoethylacrylate salt and acrylamide Polyquaternium-34 Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine Polyquaternium-35 Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium Polyquaternium-36 Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate Polyquaternium 37 Poly(2-methacryloxyethyltrimethylammonium chloride) Polyquaternium-39 Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride Polyquaternium-42 Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride] Polyquaternium-43 Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine Polyquaternium-44 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer Polyquaternium-45 Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate Polyquaternium-46 Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole Polyquaternium-47 Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate Polyquaternium 37 Avoid Polyquaternium 37 is Used to keep down fly-aways due to static electricity. Also used as a hair fixative, so this means it can build up in your hair with repeated use, making it sticky or crunchy. Fine in gels or styling products, but use caution in shampoos and conditioners. There is also concern that it tends to build up in the environment. What is Polyquaternium 37? Polyquaternium 37 is a charged (polycationic) polymer normally used in the personal care industry i.e. Hair care. What does Polyquaternium 37 do for the hair? Since they are positively charged, they neutralize the negative charges of most shampoos, relaxers, hair proteins etc. helping the hair to lay flat. Their positive charge, ionically bond to the hair. It is particularly useful to use cationic polymers on hair exposed to high alkalinity relaxers to decrease damage to hair. They attach to the hair and provide conditioning benefits such as ease of combing, hair alignment, elasticity and shine. Polyquaternium 37 also helps to reduce flyaways & static. Molecular Weight of Polyquaternium 37: 207.7 g/mol Hydrogen Bond Donor Count of Polyquaternium 37: 0 Hydrogen Bond Acceptor Count of Polyquaternium 37: 3 Rotatable Bond Count of Polyquaternium 37: 5 Exact Mass of Polyquaternium 37: 207.102607 g/mol Monoisotopic Mass of Polyquaternium 37: 207.102607 g/mol Topological Polar Surface Area of Polyquaternium 37: 26.3 Ų Heavy Atom Count of Polyquaternium 37: 13 Formal Charge of Polyquaternium 37: 0 Complexity of Polyquaternium 37: 180 Isotope Atom Count of Polyquaternium 37: 0 Defined Atom Stereocenter Count of Polyquaternium 37: 0 Undefined Atom Stereocenter Count of Polyquaternium 37: 0 Defined Bond Stereocenter Count of Polyquaternium 37: 0 Undefined Bond Stereocenter Count of Polyquaternium 37: 0 Covalently-Bonded Unit Count of Polyquaternium 37: 2 Compound of Polyquaternium 37 Is Canonicalized: Yes
POLYQUATERNIUM 39
cas no 26590-05-6 2-(2-Hydroxy-3-(trimethylammonio)propoxy) ethyl cellulose, chloride; Cellulose, omega-ether with ethoxylated 2-hydroxy-3-(trimethylammonio)propanol, chloride; Hydroxyethylcellulose ethoxylate, quaternized;
POLYQUATERNIUM 6
CAS Number: 26062-79-3

Polyquaternium-6 (PQ-6) is the polymeric quaternary ammonium salt derived from the homopolymerization of diallyldimethylammonium chloride (DADMAC) monomer.
The grades of Polyquaternium-6 supplied to the personal care industry typically have weight-average molecular weight (Mw) values of ca. 150,000 g/mol, although grades with Mw values as low as 15,000 g/mol are available.

Polyquaternium-6 is a strong polyelectrolyte, i.e. it is comprised of repeating units that remain fully ionized in aqueous solutions independent of the solution pH value.
In addition, Polyquaternium-6 has a relatively high cationic charge density because each repeating unit bears a positive charge.
Polyquaternium 6 is a polymer of dimethyl diallyl ammonium chloride.

Polyquaternium-6 is classified as :
-Antistatic
-Film forming

Polyquaternium-6 gathers electrolyte for the strong cation.
Polyquaternium-6 is clear to light yellow viscose liquid with freezing point -2.8℃, specific weight1.04g/cm3, resolve temperature 280-300℃.
Polyquaternium-6 is easy to dissolve in water, but not easy to combust.
Polyquaternium-6 has strong coagulate dint and good water solution stability.

Polyquaternium-6 doesn't become gel and keep stable in the wide pH range.
Anti-chlorine and high charge density, these characteristics make it become ideal product of hair stem.
Polyquaternium-6 can also be applied in hair and skin care.

Polyquaternium 6 (P6) is a strong cationic polymer, easily soluble in water, and maintains good stability in a wide range of PH value.
Adding of Polyquaternium-6 to hair care products such as coloring agents, bleaching agents, bulking agents, styling agents, etc., can play a better conditioning; adding to moisturizing cream, hand soap, shower gel, shaving cream, deodorant and other skin care products.
Polyquaternium-6 can play a very good moisturizing performance and give the skin a superior lubricating feeling.

About liquid polyquaternium:
Polyquaternium-6 is more accurate to say that it is a water-soluble polyquaternary ammonium salt.
A series of novel water-soluble polyquaternary ammonium salts were prepared by copolymerization of epichlorohydrin, dichloroethyl ether and N N N' N'-tetramethylethylenediamine, methylamine, ethylamine and dodecylamine.
The reaction synthesis yield is high, the reproducibility is good, and the post-treatment of the product is simple, so that the industrial application prospect of the product is good.

Usage of Polyquaternium-6:
1. Polyquaternium-6 is a kind of homopolymer with high cationic activity.
Polyquaternium-6 can provide excellent conditioning effect for hair even in low concentration.
Polyquaternium-6 is used in shampoo, bleach, hair colorant and hair spray, the concentration generally is 0.5% ~ 1%.

2. Polyquaternium-6 can offer moist, glossy and rich foam.
Polyquaternium-6 can make the wet hair more smooth for combing and the antistatic ability and give hair a smooth, silly and lustrous touch.

3. Added into moisturizing cream, bath form, shaving cream and deodorant, Polyquaternium-6 contributes to excellent skin feel.
The suggested concentration of Polyquaternium-6 is 1% ~ 2%.

4. Polyquaternium-6 can improve dispersion, direct nature and activity of the functional elements which is used in hair and skin care.

Product Description:
Polyquaternium-6 (2687-91-4) is white or light yellow liquid.
Polyquaternium-6 is also known as Ethyl Pyrrolidinone, 1-Ethyl-2-Pyrrolidone and Ethyl Pyrrolidone.
Polyquaternium-6 Is a chemical compound.

Polyquaternium-6 is a polymeric quaternary ammonium salt of dimethyl diallyl ammonium chloride.
Polyquaternium-6 is designed for use in a large range of applications in the cosmetic industry.
Polyquaternium-6s high substantive cationic nature makes it especially useful as a conditioner in skin and hair care formulation.

INCI Name: Polyquaternium-6
Registration: CAS No.: 26062-79-3
COSING REF No: 36881
Chem/IUPAC Name: Polyquaternium-6 is a polymeric quaternary ammonium salt of dimethyl diallyl ammonium chloride

Functions of Polyquaternium-6:
-Antistatic
-Film forming
-Skin conditioning
-Viscosity controlling

Applications of Polyquaternium-6:
Polyquaternium-6 can be used in hair-care and in skin-care products such as: conditioning shampoos, post-shampoo rinse and non-rinse conditioners and hair dyeing products.

Recommended use levels of Polyquaternium-6:
The concentration required is:
In shampoos: 0,2 – 0,5%
In conditioners: 0,5 - 2,0%
In skin care products: 0,2 - 0,5%
In bar soap: 0,1 - 0,5 %
In perms: 0,1 - 1,5 %

Storage of Polyquaternium-6:
Protected from light and humidity in a clean place at room temperature.
Once open, handle with care to avoid secondary microbial contamination.

Specifications of Polyquaternium-6:
Appearance: colorless to light yellow clear viscous liquid
pH: 5–8 (1% water solution,25℃)
Viscosity @ 25°C 5000–25000cps
Water: 59.0 - 61.0 %

Polyquaternium-6 is basically polymeric quaternary ammonium salt of dimethyl diallyl ammonium chloride.
This cationic homopolymer is equipped for use in an extensive range of applications in the cosmetic industry over the globe.
Since polyquaternium is positively charged the neutralizes negative charge of the shampoo helping the hair to stay flat.

Polyquaternium-6's high Antistatic, Film forming, Skin conditioning, Viscosity controlling nature makes it useful as a conditioner in skin and hair care formulation.
In hair care products polyquaternium-6 provides benefits like it Provides a luster and a soft silky feel, it gives a soft, velvety and non-greasy after feel to the skin.
Polyquaternium-6 improves the spreadability of the final product.

In Hair Care products Polyquaternium-6 helps to Reduce Static and flyaway effect, improve wet and dry capability and it provides luster and a soft silky feel to hair, according to a recent study of Fact.
MR consumers prefer polyquaternium-6 based products only for damaged and tight curly hair and not for regular use.
Polyquaternium-6 is easy to use for making cosmetic products due to its easy solubility in water.

Polyquaternium-6, 35 Percent Aqueous Solution, Very low molecular weight is used as a cosmetic antistatic and conditioning agent.
Ungraded products indicative of a grade suitable for general industrial use or research purposes and typically are not suitable for human consumption or therapeutic use.

Synonyms: N,N-Diallyl-N,N-dimethylammonium Chloride Homopolymer ; N,N-Dimethyl-N-(2-propenyl)-2-propen-1-aminium Chloride Polymer ; Poly(diallyldimethylammonium Chloride) ; Poly(DMDAAC)

Polyquaternium-6 in hair care Products :
Relaxers, Bleaches, Dyes, Shampoos, Conditioners, Styling Products, and Permanent Waves.
1.Contributes luster and a soft, silky feel;
2.Provides excellent slip, lubricity and snag-free wet compatibility;
3.Imparts excellent dry compatibility;
4.Suggested starting concentration:1.0%(shampoo and conditioner),3.0%(others)

Polyquaternium-6 in skin care Products :
Moisturizing Creams, Lotions, Bath Gels, Liquid Soaps, Soap Bars, Shaving Products, Antiperspirants andDeodorants.
1.Imparts a smooth, velvety feel; reduces tightness after drying skin;
2.Provides excellent moisturization;
3.Contributes lubricity which can help make skin care products easier to apply;
4.Liquid cleansing products acquire richer foam with improved stability;
5.Suggested starting concentration:1.0%

Uses of Polyquaternium-6:
The unique decolorization ability is mainly applied to the decolorization treatment of high chroma wastewater from dye factory, and the applicable dyes are active type, acid type and disperse dye, etc.
Polyquaternium-6 can also be used for textile, printing and dyeing, ink and other industrial wastewater treatment.
Polyquaternium-6 can also be used as paper reinforcement, sizing agent, etc.

Cosmetic uses of Polyquaternium-6:
The safety of the cosmetic ingredient addressed in this safety assessment is evaluated based, in part, on data received from the United States (US) Food and Drug Administration (FDA) and the cosmetics industry on the expected use of this ingredient in cosmetics.
Use frequencies of individual ingredients in cosmetics are collected from manufacturers and reported by cosmetic product category in FDA’s Voluntary Cosmetic Registration Program (VCRP) database.
Use concentration data are submitted by the cosmetics industry in response to surveys, conducted by the Personal Care Products Council (Council), of maximum reported use concentrations by product category.
According to 2020 VCRP data, Polyquaternium-6 is reported to be used in 282 cosmetic products.

The results of a concentration of use survey completed in 2019 - 2020, and provided by the Council in 2020, indicate that Polyquaternium-6 is being used at maximum use concentrations up to 1.2% in leave-on products (tonics, dressings, and other hair grooming aids) and at maximum use concentrations up to 3% in rinse-off products (hair straighteners).
Cosmetic products containing Polyquaternium-6 may be applied to the skin/hair (at concentrations up to 3%) or, and may come in contact with mucous membranes (at concentrations up to 0.25% in bath soaps and detergents).
Products containing Polyquaternium-6 are not typically applied more than once per day, and may come in contact with the skin for variable periods following application.
Daily or occasional use may extend over many years.

Polyquaternium-6 is reported to be used in aerosol hair sprays (pump sprays) at maximum use concentrations up to 0.5%.
In practice, 95% to 99% of the droplets/particles released from cosmetic sprays have aerodynamic equivalent diameters > 10 µm, with propellant sprays yielding a greater fraction of droplets/particles below 10 µm, compared with pump sprays.
Therefore, most droplets/particles incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal and bronchial regions and would not be respirable (i.e., they would not enter the lungs) to any appreciable amount.
Polyquaternium-6 is not restricted from use in any way under the rules governing cosmetic products in the European Union.

Non-Cosmetic uses of Polyquaternium-6:
Polyquaternium-6 is an FDA-approved indirect food additive, i.e., for use as a component of paper and paperboard in contact with aqueous and fatty foods (21 CFR 176.170).
As a pigment dispersant and/or retention aid in the manufacture of paper, Polyquaternium-6 is used at a level not to exceed 10 pounds of active polymer per ton of finished paper and paperboard.
As a pigment dispersant in coatings, it is used at a level not to exceed 3.5 pounds of active polymer per ton of finished paper and paperboard.
For use only as a flocculant in the manufacture of paper and paperboard, it is used at a level not to exceed 10 mg/l (10 ppm) of influent water.

Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry.
Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer.
INCI has approved at least 40 different polymers under the polyquaternium designation.

Different polymers are distinguished by the numerical value that follows the word "polyquaternium".
Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer.
The numbers are assigned in the order in which they are registered rather than because of their chemical structure.

Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions.
Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat.
Their positive charges also ionically bond them to hair and skin.
Some have antimicrobial properties.

Appearance : Colorless to light yellow clear viscous liquid
Scent: Faint aldehydic smell
Solid: 40±1%
pH(1% water solution,25℃): 5–8
Viscosity (25℃): 5000–25000cps

What is Polyquaternium?
Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymersthat are used in the personal care industry.
Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer.
INCI has approved at least 37 different polymers under the polyquaternium designation.

Different polymers are distinguished by the numerical value that follows the word “polyquaternium”.
Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer.
The numbers are assigned in the order in which they are registered rather than because of their chemical structure.

Polyquaternium-4:
Provides excellent combability, holding, gloss and antistat properties.
Polyquaternium-4 substantive to skin and hair and exhibits outstanding properties in hair care products.
Polyquaternium-4 is a tan powder that is water-soluble. (suggested use: 0.5 to 1%)

Polyquaternium-7 :
Leaves hair feeling soft.
Polyquaternium-7 is a thick viscous liquid with low odor. (suggested use: 2 to 5%)

Polyquaternium-10:
This is a cationic, water-soluble substantive conditioner for hair care.
Polyquaternium-10 provides film formation on hair and moisturization.
Polyquaternium-10 is non-irritating and compatible with a wide range of surfactants.
Polyquaternium-10 enables the formulation of clear products.

Polyquaternium-44:
This is a very efficient, multinational polymer for use in a variety of cleansing products to improve the wet combability of the hair and prevent electrostatic charging when the hair is dry.
Polyquaternium-44 also protects the hair by forming a shield around each hair so that its surface is less readily attacked.
Polyquaternium-44 conditions and provides a smooth silky feel to the hair.

The lather creaminess is significantly improved.
There are no drawbacks with fine hair regarding volume, accumulation and build-up when used at recommended use levels.
Polyquaternium-44 is a viscous clear amber liquid with low odor.

How does Polyquaternium 6 work hair?
Since they are positively charged, they neutralize the negative charges of most shampoos, relaxers, hair proteins etc. helping the hair to lay flat.
Their positive charge, ionically bond to the hair.
Polyquaternium 6 is particularly useful to use cationic polymers on hair exposed to high alkalinity relaxers to decrease damage to hair.

They attach to the hair and provide conditioning benefits such as ease of combing, hair alignment, elasticity and shine.
Polyquaternium also helps to reduce flyaways & static.
As always, choose your products carefully, get samples when you can, and see what works for your hair.

Chemical Name: Polyquaternium 6
Synonyms: N,N-Dimethyl-N-2-propenyl-2-propen-1-aminium Chloride Homopolymer; Diallyldimethylammonium Chloride Polymers; Accepta 2058; Additol VXT 3529; Agefloc ; Agequat 400; Amerfloc 487; Aquaserv AQ 299; Aronfloc C 70; Auxipon DD 25; Bufloc; Calgon; Cartafix; Cat-Floc; Catiofast ; Certrex 340; CinFix RDF; Conductive Polymer 261; Croscolor NOFF; Cysep 4022; Daidol EC 004; Danfix ; Diallyldimethylammonium Chloride Homopolymer; Diallyldimethylammonium Chloride Polymer; Diallyldimethylammonium Chloride-Desmodur 100-Zircosol AC 7 Copolymer; Dimethyldiallylammonium Chloride Homopolymer; Dimethyldiallylammonium Chloride Polymer; Fennofix 40; Floc 572; Flockstar LD 54; Floerger; Floquat; Floraquatgel; Gen Floc F 71100; Genamin PDAC; Glascol F 207; Highholder 604; Hydraid; Hydrex ; Induquat ECR 35L; Jayflo
CAS Number: 26062-79-3
Molecular Formula: (C₈H₁₆ClN)ₓ
Molecular Weight: (161.67)
Category: Research Tools; Materials;
Applications: Polyquaternium 6 is used as a coagulant aid in water treatment.

Polyquaternium-6 Poly(diallyl dimethyl ammonium chloride) Suggested Use:1. The reference dosage in hair care products: 1-3%2.
The reference dosage in skin care products: 1-5%3. The reference dosage Moisturizing cream, shaving cream: 1-2%4. The reference dosage hair dye and hair spray: 0.5-1%

Physical State: Liquid
State of Matter: Liquid
Form of Chemicals: Liquid
Usage/Application: Industrial
Purity: 98% Min
Appearance: Liquid
Cas-No: 26062-79-3
Standard: Industrial
Synonyms: Poly-Diallyldimethylammonium Chloride
Pack Type: Drum
Application/Usage: Industrial

Increased use of polyquaternium 6 in cosmetics:
The polyquaternium-6 market can be segmented into end-users, forms, ingredients, packing types and nature.
By the end users, polyquaternium-6 market can be categorized into Skin Care, Haircare, and wastewater treatment.
The polyquaternium-6 market can be segmented in different forms of polyquaternium-6 such as powder form and liquid form.

Ingredients of the polyquaternium-6 market can be segmented into Anti-static Agents, Conditioning Agents, Emollients Film Formers, Fixatives Lubricants / Slip Agents, Moisturizing Agents, Softening / Texturing Agents Thickeners & Stabilizers.

In the packaging type segment polyquaternium-6 is packed in bottle and bulk.
Nature of polyquaternium-6 segmented into organic and conventional.

Polyquaternium 6s functions (INCI):
Antistatic: Reduces static electricity by neutralizing the electrical charge on a surface
Film forming agent: Produces a continuous film on the skin, hair or nails

Suggested Uses of Polyquaternium 6::
1. The reference dosage in hair care products: 1-3%
2. The reference dosage in skin care products: 1-5%
3. The reference dosage Moisturizing cream, shaving cream: 1-2%
4. The reference dosage hair dye and hair spray: 0.5-1%
The specific amount determined according to the majority of cations, both amphoteric surfactant compatibility through specific test to determine the final ratio, in order to achieve the best results.

Polyquaternium-1: Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine
Polyquaternium-2 : Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea]
Polyquaternium-4 : Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer
Polyquaternium-5: Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate
Polyquaternium-6: Poly(diallyldimethylammonium chloride)
Polyquaternium-7: Copolymer of acrylamide and diallyldimethylammonium chloride
Polyquaternium-8: Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2]
Polyquaternium-9 : Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane
Polyquaternium-10: Quaternized hydroxyethyl cellulose
Polyquaternium-11: Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate
Polyquaternium-12: Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate
Polyquaternium-13: Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate
Polyquaternium-14: Trimethylaminoethylmethacrylate homopolymer
Polyquaternium-15: Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer
Polyquaternium-16: Copolymer of vinylpyrrolidone and quaternized vinylimidazole
Polyquaternium-17: Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer
Polyquaternium-18: Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer
Polyquaternium-19: Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine
Polyquaternium-20: Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine
Polyquaternium-22: Copolymer of acrylic acid and diallyldimethylammonium Chloride
Polyquaternium-24: Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide.
Polyquaternium-27: Block copolymer of Polyquaternium-2 and Polyquaternium-17
Polyquaternium-28: Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium
Polyquaternium-29: Chitosan modified with propylen oxide and quaternized with epichlorhydrin
Polyquaternium-30: Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate
Polyquaternium-31: N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile
Polyquaternium-32: Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride)
Polyquaternium-33: Copolymer of trimethylaminoethylacrylate salt and acrylamide
Polyquaternium-34: Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine
Polyquaternium-35: Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium
Polyquaternium-36: Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate
Polyquaternium-37: Poly(2-methacryloxyethyltrimethylammonium chloride)
Polyquaternium-39: Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride
Polyquaternium-42: Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride]
Polyquaternium-43: Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine
Polyquaternium-44: 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer
Polyquaternium-45: Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate
Polyquaternium-46: Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole
Polyquaternium-47: Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate

synonyms:
agefloc WT 20
calgon 261
calgon 261LV
dimethyl-bis(prop-2-enyl)azanium;chloride (poly)
lectrapel
merquat 100 polymer
merquat 106 polymer
percol 1697
poly 2-propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride
poly-N,N-dimethyl-N,N-diallylammonium chloride
poly(diallyl dimethyl ammonium chloride)
poly(diallyldimethylammonium chloride)
poly(dimethyl diallyl ammonium chloride)
poly(DMDAAC)
quaternium-40
2-Propen-1-aminium, N,N-dimethyl-N-2-propen-1-yl-, chloride (1:1), homopolymer
2-Propen-1-aminium, N,N-dimethyl-N-2-propen-1-yl-, chloride (1:1), homopolymer
2-Propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride, homopolymer
2-Propen-1-aminium,N,N-dimethyl-N-2-propenyl-,chloride,homopolymer
DIALLYLDIMETHYLAMMOMIUM CHLORIDE POLYMER
N,N-Dimethyl-N-2-propenyl-2-propen-1-aminium chloride
N,N-Dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer
N,N-Dimethyl-N-2-propenyl-2-propen-1-amonium chloride homopolymer
PDADMAC
Poly(diallyl dimethyl ammonium chloride); (20% in water) (low MW)
Poly(diallyldimethylammonium chloride)
Poly(diallyldimethylammoniumchloride)
Polydiallyldimethyl ammonium chloride
polymeric quaternary ammonium salt of dimethyl diallyl ammonium chloride
Polyquaternium-6
Poly(diallyl dimethyl ammonium chloride); (20% in water) (low MW)
2-Propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride, homopolymer
Color fixing agent GD-80
Poly (Dimethyldiallylammonium Chloride)
Poly 2-propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride
Polyquaternium-6
26062-79-3
Poly-N,N-dimethyl-N,N-diallylammonium chloride
Polyquaternium-6
cat-floc
poly(diallyl dimethyl ammonium chloride)
pas-h10
vpk402
Merquat.(R). 100
261lv
pbk1
cp261lv
merck261
PDADMAC
cp261
e261
polyquaternium-6
poly(N,N-dimethyl-N-2-propenyl-2-propene-1-aminium chloride)
dimethyldiallylammonium chloride homopolymer
CAS NO:26062-79-3

IUPAC names:
2-Propen-1-aminium, N,N-dimethyl-N-2-propen-1-yl-, chloride (1:1), homopolymer
2-Propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride, homopolymer
2-Propen-1-aminium,N,N-dimethyl-N-2-propenyl-,chloride,homopolymer
DIALLYLDIMETHYLAMMOMIUM CHLORIDE POLYMER
N,N-Dimethyl-N-2-propenyl-2-propen-1-aminium chloride
N,N-Dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer
N,N-Dimethyl-N-2-propenyl-2-propen-1-amonium chloride homopolymer
Poly(diallyldimethylammonium chloride)
Poly(diallyldimethylammoniumchloride)
Polydiallyldimethyl ammonium chloride
polymeric quaternary ammonium salt of dimethyl diallyl ammonium chloride
Polyquaternium-6

Other names:
2-Propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride, homopolymer
Color fixing agent GD-80
Poly (Dimethyldiallylammonium Chloride)
Poly 2-propen-1-aminium, N,N-dimethyl-N-2-propenyl-, chloride
Polyquaternium-6
Polydadmac
POLYQUATERNIUM 7
POLYQUATERNIUM-1; N° CAS : 75345-27-6 / 68518-54-7; Origine(s) : Synthétique; Nom INCI : POLYQUATERNIUM-1; N° EINECS/ELINCS : - / -; Classification : Ammonium quaternaire, Polymère de synthèse; Ses fonctions (INCI); Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry. Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer. INCI has approved at least 40 different polymers under the polyquaternium designation. Different polymers are distinguished by the numerical value that follows the word "polyquaternium". Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer. The numbers are assigned in the order in which they are registered rather than because of their chemical structure. Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions. Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat. Their positive charges also ionically bond them to hair and skin. Some have antimicrobial properties. List of Polyquaterniums: Polyquaternium Chemical Identity Polyquaternium-1: Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine Polyquaternium-2: Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polyquaternium-4: Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer Polyquaternium-5: Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate Polyquaternium-6: Poly(diallyldimethylammonium chloride) Polyquaternium-7: Copolymer of acrylamide and diallyldimethylammonium chloride Polyquaternium-8 : Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2] Polyquaternium-9 : Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane Polyquaternium-10: Quaternized hydroxyethyl cellulose Polyquaternium-11: Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate Polyquaternium-12: Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-13: Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-14: Trimethylaminoethylmethacrylate homopolymer Polyquaternium-15: Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer Polyquaternium-16: Copolymer of vinylpyrrolidone and quaternized vinylimidazole Polyquaternium-17: Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-18: Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-19: Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine Polyquaternium-20 : Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine Polyquaternium-22: Copolymer of acrylic acid and diallyldimethylammonium Chloride Polyquaternium-24: Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide. Polyquaternium-27: Block copolymer of Polyquaternium-2 and Polyquaternium-17 Polyquaternium-28: Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium Polyquaternium-29: Chitosan modified with propylen oxide and quaternized with epichlorhydrin Polyquaternium-30: Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate Polyquaternium-31: N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile Polyquaternium-32: Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride) Polyquaternium-33: Copolymer of trimethylaminoethylacrylate salt and acrylamide Polyquaternium-34: Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine Polyquaternium-35: Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium Polyquaternium-36: Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate Polyquaternium-37: Poly(2-methacryloxyethyltrimethylammonium chloride) Polyquaternium-39: Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride Polyquaternium-42: Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride] Polyquaternium-43: Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine Polyquaternium-44: 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer Polyquaternium-45: Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate Polyquaternium-46: Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole Polyquaternium-47: Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate
POLYQUATERNIUM-10
Polymer JR; Quaternium-19; 2-(2-Hydroxy-3-(trimethylammonio)propoxy) ethyl cellulose, chloride; Cellulose, omega-ether with ethoxylated 2-hydroxy-3-(trimethylammonio)propanol, chloride; Hydroxyethylcellulose ethoxylate, quaternized; cas no: 68610-92-4
POLYQUATERNIUM-11
POLYQUATERNIUM-11, N° CAS : 53633-54-8. Origine(s) : Synthétique. Nom INCI : POLYQUATERNIUM-11. Classification : Ammonium quaternaire, Polymère de synthèse. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry. Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer. INCI has approved at least 40 different polymers under the polyquaternium designation. Different polymers are distinguished by the numerical value that follows the word "polyquaternium". Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer. The numbers are assigned in the order in which they are registered rather than because of their chemical structure. Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions. Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat. Their positive charges also ionically bond them to hair and skin. Some have antimicrobial properties. List of Polyquaterniums: Polyquaternium Chemical Identity Polyquaternium-1: Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine Polyquaternium-2: Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polyquaternium-4: Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer Polyquaternium-5: Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate Polyquaternium-6: Poly(diallyldimethylammonium chloride) Polyquaternium-7: Copolymer of acrylamide and diallyldimethylammonium chloride Polyquaternium-8 : Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2] Polyquaternium-9 : Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane Polyquaternium-10: Quaternized hydroxyethyl cellulose Polyquaternium-11: Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate Polyquaternium-12: Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-13: Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-14: Trimethylaminoethylmethacrylate homopolymer Polyquaternium-15: Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer Polyquaternium-16: Copolymer of vinylpyrrolidone and quaternized vinylimidazole Polyquaternium-17: Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-18: Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-19: Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine Polyquaternium-20 : Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine Polyquaternium-22: Copolymer of acrylic acid and diallyldimethylammonium Chloride Polyquaternium-24: Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide. Polyquaternium-27: Block copolymer of Polyquaternium-2 and Polyquaternium-17 Polyquaternium-28: Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium Polyquaternium-29: Chitosan modified with propylen oxide and quaternized with epichlorhydrin Polyquaternium-30: Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate Polyquaternium-31: N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile Polyquaternium-32: Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride) Polyquaternium-33: Copolymer of trimethylaminoethylacrylate salt and acrylamide Polyquaternium-34: Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine Polyquaternium-35: Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium Polyquaternium-36: Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate Polyquaternium-37: Poly(2-methacryloxyethyltrimethylammonium chloride) Polyquaternium-39: Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride Polyquaternium-42: Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride] Polyquaternium-43: Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine Polyquaternium-44: 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer Polyquaternium-45: Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate Polyquaternium-46: Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole Polyquaternium-47: Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate
POLYQUATERNIUM-11
Номер КАС: 53633-54-8
Номер Европейского сообщества (ЕС): 611-022-0
Название Chem/IUPAC: 2-пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-
Название: пирролидинон, комп. с диэтилсульфатом

ОПИСАНИЕ:
POLYQUATERNIUM -11 является кондиционирующим агентом для косметических применени��, таких как кондиционеры, средства для укладки и лосьоны для тела.
POLYQUATERNIUM -11 представляет собой мутную жидкость соломенного цвета.
В косметике и средствах личной гигиены POLYQUATERNIUM -11 в основном используется в составе средств по уходу за волосами с ограниченным использованием в других типах продуктов.
POLYQUATERNIUM -11 представляет собой полимерную четвертичную аммониевую соль, образованную реакцией диэтилсульфата и сополимера винилпирролидона и диметиламиноэтилметакрилата.

POLYQUATERNIUM -11 относится к химическому классу, известному как четвертичные аммониевые соединения (обычно называемые «кватерниевые» соединения). ).
Эти соединения представляют собой положительно заряженные тетразамещенные производные азота.
POLYQUATERNIUM -11 доступен в двух формах: около 50% POLYQUATERNIUM -11, растворенного в спирте, и 19% растворенного в воде, при этом обе формы называются «коммерческим POLYQUATERNIUM -11».
Чистый или неразбавленный POLYQUATERNIUM -11 недоступен для использования в косметике и средствах личной гигиены.
POLYQUATERNIUM -11 представляет собой полимерный кондиционер и используется в основном в средствах по уходу за волосами благодаря своим антистатическим и пленкообразующим свойствам.

Существует почти 40 различных полимеров под названием поликватерниум.
Они отличаются числовым значением в порядке их регистрации.
POLYQUATERNIUM 11 — пленкообразователь соломенного цвета и антистатик, широко используемый в средствах по уходу за волосами.
POLYQUATERNIUM 11 также обладает антибактериальными свойствами, хотя исследования не подтвердили это утверждение.
POLYQUATERNIUM -11 доступен в двух формах: 50% POLYQUATERNIUM -11, растворенный в спирте, и 19% растворенный в воде.
Чистый POLYQUATERNIUM 11 недоступен для использования в косметике и косметических продуктах.
CIR одобряет использование POLYQUATERNIUM 11 при концентрациях ниже определенных.



Номер КАС: 53633-54-8
Номер Европейского сообщества (ЕС): 611-022-0
Название Chem/IUPAC: 2-пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-
Название: пирролидинон, комп. с диэтилсульфатом





ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА POLYQUATERNIUM -11:
Молекулярная формула: C18H35N2O3+•C2H5O4S-•(C2H4)x•(C3H6)y
Внешний вид: прозрачный бесцветный раствор
Молекулярный вес: 327,48+(125,12)+x(28,06)+y(42,10)
Хранение:комнатная температура
Растворимость: вода
Категория:Строительные блоки; Разнообразный
Содержание твердых веществ: 19-21%
Значение pH (10% в воде): 5,0-7,0
Цвет (APHA): ≤120
Вязкость (сП): 20000-60000
Винилпирролидон: ≤0,1%
Молекулярный вес: 422,5
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 8
Количество вращающихся связей: 10
Точная масса: 422.20867260
Масса моноизотопа: 422,20867260
Площадь топологической полярной поверхности: 111 Å ²
Количество тяжелых атомов: 28
Официальное обвинение: 0
Сложность: 402
Количество атомов изотопа: 0
Определенное число стереоцентров атома: 0
Количество стереоцентров неопределенного атома: 0
Определенное число стереоцентров связи: 0
Неопределенный счетчик стереоцентров связи: 0
Количество ковалентно-связанных единиц: 3
Соединение канонизировано: Да
СРП: 110.83000
XLogP3: 2,74250
Внешний вид: вязкая жидкость от бесцветного до светло-желтого цвета
Плотность: 1,05 г/мл при 25 °C
Точка кипения: 70,6ºC
Температура вспышки: 70,6ºC
Показатель преломления: n20/D 1,369


ПРИМЕНЕНИЕ POLYQUATERNIUM 11:
Было обнаружено, что POLYQUATERNIUM 11 подавляет вымывание меланина из шампуня, что может предотвратить потускнение волос после многократного использования шампуня.
Пленкообразующий агент в средствах личной гигиены
Текстильные ткани
Неопасный товар, если предмет равен или меньше 1 г/мл, а в упаковке менее 100 г/мл.
Упаковка и хранение:
Упаковано в пластиковые бочки по 60 кг, 125 кг и IBC по 1000 кг.
Хранить в сухом месте при комнатной температуре

POLYQUATERNIUM -11 придает блеск, распутывает и разглаживает волосы кондиционерам и шампуням, покрывая волосы прозрачной пленкой, которая добавляет видимый и чувственный объем.

POLYQUATERNIUM -11 представляет собой соединение четвертичного аммония, которое образует гибкую пленку с мягкими кондиционирующими свойствами при ополаскивании и укладке.
POLYQUATERNIUM -11 используется в качестве кондиционирующего агента в шампунях и кремах или ополаскивателях.
Мгновенно распутывает волосы, придает им объем и густоту.
POLYQUATERNIUM -11 облегчает расчесывание волос.
Особенно эффективен в средствах для укладки волос, в том числе в спреях-кондиционерах и средствах для расчесывания.
Отлично подходит для использования с феном и выпрямителями, где может обеспечить термозащиту волос.
POLYQUATERNIUM -11 также можно использовать в продуктах по уходу за кожей для улучшения ощущений на коже.

POLYQUATERNIUM -11 хорошо работает в средствах для бритья, кремах и лосьонах для кожи, жидком мыле и кусках мыла.
POLYQUATERNIUM -11 используется для ухода за волосами в виде муссов, гелей, спреев и спреев.
POLYQUATERNIUM -11 действует как кондиционер и пленкообразователь.
POLYQUATERNIUM -11 предлагает такие характеристики, как вещественность, блеск и контроль.
POLYQUATERNIUM -11 используется для ухода за волосами в виде лосьонов, муссов, гелей, спреев, шампуней, для ухода за кожей в виде мыла, пены для бритья и лосьона для тела.
POLYQUATERNIUM -11 действует как кондиционер и вспомогательное средство для укладки.

POLYQUATERNIUM -11 обладает растекающимися, предотвращающими электростатический заряд и смазывающими свойствами. Обладает такими преимуществами, как стабилизированная пена, субстантивность, расчесываемость во влажном состоянии, мягкость, фиксация, ощущение гладкости и ощущение шелковистости кожи.
POLYQUATERNIUM -11 при использовании в пенообразующих продуктах, таких как шампунь или гель для душа, повышает уровень пенообразования.
POLYQUATERNIUM -11 совместим с неионными, анионными и амфотерными поверхностно-активными веществами и модификаторами реологии.
POLYQUATERNIUM -11 отлично сочетается с карбомером, образуя гладкие и легко наносимые гели.
POLYQUATERNIUM -11 может повышать стабильность составов на основе поверхностно-активных веществ, кремов и лосьонов.


Характеристики:
• Высоковязкий водный раствор
• Смешивается с водой и этанолом
• Слегка характерный запах

КАК ПРИМЕНЯТЬ POLYQUATERNIUM -11:
POLYQUATERNIUM -11 поставляется в виде вязкой жидкости, но поставляется в банке для удобства использования, поскольку жидкость очень густая.
Мягкое нагревание может помочь с удобством использования в рецептуре.
POLYQUATERNIUM -11 легко растворяется в воде, и поэтому его легче всего растворить в водной стадии состава.
При использовании в составе на основе поверхностно-активных веществ мы рекомендуем добавлять Polyquaternium-11 перед поверхностно-активными веществами для облегчения диспергирования.
При составлении рецептуры для горячих процессов добавляйте в водную фазу и диспергируйте.
POLYQUATERNIUM -11 устойчив к теплу.




Номер КАС: 53633-54-8
Номер Европейского сообщества (ЕС): 611-022-0
Название Chem/IUPAC: 2-пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-
Название: пирролидинон, комп. с диэтилсульфатом





ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ POLYQUATERNIUM 11:
МЕРЫ ПЕРВОЙ ПОМОЩИ:
Глаза:
Если симптомы развиваются, переместите пострадавшего от воздействия на свежий воздух.
Аккуратно промойте глаза водой, удерживая веки открытыми.
Если симптомы сохраняются или есть проблемы со зрением, обратитесь за медицинской помощью.

Кожа :
Первая помощь обычно не требуется.
Тем не менее, рекомендуется очищать открытые участки, промывая их водой с мылом.

Проглатывание:
Обратитесь за медицинской помощью.
Если человек сонный или без сознания, ничего не давайте внутрь; поместить человека на левый бок головой вниз.
Обратитесь к врачу, в медицинское учреждение или в токсикологический центр, чтобы узнать, следует ли вызывать рвоту.
По возможности не оставляйте человека без присмотра.

Вдыхание:
Если симптомы развиваются, переместите пострадавшего от воздействия на свежий воздух.
Если симптомы сохраняются, обратитесь за медицинской помощью.
Если дыхание затруднено, введите кислород.
Держите человека в тепле и покое; немедленно обратиться за медицинской помощью.
Лица, не одетые в средства индивидуальной защиты, должны быть удалены из зоны разлива до завершения очистки.

Защита окружающей среды:
Предотвратить распространение на большую площадь (например, с помощью локализации или масляных барьеров).
Не допускайте попадания продукта в канализацию.
Не смывать в поверхностные воды или в канализационную систему.
Методы очистки:
Хранить в подходящих закрытых контейнерах для утилизации.
Впитать инертным абсорбирующим материалом (например, песком, силикагелем, кислотным вяжущим, универсальным вяжущим, опилками). Дополнительная информация:
Соблюдайте все применимые федеральные, региональные и местные правила.

ПРОТИВОПОЖАРНЫЕ МЕРЫ:
Подходящие средства пожаротушения
Сухие химические вещества, Двуокись углерода (CO2), Расп��ление воды

Меры предосторожности при пожаротушении:
Наденьте полный комплект противопожарного снаряжения (полный комплект бункерного снаряжения) и средства защиты органов дыхания (дыхательный аппарат).
ЗАПРЕЩАЕТСЯ направлять сплошную струю воды или пены в горячую, горящую лужу жидкости, так как это может вызвать вспенивание и увеличить интенсивность пожара.

Вспенивание может быть сильным и, возможно, поставить под угрозу любого пожарного, стоящего слишком близко к горящей жидкости.
Используйте распыленную воду для охлаждения подверженных огню контейнеров и конструкций до тех пор, пока огонь не потухнет, если это можно сделать с минимальным риском.
Избегайте распространения горящего материала водой, используемой для охлаждения.
легковоспламеняющихся и горючих жидкостей NFPA
Горючая жидкость класса IIIB

МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ:
Личные меры предосторожности:
Лица, не одетые в средства индивидуальной защиты, должны быть удалены из зоны разлива до завершения очистки.

Меры предосторожности в отношении окружающей среды:
Предотвратить распространение на большую площадь (например, с помощью локализации или масляных барьеров).
Не допускайте попадания продукта в канализацию.
Не смывать в поверхностные воды или в канализационную систему.

Методы очистки:
Хранить в подходящих закрытых контейнерах для утилизации.
Впитать инертным абсорбирующим материалом (например, песком, силикагелем, кислотным вяжущим, универсальным вяжущим, опилками).

Другая информация:
Соблюдайте все применимые федеральные, государственные и местные правила.

ОБРАЩЕНИЕ И ХРАНЕНИЕ
Умение обращаться:
Контейнеры с этим материалом могут быть опасны при опорожнении.
Поскольку в пустых емкостях остаются остатки продукта (пары, жидкости и/или твердые вещества), необходимо соблюдать все меры предосторожности, указанные в паспорте.

Место хранения:
Хранить в прохладном, сухом, вентилируемом месте.

КОНТРОЛЬ ВОЗДЕЙСТВИЯ И ИНДИВИДУАЛЬНАЯ ЗАЩИТА:
Рекомендации по экспозиции:
Не содержит веществ с ПДК на рабочем месте.

Общий совет:
Эти рекомендации содержат общее руководство по обращению с этим продуктом.
Средства индивидуальной защиты должны выбираться для каждого конкретного применения и должны учитывать факторы, влияющие на возможность воздействия, такие как методы обращения, концентрации химических веществ и вентиляция.
В конечном счете ответственность за соблюдение нормативных требований, установленных местными властями, лежит на работодателе.

Средства контроля воздействия:
Обеспечьте достаточную механическую (общую и/или местную вытяжку) вентиляцию, чтобы поддерживать воздействие ниже рекомендуемых значений (если применимо) или ниже уровней, вызывающих известные, предполагаемые или очевидные неблагоприятные последствия.

Защита глаз:
Не требуется при нормальных условиях эксплуатации.
Наденьте защитные очки с защитой от брызг, если материал может запотеть или попасть в глаза.

Защита кожи и тела:
Носите защитные перчатки (проконсультируйтесь с вашим поставщиком защитного снаряжения).
Носите обычную рабочую одежду, включая длинные брюки, рубашки с длинными рукавами и покрытие для ног, чтобы предотвратить прямой контакт продукта с кожей.
Стирайте одежду перед повторным использованием.
Если раздражение кожи развивается, обратитесь к специалисту по охране труда и технике безопасности на предприятии или к местному поставщику оборудования для обеспечения безопасности, чтобы определить, какие средства индивидуальной защиты подходят для вашего использования.

Защита органов дыхания :
Одобренный NIOSH респиратор для очистки воздуха с соответствующим картриджем и/или фильтром может быть разрешен при определенных обстоятельствах, когда ожидается, что концентрации в воздухе превысят пределы воздействия (если применимо) или если превышение воздействия было определено иным образом.
Защита, обеспечиваемая воздухоочистительными респираторами, ограничена.
Используйте респиратор с принудительной подачей воздуха, если существует вероятность неконтролируемого высвобождения, уровни воздействия неизвестны или при любых других обстоятельствах, когда респиратор для очистки воздуха не может обеспечить адекватную защиту.

УТИЛИЗАЦИЯ ОТХОДОВ:
Методы утилизации отходов
Утилизируйте в соответствии со всеми применимыми местными, государственными и федеральными нормами.
НОРМАТИВНАЯ ИНФОРМАЦИЯ:
POLYQUATERNIUM-11 не классифицируется как опасный в соответствии с положениями Директивы ЕЭС 67/548/EEC, правил ООН или европейских соглашений ADR/RID.

МЕРЫ БЕЗОПАСНОСТИ/ПОБОЧНЫЕ ЭФФЕКТЫ POLYQUATERNIUM 11:
База данных по косметике считает POLYQUATERNIUM 11 малоопасным ингредиентом и отмечает только пробелы в данных и биоаккумуляцию как опасения.
Тем не менее, потенциальное включение непрореагировавшего винилпирролидона, несколько подозреваемого в мутагении (хотя исследования показали, что он не является мутагенным), но отмечает, что низкие уровни этого токсина не причинят вреда косметике или косметическим продуктам.

Номер КАС: 53633-54-8
Номер Европейского сообщества (ЕС): 611-022-0
Название Chem/IUPAC: 2-пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-
Название: пирролидинон, комп. с диэтилсульфатом


СИНОНИМЫ СЛОВА POLYQUATERNIUM -11:
1-Этенил-2-пирролидиноновый полимер с соединением 2-(диметиламино)этил 2-метил-2-пропеноата с диэтилсульфатом
Соединение диэтилового эфира серной кислоты с 2-(диметиламино)этил 2-метил-2-пропеноатом Полимер с 1-этенил-2-пирролидиноном
Селькват 200
Сополимер 755
Дехикварт CC 11
Флокаре С 111
Гафкат 440
Гафкат 734
Гафкат 755
Гафкат 755N
Гафкат 755N-P
Гафкат 755Н-ПП
Гафкат 755N-PW
ХК 1НС
УВ полимер 1N
УВ полимер 1НС
УВ полимер 1С
НС Полимер 1С(М)
НС Полимер 2л
УВ полимер 3А
УВ полимер 5
Лувикват PQ 11
Лувикват PQ 11PN
Сополимер диэтилсульфата N,N-диметиламиноэтилметакрилата и винилпирролидона
ПК 11
ПК 11ПН
Поликва 11
POLYQUATERNIUM 11
Кватерниум 23
Синонимы, предоставленные депозитарием:
53633-54-8
2-Пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-пирролидиноном, компл. с диэтилсульфатом
диэтилсульфат; 2-(диметиламино)этил 2-метилпроп-2-еноат; 1-этенилпирролидин-2-он.
УНИИ-0B44BS5IJS
Кватерниум-23
0B44BS5IJS
SCHEMBL444003
CS-0453451
Соединение 2-(диметиламино)этилметакрилата с диэтилсульфатом и 1-винилпирролидин-2-оном (1:1:1)
2-пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-пирролидиноном, компл. с диэтилсульфатом ДРУГИЕ НАИМЕНОВАНИЯ ИНДЕКСА CA: 2-пирролидинон, 1-этенил-, полимер с 2-(диметиламино)этил-2-метил-2-пропеноатом, компд. с диэтилсульфатомСерная кислота, диэтиловый эфир, компд. с 2-(диметиламино)этил-2-мет
2-Пропеновая кислота, 2-метил-, 2-(диметиламино)этиловый эфир, полимер с 1-этенил-2-пирролидиноном, соединение с диэтилсульфатом
2-пропеновая кислота, 2-метил-2-(диметиламино)этиловый эфир, полимер и 1-этенил-2-пирролидинон, соединение с диэтилсульфатом
2-пирролидинон, 1-этенил-, полимер и 2-(диметиламино)этил 2-метил-2-пропеноат, соединение с диэтилсульфатом
Поли[(2-этилдиметиламмониоэтилметакрилат этилсульфат)-со-(1-винилпирролидон)] со средней молекулярной массой <1000000 по ГПХ, 20 мас. % в Н2О

POLYQUATERNIUM-37
Ethanaminium; N,N,N-trimethyl-2-((2-methyl-1-oxo-2-propenyl)oxy)-, chloride, homopolymer. cas no: 26161-33-1
POLYQUATERNIUM-44
Polyquaternium D44; 1-ethenyl-3-methylimidazol-3-ium,1-ethenylpyrrolidin-2-one,methyl sulfate;poly[(3-methyl-1-vinylimidazolium methyl sulfate)-co-(1-vinylpyrrolidone)];1-Methyl-3-vinylimidazolium methyl sulfate-N-vinyl-2-pyrrolidone copolymer; cas no: 150599-70-5
POLYQUATERNIUM-46
POLYQUATERNIUM-46; N° CAS : 174761-16-1; Origine(s) : Synthétique. Nom INCI : POLYQUATERNIUM-46. Classification : Ammonium quaternaire, Polymère de synthèse. Ses fonctions (INCI) ; Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface; Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles Agent de fixation capillaire : Permet de contrôler le style du cheveu. Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry. Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer. INCI has approved at least 40 different polymers under the polyquaternium designation. Different polymers are distinguished by the numerical value that follows the word "polyquaternium". Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer. The numbers are assigned in the order in which they are registered rather than because of their chemical structure. Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions. Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat. Their positive charges also ionically bond them to hair and skin. Some have antimicrobial properties. List of Polyquaterniums: Polyquaternium Chemical Identity Polyquaternium-1: Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine Polyquaternium-2: Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polyquaternium-4: Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer Polyquaternium-5: Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate Polyquaternium-6: Poly(diallyldimethylammonium chloride) Polyquaternium-7: Copolymer of acrylamide and diallyldimethylammonium chloride Polyquaternium-8 : Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2] Polyquaternium-9 : Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane Polyquaternium-10: Quaternized hydroxyethyl cellulose Polyquaternium-11: Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate Polyquaternium-12: Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-13: Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-14: Trimethylaminoethylmethacrylate homopolymer Polyquaternium-15: Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer Polyquaternium-16: Copolymer of vinylpyrrolidone and quaternized vinylimidazole Polyquaternium-17: Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-18: Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-19: Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine Polyquaternium-20 : Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine Polyquaternium-22: Copolymer of acrylic acid and diallyldimethylammonium Chloride Polyquaternium-24: Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide. Polyquaternium-27: Block copolymer of Polyquaternium-2 and Polyquaternium-17 Polyquaternium-28: Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium Polyquaternium-29: Chitosan modified with propylen oxide and quaternized with epichlorhydrin Polyquaternium-30: Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate Polyquaternium-31: N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile Polyquaternium-32: Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride) Polyquaternium-33: Copolymer of trimethylaminoethylacrylate salt and acrylamide Polyquaternium-34: Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine Polyquaternium-35: Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium Polyquaternium-36: Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate Polyquaternium-37: Poly(2-methacryloxyethyltrimethylammonium chloride) Polyquaternium-39: Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride Polyquaternium-42: Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride] Polyquaternium-43: Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine Polyquaternium-44: 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer Polyquaternium-45: Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate Polyquaternium-46: Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole Polyquaternium-47: Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate
POLYQUATERNIUM-6
Poly-N,N-dimethyl-N,N-diallylammonium chloride; Polyquaternium-6;poly(diallyl dimethyl ammonium chloride); poly(diallyldimethylammonium chloride); poly(dimethyl diallyl ammonium chloride) cas no: 26062-79-3
POLYQUATERNIUM-68
polyquaternium 68; Copolymer of vinylpyrrolidinone, methacrylamide, vinylimidazole and quaternized vinylimidazole. cas no: 827346-45-2
POLYQUATERNIUM-7
POLYQUATERNIUM-7; N° CAS : 26590-05-6; Origine(s) : Synthétique; Nom INCI : POLYQUATERNIUM-7. Classification : Ammonium quaternaire, Règlementé, Polymère de synthèse; Restriction en Europe : III/66; Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Polyquaternium is the International Nomenclature for Cosmetic Ingredients designation for several polycationic polymers that are used in the personal care industry. Polyquaternium is a neologism used to emphasize the presence of quaternary ammonium centers in the polymer. INCI has approved at least 40 different polymers under the polyquaternium designation. Different polymers are distinguished by the numerical value that follows the word "polyquaternium". Polyquaternium-5, polyquaternium-7, and polyquaternium-47 are three examples, each a chemically different type of polymer. The numbers are assigned in the order in which they are registered rather than because of their chemical structure. Polyquaterniums find particular application in conditioners, shampoo, hair mousse, hair spray, hair dye, personal lubricant, and contact lens solutions. Because they are positively charged, they neutralize the negative charges of most shampoos and hair proteins and help hair lie flat. Their positive charges also ionically bond them to hair and skin. Some have antimicrobial properties. List of Polyquaterniums: Polyquaternium Chemical Identity Polyquaternium-1: Ethanol, 2,2′,2″ -nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine Polyquaternium-2: Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polyquaternium-4: Hydroxyethyl cellulose dimethyl diallylammonium chloride copolymer; Diallyldimethylammonium chloride-hydroxyethyl cellulose copolymer Polyquaternium-5: Copolymer of acrylamide and quaternized dimethylammoniumethyl methacrylate Polyquaternium-6: Poly(diallyldimethylammonium chloride) Polyquaternium-7: Copolymer of acrylamide and diallyldimethylammonium chloride Polyquaternium-8 : Copolymer of methyl and stearyl dimethylaminoethyl ester of methacrylic acid, quaternized with dimethylsulphate[2] Polyquaternium-9 : Homopolymer of N,N-(dimethylamino)ethyl ester of methacrylic acid, quaternized with bromomethane Polyquaternium-10: Quaternized hydroxyethyl cellulose Polyquaternium-11: Copolymer of vinylpyrrolidone and quaternized dimethylaminoethyl methacrylate Polyquaternium-12: Ethyl methacrylate / abietyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-13: Ethyl methacrylate / oleyl methacrylate / diethylaminoethyl methacrylate copolymer quaternized with dimethyl sulfate Polyquaternium-14: Trimethylaminoethylmethacrylate homopolymer Polyquaternium-15: Acrylamide-dimethylaminoethyl methacrylate methyl chloride copolymer Polyquaternium-16: Copolymer of vinylpyrrolidone and quaternized vinylimidazole Polyquaternium-17: Adipic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-18: Azelaic acid, dimethylaminopropylamine and dichloroethylether copolymer Polyquaternium-19: Copolymer of polyvinyl alcohol and 2,3-epoxypropylamine Polyquaternium-20 : Copolymer of polyvinyl octadecyl ether and 2,3-epoxypropylamine Polyquaternium-22: Copolymer of acrylic acid and diallyldimethylammonium Chloride Polyquaternium-24: Quaternary ammonium salt of hydroxyethyl cellulose reacted with a lauryl dimethyl ammonium substituted epoxide. Polyquaternium-27: Block copolymer of Polyquaternium-2 and Polyquaternium-17 Polyquaternium-28: Copolymer of vinylpyrrolidone and methacrylamidopropyl trimethylammonium Polyquaternium-29: Chitosan modified with propylen oxide and quaternized with epichlorhydrin Polyquaternium-30: Ethanaminium, N-(carboxymethyl)-N,N-dimethyl-2-[(2-methyl-1-oxo-2-propen-1-yl)oxy]-, inner salt, polymer with methyl 2-methyl-2-propenoate Polyquaternium-31: N,N- dimethylaminopropyl-N-acrylamidine quatemized with diethylsulfate bound to a block of polyacrylonitrile Polyquaternium-32: Poly(acrylamide 2-methacryloxyethyltrimethyl ammonium chloride) Polyquaternium-33: Copolymer of trimethylaminoethylacrylate salt and acrylamide Polyquaternium-34: Copolymer of 1,3-dibromopropane and N,N-diethyl-N′,N′-dimethyl-1,3-propanediamine Polyquaternium-35: Methosulphate of the copolymer of methacryloyloxyethyltrimethylammonium and of methacryloyloxyethyldimethylacetylammonium Polyquaternium-36: Copolymer of N,N-dimethylaminoethylmethacrylate and buthylmethacrylate, quaternized with dimethylsulphate Polyquaternium-37: Poly(2-methacryloxyethyltrimethylammonium chloride) Polyquaternium-39: Terpolymer of acrylic acid, acrylamide and diallyldimethylammonium Chloride Polyquaternium-42: Poly[oxyethylene(dimethylimino)ethylene (dimethylimino)ethylene dichloride] Polyquaternium-43: Copolymer of acrylamide, acrylamidopropyltrimonium chloride, 2-amidopropylacrylamide sulfonate and dimethylaminopropylamine Polyquaternium-44: 3-Methyl-1-vinylimidazolium methyl sulfate-N-vinylpyrrolidone copolymer Polyquaternium-45: Copolymer of (N-methyl-N-ethoxyglycine)methacrylate and N,N-dimethylaminoethylmethacrylate, quaternized with dimethyl sulphate Polyquaternium-46: Terpolymer of vinylcaprolactam, vinylpyrrolidone, and quaternized vinylimidazole Polyquaternium-47: Terpolymer of acrylic acid, methacrylamidopropyl trimethylammonium chloride, and methyl acrylate
POLYSORATE 80
Les polysorbates sont des esters d'acides gras et de polyoxyéthylène sorbitane (dérivé éthoxylé du sorbitane). Constitués ainsi d'une chaîne aliphatique hydrophobe (l'acide ou les acides gras) et d'une « tête » éthoxylée hydrophile, ce sont des molécules amphiphiles utilisées comme tensioactifs (émulsifiants), dont la HLB dépend des acides gras en jeu et du nombre de fonctions éthoxy. Les polysorbates sont parfois désignés par le nom de marque Tween. E 432 Monolaurate de polyoxyéthylène sorbitane (polysorbate 20) .E433 Monooléate de polyoxyéthylène sorbitane (polysorbate 80) .E434 Monopalmitate de polyoxyéthylène sorbitane (polysorbate 40) . E435 Monostéarate de polyoxyéthylène sorbitane (polysorbate 60) . E436 Tristéarate de polyoxyéthylène sorbitane (polysorbate 65)
POLYSORBATE 20
Polysorbate 20; polyoxyethylene (20) sorbitan monolaurate; Montanox 20; Polysorbate 20; PEG(20)sorbitan monolaurate; Alkest TW 20; Tween 20; Polisorbate 20- PS 20;Tween 20 (Trademark of ICI America, Inc.);Tween 20 ;Tween 20 1LT;Twain 20;TWEEN(R) 20 Vetec(TM) reagent grade, 40%;Tween 20 Tween 20 1LT;Polysorbate 20; CAS NO:9005-64-5
Polysorbate 20,80
Tween® 20; Polyoxyethylene Sorbitan Monolaurate; POE (20) sorbitan monolaurate; Polysorbate 20; Polysorbate 80; Tween 80; POE (80) CAS NO: 9005-64-5
Polysorbate 40
cas no : 9005-67-8, E434 Polysorbate 40, Tween 40, Monopalmitate de sorbitane polyoxyéthylène,Ses fonctions (INCI); polyethyleneglycol sorbitan monostearate; Sorbitan monostearate, ethoxylated. Les polysorbates sont des produits synthétiques fabriqués à partir de sorbitol (E420) dans un processus en trois étapes. De l'eau est d'abord retirée du sorbitol pour former un sorbitane, qui est ensuite partiellement estérifié avec un acide gras naturel tel que l'acide laurique (en ce qui concerne E432), oléique (ecqc. E433), palmitique (ecqc. E434) ou stéarique (ecqc. E435, E436) — cf. acides gras E570. Enfin, de l'oxyde d'éthylène est ajouté en présence d'un catalyseur pour donner du polysorbate Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile) Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
POLYSORBATE 60
POLYSORBATE 60 Description: Emulsifying agent consisting of sorbitol, ethylene oxide & stearic acid (polyoxyethylene-60 sorbitan monostearate), stearic acid is derived from vegetable oil, purity > 95%. Yellow-brownish viscous liquid, no or weak odor. Soluble in water & alcohols, insoluble in oils. HLB value: 14.9 (gives oil-in-water emulsions). CAS: 9005-67-8 INCI Name: Polysorbate-60 Benefits: Non-ionic, multi-purpose emulsifier (enables water and oil to mix) Emulsifying efficacy is increased when combined with cetyl alcohol or sorbitan stearate Acts as dispersing agent and anti-static thickener Very useful as solubilizer and stabilizer of essential oils Use: Warm to melt before use. Typical use level is 1 - 10%. For external use only. Applications: Lotions, creams, hair loss treatments, skin cleansers, makeup products requiring emulsification. Country of Origin: USA Raw material source: Sorbitol, vegetable oils Manufacture: Polysorbate 60 is obtained by esterification of sorbitol with one or three molecules of a fatty acid including stearic, lauric, oleic, and palmitic acid. Animal Testing: Not animal tested GMO: GMO-free Vegan: Does not contain animal-derived components Polysorbate 60 Jump to navigationJump to search Polysorbate 60 60, a compound used as a food additive in some pudding mixes to prevent scorching during preparation Polysorbate 60s are a class of emulsifiers used in some pharmaceuticals and food preparation. They are often used in cosmetics to solubilize essential oils into water-based products. Polysorbate 60s are oily liquids derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids. Common brand names for Polysorbate 60s include Scattics, Alkest, Canarcel.[1] Contents 1 Examples 2 See also 3 References 4 External links Examples Polysorbate 60 20 (polyoxyethylene (20) sorbitan monolaurate) Polysorbate 60 40 (polyoxyethylene (20) sorbitan monopalmitate) Polysorbate 60 60 (polyoxyethylene (20) sorbitan monostearate) Polysorbate 60 80 (polyoxyethylene (20) sorbitan monooleate) The number 20 following the 'polyoxyethylene' part refers to the total number of oxyethylene -(CH2CH2O)- groups found in the molecule. The number following the 'Polysorbate 60' part is related to the type of fatty acid associated with the polyoxyethylene sorbitan part of the molecule. Monolaurate is indicated by 20, monopalmitate is indicated by 40, monostearate by 60, and monooleate by 80. Polysorbate 60 or Tween 60, the full name polyoxyethylene (20) sorbitan monostearate, is an ingredient made from sorbitol, stearic acid (C18) and ethylene oxide. It is primarily used as an emulsifier in food (the European food additive number E435) and a solubilizer & surfactant in cosmetics. Like other polysorbates, the number 60 after polysorbate means the type of fatty acid, here is monostearate; the number 20 following polyoxyethylene indicates the total number of oxyethylene groups in the molecule structure. How is it made? According to the FDA, polysorbate 60 is manufactured by reacting stearic acid with sorbitol to obtain sorbitan monostearate first and then condensed with ethylene oxide. (1) What is it made of? As the commercial food grade stearic acid usually contains palmitic acid, so polysorbate 60 is a mixture of ethoxylated ethers of stearic and palmitic acid esters of sorbitol and its mono- and dianhydrides and other related compounds. Specification Other Names Tween 60 CAS Number 9005-67-8 Chemical formula C64H126O26 Molecular Weight 1312 Properties Appearance A lemon to orange-coloured oily liquid or semi-gel at 25°C. (2) Structure Polysorbate 60 chemical structure Image Source Hydrophilic groups: long polyoxyethylene groups Lipophilic group: stearic acid Hydrophile-Lipophile Balance (HLB) 14.9, gives oil-in-water emulsions, O/W. It is more lipophilic than polysorbate 20 and 40 due to the long length of the fatty acids – stearic acid, compared with other fatty acids, lauric acid (C14) and palmitic acid (C16) that linked to the polyoxyethylene sorbitan part of the molecule, respectively. Solubility Soluble in water, insoluble in mineral oil and vegetable oils. Soluble in ethyl acetate and toluene. What’re the Uses of Polysorbate 60? Polysorbate 60 is a synthetic multi-ingredient that can be used as a surfactant, emulsifier, solubilizer, stabilizer in food, cosmetics and personal care products. Food Polysorbate 60 helps water-based and oil-based ingredients blend easily and prevent their separation in food. Polysorbate 60 and 80 are mostly used in food among the category of polysorbates, but the latter is used more than 60 in food. As a high HLB emulsifier, its food grade can be blended with a low HLB emulsifier (e.g. sorbitan stearate, mono and diglycerides) to provide a suitable HLB value for the various food uses, either oil in water, or water in oil emulsion. Cosmetics Its general purpose in cosmetics is to mix water and oil together. Polysorbate 60 functions as a surfactant, emulsifier, solubilizer and dispersing agent. Some of its applications as follows: Help wash away body dirties by lowering the surface tension on the skin when used in shampoos and body washes. Distribute essential oils, fragrances and colorants evenly in water. Following cosmetic products may with it: Lotions Creams Hair products Skin care products Makeup products Is Polysorbate 60 Safe to Eat? Yes, it has been approved as a safe ingredient by the U.S. Food and Drug Administration (FDA) and European Food Safety Authority (EFSA), as well as the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FDA Polysorbate 60 may be safely used in food with multifunctions, such as an emulsifier, foaming agent, dough conditioner, dispersing agent, and surfactant & wetting agent. The following food may contain it and the maximum usage (3): Whipped edible oil topping 0.4% Shortenings and edible oils 1% Ice cream 0.1% Dressings 0.3% Cakes and cake mixes, icings and fillings 0.46% Sugar confection coatings 0.2% Vegetable fat-water emulsions 0.4% Yeast-leavened bakery products 0.5% EFSA Polyoxyethylene (20) sorbitan monostearate (E435) is listed in Commission Regulation (EU) No 231/2012 as an authorised food additive and categorized in “Additives other than colours and sweeteners” (4). Safety re-evaluation in 2018 Its safety was re-evaluated in 2018, together with other polysorbates (20, 40, 65, 80). (5) UK Food Standards Agency Categorized in “Emulsifiers, stabilisers, thickeners and gelling agents” (6) Food Standards Australia New Zealand It is approved ingredient in Australia and New Zealand with the code number 435. (7) JECFA Function Class: food additives, emulsifier. (8) Acceptable daily intake: ADI “0-25mg/kg bw” set in 1973. (9) What are the possible Side Effects of Polysorbate 60? When we talk about the side effects of polysorbates, mostly focus on two carcinogens, one is ethylene oxide (Group 1), the raw material for the production; another one is 1,4-dioxane (Group 2B), a by-product of polysorbate ethoxylation. However, the safety of these two substances in polysorbates have been approved due to the very few assay. See also: Details of the safety of two carcinogens Frequently asked questions What is the difference with polysorbate 65? Polysorbate 65, the full name polyoxyethylene (20) sorbitan tristearate. There are three stearic acids in its molecule structure while polysorbate 60 only has one. Is it Natural? It is not natural as it is made from chemical synthesis between sorbitan fatty acid with ethylene oxide. Is it Halal? Yes, polysorbate 60 would be halal if the fatty acid stearic acid is sourced from vegetable oils. Is it Vegan? Yes, it is vegan if the fatty acid stearic acid derived from vegetable oils which are suitable for vegetarians. Stearic acid used to synthesize polysorbate 60 may also come from animal sources. Conclusion Now you may have a knowledge of the emulsifier – polysorbate 60 (E435), from the following aspects: Production process Uses Safety Side effects FAQs: compare with polysorbate 65 and 80 I’m probably forgetting some information about polysorbate 60, and if you have any questions or remarks about this additive, feel free to let me know in the comments. Polysorbate 60 Messages Overview(active tab) Safety Resources What Is It? Polysorbate 20 and the other Polysorbate ingredients (Polysorbate 21, Polysorbate 40, Polysorbate 60, Polysorbate 61, Polysorbate 65, Polysorbate 65, Polysorbate 80, Polysorbate 81, Polysorbate 85) are a series of general purpose hydrophilic, nonionic surfactants. The Polysorbates are used in a variety of products including skin fresheners, skin care products, skin cleansing products, makeup bases and foundations, shampoos, permanent waves and fragrance powders. Why is it used in cosmetics and personal care products? The Polysorbate ingredients help other ingredients to dissolve in a solvent in which they would not normally dissolve. They also help to form emulsions by reducing the surface tension of the substances to be emulsified. Scientific Facts: Polysorbates are surfactants that are produced by reacting the polyol, sorbitol, with ethylene oxide. The number in the name of the Polysorbate indicates the average number of moles of ethylene oxide that has been reacted per mole of sorbitol. The polyoxyethylenated sorbitan is then reacted with fatty acids obtained from vegetable fats and oils such as lauric acid, palmitic acid, stearic acid and oleic acid. Polysorbates function to disperse oil in water as opposed to water in oil Safety Information: The Food and Drug Administration (FDA) permits Polysorbate 20, Polysorbate 60, Polysorbate 65 and Polysorbate 80 to be directly added to food as adjuvants of flavoring agents or as multipurpose additives. FDA also includes Polysorbate 20, Polysorbate 40, Polysorbate 60, Polysorbate 65, Polysorbate 80 and Polysorbate 85 on its list of indirect food additives as emulsifiers and/or surface active agents. Polysorbate 80 has FDA approval as an ophthalmic demulcent and may be used in Over-The-Counter (OTC) ophthalmic drug products. The safety of Polysorbate 20, Polysorbate 21, Polysorbate 40, Polysorbate 60, Polysorbate 61, Polysorbate 65, Polysorbate 80, Polysorbate 81 and Polysorbate 85 has been assessed by the Cosmetic Ingredient Review (CIR) Expert Panel. The CIR Expert Panel evaluated the scientific data and concluded that Polysorbate 20, 21, 40, 60, 61, 65, 80, 81 and 85 were safe as cosmetic ingredients. More safety Information: CIR Safety Review: The Polysorbates are a series of polyoxyethylenated sorbitan esters that differ with respect to the number of polymerized oxyethylene subunits and the number and type of fatty acid groups present. The CIR Expert Panel reviewed data showing that Polysorbates were not mutagens or complete carcinogens. The available data indicated that these ingredients were used in numerous preparations without clinical reports of significant adverse effects. FDA: Link to Code of Federal Regulations for information about the direct food uses for Polysorbate 20, Polysorbate 60, Polysorbate 65 and Polysorbate 80 FDA: Link to Code of Federal Regulations for information about the indirect food uses for Polysorbates FDA: Link to Code of Federal Regulations for information about the OTC drug uses for Polysorbate 80 The Polysorbate ingredients may be used in cosmetics and personal care products marketed in Europe according to the general provisions of the Cosmetics Regulation of the European Union. The Joint FAO/WHO Expert Committee on Food Additives has established an Acceptable Daily Intake of 0-25 mg/kg body weight for the sum of Polyoxyethylene (20) sorbitan esters of lauric, oleic, palmitic, and stearic acid. Description: Emulsifying agent consisting of sorbitol, ethylene oxide & stearic acid (polyoxyethylene-60 sorbitan monostearate), stearic acid is derived from vegetable oil, purity > 95%. Yellow-brownish viscous liquid, no or weak odor. Soluble in water & alcohols, insoluble in oils. HLB value: 14.9 (gives oil-in-water emulsions). CAS: 9005-67-8 INCI Name: Polysorbate-60 Benefits: Non-ionic, multi-purpose emulsifier (enables water and oil to mix) Emulsifying efficacy is increased when combined with cetyl alcohol or sorbitan stearate Acts as dispersing agent and anti-static thickener Very useful as solubilizer and stabilizer of essential oils Use: Warm to melt before use. Typical use level is 1 - 10%. For external use only. Applications: Lotions, creams, hair loss treatments, skin cleansers, makeup products requiring emulsification. Country of Origin: USA Raw material source: Sorbitol, vegetable oils Manufacture: Polysorbate 60 is obtained by esterification of sorbitol with one or three molecules of a fatty acid including stearic, lauric, oleic, and palmitic acid. Animal Testing: Not animal tested GMO: GMO-free Vegan: Does not contain animal-derived components Polysorbate 60 Jump to navigationJump to search Polysorbate 60 60, a compound used as a food additive in some pudding mixes to prevent scorching during preparation Polysorbate 60s are a class of emulsifiers used in some pharmaceuticals and food preparation. They are often used in cosmetics to solubilize essential oils into water-based products. Polysorbate 60s are oily liquids derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids. Common brand names for Polysorbate 60s include Scattics, Alkest, Canarcel.[1] Contents 1 Examples 2 See also 3 References 4 External links Examples Polysorbate 60 20 (polyoxyethylene (20) sorbitan monolaurate) Polysorbate 60 40 (polyoxyethylene (20) sorbitan monopalmitate) Polysorbate 60 60 (polyoxyethylene (20) sorbitan monostearate) Polysorbate 60 80 (polyoxyethylene (20) sorbitan monooleate) The number 20 following the 'polyoxyethylene' part refers to the total number of oxyethylene -(CH2CH2O)- groups found in the molecule. The number following the 'Polysorbate 60' part is related to the type of fatty acid associated with the polyoxyethylene sorbitan part of the molecule. Monolaurate is indicated by 20, monopalmitate is indicated by 40, monostearate by 60, and monooleate by 80. Polysorbate 60 or Tween 60, the full name polyoxyethylene (20) sorbitan monostearate, is an ingredient made from sorbitol, stearic acid (C18) and ethylene oxide. It is primarily used as an emulsifier in food (the European food additive number E435) and a solubilizer & surfactant in cosmetics. Like other polysorbates, the number 60 after polysorbate means the type of fatty acid, here is monostearate; the number 20 following polyoxyethylene indicates the total number of oxyethylene groups in the molecule structure. How is it made? According to the FDA, polysorbate 60 is manufactured by reacting stearic acid with sorbitol to obtain sorbitan monostearate first and then condensed with ethylene oxide. (1) What is it made of? As the commercial food grade stearic acid usually contains palmitic acid, so polysorbate 60 is a mixture of ethoxylated ethers of stearic and palmitic acid esters of sorbitol and its mono- and dianhydrides and other related compounds. Specification Other Names Tween 60 CAS Number 9005-67-8 Chemical formula C64H126O26 Molecular Weight 1312 Properties Appearance A lemon to orange-coloured oily liquid or semi-gel at 25°C. (2) Structure Polysorbate 60 chemical structure Image Source Hydrophilic groups: long polyoxyethylene groups Lipophilic group: stearic acid Hydrophile-Lipophile Balance (HLB) 14.9, gives oil-in-water emulsions, O/W. It is more lipophilic than polysorbate 20 and 40 due to the long length of the fatty acids – stearic acid, compared with other fatty acids, lauric acid (C14) and palmitic acid (C16) that linked to the polyoxyethylene sorbitan part of the molecule, respectively. Solubility Soluble in water, insoluble in mineral oil and vegetable oils. Soluble in ethyl acetate and toluene. What’re the Uses of Polysorbate 60? Polysorbate 60 is a synthetic multi-ingredient that can be used as a surfactant, emulsifier, solubilizer, stabilizer in food, cosmetics and personal care products. Food Polysorbate 60 helps water-based and oil-based ingredients blend easily and prevent their separation in food. Polysorbate 60 and 80 are mostly used in food among the category of polysorbates, but the latter is used more than 60 in food. As a high HLB emulsifier, its food grade can be blended with a low HLB emulsifier (e.g. sorbitan stearate, mono and diglycerides) to provide a suitable HLB value for the various food uses, either oil in water, or water in oil emulsion. Cosmetics Its general purpose in cosmetics is to mix water and oil together. Polysorbate 60 functions as a surfactant, emulsifier, solubilizer and dispersing agent. Some of its applications as follows: Help wash away body dirties by lowering the surface tension on the skin when used in shampoos and body washes. Distribute essential oils, fragrances and colorants evenly in water. Following cosmetic products may with it: Lotions Creams Hair products Skin care products Makeup products Is Polysorbate 60 Safe to Eat? Yes, it has been approved as a safe ingredient by the U.S. Food and Drug Administration (FDA) and European Food Safety Authority (EFSA), as well as the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FDA Polysorbate 60 may be safely used in food with multifunctions, such as an emulsifier, foaming agent, dough conditioner, dispersing agent, and surfactant & wetting agent. The following food may contain it and the maximum usage (3): Whipped edible oil topping 0.4% Shortenings and edible oils 1% Ice cream 0.1% Dressings 0.3% Cakes and cake mixes, icings and fillings 0.46% Sugar confection coatings 0.2% Vegetable fat-water emulsions 0.4% Yeast-leavened bakery products 0.5% EFSA Polyoxyethylene (20) sorbitan monostearate (E435) is listed in Commission Regulation (EU) No 231/2012 as an authorised food additive and categorized in “Additives other than colours and sweeteners” (4). Safety re-evaluation in 2018 Its safety was re-evaluated in 2018, together with other polysorbates (20, 40, 65, 80). (5) UK Food Standards Agency Categorized in “Emulsifiers, stabilisers, thickeners and gelling agents” (6) Food Standards Australia New Zealand It is approved ingredient in Australia and New Zealand with the code number 435. (7) JECFA Function Class: food additives, emulsifier. (8) Acceptable daily intake: ADI “0-25mg/kg bw” set in 1973. (9) What are the possible Side Effects of Polysorbate 60? When we talk about the side effects of polysorbates, mostly focus on two carcinogens, one is ethylene oxide (Group 1), the raw material for the production; another one is 1,4-dioxane (Group 2B), a by-product of polysorbate ethoxylation. However, the safety of these two substances in polysorbates have been approved due to the very few assay. See also: Details of the safety of two carcinogens Frequently asked questions What is the difference with polysorbate 65? Polysorbate 65, the full name polyoxyethylene (20) sorbitan tristearate. There are three stearic acids in its molecule structure while polysorbate 60 only has one. Is it Natural? It is not natural as it is made from chemical synthesis between sorbitan fatty acid with ethylene oxide. Is it Halal? Yes, polysorbate 60 would be halal if the fatty acid stearic acid is sourced from vegetable oils. Is it Vegan? Yes, it is vegan if the fatty acid stearic acid derived from vegetable oils which are suitable for vegetarians. Stearic acid used to synthesize polysorbate 60 may also come from animal sources. Conclusion Now you may have a knowledge of the emulsifier – polysorbate 60 (E435), from the following aspects: Production process Uses Safety Side effects FAQs: compare with polysorbate 65 and 80 I’m probably forgetting some information about polysorbate 60, and if you have any questions or remarks about this additive, feel free to let me know in the comments. Polysorbate 60 Messages Overview(active tab) Safety Resources What Is It? Polysorbate 20 and the other Polysorbate ingredients (Polysorbate 21, Polysorbate 40, Polysorbate 60, Polysorbate 61, Polysorbate 65, Polysorbate 65, Polysorbate 80, Polysorbate 81, Polysorbate 85) are a series of general purpose hydrophilic, nonionic surfactants. The Polysorbates are used in a variety of products including skin fresheners, skin care products, skin cleansing products, makeup bases and foundations, shampoos, permanent waves and fragrance powders. Why is it used in cosmetics and personal care products? The Polysorbate ingredients help other ingredients to dissolve in a solvent in which they would not normally dissolve. They also help to form emulsions by reducing the surface tension of the substances to be emulsified. Scientific Facts: Polysorbates are surfactants that are produced by reacting the polyol, sorbitol, with ethylene oxide. The number in the name of the Polysorbate indicates the average number of moles of ethylene oxide that has been reacted per mole of sorbitol. The polyoxyethylenated sorbitan is then reacted with fatty acids obtained from vegetable fats and oils such as lauric acid, palmitic acid, stearic acid and oleic acid. Polysorbates function to disperse oil in water as opposed to water in oil Safety Information: The Food and Drug Administration (FDA) permits Polysorbate 20, Polysorbate 60, Polysorbate 65 and Polysorbate 80 to be directly added to food as adjuvants of flavoring agents or as multipurpose additives. FDA also includes Polysorbate 20, Polysorbate 40, Polysorbate 60, Polysorbate 65, Polysorbate 80 and Polysorbate 85 on its list of indirect food additives as emulsifiers and/or surface active agents. Polysorbate 80 has FDA approval as an ophthalmic demulcent and may be used in Over-The-Counter (OTC) ophthalmic drug products. The safety of Polysorbate 20, Polysorbate 21, Polysorbate 40, Polysorbate 60, Polysorbate 61, Polysorbate 65, Polysorbate 80, Polysorbate 81 and Polysorbate 85 has been assessed by the Cosmetic Ingredient Review (CIR) Expert Panel. The CIR Expert Panel evaluated the scientific data and concluded that Polysorbate 20, 21, 40, 60, 61, 65, 80, 81 and 85 were safe as cosmetic ingredients. More safety Information: CIR Safety Review: The Polysorbates are a series of polyoxyethylenated sorbitan esters that differ with respect to the number of polymerized oxyethylene subunits and the number and type of fatty acid groups present. The CIR Expert Panel reviewed data showing that Polysorbates were not mutagens or complete carcinogens. The available data indicated that these ingredients were used in numerous preparations without clinical reports of significant adverse effects. FDA: Link to Code of Federal Regulations for information about the direct food uses for Polysorbate 20, Polysorbate 60, Polysorbate 65 and Polysorbate 80 FDA: Link to Code of Federal Regulations for information about the indirect food uses for Polysorbates FDA: Link to Code of Federal Regulations for information about the OTC drug uses for Polysorbate 80 The Polysorbate ingredients may be used in cosmetics and personal care products marketed in Europe according to the general provisions of the Cosmetics Regulation of the European Union. The Joint FAO/WHO Expert Committee on Food Additives has established an Acceptable Daily Intake of 0-25 mg/kg body weight for the sum of Polyoxyethylene (20) sorbitan esters of lauric, oleic, palmitic, and stearic acid.
Polysorbate 80
Polysorbate 80; Polyoxyethylene (20) sorbitan monooleate; Montanox 80; Alkest TW 80; Tween 80; PS 80 cas no: 9005-65-6
POLYSORBATE-20
POE (20) sorbitan monostearate; Polysorbate 60; Polyoxyethylene Sorbitan Monostearate; cas no: 9005-67-8
POLYSORBATE-60
Polyoxyethylene Sorbitan Monooleate; POE (20) sorbitan monooleate; Polysorbate 80; cas no: 9005-65-6
POLYSORBATE-80
copolymer peg-140 hexamethylene diisocyanate C12-14 pareth-10; C16-18 pareth-11, and C18-20 pareth-11
POLYURETHANE -39
Название INCI: POLYURETHANE -39

ОПИСАНИЕ:

POLYURETHANE -39 представляет собой синтетический водный раствор полиуретанового алкоилатного полимера.
POLYURETHANE -39 представляет собой бесцветную или слегка желтоватую, прозрачную или слегка непрозрачную жидкость с характерным слабым запахом.
POLYURETHANE-39 представляет собой нечувствительный к pH неионогенный устойчивый к электролитам модификатор ассоциативной реологии на основе полиуретана для ухода за кожей и солнцем.


POLYURETANE-39 — это ассоциативный загуститель для средств по уходу за кожей, солнцем и волосами, работающий в широком диапазоне pH (2-12).

POLYURETHANE -39 представляет собой сополимер ПЭГ-140 и гексаметилендиизоцианата с концевыми группами C12-14 парет-10, C16-18 парет-11 и C18-20 парет-11.

POLYURETHANE -39 (/ˌpɒliˈjʊərəˌθeɪn, -jʊəˈrɛθeɪn/; часто сокращенно PUR и PU) относится к классу полимеров, состоящих из органических звеньев, соединенных карбаматными (уретановыми) связями.
В отличие от других распространенных полимеров, таких как полиэтилен и полистирол, полиуретан производится из широкого спектра исходных материалов.

Разновидность POLYURETHANE -39 производит полиуретаны с различной химической структурой, что позволяет использовать их во многих областях.
К ним относятся жесткие и гибкие пеноматериалы, лаки и покрытия, клеи, электрические герметики и волокна, такие как спандекс и полиуретановый ламинат (ПУЛ).

Пенопласты являются самой крупной областью применения, на которую приходится 67% всего полиуретана, произведенного в 2016 году.

POLYURETHANE -39 обычно получают реакцией изоцианата с полиолом.
Поскольку POLYURETHANE -39 содержит два типа мономеров, которые полимеризуются друг за другом, их относят к чередующимся сополимерам.
И изоцианаты, и полиолы, используемые для изготовления полиуретана-39, содержат две или более функциональных групп на молекулу.

Мировое производство в 2019 году составило 25 миллионов метрических тонн, что составляет около 6% всех полимеров, произведенных в этом году.
POLYURETHANE -39 — товарный пластик.



ИСТОРИЯ ПОЛИУРЕТАНА-39:
Отто Байер и его коллеги из IG Farben в Леверкузене, Германия, впервые произвели полиуретаны в 1937 году.
Новые полимеры имели некоторые преимущества по сравнению с существующими пластиками, которые были получены путем полимеризации олефинов или поликонденсации, и не подпадали под действие патентов, полученных Уоллесом Карозерсом на сложные полиэфиры.

Ранние работы были сосредоточены на производстве волокон и гибких пеноматериалов, а полиуретаны применялись в ограниченных масштабах в качестве покрытий для самолетов во время Второй мировой войны.
Полиизоцианаты стали коммерчески доступными в 1952 году, а производство гибкого пенополиуретана-39 началось в 1954 году путем объединения толуолдиизоцианата (ТДИ) и полиэфирных полиолов.
Эти материалы также использовались для производства жестких пен, каучука и эластомеров.
Линейные волокна были изготовлены из гексаметилендиизоцианата (ГДИ) и 1,4-бутандиола (БДО).

DuPont представила простые полиэфиры, в частности поли(тетраметиленовый эфир)гликоль, в 1956 году.
BASF и Dow Chemical представили полиалкиленгликоли в 1957 году.
Полиэфирные полиолы были дешевле, проще в обращении и более водостойкими, чем полиэфирные полиолы.

Union Carbide и Mobay, совместное предприятие США Monsanto/Bayer, также начали производство химикатов на основе полиуретана-39.
В 1960 году было произведено более 45 000 метрических тонн эластичных пенополиуретанов-39.
Доступность пенообразователей на основе хлорфторалканов, недорогих полиолов на основе простых полиэфиров и метилендифенилдиизоцианата (МДИ) позволила использовать жесткие пенополиуретаны-39 в качестве высокоэффективных изоляционных материалов.

В 1967 году были представлены модифицированные уретаном полиизоциануратные жесткие пенопласты, обеспечивающие еще более высокую термостойкость и устойчивость к возгоранию.
В 1960-х годах компоненты безопасности салона автомобиля, такие как приборные панели и дверные панели, производились путем заполнения термопластичной обшивки полужесткой пеной.

В 1969 году компания Bayer представила полностью пластиковый автомобиль в Дюссельдорфе, Германия.
Детали этого автомобиля, такие как передняя панель и панели кузова, были изготовлены с использованием нового процесса, называемого реактивным литьем под давлением (RIM), в котором реагенты смешивались, а затем впрыскивались в форму.
Добавление наполнителей, таких как измельченное стекло, слюда и переработанные минеральные волокна, привело к получению армированного обода (RRIM), который обеспечил улучшение модуля изгиба (жесткости), снижение коэффициента теплового расширения и лучшую термическую стабильность.

Эта технология была использована для изготовления первого автомобиля с пластиковым кузовом в США, Pontiac Fiero, в 1983 году.
Дальнейшее увеличение жесткости было достигнуто за счет включения предварительно помещенных стеклянных матов в полость формы RIM, также широко известного как литье под давлением смолы или конструкционное RIM.

Начиная с начала 1980-х годов, микроячеистые гибкие пеноматериалы, полученные раздувом водой, использовались для формования прокладок для автомобильных панелей и уплотнений воздушных фильтров, заменяя полимеры ПВХ.
POLYURETHANE -39 используется во многих автомобильных приложениях, включая сиденья, подголовники и подлокотники, а также обивку потолка.

POLYURETHANE -39 (включая поролон) иногда изготавливают с использованием небольшого количества пенообразователей для получения менее плотной пены, лучшей амортизации/поглощения энергии или теплоизоляции.

В начале 1990-х годов Монреальский протокол ограничил использование многих хлорсодержащих пенообразователей, таких как трихлорфторметан (ХФУ-11), из-за их воздействия на разрушение озонового слоя.
К концу 1990-х пенообразователи, такие как диоксид углерода, пентан, 1,1,1,2-тетрафторэтан (ГФУ-134а) и 1,1,1,3,3-пентафторпропан (ГФУ-245fa), широко использовались в Северной Америке. США и ЕС, хотя хлорированные пенообразователи продолжали использоваться во многих развивающихся странах.
Позже ГФУ-134а также был запрещен из-за высоких показателей ОРП и ПГП, а ГФУ-141В был представлен в начале 2000-х годов в качестве альтернативного пенообразователя в развивающихся странах.



ХИМИЧЕСКИЙ СОСТАВ ПОЛИУРЕТАНА-39:
Полиуретаны получают реакцией диизоцианатов с полиолами, часто в присутствии катализатора или под воздействием ультрафиолетового света.

Обычные катализаторы включают третичные амины, такие как DABCO, или металлические мыла, такие как дилаурат дибутилолова.
Стехиометрия исходных материалов должна тщательно контролироваться, поскольку избыток изоцианата может тримеризоваться, что приводит к образованию жестких полиизоциануратов.

Полимер обычно имеет сильно сшитую молекулярную структуру, в результате чего получается термореактивный материал, который не плавится при нагревании; хотя некоторые термопластичные полиуретаны также производятся.

Наиболее распространено применение полиуретана-39 в виде твердых пенопластов, что требует присутствия газа или вспенивающего агента на стадии полимеризации.
Обычно это достигается добавлением небольшого количества воды, которая реагирует с изоцианатами с образованием газообразного CO2 и амина через нестабильную группу карбаминовой кислоты.
Полученный амин может также реагировать с изоцианатами с образованием групп мочевины, и поэтому полимер будет содержать как эти, так и уретановые линкеры.
Мочевина плохо растворяется в реакционной смеси и склонна к образованию отдельных фаз «твердого сегмента», состоящих в основном из полимочевины.

Концентрация и организация этих фаз полимочевины могут оказывать существенное влияние на свойства пены.

Тип получаемой пены можно контролировать, регулируя количество пенообразователя, а также добавляя различные поверхностно-активные вещества, которые изменяют реологию полимеризующейся смеси.
Пены могут быть либо «с закрытыми порами», когда большинство первоначальных пузырьков или ячеек остаются нетронутыми, либо «с открытыми порами», когда пузырьки лопаются, но края пузырьков достаточно жесткие, чтобы сохранять свою форму, в крайних случаях. могут образовываться сетчатые пены.

Пены с открытыми порами кажутся мягкими и пропускают воздух, поэтому их удобно использовать в подушках сидений или матрасах.

Пенопласт с закрытыми порами используется в качестве жесткой теплоизоляции.
Микропористые пены высокой плотности могут быть образованы без добавления пенообразователей путем механического вспенивания полиола перед использованием.

Это прочные эластомерные материалы, используемые для покрытия автомобильных рулей или подошв обуви.

На свойства полиуретана-39 сильно влияют типы изоцианатов и полиолов, используемых для его изготовления.

Длинные, гибкие сегменты, образо��анные полиолом, дают мягкий эластичный полимер.
Большое количество сшивок дает прочные или жесткие полимеры.
Длинные цепи и слабое сшивание дают очень эластичный полимер, короткие цепи с большим количеством поперечных связей дают твердый полимер, в то время как длинные цепи и промежуточное сшивание дают полимер, пригодный для изготовления пены.
Выбор, доступный для изоцианатов и полиолов, в дополнение к другим добавкам и условиям обработки, позволяет полиуретанам иметь очень широкий диапазон свойств, которые делают их такими широко используемыми полимерами.

СЫРЬЕ:
Основными ингредиентами для изготовления полиуретана-39 являются ди- и триизоцианаты и полиолы.
Другие материалы добавляются для облегчения обработки полимера или для изменения свойств полимера. В состав пенополиуретана иногда также добавляют воду.

Изоцианаты :
Изоцианаты, используемые для производства полиуретана-39, имеют две или более изоцианатных групп на каждой молекуле.
Наиболее часто используемыми изоцианатами являются ароматические диизоцианаты, толуолдиизоцианат (ТДИ) и метилендифенилдиизоцианат (МДИ).
Эти ароматические изоцианаты более реакционноспособны, чем алифатические изоцианаты.

TDI и MDI, как правило, менее дороги и более реакционноспособны, чем другие изоцианаты.
ТДИ и МДИ промышленного класса представляют собой смеси изомеров, а МДИ часто содержит полимерные материалы. Они используются для изготовления гибкого пенопласта (например, плиты пенопласта для матрасов или формованного пенопласта для автомобильных сидений), жесткого пенопласта (например, изоляционного пенопласта в холодильниках), эластомеров (например, подошв для обуви) и так далее.

Изоцианаты можно модифицировать путем их частичного взаимодействия с полиолами или введения некоторых других материалов для снижения летучести (и, следовательно, токсичности) изоцианатов, снижения их точек замерзания для облегчения обращения или улучшения свойств конечных полимеров.

Изомеры МДИ и полимер
Алифатические и циклоалифатические изоцианаты используются в меньших количествах, чаще всего в покрытиях и других применениях, где важны цвет и прозрачность, поскольку полиуретаны, изготовленные из ароматических изоцианатов, имеют тенденцию темнеть под воздействием света.
Наиболее важными алифатическими и циклоалифатическими изоцианатами являются 1,6-гексаметилендиизоцианат (ГДИ), 1-изоцианато-3-изоцианатометил-3,5,5-триметилциклогексан (изофорондиизоцианат, ИФДИ) и 4,4'-диизоцианатодициклогексилметан. (H12MDI или гидрогенизированный MDI).

Другие более специализированные изоцианаты включают тетраметилксилилендиизоцианат (TMXDI).

Полиолы:
Полиолы сами по себе являются полимерами и имеют в среднем две или более гидроксильных групп на молекулу.
Их можно преобразовать в полиэфирполиолы сополимеризацией этиленоксида и пропиленоксида с подходящим предшественником полиола.

Полиэфирные полиолы получают путем поликонденсации многофункциональных карбоновых кислот и полигидроксильных соединений.
Их можно дополнительно классифицировать в зависимости от их конечного использования.
Полиолы с более высокой молекулярной массой (молекулярная масса от 2000 до 10000) используются для производства более гибких полиуретанов, тогда как полиолы с более низкой молекулярной массой используются для изготовления более жестких продуктов.

Полиолы для гибких применений используют инициаторы с низкой функциональностью, такие как дипропиленгликоль (f = 2), глицерин (f = 3) или раствор сорбита в воде (f = 2,75).

Полиолы для жестких применений используют высокофункциональные инициаторы, такие как сахароза (f = 8), сорбит (f = 6), толуолдиамин (f = 4) и основания Манниха (f = 4).
Оксид пропилена и/или оксид этилена добавляют к инициаторам до тех пор, пока не будет достигнута желаемая молекулярная масса.
Порядок добавления и количества каждого оксида влияют на многие свойства полиолов, такие как совместимость, растворимость в воде и реакционная способность.

Полиолы, изготовленные только из оксида пропилена, имеют концевые вторичные гидроксильные группы и менее реакционноспособны, чем полиолы, покрытые оксидом этилена, которые содержат первичные гидроксильные группы. Включение диоксида углерода в структуру полиола исследуется несколькими компаниями.

Привитые полиолы (также называемые наполненными полиолами или полимерными полиолами) содержат мелкодисперсные твердые полимерные частицы стирола-акрилонитрила, акрилонитрила или полимочевины (PHD), химически привитые к основной цепи полиэфира с высокой молекулярной массой.

Они используются для повышения несущей способности высокоэластичных (HR) пенопластов низкой плотности, а также для повышения прочности микропористых пенопластов и литых эластомеров.

Инициаторы, такие как этилендиамин и триэтаноламин, используются для получения жестких вспененных полиолов с низкой молекулярной массой, которые обладают встроенной каталитической активностью благодаря присутствию атомов азота в основной цепи.
Особый класс полиэфирполиолов, поли(тетраметиленэфир)гликолей, которые получают путем полимеризации тетрагидрофурана, используются в высокоэффективных покрытиях, смачивателях и эластомерах.

Обычные полиэфирполиолы основаны на первичном сырье и производятся путем прямой полиэтерификации двухосновных кислот и гликолей высокой чистоты, таких как адипиновая кислота и 1,4-бутандиол.
Полиэфирполиолы обычно дороже и более вязкие, чем полиэфирполиолы, но из них получаются полиуретаны с лучшей стойкостью к растворителям, истиранию и порезам.
Другие полиэфирные полиолы производятся на основе вторичного сырья.

Они производятся путем переэтерификации (гликолиза) переработанных кубовых остатков дистилляции поли(этилентерефталата) (ПЭТФ) или диметилтерефталата (ДМТ) с гликолями, такими как диэтиленгликоль.
Эти ароматические полиэфирполиолы с низким молекулярным весом используются в жестких пенопластах и обеспечивают низкую стоимость и превосходные характеристики воспламеняемости для полиизоциануратных (PIR) плит и изоляции из напыляемой пены полиуретана-39.

Специальные полиолы включают поликарбонатные полиолы, поликапролактоновые полиолы, полибутадиеновые полиолы и полисульфидные полиолы.
Материалы используются в эластомерах, герметиках и клеях, где требуется превосходная устойчивость к атмосферным воздействиям и химическому воздействию и воздействию окружающей среды.

Полиолы натуральных масел, полученные из касторового масла и других растительных масел, используются для изготовления эластомеров, гибких булочек и гибкого формованного пеноматериала.

Сополимеризация хлортрифторэтилена или тетрафторэтилена с виниловыми эфирами, содержащими гидроксиалкилвиниловый эфир, дает фторированные (FEVE) полиолы.
Двухкомпонентный фторированный POLYURETHANE -39, полученный реакцией фторированных полиолов FEVE с полиизоцианатом, использовался для изготовления красок и покрытий, отверждаемых при комнатной температуре.

Поскольку фторированный POLYURETHANE -39 содержит высокий процент фтор-углеродных связей, которые являются самыми прочными среди всех химических связей, фторированные полиуретаны-39 проявляют устойчивость к УФ-излучению, кислотам, щелочам, солям, химическим веществам, растворителям, атмосферным воздействиям, коррозии, грибкам и микробная атака.

Они использовались для высокоэффективных покрытий и красок.

Доступны фосфорсодержащие полиолы, которые химически связываются с матрицей полиуретана-39 для использования в качестве антипиренов.

Биоматериалы:
Интерес к устойчивым «зеленым» продуктам вызвал интерес к полиолам, полученным из растительных масел.

Различные масла, используемые при приготовлении полиолов для полиуретанов, включают соевое масло, хлопковое масло, семена нима и касторовое масло.
Растительные масла различными способами функционализируют и модифицируют до полиэфирамидов, простых полиэфиров, алкидов и т.д.
Возобновляемые источники, используемые для получения полиолов, могут представлять собой димеры жирных кислот или жирные кислоты.

Некоторые полиуретаны на биологической основе и без изоцианатов используют реакцию между полиаминами и циклическими карбонатами для получения полигидроксиуретанов.

Удлинители цепи и сшивающие агенты:
Удлинители цепи (f = 2) и сшивающие агенты (f ≥ 3) представляют собой низкомолекулярные соединения с концевыми гидроксильными и аминными группами, которые играют важную роль в морфологии полимеров волокон полиуретана-39, эластомеров, клеев и некоторых интегральных оболочек и микропористых пен. .
Эластомерные свойства этих материалов обусловлены фазовым разделением жестких и мягких сегментов сополимера полимера, так что домены жесткого сегмента уретана служат в качестве поперечных связей между доменами мягкого сегмента аморфного полиэфира (или полиэфира).

Это фазовое разделение происходит из-за того, что в основном неполярные легкоплавкие мягкие сегменты несовместимы с полярными тугоплавкими твердыми сегментами.
Мягкие сегменты, которые образованы из полиолов с высокой молекулярной массой, подвижны и обычно присутствуют в свернутом виде, в то время как жесткие сегменты, которые образованы из изоцианата и удлинителей цепи, являются жесткими и неподвижными.
Поскольку твердые сегменты ковалентно связаны с мягкими сегментами, они препятствуют пластическому течению полимерных цепей, тем самым создавая упругость эластомера.

При механической деформации часть мягких сегментов напрягается за счет разматывания, а твердые сегменты выравниваются в направлении напряжения.
Эта переориентация твердых сегментов и, как следствие, мощное водородное связывание способствуют достижению высоких значений прочности на растяжение, удлинения и сопротивления разрыву.
Выбор удлинителя цепи также определяет характеристики изгиба, термостойкости и химической стойкости.

Наиболее важными удлинителями цепи являются этиленгликоль, 1,4-бутандиол (1,4-BDO или BDO), 1,6-гександиол, циклогександиметанол и бис(2-гидроксиэтиловый) эфир гидрохинона (HQEE).

Все эти гликоли образуют полиуретаны, которые хорошо разделяются на фазы и образуют четко определенные домены твердых сегментов, и перерабатываются в расплаве.
Все они подходят для термопластичных полиуретанов, за исключением этиленгликоля, поскольку его производный бис-фенилуретан подвергается неблагоприятному разложению при высоких уровнях жесткости сегментов.

Диэтаноламин и триэтаноламин используются в гибких пенопластах для повышения прочности и повышения каталитической активности.
Диэтилтолуолдиамин широко используется в RIM, а также в рецептурах полиуретана-39 и полимочевинных эластомеров.

Катализаторы на основе полиуретана-39 можно разделить на две широкие категории: основные и кислые амины.
Катализаторы на основе третичных аминов функционируют за счет повышения нуклеофильности диольного компонента.

Карбоксилаты, оксиды и оксиды меркаптидов алкилолова действуют как мягкие кислоты Льюиса, ускоряя образование полиуретана-39.
В качестве оснований традиционные аминовые катализаторы включают триэтилендиамин (TEDA, также называемый DABCO, 1,4-диазабицикло[2.2.2]октан), диметилциклогексиламин (DMCHA), диметилэтаноламин (DMEA) и бис-(2-диметиламиноэтил)эфир, вспенивающий катализатор также называется А-99.
Типичным кислотным катализатором Льюиса является дилаурат дибутилолова.
Этот процесс очень чувствителен к природе катализатора и также известен как автокаталитический.

Факторы, влияющие на выбор катализатора, включают уравновешивание трех реакций: образование уретана (полиол+изоцианат или гель), образование мочевины (вода+изоцианат или «выдувание») или реакцию тримеризации изоцианата (например, с использованием ацетата калия для образования изоциануратных колец). ).
Разработано множество специализированных катализаторов.

ПАВ:
Поверхностно-активные вещества используются для модификации характеристик как вспененных, так и непенных полимеров полиуретана-39.
Они имеют форму блок-сополимеров полидиметилсилоксана и полиоксиалкилена, силиконовых масел, этоксилатов нонилфенола и других органических соединений.

В пенопластах они используются для эмульгирования жидких компонентов, регулирования размера ячеек и стабилизации структуры ячеек для предотвращения коллапса и образования подповерхностных пустот.
В непенных применениях они используются в качестве деаэраторов и противовспенивателей, в качестве смачивающих агентов и используются для устранения поверхностных дефектов, таких как точечные отверстия, апельсиновая корка и утяжины.

ПРОИЗВОДСТВО ПОЛИУРЕТАНА-39:
Полиуретаны получают путем смешивания двух или более жидких потоков.
Поток полиолов содержит катализаторы, поверхностно-активные вещества, пенообразователи (при изготовлении пенополиуретана-39) и т.д.
Два компонента называются системой POLYURETHANE -39 или просто системой.

Изоцианат обычно называют в Северной Америке «стороной А» или просто «изо».
Смесь полиолов и других добавок обычно называют «стороной В» или «поли».
Эту смесь также можно назвать «смола» или «смесь смолы».

В Европе значения «сторона А» и «сторона Б» поменялись местами.

Добавки к смоляным смесям могут включать удлинители цепи, сшивающие агенты, поверхностно-активные вещества, антипирены, пенообразователи, пигменты и наполнители.
POLYURETHANE -39 может быть изготовлен с различной плотностью и твердостью путем изменения изоцианата, полиола или добавок.

Здоровье и безопасность:
Полностью прореагировавший полимер POLYURETHANE -39 химически инертен.
В США OSHA (Управление по безопасности и гигиене труда) или ACGIH (Американская конференция государственных специалистов по промышленной гигиене) не установили пределов воздействия.
Канцерогенность не регулируется OSHA.

Полиуретаны горючи.
При разложении в результате пожара могут образовываться значительные количества угарного газа и цианистого водорода, а также оксиды азота, изоцианаты и другие токсичные продукты.
Из-за горючести материала его приходится обрабатывать антипиренами (по крайней мере, в случае с мебелью), почти все из которых считаются вредными.


Позже Калифорния выпустила Технический бюллетень 117 2013, который позволил большинству пенополиуретанов-39 пройти испытания на воспламеняемость без использования антипиренов.
Институт политики зеленой науки заявляет: «Хотя новый стандарт может быть соблюден без антипиренов, он НЕ запрещает их использование.
Потребители, которые хотят уменьшить воздействие антипиренов на дом, могут искать на мебели бирку TB117-2013 и уточнять у розничных продавцов, что продукты не содержат антипирены».


Смеси жидких смол и изоцианаты могут содержать опасные или регулируемые компоненты.
Изоцианаты являются известными кожными и респираторными сенсибилизаторами.
Кроме того, амины, гликоли и фосфаты, присутствующие в пенополиуритановых пенополиуретанах-39, представляют опасность.

Воздействие химических веществ, которые могут выделяться во время или после нанесения пенополиуретана-39 (таких как изоцианаты), вредно для здоровья человека, поэтому во время и после этого процесса требуются особые меры предосторожности.

В Соединенных Штатах дополнительную информацию о здоровье и безопасности можно найти в таких организациях, как Ассоциация производителей полиуретанов (PMA) и Центр полиуретановой промышленности (CPI), а также у производителей систем полиуретана-39 и сырья.

Нормативная информация содержится в разделе 21 Свода федеральных правил (пищевые продукты и лекарства) и разделе 40 (защита окружающей среды).
В Европе информацию о здоровье и безопасности можно получить в ISOPA, Европейской ассоциации производителей диизоцианатов и полиолов.

Производство:
Методы производства готовых изделий из полиуретана-39 варьируются от небольших операций по отливке деталей вручную до крупных линий по производству бумажных и картонных изделий большого объема.

Независимо от конечного продукта принцип производства одинаков: отмерить жидкую смесь изоцианата и смолы в заданном стехиометрическом соотношении, смешать их вместе до получения однородной смеси, налить реагирующую жидкость в форму или на поверхность. , подождите, пока он затвердеет, затем извлеките готовую деталь.

Дозирующее оборудование:
Несмотря на то, что капитальные затраты могут быть высокими, желательно использовать смешивающее или дозирующее устройство даже для небольших производственных операций, требующих стабильного выпуска готовых деталей.
Дозирующее оборудование состоит из материалоемких (дневных) резервуаров, насосов-дозаторов, смесительной головки и блока управления.
Часто для контроля температуры материала добавляют блок кондиционирования или нагреватель-охладитель, чтобы повысить эффективность смеси, скорость отверждения и уменьшить изменчивость процесса.
Выбор компонентов дозирующего оборудования зависит от размера впрыска, пропускной способности, характеристик материала, таких как вязкость и содержание наполнителя, а также управления технологическим процессом.


Дневные резервуары для материала могут иметь размер от одного до сотен галлонов и могут поставляться непосредственно из бочек, IBC (промежуточных контейнеров для массовых грузов, таких как контейнеры) или резервуаров для хранения наливных грузов.
Они могут включать датчики уровня, кожухи кондиционирования и смесители.
Насосы могут иметь размеры от одного грамма в секунду до сотен фунтов в минуту.
Они могут быть ротационными, шестеренчатыми или поршневыми насосами или могут представлять собой фурменные насосы специальной закалки для дозирования жидкостей, содержащих высокоабразивные наполнители, такие как рубленое или молотковое сте��ловолокно и волластонит.

Насосы могут управлять системами дозирования низкого (от 10 до 30 бар, от 1 до 3 МПа) или высокого давления (от 125 до 250 бар, от 12,5 до 25,0 МПа).
Смесительные головки могут быть простыми статическими смесительными трубками, смесителями с вращающимся элементом, динамическими смесителями низкого давления или смесителями высокого давления с гидравлическим приводом прямого ударного действия.

Блоки управления могут иметь базовые переключатели включения/выключения и выдачи/остановки, а также аналоговые датчики давления и температуры, или могут управляться компьютером с расходомерами для электронной калибровки соотношения компонентов, цифровыми датчиками температуры и уровня и полным набором статистического контроля процесса. програмное обеспечение.
Дополнения к дозирующему оборудованию включают блоки зародышеобразования или ввода газа, а также возможность третьего или четвертого потока для добавления пигментов или дозирования дополнительных пакетов добавок.


Инструменты:
В отличие от заливки на месте, производства булочек и картона, а также нанесения покрытий, производство штучных деталей требует инструментов для удержания и формирования реагирующей жидкости.
Выбор материала для изготовления форм зависит от ожидаемого количества использований до конца срока службы (EOL), давления формования, гибкости и характеристик теплопередачи.

Силикон RTV используется для инструментов, у которых EOL составляет тысячи деталей.
Обычно он используется для формования деталей из жесткого пенопласта, где требуется способность растягивать и отделять форму вокруг поднутрений.
Характеристики теплопередачи инструментов из силикона RTV плохие.
Для этого также используются высокоэффективные гибкие эластомеры POLYURETHANE -39.


Эпоксидная смола, эпоксидная смола с металлическим наполнителем и эпоксидная смола с металлическим покрытием используются для изготовления инструментов, срок службы которых составляет десятки тысяч деталей.
Он обычно используется для формования гибких пенопластовых подушек и сидений, интегральной обшивки и набивки из микроячеистого пеноматериала, а также лицевых панелей RIM с малой тягой.
Характеристики теплопередачи инструментов из эпоксидной смолы удовлетворительные; Характеристики теплопередачи эпоксидной смолы с металлическим наполнителем и с металлическим покрытием хорошие.
Медная трубка может быть встроена в корпус инструмента, позволяя горячей воде циркулировать и нагревать поверхность формы.

Алюминий используется для изготовления инструментов, срок службы которых исчисляется сотнями тысяч деталей.
Обычно он используется для формования прокладок из микропористой пены и литых деталей из эластомера, а также для придания ему формы путем фрезерования или экструзии.

Зеркальная нержавеющая сталь используется для изготовления инструментов, придающих глянцевый вид готовой детали. Характеристики теплопередачи металлических инструментов превосходны.

Наконец, формованный или фрезерованный полипропилен используется для создания мелкосерийной оснастки для формованных прокладок.
Вместо многих дорогих металлических форм недорогие пластиковые инструменты могут быть изготовлены из одной металлической заготовки, что также обеспечивает большую гибкость конструкции.

Характеристики теплопередачи инструментов из полипропилена плохие, что необходимо учитывать в процессе рецептуры.

Приложения:
В 2007 г. мировое потребление сырья для производства полиуретана-39 превысило 12 млн метрических тонн, а среднегодовой темп роста составил около 5%.
Ожидается, что к 2022 году выручка от полиуретана на мировом рынке вырастет примерно до 75 миллиардов долларов США.

Деградация и экологическая судьба:
Эффекты видимого света:
POLYURETHANE -39, изготовленный из ароматического изоцианата, подвергшегося воздействию УФ-излучения.
Сразу бросается в глаза обесцвечивание, которое происходит со временем.

В Викиновостях есть новости по теме:
Заменитель пластика POLYURETHANE -39 может биоразлагаться в морской воде, считают ученые
Полиуретаны, особенно изготовленные с использованием ароматических изоцианатов, содержат хромофоры, взаимодействующие со светом.

Это представляет особый интерес в области покрытий из полиуретана-39, где светостойкость является критическим фактором и основной причиной использования алифатических изоцианатов при изготовлении покрытий из полиуретана-39. Когда пенополиуретан, изготовленный с использованием ароматических изоцианатов, подвергается воздействию видимого света, он обесцвечивается, меняя цвет с грязно-белого на желтый и красновато-коричневый.

Общепризнано, что кроме пожелтения видимый свет мало влияет на свойства пены.[48][49] Это особенно верно, если пожелтение происходит на внешних частях большого пеноматериала, поскольку ухудшение свойств на внешнем участке мало влияет на общие объемные свойства самого пенопласта.

Сообщалось, что воздействие видимого света может повлиять на изменчивость результатов испытаний некоторых физических свойств.

Высокоэнергетическое УФ-излучение способствует химическим реакциям в пене, некоторые из которых наносят ущерб структуре пены.

Гидролиз и биоразложение:
Полиуретаны могут разлагаться из-за гидролиза.
Это распространенная проблема с обувью, оставленной в шкафу и вступающей в реакцию с влагой в воздухе.

Считается, что микробная деградация полиуретана-39 обусловлена действием ферментов эстеразы, уретаназы, гидролазы и протеазы.
Процесс идет медленно, так как большинству микробов трудно выйти за пределы поверхности полимера. Восприимчивость к грибкам лучше благодаря высвобождению ими внеклеточных ферментов, которые в большей степени способны проникать в полимерный матрикс.
Два вида эквадорского грибка Pestalotiopsis способны биоразлагать POLYURETHANE -39 в аэробных и анаэробных условиях, например, на дне свалок.
Сообщалось о деградации предметов из полиуретана-39 в музеях.
Полиуретаны-39 полиэфирного типа легче разлагаются грибками, чем полиэфирные.













ИНФОРМАЦИЯ О БЕЗОПАСНОСТИ ПОЛИУРЕТАНА-39:

Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйти из опасной зоны:

При вдыхании:
При вдыхании вывести пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухой химикат или двуокись углерода.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры по случайному выбросу:
Индивидуальные меры предосторожности, защитное снаряжение и порядок действий в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные зоны.

Меры предосторожности в отношении окружающей среды:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Методы и материалы для локализации и очистки:
Впитать инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия для безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Контейнеры, которые открываются, должны быть тщательно запечатаны и храниться в вертикальном положении, чтобы предотвратить утечку.
Класс хранения (TRGS 510): 8A: Горючие, коррозионно-опасные материалы

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с ПДК на рабочем месте.
Средства контроля воздействия:
Соответствующие инженерные средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Маска для лица (минимум 8 дюймов).
Используйте средства защиты глаз, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Обращайтесь в перчатках.
Перчатки должны быть проверены перед использованием.
Используйте подходящую перчатку
метод удаления (не касаясь внешней поверхности перчатки), чтобы избежать контакта с кожей с этим продуктом.
Утилизируйте загрязненные перчатки после использования в соответствии с применимыми законами и передовой лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Заставка контакта
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Испытанный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует рассматривать как предложение одобрения для какого-либо конкретного сценария использования.

Защита тела:
Полный костюм, защищающий от химических веществ. Тип средств защиты необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Там, где оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевые респираторы с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва средств технического контроля.

Если респиратор является единственным средством защиты, используйте полнолицевой респиратор с подачей воздуха.
Используйте респираторы и компоненты, проверенные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия окружающей среды
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Следует избегать выброса в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при соблюдении рекомендуемых условий хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения, образующиеся в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы обработки отходов:
Продукт:
Предложите излишки и неперерабатываемые решения лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы утилизировать этот материал.
Загрязненная упаковка:
Утилизируйте как неиспользованный продукт.

POLYURETHANE-39
POLYVINYL ACETATE; N° CAS : 9003-20-7; Origine(s) : Synthétique; Nom INCI : POLYVINYL ACETATE. Nom chimique : Acetic acid ethenyl ester, homopolymer. Noms français : Acétate de polyvinyle; Polyacétate de vinyle; Polymère d'acétate de vinyle. Noms anglais : ACETIC ACID ETHENYL ESTER, HOMOPOLYMER; ACETIC ACID VINYL ESTER POLYMERS; ACETIC ACID VINYL ESTER, POLYMERS ACETIC ACID, VINYL ESTER, POLYMERS; POLY(VINYL ACETATE); Polyvinyl acetate; POLYVINYL ACETATE RESIN; VINYL ACETATE HOMOPOLYMER; VINYL ACETATE POLYMER; VINYL ACETATE RESIN. Utilisation et sources d'émission: Colle ou adhésif, fabrication de peinture latex. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles
POLYVEST OC 800 S
POLYVEST OC 800 S POLYVEST OC 800 S is a maleic anhydride adduct of polybutadiene. It is used as crosslinker component in 2-component adhesives and sealants. It possesses good electrical insulator and freezing temperatures resisting properties. POLYVEST OC 800 S provides an alternative to isocyanate crosslinking. Product Type Synthetic Rubbers > Polybutadienes Chemical Composition Polybutadiene Physical Form Liquid Colorant used for concrete protection, corrosion protection, floor coatings, industrial coatings, maintenance coatings, marine and container coatings, road marking systems, wood/furniture coatings, metal/furniture coatings and pigment concentrates. Product Type Color Pigments & Dyes Product Status AVAILABILITY NOT CONFIRMED * Applications/ Recommended for Coatings > UV / Radiation Curing Coatings Markets > Pigment concentrates Coatings Markets > Transportation > Road marking Coatings Markets > Wood & Furniture Coatings Coatings Markets > Metals Coatings Markets > Flooring Coatings Markets > General Industrial /Maintenance Coatings Markets > Marine /Anti-Corrosive / Protective > Concrete Notes: POLYVEST OC 800 S is a maleic anhydride adduct of a low molecular weight cis-1.4-polybutadiene. This polybutadiene adduct has succinic anhydride groups randomly distributed along the polymer chains. This makes the originally apolar polybutadiene more polar and thus accessible for various chemical reactions. POLYVEST OC 800 S is a good electrical insulator and can resist freezing temperatures. It is also soluble in aliphatics, aromatics, ethers and compatible with long-oil alkyd resins, rosin esters and zinc resinates. Available Properties Density, DIN 51 757 Iodine Absorption Number, DIN 53 241, g of Iod/ 100g Viscosity, DIN EN ISO 3219 Molecular Weight, Vapor Pressure Osmometry Molecular Weight, GPC Total Acid Number, DIN EN ISO 2114 Pour Point, DIN ISO 3016 Flash Point, DIN EN ISO 2719 Ignition Temperature, DIN 51 794 Gardner Color Number, DIN ISO 4630 POLYVEST OC 800 S is a maleic anhydride adduct of a low molecular weight cis-1.4-polybutadiene. This polybutadiene adduct has succinic anhydride groups randomly distributed along the polymer chains Product Type Resin > Polybutadienes Applications Polymers industry Chemical Composition Polybutadiene Advantages polar accessible for various chemical reactions good electrical insulator can resist freezing temperatures soluble in aliphatics, aromatics, ethers compatible with long-oil alkyd resins,rosin esters and zinc resinates Other Applications electrical insulator Appearance Properties Color <2.5 Gardner DIN ISO 4630 Physical Properties Molecular weight 2200 - 2600 g/mol GPC Pour point -25.0 ºC DIN ISO 3016 Molecular weight 1800 - 2400 g/mol Vapor Pressure Osmometry Viscosity 6000 - 9000 cP DIN EN ISO 3219@Temperature 20.0 °C Density 0.950 g/ml DIN 51 757@Temperature 20.0 °C Flash point 360 ºC DIN 51 794 Thermal Properties flash point 300 ºC DIN EN ISO 2719 Chemical Properties Iodine Value 380 - 420 g of Iod/ 100g; DIN 53 241 Acidity number 70 - 90 mg KOH/g DIN EN ISO 2114 POLYVEST OC 800 S is a maleic anhydride adduct of a low molecular weight cis-1.4-polybutadiene. This polybutadiene adduct has succinic anhydride groups randomly distributed along the polymer chains. This makes the originally apolar polybutadiene more polar and thus accessible for various chemical reactions. POLYVEST OC 800 S is a good electrical insulator and can resist freezing temperatures. It is also soluble in aliphatics, aromatics, ethers and compatible with long-oil alkyd resins,rosin esters and zinc resinates. POLYVEST® - non-functionalized liquid polybutadienes POLYVEST® MA - maleic anhydride-functionalized liquid polybutadienes POLYVEST® HT - hydroxyl-terminated liquid polybutadienes POLYVEST® ST - silane-terminated liquid polybutadienes Our non-functionalized products differ in molar mass and viscosity. The MA-functionalized products are adducts of linear polybutadiene and maleic anhydride and differ in maleic anhydride content and viscosity. The anhydride groups are randomly distributed along the polymer chains and thus make the originally apolar polybutadiene more polar and accessible for various chemical reactions. The hydroxyl-terminated product is an alpha-omega-terminated diol of polybutadiene manufactured by radical polymerisation process. In addition to the double bonds in the polymer backbone, the hydroxyl functional groups provide opportunities for precise chemical modifications. The silane-terminated products represent a new generation of functionalized liquid rubber additives. They combine the advantages of liquid rubbers and functional silanes. Their silane functionalities allow the surface modification of hydrophilic silica fillers and therefore improve the dispersibility of silica in rubber compounds. Due to its rubber-based nature POLYVEST® ST exhibits a natural fit and excellent compatibility to rubber matrix of tire compounds. POLYVEST® ST is available in three different grades with varying degree of silanization, which allows to optimize the silane/rubber ratio depending on the individual performance needs. YOUR BENEFITS The microstructure of our POLYVEST® grades makes them a highly reactive and cross-linking binder and provides them with properties including: - excellent chemical resistance - high water resistance - very good electrical insulation - very good cold-resistance - low moisture and oxygen permeability MARKETS & APPLICATIONS POLYVEST® grades are used in adhesives and sealants for: Automotive applications (e.g. tires, head lamps, sound damper, body & paint shop sealer) Coatings (e.g. air drying improver of vegetable oils, defoamers, impregnations, modifier in resin systems) Construction (e.g. insulated glass sealants, binder of dusty and dry quarz sand, binder for soil stabilization, modifier of silicone sealants) Electronics (e.g. electronical insulations and potting compounds) Plastics (e.g. cell opener for PU-foam, release agents for PU-foam) Polymer modification (e.g. chlorinated rubbers, electrocoatings) Printing & inks (e.g. offset printing inks, polymer printing plates) Rubber (e.g. binder for recycled rubber compounds, modifier in carbon black filled EPDM compounds, plasticizer in rubber compounds)
POLYVINYLCAPROLACTAM
SYNONYMS 1-Ethenyl-2-pyrrolidinone homopolymer;1-Ethenyl-2-pyrrolidone polymer;1-Vinyl-2-pyrrolidinone polymer;1-Vinyl-2-pyrrolidone homopolymer;1-Vinyl-2-pyrrolidone polymer;2-Pyrrolidinone, 1-etheny-, homopolymer;2-Pyrrolidinone, 1-ethenyl-, homopolymer;2-Pyrrolidinone, 1-ethenyl-, polymer with aluminum oxide (Al2O3) and silica, graft;2-Pyrrolidinone, 1-ethenyl-, polymer with silica, graft;2-Pyrrolidinone, 1-vinyl-, polymers;2-pyrrolidinone,1-ethenyl-,homopolymer;2-Pyrrolidione,1-ethenyl-,homopolymer CAS NO:9003-39-8
POLYVINYLPYRROLIDONE
Povidone is a hygroscopicpolymer ,supplied in white or creamy white powder or flakes,ranging from low tohigh viscosity & low to high molecular weight,which characterized by KValue.It’s easily soluble in water and many other organic solvents,withexcellent hygroscopisty,film-forming,adhesive,chemical stability andtoxicological safeness characters. Applications:Povidone is one of the most important excipientin the worldwide for pharmaceutical industry,whatever for human health careproducts and animal health care products.It’s more and more used as: 1)Binderfor tables,capsule, 2)Sugar coatings and films, 3)Thickening agent, 4)SolubilityImprover for poorly soluble drugs, 5)Bioavailability Enhancer for drug’s activeingredients, 6)Pore-forming for membrane products. PVP was used as a plasma volume expander for trauma victims after the 1950s. It is not preferred as volume expander due to its ability to provoke histamine release and also interfere with blood grouping. It is used as a binder in many pharmaceutical tablets;it simply passes through the body when taken orally. (However, autopsies have found that crospovidone (PVPP) contributes to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption.The long-term effects of crospovidone or povidone within the lung are unknown). PVP added to iodine forms a complex called povidone-iodine that possesses disinfectant properties.This complex is used in various products like solutions, ointment, pessaries, liquid soaps and surgical scrubs. It is known under the trade names Pyodine and Betadine, among a plethora of others. It is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone iodine is equally effective and safe as talc, and may be preferred because of easy availability and low cost. PVP is used in some contact lenses and their packaging solutions. It reduces friction, thus acting as a lubricant, or wetting agent, built into the lens. Examples of this use include Bausch & Lomb's Ultra contact lenses with MoistureSeal Technology and Air Optix contact lens packaging solution (as an ingredient called "copolymer 845"). PVP is used as a lubricant in some eye drops, e.g. Bausch & Lomb's Soothe.Technical PVP is also used in many technical applications: as an adhesive in glue stick and hot-melt adhesives[citation needed] as a special additive for batteries, ceramics, fiberglass, inks, and inkjet paper, and in the chemical-mechanical planarization process as an emulsifier and disintegrant for solution polymerization to increase resolution in photoresists for cathode ray tubes (CRT) in aqueous metal quenching for production of membranes, such as dialysis and water purification filters as a binder and complexation agent in agricultural applications such as crop protection, seed treatment and coating as a thickening agent in tooth whitening gels as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation as an additive to Doro's RNA extraction buffer[citation needed] as a liquid-phase dispersion enhancing agent in DOSY NMR as a surfactant, reducing agent, shape controlling agent and dispersant in nanoparticle synthesis and their self-assembly as a stabilizing agent in all inorganic solar cells Other uses PVP binds to polar molecules exceptionally well, owing to its polarity. This has led to its application in coatings for photo-quality ink-jet papers and transparencies, as well as in inks for inkjet printers. PVP is also used in personal care products, such as shampoos and toothpastes, in paints, and adhesives that must be moistened, such as old-style postage stamps and envelopes. It has also been used in contact lens solutions and in steel-quenching solutions.PVP is the basis of the early formulas for hair sprays and hair gels, and still continues to be a component of some. As a food additive, PVP is a stabilizer and has E number E1201. PVPP (crospovidone) is E1202. It is also used in the wine industry as a fining agent for white wine and some beers. In molecular biology, PVP can be used as a blocking agent during Southern blot analysis as a component of Denhardt's buffer. It is also exceptionally good at absorbing polyphenols during DNA purification. Polyphenols are common in many plant tissues and can deactivate proteins if not removed and therefore inhibit many downstream reactions like PCR. In microscopy, PVP is useful for making an aqueous mounting medium. PVP can be used to screen for phenolic properties, as referenced in a 2000 study on the effect of plant extracts on insulin production. Safety The U.S. Food and Drug Administration (FDA) has approved this chemical for many uses,and it is generally considered safe. However, there have been documented cases of allergic reactions to PVP/povidone, particularly regarding subcutaneous (applied under the skin) use and situations where the PVP has come in contact with autologous serum (internal blood fluids) and mucous membranes. For example, a boy having an anaphylactic response after application of PVP-Iodine for treatment of impetigo was found to be allergic to the PVP component of the solution. A woman, who had previously experienced urticaria (hives) from various hair products, later found to contain PVP, had an anaphylactic response after povidone-iodine solution was applied internally. She was found to be allergic to PVP.In another case, a man experiencing anaphylaxis after taking acetaminophen tablets orally was found to be allergic to PVP. Povidone is commonly used in conjunction with other chemicals. Some of these, such as iodine, are blamed for allergic responses, although testing results in some patients show no signs of allergy to the suspect chemical. Allergies attributed to these other chemicals may possibly be caused by the PVP instead. Properties PVP is soluble in water and other polar solvents. For example, it is soluble in various alcohols, such as methanol and ethanol,as well as in more exotic solvents like the deep eutectic solvent formed by choline chloride and urea (Relin).When dry it is a light flaky hygroscopic powder, readily absorbing up to 40% of its weight in atmospheric water. In solution, it has excellent wetting properties and readily forms films. This makes it good as a coating or an additive to coatings. A 2014 study found fluorescent properties of PVP and its oxidized hydrolyzate. History PVP was first synthesized by Walter Reppe and a patent was filed in 1939 for one of the derivatives of acetylene chemistry. PVP was initially used as a blood plasma substitute and later in a wide variety of applications in medicine, pharmacy, cosmetics and industrial production. PVP has biocompatibility, low toxicity, adhesive characteristics, complexing stability, relatively inert behavior, and is resistant to thermal degradation. It is readily prepared by the polymerization of N-vinyl-2-pyrrolidone or by Reppe synthesis technique.PVP is used as a carrying polymer for electrospinning continuous titania nanofibers and zirconium tungstate ultra thin fibers. PVP may be used as one of the constituents in the synthesis of silver nanocubes. It serves as a reducing agent and colloidal stabilizer in the synthesis of palladium nanobars,triangular and nanoplates.It may also used as a capping agent in the synthesis of silver nanospheres,gold nanoframes.General applications pf PVP are: in pharmaceutical, food, beverage, cosmetic, toiletry and photographic industries.Polyvinylpyrrolidone is a component of Denhardt′s Solution and is included at a concentration of 1% (w/v) in the standard 50X stock solution.PVP or povidone is a hygroscopic, amorphous, synthetic polymer consisting of linear 1-vinyl-2-pyrrolidinone groups. As a binder, PVP is used in the concentration range of 0.5%–5% w/w. Different degrees of polymerization of PVP resulted in polymers of various molecular weights. It is generally characterized by its viscosity in aqueous solution relative to that of water and expressed as a K value in the range of 10–120. Povidones with K-values ≤ 30 are manufactured by spray drying as spheres, whereas povidones with higher K-values are manufactured by drum drying as plates (Chakraborty, Ghosh, & Chakraborty, 2015). Wet granulation with povidone K25/30/90 generally gives harder granules with better flow properties than with other binders with lower friability and higher binding strength. Moreover, povidone also promotes the dissolution of APIs. For example, the drug release was faster in paracetamol tablets with 4% povidone K90 compared to tablets with gelatin or hydroxypropyl methylcellulose (HPMC) as binder (Jun, Kim, & Kim, 1989). It has been shown that PVP was more efficient than HPMC owing to the lower work of cohesion and adhesion of HPMC. It could be further attributed to the better adhesion of PVP, especially to hydrophilic surfaces. Using PVP solution as granulating agent, it was observed that the addition of MCC as an insoluble excipient to a lactose-based formulation led to increase in solvent requirement and produced larger granules.Polyvinylpyrrolidone (PVP), commonly called polyvidone or povidone, is a water-soluble polymer made from the monomer N-vinylpyrrolidone [87,88]. Dry PVP is a light flaky hygroscopic powder and readily absorbs up to 40% of water by its weight. In solution, it has excellent wetting properties and readily forms films, which makes it good as a coating or an additive to coatings.The PVP was used as a blood plasma expander for trauma victims. It is used as a binder in many pharmaceutical tablets and it simply passes through the body when it is administered orally [89]. However, autopsies have found that crospovidone does contribute to pulmonary vascular injury in substance abusers who have injected pharmaceutical tablets intended for oral consumption [90]. PVP added to iodine forms a complex called povidone-iodine that possesses disinfectant properties. This complex is used in various products like solutions, ointment, pessaries, liquid soaps, and surgical scrubs. It is known under the trade name Betadine and Pyodine. It is used in pleurodesis (fusion of the pleura because of incessant pleural effusions). For this purpose, povidone-iodine is equally effective and safe as talc and may be preferred because of easy availability and low cost [91]. It is used as an aid for increasing the solubility of drugs in liquid and semiliquid dosage forms (syrups and soft gelatin capsules) and as an inhibitor of recrystallization.The protein of interest is excised from the transfer membrane and treated with polyvinylpyrrolidone to block binding of the enzyme to the membrane. After cutting the blot into small pieces, digestion buffer containing trypsin is added and the incubation is carried out at 37°C. The addition of calcium ions to the digestion buffer is critical to suppress trypsin autolysis. The use of phosphate buffers is avoided as phosphate catalyzes the formation of pyroglutamic acid from any N-terminal glutamines leading to blocked fragments (8). The concentration of trypsin is kept high by minimizing the reaction volume. We use 1 µ g of trypsin in a total digestion volume of 30 µl. At lower enzyme concentrations the reaction may not go to completion; at higher enzyme levels, extraneous autolysis products may develop. The amounts of each fragment released into the digestion buffer can vary. Small hydrophilic peptides are more likely to be released than larger, hydrophobic ones. Experiments with known amounts of protein bound to transfer membranes indicate that approximately 30% of the expected amount can be recovered in the supernatant. Because the area of membrane should be minimized, it is desirable to start with a sharp protein band (>100 pmol/cm2).First nanoparticle therapeutics can be tracked back to 1950s when Jatzkewitz and colleagues synthesized a polyvinylpyrrolidone–mescalin conjugate which had a significantly extended half-life in the blood circulation.Immediate allergic reactions to povidone–iodine are rare and often overlooked, as it is difficult to diagnose. Polyvinylpyrrolidone is thought to play a mechanistic role. The usefulness of the histamine release test for diagnosing polyvinylpyrrolidone allergy has been studied in a single case . PVP polymers are available in several viscosity grades, ranging from low to high molecular weight. This range, coupled with solubility in aqueous and organic solvent systems combined with its nontoxic character, are some of the properties that gives PVP polymers great flexibility across multiple applications. The industrial applications of PVP polymers include, for example, in adhesives to improve strength and toughness; in paper manufacture to increase strength and as a coating resin; and in synthetic fibers to improve dye receptivity. PVP polymers are also widely employed in inks, imaging, lithography, detergents and soaps, the textile, ceramic, electrical and metallurgical industries and as a polymerization additive.PVP polymers are supplied in various viscosity grades as a powder and/or aqueous solution. The full line of PVP polymers are also available for personal care applications such as film forming, emulsion stabilization and colorant dispersion.also offers pharmaceutical and agriculture grades of PVP polymer; our Plasdone™ and Polyplasdone™ polymer products are used in the pharmaceutical industry, Agrimer™ polymers are used by the Agriculture industry.There have been many studies that have been devoted to the determination of the molecular weight of PVP polymer. The low molecular weight polymers have narrower distribution curves of molecular entities than the high molecular weight compounds. Some of the techniques for measuring the molecular weight of various PVP polymer products are based on measuring sedimentation, light scattering, osmometry, NMR spectroscopy, ebullimometry, and size exclusion chromatography for determining absolute molecular weight distribution. By the use of these methods, any one of three molecular weight parameters can be measured, namely the number average (Mn), viscosity average (Mv), and weight average (Mw). Each of these characteristics can yield a different answer for the same polymer as illustrated by using these measurement techniques in the analysis of the same PVP K-30 polymer sample. The following results are reported: Number average (Mn) – 10,000 Viscosity average (Mv) – 40,000 Weight average (Mw) – 55,000 Therefore, in any review of the literature, one must know which molecular average is cited. Conventionally, molecular weights are expressed by their “K-values,” which are derived from relative viscosity measurements.The K-value accepted for PVP polymer by pharmacopoeias and other authoritative bodies worldwide is measured by the viscosity technique and calculated by the use of Fikentscher’s equation. In an aqueous solution PVP K-15 and PVP K-30 polymer, particularly in concentrations below 10%, have little effect on viscosity, whereas K-60 and K-90 considerably influence flow propertiesPVP polymer solution viscosity does not change appreciably over a wide pH range, but increases in concentrated HCI. Strong caustic solutions precipitate the polymer, but this precipitate solution redissolves on dilution with waterThe densities of PVP polymer water solutions are only slightly changed despite a significant increase in the concentration of PVP K-30 polymerThe effect of temperature and concentration on viscosity is shown in Figures 2 and 3 for PVP K-30 and K-90 polymer respectively. Any possible effect of high temperatures and concentrations on finished formulations should be determined experimentally.PVP polymer is readily soluble in cold water and the concentration is limited only by viscosity. It is possible to prepare free-flowing solutions of PVP K-30 polymer in concentrations up to 60% with only moderate effect on density. PVP K-60 and K-90 polymer are available commercially as 45 and 20 percent aqueous solutions, respectively. Roughly 0.5 mol water per monomer unit is associated with the polymer molecule in solution. This is of the same order of magnitude as the hydration for various proteins reported in the literature. PVP K-30 polymer is also freely soluble in many organic solvents, including alcohols, some chlorinated compounds such as chloroform, methylene chloride and ethylene dichloride,nitroparaffins, and amines. It is essentially insoluble in hydrocarbons, ethers, some chlorinated hydrocarbons, ketones and esters. Dilute solutions of PVP polymer in hydrocarbons may be prepared by the use of a cosolvent, e.g., butanol, N-methyl-2-pyrrolidone, or nonylphenol. Clear 3-5% PVP polymer solutions in aliphatic hydrocarbons may be readily prepared by adding the hydrocarbon to a butyl alcohol solution of the polymer. In oil-based products, solubilization in an alkylphenol, e.g., cetyl- or nonylphenol, is useful. The alkylphenol is first heated to about 100°C and the PVP polymer added slowly with stirring. Then the temperature may be raised to approximately 200°C to accelerate solution.Dried unmodified films of PVP polymer are clear, transparent, Glossy, and hard. Appearance does not vary when films are cast from different solvent systems, such as water, ethanol, chloroform, or ethylene dichloride. Compatible plasticizers may be added without affecting clarity or luster of the film. Moisture taken up from the air by PVP polymer can also act as a plasticizer. Among the several commercial modifiers that may be used in concentrations of 10-50% (based on PVP polymer) to control tack and/or brittleness or to decrease hygroscopicity are: carboxymethylcellulose cellulose acetate cellulose acetate propionate dibutyl tartrate diethylene glycol dimethyl phthalate 2-ethylhexanediol-1, 3 glycerin glycerylmonoricinoleate lgepal C0-430 (Solvay) oleyl alcohol Resoflex R-363 (Broadview Technologies) shellac sorbitol Carboxymethylcellulose, cellulose acetate, cellulose acetate propionate, and shellac effectively decrease tackiness. Dimethyl phthalate is less effective, whereas glycerin, diethylene glycol, and sorbitol increase tackiness. Films essentially tack-free over all ranges of relative humidity may be obtained with 10% arylsulfonamide-formaldehyde resin. In comparative tests for plasticity at 33% relative humidity, PVP polymer films containing 10% diethylene glycol show an “elongation at break” twice that of PVP polymer films containing 10% glycerin, polyethylene glycol 400, sorbitol, or urea, and four times that of PVP polymer films containing 10% ethylene glycol, dimethyl phthalate. At 70% relative humidity, 25% sorbitol and 25% dimethylphthalate may be used successfully.PVP polymer shows a high degree of compatibility, both in solution and film form, with most inorganic salt solutions and with many natural and synthetic resins, as well as with other chemicals (Table VIII). At 25°C the addition of 100 ml of a 10% solution of any of the following salts to 10% PVP K-30 polymer aqueous solution (i.e., 10 parts of the test salt to 1 part of PVP polymer) does not change the appearance of the solution: aluminum potassium sulfate aluminum sulfate ammonium chloride ammonium sulfate barium chloride calcium chloride chromium sulfate copper sulfate ferric chloride magnesium chloride mercuric acetate nickel nitrate lead acetate potassium chloride potassium sulfate potassium dichromate sodium bicarbonate** sodium chloride sodium nitrate sodium phosphate (primary) sodium pyrophosphate sodium sulfate sodium sulfite sodium thiosulfate silver nitrate zinc sulfate **200 ml if a 5% solution Small amounts of PVP polymer effectively stabilize emulsions, dispersions, and suspensions. Even lyophobic colloids, which exist without significant affinity for the medium, can be protected by PVP polymer. The polymer is adsorbed in a thin molecular layer on the surface of the individual colloidal particles to prevent contact and overcome any tendency to form a continuous solid phase. The best viscosity grade to use depends on the application. In some cases, the lower molecular weight polymers, PVP K-15 polymer or PVP K-30 polymer, are more efficient than high molecular weight material. For example, PVP K-15 polymer is particularly effective as a dispersant for carbon black and lowbulk density solids in aqueous media. It is used in detergent formulations to prevent soil redeposition on synthetic fibers and as a protective colloid for certain pigments. In viscous systems, on the other hand, PVP K-90 polymer is most suitable, e.g., as a dispersant for titanium dioxide or organic pigments and latex polymers in emulsion paints. PVP K-90 polymer is preferred as the protective colloid in the suspension polymerization of styrene to generate the desired particle size.PVP polymers form molecular adducts with many other substances. This can result in a solubilizing action in some cases or in precipitation in others. PVP polymer crosslinks with polyacids like polyacrylic or tannic acid to form complexes which are insoluble in water or alcohol but dissolve in dilute alkali. Gantrez™ AN methyl vinyl ether/maleic anhydride copolymer, will also insolubilize PVP polymer when aqueous solutions of polymers are mixed in approximately equal parts at low pH. An increase in pH will solubilize the complex. Ammonium persulfate will gel PVP polymer in 30 minutes at about 90°C. These gels are not thermoreversible and are substantially insoluble in large amounts of water or salt solution. PVP polymer powder can be stored under ordinary conditions without undergoing decomposition or degradation. However, since the powder is hygroscopic, suitable precautions should be taken to prevent excessive moisture pickup. Bulk polymer is supplied in tied polyethylene bags enclosed in fiber packs. When not in use, the polyethylene bag should be kept closed at all times in the covered container. On PVP polymer films, moisture acts as a plasticizer. These films are otherwise chemically stable. The equilibrium water content of PVP polymer solid or films varies in a linear fashion with relative humidity and is equal toapproximately one-third the relative humidity. Samples of dried, powdered PVP polymer, subjected to 20, 52, and 80 percent relative humidity until equilibrium is reached, show a 10, 19, and 31 percent moisture weight gain, respectively. Exposure to extreme elevated temperatures should be avoided, though PVP polymer powder is quite stable when heated. Some darkening in color and decreased water solubility are evident on heating in air at 150°C. However, PVP polymer appears to be quite stable when heated repeatedly at 110-130°C for relatively short intervals. Aqueous PVP polymer is stable for extended periods if protected from molds. However, appropriate tests should be made with finished products containing PVP polymer before deciding on a preservative. Steam sterilization (15 lb. pressure for 15 min.) can also be used and this treatment does not appear to change the properties of the solutions. The PVP polymer has no buffering power, and substantial changes in the pH of solutions are observed upon addition of small amounts of acids or bases. For example, the pH of 100 ml of 3.5% PVP K-30 polymer solution is raised from pH 4 to pH 7 by the addition of 1-2 ml 0.1 N sodium hydroxide.Polyvinylpyrrolidone is widely used in a broad variety of industries. This is due to its unique physical and chemical properties, particularly because of its good solubility in both water and many organic solvents, its chemical stability, its affinity to complex both hydrophobic and hydrophilic substances and its nontoxic character. Several hundreds of papers have been published describing the advantages of using PVP polymer in formulas for the following product areas. Polyvinylpyrrolidone, also known as povidone or PVP, is used in the pharmaceutical industry as a synthetic polymer vehicle for dispersing and suspending drugs. It has multiple uses, including as a binder for tablets and capsules, a film former for ophthalmic solutions, to aid in flavoring liquids and chewable tablets, and as an adhesive for transdermal systems. Povidone has the molecular formula of (C6H9NO)n and appears as a white to slightly off-white powder. Povidone formulations are widely used in the pharmaceutical industry due to their ability to dissolve in both water and oil solvents. The k number refers to the mean molecular weight of the povidone. Povidones with higher K-values (i.e., k90) are not usually given by injection due to their high molecular weights. The higher molecular weights prevent excretion by the kidneys and lead to accumulation in the body. The best-known example of povidone formulations is povidone-iodine, an important disinfectant. PVP-Polyvinylpyrrolidone is a nonionic water-soluble polymer and can be applied in a variety of fields-of-use owing to following advantageous characteristics. Good solubility in water as well as various organic solvents Good affinity to various polymers and resins High hygroscopicity Good film formation property Good adhesiveness to various substrates Good chelate / complex formation property Polyvinylpyrrolidone is used as an emulsifier and disintegrant for solution polymerization; also for production of membranes, such as dialysis and water purification filters; as an aid for increasing the solubility of drugs in liquid and semi-liquid dosage forms (syrups, soft gelatine capsules) and as an inhibitor of recrystallisation. Complexes with phenolics and alkaloids for their removal from plant samples, thus preventing their modification of proteins and any interference they may cause in spectrophotometric determinations of protein content. This is also reported to improve stability of enzymes. PVP (polyvinylpyrrolidone) is a large polymer that associates with the particle surface through Van der Waals forces and metal ligand charge transfer. The 40 kDa PVP molecule is not easily displaced by other molecules and offers excellent steric stability. It’s a great choice for particles that may be exposed to a broad range of salt, pH, and solvent conditions. PVP is made from the monomer n-vinylpyrrolidone. At nanoComposix we typically use a 40 kDa version that helps prevent particles from directly contacting and aggregating when solution conditions change or when the particles are dried down onto a substrate or thin film. Polyvinylpyrrolidone is found in a lot of places where you wouldn't expect to find polymers. What kind places? For example, polyvinylpyrrolidone was the main ingredient in the first really successful hairsprays in the early 1950s. That's right, the eventual giant beehive hairdos that followed in the sixties owed their existence to polyvinylpyrrolidone. This polymer worked as a hairspray because it was soluble in water. This meant it could be rinsed out when you wash your hair. But its affinity for water gave it a drawback. Polyvinylpyrrolidone tended to adsorb water out of the air, giving hair that tacky look that was so common in the sixties. This was fixed with the help of another polymer, a silicone called polydimethylsiloxane. To understand how this silicone made a better hairspray, it helps to understand how the hairspray works in the first place. When you spray it on, the polyvinylpyrrolidone forms a thin coating on the hair. This coating is stiff and keeps the hair from moving around. Polyvinylpyrrolidone (PVP) is a water-soluble polymer obtained by polymerization of monomer N-vinylpyrrolidone. PVP is an inert, non-toxic, temperature-resistant, pH-stable, biocompatible, biodegradable polymer that helps to encapsulate and cater both hydrophilic and lipophilic drugs. These advantages enable PVP a versatile excipient in the formulation development of broad conventional to novel controlled delivery systems. PVP has tunable properties and can be used as a brace component for gene delivery, orthopedic implants, and tissue engineering applications. Based on different molecular weights and modified forms, PVP can lead to exceptional beneficial features with varying chemical properties. Graft copolymerization and other techniques assist PVP to conjugate with poorly soluble drugs that can inflate bioavailability and even introduces the desired swelling tract for their control or sustained release. The present review provides chemistry, mechanical, physicochemical properties, evaluation parameters, dewy preparation methods of PVP derivatives intended for designing conventional to controlled systems for drug, gene, and cosmetic delivery. The past and growing interest in PVP establishes it as a promising polymer to enhance the trait and performance of current generation pharmaceutical dosage forms. Furthermore, the scrutiny explores existing patents, marketed products, new and futuristic approaches of PVP that have been identified and scope for future development, characterization, and its use. The exploration spotlights the importance and role of PVP in the design of Povidone-iodine (PVP–I) and clinical trials to assess therapeutic efficacy against the COVID-19 in the current pandemic scenario.
Polyvinyl alcohol
PVOH; Ethenol, homopolymer; PVA; Polyviol; Vinol; Alvyl; Alkotex; Covol; Gelvatol; Lemol; polyvinyl alcohol CAS NO: 9002-89-5
Polyvinyl Pyrrolidone
PVP; Kollidon K25; Kollidon K-90; Povidone; Poly[1-(2-oxo-1-pyrrolidinyl)ethylen]; 1-Ethenyl-2-pyrrolidon homopolymer; 1-Vinyl-2-pyrrolidinon-Polymere; 1-ethenylpyrrolidin-2-one; Crospovidone CAS NO:9003-39-8
Polyvinylpyrrolidone
1-éthénylpyrrolidin-2-one; N-vinyl-2-pyrrolidone homopolymérisée; poly(n-vinylbutyrolactame); polyvidone; polyvinylpyrolidone; povidone; PVP; polyvinylpyrrolidone; Povidone; PVP, N° CAS : 9003-39-8 - Polyvinylpyrrolidone. Origine(s) : Synthétique. Nom INCI : PVP. Nom chimique : 2-Pyrrolidinone, 1-ethenyl-, homopolymer. Additif alimentaire : E1201. Classification : Polymère de synthèse , La polyvinylpyrrolidone (PVP), appelée aussi polyvidone ou povidone, est un polymère organique synthétisé par polymérisation de la N-vinylpyrrolidone.; La PVP ou polyvinylpyrrolidone est un polymère hydrosoluble. Elle est très polyvalente en cosmétique et peut être utilisée en tant que liant, filmogène, stabilisateur d'émulsion, agent de suspension ou fixateur capillaire. Elle est principalement employée dans des produits tels que les mascara, l'eye-liner, les produits capillaires ainsi que les shampooings. Elle est interdite en bio.. Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Agent de fixation capillaire : Permet de contrôler le style du cheveu. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : 1-ETHENYL-2-PYRROLIDONE POLYMER; 1-ETHENYL-2-PYRROLIDONE POLYMERS; 2-PYPROLIDINONE, 1-VINYL-, POLYMERS; 2-PYRROLIDINONE, 1-ETHENYL-, HOMOPOLYMER; 2-PYRROLIDONE, 1-ETHENYL-, HOMOPOLYMER; 2-PYRROLIDONE, 1-VINYL, POLYMERS; N-VINYLPYRROLIDINONE POLYMER; N-VINYLPYRROLIDONE POLYMER; POLY(1-(2-OXO-1-PYRROLIDINYL)ETHYLENE); POLY(1-VINYL-2-PYRROLIDINONE); POLY(1-VINYL-2-PYRROLIDONE); POLY(1-VINYLPYRROLIDINONE); POLY(N-VINYL PYRROLIDINONE-2); POLY(N-VINYL PYRROLIDONE-2); Poly(n-vinylbutyrolactame); POLY(N-VINYLPYRROLIDINONE); POLY(VINYL-1 PYRROLIDINONE-2); POLY(VINYL-1 PYRROLIDONE-2); POLY(VINYLPYRROLIDONE); POLY-1-(2-OXO-1-PYRROLIDINYL)ETHYLENE; Polyvinylpyrrolidone; VINYLPYRROLIDINONE POLYMER; VINYLPYRROLIDONE POLYMER. Noms anglais : N-VINYLBUTYROLACTAM POLYMER; Polyvinyl pyrrolidone; Polyvinylpyrrolidone; POVIDONE; Providone. Utilisation et sources d'émission: Agent dispersant, fabrication de produits pharmaceutiques ; 2-Pyrrolidinone, 1-ethenyl-, homopolymer; polyvinylpyrrolidone; Povidone; PVP; E1201 est listé comme raffermissant, stabilisant et agent de dispersion, le codex Alimentarius l'attribue à certains spiritueux (bières comprises), vinaigres, concentrés pour boissons aromatisées, édulcorants de table (jusque 3 000 mg/kg), chewing-gums (jusque 10 000 mg/kg), compléments alimentaires (sans limite (BPF)) et fruits frais traités en surface. L'industrie répertorie également la polyvinylpyrrolidone dans les cosmétiques (fixateur capillaire, liant, antistatique, émulsifiant, etc.), et certains produits pharmaceutiques. Comme telle, elle est utilisée dans les plasmas sanguins ou comme adjuvant en raison de sa solubilité dans l'eau et les solvants polaires5. Son aptitude à former des films est remarquable. Les domaines d'application sont vastes et vont des produits d'hygiène (shampoing, dentifrice…) au papier pour imprimantes photo et peintures
Polyvinylpyrrolidone-PVP K 30
1-ethenylpyrrolidin-2-one; PVP, Povidone; PVPP, Crospovidone, Polyvidone; PNVP; Poly[1-(2-oxo-1-pyrrolidinyl)ethylen]; 1-Ethenyl-2-pyrrolidon homopolymer; 1-Vinyl-2-pyrrolidinon-Polymere; Polyvinylpyrrolidone Standard (Mw 3500 K12); Polyvinylpyrrolidone Standard (Mw 8.000 K16-18); Polyvinylpyrrolidone Standard (Mw 10.000 K13-18); Polyvinylpyrrolidone Standard (Mw 24.000 K23-27); Polyvinylpyrrolidone Standard (Mw 30.000); Polyvinylpyrrolidone Standard (Mw 40.000 K-30); Polyvinylpyrrolidone (K15) BioChemica; Povidone (PVP) CAS NO:9003-39-8
Ponceau 4R
E124 AKA102 Red 18 l-rot4 1578red c.i.185 COCCINE CI 16255 sxpurple purplesx AcidredR foodred6 foodred7 Food Red coccinred crimsonsx purplered neucoccin newcoccin ponceau4re ponceau4rf ponceau4rt CI NO 6255 PONCEAU 4R SCARLET 3R PONCEAU 4RC NEW COCCINE ciacidred18 hdponceau4r CI NO 16255 ACID RED 18 New CarMine Schultz 213 PONCEAURED4R CAS Number 2611-82-7
PORTAKAL AROMASI
orange flavor ; orange (honeybell type) flavor; natural orange cloud flavor; natural & artificial orange cloud flavor; natural “golden” orange cloud flavor; orange flavor for confectionery; orange flavor for pharmaceuticals; orange flavor organic
Portakal Ekstraktı
Citrus Sinensis Peel Extract; extract obtained from the fresh epicarps of the sweet orange valencia, citrus sinensis (syn: citrus aurantium dulcis), rutaceae; orange peel extract; orange peel sweet extract cas no:97766-30-8
Portakal Kabuk Ekstraktı
Citrus Sinensis Peel Extract; extract obtained from the fresh epicarps of the sweet orange valencia, citrus sinensis (syn: citrus aurantium dulcis), rutaceae; orange peel extract; orange peel sweet extract cas no:97766-30-8
POTASSIUM ASCORBATE
Potassium Ascorbate IUPAC Name (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2H-furan-5-one Potassium Ascorbate InChI 1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5+/m0/s1 Potassium Ascorbate InChI Key CIWBSHSKHKDKBQ-JLAZNSOCSA-N Potassium Ascorbate Canonical SMILES C(C(C1C(=C(C(=O)O1)O)O)O)O Potassium Ascorbate Isomeric SMILES C([C@@H]([C@@H]1C(=C(C(=O)O1)O)O)O)O Potassium Ascorbate Molecular Formula C6H8O6 Potassium Ascorbate CAS 50-81-7 Potassium Ascorbate Related CAS 134-03-2 (monosodium salt) Potassium Ascorbate Deprecated CAS 129940-97-2, 14536-17-5 Potassium Ascorbate European Community (EC) Number 200-066-2 Potassium Ascorbate ICSC Number 0379 Potassium Ascorbate RTECS Number CI7650000 Potassium Ascorbate UNII PQ6CK8PD0R Potassium Ascorbate FEMA Number 2109 Potassium Ascorbate DSSTox Substance ID DTXSID5020106 Potassium Ascorbate Physical Description DryPowder Potassium Ascorbate Color/Form Crystals (usually plates, sometimes needles, monoclinic system) Potassium Ascorbate Odor Odorless Potassium Ascorbate Taste Pleasant, sharp, acidic taste Potassium Ascorbate Melting Point 374 to 378 °F Potassium Ascorbate Solubility greater than or equal to 100 mg/mL at 73° F Potassium Ascorbate Density 1.65 Potassium Ascorbate Vapor Pressure 9.28X10-11 mm Hg at 25 °C Potassium Ascorbate LogP -1.85 Potassium Ascorbate Stability/Shelf Life Stable to air when dry; impure preparation and in many natural products vitamin oxidizes on exposure to air and light. Aqueous solutions are rapidly oxidized by air, accelerated by alkalies, iron, copper Potassium Ascorbate Optical Rotation [α]D/20 between + 20,5° and + 21,5° (10 % w/v aqueous solution) Potassium Ascorbate Autoignition Temperature 1220 °F Potassium Ascorbate Decomposition When heated to decomposition it emits acrid smoke and irritating fumes. Potassium Ascorbate Heat of Vaporization The heat of vaporization is 1.487X10+8 J/kmol at 465.15 deg K. Potassium Ascorbate pH Between 2,4 and 2,8 (2 % aqueous solution) Potassium Ascorbate Surface Tension 4.039X10-2 N/m Potassium Ascorbate pKa 4.7 (at 10 °C) Potassium Ascorbate Dissociation Constants pK1 = 4.17; pK2 = 11.57 Potassium Ascorbate Collision Cross Section 138.6 Ų [M+H]+ [CCS Type: DT, Method: single field calibrated with Agilent tune mix (Agilent)] Potassium Ascorbate Other Experimental Properties log Kow = -2.15 at 23 °C; log Kow = -2.00 at 37 °C Potassium Ascorbate Molecular Weight 176.12 g/mol Potassium Ascorbate XLogP3 -1.6 Potassium Ascorbate Hydrogen Bond Donor Count 4 Potassium Ascorbate Hydrogen Bond Acceptor Count 6 Potassium Ascorbate Rotatable Bond Count 2 Potassium Ascorbate Exact Mass 176.032088 g/mol Potassium Ascorbate Monoisotopic Mass 176.032088 g/mol Potassium Ascorbate Topological Polar Surface Area 107 Ų Potassium Ascorbate Heavy Atom Count 12 Potassium Ascorbate Formal Charge 0 Potassium Ascorbate Complexity 232 Potassium Ascorbate Isotope Atom Count 0 Potassium Ascorbate Defined Atom Stereocenter Count 2 Potassium Ascorbate Undefined Atom Stereocenter Count 0 Potassium Ascorbate Defined Bond Stereocenter Count 0 Potassium Ascorbate Undefined Bond Stereocenter Count 0 Potassium Ascorbate Covalently-Bonded Unit Count 1 Potassium Ascorbate Compound Is Canonicalized Yes Vitamin C (Potassium Ascorbate) is a water soluble vitamin found in citrus fruits and green vegetables and deficiency of which is the cause of scurvy. There is no evidence that vitamin C, in physiologic or in moderately high doses, causes acute liver injury or jaundice.Potassium Ascorbate 100 to 200 mg daily may be given with desferrioxamine in the treatment of patients with thalassemia, to improve the chelating action of desferrioxamine, thereby increasing the excretion of iron.In iron deficiency states Potassium Ascorbate may increase gastrointestinal iron absorption and Potassium Ascorbate or ascorbate salts are therefore included in some oral iron preparations.Eye drops containing potassium ascorbate (Potassium Ascorbate 10%) have been used for the treatment of chemical eye burns. /Potassium ascorbate/Potassium Ascorbate and calcium and sodium ascorbates are used as antioxidants in pharmaceutical manufacturing and in the food industry.Potassium Ascorbate is also under investigation for the treatment of Charcot-Marie-Tooth syndrome, a chronic and progressive disorder of the nervous system.Potassium Ascorbate facilitates absorption of iron by keeping iron in reduced form. A few microcytic anemias respond to Potassium Ascorbate treatment, which may be ... due to improved absorption of iron.Potassium Ascorbate (but not sodium ascorbate) can be used as alternative /urinary acidifier/ ... if ammonium chloride is not tolerated or is containdicated. Doses of 0.5-2 g every 4 hr are recommended; however, the desirable alteration in urinary pH is not always obtained ... even at the higher dose levels.For prophylaxis or correction of deficiency, Vitamin C may be given as fresh or frozen orange juice (contains approx 0.5 mg/mL of Potassium Ascorbate). Crystalline Potassium Ascorbate is suitable alternative; oral admin is preferred, but the vitamin may be given im or iv .Potassium Ascorbate is used to prevent and to treat scurvy. Scurvy may be treated with dietary vitamin C; however, administration of therapeutic doses of Potassium Ascorbate probably results in more prompt saturation of tissue stores.Potassium Ascorbate has been used as a urinary acidifier although its efficacy has been questioned. Potassium Ascorbate may be useful in correcting tyrosinemia in premature infants on high-protein diets. The drug may also be useful to treat idiopathic methemoglobinemia, although it is less effective than methylene blue. Limited evidence indicates that Potassium Ascorbate administered during deferoxamine therapy increases iron excretion more than deferoxamine alone. Potassium Ascorbate is used as an antioxidant in formulations of injectable doxycycline and other drugs.Large doses of Potassium Ascorbate have been advocated for lessening the severity of and for preventing the common cold. Most large, controlled studies have shown the drug to have little or no value in the prevention or treatment of colds, and most clinicians believe the possible benefit is not worth the risk of toxicity.Although Potassium Ascorbate has not been shown by well-controlled trials to have therapeutic value, it has been prescribed for hematuria, retinal hemorrhages, hemorrhagic states, dental caries, pyorrhea, gum infections, anemia, acne, infertility, atherosclerosis, mental depression, peptic ulcer, tuberculosis, dysentery, collagen disorders, cancer, osteogenesis imperfecta, fractures, leg ulcers, pressure sores, physical endurance, hay fever, heat prostration, vascular thrombosis prevention, levodopa toxicity, succinylcholine toxicity, arsenic toxicity, and as a mucolytic agent.Medication (Vet): Feed additives with antioxidant properties such as Potassium Ascorbate had no protective effect against monocrotaline lethality and hepatotoxicity in mice.Proposed mechanisms of action for Potassium Ascorbate (ascorbate, vitamin C) in the prevention and treatment of cancer include enhancement of the immune system, stimulation of collagen formation necessary for "walling off" tumors, inhibition of hyaluronidase which keeps the ground substance around the tumor intact and prevents metastasis, prevention of oncogenic viruses, correction of an ascorbate deficiency often seen in cancer patients, expedition of wound healing after cancer surgery, enhancement of the effect of certain chemotherapy drugs, reduction of the toxicity of other chemotherapeutic agents such as Adriamycin, prevention of free radical damage, and neutralization of carcinogenic substances.Of 14 clinical trials of Potassium Ascorbate in the prevention and treatment of the common cold, the data from 8 were considered well enough gathered to be creditable and to warrant combining for an over-all assessment of efficacy. Differences in mean prorated numbers of colds per year and durations of illness were 0.09 plus or minus 0.06 (plus or minus 1 standard error) and 0.11 plus or minus 0.24, respectively, favoring Potassium Ascorbate over the placebo. These are minor and insignificant differences, but in most studies the severity of symptoms was significantly worse in the patients who received the placebo. In one study lasting 9 months, a large number of the volunteers tasted their capsules and correctly guessed what group they were in. All differences in severity and duration were eliminated by analyzing only the data from those who did not know which drug they were taking. Since there are no data on the long-term toxicity of Potassium Ascorbate when given in doses of 1 g or more per day, it is concluded that the minor benefits of questionable validity are not worth the potential risk, no matter how small that might be.Potassium Ascorbate is a widely used and controversial alternative cancer treatment. In millimolar concentrations, it is selectively cytotoxic to many cancer cell lines and has in vivo anticancer activity when administered alone or together with other agents. ... Patients with advanced cancer or hematologic malignancy were assigned to sequential cohorts infused with 0.4, 0.6, 0.9 and 1.5 g Potassium Ascorbate/kg body weight three times weekly. Adverse events and toxicity were minimal at all dose levels. No patient had an objective anticancer response. CONCLUSIONS: High-dose iv Potassium Ascorbate was well tolerated but failed to demonstrate anticancer activity when administered to patients with previously treated advanced malignancies.Large doses are reported to cause diarrhea and other gastrointestinal disturbances. It has also been stated that large doses may result in hyperoxaluria and the formation of renal calcium oxalate calculi, and Potassium Ascorbate should therefore be given with care to patients with hyperoxaluria. Tolerance may be induced with prolonged use of large doses, resulting in symptoms of deficiency when intake is reduced to normal. Prolonged or excessive use of chewable vitamin C preparations may cause erosion of tooth enamel.Large doses of Potassium Ascorbate have resulted in hemolysis in patients with G6PD deficiency.Potassium Ascorbate (vitamin C) is a water-soluble vitamin indicated for the prevention and treatment of scurvy, as Potassium Ascorbate deficiency results in scurvy. Collagenous structures are primarily affected, and lesions develop in bones and blood vessels. Administration of Potassium Ascorbate completely reverses the symptoms of Potassium Ascorbate deficiency.Potassium Ascorbate is a natural water-soluble vitamin (Vitamin C). Potassium Ascorbate is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04)Vitamin C (Potassium Ascorbate) is a water-soluble nutrient that acts as an antioxidant by virtue of its high reducing power. It has a number of functions: as a scavenger of free radicals; as a cofactor for several enzymes involved in the biosynthesis of carnitine, collagen, neurotransmitters, and in vitro processes; and as a reducing agent. Evidence for in vivo antioxidant functions of ascorbate include the scavenging of reactive oxidants in activated leukocytes, lung, and gastric mucosa, and diminished lipid peroxidation as measured by urinary isoprostane excretion.The biological functions of Potassium Ascorbate are based on its ability to provide reducing equivalents for a variety of biochemical reactions. Because of its reducing power, the vitamin can reduce most physiologically relevant reactive oxygen species. In humans, an exogenous source of Potassium Ascorbate is required for collagen formation and tissue repair. Vitamin C is a co-factor in many biological processes including the conversion of dopamine to noradrenaline, in the hydroxylation steps in the synthesis of adrenal steroid hormones, in tyrosine metabolism, in the conversion of folic acid to folinic acid, in carbohydrate metabolism, in the synthesis of lipids and proteins, in iron metabolism, in resistance to infection, and in cellular respiration.Some unusual diets (eg, reducing diets that drastically restrict food selection) may not supply minimum daily requirements for Potassium Ascorbate. Supplementation is necessary in patients receiving total parenteral nutrition (TPN) or undergoing rapid weight loss or, in those with malnutrition, because of inadequate dietary intake.The daily intake of Potassium Ascorbate must equal the amount that is excreted or destroyed by oxidation. Healthy adult human subjects lose 3 to 4% of their body store daily. To maintain a body store of 1500 mg of Potassium Ascorbate or more in an adult man, it would thus be necessary to absorb approximately 60 mg daily. Values for vitamin C requirements of other age groups are based on similar reasoning.Under special circumstances, more Potassium Ascorbate appears to be required to achieve normal concentrations in the plasma. Thus, South African miners have been observed to require 200 to 250 mg of vitamin C daily to maintain a plasma concentration of 0.75 mg/dl (43 um).Potassium Ascorbate is required along with iron as a cofactor for the post-translational hydroxylation of proline and lysine to effect crosslinking of mature collagen. Lack of this function due to ascorbate deficiency results in defective collagen formation and the physical symptoms of scurvy. However, serum or urinary levels of proline or lysine, their hydroxylated forms, or other measures of collagen metabolism have not been shown to be reliable markers of ascorbate status.The renal threshold for Potassium Ascorbate is approx 14 ug/mL, but this level varies among individuals. When the body is saturated with Potassium Ascorbate and blood concentrations exceed the threshold, unchanged Potassium Ascorbate is excreted in the urine. When tissue saturation and blood concentrations of Potassium Ascorbate are low, administration of the vitamin results in little or no urinary excretion of Potassium Ascorbate. Inactive metabolites of Potassium Ascorbate such as Potassium Ascorbate-2-sulfate and oxalic acid are excreted in the urine ... Potassium Ascorbate is also excreted in the bile but there is no evidence for enterohepatic circulation.Hepatic. Potassium Ascorbate is reversibly oxidised (by removal of the hydrogen from the enediol group of Potassium Ascorbate) to dehydroPotassium Ascorbate. The two forms found in body fluids are physiologically active. Some Potassium Ascorbate is metabolized to inactive compounds including Potassium Ascorbate-2-sulfate and oxalic acid.Potassium Ascorbate-2-sulfate has ... been identified as metabolite of Vitamin C in human urine.Potassium Ascorbate is reversibly oxidized to dehydroPotassium Ascorbate in the body. This reaction, which proceeds by removal of the hydrogen from the enediol group of Potassium Ascorbate, is part of the hydrogen transfer system ...The two forms found in body fluids are physiologically active. Some Potassium Ascorbate is metabolized to inactive compounds including Potassium Ascorbate-2-sulfate and oxalic acid ...In humans, an exogenous source of Potassium Ascorbate is required for collagen formation and tissue repair by acting as a cofactor in the posttranslational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins. Potassium Ascorbate is reversibly oxidized to dehydroPotassium Ascorbate in the body. These two forms of the vitamin are believed to be important in oxidation-reduction reactions. The vitamin is involved in tyrosine metabolism, conversion of folic acid to folinic acid, carbohydrate metabolism, synthesis of lipids and proteins, iron metabolism, resistance to infections, and cellular respiration.While surgery is the definitive treatment for early-stage melanoma, the current therapies against advanced melanoma do not yet provide an effective, long-lasting control of the lesions and a satisfactory impact on patient survival. Thus, research is also focused on novel treatments that could potentiate the current therapies. In the present study, we evaluated the effect of potassium ascorbate with ribose (PAR) treatment on the human melanoma cell line, A375, in 2D and 3D models. In the 2D model, in line with the current literature, the pharmacological treatment with PAR decreased cell proliferation and viability. In addition, an increase in Connexin 43 mRNA and protein was observed. This novel finding was confirmed in PAR-treated melanoma cells cultured in 3D, where an increase in functional gap junctions and a higher spheroid compactness were observed. Moreover, in the 3D model, a remarkable decrease in the size and volume of spheroids was observed, further supporting the treatment efficacy observed in the 2D model. In conclusion, our results suggest that PAR could be used as a safe adjuvant approach in support to conventional therapies for the treatment of melanoma.Cutaneous melanoma is the most aggressive form of skin cancer representing over 10% of all skin cancers but is responsible for more than 80% of skin cancer-related deaths. In addition, its incidence is growing and has even doubled in the last 10 years: it has been estimated that, in the next future, it will be the fifth most common cancer in American men and the seventh most common cancer in American women, accounting for 5% and 4% of all new cancer cases, respectively.Many risk factors for melanoma have been identified, including environmental and genetic factors, most likely acting in combination. Among endogenous factors, the most relevant are mutations in BRAF (mainly the specific mutation V600E), which are observed in ~60% of patients with nonfamilial, cutaneous melanomas, and the presence of a large number of nevi and skin phenotype 1 or 2 (fair skin, hair, and iris). Among exogenous causes, increased risk of melanoma has been associated with overexposure to natural or artificial UV radiation.Regarding the treatment of melanoma, the surgical removal is still the cornerstone of treatment in the early stages of the tumor. For advanced or metastatic melanoma, depending on tumor spread, affected organs, and the patient’s general health, several systemic therapies can be chosen, including cytotoxic agents (also combined to radiotherapy) and, more recently emerged, immune-checkpoint blockers or molecular targeted inhibitors.Among adjuvant therapies, IFN-α is the only approved treatment for melanoma. Because of the significant side effects of IFN-α (e.g., nausea, fatigue, and neutropenia), and the short-lived response to this treatment, research is focused on novel or reappraised adjuvant therapies in support to the conventional ones. On this subject, a growing body of literature has investigated the efficacy of PAR, a compound formed by potassium bicarbonate (KHCO3), L-ascorbic acid (AA), and D-ribose (D-Rib). PAR has been reported to have anticancer effects in vitro as well as in vivo, for example, in precarcinogenic conditions such as genetic syndromes (Beckwith-Wiedemann, Prader-Willi, and Costello Syndromes), which are characterized by an increased risk of malignancies and neoplasms. Interestingly, after once-a-day continuous treatment with PAR, a few patients with these syndromes were monitored for 9–30 months and an improvement of their clinical conditions was observed; most importantly, none of them developed tumors in the follow-up period of ten years. PAR has also given encouraging results when used in neoplastic patients undergoing radio- and chemotherapy, increasing survival from five to ten years , and in patients with mesothelioma and prostate cancer.It is thought that reduction of neoplastic risk afforded by PAR is allowed by different mechanisms; these manifold actions are given by the individual substances, which seem to have additive or synergistic effects. In particular, AA, at pharmacological doses, has shown antiproliferative, antimetastatic , antiangiogenic, and immunostimulatory properties; KHCO3 restores intracellular levels of K+, which are deeply decreased in most cancer cells; and ribose contributes to correct the hypokalemic condition behaving as a catalyst.Taken together, the data from the literature suggest that PAR could be useful as a new adjuvant treatment against cancer. In addition, skin tissues offer a peculiar way to act, which is the topical application that allows the administration of relatively high drug concentration and with minimum significant metabolic transformation.Thus, the aim of our study was to investigate the effect of PAR on cell proliferation and cell-to-cell communication in human melanoma cells.A375 melanoma cells (from ATCC) were grown in Dulbecco’s modified Eagle’s medium (DMEM, Lonza, Milan, Italy) supplemented with 10% fetal bovine serum (FBS, EuroClone, Milan, Italy), 1% of L-glutamine (Lonza, Milan, Italy), and 1% of penicillin/streptomycin antibiotics (Lonza, Milan, Italy). The cells were maintained at 37°C in a humidified 5% CO2 atmosphere. A375 cells have BRAF (V600E) and p16 mutations.In preliminary experiments performed in 2D model, cells were treated with a wide range of concentrations of PAR (from 100 μM to 10 mM). In all subsequent experiments, the concentration range was restricted to 500 μM and 2 mM, which proved to be the lowest effective doses (for convenience, the concentrations are referred to ascorbic acid). The mixture was prepared by dissolving potassium bicarbonate, ascorbic acid, and ribose powders in culture medium in the dark (because they are light-sensitive), using nonmetallic spatulas (to avoid oxidation of ascorbic acid).Potassium ascorbate is a chemical compound with the formula KC6H7O6. It is the potassium salt of ascorbic acid, which is a form of vitamin C. The commercial preparation of potassium ascorbate is accomplished through chemical means. Ascorbic acid and potassium bicarbonate are refined to a purity of at least 97 percent. These two chemicals are then mixed in cold water to produce potassium ascorbate.Potassium ascorbate provides a biologically available form of potassium and vitamin C, both of which are essential nutrients. Potassium is a chemical element with the atomic number 19. It’s so-named because it was first isolated in potash, which was originally produced by soaking plant ashes in water. Potassium is essential for all forms of life.Vitamin C is a collective term for a group of related compounds based on ascorbate. This group also includes ascorbic acid and its salts. Some oxidized forms of ascorbic acid such a dehydroascorbic acid also exhibit vitamin C activity. Vitamin C is necessary for all life forms, although virtually all organisms can synthesize it from other substances. The known exceptions include humans and some other primates, guinea pigs, capybaras and most bats.Potassium ascorbate offers specific advantages compared to other methods of delivering potassium and vitamin C. For example, potassium ascorbate is a chelator that allows it to bind other minerals. This property allows potassium ascorbate to be easily transported and retained in the body. It may also help to regulate hormone levels, which can support fertility.Potassium ascorbate is a less acidic form of vitamin C than ascorbic acid, which may allow it to resist cellular degeneration. This effect can help to manage degenerative conditions by eventually causing the responsible cells to die. The alkalizing effect of potassium ascorbate can also manage degenerative processes by maintaining healthy levels of potassium. This effect results from potassium ascorbates’s role as a potassium carrier within the cells. The antioxidant properties of ascorbate also help to inhibit degenerative processes.Potassium ascorbate has benefits of both potassium and vitamin C. These benefits include antioxidant activity, collagen production, healthy circulation and heart health support.The signs that you many need potassium ascorbate include the signs of potassium and vitamin C deficiencies. The recommended daily allowance (RDA) of vitamin C is 200 mg/day, although many experts recommend much higher doses. A deficiency of vitamin C causes a characteristic set of symptoms known as scurvy. The first signs of scurvy include brown spots on the skin and spontaneous bleeding from mucous membranes. Severe scurvy causes the loss of teeth and suppurating wounds.The most common causes of a potassium deficiency include chronic diarrhea, excessive urination and vomiting. The signs of a potassium deficiency generally relate to the resulting changes in metabolism and cellular membrane potential. These signs typically include muscle cramps, weakness and decreased reflexes. More severe signs of a potassium deficiency include irregularities in heart rhythm and respiratory paralysis.While surgery is the definitive treatment for early-stage melanoma, the current therapies against advanced melanoma do not yet provide an effective, long-lasting control of the lesions and a satisfactory impact on patient survival. Thus, research is also focused on novel treatments that could potentiate the current therapies. In the present study, we evaluated the effect of potassium ascorbate with ribose (PAR) treatment on the human melanoma cell line, A375, in 2D and 3D models. In the 2D model, in line with the current literature, the pharmacological treatment with PAR decreased cell proliferation and viability. In addition, an increase in Connexin 43 mRNA and protein was observed. This novel finding was confirmed in PAR-treated melanoma cells cultured in 3D, where an increase in functional gap junctions and a higher spheroid compactness were observed. Moreover, in the 3D model, a remarkable decrease in the size and volume of spheroids was observed, further supporting the treatment efficacy observed in the 2D model. In conclusion, our results suggest that PAR could be used as a safe adjuvant approach in support to conventional therapies for the treatment of melanoma.POTASSIUM ASCORBATE is the potassium salt of ascorbic acid that exhibits antioxidant property. It is produced by glucose fermentation followed by potassium oxidation. It is also used as a preservative in foods and is a good source of vitamin C.Potassium ascorbate is a compound with formula KC6H7O6. It is the potassium salt of ascorbic acid (vitamin C) and a mineral ascorbate. As a food additive, it has E number E303, INS number 303. Although it is not a permitted food additive in the UK or the USA, it is approved for use in Australia and New Zealand.Potassium ascorbate is a chemical compound with the formula KC6H7O6. It is the potassium salt of ascorbic acid, which is a form of vitamin C. The commercial preparation of potassium ascorbate is accomplished through chemical means. Ascorbic acid and potassium bicarbonate are refined to a purity of at least 97 percent. These two chemicals are then mixed in cold water to produce potassium ascorbate.Potassium ascorbate provides a biologically available form of potassium and vitamin C, both of which are essential nutrients. Potassium is a chemical element with the atomic number 19. It’s so-named because it was first isolated in potash, which was originally produced by soaking plant ashes in water. Potassium is essential for all forms of life.Vitamin C is a collective term for a group of related compounds based on ascorbate. This group also includes ascorbic acid and its salts. Some oxidized forms of ascorbic acid such a dehydroascorbic acid also exhibit vitamin C activity. Vitamin C is necessary for all life forms, although virtually all organisms can synthesize it from other substances. The known exceptions include humans and some other primates, guinea pigs, capybaras and most bats.
POTASSIUM BENZOATE
CAS Number: 582-25-2
EC Number: 209-481-3

What is potassium benzoate, and how is it used?
Potassium benzoate is a white, odorless powder that’s obtained by combining benzoic acid and potassium salt under heat .
Benzoic acid is a compound naturally found in plants, animals, and fermented products. Originally derived from the benzoin resin of certain tree species, it’s now mostly industrially produced.
Potassium salts are typically extracted from salt beds or certain minerals.
Potassium benzoate is used as a preservative, as it prevents the growth of bacteria, yeast, and particularly mold. As such, it’s often added to food, beauty, and skin care products to extend their shelf life .
A few beauty and skin care items that may harbor this ingredient are shampoos, conditioners, facial cleansers, and moisturizers.

SUMMARY
Potassium benzoate is a preservative commonly found in food, beauty, and skin care products.
Potassium benzoate helps extend shelf life by preventing bacteria, yeast, and mold growth.

Potassium benzoate can be found in a variety of packaged foods, including;
Beverages: soda, flavored drinks, and certain fruit and vegetable juices
Sweets: candy, chocolate, and pastries
Condiments: processed sauces and salad dressings, plus pickles and olives
Spreads: certain margarines, jams, and jellies
Processed meats and fish: salted or dried fish and seafood, as well as certain cold cuts

A fungistatic compound that is widely used as a food preservative.
Potassium benzoate is conjugated to GLYCINE in the liver and excreted as hippuric acid.

Industry Uses
Functional fluids (closed systems)
Paint additives and coating additives not described by other categories
Use as preservative
Various uses including: Food / Beverage, U034, U017, U015, U007, U004, U002

Consumer Uses
Adhesives and sealants
Non-TSCA use
Personal care products

Industry Processing Sectors
Food, beverage, and tobacco product manufacturing
Miscellaneous manufacturing
Paint and coating manufacturing

Potassium benzoate is not a broad spectrum preservative for cosmetic use and should be combined with other preservatives. If Potassium benzoate is used as a preservative, the pH of the finished product may need to be lowered enough to release the free acid for useful activity.
Potassium benzoate is often combined with Potassium Sorbate in low pH products to provide a synergistic preservative effect against yeast and mold.
Potassium benzoate (E212), the potassium salt of benzoic acid, is a food preservative that inhibits the growth of mold, yeast and some bacteria.
Potassium benzoate works best in low-pH products, below 4.5, where it exists as benzoic acid.

Potassium benzoate is a white, odorless powder that’s obtained by combining benzoic acid and potassium salt under heat
Potassium benzoate is used as a preservative, as it prevents the growth of bacteria, yeast, and particularly mold.
Potassium benzoate is a preservative commonly found in food, beauty, and skin care products.
Potassium benzoate helps extend shelf life by preventing bacteria, yeast, and mold growth.

Potassium Benzoate E212 can be used in Food, Beverage, Pharmaceutical, Health & Personal care products, Agriculture/Animal Feed/Poultry.
Potassium Benzoate E212 is used a food preservative to inhibit mold, yeast, and bacterial growth in fruit juices, carbonated drinks, pickles, and various other foods and beverages.
Potassium benzoate E212 can be used to replace sodium benzoate E211 in applications where the preserving power of benzoic acid E210 is required, but where a low sodium content is desired.
Potassium Benzoate is often used in low-sugar jams, marmalades, jellies and alcohol-free beer.

Potassium benzoate E212 uses as follows:
Potassium Benzoate E212 can be used as acidic food preservative in food such as in low-sugar jams, marmalades, jellies, fruit juices, carbonated drinks, pickles

Potassium Benzoate Uses:
-Preservative,
-Cosmetics,
-Feed,
-Pharmaceutical,
-Antimicrobial,
-Antifungal,
-Antibacterial,
-Margarine,
-Soft Drink,
-Alcohol Beverage,
-Beverage Powder,
-Ice Cream,
-Candy,
-Chewing Gum,
-Icings,
-Fruit Juice,
-Puddings,
-Sauces,
-Baking Food,
-Sauage,
-Food Colors,
-Milk, Wine,
-Flavoring Agent,
-Dyestuff,
-Toothpaste,
-Coating,
-Rubber.

Acidic foods and beverages such as fruit juice (citric acid), sparkling drinks (carbonic acid), soft drinks (phosphoric acid), and pickles (vinegar) may be preserved with potassium benzoate.
Potassium benzoate is approved for use in most countries including Canada, the U.S., and the EU, where it is designated by the E number E212.
Potassium benzoate is also used in the whistle in many fireworks.

Potassium benzoate, the potassium salt of benzoic acid, is typically used by food manufacturers as a chemical preservative.
Potassium benzoate's sometimes used in place of a related preservative -- sodium benzoate -- to reduce the food's sodium content.
Potassium benzoate helps fight food spoilage, and it can contribute to food's flavor, but like any food additive, it can cause allergic reactions in some people.

How Potassium Benzoate's Used
According to the U.S. Food and Drug Administration, potassium benzoate is "generally recognized as safe" and approved for use as a preservative as well as a flavoring agent. Adding just a small amount can help prevent the growth of mold, yeast and certain bacteria in foods. Because the compound imparts a tang to certain foods, it can also be used as a flavoring agent.

Where Potassium Benzoate's Found
Potassium benzoate is typically added to packaged foods, so look to the more processed aspects of your diet to find it.
Potassium benzoate's used to preserve carbonated soft drinks, cider, juices, jams, syrups and pickled foods.
Potassium benzoate also occurs naturally in cranberries, so you'll also find it in cranberry juice, cranberry cocktail and cranberry sauce.

What is Potassium Benzoate?
Potassium benzoate is classified as a food preservative.
Potassium benzoate can work in one of two ways according to PubChem, a division of The National Center for Biotechnology Information. The first is as a food preservative, which means it inhibits or stops the process of fermentation, acidification, or any deterioration of a specific food.
Potassium benzoate is more specifically known as a fungistatic, which stops fungi's ability to grow or reproduce, which could potentially spoil a food.

Potassium Benzoate is manufactured primarily for food and beverage use.
Potassium Benzoate is a chemical preservative, which in very low concentrations inhibits the activity of the microorganisms.
Potassium Benzoate is used in carbonated beverages. The shelf life of un-pasteurized cider can be greatly extended by adding potassium benzoate.
Potassium Benzoate is also used as the whistle in many fireworks.

How is Potassium Benzoate made?
Potassium benzoate can be chemically synthesized by the reaction of benzoic acid (produced from the oxidation of toluene) with potassium bicarbonate, or potassium carbonate, or potassium hydroxide.

Specification
Appearance
A white or colorless crystalline powder or granular.

Other Names
Potassium salt of benzenecarboxylic acid
Potassium salt of phenylcarboxylic acid
CAS Number
532-32-1

What are the Uses of Potassium Benzoate?
Potassium Benzoate is used less than sodium benzoate in past years, but now it seems the market demand is increasing.
Potassium benzoate is used as a substitute preservative for sodium benzoate primarily in acidic foods where the sodium content needed to be lower.
The following food may contain with it:
-soda
-juice
-cider
-margarine
-syrup
-jelly
-dressing

Coca Cola: used as a preservative and to protect taste.
Pepsico: in the carbonated soft drinks, such as in Diet Pepsi and Sierra Mist to preserve freshness.

Potassium benzoate belongs to the class of organic compounds known as benzoic acids. These are organic Compounds containing a benzene ring which bears at least one carboxyl group.
Potassium benzoate is a weakly acidic compound (based on its pKa).

Applications
Potassium Benzoate is manufactured primarily for food and beverage use.
Potassium Benzoate is a chemical preservative, which in very low concentrations inhibits the activity of the microorganisms.
Potassium Benzoate is used in carbonated beverages. The shelf life of un-pasteurized cider can be greatly extended by adding potassium benzoate.
Potassium Benzoate is also used as the whistle in many fireworks.

Description
Potassium benzoate is the potassium salt of benzoate.
Potassium Benzoate is mostly used for food preservation for inhibiting the growth of mold, yeast and bacteria since it can create low pH condition after entering into the cells to suppress the anaerobic fermentation of glucose.
Potassium Benzoate can also be used in the whistle in many fireworks. In analytic chemistry, it can be used as eluents for ion chromatography to increase the detector response.

Chemical Properties
Potassium benzoate occurs as a slightly hygroscopic, white, odorless or nearly odorless crystalline powder or granules. Aqueous solutions are slightly alkaline and have a sweetish astringent taste.

Chemical Properties
Potassium benzoate ( E212 ) , the potassium salt of benzoic acid, is a food preservative that inhibits the growth of mold, yeast and some bacteria.
Potassium Benzoate works best in low-pH products, below 4.5, where it exists as benzoic acid.

Acidic foods and beverages such as fruit juice (citric acid), sparkling drinks (carbonic acid), soft drinks (phosphoric acid), and pickles (vinegar) may be preserved with potassium benzoate.
Potassium Benzoate is approved for use in most countries including Canada, the U.S., and the EU, where it is designated by the E number E212. In the EU, it is not recommended for consumption by children.

Uses
Pharmaceutic aid (preservative).

Production Methods
Potassium benzoate is prepared from the acid–base reaction between benzoic acid and potassium hydroxide.

Pharmaceutical Applications
Potassium benzoate is predominantly used as an antimicrobial preservative in a wide range of beverages, foods and some pharmaceutical formulations. Preservative efficacy increases with decreasing pH; it is most effective at pH 4.5 or below. However, at low pH undissociated benzoic acid may produce a slight though discernible taste in food products.
Increasingly, potassium benzoate is used as an alternative to sodium benzoate in applications where a low sodium content is desirable.
Therapeutically, potassium benzoate has also been used in the management of hypokalemia.

A white solid that is the potassium salt of benzoic acid.
Potassium benzoate inhibits the growth of mold, yeast and some bacteria.
Uses: A food preservative in fruit juice, sparkling drinks, soft drinks, and pickles, and as the whistle sound in many fireworks.

Potassium benzoate is essentially a chemical preservative which is commonly added to soft drinks and other foods and beverages.
Potassium benzoate is used as an effective preservative since it thwarts the growth of certain bacteria, mold and yeast. In its liquefied state, it breaks up into its two distinct parts; the benzoate salt and the electrolyte potassium.
Potassium is tremendously essential for a number of biological processes; this includes the contraction of muscles associated with the heartbeat. As an essential mineral, potassium is required for the proper function of your cells, organs and tissues. In addition to calcium, magnesium and sodium, potassium serves as an electrolyte. This is due to its capacity to spread electrical pulses and signals throughout the nervous system. Apart from its significance in sustaining the right heart rhythm, potassium is required for smooth muscle contraction as well.
This is essential for the function and health of the digestive system.
The chemical formula of Potassium Benzoate is C7H5KO2. In its raw form, it looks like a white crystalline powder. However, some companies will supply a liquid form for use in the food industry.

Formulation or re-packing
Potassium benzoate is used in the following products: coating products, inks and toners, pH regulators and water treatment products and polymers.
Release to the environment of Potassium benzoate can occur from industrial use: formulation of mixtures.

Uses at industrial sites
Potassium benzoate is used in the following products: pharmaceuticals, polymers, oil and gas exploration or production products, coating products, explosives and inks and toners.
Potassium benzoate is used in the following areas: mining, printing and recorded media reproduction and building & construction work.
Potassium benzoate is used for the manufacture of: chemicals and pulp, paper and paper products.
Release to the environment of Potassium benzoate can occur from industrial use: as processing aid, as processing aid, in the production of articles and in processing aids at industrial sites.

Properties
Chemical formula: C7H5KO2
Molar mass: 160.213 g·mol−1
Appearance: White hygroscopic solid
Odor: Odorless
Density: 1.5 g/cm3
Melting point: >300 °C (572 °F; 573 K)
Solubility in water:
69.87 g/100 mL (17.5 °C)
73.83 g/100 mL (25 °C)
79 g/100 mL (33.3 °C)
88.33 g/100 mL (50 °C)
Solubility in other solvents:
Soluble in ethanol
Slightly soluble in methanol
Insoluble in ether

In Other Industries
Potassium Benzoate E212 is widely used as additive in various other industries.
Potassium benzoate is the inactive salt of benzoic acid.
Potassium benzoate is soluble in water where it converts to benzoic acid, its active form, at a low pH. Benzoic acid is very pH dependent. While it shows some activity up to pH 6 (about 1.55%), it is most active at pH 3 (94%).

As benzoic acid, it is considered to be primarily an anti-fungal, but it shows some activity against bacteria.
Potassium benzoate is poor against pseudomonads.
Benzoic acid is inactivated by non-ionics and by raising the pH.

Potassium Benzoate Specification:
Item: Specification
Appearance: white granule or crystalline odorless powder
Purity (on dry base): ≥99.0%
Moisture: ≤1.5%
Acidity and Alkalinity: ≤0.2 ml
Water solution test: clear
Solution colour: Y6
Chlorides: ≤300 mg/Kg
Heavy metals (As Pb): ≤10 mg/Kg
Arsenic: ≤2 mg/Kg

Manufacture
Release to the environment of Potassium benzoate can occur from industrial use: manufacturing of the substance.

White, odorless or nearly odorless, granules or crystalline powder, soluble in water.
Potassium benzoate is an alternative to Potassium benzoate and is used as a food preservative, by preventing the growth of bacteria, yeast and fungi.
Potassium benzoate can be used in soft drinks, salad dressing, sauces, alcohol beverages and other condiments and snacks.

Potassium Benzoate is a white crystal or granular and is soluble in water.
Can be used as an alternative to Potassium benzoate.

Potassium benzoate is used as a preservative to prevent food from molding.
Potassium benzoate helps keep our products shelf-stable for at least two years from the date of purchase and is used in concentrations of less than 0.5% by volume.
While Potassium benzoate is considered safe, scientists have shown that negative side effects occur when it's mixed with ascorbic acid (vitamin C).

Uses of Potassium benzoate
Food. In the food industry, Potassium benzoate is used to prevent spoilage from harmful bacteria, yeasts, and molds.
Potassium benzoate also helps maintain freshness in food by helping to slow or prevent changes in color, flavor, PH, and texture.
Other foods that commonly include Potassium benzoate include:
-Salad dressings
-Pickles
-Sauces
-Condiments
-Fruit juices
-Wines
-Snack foods
-Drink.

Personal care products.
Potassium benzoate can be used as an anti-corrosive and preservative in a large variety of personal care products such as:
-Mouthwash
-Hair products
-Sunscreen
-Moisturizers
-Serums
-Baby wipes

In Beverage
Potassium Benzoate E212 can be used as preservative in beverage such as in soft drinks, diet coke, sodas, condensed juice and other acidic drink to inhibit microbial.

In Health and Personal care
Potassium Benzoate E212 used in a wide variety of cosmetics and personal care products, such as in baby products, bath products, soaps and detergents, eye makeup, blushers, cleansing products, make up products, as well as hair, nail and skin care products.

In Agriculture/Animal Feed/Poultry
Potassium Benzoate E212 can be used as preservative in Agriculture/Animal Feed/Poultry feed.

IUPAC NAMES:
Benzoic acid, potassium salt (1:1)
Potassium benzoate
potassium benzoate
potassium benzoate
potassium;benzoate
POTASSIUM BENZOATE
benzoic acid potassium
PotassiumBenzoateC7H5KO2
Benzoicacidpotassiumsaltanhydrous
Kaliumbenzoat,wasserfrei
BENZOIC ACID POTASSIUM SALT
POTASSIUM BENZOATE REAGENT
POTASSIUMBENZOATE,CRYSTAL,REAGENT
POTASSIUMBENZOATE,FCC
POTASSIUMBENZOATE,NF
Kaliumbenzoat
Piatassium benzoate
Potassium Benzoate, Anhydrous
Potassium Benzoate (1 g)
PotassiuM benzoate, >=99.0% (NT)
POTASSIUM BENZOATE, REAGENTPOTASSIUM BENZOATE, REAGENTPOTASSIUM BENZOATE, REAGENTPOTASSIUM BENZOATE, REAGENT
Potassium benzoate Joyce
Potassium benzoate Vetec(TM) reagent grade, 98%
Benzoic acid, potassium salt (1:1)
POTASSIUM BITARTRATE
cas no 868-14-4 Potassium hydrogen tartrate; [R-(R*,R*)]-2,3-dihydroxy-Butanedioic acid, monopotassium salt; Cream; cream of tartar; L(+)-Potassium hydrogen tartrate; Monopotassium tartrate; Potassium acid tartrate; Potassium Hydrogentartrate; Tartaric acid, monopotassium salt;
potassıum carbonate
SYNONYMS Potash; Salt of Tartar; Carbonic acid, Dipotassium salt; Potassium carbonate (2:1); Kaliumcarbonat; Pearl ash; CAS NO. 584-08-7
POTASSIUM CHLORATE
POTASSIUM CHLORATE Potassium chlorate Potassium chlorate The structure of the ions in potassium chlorate The crystal structure of potassium chlorate Potassium chlorate crystals Names Other names Potassium chlorate(V), Potcrate Identifiers CAS Number 3811-04-9 check 3D model (JSmol) Interactive image ChemSpider 18512 check ECHA InfoCard 100.021.173 EC Number 223-289-7 PubChem CID 6426889 RTECS number FO0350000 UNII H35KS68EE7 check UN number 1485 CompTox Dashboard (EPA) DTXSID6047448 Properties Chemical formula KClO3 Molar mass 122.55 g mol−1 Appearance white crystals or powder Density 2.32 g/cm3 Melting point 356 °C (673 °F; 629 K) Boiling point 400 °C (752 °F; 673 K) decomposes[1] Solubility in water 3.13 g/100 mL (0 °C) 4.46 g/100 mL (10 °C) 8.15 g/100 mL (25 °C) 13.21 g/100 mL (40 °C) 53.51 g/100 mL (100 °C) 183 g/100 g (190 °C) 2930 g/100 g (330 °C)[2] Solubility soluble in glycerol negligible in acetone and liquid ammonia[1] Solubility in glycerol 1 g/100 g (20 °C)[1] Magnetic susceptibility (χ) −42.8·10−6 cm3/mol Refractive index (nD) 1.40835 Structure Crystal structure monoclinic Thermochemistry Heat capacity (C) 100.25 J/mol·K[1] Std molar entropy (So298) 142.97 J/mol·K[3][1] Std enthalpy of formation (ΔfH⦵298) −391.2 kJ/mol[3][1] Gibbs free energy (ΔfG˚) -289.9 kJ/mol[1] Hazards Safety data sheet ICSC 0548 GHS pictograms GHS03: OxidizingGHS07: HarmfulGHS09: Environmental hazard[4] GHS Signal word Danger GHS hazard statements H271, H302, H332, H411[4] GHS precautionary statements P220, P273[4] NFPA 704 (fire diamond) NFPA 704 four-colored diamond 023OX Lethal dose or concentration (LD, LC): LD50 (median dose) 1870 mg/kg (oral, rat)[5] Related compounds Other anions Potassium bromate Potassium iodate Potassium nitrate Other cations Ammonium chlorate Sodium chlorate Barium chlorate Related compounds Potassium chloride Potassium hypochlorite Potassium chlorite Potassium perchlorate Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Potassium chlorate is a compound containing potassium, chlorine and oxygen, with the molecular formula KClO3. In its pure form, it is a white crystalline substance. It is the most common chlorate in industrial use. It is used, as an oxidizing agent, to prepare oxygen, as a disinfectant, in safety matches, in explosives and fireworks, in cultivation, forcing the blossoming stage of the longan tree, causing it to produce fruit in warmer climates.[6] Production On the industrial scale, potassium chlorate is produced by the Liebig process: passing chlorine into hot calcium hydroxide, subsequently adding potassium chloride:[7] 6 Ca(OH)2 + 6 Cl2 → Ca(ClO3)2 + 5 CaCl2 + 6 H2O Ca(ClO3)2 + 2 KCl → 2 KClO3 + CaCl2 The electrolysis of KCl in aqueous solution is also used sometimes, in which elemental chlorine formed at the anode react with KOH in situ. The low solubility of KClO3 in water causes the salt to conveniently isolate itself from the reaction mixture by simply precipitating out of solution. Potassium chlorate can be produced in small amounts by disproportionation in a sodium hypochlorite solution followed by metathesis reaction with potassium chloride:[8] 3 NaOCl(aq) → 2 NaCl(s) + NaClO3(aq) KCl(aq) + NaClO3(aq) → NaCl(aq) + KClO3(s) It can also be produced by passing chlorine gas into a hot solution of caustic potash:[9] 3 Cl2(g) + 6 KOH(aq) → KClO3(aq) + 5 KCl(aq) + 3 H2O(l) Uses Potassium chlorate burning sugar Potassium chlorate was one key ingredient in early firearms percussion caps (primers). It continues in that application, where not supplanted by potassium perchlorate. Chlorate-based propellants are more efficient than traditional gunpowder and are less susceptible to damage by water. However, they can be extremely unstable in the presence of sulfur or phosphorus and are much more expensive. Chlorate propellants must be used only in equipment designed for them; failure to follow this precaution is a common source of accidents. Potassium chlorate, often in combination with silver fulminate, is used in trick noise-makers known as "crackers", "snappers", "pop-its", or "bang-snaps", a popular type of novelty firework. Another application of potassium chlorate is as the oxidizer in a smoke composition such as that used in smoke grenades. Since 2005, a cartridge with potassium chlorate mixed with lactose and rosin is used for generating the white smoke signaling the election of new pope by a papal conclave.[10] Potassium chlorate is often used in high school and college laboratories to generate oxygen gas.[citation needed] It is a far cheaper source than a pressurized or cryogenic oxygen tank. Potassium chlorate readily decomposes if heated while in contact with a catalyst, typically manganese(IV) dioxide (MnO2). Thus, it may be simply placed in a test tube and heated over a burner. If the test tube is equipped with a one-holed stopper and hose, warm oxygen can be drawn off. The reaction is as follows: 2 KClO3(s) → 3 O2(g) + 2 KCl(s) Heating it in the absence of a catalyst converts it into potassium perchlorate:[9] 4 KClO3 → 3 KClO4 + KCl With further heating, potassium perchlorate decomposes to potassium chloride and oxygen: KClO4 → KCl + 2 O2 The safe performance of this reaction requires very pure reagents and careful temperature control. Molten potassium chlorate is an extremely powerful oxidizer and spontaneously reacts with many common materials such as sugar. Explosions have resulted from liquid chlorates spattering into the latex or PVC tubes of oxygen generators, as well as from contact between chlorates and hydrocarbon sealing greases. Impurities in potassium chlorate itself can also cause problems. When working with a new batch of potassium chlorate, it is advisable to take a small sample (~1 gram) and heat it strongly on an open glass plate. Contamination may cause this small quantity to explode, indicating that the chlorate should be discarded. Potassium chlorate is used in chemical oxygen generators (also called chlorate candles or oxygen candles), employed as oxygen-supply systems of e.g. aircraft, space stations, and submarines, and has been responsible for at least one plane crash. A fire on the space station Mir was also traced to this substance. The decomposition of potassium chlorate was also used to provide the oxygen supply for limelights. Potassium chlorate is used also as a pesticide. In Finland it was sold under trade name Fegabit. Potassium chlorate can react with sulfuric acid to form a highly reactive solution of chloric acid and potassium sulfate: 2 KClO3 + H2SO4 → 2 HClO3 + K2SO4 The solution so produced is sufficiently reactive that it spontaneously ignites if combustible material (sugar, paper, etc.) is present. In schools, molten potassium chlorate is used in the dramatic screaming jelly babies, Gummy bear, Haribo, and Trolli candy demonstration where the candy is dropped into the molten salt. In chemical labs it is used to oxidize HCl and release small amounts of gaseous chlorine. Insurgents in Afghanistan also use potassium chlorate extensively as a key component in the production of improvised explosive devices. When significant effort was made to reduce the availability of ammonium nitrate fertilizer in Afghanistan, IED makers started using potassium chlorate as a cheap and effective alternative. In 2013, 60% of IEDs in Afghanistan used potassium chlorate, making it the most common ingredient used in IEDs.[11] Potassium chlorate was also the main ingredient in the car bomb used in 2002 Bali bombings that killed 202 people. Safety Potassium chlorate should be handled with care. It reacts vigorously, and in some cases spontaneously ignites or explodes, when mixed with many combustible materials. It burns vigorously in combination with virtually any combustible material, even those normally only slightly flammable (including ordinary dust and lint). Mixtures of potassium chlorate and a fuel can ignite by contact with sulfuric acid, so it should be kept away from this reagent. Sulfur should be avoided in pyrotechnic compositions containing potassium chlorate, as these mixtures are prone to spontaneous deflagration. Most sulfur contains trace quantities of sulfur-containing acids, and these can cause spontaneous ignition - "Flowers of sulfur" or "sublimed sulfur", despite the overall high purity, contains significant amounts of sulfur acids. Also, mixtures of potassium chlorate with any compound with ignition promoting properties (ex. antimony(III) sulfide) are very dangerous to prepare, as they are extremely shock sensitive. Molecular Weight of Potassium chlorate 122.55 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Potassium chlorate 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Potassium chlorate 3 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Potassium chlorate 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Potassium chlorate 121.917303 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Potassium chlorate 121.917303 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Potassium chlorate 57.2 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Potassium chlorate 5 Computed by PubChem Formal Charge of Potassium chlorate 0 Computed by PubChem Complexity of Potassium chlorate 49.8 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Potassium chlorate 0 Computed by PubChem Defined Atom Stereocenter Count of Potassium chlorate 0 Computed by PubChem Undefined Atom Stereocenter Count of Potassium chlorate 0 Computed by PubChem Defined Bond Stereocenter Count of Potassium chlorate 0 Computed by PubChem Undefined Bond Stereocenter Count of Potassium chlorate 0 Computed by PubChem Covalently-Bonded Unit Count of Potassium chlorate 2 Computed by PubChem Compound of Potassium chlorate Is Canonicalized Yes Physical Description Potassium chlorate appears as a white crystalline solid. Forms a very flammable mixture with combustible materials. Mixture may be explosive if combustible material is very finely divided. Mixture may be ignited by friction. Contact with strong sulfuric acid may cause fires or explosions. May spontaneously decompose and ignite when mixed with ammonium salts. May explode under prolonged exposure to heat or fire. Used to make matches, paper, explosives, and many other uses. Potassium chlorate, aqueous solution appears as a colorless liquid. Denser than water. Contact may irritate skin, eyes and mucous membranes. May be toxic by ingestion. Used to make other chemicals. Ignites organic materials upon contact Product Information CAS number of Product Information 3811-04-9 EC index number of Product Information 017-004-00-3 EC number of Product Information 223-289-7 Grade of Product Information ACS,Reag. Ph Eur Hill Formula of Product Information ClKO₃ Chemical formula of Product Information KClO₃ Molar Mass of Product Information 122.55 g/mol HS Code of Product Information 2829 19 00 3811-04-9 EC index number 017-004-00-3 EC number of Product Information 223-289-7 Grade of Product Information ACS,Reag. Ph Eur Hill Formula of Product Information ClKO₃ Chemical formula of Product Information KClO₃ Molar Mass of Product Information 122.55 g/mol Potassium chlorate (KClO3) is a strong oxidizing agent that has a wide variety of uses. It is or has been a component of explosives, fireworks, safety matches, and disinfectants. As a high school or college chemistry student, you may have used it to generate oxygen in the lab. Because it is a strong oxidizer, KClO3 must be kept from contacting organic matter; reduced inorganic materials such as elemental sulfur, phosphorus; and iodine; and concentrated acids. The use of KClO3 in matches dates back to 1826, when English chemist John Walker combined it with antimony(III) sulfide, gum, and starch. When formed into matches, the mixture sometimes (but not always) ignited when struck on sandpaper. Later on, white phosphorus replaced antimony sulfide to make matches more reliable. Eventually, the toxic white phosphorus was superseded by the red allotrope. Modern safety matches contain no phosphorus; but red phosphorus is embedded in the rough surfaces of matchboxes. Upon striking, the phosphorus ignites, liberating oxygen from the match’s KClO3, which in turn ignites combustible substances (e.g., sulfur) in the matchhead.
POTASSIUM CHLORIDE
CAS NO:7447-40-7
EC NO:231-211-8
E number:E508

Potassium is a mineral that is found in many foods and is needed for several functions of your body, especially the beating of your heart.
Potassium chloride is used to prevent or to treat low blood levels of potassium (hypokalemia).
Potassium chloride (KCl, or potassium salt) is a metal halide salt composed of potassium and chlorine.
Potassium chloride is odorless and has a white or colorless vitreous crystal appearance.
The solid dissolves readily in water, and Potassium chlorides solutions have a salt-like taste.

Potassium chloride can be obtained from ancient dried lake deposits.
KCl is used as a fertilizer, in medicine, in scientific applications, and in food processing, where Potassium chloride may be known as E number additive E508.
Potassium chloride occurs naturally as the mineral sylvite, and in combination with sodium chloride as sylvinite.
The majority of the potassium chloride produced is used for making fertilizer, called potash, since the growth of many plants is limited by potassium availability.
Potassium chloride sold as fertilizer is known as muriate of potash (MOP).
The vast majority of potash fertilizer worldwide is sold as MOP.

Medical use of POTASSIUM CHLORIDE
Main article: Potassium chloride (medical use)
Potassium is vital in the human body, and potassium chloride by mouth is the common means to treat low blood potassium, although Potassium chloride can also be given intravenously.
Potassium chloride is on the World Health Organization's List of Essential Medicines.
Overdose causes hyperkalemia which can disrupt cell signaling to the extent that the heart will stop, reversibly in the case of some open heart surgeries.

Culinary use of POTASSIUM CHLORIDE
Potassium chloride can be used as a salt substitute for food, but due to Potassium chlorides weak, bitter, unsalty flavor, Potassium chloride is often mixed with ordinary table salt (sodium chloride) to improve the taste to form low sodium salt.
The addition of 1 ppm of thaumatin considerably reduces this bitterness.
Complaints of bitterness or a chemical or metallic taste are also reported with potassium chloride used in food.

Industrial
As a chemical feedstock, Potassium chloride is used for the manufacture of potassium hydroxide and potassium metal.
Potassium chloride is also used in medicine, lethal injections, scientific applications, food processing, soaps, and as a sodium-free substitute for table salt for people concerned about the health effects of sodium.

Potassium chloride is used as a supplement in animal feed to boost the potassium level in the feed.
As an added benefit, Potassium chloride is known to increase milk production.

Potassium chloride is sometimes used in solution as a completion fluid in petroleum and natural gas operations, as well as being an alternative to sodium chloride in household water softener units.

Glass manufacturers use granular potash as a flux, lowering the temperature at which a mixture melts.
Because potash imparts excellent clarity to glass, Potassium chloride is commonly used in eyeglasses, glassware, televisions, and computer monitors.


Potassium chloride is useful as a beta radiation source for calibration of radiation monitoring equipment, because natural potassium contains 0.0118% of the isotope 40K.
One kilogram of Potassium chloride yields 16350 becquerels of radiation, consisting of 89.28% beta and 10.72% gamma, with 1.46083 MeV.
In order to use off-the-shelf materials, Potassium chloride needs to be crystallized sequentially, using controlled temperature, in order to extract Potassium chloride, which is the subject of ongoing research.
Potassium chloride also emits a relatively low level of 511 keV gamma rays from positron annihilation, which can be used to calibrate medical scanners.


Potassium chloride is used in some de-icing products designed to be safer for pets and plants, though these are inferior in melting quality to calcium chloride [lowest usable temperature 12 °F (−11 °C) v. −25 °F (−32 °C)]. It is also used in various brands of bottled water.
Potassium chloride was once used as a fire extinguishing agent, used in portable and wheeled fire extinguishers.
Known as Super-K dry chemical, it was more effective than sodium bicarbonate-based dry chemicals and was compatible with protein foam.
This agent fell out of favor with the introduction of potassium bicarbonate (Purple-K) dry chemical in the late 1960s, which was much less corrosive, as well as more effective.
Potassium chloride is rated for B and C fires.

Along with sodium chloride and lithium chloride, potassium chloride is used as a flux for the gas welding of aluminium.

Potassium chloride is also an optical crystal with a wide transmission range from 210 nm to 20 µm. While cheap, KCl crystals are hygroscopic.
This limits Potassium chlorides application to protected environments or short-term uses such as prototyping. Exposed to free air, KCl optics will "rot".
Whereas KCl components were formerly used for infrared optics, Potassium chloride has been entirely replaced by much tougher crystals such as zinc selenide.

Chemical properties
Solubility
Potassium chloride is soluble in a variety of polar solvents.

Solutions of Potassium chloride are common standards, for example for calibration of the electrical conductivity of (ionic) solutions, since KCl solutions are stable, allowing for reproducible measurements.
In aqueous solution, Potassium chloride is essentially fully ionized into solvated K+ and Cl– ions.

Redox and the conversion to potassium metal
Although potassium is more electropositive than sodium, KCl can be reduced to the metal by reaction with metallic sodium at 850 °C because the more volatile potassium can be removed by distillation (see Le Chatelier's principle):

KCl(l) + Na(l) ⇌ NaCl(l) + K(g)
This method is the main method for producing metallic potassium.
Electrolysis (used for sodium) fails because of the high solubility of potassium in molten KCl.

Physical properties
Potassium chloride adopts a face-centered cubic structure.
Potassium chlorides lattice constant is roughly 6.3 Å. Crystals cleave easily in three directions.

Some other properties are
Transmission range: 210 nm to 20 µm
Transmittivity = 92% at 450 nm and rises linearly to 94% at 16 µm
Refractive index = 1.456 at 10 µm
Reflection loss = 6.8% at 10 µm (two surfaces)
dN/dT (expansion coefficient)= −33.2×10−6/°C
dL/dT (refractive index gradient)= 40×10−6/°C
Thermal conductivity = 0.036 W/(cm·K)
Damage threshold (Newman and Novak): 4 GW/cm2 or 2 J/cm2 (0.5 or 1 ns pulse rate); 4.2 J/cm2 (1.7 ns pulse rate Kovalev and Faizullov)
As with other compounds containing potassium, KCl in powdered form gives a lilac flame.

Potassium chloride is extracted from minerals sylvite, carnallite, and potash.
Potassium chloride is also extracted from salt water and can be manufactured by crystallization from solution, flotation or electrostatic separation from suitable minerals.
Potassium chloride is a by-product of the production of nitric acid from potassium nitrate and hydrochloric acid.

The vast majority of potassium chloride is produced as agricultural and industrial grade potash in Saskatchewan, Canada, as well as Russia and Belarus.
Saskatchewan alone accounted for over 25% of the world's potash production in 2017.

Laboratory methods
Potassium chloride is inexpensively available and is rarely prepared intentionally in the laboratory.
Potassium chloride can be generated by treating potassium hydroxide (or other potassium bases) with hydrochloric acid:

KOH + HCl → KCl + H2O
This conversion is an acid-base neutralization reaction. The resulting salt can then be purified by recrystallization.
Another method would be to allow potassium to burn in the presence of chlorine gas, also a very exothermic reaction:
2 K + Cl2 → 2 KCl


Properties
Chemical formula KCl
Molar mass 74.555 g·mol−1
Appearance white crystalline solid
Odor odorless
Density 1.984 g/cm3
Melting point 770 °C (1,420 °F; 1,040 K)
Boiling point 1,420 °C (2,590 °F; 1,690 K)
Solubility in water
277.7 g/L (0 °C)
339.7 g/L (20 °C)
540.2 g/L (100 °C)
Solubility Soluble in glycerol, alkalies
Slightly soluble in alcohol Insoluble in ether
Solubility in ethanol 0.00288 g/L (25 °C)
Acidity (pKa) ~7
Magnetic susceptibility (χ) −39.0·10−6 cm3/mol
Refractive index (nD) 1.4902 (589 nm)

Potassium Chloride is a metal halide composed of potassium and chloride.
Potassium maintains intracellular tonicity, is required for nerve conduction, cardiac, skeletal and smooth muscle contraction, production of energy, the synthesis of nucleic acids, maintenance of blood pressure and normal renal function.
This agent has potential antihypertensive effects and when taken as a nutritional supplement may prevent hypokalemia.
Potassium chloride appears as white colorless cubic crystals.
Strong saline taste.
Potassium chloride is a metal chloride salt with a K(+) counterion.
Potassium chloride has a role as a fertilizer.
Potassium chloride is a potassium salt and an inorganic chloride.

Household & Commercial/Institutional Products
Information on 264 consumer products that contain Potassium chloride in the following categories is provided:
• Auto Products
• Inside the Home
• Landscaping/Yard
• Personal Care
• Pesticides
• Pet Care

Industry Uses of POTASSIUM CHLORIDE
Agricultural chemicals (non-pesticidal)
Intermediates
Laboratory chemicals
Metal Feed Material
Plating agents and surface treating agents
Processing aids, not otherwise listed
Processing aids, specific to petroleum production

Consumer Uses of POTASSIUM CHLORIDE
Agricultural products (non-pesticidal)
Air care products
Anti-freeze and de-icing products
Building/construction materials not covered elsewhere
Electrical and electronic products
Food processing
Laboratory Use
Metal products not covered elsewhere
Non-TSCA use
Paints and coatings
Paper products
Plastic and rubber products not covered elsewhere

Industry Processing Sectors
Agriculture, forestry, fishing and hunting
All other basic inorganic chemical manufacturing
Fabricated metal product manufacturing
Miscellaneous manufacturing
Oil and gas drilling, extraction, and support activities
Pesticide, fertilizer, and other agricultural chemical manufacturing
Pharmaceutical and medicine manufacturing
Primary metal manufacturing
Services

CAS number 7447-40-7
EC number 231-211-8
Grade ACS,ISO,Reag. Ph Eur
Hill Formula ClK
Chemical formula KCl
Molar Mass 74.56 g/mol

Boiling point 1413 °C (1013 hPa)
Density 1.98 g/cm3 (20.0 °C)
Melting Point 770 °C
pH value 5.5 - 8.5 (50.0 g/l, H₂O, 20.0 °C)
Bulk density 1000 kg/m3
Solubility 347 g/l

What is potassium chloride, and how does Potassium chloride work (mechanism of action)?
Potassium preparations are used for supplementing potassium in order to treat or prevent low potassium levels in the blood (hypokalemia).
Potassium is a major mineral (electrolyte) that is important for the function of every cell in the body.
For example, Potassium chloride is important in nerve conduction, muscle contraction, and kidney function.
Normal daily dietary intake of potassium is 40-150 mEq. Potassium deficiency occurs when potassium loss exceeds intake.
Potassium depletion may be caused by excessive vomiting or diarrhea, diabetic ketoacidosis, diuretics (for example, furosemide [Lasix]), starvation, and rare disorders of the adrenal glands.

Potassium chloride is a medicine used to prevent or treat low potassium levels in the body.
Potassium is a mineral that your body needs for proper functioning of the heart, muscles, kidneys, nerves, and digestive system.
Certain diseases, illnesses, and drugs can remove potassium from the body.
Potassium chloride works by replacing lost potassium and preventing a deficiency.

Foods with potassium chloride
According to Caroline West Passerrello, MS, RDN, LDN, a spokesperson for the Academy of Nutrition and Dietetics, potassium chloride can be found not only in salt substitutes, but also in these foods:

snack bars
soups
potato chips
cereals
frozen entrees


What is potassium chloride?
Answer: Potassium chloride is a common, naturally occurring mineral.
Potassium chloride is typically extracted from the ground via solution potash mining; that is, water is injected into the ground where potassium chloride deposits exist, the water dissolves the potassium chloride and the saturated brine is pumped back to the surface and the water is evaporated leaving the potassium chloride behind.
Potassium chloride may also be extracted from the sea, in a similar process that is used to produce some sea salts.
Potassium chloride is one of the minerals present in sea water that can be extracted through traditional solar evaporation.


Is potassium chloride safe to eat?
Answer: Yes. Potassium chloride has been affirmed as Generally Recognized As Safe (GRAS) by the U.S. Food and Drug Administration (FDA) as a multipurpose ingredient in foods with no limitation other than current good manufacturing practice (cGMP), which means food manufacturers can use it at levels necessary to achieve its intended technological effect in a food product.


Is potassium chloride harmful to me?
Answer: The safety of oral consumption of potassium chloride is supported by its long history of use in foods, and its regulatory acceptance for food use in the U.S. and by numerous international scientific bodies and regulatory authorities.
The acceptable daily intake (ADI) for chloride salts (including potassium chloride) is “not limited,” which is indicative of their very low toxicity to humans.


What is potassium chloride used for in food?
Answer: According to the GRAS-affirmed uses of potassium chloride, it is used as a flavor enhancer, flavoring agent, nutrient supplement, pH control agent, and stabilizer or thickener.
However, potassium chloride is used for two main purposes in food products.
The first is to provide potassium enrichment to foods.
The second is as a salt replacer to reduce the sodium content in foods.
Like salt (aka sodium chloride), potassium chloride provides a salty flavor and can also often play other functional roles (e.g. microbial management, protein modification, flavor enhancement) that impacts the taste, texture, and shelf life of food products.


What are some food products that contain potassium chloride?
Answer: Potassium chloride is widely used as a salt replacer or to provide potassium enrichment in many different food products including:


Baby formulas
Cereals
Frozen entrees
Meats
Snack foods, such as chips or crisps
Sports/electrolyte drinks
Soups
Sauces
Snack/meal bars

What are other non-food uses of potassium chloride?
Answer: By far the largest use for potassium chloride is as a fertilizer.
Like humans and many other living organisms, plants also need potassium to flourish. Fertilizer/industrial grade potassium chloride is commonly referred to as potash.
Potassium chloride is also used in the pharmaceutical industry in dialysis fluids, among other things.
Potassium chloride in dialysis fluid helps keep the body’s electrolytes in balance.

Is there another way to reduce salt/sodium without using potassium chloride?
Answer: For home cooking, one could use herbs and seasonings to provide flavor to foods.
For commercially prepared items, flavors and herbs may provide or enhance the taste of foods; but, a food manufacturer would still need to consider the other basic functional roles of salt (e.g., texture, microbial management) in the food product.
Depending on the functional role, one may be able use other non-sodium substitutes, e.g. magnesium chloride and calcium chloride; however, they can sometimes create “off” flavors.


Agricultural use POTASSIUM CHLORIDE
Potassium chloride is the most widely applied K fertilizer because of its relatively low cost and because it includes more K than most other sources: 50 to 52 percent K (60 to 63 percent K₂O) and 45 to 47 percent Cl⁻.
More than 90 percent of global potash production goes into plant nutrition.
Farmers spread KCL onto the soil surface prior to tillage and planting.
Potassium chloride may also be applied in a concentrated band near the seed. Since dissolving fertilizer will increase the soluble salt concentration, banded KCl is placed to the side of the seed to avoid damaging the germinating plant.
Potassium chloride rapidly dissolves in soil water.
The K⁺ will be retained on the negatively charged cation exchange sites of clay and organic matter.
The Cl⁻ portion will readily move with the water.

An especially pure grade of KCl can be dissolved for fluid fertilizers or applied through irrigation systems.
Potassium chloride is found in various shades and particle sizes.
Potassium chloride is primarily used as a source of K nutrition.
However, there are regions where plants respond favorably to application of Cl⁻.
Potassium chloride is usually the preferred material to meet this need.
There are no significant impacts on water or air associated with normal application rates of KCl.
Elevated salt concentrations surrounding the dissolving fertilizer may be the most important factor to consider.


Non-agricultural use POTASSIUM CHLORIDE
Potassium is essential for human and animal health.

Potassium chloride can be used as a salt substitute for individuals on a restricted salt (sodium chloride) diet.
Potassium chloride is used as a deicing agent and has a fertilizing value after the ice melts.
Potassium chloride is also used in water softeners to replace calcium in water.
Production

Deeply buried potash deposits exist throughout the world.
The dominant mineral is sylvite mixed with halite (sodium chloride), which forms a mixed mineral called sylvinite.
Most K minerals are harvested from ancient marine deposits deep beneath the Earth’s surface.
They are then transported to a processing facility where the ore is crushed and the K salts are separated from the sodium salts.
The color of Potassium chloride can vary from red to white, depending on the source of the sylvinite ore.
The reddish tint comes from trace amounts of iron oxide.
There are no agronomic differences between the red and white forms of Potassium chloride.

Some Potassium chloride is produced by injecting hot water deep into the ground to dissolve the soluble sylvinite mineral and then pumping the brine back to the surface, where the water evaporates.
Solar evaporation is used to recover valuable potash salts from brine water in Utah’s Dead Sea and Great Salt Lake, for example.

Potassium chloride is the most widely used potassium source worldwide, and due to its continuous use, the accumulation of its salts in the soil and in plants is becoming more common.
Excess available ions can cause a series of physiological disturbances in organisms and can become a biocide in the soil.
The objective of this study was to evaluate the effects of the application of KCl and banana crop residues on soil chloride content, microbial activity, and soil ammonification.

About this substance
Helpful information
Potassium chloride is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 to < 100 000 tonnes per annum.
Potassium chloride is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses POTASSIUM CHLORIDE
Potassium chloride is used in the following products: laboratory chemicals.
Potassium chloride to the environment of this substance is likely to occur from: indoor use as reactive substance and indoor use in close systems with minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters).

Article service life
Release to the environment of this substance can occur from industrial use: in processing aids at industrial sites.
Other release to the environment of this substance is likely to occur from: indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment).
This substance can be found in products with material based on: plastic (e.g. food packaging and storage, toys, mobile phones) and paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper).

Widespread uses by professional workers
Potassium chloride is used in the following products: laboratory chemicals, pH regulators and water treatment products and fertilisers.
Potassium chloride is used in the following areas: scientific research and development, health services and agriculture, forestry and fishing.
Potassium chloride is used for the manufacture of: chemicals.
Release to the environment of this substance can occur from industrial use: formulation of mixtures, formulation in materials, in processing aids at industrial sites and in the production of articles.
Potassium chloride to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Formulation or re-packing
Potassium chloride is used in the following products: pH regulators and water treatment products, laboratory chemicals, metal surface treatment products, non-metal-surface treatment products and paper chemicals and dyes.
Release to the environment of this substance can occur from industrial use: formulation of mixtures, manufacturing of the substance, formulation in materials, in processing aids at industrial sites, in the production of articles, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid, for thermoplastic manufacture, as processing aid and of substances in closed systems with minimal release.

Uses at industrial sites
Potassium chloride is used in the following products: laboratory chemicals, fertilisers and pH regulators and water treatment products.
Potassium chloride has an industrial use resulting in manufacture of another substance (use of intermediates).
Potassium chloride is used in the following areas: formulation of mixtures and/or re-packaging, health services and scientific research and development.
Potassium chloride is used for the manufacture of: chemicals and plastic products.
Release to the environment of this substance can occur from industrial use: in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid, manufacturing of the substance, in the production of articles and of substances in closed systems with minimal release.

Manufacture
Release to the environment of this substance can occur from industrial use: manufacturing of the substance, in processing aids at industrial sites, formulation of mixtures, formulation in materials, in the production of articles, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid, for thermoplastic manufacture, as processing aid and of substances in closed systems with minimal release.

IUPAC names
Kelp salt
Kelp salt , muriate of potash
POTASSIUM CHLORIDE
Potassium Chloride
Potassium chloride
potassium chloride
Potassium chloride
potassium chloride
potassium cloride
potassium; chloride
potassium;chloride
Reaction mass of potassium and chlorine
Reaction mass of potassium chloride and sodium chloride EC: 913-353-9

Potassium Chloride (Klor-Con M, K-Tab, Klor-Con, Micro-K) is a potassium supplement used to prevent and to treat low potassium.
Potassium is important for the heart, muscles, and nerves. Too much or too little potassium in the body can cause serious problems.
Potassium chloride is more popular than comparable drugs.

Empirical formula KCl
Molar mass (M) 74,56 g/mol
Density (D) 1,98 g/cm³
Boiling point (bp) 1413 °C
Melting point (mp) 773 °C

Preparation of Potassium Chloride
Potassium chloride can be directly extracted from some minerals such as carnallite, sylvite, and potash.
This compound can also be extracted from seawater.Potassium chloride is produced as a by-product during the synthesis of nitric acid from hydrochloric acid and potassium nitrate.

In the laboratory,Potassium chloride can be prepared by reacting bases of potassium (such as potassium hydroxide) with hydrochloric acid.
The ensuing acid-base neutralization reaction will yield water and potassium chloride as the products.


Properties of Potassium Chloride
In the solid-state,Potassium chloride is readily soluble in many polar solvents, including water.
The salt is ionized into the K+ cation and the Cl– anions in these polar solvents.
Some other physical and chemical properties of potassium chloride are discussed in this subsection.

Physical Properties
The crystals of potassium chloride are made up of face-centred cubic (FCC) unit cells.
The molar mass of KCl is 74.5513 grams/mol.
Potassium chlorides density in the solid, crystalline form is 1.984 grams per cubic centimetre.
The melting and boiling points of potassium chloride are 1040 K and 1690 K respectively.
At 0oC, 20oC, and 100oC, the solubility of KCl in water corresponds to 217.1 g/L, 253.9 g/L, and 360.5 g/L respectively.
Potassium chloride is highly soluble in alcohols but not soluble in ether (organic compounds with the formula R-O-R’).

Chemical Properties
Since potassium chloride is completely ionized into K+ and Cl– ions in water, the resulting aqueous solution exhibit high values of electrical conductivity.
The reduction of potassium chloride into metallic can be achieved with the help of metallic sodium, despite the lower electropositivity of sodium when compared to potassium.
Potassium chloride is achieved by heating the KCl with metallic sodium to a temperature of 850 o
The chemical equation for this reaction is: KCl + Na ⇌ NaCl + K
Potassium chloride can be noted that when the solid form of potassium chloride is subjected to a flame test, it burns with a pale violet or a lilac-coloured flame, as is the case with most other potassium-containing compounds.

Uses of Potassium Chloride
Potassium chloride has a wide range of medical and industrial applications.
Potassium chloride is also an integral part of fertilizer production.

Potassium chloride is used in the manufacture of potash, an important form of fertilizer that enriches soils with potassium which promotes the growth of plant life.
Potassium availability is usually the key inhibitor for plant growth.
Potassium chloride, acting as a source of potassium, can increase the availability of potassium in the soil.
The potash fertilizers made from KCl (called Muriate of Potash, or MOP) make up the majority of potash fertilizers sold worldwide.
The medical treatment of low blood pressure commonly employs potassium chloride as a part of the medication.

Potassium chloride is used as a salt substitute in food where a low concentration of sodium in the salt is desired in order to reduce the risk of high blood pressure.
Potassium chloride is one of the important raw materials required in the manufacture of potassium metal.
The metal halide salt Potassium chloride is also used in the manufacture of soaps. Water softening units can involve the use of potassium chloride as an alternative to sodium chloride as well.
The use of potassium chloride as a source of beta radiation is extremely useful in calibrating radiation monitoring equipment.
The flux required in the oxy-fuel welding of aluminium consists of potassium chloride along with the chloride salts of lithium and sodium.

Potassium chloride has the potential to be used as a fire extinguishing agent was initially used in portable and wheeled fire extinguishers.
Potassium chloride was referred to as the Super-K dry chemical and was known to be more effective when compared to sodium bicarbonate-based dry chemicals for this purpose.
Furthermore, potassium chloride is known to be compatible with protein foam.
However, the use of potassium chloride for this purpose gradually reduced with the introduction of potassium bicarbonate (also referred to as Purple-K) dry chemical towards the end of the 1960s.
Purple-K was found to be far less corrosive (and more effective) than potassium chloride for this purpose.

Potassium chloride (KCI) is a white crystal or crystalline powder metal halide salt composed of potassium and chloride.
The solid odorless, white, or colorless vitreous crystals readily dissolve in water.
Potassium chlorides solutions have a salt-like taste.
The non-combustible compound is used in the manufacture of buffers, fertilizers, and explosives as well as in medicine, food processing, and scientific applications.

DESCRIPTION
Potassium chloride is a metal halide salt with the molecular formula KCI or CIK.
Potassium chlorides CAS is 7447-40-7. The white, colorless crystals are soluble in water and insoluble in ethanol.


Industrial uses of Potassium chloride include:
Agricultural chemicals (non-pesticidal)
Intermediates
Laboratory chemicals
Plating agents and surface treating agents
Processing aids, not otherwise listed
Processing aids, specific to petroleum production
Consumer uses include:

Agricultural Products (non-pesticidal)
Anti-Freeze and De-icing Products
Building/Construction Materials not covered elsewhere
Electrical and Electronic Products
Metal Products not covered elsewhere
Paints and Coatings
Water Treatment Products

Potassium chloride is produced in quantity from mined potash ores and from salt-containing surface waters.
The chemical is extracted from minerals sylvite, carnallite, and potash.
Potassium chloride is a by-product of nitric acid production from potassium nitrate and hydrochloric acid.

Potassium chloride (poe-TAS-ee-yum KLOR-ide) occurs as a white or colorless crystalline solid or powder.
Potassium chloride is odorless, but has a strong saline (salty) taste.
Potassium chloride occurs naturally in the minerals sylvite, carnallite, kainite, and sylvinite.
Potassium chloride also occurs in sea water at a concentration of about 0.076 percent (grams per milliliter of solution).
Potassium chloride is the most abundant compound of the element potassium and has the greatest number of applications of any salt of potassium.

By far t
potassıum chloride
potassıum cholorate; Potash Chlorate; Chloric Acid, Potassium Salt; Berthollet salt; Chlorate of Potash; cas no: 3811-04-9
potassıum cholorate
SYNONYMS Tripotassium citrate; Citric acid potassium salt 2-hydroxy-1,2,3-Propanetricarboxylic acid, tripotassium salt; Potassium citrate tribasic monohydrate; Potassium citrate tribasic preparation; Tripotassium citrate monohydrate; Tripotassium citrate monohydrate; CAS NO. 866-84-2 (Anhydrous) 6100-05-6 (Monohydrate)
POTASSIUM CITRATE
POTASSIUM COCOYL GLUTAMATE, Nom INCI : POTASSIUM COCOYL GLUTAMATE. Ses fonctions (INCI). Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
POTASSIUM COCOYL HYDROLYZED COLLAGEN
cas no 7778-50-9 Potassium dichromate (VI); Potassium bichromate; Kaliumdichromat; Dicromato de potasio; Dichromate de potassium; Bichromate of potash; Dichromic acid, dipotassium salt; Ddipotassium Dichromate; Chromic acid, dipotassium salt; Iopezite;
POTASSIUM DICHROMATE
cas no 13943-58-3 (anhydrous), 14459-95-1 (trihydrate) Tetrapotassium hexakis Ferrate; Yellow Prussiate of potash; KFCT; Potassium ferrocyanide(II) trihydrate; Potassium ferrocyanide trihyrate; Potassium Hexacyanoferrate(II)Trihydrate; Yellow potash Prussiate;
POTASSIUM FERRO CYANIDE
GOLD(I) POTASSIUM CYANIDE GOLD POTASSIUM CYANIDE POTASSIUM AUROCYANIDE POTASSIUM CYANOAURATE POTASSIUM DICYANOAURATE(+1) POTASSIUM DICYANOAURATE(I) POTASSIUM GOLD(+1)CYANIDE POTASSIUM GOLD CYANIDE POTASSIUM GOLD(I) CYANIDE Potassium gold(III) cyanide potassium tetrakis(cyano-c)aurate Aurate(1-),bis(cyano-C),potassium Aurate(1-),bis(cyano-C)-,potassium Aurouspotassiumcyanide bis(cyano-c)-aurate(1-potassium Potassiumaurcyanide Gold (1) Potassium Cyanide potassium dicyanoaurate POTASSIUM DICYANOAURATE(I), 99.98% GOLD POTASSIUM CYANIDE 99.99% CAS:13967-50-5
POTASSIUM HEXAFLOROZIRCONATE
POTASSIUM HYALURONATE, N° CAS : 31799-91-4. Nom INCI : POTASSIUM HYALURONATE. Nom chimique : Hyaluronic acid, potassium salt. Ses fonctions (INCI). Agent d'entretien de la peau : Maintient la peau en bon état
POTASSIUM HYDROGEN CARBONATE
SYNONYMS Potassium hydrate; Caustic potash; Lye; potassa; CAS NO. 1310-58-3
POTASSIUM HYDROXIDE
CAS number: 1310-58-3
EC number: 215-181-3

Potassium Hydroxide is an odorless, white or slightly yellow, flakey or lumpy solid which is often in a water solution.
Potassium hydroxide is used in making soap, as an electrolyte in alkaline batteries and in electroplating, lithography, and paint and varnish removers.
Liquid drain cleaners contain 25 to 36% of Potassium Hydroxide.

Uses of Potassium hydroxide
-Aquafarming, or the farming of aquatic organisms
-Relatived to the maintenance and repair of automobiles, products for cleaning and caring for automobiles (auto shampoo, polish/wax, undercarriage treatment, brake grease)
-Related to food and beverage service activities
-Related to the building or repair of ships, pleasure boats, or sporting boats
-Bricks or related to bricklaying/masonry
-Roofing materials or roofing activities
-Materials used in the building process, such as flooring, insulation, caulk, tile, wood, glass, etc.

Uses of Potassium hydroxide
-Flooring materials (carpets, wood, vinyl flooring), or related to flooring such as wax or polish for floors
-Related to cement, concrete, or asphalt materials
-Wall construction materials, or wall coverings
-Includes preservatives used in cosmetics, film, wood preserving agents, foods, etc
-Casting agents or molding compounds for plastics, sand, or metals

Potassium hydroxide is used in various chemical, industrial and manufacturing applications.
Potassium hydroxide is also a precursor to other potassium compounds.
Potassium hydroxide is used in food to adjust pH, as a stabilizer, and as a thickening agent.
This ingredient has been considered as generally safe as a direct human food ingredient by the FDA, based upon the observance of several good manufacturing practise conditions of use.

Recently, Potassium hydroxide has been studied for efficacy and tolerability in the treatment of warts.
Potassium hydroxide was determined that topical KOH solution was found to be a safe and effective treatment of plane warts solution was found to be a safe and effective treatment of plane warts
Potassium hydroxide is a chemical that comes as a powder, flakes, or pellets.
Potassium hydroxide is commonly known as lye or potash. Potassium hydroxide is a caustic chemical.

Potassium hydroxide is an inorganic compound with the formula KOH and is commonly called caustic potash.
Along with sodium hydroxide (NaOH), Potassium hydroxide is a prototypical strong base.
Potassium hydroxide has many industrial and niche applications, most of which exploit its caustic nature and its reactivity toward acids.
An estimated 700,000 to 800,000 tonnes were produced in 2005. Potassium hydroxide is noteworthy as the precursor to most soft and liquid soaps, as well as numerous potassium-containing chemicals.

IDENTIFICATION AND USE:
Potassium hydroxide (KOH) is commercialized as a solid or as a solution with varying concentrations.
Potassium hydroxide is used in soap manufacture; drain and pipeline cleaners; bleaching agents; manufacture of potassium carbonate and tetra potassium pyrophosphate, an electrolyte in alkaline storage batteries and some fuel cells, absorbent for carbon dioxide and hydrogen sulfide; dyestuffs; liquid fertilizers; food additive; herbicides; electroplating; mercerizing; and paint removers.

Uses of Potassium hydroxide
-Catalyst
-Modifier used for chemical, when chemical is used in a laboratory
-Detergents with wide variety of applications; modifiers included when known
-Related to dishwashing products (soaps, rinsing agents, softeners, etc)
-Products or chemicals found or used in drycleaning establishments
-Products used in an enclosed setting, such as boiler and tank cleansing agents, and drain cleaners

Potassium hydroxide(KOH) is highly basic, forming strongly alkaline solutions in water and other polar solvents.
These solutions are capable of deprotonating many acids, even weak ones.
Potassium hydroxide is used to make soft soap, in scrubbing and cleaning operations, as a mordant for woods, in dyes and colorants, and for absorbing carbon dioxide.
Other principle uses of caustic potash are in the preparation of several potassium salts, acid-base titrations, and in orgainic sytheses.

Also, Potassium hydroxide is an electrolyte in certain alkaline storage batteries and fuel cells.
Potassium hydroxide is used in neutralization reactions to yield potassium salts.
Aqueous potassium hydroxide is employed as the electrolyte in alkaline batteries based on nickel-cadmium and manganese dioxide-zinc.
Alcoholic Potassium hydroxide solutions are also used as an effective method for cleaning glassware.
Potassium hydroxide works well in the manufacture of biodiesel by catalyzing transesterification of the triglycerides in vegetable oil.

USES of Potassium hydroxide
KOH and NaOH can be used interchangeably for a number of applications, although in industry, NaOH is preferred because of its lower cost.

The precursor to other potassium compounds
Many potassium salts are prepared by neutralization reactions involving KOH.
The potassium salts of carbonate, cyanide, permanganate, phosphate and various silicates are prepared by treating either the oxides or the acids with KOH.
The high solubility of potassium phosphate is desirable in fertilizers.

Manufacture of soft soaps
The saponification of fats with KOH is used to prepare the corresponding "potassium soaps", which are softer than the more common sodium hydroxide-derived soaps.
Because of their softness and greater solubility, potassium soaps require less water to liquefy, and can thus contain more cleaning agents than liquefied sodium soaps.

As an electrolyte
Aqueous potassium hydroxide is employed as the electrolyte in alkaline batteries based on nickel-cadmium, nickel-hydrogen, and manganese dioxide-zinc.
Potassium hydroxide is preferred over sodium hydroxide because its solutions are more conductive.
The nickel-metal hydride batteries in the Toyota Prius use a mixture of potassium hydroxide and sodium hydroxide.
Nickel–iron batteries also use potassium hydroxide electrolytes.

Food industry
In food products, potassium hydroxide acts as a food thickener, pH control agent and food stabilizer.
The FDA considers Potassium hydroxide generally safe as a direct food ingredient when used in accordance with Good Manufacturing Practices.
Potassium hydroxide is known in the E number system as E525.

Niche applications
Like sodium hydroxide, potassium hydroxide attracts numerous specialized applications, virtually all of which rely on its properties as a strong chemical base with its consequent ability to degrade many materials.
For example, in a process commonly referred to as "chemical cremation" or "resomation", potassium hydroxide hastens the decomposition of soft tissues, both animal and human, to leave behind only the bones and other hard tissues.
Entomologists wishing to study the fine structure of insect anatomy may use a 10% aqueous solution of Potassium hydroxide to apply this process.

In chemical synthesis, the choice between the use of Potassium hydroxide and the use of NaOH is guided by the solubility or keeping the quality of the resulting salt.
The corrosive properties of potassium hydroxide make it a useful ingredient in agents and preparations that clean and disinfect surfaces and materials that can themselves resist corrosion by Potassium hydroxide.
Potassium hydroxide is also used for semiconductor chip fabrication (for example anisotropic wet etching).
Potassium hydroxide is often the main active ingredient in chemical "cuticle removers" used in manicure treatments.

Because aggressive bases like Potassium hydroxide damage the cuticle of the hair shaft, potassium hydroxide is used to chemically assist the removal of hair from animal hides.
The hides are soaked for several hours in a solution of Potassium hydroxide and water to prepare them for the unhairing stage of the tanning process.
This same effect is also used to weaken human hair in preparation for shaving.
Preshave products and some shave creams contain potassium hydroxide to force open the hair cuticle and to act as a hygroscopic agent to attract and force water into the hair shaft, causing further damage to the hair.
In this weakened state, the hair is more easily cut by a razor blade.

Potassium hydroxide is used to identify some species of fungi.
A 3–5% aqueous solution of Potassium hydroxide is applied to the flesh of a mushroom and the researcher notes whether or not the colour of the flesh changes.
Certain species of gilled mushrooms, boletes, polypores, and lichens are identifiable based on this colour-change reaction.

Potassium hydroxide, also known as lye is an inorganic compound with the chemical formula KOH.
Also commonly referred to as caustic potash, Potassium hydroxide is a potent base that is marketed in several forms including pellets, flakes, and powders.
Potassium hydroxide is used in various chemical, industrial and manufacturing applications.
Potassium hydroxide is also a precursor to other potassium compounds.
Potassium hydroxide is used in food to adjust pH, as a stabilizer, and as a thickening agent.

This ingredient has been considered as generally safe as a direct human food ingredient by the FDA, based upon the observance of several good manufacturing practise conditions of use.
In addition to the above uses, potassium hydroxide is also used in making soap, as an electrolyte in alkaline batteries and in electroplating, lithography, and paint and varnish removers.
Liquid drain cleaners contain 25 to 36% of potassium hydroxide.
Medically, potassium hydroxide (KOH) is widely used in the wet mount preparation of various clinical specimens for microscopic visualization of fungi and fungal elements in skin, hair, nails, and even vaginal secretions.
Recently, Potassium hydroxide has been studied for efficacy and tolerability in the treatment of warts.
Potassium hydroxide was determined that topical Potassium hydroxide solution was found to be a safe and effective treatment of plane warts.

Uses of Potassium hydroxide
-Agent for soaking up liquid
-General adhesives and binding agents for a variety of uses
-Adhesion of molecules to a surface
-Relating to agricultural, including the raising and farming of animals and growing of crops
-Related to animals (but non-veterinary) e.g., animal husbandry, farming of animals/animal production, raising of animals for food or fur, animal feed, products for household pets
-Related to dairy cattle, the operation of dairy facilities, or manufacture of dairy products
-Products used on crops, or related to the growing of crops

Uses of Potassium hydroxide
-Used to prevent adhesion
-Antifreezing agents, or de-icing products
-Anti-incrustator, additional information unknown
-Type of pesticide used to destroy or inhibit the growth of disease-causing mechanisms, can be impregnated into clothing
-Agent to prevent lime formation
-Spray powder used to make air gap between printed sheets of paper
-Antishell, no additional information
-Products used outside the home (includes outdoor toys such as sandboxes, canopies and shelters, garden statues, outdoor lighting and seating, outdoor power equipment, etc

Furniture, or the manufacturing of furniture (can include chairs and tables, and more general furniture such as mattresses, patio furniture, etc.)
Consumer use home grills, for outdoor use, or grill cleaning products
Laundry products (such as cleaning/washing agents), or laundry facilities
Manufacturing of or related to machinery, for production of cement or food, air/spacescraft machinery, electrical machinery, etc
Manufacturing liquid soap; mordant for wood; absorbing CO2; mercerizing cotton; print and varnish removers; electroplating, photoengraving and lithography; printing inks; in analytical chemistry for alkalimetric titrations; in organic synthesis.
Pharmaceutic aid (alkalizer).

Product data and typical properties
Formula: KOH
Molecular weight: 56.1
Specific Gravity (20°C): 1.5 (typical)
Crystallisation temperature: 5°C (approx.)
Appearance: near clear colourless liquid
Assay: % w/w KOH 50.0 ± 1.0
Sodium Hydroxide: % as NaOH <0.8%
Potassium Chloride: % as KCl <0.006%
Potassium Sulphate: % as K2SO4 <0.005%
Iron: % as Fe <0.0005%
Mercury: % as Hg <0.00005%
Heavy Metals: % as Pb <0.0010%

Industry Uses
-Agricultural chemicals (non-pesticidal)
-Bleaching agents
-Cleaning
-Corrosion inhibitors and anti-scaling agents
-Finishing agents
-Food and Beverage Sanitation Chemicals
-Functional fluids (open systems)
-Intermediates
-Ion exchange agents
-Lubricants and lubricant additives
-Oxidizing/reducing agents
-PH Adjuster
-Plasticizers
-Plating agents and surface treating agents
-Process regulators
-Processing aids, not otherwise listed
-Processing aids, specific to petroleum production
-Refining
-Repackaged and sold to various customers; enduse unknown
-Solids separation agents
-Solvents (for cleaning and degreasing)
-Solvents (which become part of product formulation or mixture)
-Surface active agents
-Waste water
-chemical distribution

Properties and structure
Potassium hydroxide exhibits high thermal stability. Because of its high stability and relatively low melting point, Potassium hydroxide is often melt-cast as pellets or rods, forms that have a low surface area and convenient handling properties.
These pellets become tacky in the air because Potassium hydroxide is hygroscopic. Most commercial samples are ca. 90% pure, the remainder being water and carbonates.
Potassium hydroxides dissolution in water is strongly exothermic. Concentrated aqueous solutions are sometimes called potassium lyes. Even at high temperatures, solid Potassium hydroxide does not dehydrate readily.

Manufacture
Historically, KOH was made by adding potassium carbonate to a strong solution of calcium hydroxide (slaked lime).
The salt metathesis reaction results in precipitation of solid calcium carbonate, leaving potassium hydroxide in solution:
Ca(OH)2 + K2CO3 → CaCO3 + 2 KOH
Filtering off the precipitated calcium carbonate and boiling down the solution gives potassium hydroxide ("calcinated or caustic potash").
This method of producing potassium hydroxide remained dominant until the late 19th century when it was largely replaced by the current method of electrolysis of potassium chloride solutions.

The method is analogous to the manufacture of sodium hydroxide (see chloralkali process):
2 KCl + 2 H2O → 2 KOH + Cl2 + H2
Hydrogen gas forms as a byproduct on the cathode; concurrently, anodic oxidation of the chloride ion takes place, forming chlorine gas as a byproduct.
Separation of the anodic and cathodic spaces in the electrolysis cell is essential for this process.

Chemical Properties
Pure potassium hydroxide is a solid at room temperature, though Potassium hydroxide is often sold as a liquid.
Potassium hydroxide is a strong alkaline substance that dissociates completely in water into the potassium ion (K+) and hydroxide ion (OH-).
The dissolution in water generates heat, so a vigorous reaction can occur when potassium hydroxide is added to water.
The vapor pressure of the substance is very low and the melting point is high. Potassium hydroxide solutions attack aluminium and its alloys under formation of hydrogen gas.
Potassium hydroxide can be neutralised with acids (e.g. hydrochloric acid) giving the corresponding potassium salts of the acids, which are usually pH neutral and non-corrosive.

Uses
Potassium hydroxide has many different functions and uses.
Potassium hydroxide is primarily used as an intermediate in industrial manufacturing processes, such as the manufacture of fertilisers, potassium carbonate or other potassium salts and organic chemicals.
Potassium hydroxide is also used in the manufacture of detergents and in alkaline batteries.
Small-scale uses include drain cleaning products, paint removers and degreasing agents.
manufacture of liquid soap;
mordant for wood;
absorbing CO2;
mercerizing cotton;
paint and varnish removers;
electroplating, photoengraving and lithography;
printing inks;
in analytical chemistry and in organic syntheses.
Pharmaceutic aid (alkalizer).

Potassium hydroxide is used in making liquidsoap and potassium salts, in electroplatingand lithography, in printing inks, as a mordantfor wood, and finds wide applications in organic syntheses and chemical analyses.
potassium hydroxide is used as an emulsifier in lotions and as an alkali in liquid soaps, protective creams, and shaving preparations.
Depending on the concentration used, Potassium hydroxide can be highly irritating to the skin and/or cause a burning sensation.
Potassium Hydroxide is a water-soluble food additive and bleaching agent.
Upon exposure to air Potassium hydroxide readily absorbs carbon dioxide and moisture and deliquesces.
Potassium Hydroxide is used to destroy the bitter chemical constituents in olives that will be used as black olives.

Potassium hydroxide solution (KOH aqueous) is a colourless inorganic liquid that acts as a strong base (alkali).
Potassium hydroxide solution is also known as caustic potash or potash lye and has many different applications.
During the Potassium hydroxide liquid production process, chlorine and hydrogen are formed as co-products.

Potassium hydroxide, also known as lye is an inorganic compound with the chemical formula KOH.
Also commonly referred to as caustic potash, Potassium hydroxide is a potent base that is marketed in several forms including pellets, flakes, and powders.
Potassium hydroxide is used in various chemical, industrial and manufacturing applications.
Potassium hydroxide is also a precursor to other potassium compounds.
Potassium hydroxide is used in food to adjust pH, as a stabilizer, and as a thickening agent.
This ingredient has been considered as generally safe as a direct human food ingredient by the FDA, based upon the observance of several good manufacturing practise conditions of use.

In addition to the above uses, potassium hydroxide is also used in making soap, as an electrolyte in alkaline batteries and in electroplating, lithography, and paint and varnish removers.
Liquid drain cleaners contain 25 to 36% of potassium hydroxide.

Recently, Potassium hydroxide has been studied for efficacy and tolerability in the treatment of warts.
Potassium hydroxide was determined that topical Potassium hydroxide, also known as lye is an inorganic compound with the chemical formula KOH.
Also commonly referred to as caustic potash, Potassium hydroxide is a potent base that is marketed in several forms including pellets, flakes, and powders.

General Manufacturing Information
-Industry Processing Sectors
-All other basic inorganic chemical manufacturing
-All other basic organic chemical manufacturing
-All other chemical product and preparation manufacturing
-Computer and electronic product manufacturing
-Electrical equipment, appliance, and component manufacturing
-Fabricated metal product manufacturing
-Food, beverage, and tobacco product manufacturing
-Mining (except oil and gas) and support activities
-Miscellaneous manufacturing
-Nonmetallic mineral product manufacturing (includes clay, glass, cement, concrete, lime, gypsum, and other nonmetallic mineral product manufacturing.
-Oil and gas drilling, extraction, and support activities
-Paper manufacturing
-Pesticide, fertilizer, and other agricultural chemical manufacturing
-Petroleum lubricating oil and grease manufacturing
-Petroleum refineries
-Pharmaceutical and medicine manufacturing
-Photographic film paper, plate, and chemical manufacturing
-Primary metal manufacturing
-Resale of Chemicals
-Services
-Soap, cleaning compound, and toilet preparation manufacturing
-Solar cell manufacturing
-Textiles, apparel, and leather manufacturing
-Utilities
-Wholesale and retail trade
-resale of chemicals
-sales and services to the marine industry

Consumer Uses
Potassium hydroxide is used in the following products: washing & cleaning products, cosmetics and personal care products, coating products, pH regulators and water treatment products and perfumes and fragrances. Another release to the environment of Potassium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in close systems with the minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters) and outdoor use in close systems with the minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and brake fluids).

Article service life
Release to the environment of Potassium hydroxide can occur from industrial use: formulation of mixtures and of substances in closed systems with the minimal release.
Another release to the environment of Potassium hydroxide is likely to occur from: indoor use in close systems with the minimal release (e.g. cooling liquids in refrigerators, oil-based electric heaters) and outdoor use in close systems with the minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and brake fluids).
Potassium hydroxide can be found in complex articles, with no release intended: electrical batteries and accumulators.

Widespread uses by professional workers
Potassium hydroxide is used in the following products: washing & cleaning products.
Potassium hydroxide is used in the following areas: mining, scientific research and development, health services, agriculture, forestry and fishing, formulation of mixtures and/or re-packaging, building & construction work, printing and recorded media reproduction and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment.
Potassium hydroxide is used for the manufacture of: machinery and vehicles.
Other release to the environment of Potassium hydroxide is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Formulation or re-packing
Potassium hydroxide is used in the following products: pH regulators and water treatment products.
Release to the environment of Potassium hydroxide can occur from industrial use: formulation of mixtures and of substances in closed systems with minimal release.

Uses at industrial sites
Potassium hydroxide is used in the following products: pH regulators and water treatment products.
Potassium hydroxide is used in the following areas: mining, scientific research and development and municipal supply (e.g. electricity, steam, gas, water) and sewage treatment.
Potassium hydroxide is used for the manufacture of: chemicals and metals.
Release to the environment of Potassium hydroxide can occur from industrial use: as processing aid, in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates), of substances in closed systems with minimal release, in the production of articles and formulation of mixtures.

Manufacture
Release to the environment of Potassium hydroxide can occur from industrial use: manufacturing of the substance.

Consumer Uses
-Agricultural products (non-pesticidal)
-Anti-freeze and de-icing products
-Batteries
-Building/construction materials not covered elsewhere
-C909 the product is used as a cleaner in plating processes. The processes are diverse, examples of final uses are: automotive, machinery, basically all applications of plating.
-Cleaning and furnishing care products
-Electrical and electronic products
-Fabric, textile, and leather products not covered elsewhere
-Floor Care Chemicals
-Fuels and related products
-Laundry and dishwashing products
-Lawn and garden care products
-Lubricants and greases
-Metal processing
-Metal products not covered elsewhere
-Metal stripping, refining, and waste water
-Non-TSCA use
-Photographic supplies, film, and photo chemicals
-Plastic and rubber products not covered elsewhere
-Spent caustic is recycled for use in manufacturing.
-Used as raw material in manufacturing.
-Water treatment products
-chemical distirbution
-used in products which are used as cleaners in plating processes, as paint strippers, used as cleaners used in products for a variety of applications for surface treatments, examples of final uses are automotive and machinery.

SYNONYMS:
POTASSIUM HYDROXIDE; 1310-58-3;
Caustic potash;
Potash lye;
Potassium hydrate;
Hydroxyde de potassium;
Potassium hydroxide (K(OH));
Potasse caustique; Potassium hydroxide solution;
Caustic potash solution;
CHEBI:32035
Potassium hydroxide, pellets;
KOH;
Cyantek CC 723;
Caswell No. 693;
Potasse caustique [French];
Potassium hydroxide, 1N solution in water;
Potassium hydroxide, 1N solution in ethanol;
CCRIS 6569; Hydroxyde de potassium [French];
HSDB 1234; Potassium hydroxide, pure, 8N solution in water;
Potassio (idrossido di);
Potassium hydroxide, ca. 85%, extra pure, flakes;
Potassium (hydroxyde de); EINECS 215-181-3; UN1813; UN1814;
Potassium hydroxide, ca. 85%, ACS reagent, pellets;
Potassium hydroxide, ca. 85%, for analysis, pellets;
EPA Pesticide Chemical Code 075602;
Kaliumhydroxid;
Aetzkali;
Kalilauge; Potassium hydroxide [JAN:NF];
Caustic potasch
Caustic potash
caustic potash
caustic potash
Caustic potash, Potassium hydrate
Hidroxido de potasio
hydroxid draselný
KOH
potasium hydroxide
potassium hydoxide
Potassium hydroxid
POTASSIUM HYDROXIDE
Potassium Hydroxide
Potassium hydroxide
potassium hydroxide
Potassium Hydroxide
Potassium hydroxide
potassium hydroxide
Potassium hydroxide (K(OH))
potassium hydroxide, caustic potash
potassium hydroxide-
potassium hydroxide;
Potassium hydroxyde
Potassium hydroxyde
potassium idroxide
potassium;hydroxide
Pottasium hydroxide
pottassium hydroxide
Reaction mass of 57-13-6 and 7789-20-0
UPV7
POTASSIUM IODATE
cas no 7681-11-0 Hydroiodic acid, potassium salt; Iodide of potash; Potide;
POTASSIUM LACTATE ( Lactate de potassium)
POTASSIUM LAURATE, N° CAS : 10124-65-9, Nom INCI : POTASSIUM LAURATE. Nom chimique : Potassium laurate. N° EINECS/ELINCS : 233-344-7. Compatible Bio (Référentiel COSMOS), Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
POTASSIUM NITRATE
POTASSIUM NITRATE Potassium nitrate is a chemical compound with the chemical formula KNO 3. It is an ionic salt of potassium nitrate ions K+ and nitrate ions NO3−, and is therefore an alkali metal nitrate. It occurs in nature as a mineral, niter. It is a source of nitrogen, and nitrogen was named after niter. Potassium nitrate is one of several nitrogen-containing compounds collectively referred to as saltpeter or saltpetre. Major uses of potassium nitrate are in fertilizers, tree stump removal, rocket propellants and fireworks. It is one of the major constituents of gunpowder (black powder).[6] In processed meats, potassium nitrate reacts with hemoglobin and generates a pink color.[7] Etymology Potassium nitrate, because of its early and global use and production, has many names. Hebrew and Egyptian words for it had the consonants n-t-r, indicating likely cognation in the Greek nitron, which was Latinised to nitrum or nitrium. Thence Old French had niter and Middle English nitre. By the 15th century, Europeans referred to it as saltpeter[8] and later as nitrate of potash, as the chemistry of the compound was more fully understood. The Arabs called it "Chinese snow" (Arabic: ثلج الصين‎ thalj al-ṣīn). It was called "Chinese salt" by the Iranians/Persians[9][10][11][12][13] or "salt from Chinese salt marshes" (Persian: نمک شوره چينی‎ namak shūra chīnī).[14][15] Properties Potassium nitrate has an orthorhombic crystal structure at room temperature, which transforms to a trigonal system at 129 °C (264 °F). Potassium nitrate is moderately soluble in water, but its solubility increases with temperature. The aqueous solution is almost neutral, exhibiting pH 6.2 at 14 °C (57 °F) for a 10% solution of commercial powder. It is not very hygroscopic, absorbing about 0.03% water in 80% relative humidity over 50 days. It is insoluble in alcohol and is not poisonous; it can react explosively with reducing agents, but it is not explosive on its own.[3] Thermal decomposition Between 550–790 °C (1,022–1,454 °F), potassium nitrate reaches a temperature-dependent equilibrium with potassium nitrite:[16] 2 KNO3 ⇌ 2 KNO2 + O2 History of production From mineral sources In Ancient India, saltpeter manufacturers formed the Nuniya caste.[17] Saltpeter finds mention in Kautilya's Arthashastra (compiled 300BC - 300CE), which mentions using its poisonous smoke as a weapon of war,[18] although its use for propulsion did not appear until medieval times. A purification process for potassium nitrate was outlined in 1270 by the chemist and engineer Hasan al-Rammah of Syria in his book al-Furusiyya wa al-Manasib al-Harbiyya (The Book of Military Horsemanship and Ingenious War Devices). In this book, al-Rammah describes first the purification of barud (crude saltpeter mineral) by boiling it with minimal water and using only the hot solution, then the use of potassium nitrate carbonate (in the form of wood ashes) to remove calcium and magnesium by precipitation of their carbonates from this solution, leaving a solution of purified potassium nitrate, which could then be dried.[19] This was used for the manufacture of gunpowder and explosive devices. The terminology used by al-Rammah indicated a Chinese origin for the gunpowder weapons about which he wrote.[20] At least as far back as 1845, Chilean saltpeter deposits were exploited in Chile and California. From caves A major natural source of potassium nitrate was the deposits crystallizing from cave walls and the accumulations of bat guano in caves.[21] Extraction is accomplished by immersing the guano in water for a day, filtering, and harvesting the crystals in the filtered water. Traditionally, guano was the source used in Laos for the manufacture of gunpowder for Bang Fai rockets. LeConte Perhaps the most exhaustive discussion of the production of this material is the 1862 LeConte text.[22] He was writing with the express purpose of increasing production in the Confederate States to support their needs during the American Civil War. Since he was calling for the assistance of rural farming communities, the descriptions and instructions are both simple and explicit. He details the "French Method", along with several variations, as well as a "Swiss method". N.B. Many references have been made to a method using only straw and urine, but there is no such method in this work. French method Turgot and Lavoisier created the Régie des Poudres et Salpêtres a few years before the French Revolution. Niter-beds were prepared by mixing manure with either mortar or wood ashes, common earth and organic materials such as straw to give porosity to a compost pile typically 4 feet (1.2 m) high, 6 feet (1.8 m) wide, and 15 feet (4.6 m) long.[22] The heap was usually under a cover from the rain, kept moist with urine, turned often to accelerate the decomposition, then finally leached with water after approximately one year, to remove the soluble calcium nitrate which was then converted to potassium nitrate by filtering through potash. Swiss method LeConte describes a process using only urine and not dung, referring to it as the Swiss method. Urine is collected directly, in a sandpit under a stable. The sand itself is dug out and leached for nitrates which were then converted to potassium nitrate using potash, as above. From nitric acid From 1903 until the World War I era, potassium nitrate for black powder and fertilizer was produced on an industrial scale from nitric acid produced using the Birkeland–Eyde process, which used an electric arc to oxidize nitrogen from the air. During World War I the newly industrialized Haber process (1913) was combined with the Ostwald process after 1915, allowing Germany to produce nitric acid for the war after being cut off from its supplies of mineral sodium nitrates from Chile (see nitratite). Production Potassium nitrate can be made by combining ammonium nitrate and potassium nitrate hydroxide. NH4NO3 (aq) + KOH (aq) → NH3 (g) + KNO3 (aq) + H2O (l) An alternative way of producing potassium nitrate without a by-product of ammonia is to combine ammonium nitrate, found in instant ice packs,[23] and potassium nitrate chloride, easily obtained as a sodium-free salt substitute. NH4NO3 (aq) + KCl (aq) → NH4Cl (aq) + KNO3 (aq) Potassium nitrate can also be produced by neutralizing nitric acid with potassium nitrate hydroxide. This reaction is highly exothermic. KOH (aq) + HNO3 → KNO3 (aq) + H2O (l) On industrial scale it is prepared by the double displacement reaction between sodium nitrate and potassium nitrate chloride. NaNO3 (aq) + KCl (aq) → NaCl (aq) + KNO3 (aq) Uses Potassium nitrate has a wide variety of uses, largely as a source of nitrate. Nitric acid production Historically, nitric acid was produced by combining sulfuric acid with nitrates such as saltpeter. In modern times this is reversed: nitrates are produced from nitric acid produced via the Ostwald process. Oxidizer A demonstration of the oxidation of a piece of charcoal in molten potassium nitrate The most famous use of potassium nitrate is probably as the oxidizer in blackpowder. From the most ancient times until the late 1880s, blackpowder provided the explosive power for all the world's firearms. After that time, small arms and large artillery increasingly began to depend on cordite, a smokeless powder. Blackpowder remains in use today in black powder rocket motors, but also in combination with other fuels like sugars in "rocket candy". It is also used in fireworks such as smoke bombs.[24] It is also added to cigarettes to maintain an even burn of the tobacco[25] and is used to ensure complete combustion of paper cartridges for cap and ball revolvers.[26] It can also be heated to several hundred degrees to be used for niter bluing, which is less durable than other forms of protective oxidation, but allows for specific and often beautiful coloration of steel parts, such as screws, pins, and other small parts of firearms. Meat processing Potassium nitrate has been a common ingredient of salted meat since antiquity[27] or the Middle Ages.[28] The widespread adoption of nitrate use is more recent and is linked to the development of large-scale meat processing.[6] The use of potassium nitrate has been mostly discontinued because of slow and inconsistent results compared to sodium nitrite compounds such as "Prague powder" or pink "curing salt". Even so, potassium nitrate is still used in some food applications, such as salami, dry-cured ham, charcuterie, and (in some countries) in the brine used to make corned beef (sometimes together with sodium nitrite).[29] When used as a food additive in the European Union,[30] the compound is referred to as E252; it is also approved for use as a food additive in the United States[31] and Australia and New Zealand[32] (where it is listed under its INS number 252).[3] Food preparation In West African cuisine, potassium nitrate (saltpetre) is widely used as a thickening agent in soups and stews such as okra soup[33] and isi ewu. It is also used to soften food and reduce cooking time when boiling beans and tough meat. Saltpetre is also an essential ingredient in making special porridges, such as kunun kanwa[34] literally translated from the Hausa language as 'saltpetre porridge'. In the Shetland Islands (UK) it is used in the curing of mutton to make reestit mutton, a local delicacy.[35] Fertilizer Potassium nitrate is used in fertilizers as a source of nitrogen and potassium nitrate – two of the macronutrients for plants. When used by itself, it has an NPK rating of 13-0-44.[36][37] Pharmacology Used in some toothpastes for sensitive teeth.[38] Recently, the use of potassium nitrate in toothpastes for treating sensitive teeth has increased.[39][40] Used historically to treat asthma.[41] Used in some toothpastes to relieve asthma symptoms.[42] Used in Thailand as main ingredient in kidney tablets to relieve the symptoms of cystitis, pyelitis and urethritis.[43] Combats high blood pressure and was once used as a hypotensive.[44] Other uses Electrolyte in a salt bridge Active ingredient of condensed aerosol fire suppression systems. When burned with the free radicals of a fire's flame, it produces potassium nitrate carbonate.[45] Works as an aluminium cleaner. Component (usually about 98%) of some tree stump removal products. It accelerates the natural decomposition of the stump by supplying nitrogen for the fungi attacking the wood of the stump.[46] In heat treatment of metals as a medium temperature molten salt bath, usually in combination with sodium nitrite. A similar bath is used to produce a durable blue/black finish typically seen on firearms. Its oxidizing quality, water solubility, and low cost make it an ideal short-term rust inhibitor.[47] To induce flowering of mango trees in the Philippines.[48][49] Thermal storage medium in power generation systems. Sodium and potassium nitrate salts are stored in a molten state with the solar energy collected by the heliostats at the Gemasolar Thermosolar Plant. Ternary salts, with the addition of calcium nitrate or lithium nitrate, have been found to improve the heat storage capacity in the molten salts.[50] As a source of potassium nitrate ions for exchange with sodium ions in chemically strengthened glass. As an oxidizer in model rocket fuel called Rocket candy. In folklore and popular culture Potassium nitrate was once thought to induce impotence, and is still rumored to be in institutional food (such as military fare) as an anaphrodisiac; however, there is no scientific evidence for such properties.[51][52] In 1776 (musical), John Adams asks his wife Abigail to make saltpeter for the Continental Army. She, eventually, is able to do so in exchange for pins for sewing.[53] In the Star Trek episode "Arena", Captain Kirk injures a gorn using a rudimentary cannon that he constructed using potassium nitrate as a key ingredient. In 21 Jump Street, Jenko, played by Channing Tatum, gave a rhyming presentation about potassium nitrate for his chemistry class. Potassium nitrate[1] Potassium nitrate Potassium nitrate structure.svg Potassium nitrate ball-and-stick.png Potassium nitrate Other names Saltpeter Saltpetre Nitrate of potash[2] Identifiers Main hazards Oxidant, harmful if swallowed, inhaled, or absorbed on skin. Causes irritation to skin and eye area. Other anions Potassium nitrite Other cations Lithium nitrate Sodium nitrate Rubidium nitrate Caesium nitrate Related compounds Potassium nitrate sulfate Potassium nitrate chloride Supplementary data page Structure and properties Refractive index (n), Dielectric constant (εr), etc. Thermodynamic data Phase behaviour solid–liquid–gas Spectral data UV, IR, NMR, MS Potassium nitrate Potassium nitrate (KNO₃) is a soluble source of two major essential plant nutrients. It’s commonly used as a fertilizer for high-value crops that benefit from nitrate (NO₃-) nutrition and a source of potassium nitrate (K+) free of chloride (Cl⁻). Production Manufacturers typically make potassium nitrate fertilizer (sometimes referred to as nitrate of potash or NOP by reacting potassium nitrate chloride (KCl) with a nitrate source. Depending on the objectives and available resources, the nitrate may come from sodium nitrate, nitric acid or ammonium nitrate. The resulting KNO3 is identical regardless of the manufacturing process. Potassium nitrate is commonly sold as a water-soluble, crystalline material primarily intended for dissolving and applying with water or in a prilled form for soil application. Traditionally, this compound is known as saltpeter. Agricultural use Potassium Nitrate Growers value fertilizing with KNO₃ especially in conditions where a highly soluble, chloride-free nutrient source is needed. In such soils, all of the N is immediately available for plant uptake as nitrate, requiring no additional microbial action and soil transformation. Growers of high-value vegetable and orchard crops sometime prefer to use a nitrate-based source of nutrition in an effort to boost yield and quality. Potassium nitrate contains a relatively high proportion of K, with an N to K ratio of approximately one to three. Many crops have high K demands and can remove as much or more K than N at harvest. Applications of KNO₃ to the soil are made before the growing season or as a supplement during the growing season. A diluted solution is sometimes sprayed on plant foliage to stimulate physiological processes or to overcome nutrient deficiencies. Foliar application of K during fruit development advantages some crops, since this growth stage often coincides with high K demands during the time of declining root activity and nutrient uptake. It’s also commonly used for greenhouse plant production and hydroponic culture. Management practices Potassium nitrate Both N and K are required by plants to support harvest quality, protein formation, disease resistance and water-use efficiency. Therefore, to support healthy growth, farmers often apply KNO₃ to soil or through the irrigation system during the growing season. Potassium nitrate accounts for only a small portion of the global K fertilizer market. It’s primarily used where its unique composition and properties can provide specific benefits to growers. Further, it’s easy to handle and apply, and is compatible with many other fertilizers, including specialty fertilizers for many high-value specialty crops, as well as those used on grain and fiber crops. The relatively high solubility of KNO₃ under warm conditions allows for a more concentrated solution than for other common K fertilizers. However, farmers must carefully manage the water to keep the nitrate from moving below the root zone. Non-agricultural uses Potassium nitrate has long been used for fireworks and gunpowder. It’s now more commonly added to food to maintain the quality of meat and cheese. Specialty toothpastes often contain KNO₃ to alleviate tooth sensitivity. A mixture of KNO₃ and sodium nitrate (NaNO₃) is used for storing heat in solar energy installations. Saltpetre, also spelled Saltpeter, also called Nitre, or Niter, any of three naturally occurring nitrates, distinguished as (1) ordinary saltpetre, or potassium nitrate, KNO3; (2) Chile saltpetre, cubic nitre, or sodium nitrate, NaNO3; and (3) lime saltpetre, wall saltpetre, or calcium nitrate, Ca(NO3)2. These three nitrates generally occur as efflorescences caused by the oxidation of nitrogenous matter in the presence of the alkalis and alkaline earths. Ordinary Saltpetre. Potassium nitrate occurs as crusts on the surface of the Earth, on walls and rocks, and in caves; and it forms in certain soils in Spain, Italy, Egypt, Iran, and India. The deposits in the great limestone caves of Kentucky, Virginia, and Indiana have probably been derived from the overlying soil and accumulated by percolating water. In former times, the demand for saltpetre as an ingredient of gunpowder led to the formation of saltpetre plantations, or nitriaries, which were common in France, Germany, and other countries; the natural conditions were simulated by exposing heaps of decaying organic matter mixed with alkalis (lime, etc.) to atmospheric action. Potassium nitrate was used at one time in many different diseased conditions, especially asthma; but now it is rarely used medicinally, except as a diuretic. Its alleged value as a drug for suppressing sexual desire is purely imaginary. Potassium nitrate is white in colour and soluble in water; it has a vitreous lustre and a cool and salty taste. Potassium Nitrate Potassium nitrate (KNO3) is obtained through a reaction of NaNO3 and potassium nitrate chloride (KCl). It is an important input in the production of crystal, enamel for covering ceramic or metallic surfaces, metal treatments and gunpowder, among others. Toothpastes intended to prevent caries and to reduce painful sensitivity of the teeth are regulated as over-the-counter (OTC) anticaries drug products at Title 21, Code of Federal Regulations (21 CFR), Part 355. Such products may contain up to 5% potassium nitrate as a tooth desensitizing ingredient. Dentinal hypersensitivity occurs when gingival recession exposes dentin at the cervical margins of teeth. Twenty-four periodontal patients, with postoperative hypersensitive dentin were treated by burnishing saturated potassium nitrate (KNO3) to relieve pain. Using a visual analogue scale with participants acting as their own control, a subjective assessment of pain was measured and compared before and after KNO3 application. Thirty-six regions involving 98 teeth were assessed. A significant reduction of sensitivity and pain was achieved by using a saturated KNO3 solution ... Potassium nitrate has been used in a dentifrice or gel to alleviate dentinal hypersensitivity. The aim of this study was to compare a 3% potassium nitrate/0.2% sodium fluoride mouthwash with a 0.2% sodium fluoride control mouthwash in a 6-week double-blind study. Fifty subjects were evaluated using 2 tactile methods and cold air sensitivity (dental air syringe), along with subjective perception of pain (0 to 10 scale) at baseline and at 2 and 6 weeks. There was a general decrease in dentinal hypersensitivity levels in both groups over the 6-week study period as demonstrated by all 4 methods of assessment. There was also a statistically significant difference in decrease in sensitivity between the groups. /The authors concluded that/ this study showed that a 3% potassium nitrate/0.2% sodium fluoride mouthwash appears to have therapeutic potential to alleviate dentinal hypersensitivity. The effect on dentinal hypersensitivity from the use of a new dentifrice containing 5.0% potassium nitrate and 0.454% stannous fluoride in a silica base (Colgate Sensitive Maximum Strength Toothpaste, Colgate-Palmolive Co.) over an 8-week period was compared to a commercially available dentifrice containing 5.0% potassium nitrate and 0.243% sodium fluoride in a silica base (positive control (Sensodyne Fresh Mint Toothpaste, Block Drug Company, Inc.)) and to a commercially available nondesensitizing dentifrice containing 0.243% sodium fluoride in a silica base (negative control (Colgate Winterfresh Gel, Colgate-Palmolive Co.)). A total of 120 participants were stratified into 3 balanced groups according to baseline mean air blast (thermal) and tactile (Yeaple Probe) sensitivity scores, gender, and age. Participants brushed their teeth twice daily (morning and evening) for 1 minute. Dentinal hypersensitivity examinations were conducted at baseline, 4 weeks, and 8 weeks by the same dental examiner. After 4- and 8-weeks' use of their assigned products, participants in the new dentifrice group demonstrated statistically significant improvements (p < 0.05) in tactile and air blast sensitivity, as compared to those using the positive and negative control dentifrices. A multicenter clinical trial conducted by the authors compared the desensitizing efficacy of a new 5 percent potassium nitrate: 0.243 percent sodium fluoride dentifrice along with two clinically proven, commercially available desensitizing dentifrices to a placebo dentifrice. Sensitivity to cold air and tactile stimulation, along with patients' subjective assessments, were evaluated to assess the dentinal desensitizing efficacy of the test dentifrices. Results demonstrated that after four weeks, participants who used the new dentifrice formulation experienced significant decreases in dentinal sensitivity compared to the placebo group for all measured indexes. BACKGROUND: Potassium nitrate has been used previously in a dentifrice or gel to alleviate dentinal hypersensitivity. The aim of this study was to compare a 3% potassium nitrate/0.2% sodium fluoride mouthwash with a 0.2% sodium fluoride control mouthwash in a 6-week double-blind study. METHODS: Fifty subjects were evaluated using 2 tactile methods and cold air sensitivity (dental air syringe), along with subjective perception of pain (0 to 10 scale) at baseline and at 2 and 6 weeks. RESULTS: There was a general decrease in dentinal hypersensitivity levels in both groups over the 6-week study period as demonstrated by all 4 methods of assessment. There was also a statistically significant difference in decrease in sensitivity between the groups. CONCLUSIONS: This study showed that a 3% potassium nitrate/0.2% sodium fluoride mouthwash appears to have therapeutic potential to alleviate dentinal hypersensitivity. Following deep restorations in vital teeth, postoperative pain of various durations frequently occurs, even if the teeth were asymptomatic before treatment. In this study, a potassium nitrate-polycarboxylate cement was used as a liner and was found clinically to tend to preserve pulpal vitality and significantly eliminate or decrease postoperative pain. Potassium Nitrate - KNO3 What is Potassium Nitrate (KNO3)? KNO3 is a chemical compound with chemical name Potassium Nitrate. Potassium nitrate also called saltpeter or niter, a white solid soluble in water formed by fractional crystallization of sodium nitrate and potassium nitrate chloride solutions. It occurs naturally as niter in rocks in India, South Africa and Brazil. When heated it decomposes to give the nitrite and oxygen. Unlike sodium nitrate it is non-deliquescent. Potassium nitrate is used in gunpowder, fertilizers and in the laboratory preparation of nitric acid. Potassium nitrate is the most common desensitizing agent in over-the-counter dentifrices. At a concentration of 5%, potassium nitrate in conjunction with sodium or monofluorophosphate fluoride significantly reduces symptoms within 2 weeks of daily use. Potassium nitrate ions penetrate the length of the dentinal tubule and block repolarization of the nerve ending. Frequent and regular application of a potassium nitrate dentifrice is necessary to avoid recurrence of symptoms, maintain a high abundance of extracellular potassium nitrate ions, and maintain the inter dental nerves in a hyperpolarized state. Potassium nitrate, often called saltpeter, occurs as an efflorescence in caverns and on soils in arid regions. Synthesis of Potassium Nitrate (KNO3) Potassium nitrate is a salt. It is prepared by neutralizing an acid. When potassium nitrate hydroxide neutralizes nitric acid potassium nitrate is formed. KOH + HNO3 → KNO3 + H2O Neutralizing nitric acid always makes “nitrate” salts. Other acids make other types of salts. Potassium nitrate contains potassium nitrate (a soft, light, and silver metal), oxygen, and nitrogen (a colourless and odourless gas). It is an alkali metal nitrate because it is an ionic salt of potassium nitrate ions K+ ions and nitrate ions NO3−. It is solid white or sometimes white to dirty grey in colour. Potassium nitrate is soluble in hot water. This compound releases oxygen when heated or decomposed. It is a strong oxidizing agent It is widely used in the removal of the stump, fireworks, fertilizers, etc. It is a major constituent of black powder and food preservation techniques. Properties of Potassium Nitrate – KNO3 KNO3 Potassium Nitrate Molecular Weight/ Molar Mass 101.1032 g/mol Density 2.109 g/cm3 Boiling Point 400 °C Melting Point 334 °C Potassium Nitrate structure (KNO3 Structure) Potassium Nitrate - KNO3 Potassium Nitrate Structure Potassium Nitrate (KNO3 ) Uses It is used as a form of fertilizer as it contains all the macronutrients needed for the plants to grow. It is used as gunpowder in explosives such as bombs, grenades, etc. Used in the manufacturing and production of cigarettes. It is used extensively used in the preservation of hides It has medicinal applications such as a diuretic in medicine Used in toothpaste to make the teeth less sensitive to pain Used in the food industry to preserve meat against microbial agents Potassium Nitrate (KNO3 ) Health Hazards Potential exposure – Potassium Nitrate is used in chemical analysis, as a food additive in fertilizers in medications as a vasodilator and as antidote for cyanide poisoning. Short term exposure – Potassium nitrate can affect when breathed in. Contact can cause eye and skin burns. Breathing the dust or mist can irritate the nose, throat and lungs and may cause coughing with phlegm. Higher exposures can cause pulmonary edema, a medical emergency that can be delayed for several hours. This can cause death. Long term exposure – Repeated skin contact causes dermatitis, drying and cracking. May cause lung irritation, bronchitis may develop. There is limited evidence that potassium nitrite may damage the developing fetus. Medical surveillance – If symptoms develop or overexposure is suspected, the following may be useful, blood test for methemoglobin. Lung function tests. Consider chest X-ray after acute overexposure. Potassium nitrate is an inorganic salt which has a molecular KNO3 formula. This is a common form of nitrate which has been used for numerous uses as a component, including agricultural preservatives, fertilizers, tree stump removal, rocket propellants, which fireworks. Potassium nitrate is a common active ingredient that exerts an anti-sensitive effect in toothpaste. It offers enhanced protection against the painful sensitivity of the teeth to ice, sun, acids, sweets or touch. Frequently Asked Questions – FAQs Is potassium nitrate harmful to humans? A number of health hazards can present potassium nitrate. It can trigger breathing issues when inhaled, including coughing and shortness of breath. Contact with the skin or eye can lead to discomforts such as redness, itching, and pain. What contains potassium nitrate? Potassium nitrate is a nitric acid crystalline potassium nitrate salt. Many products in households, agriculture, and industry use potassium nitrate. For solar power plants, there are examples of toothpaste, fertilizers, fireworks, pesticides and molten salt. Is potassium nitrate safe in toothpaste? There is often confusion between nitrates and nitrites. The FDA recognizes nitrates used in potassium nitrate as secure and efficient for use in anti-sensitive dental products. Additionally, temporary pain relief is provided by delicate toothpaste. What are the dangers of potassium nitrate? Contact can trigger irritation of the eyes and skin. Potassium nitrate respiration may irritate the nose and throat causing sneezing and coughing. High concentrations may interfere with the blood’s capacity to carry oxygen that causes headache, tiredness, dizziness, and blue skin and lips. What is potassium nitrite used for? In the production of heat transfer salts, potassium nitrite is used. Potassium nitrite as a food additive E249 is a sodium nitrite-like preservative and is approved for use in the EU, USA, Australia and New Zealand. Is potassium nitrate harmful to humans? Potassium nitrate when breathed in will impact you. * Touch can cause discomfort to the eyes and skin. * Potassium nitrate for breathing can irritate the nose and throat causing sneezing and coughing.” Is potassium nitrate a carcinogen? Nither IARC nor the EPA have listed carcinogenicity nitrates. There are however several potential mechanisms that can metabolize nitrates to N-nitroso compounds, some of which are carcinogenic. What plants benefit from potassium nitrate? Potassium nitrate grows good lawns by encouraging deep-rooted lush, robust stems. By supporting solid stems and well-developed flowers it benefits roses and other flowering plants. The farmers depend on potassium nitrate to grow good crops. Plants which are rich in carbohydrates like potatoes need potassium nitrate to develop tuber.
POTASSIUM OLEATE
Potassium Oleate IUPAC Name potassium;(Z)-octadec-9-enoate Potassium Oleate InChI 1S/C18H34O2.K/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h9-10H,2-8,11-17H2,1H3,(H,19,20);/q;+1/p-1/b10-9-; Potassium Oleate InChI Key MLICVSDCCDDWMD-KVVVOXFISA-M Potassium Oleate Canonical SMILES CCCCCCCCC=CCCCCCCCC(=O)[O-].[K+] Potassium Oleate Isomeric SMILES CCCCCCCC/C=C\CCCCCCCC(=O)[O-].[K+] Potassium Oleate Molecular Formula C18H33KO2 Potassium Oleate CAS 143-18-0 Potassium Oleate Deprecated CAS 343340-74-9 Potassium Oleate UNII 74WHF607EU Potassium Oleate DSSTox Substance ID DTXSID0025949 Potassium Oleate Physical Description DryPowder; Liquid; OtherSolid; WetSolid Potassium Oleate Color/Form YELLOWISH OR BROWNISH, SOFT MASS OR CRYSTALS Potassium Oleate Odor FAINT SOAPY ODOR Potassium Oleate Melting Point Starts to decompose at approximately 428° F Potassium Oleate Flash Point 140 °F CC Potassium Oleate Solubility greater than or equal to 100 mg/mL at 70° F Potassium Oleate Density greater than 1.1 at 68 °F Potassium Oleate Refractive Index INDEX OF REFRACTION: 1.452 Potassium Oleate Molecular Weight 320.6 g/mol Potassium Oleate Hydrogen Bond Donor Count 0 Potassium Oleate Hydrogen Bond Acceptor Count 2 Potassium Oleate Rotatable Bond Count 15 Potassium Oleate Exact Mass 320.211762 g/mol Potassium Oleate Monoisotopic Mass 320.211762 g/mol Potassium Oleate Topological Polar Surface Area 40.1 Ų Potassium Oleate Heavy Atom Count 21 Potassium Oleate Formal Charge 0 Potassium Oleate Complexity 239 Potassium Oleate Isotope Atom Count 0 Potassium Oleate Defined Atom Stereocenter Count 0 Potassium Oleate Undefined Atom Stereocenter Count 0 Potassium Oleate Defined Bond Stereocenter Count 1 Potassium Oleate Undefined Bond Stereocenter Count 0 Potassium Oleate Covalently-Bonded Unit Count 2 Potassium Oleate Compound Is Canonicalized Yes Potassium Oleate Industry Uses: Adhesives and sealant chemicals Lubricants and lubricant additives Process regulators Processing aids, not otherwise listed Surface active agents liquid soap Potassium Oleate Consumer Uses: Adhesives and sealants Floor coverings Foam seating and bedding products Laundry and dishwashing products Lubricants and greases Paints and coatings Personal care products Plastic and rubber products not covered elsewhere foam components of mattresses Potassium Oleate Application: 1.It is a potassium catalyst, which is widely used in polyisocyanate foam reaction Potassium Oleate 2.Potassium Oleate liquid and solid is mainly used as a catalyst for the reaction of polyisohydrourate in polyurethane foam, and can also be used as an emulsifier, foaming agent, cleaning agent, lubricant and surfactant Potassium Oleate can be used to synthesize uncoagulative oleic acid magnetic ultrafine particles.Potassium Oleate is generally immediately available in most volumes, including bulk quantities.Potassium Oleate belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Potassium Oleate is a weakly acidic compound (based on its pKa).Potassium Oleate is classified under CAS No.143-18-0.Potassium Oleate is also known as Potassium Salt of Oleic Acid, Oleic Acid Potassium Salt, Potassium 9-Octadecenoate.Potassium Oleate is both a potassium salt of oleic acid and fatty acid . It is a salt because it is the product of an acid and a base. It is a fatty acid because it has a long carbon backbone with a carboxyl group terminus.Potassium Oleate is a liquid potassium soap solution in water.Potassium Oleate is used as an emulsifier in many liquid soaps, facial cleansers, mustache waxes, body washes and hair permanents. Emulsifiers act like surfactants and reduce the surface tension of a liquid.Potassium Oleate prevents the ingredients in these products from separating into separate chemicals.The FDA says Potassium Oleate “may be safely used in food and in the manufacture of food components” as long as it is used as “a binder, emulsifier and anti-caking agent.Potassium Oleate can also be used us cleansing agent in household cleaning products.Potassium Oleate also can used as rubber foaming agent, detergent, lubricants and catalyst.This Potassium Oleate is widely demanded in the international market due to its high effectiveness, eco-friendliness and purity, and is offered in different grades to meet the varied needs of our clients. Moreover, we are offering the entire range at an affordable cost to our clients.Potassium Oleate is a potassium catalyst and a trimerization catalyst for polyurethane rigid polyisocyanurate.Acme Synthetic Chemicals is the Manufacturer, Supplier & also Exporter of Potassium Oleate.Potassium Oleate classifies under CAS No.143-18-0.Potassium Oleate (CAS No.143-18-0) also known as Potassium Salt of Oleic Acid.The Acme Synthetic Chemicals is one of the reputed organizations engaged in providing superior quality Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0)to our esteemed clients.Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) is both a potassium salt of oleic acid and fatty acid . It is a salt because it is the product of an acid and a base. It is a fatty acid because it has a long carbon backbone with a carboxyl group terminus.Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) is a liquid potassium soap solution in water.Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) is used as an emulsifier in many liquid soaps, facial cleansers, mustache waxes, body washes and hair permanents. Emulsifiers act like surfactants and reduce the surface tension of a liquid.Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) prevents the ingredients in these products from separating into separate chemicals.The FDA says Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) "may be safely used in food and in the manufacture of food components" as long as it is used as "a binder, emulsifier and anti-caking agent.Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) can also be used us cleansing agent in household cleaning products.Potassium Oleate(Potassium Salt of Oleic Acid, CAS No.143-18-0) also can used as rubber foaming agent, detergent, lubricants and catalyst.We are engaged in offering our clients a highly effective range of Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0). The offered range is processed using exceptional grade chemical compounds as per the international quality norms by our dexterous professionals.This Potassium Oleate (Potassium Salt of Oleic Acid, CAS No.143-18-0) is widely demanded in the international market due to its high effectiveness, eco-friendliness & purity.Potasyum Oleat Chemical Properties:Gray-tan paste. Soluble in water and alcohol. Combustible.Potasyum Oleat Uses:Detergent.Potasyum Oleat Uses:Potassium Oleate is the potassium salt of oleic acid. it is used as a binder, emulsifier, and anticaking agent.Potasyum Oleat General Description:Brown solid or clear to amber liquid with a soapy odor. Sinks and mixes slowly with water.Potasyum Oleat Air & Water Reactions:Water soluble. Gives basic aqueous solution.Potasyum Oleat Reactivity Profile:Salts, basic, such as OLEIC ACID, [POTASSIUM SALT], are generally soluble in water. The resulting solutions contain moderate concentrations of hydroxide ions and have pH's greater than 7.0. They react as bases to neutralize acids. These neutralizations generate heat, but less or far less than is generated by neutralization of the bases in reactivity group 10 (Bases) and the neutralization of amines. They usually do not react as either oxidizing agents or reducing agents but such behavior is not impossible.Potasyum Oleat Health Hazard:Inhalation of dust causes irritation of nose and throat, coughing, and sneezing. Ingestion causes mild irritation of mouth and stomach. Contact with eyes causes irritation.Potasyum Oleat Fire Hazard:Special Hazards of Combustion Products: Irritating vapors and toxic gases, such as carbon dioxide and carbon monoxide, may be formed when involved in fire.Potassium Oleate Safety Profile:An eye irritant. When heated to decomposition it emits toxic fumes of K2O.Potassium Oleate Purification Methods:Recrystallise it from EtOH (1g/mL). [Beilstein 2 H 465, 2 I 196, 2 I 202, 2 II 436, 2 III 1404, 2 IV 1646.]Potassium Oleate Potassium Oleate Preparation Products And Raw materials:Potassium Oleate Raw materials:Formaldehyde Dimethylamine.BIOCIDAL EFFECTS OF POTASSIUM SALTS OF FATTY ACIDS WERE TESTED ON SEVERAL FOREST INSECT PESTS, INCL BALSAM WOOLLY APHID, SPRUCE GALL APHID, WESTERN BLACKHEADED BUDWORM, FALSE HEMLOCK LOOPER, FOREST-TENT CATERPILLAR, & DOUGLAS-FIR TUSSOCK MOTH. FOR ALMOST ALL SPECIES, THE MOST EFFECTIVE SALTS CAUSING MORTALITY WERE CENTERED AROUND POTASSIUM OLEATE IN THE UNSATURATED C18 SALTS.First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop. SKIN: IMMEDIATELY flood affected skin with water while removing and isolating all contaminated clothing. Gently wash all affected skin areas thoroughly with soap and water. If symptoms such as redness or irritation develop, IMMEDIATELY call a physician and be prepared to transport the victim to a hospital for treatment. INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing. INGESTION: DO NOT INDUCE VOMITING. If the victim is conscious and not convulsing, give 1 or 2 glasses of water to dilute the chemical and IMMEDIATELY call a hospital or poison control center. Be prepared to transport the victim to a hospital if advised by a physician. If the victim is convulsing or unconscious, do not give anything by mouth, ensure that the victim's airway is open and lay the victim on his/her side with the head lower than the body. DO NOT INDUCE VOMITING. IMMEDIATELY transport the victim to a hospital. If you spill this chemical, you should dampen the solid spill material with water, then transfer the dampened material to a suitable container. Use absorbent paper dampened with water to pick up any remaining material. Seal your contaminated clothing and the absorbent paper in a vapor-tight plastic bag for eventual disposal. Wash all contaminated surfaces with a soap and water solution. Do not reenter the contaminated area until the Safety Officer (or other responsible person) has verified that the area has been properly cleaned. STORAGE PRECAUTIONS: You should protect this chemical from exposure to light, and store it in a freezer. Salts, basic, such as OLEIC ACID, [POTASSIUM SALT], are generally soluble in water. The resulting solutions contain moderate concentrations of hydroxide ions and have pH's greater than 7.0. They react as bases to neutralize acids. These neutralizations generate heat, but less or far less than is generated by neutralization of the bases in reactivity group 10 (Bases) and the neutralization of amines. They usually do not react as either oxidizing agents or reducing agents but such behavior is not impossible.Potassium Oleate is generally immediately available in most volumes, including bulk quantities. American Elements can produce most materials in high purity and ultra high purity (up to 99.99999%) forms and follows applicable ASTM testing standards; a range of grades are available including Mil Spec (military grade), ACS, Reagent and Technical Grade, Food, Agricultural and Pharmaceutical Grade, Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia). We can also produce materials to customer specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies. Typical and custom packaging is available, as is additional research, technical and safety (MSDS) data.Acme Synthetic Chemicals is the Manufacturer, Supplier and also the Exporter of Potassium Oleate.Potassium Oleate is classified under CAS No.143-18-0.Potassium Oleate is also known as Potassium Salt of Oleic Acid, Oleic Acid Potassium Salt, Potassium 9-Octadecenoate.Potassium Oleate is both a potassium salt of oleic acid and fatty acid . It is a salt because it is the product of an acid and a base. It is a fatty acid because it has a long carbon backbone with a carboxyl group terminus.Potassium Oleate is a liquid potassium soap solution in water.Potassium Oleate is used as an emulsifier in many liquid soaps, facial cleansers, mustache waxes, body washes and hair permanents. Emulsifiers act like surfactants and reduce the surface tension of a liquid.Potassium Oleate prevents the ingredients in these products from separating into separate chemicals.The FDA says Potassium Oleate “may be safely used in food and in the manufacture of food components” as long as it is used as “a binder, emulsifier and anti-caking agent.Potassium Oleate can also be used us cleansing agent in household cleaning products.Potassium Oleate also can used as rubber foaming agent, detergent, lubricants and catalyst.This Potassium Oleate is widely demanded in the international market due to its high effectiveness, eco-friendliness and purity, and is offered in different grades to meet the varied needs of our clients. Moreover, we are offering the entire range at an affordable cost to our clients.Potassium oleate belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Potassium oleate is a weakly acidic compound (based on its pKa).Basic cleaning compositions using toxicologically-acceptable ingredients for cleaning fruits and vegetables are provided. Clear liquid formulations comprising oleate, alcohol ethoxylates and buffers are sprayed onto apples, lettuce and the like to remove soil and unwanted deposits.The present invention relates to methods for removing dirt and other unwanted residues from produce, e.g., fruits and vegetables, which is intended for ingestion by humans or lower animals and to detersive compositions, especially in liquid form, which are especially suitable for practicing said methods.It is well-known and appreciated by consumers that fruits and vegetables should be thoroughly washed prior to ingestion in order to remove soils and other unwanted residues which may be undesirably clinging to the surfaces thereof. In addition, some consumers wish to remove the artificial "waxy" coatings which may be applied to some fruits to retard moisture loss for increased storage life and to enhance their appearance. It has been estimated that 95% of consumers recognize the need for thorough washing but, ordinarily, only use tap water for this purpose. On the order of 5% of those consumers who do wash their vegetables use a household cleaner, typically a liquid dishwashing product, to help ensure cleanliness. However, dishwashing products are not specifically intended for such use, inasmuch as they are usually designed to provide high, persistent suds which makes them inconvenient to remove from the fruits or vegetables which have been washed therewith. It will also be appreciated that the formulation of truly effective compositions, especially those which can be used safely by individual consumers, for washing fruits and vegetables presents a unique problem to the formulator, inasmuch as many an-disclosed cleaning ingredients would, presumably, not be desirable for use in direct contact with foods where they might not be fully removed.Moreover, it would be especially desirable to provide effective, toxicologically-acceptable cleaning compositions for fruits and vegetables in the form of substantially low-sudsing liquid solutions which are clear or which have only minimal haziness. Liquid solutions are convenient for the user, since they can be applied directly to soiled fruits and vegetables, followed by rinsing in tap water. The clarity of the liquids connotes cleanliness to the user and is thus highly desirable. Low sudsing is an important attribute so that removal of the solution by rinsing is achieved quickly and easily. It would also be of advantage if such compositions could be provided in the form of concentrates, which could be diluted by the consumer before use and/or applied to the fruits and vegetables as a direct spray-on.Unfortunately, many toxicologically-acceptable cleaning ingredients do not meet the aforesaid requirements for clear, low-sudsing, dilutable liquid products. Many detersive surfactants form cloudy or even opaque suspensions in water. Of course, many surfactants are specifically designed to be high sudsing. Still others form relatively intractable phases in their concentrated form.It has now been discovered that certain nonionic surfactants, properly formulated with oleic acid or water-soluble oleate or laurate salts and other ingredients can provide liquid compositions having the desired properties described above. It has been discovered that preferred compositions can be formulated in the acid pH range and have a desirable clean, "non-soapy" feel to the user's hands. Alternatively, certain compositions can be formulated in the basic pH range. Even when such basic compositions do have a soapy feel, they are preferred over the acidic compositions herein for removing artificial waxy coatings, especially from fruit such as apples. However, the invention also comprises basic compositions having less soapy feel.The use and selection of cleaning ingredients for the purpose of washing fruits and vegetables is described by the United States Code of Federal Regulations, Title 21, Section 173.315: "Ingredients for use in washing or lye peeling of fruits and vegetables". These regulations restrict the ingredients that may be used for direct contact with food to those described as "generally regarded as safe" (GRAS), and a few other selected ingredients. These sections also provide certain limitations on the amount of material that can be used in a given context.Among these ingredients, the experienced formulator will find only a few ingredients which can provide effective cleaning of hydrophobic residues, such as waxes, oils, or man-made chemical residues such as pesticides. It is recognized that these types of residues are removed most readily by surface active ingredients in water, or by organic solvents largely in the absence of water. Other types of soils, especially particulate insoluble soils that do not readily disperse in water, are effectively removed by surface active materials in water, especially when aided by complex anionic salts, such as citrates (polycarboxylates), or polyphosphate salts.Within this limited group of ingredients the range of effective cleaning compositions well suited to the task of cleaning fruits and vegetables, especially as practiced by individual consumers, have not been previously described. It is desirable to formulate liquid compositions which are amenable to either direct application to produce, preferably by spray application, or could be provided in suitable concentrated form to allow convenient dilution in a bowl or sink of water for washing of produce by immersion. Further, it is desirable the compositions are low sudsing, and easily rinsed, without leaving residue. Preferred compositions should be mild to the hands, especially for direct application.Food Chemical News, Inc., 1991, p. 334.1, reports that PEG 200-9500 has been cleared under §178.3750 as a component in articles for use in contact with food (Fed. Register, Oct. 15, 1968). Nonetheless, for washing produce, polyethylene glycol should be affirmed as GRAS.High ammonia (HA) natural rubber latex (NRL) is generally very sensitive at lower temperature and will form big rubber lumps after the freezing and thawing processes. The growth of ice crystals in an aqueous medium during freezing causes the rubber particles to move closer together and thus disrupts the protein cloud surrounding the latex particles. The broken protein cloud causes rubber particles to coalesce and form big lumps after the thawing process. However, this phenomenon did not occur when potassium oleate (PO) was incorporated into the HA NRL medium. PO acted as a colloid stabiliser by means of adsorbance at the rubber latex surface, thus preventing the coalescence of rubber particles from occurring. This study investigated the effect of PO loading (0, 0.1, 0.2, 0.3, 0.4, and 0.5 phr) on the colloid stability of HA NRL after being subjected to both freezing and thawing. These latex mixtures were frozen by cooling it at − 4°C for 24h and thawed by allow-ing them to stand at room temperature for 1h followed by heating at 40°C for another hour. The results obtained showed that the PO improved the colloid stability of HA NRL in terms of morphological properties, viscosity, and mechanical stability time values. Particle-size distribution of latex mixtures, however, did not vary even after freezing.Potassium oleate is a product with high wetting, non-stick and foaming powers for applications in the industrial sector, such as the manufacture of Marseille soap. It is a surfactant, its main function being to reduce the surface tension of water to make it wet fabric more thoroughly, thus helping to wash and remove dirt.ORDISOL HOK-50 LX, 50% potassium oleate manufactured by Concentrol and used as a surfactant and thickener for the manufacture of Marseille soap, is characterized by its high stability at low temperatures with the consequent ease of use even in very cold conditions. Apart from its use in the aforementioned soaps, potassium oleate prepared in other forms is also used as a foaming agent in the latex industry, to deink paper in the recycling process, to lubricate conveyor belts of glass containers and as a surfactant and wetting agent in phytosanitary products, among others.This product, a surfactant of vegetable or animal origin, always natural and non-synthetic, is obtained from a modification of the traditional method of saponification, used since antiquity to obtain soap from fat or oils. The final result is biodegradable and is not dangerous to the environment. In order to analyse the results of this product, a study has been carried out in which we wanted to delve into different fundamental parameters for the product.Evaporating the product at 100 °C until constant weight, and with the help of an automatic dry extract analyser, with samples of 0.5g of each product, the Concentrol product line ORDISOL HOK-50 LX has obtained results of 52%, a notable percentage in solids compared to other lines on the market, which explains its high efficiency.One of the basic uses of potassium oleates is as foaming agents, natural anionic surfactants in multiple detergent applications. Therefore, in the study we wanted to analyse foam formation by ORDISOL HOK-50 LX in aqueous solutions of 0.05%. These tests have concluded that the amount of foam generated by this product is desirable for manufacturers of this type of soap, since it is neither too excessive nor too little. Potassium oleate also stands out for its high viscosity in aqueous solution, one of its main characteristics. For this reason, the viscosity of the solution in osmosis water (without hardness) has also been measured in the test. In a direct solution of potassium oleate in water (40/160, oleate / water), the ORDISOL HOK-50 LX product samples analysed give a viscosity value in aqueous solution of between 345 and 630 cps.The study was also carried out by adjusting a specific dry extract value, in this case 11%, which in this way allowed compensating the initial differential in the dry extract. In this case, ORDISOL HOK-50 LX obtains a viscosity of 170 cps.The main advantages of using ORDISOL HOK-50 LX instead of manufacturing it in-house are the following: Savings in staff costs and time for the manufacture of potassium oleate, which requires mixing and neutralization with temperature. The product is often applied immediately after the manufacture of the detergent. Using Concentrol’s product allows it to be applied at any time and in any quantity. Concentrol supplies the product with precise margins of specification, minimizing the oscillations in the preparation of the final detergent. We keep stock available for immediate delivery. We guarantee traceability of the raw materials that are used in potassium oleate. Thus, apart from complying with the requirements of the sector and having a very good thickener capacity, Concentrol’s ORDISOL HOK-50 LX product line stands out on the market due to its high stability at low temperatures, thus allowing its storage outside without danger of freezing. Concentrol studies each customer’s particular case and conducts studies to provide the most suitable solution for their requirements. With full control of the manufacturing process, Concentrol designs product lines with different properties and compatibility levels so that the customer has at their disposal the best solution according to their needs. Contact us for more information.Different microemulsions were prepared with and without mefenamic acid (MFA). The base microemulsion was mainly composed of distilled water; the aqueous phase, propylene carbonate; the oil phase, potassium oleate; the surfactant, and finally di-ethylene glycol; the cosurfactant. The effect of mixing ionic (potassium oleate) with nonionic (Tween-20) surfactant was investigated via constructing the phase diagrams of such systems. Changes in conductivity and viscosity of the freshly prepared microemulsion over time were monitored as an indication for the stability of the microemulsion. Measurements were carried out at room temperature, after a freeze-thaw cycle and also after storage for 3 days at 60°C, where the latter is treated as an accelerated test for the time-temperature effects on the stability of a microemulsion. It was found that a set of surfactants, instead of a single surfactant, and inclusion of cosurfactant resulted in a broader region where a stable microemulsion is predominant. At a mass ratio of 1:2 of potassium oleate to Tween-20, O/W microemulsions were found to have maximum stability among all examined systems, under the accelerated test, such that they have a minimum portion of combined surfactants and cosurfactant of 60 wt% and maximum of 80 wt%. With the aforementioned specifications, no phase separation and neither significant change in the conductivity nor in the viscosity was observed in any of the examined systems after subjecting them both to the accelerated and freeze-thaw cycle test, indicating that such systems were thermodynamically stable. Samples of micro emulsions passing previous tests were further subjected to an acidic medium by dispersing 1 g of MFA-containing microemulsion in 10 g HCl solution (pH 1) in a shaking water bath at 37°C, for a 6 hour period. The maximum solubility of MFA in a stable microemulsion was approximately 5 wt%, evaluated at room temperature.The effect of potassium oleate (PO, C 18 H 33 KO 2 ) in a glycine-based weakly alkaline slurry on copper chemical mechanical polishing (CMP) process was discussed. The corrosion inhibitor in the slurry could balance the over etching to realize the global planarization of the copper layers. The experimental results verified PO was indeed effective in inhibiting copper removal rate. The corrosion and passivation mechanism were also discussed. SEM and XPS test results confirmed that PO can adsorb on the copper surface to form a passivation film.A 17.5% active solution of potassium oleate useful in the formulation of latex rubber products and foam rubbers. Used as an auxiliary surfactant in preparation of water-based adhesive products and preparation of latex foam products. It is especially useful for stabilisation of Natural rubber latex during prevulcanisation.An influenza epidemic is still a problem despite the development of vaccines and anti-influenza drugs. Preventive measures such as handwashing are fundamental and important for counteracting influenza virus infection. In this study, we clarified the anti-influenza virus effects of surfactants, which are the main components of hand soaps for hand washing: potassium oleate (C18:1), sodium laureth sulfate (LES) and sodium lauryl sulfate (SDS). For a human influenza virus strain (H3N2), C18:1 reduced the infectivity by 4 logs or more, whereas LES and SDS reduced the infectivity by 1 log or less. Similar results were obtained when an avian influenza virus strain (H5N3) was used. The interaction between the surfactant and virus was then investigated by isothermal titration calorimetry. The LES-virus system showed a positive value of enthalpy changes (ΔH), meaning an exothermic interaction that indicated a hydrophobic interaction. In contrast, both the C18:1-virus system and the SDS-virus system showed negative values of ΔH, meaning an endothermic interaction that indicated an electrical interaction. The ΔH value of the C18:1-virus system was much higher than that of the SDS-virus system. A mixture of C18:1 and HA proteins similarly showed negative values of ΔH. These results indicate that influenza virus inactivation by a hydrophobic interaction of a surfactant with the viral envelope is insufficient to prevent infection, whereas inactivation by an electrical interaction of a surfactant with HA proteins is sufficient to prevent influenza virus infection.By using potassium oleate (KOL) as a part of ligand, nanorods of β-NaYF4:Yb,Er were synthesized. The aspect ratio of β-NaYF4:Yb,Er nanocrystals was tuned by changing the amount of KOL. We found that potassium from KOL is not only absorbed on the surface of nanocrystals, but also partially substitutes Na element in nanocrystals lattice. Different from the classical shape control mechanism that oleate ions are absorbed on different facets of nanocrystals, the anisotropic growth of β-NaYF4:Yb,Er in current work is caused by the doping of K+. The incorporation of K+ would not lead to obvious decrease of the upconversion fluorescence intensity. Meanwhile, oleate ions promote the phase transition of nanocrystals from cubic to hexagonal phase, resulting in the simultaneous controllability of the nanocrystals size.
POTASSIUM OXALATE
POTASSIUM PALMITATE, N° CAS : 2624-31-9, Nom INCI : POTASSIUM PALMITATE, Nom chimique : Potassium hexadecanoate, N° EINECS/ELINCS : 220-088-6. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
POTASSIUM PERSULFATE
Potassium Persulfate IUPAC Name dipotassium;sulfonatooxy sulfate Potassium Persulfate InChI 1S/2K.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2 Potassium Persulfate InChI Key USHAGKDGDHPEEY-UHFFFAOYSA-L Potassium Persulfate Canonical SMILES [O-]S(=O)(=O)OOS(=O)(=O)[O-].[K+].[K+] Potassium Persulfate Molecular Formula K2S2O8 Potassium Persulfate CAS 7727-21-1 Potassium Persulfate Deprecated CAS 106015-10-5, 1001387-46-7 Potassium Persulfate European Community (EC) Number 231-781-8 Potassium Persulfate ICSC Number 1133 Potassium Persulfate RTECS Number SE0400000 Potassium Persulfate UN Number 1492 Potassium Persulfate UNII 6B86K0MCZC Potassium Persulfate DSSTox Substance ID DTXSID4029690 Potassium Persulfate Physical Description Potassium persulfate appears as a white crystalline solid. Specific gravity 2.477. Decomposes below 100°C. Potassium Persulfate Color/Form COLORLESS, TRICLINIC CRYSTALS Potassium Persulfate Odor ODORLESS Potassium Persulfate Solubility 1.75 G IN 100 CC OF WATER @ 0 °C Potassium Persulfate Density 2.477 Potassium Persulfate Vapor Density 2.48 Potassium Persulfate Stability/Shelf Life GRADUALLY DECOMP LOSING AVAIL OXYGEN, MORE QUICKLY AT HIGHER TEMP, COMPLETELY AT ABOUT 100 °C Potassium Persulfate Decomposition Dangerous when heated to decomp, emits highly toxic fumes of /sulfur oxides/. Potassium Persulfate pH AQUEOUS SOLN IS ACIDIC Potassium Persulfate Refractive Index INDICES OF REFRACTION: 1.461, 1.467, 1.566 Potassium Persulfate Other Experimental Properties Decomposes below 100 °C Potassium Persulfate Molecular Weigh 270.33 g/mol Potassium Persulfate Hydrogen Bond Donor Count 0 Potassium Persulfate Hydrogen Bond Acceptor Count 8 Potassium Persulfate Rotatable Bond Count 1 Potassium Persulfate Exact Mass 269.830872 g/mol Potassium Persulfate Monoisotopic Mass 269.830872 g/mol Potassium Persulfate Topological Polar Surface Area 150 Ų Potassium Persulfate Heavy Atom Count 12 Potassium Persulfate Formal Charge 0 Potassium Persulfate Complexity 206 Potassium Persulfate Isotope Atom Count 0 Potassium Persulfate Defined Atom Stereocenter Count 0 Potassium Persulfate Undefined Atom Stereocenter Count 0 Potassium Persulfate Defined Bond Stereocenter Count 0 Potassium Persulfate Undefined Bond Stereocenter Count 0 Potassium Persulfate Covalently-Bonded Unit Count 3 Potassium Persulfate Compound Is Canonicalized Yes Potassium Persulfate appears as a white crystalline solid. Specific gravity 2.477. Decomposes below 100°C.Potassium Persulfate appears as a white crystalline solid. Specific gravity 2.477. Decomposes below 100°C.Potassium Persulfate is an oxidizing agent. Noncombustible but accelerates the burning of combustible material. Potassium Persulfate plus a little potassium hydroxide and water released sufficient heat and oxygen to ignite a polythene (polyethylene) liner in a container.Potassium Persulfate is the inorganic compound with the formula K2S2O8. Also known as potassium peroxydisulfate or KPS, it is a white solid that is sparingly soluble in cold water, but dissolves better in warm water. This salt is a powerful oxidant, commonly used to initiate polymerizations.Potassium Persulfate can be prepared by electrolysis of a cold solution potassium bisulfate in sulfuric acid at a high current density.Potassium Persulfate (Formula is K2S2O8) is also known as potassium peroxydisulfate, molecular weight is 270.32, decomposition temperature is 50-60℃, it is white, odorless crystal, it is soluble in water, insoluble in alcohol, it has strong oxidizing, it is commonly used as bleaching agents, oxidizing agents, it can be used as the polymerization initiator, it almost does not absorb moisture, it has good stability at room temperature, it is easy to be stored, and it has the advantages of convenience and safety, etc. . Applications involves polymerization initiator, circuit board cleaning and etching, copper and aluminum surface activation, modified starch, pulp and textile bleaching and desizing low temperature, circulating water purification treatment systems, oxidative degradation of harmful gases, low formaldehyde adhesive stick together accelerated oxidation of ethanol and aromatic hydrocarbons, disinfectants, hair dye decolorization.Potassium Persulfate dissolves in 30℃ water, cools, then the recrystallized product can be obtained, it is filtered and dried under reduced pressure in the presence of calcium chloride.Potassium Persulfate is mainly used as initiator and strong oxidizing agents.Potassium Persulfate is the initiator of latex or solution polymerization of acrylic monomers, vinyl acetate, vinyl chloride and other product, and it is also the initiator of styrene, acrylonitrile, butadiene and the like emulsion for copolymerisation.Potassium Persulfate powder has stimulating effect on nasal mucosa, packaging should be ventilated to prevent dust. Labour protection appliance should be dressed at work.Potassium Persulfate is non-flammable, it is combustion-supporting which due to it can release of oxygen, storage environment must be dry and clean, well-ventilated. Pay attention to moisture and rain, it should not be transported in rain. Keep away from fire, heat and direct sunlight. It should be kept sealed packaging, labels should be intact and clear. It should be stored separately with flammable or combustible materials, organic compounds, as well as rust, small amount of metal, and other reducing substance, it should avoid mix to prevent causing decomposition of Potassium Persulfate and explosion.Ammonium sulfate and sulfuric acid formulates to form liquid electrolyte, it is decontaminated by electrolysis, HSO4-can discharge and generate peroxydisulfate acidat in the anode, and then reacts with ammonium sulfate to generate ammonium persulfate, Then replacement reaction can happen when potassium is added . The finished product of Potassium Persulfate can be obtained after cooling, separation, crystallization, drying.Potassium Persulfate is a colorless or white, odorless crystalline material.Potassium Persulfate can be prepared by electrolysis of a mixture of potassium sulfate and potassium hydrogen sulfate at a high current density:2KHSO4→K2S2O8+ H2.Also, the compound can be prepared by adding potassium hydrogen sulfate,KHSOto an electrolyzed solution of ammonium hydrogen sulfate, NH4HSO4.Potassium Persulfate is an oxidizing agent. Noncombustible but accelerates the burning of combustible material. Potassium Persulfate plus a little potassium hydroxide and water released sufficient heat and oxygen to ignite a polythene (polyethylene) liner in a container.Potassium Persulfate is used as a bleaching and oxidizing agent; it is used in redox polymeri- zation catalysts; in the defiberizing of wet strength paper and in the desizing of textiles. Soluble in water.UN1492 Potassium Persulfate, Hazard Class: 5.1; Labels: 5.1-Oxidizer.Using a rock tumbler, they ground acrylamide and various solid initiators, including benzoyl peroxide, AIBN, Potassium Persulfate, ceric ammonium nitrate, ceric ammonium sulfate, bromate/malonic acid, lead dioxide, and lithium nitrate.Potassium Persulfate is used as free-radical initiator for polymerization. The resulting latex was coagulated, filtered, and dried under reduced pressure followed by extraction of nanocomposites.This emulsifier free reaction system consists of deionized water, a water-soluble initiator (i.e. Potassium Persulfate (KPS)), and monomers, such as acryl or vinyl monomers. The stabilization of polymeric nanoparticles in such a process takes place via the use of ionizable initiators or ionic co-monomers.Deionized water, a water-soluble initiator (i.e., Potassium Persulfate), and monomers are the reagents used in an emulsifier-free system. The polymerization reaction was triggered by Potassium Persulfate and the mixture was heated to 60°C under stirring for 12 h. CS and Potassium Persulfate were dissolved in acetic acid solution under stirring. Macleod et al.416 reported very fast polymerizations and low PDIs by selecting TEMPO and Potassium Persulfate (KPS) for the polymerization of styrene at 135 °C, even though a large proportion of chains were eventually dead.Potassium Persulfate is a transparent colorless crystal that is a strong oxidizer. It is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.Potassium Persulfate plus a little potassium hydroxide and water released sufficient heat and oxygen to ignite a polythene (polyethylene) liner in a container.The present work describes the static etching and chemical mechanical polishing process of Cu and Co, which were conducted by Potassium Persulfate (K2S2O8) as an oxidizer at various pH values.The present invention relates to a method for producing Potassium Persulfate. Potassium Persulfate is widely used industrially as a polymerization initiator for polyvinyl chloride and polyacrylonitrile.The ammonium persulfate crystals thus obtained are redissolved in the next step and sent to the reaction step with potassium hydroxide. In the reaction step, a Potassium Persulfate-containing solution is obtained, concentrated and separated by vacuum crystallization, centrifugation, etc., and taken out as crystals. As described above, the method for producing Potassium Persulfate by the reaction of ammonium persulfate and potassium hydroxide requires a very long number of steps, and the yield of Potassium Persulfate based on ammonium persulfate is low. I can not say.Under such circumstances, attempts have been made to obtain Potassium Persulfate by direct electrolysis without going through ammonium persulfate. For example, Japanese Patent Application Laid-Open No. 50-133196 describes a method for producing Potassium Persulfate using potassium hydrogen sulfate as a raw material. In this method, a special electrolytic cell and an expensive titanium cathode must be used. In spite of this, in reality, only low current efficiency can be obtained, and no practical manufacturing method has been developed.The present invention solves the problems in the method for producing Potassium Persulfate described above and provides a method for producing Potassium Persulfate by an industrially advantageous method.As a result of diligent research to overcome these drawbacks, the inventors have conducted a process for producing ammonium persulfate by electrolysis, a reaction process for directly adding potassium hydroxide to the resulting anodic product, and concentration and separation of Potassium Persulfate. A method for producing Potassium Persulfate comprising the steps of: In addition, it is found that Potassium Persulfate can be produced economically advantageously by recycling a part of the crystallization mother liquor after concentration and separation of Potassium Persulfate to the Potassium Persulfate production step, and the present invention is completed. It came to.Potassium persulfate (Formula is K2S2O8) is also known as potassium peroxydisulfate, molecular weight is 270.32, decomposition temperature is 50-60℃, it is white, odorless crystal, it is soluble in water, insoluble in alcohol, it has strong oxidizing, it is commonly used as bleaching agents, oxidizing agents, it can be used as the polymerization initiator, it almost does not absorb moisture, it has good stability at room temperature, it is easy to be stored, and it has the advantages of convenience and safety, etc. . Applications involves polymerization initiator, circuit board cleaning and etching, copper and aluminum surface activation, modified starch, pulp and textile bleaching and desizing low temperature, circulating water purification treatment systems, oxidative degradation of harmful gases, low formaldehyde adhesive stick together accelerated oxidation of ethanol and aromatic hydrocarbons, disinfectants, hair dye decolorization.Potassium persulfate is non-flammable, it is combustion-supporting which due to it can release of oxygen, storage environment must be dry and clean, well-ventilated. Pay attention to moisture and rain, it should not be transported in rain. Keep away from fire, heat and direct sunlight. It should be kept sealed packaging, labels should be intact and clear. It should be stored separately with flammable or combustible materials, organic compounds, as well as rust, small amount of metal, and other reducing substance, it should avoid mix to prevent causing decomposition of potassium persulfate and explosion.Potassium sulphate, also called sulphate of potash, is a white crystalline material, moderately hygroscopic, available in fine, granular and semi-granular forms. It contains 48 to 54% potassium (as K2O) and supplies 17 to 20 % of sulphate. Chloride-sensitive crops like tobacco, grapes and potato require chloride-free potassium fertilizers. Therefore, these crops are fertilized with potassium sulphate, although this is more expensive than potassium chloride. These three crops, being major crops, account for about 7% of the total potash consumption. For best results, potassium sulphate should contain at least 50 % potash by weight.Preparation of the penicillin-enzyme electrode - Three grams of acrylamide and 0.58 g of N,N′-methylenebisacrylamide are dissolved in 25 cm3 of 0.1 M Tris buffer at pH 7. Three mg each of riboflavin and potassium persulphate are added to catalyze photopolymerization. To 1 cm3 of the above solution add 125 mg of penicillinase. A glass electrode is washed well with distilled water, wiped dry with tissue paper, and mounted upside down. A 1-in. × 1-in. piece of Nylon net (350 µm) is placed over the glass bulb of the electrode and held in place with a thin wire wrapped near the glass bulb. The electrode is mounted inside a glass tube (2 cm i.d.) which is continuously flushed with nitrogen. A 500 W GE reflector lamp may be used to photopolymerization. To prevent any heat transfer from the lamp to the electrode, a glass tank 9 cm thick filled with water should be placed between them.The enzyme-gel solution is added drop-wise to the electrode. Normally a total of only 8-10 drops is needed. During the addition of the enzyme-gel solution and for approximately 40 min thereafter, the electrode should be exposed to the light source. After polymerization is complete, a second piece of nylon netting is placed over the gel layer and held in place with an O-ring. The electrode is then equilibrated in pH 7 Tris buffer for a period of not less than 24 h prior to use. The electrode is stored in a refrigerator to preserve enzyme activity.In emulsion polymerization, the layered nanomaterials are dispersed in the aqueous phase, and the polymer nanocomposites are formed. In this process, the distilled monomer is dispersed in the aqueous phase with the aid of sodium lauryl sulfate as a surfactant. Potassium persulfate is used as free-radical initiator for polymerization. The resulting latex was coagulated, filtered, and dried under reduced pressure followed by extraction of nanocomposites. Ju-Young Kim et al. synthesised polyurethane/clay nanocomposites using Na+-montmorillonite (Na+-MMT)/amphiphilic urethane precursor (APU) chains that have hydrophilic polyethylene oxide (PEO) chains and hydrophobic segments at the same molecules. Nanocomposites synthesized using APU/Na+-MMT emulsions, having microphase separated structure have greater tensile strength than those prepared with melt-mixed APU/Na+-MMT mixtures .Thermoplastic polyurethane nanocomposites are mostly prepared by solvent blending, melt blending, in situ polymerization and reaction extrusion. Thermoplastics polyurethane reactive extrusion involves the in situ polymerization of polyol, diisocyanate, and chain extender in a twin-screw extruder. Nanomaterials are introduced as powder form through side feeder or predispersed into the polyol liquid precursor. Chemical modification of polymers is carried out by this route. The extruder is used as a continuous chemical reactor for polymerization. This method involves extruder parameter control as well as chemical reaction control. Some of the advantages of reaction extrusion are the absence of solvent, use of high-viscosity polymers, flexible-processing conditions, prevention of thermal degradation, safe handling of nanomaterials, and so on.This methodology gained significant popularity due to its simple, green process for preparation of polymeric nanoparticles without the use of stabilizing surfactants and the inconvenience of removing them afterwards.9–13 This emulsifier free reaction system consists of deionized water, a water-soluble initiator (i.e. potassium persulfate (KPS)), and monomers, such as acryl or vinyl monomers. The stabilization of polymeric nanoparticles in such a process takes place via the use of ionizable initiators or ionic co-monomers. In one study, PMMA nanoparticles were prepared by using this methodology, in which polymerization was stimulated with microwave irradiation.14 It was reported that the average particle size was primarily controlled by the monomer methyl methacrylate concentration. The particle size increased from 103 nm to 215 nm when the concentration was increased from 0 to 0.3 mol/L. Further, the nanoparticle size could be controlled by using cross-linkers with enhanced reactivity through a one-step microwaving process. The size of the nanoparticles was successfully controlled by limiting the cross-linking to intra-particle cross-linking rather than inter-particle cross-linking.15 Polyacrylate nanoparticles were prepared by employing sodium salt hydrate (NaSS) as the stabilizing agent, with a particle size of 172.5 nm; a reduction in particle size from 263.4 nm to 172.5 nm was observed with manipulation of NaSS concentration.16 Polystyrene nanoparticles of particle size 200–250 nm were prepared using ultrasonic irradiation, an anionic ionizable water-soluble initiator, KPS, and cetyl alcohol as the co-stabilizer.17 Emulsion polymerization has several advantages, but its applications are limited by its disadvantages, such as inability to synthesize, monodisperse and precisely control particle size.In the conventional emulsion polymerization systems, surfactants need to be eliminated from the final product. Removal of surfactants is a time-consuming process that increases the cost of production. Surfactant-free emulsion polymerization without using additional additives can overcome this drawback and make the preparation process simple and convenient. Deionized water, a water-soluble initiator (i.e., potassium persulfate), and monomers are the reagents used in an emulsifier-free system. Stabilization of PNPs is achieved by the use of ionizable initiators or ionic comonomers. In such a polymerization system, nucleation and particle growth have been provided with micellar-like nucleation and homogeneous nucleation mechanisms.Dong et al. have fabricated N-halamine-based antibacterial polystyrene NPs with different particle size ranging from 91.5 to 562.5 nm by surfactant-free emulsion polymerization with 5-allylbarbituric acid serving as the N-halamine precursor. Researchers have discovered that the particle size of NPs was controllable by tuning the experimental parameters such as monomer concentration, initiator concentration, and ionic strength.Chitosan-methyl methacrylate (CS-M) was prepared by free radical polymerization of CS and methyl methacrylate . Briefly, CS was dissolved in 2.0% acetic acid solution and then 0.5 mL of methyl methacrylate was added into the flask. After degassing, the flask was sealed and the solution was bubbled with dried nitrogen for 10 min prior to polymerization. The polymerization reaction was triggered by potassium persulfate and the mixture was heated to 60°C under stirring for 12 h. The resultant suspension was dialyzed in ultrapure water for 24 h through the semipermeable membrane (10 kDa) to remove the unreactive materials and then dried under vacuum at room temperature.Chitosan-acrylic acid-methyl methacrylate (CS-AM) nanohydro-gel was obtained by graft polymerization of CS, acrylic acid and methyl methacrylate. CS and potassium persulfate were dissolved in acetic acid solution under stirring. Then 0.2 mL of acrylic acid was added and the mixture was heated to 60°C under nitrogen stream. After 1 h, 0.3 mL of methyl methacrylate was added. The graft polymerization was allowed to proceed for 12 h with continuous agitation. The resultant nanosuspension was dialyzed in ultrapure water for 24 h and dried under vacuum at room temperature.CS-acrylic acid-methyl methacrylate-N-isopropylacrylamide (CS-AMNP) was prepared by grafting N-isopropylacrylamide (NIPAM) on CS-AM. CS-AM nanohydrogel was prepared as mentioned earlier. NIPAM was added into the dialyzed CS-AM nanosuspension, and then MBA was added as the crosslinker. The reaction was carried out at 25°C with stirring for 6 h. Finally, the nanohydrogel was dialyzed in ultrapure water for 24 h and dried under vacuum at room temperature.The drug-loaded nanohydrogel suspensions were prepared by incubating the PBS of 5-Fu for 4 h at 25°C. The solution was then dialyzed in ultrapure water for 6 h to remove the nonloaded 5-Fu. Then, the 5-Fu-loaded nanohydrogel suspension was obtained in the semipermeable membrane. The 5-Fu was loaded on the CS-based nanohydrogel by hydrogen bonding interaction between 5-Fu and the nanohydrogels. Additionally, van der Waals interactions existed between the 5-Fu and NIPAM side chains in the CS-AMNP nanohydrogel.In this situation, the polymerization starts in the aqueous phase and conducts the formation of oligoradicals and oligomeric alkoxyamines that enter the monomer droplets, hence becoming the primary locus of polymerization.Macleod et al.416 reported very fast polymerizations and low PDIs by selecting TEMPO and potassium persulfate (KPS) for the polymerization of styrene at 135 °C, even though a large proportion of chains were eventually dead. Interestingly, when TEMPO was replaced by the more hydrophilic TEMPO-OH, evolution of Mn with conversion was affected and a poor control in the early stages of the polymerization was noticed, likely due to the lack of free nitroxide in the organic phase.413 This highlighted the crucial importance of the aqueous phase kinetics and the partition coefficient of the nitroxides on the outcome of the miniemulsion polymerization.The use of K2S2O8/Na2S2O5 redox initiating system in conjunction with SG1 allowed the polymerization rate of styrene to be enhanced compared to its counterpart with AIBN at 90 °C.415,418 An optimal [SG1]0/[KPS]0 ratio of 1.2 was found to be the best compromise regarding a fast polymerization and a good quality of control. Following an induction period necessary to the in situ formation of SG1-based alkoxyamines, styrene conversion reached 90% in 8 h with molar masses in good agreement with the predicted values and PDIs in the 1.5–2.0 range.Two different strategies can be applied to synthesize chemical cross-linked networks: free-radical polymerization of monomers and cross-linking agents (cross-linking polymerization) or cross-linking of pre-build polymers (polymer cross-linking). Despite numerous existing techniques for both strategies, the most common synthetic route is the free-radical copolymerization of vinyl monomers (styrene, AAm, etc.) with a small amount of divinyl cross-linkers (divinylsulfon, bisacrylamide, etc.). Typical monomers to obtain responsive networks by this technique are AAc and NIPAAm (and their derivates, see Table 2 and Figure 6). Mainly N,N′-methylene bisacrylamide (BIS) is used as cross-linker. Bulk gels are easily obtained by just mixing monomer and cross-linker in solution followed by an initiating reaction (NIPAAm typical: potassium persulfate (KPS) and tetramethylethylendiamine (TEMED), AAC: KPS and heating). Performing suspension or emulsion polymerization networks with smaller sizes (microgels) can be obtained.Polymer cross-linking can be performed by reacting polymers bearing functional groups (e.g., –OH, –COOH) with suitable bifunctional molecules. If the functional groups are photoactive, irradiation with UV light will result in networks (principle shown in Figure 8). Furthermore, some polymers can be cross-linked by high-energy irradiation (electron or γ-rays). A striking advantage of the last approach is that no additives are necessary and that no unreacted monomers remain in the gel structure, which is an essential requirement for some applications. A lot of responsive polymers can be cross-linked by high-energy irradiation. In particular, nanogels are accessible by pulse irradiation155,161 (γ-rays) of dilute polymer solution (intramolecular cross-linking).Another chemical cross-linking reaction forming thin hydrogel layers involved the preparation of reactive isocyanate prepolymers followed by simple heat curing.162 Fibrous membranes and monolithic films can be prepared from aqueous mixture of PVA and PAAc at 3.5 COOH/OH molar composition via electrospinning and solution cast, respectively, and then cross-linked by heat-induced esterification. Both forms of hydrogels exhibited increasing swelling with increasing pH. For hydrogel fibrous membranes, planar expansion is immediate without the time lag observed on the films.The polymer network structure and the network properties are closely related to the reaction conditions during gel formation. Cross-linker concentration, initial monomer concentration, temperature, and polymerization method will influence the resulting properties. In particular, for radical cross-linking it is well known that inhomogeneities are introduced into the network structure, for example, spatial heterogeneity of the network density.164,165 As a result, most of the network systems show unsatisfactory mechanical properties. Therefore, practical applications are restricted due to the lack of mechanical strength. However, there are examples of biological gels (e.g., cartilage) with excellent mechanical properties.166 The question arises whether the gap between synthetic (man-made) and biological gels can be overcome. For nonresponsive networks a solution can be found in topological gels167 and double networks.168 Responsive networks with excellent mechanical properties are nanocomposite gels (NC-gels) based on PNIPAAm which will be presented in the next section.Potassium Persulfate is a transparent colorless crystal that is a strong oxidizer. It is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP aAnd EP/BP and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.Potassium Persulfate is a transparent colorless crystal that is a strong oxidizer. It is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP and follows applicable ASTM testing standards.Initiator for the emulsion or solution Polymerization of acrylic monomers, vinyl acetate, vinyl chloride etc. and for the emulsion co-polymerization of styrene, acrylonitrile, butadiene etc.Oxidizing agent, used in cleanaing and pickling of metal surface, accelerated curing of low formaldehyde adhesives and modification of starch, production of binders and coating materials,Desizing agent and bleach activator,It is an essential component of bleaching formulations for hair cosmetics.Ammonium Persulfate, Potassium Persulfate and Sodium Persulfate are inorganic salts. In cosmetics and personal care products, mixtures of persulfates such as Ammonium Persulfate, Potassium Persulfate and Sodium Persulfate are used in hair bleaches and hair lighteners.Potassium persulfate is the inorganic compound with the formula K2S2O8. Also known as potassium peroxydisulfate or KPS, it is a white solid that is sparingly soluble in cold water, but dissolves better in warm water. This salt is a powerful oxidant, commonly used to initiate polymerizations.
POTASSIUM PHOSPHATE
Polyphosphoric acids, potassium salts CAS Number: 68956-75-2
POTASSIUM POLYPHOSPHATE
cas no 304-59-6 (Anhydrous) 6381-59-5 (Tetrahydrate) Rochelle salt; Seignette salt tetrahydrate; DL-2,3-Dihydroxybutanedioic acid, monopotassium monosodium salt, tetrahydrate; (R*,R*)-(+-)-2,3-Dihydroxybutanedioic acid, monopotassium monosodium salt, tetrahydrate; DL-Dihydroxysuccinic Acid, monopotassium monosodium salt, tetrahydrate;
POTASSIUM SORBATE
Potassium Sorbate IUPAC Name potassium;(2E,4E)-hexa-2,4-dienoate Potassium Sorbate InChI 1S/C6H8O2.K/c1-2-3-4-5-6(7)8;/h2-5H,1H3,(H,7,8);/q;+1/p-1/b3-2+,5-4+; Potassium Sorbate InChI Key CHHHXKFHOYLYRE-STWYSWDKSA-M Potassium Sorbate Canonical SMILES CC=CC=CC(=O)[O-].[K+] Potassium Sorbate Isomeric SMILES C/C=C/C=C/C(=O)[O-].[K+] Potassium Sorbate Molecular Formula C6H7O2K Potassium Sorbate CAS 590-00-1 Potassium Sorbate Deprecated CAS 16577-94-9 Potassium Sorbate European Community (EC) Number 246-376-1 Potassium Sorbate UNII 1VPU26JZZ4 Potassium Sorbate FEMA Number 2921 Potassium Sorbate DSSTox Substance ID DTXSID7027835 Potassium Sorbate Physical Description DryPowder; Liquid; PelletsLargeCrystals Potassium Sorbate Color/Form White powder Potassium Sorbate Odor Characteristic odor Potassium Sorbate Melting Point for sorbic acidMelting range of sorbic acid isolated by acidification and not recrystallised 133 °C to 135 °C after vacuum drying in a sulphuric acid desiccator Potassium Sorbate Solubility Solubility in water at 20 °C: 58.2%; in alcohol: 6.5% Potassium Sorbate Density 1.363 at 25 °C/20 °C Potassium Sorbate Decomposition When heated to decomposition it emits toxic fumes of K2O. Potassium Sorbate Molecular Weight 150.22 g/mol Potassium Sorbate Hydrogen Bond Donor Count 0 Potassium Sorbate Hydrogen Bond Acceptor Count 2 Potassium Sorbate Rotatable Bond Count 2 Potassium Sorbate Exact Mass 150.008311 g/mol Potassium Sorbate Monoisotopic Mass 150.008311 g/mol Potassium Sorbate Topological Polar Surface Area 40.1 Ų Potassium Sorbate Heavy Atom Count 9 Potassium Sorbate Formal Charge 0 Potassium Sorbate Complexity 127 Potassium Sorbate Isotope Atom Count 0 Potassium Sorbate Defined Atom Stereocenter Count 0 Potassium Sorbate Undefined Atom Stereocenter Count 0 Potassium Sorbate Defined Bond Stereocenter Count 2 Potassium Sorbate Undefined Bond Stereocenter Count 0 Potassium Sorbate Covalently-Bonded Unit Count 2 Potassium Sorbate Compound Is Canonicalized Yes Potassium Sorbate is a potassium salt having sorbate as the counterion. It has a role as an antimicrobial food preservative. It contains an (E,E)-sorbate.One hundred and twenty-two cases of vaginal fungal infections treated with Potassium Sorbate are presented. A new method of follow-up home application by means of vaginal tampons is tried. Relief of symptoms is prompt, and yeast organism disappear; the safety and superior efficacy of a strengthened (3%) solution is established. Treatment of fungal infections in males is also discussed.Potassium Sorbate is a white crystalline powder or solid. It has a slight odor. Potassium Sorbate is very soluble in water. USE: Potassium Sorbate is an important commercial chemical that is used as a preservative and antibacterial in food, wines and cosmetics. EXPOSURE: Workers that use Potassium Sorbate may breathe in mists or have direct skin contact. The general population may be exposed by consumption of food and use of personal care products. RISK: Data on the potential for Potassium Sorbate to cause adverse effects in humans are limited to a few cases of skin irritation. Due to its long history as a food additive with no apparent toxic effects, and lack of toxic effects in laboratory animals fed low-to-moderate doses, the U.S. Food and Drug Administration considers Potassium Sorbate a "GRAS" (generally recognized as safe) food additive. Therefore, it is not expected to cause any toxicity in humans at levels found in food. No irritation to eyes or skin was observed in laboratory animals following direct contact with Potassium Sorbate. Nasal irritation and lesions were observed in laboratory animals following repeated application of solutions containing low-to-moderate levels of Potassium Sorbate directly to the nasal mucosa. No birth defects developed in offspring of laboratory animals fed high doses of Potassium Sorbate. Data on the potential for Potassium Sorbate to cause reproductive effects were not available. No tumors were induced in laboratory animals following life-time exposure to moderate-to-high levels of Potassium Sorbate or its breakdown product sorbic acid. Increased liver tumors were observed in laboratory animals fed an extremely high dose of sorbic acid over time. The potential for Potassium Sorbate to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens.Sorbic acid is reacted with an equimolar portion of KOH. The resulting Potassium Sorbate may be crystallized from aqueous ethanol.The most commonly used products are sorbic acid itself (E200) and Potassium Sorbate (E202). In many countries sodium sorbate (E201) and calcium sorbate (E203) are also permitted. Sorbic acid is sparingly soluble in water, sodium sorbate has better solubility, and Potassium Sorbate is very freely soluble and can be used to produce 50% stock solutions.Ultraviolet or colorimetric procedures used to analyze Potassium Sorbate in dried prunes.Potassium Sorbate should be stored @ temp below 100 °F & should not be exposed to light or heat. Containers should be kept closed.An exemption from the requirement of a tolerance is established for residues of Potassium Sorbate.An exemption from the requirement of a tolerance is established for residues of Potassium Sorbate.Potassium Sorbate used as a chemical preservative in food for human consumption is generally recognized as safe when used in accordance with good manufacturing practice.Potassium Sorbate used as a chemical preservative in animal drugs, feeds, and related products is generally recognized as safe when used in accordance with good manufacturing or feeding practice.Substances migrating to food from paper and paperboard products used in food packaging that are generally recognized as safe for their intended use, within section 409 of the Act. Potassium Sorbate is included on this list.Cosmetic Ingredient Review; Final Report on the Safety Assessment of Sorbic Acid and Potassium Sorbate.The food additives sodium nitrite and Potassium Sorbate had cytostatic and cytotoxic effects on in vitro cultured V79 hamster cells and EUE human fibroblasts if administered in an acid environment (pH 4.95). The strong cytotoxic effect of sodium nitrite and that of the combined action of sodium nitrite and Potassium Sorbate was observed along the inhibition of macromolecular synthesis. In this respect, Potassium Sorbate was less effective. The decreased plating efficiency of the cells and the inhibition of de novo DNA synthesis induced by these substances aroused the question whether they also have genotoxic effects on V79 cells. Statistical analyses showed that sodium nitrite induced more 6-TG-resistant (6-TGr) mutants as compared to the untreated control. However, this elevation did not correspond to the level of inhibition of DNA synthesis determined during the followed period of time after the removal of the substance. Potassium Sorbate and a combination thereof with sodium nitrite, in our experiments, had no mutagenic effects.Although Potassium Sorbate (PS), ascorbic acid and ferric or ferrous salts (Fe-salts) are used widely in combination as food additives, the strong reactivity of PS and oxidative potency of ascorbic acid in the presence of Fe-salts might form toxic compounds in food during its deposit and distribution.Potassium Sorbate forms white crystals or powder with characteristic odor. It is used as preservative and antimicrobial agent for foods, cosmetics, and pharmaceuticals. It has been also used as medication. HUMAN EXPOSURE AND TOXICITY: Formulations containing up to 0.5% sorbic acid and/or Potassium Sorbate were not significant primary or cumulative irritants and not sensitizers at this test concentration. In humans, a few cases of idiosyncratic intolerances have been reported (non-immunological contact urticaria and pseudo-allergy). ANIMAL STUDIES: Potassium Sorbate was practically nontoxic to rats and mice in acute oral toxicity studies. Potassium Sorbate at concentrations up to 10% was practically nonirritating to the rabbit's eye. Potassium Sorbate have been tested for mutagenic effects using the Ames test, genetic recombination tests, reversion assays, rec assays, tests for chromosomal aberrations, sister chromatid exchanges, and gene mutations. Results have been both positive and negative. Potassium Sorbate at 0.1% in the diet or 0.3% in drinking water of rats for up to 100 weeks produced no neoplasms. No teratogenic effects have been observed in pregnant mice and rats administered Potassium Sorbate.In three repeat insult patch tests using a total of 478 subjects, sorbic acid had overall sensitization rates of 0, 0.33, and 0.8%. All the subjects sensitized were inducted with 20% sorbic acid and challenged with 5% sorbic acid. Formulations containing up to 0.5% sorbic acid or 0.15% Potassium Sorbate were not cumulative irritants or were very mild cumulative irritants. They were not primary irritants and were not sensitizers.An RIPT was conducted using 56 panelists and a facial scrub containing 0.1% Potassium Sorbate. The formulation was diluted 1 :I00 by weight with distilled water for the study. Eight 24 hr semiocclusive induction patches were applied over a 2 week period to the lateral upper arm of each subject. Reactions were scored at patch removal. After an approximately 2 week rest period, a 24 hr semiocclusive challenge patch was applied to a previously untreated site. Reactions to the challenge patch were graded at patch removal and 24 and 48 hr later. Two slight, transient, questionable erythema reactions were observed during induction. No other reactions were observed during induction or challenge. The facial scrub did not induce dermal irritation or sensitization.The skin irritation and sensitization potential of a facial scrub containing 0.1% Potassium Sorbate was evaluated in an RIPT with 47 panelists. The formulation was diluted 1 :I00 in distilled water. Eight 24 hr semiocclusive induction patches were applied to the lateral aspect of the upper arms of the subjects over a 2 week period, and reactions were scored on a scale of O-5 at patch removal. After a 2 week rest period, a 24 hr semiocclusive challenge patch was applied, and reactions were scored at patch removal and 24 and 48 hr later. No reactions greater than 2 (moderate erythema) were observed during the induction period, and no reactions at challenge were indicative of sensitization.Occupational contact dermatitis from Potassium Sorbate in milk transformation plant /described/. Sorbic acid (in petrolatum) and Potassium Sorbate (as aqueous solution) at concentrations of 1, 5, and 10% were practically nonirritating and nonirritating, respectively, to the rabbit eye. Formulations containing 0.1% sorbic acid or 0.15% Potassium Sorbate were nonirritating to the rabbit eye.A 1% aqueous Potassium Sorbate solution was practically nonirritating to rabbit skin.The stability of Potassium Sorbate is strongly dependent on its water content, which must be kept below 0.5%. At room temperature about 140 g of Potassium Sorbate can be dissolved in 100 mL of water. ... Potassium Sorbate is resistant to air oxidation ... although the stability in the solid state depends on purity.Potassium sorbate is the potassium salt of sorbic acid, chemical formula CH3CH=CH−CH=CH−CO2K. It is a white salt that is very soluble in water (58.2% at 20 °C). It is primarily used as a food preservative (E number 202).Potassium sorbate is effective in a variety of applications including food, wine, and personal-care products. While sorbic acid is naturally occurring in some berries, virtually all of the world's production of sorbic acid, from which potassium sorbate is derived, is manufactured synthetically.Potassium sorbate is used as a preservative in a number of foods, since its anti-microbial properties stop the growth and spread of harmful bacteria and molds. It is used in cheese, baked goods, syrups and jams. It is also used as a preservative for dehydrated foods like jerky and dried fruit, as it does not leave an aftertaste. The use of potassium sorbate increases the shelf life of foods, so many dietary supplements also include it. It is commonly used in wine production because it stops the yeast from continuing to ferment in the bottles." It is used for Food Preservative: Potassium sorbate is used particularly in foods that are stored at room temperature or that are precooked, such as canned fruits and vegetables, canned fish, dried meat, and desserts. It’s also commonly used in food that is prone to mold growth, such as dairy products like cheese, yogurt, and ice cream. Many foods that are not fresh rely on potassium sorbate and other preservatives to keep them from spoiling. In general, potassium sorbate in food is very common.It is used for Winemaking: Potassium sorbate is also commonly used in winemaking, to prevent wine from losing its flavor. Without a preservative, the fermentation process in wine would continue and cause the flavor to change. Soft drinks, juices, and sodas also often use potassium sorbate as a preservative.It is used for Beauty Products: While the chemical is common in food, there are many other potassium sorbate uses. Many beauty products are also prone to mold growth and use the preservative to extend the life of skin and haircare products. It is very likely that your shampoo, hair spray, or skin cream contains potassium sorbate.Potassium sorbate is the potassium salt of sorbic acid, chemical formula CH3CH=CH−CH=CH−CO2K. It is a white salt that is very soluble in water (58.2% at 20 °C). It is primarily used as a food preservative (E number 202).Potassium sorbate is effective in a variety of applications including food, wine, and personal-care products. While sorbic acid occurs naturally in some berries, virtually all of the world's supply of sorbic acid, from which potassium sorbate is derived, is manufactured synthetically.Potassium sorbate is produced industrially by neutralizing sorbic acid with potassium hydroxide. The precursor sorbic acid is produced in a two-step process via the condensation of crotonaldehyde and ketene.Potassium sorbate is used to inhibit molds and yeasts in many foods, such as cheese, wine, yogurt, dried meats, apple cider, rehydrated fruits, soft drinks and fruit drinks, and baked goods.It is used in the preparation of items such as hotcake syrup and milkshakes served by fast-food restaurants such as McDonald's.It can also be found in the ingredients list of many dried fruit products. In addition, herbal dietary supplement products generally contain potassium sorbate, which acts to prevent mold and microbes and to increase shelf life. It is used in quantities at which no adverse health effects are known, over short periods of time.Labeling of this preservative on ingredient statements reads as "potassium sorbate" or "E202". Also, it is used in many personal-care products to inhibit the development of microorganisms for shelf stability. Some manufacturers are using this preservative as a replacement for parabens. Tube feeding of potassium sorbate reduces the gastric burden of pathogenic bacteria.Also known as "wine stabilizer", potassium sorbate produces sorbic acid when added to wine. It serves two purposes. When active fermentation has ceased and the wine is racked for the final time after clearing, potassium sorbate renders any surviving yeast incapable of multiplying. Yeast living at that moment can continue fermenting any residual sugar into CO2 and alcohol, but when they die, no new yeast will be present to cause future fermentation. When a wine is sweetened before bottling, potassium sorbate is used to prevent refermentation when used in conjunction with potassium metabisulfite. It is primarily used with sweet wines, sparkling wines, and some hard ciders, but may be added to table wines, which exhibit difficulty in maintaining clarity after fining.Some molds (notably some Trichoderma and Penicillium strains) and yeasts are able to detoxify sorbates by decarboxylation, producing piperylene (1,3-pentadiene). The pentadiene manifests as a typical odor of kerosene or petroleum.In pure form, potassium sorbate is a skin, eye, and respiratory irritant.Concentrations up to 0.5% are not significant skin irritants.As a food additive, potassium sorbate is used as a preservative in concentrations of 0.025% to 0.1% (see sorbic acid),which in a 100 g serving yields an intake of 25 mg to 100 mg. In the United States, no more than 0.1% is allowed in fruit butters, jellies, preserves, and related products. Up to 0.4% has been studied in low-salt, naturally-fermented pickles, and when combined with calcium chloride, 0.2% made "good quality pickles."Potassium sorbate has about 74% of sorbic acid's anti-microbial activity.When calculated as sorbic acid, 0.3% is allowed in "cold pack cheese food."The upper pH limit for effectiveness is 6.5.The maximal acceptable daily intake for human consumption is 25 mg/kg, or 1750 mg daily for an average adult (70 kg).Under some conditions, particularly at high concentrations or when combined with nitrites, potassium sorbate has shown genotoxic activity in vitro.Three studies conducted in the 1970s did not find it to have any carcinogenic effects in rats.Potassium sorbate is a chemical additive. It’s widely used as a preservative in foods, drinks, and personal care products. It is an odorless and tasteless salt synthetically produced from sorbic acid and potassium hydroxide.Potassium sorbate prolongs the shelf life of foods by stopping the growth of mold, yeast, and fungi. It was discovered in the 1850s by the French, who derived it from berries of the mountain ash tree. Its safety and uses as a preservative have been researched for the last fifty years. The U.S. Food and Drug Administration (FDA) recognizes it as generally safe when used appropriately.You’ll find potassium sorbate on the list of ingredients for many common foods. It’s a popular preservative because it’s effective and doesn’t change the qualities of a product, such as taste, smell, or appearance. It’s also water-soluble, and it works at room temperature.Regulatory agencies such as the FDA, the United Nations Food and Agriculture Organization, and the European Food Safety Authority (EFSA) have determined that potassium sorbate is “generally regarded as safe,” abbreviated as GRAS. When you eat potassium sorbate as a food additive, it passes through your system harmlessly as water and carbon dioxide. It does not accumulate in your body.Some people may have an allergic reaction to potassium sorbate in foods. These allergies are rare. Allergies to potassium sorbate are more common with cosmetics and personal products, where it can cause skin or scalp irritation. However, the Environmental Working Group has rated potassium sorbate with a low risk as a skin irritant.Read your food ingredient labels carefully. Be aware of what is in your food. Even though potassium sorbate and other additives are considered safe, you can avoid them by eating fewer processed foods.If you think you have an allergy to potassium sorbate, see if your allergic reactions go away when you stop consuming or using items that contain the additive.Food additives have become a controversial subject. It’s important to keep a scientific perspective when reading web-based information and scare stories. Is the information backed up by facts, or is it biased? Research has shown that potassium sorbate is safe for most people to eat, though it may cause some skin allergies when used in personal care products.One hundred and twenty-two cases of vaginal fungal infections treated with potassium sorbate are presented. A new method of follow-up home application by means of vaginal tampons is tried. Relief of symptoms is prompt, and yeast organism disappear; the safety and superior efficacy of a strengthened (3%) solution is established. Treatment of fungal infections in males is also discussed.Potassium sorbate is a white crystalline powder or solid. It has a slight odor. Potassium sorbate is very soluble in water. USE: Potassium sorbate is an important commercial chemical that is used as a preservative and antibacterial in food, wines and cosmetics. EXPOSURE: Workers that use potassium sorbate may breathe in mists or have direct skin contact. The general population may be exposed by consumption of food and use of personal care products. RISK: Data on the potential for potassium sorbate to cause adverse effects in humans are limited to a few cases of skin irritation. Due to its long history as a food additive with no apparent toxic effects, and lack of toxic effects in laboratory animals fed low-to-moderate doses, the U.S. Food and Drug Administration considers potassium sorbate a "GRAS" (generally recognized as safe) food additive. Therefore, it is not expected to cause any toxicity in humans at levels found in food. No irritation to eyes or skin was observed in laboratory animals following direct contact with potassium sorbate. Nasal irritation and lesions were observed in laboratory animals following repeated application of solutions containing low-to-moderate levels of potassium sorbate directly to the nasal mucosa. No birth defects developed in offspring of laboratory animals fed high doses of potassium sorbate. Data on the potential for potassium sorbate to cause reproductive effects were not available. No tumors were induced in laboratory animals following life-time exposure to moderate-to-high levels of potassium sorbate or its breakdown product sorbic acid. Increased liver tumors were observed in laboratory animals fed an extremely high dose of sorbic acid over time. The potential for potassium sorbate to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens.Because of their physiological inertness, their effectiveness even in the weakly acid pH range and their neutral taste, sorbic acid and its salts have become the leading preservatives in the food sector throughout the world over the past 30 years. The most commonly used products are sorbic acid itself (E200) and potassium sorbate (E202). In many countries sodium sorbate (E201) and calcium sorbate (E203) are also permitted. Sorbic acid is sparingly soluble in water, sodium sorbate has better solubility, and potassium sorbate is very freely soluble and can be used to produce 50% stock solutions. The soluble sorbates are preferred when it is desired to use the preservative in liquid form, or when aqueous systems are to be preserved. Sodium sorbate in solid form is unstable and very rapidly undergoes oxidation on exposure to atmospheric oxygen. It is therefore not produced on the industrial scale. Aqueous solutions of sodium sorbate remain stable for some time. Calcium sorbate is used in the manufacture of fungistatic wrappers because it is highly stable to oxidation, but this use is very limited. Sorbic acid and sorbates can be directly added into the product. The products can be dipped or sprayed with aqueous solutions of sorbates. Dusting of food with dry sorbic acid is also possible but less recommended because sorbic acid irritates the skin and mucous membranes. Sorbic acid and particularly calcium sorbate can be used as active substances in fungistatic wrappers.Personal precautions, protective equipment and emergency procedures: Use personal protective equipment. Avoid dust formation. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. Environmental precautions: Do not let product enter drains. Methods and materials for containment and cleaning up: Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber; Contaminated packaging: Dispose of as unused product.Recycle any unused portion of the material for its approved use or return it to the manufacturer or supplier. Ultimate disposal of the chemical must consider: the material's impact on air quality; potential migration in air, soil or water; effects on animal, aquatic and plant life; and conformance with environmental and public health regulations. If it is possible or reasonable use an alternative chemical product with less inherent propensity for occupational harm/injury/toxicity or environmental contamination.Personal precautions, protective equipment and emergency procedures: Use personal protective equipment. Avoid dust formation. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. Environmental precautions: Do not let product enter drains.The food additives sodium nitrite and potassium sorbate had cytostatic and cytotoxic effects on in vitro cultured V79 hamster cells and EUE human fibroblasts if administered in an acid environment (pH 4.95). The strong cytotoxic effect of sodium nitrite and that of the combined action of sodium nitrite and potassium sorbate was observed along the inhibition of macromolecular synthesis. In this respect, potassium sorbate was less effective. The decreased plating efficiency of the cells and the inhibition of de novo DNA synthesis induced by these substances aroused the question whether they also have genotoxic effects on V79 cells. Statistical analyses showed that sodium nitrite induced more 6-TG-resistant (6-TGr) mutants as compared to the untreated control. However, this elevation did not correspond to the level of inhibition of DNA synthesis determined during the followed period of time after the removal of the substance. Potassium sorbate and a combination thereof with sodium nitrite, in our experiments, had no mutagenic effects.Although potassium sorbate (PS), ascorbic acid and ferric or ferrous salts (Fe-salts) are used widely in combination as food additives, the strong reactivity of PS and oxidative potency of ascorbic acid in the presence of Fe-salts might form toxic compounds in food during its deposit and distribution. In the present paper, the reaction mixture of PS, ascorbic acid and Fe-salts was evaluated for mutagenicity and DNA-damaging activity by means of the Ames test and rec-assay. Effective lethality was observed in the rec-assay. No mutagenicity was induced in either Salmonella typhimurium strains TA98 (with or without S-9 mix) or TA100 (with S-9 mix). In contrast, a dose-dependent mutagenic effect was obtained when applied to strain TA100 without S-9 mix. The mutagenic activity became stronger increasing with the reaction period. Furthermore, the reaction products obtained in a nitrogen atmosphere did not show any mutagenic and DNA-damaging activity. PS, ascorbic acid and Fe-salts were inactive when they were used separately. Omission of one component from the mixture of PS, ascorbic acid and Fe-salt turned the reaction system inactive. These results demonstrate that ascorbic acid and Fe-salt oxidized PS and the oxidative products caused mutagenicity and DNA-damaging activity.Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention.Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination.In three repeat insult patch tests using a total of 478 subjects, sorbic acid had overall sensitization rates of 0, 0.33, and 0.8%. All the subjects sensitized were inducted with 20% sorbic acid and challenged with 5% sorbic acid. Formulations containing up to 0.5% sorbic acid or 0.15% potassium sorbate were not cumulative irritants or were very mild cumulative irritants. They were not primary irritants and were not sensitizers.An RIPT was conducted using 56 panelists and a facial scrub containing 0.1% potassium sorbate. The formulation was diluted 1 :I00 by weight with distilled water for the study. Eight 24 hr semiocclusive induction patches were applied over a 2 week period to the lateral upper arm of each subject. Reactions were scored at patch removal. After an approximately 2 week rest period, a 24 hr semiocclusive challenge patch was applied to a previously untreated site. Reactions to the challenge patch were graded at patch removal and 24 and 48 hr later. Two slight, transient, questionable erythema reactions were observed during induction. No other reactions were observed during induction or challenge. The facial scrub did not induce dermal irritation or sensitization.The skin irritation and sensitization potential of a facial scrub containing 0.1% potassium sorbate was evaluated in an RIPT with 47 panelists. The formulation was diluted 1 :I00 in distilled water. Eight 24 hr semiocclusive induction patches were applied to the lateral aspect of the upper arms of the subjects over a 2 week period, and reactions were scored on a scale of O-5 at patch removal. After a 2 week rest period, a 24 hr semiocclusive challenge patch was applied, and reactions were scored at patch removal and 24 and 48 hr later. No reactions greater than 2 (moderate erythema) were observed during the induction period, and no reactions at challenge were indicative of sensitization.Subchronic or Prechronic Exposure/ The preservatives benzalkonium chloride (BZC) and potassium sorbate (PS) are widely used, not only for nasal drops, but also for eyedrops and cosmetics. However, there have been many case reports that consider lesions such as dermatitis or conjunctivitis to be the results of irritation induced by BZC or PS. We evaluated the histological changes after the long-term administration of BZC or PS on rat nasal respiratory mucosa. Forty rats were used for the BZC group and 40 rats for PS group. Animals in each group were divided into four subgroups The first subgroup received a low-concentration preservative solution that was commonly used for nasal sprays. The second subgroup received a high-concentration preservative solution that was reported to induce dermatitis in humans. The third and fourth subgroups received a steroid mixed preservative solution of low and high concentrations, respectively. The control group was administrated normal saline.
POTASSIUM STEARATE
POTASSIUM TARTRATE, N° CAS : 921-53-9, Nom INCI : POTASSIUM TARTRATE, Nom chimique : Potassium salt of tartaric acid, N° EINECS/ELINCS : 213-067-8. Ses fonctions (INCI). Régulateur de pH : Stabilise le pH des cosmétiques
POTASSIUM THIOGLYCOLATE
POTASSIUM THIOGLYCOLATE, N° CAS : 34452-51-2, Origine(s) : Synthétique, Nom INCI : POTASSIUM THIOGLYCOLATE, Nom chimique : Potassium mercaptoacetate, N° EINECS/ELINCS :252-038-4. Ses fonctions (INCI), Dépilatoire : Enlève les poils indésirables. Agent bouclant ou lissant (coiffant) : Modifie la structure chimique des cheveux, pour les coiffer dans le style requis
POTASSIUM TRIPOLYPHOSPHATE
POTASSIUM TRIPOLYPHOSPHATE Potassium Tripolyphosphate Solution Ca. is an odorless, colorless liquid. Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Potassium Tripolyphosphate solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for soaps, detergents and especially liquid cleaning formulations. Potassium Tripolyphosphate solution Title: Potassium Tripolyphosphate solution Synonyms: pentapotassium triphosphate; potassium triphosphate; KTPP, Potassium Tripolyphosphate Formula: K5P3O10, Molecular: 301.03 CAS #: 13845-36-8, EC #: 237-574-9 Standard(s) of Potassium Tripolyphosphate: FCC V, Q/5749-2008 Grade of Potassium Tripolyphosphate: Technical grade, Low iron Potassium Tripolyphosphate solution Specifications ITEMS Low iron Technical grade of Potassium Tripolyphosphate Appearance of Potassium Tripolyphosphate Solid content of Potassium Tripolyphosphate Density of Potassium Tripolyphosphate g/ml Properties of Potassium tripolyphosphate Aqueous solution of Potassium tripolyphosphate is colorless clear liquid, relative density 1.55-1.6 g/cm3, It can chelate with alkaline metals ions or heavy metal ions Applications of Potassium Tripolyphosphate Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Potassium Tripolyphosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Potassium Tripolyphosphate is Widely used in industrial parts cleaning and metal pretreatment industry. Potassium Tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Storage & handling of Potassium Tripolyphosphate I Packed in 1200KG/IBC drum. Keep Potassium Tripolyphosphate in cool dry place. Air transportation: arranged as ordinary goods. Harzards Identification & Classifications: N/A Shelf life of Potassium Tripolyphosphate 12 months. DOCUMENTS MSDS / SDS (Anglais) Potassium Tripolyphosphate Solution Ca. (Anglais) Product description of Potassium Tripolyphosphate Molecular weight: 448 Chemical formula K5P3O10 Appearance clear liquid Application of Potassium Tripolyphosphate Potassium Tripolyphosphate is used in various applications. Some examples of applications of Potassium Tripolyphosphate are listed below. Used as/in: Treatment of metals Liquid cleaning agents Molecular Formula of Potassium Tripolyphosphate: K5O1P3 Molecular Weight of Potassium Tripolyphosphate: 448.403 g/mol Potassium Tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Potassium Tripolyphosphate solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for soaps, detergents and especially liquid cleaning formulations. Sodium tripolyphosphate (STP, sometimes STPP or sodium triphosphate or TPP) is an inorganic compound with formula Na5P3O10. Potassium Tripolyphosphate is the sodium salt of the polyphosphate penta-anion, which is the conjugate base of triPhosphoric Acid.Sodium tripolyphosphate is produced by heating a stoichiometric mixture of Disodium phosphate, Na2HPO4, and Monosodium Phosphate, NaH2PO4, under carefully controlled conditions. Potassium Tripolyphosphate serve the food industry as multipurpose ingredients. Potassium Tripolyphosphate is most often used as emulsifiers, stabilisers and acidity regulators - mostly in cheese, meat products and powdered drink mixes. The food industry also adds Potassium Tripolyphosphate to fortify food with potassium, or, alternatively, to reduce its sodium content. Last but least,Potassium Tripolyphosphate can also be used as a gelling agent in instant puddings and desserts. Outside of the food industry, they are employed as a multipurpose dispersing agent in the technical sector. Potassium Tripolyphosphate ability to sequestrate metal cations is applied in water softening. The uses of Sodium tripolyphosphate also include using it as a preservative. Sodium Tripolyphosphate STPP can be used to preserve foods such as red meats, poultry, and seafood, helping them to retain their tenderness and moisture. Pet food and animal feed have been known to be treated with sodium triphosphate, serving the same general purpose as it does in human food. Saturated solution of potassium phosphate has the characteristics of clarification, no impurities and sediment, excellent stability, and no hydrolysis for 1 years. Widely used in metal surface treatment, such as industrial parts cleaning and metal pretreatment industry. 1:1 of TKPP & KTPP solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for detergents and especially liquid cleaning formulations. Properties of Potassium Tripolyphosphate Aqueous solution of Potassium Tripolyphosphate is colorless clear liquid, relative density 1.55-1.6 g/cm3, Potassium Tripolyphosphate can chelate with alkaline metals ions or heavy metal ions Applications of Potassium Tripolyphosphate Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Storage & handling of Potassium Tripolyphosphate Packed in 1200KG/IBC drum. Keep in cool dry place. Air transportation of Potassium Tripolyphosphate: arranged as ordinary goods. Harzards Identification & Classifications: N/A Shelf life: 12 months. Grade: Technical grade, Low iron Specifications ASSAY (%) (Na5P3O10): 95 MIN APPEARANCE OF POTASSİUM TRİPOLYPHOSPHATE: WHITE GRANULAR P2O5 (%)OF POTASSİUM TRİPOLYPHOSPHATE : 57.0 MIN FLUORIDE OF POTASSİUM TRİPOLYPHOSPHATE (PPM): 10MAX CADMIUM OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 1 MAX LEAD OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 4 MAX MERCURY OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 1 MAX ARSENIC OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 3 MAX HEAVY MENTAL OF POTASSİUM TRİPOLYPHOSPHATE(AS PB) (PPM): 10 MAX CHLORIDES OF POTASSİUM TRİPOLYPHOSPHATE(AS CL) (%): 0.025 MAX SULPHATES OF POTASSİUM TRİPOLYPHOSPHATE(SO42-) (%): 0.4 MAX SUBSTANCES NOT DISSOLVED IN WATER (%): 0.05 MAX PH VALUE OF POTASSİUM TRİPOLYPHOSPHATE (%): 9.5 - 10.0 LOSS ON DRYING OF POTASSİUM TRİPOLYPHOSPHATE: 0.7% MAX HEXAHYDRATE OF POTASSİUM TRİPOLYPHOSPHATE: 23.5% MAX WATER-INSOLUBLE SUBSTANCES OF POTASSİUM TRİPOLYPHOSPHATE: 0.1% MAX HIGHER POLYPHOSPHATES OF POTASSİUM TRİPOLYPHOSPHATE: 1% MAX Apparence of Potassium Tripolyphosphate: Clair solution Dosage of Potassium Tripolyphosphate(K5P3O10): 50.0% min Fe of Potassium Tripolyphosphate: 0.05% maximum (ou 0.0015% maximum) Métal lourd of Potassium Tripolyphosphate ( comme Pb): 0.001% max Assay of Potassium Tripolyphosphate(K5P3O10): 50.0%min Fe of Potassium Tripolyphosphate: 0.05% max (or 0.0015% max) Heavy metal of Potassium Tripolyphosphate(as Pb): 0.001% max As of Potassium Tripolyphosphate: 0.0003% max pH of Potassium Tripolyphosphate(1%sol.): 10.5+-0.5 Comme of Potassium Tripolyphosphate: 0.0003% max PH of Potassium Tripolyphosphate (1% sol.): 10.5 +-0.5 Properties of Potassium Tripolyphosphate: Potassium tripolyphosphate (KTPP) solution is used as an alkali source and as a general sequestrant and dispersant in liquid detergent products. Potassium Tripolyphosphate is highly soluble in aqueous solutions with excellent dispersion properties. Potassium Tripolyphosphate has excellent chelating ability and can form stable chelates with Ca2+ and Mg2+ in hard water so as to soften hard water, increase cleaning ability, and remove dirt. The white precipitate formed from adding 13mL of 1% calcium nitrate solution into 100 mL of 1% potassium tripolyphosphate solution can be rapidly chelated to produce a clear solution. Potassium Tripolyphosphate (7758-29-4) is white granules. Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area. Waste Disposal: Waste must be disposed of in accordance with federal, state and local environmental control regulations. Applications: solution is suitable for use in any solution product where a solid KTPP product is dissolve during use. It can form a protective film on the surface of iron, lead, zine, and other metals so as to prevent surface corroding. P2O74- has a strong dispersion ability to disperse finely distributed solid particles so that these fine and trace materials can mix evenly. Potassium Tripolyphosphate has stable pH buffering ability and keep solution pH value unchanged for a long time. Potassium Tripolyphosphate is used as a builder for soaps, detergents and especially liquid cleaning formulations. Potassium tripolyphosphate Appearance: Clear solution Package: 320Kgs in 200L plastic drum, or 1500Kgs in IBCs. Other Information: (IUPAC): Atomic Weights of the Elements 2009 (IUPAC): Atomic Weights of the Elements 2009 (IUPAC): Periodic Table of the Elements Potential Uses: buffering agents, chelating agents Occurrence (nature, food, other):note, not found in nature Physical Properties: Appearance: white powder (est) Assay: 85.00 to 100.00 Food Chemicals Codex Listed: No Soluble in: water Prepared at the 26th JECFA (1982), published in FNP 25 (1982) and in FNP 52 (1992). Metals and arsenic specifications revised at the 61st JECFA (2003). No ADI was established, but a group MTDI of 70 mg/kg bw, expressed as phosphorus from all food sources, was established at the 26th JECFA (1982). DEFINITION: A heterogeneous mixture of potassium salts of linear condensed polyphosphoric acids of general formula Hn+2PnO3n+1 where "n" is not less than 2 Chemical names Potassium metaphosphate, potassium polymetaphosphate, potassium polyphosphate Assay: Not less than 53.5% and not more than 61.5% of P2O5 on the ignited basis DESCRIPTION: Odourless, colourless or white glassy masses, fragments, crystals or powder FUNCTIONAL USES: Emulsifier, moisture-retaining agent, sequestrant, texturizer Solubility (Vol. 4): 1 g dissolves in 100 ml of a 1 in 25 soln of sodium acetate Gel formation Finely powder about 1 g of the sample, and add it slowly to 100 ml of a 1 in 50 solution of sodium chloride while stirring vigorously. A gelatinous mass is formed. Test for potassium (Vol. 4) Mix 0.5 g of the sample with 10 ml of nitric acid and 50 ml of water, boil for about 30 min, and cool. The resulting solution is used for the test. Test for phosphate (Vol. 4) Mix 0.5 g of the sample with 10 ml of nitric acid and 50 ml of water, boil for about 30 min and cool. The resulting solution is used for the test PURITY : Loss on ignition (Vol. 4) Not more than 2 % after drying (105o, 4 h) followed by ignition at 550o for 30 min Cyclic phosphate (Vol. 4) Not more than 8.0% Fluoride Not more than 10 mg/kg. Arsenic (Vol. 4) Not more than 3 mg/kg (Method II). Lead (Vol. 4) Not more than 4 mg/kg. Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, "Instrumental Methods." PURITY TESTS: Fluoride Place 5 g of the sample, 25 ml of water, 50 ml of perchloric acid, 5 drops of silver nitrate solution (1 in 2), and a few glass beads in a 250-ml distilling flask connected with a condenser and carrying a thermometer and capillary tube, both of which must extend into the liquid. Connect a small dropping funnel, filled with water, or a steam generator to the capillary tube. Support the flask on an asbestos mat with a hole which exposes about one-third of the flask to the flame. Distil into a 250-ml flask until the temperature reaches 135o. Add water from the funnel or introduce steam through the capillary to maintain the temperature between 135o and 140o. Continue the distillation until 225-240 ml has been collected, then dilute to 250 ml with water, and mix. Place a 50-ml aliquot of this solution in a 100-ml Nessler tube. In another similar Nessler tube place 50 ml of water as a control. Add to each tube 0.1 ml of filtered solution of sodium alizarinsulfonate (1 in 1,000) and 1 ml of freshly prepared hydroxylamine hydrochloride solution (1 in 4,000), and mix well. Add, dropwise, and with stirring, 0.05 N sodium hydroxide to the tube containing the distillate until its colour just matches that of the control, which is faintly pink. Then add to each tube exactly 1 ml of 0.1 N hydrochloric acid, and mix well. From a buret, graduated in 0.05-ml, add slowly to the tube containing the distillate enough thorium nitrate solution (1 in 4,000) so that, after mixing, the colour of the liquid just changes to a faint pink. Note the volume of the solution added, add exactly the same volume to the control, and mix. Now add to the control sodium fluoride TS (10 µg F per ml) from a buret to make the colours of the two tubes match after dilution to the same volume. Mix well, and allow all air bubbles to escape before making the final colour comparison. Check the end-point by adding 1 or 2 drops of sodium fluoride TS to the control. A distinct change in colour should take place. Note the volume of sodium fluoride added. The volume of sodium fluoride TS required for the control solution should not exceed 1.0 ml. METHOD OF ASSAY: Mix about 300 mg of the sample, accurately weighed, with 15 ml of nitric acid and 30 ml of water, boil for 30 min, and dilute with water to about 100 ml. Heat at 60o, add an excess of ammonium molybdate TS, and heat at 50o for 30 min. Filter, and wash the precipitate with dilute nitric acid (1 in 36 soln), followed by potassium nitrate solution (1 in 100 soln) until the filtrate is no longer acid to litmus. Dissolve the precipitate in 50 ml of 1 N sodium hydroxide, add phenolphthalein TS, and titrate the excess sodium hydroxide with 1 N sulfuric acid. Each ml of 1 N sodium hydroxide is equivalent to 3.086 mg of P2O5. Potassium Tripolyphosphate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement. Potassium Tripolyphosphate Solution Ca. is an odorless, colorless liquid. Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Potassium Tripolyphosphate solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for soaps, detergents and especially liquid cleaning formulations. Potassium Tripolyphosphate solution Title: Potassium Tripolyphosphate solution Synonyms: pentapotassium triphosphate; potassium triphosphate; KTPP, Potassium Tripolyphosphate Formula: K5P3O10, Molecular: 301.03 CAS #: 13845-36-8, EC #: 237-574-9 Standard(s) of Potassium Tripolyphosphate: FCC V, Q/5749-2008 Grade of Potassium Tripolyphosphate: Technical grade, Low iron Potassium Tripolyphosphate solution Specifications ITEMS Low iron Technical grade of Potassium Tripolyphosphate Appearance of Potassium Tripolyphosphate Solid content of Potassium Tripolyphosphate Density of Potassium Tripolyphosphate g/ml Properties of Potassium tripolyphosphate Aqueous solution of Potassium tripolyphosphate is colorless clear liquid, relative density 1.55-1.6 g/cm3, It can chelate with alkaline metals ions or heavy metal ions Applications of Potassium Tripolyphosphate Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Potassium Tripolyphosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Potassium Tripolyphosphate is Widely used in industrial parts cleaning and metal pretreatment industry. Potassium Tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Storage & handling of Potassium Tripolyphosphate I Packed in 1200KG/IBC drum. Keep Potassium Tripolyphosphate in cool dry place. Air transportation: arranged as ordinary goods. Harzards Identification & Classifications: N/A Shelf life of Potassium Tripolyphosphate 12 months. DOCUMENTS MSDS / SDS (Anglais) Potassium Tripolyphosphate Solution Ca. (Anglais) Product description of Potassium Tripolyphosphate Molecular weight: 448 Chemical formula K5P3O10 Appearance clear liquid Application of Potassium Tripolyphosphate Potassium Tripolyphosphate is used in various applications. Some examples of applications of Potassium Tripolyphosphate are listed below. Used as/in: Treatment of metals Liquid cleaning agents Molecular Formula of Potassium Tripolyphosphate: K5O1P3 Molecular Weight of Potassium Tripolyphosphate: 448.403 g/mol Potassium Tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Potassium Tripolyphosphate solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for soaps, detergents and especially liquid cleaning formulations. Sodium tripolyphosphate (STP, sometimes STPP or sodium triphosphate or TPP) is an inorganic compound with formula Na5P3O10. Potassium Tripolyphosphate is the sodium salt of the polyphosphate penta-anion, which is the conjugate base of triPhosphoric Acid.Sodium tripolyphosphate is produced by heating a stoichiometric mixture of Disodium phosphate, Na2HPO4, and Monosodium Phosphate, NaH2PO4, under carefully controlled conditions. Potassium Tripolyphosphate serve the food industry as multipurpose ingredients. Potassium Tripolyphosphate is most often used as emulsifiers, stabilisers and acidity regulators - mostly in cheese, meat products and powdered drink mixes. The food industry also adds Potassium Tripolyphosphate to fortify food with potassium, or, alternatively, to reduce its sodium content. Last but least,Potassium Tripolyphosphate can also be used as a gelling agent in instant puddings and desserts. Outside of the food industry, they are employed as a multipurpose dispersing agent in the technical sector. Potassium Tripolyphosphate ability to sequestrate metal cations is applied in water softening. The uses of Sodium tripolyphosphate also include using it as a preservative. Sodium Tripolyphosphate STPP can be used to preserve foods such as red meats, poultry, and seafood, helping them to retain their tenderness and moisture. Pet food and animal feed have been known to be treated with sodium triphosphate, serving the same general purpose as it does in human food. Saturated solution of potassium phosphate has the characteristics of clarification, no impurities and sediment, excellent stability, and no hydrolysis for 1 years. Widely used in metal surface treatment, such as industrial parts cleaning and metal pretreatment industry. 1:1 of TKPP & KTPP solution (K5P3O10) is TongVo's hot sale products, which is used as a builder for detergents and especially liquid cleaning formulations. Properties of Potassium Tripolyphosphate Aqueous solution of Potassium Tripolyphosphate is colorless clear liquid, relative density 1.55-1.6 g/cm3, Potassium Tripolyphosphate can chelate with alkaline metals ions or heavy metal ions Applications of Potassium Tripolyphosphate Potassium tripolyphosphate(KTPP) is mainly used in metal surface treatment, macroelement water soluble fertilizer, high complexation ability of metal ions. Pyrophosphate is able to form a stable complex with Ca2+ and Mg2+ in water, which can soften hard water, improved washability, removed dirt, and formed a protective layer on the surface of metal to enhance corrosion resistance. Widely used in industrial parts cleaning and metal pretreatment industry. Potassium tripolyphosphate(KTPP) solution is clarified without impurities and sediment characteristics, excellent stability, and no hydrolysis for 2 years. Reachthe international first-class standard. Storage & handling of Potassium Tripolyphosphate Packed in 1200KG/IBC drum. Keep in cool dry place. Air transportation of Potassium Tripolyphosphate: arranged as ordinary goods. Harzards Identification & Classifications: N/A Shelf life: 12 months. Grade: Technical grade, Low iron Specifications ASSAY (%) (Na5P3O10): 95 MIN APPEARANCE OF POTASSİUM TRİPOLYPHOSPHATE: WHITE GRANULAR P2O5 (%)OF POTASSİUM TRİPOLYPHOSPHATE : 57.0 MIN FLUORIDE OF POTASSİUM TRİPOLYPHOSPHATE (PPM): 10MAX CADMIUM OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 1 MAX LEAD OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 4 MAX MERCURY OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 1 MAX ARSENIC OF POTASSİUM TRİPOLYPHOSPHATE(PPM): 3 MAX HEAVY MENTAL OF POTASSİUM TRİPOLYPHOSPHATE(AS PB) (PPM): 10 MAX CHLORIDES OF POTASSİUM TRİPOLYPHOSPHATE(AS CL) (%): 0.025 MAX SULPHATES OF POTASSİUM TRİPOLYPHOSPHATE(SO42-) (%): 0.4 MAX SUBSTANCES NOT DISSOLVED IN WATER (%): 0.05 MAX PH VALUE OF POTASSİUM TRİPOLYPHOSPHATE (%): 9.5 - 10.0 LOSS ON DRYING OF POTASSİUM TRİPOLYPHOSPHATE: 0.7% MAX HEXAHYDRATE OF POTASSİUM TRİPOLYPHOSPHATE: 23.5% MAX WATER-INSOLUBLE SUBSTANCES OF POTASSİUM TRİPOLYPHOSPHATE: 0.1% MAX HIGHER POLYPHOSPHATES OF POTASSİUM TRİPOLYPHOSPHATE: 1% MAX Apparence of Potassium Tripolyphosphate: Clair solution Dosage of Potassium Tripolyphosphate(K5P3O10): 50.0% min Fe of Potassium Tripolyphosphate: 0.05% maximum (ou 0.0015% maximum) Métal lourd of Potassium Tripolyphosphate ( comme Pb): 0.001% max Assay of Potassium Tripolyphosphate(K5P3O10): 50.0%min Fe of Potassium Tripolyphosphate: 0.05% max (or 0.0015% max) Heavy metal of Potassium Tripolyphosphate(as Pb): 0.001% max As of Potassium Tripolyphosphate: 0.0003% max pH of Potassium Tripolyphosphate(1%sol.): 10.5+-0.5 Comme of Potassium Tripolyphosphate: 0.0003% max PH of Potassium Tripolyphosphate (1% sol.): 10.5 +-0.5 Properties of Potassium Tripolyphosphate: Potassium tripolyphosphate (KTPP) solution is used as an alkali source and as a general sequestrant and dispersant in liquid detergent products. Potassium Tripolyphosphate is highly soluble in aqueous solutions with excellent dispersion properties. Potassium Tripolyphosphate has excellent chelating ability and can form stable chelates with Ca2+ and Mg2+ in hard water so as to soften hard water, increase cleaning ability, and remove dirt. The white precipitate formed from adding 13mL of 1% calcium nitrate solution into 100 mL of 1% potassium tripolyphosphate solution can be rapidly chelated to produce a clear solution. Potassium Tripolyphosphate (7758-29-4) is white granules. Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area. Waste Disposal: Waste must be disposed of in accordance with federal, state and local environmental control regulations. Applications: solution is suitable for use in any solution product where a solid KTPP product is dissolve during use. It can form a protective film on the surface of iron, lead, zine, and other metals so as to prevent surface corroding. P2O74- has a strong dispersion ability to disperse finely distributed solid particles so that these fine and trace materials can mix evenly. Potassium Tripolyphosphate has stable pH buffering ability and keep solution pH value unchanged for a long time. Potassium Tripolyphosphate is used as a builder for soaps, detergents and especially liquid cleaning formulations. Potassium tripolyphosphate Appearance: Clear solution Package: 320Kgs in 200L plastic drum, or 1500Kgs in IBCs. Other Information: (IUPAC): Atomic Weights of the Elements 2009 (IUPAC): Atomic Weights of the Elements 2009 (IUPAC): Periodic Table of the Elements Potential Uses: buffering agents, chelating agents Occurrence (nature, food, other):note, not found in nature Physical Properties: Appearance: white powder (est) Assay: 85.00 to 100.00 Food Chemicals Codex Listed: No Soluble in: water Prepared at the 26th JECFA (1982), published in FNP 25 (1982) and in FNP 52 (1992). Metals and arsenic specifications revised at the 61st JECFA (2003). No ADI was established, but a group MTDI of 70 mg/kg bw, expressed as phosphorus from all food sources, was established at the 26th JECFA (1982). DEFINITION: A heterogeneous mixture of potassium salts of linear condensed polyphosphoric acids of general formula Hn+2PnO3n+1 where "n" is not less than 2 Chemical names Potassium metaphosphate, potassium polymetaphosphate, potassium polyphosphate Assay: Not less than 53.5% and not more than 61.5% of P2O5 on the ignited basis DESCRIPTION: Odourless, colourless or white glassy masses, fragments, crystals or powder FUNCTIONAL USES: Emulsifier, moisture-retaining agent, sequestrant, texturizer Solubility (Vol. 4): 1 g dissolves in 100 ml of a 1 in 25 soln of sodium acetate Gel formation Finely powder about 1 g of the sample, and add it slowly to 100 ml of a 1 in 50 solution of sodium chloride while stirring vigorously. A gelatinous mass is formed. Test for potassium (Vol. 4) Mix 0.5 g of the sample with 10 ml of nitric acid and 50 ml of water, boil for about 30 min, and cool. The resulting solution is used for the test. Test for phosphate (Vol. 4) Mix 0.5 g of the sample with 10 ml of nitric acid and 50 ml of water, boil for about 30 min and cool. The resulting solution is used for the test PURITY : Loss on ignition (Vol. 4) Not more than 2 % after drying (105o, 4 h) followed by ignition at 550o for 30 min Cyclic phosphate (Vol. 4) Not more than 8.0% Fluoride Not more than 10 mg/kg. Arsenic (Vol. 4) Not more than 3 mg/kg (Method II). Lead (Vol. 4) Not more than 4 mg/kg. Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, "Instrumental Methods." PURITY TESTS: Fluoride Place 5 g of the sample, 25 ml of water, 50 ml of perchloric acid, 5 drops of silver nitrate solution (1 in 2), and a few glass beads in a 250-ml distilling flask connected with a condenser and carrying a thermometer and capillary tube, both of which must extend into the liquid. Connect a small dropping funnel, filled with water, or a steam generator to the capillary tube. Support the flask on an asbestos mat with a hole which exposes about one-third of the flask to the flame. Distil into a 250-ml flask until the temperature reaches 135o. Add water from the funnel or introduce steam through the capillary to maintain the temperature between 135o and 140o. Continue the distillation until 225-240 ml has been collected, then dilute to 250 ml with water, and mix. Place a 50-ml aliquot of this solution in a 100-ml Nessler tube. In another similar Nessler tube place 50 ml of water as a control. Add to each tube 0.1 ml of filtered solution of sodium alizarinsulfonate (1 in 1,000) and 1 ml of freshly prepared hydroxylamine hydrochloride solution (1 in 4,000), and mix well. Add, dropwise, and with stirring, 0.05 N sodium hydroxide to the tube containing the distillate until its colour just matches that of the control, which is faintly pink. Then add to each tube exactly 1 ml of 0.1 N hydrochloric acid, and mix well. From a buret, graduated in 0.05-ml, add slowly to the tube containing the distillate enough thorium nitrate solution (1 in 4,000) so that, after mixing, the colour of the liquid just changes to a faint pink. Note the volume of the solution added, add exactly the same volume to the control, and mix. Now add to the control sodium fluoride TS (10 µg F per ml) from a buret to make the colours of the two tubes match after dilution to the same volume. Mix well, and allow all air bubbles to escape before making the final colour comparison. Check the end-point by adding 1 or 2 drops of sodium fluoride TS to the control. A distinct change in colour should take place. Note the volume of sodium fluoride added. The volume of sodium fluoride TS required for the control solution should not exceed 1.0 ml. METHOD OF ASSAY: Mix about 300 mg of the sample, accurately weighed, with 15 ml of nitric acid and 30 ml of water, boil for 30 min, and dilute with water to about 100 ml. Heat at 60o, add an excess of ammonium molybdate TS, and heat at 50o for 30 min. Filter, and wash the precipitate with dilute nitric acid (1 in 36 soln), followed by potassium nitrate solution (1 in 100 soln) until the filtrate is no longer acid to litmus. Dissolve the precipitate in 50 ml of 1 N sodium hydroxide, add phenolphthalein TS, and titrate the excess sodium hydroxide with 1 N sulfuric acid. Each ml of 1 N sodium hydroxide is equivalent to 3.086 mg of P2O5. Potassium Tripolyphosphate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevan
POTASSIUMTRIPOLYPHOSPHATE-GRANULE
Potassium tripolyphosphate 50%; KTPP %50; pentapotassium triphosphate %50 cas no: 13845-36-8
POTASSIUMTRIPOLYPHOSPHATE-LIQUID
Acetic acid, potassium salt; Diuretic Salt; Octan draselny CAS NO: 127-08-2
Potassium Benzoate
Benzoate of potash; Potassium salt of benzoic acid; benzoic acid, potassium salt; Potassium salt of Benzenecarboxylic acid; Potassium salt of Phenylcarboxylic acid CAS NO: 582-25-2
Potassium Bicarbonate
SYNONYMS Bromide of potassium; tripotassium tribromide; Hydrobromic Acid Potassium Salt; Bromide Salt of Potassium; CAS NO. 7758-02-3
Potassium Carbonate
SYNONYMS Potassium muriate; Dipotassium dichloride; Potassium monochloride; potash muriate; chloropotassuril; kalcorid; kalitabs; potavescent; rekawan; chlorovescent; k-contin; peter-kal; Chlorure de potassium; SPAN-K; Super K; Cas no: 7447-40-7
Potassium Ferrocyanide
Potash; Salt of Tartar; Carbonic acid, Dipotassium salt; Potassium carbonate (2:1); Kaliumcarbonat; Pearl ash; cas no : 584-08-7
Potassium Hydrogen Peroxomonosulfate
Potassium hydrate; Caustic potash; Lye; potassa; Hydroxyde De Potassium; Potasse Caustique; Kaliumhydroxid; Kaliumhydroxyde; Potassa; Potassio Idrossido Di; K(OH) CAS NO:1310-58-3
Potassium Hydroxide
potassium hydroxide; Potassium hydrate; Caustic potash; Lye; potassa; Hydroxyde De Potassium; Potasse Caustique; Kaliumhydroxid; Kaliumhydroxyde; Potassa; Potassio Idrossido Di; K(OH); cas no: 1310-58-3
potassium lignosulfonate
potassium permanganate; Permanganic acid, potassium salt; C.I. 77755; Chameleon mineral; Condy's crystals; Kaliumpermanganat; Permanganate de potassium; Permanganate of potash; Permanganato potasico; Potassio (permanganato di); Potassium (permanganate de); Potassium manganate (Ⅶ) cas no: 7722-64-7
Potassium Metabisulfite
Potassium Metabisulfite; Dipotassium Disulfite; Disulfurous acid, Dipotassium salt; Dipotassium disulphite; Dikaliumdisulfit; Disulfito de dipotasio; Disulfite de dipotassium; Potassium pyrosulfite; Pyrosulfurous acid, dipotassium salt; cas no: 16731-55-8
potassium permanganate
Permanganic acid, potassium salt; C.I. 77755; Chameleon mineral; Condy's crystals; Kaliumpermanganat; Permanganate de potassium; Permanganate of potash; Permanganato potasico; Potassio (permanganato di); Potassium (permanganate de); Potassium manganate (Ⅶ) CAS:7722-64-7
Potassium Peroxymonosulfate (Oxone)
Caroat; Oxone; potassium monopersulfate; MPS CAS:10058-23-8; 37222-66-5
Potassium sodium tartrate
Sorbic acid potassium salt; Potassium 2,4-hexadienoate; 2,4-Hexadienoic aAcid potassium salt; Sorbistat; Sorbistat-K; Sorbistat-potassium; Potassium sorbate CAS NO: 590-00-1
Potassium sulfate
cas no 25655-41-8 PVP-I; Poly(vinylpyrrolidone)–Iodine complex; Povadyne® antiseptic; iodopovidone;
POTASYUM (K)
Potassium element cas no:7440-09-7
POTASYUM İYODÜR
Potassium iyodür; potassium iodide; potassium salt of hydriodic acid; dipotassium diiodide; potassium monoiodide cas no: 7681-11-0
POTASYUM SİTRAT
POTASSIUM CITRATE; Tripotassium citrate; Citric acid potassium salt; 2-hydroxy-1,2,3-Propanetricarboxylic acid, tripotassium salt; Potassium citrate tribasic monohydrate; Potassium citrate tribasic preparation; Tripotassium citrate monohydrate; Tripotassium citrate monohydrate; cas no: 866-84-2
Potasyum Sorbat
SYNONYMS (E,E)-2,4-Hexadienoic acid potassium salt;(E,E)-Hexa-2,4-dienoate de potassium;(E,E)-hexa-2,4-dienoato de potasio;2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)-;2,4-Hexadienoic acid, potassium salt, (2E,4E)-;2,4-Hexadienoic acid, potassium salt, (E,E)- CAS NO:24634-61-5
Potato Starch
Potato Starch; cas no: 9005-25-8