Химикаты для сельского хозяйства,пищевой промышленности,корм и ароматизаторов

ORP 5377 HP
ORP 5377 HP:Hydrophobic Redispersible Powder for Dry-Mix Mortars. ORP 5377 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Vinyl Versatate copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 5377 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 5377 HP improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially for water repellency, abrasion resistance and mechanical performance tests after water immerison, ORP 5377 HP provides excellent performance. TYPICAL PROPERTIES Appearance: White powder Chemical composition: VA/VV Copolymer Stabilizing System: PVOH Residual Humidity (%): Max. 2.0 Bulk Density (g/l):400 - 600 Ash Content (%): 12 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water MFFT (°C):9 ±1 APPLICATION AREAS Tile Grouts and Repair Mortars: Having excellent adhesion properties, abrassion and water resistance, ORP 5377 HP can be used in tile grouts and repair mortar formulations, between 2.0 – 4.0 %. ETICS (Exterior Thermal Insulation Coating Systems) Plasters: Because of providing excellent water resistance and compressive strength ORP 5377 HP can be used also in ETICS plaster formulations, between 3.0 – 5.0 % PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery.
ORP 6072 MP
ORP 6072 MP Redispersible Powder for Dry-Mix Mortars INTRODUCTION ORP 6072 MP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / VeoVa / Acrylic terpolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 6072 MP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 6072 MP improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially after heat aging and water immersion conditions ORP 6072 MP provides excellent performance. TYPICAL PROPERTIES Appearance : White powder Chemical composition: VA / VeoVa / Acrylic Terpolymer Stabilizing System: PVOH Residual Humidity (%):Max. 2.0 Bulk Density (g/l):400 – 600 Ash Content (%):14 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water MFFT (°C): 8 ±1 APPLICATION AREAS Adhesives: Due to its strong adhesion properties, ORP 6072 MP can be used for manufacturing of tile adhesives and ETICS adhesives fullfilling requirements of standarts. The recommended dosages: C1 tile adhesives : 0.5 – 1.0 % C2 tile adhesives : 2.0 – 5.0 % ETICS adhesives : 1.0 – 2.0 % Tile Grouts and Repair Mortars: Having excellent adhesion properties, abrasion and water resistance, ORP 6072 MP can be used in tile grouts and repair mortar formulations, between 2.0 – 4.0 %. ETICS (Exterior Thermal Insulation Coating Systems) Plasters: Because of providing excellent water resistance and compressive strength ORP 6072 MP can be used also in ETICS plaster formulations, between 3.0 – 5.0 % PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery.
ORP 7085 HM
ORP 7085 HM Redispersible Powder for Dry-Mix Mortars ORP 7085 HM is a redispersible powder produced by drying an emulsion of VAM / Acrylic copolymer with PvOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7085 HM is used to modify mixtures containing hydraulic binders. Due to its particular chemical /physical composition, ORP 7085 HM improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. TYPICAL PROPERTIES Appearance: White powder Chemical composition: VAM / Acrylic Copolymer Stabilizing System: PVOH Residual Humidity: ~1 % Density (g/l): 525 ± 75 Ash Content % ± 2: 11 Alkali Resistance :High After 1:1 Dispersion with Water pH : 6.0 – 7.0 MFFT (°C):7 APPLICATION AREAS Tile Adhesives: Due to its strong adhesion properties, ORP 7085 HM can be used for manufacturing of tile adhesives fullfilling C1 & C2 requirements. The recommended dosages: C1 tile adhesives: 0.5 – 1.0 % C2 tile adhesives: 1.0 – 3.0 % Repair Mortars: Having excellent adhesion properties, abrassion and water resistance, ORP 7085 HM can be used between 1.0 – 2.0 % in repair mortar formulations. PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg (450 kg) or big bags (500 kg). Packages must be stored in a dry and cool warehouse at temperatures between 10 – 25 °C. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months.
ORP 7085 HM
ORP 7085 HM ORP 7085 HM is a redispersible powder produced by drying an emulsion of VAM / Acrylic copolymer with PvOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7085 HM is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7085 HM improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. TYPICAL PROPERTIES Appearance White powder Chemical composition VAM / Acrylic Copolymer Stabilizing System PVOH Residual Humidity ~1 % Density (g/l) 525 ± 75 Ash Content % ± 2 11 Alkali Resistance High After 1:1 Dispersion with Water pH 6.0 – 7.0 MFFT (°C) 7 APPLICATION AREAS Tile Adhesives: Due to its strong adhesion properties, ORP 7085 HM can be used for manufacturing of tile adhesives fullfilling C1 & C2 requirements. The recommended dosages: C1 tile adhesives: 0.5 – 1.0 % C2 tile adhesives: 1.0 – 3.0 % Repair Mortars: Having excellent adhesion properties, abrassion and water resistance, ORP 7085 HM can be used between 1.0 – 2.0 % in repair mortar formulations. PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg (450 kg) or big bags (500 kg). Packages must be stored in a dry and cool warehouse at temperatures between 10 – 25 °C. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months. ORP 7085 HM is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7085 HM is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7085 HM improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP 7085 HM provides excellent abrasion resistance, flexural & compressive stength and good leveling. APPLICATION AREAS of ORP 7085 HM ORP 7085 HM can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence. PRODUCT HANDLING – STORAGE – SHELFLIFE of ORP 7085 HM Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP 7085 HM has to be used within 6 months after the date of delivery. ORP 7085 HM is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7085 HM improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP 7085 HM performs very well in transverse deformation conditions. APPLICATION AREAS of ORP 7085 HM ORP 7085 HM can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP 7085 HM can be used with the ratio of 2.0 - 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP 7085 HM is a very suitable redispersible powder polymer for cementitious water proofing mortars.It can be used with the ratio of 7.0 - 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP 7085 HM performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 - 4.0 %. PRODUCT HANDLING - STORAGE - SHELFLIFE of ORP 7085 HM Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. 1.1. Product identifier Product name ORP 7085 HM Chemical name and synonym Vinyl Acetate l VeoVa l Acrylic terpolymer 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended use Redispersible Powder for Dry-Mix Mortars The product does not contain substances classified as being hazardous to human health or the environment pursuant to the provisions Regulation (EU) 1272/2008 (CLP) (and subsequent amendments and supplements) in such quantities as to require the statement. ORP 7085 HM is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyORP 7085 HM , an important industrial polymer. 1 Production of ORP 7085 HM 2 Preparation of ORP 7085 HM 2.1 Mechanism of ORP 7085 HM 2.2 Alternative routes 3 Polymerization of ORP 7085 HM 4 Other reactions of ORP 7085 HM 5 Toxicity evaluation of ORP 7085 HM Production of ORP 7085 HM The worldwide production capacity of ORP 7085 HM was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4] It is a key ingredient in furniture glue.[5] Preparation ORP 7085 HM is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP 7085 HM is more complex than the synthesis of other acetate esters. The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.[6] {\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}}{\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}} The main side reaction is the combustion of organic precursors. Mechanism Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate ORP 7085 HM and a palladium hydride, which would be oxidized to give hydroxide. Polymerization It can be polymerized to give polyORP 7085 HM (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-ORP 7085 HM (EVA), ORP 7085 HM -acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent. Other reactions ORP 7085 HM undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels-Alder and 2+2 cycloadditions. ORP 7085 HM undergoes transesterification, giving access to vinyl ethers: ROH + CH2=CHOAc → ROCH=CH2 + HOAc Toxicity evaluation Tests suggest that ORP 7085 HM is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.[3] On January 31, 2009, the Government of Canada's final assessment concluded that exposure to ORP 7085 HM is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. ORP 7085 HM appears as a clear colorless liquid. Flash point 18°F. Density 7.8 lb / gal. Slightly soluble in water. Vapors are heavier than air. Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture. Used to make adhesives, paints, and plastics. At 20 °C, a saturated solution of ORP 7085 HM in water contains 2.0-2.4 wt % ORP 7085 HM , whereas a saturated solution of water in ORP 7085 HM contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP 7085 HM in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP 7085 HM doubles to about 2 wt % The/ fate of inhaled ORP 7085 HM in rabbits /was studied/. ... ORP 7085 HM tended to remain in the body after it was inhaled; 70% of the ORP 7085 HM administered was retained, and an equilibrium was established in the first few min after exposure began. ... No ORP 7085 HM /was found/ in the blood, either during or after its inhalation, which suggested ... that ORP 7085 HM is rapidly metabolized when it enters the body through the lungs. Two male Wistar Rats exposed to ORP 7085 HM (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when ORP 7085 HM exposure levels exceeded 650 ppm (2320 mg/cu m). ORP 7085 HM deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP 7085 HM to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP 7085 HM and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP 7085 HM exposure concentrations. With increasing the ORP 7085 HM exposure, concentration of acetaldehyde in expired air increased. At ORP 7085 HM exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m). Rats were administered oral doses of 14C-ORP 7085 HM (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart. During the dosing regime and subsequent 96 hr collection period, a mean of 64.4% of the administered radioactivity was excreted (1.4% in feces, 1.8% in urine and 61.2% in exhaled air). In addition a mean of 5.4% was found in the carcass at 96 hr. The major portion of the urinary radioactivity was excreted within the first 24 hr. Most of the radioactivity eliminated by the expired air was recovered during the 6 hr dosing regime and the first 6 hr after dosing. This portion of radioactivity was recovered from the traps designed for collecting carbon dioxide. The authors of the study suppose, that the unaccounted 30.1% of the dose were most likely lost in the expired air, which escaped from the metabolism cages when the animals were removed for dosing. There was a wide tissue distribution of radioactivity following administration of 14C-ORP 7085 HM by the oral route. One hour after the sixth dose the highest mean concentrations of radioactivity were found in the harderian gland and the submaxillary salivary gland. High levels were also found in the liver, kidney, stomach, ileum, colon and gastrointestinal tract contents. Low concentrations of radioactivity were found in fat. Attempts have been undertaken to determine ORP 7085 HM metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore it can be concluded, that 63 % of orally applied 14C ORP 7085 HM is excreted as metabolites. On/ hydrolysis /in the blood/, ORP 7085 HM yields acetic acid, a normal body constituent, and vinyl alcohol, which should rapidly tautomerize to yield acetaldehyde, another normal body constituent. The hydrolysis of ORP 7085 HM was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase). Characterization of the kinetic parameters revealed that rat liver microsomes and purified carboxyl esterase (from porcine liver) displayed the highest activity. In order to establish the rate of metab of ORP 7085 HM in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP 7085 HM was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP 7085 HM from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP 7085 HM resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system. Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP 7085 HM (5.4 mM) revealed a rapid degradation of ORP 7085 HM and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP 7085 HM or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic. ORP 7085 HM hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP 7085 HM in the nasal cavity of the rat. This model predicts steady state concentrations of the metabolite acetic acid after continuing 6 hr-exposure in respiratory tissue which are approximately 13 times greater and in olfactory tissue which are approximately 2 times greater than those of acetaldehyde, the second metabolite. As the concentration of acids is indicative for the concentration of protons the model predicts the greatest reduction in intracellular pHi for respiratory mucosa. Hence, pH effects should be more pronounced in this tissue as compared to other tissues. This physiologically based toxicokinetic/toxicodynamic model for rat was modified for the olfactory epithelium of the both human and rat nasal cavity. The change in intracellular pH is predicted to be slightly greater for human olfactory epithelium, than that of rats. To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP 7085 HM were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP 7085 HM and acetaldehyde were compared with data from the human nasal model simulation. For the ORP 7085 HM data a good fit was demonstrated (r = 0.9). The metabolism of ORP 7085 HM has been studied in animals ... ORP 7085 HM is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP 7085 HM results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP 7085 HM (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP 7085 HM is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP 7085 HM. In vitro metabolic studies show that ORP 7085 HM added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP 7085 HM in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP 7085 HM . The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP 7085 HM . Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP 7085 HM quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP 7085 HM exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP 7085 HM may bind to various degrees with glutathione in different species, which may help to detoxify ORP 7085 HM or its metabolites and enhance their elimination. ORP 7085 HM is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP 7085 HM metabolism not only takes place in the liver but also in several tissues. The half-life of /200 uM/ ORP 7085 HM elimination in human whole blood was 4.1 minutes as compared to /less than/ 1 minute in rat whole blood. Acetaldehyde is a metabolite of ORP 7085 HM through esterase-mediated metabolism. It is discussed that ORP 7085 HM exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP 7085 HM induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP 7085 HM in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars). It occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP 7085 HM is primarily used as a monomer in the production of polyORP 7085 HM and polyvinyl alcohol. Its chief use is as a monomer for making poly(ORP 7085 HM ) and ORP 7085 HM copolymers, which are used as components in coatings, paints, and sealants, binders (adhesives, nonwovens, construction products, and carpet-backing) and in miscellaneous uses such as chewing gum and tablet coatings. ORP 7085 HM is also copolymerized as the minor constituent with vinyl chloride and with ethylene to form commercial polymers and with acrylonitrile to form acrylic fibers. ORP 7085 HM has been used primarily to produce polyORP 7085 HM emulsions and polyvinyl alcohol. The principle use of these emulsions has been in adhesives, paints, textiles, and paper products. PRODUCT PROFILE: ORP 7085 HM : PolyORP 7085 HM accounts for about 48% of ORP 7085 HM monomer (VAM) use, with applications including water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, accounts for about 35% of demand. The remainder goes into ethylene ORP 7085 HM (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins. PRODUCT PROFILE: ORP 7085 HM : ORP 7085 HM monomer's (VAM) main use is polyORP 7085 HM which accounts for about 47% of consumption and has applications in water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), which is used in packaging film and glass laminates, accounts for about 29% of VAM demand. Remaining volumes go into ethylene ORP 7085 HM (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). EVA and EVOH are finding new uses as copolymers in speciality adhesives and packaging films. CHEMICAL PROFILE: ORP 7085 HM : ORP 7085 HM monomer (VAM) is mainly used in polyORP 7085 HM which has applications in water-based paints, adhesives, acrylic fibres, paper coatings and non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, is the second largest consumer. The remaining volumes go into ethylene ORP 7085 HM (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). CHEMICAL PROFILE: ORP 7085 HM . PolyORP 7085 HM emulsions and resins, 40%; (this area is divided evenly between paints and adhesives); polyvinyl alcohol, 15%; polyvinyl butyral, 8%; ethylene-ORP 7085 HM resins, 6%; polyvinyl chloride copolymers, 3%; miscellaneous, 1%; exports, 27%. CHEMICAL PROFILE: ORP 7085 HM : PolyORP 7085 HM emulsions and resins, 57%; polyvinyl alcohol, 19%; polyvinyl butyral, 10%; ethylene-ORP 7085 HM resins, 8%; ethylene vinyl alcohol, 2%; miscellaneous, including polyvinyl chloride copolymers, 4%. PRODUCT FOCUS: ORP 7085 HM Monomer (VAM): Global Demand: 2003: 4.3 million tonnes. PolyORP 7085 HM , 44%; polyORP 7085 HM , 40%; ethylene vinyl alcohol, 12%. ORP 7085 HM , acetic anhydride, ethanol, methanol, and formaldehyde were formed in aq extracts of polyORP 7085 HM films only in some cases and in insignificant quantities. The difference between pH of aq extracts of polyORP 7085 HM films and pH of the control (distilled water) the extracts from unsterilized films are more alk and those from sterilized films are more acidic than the distilled water control. Bromo cmpd were present up to 6.4 mg bromide/L in polyORP 7085 HM film extracts and up to 12.3 mg bromide/L in inactivated extracts. The oxidizability of the polyORP 7085 HM films was around 324-1310 mg/L and was highly dependent on the time of contact of the films with water. Aq extracts of various films contained 80-360 mg/L polyORP 7085 HM . Sterilization by gamma-rays did not lead to substantial changes in hygienic-chem properties of the films. An increase in the irradiation dose up to 0.3 megagray decreased the oxidizability of aq extracts and the polyORP 7085 HM content in the films. The quantities of formaldehyde and methanol formed are lower than the accepted quantities of migration of these substances into food products. Thus, polyORP 7085 HM has satisfactory properties for medicinal use. ORP 7085 HM is an industrial chemical that is produced in large amounts in the United States. It is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. ORP 7085 HM is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP 7085 HM is also used as a coating in plastic films for food packaging and as a modifier of food starch. ORP 7085 HM is primarily used as a monomer in the production of polyORP 7085 HM and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to ORP 7085 HM has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of ORP 7085 HM in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified ORP 7085 HM for carcinogenicity. ORP 7085 HM shall be stored at temperatures less than 37.8 °C (100 °F) in well-ventilated areas and kept away from ignition sources such as heat and direct sunlight. No heating apparatus capable of exceeding 80% of the autoignition temperature of ORP 7085 HM (427 °C) shall be used in ORP 7085 HM storage areas. The storage of ORP 7085 HM in glass containers should not be in the same areas as oxidizing agents or other incompatible chemicals. Containers of ORP 7085 HM shall be kept tightly closed when not in use and shall be stored so as to minimize accidental ruptures and spills. Evaluation: There is inadequate evidence in humans for the carcinogenicity of ORP 7085 HM . There is limited evidence in experimental animals for the carcinogenicity of ORP 7085 HM . Overall evaluation: ORP 7085 HM is possibly carcinogenic to humans (Group 2B). In making the overall evaluation, the working group took into account the following evidence: (1) ORP 7085 HM is rapidly transformed into acetaldehyde in human blood and animal tissues. (2) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both ORP 7085 HM and acetaldehyde induce nasal cancer in rats after administration by inhalation. (3) ORP 7085 HM and acetaldehyde are genotoxic in human cells in vitro and on animals in vivo. Previous studies from our laboratory suggest that rat liver microsome-activated ORP 7085 HM induces plasmid DNA-histone crosslinks, in vitro, through esterase-mediated metabolism. Since nasal tissues contain high levels of carboxylesterase, tumorigenesis may be related to in situ production of the hydrolysis products acetaldehyde and acetic acid. ORP 7085 HM was cytotoxic to both respiratory and olfactory tissues in vitro at 50-200 mM, but not 25 mM, after 2 hr exposure. Pretreatment of rats with the carboxylesterase inhibitor, bis-(p-nitrophenyl) phosphate (BNPP), attenuated the cytotoxic effects and metabolism of ORP 7085 HM in both tissue types. Semicarbazide, an aldehyde scavenger, was unable to protect the tissues from ORP 7085 HM -induced cytotoxicity. When the metabolites were tested, acetic acid, but not acetaldehyde, was cytotoxic to both tissues. To provide validation data for the application of the PBPK model ... in humans, controlled human exposures to inhaled ORP 7085 HM were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers (two women, three men). Volunteers were instructed to inhale and exhale through the nose. Sampling was carried out during exposure to labeled 13C1, 13C2-ORP 7085 HM during resting and light exercise at three exposure levels (1, 5 and 10 ppm nominally). Both, labeled ORP 7085 HM and the major metabolite acetaldehyde from the nasopharyngeal region were sampled at a calibrated flow rate of 12 L/hr and analyzed in real time utilizing ion trap mass spectrometry (MS/MS). Measurements were taken every 0.8 sec in an exposure period of 2 to 5 min resulting in data during all phases of the breathing. The rate of sampling was rapid enough to capture much of the behavior of ORP 7085 HM in the human nasal cavity including inhalation and exhalation. However, the sampling was not frequent enough to accurately capture the peak concentration in every breath. ORP 7085 HM 's production and use as a monomer for making poly (ORP 7085 HM) and ORP 7085 HM copolymers, in the production of paints, sealants, coatings, and binders and in miscellaneous uses such as chewing gum and tablet coatings may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 90.2 mm Hg at 20 °C indicates ORP 7085 HM will exist solely as a vapor in the ambient atmosphere. Vapor-phase ORP 7085 HM is expected to be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 hours. If released to soil, ORP 7085 HM is expected to have high mobility based upon an estimated Koc of 60. Although leaching is possible, concurrent hydrolysis will decrease its importance. Volatilization from moist soil surfaces is also expected to be an important fate process based upon an estimated Henry's Law constant of 5.1X10-4 atm-cu m/mole. ORP 7085 HM may volatilize from dry soil surfaces based upon its vapor pressure. Polymerization may occur in sunlight. Biodegradation of ORP 7085 HM may be an important environmental fate process in soil under both aerobic (51 to 62% biodegradation reached in 5 day BOD test using sewage inoculum) and anaerobic conditions (nearly complete degradation in 26 hrs); reaction products of acetaldehyde and acetate are formed under both oxygen conditions. If released to water, ORP 7085 HM is not expected to adsorb to suspended solids and sediment in water based on the estimated Koc value. Volatilization from water surfaces is expected to be an important fate process based on its estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 4 hours and 4 days, respectively. A 98% of theoretical BOD was reported using activated sludge in the Japanese MITI test, suggesting that biodegradation may be an important environmental fate process in water. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Degradation by hydrolysis (half-life of 7.3 days at 25 °C and pH 7) and by photochemically produced oxidants will occur. Occupational exposure to ORP 7085 HM may occur through inhalation and dermal contact with this compound at workplaces where ORP 7085 HM is produced or used. The general population may be exposed to ORP 7085 HM through inhalation and dermal contact with products containing ORP 7085 HM ; limited exposure may occur via ingestion from its use in chewing gum and tablet coatings. (SRC) ORP 7085 HM 's production and use as a monomer for making poly(ORP 7085 HM ) and ORP 7085 HM copolymers, in the production of paints, films, sealants, lacquers, coatings, food packaging, and binders, in chewing gum and as a tablet coating(1,2) and safety glass(3) may result in its release to the environment through various waste streams(SRC). ORP 7085 HM can be released to the environment from industrial sources and biomass combustion(4). Waste gases from scrubbers (generated during the industrial manufacture of ORP 7085 HM ) may contain trace levels of ORP 7085 HM (5). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 60(
ORP 7099 RD
ORP 7099 RD Introduction: ORP 7099 RD is a redispersible powder obtained by drying an emulsion of a vinyl acetate / VeoVa / acrylic terpolymer with PVA as a protective colloid. The special chemical composition of the polymer facilitates the bonding of the redispersed polymer at low temperatures and ensures good adhesion to cementitious substrates. ORP 7099 RD is used for modification of mixtures containing hydraulic binders. Due to its special chemical / physical composition, ORP 7099 RD improves the adhesion, elasticity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Properties: Appearance - White powder Chemical composition - Vinyl acetate / VeoVa / acrylic terpolymer Stabilizing system - PVA Residual moisture (%) - Max. 1.5 Density (g / l) - 400 - 600 Ash residue (%) - 12 ± 2 Alkaline resistance - High After dispersion with water - 1: 1 pH - 6.0-7.0 Minimum film formation temperature (ºС) - 0 Applications: C1 tile adhesives: Recommended dosages: 0.5-1.0% C2 tile adhesives: Recommended dosages: 2.0-5.0% Repair mortars: With excellent adhesion, resistance and water resistance, ORP 7099 RD can be used in repair mortar formulations at a dosage of 1.0 - 2.0%. Storage and expiration date: Packaging: 25 kg paper bags. 18 bags per pallet. Big bags of 500 kg. The bags should be stored in a dry and cool warehouse at temperatures between 10 - 25 ° C. It is not advisable to stack pallets one on top of the other to avoid caking due to the thermoplasticity of the polymer. The packaging should be closed after use to protect it from moisture and caking. The minimum shelf life is 12 months.
ORP 7365
ORP 7365 HP-Hydrophobic Redispersible Powder for Dry-Mix Mortars.ORP 7365 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates.ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems that require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP provides excellent performance.Having excellent abrasion resistance, flexibility and water resistance ORP 7365 HP can be used in tile grouts formulations, between 2.0 – 4.0 %.Because of providing excellent water resistance, flexibility and compressive strength ORP 7365 HP can be used also in EIFS plaster formulations, between 3.0 – 5.0 %.Water Proofing Mortars:ORP 7365 HP can be used in one component water proofing mortars, between 7.0 – 10.0% because of having excellent flexibility, hydrophobicity and water resistance.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substraHtes.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is used to modify mixtures containing hydraulic binders. Due to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) s particular chemical / physical composition,ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) provides excellent performance.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Application Areas: ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) having excellent abrasion resistance, flexibility and water resistance ORP 7365 HP can be used in tile grouts formulations, between 2.0 - 4.0 %.Because of providing excellent water resistance, flexibility and compressive strength ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used also in EIFS plaster formulations, between 3.0 - 5.0 %. ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Product; Handling; Storage ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Packaging: Pallet with 18 or 30 paper bags, each 25 kg (450 or 750 kg) also 500 kg of big bags.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Packages must be stored in a dry and cool warehouse at temperatures between 10 - 25 °C. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Packing must be closed well after usage for protection against humidity and caking.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) has to be used within 6 months.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a redispersible powder obtained by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVA as a protective colloid. The chemical composition of the polymer ensures the coalescence of the redispersible polymer at low temperatures and provides good adhesion to mineral substrates. ORP 7365 HP is used for modifying mixtures containing various binders. Due to its special physical / chemical composition, ORP 7365 HP improves adhesion, abrasion resistance, elasticity and water resistance of mortars.Due to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer)s excellent water resistance, elasticity and compressive strength,ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used for plasters in SPTC.ith excellent abrasion, flexibility and water resistance,ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used in tile grouting compounds.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a redispersible powder obtained by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVA as a protective colloid. The chemical composition of the polymer ensures the coalescence of the redispersible polymer at low temperatures and provides good adhesion to mineral substrates. ORP 7365 HP is used for modifying mixtures containing various binders. Due to its special physical / chemical composition, ORP 7365 HP improves adhesion, abrasion resistance, elasticity and water resistance of mortars.Due to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer)s excellent water resistance, elasticity and compressive strength, ORP 7365 HP can be used for plasters in SPTC.Due to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer)s excellent flexibility, hydrophobicity and water resistance, ORP 7365 HP can be used in one-component waterproofing mortars.With excellent abrasion, flexibility and water resistance,ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used in tile grouting compounds.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is used to modify mixtures containing hydraulic binders. Due to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer)s particular chemical / physical composition,ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) provides excellent performance.Having excellent abrasion resistance, flexibility and water resistance ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used in tile grouts formulations, between 2.0 - 4.0 %.Because of providing excellent water resistance, flexibility and compressive strength ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used also in EIFS plaster formulations, between 3.0 - 5.0 %.Water Proofing Mortars: ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be used in one component water proofing mortars, between 7.0 - 10.0% because of having excellent flexibility, hydrophobicity and water resistance.The polymer powder based vinylatsetatnoho-acrylic copolymer ORP 7099 RD (net weight 12600 kg), ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (net weight 450 kg) taORP THERMOBOND 74 (net weight 7,200 kg) is redysperhovanyy powder obtained by drying emulsion acrylic vinylatsetatnoho terpolimeraz polivinylovym alcohol in yakostizahysnoho colloid. The structure of ORP 7099 RD are: vinyl acetate monomer - 89% butyl acrylate monomer - 8%, the agent antizlezhuvannya - 1% filler - 1%, other functional additives - 1% final humidity - max 2% Bottom ash residue - 12 + -2%. The structure of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) include: vinyl acetate monomer - 91% butyl acrylate monomer - 5% agent antizlezhuvannya - 1% filler - 1%, other functional additives - 1% final humidity - max 2% Bottom ash residue - 14 + -2%.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a hydrophobic polymer powder. Used in systems requiring water resistance, flexibility and abrasion resistance.K proofing Mortar Formulation Powder CEM II 4,5R -8 µm Silica Sand Tylose MH 6 YP4 ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Floset AD Filler Retention Agent Performance Modifier Plasticizer Shin-Etsu SNF Liquid Agitan 3 Acticide MV Defoamer Biocide Münzing Chemie Thor *Powder: Liquid ratio is : in weight.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is an organic compound with the formula CH3CO2CH=CH2.This colorless liquid is the precursor to polyvinyl acetate, an important industrial polymer.The worldwide production capacity of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a key ingredient in furniture glue.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is more complex than the synthesis of other acetate esters.The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.The main side reaction is the combustion of organic precursors.Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate vinyl acetate and a palladium hydride, which would be oxidized to give hydroxide.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) was once prepared by hydroesterification. This method involves the gas-phase addition of acetic acid to acetylene in the presence of metal catalysts. By this route, using mercury(II) catalysts, vinyl acetate was first prepared by Fritz Klatte in 1912.[3] Another route to vinyl acetate involves thermal decomposition of ethylidene diacetate.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be polymerized to give polyvinyl acetate (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-vinyl acetate (EVA), ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) undergoes transesterification with a variety of carboxylic acids.The alkene also undergoes Diels-Alder and 2+2 cycloadditions.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) undergoes transesterification, giving access to vinyl ethers.Tests suggest that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.On January 31, 2009, the Government of Canada's final assessment concluded that exposure toORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is not harmful to human health.This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in significant quantities.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) appears as a clear colorless liquid.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Flash point 18°F.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Density 7.8 lb / gal.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Slightly soluble in water.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Vapors are heavier than air.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) Used to make adhesives, paints, and plastics.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is an industrial chemical that is produced in large amounts in the United States.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. Vinyl acetate is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP 7365 HP is used to modify mixtures containing various binders. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP provides adhesion of mortars thanks to its special physical / chemical composition. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP increases wear resistance, elasticity and water resistance. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) provides excellent water resistance. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP provides elasticity. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP thanks to its compressive strength, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used for plasters in SPTC. In addition to excellent abrasion, flexibility and water resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used in tile joint filling compounds. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is a redispersible powder obtained by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVA as a protective colloid. The chemical composition of the polymer allows the redispersible polymer to coalesce at low temperatures and provides good adhesion to Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP mineral substrates. ORP 7365 HP is used to modify mixtures containing various binders. ORP 7365 HP increases the adhesion of mortars thanks to its special physical / chemical composition, Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP abrasion resistance, Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP elasticity and Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP water resistance. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP can be used for plasters in ORP 7365 HP SPTC thanks to its excellent water resistance, elasticity and compressive strength. ORP 7365 HP can be used in one-component waterproofing mortars thanks to the excellent flexibility, hydrophobicity and water resistance of ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer). With its excellent abrasion, flexibility and water resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used in tile joint filling compounds. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is a redispersible powder produced by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVOH as a protective colloid. The specific chemical composition of the polymer allows the re-dispersed polymer to coalesce at low temperatures and provides good adhesion to cement-based substrates. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is used to modify mixtures containing hydraulic binders. Due to the special chemical / physical composition of ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer), ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) increases the adhesion, abrasion resistance, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or cement.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is also used as a coating in plastic films for food packaging and as a modifier of food starch.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is an acetate ester.At 20 °C, a saturated solution of vinyl acetate in water contains 2.0-2.4 wt % ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer), whereas a saturated solution of water in ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) doubles to about 2 wt %.The/ fate of inhaled ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in rabbits /was studied.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) tended to remain in the body after ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) was inhaled; 70% of the ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) administered was retained, and an equilibrium was established in the first few min after exposure began.No ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) /was found/ in the blood, either during or after its inhalation, which suggested.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is rapidly metabolized when ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) enters the body through the lungs.The hydrolysis of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase).In order to establish the rate of metab of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system.Attempts have been undertaken to determine ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) can be concluded, that 63 % of orally applied 14C vinyl acetate is excreted as metabolites.Rats were administered oral doses of 14C-ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart.Two male Wistar Rats exposed to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when vinyl acetate exposure levels exceeded 650 ppm (2320 mg/cu m).ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) exposure concentrations. With increasing the ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) exposure, concentration of acetaldehyde in expired air increased. At vinyl acetate exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m).Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (5.4 mM) revealed a rapid degradation of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in the nasal cavity of the rat.To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) and acetaldehyde were compared with data from the human nasal model simulation. For the ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) data a good fit was demonstrated (r = 0.9).Finally, solutions of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) were placed in the mouth of anesthetized rats for 10 min and then analyzed for acetaldehyde concentrations.The metabolism of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) has been studied in animals . ORP 7365 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substraHtes. ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves adhesion, ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves abrasion resistance, ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves flexibility and ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) improves water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems that require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP provides excellent performance.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer).In vitro metabolic studies show that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer). The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer). Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) may bind to various degrees with glutathione in different species, which may help to detoxify ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) or its metabolites and enhance their elimination.ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) metabolism not only takes place in the liver but also in several tissues.Acetaldehyde is a metabolite of ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) through esterase-mediated metabolism. It is discussed that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars).ORP 7365 HP (Vinyl Acetate,Acrylic Copolymer) occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP 7365 HP can be used in one-component waterproofing mortars thanks to the excellent flexibility, hydrophobicity and water resistance of ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer). With its excellent abrasion, flexibility and water resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used in tile joint filling compounds. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is a redispersible powder produced by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVOH as a protective colloid. The specific chemical composition of the polymer allows the re-dispersed polymer to coalesce at low temperatures and provides good adhesion to cement-based substrates. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is used to modify mixtures containing hydraulic binders. Due to the special chemical / physical composition of ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer), ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) increases the adhesion, abrasion resistance, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or cement. Lime. While ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) systems require water resistance, flexibility and abrasion resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) provides excellent performance. With its excellent abrasion resistance, flexibility and water resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used between 2.0 - 4.0% in tile mortar formulations. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can also be used in EIFS due to its excellent water resistance, flexibility and compressive strength. Waterproofing Mortars: ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used between 7.0 - 10.0% in single component waterproofing mortars due to its excellent flexibility, hydrophobicity and water resistance. polymer powder based vinilatsetatnoho-acrylic copolymer ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is a hydrophobic polymer powder. ORP 7365 HP is used to modify mixtures containing various binders. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP provides adhesion of mortars thanks to its special physical / chemical composition. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP increases wear resistance, elasticity and water resistance. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) provides excellent water resistance. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP provides elasticity. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP thanks to its compressive strength, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used for plasters in SPTC. In addition to excellent abrasion, flexibility and water resistance, ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) can be used in tile joint filling compounds. ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer) is a redispersible powder obtained by drying a Vinyl Acetate / Acrylic copolymer emulsion with PVA as a protective colloid. The chemical composition of the polymer allows the redispersible polymer to coalesce at low temperatures and provides good adhesion to Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP mineral substrates. ORP 7365 HP is used to modify mixtures containing various binders. ORP 7365 HP increases the adhesion of mortars thanks to its special physical / chemical composition, Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP abrasion resistance, Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP elasticity and Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP water resistance. Vinyl Acetate, Acrylic Copolymer - ORP 7365 HP can be used for plasters in ORP 7365 HP SPTC thanks to its excellent water resistance, elasticity and compressive strength. ORP 7365 HP can be used in one-component waterproofing mortars thanks to the excellent flexibility, hydrophobicity and water resistance of ORP 7365 HP (Vinyl Acetate, Acrylic Copolymer).
ORP 7365 HP
ORP 7365 HP Hydrophobic Redispersible Powder for Dry-Mix Mortars INTRODUCTION ORP 7365 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems that require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP provides excellent performance. TYPICAL PROPERTIES Appearance: White powder Chemical composition: VA / Acrylic Copolymer Stabilizing System: PVOH Residual Humidity (%): Max. 1.5 Density (g/l): 400 - 600 Ash Content (%):14 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water pH:8.0 – 9.0 MFFT (°C): 0 APPLICATION AREAS Tile Grouts: Having excellent abrasion resistance, flexibility and water resistance ORP 7365 HP can be used in tile grouts formulations, between 2.0 – 4.0 %. EIFS Plasters: Because of providing excellent water resistance, flexibility and compressive strength ORP 7365 HP can be used also in EIFS plaster formulations, between 3.0 – 5.0 % Water Proofing Mortars: ORP 7365 HP can be used in one component water proofing mortars, between 7.0 – 10.0% because of having excellent flexibility, hydrophobicity and water resistance. PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 or 30 paper bags, each 25 kg (450 or 750 kg) also 500 kg of big bags. Packages must be stored in a dry and cool warehouse at temperatures between 10 – 25 °C. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP 7365 HP has to be used within 12 months.
ORP 7365 HP
ORP 7365 HP ORP 7365 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP improves adhesion, abrasion resistance,flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in the systems that require water resistance, flexibility and abrasion resistance at the same time ORP 7365 HP provides excellent performance. TYPICAL PROPERTIES Appearance White powder Chemical composition VA / Acrylic Copolymer Stabilizing System PVOH Residual Humidity (%) Max. 1.5 Density (g/l) 400 - 600 Ash Content (%) 14 ± 2 Alkali Resistance High After 1:1 Dispersion with Water pH 8.0 – 9.0 MFFT (°C) 0 APPLICATION AREAS Tile Grouts: Having excellent abrasion resistance, flexibility and water resistance ORP 7365 HP can be used in tile grouts formulations, between 2.0 – 4.0 %. EIFS Plasters: Because of providing excellent water resistance, flexibility and compressive strength ORP 7365 HP can be used also in EIFS plaster formulations, between 3.0 – 5.0 % Water Proofing Mortars: ORP 7365 HP can be used in one component water proofing mortars, between 7.0 – 10.0% because of having excellent flexibility, hydrophobicity and water resistance. PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 or 30 paper bags, each 25 kg (450 or 750 kg) also 500 kg of big bags. Packages must be stored in a dry and cool warehouse at temperatures between 10 – 25 °C. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 12 months. ORP 7365 HP is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP 7365 HP provides excellent abrasion resistance, flexural & compressive stength and good leveling. APPLICATION AREAS of ORP 7365 HP ORP 7365 HP can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence. PRODUCT HANDLING – STORAGE – SHELFLIFE of ORP 7365 HP Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP 7365 HP has to be used within 6 months after the date of delivery. ORP 7365 HP is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7365 HP improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP 7365 HP performs very well in transverse deformation conditions. APPLICATION AREAS of ORP 7365 HP ORP 7365 HP can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP 7365 HP can be used with the ratio of 2.0 - 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP 7365 HP is a very suitable redispersible powder polymer for cementitious water proofing mortars.It can be used with the ratio of 7.0 - 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP 7365 HP performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 - 4.0 %. PRODUCT HANDLING - STORAGE - SHELFLIFE of ORP 7365 HP Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. ORP 7365 HP appears as a clear colorless liquid. Flash point 18°F. Density 7.8 lb / gal. Slightly soluble in water. Vapors are heavier than air. Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture. Used to make adhesives, paints, and plastics. At 20 °C, a saturated solution of ORP 7365 HP in water contains 2.0-2.4 wt % ORP 7365 HP , whereas a saturated solution of water in ORP 7365 HP contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP 7365 HP in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP 7365 HP doubles to about 2 wt % The/ fate of inhaled ORP 7365 HP in rabbits /was studied/. ... ORP 7365 HP tended to remain in the body after it was inhaled; 70% of the ORP 7365 HP administered was retained, and an equilibrium was established in the first few min after exposure began. ... No ORP 7365 HP /was found/ in the blood, either during or after its inhalation, which suggested ... that ORP 7365 HP is rapidly metabolized when it enters the body through the lungs. Two male Wistar Rats exposed to ORP 7365 HP (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when ORP 7365 HP exposure levels exceeded 650 ppm (2320 mg/cu m). ORP 7365 HP deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP 7365 HP to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP 7365 HP and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP 7365 HP exposure concentrations. With increasing the ORP 7365 HP exposure, concentration of acetaldehyde in expired air increased. At ORP 7365 HP exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m). Rats were administered oral doses of 14C-ORP 7365 HP (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart. During the dosing regime and subsequent 96 hr collection period, a mean of 64.4% of the administered radioactivity was excreted (1.4% in feces, 1.8% in urine and 61.2% in exhaled air). In addition a mean of 5.4% was found in the carcass at 96 hr. The major portion of the urinary radioactivity was excreted within the first 24 hr. Most of the radioactivity eliminated by the expired air was recovered during the 6 hr dosing regime and the first 6 hr after dosing. This portion of radioactivity was recovered from the traps designed for collecting carbon dioxide. The authors of the study suppose, that the unaccounted 30.1% of the dose were most likely lost in the expired air, which escaped from the metabolism cages when the animals were removed for dosing. There was a wide tissue distribution of radioactivity following administration of 14C-ORP 7365 HP by the oral route. One hour after the sixth dose the highest mean concentrations of radioactivity were found in the harderian gland and the submaxillary salivary gland. High levels were also found in the liver, kidney, stomach, ileum, colon and gastrointestinal tract contents. Low concentrations of radioactivity were found in fat. Attempts have been undertaken to determine ORP 7365 HP metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore it can be concluded, that 63 % of orally applied 14C ORP 7365 HP is excreted as metabolites. ORP 7365 HP is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyORP 7365 HP , an important industrial polymer. 1 Production of ORP 7365 HP 2 Preparation of ORP 7365 HP 2.1 Mechanism of ORP 7365 HP 2.2 Alternative routes 3 Polymerization of ORP 7365 HP 4 Other reactions of ORP 7365 HP 5 Toxicity evaluation of ORP 7365 HP Production of ORP 7365 HP The worldwide production capacity of ORP 7365 HP was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4] It is a key ingredient in furniture glue.[5] Preparation ORP 7365 HP is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP 7365 HP is more complex than the synthesis of other acetate esters. The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.[6] {\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}}{\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}} The main side reaction is the combustion of organic precursors. Mechanism Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate ORP 7365 HP and a palladium hydride, which would be oxidized to give hydroxide. Polymerization It can be polymerized to give polyORP 7365 HP (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-ORP 7365 HP (EVA), ORP 7365 HP -acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent. Other reactions ORP 7365 HP undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels-Alder and 2+2 cycloadditions. ORP 7365 HP undergoes transesterification, giving access to vinyl ethers: ROH + CH2=CHOAc → ROCH=CH2 + HOAc Toxicity evaluation Tests suggest that ORP 7365 HP is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.[3] On January 31, 2009, the Government of Canada's final assessment concluded that exposure to ORP 7365 HP is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. On/ hydrolysis /in the blood/, ORP 7365 HP yields acetic acid, a normal body constituent, and vinyl alcohol, which should rapidly tautomerize to yield acetaldehyde, another normal body constituent. The hydrolysis of ORP 7365 HP was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase). Characterization of the kinetic parameters revealed that rat liver microsomes and purified carboxyl esterase (from porcine liver) displayed the highest activity. In order to establish the rate of metab of ORP 7365 HP in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP 7365 HP was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP 7365 HP from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP 7365 HP resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system. 1.1. Product identifier Product name ORP 7365 HP Chemical name and synonym Vinyl Acetate l VeoVa l Acrylic terpolymer 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended use Redispersible Powder for Dry-Mix Mortars The product does not contain substances classified as being hazardous to human health or the environment pursuant to the provisions Regulation (EU) 1272/2008 (CLP) (and subsequent amendments and supplements) in such quantities as to require the statement. Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP 7365 HP (5.4 mM) revealed a rapid degradation of ORP 7365 HP and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP 7365 HP or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic. ORP 7365 HP hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP 7365 HP in the nasal cavity of the rat. This model predicts steady state concentrations of the metabolite acetic acid after continuing 6 hr-exposure in respiratory tissue which are approximately 13 times greater and in olfactory tissue which are approximately 2 times greater than those of acetaldehyde, the second metabolite. As the concentration of acids is indicative for the concentration of protons the model predicts the greatest reduction in intracellular pHi for respiratory mucosa. Hence, pH effects should be more pronounced in this tissue as compared to other tissues. This physiologically based toxicokinetic/toxicodynamic model for rat was modified for the olfactory epithelium of the both human and rat nasal cavity. The change in intracellular pH is predicted to be slightly greater for human olfactory epithelium, than that of rats. To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP 7365 HP were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP 7365 HP and acetaldehyde were compared with data from the human nasal model simulation. For the ORP 7365 HP data a good fit was demonstrated (r = 0.9). The metabolism of ORP 7365 HP has been studied in animals ... ORP 7365 HP is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP 7365 HP results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP 7365 HP (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP 7365 HP is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP 7365 HP. In vitro metabolic studies show that ORP 7365 HP added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP 7365 HP in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP 7365 HP . The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP 7365 HP . Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP 7365 HP quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP 7365 HP exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP 7365 HP may bind to various degrees with glutathione in different species, which may help to detoxify ORP 7365 HP or its metabolites and enhance their elimination. ORP 7365 HP is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP 7365 HP metabolism not only takes place in the liver but also in several tissues. The half-life of /200 uM/ ORP 7365 HP elimination in human whole blood was 4.1 minutes as compared to /less than/ 1 minute in rat whole blood. Acetaldehyde is a metabolite of ORP 7365 HP through esterase-mediated metabolism. It is discussed that ORP 7365 HP exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP 7365 HP induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP 7365 HP in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars). It occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP 7365 HP is primarily used as a monomer in the production of polyORP 7365 HP and polyvinyl alcohol. Its chief use is as a monomer for making poly(ORP 7365 HP ) and ORP 7365 HP copolymers, which are used as components in coatings, paints, and sealants, binders (adhesives, nonwovens, construction products, and carpet-backing) and in miscellaneous uses such as chewing gum and tablet coatings. ORP 7365 HP is also copolymerized as the minor constituent with vinyl chloride and with ethylene to form commercial polymers and with acrylonitrile to form acrylic fibers. ORP 7365 HP has been used primarily to produce polyORP 7365 HP emulsions and polyvinyl alcohol. The principle use of these emulsions has been in adhesives, paints, textiles, and paper products. PRODUCT PROFILE: ORP 7365 HP : PolyORP 7365 HP accounts for about 48% of ORP 7365 HP monomer (VAM) use, with applications including water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, accounts for about 35% of demand. The remainder goes into ethylene ORP 7365 HP (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins. PRODUCT PROFILE: ORP 7365 HP : ORP 7365 HP monomer's (VAM) main use is polyORP 7365 HP which accounts for about 47% of consumption and has applications in water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), which is used in packaging film and glass laminates, accounts for about 29% of VAM demand. Remaining volumes go into ethylene ORP 7365 HP (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). EVA and EVOH are finding new uses as copolymers in speciality adhesives and packaging films. CHEMICAL PROFILE: ORP 7365 HP : ORP 7365 HP monomer (VAM) is mainly used in polyORP 7365 HP which has applications in water-based paints, adhesives, acrylic fibres, paper coatings and non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, is the second largest consumer. The remaining volumes go into ethylene ORP 7365 HP (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). CHEMICAL PROFILE: ORP 7365 HP . PolyORP 7365 HP emulsions and resins, 40%; (this area is divided evenly between paints and adhesives); polyvinyl alcohol, 15%; polyvinyl butyral, 8%; ethylene-ORP 7365 HP resins, 6%; polyvinyl chloride copolymers, 3%; miscellaneous, 1%; exports, 27%. CHEMICAL PROFILE: ORP 7365 HP : PolyORP 7365 HP emulsions and resins, 57%; polyvinyl alcohol, 19%; polyvinyl butyral, 10%; ethylene-ORP 7365 HP resins, 8%; ethylene vinyl alcohol, 2%; miscellaneous, including polyvinyl chloride copolymers, 4%. PRODUCT FOCUS: ORP 7365 HP Monomer (VAM): Global Demand: 2003: 4.3 million tonnes. PolyORP 7365 HP , 44%; polyORP 7365 HP , 40%; ethylene vinyl alcohol, 12%. ORP 7365 HP , acetic anhydride, ethanol, methanol, and formaldehyde were formed in aq extracts of polyORP 7365 HP films only in some cases and in insignificant quantities. The difference between pH of aq extracts of polyORP 7365 HP films and pH of the control (distilled water) the extracts from unsterilized films are more alk and those from sterilized films are more acidic than the distilled water control. Bromo cmpd were present up to 6.4 mg bromide/L in polyORP 7365 HP film extracts and up to 12.3 mg bromide/L in inactivated extracts. The oxidizability of the polyORP 7365 HP films was around 324-1310 mg/L and was highly dependent on the time of contact of the films with water. Aq extracts of various films contained 80-360 mg/L polyORP 7365 HP . Sterilization by gamma-rays did not lead to substantial changes in hygienic-chem properties of the films. An increase in the irradiation dose up to 0.3 megagray decreased the oxidizability of aq extracts and the polyORP 7365 HP content in the films. The quantities of formaldehyde and methanol formed are lower than the accepted quantities of migration of these substances into food products. Thus, polyORP 7365 HP has satisfactory properties for medicinal use. ORP 7365 HP is an industrial chemical that is produced in large amounts in the United States. It is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. ORP 7365 HP is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP 7365 HP is also used as a coating in plastic films for food packaging and as a modifier of food starch. ORP 7365 HP is primarily used as a monomer in the production of polyORP 7365 HP and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to ORP 7365 HP has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of ORP 7365 HP in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified ORP 7365 HP for carcinogenicity. ORP 7365 HP shall be stored at temperatures less than 37.8 °C (100 °F) in well-ventilated areas and kept away from ignition sources such as heat and direct sunlight. No heating apparatus capable of exceeding 80% of the autoignition temperature of ORP 7365 HP (427 °C) shall be used in ORP 7365 HP storage areas. The storage of ORP 7365 HP in glass containers should not be in the same areas as oxidizing agents or other incompatible chemicals. Containers of ORP 7365 HP shall be kept tightly closed when not in use and shall be stored so as to minimize accidental ruptures and spills. Evaluation: There is inadequate evidence in humans for the carcinogenicity of ORP 7365 HP . There is limited evidence in experimental animals for the carcinogenicity of ORP 7365 HP . Overall evaluation: ORP 7365 HP is possibly carcinogenic to humans (Group 2B). In making the overall evaluation, the working group took into account the following evidence: (1) ORP 7365 HP is rapidly transformed into acetaldehyde in human blood and animal tissues. (2) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both ORP 7365 HP and acetaldehyde induce nasal cancer in rats after administration by inhalation. (3) ORP 7365 HP and acetaldehyde are genotoxic in human cells in vitro and on animals in vivo. Previous studies from our laboratory suggest that rat liver microsome-activated ORP 7365 HP induces plasmid DNA-histone crosslinks, in vitro, through esterase-mediated metabolism. Since nasal tissues contain high levels of carboxylesterase, tumorigenesis may be related to in situ production of the hydrolysis products acetaldehyde and acetic acid. ORP 7365 HP was cytotoxic to both respiratory and olfactory tissues in vitro at 50-200 mM, but not 25 mM, after 2 hr exposure. Pretreatment of rats with the carboxylesterase inhibitor, bis-(p-nitrophenyl) phosphate (BNPP), attenuated the cytotoxic effects and metabolism of ORP 7365 HP in both tissue types. Semicarbazide, an aldehyde scavenger, was unable to protect the tissues from ORP 7365 HP -induced cytotoxicity. When the metabolites were tested, acetic acid, but not acetaldehyde, was cytotoxic to both tissues. To provide validation data for the application of the PBPK model ... in humans, controlled human exposures to inhaled ORP 7365 HP were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers (two women, three men). Volunteers were instructed to inhale and exhale through the nose. Sampling was carried out during exposure to labeled 13C1, 13C2-ORP 7365 HP during resting and light exercise at three exposure levels (1, 5 and 10 ppm nominally). Both, labeled ORP 7365 HP and the major metabolite acetaldehyde from the nasopharyngeal region were sampled at a calibrated flow rate of 12 L/hr and analyzed in real time utilizing ion trap mass spectrometry (MS/MS). Measurements were taken every 0.8 sec in an exposure period of 2 to 5 min resulting in data during all phases of the breathing. The rate of sampling was rapid enough to capture much of the behavior of ORP 7365 HP in the human nasal cavity including inhalation and exhalation. However, the sampling was not frequent enough to accurately capture the peak concentration in every breath. ORP 7365 HP 's production and use as a monomer for making poly (ORP 7365 HP) and ORP 7365 HP copolymers, in the production of paints, sealants, coatings, and binders and in miscellaneous uses such as chewing gum and tablet coatings may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 90.2 mm Hg at 20 °C indicates ORP 7365 HP will exist solely as a vapor in the ambient atmosphere. Vapor-phase ORP 7365 HP is expected to be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 hours. If released to soil, ORP 7365 HP is expected to have high mobility based upon an estimated Koc of 60. Although leaching is possible, concurrent hydrolysis will decrease its importance. Volatilization from moist soil surfaces is also expected to be an important fate process based upon an estimated Henry's Law constant of 5.1X10-4 atm-cu m/mole. ORP 7365 HP may volatilize from dry soil surfaces based upon its vapor pressure. Polymerization may occur in sunlight. Biodegradation of ORP 7365 HP may be an important environmental fate process in soil under both aerobic (51 to 62% biodegradation reached in 5 day BOD test using sewage inoculum) and anaerobic conditions (nearly complete degradation in 26 hrs); reaction products of acetaldehyde and acetate are formed under both oxygen conditions. If released to water, ORP 7365 HP is not expected to adsorb to suspended solids and sediment in water based on the estimated Koc value. Volatilization from water surfaces is expected to be an important fate process based on its estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 4 hours and 4 days, respectively. A 98% of theoretical BOD was reported using activated sludge in the Japanese MITI test, suggesting that biodegradation may be an important environmental fate process in water. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Degradation by hydrolysis (half-life of 7.3 days at 25 °C and pH 7) and by photochemically produced oxidants will occur. Occupational exposure to ORP 7365 HP may occur through inhalation and dermal contact with this compound at workplaces where ORP 7365 HP is produced or used. The general population may be exposed to ORP 7365 HP through inhalation and dermal contact with products containing ORP 7365 HP ; limited exposure may occur via ingestion from its use in chewing gum and tablet coatings. (SRC) ORP 7365 HP 's production and use as a monomer for making poly(ORP 7365 HP ) and ORP 7365 HP copolymers, in the production of paints, films, sealants, lacquers, coatings, food packaging, and binders, in chewing gum and as a tablet coating(1,2) and safety glass(3) may result in its release to the environment through various
ORP 7680
Product name ORP 7680 SL Chemical name and synonym VA / Acrylic copolymer ORP 7680 TYPICAL PROPERTIES ORP 7680 Appearance White powder ORP 7680 Chemical composition VA / Acrylic Copolymer ORP 7680 Stabilizing System PVOH ORP 7680 Residual Humidity (%) Max. 2.0 ORP 7680 Bulk Density (g/l) 400 - 600 ORP 7680 Ash Content (%) 12 ± 2 ORP 7680 Alkali Resistance High ORP 7680 After 1:1 Dispersion with Water MFFT (°C) 5 ± 1 ORP 7680 Information on basic physical and chemical properties. ORP 7680 Appearance powder ORP 7680 Colour white ORP 7680 Odour characteristic ORP 7680 Odour threshold. Not available. ORP 7680 pH. 5,0-8,0 (1:1 aqueous soln.) ORP 7680 Melting point / freezing point. Not available. ORP 7680 Initial boiling point. Not applicable. ORP 7680 Boiling range. Not available. ORP 7680 Flash point. Not applicable. ORP 7680 Evaporation Rate Not available. ORP 7680 Flammability of solids and gases Not available. ORP 7680 Lower inflammability limit. 20 g/m3. ORP 7680 Upper inflammability limit. Not available. ORP 7680 Lower explosive limit. Not available. ORP 7680 Upper explosive limit. Not available. ORP 7680 Vapour pressure. Not available. ORP 7680 Vapour density Not available. ORP 7680 Relative density. Not available. ORP 7680 Solubility Not available. ORP 7680 Partition coefficient: n-octanol/water Not available. ORP 7680 Auto-ignition temperature. 300 °C. > ORP 7680 Decomposition temperature. Not available. ORP 7680 Viscosity Not available. ORP 7680 Explosive properties Not available. ORP 7680 Oxidising properties Not available. ORP 7680 Other information. ORP 7680 Bulk density 400 - 600 g/l ORP 7680 Min. Cloud Ignition temperature ca. 480°C ORP 7680 Dust explosion class 1 ORP 7680 Kst value 122 bar.m/sec ORP 7680 Maximum explosion pressure 6,7 bar ORP 7680 Minimum ignition energy 3 - 10 mJ with inductance ORP 7680 Glow temperature >400°C ORP 7680 SL-Redispersible Powder for Self Leveling Dry-Mix Mortars.ORP 7680 SL is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates.ORP 7680 SL is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7680 SL improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP 7680 SL provides excellent abrasion resistance, flexural & compressive stength and good leveling.ORP 7680 SL can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence.ORP 7680 SL is a redispersible powder obtained by drying a Vinyl Acetate / Acrylic Copolymer emulsion with PVA as a protective colloid. The specific chemical composition of the polymer ensures the coalescence of the redispersible polymer at low temperatures and ensures good adhesion to various substrates.ORP 7680 SL is used for modifying mixtures containing various binders. Due to its special physical / chemical composition, ORP 7680 SL improves the adhesion, flexibility and water resistance of mortars containing cement, gypsum or lime. Especially in self-leveling mortar formulations, ORP 7680 SL provides excellent abrasion resistance, high flexural and compressive strength, and good leveling during application. ORP 7680 EYES: Remove contact lenses, if present. Wash immediately with plenty of water for at least 15 minutes, opening the eyelids fully. If problem persists, seek medical advice. ORP 7680 SKIN: Remove contaminated clothing. Wash immediately with plenty of water. If irritation persists, get medical advice/attention. Wash contaminated clothing before using it again. ORP 7680 INHALATION: Remove to open air. In the event of breathing difficulties, get medical advice/attention immediately. ORP 7680 INGESTION: Get medical advice/attention. Induce vomiting only if indicated by the doctor. Never give anything by mouth to an unconscious person, unless authorised by a doctor. ORP 7680 Extinguishing media. SUITABLE EXTINGUISHING EQUIPMENT The extinguishing equipment should be of the conventional kind: carbon dioxide, foam, powder and water spray. UNSUITABLE EXTINGUISHING EQUIPMENT None in particular. ORP 7680 Special hazards arising from the substance or mixture. HAZARDS CAUSED BY EXPOSURE IN THE EVENT OF FIRE Do not breathe combustion products. The product is combustible and, when the powder is released into the air in sufficient concentrations and in the presence of a source of ignition, it can create explosive mixtures with air. Fires may start or get worse by leakage of the solid product from the container, when it reaches high temperatures or through contact with sources of ignition. ORP 7680 Advice for firefighters. GENERAL INFORMATION Use jets of water to cool the containers to prevent product decomposition and the development of substances potentially hazardous for health. Always wear full fire prevention gear. Collect extinguishing water to prevent it from draining into the sewer system. Dispose of contaminated water used for extinction and the remains of the fire according to applicable regulations. SPECIAL PROTECTIVE EQUIPMENT FOR FIRE-FIGHTERS Normal fire fighting clothing i.e. fire kit (BS EN 469), gloves (BS EN 659) and boots (HO specification A29 and A30) in combination with self-contained open circuit positive pressure compressed air breathing apparatus (BS EN 137). ORP 7680 Personal precautions, protective equipment and emergency procedures. Use breathing equipment if fumes or powders are released into the air. These indications apply for both processing staff and those involved in emergency procedures. Avoid dust formation. Do not breathe dust. ORP 7680 Environmental precautions. The product must not penetrate into the sewer system or come into contact with surface water or ground water. Cover any spilled material in accordance with regulations to prevent dispersal by wind. ORP 7680 Methods and material for containment and cleaning up. Confine using earth or inert material. Collect as much material as possible and eliminate the rest using jets of water. Contaminated material should be disposed of in compliance with the provisions set forth in point 13. ORP 7680 Reference to other sections. Any information on personal protection and disposal is given in sections 8 and 13. Eliminate all source of ignition. Observe notes under section 7. ORP 7680 Precautions for safe handling. Before handling the product, consult all the other sections of this material safety data sheet. Avoid leakage of the product into the environment. Do not eat, drink or smoke during use. Avoid dust formation. Increased risk of slipping if substance comes into contact with water. ORP 7680 Conditions for safe storage, including any incompatibilities. Keep the product in clearly labelled containers. Keep containers away from any incompatible materials, see section 10 for details. The bags have to be stored in a closed, cool, and dry place. The bags have to be protected from high humudity and high temperatures above 25°C (77°F). Dusting has to be avoided, since it may create explosive mixture with air. Take precautionary measures against electrostatic charging. Keep away from open flames, heat and sparks. ORP 7680 Exposure controls. Comply with the safety measures usually applied when handling chemical substances. ORP 7680 HAND PROTECTION In the case of prolonged contact with the product, protect the hands with penetration-resistant work gloves (see standard EN 374). Work glove material must be chosen according to the use process and the products that may form. Latex gloves may cause sensitivity reactions. ORP 7680 SKIN PROTECTION None required. ORP 7680 EYE PROTECTION Wear airtight protective goggles (see standard EN 166). ORP 7680 RESPIRATORY PROTECTION Use a type P filtering facemask (see standard EN 149) or equivalent device, whose class (1, 2 or 3) and effective need, must be defined according to the outcome of risk assessment. ORP 7680 ENVIRONMENTAL EXPOSURE CONTROLS. The emissions generated by manufacturing processes, including those generated by ventilation equipment, should be checked to ensure compliance with environmental standards. ORP 7680 Reactivity. There are no particular risks of reaction with other substances in normal conditions of use. ORP 7680 Chemical stability.The product is stable in normal conditions of use and storage. ORP 7680 Possibility of hazardous reactions.No hazardous reactions are foreseeable in normal conditions of use and storage. ORP 7680 Conditions to avoid. None in particular. However the usual precautions used for chemical products should be respected. ORP 7680 Incompatible materials. Information not available. ORP 7680 Hazardous decomposition products. Information not available.
ORP 7680 SL
ORP 7680 SL ORP 7680 SL is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7680 SL is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7680 SL improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP 7680 SL provides excellent abrasion resistance, flexural & compressive stength and good leveling. APPLICATION AREAS of ORP 7680 SL ORP 7680 SL can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence. PRODUCT HANDLING – STORAGE – SHELFLIFE of ORP 7680 SL Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP 7680 SL has to be used within 6 months after the date of delivery. ORP 7680 SL is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP 7680 SL improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP 7680 SL performs very well in transverse deformation conditions. TYPICAL PROPERTIES of ORP 7680 SL Appearance Chemical composition Stabilizing System Residual Humidity (%) Bulk Density (g/l) Ash Content (%) Alkali Resistance After 1:1 Dispersion with Water MFFT (°C) White powder VA / VV / Acrylic Terpolymer PVOH Max. 2.0 350 - 550 12 ± 2 High 0 ±1 APPLICATION AREAS of ORP 7680 SL ORP 7680 SL can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP 7680 SL can be used with the ratio of 2.0 - 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP 7680 SL is a very suitable redispersible powder polymer for cementitious water proofing mortars.It can be used with the ratio of 7.0 - 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP 7680 SL performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 - 4.0 %. PRODUCT HANDLING - STORAGE - SHELFLIFE of ORP 7680 SL Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. 1.1. Product identifier Product name ORP 7680 SL Chemical name and synonym Vinyl Acetate l VeoVa l Acrylic terpolymer 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended use Redispersible Powder for Dry-Mix Mortars The product does not contain substances classified as being hazardous to human health or the environment pursuant to the provisions Regulation (EU) 1272/2008 (CLP) (and subsequent amendments and supplements) in such quantities as to require the statement. ORP 7680 SL is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyORP 7680 SL , an important industrial polymer.[3] 1 Production of ORP 7680 SL 2 Preparation of ORP 7680 SL 2.1 Mechanism of ORP 7680 SL 2.2 Alternative routes 3 Polymerization of ORP 7680 SL 4 Other reactions of ORP 7680 SL 5 Toxicity evaluation of ORP 7680 SL 6 See also 7 References 8 External links Production of ORP 7680 SL The worldwide production capacity of ORP 7680 SL was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4] It is a key ingredient in furniture glue.[5] Preparation ORP 7680 SL is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP 7680 SL is more complex than the synthesis of other acetate esters. The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.[6] {\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}}{\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}} The main side reaction is the combustion of organic precursors. Mechanism Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate ORP 7680 SL and a palladium hydride, which would be oxidized to give hydroxide. Polymerization It can be polymerized to give polyORP 7680 SL (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-ORP 7680 SL (EVA), ORP 7680 SL -acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent. Other reactions ORP 7680 SL undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels-Alder and 2+2 cycloadditions. ORP 7680 SL undergoes transesterification, giving access to vinyl ethers:[10][11] ROH + CH2=CHOAc → ROCH=CH2 + HOAc Toxicity evaluation Tests suggest that ORP 7680 SL is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.[3] On January 31, 2009, the Government of Canada's final assessment concluded that exposure to ORP 7680 SL is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. ORP 7680 SL appears as a clear colorless liquid. Flash point 18°F. Density 7.8 lb / gal. Slightly soluble in water. Vapors are heavier than air. Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture. Used to make adhesives, paints, and plastics. At 20 °C, a saturated solution of ORP 7680 SL in water contains 2.0-2.4 wt % ORP 7680 SL , whereas a saturated solution of water in ORP 7680 SL contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP 7680 SL in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP 7680 SL doubles to about 2 wt % The/ fate of inhaled ORP 7680 SL in rabbits /was studied/. ... ORP 7680 SL tended to remain in the body after it was inhaled; 70% of the ORP 7680 SL administered was retained, and an equilibrium was established in the first few min after exposure began. ... No ORP 7680 SL /was found/ in the blood, either during or after its inhalation, which suggested ... that ORP 7680 SL is rapidly metabolized when it enters the body through the lungs. Two male Wistar Rats exposed to ORP 7680 SL (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when ORP 7680 SL exposure levels exceeded 650 ppm (2320 mg/cu m). ORP 7680 SL deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP 7680 SL to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP 7680 SL and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP 7680 SL exposure concentrations. With increasing the ORP 7680 SL exposure, concentration of acetaldehyde in expired air increased. At ORP 7680 SL exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m). Rats were administered oral doses of 14C-ORP 7680 SL (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart. During the dosing regime and subsequent 96 hr collection period, a mean of 64.4% of the administered radioactivity was excreted (1.4% in feces, 1.8% in urine and 61.2% in exhaled air). In addition a mean of 5.4% was found in the carcass at 96 hr. The major portion of the urinary radioactivity was excreted within the first 24 hr. Most of the radioactivity eliminated by the expired air was recovered during the 6 hr dosing regime and the first 6 hr after dosing. This portion of radioactivity was recovered from the traps designed for collecting carbon dioxide. The authors of the study suppose, that the unaccounted 30.1% of the dose were most likely lost in the expired air, which escaped from the metabolism cages when the animals were removed for dosing. There was a wide tissue distribution of radioactivity following administration of 14C-ORP 7680 SL by the oral route. One hour after the sixth dose the highest mean concentrations of radioactivity were found in the harderian gland and the submaxillary salivary gland. High levels were also found in the liver, kidney, stomach, ileum, colon and gastrointestinal tract contents. Low concentrations of radioactivity were found in fat. Attempts have been undertaken to determine ORP 7680 SL metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore it can be concluded, that 63 % of orally applied 14C ORP 7680 SL is excreted as metabolites. On/ hydrolysis /in the blood/, ORP 7680 SL yields acetic acid, a normal body constituent, and vinyl alcohol, which should rapidly tautomerize to yield acetaldehyde, another normal body constituent. The hydrolysis of ORP 7680 SL was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase). Characterization of the kinetic parameters revealed that rat liver microsomes and purified carboxyl esterase (from porcine liver) displayed the highest activity. In order to establish the rate of metab of ORP 7680 SL in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP 7680 SL was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP 7680 SL from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP 7680 SL resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system. Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP 7680 SL (5.4 mM) revealed a rapid degradation of ORP 7680 SL and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP 7680 SL or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic. ORP 7680 SL hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP 7680 SL in the nasal cavity of the rat. This model predicts steady state concentrations of the metabolite acetic acid after continuing 6 hr-exposure in respiratory tissue which are approximately 13 times greater and in olfactory tissue which are approximately 2 times greater than those of acetaldehyde, the second metabolite. As the concentration of acids is indicative for the concentration of protons the model predicts the greatest reduction in intracellular pHi for respiratory mucosa. Hence, pH effects should be more pronounced in this tissue as compared to other tissues. This physiologically based toxicokinetic/toxicodynamic model for rat was modified for the olfactory epithelium of the both human and rat nasal cavity. The change in intracellular pH is predicted to be slightly greater for human olfactory epithelium, than that of rats. To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP 7680 SL were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP 7680 SL and acetaldehyde were compared with data from the human nasal model simulation. For the ORP 7680 SL data a good fit was demonstrated (r = 0.9). The metabolism of ORP 7680 SL has been studied in animals ... ORP 7680 SL is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP 7680 SL results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP 7680 SL (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP 7680 SL is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP 7680 SL . In vitro metabolic studies show that ORP 7680 SL added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP 7680 SL in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP 7680 SL . The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP 7680 SL . Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP 7680 SL quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP 7680 SL exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP 7680 SL may bind to various degrees with glutathione in different species, which may help to detoxify ORP 7680 SL or its metabolites and enhance their elimination. ORP 7680 SL is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP 7680 SL metabolism not only takes place in the liver but also in several tissues. The half-life of /200 uM/ ORP 7680 SL elimination in human whole blood was 4.1 minutes as compared to /less than/ 1 minute in rat whole blood. Acetaldehyde is a metabolite of ORP 7680 SL through esterase-mediated metabolism. It is discussed that ORP 7680 SL exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP 7680 SL induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP 7680 SL in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars). It occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP 7680 SL is primarily used as a monomer in the production of polyORP 7680 SL and polyvinyl alcohol. Its chief use is as a monomer for making poly(ORP 7680 SL ) and ORP 7680 SL copolymers, which are used as components in coatings, paints, and sealants, binders (adhesives, nonwovens, construction products, and carpet-backing) and in miscellaneous uses such as chewing gum and tablet coatings. ORP 7680 SL is also copolymerized as the minor constituent with vinyl chloride and with ethylene to form commercial polymers and with acrylonitrile to form acrylic fibers. ORP 7680 SL has been used primarily to produce polyORP 7680 SL emulsions and polyvinyl alcohol. The principle use of these emulsions has been in adhesives, paints, textiles, and paper products. PRODUCT PROFILE: ORP 7680 SL : PolyORP 7680 SL accounts for about 48% of ORP 7680 SL monomer (VAM) use, with applications including water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, accounts for about 35% of demand. The remainder goes into ethylene ORP 7680 SL (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins. PRODUCT PROFILE: ORP 7680 SL : ORP 7680 SL monomer's (VAM) main use is polyORP 7680 SL which accounts for about 47% of consumption and has applications in water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), which is used in packaging film and glass laminates, accounts for about 29% of VAM demand. Remaining volumes go into ethylene ORP 7680 SL (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). EVA and EVOH are finding new uses as copolymers in speciality adhesives and packaging films. CHEMICAL PROFILE: ORP 7680 SL : ORP 7680 SL monomer (VAM) is mainly used in polyORP 7680 SL which has applications in water-based paints, adhesives, acrylic fibres, paper coatings and non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, is the second largest consumer. The remaining volumes go into ethylene ORP 7680 SL (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). CHEMICAL PROFILE: ORP 7680 SL . PolyORP 7680 SL emulsions and resins, 40%; (this area is divided evenly between paints and adhesives); polyvinyl alcohol, 15%; polyvinyl butyral, 8%; ethylene-ORP 7680 SL resins, 6%; polyvinyl chloride copolymers, 3%; miscellaneous, 1%; exports, 27%. CHEMICAL PROFILE: ORP 7680 SL : PolyORP 7680 SL emulsions and resins, 57%; polyvinyl alcohol, 19%; polyvinyl butyral, 10%; ethylene-ORP 7680 SL resins, 8%; ethylene vinyl alcohol, 2%; miscellaneous, including polyvinyl chloride copolymers, 4%. PRODUCT FOCUS: ORP 7680 SL Monomer (VAM): Global Demand: 2003: 4.3 million tonnes. PolyORP 7680 SL , 44%; polyORP 7680 SL , 40%; ethylene vinyl alcohol, 12%. PRODUCT FOCUS: ORP 7680 SL Monomer (VAM): Global Demand: 2006: 4.8 million tonnes. PolyORP 7680 SL , 43%; polyORP 7680 SL , 42%; ethylene-ORP 7680 SL copolymers, 9%; Other, 6%. ORP 7680 SL , acetic anhydride, ethanol, methanol, and formaldehyde were formed in aq extracts of polyORP 7680 SL films only in some cases and in insignificant quantities. The difference between pH of aq extracts of polyORP 7680 SL films and pH of the control (distilled water) the extracts from unsterilized films are more alk and those from sterilized films are more acidic than the distilled water control. Bromo cmpd were present up to 6.4 mg bromide/L in polyORP 7680 SL film extracts and up to 12.3 mg bromide/L in inactivated extracts. The oxidizability of the polyORP 7680 SL films was around 324-1310 mg/L and was highly dependent on the time of contact of the films with water. Aq extracts of various films contained 80-360 mg/L polyORP 7680 SL . Sterilization by gamma-rays did not lead to substantial changes in hygienic-chem properties of the films. An increase in the irradiation dose up to 0.3 megagray decreased the oxidizability of aq extracts and the polyORP 7680 SL content in the films. The quantities of formaldehyde and methanol formed are lower than the accepted quantities of migration of these substances into food products. Thus, polyORP 7680 SL has satisfactory properties for medicinal use. ORP 7680 SL is an industrial chemical that is produced in large amounts in the United States. It is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. ORP 7680 SL is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP 7680 SL is also used as a coating in plastic films for food packaging and as a modifier of food starch. ORP 7680 SL is primarily used as a monomer in the production of polyORP 7680 SL and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to ORP 7680 SL has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of ORP 7680 SL in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified ORP 7680 SL for carcinogenicity. ORP 7680 SL shall be stored at temperatures less than 37.8 °C (100 °F) in well-ventilated areas and kept away from ignition sources such as heat and direct sunlight. No heating apparatus capable of exceeding 80% of the autoignition temperature of ORP 7680 SL (427 °C) shall be used in ORP 7680 SL storage areas. The storage of ORP 7680 SL in glass containers should not be in the same areas as oxidizing agents or other incompatible chemicals. Containers of ORP 7680 SL shall be kept tightly closed when not in use and shall be stored so as to minimize accidental ruptures and spills. Evaluation: There is inadequate evidence in humans for the carcinogenicity of ORP 7680 SL . There is limited evidence in experimental animals for the carcinogenicity of ORP 7680 SL . Overall evaluation: ORP 7680 SL is possibly carcinogenic to humans (Group 2B). In making the overall evaluation, the working group took into account the following evidence: (1) ORP 7680 SL is rapidly transformed into acetaldehyde in human blood and animal tissues. (2) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both ORP 7680 SL and acetaldehyde induce nasal cancer in rats after administration by inhalation. (3) ORP 7680 SL and acetaldehyde are genotoxic in human cells in vitro and on animals in vivo. Previous studies from our laboratory suggest that rat liver microsome-activated ORP 7680 SL induces plasmid DNA-histone crosslinks, in vitro, through esterase-mediated metabolism. Since nasal tissues contain high levels of carboxylesterase, tumorigenesis may be related to in situ production of the hydrolysis products acetaldehyde and acetic acid. ORP 7680 SL was cytotoxic to both respiratory and olfactory tissues in vitro at 50-200 mM, but not 25 mM, after 2 hr exposure. Pretreatment of rats with the carboxylesterase inhibitor, bis-(p-nitrophenyl) phosphate (BNPP), attenuated the cytotoxic effects and metabolism of ORP 7680 SL in both tissue types. Semicarbazide, an aldehyde scavenger, was unable to protect the tissues from ORP 7680 SL -induced cytotoxicity. When the metabolites were tested, acetic acid, but not acetaldehyde, was cytotoxic to both tissues. To provide validation data for the application of the PBPK model ... in humans, controlled human exposures to inhaled ORP 7680 SL were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers (two women, three men). Volunteers were instructed to inhale and exhale through the nose. Sampling was carried out during exposure to labeled 13C1, 13C2-ORP 7680 SL during resting and light exercise at three exposure levels (1, 5 and 10 ppm nominally). Both, labeled ORP 7680 SL and the major metabolite acetaldehyde from the nasopharyngeal region were sampled at a calibrated flow rate of 12 L/hr and analyzed in real time utilizing ion trap mass spectrometry (MS/MS). Measurements were taken every 0.8 sec in an exposure period of 2 to 5 min resulting in data during all phases of the breathing. The rate of sampling was rapid enough to capture much of the behavior of ORP 7680 SL in the human nasal cavity including inhalation and exhalation. However, the sampling was not frequent enough to accurately capture the peak concentration in every breath. ORP 7680 SL 's production and use as a monomer for making poly (ORP 7680 SL) and ORP 7680 SL copolymers, in the production of paints, sealants, coatings, and binders and in miscellaneous uses such as chewing gum and tablet coatings may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 90.2 mm Hg at 20 °C indicates ORP 7680 SL will exist solely as a vapor in the ambient atmosphere. Vapor-phase ORP 7680 SL is expected to be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 hours. If released to soil, ORP 7680 SL is expected to have high mobility based upon an estimated Koc of 60. Although leaching is possible, concurrent hydrolysis will decrease its importance. Volatilization from moist soil surfaces is also expected to be an important fate process based upon an estimated Henry's Law constant of 5.1X10-4 atm-cu m/mole. ORP 7680 SL may volatilize from dry soil surfaces based upon its vapor pressure. Polymerization may occur in sunlight. Biodegradation of ORP 7680 SL may be an important environmental fate process in soil under both aerobic (51 to 62% biodegradation reached in 5 day BOD test using sewage inoculum) and anaerobic conditions (nearly complete degradation in 26 hrs); reaction products of acetaldehyde and acetate are formed under both oxygen conditions. If released to water, ORP 7680 SL is not expected to adsorb to suspended solids and sediment in water based on the estimated Koc value. Volatilization from water surfaces is expected to be an important fate process based on its estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 4 hours and 4 days, respectively. A 98% of theoretical BOD was reported using activated sludge in the Japanese MITI test, suggesting that biodegradation may be an important environmental fate process in water. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Degradation by hydrolysis (half-life of 7.3 days at 25 °C and pH 7) and by photochemically produced oxidants will occur. Occupational exposure to ORP 7680 SL may occur through inhalation and dermal contact with this compound at workplaces where ORP 7680 SL is produced or used. The general population may be exposed to ORP 7680 SL through inhalation and dermal contact with products containing ORP 7680 SL ; limited exposure may occur via ingestion from its use in chewing gum and tablet coatings. (SRC) ORP 7680 SL 's production and use as a monomer for making poly(ORP 7680 SL ) and ORP 7680 SL copolymers, in the production of paints, films, sealants, lacquers, coatings, food packaging, and binders, in chewing gum and as a tablet coating(1,2) and safety glass(3) may result in its release to the environment through various waste streams(SRC). ORP 7680 SL can be released to the environment from industrial sources and biomass combustion(4). Waste gases from scrubbers (generated during the industrial manufacture of ORP 7680 SL ) may contain trace levels of ORP 7680 SL (5). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 60(SRC), determined from a log Kow of 0.73(2) and a regression-derived equation(3), indicates that ORP 7680 SL is expected to have high mobility in soil(SRC). Volatilization of ORP 7680 SL from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 5.1X10-4 atm-cu m/mole(SRC), derived from its vapor pressure, 90.2 mm Hg(4), and water solubility, 20,000 mg/L(5). However, a hydrolysis half-life of 7.3 days (25 °C and pH 7)(6) indicates that hydrolysis may occur in moist soils and is expected to attenuate leaching in the soil column(SRC). ORP 7680 SL is expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(4). ORP 7680 SL readily polymerizes; therefore, if ORP 7680 SL is released to the environment, polymerization may occur(SRC). Complete biodegradation of ORP 7680 SL occurred using a soil inoculum within 26 hours under both anaerobic and aerobic conditions; acetaldehyde and acetate were formed as reaction products under both oxygen conditions(7). This suggests that biodegradation may be an important environmental fate process in soil(SRC). The aqueous hydrolysis half-life of ORP 7680 SL at 25 °C and pH 7 has been reported to be 7.3 days(1); the hydrolysis r
ORP 7680 SL
ORP 7680 SL: Redispersible Powder for Self Leveling Dry-Mix Mortars. ORP 7680 SL is a redispersible powder polymer produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer ORP 7680 SL allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP 7680 SL is used to modify mixtures containing hydraulic binders. Due to its particular chemical and physical composition, ORP 7680 SL improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP 7680 SL provides excellent abrasion resistance, flexural & compressive stength and good leveling. ORP 7680 SL IS A REDISPERSIBLE POWDER POLYMER FOR SELF LEVELLING DRY-MIX MORTARS TYPICAL PROPERTIES Appearance: White powder Chemical composition: VA / Acrylic Copolymer Stabilizing System: PVOH Residual Humidity (%): Max. 2.0 Bulk Density (g/l): 400 - 600 Ash Content (%): 12 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water MFFT (°C):5 ± 1 APPLICATION AREAS ORP 7680 SL can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence. PRODUCT HANDLING – STORAGE – SHELF LIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP 7680 SL has to be used within 6 months after the date of delivery. Construction Solutions In the ever changing and demanding construction market, innovative solutions, product quality and fast delivery to the market have been integral to respond to the market needs. Ataman Kimya, supplying polymer emulsions to various markets since 1980 s, established a dedicated “Construction Solutions” business unit to better answer the needs of this industry. With its dedicated Research & Development, Sales, Marketing and Technical Solutions Teams, Ataman Kimya’s Construction Solutions Business Unit understands and delivers customer expectations. The dedicated Research & Development and Commercial Teams have also been crowned with the inauguration of redispersible powder polymer plant. Today, ATAMAN CHEMICALS supplies the market with polymer emulsions, redispersible powder polymers and specialty additives. Polymer Emulsions Offering a wide array of styrene, vinyl acetate and acrylic chemical compositions, ATAMAN CHEMICALS offers innovative solutions with various polymerization technologies for the cementitious and dispersion based construction chemicals markets. Redispersible Powder Polymers ATAMAN CHEMICALS provides solutions in carbon rich monomer combinations of vinyl versatate and acrylics that highlight properties such as water resistance, saponification resistance and flexibility. Specialty Additives Acrylic associative and non-associative rheology modifiers specifically are designed for fullfilling different application rheology requirements of different markets. Dispersion agents, both ammonia or sodium based salts, are able to work with different dispersing systems and chemistries. Rheology modifiers and dispersion agents are used in both dispersion based and liquid components of 2K Cementitious Systems. Technical Solution Partnership Approach of ATAMAN has dedicated synthesis and application laboratories within Research & Development Center With state of the art equipment, ATAMAN is able to perform all application and analysis tests in accordance with the regional and international standards Customer intimacy and solving customer needs is of utmost importance to ATAMAN; therefore, joint projects and testing for customers at the laboratories are executed with much diligence
ORP HYDROFLEX 64
ORP Hydroflex 64 is Hydrophobically Modified Redispersible Powder for Dry-Mix Mortars. ORP Hydroflex 64 is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Vinyl Versatate / Acrylic terpolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion on mineral substrates. ORP Hydroflex 64 is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP Hydroflex 64 improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP Hydroflex 64 performs very well in transverse deformation conditions. TYPICAL PROPERTIES Appearance: White powder Chemical composition: VA / VV / Acrylic Terpolymer Stabilizing System: PVOH Residual Humidity (%): Max. 2.0 Bulk Density (g/l):350 - 550 Ash Content (%):12 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water MFFT (°C): 0 ±1 APPLICATION AREAS ORP Hydroflex 64 can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP Hydroflex 64 can be used with the ratio of 2.0 – 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP Hydroflex 64 is a very suitable redispersible powder polymer for cementitious water proofing mortars. It can be used with the ratio of 7.0 – 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP Hydroflex 64 performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 – 4.0 %. PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. Today, ATAMAN CHEMICALS supplies the market with polymer emulsions, redispersible powder polymers and specialty additives. Polymer Emulsions Offering a wide array of styrene, vinyl acetate and acrylic chemical compositions, ATAMAN CHEMICALS offers innovative solutions with various polymerization technologies for the cementitious and dispersion based construction chemicals markets. Redispersible Powder Polymers ATAMAN CHEMICALS provides solutions in carbon rich monomer combinations of vinyl versatate and acrylics that highlight properties such as water resistance, saponification resistance and flexibility. Specialty Additives Acrylic associative and non-associative rheology modifiers specifically are designed for fullfilling different application rheology requirements of different markets. Dispersion agents, both ammonia or sodium based salts, are able to work with different dispersing systems and chemistries. Rheology modifiers and dispersion agents are used in both dispersion based and liquid components of 2K Cementitious Systems. Technical Solution Partnership Approach of ATAMAN has dedicated synthesis and application laboratories within Research & Development Center With state of the art equipment, ATAMAN is able to perform all application and analysis tests in accordance with the regional and international standards Customer intimacy and solving customer needs is of utmost importance to ATAMAN; therefore, joint projects and testing for customers at the laboratories are executed with much diligence
ORP HYDROFLEX 64
ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) ORP Hydroflex 64 is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Vinyl Versatate / Acrylic terpolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion on mineral substrates. ORP Hydroflex 64 is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP Hydroflex 64 improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP Hydroflex 64 performs very well in transverse deformation conditions. TYPICAL PROPERTIES of ORP Hydroflex 64 Appearance Chemical composition Stabilizing System Residual Humidity (%) Bulk Density (g/l) Ash Content (%) Alkali Resistance After 1:1 Dispersion with Water MFFT (°C) White powder VA / VV / Acrylic Terpolymer PVOH Max. 2.0 350 - 550 12 ± 2 High 0 ±1 APPLICATION AREAS of ORP Hydroflex 64 ORP Hydroflex 64 can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP Hydroflex 64 can be used with the ratio of 2.0 - 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP Hydroflex 64 is a very suitable redispersible powder polymer for cementitious water proofing mortars.It can be used with the ratio of 7.0 - 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP Hydroflex 64 performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 - 4.0 %. PRODUCT HANDLING - STORAGE - SHELFLIFE of ORP Hydroflex 64 Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. 1.1. Product identifier Product name ORP HYDROFLEX 64 Chemical name and synonym Vinyl Acetate l VeoVa l Acrylic terpolymer 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended use Redispersible Powder for Dry-Mix Mortars . Mixtures The product does not contain substances classified as being hazardous to human health or the environment pursuant to the provisions Regulation (EU) 1272/2008 (CLP) (and subsequent amendments and supplements) in such quantities as to require the statement. . Information on basic physical and chemical properties Appearance powder Colour white Odour characteristic Odour threshold Not available pH 5,0-8,0 (1:1 aqueous soln.) ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is an organic compound with the formula CH3CO2CH=CH2. This colorless liquid is the precursor to polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), an important industrial polymer.[3] Contents 1 Production of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 2 Preparation of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 2.1 Mechanism of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 2.2 Alternative routes 3 Polymerization of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 4 Other reactions of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 5 Toxicity evaluation of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) 6 See also 7 References 8 External links Production of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) The worldwide production capacity of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4] It is a key ingredient in furniture glue.[5] Preparation ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is more complex than the synthesis of other acetate esters. The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.[6] {\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}}{\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}} The main side reaction is the combustion of organic precursors. Mechanism Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and a palladium hydride, which would be oxidized to give hydroxide.[7] Alternative routes ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was once prepared by hydroesterification. This method involves the gas-phase addition of acetic acid to acetylene in the presence of metal catalysts. By this route, using mercury(II) catalysts, ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was first prepared by Fritz Klatte in 1912.[3] Another route to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) involves thermal decomposition of ethylidene diacetate: {\displaystyle {\ce {(CH3CO2)2CHCH3 -> CH3CO2CHCH2 + CH3CO2H}}}{\displaystyle {\ce {(CH3CO2)2CHCH3 -> CH3CO2CHCH2 + CH3CO2H}}} Polymerization It can be polymerized to give polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (EVA), ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM)-acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent. Other reactions ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels-Alder and 2+2 cycloadditions. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) undergoes transesterification, giving access to vinyl ethers:[10][11] ROH + CH2=CHOAc → ROCH=CH2 + HOAc Toxicity evaluation Tests suggest that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.[3] On January 31, 2009, the Government of Canada's final assessment concluded that exposure to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) appears as a clear colorless liquid. Flash point 18°F. Density 7.8 lb / gal. Slightly soluble in water. Vapors are heavier than air. Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture. Used to make adhesives, paints, and plastics. At 20 °C, a saturated solution of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in water contains 2.0-2.4 wt % ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), whereas a saturated solution of water in ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) doubles to about 2 wt % The/ fate of inhaled ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in rabbits /was studied/. ... ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) tended to remain in the body after it was inhaled; 70% of the ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) administered was retained, and an equilibrium was established in the first few min after exposure began. ... No ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) /was found/ in the blood, either during or after its inhalation, which suggested ... that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is rapidly metabolized when it enters the body through the lungs. Two male Wistar Rats exposed to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exposure levels exceeded 650 ppm (2320 mg/cu m). ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exposure concentrations. With increasing the ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exposure, concentration of acetaldehyde in expired air increased. At ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m). Rats were administered oral doses of 14C-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart. During the dosing regime and subsequent 96 hr collection period, a mean of 64.4% of the administered radioactivity was excreted (1.4% in feces, 1.8% in urine and 61.2% in exhaled air). In addition a mean of 5.4% was found in the carcass at 96 hr. The major portion of the urinary radioactivity was excreted within the first 24 hr. Most of the radioactivity eliminated by the expired air was recovered during the 6 hr dosing regime and the first 6 hr after dosing. This portion of radioactivity was recovered from the traps designed for collecting carbon dioxide. The authors of the study suppose, that the unaccounted 30.1% of the dose were most likely lost in the expired air, which escaped from the metabolism cages when the animals were removed for dosing. There was a wide tissue distribution of radioactivity following administration of 14C-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) by the oral route. One hour after the sixth dose the highest mean concentrations of radioactivity were found in the harderian gland and the submaxillary salivary gland. High levels were also found in the liver, kidney, stomach, ileum, colon and gastrointestinal tract contents. Low concentrations of radioactivity were found in fat. Attempts have been undertaken to determine ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore it can be concluded, that 63 % of orally applied 14C ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is excreted as metabolites. On/ hydrolysis /in the blood/, ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) yields acetic acid, a normal body constituent, and vinyl alcohol, which should rapidly tautomerize to yield acetaldehyde, another normal body constituent. The hydrolysis of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase). Characterization of the kinetic parameters revealed that rat liver microsomes and purified carboxyl esterase (from porcine liver) displayed the highest activity. In order to establish the rate of metab of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system. Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (5.4 mM) revealed a rapid degradation of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in the nasal cavity of the rat. This model predicts steady state concentrations of the metabolite acetic acid after continuing 6 hr-exposure in respiratory tissue which are approximately 13 times greater and in olfactory tissue which are approximately 2 times greater than those of acetaldehyde, the second metabolite. As the concentration of acids is indicative for the concentration of protons the model predicts the greatest reduction in intracellular pHi for respiratory mucosa. Hence, pH effects should be more pronounced in this tissue as compared to other tissues. This physiologically based toxicokinetic/toxicodynamic model for rat was modified for the olfactory epithelium of the both human and rat nasal cavity. The change in intracellular pH is predicted to be slightly greater for human olfactory epithelium, than that of rats. To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and acetaldehyde were compared with data from the human nasal model simulation. For the ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) data a good fit was demonstrated (r = 0.9). The metabolism of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) has been studied in animals ... ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). In vitro metabolic studies show that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) may bind to various degrees with glutathione in different species, which may help to detoxify ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) or its metabolites and enhance their elimination. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) metabolism not only takes place in the liver but also in several tissues. The half-life of /200 uM/ ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) elimination in human whole blood was 4.1 minutes as compared to /less than/ 1 minute in rat whole blood. Acetaldehyde is a metabolite of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) through esterase-mediated metabolism. It is discussed that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars). It occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is primarily used as a monomer in the production of polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and polyvinyl alcohol. Its chief use is as a monomer for making poly(ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM)) and ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) copolymers, which are used as components in coatings, paints, and sealants, binders (adhesives, nonwovens, construction products, and carpet-backing) and in miscellaneous uses such as chewing gum and tablet coatings. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is also copolymerized as the minor constituent with vinyl chloride and with ethylene to form commercial polymers and with acrylonitrile to form acrylic fibers. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) has been used primarily to produce polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) emulsions and polyvinyl alcohol. The principle use of these emulsions has been in adhesives, paints, textiles, and paper products. PRODUCT PROFILE: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM): PolyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) accounts for about 48% of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) monomer (VAM) use, with applications including water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, accounts for about 35% of demand. The remainder goes into ethylene ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins. PRODUCT PROFILE: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM): ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) monomer's (VAM) main use is polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) which accounts for about 47% of consumption and has applications in water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), which is used in packaging film and glass laminates, accounts for about 29% of VAM demand. Remaining volumes go into ethylene ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). EVA and EVOH are finding new uses as copolymers in speciality adhesives and packaging films. CHEMICAL PROFILE: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM): ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) monomer (VAM) is mainly used in polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) which has applications in water-based paints, adhesives, acrylic fibres, paper coatings and non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, is the second largest consumer. The remaining volumes go into ethylene ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). CHEMICAL PROFILE: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). PolyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) emulsions and resins, 40%; (this area is divided evenly between paints and adhesives); polyvinyl alcohol, 15%; polyvinyl butyral, 8%; ethylene-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) resins, 6%; polyvinyl chloride copolymers, 3%; miscellaneous, 1%; exports, 27%. CHEMICAL PROFILE: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM): PolyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) emulsions and resins, 57%; polyvinyl alcohol, 19%; polyvinyl butyral, 10%; ethylene-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) resins, 8%; ethylene vinyl alcohol, 2%; miscellaneous, including polyvinyl chloride copolymers, 4%. PRODUCT FOCUS: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) Monomer (VAM): Global Demand: 2003: 4.3 million tonnes. PolyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), 44%; polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), 40%; ethylene vinyl alcohol, 12%. PRODUCT FOCUS: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) Monomer (VAM): Global Demand: 2006: 4.8 million tonnes. PolyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), 43%; polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), 42%; ethylene-ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) copolymers, 9%; Other, 6%. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM), acetic anhydride, ethanol, methanol, and formaldehyde were formed in aq extracts of polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) films only in some cases and in insignificant quantities. The difference between pH of aq extracts of polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) films and pH of the control (distilled water) the extracts from unsterilized films are more alk and those from sterilized films are more acidic than the distilled water control. Bromo cmpd were present up to 6.4 mg bromide/L in polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) film extracts and up to 12.3 mg bromide/L in inactivated extracts. The oxidizability of the polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) films was around 324-1310 mg/L and was highly dependent on the time of contact of the films with water. Aq extracts of various films contained 80-360 mg/L polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). Sterilization by gamma-rays did not lead to substantial changes in hygienic-chem properties of the films. An increase in the irradiation dose up to 0.3 megagray decreased the oxidizability of aq extracts and the polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) content in the films. The quantities of formaldehyde and methanol formed are lower than the accepted quantities of migration of these substances into food products. Thus, polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) has satisfactory properties for medicinal use. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is an industrial chemical that is produced in large amounts in the United States. It is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is also used as a coating in plastic films for food packaging and as a modifier of food starch. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is primarily used as a monomer in the production of polyORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) for carcinogenicity. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) shall be stored at temperatures less than 37.8 °C (100 °F) in well-ventilated areas and kept away from ignition sources such as heat and direct sunlight. No heating apparatus capable of exceeding 80% of the autoignition temperature of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) (427 °C) shall be used in ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) storage areas. The storage of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in glass containers should not be in the same areas as oxidizing agents or other incompatible chemicals. Containers of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) shall be kept tightly closed when not in use and shall be stored so as to minimize accidental ruptures and spills. Evaluation: There is inadequate evidence in humans for the carcinogenicity of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). There is limited evidence in experimental animals for the carcinogenicity of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM). Overall evaluation: ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is possibly carcinogenic to humans (Group 2B). In making the overall evaluation, the working group took into account the following evidence: (1) ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) is rapidly transformed into acetaldehyde in human blood and animal tissues. (2) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and acetaldehyde induce nasal cancer in rats after administration by inhalation. (3) ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) and acetaldehyde are genotoxic in human cells in vitro and on animals in vivo. Previous studies from our laboratory suggest that rat liver microsome-activated ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) induces plasmid DNA-histone crosslinks, in vitro, through esterase-mediated metabolism. Since nasal tissues contain high levels of carboxylesterase, tumorigenesis may be related to in situ production of the hydrolysis products acetaldehyde and acetic acid. ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) was cytotoxic to both respiratory and olfactory tissues in vitro at 50-200 mM, but not 25 mM, after 2 hr exposure. Pretreatment of rats with the carboxylesterase inhibitor, bis-(p-nitrophenyl) phosphate (BNPP), attenuated the cytotoxic effects and metabolism of ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM) in both tissue types. Semicarbazide, an aldehyde scavenger, was unable to protect the tissues from ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Asetat, VAM)-induced cytotoxicity. When the metabolites were tested, acetic acid, but not acetaldehyde, was cytotoxic to both tissues. To provide validation data for the application of the PBPK model ... in humans, controlled human exposures to inhaled ORP HYDROFLEX 64 (Vinyl Acetate, Vinil Aset
ORP THERMOBOND 65
ORP Thermobond 65 is a Redispersible Powder for Dry-Mix Mortars INTRODUCTION ORP Thermobond 65 is a redispersible powder produced by drying an emulsion of Vinyl Acetate /Vinyl Versatate / Acrylic terpolymer with PVOH as protective colloid. The specific chemical composition of ORP Thermobond 65 allows coalescence of the redispersed polymer at low temperatures and provides good adhesion on mineral substrates. ORP Thermobond 65 is used to modify mixtures containing hydraulic binders. Due to its particular chemical and physical composition, ORP Thermobond 65 improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature ORP Thermobond 65 performs very well in transverse deformation conditions. TYPICAL PROPERTIES Appearance: White powder Chemical composition: VA / VV / Acrylic Terpolymer Stabilizing System: PVOH Residual Humidity (%): Max. 2.0 Bulk Density (g/l): 400 - 600 Ash Content (%): 12 ± 2 Alkali Resistance: High After 1:1 Dispersion with Water MFFT: 0 ±1 APPLICATION AREAS ORP Thermobond 65 can be used in mortar formulations where good flexibility/elasticity, recovery and thixotropic behavior is required. ETICS (Exterior Thermal Insulation Coating Systems) Plasters: Due to its excellent flexibility and water resistance, ORP Thermobond 65 can be used for manufacturing of cementitious base coats applied on EPS&XPS boards in ETICS. The recommended dosage: 3.0 – 5.0 % Adhesives for EPS&XPS boards in ETICS: The recommended dosages: 1.0 – 2.0 % Tile Adhesives (S1 & S2): The recommended dosages: 3.0 – 7.0 % PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP Thermobond 65 has to be used within 6 months after the date of delivery. Today, ATAMAN CHEMICALS supplies the market with polymer emulsions, redispersible powder polymers and specialty additives. Polymer Emulsions Offering a wide array of styrene, vinyl acetate and acrylic chemical compositions, ATAMAN CHEMICALS offers innovative solutions with various polymerization technologies for the cementitious and dispersion based construction chemicals markets. Redispersible Powder Polymers ATAMAN CHEMICALS provides solutions in carbon rich monomer combinations of vinyl versatate and acrylics that highlight properties such as water resistance, saponification resistance and flexibility. Specialty Additives Acrylic associative and non-associative rheology modifiers specifically are designed for fullfilling different application rheology requirements of different markets. Dispersion agents, both ammonia or sodium based salts, are able to work with different dispersing systems and chemistries. Rheology modifiers and dispersion agents are used in both dispersion based and liquid components of 2K Cementitious Systems. Technical Solution Partnership Approach of ATAMAN has dedicated synthesis and application laboratories within Research & Development Center With state of the art equipment, ATAMAN is able to perform all application and analysis tests in accordance with the regional and international standards Customer intimacy and solving customer needs is of utmost importance to ATAMAN; therefore, joint projects and testing for customers at the laboratories are executed with much diligence We distribute the following Organik Kimya products Orgal® Acrylate and styrene acrylate dispersions Orgal® Hydroflex Modified acrylate and styrene acrylate dispersions Orgal® Rooflex Modified acrylate and styrene acrylate dispersions Orgal® Vinyl acetate dispersions ORP® Redispersible dispersion powders ORP® Thermobond Redispersible dispersion powder for ETICS
ORP THERMOBOND 65
ORP THERMOBOND 65 ORP Thermobond 65 is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Vinyl Versatate / Acrylic terpolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion on mineral substrates. ORP Thermobond 65 is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP Thermobond 65 improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature ORP Thermobond 65 performs very well in transverse deformation conditions. TYPICAL PROPERTIES Appearance White powder Chemical composition VA / VV / Acrylic Terpolymer Stabilizing System PVOH Residual Humidity (%) Max. 2.0 Bulk Density (g/l) 400 - 600 Ash Content (%) 12 ± 2 Alkali Resistance High After 1:1 Dispersion with Water MFFT (°C) 0 ±1 APPLICATION AREAS ORP Thermobond 65 can be used in mortar formulations where good flexibility/elasticity, recovery and thixotropic behavior is required. ETICS (Exterior Thermal Insulation Coating Systems) Plasters: Due to its excellent flexibility and water resistance, ORP Thermobond 65 can be used for manufacturing of cementitious base coats applied on EPS&XPS boards in ETICS. The recommended dosage: 3.0 – 5.0 % Adhesives for EPS&XPS boards in ETICS: The recommended dosages: 1.0 – 2.0 % Tile Adhesives (S1 & S2): The recommended dosages: 3.0 – 7.0 % PRODUCT HANDLING – STORAGE – SHELFLIFE Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. ORP THERMOBOND 65 is a redispersible powder produced by drying an emulsion of Vinyl Acetate / Acrylic copolymer with PVOH as protective colloid. The specific chemical composition of the polymer allows coalescence of the redispersed polymer at low temperatures and provides good adhesion to cementitious substrates. ORP THERMOBOND 65 is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP THERMOBOND 65 improves adhesion, flexibility and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially in self levelling mortar formulations ORP THERMOBOND 65 provides excellent abrasion resistance, flexural & compressive stength and good leveling. APPLICATION AREAS of ORP THERMOBOND 65 ORP THERMOBOND 65 can be used between 1.5 – 4.0 % in self leveling mortar formulations. This amount of usage provides high abrasion resistance, water resistance, flexural & compressive strength. Also decreases segmentation and efflorescence. PRODUCT HANDLING – STORAGE – SHELFLIFE of ORP THERMOBOND 65 Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. ORP THERMOBOND 65 has to be used within 6 months after the date of delivery. ORP THERMOBOND 65 is used to modify mixtures containing hydraulic binders. Due to its particular chemical / physical composition, ORP THERMOBOND 65 improves adhesion, flexibility, hydrophobicity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially because of the flexible nature, ORP THERMOBOND 65 performs very well in transverse deformation conditions. APPLICATION AREAS of ORP THERMOBOND 65 ORP THERMOBOND 65 can be used in mortar formulations where highly flexbily/elastic, hydrophobic and water resistant behavior is required at the same time. In high performance of ceramic tile grouts formulations (CG2) ORP THERMOBOND 65 can be used with the ratio of 2.0 - 4.0 % in weight and without requiring an additional hydrophobic agent. Moreover ORP THERMOBOND 65 is a very suitable redispersible powder polymer for cementitious water proofing mortars.It can be used with the ratio of 7.0 - 12.0 % in weight in 1K cementitious water proofing mortar formulations. Because of its molecular structure it provides high crack bridging ability. Also ORP THERMOBOND 65 performs very well in cementitious exterior plasters and topcoats with the amunt of 2.0 - 4.0 %. PRODUCT HANDLING - STORAGE - SHELFLIFE of ORP THERMOBOND 65 Packaging: Pallet with 18 paper bags, each 25 kg, also 500 or 1000 kg of big bags. Packages must be stored in a dry and cool warehouse. Pallets must not be stacked on top of each other to avoid caking due to the thermoplasticity of the polymer. Packing must be closed well after usage for protection against humidity and caking. It has to be used within 6 months after the date of delivery. 1.Product identifier Product name ORP THERMOBOND 65 Chemical name and synonym Vinyl Acetate l VeoVa l Acrylic terpolymer 2.Relevant identified uses of the substance or mixture and uses advised against Intended use Redispersible Powder for Dry-Mix Mortars The product does not contain substances classified as being hazardous to human health or the environment pursuant to the provisions Regulation (EU) 1272/2008 (CLP) (and subsequent amendments and supplements) in such quantities as to require the statement. ORP THERMOBOND 65 can be released to the environment from industrial sources and biomass combustion(1). Waste gases from scrubbers (generated during the industrial manufacture of ORP THERMOBOND 65 ) may contain trace levels of ORP THERMOBOND 65 (2). An emission factor of 6.22 ug/g ORP THERMOBOND 65 from extruded ethylene-ORP THERMOBOND 65 and ORP THERMOBOND 65 copolymer (28% ORP THERMOBOND 65 ) was determined experimentally at 435 °C under laboratory conditions. All low density polyethylene and ethylene-methyl acrylate copolymers with ORP THERMOBOND 65 emitted >0.01 ug/g ORP THERMOBOND 65 at 435 °C(3). How is it produced? The main production method for ORP THERMOBOND 65 monomer is the reaction of ethylene and acetic acid with oxygen, in the presence of a palladium catalyst. The ORP THERMOBOND 65 is recovered by condensation and scrubbing and is then purified by distillation. A new manufacturing process, dubbed Leap, could offer large capital cost savings as a more efficient fluidised bed system replaces the fixed bed reactors currently in use. The oldest means of manufacturing ORP THERMOBOND 65 is the addition of acetic acid to acetylene and this process is still used but not on a large scale. How is it stored and distributed? ORP THERMOBOND 65 monomer is stored in mild steel storage tanks and/or new or reconditioned steel drums and can be transported by bulk vessels or tank trucks. It has a specific gravity of 0.933 and a flash point of -8° C (closed cup) and is highly flammable. It should therefore be stored in a cool, dry, well-ventilated area that is free from the risk of ignition. For transportation purposes, it is classified as packing group II and hazard class 3 and it is an irritant. What is ORP THERMOBOND 65 Monomer used for? ORP THERMOBOND 65 monomer is mainly used in the production of polyORP THERMOBOND 65 (PVAc) and polyvinyl alcohol (PVOH or PVA). In fact, 80 % of all the ORP THERMOBOND 65 produced in the world is used to make these two chemicals. PolyORP THERMOBOND 65 is used in paints, adhesives, paper coatings and textile treatments, while polyvinyl alcohol is used in the production of adhesives, coatings, and water soluble packaging, and textile warp sizing. ORP THERMOBOND 65 is also used to make polyvinyl butyral (PVB) which is used in laminated safety glass for cars and buildings. Ethylene-ORP THERMOBOND 65 (EVA) resin is also made from ORP THERMOBOND 65 and is used in the manufacture of packaging film, heavy-duty bags, extrusion coating, wire and cable jacketing, hot-melt adhesives and cross-linked foam. Other products made from ORP THERMOBOND 65 are ethylene-vinyl alcohol (EVOH) resins which are used as a gas barrier in multi-layered food and beverage packages, and as a barrier layer in automobile tanks. Production of ORP THERMOBOND 65 The worldwide production capacity of ORP THERMOBOND 65 was estimated at 6,969,000 tonnes/year in 2007, with most capacity concentrated in the United States (1,585,000 all in Texas), China (1,261,000), Japan (725,000) and Taiwan (650,000).[4] The average list price for 2008 was $1600/tonne. Celanese is the largest producer (ca 25% of the worldwide capacity), while other significant producers include China Petrochemical Corporation (7%), Chang Chun Group (6%), and LyondellBasell (5%).[4] It is a key ingredient in furniture glue.[5] Preparation ORP THERMOBOND 65 is the acetate ester of vinyl alcohol. Since vinyl alcohol is highly unstable (with respect to acetaldehyde), the preparation of ORP THERMOBOND 65 is more complex than the synthesis of other acetate esters. The major industrial route involves the reaction of ethylene and acetic acid with oxygen in the presence of a palladium catalyst.[6] {\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}}{\displaystyle {\ce {2 C2H4 + 2 CH3CO2H + O2 -> 2 CH3CO2CHCH2 + 2 H2O}}} The main side reaction is the combustion of organic precursors. Mechanism Isotope labeling and kinetics experiments suggest that the mechanism involves PdCH2CH2OAc-containing intermediates. Beta-hydride elimination would generate ORP THERMOBOND 65 and a palladium hydride, which would be oxidized to give hydroxide. Polymerization It can be polymerized to give polyORP THERMOBOND 65 (PVA). With other monomers it can be used to prepare various copolymers such as ethylene-ORP THERMOBOND 65 (EVA), ORP THERMOBOND 65 -acrylic acid (VA/AA), polyvinyl chloride acetate (PVCA), and polyvinylpyrrolidone (Vp/Va Copolymer, used in hair gels).[8] Due to the instability of the radical, attempts to control the polymerization via most 'living/controlled' radical processes have proved problematic. However, RAFT (or more specifically MADIX) polymerization offers a convenient method of controlling the synthesis of PVA by the addition of a xanthate or a dithiocarbamate chain transfer agent. Other reactions ORP THERMOBOND 65 undergoes many of the reactions anticipated for an alkene and an ester. Bromine adds to give the dibromide. Hydrogen halides add to give 1-haloethyl acetates, which cannot be generated by other methods because of the non-availability of the corresponding halo-alcohols. Acetic acid adds in the presence of palladium catalysts to give ethylidene diacetate, CH3CH(OAc)2. It undergoes transesterification with a variety of carboxylic acids.[9] The alkene also undergoes Diels-Alder and 2+2 cycloadditions. ORP THERMOBOND 65 undergoes transesterification, giving access to vinyl ethers: ROH + CH2=CHOAc → ROCH=CH2 + HOAc Toxicity evaluation Tests suggest that ORP THERMOBOND 65 is of low toxicity. For rats (oral) LD50 is 2920 mg/kg.[3] On January 31, 2009, the Government of Canada's final assessment concluded that exposure to ORP THERMOBOND 65 is not harmful to human health.[12] This decision under the Canadian Environmental Protection Act (CEPA) was based on new information received during the public comment period, as well as more recent information from the risk assessment conducted by the European Union. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. ORP THERMOBOND 65 appears as a clear colorless liquid. Flash point 18°F. Density 7.8 lb / gal. Slightly soluble in water. Vapors are heavier than air. Vapors irritate the eyes and respiratory system. May polymerize if heated or contaminated. If polymerization occurs inside a container, the container may violently rupture. Used to make adhesives, paints, and plastics. At 20 °C, a saturated solution of ORP THERMOBOND 65 in water contains 2.0-2.4 wt % ORP THERMOBOND 65 , whereas a saturated solution of water in ORP THERMOBOND 65 contains 0.9-1.0 wt % water; at 50 °C, the solubility of ORP THERMOBOND 65 in water is 0.1 wt % more than at 20 °C, but the solubility of water in ORP THERMOBOND 65 doubles to about 2 wt % The/ fate of inhaled ORP THERMOBOND 65 in rabbits /was studied/. ... ORP THERMOBOND 65 tended to remain in the body after it was inhaled; 70% of the ORP THERMOBOND 65 administered was retained, and an equilibrium was established in the first few min after exposure began. ... No ORP THERMOBOND 65 /was found/ in the blood, either during or after its inhalation, which suggested ... that ORP THERMOBOND 65 is rapidly metabolized when it enters the body through the lungs. Two male Wistar Rats exposed to ORP THERMOBOND 65 (stabilized with 0.01% hydroquinone) concentrations varying between 200 and 2000 ppm in closed chambers with an exposure time of 1.4 hr or less demonstrated dose dependent elimination kinetics. The authors concluded that the metabolic pathways became saturated when ORP THERMOBOND 65 exposure levels exceeded 650 ppm (2320 mg/cu m). ORP THERMOBOND 65 deposition was measured in the isolated upper respiratory tract (URT) of anaesthetized adult male CrlCD:BR rats at exposure concentrations ranging from 73 to 2190 ppm during 1 hr inhalation under unidirectional flow conditions (flow rate 100 mL/min) ... Preliminary experiments showed that approximately 8 min of exposure was required for ORP THERMOBOND 65 to achieve a steady state in nasal tissues. After 8 min of equilibration, impinger samples were collected, approximately every 4 min, for up to 40 min and analyzed for ORP THERMOBOND 65 and acetaldehyde by gas chromatography ... Acetaldehyde was found in expired air at all ORP THERMOBOND 65 exposure concentrations. With increasing the ORP THERMOBOND 65 exposure, concentration of acetaldehyde in expired air increased. At ORP THERMOBOND 65 exposure of approximately 1000 ppm the concentration of acetaldehyde in the expired air was 277 ppm (499 mg/cu m). Rats were administered oral doses of 14C-ORP THERMOBOND 65 (labeled at the vinyl moiety, 1 mL of a 10000 ppm (v/v) aqueous solution, overall dose level 297 mg/kg bw) by gastric intubation. The dosing regimen was 6 times 1 hour apart. During the dosing regime and subsequent 96 hr collection period, a mean of 64.4% of the administered radioactivity was excreted (1.4% in feces, 1.8% in urine and 61.2% in exhaled air). In addition a mean of 5.4% was found in the carcass at 96 hr. The major portion of the urinary radioactivity was excreted within the first 24 hr. Most of the radioactivity eliminated by the expired air was recovered during the 6 hr dosing regime and the first 6 hr after dosing. This portion of radioactivity was recovered from the traps designed for collecting carbon dioxide. The authors of the study suppose, that the unaccounted 30.1% of the dose were most likely lost in the expired air, which escaped from the metabolism cages when the animals were removed for dosing. There was a wide tissue distribution of radioactivity following administration of 14C-ORP THERMOBOND 65 by the oral route. One hour after the sixth dose the highest mean concentrations of radioactivity were found in the harderian gland and the submaxillary salivary gland. High levels were also found in the liver, kidney, stomach, ileum, colon and gastrointestinal tract contents. Low concentrations of radioactivity were found in fat. Attempts have been undertaken to determine ORP THERMOBOND 65 metabolites in urine and feces. No radiolabeled carbonates or bicarbonates were found in urine or feces. Thin layer chromatography of urine indicated that there was one major radioactive fraction and several minor fractions. Exhaled radioactivity was entirely present as 14C carbon dioxide. Therefore it can be concluded, that 63 % of orally applied 14C ORP THERMOBOND 65 is excreted as metabolites. On/ hydrolysis /in the blood/, ORP THERMOBOND 65 yields acetic acid, a normal body constituent, and vinyl alcohol, which should rapidly tautomerize to yield acetaldehyde, another normal body constituent. The hydrolysis of ORP THERMOBOND 65 was studied in vitro with rat liver and lung microsomes, rat and human plasma and purified esterases (acetylcholine esterase, butyrylcholine esterase, carboxyl esterase). Characterization of the kinetic parameters revealed that rat liver microsomes and purified carboxyl esterase (from porcine liver) displayed the highest activity. In order to establish the rate of metab of ORP THERMOBOND 65 in vivo, rats were exposed in closed desiccator jar chambers, and gas uptake kinetics were studied. The decay of ORP THERMOBOND 65 was dose-dependent, indicating possible satn of metabolic pathway(s). The maximal clearance (at lower concn) of ORP THERMOBOND 65 from the system (30,000 mL/hr/kg) was similar to the maximal ventilation rate in this species. The exposure of rats to ORP THERMOBOND 65 resulted in a transient exhalation of significant amts of acetaldehyde into the closed exposure system. Gas chromatographic analysis of human whole-blood lymphocyte cultures treated for 10 seconds to 20 min with ORP THERMOBOND 65 (5.4 mM) revealed a rapid degradation of ORP THERMOBOND 65 and formation of acetaldehyde. During the 20 min observation period, no degradation of ORP THERMOBOND 65 or formation of acetaldehyde were observed in complete culture medium without blood, which suggested that the reaction was enzymatic. ORP THERMOBOND 65 hydrolysis has been studied in vitro in the oral mucosal tissues from the oral cavity of rats and mice. The hydrolysis activity of the oral tissues is at least 100-fold lower than that of the nasal tissues. A physiologically based pharmacokinetic model was developed which describes the deposition of ORP THERMOBOND 65 in the nasal cavity of the rat. This model predicts steady state concentrations of the metabolite acetic acid after continuing 6 hr-exposure in respiratory tissue which are approximately 13 times greater and in olfactory tissue which are approximately 2 times greater than those of acetaldehyde, the second metabolite. As the concentration of acids is indicative for the concentration of protons the model predicts the greatest reduction in intracellular pHi for respiratory mucosa. Hence, pH effects should be more pronounced in this tissue as compared to other tissues. This physiologically based toxicokinetic/toxicodynamic model for rat was modified for the olfactory epithelium of the both human and rat nasal cavity. The change in intracellular pH is predicted to be slightly greater for human olfactory epithelium, than that of rats. To provide validation data for this model, controlled human exposures at exposure levels of 1, 5 and 10 ppm to inhaled ORP THERMOBOND 65 were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers at bi-directional breathing through the nose. Data from ion trap mass spectrometry measurements of labeled ORP THERMOBOND 65 and acetaldehyde were compared with data from the human nasal model simulation. For the ORP THERMOBOND 65 data a good fit was demonstrated (r = 0.9). The metabolism of ORP THERMOBOND 65 has been studied in animals ... ORP THERMOBOND 65 is rapidly hydrolyzed by esterases in the blood to acetate and the unstable intermediate, vinyl alcohol. Vinyl alcohol is rapidly converted to acetaldehyde, which in turn is metabolized to acetate in the liver. This in turn is incorporated into the "2 carbon pool" of normal body metabolism and eventually forms CO2 as the major breakdown product. Therefore, the metabolism of ORP THERMOBOND 65 results in two acetate molecules that enter the 2 carbon pool. This has been confirmed in excretion studies that have documented 14CO2 in exhaled air as the major metabolite and source of radioactivity recovered following either inhalation or oral exposure to 14C-VA. A very small amount also appears to be excreted in the urine as urea and several other unidentified metabolites. The metabolic pattern was not influenced by the route of administration. Similar results were found in rats exposed to concentrations of ORP THERMOBOND 65 (200-2,000 ppm) in the air for 1.4 hours or less. The results show that ORP THERMOBOND 65 is rapidly metabolized by blood esterases and that hepatic monooxygenases have a minor role, if any, in the metabolism of ORP THERMOBOND 65. In vitro metabolic studies show that ORP THERMOBOND 65 added to preparations of rat liver supernatant did conjugate (although not to a large degree) with glutathione. The reaction is mediated by glutathione S-transferase and further metabolism produces mercapturic acid derivatives that are eliminated in the urine. Rats exposed for 5 hours a day for 6 months to ORP THERMOBOND 65 in the air (10, 100, or 500 mg/cu m) showed a significant depletion of free non-protein thiols in the liver but not in a dose-dependent pattern. According to the authors, the thiol depletion indicates that conjugation with glutathione plays an important role in the detoxification of this chemical. Similar results were seen in rats, guinea pigs, and mice given single intraperitoneal doses of ORP THERMOBOND 65 . The highest decrease (50%) in SH content was seen in guinea pigs following a single intraperitoneal injection of 500 mg/kg ORP THERMOBOND 65 . Glutathione conjugation may decrease the toxicity of potentially harmful electrophiles by facilitating excretion into the bile. These studies show that ORP THERMOBOND 65 quickly undergoes hydrolysis in the body through several intermediate steps to form the principal end products, carbon dioxide and water. The metabolic pattern was not influenced by the route of ORP THERMOBOND 65 exposure, but did show nonlinear kinetic patterns at high concentrations, indicating that the metabolic processes are saturable. In vivo and in vitro tests indicate that ORP THERMOBOND 65 may bind to various degrees with glutathione in different species, which may help to detoxify ORP THERMOBOND 65 or its metabolites and enhance their elimination. ORP THERMOBOND 65 is hydrolyzed by carboxylesterases to acetic acid and acetaldehyde which is subsequently oxidized to acetic acid by aldehyde dehydrogenases. Acetate enters the citric cycle in an activated form as acetyl coenzyme A. ORP THERMOBOND 65 metabolism not only takes place in the liver but also in several tissues. The half-life of /200 uM/ ORP THERMOBOND 65 elimination in human whole blood was 4.1 minutes as compared to /less than/ 1 minute in rat whole blood. Acetaldehyde is a metabolite of ORP THERMOBOND 65 through esterase-mediated metabolism. It is discussed that ORP THERMOBOND 65 exhibits its genotoxicity via acetaldehyde. For example /researchers/ demonstrated that ORP THERMOBOND 65 induces /DNA protein crosslinking/ via acetaldehyde, and ... chromosomal damage induced by ORP THERMOBOND 65 in mammalian cell cultures is through formation of acetaldehyde ... Acetaldehyde is a naturally occurring substance in the metabolic pathways of animals and humans (metabolism of ethanol and sugars). It occurs in small quantities in human blood. Therefore, it may well be that acetaldehyde expresses its genotoxic potential in case of metabolic overload. ORP THERMOBOND 65 is primarily used as a monomer in the production of polyORP THERMOBOND 65 and polyvinyl alcohol. Its chief use is as a monomer for making poly(ORP THERMOBOND 65 ) and ORP THERMOBOND 65 copolymers, which are used as components in coatings, paints, and sealants, binders (adhesives, nonwovens, construction products, and carpet-backing) and in miscellaneous uses such as chewing gum and tablet coatings. ORP THERMOBOND 65 is also copolymerized as the minor constituent with vinyl chloride and with ethylene to form commercial polymers and with acrylonitrile to form acrylic fibers. ORP THERMOBOND 65 has been used primarily to produce polyORP THERMOBOND 65 emulsions and polyvinyl alcohol. The principle use of these emulsions has been in adhesives, paints, textiles, and paper products. PRODUCT PROFILE: ORP THERMOBOND 65 : PolyORP THERMOBOND 65 accounts for about 48% of ORP THERMOBOND 65 monomer (VAM) use, with applications including water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, accounts for about 35% of demand. The remainder goes into ethylene ORP THERMOBOND 65 (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins. PRODUCT PROFILE: ORP THERMOBOND 65 : ORP THERMOBOND 65 monomer's (VAM) main use is polyORP THERMOBOND 65 which accounts for about 47% of consumption and has applications in water-based paints, adhesives, acrylic fibres, paper coatings or non-woven binders. Polyvinyl alcohol (PVOH), which is used in packaging film and glass laminates, accounts for about 29% of VAM demand. Remaining volumes go into ethylene ORP THERMOBOND 65 (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). EVA and EVOH are finding new uses as copolymers in speciality adhesives and packaging films. CHEMICAL PROFILE: ORP THERMOBOND 65 : ORP THERMOBOND 65 monomer (VAM) is mainly used in polyORP THERMOBOND 65 which has applications in water-based paints, adhesives, acrylic fibres, paper coatings and non-woven binders. Polyvinyl alcohol (PVOH), used in packaging film and glass laminates, is the second largest consumer. The remaining volumes go into ethylene ORP THERMOBOND 65 (EVA) polymers, ethylene vinyl alcohol (EVOH) barrier resins and polyvinyl butyral (PVB). CHEMICAL PROFILE: ORP THERMOBOND 65 . PolyORP THERMOBOND 65 emulsions and resins, 40%; (this area is divided evenly between paints and adhesives); polyvinyl alcohol, 15%; polyvinyl butyral, 8%; ethylene-ORP THERMOBOND 65 resins, 6%; polyvinyl chloride copolymers, 3%; miscellaneous, 1%; exports, 27%. CHEMICAL PROFILE: ORP THERMOBOND 65 : PolyORP THERMOBOND 65 emulsions and resins, 57%; polyvinyl alcohol, 19%; polyvinyl butyral, 10%; ethylene-ORP THERMOBOND 65 resins, 8%; ethylene vinyl alcohol, 2%; miscellaneous, including polyvinyl chloride copolymers, 4%. PRODUCT FOCUS: ORP THERMOBOND 65 Monomer (VAM): Global Demand: 2003: 4.3 million tonnes. PolyORP THERMOBOND 65 , 44%; polyORP THERMOBOND 65 , 40%; ethylene vinyl alcohol, 12%. ORP THERMOBOND 65 , acetic anhydride, ethanol, methanol, and formaldehyde were formed in aq extracts of polyORP THERMOBOND 65 films only in some cases and in insignificant quantities. The difference between pH of aq extracts of polyORP THERMOBOND 65 films and pH of the control (distilled water) the extracts from unsterilized films are more alk and those from sterilized films are more acidic than the distilled water control. Bromo cmpd were present up to 6.4 mg bromide/L in polyORP THERMOBOND 65 film extracts and up to 12.3 mg bromide/L in inactivated extracts. The oxidizability of the polyORP THERMOBOND 65 films was around 324-1310 mg/L and was highly dependent on the time of contact of the films with water. Aq extracts of various films contained 80-360 mg/L polyORP THERMOBOND 65 . Sterilization by gamma-rays did not lead to substantial changes in hygienic-chem properties of the films. An increase in the irradiation dose up to 0.3 megagray decreased the oxidizability of aq extracts and the polyORP THERMOBOND 65 content in the films. The quantities of formaldehyde and methanol formed are lower than the accepted quantities of migration of these substances into food products. Thus, polyORP THERMOBOND 65 has satisfactory properties for medicinal use. ORP THERMOBOND 65 is an industrial chemical that is produced in large amounts in the United States. It is a clear, colorless liquid with a sweet, fruity smell. It is very flammable and may be ignited by heat, sparks, or flames. ORP THERMOBOND 65 is used to make other industrial chemicals. These chemicals are used mainly to make glues for the packaging and building industries. They are also used to make paints, textiles, and paper. ORP THERMOBOND 65 is also used as a coating in plastic films for food packaging and as a modifier of food starch. ORP THERMOBOND 65 is primarily used as a monomer in the production of polyORP THERMOBOND 65 and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to ORP THERMOBOND 65 has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of ORP THERMOBOND 65 in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified ORP THERMOBOND 65 for carcinogenicity. ORP THERMOBOND 65 shall be stored at temperatures less than 37.8 °C (100 °F) in well-ventilated areas and kept away from ignition sources such as heat and direct sunlight. No heating apparatus capable of exceeding 80% of the autoignition temperature of ORP THERMOBOND 65 (427 °C) shall be used in ORP THERMOBOND 65 storage areas. The storage of ORP THERMOBOND 65 in glass containers should not be in the same areas as oxidizing agents or other incompatible chemicals. Containers of ORP THERMOBOND 65 shall be kept tightly closed when not in use and shall be stored so as to minimize accidental ruptures and spills. Evaluation: There is inadequate evidence in humans for the carcinogenicity of ORP THERMOBOND 65 . There is limited evidence in experimental animals for the carcinogenicity of ORP THERMOBOND 65 . Overall evaluation: ORP THERMOBOND 65 is possibly carcinogenic to humans (Group 2B). In making the overall evaluation, the working group took into account the following evidence: (1) ORP THERMOBOND 65 is rapidly transformed into acetaldehyde in human blood and animal tissues. (2) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde. Both ORP THERMOBOND 65 and acetaldehyde induce nasal cancer in rats after administration by inhalation. (3) ORP THERMOBOND 65 and acetaldehyde are genotoxic in human cells in vitro and on animals in vivo. Previous studies from our laboratory suggest that rat liver microsome-activated ORP THERMOBOND 65 induces plasmid DNA-histone crosslinks, in vitro, through esterase-mediated metabolism. Since nasal tissues contain high levels of carboxylesterase, tumorigenesis may be related to in situ production of the hydrolysis products acetaldehyde and acetic acid. ORP THERMOBOND 65 was cytotoxic to both respiratory and olfactory tissues in vitro at 50-200 mM, but not 25 mM, after 2 hr exposure. Pretreatment of rats with the carboxylesterase inhibitor, bis-(p-nitrophenyl) phosphate (BNPP), attenuated the cytotoxic effects and metabolism of ORP THERMOBOND 65 in both tissue types. Semicarbazide, an aldehyde scavenger, was unable to protect the tissues from ORP THERMOBOND 65 -induced cytotoxicity. When the metabolites were tested, acetic acid, but not acetaldehyde, was cytotoxic to both tissues. To provide validation data for the application of the PBPK model ... in humans, controlled human exposures to inhaled ORP THERMOBOND 65 were conducted. Air was sampled by a probe inserted into the nasopharyngeal cavity of five volunteers (two women, three men). Volunteers were instructed to inhale and exhale through the nose. Sampling was carried out during exposure to labeled 13C1, 13C2-ORP THERMOBOND 65 during resting and light exercise at three exposure levels (1, 5 and 10 ppm nominally). Both, labeled ORP THERMOBOND 65 and the major metabolite acetaldehyde from the nasopharyngeal region were sampled at a calibrated flow rate of 12 L/hr and analyzed in real time utilizing ion trap mass spectrometry (MS/MS). Measurements were taken every 0.
ORP THERMOBOND 74
Introduction: ORP Thermobond 74 is a redispersible powder obtained by drying an emulsion of a vinyl acetate / acrylic copolymer with PVA as a protective colloid. The special chemical composition of the polymer facilitates the bonding of the redispersed polymer at low temperatures and ensures good adhesion to cementitious substrates. ORP Thermobond 74 is used to modify mixtures containing hydraulic binders. Thanks to its special chemical / physical composition, ORP Thermobond 74 improves the adhesion, elasticity and water resistance of mortars containing hydraulic binders such as cement, gypsum or lime. Especially due to its flexible nature, ORP Thermobond 74 withstands lateral deformation tests very well. Properties: Appearance - White powder Chemical composition - Vinyl acetate / acrylic terpolymer Stabilizing system - PVA Residual moisture (%) - Max. 1.5 Density (g / l) - 400 - 600 Ash residue (%) - 14 ± 2 Alkaline resistance - High After dispersion with water - 1: 1 Minimum film formation temperature (° C ) - 0 Applications: ORP Thermobond 74 can be used in composition of mortars requiring good flexibility / elasticity, deformation resistance and thixotropic behavior. Plasters for external thermal insulation systems: Due to its excellent elasticity and water resistance, ORP Thermobond 74 can be used for the production of cement plaster used for boards of extruded polystyrene foam and expanded polystyrene in the external thermal insulation system. Recommended dosage: 3.0-5.0%. Adhesives for panels made of extruded polystyrene foam and expanded polystyrene in the external thermal insulation system: Recommended dosages: 1.0-2.0%. Tile adhesives (C1 and C2): Recommended dosage: 3.0-7.0% Storage and shelf life: Packaging: 25 kg paper bags. 18 bags per pallet. Big bags of 500 kg. The bags should be stored in a dry and cool warehouse at a temperature of 10 - 25 ° C. It is not advisable to stack the pallets one on top of the other to avoid caking due to the thermoplasticity of the polymer. The packaging should be closed after use to protect it from moisture and caking. The minimum shelf life is 12 months.
ORTHO CHLORO BENZALDEHYDE
o-Chlorobenzenecarboxyaldehyde; OCAD; 2-Chlorobenzene Carbonal; o-Chloorbenzaldehyde; 2-Chloorbenzaldehyde; 2-chlorbenzaldehyd; o-Chlorobenzaldehyde; 2-clorobenzaldeide; 2-Clorobenzaldehído; 2-Chlorobenzaldéhyde CAS:89-98-5
ORTHO PHTHALALDEHYDE
Ortho Phthalaldehyde Phthalaldehyde (sometimes also o-phthalaldehyde or ortho-phthalaldehyde, Ortho phthalaldehyde) is the chemical compound with the formula C6H4(CHO)2. It is one of three isomers of benzene dicarbaldehyde, related to phthalic acid. This pale yellow solid is a building block in the synthesis of heterocyclic compounds and a reagent in the analysis of amino acids. Ortho phthalaldehyde dissolves in water solution at pH < 11.5. Its solutions degrade upon UV illumination and exposure to air. Ortho phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection Ortho phthalaldehyde (OPA) was tested against a range of organisms including glutaraldehyde-resistant mycobacteria, Bacillus subtilis spores and coat-defective spores. Glutaraldehyde (GTA) and peracetic acid (PAA) were tested for comparative purposes. Both suspension and carrier tests were performed using a range of concentrations and exposure times. All three biocides were very effective (> or = 5 log reduction) against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa in suspension tests. Ortho phthalaldehyde and GTA (PAA was not tested) were also very effective against Staph. aureus and Ps. aeruginosa in carrier tests. Ortho phthalaldehyde showed good activity against the mycobacteria tested including the two GTA-resistant strains, but 0.5% w/v Ortho phthalaldehyde was found not to be sporicidal. However, limited activity was found with higher concentrations and pH values. Coat-defective spores were more susceptible to Ortho phthalaldehyde, suggesting that the coat may be responsible for this resistance. The findings of this study suggest that Ortho phthalaldehyde is effective against GTA-resistant mycobacteria and that it is a viable alternative to GTA for high level disinfection. USES of Ortho Phthalaldehyde A reagent that forms fluorescent conjugation products with primary amines. It is used for the detection of many biogenic amines, peptides, and proteins in nanogram quantities in body fluids. Synthesis and reactions The compound was first described in 1887 when it was prepared from α,α,α’,α’-tetrachloro-ortho-xylene.[4] A more modern synthesis is similar: the hydrolysis of the related tetrabromo-o-xylene using potassium oxalate, followed by purification by steam distillation.[2] The reactivity of Ortho phthalaldehyde is complicated by the fact that in water it forms both a mono- and dihydrate, C6H4(CHO)(CH(OH)2) and C6H4(CH(OH))2O, respectively. Its reactions with nucleophiles often involves the reaction of both carbonyl groups.[5] Orthophthalaldehyde and hydrated forms 001.png Biochemistry Ortho phthalaldehyde is used in a very sensitive fluorescent reagent for assaying amines or sulfhydryls in solution, notably contained in proteins, peptides, and amino acids, by capillary electrophoresis and chromatography. Ortho phthalaldehyde reacts specifically with primary amines above their isoelectric point Pi in presence of thiols. Ortho phthalaldehyde reacts also with thiols in presence of an amine such as n-propylamine or 2-aminoethanol. The method is spectrometric (fluorescent emission at 436-475 nm (max 455 nm) with excitation at 330-390 nm (max. 340 nm)).[6] Disinfection Ortho phthalaldehyde is commonly used as a high-level disinfectant for medical instruments, commonly sold under the brand names of Cidex Ortho phthalaldehyde or TD-8. Disinfection with Ortho phthalaldehyde is indicated for semi-critical instruments that come into contact with mucous membranes or broken skin, such as specula, laryngeal mirrors, and internal ultrasound probes. Poly(phthalaldehyde) Ortho phthalaldehyde can be polymerized. In the polymer, one of the oxygen atoms forms a bridge to the other non-ring carbon of the same phthalaldehyde unit, while the other bridges to a non-ring carbon of another phthalaldehyde unit. Poly(phthalaldehyde) is used in making a photoresist. In winemaking The Nitrogen by O-Phthaldialdehyde Assay (NOrtho phthalaldehyde) is one of the methods used in winemaking to measure yeast assimilable nitrogen (or YAN) needed by wine yeast in order to successfully complete fermentation.[9] Isomeric phthalaldehydes Related to phthalaldehyde are: isophthalaldehyde (benzene-1,3-dicarbaldehyde; m.p. 87–88 °C, CAS# 626-19-7) terephthalaldehyde (benzene-1,4-dicarbaldehyde; m.p. 114–116 °C, CAS# 623-27-8) Properties Chemical formula C8H6O2 Molar mass 134.134 g·mol−1 Appearance Yellow solid Density 1.19 g/mL Melting point 55.5 to 56 °C (131.9 to 132.8 °F; 328.6 to 329.1 K)[2] Boiling point 266.1 °C (511.0 °F; 539.2 K) Solubility in water Low Ortho Phthalaldehyde is a known environmental transformation product of Dithianon. Ortho phthalaldehyde is mainly used as a high-level disinfectant (a low-temperature chemical method) for heat-sensitive medical and dental equipment such as endoscopes and thermometers; in recent years, it has gained popularity as a safe and better alternative to glutaraldehyde. There are some researches show, pH7.5 contains the sterilizing agent of Ortho phthalaldehyde 0.5%, and its sterilizing power, sterilization speed, stability and toxicity all are better than glutaraldehyde, can kill mycobacterium in the 5min, the bacterium number reduces by 5 logarithmic value, and Ortho phthalaldehyde is very stable, tasteless in pH3~9 scopes, non-stimulated to human nose, eye mucosa, and need not activate before using, various materials are had good consistency, have tangible microbiocidal activity. USES of Ortho phthalaldehyde Ortho phthalaldehyde can be widely used for precolumn derivatization of amino acids in HPLC separation or Capillary electrophoresis. For flow cytometric measurements of protein thiol groups. Uses Ortho phthalaldehyde can be used for precolumn derivatization of amino acids for HPLC separation and for flow cytometric measurements of protein thiol groups. Uses Precolumn derivatization reagent for primary amines and amino acids. The fluorescent derivative can be detected by reverse-phase HPLC. The reaction requires OPA, primary amine and a sulfhydryl. In the presence of excess sulfhydryl, amines can be quantitated. In the presence of excess amine, sulfhydryls can be quantitated. Uses Disinfectant. Reagent in fluorometric determination of primary amines and thiols. Preparation Ortho phthalaldehyde is a high-level chemical disinfectant that is commonly used for disinfection of dental and medical instruments as an alternative to glutaraldehyde, which is a known skin and respiratory sensitizer. A variety of processes for manufacturing Ortho phthalaldehyde have been reported in the literature. Ortho phthalaldehyde is produced by heating pure benzaldehyde and chloroform with potassium hydroxide solution. The resulting solution is further acidified with hydrochloric acid and cooled to yield a colorless powder of Ortho phthalaldehyde. It is also produced by ozonization of naphthalene in alcohol followed by catalytic hydrogenation. Catalytic oxidation of various chemicals is also used in manufacturing Ortho phthalaldehyde. Ortho phthalaldehyde can be manufactured by oxidation of phthalan by nitrogen monoxide in acetonitrile with N-hydroxyphthalimide as the catalyst to yield 80% to 90%. Ortho phthalaldehyde is a pale, yellow crystal or colorless powder. It is soluble in water. USE: Ortho phthalaldehyde is used as a disinfectant, mainly for dental and medical equipment. EXPOSURE: Workers that produce or use Ortho phthalaldehyde may have direct skin contact. The general population may be exposed by contact with residual disinfectant. If Ortho phthalaldehyde is released to the environment, it will be broken down in air by reaction with hydroxyl radicals. It may be broken down in the air by sunlight. It will not volatilize into air from soil or water surfaces. It is expected to move easily through soil. It is not expected to build up in fish. RISK: Irritation to the skin, eyes, and respiratory tract as well as asthma and allergic skin rashes have been reported in some healthcare workers that routinely use Ortho phthalaldehyde to disinfect equipment. Severe anaphylactic allergic reactions have been reported in some patients exposed to equipment disinfected with Ortho phthalaldehyde. Discoloration of the mouth and throat, burning of the throat, nausea, vomiting, and diarrhea may occur with ingestion. Damage to the nose, throat, lung, skin, and eyes were observed in laboratory animals following repeated exposure to low air levels of Ortho phthalaldehyde, damage was severe at moderate air levels and some animals died. Several alterations in the blood were also observed. Damage to the gastrointestinal tract, irregular breathing, impaired movement, and changes in the blood were observed in laboratory animals given moderate oral doses. Some animals died at high oral doses. No evidence of abortion or birth defects were noted in laboratory animals exposed to Ortho phthalaldehyde during pregnancy, but delayed bone development was observed at high doses that made the mothers sick. Data on the potential for Ortho phthalaldehyde to cause infertility in laboratory animals were not available. However, damage to the testis and reduced sperm counts and motility were observed in male animals following repeated exposure to low air levels of Ortho phthalaldehyde. Data on the potential for Ortho phthalaldehyde to cause cancer in laboratory animals were not available. The potential for Ortho phthalaldehyde to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens. For Ortho phthalaldehyde (USEPA/OPP Pesticide Code: 129017) there are 0 labels match. /SRP: Not registered for current use in the USA, but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Recently, the use of ortho phthalaldehyde (OPA) has been increasing as an alternative to glutaraldehyde(GA)for endoscope disinfection. We detected development of bronchial asthma and contact dermatitis in health care workers (HCW) employed in an endoscopy unit. ... Two of 83 health care workers described mild eye irritation, but no contact dermatitis or bronchitis had newly developed. Three sampling and analytical methods have been developed and evaluated for Ortho phthalaldehyde (OPA): (1) an HPLC-UV method for Ortho phthalaldehyde in air, (2) a fluorimetric method for Ortho phthalaldehyde on surfaces, and (3) a colorimetric method for Ortho phthalaldehyde on surfaces. (1) The air sampler contains 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). Air sampling may be conducted at 0.03 to 1.0 L/min for periods up to 8 hr. Samples were eluted with ethyl acetate, and the eluents were allowed to stand for 72 hr. Analysis was by high performance liquid chromatography (HPLC) with a UV detector set at 369 nm. An unusual phenomenon was the observation that the stability of the sample on a sampler at 3 degrees C tends to decrease as the total quantity of Ortho phthalaldehyde collected on the sampler decreases. Elution of the samples within 24 hr of air sampling is required. The detection limit (LOD) is approximately 0.02 ug of Ortho phthalaldehyde per sample. Ortho phthalaldehyde on surfaces may be collected with strips cut from a sheet of polyvinyl alcohol (PVA wipe). (2) In the surface wipe method with analysis by fluorescence measurement, the strips of PVA wipe were placed into dimethyl sulfoxide. An aliquot was treated with aqueous N-acetyl-l-cysteine and ethylenediamine. Analysis was performed with a portable fluorometer (excitation and emission wavelengths = 365 nm and 438 nm, respectively). The LOD is 0.2 ug per sample. (3) In the surface wipe method with visual colorimetric detection, the strips of PVA wipe were placed into 30:70 acetonitrile:water. An aliquot was treated with N-(1-naphthyl)ethylenediamine in 0.1 m sulfuric acid. After color development, the LOD is approximately 48 ug per sample. These methods have been field tested in a hospital. A simple high performance liquid chromatographic (HPLC) method and a highly sensitive gas chromatography mass spectrometric (GC-MS) method have been established for the determination of Ortho phthalaldehyde (OPA) in water. These methods are based on the derivatization of Ortho phthalaldehyde with hydrazine in water. The following optimum reaction conditions were established: reagent dosage, 20 mg/mL of hydrazine; pH 2; reaction for 20 min at 70 °C. The organic derivative was detected directly by HPLC or after the extraction with methylene chloride/concentration by GC-MS. The limit of detection of Ortho phthalaldehyde in water was 4.0 and 0.3 ug/L by HPLC and GC-MS, respectively. The calibration curve showed good linearity with r2 = 0.9993 and r2 = 0.9994 by HPLC and GC-MS, respectively, the accuracy was in a range of 95-105%, and the precision of the assay was less than 13% in water. The HPLC method was simple and reproducible enough to permit the Ortho phthalaldehyde content analysis in the disinfectant products, and the GC-MS method is sensitive enough to permit reliable analysis of Ortho phthalaldehyde to the ug/L level in environmental water. 2018 Notice of Intended Changes (NIC): These substances, with their corresponding values and notations, comprise those for which (1) a limit is proposed for the first time, (2) a change in the Adopted value is proposed, (3) retention as an NIC is proposed, or (4) withdrawal of the Documentation and adopted TLV is proposed. In each case, the proposals should be considered trial values during the period they are on the NIC. These proposals were ratified by the ACGIH Board of Directors and will remain on the NIC for approximately one year following this ratification. If the Committee neither finds nor receives any substantive data that changes its scientific opinion regarding an NIC TLV, the Committee may then approve its recommendation to the ACGIH Board of Directors for adoption. If the Committee finds or receives substantive data that change its scientific opinion regarding an NIC TLV, the Committee may change its recommendation to the ACGIH Board of Directors for the matter to be either retained on or withdrawn from the NIC. Substance: Ortho Phthalaldehyde; Time Weighted Avg (TWA): Surface Limit 0.025 mg/100 sq cm; Short Term Exposure Limit (STEL): Ceiling 0.0001 ppm (vapor fraction); Notations: Skin, Dermal Sensitization, Respiratory Sensitization; Molecular Weight: 134.10; TLV Basis: Eye, skin & respiratory tract irritation; respiratory sensitization; anaphylaxis. IDENTIFICATION AND USE: Ortho Phthalaldehyde (Ortho phthalaldehyde) is used as disinfectant and reagent in fluorometric determination of primary amines and thiols. HUMAN STUDIES: Ortho phthalaldehyde is a commonly used solution for rapid sterilization of medical equipment. Cases of anaphylaxis following cystoscopy with endoscopes sterilized with this agent have been reported. Ortho phthalaldehyde-induced anaphylaxis following laryngoscopy have also been described. In these patients, Ortho phthalaldehyde-specific IgE was detected in the serum. Contact dermatitis occurred in 4 workers of the endoscopy unit, one of whom also developed asthma. Among 80 female disinfection workers who used only antiseptic solutions containing Ortho phthalaldehyde, the incidence of disinfection-related complaints were 10% skin, 9% eye, and 16% respiratory symptoms. ANIMAL STUDIES: In male mice, injected Ortho phthalaldehyde induced specific IgE and IgG in the sera, suggesting that Ortho phthalaldehyde acts as a hapten. Overall, Ortho phthalaldehyde caused acute inflammation and acted as a haptenic allergen, although it caused only mild liver injury. In mice sensitized to ovalbumin (OVA), Ortho phthalaldehyde enhanced the OVA-induced recruitment of neutrophils to the lung and the production of allergen-specific IgE, suggesting that Ortho phthalaldehyde acts as an immunological adjuvant. The major targets from Ortho phthalaldehyde exposure in rats and mice included the respiratory system (nasal cavity, larynx, trachea, and lung), skin, eye, testis, and epididymis. The most sensitive measure of Ortho phthalaldehyde inhalation toxicity in male and female rats and mice was significantly increased incidences of nasal cavity lesions (lowest-observable-effect concentration = 0.44 ppm). Ortho phthalaldehyde was mutagenic in Salmonella typhimurium strain TA100 in the absence of exogenous metabolic activation; no mutagenicity was seen in TA100 with metabolic activation or in TA98 or Escherichia coli WP2 uvrA/pKM101, with or without metabolic activation. Iatrogenic injury from medical disinfectants is an uncommon but potentially devastating complication. We report an unusual, but severe, upper aerodigestive complication from the use of Ortho phthalaldehyde solution, a commonly used endoscope disinfectant. Ortho phthalaldehyde (Cidex Ortho phthalaldehyde) is a commonly used solution for rapid sterilization of flexible endoscopic equipment. We report two cases of anaphylaxis following cystoscopy with endoscopes sterilized with this agent. Only a handful of such reactions have been reported in the published literature, the majority of which are in the bladder cancer population undergoing surveillance cystoscopy. PATIENTS AND METHODS: We reviewed the clinical presentation of two cases of anaphylaxis following flexible cystoscopy with instruments sterilized with Ortho phthalaldehyde. We further describe their subsequent evaluation by an allergy and immunology specialist who performed skin testing to confirm a suspected Ortho phthalaldehyde allergy. RESULTS: Both patients were skin test positive to Ortho phthalaldehyde antigen. As a result, sterilization techniques for our flexible endoscopes has been altered. To date, no further anaphylactic reactions have occurred in our bladder cancer patients, including the two cases presented herein following subsequent cystoscopic evaluations. CONCLUSIONS: Ortho phthalaldehyde-sterilized cystoscopes have been associated with anaphylactic reactions in a small number of patients who have undergone repeated cystoscopy. The manufacturer has already made recommendations to avoid this agent in bladder cancer patients. It may be prudent to extend this practice to other populations undergoing repeat cystoscopy. Ortho phthalaldehyde (OPA) has recently been used as a disinfectant for various medical apparatuses. Ortho phthalaldehyde is not generally recognized as a potential allergen. CASE SUMMARY: Subsequent to our recent report describing a patient presenting with Ortho phthalaldehyde-induced anaphylaxis following laryngoscopy, we experienced two more such cases. In all three cases, the basophil histamine release test was useful for identifying the allergen as Ortho phthalaldehyde. Ortho phthalaldehyde-specific IgE was successfully detected in the serum of the patients by ELISA. DISCUSSION: Physicians and co-medical workers need to be aware of potential allergens to which patients may be exposed during routine medical procedures. Because body fluids and blood have a tendency to adhere to transesophageal echo devices, a high level of sterilization is required when cleaning them. Ortho phthalaldehyde (OPA) has been widely used in Japan since being approved as a high-level sterilant. The authors report a patient with widespread, severe skin and mucous membrane damage of the lip, tongue, pharynx and esophagus areas that was attributed to inadequate washing after the sterilization of a transesophageal echo device with Ortho phthalaldehyde. This patient experienced sequelae, which did not improve after more than 1 year of continuous treatment. When using medical devices sterilized with Ortho phthalaldehyde, the use of a probe cover, when applicable, is recommended and complete washing prior to use is required. Acute Exposure/ Although Ortho phthalaldehyde (OPA) has been suggested as an alternative to glutaraldehyde for the sterilization and disinfection of hospital equipment, the toxicity has not been thoroughly investigated. The purpose of these studies was to evaluate the irritancy and sensitization potential of Ortho phthalaldehyde. The EpiDerm Skin Irritation Test was used to evaluate in vitro irritancy potential of Ortho phthalaldehyde and glutaraldehyde. Treatment with 0.4125 and 0.55% Ortho phthalaldehyde induced irritation, while glutaraldehyde exposure at these concentrations did not. Consistent with the in vitro results, Ortho phthalaldehyde induced irritancy, evaluated by ear swelling, when mice were treated with 0.75%. Initial evaluation of the sensitization potential was conducted using the local lymph node assay at concentrations ranging from 0.005 to 0.75%. A concentration-dependent increase in lymphocyte proliferation was observed with a calculated EC3 value of 0.051% compared to that of 0.089%, previously determined for glutaraldehyde. Immunoglobulin (Ig) E-inducing potential was evaluated by phenotypic analysis of draining lymph node (DLN) cells and measurement of total and specific serum IgE levels. The 0.1 and 0.75% exposed groups yielded significant increases in the IgE+B220+ cell population in the lymph nodes while the 0.75% treated group demonstrated significant increases in total IgE, Ortho phthalaldehyde-specific IgE, and Ortho phthalaldehyde-specific IgG(1). In addition, significant increases in interleukin-4 messenger RNA and protein expression in the DLNs were observed in Ortho phthalaldehyde-treated groups. The results demonstrate the dermal irritancy and allergic potential of Ortho phthalaldehyde and raise concern about the proposed/intended use of Ortho phthalaldehyde as a safe alternative to glutaraldehyde. Acute Exposure/ Ortho phthalaldehyde (OPA) has been used as a safe alternative disinfectant instead of glutaraldehyde; however, recently some adverse effects of Ortho phthalaldehyde were reported in patients and medical professions. We examined the acute toxicity of Ortho phthalaldehyde in male ICR mice injected with 0.125-0.5% Ortho phthalaldehyde and killed some animals 1 day after a single Ortho phthalaldehyde injection, and others 1 or 13 days after two Ortho phthalaldehyde injections 5 days apart. Hematology, blood cell counts, specific antibody production, organ weights, hepatic enzymes, hepatic histOrtho phthalaldehydethology and gene expression of cytochrome P450 (CYP) mRNA in liver were examined. Single Ortho phthalaldehyde injections elevated leukocyte counts, the proportion of neutrophils, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Two Ortho phthalaldehyde injections dose-dependently increased leukocyte counts, the proportion of neutrophils, ALT and AST, and decreased alkaline phosphatase. Leukocyte counts and proportions of neutrophils normalized 13 days after the second of two injections. However, both ALT and AST remained high in mice given higher Ortho phthalaldehyde doses. Significant increased liver-to-body weight ratio and mild hepatic lesions were observed. Gene expression of CYP1a1 and CYP2e1 revealed a tendency of up-regulation 1 day after two Ortho phthalaldehyde injections. However, expression of these genes was then down-regulated 13 days after Ortho phthalaldehyde injections. Ortho phthalaldehyde induced specific IgE and IgG significantly in the sera, suggesting that Ortho phthalaldehyde acts as a hapten. Overall, Ortho phthalaldehyde caused acute inflammation and acted as a haptenic allergen, although it caused only mild liver injury. Such evidence suggested that careful washing and prevention of exposure were needed after Ortho phthalaldehyde disinfection of medical instruments. Developmental or Reproductive Toxicity/ The general population is exposed to phthalates through consumer products, diet, and medical devices. Phthalic acid (PA) is a common final metabolite of phthalates, and its isomers include isophthalic acid (IPA), terephthalic acid (TPA), and phthalaldehyde (o-phthalic acid, Ortho phthalaldehyde). The purpose of this study was to investigate whether PA and PA isomers exert reproductive toxicity, including altered sperm movement. In vitro cell viability assays were comparatively performed using Sertoli and liver cell lines. In animal experiments, PA or PA isomers (10, 100, or 1000 mg/kg) were administered orally to Sprague-Dawley (SD) rats, and semen samples were analyzed by computer-aided sperm analysis (CASA). PA treatment produced a significant effect on curvilinear velocity (VCL), straight-line velocity (VSL), mean velocity or average path velocity (VAP), amplitude of lateral head displacement (ALH), and frequency of head displacement or beat cross-frequency (BCF), whereas IPA, TPA, and Ortho phthalaldehyde induced no marked effects. In vitro cell viability assays showed that mouse normal testis cells (TM4) and human testis cancer cells (NTERA 2 cl. D1) were more sensitive to PA and Ortho phthalaldehyde than mouse liver normal cells (NCTC clone 1469) and human fetal liver cells (FL 62891). Our study suggests that PA and PA isomers specifically produced significant in vitro and in vivo reproductive toxicity, particularly sperm toxicity and testis cell cytotoxicity. Of the isomers examined, PA appeared to be the most toxic and may serve as a surrogate biomarker for reproductive toxicity following mixed exposure to phthalates. Neurotoxicity/ Glutaraldehyde (GA) and ortho-phtalaldehyde (Ortho phthalaldehyde) have been widely used as major components of disinfectants in hospitals. We evaluated the alterations in GA or Ortho phthalaldehyde in rats after subacute inhalation exposure by determining levels of neurotransmitters (norepinephrine [NE], dOrtho phthalaldehydemine [DA], DA metabolites, dihydroxyphenylacetic acid [DOrtho phthalaldehydeC] and homovanillic acid [HVA], indoleamine serotonin [5-HT] and 5-HT metabolite, 5-hydroxyindoleacetic acid [5-HIAA]) in discrete brain regions using high performance liquid chromatography (HPLC) equipped with an electrochemical detector. Female Wistar rats were exposed to 0, 50, 100, or 200 ppb gaseous GA or Ortho phthalaldehyde by inhalation for 1 hr per day, 5 d per week for 4 wk. Following the exposure, the brain of each rat was removed and dissected into cerebrum, cerebellum, medulla oblongata, midbrain, corpus striatum and hypothalamus. The neurotransmitters and their metabolites were extracted from each brain region, and determined by HPLC. Regarding GA, the daily water intake of the 50 or the 200 ppb exposed groups was significantly lower than that of the control. DA and 5-HIAA levels in the medulla oblongata among the GA exposed groups were significantly lower than those of the control. For Ortho phthalaldehyde, the mean final body weight and daily food intake of the 100 or 200 ppb exposed groups were significantly lower than those of the control. The mean DA concentrations in the cerebrum in the groups exposed to Ortho phthalaldehyde were significantly lower than those of the control. Ortho phthalaldehyde may modulate DA metabolism in the cerebrum of female rats. The levels GA or Ortho phthalaldehyde that induced alienations in neurotransmitters were comparable to those levels usually found in hospitals, further studies are warranted to evaluate the of safety of disinfectants containing GA or Ortho phthalaldehyde. Groups of 10 male and 10 female rats and mice were exposed to Ortho Phthalaldehyde at concentrations of 0, 0.44, 0.88, 1.75, 3.5, or 7.0 ppm, 6 hours plus T90 (17 minutes) per day, 5 days per week for 14 weeks; additional groups of 10 male and 10 female clinical pathology study rats were exposed to the same concentrations for 23 days. All rats exposed to 7.0 ppm died by the end of week 2 of the study, and seven males and two females exposed to 3.5 ppm died by week 7 of the study. All mice exposed to 7.0 ppm died during week 1 of the study, and five males and four females exposed to 3.5 ppm died by week 6 of the study. Clinical observations in rats and mice included abnormal breathing, sneezing, and thinness, with increasing frequency in higher exposure groups. In rats, clinical observations also included black discoloration of the appendages (pinnae and/or feet), which was noted throughout the study in male and female rats exposed to 3.5 ppm or greater. Clinical observations in mice also included alopecia. Mean body weights of all surviving exposed groups of male rats and 1.75 and 3.5 ppm female rats were significantly less than those of the chamber controls. Mean body weights of all surviving exposed groups of male and female mice were significantly less than those of the chamber controls, and 3.5 ppm males lost weight during the study. In the hematopoietic system of rats, decreases in lymphocyte counts in males and females coincided with increases in neutrophil counts. These alterations in lymphocyte and neutrophil counts were consistent with stress and inflammation. Decreased lymphocyte counts corresponded to lymphoid atrophy in the thymus and spleen. Within the erythron, the erythrocyte counts, hemoglobin concentrations, hematocrit values, and packed cell volumes were significantly elevated in both male and female rats at all time points. Erythron increases at the earlier time points were consistent with a physiological hemoconcentration, while increases at study termination may have been due to hypoxia with a resultant secondary erythrocytosis. In the hematopoietic system of mice, the total leukocyte and lymphocyte counts, as well as neutrophil and eosinophil counts, were increased in males at study termination. Similarly, female mice had increased total leukocyte, neutrophil, and eosinophil counts. The increases in the leukon were generally consistent with inflammation. Hemoglobin concentrations, erythrocyte counts, hematocrit values, and packed cell volumes were decreased in male and female mice. The decreases in the erythron were most likely due to bone marrow suppression as a result of the chronic inflammation in the respiratory tract. Inhalation exposure to Ortho Phthalaldehyde resulted in a spectrum of lesions at sites of contact within the respiratory tract (nose, larynx, trachea, and lung), skin, and eye that were generally consistent with an irritant effect. In general, exposure of rats and mice to Ortho Phthalaldehyde resulted in lesions throughout the respiratory tract that included necrosis, inflammation, regeneration, hyperplasia, and metaplasia, ranging from minimal to moderate in severity. In general, histologic findings occurred at deeper sites within the respiratory tract with increasing exposure concentration. The first site of contact, the nose, was most affected, with many lesions occurring at the lowest exposure concentration (0.44 ppm) in male and female rats and mice. Laryngeal lesions occurred at all exposure concentrations in rats and at 0.88 ppm or greater in mice. Tracheal findings were first noted at a variety of exposure concentrations. Lung findings were most prevalent at the two highest exposure concentrations (3.5 and 7.0 ppm) in rats and mice. In the skin, there were significant increases in adnexa degeneration and epithelial parakeratosis in both male and female rats and mice. In the eye, there were significant increases in suppurative inflammation of the anterior chamber and cornea, as well as corneal necrosis in male and female rats. Rats exposed to Ortho Phthalaldehyde exhibited lower cauda epididymis, epididymis, and testis weights. In rats, total sperm/cauda exhibited a negative trend and sperm motility was lower. There were no histOrtho phthalaldehydethologic correlates identified that could explain the observed responses in sperm parameters, or the weight changes in the testis or epididymis. However, in the higher dose groups where morbidity and mortality were observed, testicular and epididymal histOrtho phthalaldehydethologic lesions were noted. In the testes, these lesions included significant increases in the incidences of elongated spermatid degeneration, apoptosis of the germinal epithelium, and interstitial cell atrophy.
ORTHOPHOSPHORIC ACID
O-TOLYL BIGUANIDE, N° CAS : 93-69-6, Nom INCI : O-TOLYL BIGUANIDE. Nom chimique : 1-o-Tolylbiguanide. N° EINECS/ELINCS : 202-268-6. Ses fonctions (INCI), Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidi
OXALIC ACID
OXALIC ACID Oxalic acid (OXALIC ACID, oksalik asit) is an organic compound with the formula C2H2O4. Oxalic acid (OXALIC ACID, oksalik asit) is a white crystalline solid that forms a colorless solution in water. Its condensed formula is HOOCCOOH, reflecting its classification as the simplest dicarboxylic acid. Its acid strength is much greater than that of acetic acid. Oxalic acid (OXALIC ACID, oksalik asit) is a reducing agent and its conjugate base, known as oxalate (C2O2−4), is a chelating agent for metal cations. Typically, Oxalic acid (OXALIC ACID, oksalik asit) occurs as the dihydrate with the formula C2H2O4·2H2O. It occurs naturally in many foods, but excessive ingestion of Oxalic acid (OXALIC ACID, oksalik asit) or prolonged skin contact can be dangerous. Its name comes from the fact that early investigators isolated Oxalic acid (OXALIC ACID, oksalik asit) from flowering plants of the genus Oxalis, commonly known as wood-sorrels. History of Oxalic acid (OXALIC ACID, oksalik asit) The preparation of salts of Oxalic acid (OXALIC ACID, oksalik asit) (crab acid) from plants had been known, at the latest, since 1745, when the Dutch botanist and physician Herman Boerhaave isolated a salt from sorrel. By 1773, François Pierre Savary of Fribourg, Switzerland had isolated Oxalic acid (OXALIC ACID, oksalik asit) from its salt in sorrel. In 1776, Swedish chemists Carl Wilhelm Scheele and Torbern Olof Bergman produced Oxalic acid (OXALIC ACID, oksalik asit) by reacting sugar with concentrated nitric acid; Scheele called the acid that resulted socker-syra or såcker-syra (sugar acid). By 1784, Scheele had shown that "sugar acid" and Oxalic acid (OXALIC ACID, oksalik asit) from natural sources were identical. In 1824, the German chemist Friedrich Wöhler obtained Oxalic acid (OXALIC ACID, oksalik asit) by reacting cyanogen with ammonia in aqueous solution. This experiment may represent the first synthesis of a natural product. Preparation of Oxalic acid (OXALIC ACID, oksalik asit) Oxalic acid (OXALIC ACID, oksalik asit) (Crab Acid) is mainly manufactured by the oxidation of carbohydrates or glucose using nitric acid or air in the presence of vanadium pentoxide. A variety of precursors can be used including glycolic acid and ethylene glycol. A newer method entails oxidative carbonylation of alcohols to give the diesters of Oxalic acid (OXALIC ACID, oksalik asit): 4 ROH + 4 CO + O2 → 2 (CO2R)2 + 2 H2O These diesters are subsequently hydrolyzed to Oxalic acid (OXALIC ACID, oksalik asit). Approximately 120,000 tonnes are produced annually. Historically Oxalic acid (OXALIC ACID, oksalik asit) was obtained exclusively by using caustics, such as sodium or potassium hydroxide, on sawdust.[15] Pyrolysis of sodium formate (ultimately prepared from carbon monoxide), leads to the formation of sodium oxalate, easily converted to Oxalic acid (OXALIC ACID, oksalik asit). Laboratory methods Although it can be readily purchased, Oxalic acid (OXALIC ACID, oksalik asit) can be prepared in the laboratory by oxidizing sucrose using nitric acid in the presence of a small amount of vanadium pentoxide as a catalyst. The hydrated solid can be dehydrated with heat or by azeotropic distillation. Developed in the Netherlands, an electrocatalysis by a copper complex helps reduce carbon dioxide to Oxalic acid (OXALIC ACID, oksalik asit);[18] this conversion uses carbon dioxide as a feedstock to generate Oxalic acid (OXALIC ACID, oksalik asit). Structure of Oxalic acid (OXALIC ACID, oksalik asit) Anhydrous Oxalic acid (OXALIC ACID, oksalik asit) exists as two polymorphs; in one the hydrogen-bonding results in a chain-like structure whereas the hydrogen bonding pattern in the other form defines a sheet-like structure. Because the anhydrous material is both acidic and hydrophilic (water seeking), it is used in esterifications. Reactions of Oxalic acid (OXALIC ACID, oksalik asit) Oxalic acid (OXALIC ACID, oksalik asit) is a relatively strong acid, despite being a carboxylic acid: C2O4H2 ⇌ C2O4H− + H+ pKa = 1.27 C2O4H− ⇌ C2O2−4 + H+ pKa = 4.27 Oxalic acid (OXALIC ACID, oksalik asit) undergoes many of the reactions characteristic of other carboxylic acids. It forms esters such as dimethyl oxalate (m.p. 52.5 to 53.5 °C (126.5 to 128.3 °F)). It forms an acid chloride called oxalyl chloride. Oxalate, the conjugate base of Oxalic acid (OXALIC ACID, oksalik asit), is an excellent ligand for metal ions, e.g. the drug oxaliplatin. Oxalic acid (OXALIC ACID, oksalik asit) and oxalates can be oxidized by permanganate in an autocatalytic reaction. Oxalic acid (OXALIC ACID, oksalik asit)'s pKa values vary in the literature from 1.25-1.46 and 3.81-4.40. The 100th ed of the CRC, released in 2019 has values of 1.25 and 3.81. Occurrence of Oxalic acid (OXALIC ACID, oksalik asit) Biosynthesis At least two pathways exist for the enzyme-mediated formation of oxalate. In one pathway, oxaloacetate, a component of the Krebs citric acid cycle, is hydrolyzed to oxalate and acetic acid by the enzyme oxaloacetase: [O2CC(O)CH2CO2]2− + H2O → C2O2−4 + CH3CO−2 + H+ It also arises from the dehydrogenation of glycolic acid, which is produced by the metabolism of ethylene glycol. Occurrence in foods and plants Calcium oxalate is the most common component of kidney stones. Early investigators isolated Oxalic acid (OXALIC ACID, oksalik asit) from wood-sorrel (Oxalis). Members of the spinach family and the brassicas (cabbage, broccoli, brussels sprouts) are high in oxalates, as are sorrel and umbellifers like parsley.[27] Rhubarb leaves contain about 0.5% Oxalic acid (OXALIC ACID, oksalik asit), and jack-in-the-pulpit (Arisaema triphyllum) contains calcium oxalate crystals. Similarly, the Virginia creeper, a common decorative vine, produces Oxalic acid (OXALIC ACID, oksalik asit) in its berries as well as oxalate crystals in the sap, in the form of raphides. Bacteria produce oxalates from oxidation of carbohydrates. Plants of the genus Fenestraria produce optical fibers made from crystalline Oxalic acid (OXALIC ACID, oksalik asit) to transmit light to subterranean photosynthetic sites.[28] Carambola, also known as starfruit, also contains Oxalic acid (OXALIC ACID, oksalik asit) along with caramboxin. Citrus juice contains small amounts of Oxalic acid (OXALIC ACID, oksalik asit). Citrus fruits produced in organic agriculture contain less Oxalic acid (OXALIC ACID, oksalik asit) than those produced in conventional agriculture. The formation of naturally occurring calcium oxalate patinas on certain limestone and marble statues and monuments has been proposed to be caused by the chemical reaction of the carbonate stone with Oxalic acid (OXALIC ACID, oksalik asit) secreted by lichen or other microorganisms. Production by fungi Many soil fungus species secrete Oxalic acid (OXALIC ACID, oksalik asit), resulting in greater solubility of metal cations, increased availability of certain soil nutrients, and can lead to the formation of calcium oxalate crystals. Other Oxidized bitumen or bitumen exposed to gamma rays also contains Oxalic acid (OXALIC ACID, oksalik asit) among its degradation products. Oxalic acid (OXALIC ACID, oksalik asit) may increase the leaching of radionuclides conditioned in bitumen for radioactive waste disposal. Biochemistry The conjugate base of Oxalic acid (OXALIC ACID, oksalik asit) is the hydrogenoxalate anion, and its conjugate base (oxalate) is a competitive inhibitor of the lactate dehydrogenase (LDH) enzyme. LDH catalyses the conversion of pyruvate to lactic acid (end product of the fermentation (anaerobic) process) oxidising the coenzyme NADH to NAD+ and H+ concurrently. Restoring NAD+ levels is essential to the continuation of anaerobic energy metabolism through glycolysis. As cancer cells preferentially use anaerobic metabolism (see Warburg effect) inhibition of LDH has been shown to inhibit tumor formation and growth, thus is an interesting potential course of cancer treatment. Applications About 25% of produced Oxalic acid (OXALIC ACID, oksalik asit) will be used as a mordant in dyeing processes. Oxalic acid (OXALIC ACID, oksalik asit) is used in bleaches, especially for pulpwood. Oxalic acid (OXALIC ACID, oksalik asit) is also used in baking powder and as a third reagent in silica analysis instruments. Cleaning of Oxalic acid (OXALIC ACID, oksalik asit) Oxalic acid (OXALIC ACID, oksalik asit)'s main applications include cleaning or bleaching, especially for the removal of rust (iron complexing agent). Its utility in rust removal agents is due to its forming a stable, water-soluble salt with ferric iron, ferrioxalate ion. Extractive metallurgy Oxalic acid (OXALIC ACID, oksalik asit) is an important reagent in lanthanide chemistry. Hydrated lanthanide oxalates form readily in very strongly acidic solutions in a densely crystalline, easily filtered form, largely free of contamination by nonlanthanide elements. Thermal decomposition of these oxalates gives the oxides, which is the most commonly marketed form of these elements. Oxalic acid (OXALIC ACID, oksalik asit) is used by some beekeepers as a miticide against the parasitic varroa mite. Oxalic acid (OXALIC ACID, oksalik asit) is used to clean minerals. Oxalic acid (OXALIC ACID, oksalik asit) is sometimes used in the aluminum anodizing process, with or without sulfuric acid. Compared to sulfuric acid anodizing, the coatings obtained are thinner and exhibit lower surface roughness. Oxalic acid (OXALIC ACID, oksalik asit) is an ingredient in some tooth whitening products. Toxicity of Oxalic acid (OXALIC ACID, oksalik asit) Oxalic acid (OXALIC ACID, oksalik asit) in concentrated form can have harmful effects through contact and if ingested. It is not identified as mutagenic or carcinogenic, although there is a study suggesting it might cause breast cancer; there is a possible risk of congenital malformation in the fetus; may be harmful if inhaled, and is extremely destructive to tissue of mucous membranes and upper respiratory tract; harmful if swallowed; harmful to and destructive of tissue and causes burns if absorbed through the skin or is in contact with the eyes. Symptoms and effects include a burning sensation, cough, wheezing, laryngitis, shortness of breath, spasm, inflammation and edema of the larynx, inflammation and edema of the bronchi, pneumonitis, pulmonary edema. In humans, ingested Oxalic acid (OXALIC ACID, oksalik asit) has an oral LDLo (lowest published lethal dose) of 600 mg/kg. It has been reported that the lethal oral dose is 15 to 30 grams. Oxalate may enter cells where it is known to cause mitochondrial dysfunction. The toxicity of Oxalic acid (OXALIC ACID, oksalik asit) is due to kidney failure caused by precipitation of solid calcium oxalate, the main component of calcium kidney stones. Oxalic acid (OXALIC ACID, oksalik asit) can also cause joint pain by formation of similar precipitates in the joints. Ingestion of ethylene glycol results in Oxalic acid (OXALIC ACID, oksalik asit) as a metabolite which can also cause acute kidney failure. Oxalic acid (OXALIC ACID, oksalik asit) is an odorless white solid. Sinks and mixes with water. Oxalic acid (OXALIC ACID, oksalik asit) is an alpha,omega-dicarboxylic acid that is ethane substituted by carboxyl groups at positions 1 and 2. Oxalic acid (OXALIC ACID, oksalik asit) has a role as a human metabolite, a plant metabolite and an algal metabolite. It is a conjugate acid of an oxalate(1-) and an oxalate. The absorption of (14)C-labelled Oxalic acid (OXALIC ACID, oksalik asit) was studied in Wistar rats, CD-1 mice and NMRI mice. Oxalic acid (OXALIC ACID, oksalik asit) in solution was given to the animals by gavage either with water alone or with 0.625 g/kg body wt of xylitol. Both xylitol adapted animals and animals not previously exposed to xylitol were used. Adaptation to xylitol diets enhanced the absorption and urinary excretion of the label (Oxalic acid (OXALIC ACID, oksalik asit)) in both strains of mice but not in rats. Earlier studies have indicated a high incidence of bladder calculi in mice but not in rats fed high amounts of xylitol. The results of the present study offer one likely explanation for the increased formation of bladder calculi as a result of over saturation of urine with oxalate. Piridoxilate is an association of glyoxylic acid and pyridoxine in which pyridoxine is supposed to facilitate in vivo transformation of glyoxylic acid to glycine rather than to Oxalic acid (OXALIC ACID, oksalik asit). However, it has recently been shown that long term treatment with piridoxilate may result in over production of Oxalic acid (OXALIC ACID, oksalik asit) and in calcium oxalate nephrolithiasis. A patient in whom piridoxilate induced both oxalate nephrolithiasis and chronic oxalate nephropathy with renal insufficiency, an association that has not been previously described, was reported. Therefore, piridoxilate should be added to the list of chemicals responsible for chronic oxalate nephropathy. Metabolically its toxicity is believed due to the capacity of Oxalic acid (OXALIC ACID, oksalik asit) to immobilize calcium and thus upset the calcium-potassium ratio in critical tissues. Oxalic acid (OXALIC ACID, oksalik asit) is a waste chemical stream constituent which may be subjected to ultimate disposal by controlled incineration. Pretreatment involves chemical reaction with limestone or calcium oxide forming calcium oxalate. This may then be incinerated utilizing particulate collection equipment to collect calcium oxide for recycling. Residues of Oxalic acid (OXALIC ACID, oksalik asit) are exempted from the requirement of a tolerance when used as a calcium chelating hard water inhibitor in accordance with good agricultural practices as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest. Limits: No more Oxalic acid (OXALIC ACID, oksalik asit) should be used than is necessary to chelate calcium and, in no case, should more than 2 lb Oxalic acid (OXALIC ACID, oksalik asit) per acre be used. Oxalic acid (OXALIC ACID, oksalik asit) is hygroscopic and sensitive to heat. This compound may react violently with furfuryl alcohol, silver, sodium, perchlorate, sodium hypochlorite, strong oxidizers, sodium chlorite, acid chlorides, metals and alkali metals. (NTP, 1992). The heating of mixtures of Oxalic acid (OXALIC ACID, oksalik asit) and urea has lead to explosions. This is due to the rapid generation of the gases CO2, CO, and NH3. Oxalic acid (OXALIC ACID, oksalik asit) and urea react at high temperatures to form toxic and flammable ammonia and carbon monoxide gases, and inert CO2 gas Residues of Oxalic acid (OXALIC ACID, oksalik asit) are exempted from the requirement of a tolerance when used as a calcium chelating hard water inhibitor in accordance with good agricultural practices as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest. Limits: No more Oxalic acid (OXALIC ACID, oksalik asit) should be used than is necessary to chelate calcium and, in no case, should more than 2 lb Oxalic acid (OXALIC ACID, oksalik asit) per acre be used. Oxalic acid (OXALIC ACID, oksalik asit) is naturally contained as the potassium or calcium salt in plants, vegetables, human urine, animal urine, and kidney stones. It is also the product of the metabolism of many molds. Oxalic acid (OXALIC ACID, oksalik asit) may be released to the environment in tobacco smoke, automobile exhaust, rendering, in waste streams from pulp bleaching, and by photochemical oxidations of anthropogenic compounds during long range transport. If released to soil, Oxalic acid (OXALIC ACID, oksalik asit) under environmental conditions (pH 5-9) will be in the form of the oxalate ion (pKa1 and pKa2 of 1.25 and 4.28, respectively) and is expected to leach in soil. Photolysis is expected to be an important fate process; the daytime persistence of Oxalic acid (OXALIC ACID, oksalik asit) on soil surfaces is not expected to exceed a few hours. Based upon screening biodegradation tests, biodegradation in soil is expected to be important. If released to water, Oxalic acid (OXALIC ACID, oksalik asit) will not volatilize, adsorb to sediment, bioconcentrate in aquatic organisms, oxidize or hydrolyze. The predominant aquatic fate processes are expected to be photolysis in surface waters and aerobic and anaerobic biodegradation. If released to the atmosphere, removal from air via wet deposition, dry deposition, and photolysis is likely to occur. Exposure of the general population to Oxalic acid (OXALIC ACID, oksalik asit) is expected to occur through consumption of foods in which it is naturally contained, inhalation of contaminated air, and consumption of contaminated groundwater. In occupational settings, exposure to Oxalic acid (OXALIC ACID, oksalik asit) may occur through inhalation of vapors and through eye and skin contact. Oxalic acid (OXALIC ACID, oksalik asit) may be released to the environment as emissions from rendering, tobacco smoke(1), and automobile exhaust(2). Oxalic acid (OXALIC ACID, oksalik asit) may be produced in the atmosphere by photochemical oxidations of anthropogenic compounds during long range transport(3). Oxalic acid (OXALIC ACID, oksalik asit) has been identified in pulp kraft mill effluents(4-6); therefore, it may be released to the environment in waste streams resulting from pulp bleaching(SRC). The estimated emission rate of Oxalic acid (OXALIC ACID, oksalik asit) in the South East Air Basin, CA is 87 kg/day(7). TERRESTRIAL FATE: An estimated Koc value of 5(1,SRC) for Oxalic acid (OXALIC ACID, oksalik asit) indicates high mobility in soil(2) and Oxalic acid (OXALIC ACID, oksalik asit) has been detected in groundwater(3). Volatilization from moist soils is not expected to be rapid based upon a low Henry's Law constant. Several screening studies indicate rapid biodegradation of Oxalic acid (OXALIC ACID, oksalik asit)(4-8). Although these studies are not specific to soil media, they suggest that Oxalic acid (OXALIC ACID, oksalik asit) will readily biodegrade in soil. The Oxalic acid (OXALIC ACID, oksalik asit) concn in another study was determined to decrease from 30 mg/kg on a soil surface to about 6 mg/kg 540 cm below the soil surface(3) which suggests that biodegradation may have occurred(SRC). Photolysis is expected to be an important terrestrial fate process; the daytime persistence of Oxalic acid (OXALIC ACID, oksalik asit) on soil surfaces is not expected to exceed a few hours(9). AQUATIC FATE: Several screening studies(4-8) and grab sample tests(9) indicate that under aerobic and anaerobic conditions, Oxalic acid (OXALIC ACID, oksalik asit) will readily biodegrade in aquatic ecosystems. Based on an experimental Henry's Law constant of 1.4X10-10 atm-cu m/mole at 25 °C(2), Oxalic acid (OXALIC ACID, oksalik asit) is expected to be essentially nonvolatile from water(1). Adsorption to sediment and bioconcentration in aquatic organisms may not be important fate processes for Oxalic acid (OXALIC ACID, oksalik asit) in water systems. Based on pKa1 and pKa2 values of 1.25 and 4.28(3), respectively, Oxalic acid (OXALIC ACID, oksalik asit) will exist primarily as the oxalate ion under environmental conditions (pH 5-9,SRC). Aquatic oxidation is not likely to be an important fate process based on a half-life of 285 yrs in water under continuous sunlight(3,SRC). Oxalic acid (OXALIC ACID, oksalik asit) may react slowly in water with photochemically produced OH radicals, but it is expected to be removed rapidly from surface water by direct photolysis; the daytime persistence of Oxalic acid (OXALIC ACID, oksalik asit) is not expected to exceed a few hours(10). ATMOSPHERIC FATE: Based on a measured vapor pressure of 2.3410-4 mm Hg at 25 °C(2), Oxalic acid (OXALIC ACID, oksalik asit) is expected to exist almost entirely in the vapor phase in the ambient atmosphere(3). In the vapor phase, Oxalic acid (OXALIC ACID, oksalik asit) in the ambient atmosphere is very slowly degraded by reaction with photochemically formed hydroxyl radicals; the half-life for this reaction in air can be estimated to be about 223 days(1). Oxalic acid (OXALIC ACID, oksalik asit) in the ambient atmosphere may react slowly with OH radicals, but it is removed rapidly by photolysis; the daytime persistence of Oxalic acid (OXALIC ACID, oksalik asit) is not expected to exceed a few hours(4). Based on its high water solubility, removal from air via wet deposition is likely to occur(4,SRC). Oxalic acid (OXALIC ACID, oksalik asit) may also be removed from air via dry deposition with 11% of the total deposition being dry deposition(4). Six tests at Oxalic acid (OXALIC ACID, oksalik asit) initial concns of 3.3 to 10 ppm exhibited 75 to 202 %BODT over an incubation period of 5 days in an aerobic screening study using sewage inoculum(1). A 78 and 55.5 %BODT for Oxalic acid (OXALIC ACID, oksalik asit) was measured under aerobic conditions over a period of 5 days in screening tests at 20 °C using sewage inoculum(2). Oxalic acid (OXALIC ACID, oksalik asit) at initial concns of 0.00375, 0.0375, and 0.375 ppm exhibited 95, 99, and 100% degradation, respectively, in an aerobic screening study at 25 °C using sewage inoculum(3). In another screening study using sewage inoculum, 68 and 64 %BODT were measured for Oxalic acid (OXALIC ACID, oksalik asit) at initial concns of 10 and 20 ppm, respectively, over a 5 day incubation period(4). An 89 %BODT was measured for Oxalic acid (OXALIC ACID, oksalik asit) (10 ppm initial concn) in an aerobic screening study using sewage inoculum at 19.5-20.5 °C over an incubation period of 5 days(5). The rate constant for the vapor-phase reaction of Oxalic acid (OXALIC ACID, oksalik asit) with photochemically produced hydroxyl radicals can be estimated to be 7.2X10-14 cu cm/molecule-sec at 25 °C which corresponds to an atmospheric half-life of about 223 days at an atmospheric concn of 5X10+5 hydroxyl radicals per cu cm(1,SRC). Acids are generally resistent to hydrolysis(4); therefore, Oxalic acid (OXALIC ACID, oksalik asit) is not expected to hydrolyze in aquatic environments. Based on dissociation constant values pKa1 and pKa2 of 1.25 and 4.28(1), respectively; Oxalic acid (OXALIC ACID, oksalik asit) is expected to exist as an ion under environmental conditions (pH 5-9). The aquatic oxidation rate for the reaction of hydroxyl radicals in water with the oxalate ion has been experimentally determined to be 7.7X10+6 L/mole-s at pH 6(1). Based on this rate and a hydroxyl radical concn of 1X10-17 mole/L in water under continuous sunlight(3), the half-life for the aquatic oxidation of Oxalic acid (OXALIC ACID, oksalik asit) can be estimated to be 285 yrs(SRC). Oxalic acid (OXALIC ACID, oksalik asit) may react slowly with OH in water, but it is removed rapidly by direct photolysis; the daytime persistence of Oxalic acid (OXALIC ACID, oksalik asit) is not expected to exceed a few hours(5). Based on an average experimental water solubility of 220,000 mg/L at 25 °C(1) and a regression derived equation(2), the Koc for undissociated Oxalic acid (OXALIC ACID, oksalik asit) can be estimated to be approximately 5. This Koc value indicates that Oxalic acid (OXALIC ACID, oksalik asit) will have very high mobility in soil(3); therefore, adsorption to soil and sediment may not be an important fate process. Based on pKa1 and pKa2 values of 1.25 and 4.28(4) respectively, Oxalic acid (OXALIC ACID, oksalik asit) will exist primarily as the oxalate ion under environmental conditions (pH 5-9). No experimental data are available to determine whether the oxalate ion will adsorb to sediment or soil more strongly than its estimated Koc value indicates(SRC).
OXONE


Oxone (also known as MPS, KMPS, potassium monopersulfate, Potassium peroxymonosulfate, potassium caroate, the trade names Caroat and Oxone, and as a non-chlorine shock in the pool and spa industry) is widely used as an oxidizing agent. It is the potassium salt of peroxymonosulfuric acid. The triple salt 2KHSO5·KHSO4·K2SO4 (known by the trade name Oxone) is a form with higher stability. The standard electrode potential for this compound is 1.81 V with a half-reaction generating the hydrogen sulfate 
Oxone is also used as a wet strength resin paper repulping aid, metal surface treatment agent, selective oxidizer in chemical synthesis, wool shrink proofing treatment, wastewater treatment and odor control agent.

CAS NO: 10058-23-8
EC NO: 233-187-4

IUPAC NAMES: 
Potassium peroxysulfate
potassium;oxido hydrogen sulfate
pentapotassium bis((hydroperoxysulfonyl)oxidanide) hydrogen sulfate sulfate
pentapotassium bis(O-(hydroperoxysulfonyl)oxidanidolate) hydrogen sulfate sulfate
Pentapotassium bis(peroxymonosulphate) bis(sulphate)
pentapotassium bis(peroxymonosulphate) bis(sulphate)
pentapotassium bis(peroxymonosulphate) bis(sulphate)
Potassium peroxymonosulfate
potassium (hydroperoxysulfonyl)oxidanide
Potassium hydrogenperoxomonosulphate
potassium hydrogenperoxomonosulphate
Potassium peroxymonosulphate
potassium peroxymonosulphate


SYNONYMS

potassium hydrogenperoxomonosulphate;Peroxymonosulfuric acid, monopotassium salt;potassium peroxymonosulfuric acid;Kaliumperoxomonosulfat;monopotassium peroxymonosulfurate;Hydroperoxysulfonyloxypotassium;Peroxosulfic acid O-potassium salt;Persulfuric acid hydrogen=potassium salt;Monopotassium peroxymonosulfate;Monopotassium persulfate;Potassium hydrogen peroxomonosulfate;Potassium peroxymonosulfate;ChanGuo potassium hydrogen sulfate;Potassium peroxymonosulfate,>98%;PMPS;POTASSIUM PEROXOMONOSULFATE;POTASSIUM PEROXOMONOSULFATE COMPOUND;POTASSIUM MONOPERSULFATE;POTASSIUM MONOPERSULFATE TRIPLE SALT;POTASSIUM MONOPERSULPHATE TRIPLE SALT;OXONE(TM);OXONE(TM), MONOPERSULFATE;OXONE(TM), MONOPERSULFATE COMPOUND;OXONE;OXONE MONOPERSULFATE COMPOUND;OXONE(R), MONOPERSULFATE COMPOUND;Peroxymonosulfuricacid,monopotassiumsalt,mixturewithdipotassiumsulfateandpotassiumhydrogensulfate;potassiumperoxymonosulfatesulfate,(2khso5.khso4.k2so4);'CARO'S ACID';CAROAT;KMPS;Oxone(4.5% active oxygen);Potassium peroxomonosulfate, min. 4.5% active oxygen, extra pure;Oxone(rg~Potassium peroxymonosulphate;POTASSIUM MONOPERSULFATE TRIPLE SALT, ACTIVE OXGEN CA 4.7% (OXONE);Oxone\(rg~potassium)peroxymonosulfate;Oxone,monopersulfate;Potassium monoperoxysulfate;Potassium peroxymonosulfate sulfate (K5HSO3(O2)2(HSO4)(SO4));POTASSIUMPEROXYMONOSULPHATE;Oxone(R), monopersulfate (Potassium peroxymonosulfate);Potassium Peroxymonosulfate [>45%(T) as KHSO5];Potassium peroxomonosulfate,extra pure,min. 4.5% active oxygen;Oxone, monopersulfate (Potassium peroxymonosulfate);Caro's acid Potassium peroxymonosulfate, Oxone;Potassium Peroxomonosulfate Compound,min4.5% active oxygen;Caros acid, Oxone(R), Potassium peroxymonosulfate;Potassium monopersulphate triple salt, active oxygen ca 4.7%;PotassiuM peroxyMonosulfate sulfate (K5(HSO5)2(HSO4)(SO4));oxido hydrogen sulfate;tetrapotassium;Potassium Peroxymonosulfate [> ca. 45%(T) as KHSO5];PotassiuM peroxoMonosulfate, 4.5% active oxygen;Potassium peroxymonosulfonate;Potassium peroxomonosulfate, for synthesis, 4.5% active oxygen;PotassiumPeroxomonosulphate(Oxone);Potassium peroxymonosulfate,Active Oxygen≥4.5%;Potassium hydrogen monopersulfate;Potassium peroxymonosulfate joyce;OXONE, MONOPERSULFATE COMPOUNDOXONE, MONOPERSULFATE;COMPOUNDOXONE, MONOPERSULFATE COMPOUND;Potassiumhydrogenperoxymonosulfate;PotassiuM 3-sulfotrioxidan-1-ide;PotassiuM Monopersulfate coMpound;Oxone , potassium monopersulfate;potassium peroxymonopersulfate;Oxone|r, Monopersulfate;Potassium monoperoxysulfate OXONE(R);POTASSIUM HYDROGEN MONOPERSULFATE FOR SY;PotassiuM peroxyMonosulfate,Monopersulfate coMpound;Potassium monoperoxysulfate OXONE;Potassium PeroxomonosuL;Potassium peroxymonosulfate triple salt;Potassium monopersulfate (Oxone);Potassium hydrogen monopersulfate for synthesis;potassiumperoxymonosulfatesulfate(k5h3(so3(o2))2(so4)2);PotassiumMonopersulphate,ActiveComponent42%Min;Potassium Monopersulphate, Active Component 42%Min, Cas;Potassium peroxymonosulfate sulfate (K5HSO3(O2)SO3(O2)(HSO4)2);CAROAT (POTASSIUM MONOPERSULFATE);Pentakalium-bis(peroxymonosulfat)-bis(sulfat);Potassium Monopersulfate Sulfate;Pentapotassium bis(peroxymonosulphate) bis(sulphate);Potassium peroxymonosulfate;Potassium peroxymonosulfate sulfate;POTASSIUM CAROATE;Oxone PS-16;Potassium monopersulfate triple salt,42.8-46%;Potassium peroxymonosulfat;Potassium perbisulfate;Potassiummonopersulfatetriplesal;10058-23-8;Potassium hydrogen dioxidan-2-idesulfonate (1:1:1);POTASSIUM PEROXOSULFATE;Potassium sulfodioxidanide;Sulfodioxidanide de potassium;potassium (hydroperoxysulfonyl)oxidanide;dipotassium dioxidan-2-idesulfonate
37222-66-5;Potassium Peroxomonosulfate;Potassium monopersulfate triple salt;MFCD00040551;Oxone, monopersulfate;DTXSID8051415,OXONE(R), monopersulfate compound;AKOS015912003;AKOS030228420;SC-26713;FT-0697154;O0310;Potassium monopersulfate triple salt, >=47% KHSO5 basis;pentapotassium;hydrogen sulfate;oxido hydrogen sulfate;sulfate

What is Oxone?
Oxone is an inorganic chemical compound. It is primarily used for the treatment of wastewater. Potassium monopersulfate occurs as white crystals or powder with hygroscopic properties.
Oxone is exceedingly hygroscopic and is readily soluble in water to form the monopersulfate salts.
It has very low solubility in organic solvents, but excellent solubility in acids and aqueous solutions of acids and bases.
Oxone is known for its ability to convert hypochlorite ion into free chlorine. It also produces free chlorine without oxidizing ammonia.
Oxonee can be used to control pH fluctuations in water treatment systems.
Potassium monopersulfate for swimming pools. Potassium monopersulfate is frequently used by swimming pool owners to make chlorination water.
Potassium monopersulfate is also used to treat industrial wastewater.
In swimming pools, it is an effective oxidizer for controlling algae. It also helps prevent the formation of precipitates that can cloud the water.

Benefits of Oxone
The benefits of Oxone include reducing phosphates and chemical use, stabilizing pH in a pool, eliminating algae. It also increases circulation, which saves energy. As a result, pools using Oxone have increased clarity, and decreases the likelihood of chemical and odor problems. 
Oxone is not the same as the Chlorine you are used to using. Discretely, Oxone is similar to bleach, but it is not a typical bleach product. To determine advantages in your pool, you must first understand the chemical formula. Because Oxone is a salt, it has a chemical formula containing Potassium. Other ingredients, such as Oxygen, and Sulfur (Sulfur is the "E" in Oxone) are added. Using this formula, the official chemical name for Oxone is Potassium Peroxymonosulfate, and if was not derived from bleach, it would be considered a bleach product.


Reactions
MPS is a versatile oxidant. It oxidizes aldehydes to carboxylic acids; in the presence of alcoholic solvents, the esters may be obtained. Internal alkenes may be cleaved to two carboxylic acids (see below), while terminal alkenes may be epoxidized. Sulfides give sulfones, tertiary amines give amine oxides, and phosphines give phosphine oxides.
Illustrative of the oxidative power of this salt is the conversion of an acridine derivative to the corresponding acridine-N-oxide.

MPS will also oxidize sulfide to a sulfone with 2 equivalents. With one equivalent the reaction converting sulfide to sulfoxide is much faster than that of sulfoxide to sulfone, so the reaction can conveniently be stopped at that stage if so desired.

MPS can also react with ketones to form dioxiranes, with the synthesis of dimethyldioxirane (DMDO) being representative. These are versatile oxidising agents and may be used for the epoxidation of olefins. In particular, if the starting ketone is chiral then the epoxide may be generated enantioselectively, which forms the basis of the Shi epoxidation.

Uses
Swimming Pools
Oxone can be used in swimming pools to keep the water clear, thus allowing chlorine in pools to work to sanitize the water rather than clarify the water, resulting in less chlorine needed to keep pools clean. One of the drawbacks of using Oxone in pools is it can cause the common DPD #3 water test for combined chlorine to read incorrectly high. Moreover, by-products can be formed during the peroxymonosulfate treatment, which are sometimes even more toxic than the original contaminants.

The composition of the oxidizing agent Oxone is 2KHSO5.KHSO4.K2SO4. The active component potassium monopersulfate (KHSO5, potassium peroxomonosulfate) is a salt from the Caro´s acid H2SO5.

The use of Oxone has increased rapidly. Reasons for this are the stability, the simple handling, the non-toxic nature, the versatility of the reagent and the low costs.

As long as Oxone is stored under dry and cool conditions, it loses about 1% activity per month under release of oxygen and heat. Decomposition to SO2 and SO3 takes place under the influence of heat (starting at 300°C). 

Acidic, aqueous solutions of the pure reagent in distilled water are relatively stable. The stability reaches a minimum at pH 9, where the mono anion (HSO5-) has the same concentration as the dianion (SO52-). Iron, cobalt, nickel, copper, manganese and further transition metals can catalyze the decay of Oxone in solution.

The following secondary reactions should be avoided: 
Halides can be oxidized to halogens (e.g. chloride to chlorine), cyanides react with Oxone under release of hydrogen cyanide, "heavy" transition metals (Cu, Mn, Co, Ni) and their salts lead to the decomposition of Oxone under release of oxygen.

Whenever strong oxidation is needed Oxone monopersulfate compound is the right choice for a wide variety of industrial and consumer applications.

Also known as KPMS or potassium peroxymonosulfate, Oxon is a white granular product that provides non-chlorinated oxidation in a wide variety of applications. It's safe to use in a production facility, in the environment, and even as a key ingredient in your denture cleaner!

Most notably, the active ingredient allows for efficient non-chlorinated oxidation as a pool shock, allowing less use of sanitizer and leaves the pool clean, clear, and swimmable nearly immediately. The powerful oxidation as a microetchant in printed circuit boards improves process control in multi-step copper etching with a predictable rate to completion. KPMS is of particular interest in metal plating and mining as it safely, economically, and conveniently oxidizes cyanide in waste streams. These key benefits of rapid rate of reaction as well as non-chlorinated oxidation has allowe repulping papers with wet strength resins to move their processes to greener methods without sacrificing production time.

Oxone monopersulfate compound is a white, granular, freeflowing peroxygen that provides powerful non-chlorine oxidation for a wide variety of industrial and consumer uses.

Application areas:

• Swimming pool shock oxidizer
• Printed wiring board microetchant
• Repulping aid for wet-strength-resin destruction
• Odor control agent in wastewater treatment
• Bleach component in denture cleanser and laundry formulations
• Activator in antimicrobial compositions
• Other uses where its combination of powerful oxidation and relative safe handling properties are of value 

The active ingredient of Oxone, commonly known as potassium monopersulfate, which is present as a component of a triple salt with the formula 2KHSO5·KHSO4·K2SO4 potassium hydrogen peroxymonosulfate sulfate The oxidizing power of Oxone is derived from its peracid chemistry; it is the first neutralization salt of peroxymonosulfuric acid H2SO5.

Stability
Oxone is a very stable peroxygen in the solid state and loses less than 0.5% (relative) of its activity per month when stored under recommended conditions. However, like all other peroxygens, Oxone undergoes very slow disproportionation with the liberation of heat and oxygen gas. If a decomposition is associated with high temperature, decomposition of the constituent salts of Oxone may generate sulfuric acid, sulfur dioxide, or sulfur trioxide.
The stability is reduced by the presence of small amounts of moisture, alkaline chemicals, chemicals that contain water of hydration, transition metals in any form, and/or any material with which Oxone can react. Since the decomposition of Oxone is exothermic, the decomposition can self-accelerate if storage conditions allow the product temperature to rise.

The stability is adversely affected by higher pH, especially above pH 7. A point of minimum stability exists at about pH 9, at which the concentration of the mono-anion HSO5 - is equal to that of the. Cobalt, nickel, and manganese are particularly strong catalysts for the decomposition of Oxon in solution; the degree to which catalysis occurs is dependent on the concentrations of Oxone and of the metal ion. 

Product Grades
Oxone is available in both granular and liquid forms. By screening, grinding, or compaction/granulation processing, several granular grades are produced which differ in particle size distribution. Liquid products are specially-formulated to optimize active oxygen stability. 

Solubility
Oxone is highly and readily soluble in water. At 20°C (68°F), the solubility of Oxone in water is >250 g/L. At concentrations above saturation, potassium sulfate will precipitate, but an additional active component, Oxone, will remain in the solution.

Oxone is also called MPS, or Potassium Monopersulfate. MPS does not contain chlorine, as it is a potassium salt of peroxymonosulfuric acid.

Oxone is marketed as a popular non-chlorine based shock. Its primary swimming pool use is to oxidize any contaminants in the water, leaving chlorine or bromine sanitizers already present in the water to focus on sanitizing the water.

There are several advantages of using Oxone in swimming pools:

Since there is no chlorine added, the swimming pool is available for swimming immediately after the shock has dissolved and time has been given for the oxidation process to complete. Oxidation is usually complete in about one to two hours, versus eight or more hours for chlorine-based shock.
Chlorine use can decrease, as less chlorine is needed to oxidize organic and inorganic matter in the pool.
There are several disadvantage of using Oxone as a shock treatment in swimming pools

Chlorine tests can read incorrectly high in DPD or FAS-DPD tests, as the non-chlorine shock may show up as combined chlorine in these tests.
More expensive than chlorine-based shock products.
If adequate chlorine sanitizer levels are not maintained, then adding non-chlorine shock like MSP may increase the risk of algae growth due to possible nitrate creation from adding MPS.

Chemical Properties
white crystalline powder

Uses
PCB metal surface treatment chemical and water treatment etc.

Purification Methods
This is a stable form of Caro's acid and should contain >4.7% of active oxygen. It can be used in EtOH/H2O and EtOH/AcOH/H2O solutions. If active oxygen is too low. it is best to prepare it afresh from 1mole of KHSO5, 0.5mole of KHSO4 and 0.5mole of K2SO4. 

Used for oral cavity cleaning, swimming pool and hot spring water disinfection, pulp bleaching

1. Disinfection of family living environment 
Novel coronavirus can be rapidly killed by 1:100 dilution
1:400 dilution can kill H5N1 avian influenza virus
Can kill common bacteria, fungi, viruses (influenza virus Noah virus)
It is used for washing hands and disinfecting, spraying the floor of hotels, dining halls, vehicles, colleges and cinemas, and disinfecting the walls and other crowded places

2. Disinfection of animal breeding environment
African swine fever can be killed by 1:400 dilution for 1min
Disinfect and deodorize, improve air quality

3. Low temperature cold chain disinfection
The antifreeze spray can be sterilized at minus 18 degrees Celsius and minus 40 degrees Celsius by adding the diluted water solution of antifreeze

4. Repair damaged soil, improve river environment, sewage treatment, aquaculture, etc

Product Functions Applications:

Active indication: This product's aqueous solution oxidation state is pink, the reduced state is colorless, easy for users to judge the effectiveness of a disinfectant, avoid ineffective disinfection.Multi-function, multi-purpose:
Applicable to a variety of places disinfection: can be used for farm office, pet operating room, clinic room, canteen, dormitory and other disinfection.
Suitable for disinfection of various methods: can be used for environment, clothing, rubber boots, water supply system, equipment, apparatus, washbasin disinfection.
One operation, multiple harvests: in the disinfection process, it can effectively reduce the odor and improve the air quality while suppressing and killing the pathogenic microorganisms.

When chlorine is used to oxidize pool water, it reacts with bather and other organic wastes, which are primarily nitrogen-based compounds, to form chloramines. These by-products have a foul odor and are considered unpleasant. Oxone also reacts with the nitrogen-based compounds introduced by bathers, but because it does not contain chlorine, it does not form chloramines in its oxidation process. 

Actually, It reacts very slowly with ammonia. Oxone's lifetime in pool water depends on the quantity of oxidizable material. All things being equal, however, it is not nearly as sensitive to sunlight as chlorine. Unstabilized chlorine is more than 90 percent decomposed within a few hours, while Oxone is about 23 percent decomposed per hour, according to Wojtowitc.

One of its greatest advantages is that bathers can reenter the water a short time after it has been added — typically about 30 minutes.

Oxone dissolves quickly and does not fade liners. It works well with chlorine, arguably allowing chlorine to work more efficiently as a sanitizer. Using Oxone is highly recommended for indoor pools, where there is no sunlight or wind to help break down and carry away combined chlorine. For indoor pools, shocking with Oxone is recommended about once a week.

The active ingredient allows for efficient non-chlorinated oxidation as a pool shock, allowing less use of sanitizer and leaves the pool clean, clear, and swimmable nearly immediately. The powerful oxidation as a micro etchant in printed circuit boards improves process control in multi-step copper etching with a predictable rate to completion. 
Oxone is of particular interest in metal plating and mining as it safely, economically, and conveniently oxidizes cyanide in waste streams. These key benefits of the rapid rate of reaction as well as non-chlorinated oxidation allow repulping papers with wet strength resins to move their processes to greener methods without sacrificing production time.

Overview

Oxone is a non-chlorine oxidizer and is used as an oxidizing agent in the pool and spa industry. The active ingredients of Oxone are potassium sulfate, potassium monopersulfate, and potassium bisulfide. Oxone is popularly known by its trade names such as Oxone, Caroat, and non-chlorine shock. Oxone has a similar magnitude of oxidation potential as chlorine and does not form chloramines during its oxidation process. In addition, it is highly soluble in water and provides high microbiological effectiveness and powerful non-chlorine oxidation for various industrial applications. Oxone is widely used as a disinfectant in wastewater treatment, swimming pools, etc., for reducing the organic and microbe content of the water. It is used as a cleaning agent in printed circuit boards, as an oxidizer agent for treating wool, and as an auxiliary agent for organic chemicals. In addition, it finds application in paper recycling, carpet browning, and oral hygiene formulations.
Oxone offers low shrink resistance during the wool as well as laundry bleaching processes.
Oxone aids in the quick cleaning of pools and leads to less usage of sanitizer due to its strong non-chlorinated oxidation potential. 

Application Areas

•Oxone is used in the formulations of Denture cleaners. Oxone is the effective main ingredient in Cleaning tablets for dentures.
•Oxone is used in disinfectants: Oxone is suitable for use for chlorine-free disinfection or purification of swimming pool water and spas.
•Prevention of chlorine acne and eye irritation.
•Approved for oxidative drinking water treatment.
•Oxone is a bleaching agent: Oxone has a bleaching effect comparable to that of organic peracids
•Oxone has a biocidal effect: Oxone is suitable as an additive to acidic cleaning agents with bleaching and disinfectant effect.
•Oxone works very well in effluent treatment: Oxidative treatment of problematic effluents; sulfide oxidation, nitrite oxidation, and cyanide detoxification.
•Plaster additive: The addition of Oxone leads to the generation of oxygen and improved product characteristics (e.g. thermal insulation, water absorbency, mechanical properties).
•Metal treatment: Micro Etchant: Oxone is used for etching printed circuit boards.

•Odor control agent
•Paper industry
•Pulp and paper recycling
•Professional Disinfection
•Personal Care
•Pool & Spa
•Pool & Spa Shock Oxidizer
•Pulp & paper repulping aid
•rendering plants
•Laundry Bleach Ingredient
•Material protection
•Selective oxidizer in chemical synthesis
•Food industry
•Chemical Industry
•Disinfection of drinking water
•Denture cleanser bleach additive
•Disinfection
•Effluent treatment agent
•Electronics Industry
•Surface Treatment (electronic industry)
•Waste water treatment agent
•Textile industry
•Wool treatment
•Washing- and cleaning agent industry
•Wastewater treatment
•Water Treatment
•Metal surface treatment
•Laundry
•Animal Hygiene
•Chemical synthesis
•Cosmetics


Treatment efficiency of Oxone compound, a new kind of oxidation reagent, on killing algae and bacteria and the effect of influence factors, such as dosage, contact time and temperature are also discussed. Oxone appropriate for killing algae and bacteria in landscape water, dosage and contact time are the major influence factors. The contact time should be longer than 20min and the algicidal rate is higher when the temperature is above 20°C.

The appropriate usage of disinfectants is critical for establishing a successful sanitation program. Because not all disinfectants are effective against major pathogens, different families of disinfectants that target specific microorganisms should be considered. For instance, several bacteria and viruses are sensitive to phenols; however, most bacteria are also sensitive to quaternary ammonium, iodophors, paracetic acid, glutaraldehydes, and cresols. Therefore, there is no single disinfectant reported in the literature that would be efficacious against a wide spectrum of etiological agents that economically impact diseases in animal farms. 

Oxone is the potassium salt of peroxymonosulfuric acid, which is widely used as an oxidizing agent. 
Oxone , contain potassium monopersulfate for their main ingredient, as a non-chlorine shock agent; Oxone breaks the chlorine–ammonia bond formed when chlorine combines with ammonia, without increasing the chlorine level of the swimming pool; hence, Oxone can be used in swimming pools to keep the water clear. 

Generally, bacteria and viruses are highly resistant to disinfectants contained in bio-environmental constituents such as feces, saliva, or vomitus.
Oxone can inactivate bacteria and viruses either in the absence or presence of organic materials, and it is useful as an alternative disinfectant, especially for biosecurity enhancement aiming to control bacteria and viruses that contaminate animal farms and hospitals.
The most popular sanitizers used in pools and spas—chlorine and bromine—function both as biocides (they kill bacteria and other potentially harmful microbes) and oxidizers (they "burn up" unpleasant organic contaminants like bather wastes, dust, and pollen). 
The periodic addition of a supplemental oxidizer—a "shock treatment"—can free up the sanitizer for its highest purpose, killing germs. 

Potassium monopersulfate is a powerful oxidizer with several attractive properties.
Properly applied, it will prevent the formation of new combined chlorine by eliminating organics in the water without creating more combined chlorine. Bathers can re-enter the water after waiting a short period of time (usually one hour) to allow proper mixing and circulation. The reaction byproducts are harmless sulfate salts.

After traditional shocking, then use the Oxone product to prevent further combined chlorine development.

Oxone products are particularly useful in indoor environments where proper air exchange rates may be nonexistent. Monopersulfate does not cause odors or irritation. 

OXONE
OXONEPotassium peroxymonosulfate (also known as MPS, KMPS, potassium monopersulfate, potassium caroate, the trade names Caroat and Oxone, and as non-chlorine shock in the pool and spa industry[2][3][4]) is widely used as an oxidizing agent. It is the potassium salt of peroxymonosulfuric acid.The triple salt 2KHSO5·KHSO4·K2SO4 (known by the tradename Oxone) is a form with higher stability.[5] The standard electrode potential for this compound is +1.81 V with a half reaction generating the hydrogen sulfate (pH=0).[6]HSO5− + 2 H+ + 2 e− → HSO4− + H2OReactionsMPS is a versatile oxidant. It oxidizes aldehydes to carboxylic acids; in the presence of alcoholic solvents, the esters may be obtained.[7] Internal alkenes may be cleaved to two carboxylic acids (see below), while terminal alkenes may be epoxidized. Sulfides give sulfones, tertiary amines give amine oxides, and phosphines give phosphine oxides.Illustrative of the oxidative power of this salt is the conversion of an acridine derivative to the corresponding acridine-N-oxide.[8]Acridine oxidation by oxone, standardized.pngMPS will also oxidize a sulfide to a sulfone with 2 equivalents.[9] With one equivalent the reaction converting sulfide to sulfoxide is much faster than that of sulfoxide to sulfone, so the reaction can conveniently be stopped at that stage if so desired.Oxidation of an oragnic sulfide by oxone.pngMPS can also react with ketones to form dioxiranes, with the synthesis of dimethyldioxirane (DMDO) being representative. These are versatile oxidising agents and may be used for the epoxidation of olefins. In particular, if the starting ketone is chiral then the epoxide may be generated enantioselectively, which forms the basis of the Shi epoxidation.[10]The Shi epoxidationUsesSwimming PoolsOxone can be used in swimming pools to keep the water clear, thus allowing chlorine in pools to work to sanitize the water rather than clarify the water, resulting in less chlorine needed to keep pools clean.[11] One of the drawbacks of using Oxone in pools is it can cause the common DPD #3 water test for combined chlorine to read incorrectly high.[12] Moreover, byproducts can be formed during the peroxymonosulfate treatment, which are sometimes even more toxic than the original contaminants.[13]Laboratory DisinfectionOxone is the main active ingredient in Virkon, which is used for disinfection of laboratory equipment.OxoneKHSO5.pngNamesIUPAC namePotassium peroxysulfateOther namesCaroatOxonepotassium monopersulfateMPSIdentifiersCAS Number 10058-23-8 ☒37222-66-5 (triple salt, see text) ☒3D model (JSmol) Interactive imageChemSpider 8053100 ☒ECHA InfoCard 100.030.158 Edit this at WikidataPubChem CID 11804954PropertiesChemical formula KHSO5Molar mass 152.2 g/mol (614.76 as triple salt)Appearance off-white powderSolubility in water decomposesOxone, Potassium peroxomonosulfateThe composition of the oxidizing agent Oxone® is 2KHSO5.KHSO4.K2SO4. The active component potassium monopersulfate (KHSO5, potassium peroxomonosulfate) is a salt from the Caro´s acid H2SO5.The use of Oxone has increased rapidly. Reasons for this are the stability, the simple handling, the non-toxic nature, the versatility of the reagent and the low costs.As long as Oxone is stored under dry and cool conditions, it loses about 1% activity per month under release of oxygen and heat. Decomposition to SO2 and SO3 takes place under the influence of heat (starting at 300°C). Acidic, aqueous solutions of the pure reagent in distilled water are relatively stable. The stability reaches a minimum at pH 9, where the mono anion (HSO5-) has the same concentration as the dianion (SO52-). Iron, cobalt, nickel, copper, manganese and further transition metals can catalyze the decay of Oxone in solution.The following secondary reactions should be avoided: Halides can be oxidized to halogens (e.g. chloride to chlorine), cyanides react with Oxone under release of hydrogen cyanide, "heavy" transition metals (Cu, Mn, Co, Ni) and their salts lead to the decomposition of Oxone under release of oxygen.OXONE™ MONOPERSULFATE COMPOUNDWhenever strong oxidation is needed Oxone™ monopersulfate compound is the right choice for a wide variety of industrial and consumer applications.Oxone™ is available in both granular and liquid forms. By screening, grinding, or compaction/granulation processing, several granular grades (Regular, PS16, and CG) are produced which differ in particle size distribution. Liquid products are specially formulated to optimize active oxygen stability.Oxone®Monopersulfate CompoundGENERAL TECHNICAL ATTRIBUTESOxone® monopersulfate compound is a white, granular, freeflowing peroxygen that provides powerful non-chlorine oxidation for a widevariety of industrial and consumer uses.Applications• Swimming pool shock oxidizer• Printed wiring board microetchant• Repulping aid for wet-strength-resin destruction• Odor control agent in wastewater treatment• Bleach component in denture cleanser and laundry formulations• Activator in antimicrobial compositions• Other uses where its combination of powerful oxidation and relativesafe handling properties are of valueThe active ingredient of Oxone® is potassium peroxymonosulfate, KHSO5(CAS 10058-23-8), commonly known as potassium monopersulfate,which is present as a component of a triple salt with the formula2KHSO5·KHSO4·K2SO4 potassium hydrogen peroxymonosulfate sulfate(5:3:2:2), [CAS 70693-62-8]).The oxidizing power of Oxone® is derived from its peracid chemistry; it isthe first neutralization salt of peroxymonosulfuric acid H2SO5 (also knownas Caro’s acid).Standard PotentialThe standard electrode potential (E°) of KHSO5 is given by the followinghalf cell reaction:The thermodynamic potential is high enough for many room temperatureoxidations including:• Halide to active halogen• Oxidation of reduced sulfur and nitrogen compounds• Cyanide to cyanate• Epoxidation of olefins• Baeyer-Villigar oxidation of ketones• Copper metal to cupric ion• Ferrous to ferric ion• Manganous to manganic ionStabilityOxone® is a very stable peroxygen in the solid stateand loses less than 0.5% (relative) of its activity per month when stored under recommended conditions. However, like all other peroxygens, Oxone® undergoes very slow disproportionation with the liberation of heat and oxygen gas. If a decomposition is associated with high temperature, decomposition of the constituent salts of Oxone® may generate sulfuric acid, sulfurdioxide, or sulfur trioxide. The stability is reduced by the presence of small amounts of moisture, alkaline chemicals, chemicals that contain water of hydration, transition metals in any form, and/or any material with which Oxone® can react. Since the decomposition of Oxone® is exothermic, the decomposition can self-accelerate if storage conditions allow the product temperature to rise.Product GradesOxone® is available in both granular and liquid forms. Byscreening, grinding, or compaction/granulation processing, several granular grades (Regular, PS16, and CG) are produced which differ in particle size distribution (Table 3). Liquid products are specially-formulated to optimize active oxygen stability.Oxone PS-16Oxone PS-16 known as KPMS or potassium peroxymonosulfate. Oxone is a white granular product that provides non-chlorinated oxidation in a wide variety of applications such as: industrial processing, pulp and paper production, waste water treatment, industrial and household cleaning, oil and gas production, and denture cleaning.Product OverviewOxone PS-16 made provides a green method for industrial and consumer oxidation needs. Oxone™ PS-16 is a non-chlorinated solution to oxidation needs and is highly stable and easy to use in solution.Product SpecificationsTriple salt molecular weight: 614.7Active oxygen min: 4.5%Active oxygen typical analysis: 4.7%Active oxygen theoretical: 5.2%Active component: KHSO5KHSO5 min: 42.8%KHSO5 typical: 44.7pH, at 25°C of 1% solution: 2.3pH, at 25°C of 3% solution: 2.0Primary Chemistry: Potassium Monoper-Sulfate, KHSO5Features & BenefitsNon-chlorinate oxidizer in free flowing solid form.High water solubility at ambient temperatures.Solution stability (even under acidic conditions).Low toxicity when compared to chlorinated. options and other oxidizers.No oxidizer label required.Highly predictable etch rate for production of micro electronics.Problems SolvedChlorinated oxidizers are not desired. Looking for a greener and easier to handle oxidizing agentScale formation and white precipitation caused by calcium hypochlorites and solid form oxidizersOxidizer label required with the use of bleach in formulationsLimited to no control over etching rate in the production of electronics and microelectronicsPool turns dark or green due to algae bloomHigh level of free and combined chlorine in pool and spa applicationsFrequent cleaning or replacement of paper mill felts is required or of felts in paper millsInsufficient bleaching in denture cleansers, textiles, and cleaning applicationsPool & Spa shock treatmentPrinted circuit board microetchantRepulping aid for wet-strength resin destructionOxidizing agent for Felt WashOdor control agent in wastewater treatmentCyanide destruction in miningBleach functionality for denture cleanser, textiles, and cleaning applicationsActive ingredient for disinfection applicationsMolecular Weight of Oxone: 614.8 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18)Hydrogen Bond Donor Count of Oxone: 3 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)Hydrogen Bond Acceptor Count of Oxone: 18 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)Rotatable Bond Count of Oxone: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)Exact Mass of Oxone: 613.638755 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18)Monoisotopic Mass of Oxone: 613.638755 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18)Topological Polar Surface Area of Oxone: 365 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)Heavy Atom Count of Oxone: 27 Computed by PubChemFormal Charge of Oxone: 0 Computed by PubChemComplexity of Oxone: 239 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)Isotope Atom Count of Oxone: 0 Computed by PubChemDefined Atom Stereocenter Count of Oxone: 0 Computed by PubChemUndefined Atom Stereocenter Count of Oxone: 0 Computed by PubChemDefined Bond Stereocenter Count of Oxone: 0 Computed by PubChemUndefined Bond Stereocenter Count of Oxone: 0 Computed by PubChemCovalently-Bonded Unit Count of Oxone: 9 Computed by PubChemCompound of Oxone Is Canonicalized Yes
OXYTOCIN
SYNONYMS Alpha-hypophamine;Atonin O;Atonin O, 3-L-isoleucine-8-L-leucine-;Di-sipidin;Endopituitrina;Glycinamide, L-cysteinyl-L-tyrosyl-L-isoleucyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-leucyl-, cyclic (1→6)-disulfide;Hyphotocin;Intertocine S;L-Cysteinyl-L-tyrosyl-L-isoleucyl-L-glutaminyl-L-asparaginyl-L-cysteinyl-L-prolyl-L-leucylglycinamide cyclic (1→6)-disulfide;Nobitocin S;Orasthin;oxitocina (Spanish) ;Oxystin;Oxytocin (English, German);Oxytocine (French) CAS NO:50-56-6
OZOCERITE WAX
earth wax; ozocerite; ozokerite wax; Hydrocarbon waxes (petroleum) CAS NO: 64742-33-2
PAC (Polyaluminium Chlorohydrate)
Polyaluminum chlorohydrate; Polyaluminum hydroxychloride CAS NO:1327-41-9
PALATINOL IC
Palatinol IC представляет собой пластификатор без запаха с молекулярной формулой C16H22O4.
Palatinol IC представляет собой эфир фталевой кислоты, который представляет собой диэфир, полученный формальной конденсацией карбоксильных групп фталевой кислоты с двумя молекулами изобутанола.
Palatinol IC принадлежит к классу органических соединений, известных как эфиры бензойной кислоты.

Номер CAS: 84-69-5
Номер ЕС: 201-553-2
Химическая формула: C16H22O4.
Молярная масса: 278,348 г·моль−1

Бис(2-метилпропил)бензол-1,2-дикарбоксилат, Диизобутилфталат, Ди-изобутилфталат, Ди(изобутил)фталат, Диизобутиловый эфир фталевой кислоты, 1,2-бензолдикарбоновая кислота, Бис(2-метилпропил) )эфир, ди(изобутил)1,2-бензолдикарбоксилат, изобутил-О-фталат, DIBP, DiBP, Palatinol IC, ДИИЗОБУТИЛФТАЛАТ, 84-69-5, DIBP, Palatinol IC, изобутилфталат, диизобутиловый эфир фталевой кислоты, гексаплаз M /1B, Kodaflex DIBP, диизобутилфталат, фталевая кислота, диизобутиловый эфир, ди(изобутил)фталат, 1,2-бензолдикарбоновая кислота, бис(2-метилпропиловый) эфир, диизобутиловый эфир киселина фталова, NSC 15316, бис (2-метилпропил)фталат, изобутил-о-фталат, 1,2-бензолдикарбоновая кислота, 1,2-бис(2-метилпропил) эфир, DTXSID9022522, ди-2-метилпропилфталат, ди-1-бутилфталат (DIBP) , IZ67FTN290, CHEBI:79053, NSC-15316, Hatcol DIBP, DTXCID602522, бис(2-метилпропиловый) эфир 1,2-бензолдикарбоновой кислоты, ди(2-метилпропиловый) эфир 1,2-бензолдикарбоновой кислоты, бис- изобутиловый эфир, CAS-84-69-5, SMR000112470, диизобутилфталат, CCRIS 6193, HSDB 5247, AI3-04278 (USDA), EINECS 201-553-2, BRN 2054802, UNII-IZ67FTN290, AI3-04278, изобутил фталат (VAN), бис(2-метилпропил)бензол-1,2-дикарбоксилат, EC 201-553-2, диизобутилфталат, 99%, SCHEMBL42787, 4-09-00-03177 (Справочник Beilstein), MLS000516002, MLS002152902 , BIDD:ER0640, 1, бис(2-метилпропил) эфир, CHEMBL1370662, HMS2269D07, NSC15316, Tox21_202429, Tox21_300612, MFCD00026480, AKOS015837516, диизобутилфталат (ACD/название 4.0), WL Н: 1Y1&1OVR BVO1Y1&1, NCGC00091360-01, NCGC00091360-02 , NCGC00091360-03, NCGC00091360-04, NCGC00254487-01, NCGC00259978-01, FT-0689059, NS00010605, P0298, Q162259, 1,2-бис(2-метилпропил)бензол-1,2-дикарбоксилат , J-503794, 1 Ди(2-метилпропил) эфир 2-бензолдикарбоновой кислоты, бис-изобутиловый эфир фталевой кислоты 10 мкг/мл в циклогексане, диизобутилфталат, сертифицированный эталонный материал, TraceCERT(R), 1,2-бензолдикарбоновая кислота, бис(2- метилпропиловый эфир, DIBP, ди(изобутил)фталат, диизобутилфталат, диизобутиловый эфир киселина фталова [Чехия], Hatcol DIBP, Hexaplas M/1B, изобутилфталат, Kodaflex DIBP, Palatinol IC, фталевая кислота, диизобутиловый эфир , Фталоилдихлорид, MFCD01861606, EINECS 201-553-2, Фталилхлорид, бис(2-метилпропил)бензол-1,2-дикарбоксилат, Фталевой дихлорид, 1,2-бензолдикарбонилдихлорид, тетрафталоилхлорид, Дихлорид фталевой кислоты, диизобутил 1, 2-бензолдикарбоксилат, 1,2-бензолдикарбоновая кислота, бис(2-метилпропил) эфир, ди-1-бутилфталат (ДИБФ), диизобутилфталат, фталоилхлорид, фталилдихлорид, бензол-1,2-дикарбонилдихлорид, фталевой хлорид, Диизобутиловый эфир 1,2-бензолдикарбоновой кислоты, бис(2-метилпропил) эфир 1,2-бензолдикарбоновой кислоты, AI3-04278, бисофлекс ДИБА, бисофлекс ДИБФ, ди(изобутил)1,2-бензолдикарбоксилат, ДИБФ (=диизобутилфталат) ), дипласт B, хаткол DIBP, гексаплас M 18, гексаплас M/1B, гексаплас MIB, изобутилфталат, jayflex DIBP, кодафлекс DIBP, моллан L, диизобутиловый эфир фталевой кислоты, вестинол IB), DBP, АРАЛДИТОВАЯ СМОЛА, бутилфталат, N -БУТИЛФТАЛАТ, дибутилфталат, дибутил-о-фталат, ди-н-бутилфталат, дибутилфталат (DBP), диизобутилфталат (DIBP), дибутиловый эфир фталевой кислоты, ди-н-бутиловый эфир фталевой кислоты, дибутилфталат, аббревиатура , ДИ-Н-БУТИЛОВЫЙ ЭФИР ФТАЛЕВОЙ КИСЛОТЫ, ФТАЛЕВАЯ КИСЛОТА, БИС-БУТИЛОВЫЙ ЭФИР, дибутилбензол-1,2-дикарбоксилат, ДИБУТИЛОВЫЙ ЭФИР О-БЕНЗОЛДИКАРБОКСИЛЬНОЙ КИСЛОТЫ, ди-н-бутиловый эфир бензол-1,2-дикарбоновой кислоты, 1, 2-Бензолдикарбоновая кислота, 1,2-бис(2-метилпропил) эфир, 1,2-Бензолдикарбоновая кислота, бис(2-метилпропил) эфир, 1,2-Бензолдикарбоновая кислота, ди(2-метилпропил) эфир, Бис(2) -метилпропил)фталат, ди-2-метилпропилфталат, DIBP, диизобутилфталевая кислота, Hexaplas M/1B, изобутилфталат,

Palatinol IC — органическое соединение, используемое в качестве пластификатора при производстве пластмасс и резины.
Palatinol IC представляет собой бесцветную маслянистую жидкость со слабым запахом.

Palatinol IC представляет собой эфир фталевой кислоты, который представляет собой тип химического соединения, полученного из фталевой кислоты.
Palatinol IC представляет собой прозрачную жидкость.

Palatinol IC представляет собой бесцветную маслянистую жидкость со слабым эфирным запахом.
Palatinol IC зарегистрирован в соответствии с Регламентом REACH и производится и/или импортируется в Европейскую экономическую зону в объеме ≥ 1 тонны в год.

Palatinol IC представляет собой эфир фталевой кислоты, который представляет собой диэфир, полученный формальной конденсацией карбоксильных групп фталевой кислоты с двумя молекулами изобутанола.
Palatinol IC представляет собой маслянистую бесцветную жидкость со слабым эфирным запахом.

Palatinol IC представляет собой пластификатор без запаха с молекулярной формулой C16H22O4.
Palatinol IC представляет собой эфир фталевой кислоты, который представляет собой диэфир, полученный формальной конденсацией карбоксильных групп фталевой кислоты с двумя молекулами изобутанола.

Palatinol IC растворим в этаноле, эфире, ацетоне и бензоле.
Palatinol IC принадлежит к классу органических соединений, известных как эфиры бензойной кислоты.
Это эфирные производные бензойной кислоты.

Palatinol IC получают путем этерификации изобутанола и фталевого ангидрида.
Palatinol IC представляет собой пластификатор без запаха и обладает превосходной термо- и светостойкостью.

Palatinol IC — самый дешевый пластификатор нитрата целлюлозы.
Palatinol IC имеет более низкую плотность и температуру замерзания, чем DBP.

Palatinol IC имеет свойства, аналогичные дибутилфталату, и может использоваться в качестве его заменителя.
Palatinol IC представляет собой маслянистую бесцветную жидкость со слабым эфирным запахом.

Palatinol IC плотнее воды.
Palatinol IC нерастворим в воде.

Palatinol IC представляет собой эфир фталевой кислоты, который представляет собой диэфир, полученный формальной конденсацией карбоксильных групп фталевой кислоты с двумя молекулами изобутанола.
Palatinol IC играет роль пластификатора, тератогенного агента и модулятора PPAR.

Palatinol IC представляет собой сложный эфир фталевой кислоты и диэфир.
Palatinol IC функционально связан с изобутанолом.

Palatinol IC представляет собой пластификатор без запаха и обладает превосходной термо- и светостойкостью.
Palatinol IC — самый дешевый пластификатор нитрата целлюлозы.
Palatinol IC имеет более низкую плотность и температуру замерзания, чем DBP (дибутилфталат, номер CAS: 84-74-2).

Palatinol IC может заменить дибутилфталат (DBP) в большинстве, если не во всех, применениях.
Поскольку Palatinol IC химически не связан с полимерной матрицей, он может выделять газ или выделяться при контакте с жидкостями и жиром.
В окружающей среде Palatinol IC разлагается относительно быстро.

Palatinol IC совместим с ПВХ.
Palatinol IC представляет собой эфир фталевой кислоты, имеющий структурную формулу C6H4(COOCH2CH(CH3)2)2.

Palatinol IC образуется путем этерификации изобутанола и фталевого ангидрида.
Когда дело доходит до выведения, Palatinol IC сначала превращается в гидролитический моноэфир моноизобутилфталат (МИБФ).

Основным путем выведения является моча, при этом экскреция с желчью отмечается в незначительных количествах.
Palatinol IC имеет более низкую плотность и температуру замерзания, чем родственное соединение дибутилфталат (DBP).

Palatinol IC может продаваться как в чистом виде, так и в виде компонента смесей с другими фталатными пластификаторами или химическими веществами.
Примерами являются диоктилфталат (DOP), диизононилфталат (DINP) или бис(2-этилгексил)фталат (DEHP).
Palatinol IC – это натуральный продукт, обнаруженный в Artemisia baldshuanica, Lythrum salicaria и других организмах, о которых имеются данные.

Использование Palatinol IC:
Palatinol IC используется потребителями, в изделиях, профессиональными работниками (широко распространенное применение), при составлении рецептур или переупаковке, на промышленных объектах и в производстве.
Palatinol IC используется в следующих продуктах: покрытиях, шпатлевках, шпаклевках, штукатурках, глине для лепки и полимерах.

Другие выбросы Palatinol IC в окружающую среду могут происходить при: использовании внутри помещений и при использовании на открытом воздухе, приводящем к попаданию в материалы или на них (например, связующее вещество в красках и покрытиях или клеях).
Выброс Palatinol IC в окружающую среду может происходить при промышленном использовании: при производстве изделий, составлении смесей и веществ в закрытых системах с минимальным выбросом.
Другие выбросы Palatinol IC в окружающую среду, вероятно, происходят в результате: использования внутри помещений, использования вне помещений, приводящего к включению в материалы или на них (например, связующего вещества в красках и покрытиях или клеях), использования вне помещений в долговечных материалах с высокой скоростью высвобождения. (например, шины, обработанные деревянные изделия, обработанные ткани и ткани, тормозные колодки в грузовиках или легковых автомобилях, шлифовка зданий (мосты, фасады) или транспортных средств (суда)) и использование внутри помещений с долговечными материалами с высокой скоростью выделения (например, выделение из ткани, текстиль при стирке, удалении внутренних красок).

Palatinol IC можно найти в сложных изделиях, не предназначенных для выпуска: транспортных средствах, машинах, механических устройствах и электрических/электронных изделиях (например, компьютерах, фотоаппаратах, лампах, холодильниках, стиральных машинах), а также электрических батареях и аккумуляторах.
Palatinol IC можно найти в продуктах, содержащих материалы на основе: пластика (например, упаковка и хранение пищевых продуктов, игрушки, мобильные телефоны), металла (например, столовые приборы, кастрюли, игрушки, украшения), резины (например, шины, обувь, игрушки), кожи (например, например, перчатки, обувь, сумки, мебель) и дерево (например, полы, мебель, игрушки).

Palatinol IC используется в следующих продуктах: покрытиях, шпатлевках, шпаклевках, штукатурках, пластилине, полимерах, клеях и герметиках.
Palatinol IC используется в следующих областях: составление смесей и/или переупаковка.

Palatinol IC используется для производства: пластмассовых изделий, минеральных продуктов (например, штукатурки, цемента), а также машин и транспортных средств.
Выброс Palatinol IC в окружающую среду может происходить при промышленном использовании: при производстве изделий, веществ в закрытых системах с минимальным выбросом и при промышленной абразивной обработке с низкой скоростью выброса (например, резка текстиля, резка, механическая обработка или шлифовка металла).

Другие выбросы Palatinol IC в окружающую среду могут происходить при: использовании внутри помещений и при использовании на открытом воздухе, приводящем к попаданию в материалы или на них (например, связующее вещество в красках и покрытиях или клеях).
Palatinol IC используется в следующих продуктах: покрытиях, шпатлевках, шпаклевках, штукатурках, пластилине и полимерах.

Palatinol IC имеет промышленное применение, приводящее к производству другого вещества (использование промежуточных продуктов).
Выброс Palatinol IC в окружающую среду может происходить в результате промышленного использования: при составлении смесей и в составе материалов.
Palatinol IC имеет промышленное применение, приводящее к производству другого вещества (использование промежуточных продуктов).

Palatinol IC используется в следующих областях: составление смесей и/или переупаковка.
Palatinol IC используется для производства: химических веществ.
Выброс Palatinol IC в окружающую среду может происходить при промышленном использовании: как промежуточный этап при дальнейшем производстве другого вещества (использование полупродуктов) и при производстве изделий.

Выброс Palatinol IC в окружающую среду может происходить в результате промышленного использования: производства Palatinol IC.
Palatinol IC — пластификатор, используемый в потребительских целях.
продукты в качестве ингредиента-заменителя ди-н-бутилфталата (DBP) из-за структурного сходства.

Таким образом, присутствие Palatinol IC в продуктах может увеличиться.
Palatinol IC — пластификатор, используемый в пластике из поливинилхлорида (ПВХ) для повышения гибкости.

Palatinol IC можно использовать вместо дибутилфталата из-за более низких производственных затрат.
Кроме того, Palatinol IC можно использовать в таких областях, как чернила, покрытия, лаки и клеи.

Palatinol IC действует как пластификатор.
Palatinol IC можно использовать в качестве замены дибутилфталата из-за более низких производственных затрат.

Palatinol IC используется в пластике из поливинилхлорида (ПВХ) для повышения гибкости.
Palatinol IC используется в качестве пластификатора.

Palatinol IC используется в красках, лаках и лаках.
Palatinol IC также используется в бумажной и целлюлозной промышленности, а также в производстве картона, химикатов, полимеров, клеев, пластификаторов и регуляторов вязкости.

Palatinol IC получают путем этерификации изобутанола и фталевого ангидрида.
Palatinol IC представляет собой пластификатор без запаха и обладает превосходной термо- и светостойкостью.

Palatinol IC — самый дешевый пластификатор нитрата целлюлозы.
Palatinol IC имеет более низкую плотность и температуру замерзания, чем DBP.

Palatinol IC имеет свойства, аналогичные дибутилфталату, и может использоваться в качестве его заменителя.
Palatinol IC представляет собой бесцветную прозрачную маслянистую жидкость, используемую в качестве альтернативы DBP (дибутилфталату).

Palatinol IC используется в красках на основе нитроцеллюлозы и алкидных смол.
Palatinol IC получают путем этерификации изобутанола и фталевого ангидрида.

Palatinol IC представляет собой пластификатор без запаха и обладает превосходной термо- и светостойкостью.
Palatinol IC — самый дешевый пластификатор нитрата целлюлозы.

Palatinol IC имеет более низкую плотность и температуру замерзания, чем DBP.
Palatinol IC имеет свойства, аналогичные дибутилфталату, и может использоваться в качестве его заменителя.

Palatinol IC — пластификатор, который используется в нитроцеллюлозе, красках на основе алкидных смол, чернилах, покрытиях, лаках и клеях.
Из-за более низких производственных затрат Palatinol IC используется в качестве альтернативы DBP (дибутилфталату).

Palatinol IC представляет собой пластификатор, который используется с различными полимерами, такими как полиакрилат, дисперсии полиацетата, ацетат целлюлозы, нитроцеллюлоза, полиуретан и поливинилбутират.
Palatinol IC часто используется в сочетании с другими фталатами.

Palatinol IC в большинстве случаев используется в качестве заменителя DBP.
Palatinol IC используется при пластификации ПВХ, производстве красок, печатных красок и клеев.

Некоторые области применения Palatinol IC включают: напольные покрытия, краски, промышленные клеи, лаки, печатные краски, гидравлические жидкости и смазочные материалы.
Palatinol IC используется в различных продуктах, включая упаковку пищевых продуктов, медицинские устройства и игрушки.

Palatinol IC используется в качестве пластификатора при производстве гибких изделий из ПВХ, таких как изоляция проводов и кабелей, виниловые полы, клеи и покрытия.
Palatinol IC также используется в производстве лаков, печатных красок и синтетической кожи.

Palatinol IC представляет собой пластификатор на основе диалкилфталатного эфира фталата, который можно использовать в качестве заменителя дибутилфталата.
Palatinol IC, как и другие фталаты, обладают генотоксическим действием, и исследования показали увеличение его моноэфирного метаболита в моче человека с течением времени.

Palatinol IC является одним из основных широко используемых пластификаторов.
Palatinol IC можно использовать в качестве пластификатора целлюлозной смолы, виниловой смолы, NBR и хлорированного каучука.

Подобно Palatinolу IC, он обладает превосходной растворимостью, диспергируемостью и адгезией.
Palatinol IC имеет хорошую совместимость с пигментами.

Palatinol IC можно использовать для окраски пленок, изделий из искусственной кожи и пластика.
Palatinol IC также можно использовать в качестве смягчителя натурального и синтетического каучука для повышения устойчивости изделий.

Palatinol IC можно использовать вместо DBP.
Palatinol IC представляет собой сложный эфир фталевой кислоты, который представляет собой диэфир, полученный формальной конденсацией карбоксильных групп фталевой кислоты с двумя молекулами изобутанола. Palatinol IC считается специальным пластификатором, который слишком летуч для использования в поливинилхлориде (ПВХ).

Palatinol IC часто комбинируют с другими фталатами.
Palatinol IC обладает хорошей термо- и светостабильностью и использовался в качестве пластификатора для нитроцеллюлозы (самый дешевый пластификатор для нитрата целлюлозы), эфира целлюлозы, �� также дисперсий полиакрилата и полиацетата.

Palatinol IC используется в лаках для ногтей, косметике, смазочных материалах, напольных коврах, гобеленах, средствах для ухода за одеждой, резиновых стоматологических инструментах, в качестве стабилизатора топлива, в лаках и лаках для кожи, в качестве добавки к бетону, в качестве корректирующего агента для пигментов красок на основе хромата свинца, взрывчатые вещества, производство лаков и применение метилметакрилата.

Palatinol IC также используется в печатных красках для бумаги и упаковки.
Поскольку Palatinol IC обладает свойствами, аналогичными дибутилфталату (DBP), Palatinol IC можно использовать в качестве заменителя DBP.

Palatinol IC в основном используется в качестве нитроцеллюлозы, ацетата целлюлозы, поливинилхлорида и других пластификаторов; Реагенты общего химического анализа для стационарной жидкости газовой хроматографии.
Palatinol IC используется в качестве растворителей, пестицидов, пластификаторов.

Palatinol IC имеет свойства, аналогичные дибутилфталату, и может использоваться в качестве его заменителя.
Palatinol IC синтезируется химической реакцией фталевой кислоты с изобутиловым спиртом.

Palatinol IC представляет собой пластификатор с коагулирующими свойствами, который использовался с различными полимерами, например, с полиакрилатом, дисперсиями полиацетата, ацетатом целлюлозы, нитратом целлюлозы, этилцеллюлозой, полиуретаном и поливинилбутиратом.
В сочетании с другими пластификаторами Palatinol IC применялся в качестве гелеобразователя при переработке так называемых пластизолей.

Palatinol IC присутствует, например, в напольных покрытиях, клеях, лаках, чернилах, гидравлических жидкостях и смазочных материалах.
Palatinol IC использовался в качестве маркера в топливе для целей налогообложения, а также в производстве титановых катализаторов.
Palatinol IC можно использовать в качестве замены дибутилфталата из-за более низких производственных затрат.

Palatinol IC используется в клеях.
Palatinol IC можно использовать в качестве компонента в рецептурах некоторых продуктов, включая клеи, краски, покрытия и смазочные материалы.

Этот и другие фталаты используются в качестве пластификаторов благодаря своей гибкости и долговечности.
Они содержатся во многих промышленных и бытовых товарах, таких как лаки, лаки для ногтей и косметика.

Промышленность использует:
Palatinol IC используется в качестве пластификатора в ряде пластиковых и резиновых материалов.
Palatinol IC имеет низкую летучесть, что делает его идеальным для использования в продуктах, требующих длительной гибкости, например, в автомобильных деталях, изоляции проводов и кабелей, а также в напольных покрытиях.
Palatinol IC плотный и нерастворимый в воде.

Пищевая промышленность:
Palatinol IC используется в качестве пластификатора в упаковочных материалах для пищевых продуктов, таких как пленки и листы поливинилхлорида (ПВХ).
Palatinol IC также используется в материалах, контактирующих с пищевыми продуктами, таких как клеи, покрытия и герметики.
Palatinol IC используется для улучшения гибкости, долговечности и прозрачности этих материалов.

Способ производства Palatinol IC:
Palatinol IC производится путем этерификации фталевого ангидрида и изобутанола в присутствии серной кислоты.
Palatinol IC синтезируется в процессе этерификации изобутанола и фталевого ангидрида в присутствии серной кислоты в качестве катализатора.

Синтез Palatinol IC:
Palatinol IC синтезируется путем реакции двойного нуклеофильного ацильного замещения между фталевым ангидридом и изобутанолом с использованием различных кислот в качестве катализатора, таких как серная кислота, сульфированный графен или хлорид железа (III).
Вода является побочным продуктом.
При использовании серной кислоты выход составляет 61%.

Оптимизация Palatinol IC:
Сульфированный графен представляет собой гетерогенный катализатор, который имеет ряд преимуществ перед традиционными жидкими кислотами, такими как серная кислота.
Сульфированный графен легко отделяется от реакционной смеси фильтрованием и может быть использован многократно без снижения активности.

Кроме того, сульфированный графен безвреден для окружающей среды, поскольку Palatinol IC не производит опасных отходов, которые обычно образуются при использовании традиционных жидких кислотных катализаторов.
Этот метод имеет выход 95%.

В качестве катализатора также можно использовать кислоты Льюиса, такие как FeCl3.
Процесс кислотного катализа Льюиса может проводиться при более низких температурах (50–100 ° C) и дает выход 86%.

Механизм действия Palatinol IC:

Путь PPARγ:
Эффекты воздействия Palatinol IC в основном реализуются за счет активации гамма-рецептора, активируемого пролифератором пероксисом (PPARγ).
PPAR представляют собой активируемые лигандами ядерные факторы транскрипции, семейство состоит из PPARα, PPARβ/δ и PPARγ.
Существует две изоформы PPARγ: PPARγ2 в основном присутствует в клетках жировой ткани, тогда как PPARγ1 обнаруживается во многих клетках, таких как клетки кишечника, головного мозга, кровеносных сосудов, а также в некоторых иммунных и воспалительных клетках.

Регуляция транскрипции посредством PPAR требует образования гетеродимера с рецептором ретиноида X (RXR).
При активации Palatinolом IC этот гетеродимер PPARγ/RXR связывается с последовательностью ДНК, называемой элементом ответа PPAR (PPRE).
Связывание транскрипционного фактора с этим ответным элементом может привести как к повышению, так и к понижению регуляции генов.

PPARγ участвует в метаболизме и хранении липидов, а также в метаболизме глюкозы за счет повышения чувствительности к инсулину, поэтому связывание Palatinol IC приводит к изменению уровней лептина и инсулина.
Palatinol IC также приводит к снижению регуляции белков, участвующих в выработке стероидов, что приводит к повышению уровня андрогенных гормонов.

Путь цитокин-цитокиновых рецепторов
Другим типом пути, на который влияет воздействие Palatinol IC, является путь цитокин-цитокиновый рецептор.
Затрагиваются два пути: суперсемейство рецепторов фактора некроза опухоли (TNFRSF) и путь рецептора пролактина, оба из которых влияют на сперматогенез.

Реакции Palatinol IC на окружающую среду:
Palatinol IC может подвергаться различным реакциям, которые могут повлиять на окружающую среду.

Примеры включают в себя:

Гидролиз:
Гидролиз Palatinol IC может осуществляться ферментами, бактериями и другими микроорганизмами в окружающей среде с образованием фталевой кислоты и изобутилового спирта.
Это может привести к разрушению и возможной деградации Palatinol IC в почве и водоснабжении.

Фотодеградация:
Palatinol IC может подвергаться фотодеградации под воздействием солнечного света.
Это может привести к образованию нескольких продуктов разложения, в том числе фталевой кислоты, изобутиральдегида и других альдегидов.

Биодеградация:
Palatinol IC может разлагаться микроорганизмами в почве и воде.
Это может превратить Palatinol IC в другие соединения, такие как фталевая кислота и различные производные изобутилового спирта.

Сорбция:
Palatinol IC может адсорбироваться или сорбироваться на частицах почвы и отложений, что может ограничивать подвижность и доступность Palatinol IC для биологического или химического разложения и реакций.

Окисление:
Palatinol IC может окисляться в присутствии озона или других активных форм кислорода.
Можно ожидать образования различных продуктов окисления, в том числе альдегидов, кетонов и карбоновых кислот.
Эти реакции могут влиять на стойкость, биоаккумуляцию и токсичность в окружающей среде, а также иметь последствия для здоровья человека и экосистем.

Матеболизм Palatinol IC:
При попадании в кровоток Palatinol IC быстро метаболизируется и выводится через мочу, при этом метаболиты достигают максимальной концентрации через 2–4 часа после приема.
Основным метаболитом Palatinol IC является моноизобутилфталат (МиБФ), который составляет 70% продуктов выведения.

MiBP может окисляться либо до 2OH-моноизобутилфталата (2OH-MiBP), либо до 3OH-моноизобутилфталата (3OH-MiBP), которые составляют 20% и 1% продуктов выведения соответственно.
Эти реакции, вероятно, катализируются цитохромом Р450 в печени.

Соотношение между MiBP и окисленными метаболитами меняется в зависимости от времени, прошедшего с момента воздействия.
Соотношение между MiBP и 2OH-MiBP, а также между MiBP и 3OH-MiBP демонстрирует аналогичную тенденцию.
Соотношения высокие, около 20-30:1, вскоре после воздействия и постепенно снижаются по мере того, как проходит время отдыха, примерно 2-5:1.

Таким образом, высокое соотношение окисленных метаболитов к моноэфирному метаболиту предполагает недавнее воздействие Palatinol IC, в течение нескольких часов после измерения, тогда как более низкое соотношение предполагает, что с момента воздействия прошло больше времени.
Помимо окисления, MiBP также может подвергаться реакции глюкуронидации, в результате чего образуется метаболит MiBP-глюкуронид.

История Palatinol IC:
В 1836 году французский химик Огюст Лоран ��кислил нафталин хромовой кислотой и создал фталевый ангидрид, из которого получают фталаты.
Фталаты, в том числе Palatinol IC, были впервые представлены в 1920-х годах для придания пластмассам большей гибкости, прозрачности и долговечности.

Их популярность возросла в 1931 году, когда поливинилхлорид (ПВХ) стал коммерчески доступным.
Из-за увеличения воздействия фталатов на человека в 1999 году Европейский Союз ограничил использование некоторых из них в детских игрушках.

Хранение Palatinol IC:
Palatinol IC следует хранить в прохладном, сухом и хорошо проветриваемом месте.
Palatinol IC следует хранить в металлическом барабане, из нержавеющей стали, алюминия или смолы, армированной полиэфиром.

Palatinol IC следует хранить отдельно от продуктов питания.
Palatinol IC следует хранить в контейнерах отдельно от сильных окислителей.

Обращение и хранение Palatinol IC:

Меры предосторожности для безопасного обращения:

Рекомендации по безопасному обращению:
Работа под капотом.

Гигиенические меры:
Немедленно смените загрязненную одежду.
Применяйте профилактическую защиту кожи.
Вымойте руки и лицо после работы с Palatinol IC.

Условия безопасного хранения, включая любые несовместимости:

Условия хранения:
Плотно закрыто.
Хранить в хорошо проветриваемом месте.
Храните взаперти или в месте, доступном только квалифицированным или уполномоченным лицам.

Стабильность и реакционная способность Palatinol IC:

Реактивность:
Palatinol IC реагирует с кислотами с выделением тепла вместе с изобутиловым спиртом и фталевой кислотой.
Palatinol IC может достаточно экзотермически реагировать с сильными окисляющими кислотами, вызывая воспламенение продуктов реакции.

Тепло также выделяется при взаимодействии с каустическими растворами.
Горючий водород образуется при смешивании с щелочными металлами и гидридами.
Palatinol IC может генерировать электростатические заряды при обращении с ним.

Химическая стабильность:
Palatinol IC химически стабилен при стандартных условиях окружающей среды (комнатная температура).

Возможность опасных реакций:
Данные недоступны

Меры первой помощи Palatinol IC:

Общий совет:
Покажите паспорт безопасности Palatinol IC лечащему врачу.

При вдыхании:

После ингаляции:
Свежий воздух.
Вызовите врача.

При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
Проконсультируйтесь с врачом.

При попадании в глаза:

После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.

При проглатывании:

После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.

Указание на необходимость немедленной медицинской помощи и специального лечения.
Данные недоступны

Меры пожаротушения Palatinol IC:

Подходящие средства пожаротушения:
Вода
Мыло
Углекислый газ (CO2)
Сухой порошок

Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.

Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.

Меры по случайному высвобождению Palatinol IC:

Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.

Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.

Соблюдайте возможные ограничения по материалам.
Собирать осторожно с материалом, впитывающим жидкость.

Утилизируйте должным образом.
Очистите пораженное место.

Идентификаторы Palatinol IC:
Номер CAS: 84-69-5
Молекулярный вес: 278,34
Байльштайн: 2054802
Номер ЕС: 201-553-2
Номер леев: MFCD00026480
Химическая формула: C16H22O4.
Молярная масса: 278,348 г·моль−1
Внешний вид: Бесцветная вязкая жидкость.
Плотность: 1,038 г/см3
Температура плавления: -37 ° C (-35 ° F; 236 К)
Точка кипения: 320 ° C (608 ° F; 593 К)
Растворимость в воде: 1 мг/л при 20 °C.
журнал Р: 4.11
Давление пара: 0,01 Па при 20 °C.
Температура вспышки: 185 ° C (365 ° F; 458 К) куб.см.
Температура самовоспламенения: 400 ° C (752 ° F; 673 К)

Точка плавления: -37 °С.
Воспламеняемость: Горючий
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Температура кипения: 296,00 °С. @ 760,00 мм рт. ст.
Давление пара: 0,002000 мм рт. ст. при 25,00 °C. (стандартное восточное время)
Температура вспышки: 309,00 °F. TCC (153,90 °C) (оценка)
logP (н/б): 4,110
Растворим в: воде, 6,2 мг/л при 24°C (экспер.)
КАС: 84-74-2
ЭИНЭКС: 201-557-4
InChIKey: DOIRQSBPFJWKBE-UHFFFAOYSA-N
Молекулярная формула: C16H22O4.
Молярная масса: 278,34

Условия хранения: 2-8°C
Чувствительность: легко впитывает влагу.
Предел взрываемости: 0,47%, 236°F
Показатель преломления: n20/D 1,492 (лит.)
лей: MFCD00009441
Химическая формула: C16H22O4.
Средняя молекулярная масса: 278,344 г/моль.
Моноизотопная масса: 278,152 г/моль.
Регистрационный номер CAS: 84-69-5
Название ИЮПАК: 1,2-бис(2-метилпропил)бензол-1,2-дикарбоксилат.
Традиционное название: Palatinol IC.
УЛЫБКИ: CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C
Идентификатор InChI: InChI=1S/C16H22O4/c1-11(2)9-19-15(17)13-7-5-6-8-14(13)16(18)20-10-12(3)4 /h5-8,11-12H,9-10H2,1-4H3
Ключ InChI: InChIKey=MGWAVDBGNNKXQV-UHFFFAOYSA-N

Свойства Palatinol IC:
Молекулярный вес: 278,34 г/моль
XLogP3: 4.1
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 4
Количество вращающихся облигаций: 8
Точная масса: 278,15180918 г/моль.
Моноизотопная масса: 278,15180918 г/моль.
Топологическая площадь полярной поверхности: 52,6Ų.
Количество тяжелых атомов: 20
Сложность: 290
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атома: 0
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да

Физическое состояние: жидкость
Цвет: бесцветный
Запах: слабый
Точка плавления/точка замерзания:
Температура плавления: -64 °С.
Начальная точка кипения и диапазон кипения: 327 °С – лит.
Горючесть (твердого тела, газа): Данные отсутствуют.
Верхний/нижний пределы воспламеняемости или взрывоопасности:
Верхний предел взрываемости: 3,2 %(В)
Нижний предел взрываемости: 0,8 %(В)
Температура вспышки: 109 °C – в закрытом тигле.
Температура самовоспламенения: 423 °C при 1,013 гПа.
Температура разложения: Данные отсутствуют.
pH: нейтральный

Вязкость:
Вязкость, кинематическая: 13,96 мм2/с при 40 °C
Вязкость, динамическая: данные отсутствуют.
Растворимость в воде 0,02 г/л при 20 °C - слабо растворим.
Коэффициент распределения: н-октанол/вода:
log Pow: 4,11 при 20 °C
Давление пара: 0,11 гПа при 100 °C.
Плотность: 1039 г/см3 при 25 °C – лит.
Относительная плотность: данные отсутствуют.
Относительная плотность пара: данные отсутствуют.
Характеристики частиц: данные отсутствуют.
Взрывоопасные свойства: данные отсутствуют.
Окислительные свойства: нет
Другая информация по безопасности: данные отсутствуют.

Точка плавления: -64 °С.
Точка кипения: 295,3±8,0 °C при 760 мм рт.ст.
Температура вспышки: 153,9±7,9 °C.
Молекулярная формула: C16H22O4.
Молекулярный вес: 278,344
Плотность: 1,0±0,1 г/см3
Молекулярная формула: C16H22O4.
Название ИЮПАК: бис(2-метилпропил)бензол-1,2-дикарбоксилат.
Номер кассы: 84-69-5
Молекулярный вес: 278,34 г/моль.
Плотность: 1,039 г/мл
Точка кипения: 320 °С.
Температура вспышки: 185 °С.

Плотность: 1,043 г/мл при 25 °C (лит.)
Точка плавления: -35 °C (лит.)
Точка Болинга: 340 °C (лит.)
Температура вспышки: 340°F
Растворимость в воде: слабо растворим. 0,0013 г/100 мл
Растворимость: Растворим в воде (0,4 мг/мл при 20 °C), этаноле.
Хорошо растворим в эфире, ацетоне и B.
Давление паров: 1 мм рт. ст. (147 °C)
Плотность пара: 9,6 (по сравнению с воздухом)
Внешний вид: Бесцветная жидкость.
Удельный вес: 1,049 (20/20 ℃)
Цвет: APHA: ≤10
Предел воздействия NIOSH REL: TWA 5 мг/м3, IDLH 4000 мг/м3;
OSHA PEL: TWA5 мг/м3; ACGIH TLV: TWA 5 мг/м3.
Мерк: 14,3035
РН: 1914064

Тип соединения Palatinol IC:
Ароматический углеводород
Косметический токсин
Эстер
Эфир
Бытовой токсин
Промышленный/рабочий токсин
Метаболит
Органическое соединение
Фталат
Пластификатор
Синтетическое соединение

Альтернативные родители Palatinol IC:
Бензоильные производные
Дикарбоновые кислоты и производные
Эфиры карбоновых кислот
Кислородорганические соединения
Органические оксиды
Производные углеводородов

Заместители Palatinol IC:
Бензоатный эфир
Бензоил
Дикарбоновая кислота или производные
Эфир карбоновой кислоты
Производное карбоновой кислоты
Органическое кислородное соединение
Органический оксид
Производное углеводорода
Кислородорганическое соединение
Ароматическое гомомоноциклическое соединение
PALMERA A 9912
Palmera A 9912 действует как поверхностно-активное вещество.
Palmera A 9912 является основным возобновляемым ингредиентом для производства мыла.
Palmera A 9912 представляет собой конъюгированную кислоту додеканоата.


Номер КАС: 143-07-7
Номер ЕС: 205-582-1
Номер в леях: MFCD00002736
Химическая формула: C12H24O2
Линейная формула: CH3(CH2)10COOH


Palmera A 9912 — это природная жирная кислота, часто встречающаяся в кокосовом масле.
Формула Palmera A 9912 C12H24O2 соответствует насыщенной монокарбоновой кислоте и соответствует карбоновой кислоте с прямой цепью с 12 атомами углерода.
Palmera A 9912 действует как поверхностно-активное вещество.


Palmera A 9912 представляет собой насыщенную жирную кислоту с прямой цепью и жирную кислоту со средней длиной цепи.
Palmera A 9912 представляет собой конъюгированную кислоту додеканоата.
Palmera A 9912, также известный как додеканоат, принадлежит к классу органических соединений, известных как жирные кислоты со средней длиной цепи.


Palmera A 9912 представляет собой жирную кислоту без средней цепи с сильными бактерицидными свойствами.
Palmera A 9912 получают путем фракционирования масла лауринового типа.
Полученный Palmera A 9912 имеет температуру плавления выше 43 ºC.


Palmera A 9912 представляет собой твердое вещество при комнатной температуре, непрозрачно-белого цвета с характерным запахом.
Palmera A 9912 и миристиновая кислота являются насыщенными жирными кислотами.
Palmera A 9912 — это жирная кислота, полученная из возобновляемых растительных масел.


Palmera A 9912 — одна из нескольких жирных кислот, содержащихся в кокосовом масле, масле бабассу и других натуральных жирах.
Люди также используют Palmera A 9912 в качестве лекарства.
Люди используют Palmera A 9912 при вирусных инфекциях, таких как грипп, простуда, генитальный герпес и многих других заболеваниях, но нет убедительных научных доказательств в поддержку какого-либо использования.


Palmera A 9912, также известный как додеканоат, принадлежит к классу органических соединений, известных как жирные кислоты со средней длиной цепи.
Это жирные кислоты с алифатическим хвостом, содержащим от 4 до 12 атомов углерода.
Palmera A 9912 представляет собой очень гидрофобную молекулу, практически нерастворимую (в воде) и относительно нейтральную.


В качестве сырья Palmera A 9912 может иметь вид бесцветного твердого вещества или слегка глянцевого белого или желтого кристаллического твердого вещества или порошка.
Palmera A 9912 представляет собой жирную кислоту, сложные эфиры которой встречаются в природных веществах, таких как кокосовое молоко и пальмоядровое масло.
Palmera A 9912 играет роль метаболита растений, антибактериального агента и метаболита водорослей.


Palmera A 9912 увеличивает общий уровень липопротеинов в сыворотке больше, чем многие другие жирные кислоты, но в основном липопротеины высокой плотности (ЛПВП).
Palmera A 9912 принадлежит к классу органических соединений, известных как жирные кислоты со средней длиной цепи.
Palmera A 9912 может быть животного или растительного происхождения.


Palmera A 9912 представляет собой жирную кислоту без средней цепи с сильными бактерицидными свойствами.
Palmera A 9912 получают из гидрида додекана.
Palmera A 9912 также называют додекановой кислотой.


Palmera A 9912 представляет собой триглицерид со средней длиной цепи (MCT), который естественным образом присутствует в кожном жире.
Эта жирная кислота, Palmera A 9912, играет важную роль в укреплении врожденной защиты кожи за счет укрепления ее микробиома.
Оба представляют собой белые твердые вещества, очень мало растворимые в воде.


Эфиры Palmera A 9912 (главным образом триглицериды) содержатся только в растительных жирах, главным образом в кокосовом молоке и масле, лавровом масле и косточковом пальмовом масле.
Напротив, триглицериды миристиновой кислоты встречаются в растениях и животных, особенно в масле мускатного ореха, кокосовом масле и молоке млекопитающих.
Palmera A 9912 представляет собой насыщенную жирную кислоту со средней длиной цепи.


Palmera A 9912 является предшественником дилауроилпероксида, обычного инициатора полимеризации.
Palmera A 9912 содержится во многих растительных жирах, а также в кокосовом и пальмоядровом маслах.
Palmera A 9912 содержит С12 (>99%) жирную кислоту.


Palmera A 9912 представляет собой жирную кислоту с длинной цепью средней длины или липид, который составляет около половины жирных кислот в кокосовом масле.
Palmera A 9912, миристиновая кислота и пальмитиновая кислота повышали концентрацию холестерина ЛПНП и ЛПВП по сравнению с углеводами.
Palmera A 9912, систематически додекановая кислота, представляет собой насыщенную жирную кислоту с цепочкой из 12 атомов углерода, поэтому она обладает многими свойствами жирных кислот со средней длиной цепи.


Оба представляют собой белые твердые вещества, очень мало растворимые в воде.
Как и многие другие жирные кислоты, Palmera A 9912 недорог, имеет длительный срок хранения, нетоксичен и безопасен в обращении.
Palmera A 9912 используется в основном для производства мыла и косметики.


В природе Palmera A 9912 сочетается с другими насыщенными жирными кислотами, такими как каприловая, каприновая, миристиновая, пальмитиновая и стеариновая.
Palmera A 9912 нетоксичен, безопасен в обращении, недорог и имеет длительный срок хранения.
Palmera A 9912 имеет множество применений в косметике, в том числе в качестве эмульгатора и ингредиента, улучшающего текстуру.


Palmera A 9912, систематически додекановая кислота, представляет собой насыщенную жирную кислоту с цепочкой из 12 атомов углерода, поэтому она обладает многими свойствами жирных кислот со средней длиной цепи.
Жирная кислота длиной 12 атомов углерода, которая содержится в кокосовом молоке, кокосовом масле, лавровом масле и косточковом пальмовом масле.
Palmera A 9912 также проникает в грудное молоко.


Palmera A 9912 легко поддается биологическому разложению и не содержит ГМО.
Palmera A 9912 принадлежит к классу органических соединений, известных как жирные кислоты со средней длиной цепи.
Это жирные кислоты с алифатическим хвостом, содержащим от 4 до 12 атомов углерода.


Palmera A 9912 — одна из таких активных частей.
Palmera A 9912, химическое название которой — додекановая кислота, представляет собой жирную кислоту со средней длиной цепи, которая содержится в кокосовом масле.
Palmera A 9912 представляет собой ярко-белое порошкообразное твердое вещество со слабым запахом лаврового масла или мыла.


Palmera A 9912 является основным компонентом кокосового масла и пальмоядрового масла.
Palmera A 9912, C12H24O2, также известная как додекановая кислота, представляет собой насыщенную жирную кислоту с цепочкой из 12 атомов углерода.
Palmera A 9912 представляет собой ярко-белое порошкообразное твердое вещество со слабым запахом лаврового масла или мыла.


Palmera A 9912 также называют додекановой кислотой.
Palmera A 9912 не содержит губчатой энцефалопатии крупного рогатого скота/трансмиссивной губчатой энцефалопатии.
Palmera A 9912 представляет собой насыщенный жир.


Palmera A 9912 относится к группе насыщенных жирных кислот, так как в алифатической цепи нет двойной связи, поэтому его сокращенное обозначение 12:0.
Palmera A 9912 содержится во многих растительных жирах, особенно в кокосовом и пальмоядровом маслах.
Palmera A 9912 представляет собой насыщенную жирную кислоту, которая содержится в животных и растительных жирах и маслах и является основным компонентом кокосового масла и пальмоядрового масла.


В остальном Palmera A 9912 встречается относительно редко.
Palmera A 9912 также содержится в грудном молоке человека (6,2% от общего содержания жира), коровьем молоке (2,9%) и козьем молоке (3,1%).
Palmera A 9912, насыщенная жирная кислота со средней длиной цепи и 12-углеродной цепью, естественным образом содержится в различных растительных и животных жирах и маслах, которые являются основным компонентом пальмоядрового масла и кокосового масла.


Эфиры Palmera A 9912 (главным образом триглицериды) содержатся только в растительных жирах, главным образом в кокосовом молоке и масле, лавровом масле и косточковом пальмовом масле.
Palmera A 9912 является предшественником дилауроилпероксида, обычного инициатора полимеризации.
Palmera A 9912 — одна из таких активных частей.


Palmera A 9912 представляет собой жирную кислоту с длинной цепью средней длины или липид, который составляет около половины жирных кислот в кокосовом масле.
Соли и сложные эфиры Palmera A 9912 известны как лаураты.
Как и многие другие жирные кислоты, Palmera A 9912 недорог, имеет длительный срок хранения, нетоксичен и безопасен в обращении.


Palmera A 9912 в основном получают путем гидролиза кокосового масла или косточкового пальмового масла и его последующей дистилляции (содержание около 50%).
Palmera A 9912 является основным возобновляемым ингредиентом для производства мыла.
Соли и с��ожные эфиры Palmera A 9912 известны как лаураты.


Palmera A 9912, как компонент триглицеридов, составляет около половины содержания жирных кислот в кокосовом молоке, кокосовом масле, лавровом масле и косточковом пальмовом масле (не путать с пальмовым маслом).
Для этих целей Palmera A 9912 взаимодействует с гидроксидом натрия с получением лаурата натрия, который представляет собой мыло.


Чаще всего лаурат натрия получают омылением различных масел, например кокосового масла.
Эти прекурсоры дают смеси лаурата натрия и других мыл.
Palmera A 9912 — это биоразлагаемое, не содержащее ГМО и жирное масло, полученное из возобновляемого растительного масла компанией KLK Oleo, которое действует как поверхностно-активное, смягчающее и очищающее средство.


Palmera A 9912, известная как додекановая кислота, представляет собой насыщенную жирную кислоту, обычно встречающуюся в кокосовом и пальмовом маслах, а также в молоке.
Palmera A 9912, CAS 143-07-7, химическая формула C12H24O2, представляет собой белый кристаллический порошок со слабым запахом лаврового масла, растворим в воде, спиртах, фенилах, галогеналканах и ацетатах.


Palmera A 9912 и миристиновая кислота являются насыщенными жирными кислотами.
Palmera A 9912 является членом подгруппы, называемой жирными кислотами со средней длиной цепи или MCFA, а именно жирными кислотами, содержащими от 6 до 12 атомов углерода.
Их официальные названия — додекановая кислота и тетрадекановая кислота соответственно.


Palmera A 9912 является основной жирной кислотой, присутствующей в растительных маслах, таких как кокосовое масло и пальмоядровое масло.
Palmera A 9912 представляет собой насыщенную жирную кислоту с прямой цепью из двенадцати атомов углерода и средней длиной цепи с сильными бактерицидными свойствами; основная жирная кислота в кокосовом масле и пальмоядровом масле.
Palmera A 9912 сертифицирована как халяльная и кошерная.



ИСПОЛЬЗОВАНИЕ и ПРИМЕНЕНИЕ PALMERA A 9912:
Применение Palmera A 9912 включает туалетные принадлежности, прозрачное мыло и другие косметические средства по уходу.
Palmera A 9912 используется в производстве различных сложных эфиров, жирных спиртов, изетионатов жирных кислот, металлических мыл, саркозинатов жирных кислот, имидазолинов и жирных аминов.

Palmera A 9912 — это универсальное олеохимическое вещество, которое можно применять во всем, от пластика до средств личной гигиены.
Palmera A 9912 представляет собой насыщенную жирную кислоту со средней длиной цепи.
Palmera A 9912 содержится во многих растительных жирах, а также в кокосовом и пальмоядровом маслах.


Palmera A 9912 — недорогое, нетоксичное и безопасное в обращении соединение, часто используемое в лабораторных исследованиях снижения температуры плавления.
Palmera A 9912 используется в основном для производства мыла и косметики.
Для этих целей Palmera A 9912 взаимодействует с гидроксидом натрия с получением лаурата натрия, который представляет собой мыло.


Palmera A 9912 подходит для мыла, туалетных принадлежностей, прозрачного мыла и других косметических средств по уходу.
Кроме того, Palmera A 9912 используется в производстве различных сложных эфиров, жирных спиртов, изетионатов жирных кислот, металлических мыл, саркозинатов жирных кислот, имидазолинов и жирных аминов.


Palmera A 9912 представляет собой эмульгатор, который также используется в качестве чистящего средства или поверхностно-активного вещества.
Palmera A 9912 — недорогое, нетоксичное и безопасное в обращении соединение, часто используемое в лабораторных исследованиях снижения температуры плавления.
Исследования продолжают изучать преимущества Palmera A 9912 в качестве дополнения к средствам против прыщей.


Palmera A 9912 используется в фармацевтике и здравоохранении, смазочных материалах, красках и покрытиях, промышленной химии, личной гигиене и уходе за домом.
Palmera A 9912 в основном используется в качестве сырья для производства алкидных смол, увлажняющих средств, моющих средств, инсектицидов, поверхностно-активных веществ, пищевых добавок и косметики.


Palmera A 9912 часто используется в качестве смазки и выполняет несколько функций, таких как смазка и вулканизирующий агент.
Однако из-за коррозионного воздействия на металлы Palmera A 9912 обычно не используется в пластмассовых изделиях, таких как провода и кабели.
Palmera A 9912 используется в медицине.


Натуральный аромат лаврового листа Palmera A 9912 можно использовать в больших количествах для придания аромата продуктам, но чаще его используют в качестве основы для очищающих средств и, все чаще, для его успокаивающего действия на кожу.
Palmera A 9912 используется потребителями, в изделиях, профессиональными работниками (широко распространенное применение), в рецептуре или переупаковке, на промышленных объектах и в производстве.


Некоторые исследования показали, что Palmera A 9912 также может обладать антимикробной активностью.
Palmera A 9912 обычно используется в косметических формулах в концентрации менее 10%, но считается безопасным в более высоких концентрациях (до 25%).
Palmera A 9912 также используется для предотвращения передачи ВИЧ от матери к ребенку.


Palmera A 9912 широко используется в косметике, латексе и перчатках.
Palmera A 9912 используется для лечения вирусных инфекций, включая грипп (грипп); свиной грипп; Птичий грипп; простуда; лихорадочные волдыри, герпес и генитальный герпес, вызванный вирусом простого герпеса (ВПГ); остроконечные кондиломы, вызванные вирусом папилломы человека (ВПЧ); и ВИЧ/СПИД.


Palmera A 9912 также используется для предотвращения передачи ВИЧ от матери к ребенку.
Palmera A 9912 представляет собой твердое вещество при комнатной температуре, но легко плавится в кипящей воде, поэтому жидкий Palmera A 9912 можно обрабатывать различными растворенными веществами и использовать для определения их молекулярных масс.


Palmera A 9912 наиболее широко используется в производстве поверхностно-активных веществ, а также может применяться в парфюмерной и фармацевтической промышленности.
Palmera A 9912 используется в качестве средства для обработки поверхности при подготовке к склеиванию.
Palmera A 9912 также используется в производстве алкидных смол, масел из химических волокон, инсектицидов, синтетических ароматизаторов, стабилизаторов пластмасс, антикоррозионных присадок к бензину и смазочным маслам.


Palmera A 9912 широко используется в производстве различных типов поверхностно-активных веществ, таких как катионный лауриламин, трилауриламин, лаурилдиметиламин, лаурилтриметиламмониевая соль и др.; анионные типы включают лаурилсульфат натрия и соли сложных эфиров лауриновой кислоты и серной кислоты, лаурилсульфат триэтаноламмония и т.д.; цвиттерионные типы включают лаурилбетаин, лаурат имидазолина и т.д.; неионогенные поверхностно-активные вещества включают монолаурат поли-L-спирта, лаурат полиоксиэтилена, лаурат глицерина, полиоксиэтиленовый эфир, диэтаноламид лауриновой кислоты и т. д.


Кроме того, Palmera A 9912 также используется в качестве пищевой добавки и в производстве косметики.
Palmera A 9912 является сырьем для производства мыла, моющих средств, косметических поверхностно-активных веществ и масел из химических волокон.


-Использование и применение Palmera A 9912:
*Пластмассы: средний уровень
*Пищевые продукты и напитки: сырье для эмульгаторов
*Поверхностно-активные вещества и сложные эфиры: анионные и неионогенные поверхностно-активные вещества.
*Текстиль: смазка и технологический агент
*Личная гигиена: эмульгатор для кремов и лосьонов для лица
*Мыло и моющие средства: основа производства жидкого и прозрачного мыла


-Косметическое использование:
* моющие средства
*ПАВ
*ПАВ - эмульгатор



PALMERA A 9912 КРАТКИЙ ОБЗОР:
*Натуральный компонент кожного сала
* Играет роль в усилении врожденной защиты кожи, укрепляя ее микробиом.
* Функционирует как очищающее средство/эмульгатор в косметических формулах.
*Исследования показали, что Palmera A 9912 обладает антимикробной активностью.
*Может быть получен из кокосового масла, масла бабассу и других натуральных жиров.



СВОЙСТВА ПАЛЬМЕРЫ А 9912:
Palmera A 9912 усиливает антимикробные защитные свойства кожи, оказывает антибактериальное действие, негативно воздействует на различные патогенные микроорганизмы, бактерии, дрожжи, грибы и вирусы.



ЧТО ДЕЛАЕТ PALMERA A 9912 В СОСТАВЕ?
* Очищение
* Эмульгирование
*ПАВ



АЛЬТЕРНАТИВНЫЕ РОДИТЕЛИ PALMERA A 9912:
*Жирные кислоты с прямой цепью
*Монокарбоновые кислоты и производные
* Карбоновые кислоты
*Органические оксиды
* Углеводородные производные
* Карбонильные соединения



РОДСТВЕННЫЕ СОЕДИНЕНИЯ PALMERA A 9912:
*Ундекановая кислота
* Тридекановая кислота
* Додеканол
* Додеканал
*Лаурилсульфат натрия



ЗАМЕСТИТЕЛИ ПАЛЬМЕРЫ А 9912:
* Жирная кислота со средней длиной цепи
* Жирная кислота с прямой цепью
* Монокарбоновая кислота или производные
*Карбоновая кислота
*Производное карбоновой кислоты
*Органическое кислородное соедине��ие
* Органический оксид
* Углеводородная производная
* Кислородорганическое соединение
* Карбонильная группа
* Алифатическое ациклическое соединение



ПАЛЬМЕРА А 9912 ПРИ ПСОРИАЗЕ:
Блогеры и веб-сайты, посвященные естественному здоровью, часто рекомендуют кокосовое масло для лечения сухой кожи и таких состояний, как псориаз.
Опять же, поскольку Palmera A 9912 является лишь частью того, что составляет кокосовое масло, трудно сказать, отвечает ли за эти преимущества только жирная кислота или комбинация компонентов кокосового масла.



ПАЛМЕРА А 9912 ОТ АКНЕ:
Поскольку Palmera A 9912 обладает антибактериальными свойствами, было обнаружено, что он эффективно борется с акне.
Бактерии Propionibacterium acnes естественным образом присутствуют на коже.
Когда они разрастаются, они приводят к развитию прыщей.
Результаты исследования 2009 года показали, что Palmera A 9912 может уменьшить воспаление и количество присутствующих бактерий.

Palmera A 9912 работал даже лучше, чем перекись бензоила, обычное средство от прыщей.
Исследование 2016 года также подтвердило свойства Palmera A 9912 в борьбе с акне.
Это не означает, что вы должны наносить кокосовое масло на прыщи.
Исследователи использовали чистый Palmera A 9912 и предположили, что в будущем его можно будет использовать в качестве антибиотика для лечения акне.



КАК ПРИМЕНЯТЬ ПАЛМЕРУ А 9912:
Чтобы воспользоваться местными преимуществами Palmera A 9912 и кокосового масла, нанесите их непосредственно на кожу.
Хотя это не рекомендуется для людей с акне, риски минимальны, когда речь идет о решении таких проблем, как увлажнение кожи и псориаз.
Кокосовое масло можно использовать и в кулинарии.
Его сладкий ореховый вкус делает Palmera A 9912 идеальным дополнением к десертам, в том числе палео-брауни с двойным шоколадом и палео-банановому хлебу.
Вы также можете использовать Palmera A 9912 для обжаривания овощей или для придания аромата пюре из сладкого картофеля или карибскому супу с карри.



НА РАЗЛИЧНЫХ РАСТЕНИЯХ PALMERA A 9912:
Пальма Attalea speciosa, вид, широко известный в Бразилии как бабассу, содержит 50% масла бабассу.
Attalea cohune, пальма cohune (также дождевое дерево, американская масличная пальма, пальма corozo или пальма манака) - 46,5% в масле cohune.
Astrocaryum murumuru ( Arecaceae ), пальма, произрастающая на Амазонке, - 47,5% в «масле мурумуру».
Кокосовое масло 49%

Пикнантус комбо (африканский мускатный орех)
Virola surinamensis (дикий мускатный орех) 7,8–11,5%
Семена персиковой пальмы 10,4%
Орех бетеля 9%

Семена финиковой пальмы 0,56–5,4%
Орех макадамия 0,072–1,1%
Слива 0,35–0,38%
Семена арбуза 0,33%
Калина опулюс 0,24-0,33%

Citrullus lanatus (дыня эгуси)
Тыквенный цветок 205 частей на миллион, семена тыквы 472 части на миллион
У насекомых
Черная львиная муха Hermetia illucens 30–50 мг/100 мг жира.



ГДЕ НАЙТИ ПАЛЬМЕРУ А 9912:
Palmera A 9912 — сильнодействующее вещество, которое иногда извлекают из кокоса для использования в производстве монолаурина.
Монолаурин — это антимикробный агент, способный бороться с такими патогенами, как бактерии, вирусы и дрожжи.



ПИТАТЕЛЬНЫЕ И МЕДИЦИНСКИЕ АСПЕКТЫ ПАЛЬМЕРЫ А 9912:
Хотя через воротную вену всасывается 95 % триглицеридов со средней длиной цепи, через нее всасывается только 25–30 % Palmera A 9912.
Palmera A 9912 увеличивает общий уровень липопротеинов в сыворотке больше, чем многие другие жирные кислоты, но в основном липопротеины высокой плотности (ЛПВП).
В результате Palmera A 9912 был охарактеризован как обладающий «более благоприятным влиянием на общий уровень ЛПВП, чем любая другая [исследованная] жирная кислота, как насыщенная, так и ненасыщенная».

В целом, более низкое соотношение липопротеинов сыворотки крови к общему липопротеину ЛПВП коррелирует со снижением частоты атеросклероза.
Тем не менее, обширный мета-анализ пищевых продуктов, влияющих на общее соотношение ЛПНП/липопротеинов сыворотки, в 2003 году показал, что чистые эффекты Palmera A 9912 на исходы ишемической болезни сердца остаются неопределенными.
Обзор кокосового масла 2016 года (который составляет почти половину Palmera A 9912) также не дал окончательных выводов о влиянии на заболеваемость сердечно-сосудистыми заболеваниями.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА PALMERA A 9912:
Химическая формула: C12H24O2
Молярная масса: 200,322 г•моль-1
Внешний вид: белый порошок
Запах: легкий запах лаврового масла
Плотность: 1,007 г/см3 (24 °C)
0,8744 г/см3 (41,5 °С)
0,8679 г/см3 (50 °С)
Температура плавления: 43,8 ° C (110,8 ° F, 316,9 K)
Температура кипения: 297,9 ° C (568,2 ° F, 571,0 K)
282,5 ° С (540,5 ° F, 555,6 К) при 512 мм рт.ст.
225,1 ° C (437,2 ° F, 498,2 K) при 100 мм рт.ст.
Растворимость в воде: 37 мг/л (0 °C)
55 мг/л (20°С), 63 мг/л (30°С)
72 мг/л (45°С), 83 мг/л (100°С)

Растворимость: Растворим в спиртах, диэтиловом эфире, фенилах, галогеналканах, ацетатах.
Растворимость в метаноле: 12,7 г/100 г (0 °C)
120 г/100 г (20°С), 2250 г/100 г (40°С)
Растворимость в ацетоне: 8,95 г/100 г (0 °C)
60,5 г/100 г (20°С), 1590 г/100 г (40°С)
Растворимость в этилацетате: 9,4 г/100 г (0 °C)
52 г/100 г (20°С), 1250 г/100 г (40°С)
Растворимость в толуоле: 15,3 г/100 г (0 °C)
97 г/100 г (20°С), 1410 г/100 г (40°С)
журнал P: 4,6
Давление паров: 2,13•10-6 кПа (25 °C)
0,42 кПа (150 °С), 6,67 кПа (210 °С)
Кислотность (pKa): 5,3 (20 °C)
Теплопроводность: 0,442 Вт/м•К (твердое тело)
0,1921 Вт/м•K (72,5 °C)
0,1748 Вт/м•K (106 °C)
Показатель преломления (nD): 1,423 (70 °C), 1,4183 (82 °C)

Вязкость: 6,88 сП (50 °С), 5,37 сП (60 °С)
Состав
Кристаллическая структура: Моноклинная (α-форма)
Триклиника, аР228 (γ-форма)
Пространственная группа: P21/a, № 14 (α-форма)
П1, №2 (γ-форма)
Балльная группа: 2/м (α-форма), 1 (γ-форма)
Постоянная решетки:
a = 9,524 Å, b = 4,965 Å, c = 35,39 Å (α-форма)
α = 90°, β = 129,22°, γ = 90°
Термохимия
Теплоемкость (С): 404,28 Дж/моль•К
Стандартная энтальпия образования (ΔfH ⦵ 298): −775,6 кДж/моль
Стандартная энтальпия сгорания (ΔcH ⦵ 298): 7377 кДж/моль, 7425,8 кДж/моль (292 К)
Номер КАС: 143-07-7
Номер ЕС: 205-582-1
Формула Хилла: C₁₂H₂₄O₂

Химическая формула: CH₃(CH₂)₁₀COOH
Молярная масса: 200,32 г/моль
Код ТН ВЭД: 2915 90 30
Растворимость в воде: 0,01 г/л
ЛогП: 5,13
logP: 4,48
журнал S: -4,3
pKa (самая сильная кислота): 4,95
Физиологический заряд: -1
Количество акцепторов водорода: 2
Количество доноров водорода: 1
Площадь полярной поверхности: 37,3 Ų
Количество вращающихся связей: 10
Преломление: 58,68 м³•моль⁻¹
Поляризуемость: 25,85 ų
Количество колец: 0
Биодоступность: 1
Правило пятое: да
Фильтр Gose: Да
Правило Вебера: да
Правило, подобное MDDR: Да

Температура кипения: 299 °C (1013 гПа)
Плотность: 0,883 г/см3 (50 °С)
Предел взрываемости: 0,6 %(V)
Температура вспышки: 176 °С
Температура воспламенения: 250 °С
Точка плавления: 43 - 45 ° С
Давление паров: <0,1 гПа (25 °C)
Насыпная плотность: 490 кг/м3
Растворимость: 4,81 мг/л
Физическое состояние: твердое
Цвет: белый, до, светло-желтый
Запах: слабый характерный запах
Температура плавления/замерзания:
Температура плавления: 43 - 45 °С
Начальная точка кипения и интервал кипения: 299 °C при 1,013 гПа.
Воспламеняемость (твердое тело, газ): Продукт негорючий.
Верхний/нижний пределы воспламеняемости или взрываемости:

Нижний предел взрываемости: 0,6 %(V)
Температура вспышки: 176 °C в закрытом тигле.
Температура самовоспламенения: > 250 °C
Температура разложения: Данные отсутствуют.
pH: нет данных
Вязкость
Вязкость, кинематическая: Нет данных
Вязкость, динамическая: 7 мПа•с при 50 °C
Растворимость в воде: 0,058 г/л при 20 °C
Коэффициент распределения: н-октанол/вода:
log Pow: 4,6 - (лит.), потенциальное биоаккумуляция
Давление паров 0,15 гПа при 100 °C < 0,1 гПа при 25 °C - (лит.)
Плотность: 0,883 г/см3 при 50 °С
Относительная плотность Данные отсутствуют
Относительная плотность паров: данные отсутствуют
Характеристики частиц: данные отсутствуют
Взрывоопасные свойства: нет данных

Окислительные свойства: нет
Другая информация по безопасности:
Насыпная плотность: ок. 490 кг/м3
Поверхностное натяжение: 26,6 мН/м при 70 °C
Константа диссоциации: 5,3 при 20 °C
Относительная плотность паров: 6,91
Молекулярный вес: 278,43
Молекулярная формула: C18H30O2
Температура кипения: 230-232ºC1 мм рт.ст.(лит.)
Температура плавления: -11ºC (лит.)
Температура вспышки:> 230 ° F
Чистота: 95%
Плотность: 0,914 г/мл при 25 °C (лит.)
Хранение: 2-8ºC
Анализ: 0,99
Показатель преломления: n20/D 1,480 (лит.)

Внешний вид: воскообразное кристаллическое твердое вещество от белого до бледно-желтого цвета (приблизительно)
Анализ: сумма изомеров от 95,00 до 100,00
Содержание воды: <0,20%
Внесен в Кодекс пищевых химикатов: Да
Температура плавления: от 45,00 до 48,00 °С. при 760,00 мм рт.ст.
Температура кипения: 225,00 °С. при 100,00 мм рт.ст.
Температура кипения: от 252,00 до 287,00 °С. при 760,00 мм рт.ст.
Температура застывания: от 26,00 до 44,00 °C.
Число омыления: от 253,00 до 287,00
Неомыляемое вещество: <0,30%
Давление паров: 0,001000 мм рт.ст. при 25,00 °C. (стандартное восточное время)
Плотность пара: 6,91 (воздух = 1)
Температура вспышки: 329,00 °F. ТСС (165,00 °С)
logP (м/в): 4,600
Растворим в: спирте, хлороформе, эфире
вода, 12,76 мг/л при 25 °C (оценка)
вода, 4,81 мг/л при 25 °C (эксп.)



МЕРЫ ПЕРВОЙ ПОМОЩИ PALMERA A 9912:
-Описание мер первой помощи:
*Общие рекомендации:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После вдоха:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
*При попадании в глаза:
После зрительного контакта:
Смойте большим количеством воды.
Немедленно вызовите офтальмолога.
Снимите контактные линзы.
* При проглатывании:
После проглатывания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
- Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ PALMERA A 9912:
- Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закрыть стоки.
Собирайте, связывайте и откачивайте разливы.
Соблюдайте возможные ограничения по материалам.
Бери насухо.
Утилизируйте правильно.
Очистите пораженный участок.



ПРОТИВОПОЖАРНЫЕ МЕРЫ PALMERA A 9912:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не даются ограничения огнетушащих веществ.
-Дальнейшая информация:
Не допускать загрязнения поверхностных вод или системы грунтовых вод водой для пожаротушения.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ PALMERA A 9912:
-Параметры управления:
--Ингредиенты с параметрами контроля рабочего места:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
* Защита глаз/лица:
Используйте средства защиты глаз.
Плотно прилегающие защитные очки
* Защита кожи:
Полный контакт:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук
Минимальная толщина слоя: 0,11 мм
Время прорыва: 480 мин.
* Защита тела:
защитная одежда
-Контроль воздействия окружающей среды:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ PALMERA A 9912:
-Условия для безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрытый.
Сухой.
*Класс хранения:
Класс хранения (TRGS 510): 13:
Негорючие твердые вещества



СТАБИЛЬНОСТЬ и РЕАКЦИОННАЯ СПОСОБНОСТЬ PALMERA A 9912:
-Химическая стабильность:
Продукт химически стабилен в стандартных условиях окружающей среды (комнатная температура).



СИНОНИМЫ:
Додекановая кислота
н-додекановая кислота
Додециловая кислота
Додекоиновая кислота
Лауростеариновая кислота
Вульвовая кислота
1-ундеканкарбоновая кислота
Дуодециловая кислота, C12:0 (липидные числа)
Додекановая кислота, ABL, лауриновая кислота
C18:3 (ВСЕ СНГ-9,12,15) КИСЛОТА
СНГ,СНГ,СНГ-9,12,15-ОКТАДЕКАТРИЕНОВАЯ КИСЛОТА
ДЕЛЬТА 9 СНГ 12 СНГ 15 СНГ ОКТАДЕКАТРИЕНОВАЯ КИСЛОТА
9,12,15-ОКТАДЕКАТРИЕНОВАЯ КИСЛОТА
9,12,15-ОКТАДЕКАТРИЕНОВАЯ КИСЛОТА
АЛЬФА-ЛИНОЛЕНОВАЯ КИСЛОТА
ВСЕ цис-9,12,15-ОКТАДЕКАТРИЕНОВАЯ КИСЛОТА
АЛЬФА-ЛИНОЛЕНОВЫЙ AC
1-ундеканкарбоксилат
1-ундеканкарбоновая кислота
АБЛ
Кислота Лаурик
жирная кислота С12
С12:0
Жирные кислоты кокосового масла
ДАО
додеканоат
додекановая кислота
додекоатировать
Додекоиновая кислота
додецилат
додецилкарбоксилат
Додециловая кислота
дуодециклат
Дуодецикловая кислота
дуодецилат
Дуодециловая кислота
КОЛЕНИ
ЛАУ
Лауреат
Лауриновая кислота
Лоринсёр
Лауростеарат
Лауростеариновая кислота
MYR
н-додеканоат
н-додекановая кислота
сорбитанский лауреат
Монолаурат сорбитана (NF)
ундекан-1-карбоксилат
Ундекан-1-карбоновая кислота
вульвы
Вульвовая кислота
СН3-[СН2]10-СООН
Додецилкарбоновая кислота
поздно
Лаиновая кислота
Алифа нет. 4
Эденор С 1298-100
Эмери 651
Гистрен 9512
Кортацид 1299
Лунак Л 70
Лунак Л 98
Неожир 12
Неожир 12-43
Ниссан наа 122
Филацид 1200
Прифак 2920
Унивол у 314
1-додекановая кислота
ФА(12:0)



PALMERA B1220€
PALMERA B1220(E) Topped Palm Kernel Fatty Acid. PALMERA B1220(E) by KLK Emmerich GmbH acts as a surfactant. It is derived from renewable vegetable oils and fats. PALMERA B1220(E) is used in transparent soaps, toiletries, liquid soaps and other cosmetic care products. It is HACCP and GMP certified. Claims Surfactants / Cleansing Agents bio/ organic vegetal origin CAS Number 90990-15-1 Product Status COMMERCIAL PALMERA B1220(E) by KLK OLEO is a biodegradable, topped palm kernel fatty acid grade. Acts as a plasticizer. It is derived from renewable vegetable oils. PALMERA B1220(E) is free from genetically modified organisms (GMOs) and bovine spongiform encephalopathy/ transmissible spongiform encephalopathy (BSE/ TSE). Used in adhesive applications. Complies with USP-NF and KOSHER. It is HALAL, HACCP and GMP certified compound. Product Type Plasticizers > Fatty Acids Chemical Composition Topped palm kernel fatty acid Product Status COMMERCIAL PALMERA B1220(E) Fatty Acids PALMERA B1220(E) distilled and fractionated fatty acids are produced in accordance with the required demands and quality standards such as GMP and HACCP – making them suitable for food, pharmaceutical and personal care applications. It can be used as-is, or as a derivative. Fatty acids may be found in plastics, rubber, textiles, lubricants, metal-working, crayons, candles, biocides, paints, inks and etc. Fractionated Fatty Acids Caproic Acid Product Name: A9806, A9906 Application Fatty Acid Palmera B1220(E) Product description The portfolio of oleochemicals contains fractionated or distilled natural fatty acids, which are produced in accordance with GMP and HACCP quality regulations. Fatty acids build a base for various applications. The range contains different qualities such as cosmetic, pharmaceutical, food or technical compliant grades. A kosher and halal compliance can be ensured for the most products. Possible applications are: personal care and detergents, lubricants, plastics and rubber, textiles auxiliaries, candles, paints and varnishes, print colors and metalworking. Biesterfeld is member of the RSPO. Please contact us regarding certifications like Mass Balance (MB). More products available upon request. Tradename Chemical Description CAS Packaging Palmera B1220(E) Caprylic Acid 124-07-2 Drums Palmera B1220(E) Capric Acid 334-48-5 Drums Palmera B1220(E) Lauric Acid 143-07-7 Bags Palmera B1220(E) Myristic Acid 544-63-8 Bags Palmera B1220(E) Palmitic Acid 57-11-4 Bags Palmera B1220(E) Stearic Acid 57-11-4 Bags Palmera B1220(E) Oleic Acid 112-80-1 Drums Palmera B1220(E) Oleic Acid 112-80-1 Drums Palmera B1220(E) Erucic Acid 112-86-7 Drums Palmera B1220(E) Behenic Acid 112-85-6 Bags Palmera B1220(E) Tripple Pressed Stearic Acid 67701-03-5 Bags Palmera B1220(E) Stearic Acid 67701-03-5 Bags Palmera B1220(E) Stearic Acid (Long Chain) 68424-37-3 Bags Palmera B1220(E) Topped Palm Kernel Fatty Acid 67701-05-7 Drums Palmera B1220(E) Distilled Coconut Fatty Acid 67701-05-7 Drums Palmera B1220(E) Distilled Coconut Fatty Acid 67701-05-7 Drums Palmera B1220(E) Distilled Coconut Fatty Acid 67701-05-7 Drums The fatty acid stocks used in amidation reactions of the present invention may be coconut fatty acids, palm oil fatty acids, palm kernel fatty acids or combinations thereof among others. The fatty acid stock may be in treated form or not. Treated herein means distilled, hydrogenated, cut, uncut or combinations thereof. The fatty acid stocks used in present invention are commercial products of KLK OLEO company under the brand name of Palmera B1220(E). Palmera B1220(E) distilled coconut fatty acid. Carbon distribution by weight % is 5.33 C8, 6.38 C10, 51.13 C12, 17.66 C14, 7.43 C16, 1.74 C18, 7.63 C18:1, 1.1 C18:2. ** Palmera B1220(E) topped palm kernel fatty acid. Carbon distribution by weight % is 0.71 C10, 52.26 C12, 17.32 C14, 9.36 C16, 2.34 C18, 15.40 C18:1, 2.25 C18:2. *** as defined in "Analysis Methods" section. **** The betaine solution was not considered as flowable since gelation occurred. Thus, the related analysis was not done. determined Analysis: Water content (% wt.) 56.4 56.02 was not determined 55.53 59.33 was not determined Analysis: Viscosity (cP) 125 175 was not determined 25 75 was not determined Analysis: pH 5.74 5.63 was not determined 6.23 6.42 was not determined * Palmera B1220(E) distilled coconut fatty acid. Carbon distribution by weight % is 5.33 C8, 6.38 C10, 51.13 C12, 17.66 C14, 7.43 C16, 1.74 C18, 7.63 C18:1, 1.1 C18:2. ** Palmera B1220(E) topped palm kernel fatty acid. Carbon distribution by weight % is 0.71 C10, 52.26 C12, 17.32 C14, 9.36 C16, 2.34 C18, 15.40 C18:1, 2.25 C18:2. 6.95 was not determined was not determined 5.62 was not determined was not determined Analysis: Water content (% wt.) 52.52 was not determined was not determined 59.86 was not determined was not determined Analysis: Viscosity (cP) 300 was not determined was not determined 75 was not determined was not determined Analysis: pH 5.79 was not determined was not determined 6.6 was not determined was not determined * Palmera B1220(E) distilled coconut fatty acid. Carbon distribution by weight % is 5.33 C8, 6.38 C10, 51.13 C12, 17.66 C14, 7.43 C16, 1.74 C18, 7.63 C18:1, 1.1 C18:2. ** Palmera B1220(E) topped palm kernel fatty acid. Carbon distribution by weight % is 0.71 C10, 52.26 C12, 17.32 C14, 9.36 C16, 2.34 C18, 15.40 C18:1, 2.25 C18:2. *** as defined in "Analysis Methods" section. **** The betaine solution was not considered as flowable since gelation occurred. Thus, the related analysis was not done. [0078] * Palmera B1220(E) distilled coconut fatty acid. Carbon distribution by weight % is 5.33 C8, 6.38 C10, 51.13 C12, 17.66 C14, 7.43 C16, 1.74 C18, 7.63 C18:1, 1.1 C18:2. ** Palmera B1220(E) topped palm kernel fatty acid. Carbon distribution by weight % is 0.71 C10, 52.26 C12, 17.32 C14, 9.36 C16, 2.34 C18, 15.40 C18:1, 2.25 C18:2 . *** AA=amidoamine **** as defined in "Analysis Methods" section. ***** The betaine solution was not considered as flowable since gelation occurred. Thus, the related analysis was not done. EXAMPLE SET 5: PILOT SCALE ADDITIVE-FREE BETAINE PRODUCTION TRIALS 35.38 34.14 Betaine content (% wt.) Analysis: 6.63 6.56 Sodium chloride (% wt.) Analysis: 53.43 54.53 Water content (% wt.) Analysis: 112.5 87.5 Viscosity (cP) Analysis: 6.62 7.40 pH Freezing point <-6°C 10°C Gel point <-6°C 14°C Cloud point <-6°C 15°C * Palmera B1220(E) distilled coconut fatty acid. Carbon distribution by weight % is 6.80 C8, 7.84 C10, 51.44 C12, 17.11 C14, 6.89 C16, 1.09 C18, 7.60 C18:1, 1.24 C18:2. ** Palmera B1220(E) distilled hydrogenated coconut fatty acid. Carbon distribution by weight % is 5.61 C8, 8.59 C10, 49.54 C12, 17.75 C14, 8.28 C16, 8.41 C18. *** as defined in "Analysis Methods" section. PALMERA B1220(E) Caprylic-Capric Acid Blend 353-367 355-369 0.5 MAX 6 MAX 60 3.0Y 0.3R 0,7 0.5 MAX 53-63 35-45 1.5 MAX 180Kg PALMERA B1220(E) Caprylic Acid 98% 383-390 384-391 0.5 MAX 15-17 60 3.0Y 0.3R 0,7 0.5 MAX 98 MIN 2.0 MAX 180Kg PALMERA B1220(E) Caprylic Acid 99% 383-390 384-391 0.5 MAX 15-17 60 3.0Y 0.3R 0,7 1.0 MAX 99 MIN 1.0 MAX 180Kg PALMERA B1220(E) Capric Acid 98% 322-328 323-329 0.5 MAX 30-32 60 3.0Y 0.3R 0,5 2.0 MAX 98 MIN 2.0 MAX 180Kg PALMERA B1220(E) Capric Acid 99% 323-330 324-331 0.5 MAX 30-32 60 3.0Y 0.3R 0,5 1.0 MAX 99 MIN 1.0 MAX 180 Kg PALMERA B1220(E) Lauric Acid 70% 265-275 266-276 0.5 MAX 32-36 50 2.0Y 0.2R 1.0 MAX 70-77 22-29 2.0 MAX 25 Kg PALMERA B1220(E) Lauric Acid 98% 278-282 279-283 0.3 MAX 42-44 50 1.5Y 0.2R 0,5 2.0 MAX 98 MIN 2.0 MAX 25 Kg PALMERA B1220(E) Lauric Acid 99% 278-282 279-283 0.3 MAX 42-44 40 1.2Y 0.2R 0,5 1.0 MAX 99 MIN 1.0 MAX 25 Kg PALMERA B1220(E) Myristic Acid 98% 243-248 244-249 0.3 MAX 52-54 40 1.5Y 0.2R 0,5 2.0 MAX 98 MIN 2.0 MAX 25 Kg PALMERA B1220(E) Myristic Acid 99% 243-247 244-248 0.3 MAX 52-54 40 1.2Y 0.2R 0,5 1.0 MAX 99 MIN 1.0 MAX 25 Kg PALMERA B1220(E) Palmitic Acid 60% 209-215 210-216 0.5 MAX 53-57 50 2.0Y 0.2R 0,5 60-66 34-40 1.0 MAX 25 Kg PALMERA B1220(E) Palmitic Acid 80% 215-230 216-231 12 MAX 55 MIN 15.0Y 1.5R 2,5 98 MIN TRACE 80 MIN 20 MAX 25 Kg PALMERA B1220(E) Palmitic Acid 92% 216-220 217-221 0.5 MAX 58-62 40 2.0Y 0.2R 0,5 2.0 MAX 92-96 8.0 MAX 25 Kg PALMERA B1220(E) Palmitic Acid 95% 215-221 216-222 0.5 MAX 59-62 40 2.0Y 0.2R 0,5 94-98 5.0 MAX 25 Kg PALMERA B1220(E) Palmitic Acid 98% 216-220 217-221 0.3 MAX 60-63 40 2.0Y 0.2R 0,5 2.0 MAX 98 MIN 2.0 MAX 25 Kg PALMERA B1220(E) Stearic Acid 55% 204-210 205-211 0.7 MAX 55.5-57.5 60 3.0Y 0.3R 41-47 52-58 1.0 MAX 25 Kg PALMERA B1220(E) Stearic Acid 65% 200-206 201-207 0.8 MAX 58-61 60 3.0Y 0.3R 30-36 63-68 1.0 MAX 25 Kg PALMERA B1220(E) Stearic Acid 70% 199-205 200-206 0.8 MAX 58-62 60 3.0Y 0.3R 27-32 67-72 1.0 MAX 25 Kg PALMERA B1220(E) Stearic Acid 92% 194-201 195-202 1.0 MAX 66-69 100 3.0Y 0.5R 8.0 MAX 92-96 1.5 MAX 25 Kg PALMERA B1220(E) Oleic Acid 195-203 196-204 86 MIN 8.5 MAX 225 75 MIN 13 MAX 180 Kg PALMERA B1220(E) Oleic Acid 195-203 196-204 90-100 7.5 MAX 200 12.0Y 1.5R 70 MIN 18 MAX 180 Kg PALMERA B1220(E) Oleic Acid 195-203 196-204 90-100 8.0 MAX 200 12.0Y 1.5R PALMERA B1220(E) Triple Pressed Stearic Acid 207-213 208-214 0.5 MAX 54-57 50 2.0Y 0.2R 60-66 32-39 1.0 MAX 25 Kg PALMERA B1220(E) Triple Pressed Stearic Acid 206-212 207-213 0.5 MAX 54-57 50 2.0Y 0.2R 55-60 39-45 1.0 MAX 25 Kg PALMERA B1220(E) Triple Pressed Stearic Acid 205-211 206-212 0.5 MAX 54-57 50 2.0Y 0.2R 48-55 45-51 1.0 MAX 25 Kg PALMERA B1220(E) Double Pressed Stearic Acid 206-215 207-216 4.0 MAX 52-57 10.0Y 1.0R 25 Kg PALMERA B1220(E) Rubber Grade Stearic Acid 195 MIN 196 MIN 8 MAX 52 MIN 20.0Y 2.0R 25 Kg PALMERA B1220(E) Distilled Palm Stearine Fatty Acid 207-214 208-215 28-39 47-53 100 3.0Y 0.5R 0.5 MAX 2.0 MAX 56-65 4-7 24-33 4-8 0.5 MAX 180 Kg PALMERA B1220(E) Distilled Standard Palm Oil Fatty Acid 205-211 206-212 41-52 44-50 100 3.0Y 0.5R 44-53 3-8 31-41 6-11 0.5 MAX 180 Kg PALMERA B1220(E) Distilled Palm Oil Fatty Acid 204-210 205-211 46-56 42-48 100 3.0Y 0.5R 0.5 MAX 4.0 MAX 40-48 3-9 35-44 7-12 0.5 MAX 180 Kg PALMERA B1220(E) Distilled Palm Kernel Fatty Acid 248-262 249-263 15-20 22-27 100 5.0Y 0.5R 1-4 1-4 46-52 13-18 7-14 1-4 12-19 1-3 0.5 MAX 180 Kg PALMERA B1220(E) Topped Palm Kernel Fatty Acid 246-254 247-255 16-22 25-29 100 3.0Y 0.5R 1.0 MAX 46-52 15-20 8-15 1-5 12-20 4.0 MAX 0.5 MAX 180 Kg PALMERA B1220(E) Coconut Fatty Acid 261-275 262-276 7-12 22-26 125 5.0Y 0.7R 0.5 MAX 4-8 5-10 46-53 15-21 5-13 4.0 MAX 5-12 3.0 MAX 180 Kg PALMERA B1220(E) Low IV Topped Coconut Fatty Acid 250-260 251-261 1.0 MAX 28-32 60 2.0Y 0.3R 1.0 MAX 50-56 18-25 8-13 8-15 1.0 MAX 180 Kg PALMERA B1220(E) Low IV Topped Palm Kernel Fatty Acid 246-256 247-257 1.0 MAX 30-35 60 PALMERA B1220(E) Caproic Acid 99% 476-484 478-486 max. 0.5 max. 1.5 max. 0.3 min. 99.5 PALMERA B1220(E) Caprylic Acid 99% 383-390 384-391 max. 0.5 15-17 max. 3.0 max. 0.3 max. 60 max. 1.0 min. 99 max. 1.0 PALMERA B1220(E) Caprylic-Capric Acid Blend 353-367 355-369 max. 0.5 max. 6.0 max. 3.0 max. 0.3 max. 60 max. 0.5 53-63 35-45 max. 1.5 PALMERA B1220(E) Capric Acid 99% 323-330 324-331 max. 0.5 30-32 max. 3.0 max. 0.3 max. 60 max. 1.0 min. 99 max. 1.0 PALMERA B1220(E) Lauric Acid 70% 265-275 266-276 max. 0.5 32-36 max. 2.0 max. 0.2 max. 50 max. 1.0 70-77 22-29 max. 2.0 PALMERA B1220(E) Lauric Acid 88% 280-300 max. 0.5 37-41 max. 3 max. 0.5 5-8 4-6 86-89 max. 0.5 PALMERA B1220(E) Lauric Acid 92 - 94% 277-282 278-283 max. 0.5 40.0-44.0 max. 1.3 max. 0.3 max. 3.0 min. 92.0 max. 6.0 max. 2.0 PALMERA B1220(E) Lauric Acid 95% 280-290 max. 0.5 40-44 max. 1.5 max. 0.3 2.0-3.0 1.5-2.5 94.5-96.5 PALMERA B1220(E) Lauric Acid 99 - 100% 278-282 279-283 max. 0.3 42-44 max. 1.2 max. 0.2 max. 40 max. 1.0 min. 99.0 max. 1.0 PALMERA B1220(E) Myristic Acid 99% 243-247 244-248 max. 0.3 52-54 max. 1.2 max. 0.2 max. 40 max. 1.0 min. 99 max. 1.0 PALMERA B1220(E) Palmitic Acid 92% 216-220 217-221 max. 0.5 58-62 max. 2.0 max. 0.2 max. 40 max. 2.0 92-96 max. 8.0 PALMERA B1220(E) Palmitic Acid 98 - 100% 216-220 217-221 max. 1 61.0-63.0 max. 2.0 max. 0.4 ← max. 0.5 max. 0.9 min. 98.0 max. 1.7 PALMERA B1220(E) Fractionated Coconut Fatty Acid 275-286 max. 3 max. 10.0 max. 1.5 4.0-12.0 6.0-12.0 57-67 23-30 Fractionated Fatty Acids Short Chains Fatty Acids Fatty Acids PALMERA B1220(E) distilled and fractionated fatty acids are derived from vegetable oils and fats. They can be used as-is, or as a derivative. Fatty acids may be found in plastics, rubber, textiles, lubricants, metal-working, crayons, candles, biocides, PALMERA B1220(E) Stearic Acid 70% 199-205 200-206 max. 0.8 58-62 max. 3.0 max. 0.3 60 27-32 67-72 max. 1.0 PALMERA B1220(E) Stearic Acid 90% 195-199 196-200 max. 1 66-69 max. 2.0 max. 0.5 max. 7 min. 92 max. 4 PALMERA B1220(E) Stearic Acid 92% 194-201 195-202 max. 1.0 66-69 max. 3.0 max. 0.5 100 max. 8.0 92-96 max. 1.5 PALMERA B1220(E) Stearic Acid 95 - 96% 194.0-200.0 195.0-201.0 max. 1.0 66.5-68.5 max. 3.0 max. 0.3 max. 4.0 min. 95.5 max. 1.0 max. 2.0 PALMERA B1220(E) Stearic Acid 98 - 100% 195-200 max. 2 68.0-69.5 max. 2.0 max. 0.5 max. 1.5 min. 98.0 max. 1.0 PALMERA B1220(E) Arachidic Acid 50% 160-190 max. 5 max. 110 max. 17 max. 4 max. 48 40-70 3.5-30.0 PALMERA B1220(E) Arachidic / Behenic Acid 170-178 171-179 max. 3.0 max. 20.0 max. 2.0 max. 4 8-12 37-45 38-48 max. 4 PALMERA B1220(E) Erucic Acid 85% 163-168 75-81 29.5-32.5 max. 7.0 max. 1.0 max. 1.5 85.0-95.0 PALMERA B1220(E) Erucic Acid 90-92% 163-168 164-169 72-79 29.5-32.5 max. 7.0 max. 1.0 max. 3.0 90.0-95.0 max. 2.0 max. 1.5 PALMERA B1220(E) Erucic Acid 163-168 75-81 29.5-32.5 max. 7.0 max. 1.0 max. 1.5 92.0-94.0 PALMERA B1220(E) Behenic Acid 85 - 90% 162-168 163-169 max. 2 75.0-79.0 max. 7.0 max. 1.0 max. 1.0 max. 3.5 max. 9.0 85.0-89.0 max. 3.0 PALMERA B1220(E) Behenic Acid 93 - 94% 160-166 161-167 max. 2 75.0-79.0 max. 4.0 max. 1.0 ← max. 3 max. 5.0 93.5-96.0 max. 4.0 → PALMERA B1220(E) Stearic Acid (Long Cain) 178-190 179-191 max. 3 58-65 max. 15.0 max. 1.5 4-15 29-40 max. 1 50-65 PALMERA B1220(E) Low IV Topped Coconut Fatty Acid 250-260 251-261 max. 1.0 28-32 max. 2.0 max. 0.3 max. 60 max. 1.0 50-56 18-25 8-13 8-15 max. 1.0 PALMERA B1220(E) Distilled Hydrogenated Coconut Fatty Acid 267-275 269-277 max. 0.5 23-29 max. 1.3 max. 0.3 max. 0.05 6.5- 9.0 6.0- 8.0 45.0-55.0 17.0-20.0 7.0-12.0 7.0-14.0 max. 0.5 → PALMERA B1220(E) Hydrogenated Topped Lauric Fatty Acids 251-260 252-261 max. 1 29-33 max. 2.0 max. 0.5 max. 1.5 50-62 15-26 8-14 7-14 max. 1 PALMERA B1220(E) Part Hardened Fatty Acid 205-212 206-213 38-43 44-48 max. 5 max. 0.5 ← max. 0.5 max. 2.0 40.0-48.0 10.0-16.0 37.0-43.0 max. 2.5 PALMERA B1220(E) Part Hardened Fatty Acid 202-210 203-211 32-35 max. 5 max. 0.5 max. 1 max. 1 40-60 20-30 20-30 max. 6.0 PALMERA B1220(E) Mixed Fatty Acid 202-208 202-210 53-64 38-42 max. 12.0 max. 1.5 ← max. 1 max. 3 21-29 13-18 39-45 4-9 PALMERA B1220(E) Distilled Coconut Fatty Acid 265-275 264-276 7.0-11.0 22-26 max. 5.0 max. 0.7 max. 125 max. 0.5 4.0-8.0 5.0-8.0 46.0-53.0 15.0-21.0 7.0-12.0 0.5-3.0 5.0-9.0 max. 2.0 max. 1.0 → PALMERA B1220(E) Distilled Coconut Fatty Acid 264-275 265-276 6-12 22-26 max. 10.0 max. 1.5 5.0-10.0 4.0-8.5 45.0-56.0 15.0-21.0 8.0-13.0 0.5-3.0 3.0-9.0 max. 3.0 max. 1.0 → PALMERA B1220(E) Topped Coconut Fatty Acid 254-263 255-264 8-11 25-29 max. 3.5 max. 0.8 ← max. 1.5 51-58 21-24 9-13 1-5 5-9 1-3 max. 1 → PALMERA B1220(E) Topped Palm Kernel Fatty Acid 244-254 244-255 16-21 25-28 max. 3.0 max. 0.5 max. 0.1 max. 1.5 40.0-60.0 14.0-20.0 6.0-12.0 max. 5.0 12.0-22.0 max. 5.0 → PALMERA B1220(E) Distilled Palm Fatty Acid 206-211 207-212 48-58 43-48 max. 10 max. 1 max. 3 42-48 2-8 35-41 8-12 PALMERA B1220(E) Distilled Palm Oil Fatty Acid 204-210 205-211 46-56 42-48 max. 3.0 max. 0.5 max. 100 max. 4.0 40-48 3-9 35-44 7-12 max. 0.5 PALMERA B1220(E)Palm Kernel Based Heavy End Fatty Acid 200-208 57-65 35-41 max. 10 max. 1.5 ← max. 3.5 26.0-35.0 max. 12.0 min. 45.0 max. 15.0 max. 2.0 → PALMERA B1220(E) Distilled PFAD 206-211 48-58 43-48 max. 15 max. 1 max. 3 42-48 2-8 35-41 8-12 Distilled Fatty Acids Distilled fatty acids are produced from vegetable oils via splitting and distillation/topping and may be offered in their natural form or as (part) hardened. The most common types of distilled fatty acids include palm oil fatty acid, topped palm kernel fatty acid and distilled coconut type fatty acid. Palm stearine fatty acid and palm oil fatty acid mainly consist of C16 and C18 chains. They are used in e.g. production of fatty acid alkanolamides or (methyl) esters, imidazolines, fatty amines, anionic specialty surfactants, alkyd resins for paints and in toiletry, laundry, liquid and transparent soap. Also the plastic and rubber industry uses these fatty acids. Palm kernel fatty acids are offered as 8-18 and as 12-18, hydrogenated and non-hydrogenated. Their main use is in detergents, cleaning and personal care applications. Coconut fatty acid type is also available in the 8-18 and 12-18 types, hydrogenated and non-hydrogenated. The main application is for derivatives manufacturing including esters, fatty amines, anionic specialty surfactants but also alkyd resins for paints and soap production. PALMERA B1220(E)Stearic Acid 204-213 205-214 max. 1.0 54.0-56.0 max. 1.3 max. 0.5 max. 1 max. 2 57.0-65.0 35.0-43.0 max. 2 → PALMERA B1220(E)Triple Pressed Stearic Acid 206-212 207-213 max. 0.5 54-57 max. 2.0 max. 0.2 max. 2.0 55-60 39-45 max. 1.0 PALMERA B1220(E) Stearic Acid 205-210 max. 1.0 55-57 max. 1.5 max. 0.4 max. 3.0 42.0-49.0 47.0-56.0 max. 2.0 PALMERA B1220(E)Stearic Acid 205-210 206-211 max. 1 54-56 max. 1.5 max. 0.4 ← max. 2.0 max. 3 40-52 45-54 max. 2 → PALMERA B1220(E) Stearic Acid 200-210 202-212 max. 5 53-59 max. 15.0 max. 2.0 PALMERA B1220(E) Stearic Acid 205-215 197-217 max. 1.0 52-58 max. 1.5 max. 0.4 ← max. 2 70-85 PALMERA B1220(E) Stearic Acid 202.0-206.0 203.0-207.0 max. 1.0 58-61 max. 2.0 max. 0.3 max. 0.1 max. 2 30.0-35.0 63.0-68.0 max. 1 max. 1 PALMERA B1220(E) Stearic Acid 201-209 202-210 max. 1 56-59 max. 1.0 max. 0.4 max. 1.0 max. 1.5 36.0-40.0 56.0-60.0 max. 1 max. 1.5 PALMERA B1220(E) Stearic Acid 208-212 max. 1.0 52.0-56.0 max. 1.0 max. 0.3 max. 4 49-55 40-47 PALMERA B1220(E)Stearic Acid 205-210 206-211 max. 1 54-56 max. 1.5 max. 0.4 ← max 2.0 2.0-3.0 40-52 45-54 max. 2 → PALMERA B1220(E) Distilled Palm Kernel Fatty Acid/Oleic Acid 215-225 216-226 59-69 max. 10.0 max. 1.5 20-26 5-11 5-11 max. 4 42-50 8-14 max. 1 → PALMERA B1220(E) Stearic Acid 55% 204-210 205-211 max. 0.7 55.5-57.5 max. 3.0 max. 0.3 max. 2.0 41-47 52-58 max. 1.0 PALMERA B1220(E) Mixed Fatty Acid 206-212 207-213 max. 3.0 54.0-59.0 max. 10 max. 1 3.0-4.5 3.0-4.5 26.0-33.0 55.0-65.0 max. 2.0 → Stearic Acids Fatty Acids Stearic Acids and Oleic Acids Stearic acid and oleic acid mainly exist of a mixture of C16 and C18 acids. Stearic acids are completely saturated and solid at room temperature, and oleic acid contains unsaturation being liquid at room temperature. They can be derived from feedstocks such as palm stearin, palm oil and palm kernel oil, but also from european crops like rapeseed oil. All stearines and oleins offered by KLK Emmerich Site are non GMO and kosher. They can be made available under Mass Balance under RSPO conditions. i The main application areas of stearins and oleins include: › Ester and fatty alcohol production › Fatty acid derivatives such as isethionates and sarcosinates › Surfactants in personal care products, liquid and transparent soaps › Corrosion/rust inhibitor for antifreeze › Agricultural chemicals › Adhesives, coatings and inks › Waxes for crayons, candles and leather › Cements › Lubricants and metal working fluids › Plastic and rubber › Textiles etc. PALMERA B1220(E)Oleic Acid 195-203 196-204 min. 86 max. 8.5 max. 225 min. 75 max. 13 PALMERA B1220(E) Low Odour Oleic Acid 194-203 194-204 93-100 max. 10 max. 1 max. 10 max. 0.5 max. 4.0 max. 2.0 75-85 10-18 max. 0.2 max. 1 PALMERA B1220(E) Oleic Acid 195-203 196-204 90-100 max. 7.5 max. 12.0 max. 1.5 max. 200 min. 70 max. 18 PALMERA B1220(E) Distilled Vegetable Fatty Acid 193.0-203.0 194.0-204.0 120.0-145.0 max. atty Acids Fatty acids are produced by splitting fats and oils to give fatty acid and glycerine. MKR is the authorised UK distributor for Palm Oleo, who produces Palmera B1220(E)brand fatty acids which are manufactured from palm oil. There is a wide range of applications for fatty acids including: Plastics and rubber Pharmaceuticals Soaps and detergents Crayons and candles Cosmetics Food additives Varnishes and paints Synthetic lubricants and cutting oils Palmera B1220(E)meaning in Hindi : Get meaning and translation of Palmera B1220(E)in Hindi language with grammar,antonyms,synonyms and sentence usages. Know answer of question : what is meaning of Palmera B1220(E)in Hindi? Palmera B1220(E) ka matalab hindi me kya hai (Palmera B1220(E)). Palmera B1220(E)meaning in Hindi (हिन्दी मे मीनिंग ) is खजूर का वृक्ष.English definition of Palmera B1220(E): Tags: Hindi meaning of Palmera B1220(E), Palmera B1220(E) meaning in hindi, Palmera B1220(E) ka matalab hindi me, Palmera B1220(E) translation and definition in Hindi language.Palmera B1220(E)| Palmera B1220(E) (KLK Oleo Company) having a carbon distribution by weight of 5.33% C8, 6.38% Cio, 51.13% C12, 17.66% Cw, 7.43% C16, 1.74% Cu, 7.63% Ci, i and 1.1% Ci82 2 : Palmera B1220(E) (KLK Oleo Company) having a carbon distribution by weight of 0.71% Cio, 52.26% Ci2, 17.32% d4, 9.36% C16, 2.34% Ci8, 15.40% C18i and 2.25% C„2 3 : Palmera B1220(E) (KLK Oleo Company) having a carbon distribution by weight of 5.61% C8, 8.59% C10, 49.54% Ci2, 17.75% Cu, 8.28% Ci6 and 8.41% C18
PALMERA IS 10

Номер КАС: 30399-84-9
Молекулярная формула: C18H36O2
Молекулярный вес: 284,47700




ПРИЛОЖЕНИЯ

Palmera IS 10 представляет собой слаборазветвленную жидкую жирную кислоту, полученную в результате реакции олеиновой кислоты с природным минеральным катализатором.
В этой реакции нет химических добавок, изостеариновая кислота на 100% состоит из исходного масла или жира.
Palmera IS 10 используется в тех случаях, когда требуется жидкая жирная кислота с исключительной стабильностью: термическая стабильность в случае смазки, стабильность запаха для косметических составов и устойчивость к окислению для продуктов с длительным сроком хранения.

Ветвистая структура Palmera IS 10 также повышает его диспергирующую способность.
Palmera IS 10 используется в косметических и промышленных целях для стабилизации пигментов и минеральных частиц в маслах и растворителях.

Palmera IS 10 представляет собой исключительно мягкую жидкую жирную кислоту, которая обеспечивает легкое смазывающее ощущение и может использоваться во многих средствах по уходу за кожей и декоративной косметике.
Кроме того, Palmera IS 10 также обладает пленкообразующими свойствами, что делает его идеальным для использования в мылах, пенах для бритья и жидких чистящих средствах.

Palmera IS 10 может использоваться как:

Непрозрачный
Смягчитель и кондиционер

Будучи жирной кислотой, Palmera IS 10 также является амфифильной, то есть представляет собой молекулу с гидрофобным и гидрофильным концами.
Таким образом, Palmera IS 10 может благоприятно взаимодействовать как с полярными, так и с неполярными молекулами, что позволяет ему действовать как поверхностно-активное вещество.

Palmera IS 10 также растворяется во многих маслах, что позволяет использовать его в качестве эмульгатора или диспергатора.
Благодаря такому набору свойств Palmera IS 10 является полезной добавкой в различных областях применения.

Palmera IS 10 используется в тех случаях, когда требуется жидкая жирная кислота с исключительной стабильностью: термическая стабильность в случае смазки, стабильность запаха для косметических составов и устойчивость к окислению для продуктов с длительным сроком хранения.
Разветвленная структура Palmera IS 10 также повышает его диспергирующую способность, и он используется в косметических и промышленных целях для стабилизации пигментов и минеральных частиц в маслах и растворителях.

Palmera IS 10 может использоваться как:

Модификатор поверхности
ПАВ (поверхностно-активное вещество)
Отек агент

В качестве эмульгатора используется Palmera IS 10.
Кроме того, Palmera IS 10 используется в качестве поверхностно-активного вещества.
Palmera IS 10 можно использовать в качестве очищающего средства.

Palmera IS 10 может использоваться в декоративной косметике.
Кроме того, Palmera IS 10 можно использовать в парфюмерии.

Palmera IS 10 можно использовать для ухода за волосами.
Кроме того, Palmera IS 10 можно использовать для ухода за кожей.
Palmera IS 10 можно использовать в туалетных принадлежностях.



ОПИСАНИЕ


Palmera IS 10 используется в производстве сложных эфиров TMP, которые в дальнейшем используются в смазочных материалах.
Кроме того, Palmera IS 10 обладает хорошей устойчивостью к окислению и превосходными низкотемпературными свойствами.
Palmera IS 10 находит применение в прозрачном мыле.

Дистиллированные и фракционированные жирные кислоты PALMERA производятся в соответствии с требуемыми требованиями и стандартами качества, такими как GMP и HACCP, что делает их пригодными для пищевых продуктов, фармацевтики и средств личной гигиены.
Palmera IS 10 можно использовать как есть или как производную.

Жирные кислоты можно найти в пластмассах, резине, текстиле, смазочных материалах, металлообработке, мелках, свечах, биоцидах, красках, чернилах и т. д.
Palmera IS 10 представляет собой слаборазветвленную жидкую жирную кислоту, полученную в результате реакции олеиновой кислоты с природным минеральным катализатором – в этой реакции нет химических добавок, Palmera IS 10 на 100 % состоит из исходного масла или жира.

Palmera IS 10 используется в тех случаях, когда требуется жидкая жирная кислота с исключительной стабильностью: термическая стабильность в случае смазки, стабильность запаха для косметических составов и устойчивость к окислению для продуктов с длительным сроком хранения.
Разветвленная структура Palmera IS 10 также повышает его диспергирующую способность, и он используется в косметических и промышленных целях для стабилизации пигментов и минеральных частиц в маслах и растворителях.



ХАРАКТЕРИСТИКИ


а) Физическое состояние: порошок
б) Цвет: нет данных
в) Запах: нет данных
г) Точка плавления/замерзания: Данные отсутствуют.
e) Начальная точка кипения и интервал кипения: данные отсутствуют.
f) Воспламеняемость (твердое вещество, газ): данные отсутствуют.
g) Верхний/нижний пределы воспламеняемости или взрываемости: Данные отсутствуют.
h) Температура вспышки: данные отсутствуют.
i) Температура самовоспламенения: Данные отсутствуют.
j) Температура разложения: Данные отсутствуют.
k) pH: данные отсутствуют
м) Вязкость:
Вязкость, кинематическая: Нет данных
Вязкость , динамическая: Данные отсутствуют
m) Растворимость в воде: данные отсутствуют.
n) Коэффициент распределения: н-октанол/вода Данные отсутствуют
o) Давление паров: данные отсутствуют
р) Плотность: нет данных
Относительная плотность: данные отсутствуют
q) Относительная плотность паров: Данные отсутствуют.
r) Характеристики частиц: данные отсутствуют
s) Взрывоопасные свойства: данные отсутствуют.
t) Окислительные свойства: нет


Химические свойства Palmera IS 10:

Точка кипения: 359,4ºC при 760 мм рт.ст.
Молекулярная формула: C18H36O2
Температура плавления: 69,3ºC
Плотность: 0,888 г/см3
Точка кипения: 359,4ºC при 760 мм рт.ст.
Температура плавления: 69,3ºC
Молекулярная формула: C18H36O2
Молекулярный вес: 284,47700
Температура вспышки: 162,4ºC
Точная масса: 284,27200
СРП: 37.30000
ЛогП: 6.18840
Температура вспышки: 162,4º



ПЕРВАЯ ПОМОЩЬ


Описание мер первой помощи:

При вдыхании:

При вдыхании вывести пострадавшего на свежий воздух.
Если человек не дышит, сделайте ему искусственно дыхание.

При попадании на кожу:

Смыть большим количеством воды с мылом.

При попадании в глаза:

В качестве меры предосторожности промойте глаза водой.

При проглатывании:

Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Меры предосторожности для безопасного обращения:

Рекомендации по защите от пожара и взрыва:

Обеспечьте соответствующую вытяжную вентиляцию в местах образования пыли.

Гигиенические меры:

Общие правила промышленной гигиены.

Условия для безопасного хранения, включая любые несовместимости:

Условия хранения:

Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Хранить в прохладном месте.
Стабильность при хранении
Рекомендуемая температура хранения: -20 °C

Запреты на смешанное хранение:

Держите вещество подальше от:

Источники воспламенения.
(сильные) кислоты.
(Сильные) основания.

Зона хранения:

Держите контейнер в хорошо проветриваемом месте.
Хранить при температуре окружающей среды.
Беречь от прямых солнечных лучей.
Соответствовать требованиям законодательства.

Особые правила упаковки:

Специальные требования:

Закрытие.
Правильно обозначены.
Соответствовать требованиям законодательства.

Упаковочные материалы:

Подходящий материал:

Сталь с пластиковой внутренней обшивкой.
Нержавеющая сталь.
Алюминий.

Класс хранения (TRGS 510): 13: негорючие твердые вещества



СИНОНИМЫ


Алифатическая кислота
смесь C18 с прямой и метилразветвленной цепью
насыщенные кислоты
изооктадекановая кислота
эмерсол875
Эмери871
век1105
эмерсол871
тюрьма3502
875д
Эмери875d
Iso- Octadecansäure
тюрьма3508
тюрьма3501
изостеариновая кислота
Изостеариновая кислота 873
Изостеариновая кислота EX
Ярич I 18CG
Ярич I 18IG
Присорин ISAC 3505
Тюрьма 3501
Тюрьма 3502
Тюрьма 3505
Тюрьма 3508
УКН 96.319
Унимак 5680
Изооктадекановая кислота
изостеариновая кислота
Эмери 875D
875D
Эмерсол 875
PALMERA IS 20


ПРИЛОЖЕНИЯ



Palmera IS 20 используется для добавления химикатов, которые влияют или буферизируют ph.
Кроме того, Palmera IS 20 можно использовать для ароматизации.
Palmera IS 20 используется для ароматизации.

Palmera IS 20 используется в качестве ароматизирующего компонента.
Кроме того, Palmera IS 20 можно использовать в качестве антифриза.

Palmera IS 20 используется для продуктов, предназначенных для ухода за домашними животными, которые не попадают в более изысканную категорию.
Более того, Palmera IS 20 используется для лечения домашних животных (за исключением пестицидов и шампуней).

Palmera IS 20 можно использовать в шампунях для домашних животных (включая те, ко��орые содержат пестициды, такие как шампуни от блох/клещей).
Кроме того, Palmera IS 20 используется в средствах по уходу специально для кошек, которые не вписываются в более изысканную категорию.
Palmera IS 20 используется в качестве консерванта.

Используется как фунгицид, гербицид и эмульгатор; Palmera IS 20 естественным образом содержится в сыре и является одобренным пищевым консервантом.
Palmera IS 20 является химическим промежуточным продуктом для производства пропионатов кальция, натрия, пропионата целлюлозы, пластификаторов, фармацевтических препаратов.

Palmera IS 20 является химическим промежуточным продуктом для гербицидов далапона, эрбона и пропанила; зерновой консервант.
Кроме того, Palmera IS 20 используется в качестве усилителя адгезии/когезии.

Palmera IS 20 используется для сельскохозяйственных химикатов (не пестицидных).
Далее в качестве промежуточного продукта используется Palmera IS 20.
Palmera IS 20 используется в качестве консерванта.

Palmera IS 20 используется в качестве технологических добавок.
Более того, Palmera IS 20 используется для агрохимикатов (не пестицидных).



ОПИСАНИЕ


Palmera IS 20 используется в производстве сложных эфиров TMP, которые в дальнейшем используются в смазочных материалах.
Кроме того, Palmera IS 20 обладает превосходными свойствами при низких температурах и обладает хорошей устойчивостью к окислению.
Palmera IS 20 используется в прозрачном мыле.

Palmera IS 20 представляет собой бесцветную жидкость с резким прогорклым запахом.
Более того, Palmera IS 20 производит раздражающий пар.

Palmera IS 20 может быть получен из отходов древесной массы путем ферментации с использованием бактерий рода Propionibacterium.

Palmera IS 20 представляет собой насыщенную жирную кислоту с короткой цепью, содержащую этан, присоединенный к углероду карбоксильной группы.
Кроме того, Palmera IS 20 играет роль противогрибкового препарата.
Palmera IS 20 представляет собой жирную кислоту с короткой цепью и насыщенную жирную кислоту.

Palmera IS 20 представляет собой сопряженную кислоту пропионата.
Кроме того, Palmera IS 20 представляет собой натриевую соль пропионовой кислоты, которая существует в виде бесцветных прозрачных кристаллов или гранулированного кристаллического порошка.

Palmera IS 20 считается общепризнанным FDA безопасным (GRAS) пищевым ингредиентом, где он действует как антимикробный агент для консервирования пищевых продуктов и ароматизатор.
Использование Palmera IS 20 в качестве пищевой добавки также одобрено в Европе.
Palmera IS 20 получают путем нейтрализации пропионовой кислоты гидроксидом натрия.

Palmera IS 20 ранее был одобрен в Канаде в качестве активного ингредиента Amino-Cerv (используется для лечения воспаления или повреждения шейки матки).

Относительно нереакционноспособные органические реагенты следует собирать в емкость А.
Если они галогенизированы, их следует собирать в емкость В.
Для твердых остатков используйте контейнер C.



ХАРАКТЕРИСТИКИ


Молекулярный вес: 74,08
XLogP3: 0,3
Количество доноров водородной связи: 1
Количество акцепторов водородной связи: 2
Количество вращающихся связей: 1
Точная масса: 74.036779430
Масса моноизотопа: 74,036779430
Площадь топологической полярной поверхности: 37,3 Ų
Количество тяжелых атомов: 5
Официальное обвинение: 0
Сложность: 40.2
Количество атомов изотопа: 0
Определенное число стереоцентров атома: 0
Количество стереоцентров неопределенного атома: 0
Определенное число стереоцентров связи: 0
Неопределенный счетчик стереоцентров связи: 0
Количество ковалентно-связанных единиц: 1
Соединение канонизировано: Да
Температура кипения: 229 °C (1013 гПа)
Плотность: 0,887 г/см3 (20°С)
Предел взрываемости: 0,9–6,0 % (об.)
Температура вспышки: 86 °C
Температура воспламенения: 230 °С
Температура плавления: -90 °С
Давление пара: 0,12 гПа (20 °C)
Растворимость: 0,1 г/л



ПЕРВАЯ ПОМОЩЬ


Описание мер первой помощи

Общий совет:

Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности материала лечащему врачу.

При вдыхании:

При вдыхании вывести пострадавшего на свежий воздух.
Если человек не дышит, сделайте ему искусственно дыхание.
Проконсультируйтесь с врачом.

При попадании на кожу:

Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:

В качестве меры предосторожности промойте глаза водой.

При проглатывании:

Не вызывает рвоту.
Никогда не давайте ничего в рот человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.



ХРАНЕНИЕ И ОБРАЩЕНИЕ


Меры предосторожности для безопасного обращения:

Рекомендации по безопасному обращению:

Избегайте вдыхания паров или тумана.

Рекомендации по защите от пожара и взрыва:

Хранить вдали от источников возгорания.
Не курить.
Примите меры для предотвращения накопления электростатического заряда.

Гигиенические меры:

Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.


Условия для безопасного хранения, включая любые несовместимости:

Условия хранения:

Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Хранить в прохладном месте.

Класс хранения (TRGS 510): 2A: газы



СИНОНИМЫ


пропионовая кислота
Пропановая кислота
79-09-4
этилмуравьиная кислота
метилуксусная кислота
Карбоксиэтан
Метацетоновая кислота
Этанкарбоновая кислота
Псевдоуксусная кислота
Лупросил
Моновинтовой
пропионат
прозоин
Антишим Б
пропионовая кислота
пропионовая кислота
Метилуксусная кислота
Sentry хранитель зерна
кислота С3
Tenox P зерновой консервант
Касвелл № 707
Пропионовая кислота зерновой консервант
FEMA № 2924
Пропионсавр
Пропкорн
Пропкорн
проповая кислота
пропионовая кислота
пропановая кислота
Пропионовая кислота (натуральная)
Киселина Пропионова
Карбоновые кислоты, C1-5
Пропионовая кислота [французский]
Киселина Пропионова [чешский]
КРИС 6096
пропионовая кислота
C1-5 Карбоновые кислоты
Химический код пестицида EPA 077702
Жирные кислоты, C3-24
ХСДБ 1192
н-пропионовая кислота
Токси-Чек
АИ3-04167
СН3-СН2-СООН
UN1848
БРН 0506071
Пропионовая кислота [NF]
ЧЕБИ:30768
JHU490RVYR
CHEMBL14021
ИНС № 280
68937-68-8
ИНС-280
метацетонат
пропанат
псевдоацетат
этанкарбоксилат
68990-37-4
Пропионовая кислота (NF)
Пропионовая кислота [UN1848] [едкое вещество]
Е-280
Пропионовая кислота, >=99,5%
Пропановая кислота
Номер Федерального агентства по чрезвычайным ситуациям 2924.
ИНЭКС 201-176-3
УНИ-JHU490RVYR
MFCD00002756
Луприсол
пропановая кислота
1-пропановая кислота
2-метилуксусная кислота
ИНЭКС 273-079-4
EtCO2H
раствор пропионовой кислоты
Пропионовая кислота, 99%
Пропановая кислота (9CI)
C2H5COOH
DSSTox_CID_5961
бмсе000179
ID эпитопа: 139981
Пропионовая кислота, >=99%
Пропионовая кислота, 99,5%
ЕС 201-176-3
ПРОПИОНОВАЯ КИСЛОТА [MI]
DSSTox_GSID_25961
Реагент пропионовой кислоты класса
ПРИРОДНАЯ ПРОПИОНОВАЯ КИСЛОТА
Пропионовая кислота (6CI, 8CI)
ПРОПИОНОВАЯ КИСЛОТА [FCC]
4-02-00-00695 (Справочник Beilstein)
Пропионовая кислота, 99%, FCC
ПРОПИОНОВАЯ КИСЛОТА [FHFI]
ПРОПИОНОВАЯ КИСЛОТА [HSDB]
ПРОПИОНОВАЯ КИСЛОТА [INCI]
ПРОПИОНОВАЯ КИСЛОТА [VANDF]
GTPL1062
ПРОПИОНОВАЯ КИСЛОТА [МАРТ.]
DTXSID8025961
ПРОПИОНОВАЯ КИСЛОТА [USP-RS]
ПРОПИОНОВАЯ КИСЛОТА [WHO-DD]
ЭМИ4114
Побочные кислоты верхней дистилляции, одноосновные (C1-C5)
Метилуксусная кислота, пропановая кислота
Пропионовая кислота, ч. А.С.
Карбоксиметоксиламингемигидрохлорид
Пропионовая кислота, аналитический стандарт
ЦИНК6050663
Пропионовая кислота, натуральная, 99%, FG
Токс21_304030
БДБМ50082199
ЛМФА01010003
STL168039
Пропионовая кислота кормовая, 98,7%
АКОС000118853
DB03766
ООН 1848
КАС-79-09-4
Пропионовая кислота, для синтеза, 99,5%
NCGC00357239-01
Пропионовая кислота, >=99,5%, FCC, FG
БП-20411
Е280
Пропионовая кислота 100 мкг/мл в этаноле
Пропионовая кислота, реагент ACS, >=99,5%
FT-0637136
FT-0658557
P0500
Пропионовая кислота 100 мкг/мл в циклогексане
Пропионовая кислота, SAJ первого сорта, >=98,0%
C00163
D02310
Пропионовая кислота 1000 мкг/мл в ацетонитриле
Пропионовая кислота, пурис. год, >=99,5% (ГХ)
Q422956
F2191-0098
Пропионовая кислота, биореагент, подходит для культивирования клеток насекомых, ~99%
Пропионовая кислота, эталонный стандарт Фармакопеи США (USP)
PALMERA IS 30

ПРИЛОЖЕНИЯ


Palmera IS 30 может использоваться в качестве эмульгатора.
Palmera IS 30 использ��ется в качестве поверхностно-активного вещества/моющего средства.

Некоторые варианты использования Palmera IS 30:

Декоративная косметика
Ароматы
Уход за волосами
Забота о коже
Туалетные принадлежности

Palmera IS 30 используется для красок или герметиков для обработки тканей.
Более того, Palmera IS 30 используется для шеллачных или полиуретановых покрытий в первую очередь в ремесленных целях.

Palmera IS 30 можно использовать в письменных принадлежностях, содержащих жидкие или гелевые чернила.
Кроме того, Palmera IS 30 можно использовать в продуктах, используемых для очистки или обеспечения безопасности в профессиональных или промышленных условиях (например, промышленные чистящие средства или стиральный порошок, средства для промывания глаз, наборы для разлива).
Palmera IS 30 используется в чистящих средствах и средствах по уходу за домом, которые нельзя отнести к более изысканной категории.

Palmera IS 30 используется в чистящих средствах для ванн, кафеля и туалетов.
Кроме того, Palmera IS 30 используется в продуктах, придающих блеск твердым полам.
Palmera IS 30 используется для чистящих средств для общей бытовой уборки, которые не попадают в более изысканную категорию.

Palmera IS 30 используется для продуктов, которые удаляют пятна или обесцвечивание ткани (включая безопасные для цвета отбеливатели), используемых в стирке.
Кроме того, Palmera IS 30 используется в продуктах для мытья стекол, зеркал и окон.

Palmera IS 30 используется в чистящих средствах для твердых поверхностей, которые требуют разбавления перед использованием (т.е. могут быть концентрированными).
Кроме того, Palmera IS 30 используется в продуктах, используемых в стиральных машинах для очистки тканей.

Palmera IS 30 используется в продуктах для полировки металлических поверхностей.
Кроме того, Palmera IS 30 можно использовать в продуктах, наносимых на обувь для окрашивания, полировки, очистки или добавления защитной поверхности.

Palmera IS 30 может использоваться как диспергатор.
Кроме того, Palmera IS 30 можно использовать в качестве смягчающего средства.

Palmera IS 30 может использоваться в качестве эмульгатора.
Кроме того, Palmera IS 30 можно использовать в качестве ароматизатора.
Palmera IS 30 можно использовать в качестве ароматизатора.

Palmera IS 30 может использоваться в качестве парфюмерного компонента.
Кроме того, Palmera IS 30 можно использовать в продуктах общей рецептуры, предназначенных для ухода за домом, которые не вписываются в более изысканную категорию.
Palmera IS 30 может использоваться в продуктах, наносимых на твердые поверхности для удаления красок и отделки.

Palmera IS 30 используется в различных сварочных продуктах, включая газы, флюсы и клеи.
Более того, Palmera IS 30 используется в рецептурах, используемых как часть процесса или в оборудовании (например, смазочные материалы, клеи, герметики, масла, краски, покрытия).

Palmera IS 30 используется в антибактериальных продуктах для нанесения на руки.
Более того, Palmera IS 30 используется в жидком мыле для рук.

Palmera IS 30 используется в дезодорантах и антиперспирантах.
Кроме того, Palmera IS 30 используется в средствах для очищения лица, содержащих отшелушивающие частицы (за исключением средств от прыщей).
Palmera IS 30 используется в обычных продуктах для окрашивания волос, которые нельзя отнести к более изысканной категории.

Palmera IS 30 используется в продуктах для укладки или ухода за волосами, которые не относятся к более изысканной категории.
Кроме того, Palmera IS 30 можно использовать для смывания повседневных кондиционеров для волос (за исключением комбинированных шампуней/кондиционеров).

Palmera IS 30 можно использовать в продуктах для придания волосам фиксации, блеска или текстуры.
Кроме того, Palmera IS 30 используется в декоративной или косметической продукции, не входящей в более изысканную категорию.

Palmera IS 30 можно использовать в качестве основы под макияж и консилеров.
Кроме того, Palmera IS 30 используется в продуктах для губ в первую очередь для защиты.
Palmera IS 30 используется в глянцевых продуктах для губ.

Palmera IS 30 используется в туши для ресниц.
Более того, Palmera IS 30 используется в чистых химикатах или ингредиентах.
Palmera IS 30 используется в качестве солюбилизатора.

В качестве растворителя используется Palmera IS 30.
Кроме того, Palmera IS 30 используется в качестве кондиционера для поверхностей.
Palmera IS 30 используется в качестве поверхностно-активного вещества.

Palmera IS 30 используется для изготовления мыла и моющих средств, для приготовления индюшиного красного масла и для водонепроницаемых тканей.
Кроме того, Palmera IS 30 также используется в полировальных смесях, промасливании шерсти, загущении смазочных масел, анионных и неионогенных поверхностно-активных веществах, пластификаторах, восках, мазях, косметике и пищевых добавках; Другими областями применения являются флотация руды, уничтожение грызунов и пеногашение.

Palmera IS 30 является пеногасителем в мокром процессе производства фосфорной кислоты.
Кроме того, Palmera IS 30 можно использовать в качестве абразива.
Palmera IS 30 можно использовать в качестве клея и герметика.

Palmera IS 30 может использоваться в качестве агрохимикатов (не пестицидных).
Более того, Palmera IS 30 можно использовать в качестве ингибитора коррозии.

Palmera IS 30 может использоваться в качестве эмульгатора.
Кроме того, Palmera IS 30 можно использовать в качестве финишного покрытия.

Palmera IS 30 может использоваться в качестве флотационного агента.
Кроме того, Palmera IS 30 можно использовать в качестве пенообразователя.
Palmera IS 30 можно использовать в качестве топлива

Palmera IS 30 — мононенасыщенная жирная кислота омега-9.
Далее Palmera IS 30 получают путем гидролиза различных животных и растительных жиров и масел.
Palmera IS 30 используется в качестве эмульгатора или солюбилизатора в аэрозольных продуктах.

Palmera IS 30 может использоваться в добавках к краскам и покрытиям, не описанным в других категориях.
Кроме того, Palmera IS 30 можно использовать в качестве пигмента.
Palmera IS 30 может использоваться в технологических добавках, не указанных в других списках.

Palmera IS 30 также известен как омега-9.
Кроме того, Palmera IS 30 может улучшить проникающую способность других компонентов препарата.
Palmera IS 30 является незаменимой жирной кислотой.

Palmera IS 30 получают из различных животных и растительных жиров и масел и могут слегка раздражать кожу.



ОПИСАНИЕ


Palmera IS 30 используется в производстве сложных эфиров TMP, которые в дальнейшем используются в смазочных материалах.
Кроме того, Palmera IS 30 обладает превосходными свойствами при низких температурах и обладает хорошей устойчивостью к окислению.
PALMERA IS-30 находит применение в прозрачном мыле.

Palmera IS 30 представляет собой цис-ненасыщенную жирную кислоту, которая, как было показано, активирует протеинкиназу С в гепатоцитах.
Более того, Palmera IS 30 потенцирует токи ацетилхолиновых рецепторов, активируя CaM-киназу II, независимо от пути PKC.
Было показано, что ненасыщенная жирная кислота активирует протеинкиназу С в гепатоцитах.
Плотность Palmera IS 30 составляет 0,89 г/мл.

Palmera IS 30 представляет собой жидкость от бесцветной до бледно-желтой со слабым запахом.
Кроме того, Palmera IS 30 плавает на воде.

Palmera IS 30 представляет собой октадек-9-еновую кислоту, в которой двойная связь при С-9 имеет Z (цис) стереохимию.
Кроме того, Palmera IS 30 играет роль ингибитора EC 3.1.1.1 (карбоксилестеразы), метаболита Escherichia coli, метаболита растений, метаболита Daphnia galeata, растворителя, антиоксиданта и метаболита мыши.
Palmera IS 30t представляет собой сопряженную кислоту олеата. Его получают из гидрида цис-октадека-9-ена.

Palmera IS 30 — это натуральный продукт, содержащийся в Gladiolus italicus, Prunus mume и других организмах, данные о которых имеются.

Эта карбоновая кислота, также известная как Palmera IS 30, представляет собой жидкость от бесцветной до желтой.
Известно, что Palmera IS 30 растворим во многих органических растворителях и смешивается с метанолом, ацетоном и четыреххлористым углеродом.

Palmera IS 30 также нерастворим в воде.
Для достижения наилучших результатов держите контейнер с Palmera IS 30 плотно закрытым.
Хранить в холодильнике в атмосфере инертного газа - это вещество чувствительно к теплу, воздуху и свету.

Palmera IS 30 несовместим с окислителями и сильными основаниями.
Более того, Palmera IS 30 вызывает раздражение кожи и глаз.

Было показано, что Palmera IS 30, мононенасыщенная жирная кислота, первоначально полученная из Olea europaea, является антипролиферативным средством.
Кроме того, сообщалось, что Palmera IS 30 способствует дифференцировке нейронов в культурах клеток мышей.

Механистические исследования предполагают, что эти эффекты Palmera IS 30 опосредованы PPARβ.
Кроме того, Palmera IS 30 продемонстрировал способность стимулировать увеличение секреции коллагена I, секреции TGF-β и киназы 1/2, регулируемой внеклеточным сигналом.
Palmera IS 30 Acid является активатором PKC и CaMKII.



ХАРАКТЕРИСТИКИ


Чистота/метод анализа: >99,0%(ГХ)(Т)
Молекулярная формула/молекулярный вес: C18H34O2 = 282,47.
Физическое состояние (20 град.С): Жидкость
Температура хранения: 0-10°C
Хранить под инертным газом: Хранить под инертным газом
Условия, которых следует избегать: Чувствительность к свету, Чувствительность к воздуху, Чувствительность к теплу
анализ: ≥99% (ГХ)
Молекулярный вес: 282,5
XLogP3 6.5: вычислено XLo gP3 3.0
Количество доноров водородной связи: 1
Количество акцепторов водородной связи: 2
Количество вращающихся связей: 15
Точная масса: 282,255880323
Масса моноизотопа: 282,255880323
Площадь топологической полярной поверхности: 37,3 Ų
Количество тяжелых атомов: 20
Официальное обвинение: 0
Сложность: 234
Количество атомов изотопа: 0
Определенное число стереоцентров атома: 0
Количество стереоцентров неопределенного атома: 0
Определенное количество стереоцентров связи: 1
Неопределенный счетчик стереоцентров связи: 0
Количество ковалентно-связанных единиц: 1
Соединение канонизировано: Да
форма: жидкость
условия хранения: подходит для заморозки
цвет: бесцветный
растворимость:
хлороформ: 10 мг/мл
этанол: 5 мг/мл
плотность: 0,89 г/мл
температура хранения: 2-8°C



ПЕРВАЯ ПОМОЩЬ


Описание мер первой помощи:

При вдыхании:

При вдыхании: свежий воздух.

При попадании на кожу

При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.

В случае зрительного контакта

После зрительного контакта:
Смойте большим количеством воды.
Снимите контактные линзы.

При проглатывании

После проглатывания:
заставить пострадавшего выпить воды (максимум два стакана).
Обратитесь к врачу при плохом самочувствии.



ХРАНЕНИЕ И ОБРАЩЕНИЕ


Условия для безопасного хранения, включая любые несовместимости

Условия хранения:
Защищен от света.
Плотно закрытый.
Хранить при температуре от +2°C до +8°C.



СИНОНИМЫ


цис-9-октадеценовая кислота
олеиновая кислота
112-80-1
цис-9-октадеценовая кислота
олеат
(Z)-октадек-9-еновая кислота
АЛЬДЕГИД С1
ФОРМАЛЬ-ФРЕШ
ФОРМАЛЬНО-СВЕЖИЙ РЕШЕНИЕ
ФОРМАЛЬНО-СВЕЖИЙ РАСТВОР, БУФЕРНЫЙ
ФОРМАЛЬДЕГИД
ФОРМАЛЬДЕГИД БУФЕРНЫЙ
ФОРМАЛЬДЕГИД, CARSON-MILLON
ФОРМАЛЬДЕГИД ПРОЯВЛЯЮЩИЙ РАСТВОР
РАСТВОР ФОРМАЛЬДЕГИДА
ФОРМАЛЬДЕГИД
ФОРМАЛИН
ФОРМАЛИН, КАРСОН
ФОРМАЛИН НЕЙТРАЛЬНЫЙ
ФОРМАЛИН НЕЙТРАЛЬНЫЙ БУФЕР
ФОРМАЛИН НЕЙТРАЛЬНЫЙ БУФЕРНЫЙ
ФОРМАЛИН НЕЙТРАЛЬНАЯ НАТРИЙНАЯ СОЛЬ
МУРЬВИНЫЙ АЛЬДЕГИД
ФОРМОЛ
МЕТАНАЛ
МЕТАНОН
Элаидоевая кислота
цис-олеиновая кислота
9-октадеценовая кислота (Z)-
Δ9-цис-олеиновая кислота
цис-олеиновая кислота
цис-9-октадеценовая кислота
Эмерсол 211; Emersol 220 Белая олеиновая кислота
Emersol 221 Белая олеиновая кислота с низким титром
Эльзауэр; Олейне 7503
Памолин 100
Вопколене 27; Веколайн ОО
Z-9-октадеценовая кислота
цис-октадек-9-еновая кислота
цис-Δ9-октадеценовая кислота
цис-Δ9-октадеценоат
нео-жир 90-04
нео-жир 92-04; Век cd жирная кислота
элаидоевая кислота; Эмерсол 210
Эмерсол 213; Эмерсол 6321; Гликон РО
Гликон WO
Гроко 2
Гроко 4
Гроко 5л
Гроко 6; Хай-фи 1055
Хай-фи 1088; Хай-Фи 2066; Хай-фи 2088
Хай-Фи 2102; К 52; масляная кислота
Метаупон; Тего-олеиновая 130
9-октадеценовая кислота, цис-; Элаиновая кислота
Индустрейн 105
Индустрейн 205; Индустрейн 206
олеиновая кислота; Памолин
Wochem нет. 320
(Z)-9-октадекановая кислота
Эмерсол 6313 НФ; Приолен 6906
9-(Z)-октадеценовая кислота; (Z)-октадек-9-еновая кислота
9-октадеценовая кислота (9Z)-; Д 100
Эмерсол 205; Экстраолеин 90
Веколайн ОО
Вопколене 27
Гликон wo
Памолин 100
Гликон РО
Метаупон
Оэльсауэр
Гроко 5л
Гроко 2
Гроко 4
Гроко 6
Тего-олеиновая 130
Эмерсол 211
9Z-октадеценовая кислота
цис-октадек-9-еновая кислота
Индустрейн 105
Индустрейн 205
Индустрейн 206
Памолин
Z-9-октадеценовая кислота
9-октадеценовая кислота (Z)-
олеиновая кислота
Эмерсол 210
Эмерсол 213
9-октадеценовая кислота (9Z)-
масляная кислота
Век cd жирная кислота
Эмерсол 6321
Экстраолеин 90
Олейне 7503
9-октадеценовая кислота, (Z)-
Эмерсол 205
Эмерсол 233LL
Хай-фи 1055
Хай-фи 1088
Хай-фи 2066
Хай-фи 2088
Хай-фи 2102
Элаиновая кислота
Приолен 6906
9-октадеценовая кислота
Белая олеиновая кислота
Wochem нет. 320
Эмерсол 220 белая олеиновая кислота
FEMA № 2815
Экстра олеиновая 80р
Экстра олеиновая 90
Экстра олеиновая 99
Экстра Олеин 80
Экстра Олеин 90R
Лунак О-КА
Лунак О-ЛЛ
Лунак ОП
нео-жир 92-04
Приолен 6907
Приолен 6928
Приолен 6930
Приолен 6933
Элаиновая кислота
Эмерсол 6313NF
цис-олеат
дельта9-цис-олеиновая кислота
(9Z)-октадек-9-еновая кислота
(9Z)-октадеценовая кислота
FEMA номер 2815
D 100 (жирная кислота)
Emersol 221 белая олеиновая кислота с низким титром
К 52
Эльсёр
9-цис-октадеценовая кислота
ХСДБ 1240
Красное масло
Д 100
(9Z)-9-октадеценовая кислота
Олеиновая кислота [NF]
9-октадециленовая кислота
Эмерсол 233
ОЛЕИНОВАЯ КИСЛОТА
18:1Дельта9цис
Приолен 6936
ЧЕБИ:16196
НСК-9856
9,10-октадеценовая кислота
С18:1н-9
нео-жир 90-04
δ9-цис-олеиновая кислота
9-(Z)-октадеценовая кислота
(Z)-9-октадекановая кислота
9-октадеценовая кислота, цис-
цис-.дельта.9-октадеценоат
2UMI9U37CP
CHEMBL8659
цис-δ9-октадеценовая кислота
цис-дельта (9)-октадеценовая кислота
NSC9856
Олеиновая кислота (NF)
Остеум
MFCD00064242
С18:1 н-9
ФА 18:1
Октадек-9-еновая кислота
NCGC00091119-02
18:1 п-9
С18:1
цис-9-октадеценоат
(9Z)-октадеценовая кислота
DSSTox_CID_5809
18:1(н-9)
Олеиновая кислота, чистая
DSSTox_RID_77930
DSSTox_GSID_25809
Олеиновая кислота (натуральная)
Касвелл № 619
Wecoline OO (ФУРГОН)
Acide oleique [французский]
олеиновая кислота
цис-дельта-9-октадеценовая кислота
l'Acide oleique [французский]
КАС-112-80-1
SMR000326739
КРИС 682
НАА 35
сульфированная олеиновая кислота
сульфированная олеиновая кислота
Олеиновая кислота, сульфурированная
цис-дельта (суп 9)-октадеценовая кислота
НСК 9856
ИНЭКС 204-007-1
УНИИ-2УМИ9У37КП
Химический код пестицида EPA 031702
БРН 1726542
Дистолайн
олеинат
олеиновая кислота
Рапиновая кислота
АИ3-01291
1gni
1 час
1выф
2лкк
Олеиновая кислота Жидкость
Лунак ОА
Эденор ATiO5
Эденор FTiO5
Индустрейн 104
Z-9-октадеценоат
ИНЭКС 270-164-8
Олеиновая кислота, Па
Эмерсол 213NF
Эмерсол 214NF
Памолин 125
Приолен 6900
9,10-октадеценоат
9-октадеценовая кислота (Z)-, сульфурированная
Олеиновая кислота (8CI)
олеиновая кислота особо чистая
цис-октадек-9-еноат
Памолин 100 ФГ
Памолин 100 ФГК
9-(Z)-октадеценоат
Эмерсол 7021
9-октадеценовая кислота (9Z)-, сульфурированная
(Z)-9-октадеканоат
Эмерсол 6313 НФ
Эмерсол 6333 НФ
Олеиновая кислота-9,10-т
(9Z)-9-октадеценоат
Эмерсол 220 белый олеат
ОЛЕИНОВАЯ КИСЛОТА [VANDF]
Олеиновая кислота техническая
SCHEMBL1138
Дельта-9-цис-октадеценовая кислота
ОЛЕИНОВАЯ КИСЛОТА [МАРТ.]
WLN: QV8U9-C
ОЛЕИНОВАЯ КИСЛОТА [USP-RS]
ОЛЕИНОВАЯ КИСЛОТА [WHO-DD]
4-02-00-01641 (Справочник Beilstein)
99148-48-8
МЛС001056779
МЛС002153498
МЛС002454427
9-октадеценовая кислота, (9Z)-
(9Z)-9-октадеценовая кислота
GTPL1054
Олеиновая кислота, аналитический стандарт
DTXSID1025809
Олеиновая кислота, >=93% (ГХ)
Олеиновая кислота, >=99% (ГХ)
REGID_for_CID_445639
1g7
ОЛЕИНОВАЯ КИСЛОТА [МОНОГРАФИЯ EP]
HMS2234O13
HMS3649H21
ХМС3885Х18
Олеиновая кислота техническая, 90%
HY-N1446
ЦИНК6845860
ЭНДОЦИНОВЫЙ КОМПОНЕНТ ОЛЕИНОВАЯ КИСЛОТА
Токс21_111086
Токс21_201967
Токс21_303324АКОС017343225
цис-δ(sup 9)-октадеценовая кислота
AT13415
CCG-267270
9-октадеценовая-9,10-t2 кислота, (Z)-
NCGC00091119-01
NCGC00091119-03
NCGC00257233-01
NCGC00259516-01
68412-07-7
AC-33767
АС-1606
БП-24023
ФА(18:19Z))
Олеиновая кислота, SAJ первого сорта, >=70,0%
Олеиновая кислота, Selectophore™, >=99,0%
CS-0016886
О0011
О0180
C00712
D02315
Олеиновая кислота из сала, натуральная, >=60% (ГХ)
AB00641912_08
9-октадеценовая-9,10-t2 кислота, (9Z)-(9CI)
А894525
СР-01000780573
ОЛЕИНОВАЯ КИСЛОТА (СОСТАВ СПИРУЛИНЫ) [DSC]
СР-01000780573-6
9-октадеценовая кислота (Z)-, окисленная, сульфированная, натриевая соль
F0001-0262
ОЛЕИНОВАЯ КИСЛОТА (СОСТАВ ЛЬНЯНОГО МАСЛА) [DSC]
ОЛЕИНОВАЯ КИСЛОТА (СОСТАВ ПАЛЬМЕТТО) [DSC]
Олеиновая кислота, сертифицированный эталонный материал, TraceCERT®
ОЛЕИНОВАЯ КИСЛОТА (СОСТАВ МАСЛА СЕМЯН БУРАГО) [DSC]
Олеиновая кислота, справочный стандарт Европейской фармакопеи (EP)
Оле
Олеиновая кислота, PharmaGrade, производится под соответствующим контролем для использования в качестве сырья в фармацевтическом или биофармацевтическом производстве.
PALMESTER 1412 ИЗОПРОПИЛОЛЕАТ
Palmester 1412 Изопропилолеат представляет собой биоразлагаемый жирный эфир, полученный из возобновляемых растительных масел.
Изопропилолеат Palmester 1412 действует ��ак смазка, модификатор вязкости, пластификатор полимера.
Palmester 1412 Изопропилолеат подходит для внутреннего и внешнего применения в автомобилях, транспорте, бытовой технике, электротехнике, товарах для дома и потребительских товарах.

КАС: 112-11-8
МФ: C21H40O2
МВт: 324,54
ЭИНЭКС: 203-935-4

Синонимы
9-октадеценовая кислота(Z)-,1-метилэтиловый эфир;9-октадеценовая кислота (9Z)-,1-метилэтиловый эфир;изопропилолеат;(Z)-9-октадеценовая кислота 1-метилэтиловый эфир;изопропиловый эфир олеиновой кислоты;изопропил (Z) -9-октадеценоат;1-метилэтиловый эфир;9-октадеценовая кислота, 1-метилэтиловый эфир;изопропилолеат;112-11-8;олеиновая кислота, изопропиловый эфир;9-октадеценовая кислота (9Z)-,1-метилэтиловый эфир;пропан -2-ил(Z)-октадецен-9-еноат;9-октадеценовая кислота (Z)-,1-метилэтиловый эфир;изопропил 9Z-октадеценоат;4152WNN49V;NSC-50952;WE(2:0(1Me)/18: 1(9Z));и-пропил 9-октадеценоат;UNII-4152WNN49V;EINECS 203-935-4;NSC 50952;AI3-32462;AEC ИЗОПРОПИЛОЛЕАТ;EC 203-935-4;изопропилолеат, AldrichCPR;SCHEMBL61998;1 -Метилэтил-9-октадеценоат;ИЗОПРОПИЛОЛЕАТ [INCI];PZQSQRCNMZGWFT-QXMHVHEDSA-N;NSC50952;LMFA07010671;9-октадеценовая кислота, 1-метилэтиловый эфир;NS00004593;(2E)-4-[(4-Метоксибензил)окси]- 2-бутен-1-ол;Q27258396

Рекомендуется для упаковки, труб, шлангов и фитингов, проводки и кабелей, строительства. Изопропилолеат Palmester 1412 сертифицирован КОШЕРНО и ХАЛЯЛ.
Palmester 1412 Изопропилолеат получают этерификацией олеиновой кислоты и изопропанола.
Изопропилолеат Palmester 1412 представляет собой сложный эфир, который широко используется в различных областях исследований и промышленности благодаря фармацевтическому, косметическому и промышленному применению.
В этой статье представлен обзор изопропилолеата Palmester 1412 и его физических и химических свойств, синтеза, характеристики, аналитических методов, биологических свойств, токсичности и безопасности в научных экспериментах, применения в научных экспериментах, текущего состояния исследований и потенциальных последствий в различных областях. исследований и промышленности.
Кроме того, в этой статье исследуются ограничения IPO и будущие направления исследований и разработок.
Palmester 1412 изопропилолеат представляет собой сложный эфир, состоящий из изопропилового спирта и олеиновой кислоты.
Изопропилолеат Palmester 1412 представляет собой жидкость при комнатной температуре, бесцветную и не имеющую запаха.
Изопропилолеат Palmester 1412 широко используется в фармацевтической промышленности в качестве растворителя и усилителя проникновения, а также может использоваться в косметике и средствах личной гигиены благодаря своим смягчающим свойствам.
Изопропилолеат Palmester 1412 имеет низкую вязкость и легко проникает в кожу, что делает его полезным для местного применения.
Кроме того, изопропилолеат Palmester 1412 используется в качестве смазки в промышленном секторе.

Palmester 1412 изопропилолеат представляет собой неразветвленный эфир мононасыщенных жирных кислот, полученный из изопропанола и олеиновой кислоты из пальмового и оливкового масла.
Прозрачная жидкость с температурой плавления -12 ºC.
Косметические составы: связывающее, кондиционирующее, смягчающее средство.
Промышленное использование: производство моющих и чистящих средств, полимеров, клеев и герметиков, средств и красок для обработки текстиля, смазок и смазок, средств защиты растений, регуляторов pH и средств для очистки воды.

Химические свойства изопропилолеата Palmester 1412
Температура плавления: -37,7 °С.
Точка кипения: 215-217°С (давление: 14-15 Торр)
Плотность: 0,8678 г/см3 (температура: 15 °C)
LogP: 5,79 при 20 ℃
Система регистрации веществ EPA: Palmester 1412 изопропилолеат (112-11-8)

Palmester 1412 Изопропилолеат представляет собой прозрачную маслянистую жидкость, бесцветную, без запаха и нерастворимую в воде.
Изопропилолеат Palmester 1412 можно использовать в качестве косметических средств, пластификаторов, присадок к машинному маслу, поверхностно-смачивающих агентов для красителей и т. д.
Palmester 1412 изопропилолеат состоит из изопропилолеата.
В качестве базовой смазочной жидкости можно использовать изопропилолеат Palmester 1412.
Физические и химические свойства изопропилолеата играют решающую роль в определении его применения в различных областях.
Palmester 1412 Изопропилолеат — бесцветная прозрачная жидкость с температурой кипения 216°С, температурой плавления -39°С и плотностью 0,873 г/см3.
Изопропилолеат Palmester 1412 хорошо растворим в различных растворителях, включая спирты, эфиры и углеводороды.
Изопропилолеат Palmester 1412 стабилен при нормальных условиях, но может подвергаться реакции гидролиза с водой с образованием изопропанола и олеиновой кислоты.

Использование
Изопропилолеат Palmester 1412 также обладает хорошими низкотемпературными свойствами.
Изопропилолеат Palmester 1412 может эффективно снизить температуру замерзания и температуру холодной фильтрации биодизеля, а также улучшить текучесть биодизеля при низких температурах.

Синтез и характеристика
Изопропилолеат Palmester 1412 можно синтезировать несколькими методами, включая этерификацию, переэтерификацию и прямую этерификацию.
Наиболее распространенным методом является этерификация, при которой изопропиловый спирт и изопропилолеат Palmester 1412 реагируют в присутствии катализатора, такого как серная кислота.
В результате реакции образуются изопропилолеат и вода.
Характеристика изопропилолеата Palmester 1412 проводится с использованием различных аналитических методов.
Эти методы включают инфракрасную спектроскопию, газовую хроматографию и ядерный магнитный резонанс.
PALMESTER 1412 ИЗОПРОПИЛОЛЕАТ

Palmester 1412 Изопропилолеат, прозрачная жидкость, представляет собой сложный эфир, полученный в результате сочетания изопропилового спирта и олеиновой кислоты.
Благодаря гладкой и нежирной текстуре изопропилолеат Palmester 1412 служит отличным смягчающим средством в косметических рецептурах.
Изопропилолеат Palmester 1412 играет ключевую роль в качестве кондиционирующего средства, способствуя мягкости и увлажнению кожи.

Номер CAS: 112-11-8
Номер ЕС: 203-935-4

Изопропилолеат, Изопропиловый эфир олеиновой кислоты, Эфир изопропилового спирта и олеиновой кислоты, Изопропиловый эфир олеиновой кислоты, Эфир изопропилолеата, Эфир олеиновой кислоты с изопропиловым спиртом, Изопропилолеат Эстол 1511, Изопропилолеат Эстол 1515, Изопропилолеат Эстол 1618, Эстол 1650 Изопропилолеат, Эстол 1655 Изопропилолеат, Изопропилолеат Эстол 1762, Изопропилолеат Эстол 1862, Изопропилолеат Эстол 1865, Изопропилолеат Эстол 1868, Изопропилолеат Эстол 1875, Изопропилолеат Эстол 1895, Изопропилолеат Эстол 19 11, изопропилолеат Эстол 1915, изопропилолеат Эстол 1962, изопропил олеат Эстол 1965, изопропил олеат Эстол 1968, изопропил олеат Эстол 1975, изопропил олеат Эстол 1985, изопропил олеат Эстол 2011, изопропил олеат Эстол 2015, изопропил олеат Эстол 2062, изопропил олеат Эстол 2065, Изопропилолеат Эстол 2068 , Изопропил Олеат Эстол 2075, Изопропилолеат Эстол 2085, Изопропилолеат Эстол 3011, Изопропилолеат Эстол 3015, Изопропилолеат Эстол 3062, Изопропилолеат Эстол 3065, Изопропилолеат Эстол 3068, Изопропилолеат Эстол 3075, Изопропилолеат Е стол 3085, изопропилолеат Эстол 4011, изопропил Олеат Эстол 4015, Изопропилолеат Эстол 4062, Изопропилолеат Эстол 4065, Изопропилолеат Эстол 4068, Изопропилолеат Эстол 4075, Изопропилолеат Эстол 4085, Изопропилолеат Эстол 5011, Изопропилолеат Эстол 5015, Изопропилолеат Е стол 5062, изопропилолеат Эстол 5065, изопропил Олеат Эстол 5068, изопропилолеат Эстол 5075, изопропилолеат Эстол 5085, олеат IPM, олеатный эфир изопропилового спирта, сложный эфир олеиновой кислоты с 2-пропанолом, олеат 2-пропанола, 1-метилэтиловый эфир олеиновой кислоты, сложный эфир олеиновой кислоты с пропан- 2-ол, олеат изопропанола, сложный эфир олеиновой кислоты. 2-пропаноловый эфир, сложный эфир олеиновой кислоты и изопропанола, сложный эфир олеиновой кислоты с изопропанолом.



ПРИЛОЖЕНИЯ


Palmester 1412 Изопропилолеат широко применяется в средствах по уходу за кожей, выступая в качестве основного смягчающего средства для лосьонов и кремов.
Его роль в косметических рецептурах распространяется и на косметические средства, способствуя плавному нанесению тональных средств и консилеров.
В фармацевтической промышленности изопропилолеат Palmester 1412 используется в препаратах для местного применения, улучшая доставку активных ингредиентов.
Средства по уходу за волосами, включая кондиционеры и средства для укладки, обладают кондиционирующими свойствами изопропилолеата Palmester 1412.

Использование изопропилолеата Palmester 1412 в качестве базовой смазочной жидкости имеет важное значение в автомобильной промышленности, обеспечивая эффективную и бесперебойную работу механических компонентов.
Изо��ропилолеат Palmester 1412 служит пластификатором в полимерных рецептурах, влияя на гибкость и упругость пластиковых материалов.
Его присутствие в средствах для чистки и ухода улучшает растекаемость и эффективность этих составов.

Изопропилолеат Palmester 1412 — ценный ингредиент солнцезащитных кремов, способствующий равномерному нанесению и улучшению ощущения на коже.
Изопропилолеат Palmester 1412 используется в производстве личных смазочных материалов, обеспечивая гладкость и не вызывая раздражения.
В текстильной промышленности изопропилолеат используется в качестве кондиционера для белья, улучшающего ощущение текстиля.

Изопропилолеат Palmester 1412 содержится в составах клеев, улучшая клеящие свойства и удобство применения этих продуктов.
Изопропилолеат Palmester 1412 используется в рецептурах репеллентов от насекомых, способствуя распространению репеллента на коже.

Его применение при производстве свечей улучшает текстуру и внешний вид свечей.
Изопропилолеат Palmester 1412 используется в производстве масел для ванн и бомбочек для ванн, обеспечивая роскошные впечатления от купания.
Изопропилолеат Palmester 1412 включен в состав дезодорантов, улучшая скольжение и ощущение во время нанесения.
Изопропилолеат Palmester 1412 используется в производстве средств по уходу за домашними животными, включая составы для ухода за домашними животными.

Его использование при создании массажных масел усиливает скольжение и увлажняющие свойства масел.
Изопропилолеат Palmester 1412 содержится в антивозрастных кремах, что способствует улучшению общей текстуры и эффективности этих составов.
Palmester 1412 Изопропилолеат используется в производстве промышленных смазочных материалов, обеспечивая бесперебойную работу техники.
Изопропилолеат Palmester 1412 присутствует в рецептурах красок, способствуя растекаемости и стойкости краски.

Изопропилолеат Palmester 1412 находит применение в средствах для обработки кожи, улучшая мягкость и кондиционирование кожаных изделий.
Изопропилолеат Palmester 1412 используется в производстве красок для волос, улучшая растекаемость и удобство нанесения краски.
Изопропилолеат Palmester 1412 входит в состав лаков для ногтей и способствует гладкому и равномерному нанесению лака.

Изопропилолеат Palmester 1412 используется при создании косметических салфеток, повышая эффективность этих продуктов по уходу за кожей.
Его использование в производстве промышленных и бытовых чистящих средств улучшает растекаемость и эффективность этих чистящих растворов.

Изопропилолеат Palmester 1412 является распространенным ингредиентом сывороток для лица, способствующим доставке активных ингредиентов и укреплению здоровья кожи.
Его включение в продукты по уходу за детьми, такие как детские масла и лосьоны, обеспечивает нежные и увлажняющие свойства нежной детской кожи.

Изопропилолеат Palmester 1412 используется в составе кремов и гелей для бритья, обеспечивая гладкое и комфортное бритье.
При производстве сывороток для волос изопропилолеат помогает улучшить блеск и послушность волос.
Изопропилолеат Palmester 1412 находит применение при создании масел для кутикулы, способствуя питанию и поддержанию здоровья кутикулы.
Изопропилолеат Palmester 1412 используется в средствах для загара, способствующих равномерному нанесению и впитыванию дубильных веществ.

Его присутствие в массажных кремах и лосьонах усиливает эффект скольжения во время массажа и обеспечивает кондиционирование кожи.
Изопропилолеат Palmester 1412 используется при производстве блесков для губ, что придает им гладкую и блестящую текстуру на губах.
Изопропилолеат Palmester 1412 играет важную роль в разработке продуктов для интимного ухода, включая смазки для личной гигиены, благодаря своим нераздражающим свойствам.

Изопропилолеат Palmester 1412 используется при производстве духов, помогая равномерно распределить ноты аромата по коже.
Его использование в средствах для снятия макияжа с глаз способствует эффективному и бережному удалению продуктов макияжа с глаз.
Изопропилолеат Palmester 1412 присутствует в составе сухих шампуней, обеспечивая нежирный и освежающий вариант очищения волос.
Изопропилолеат Palmester 1412 находит применение в составе дезинфицирующих средств для рук, противодействуя высушивающему воздействию алкоголя на кожу.

Изопропилолеат Palmester 1412 используется при производстве твердых духов, обеспечивая однородную и легко наносимую консистенцию.
Его включение в натуральные и органические дезодоранты улучшает скольжение и комфорт во время применения.

Изопропилолеат используется при создании карандашей и помад для бровей, помогая плавно наносить и смешивать цвета.
При производстве красок для татуировок изопропилолеат может способствовать улучшению дисперсии и нанесения пигмента.
Изопропилолеат Palmester 1412 входит в состав масок для волос, обеспечивая питание и оживление волос.
Изопропилолеат Palmester 1412 участвует в создании натуральных и органических тушей для ресниц, обеспечивая кондиционирующую формулу без комочков.

Его использование в кремах и скрабах для ног усиливает увлажняющее и смягчающее действие на грубую и сухую кожу.
Изопропилолеат Palmester 1412 находит применение при создании средств для лечения прыщей, доставляя активные ингредиенты, не вызывая чрезмерной сухости.
Изопропилолеат Palmester 1412 используется в составе натуральных и органических основ, улучшая растекаемость и смешиваемость пигментов.

Изопропилолеат Palmester 1412 используется при производстве скрабов для губ, способствует отшелушиванию и разглаживанию губ.
Его присутствие в натуральных и органических ночных кремах способствует кондиционированию и омолаживанию кожи.
Изопропилолеат Palmester 1412 входит в состав спреев для фиксации макияжа и помогает закрепить макияж без ущерба для его внешнего вида.

Изопропилолеат Palmester 1412 обычно используется в составе праймеров, обеспечивая гладкую основу для нанесения макияжа.
Его включение в натуральные и органические сыворотки улучшает проникновение активных ингредиентов для целевого ухода за кожей.
Изопропилолеат Palmester 1412 используется в производстве натуральных и органических кондиционеров для волос, улучшая текстуру и послушность волос.
Изопропилолеат Palmester 1412 играет роль в создании кондиционеров для кутикулы, помогая поддерживать здоровую и увлажненную кутикулу.

Изопропилолеат Palmester 1412 используется при производстве солей для ванн, способствуя рассеиванию аромата и увлажняющему эффекту.
Его присутствие в скрабах для ног и отшелушивающих продуктах способствует удалению омертвевших клеток кожи, делая ноги мягкими и омоложенными.

Изопропилолеат Palmester 1412 используется в составе кремов для укладки волос, обеспечивая фиксацию и четкость волос без жесткости.
При производстве антивозрастных сывороток изопропилолеат способствует роскошному ощущению и впитыванию активных ингредиентов.
Изопропилолеат Palmester 1412 содержится в натуральных и органических лосьонах для тела, придавая коже нежирный вид и одновременно увлажняя ее.
Изопропилолеат Palmester 1412 используется при создании масел для ванн, создавая успокаивающее и увлажняющее действие во время принятия ванн.

Его включение в натуральные и органические румяна способствует равномерному нанесению на щеки.
Изопропилолеат Palmester 1412 играет роль в рецептуре ароматических масел, способствуя равномерному распространению ароматов в различных продуктах.

Изопропилолеат Palmester 1412 используется в производстве натуральных и органических солнцезащитных кремов, улучшая растекаемость и равномерное покрытие.
Изопропилолеат Palmester 1412 входит в состав бальзамов для бороды и оказывает кондиционирующее действие на волосы и кожу на лице.
Его использование в кремах для восстановления кутикулы способствует заживлению и питанию поврежденной кутикулы.
Изопропилолеат Palmester 1412 используется для создания натуральных и органических спреев для волос, придающих им блеск и послушность.

Изопропилолеат Palmester 1412 присутствует в натуральных и органических кремах для рук, обеспечивая быстрое впитывание и длительное увлажнение.
В составе натуральных и органических кремов для глаз изопропилолеат способствует более гладкому нанесению и улучшению текстуры кожи.
Изопропилолеат Palmester 1412 используется при создании бальзамов-блесков для губ, сочетая увлажнение с глянцевым эффектом.

Его присутствие в натуральных и органических скрабах для тела усиливает отшелушивающее и увлажняющее действие на кожу.
Изопропилолеат Palmester 1412 участвует в производстве масла для кутикулы, обеспечивая интенсивное кондиционирование ногтей и кутикулы.
Изопропилолеат Palmester 1412 содержится в натуральных и органических средствах для мытья тела, образуя роскошную пену и кондиционируя кожу.

Изопропилолеат Palmester 1412 используется в составе натуральных и органических очищающих средств для лица, помогая удалять загрязнения.
Его включение в натуральные и органические маски для волос усиливает питательное и восстанавливающее воздействие на волосы.
Изопропилолеат используется в производстве натуральных и органических сывороток для губ, обеспечивая увлажнение и гладкость.



ОПИСАНИЕ


Palmester 1412 Изопропилолеат, прозрачная жидкость, представляет собой сложный эфир, полученный в результате сочетания изопропилового спирта и олеиновой кислоты.
Благодаря гладкой и нежирной текстуре изопропилолеат Palmester 1412 служит отличным смягчающим средством в косметических рецептурах.
Изопропилолеат Palmester 1412 играет ключевую роль в качестве кондиционирующего средства, способствуя мягкости и увлажнению кожи.

Изопропилолеат Palmester 1412 обладает высоким коэффициентом растекания, что делает его ценным в продуктах по уходу за кожей из-за его легкого нанесения и впитывания.
Полученный из возобновляемых источников, он соответствует принципам устойчивого развития и представляет собой биоразлагаемый сложный эфир жирных кислот.

Его совместимость с различными ингредиентами позволяет широко использовать его в косметике и средствах личной гигиены.
В качестве базовой жидкости для смазочных материалов Palmester 1412 изопропилолеат повышает эффективность составов, требующих плавного и эффективного смазывания.

Изопропилолеат Palmester 1412 действует как модификатор вязкости, влияя на толщину и характеристики текучести продуктов, в которые он включен.
Изопропилолеат Palmester 1412 служит пластификатором полимеров, придавая гибкость и устойчивость составам на основе полимеров.
Подходит как для внутреннего, так и для наружного применения в автомобилестроении, находит применение в смазке и кондиционировании автомобильных компонентов.

Его присутствие на рынках транспорта, бытовой техники и электротехники подчеркивает его способность адаптироваться к разнообразным промышленным применениям.
Включение изопропилолеата Palmester 1412 в товары для дома и потребительские товары усиливает сенсорные ощущения от этих продуктов.

Изопропилолеат Palmester 1412, рекомендованный для упаковочных материалов, способствует улучшению общих характеристик и ощущений от упаковочных решений.
Его применение в трубах, шлангах и фитингах подчеркивает его роль в обеспечении бесперебойной работы и долговечности этих компонентов.

Использование изопропилолеата Palmester 1412 в проводке и кабелях демонстрирует его совместимость с материалами, обычно используемыми в электротехнике.
В строительстве он способствует эффективности рецептур различных строительных продуктов.
Сертификаты КОШЕРНОСТЬ и ХАЛЯЛ подтверждают пригодность продукта для продуктов, отвечающих особым диетическим требованиям.

Роль изопропилолеата Palmester 1412 в рецептурах Estol подчеркивает его использование в конкретных линейках продуктов для различных применений.
Будучи прозрачной и бесцветной жидкостью, он сохраняет эстетическую целостность рецептур, в которые входит.
Изопропилолеат Palmester 1412 известен своей стабильностью во времени, что способствует долговечности и качеству косметической и промышленной продукции.

Его присутствие в средствах по уходу за кожей усиливает общее увлажняющее и кондиционирующее воздействие на кожу.
Биоразлагаемость изопропилолеата Palmester 1412 отражает приверженность экологически безопасным методам разработки продукции.
Использование изопропилолеата Palmester 1412 в автомобильной промышленности распространяется как на внутренние компоненты, так и на внешнюю отделку.

Универсальность изопропилолеата Palmester 1412 делает его ценным ингредиентом в рецептурах, предназначенных для различных отраслей промышленности и потребностей потребителей.
Изопропилолеат Palmester 1412, известный своей простотой введения и эффективностью, продолжает оставаться востребованным ингредиентом в составе различных косметических, промышленных продуктов и средств личной гигиены.



ПЕРВАЯ ПОМОЩЬ


Вдыхание:

При вдыхании вынесите пострадавшего на свежий воздух.
Если трудности с дыханием сохраняются, обратитесь за медицинской помощью.


Контакт с кожей:

При попадании на кожу снять загрязненную одежду.
Промойте пораженный участок большим количеством воды с мылом.
При возникновении раздражения или покраснения обратитесь за медицинской помощью.


Зрительный контакт:

При попадании в глаза осторожно промыть водой в течение нескольких минут, сняв контактные линзы, если они есть.
Обратитесь за медицинской помощью, если раздражение не проходит.


Проглатывание:

При проглатывании не вызывать рвоту без указаний медицинского персонала.
Прополоскать рот водой и немедленно обратиться за медицинской помощью.


Противопожарные меры:

Средства пожаротушения:

Используйте средства пожаротушения, подходящие для окружающих материалов (например, водный распылитель, пена, сухие химикаты).


Специальные процедуры пожаротушения:

Носите соответствующее защитное оборудование.
Покиньте помещение, если пожар не поддается контролю.


Необычные опасности пожара и взрыва:

О необычных опасностях возгорания или взрыва не сообщалось.


Меры при случайном высвобождении:

Личные меры предосторожности:

Носите соответствующее защитное оборудование.
Избегайте вдыхания паров и пыли.
Обеспечьте достаточную вентиляцию.


Экологические меры предосторожности:

Не допускайте попадания вещества в канализацию, водоемы или низины.


Методы очистки:

Соберите пролитый материал инертным абсорбентом.
Собрать в подходящий контейнер для утилизации.


Примечания для врачей:

Лечат симптоматически, исходя из индивидуальных реакций.
При необходимости обеспечьте поддерживающий уход.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Умение обращаться:

Процедуры обработки:
При обращении соблюдайте правила промышленной гигиены.
Тщательно мойте руки после работы и перед едой, питьем или курением.

Защита от пожара и взрыва:
Примите меры для предотвращения накопления электростатических зарядов.
При необходимости используйте взрывозащищенное оборудование.

Вентиляция:
Обеспечьте достаточную вентиляцию в зонах, где обрабатывается или обрабатывается продукт.
При необходимости используйте местную вытяжную вентиляцию для контроля концентрации в воздухе.

Защитные меры:
Используйте соответствующие средства индивидуальной защиты (СИЗ), включая перчатки, защитные очки и защитную одежду.
Используйте средства защиты органов дыхания, если превышены пределы воздействия.

Совместимость хранилища:
Хранить вдали от несовместимых материалов и веществ.
Проверьте паспорт безопасности для получения конкретной информации о веществах, которых следует избегать.

Меры предосторожности при обращении:
Избегайте контакта с глазами, кожей и одеждой.
Не ешьте, не пейте и не курите во время работы с продуктом.
Избегайте вдыхания паров и пыли.


Хранилище:

Условия хранения:
Хранить в прохладном, сухом и хорошо проветриваемом помещении.
Хранить вдали от источников тепла, прямых солнечных лучей и открытого огня.

Температура хранения:
Хранить в указанном диапазоне температур, как указано в паспорте безопасности.

Контейнеры для хранения:
Используйте одобренные контейнеры, изготовленные из совместимых материалов.
Держите контейнеры плотно закрытыми, когда они не используются, чтобы предотвратить загрязнение.

Несовместимые материалы:
Храните вдали от несовместимых материалов, как указано в паспорте безопасности.

Конкретное конечное использование:
Храните продукт в соответствии с его предполагаемым применением.

Меры контроля:
Внедрите технические средства контроля, чтобы свести к минимуму воздействие во время хранения.
Используйте вторичную локализацию, чтобы предотвратить попадание разливов в окружающую среду.

Обращение с протекшим или разлитым материалом:
Немедленно удаляйте разливы, соблюдая соответствующие меры безопасности.
Утилизируйте отходы в соответствии с местными правилами.

Стабильность хранения:
Проверьте стабильность продукта с течением времени и соблюдайте сроки годности, если применимо.
PALMESTER 1417 ЭТИЛГЕКСИЛОЛЕАТ
Palmester 1417 Ethylhexyl Oleate, изготовленный из нашей олеиновой кислоты и предназначенный для использования в самых разных областях, где требуются свойства высококачественного сложного эфир��.
Palmester 1417 Ethylhexyl Oleate предназначен для использования там, где желательны превосходные характеристики цвета, стабильности и запаха, а также естественное происхождение.
Palmester 1417 Ethylhexyl Oleate находит применение в составах средств личной гигиены в качестве смягчающего средства или в смазочных материалах, в качестве модификатора трения в моторных маслах или в качестве сырья для дальнейшей модификации.

КАС: 26399-02-0
МФ: C26H50O2
МВт: 394,67
ЕИНЭКС: 247-655-0

Синонимы
2-этилгексилолеат; 9-октадеценовой кислоты (9Z)-, 2-этилгексиловый эфир; 2-этилгексилолеат; 2-этилгексил 9-октадеценоат; 2-этилгексиловый эфир (Z)-9-октадеценовой кислоты; 2-этилгексиловый эфир олеиновой кислоты; 2-этилгексилолеат (2EHS);2-этилгексилоктадек-9-еноат;2-этилгексилолеат;26399-02-0;этилгексилолеат;9-октадеценовая кислота (9Z)-, 2-этилгексиловый эфир;2-ЭТИЛГЕКСИЛ (9Z) )-ОКТАДЕК-9-ЕНОАТ;2-этилгексил (Z)-октадек-9-еноат;2-этилгексанол эфир олеиновой кислоты;9-октадеценовая кислота (Z)-, 2-этилгексиловый эфир;R34927QY59;UNII-R34927QY59;2- этилгексилолеат; einecs 247-655-0; Saboderm EO; Sympatens-EO; Dub OO; EC 247-655-0; AEC этилгексиллеат; Schembl333602; олеиновая кислота, 2-этилгексилэстер; этилгексиля [inci; dtXId908466; -)-ЭТИЛГЕКСИЛ ОЛЕАТ;BBA39902;2-ЭТИЛГЕКСИЛ 2-ОКТАДЕЦЕНОАТ;ЭТИЛГЕКСИЛ ОЛЕАТ, (+/-)-;AKOS027322108;AS-66491;NS00004020;2-ОКТАДЕЦЕНОВАЯ КИСЛОТА, 2-ЭТИЛГЕКСИЛОВЫЙ ЭФИР;Q27287724

Palmester 1417 Ethylhexyl Oleate использовался в качестве агента контроля вязкости в средствах личной гигиены для продуктов с высоким содержанием жира или воска, а также для некоторых других применений в смазочных материалах и косметике, таких как масла для ванн, средства для волос и кремы.
Palmester 1417 Ethylhexyl Oleate представляет собой разветвленный эфир мононасыщенных жирных кислот, полученный из 2-этилгексанола и олеиновой жирной кислоты, главным образом из пальмового масла.
Прозрачная жидкость при комнатной температуре с температурой плавления около -20 ºC.
Косметические составы: кондиционирование кожи, смягчающее средство.
Промышленное использование: производство моющих и чистящих средств, смазочных материалов и смазок, клеев и герметиков, полиролей и воска, средств для обработки текстиля, красителей и полимеров.

Palmester 1417 Этилгексилолеат представляет собой химическое соединение, принадлежащее к группе жирных эфиров.
Palmester 1417 Ethylhexyl Oleate представляет собой химически стабильную жидкость с низким поверхностным натяжением.
Было показано, что Palmester 1417 Ethylhexyl Oleate является эффективной магнитной частицей для обеспечения водопроницаемости с расстоянием между частицами 0,2 нм и вязкостью 20 сП.
Palmester 1417 Этилгексилолеат также может действовать как гомогенный катализатор в химических реакциях, таких как константа ингибирования гидролиза жирных кислот и методология определения поверхности полимеров.

Химические свойства 2-этилгексилолеата
Точка кипения: 465,8±24,0 °C (прогнозируется)
плотность: 0,867±0,06 г/см3 (прогнозируется)
LogP: 11,429 (оценка)
Ссылка на базу данных CAS: 26399-02-0
Система регистрации веществ Агентства по охране окружающей среды: Palmester 1417, этилгексилолеат (26399-02-0).
PALMESTER 1451 Н-БУТИЛСТЕАРАТ
Palmester 1451 н-бутилстеарат представляет собой сложный эфир жирных кислот, который представляет собой бутиловый эфир стеариновой кислоты.
Н-Бутилстеарат Palmester 1451 играет роль метаболита водорослей.
н-Бутилстеарат Palmester 1451 получают из октадекановой кислоты.

КАС: 123-95-5
МФ: C22H44O2
МВт: 340,58
ЭИНЭКС: 204-666-5

Синонимы
БУТИЛОВЫЙ ЭФИР ОКТАДЕКАНОВОЙ КИСЛОТЫ;БутилстеаратДля синтеза;N-БУТИЛПАЛЬМИТАТ/-СТЕАРАТ;бутилстеарат, технический;FEMA 2214;БУТИЛОВЫЙ СТЕАРАТ;Бутилстеарат Бутиловый эфир стеариновой кислоты;БУТИЛОКТАДЕКАНОАТ;БУТИЛСТЕАРАТ;123-95-5;N-Бутилстеарат ;Бутилоктадеканоат;Октадекановая кислота, бутиловый эфир;Kesscoflex BS;н-Бутилоктадеканоат;Стеариновая кислота, бутиловый эфир;Бутилоктадецилат;Kessco BSC;Wickenol 122;Witcizer 200;Witcizer 201;Starfol BS-100;Emerest 2325;Tegester бутилстеарат ;RC пластификатор B-17;Uniflex BYS;Groco 5810;APEX 4;FEMA № 2214;Батилстеарат;Бутиловый эфир стеариновой кислоты;NSC 4820;6Y0AI5605C;NSC-4820;Н-бутиловый эфир стеариновой кислоты;68154-28-9 ;BS;Бутилстеарат Вильмара;Номер FEMA 2214;HSDB 942;Estrex 1B 54, 1B 55;EINECS 204-666-5;BRN 1792866;н-бутилстеарат;UNII-6Y0AI5605C;AI3-00398;Kessco BS;Unimate BYS;Uniflex BYS-tech;Oleo-Coll LP;C22H44O2;EINECS 268-908-1;Kemester 5510;Priolube 1451;Witconol 2326;Бутилстеарат (NF);Radia 7051;Бутилстеарат, ~99%;ADK STAB LS-8;Стеариновая кислота кислот-н-бутиловый эфир;БУТИЛСТЕАРАТ [II];БУТИЛСТЕАРАТ [MI];SCHEMBL28437;БУТИЛСТЕАРАТ [FCC];БУТИЛСТЕАРАТ [FHFI];БУТИЛСТЕАРАТ [INCI];БУТИЛСТЕАРАТ [USP-RS];DTXSID5027013;N -БУТИЛСТЕАРАТ [HSDB];CHEBI:85983;FEMA 2214;NSC4820;Бутилстеарат, аналитический стандарт;LMFA07010795;MFCD00026669;AKOS015901590;BS-14737;Бутилстеарат, технический, 40-60% (GC);FT-0631720;NS0000640 0 ;S0077;D10681;D70203;J-005011;W-204214;Q10442124;Бутилстеарат, эталонный стандарт Фармакопеи США (USP)

н-Бутилстеарат Palmester 1451 представляет собой сложный эфир жирных кислот, который применяется в косметике, средствах личной гигиены и в качестве смягчающего средства в пищевой промышленности.
Palmester 1451 н-бутилстеарат состоит из н-бутилстеарата.
В качестве базовой смазочной жидкости можно использовать н-бутилстеарат Palmester 1451.
Palmester 1451 н-бутилстеарат представляет собой жирный эфир, полученный из возобновляемых растительных масел.
Palmester 1451 н-Бутилстеарат действует как смазка, модификатор вязкости, пластификатор полимера.
н-Бутилстеарат Palmester 1451 является биоразлагаемым.
Используется во внутренних и внешних автомобильных, транспортных, бытовых приборах, на рынке электротехники, в товарах для дома и потребительских товарах.
Н-Бутилстеарат Palmester 1451 также подходит для упаковки, труб, шлангов и фитингов, проводки и кабелей, строительства и строительства.
Н-Бутилстеарат Palmester 1451 сертифицирован КОШЕРНО и ХАЛЯЛ.
Palmester 1451 н-Бутилстеарат представляет собой сложный эфир жирных кислот, который представляет собой бутиловый эфир стеариновой кислоты.
н-Бутилстеарат Palmester 1451 играет роль метаболита водорослей.
н-Бутилстеарат Palmester 1451 функционально связан с октадекановой кислотой.

Химические свойства н-бутилстеарата Palmester 1451
Температура плавления: 17-22 °С.
Точка кипения: 220°C (25 мм рт.ст.)
Плотность: 0,861 г/мл при 20 °C (лит.)
Показатель преломления: n20/D 1,443
ФЕМА: 2214 | БУТИЛСТЕАРАТ
Фп: 25 °С
Температура хранения: 2-8°C
Форма: Жидкость
Удельный вес: 0,856
Цвет: от белого или от бесцветного до светло-желтого.
Запах: на уровне 100,00 %. легкая жирная маслянистая
Тип запаха: жирный
Растворимость в воде: Не смешивается с водой. Смешивается с этанолом и ацетоном.
Точка замерзания: от 25,0 до 27,0 ℃
Номер JECFA: 184
Мерк: 14,1589
РН: 1792866
Пределы воздействия: ACGIH: TWA 10 мг/м3; СВВ 3 мг/м3
Диэлектрическая проницаемость: 3,1 (30 ℃)
ЛогП: 9,70
Ссылка на базу данных CAS: 123-95-5 (ссылка на базу данных CAS)
Справочник по химии NIST: Palmester 1451 н-бутилстеарат 123-95-5)
Система регистрации веществ EPA: Palmester 1451 н-бутилстеарат (123-95-5)

н-Бутилстеарат Palmester 1451 представляет собой бесцветную или бледно-желтую маслянистую жидкость или легкоплавкое воскообразное твердое вещество.
н-Бутилстеарат Palmester 1451 не имеет запаха или имеет легкий жирный запах.
растворим в ацетоне, хлороформе, растворим в этаноле, нерастворим в воде.

Использование
Palmester 1451 н-Бутилстеарат используется в качестве отделочных средств, смазок и присадок к смазочным материалам.
Н-Бутилстеарат Palmester 1451 также используется в качестве пластификатора, упаковочного материала для пищевых продуктов и растворителя красителей.
н-Бутилстеарат Palmester 1451 действует как реагент и участвует в получении метилового эфира октадекановой кислоты путем реакции с метанолом.
н-Бутилстеарат Palmester 1451 находит применение в качестве связующего вещества в косметических средствах, таких как мыло, шампуни и кремы для бритья, кондиционеры для кожи и поверхностно-активные вещества для косметических рецептур.
Palmester 1451 н-Бутилстеарат представляет собой стеариновую кислоту, используемую в очень небольших количествах в косметических препаратах в качестве эмульгатора кремов и лосьонов.
Было показано, что н-бутилстеарат Palmester 1451 вызывает аллергические реакции.

Palmester 1451 н-Бутилстеарат — это внутренняя смазка для различных видов обработки смол, нетоксичная, водонепроницаемая и обладающая хорошей термостабильностью.
Н-Бутилстеарат Palmester 1451 также можно использовать в качестве смазки для тканей, гидроизоляционных средств, добавок для смазочных материалов и базовых материалов для косметики.
Подходит для прозрачных изделий и труб из ПВХ, используется в качестве внутренней смазки при обработке смол.

Подготовка
н-Бутилстеарат Palmester 1451 получают этерификацией стеариновой кислоты и бутанола, деалкоголизацией, промыванием водой и фильтрованием под давлением.
Путем взаимодействия серебра с н-бутилиодидом при 100°С путем переэтерифи��ации тристеарата глицерина (тристеарина) н-бутиловым спиртом.
PALMESTER 3595 КАПРИЛОВЫЙ/КАПРОВЫЙ ТРИГЛИЦЕРИД (MCT)

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой химическое соединение, широко известное как триглицериды со средней длиной цепи (MCT).
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой тип сложного эфира жирных кислот, полученного из кокосового или пальмоядрового масла.
МСТ состоят из жирных кислот со средней длиной цепи, в частности каприловой кислоты (8 атомов углерода) и каприновой кислоты (10 атомов углерода).
Триглицеридная структура относится к молекуле глицерина, объединенной с тремя цепями жирных кислот.

Номер CAS: 65381-09-1
Номер ЕС: 265-724-3

Каприловый/каприновый триглицерид, MCT, триглицериды со средней длиной цепи, Palmester 3595, фракционированное кокосовое масло, кокосовые триглицериды, каприлкаприновые триглицериды, триглицериды каприловой каприновой кислоты, смешанные триглицериды, триглицериды C8/C10, каприловые каприновые глицериды, каприловые глицериды, каприновые глицериды, каприловая кислота Триглицерид жирных кислот, триглицерид каприновых жирных кислот, сложный эфир жирных кислот со средней длиной цепи, эфир каприловой/каприновой кислоты, масло MCT, каприловый каприновый эфир, среднецепочечный эфир, каприловый каприновый эфир глицерина, сложный эфир триглицерина, каприлкаприлат, каприловый каприлат, глицерин Эфир среднецепочечных жирных кислот, глицерин, триэфир каприловой/каприновой кислот, триглицерид MCT, эфир кокосового масла, глицерид со средней длиной цепи, каприловый эфир капринового глицерина, глицерид кокосового масла, триглицерид кокосовой жирной кислоты, глицерид каприновых жирных кислот, среднецепочечный эфир Триглицерид жирных кислот с цепью, триглицерид каприловой/каприновой кислоты, глицерид MCT, сложный эфир кокосового масла со средней длиной цепи, сложный эфир триглицерина кокосового масла, триглицерид капринового глицерина, триглицерид каприлового глицерина, каприловый каприновый триэфир глицерина, глицерин триглицерид жирных кислот со средней длиной цепи, Эфиры MCT, каприловое каприновое масло, глицерид фракционированного кокосового масла, каприловый эфир глицерина, каприновый эфир глицерина, среднецепочечный эфир триглицерина, триэфир глицерина каприловой/каприновой жирной кислоты, глицерид жирных кислот кокосового масла, фракция MCT, каприловый эфир глицерина жирных кислот, каприновый эфир глицерина и жирных кислот, глицерид жирных кислот со средней длиной цепи, сложный эфир каприловой/каприновой кислоты глицерина.



ПРИЛОЖЕНИЯ


Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является широко используемым ингредиентом в продуктах по уходу за кожей, таких как увлажняющие кремы и лосьоны.
Его смягчающие свойства делают его ценным компонентом в препаратах, предназначенных для смягчения и увлажнения кожи.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) часто содержится в очищающих средствах для лица, обеспечивая мягкое и эффективное очищение.

В косметической промышленности это популярный выбор для тональных средств и консилеров, обеспечивающий гладкое и равномерное нанесение.
В состав солнцезащитных кремов часто входит каприловый/каприновый триглицерид Palmester 3595 (MCT) для улучшения растекаемости и улучшения ощущения на коже.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) служит маслом-носителем для эфирных масел в ароматерапии и парфюмерии.
Массажные масла часто содержат это соединение из-за его легкой текстуры и легкости скольжения.
Благодаря своей стабильности и совместимости он используется в различных средствах по уходу за волосами, включая кондиционеры и средства для укладки.
В бальзамах для губ используется каприловый/каприновый триглицерид Palmester 3595 (MCT), который придает губам ощущение мягкости и увлажнения.

В антивозрастных кремах пальместер 3595 каприловый/каприновый триглицерид (MCT) улучшает общую текстуру и помогает доставлять активные ингредиенты в кожу.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) присутствует в маслах для ванн и бомбочках для ванн, улучшая ощущения от купания благодаря своим смягчающим свойствам.

Средства для снятия макияжа часто содержат каприловый/каприновый триглицерид Palmester 3595 (MCT), благодаря его способности растворять макияж, оставляя коже ощущение питания.
Продукты по уходу за детьми, включая кремы и лосьоны под подгузники, могут содержать каприловый/каприновый триглицерид Palmester 3595 (MCT) из-за его нежного и благоприятного для кожи характера.

В кремах для рук используется каприловый/каприновый триглицерид Palmester 3595 (MCT), который обеспечивает эффективное увлажнение и борьбу с сухостью.
В дезодорантах и антиперспирантах пальместер 3595 каприловый/каприновый триглицерид (MCT) обеспечивает гладкое и комфортное нанесение.
Рецептуры ароматизаторов выигрывают от его растворяющих свойств, помогая диспергировать и увеличивать долговечность ароматов.

Каприловый/каприновый триглицерид Palmester 3595 (MCT) используется в производстве гелей для ванн и душа благодаря своим смягчающим и очищающим свойствам.
Скрабы для тела часто содержат это соединение, чтобы улучшить процесс отшелушивания и сделать кожу мягкой.
В сыворотках для волос и несмываемых средствах Palmester 3595 каприловый/каприновый триглицерид (MCT) помогает распутывать волосы и придавать им шелковистый блеск.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является распространенным ингредиентом личных смазочных материалов из-за его благоприятных для кожи и смазочных свойств.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в масках для лица для улучшения растекаемости и общей текстуры продукта.
В кремах для ног используется каприловый/каприновый триглицерид для увлажнения и смягчения кожи ног.
Продукты по уходу за татуировкой могут содержать каприловый/каприновый триглицерид Palmester 3595 (MCT), обладающий успокаивающим и кондиционирующим действием на кожу.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в косметических салфетках и салфетках благодаря своим смягчающим свойствам.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в кремах для бритья и обеспечивает смазку и гладкость бритья.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является ключевым ингредиентом лосьонов и кремов для тела, придавая им роскошную текстуру и увлажняющие свойства.
Средства по уходу за ногтями, такие как кремы и масла для кутикулы, часто содержат МСТ для питания и кондиционирования ногтей и окружающей кожи.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в средствах для загара, обеспечивая равномерное нанесение и улучшая впитывание дубильных веществ.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является распространенным компонентом натуральных и органических составов по уходу за кожей благодаря его возобновляемым источникам и экологически чистому профилю.
Карандаши и помады для бровей могут содержать каприловый/каприновый триглицерид Palmester 3595 (MCT), поскольку он способствует созданию гладкой и легко растушевываемой консистенции.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) присутствует в сухих шампунях, что способствует их легкому и нежирному составу.
Составы шампуней могут включать каприловый/каприновый триглицерид Palmester 3595 (MCT) для улучшения общего ощущения и послушности волос.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в солях для ванн и маслах для ванн для диспергирования эфирных масел и улучшения состояния кожи.

Каприловый/каприновый триглицерид Palmester 3595 (MCT) содержится в средствах интимного ухода, таких как смазочные материалы для личной гигиены, благодаря его мягким и нераздражающим свойствам.
В некоторых натуральных и органических дезодорантах используется каприловый/каприновый триглицерид Palmester 3595 (MCT) из-за его благоприятного воздействия на кожу и совместимости с другими натуральными ингредиентами.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в средствах по уходу за губами, включая блески для губ и бальзамы, из-за его увлажняющего и глянцевого эффекта.
Чернила для татуировки могут содержать каприловый/каприновый триглицерид Palmester 3595 (MCT) для улучшения дисперсии и нанесения пигмента.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в пенах и гелях для бритья, чтобы обеспечить плавное скольжение и уменьшить трение во время бритья.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в сыворотках для лица, чтобы улучшить доставку активных ингредиентов и улучшить здоровье кожи.
Натуральные и органические туши для ресниц могут включать каприловый/каприновый триглицерид Palmester 3595 (MCT) из-за его легкости и кондиционирующих свойств.
В спреях и спреях для тела это соединение способствует равномерному распределению аромата и обеспечивает нежирный вид.
Маски для волос и процедуры глубокого кондиционирования часто включают каприловый/каприновый триглицерид Palmester 3595 (MCT) из-за его способности питать и оживлять пряди волос.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в средствах для лечения прыщей для доставки активных ингредиентов, не вызывая чрезмерной сухости.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в твердых духах, что способствует их гладкой и легко наносимой консистенции.
Спрей для фиксации макияжа может содержать каприловый/каприновый триглицерид Palmester 3595 (MCT) из-за его способности закреплять макияж без ущерба для его внешнего вида.
Некоторые натуральные и органические репелленты от насекомых используют каприловый/каприновый триглицерид в качестве основы для смесей эфирных масел.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в натуральных и минеральных основах для улучшения растекаемости и смешиваемости пигментов.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) присутствует в детских салфетках благодаря своим нежным и увлажняющим свойствам.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в дезинфицирующих средствах для рук, чтобы противодействовать высушивающему эффекту алкоголя и обеспечивать кондиционирование кожи.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является универсальным ингредиентом в составе различных косметических продуктов и продуктов личной гигиены, демонстрируя его адаптируемость к различным применениям.

Средства для укладки волос, включая лаки и гели для волос, могут содержать каприловый/каприновый триглицерид, обеспечивающий легкий вес и нелипкость.
Palmester 3595 Каприловый/каприновый триглицерид (MCT) является распространенным ингредиентом масел для кутикулы, обеспечивая питание и укрепление здоровья ногтей.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в кремах для ног для смягчения и увлажнения сухой и огрубевшей кожи ног.

В некоторых натуральных и органических тональных средствах используется каприловый/каприновый триглицерид Palmester 3595 (MCT) в качестве основы для создания гладкого и легко наращиваемого покрытия.
Жидкости для снятия лака могут содержать это соединение, которое помогает растворять лак для ногтей и одновременно кондиционировать ногти.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в маслах для бороды для смягчения волос на лице и увлажнения кожи под ним.
Средства для ухода за кожей головы, включая сыворотки и масла, могут включать каприловый/каприновый триглицерид из-за его кондиционирующего воздействия на кожу головы.
В натуральных и органических детских лосьонах это соединение используется из-за его нежных и нераздражающих свойств на нежной детской коже.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в средствах против натирания, обеспечивающих гладкий и уменьшающий трение барьер на коже.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в средствах по уходу за кожей после загара, чтобы успокоить и увлажнить кожу, подвергшуюся воздействию солнечных лучей.
Некоторые натуральные и органические румяна содержат МСТ из-за его способности легко смешиваться и обеспечивать естественный румянец.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является распространенным ингредиентом бальзамов для кутикулы, помогая поддерживать здоровую и увлажненную кутикулу.
Бальзамы для бороды могут включать каприловый/каприновый триглицерид Palmester 3595 (MCT) для смягчения волос на лице и придания легкого блеска.
В натуральных и органических составах туши для ресниц может использоваться МСТ из-за его кондиционирующих свойств и отсутствия комков.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) входит в состав масок для рук и обеспечивает интенсивное увлажнение и омоложение.

Скрабы для губ часто содержат это соединение, которое помогает отшелушивать и разглаживать губы.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в натуральных и органических солнцезащитных кремах из-за его способности улучшать равномерное распределение УФ-фильтров.
В натуральных и органических подводках для глаз пальместер 3595 каприловый/каприновый триглицерид (MCT) обеспечивает гладкую и легко наносимую текстуру.

Некоторые натуральные и органические сухие масла для тела содержат каприловый/каприновый триглицерид для легкого и нежирного покрытия.
Скрабы для ног могут включать это соединение из-за его смягчающих свойств, делая ноги мягкими и освеженными.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в сыворотках для кутикулы для питания и кондиционирования ногтевого ложа.
Натуральные и органические ночные кремы могут содержать МСТ, обладающие кондиционирующим и омолаживающим действием на кожу.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) содержится в натуральных и органических средствах для снятия макияжа, растворяя макияж, оставляя кожу питательной.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) используется в натуральных и органических бальзамах для губ для обеспечения увлажнения и предотвращения сухости.
В натуральных и органических порошках для закрепления MCT может способствовать созданию легкой и мелкоизмельченной текстуры, обеспечивающей бесшовное покрытие.



ОПИСАНИЕ


Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой химическое соединение, широко известное как триглицериды со средней длиной цепи (MCT).
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой тип сложного эфира жирных кислот, полученного из кокосового или пальмоядрового масла.
МСТ состоят из жирных кислот со средней длиной цепи, в частности каприловой кислоты (8 атомов углерода) и каприновой кислоты (10 атомов углерода).
Триглицеридная структура относится к молекуле глицерина, объединенной с тремя цепями жирных кислот.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT), широко известный как MCT, представляет собой универсальное и широко используемое химическое соединение.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой бесцветную жидкость без запаха с гладкой шелковистой текстурой.

Полученное из возобновляемых источников, таких как кокосовое или пальмоядровое масло, оно соответствует устойчивым и экологически чистым практикам.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) состоит из жирных кислот со средней длиной цепи, в частности каприловой кислоты и каприновой кислоты.

Благодаря своим превосходным смягчающим свойствам каприловый/каприновый триглицерид Palmester 3595 (MCT) является популярным выбором в продуктах по уходу за кожей благодаря своей способности смягчать и разглаживать кожу.
Его легкий вес и нежирность делают его идеальным ингредиентом в косметических составах, от лосьонов до сывороток.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) служит растворителем ароматизаторов, улучшая их дисперсию и общую эффективность в различных продуктах.

Триглицеридная структура каприлового/капринового триглицерида Palmester 3595 (MCT) в сочетании с глицерином способствует его стабильности в различных условиях.
Известный своей совместимостью с различными типами кожи, он часто включается в составы для чувствительной кожи.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является распространенным ингредиентом массажных масел, способствующим роскошному ощущению скольжения во время массажа.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) имеет нейтральный запах, что делает его отличным носителем как для ароматизированных, так и для косметических продуктов без ароматизаторов.
Благодаря своей стабильности МСТ помогает продлить срок годности рецептур, обеспечивая качество продукции с течением времени.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) играет решающую роль в продуктах по уходу за кожей, предназначенных для увлажнения и увлажнения, способствуя здоровью кожи.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) представляет собой сложный эфир глицерина и жирных кислот со средней длиной цепи, обеспечивающий повышенную растворимость как в воде, так и в масле.
Каприловый/каприновый триглицерид Palmester 3595 (MCT) известен своей способностью улучшать растекаемость и абсорбцию активных ингредиентов в рецептурах.

Будучи ингредиентом, не содержащим ГМО, MCT заверяет потребителей в своем стремлении избегать использования генетически модифицированных организмов.
Его присутствие в косметических рецептурах приносит приятные ощущения, оставляя на коже шелковистый и нежирный оттенок.
Palmester 3595 Каприловый/Каприновый тригли��ерид (MCT) часто используется в составах, направленных на решение конкретных проблем кожи, таких как сухость или шероховатость.
Чистая и прозрачная природа МСТ позволяет легко включать его в различные косметические продукты, не изменяя их внешний вид.

Смягчающие свойства каприлового/каприкового триглицерида (MCT) Palmester 3595 делают его пригодным для использования в средствах по уходу за волосами, оказывая кондиционирующее воздействие на волосы.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) известен своей универсальностью в составах: от кремов для ухода за кожей до продуктов для макияжа, таких как тональные основы и бальзамы для губ.
Его включение в солнцезащитные кремы способствует улучшению растекаемости и комфортному ощущению кожи во время нанесения.
Palmester 3595 Каприловый/Каприновый триглицерид (MCT) сертифицирован HALAL и KOSHER и соответствует конкретным диетическим требованиям и предпочтениям.

Palmester 3595 Каприловый/Каприновый триглицерид (MCT) является ключевым ингредиентом экологически безопасных составов благодаря его возобновляемым источникам и биоразлагаемости.
Его широкое использование в косметической промышленности и индустрии личной гигиены свидетельствует об эффективности, безопасности и многофункциональных качествах МСТ.



ХАРАКТЕРИСТИКИ


Точка кипения: 270°С.
Растворимость: растворим в воде
Вязкость: 25-33 сП



ПЕРВАЯ ПОМОЩЬ


Вдыхание:

При вдыхании вынесите пострадавшего на свежий воздух.
Если трудности с дыханием сохраняются, обратитесь за медицинской помощью.


Контакт с кожей:

При попадании на кожу снять загрязненную одежду.
Промойте пораженный участок большим количеством воды с мылом.
При возникновении раздражения или покраснения обратитесь за медицинской помощью.


Зрительный контакт:

При попадании в глаза осторожно промыть водой в течение нескольких минут, сняв контактные линзы, если они есть.
Обратитесь за медицинской помощью, если раздражение не проходит.


Проглатывание:

При проглатывании не вызывать рвоту без указаний медицинского персонала.
Прополоскать рот водой и немедленно обратиться за медицинской помощью.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Умение обращаться:

Процедуры обработки:
При обращении соблюдайте правила промышленной гигиены.
Тщательно мойте руки после работы и перед едой, питьем или курением.

Защита от пожара и взрыва:
Примите меры для предотвращения накопления электростатических зарядов.
При необходимости используйте взрывозащищенное оборудование.

Вентиляция:
Обеспечьте достаточную вентиляцию в зонах, где обрабатывается или обрабатывается продукт.
При необходимости используйте местную вытяжную вентиляцию для контроля концентрации в воздухе.

Защитные меры:
Используйте соответствующие средства индивидуальной защиты (СИЗ), включая перчатки, защитные очки и защитную одежду.
Используйте средства защиты органов дыхания, если превышены пределы воздействия.

Совместимость хранилища:
Хранить вдали от несовместимых материалов и веществ.
Проверьте паспорт безопасности для получения конкретной информации о веществах, которых следует избегать.

Меры предосторожности при обращении:
Избегайте контакта с глазами, кожей и одеждой.
Не ешьте, не пейте и не курите во время работы с продуктом.
Избегайте вдыхания паров и пыли.


Хранилище:

Условия хранения:
Хранить в прохладном, сухом и хорошо проветриваемом помещении.
Хранить вдали от источников тепла, прямых солнечных лучей и открытого огня.

Температура хранения:
Хранить в указанном диапазоне температур, как указано в паспорте безопасности.

Контейнеры для хранения:
Используйте одобренные контейнеры, изготовленные из совместимых материалов.
Держите контейнеры плотно закрытыми, когда они не используются, чтобы предотвратить загрязнение.

Несовместимые материалы:
Храните вдали от несовместимых материалов, как указано в паспорте безопасности.

Конкретное конечное использование:
Храните продукт в соответствии с его предполагаемым применением.

Меры контроля:
Внедрите технические средства контроля, чтобы свести к минимуму воздействие во время хранения.
Используйте вторичную локализацию, чтобы предотвратить попадание разливов в окружающую среду.

Обращение с протекшим или разлитым материалом:
Немедленно удаляйте разливы, соблюдая соответствующие меры безопасности.
Утилизируйте отходы в соответствии с местными правилами.

Стабильность хранения:
Проверьте стабильность продукта с течением времени и соблюдайте сроки годности, если применимо.
PALMITIC ACID
SYNONYMS n-Hexadecoic acid; Pentadecanecarboxylic acid; n-Hexadecanoic acid; 1-Pentadecanecarboxylic acid; Cetylic acid; Hexadecylic acid; (EDENOR C1698) CAS NO. 57-10-3
PALMITIK ASIT 
PALMITOYL TRIPEPTIDE-1, N° CAS : 147732-56-7. Nom INCI : PALMITOYL TRIPEPTIDE-1. Nom chimique : L-Lysine, N-(1-oxohexadecyl)glycyl-L-histidyl-. N° EINECS/ELINCS : Ses fonctions (INCI): Agent d'entretien de la peau : Maintient la peau en bon état
PANCEAU 4R
food red; Trisodium (8Z)-7-oxo-8-[(4-sulfonatonaphthalen-1-yl)hydrazinylidene]naphthalene-1,3-disulfonate cas no: 2611-82-7
P-ANISIC ACID
P-ANISIC ACID p-Anisic acid p-Anisic acid[1] Skeletal formula of p-anisic acid Ball-and-stick model of the p-anisic acid molecule Names IUPAC name 4-Methoxybenzoic acid Other names Draconic acid Identifiers CAS Number 100-09-4 3D model (JSmol) Interactive image ChEBI CHEBI:40813 ChEMBL ChEMBL21932 ChEMBL1762657 ChemSpider 10181338 ECHA InfoCard 100.002.562 PubChem CID 7478 Properties Chemical formula C8H8O3 Molar mass 152.149 g·mol−1 Density 1.385 g/cm3 Melting point 184 °C (363 °F; 457 K) (sublimation) Boiling point 275 to 280 °C (527 to 536 °F; 548 to 553 K) Solubility in water 1 part per 2500 Structure[2] Crystal structure monoclinic Space group P21/a Lattice constant a = 16.98 Å, b = 10.95 Å, c = 3.98 Å α = 90°, β = 98.7°, γ = 90° Formula units (Z) 4 Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). Infobox references p-Anisic acid, also known as 4-methoxybenzoic acid or draconic acid, is one of the isomers of anisic acid. The term "anisic acid" often refers to this form specifically. It is a white crystalline solid which is insoluble in water, highly soluble in alcohols and soluble in ether, and ethyl acetate. Synthesis and occurrence p-Anisic acid is found naturally in anise. It is generally obtained by the oxidation of anethole or p-methoxyacetophenone. Uses p-Anisic acid has antiseptic properties. It is also used as an intermediate in the preparation of more complex organic compounds. Properties mp 182-185 °C (lit.) SMILES string COc1ccc(cc1)C(O)=O InChI 1S/C8H8O3/c1-11-7-4-2-6(3-5-7)8(9)10/h2-5H,1H3,(H,9,10) InChI key ZEYHEAKUIGZSGI-UHFFFAOYSA-N Description Biochem/physiol Actions Metabolite of aniracetam that mimics its anxiolytic actions. It is also an inhibitor of tyrosinase. p-Anisic Acid What: p-Anisic acid is found naturally in anise. p-Anisic Acid is a white crystalline solid which is insoluble in water and soluble in alcohols, ether, and ethyl acetate. p-Anisic acid has antiseptic properties and is used as a preservative in cosmetic products. Origin: p-Anisic acid is generally obtained by the oxidation of anethole, an aromatic compound that occurs in essential oils . Products Found In: Skincare, body care, hair care, sun protection products, anti-aging skincare. Alternative Names: P-Anisic Acid, 4-Anisic Acid, Benzoic Acid, 4-Methoxy-, Draconic Acid, 4-Methoxybenzoic Acid, P-Methoxybenzoic Acid, 4-Methoxy- Benzoic Acid, Benzoic Acid, 4methoxy, Benzoic Acid, 4-Methoxy- (9ci). Toxicity: p-Anisic Acid is generally classified as having a low toxicity rating (EWG). Molecular Weight of p-Anisic Acid: 152.15 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3 of p-Anisic Acid: 2 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of p-Anisic Acid: 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of p-Anisic Acid: 3 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of p-Anisic Acid: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of p-Anisic Acid: 152.047344 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of p-Anisic Acid: 152.047344 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of p-Anisic Acid: 46.5 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of p-Anisic Acid: 11 Computed by PubChem Formal Charge of p-Anisic Acid: 0 Computed by PubChem Complexity of p-Anisic Acid: 136 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of p-Anisic Acid: 0 Computed by PubChem Defined Atom Stereocenter Count of p-Anisic Acid: 0 Computed by PubChem Undefined Atom Stereocenter Count of p-Anisic Acid: 0 Computed by PubChem Defined Bond Stereocenter Count of p-Anisic Acid: 0 Computed by PubChem Undefined Bond Stereocenter Count of p-Anisic Acid: 0 Computed by PubChem Covalently-Bonded Unit Count of p-Anisic Acid: 1 Computed by PubChem Compound of p-Anisic Acid Is Canonicalized Yes Substance identity Help EC / List no.: 202-818-5 CAS no.: 100-09-4 Mol. formula: C8H8O3 formula Hazard classification & labelling Help According to the notifications provided by companies to ECHA in REACH registrations no hazards have been classified. About p-Anisic Acid Helpful information p-Anisic Acid has not been registered under the REACH Regulation, therefore as yet ECHA has not received any data about p-Anisic Acid from registration dossiers. p-Anisic Acid is used by consumers, by professional workers (widespread uses), in formulation or re-packing and at industrial sites. Consumer Uses p-Anisic Acid is used in the following products: cosmetics and personal care products, biocides (e.g. disinfectants, pest control products), perfumes and fragrances, pharmaceuticals and washing & cleaning products. Other release to the environment of p-Anisic Acid is likely to occur from: indoor use as processing aid and outdoor use as processing aid. Article service life ECHA has no public registered data on the routes by which p-Anisic Acid is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed. Widespread uses by professional workers p-Anisic Acid is used in the following products: cosmetics and personal care products, perfumes and fragrances, pharmaceuticals and washing & cleaning products. p-Anisic Acid is used in the following areas: health services. Other release to the environment of p-Anisic Acid is likely to occur from: indoor use as processing aid and outdoor use as processing aid. Formulation or re-packing p-Anisic Acid is used in the following products: cosmetics and personal care products, washing & cleaning products, biocides (e.g. disinfectants, pest control products), perfumes and fragrances, pharmaceuticals and laboratory chemicals. Release to the environment of p-Anisic Acid can occur from industrial use: formulation of mixtures. Uses at industrial sites p-Anisic Acid is used in the following products: cosmetics and personal care products, biocides (e.g. disinfectants, pest control products), perfumes and fragrances, pharmaceuticals, washing & cleaning products and laboratory chemicals. p-Anisic Acid is used in the following areas: health services and scientific research and development. p-Anisic Acid is used for the manufacture of: chemicals. Release to the environment of p-Anisic Acid can occur from industrial use: in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates) and as processing aid. Manufacture ECHA has no public registered data on the routes by which p-Anisic Acid is most likely to be released to the environment. Details Though the official function of P-Anisic Acid is masking (meaning that it helps to mask not so nice smells in the product), according to manufacturer info it is rather used as a preservative. It is a skin friendly organic acid that works against fungi. SODIUM ANISATE is derived from fennel, this is the sodium salt of p-anisic acid. p-Anisic Acid is classified as antimicrobial and flavouring. p-Anisic Acid acts as an anti-fungal agent, and when paired with sodium levulinate the two ingredients make for a comprehensive preservative for cosmetics. P-Anisic Acid is approved for use in organic cosmetics. Sodium anisate (dermosoft® anisate) is an easy to use water soluble salt of an organic acid with an excellent fungicidal activity. p-Anisic Acid can be added to the cold or hot water phase at any step of the process. The combination with antimicrobial surface active substances or organic acids is recommended to improve the performance of the product even at higher pH. p-Anisic Acid p-Anisic Acid is classified as : Masking CAS Number of p-Anisic Acid 100-09-4 EINECS/ELINCS No of p-Anisic Acid: 202-818-5 COSING REF No of p-Anisic Acid: 35837 Chem/IUPAC Name of p-Anisic Acid: Benzoic acid, 4-methoxy- Description p-Anisic Acid belongs to the class of organic compounds known as p-methoxybenzoic acids and derivatives. These are benzoic acids in which the hydrogen atom at position 4 of the benzene ring is replaced by a methoxy group.
PANTHENOL
PANTHENOL Panthenol Panthenol Stereo, skeletal formula of panthenol (R) Names IUPAC name 2,4-Dihydroxy-N-(3-hydroxypropyl)-3,3-dimethylbutanamide[1] Other names Pantothenol Pantothenyl alcohol N-Pantoylpropanolamine Bepanthen (trade name) Dexpanthenol (D form) Identifiers CAS Number 16485-10-2 ☒ 81-13-0 R ☒ 3D model (JSmol) Interactive image 3DMet B00882 Beilstein Reference 1724945, 1724947 R ChEBI CHEBI:27373 ☒ ChEMBL ChEMBL1200979 ☒ ChemSpider 4516 check 115991 R ☒ 4677984 S ☒ ECHA InfoCard 100.036.839 EC Number 240-540-6 KEGG D03726 check MeSH dexpanthenol PubChem CID 4678 131204 R 5748487 S RTECS number ES4316500 UNII 1O6C93RI7Z check CompTox Dashboard (EPA) DTXSID3044598 InChI[show] SMILES[show] Properties Chemical formula C9H19NO4 Molar mass 205.254 g·mol−1 Appearance Highly viscous, colourless liquid Density 1.2 g mL−1 (at 20 °C) Melting point 66 to 69 °C (151 to 156 °F; 339 to 342 K) [contradictory] Boiling point 118 to 120 °C (244 to 248 °F; 391 to 393 K) at 2.7 Pa log P −0.989 Acidity (pKa) 13.033 Basicity (pKb) 0.964 Chiral rotation ([α]D) +29° to +30° Refractive index (nD) 1.499 Pharmacology ATC code A11HA30 (WHO) D03AX03 (WHO), S01XA12 (WHO) Hazards NFPA 704 (fire diamond) NFPA 704 four-colored diamond 110 Lethal dose or concentration (LD, LC): LD50 (median dose) 10,100 mg kg−1 (intraperitoneal, mouse); 15,000 mg kg−1 (oral, mouse) Related compounds Related compounds Arginine Theanine Pantothenic acid Hopantenic acid Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). ☒ verify (what is check☒ ?) Infobox references Panthenol (also called pantothenol) is the alcohol analog of pantothenic acid (vitamin B5), and is thus a provitamin of B5. In organisms it is quickly oxidized to pantothenic acid. It is a viscous transparent liquid at room temperature. Panthenol is used as a moisturizer and to improve wound healing in pharmaceutical and cosmetic products. Uses Bepanthen eye and nose ointment (Germany) In pharmaceuticals, cosmetics and personal-care products, panthenol is a moisturizer and humectant, used in ointments, lotions, shampoos, nasal sprays, eye drops, lozenges, and cleaning solutions for contact lenses. In ointments it is used for the treatment of sunburns, mild burns, minor skin injuries and disorders (in concentrations of up to 2–5%).[2] It improves hydration, reduces itching and inflammation of the skin, improves skin elasticity, and accelerates epidermal wounds' rate of healing.[3] For this purpose, it is sometimes combined with allantoin. It binds to the hair shaft readily; so, it is a common component of commercial shampoos and hair conditioners (in concentrations of 0.1–1%). It coats the hair and seals its surface,[citation needed] lubricating the hair shaft and giving it a shiny appearance. It is also recommended by tattoo artists as a post-tattooing moisturising cream. Adverse effects Panthenol is generally well tolerated. In rare cases, skin irritation and contact allergies have been reported.[2][3] Pharmacology Panthenol readily penetrates into the skin and mucous membranes (including the intestinal mucosa), where it is quickly oxidized to pantothenic acid. Pantothenic acid is extremely hygroscopic,[4] that is, it binds water effectively. It is also used in the biosynthesis of coenzyme A, which plays a role in a wide range of enzymatic reactions and thus in cell growth.[2][3] Physical and chemical properties Dexpanthenol Panthenol is an odourless, slightly bitter, highly viscous, transparent and colourless liquid at room temperature,[5] but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). It is easily soluble in water and alcohol, moderately soluble in diethyl ether, soluble in chloroform (1:100),[5] in propylene glycol, and slightly soluble in glycerin. Panthenol's expanded chemical formula is HO–CH2–C(CH3)2–CH(OH)–CONH–CH2CH2CH2–OH. Stereochemistry Panthenol comes in two enantiomers, D and L. Only D-panthenol (dexpanthenol) is biologically active, however both forms have moisturizing properties. For cosmetic use, panthenol comes either in D form, or as a racemic mixture of D and L (DL-panthenol). D-Panthenol D-Panthenol (also called pantothenol) is the alcohol analog of pantothenic acid (vitamin B5), and is thus a provitamin of B5. In organisms it is quickly oxidized to pantothenic acid. D-Pantenol is a viscous transparent liquid at room temperature. D-Panthenol is used as a moisturizer and to improve wound healing in pharmaceutical and cosmetic products. Bepanthen eye and nose ointment (Germany) In pharmaceuticals, cosmetics and personal-care products, D-Panthenol is a moisturizer and humectant, used in ointments, lotions, shampoos, nasal sprays, eye drops, lozenges, and cleaning solutions for contact lenses. In ointments it is used for the treatment of sunburns, mild burns, minor skin injuries and disorders (in concentrations of up to 2–5%).[2] It improves hydration, reduces itching and inflammation of the skin, improves skin elasticity, and accelerates epidermal wounds' rate of healing.[3] For this purpose, it is sometimes combined with allantoin. D-Pantenol binds to the hair shaft readily; so, it is a common component of commercial shampoos and hair conditioners (in concentrations of 0.1–1%). D-Pantenol coats the hair and seals its surface,[citation needed] lubricating the hair shaft and giving it a shiny appearance. D-Pantenol is also recommended by tattoo artists as a post-tattooing moisturising cream. Adverse effects D-Panthenol is generally well tolerated. In rare cases, skin irritation and contact allergies have been reported.[2][3] Pharmacology D-Panthenol readily penetrates into the skin and mucous membranes (including the intestinal mucosa), where it is quickly oxidized to pantothenic acid. Pantothenic acid is extremely hygroscopic,[4] that is, it binds water effectively. It is also used in the biosynthesis of coenzyme A, which plays a role in a wide range of enzymatic reactions and thus in cell growth.[2][3] Physical and chemical properties Dexpanthenol D-Panthenol is an odourless, slightly bitter, highly viscous, transparent and colourless liquid at room temperature,[5] but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). D-Pantenol is easily soluble in water and alcohol, moderately soluble in diethyl ether, soluble in chloroform (1:100),[5] in propylene glycol, and slightly soluble in glycerin. D-Panthenol's expanded chemical formula is HO–CH2–C(CH3)2–CH(OH)–CONH–CH2CH2CH2–OH. Stereochemistry D-Panthenol comes in two enantiomers, D and L. Only D-panthenol (dexpanthenol) is biologically active, however both forms have moisturizing properties. For cosmetic use, panthenol comes either in D form, or as a racemic mixture of D and L (DL-panthenol). In cosmetics, panthenol is a humectant, emollient and moisturizer. D-Panthenol binds to hair follicles readily and is a frequent component of shampoos and hair conditioners (in concentrations of 0. 1-1%). D-Panthenol coats the hair and seals its surface, lubricating follicles and making strands appear shiny. Panthenol is the alcohol analog of pantothenic acid (vitamin B5), and is thus the provitamin of B5. In organisms it is quickly oxidized to pantothenate. Panthenol is a viscous transparent liquid at room temperature, but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). D-Panthenol is well soluble in water, alcohol and propylene glycol, soluble in ether and chloroform, and slightly soluble in glycerin. Overview If you looked around your home, you’d likely run across panthenol in several ingredients lists of products you own. Panthenol appears in food, supplements, and hygienic products of a wide variety. D-Panthenol has a similar chemical structure to alcohol. D-Panthenol’s used to help hydrate and smooth your skin and hair from the inside in its ingestible form and from the outside in its topical form. But is D-Panthenol safe for you and your family when it appears in personal care products? Read on to find out why panthenol is in so many cosmetics and read the facts to understand how it affects your body. What is d-panthenol? d-Panthenol is a chemical substance made from pantothenic acid, also known as vitamin B-5. D-Panthenol occurs organically and can also be produced from both plant and animal sources. D-Panthenol’s used as an additive in various cosmetic products around the globe. You very likely have pantothenic acid in your system right now, since it occurs in so many common food sources. And you’ve likely used a cosmetic or personal care product with D-Panthenol within the last 24 hours. D-Panthenol takes the form of either a white powder or a transparent oil at room temperature. You will sometimes see panthenol listed under one of its other names on ingredients list, including: dexpanthenol D-pantothenyl alcohol butanamide alcohol analog of pantothenic acid provitamin B-5 When absorbed into the body, panthenol becomes vitamin B-5. What’s D-Panthenol used for? In topical cosmetics, product manufacturers often use panthenol as a moisturizer. But D-Panthenol’s also included in many cosmetics as a softening, soothing, and anti-irritant agent.D-Panthenol also helps your skin build up a barrier against irritation and water loss. Skin products Vitamin B-5 is essential for a healthy diet, skin, and hair. D-Panthenol makes sense that panthenol, its derivative, is a staple of many skin care products, such as lotions and cleansers. D-Panthenol’s also found in cosmetics as various as lipstick, foundation, or even mascara.D-Panthenol also appears in creams made to treat insect bites, poison ivy, and even diaper rash. The National Center for Biotechnology Information lists panthenol as a skin protectant with anti-inflammatory properties. D-Panthenol can help improve skin’s hydration, elasticity, and smooth appearance. D-Panthenol also soothes: red skin inflammation little cuts or sores like bug bites or shaving irritation D-Panthenol helps with wound healing, as well as other skin irritations like eczema. Hair products Hair care products include D-Panthenol because of its ability to improve your hair’s: shine softness strength D-Panthenol can also help protect your hair from styling or environmental damage by locking in moisture. One study found that panthenol may help slow down and hide the look of thinning hair. The study tested it with other active ingredients as a leave-in treatment. Nail products Your nails are made from keratin proteins, just like your hair. So, D-Panthenol follows that panthenol can strengthen your finger- and toenails. You might find it in your shine and strengthening nail treatments, or in hand creams and cuticle oils. One study found that applying panthenol to the nail can help hydrate the nail and prevent breakage. Molecular Weight of Panthenol: 205.25 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of Panthenol: -0.9 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Panthenol: 4 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Panthenol: 4 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Panthenol: 6 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Panthenol: 205.131408 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Panthenol: 205.131408 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Panthenol: 89.8 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Panthenol: 14 Computed by PubChem Formal Charge of Panthenol: 0 Computed by PubChem Complexity of Panthenol: 182 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Panthenol: 0 Computed by PubChem Defined Atom Stereocenter Count of Panthenol: 0 Computed by PubChem Undefined Atom Stereocenter Count of Panthenol: 1 Computed by PubChem Defined Bond Stereocenter Count of Panthenol: 0 Computed by PubChem Undefined Bond Stereocenter Count of Panthenol: 0 Computed by PubChem Covalently-Bonded Unit Count of Panthenol: 1 Computed by PubChem Compound of Panthenol Is Canonicalized Yes
Papatya Ekstraktı
Chamomilla Recutita Flower Extract or Anthemis Nobilis Flower Extract; chamomilla recutita flower water; matricaria chamomilla var. recutita flower water cas no:84082-60-0; 84649-86-5
PAPEMP
Polyamino Polyether Methylene Phosphonic Acid PAPEMP Polyamino Polyether Methylene Phosphonate Molecular weight: about 600 PAPEMP Acid- Polyamino polyether methylene phosphonic acid PAPEMP (Polyamino Polyether Methylene Phosphonate) Properties: PAPEMP performs excellently in the condition of high hardness and pH as a new antiscalant and corrosion inhibitor. With high calcium tolerance, PAPEMP scale inhibition ability is also high, particularly for CaCO3, CaPO4, and CaSO4. It also effectively restrain the Si scale from a formation and stabilize the ions. Such as Mn, and Fe to form chelating compounds. PAPEMP also has a good tolerance to high temperature, high turbidity, high salt concentration, and high chlorine (Cl– and Br–) concentration. PAPEMP can be used as scale and corrosion inhibitor in circulating cool water system and oilfield refill water system in situations of high hardness, high alkali, and high pH value. PAPEMP can be used as a scale inhibitor for a reverse osmosis system and a multistep flash vaporization system. PAPEMP can significantly inhibit calcium carbonate precipitation from the aqueous solution by modifying the crystal morphology Structural Formula: CH2(OCH2CH)nCH3NCH2CH2P(OH)2P(OH)2OOHCCH3NCH2CH2(HO)2P(HO)2POO Properties: PAPEMP is a new kind of water treatment agent. PAPEMP has high chelation and dispersion effects, high value of calcium tolerance, and good scale inhibition effects. PAPEMP can be used as scale and corrosion inhibitor in circulating cool water system and oilfield refill water system in situations of high hardness, high alkali and high pH value. PAPEMP has excellent scale inhibition ability to calcium carbonate, calcium sulfate and calcium phosphate. PAPEMP can efficiently inhibit the formation of silica scale, stabilize metal ions such as Zn, Mn and Fe. PAPEMP can be used as scale inhibitor for reverse osmosis system and multistep flash vaporization system in which high salt concentration, high turbidity and high temperature are usually encountered (such as high temperature and high turbidity in coal vaporization system), accessory agent for woven & dyeing (for example, yellow turnback inhibition agent), as alternatives of EDTA, DTPA and NTA. CAS No. : 130668–24–5 Polyamino polyether methylene phosphonate (PAPEMP) is very effective in preventing calcium carbonate precipitation at high supersaturation and high pH. The inhibition of calcium carbonate crystallization in the presence of PAPEMP at both low and high supersaturation was studied and then compared to the inhibitory ability of hydroxyethylidene-1 ,1-diphosphonic acid (HEDP). Keywords: calcium carbonate inhibition, crystallization kinetics, phosphonates, affinity constants, calcium tolerance. PAPEMP is a new kind of water treatment agent. PAPEMP has high chelation and dispersion effects, high value of calcium tolerance, and good scale inhibition effects. PAPEMP is as scale and corrosion inhibitor in circulating cool water system and oilfield refill water system in situations of high hardness, high alkali and high pH value. PAPEMP inhibits scale formation of calcium carbonate, calcium sulfate and calcium phosphate. Polyamino Polyether Methylene Phosphonic Acid is a new kind of water treatment agent. PAPEMP has high chelation and dispersion effects, high value of calcium tolerance, and good scale inhibition effects. Polyamino Polyether Methylene Phosphonic Acid can be used as scale and corrosion inhibitor in circulating cool water system and oilfield refill water system in situations of high hardness, high alkali and high pH value. Polyamino Polyether Methylene Phosphonic Acid has excellent scale inhibition ability to calcium carbonate, calcium sulfate and calcium phosphate. Polyamino Polyether Methylene Phosphonic Acid can efficiently inhibit the formation of silica scale, stabilize metal ions such as Zn, Mn and Fe. Polyamino Polyether Methylene Phosphonic Acid can be used as scale inhibitor for reverse osmosis system and multistep flash vaporization system in which high salt concentration, high turbidity and high temperature are usually encountered (such as high temperature and high turbidity in coal vaporization system), accessory agent for woven & dyeing (for example, yellow turnback inhibition agent), as alternatives of EDTA, DTPA and NTA. PAPEMP is a new kind of scale inhibitor for industrial water treatment. PAPEMP has high chelation and dispersion effect with high value of calcium tolerance and scale inhibition effect. PAPEMP can be used as scale and corrosion inhibitor in circulating cooling water system and oilfield of high hardness including calcium magnesium and barium sulfate scale inhibitor. PAPEMP is stable in aqueous solution under a wide range of pH, temperature and pressure. Polyamino polyether methylene phosphonate widens the operational conditions available with today’s standard technology by allowing operations with hard water at higher pH levels and greater salt concentrations. PAPEMP it is possible to operate at up to 300X calcite saturation because of its excellent calcium tolerance. As a result it controls up to three times as much calcium carbonate as ATMP or PBTC (operating at up to 100x calcite saturation). Applications: · PAPEMP has excellent scale inhibition ability to calcium carbonate, calcium sulfate and calcium phosphate. · PAPEMP can efficiently inhibit the formation of silica scale,stabilize metal ions such as Zn, Mn and Fe. It effectively chelates metal ions including calcium, magnesium, iron and copper. · PAPEMP can be used as scale inhibitor for reverse osmosis system and multi-step flash vaporization system in which high salt concentration, high turbidity and high temperature are usually encountered (such as high temperature and high turbidity in coal vaporization system), accessory agent for woven & dyeing (for example, yellow turn back inhibition agent), as alternatives of EDTA, DTPA and NTA . Synonyms: · PAPEMP · Polyoxypropylenediaminetetramethylenephosphonic acid Product Use : Scale and corrosion inhibitor intermediate Chemical Name : Polyamino Polyether Methylene Phosphonic Acid Appearance: Amber transparent liquid Solid content %: 45.0min Active component (PAPEMP) %: 40.0min Phosphoric acid (as PO43-)%: 1.0max Density (20℃)g/cm3: 1.20±0.05 pH(1% solution): 2.0±0.5 Usage: The dosage of 5-100mg/L is preferred. Different from other water treatment agents, the more quantity is, the better the effect. PAPEMP can be used with polycarboxylic acids. Package and Storage: Normally In 250kg net Plastic Drum, IBC drum can also be used as required. Storage for ten months in room shady and dry place. The new calcium carbonate inhibitor is PolyAmino PolyEther Methylene Phosphonate2 (PAPEMP). One of the particular advantages of the PAPEMP molecule is its exceptional calcium tolerance (Table 2). Calcium tolerance is a measure of a chemical compound’s ability to remain soluble in the presence of calcium ions (Ca2+) under both high pH and high temperature, such as in geothermal brines. As pH and temperature increases, calcium tolerance decreases rapidly for traditional CaCO3 threshold inhibitors (as shown in Figure 1), e.g., 1-hydroxy ethylidene 1,1-diphosphonic acid (HEDP), amino tri (methylene phosphonic acid) (AMP), and polyacrylic acid. The X-axis in this figure is the amount of HEDP as PPM needed to form precipitation in a water containing 10,000 PPM of Calcium ions. The data for temperature curve was collected at pH 9, while the pH curve represents data at 250°F. At higher temperature and/or higher pH, it requires Poly amino polyether methylene phosphonate (PAPEMP) is a very effective inhibitor in preventing CaCO3 precipitation. The extraordinary affinity of PAPEMP towards CaCO3 surfaces and its excellent tolerance of calcium materials make this polymer excellent in inhibiting the growth of CaCO3 crystal. Amjad et al. have extensively studied phosphonate-based polymer performance in cold water. They have studied the effectiveness of phosphate and phosphonate polymers in stabilized and all-organic cooling water treatment facilities. This study reported that these polymers are capable of performing a dual function. Firstly, they control the thickness of the calcium phosphate and phosphonate membrane on the metal surface. Secondly, they prevent the precipitation of the calcium phosphate and phosphonate salts in the recirculating water. Another study conducted by the same research group demonstrated the performance of sulphonic-acid-containing terpolymer for controlling the growth of calcium phosphonates and carbonate scale. It showed that these polymers improved the control of calcium phosphonate and carbonate in highly stressed cooling water systems [28]. Wang et al. also conducted a similar study in which they have reported the inhibition of CaCO3 by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor. This study showed that this inhibitor is capable of controlling CaCO3 scale Polyamino Polyether Methylene Phosphonate (PAPEMP) Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP Calcium carbonate scale inhibition by three inhibitors, polyacrylic acid (PAA), aminotrimethylenephosphonic acid (ATMP) and polyamino polyether methylenephosphonate (PAPEMP), has been investigated by the bubbling method, and the calcium carbonate scales formed in the absence and presence of inhibitors have been examined by SEM and XRD. It was found that ATMP shows “threshold effect” in the inhibition of CaCO3 scale, and the inhibition behavior of PAPEMP is similar to that of PAA: the “threshold effect” is not observed. In the presence of inhibitors, the normal growth of calcium carbonate is disturbed, and in the presence of PAPEMP, the scale morphology is similar to that in the presence of ATMP. The vaterite phase is effectively stabilized kinetically in the presence of PAA; ATMP takes second place, and PAPEMP can hardly stabilize kinetically the vaterite phase In recent years, the percentage of oil production from more challenging environments has increased. In addition to the numerous engineering and logistical difficulties of working at increased depth, temperature and pressure these production zones provide a harsh environment deleterious to the performance of some critical oilfield chemicals. Scale inhibitors are one class of oil field chemicals which are deployed through squeeze treatments into the formation and/or continuous downhole injection for protection of production tubulars. As well depths continue to increase, the exposure time of the injected chemicals also increases. With temperatures in the range of 180-200 °C and pressures exceeding 10,000 psi, the effect of elevated temperature and pressure on scale inhibitor performance is a critical parameter to evaluate using chemical analytical techniques and product performance methods. Another trend leading to increased thermal exposure is the use of thermal enhanced recovery techniques. Scale inhibitors are exposed to high temperatures in operations such as steam flooding and steam assisted gravity drainage (SAGD). In this study, a range of chemicals have been evaluated for their short and medium-term thermal stability at 180 and 200 °C. The primary application of this data is for downhole injection and squeeze treatments prior to adsorption. Inhibitor chemical types include sulfonated polycarboxylic acid (SPCA), fluorescent tagged sulfonated polycarboxylic acid (FSPCA), phosphorous tagged sulfonated polycarboxylic acid (PSPCA), sulfonated polyacrylocarboxylic acid (SPAC), polyacrylic acid (PAA), polyvinyl sulfonate (PVS), polyamino polyether methylene phosphonate (PAPEMP), bis(hexamethylene)triamine pentakis(methylene phosphonic acid) (BHTPMP) and diethylenetriamine pentakis(methylene phosphonic acid) (DTPMP). In most cases the sodium or potassium salts of the inhibitors are used. The chemical effect of temperature on scale inhibitors is measured through molecular weight determination, thermogravimetric analysis (TGA), pH change, and Fourier Transform Infrared (FTIR) analysis. The performance of these inhibitors is measured under static and dynamic conditions for inhibition of barium sulfate scale. These results help to further the knowledge of inhibitor degradation due to thermal effects and indicate the direction for further product development of thermally stable scale inhibitors. Calcium sulfate dihydrate (gypsum) scale inhibition by PAA, PAPEMP, and PAA/PAPEMP blend Z. Amjad, R. T. Landgraf and J. L. Penn Walsh University, Division of Mathematics and Sciences, North Canton OH 44720, USA Abstract: The effects of poly(acrylic acid), PAA, polyamino polyether methylene phosphonic acid, PAPEMP, and PAA/PAPEMP blend on calcium sulfate dihydrate (gypsum) are reported in this paper. It has been found that gypsum inhibition by PAA increases with increasing PAA concentration. Among the various phoshonates (i.e., aminotris(methylene phosphonic acid), AMP; hydroxyphosphono acetic acid, HPA; hydroxyethylidene 1,1-diphosphonic acid, HEDP; 2-phosphonobutane 1,2,4-tricarboxylic acid, PBTC; and polyether polyamino phosphonic acid, PAPEP) evaluated, PAPEMP shows the best inhibition for gypsum precipitation. It has also been observed that presence of PAPEMP exhibits synergistic effect on the performance of PAA. Results on calcium ion compatibility of various phosphonates show that PAPEMP compared to other phosphonates tested show higher tolerance to calcium ions. Keywords: calcium sulfate dihydrate, precipitation, inhibition, polymer, phosphonates Properties : PAPE is a new kind of water treatment chemicals. PAPE has good scale and corrosion inhibition ability. Because more than one ployethylene glycol group is introduced into the molecular, the scale and corrosion inhibition for calcium scale is improved. PAPE has good inhibition effect for barium and strontium scales. PAPE has good scale inhibition effect for calcium carbonate and calcium sulfate, it can mix well with polycarboxylic acid, organophoronic acid, phosphate and zinc salt. PAPE can be used as scale inhibitor for oilfield (recommended as alternatives of Nalco Visco 953) and industrial cool water system. Deposition of unwanted materials, including mineral scales, suspended matter, microbiological growth, and corrosion products, continues to plague the operation of industrial water systems. This article presents performance data on polyamino polyether methylene phosphonic acid (PAPEMP) on various mineral scales commonly encountered in boiler, cooling, desalination, geothermal, gas, and oil systems. Water that is available for domestic and industrial applications typically contains many impurities. These impurities are generally classified in five broad categories: • Dissolved inorganic compounds (i.e., carbonates, sulfates, phosphates, and fluorides of calcium, magnesium, barium, and strontium; small amounts of copper [Cu], iron [Fe], and manganese [Mn]); and other substances • Dissolved gases (e.g., oxygen [O2], nitrogen [N2], carbon dioxide [CO2], and hydrogen sulfide [H2S]) • Suspended matter (e.g., clay, silt, fat, and oil) • Soluble organic compounds (e.g., humic acid, fulvic acid, and tannic acid) • Microorganisms (e.g., algae, bacteria, and fungi) The accumulation of unwanted deposits on equipment surfaces is a phenomenon that occurs in virtually all processes in which untreated water is heated. The deposition of these materials, especially on heat exchanger surfaces in boiler, cooling, geothermal, and distillation systems, can cause a number of operational problems such as plugged pipes and pumps, inefficient use of water treatment chemicals, increased operational costs, lost production due to system downtime, and ultimately heat exchanger failure. Greater water conservation has been a driver for operating industrial water systems at higher concentration cycles, which increases the potential for deposit buildup on heat exchanger surfaces. Operating industrial water systems under stressed conditions demands a better understanding of the feed and recirculating systems’ water chemistry as well as the development of innovative additives and technological approaches for controlling scale, deposit, corrosion, and biofouling. The most promising scale control method among various approaches involves adding substoichiometric dosages, typically a few ppm, of water-soluble additives to the feedwater. Additives commonly used in water treatment formulation fall into two categories: • Dissolved inorganic compounds (i.e., carbonates, sulfates, phosphates, and fluorides of calcium, magnesium, barium, and strontium; small amounts of copper [Cu], iron [Fe], and manganese [Mn] ions; and other substances) • Polymeric (e.g., homopolymers of acrylic acid, maleic acid, itaconic acid, aspartic acid, and copolymers containing monomers of different functional groups) Although there are many phosphonates available, three of the most commonly used phosphonates in water treatment formulations are aminotrismethylene phosphonic acid (AMP); 1-hydroxyethylidine, 1,-1 diphosphonic acid (HEDP); and 2-phosphono-butane 1,2,4-tricarboxylic acid (PBTC). However, under certain pH, concentration, and temperature conditions, phosphonates have been shown to precipitate in the presence of calcium ions. The precipitation of calcium phosphonate salts not only creates fouling of heat exchanger and reverse osmosis (RO) membrane surfaces, it also decreases the solution concentration of a phosphonate to such an extent that severe calcium carbonate (CaCO3) scaling can occur. The focus of this study is to evaluate the performance of polyamino polyether methylene phosphonic acid (PAPEMP) as an inhibitor for various scales (e.g., CaCO3, calcium sulfate dihydrate [CaSO4•2H2O], and calcium phosphate [Ca3(PO4)2]) and a stabilization agent for Fe(III) or Fe3+ ions. Experimental Protocols All chemicals were obtained from commercial sources. They include AMP, HEDP, PBTC, 2-hydroxyphosphono acetic acid (HPA), PAPEMP, and polyacrylic acid (PAA). Detailed procedures for reagents solution preparation; percent inhibition (%I) calculation for calcium sulfate dihydrate (CaSO4•2H2O), CaCO3, Ca3(PO4)2, and Fe3+ stabilization; and instruments used are reported elsewhere.3-6 Table 1 lists the inhibitors tested. PAPEMP production process consists of 4 steps. Phosphorus acid is input into the reactor and its pH is adjusted by HCl. Polyetheramine is instilled and the reaction starts while the reactor is heated. Formaldehyde is input a few hours later. The reactor will be further heated and steamed for more hours. Usage:The good adaption to different situations enables PAPEMP widely used in boiler, cooling water system and oilfield reinjection water as antiscalant and corrosion inhibitor. For the same reason, PAPEMP is also applied in RO and multistep flash system. Recommend dosage is 5-100 ml/L. Unlike other organophosphonates, there is no optimum dosage for it. Higher the dosage, better the effect. Besides, PAPEMP works as a nutrient absorber in agriculture. It can also replace those more expensive color transfer inhibitors (eg. yellow turnback inhibitor) like EDTA, NTA, and DTPA in textile dyeing. Calcium carbonate scale inhibition by three inhibitors, polyacrylic acid (PAA), aminotrimethylenephosphonic acid (ATMP) and polyamino polyether methylenephosphonate (PAPEMP), has been investigated by the bubbling method, and the calcium carbonate scales formed in the absence and presence of inhibitors have been examined by SEM and XRD. It was found that ATMP shows “threshold effect” in the inhibition of CaCO3 scale, and the inhibition behavior of PAPEMP is similar to that of PAA: the “threshold effect” is not observed. In the presence of inhibitors, the normal growth of calcium carbonate is disturbed, and in the presence of PAPEMP, the scale morphology is similar to that in the presence of ATMP. The vaterite phase is effectively stabilized kinetically in the presence of PAA; ATMP takes second place, and PAPEMP can hardly stabilize kinetically the vaterite phase. Poly-amino poly-ether methylenephosphonic acid (PAPEMP)-containing corrosion and scale inhibitor Abstract The invention provides a poly-amino poly-ether methylenephosphonic acid (PAPEMP)-containing corrosion and scale inhibitor, belongs to the technical field of water treatment and relates to a corrosion and scale inhibitor. The corrosion and scale inhibitor comprises PAPEMP, a zinc salt, a dispersant, a copper corrosion inhibitor and water. The corrosion and scale inhibitor has a reasonable formula, has good use effects and a low production cost, is suitable for an open circulated cooling water system and is especially suitable for a high-hardness, high-basicity and high-pH circulated cooling water system. PAPEMP is excellent to the scale-inhibiting properties of calcium carbonate, calcium phosphate, calcium sulfate, effectively can suppresses the formation of silicon dirt simultaneously, and there is the effect of satisfactory stability metal ion as zinc, manganese, iron. PAPEMP is a new kind of water treatment agent. XF-335S (PAPEMP) has high chelation and dispersion effects, high value of calcium tolerance, and good scale inhibition effects. PAPEMP can be used as scale and corrosion inhibitor in circulating cool water system and oilfield refill water system in situations of high hardness, high alkali and high pH value. PAPEMP has excellent scale inhibition ability to calcium carbonate, calcium sulfate and calcium phosphate. PAPEMP can efficiently inhibit the formation of silica scale, stabilize metal ions such as Zn, Mn and Fe. PAPEMP can be used as scale inhibitor for reverse osmosis system and multistepflash vaporization system in which high salt concentration, high turbidity and high temperature are usually encountered (such as high temperature and high turbidity in coal vaporization system), accessory agent for woven & dyeing, as alternatives of EDTA, DTPA and NTA . Calcium carbonate has been identified as the main problem associated with industrial cooling water scaling or deposition. The formation of calcium carbonate scale in industrial cooling water system has been known to pose significant problems to the industrial processes. The calcium carbonate scales or deposits will serve as a heat insulating layer that reduces heat transfer efficiency and hence require higher energy consumption to attain the desired cooling or heating effect (Prisciandaro et al., 2013). Therefore, it is vital to ensure that heat transfer surfaces on industrial cooling water systems are relatively free from calcium carbonate scaling problems. Most of the research works on crystal growth inhibition of industrial cooling water treatment program were conducted by a few multinational water treatment companies at their own research center. This valuable information is unfortunately not available to others due to trade secret. As such smaller water treatment companies that have limited resources have limited information in developing the right formulation in their cooling water treatment program. This study aims to provide such information so that it can be made available to enhance the technical competency of calcium carbonate scale inhibition. Calcium carbonate crystal growth inhibition by the simplest form of phosphate-containing compounds, orthophosphate, has been well studied by several researchers and orthophosphate concentration in the range of several milligrams per liter have been found to retard the crystal growth in seeded solutions. Adsorption of orthophosphate on calcium carbonate scale has been studied and found to change the structure of calcium carbonate crystal lattice. In another study, CaHPO4 was found to be the responsible species that absorbs on the calcium carbonate surface and inhibits further precipitation. The use of polyphosphates for calcium carbonate crystal growth inhibition was also investigated and sodium tri-polyphosphate was found to be the strongest inhibitor in a mono polyphosphate formulation followed by sodium pyrophosphate and sodium hexametaphosphate. However, orthophosphate and polyphosphates were excluded in this study, driven by market trend towards low or non-phosphorus compounds used for such application in consideration of environmental issues such as eutrophication associated with phosphorus compounds. Calcium carbonate scale inhibition by organophosphorus compounds such as amino tris(methylene phosphonic acid) (ATMP), ethylene-diamine tetra(methylenephosphonic acid) (EDTMP), hexamethylenediamine tetra(methylenephosphonic acid) (HDTMP), diethylenetriamine penta(methylenephosphonic acid) (DTPMP) and PAPEMP were also being investigated. Results shown that the phosphonic group number and the methylene chain length play a vital role in the effectiveness of the inhibitors. Although the application of most organophosphorus compound contributes lesser phosphorus to the environment in relative term to orthophosphate and polyphosphates, some of the commonly used compounds such as ATMP still contains considerable amount of phosphorus (31 % as Phosphorus) and 1-hydroxyethane 1,1-diphosphonic acid (HEDP) (30 % as Phosphorus). Owing to the environmental consideration, this study has selected non-phosphorous polymeric compound represented by PMA and AA/MA copolymer and low phosphorus contributor PAPEMP (about 20 % as Phosphorus) for the tests. The inhibition of calcium carbonate crystal growth by PMA, PAPEMP and AA/MA copolymer was investigated via static beaker tests at typical water chemistries encountered in cooling water system. his study provides a method that enables the evaluation of scale inhibitors at the practical dosage level and economically viable range at various water chemistries encountered in the market place, thus providing a practical and useful solution and background formulation information to water treatment professionals to mitigate industrial cooling water scaling and deposition problems for a given water chemistries and condition. The desired inhibition efficiency of minimum 90 % was set up to evaluate and compare the performance of the above inhibitors.
PAPEMP
Polyamino polyether methylene phosphonic acid(PAPEMP Acid) , Polyoxypropylenediaminetetramethylenephosphonic acid,Mayoquest 2200 CAS No. : 130668–24–5
Para Cresol
cas no: 131-57-7 Benzophenone-3; 4-Methoxy-2-hydroxybenzophenone; (2-hydroxy-4-methoxyphenyl)phenylmethanone; Oxybenzone; Uvinul M-40; Solaquin; 4-Methoxy-2-hydroxybenzophenone butyric acid; 2-Hydroxy-4-methoxybenzophenone;
Para Tertiary Butyl Benzoic Acid
Polyaluminum chlorohydrate; Polyaluminum hydroxychloride CAS NO:1327-41-9
Para Tertiary Butyl Phenol
cas no 57-10-3 n-Hexadecoic acid; Pentadecanecarboxylic acid; n-Hexadecanoic acid; 1-Pentadecanecarboxylic acid; Cetylic acid; Hexadecylic acid;
Para Toluene Sulfonic Acid
PCBTF; 1-(Trifluoromethyl)-4-chlorobenzene; p-Chloro-alpha,alpha,alpha-trifluoro-Toluene; (p-Chlorophenyl) Trifluoromethane; p-(Trifluoromethyl) Chlorobenzene; p-Chloro-alpha,alpha-Trifluorotoluene; ; p-Chlorotrifluoromethylbenzene; p-Trifluoromethylphenyl chloride; 4-Chlorobenzotrifluoride; 1-Chloro-4-(trifluoromethyl)benzene; 4-Chloro-alpha,alpha-trifluorotoluene CAS NO:98-56-6
Paracetamol
4'-hydroxyacetanilide; Tylenol; Paracetamol; Paracetamolo; Paracetamole; P-acetamido-Phenol; 4'-hydroxyacetanilide; n-(p- Hydroxyphenyl)-Acetamide; N-(4-hydroxyphenyl)-Acetamide; P-acetamidophenol; 4-Acetamidophenol; Acetaminofen; Acetaminophen; P- Acetaminophenol; N-acetyl-p-aminophenol; P-Acetylamino Phenol; P-hydroxyacetanilide; Paracetamol; 4-hydroxy Acetanilide; 4-hydroxyanilid Kyseliny Octove; N-(4-hydroxyphenyl) Acetamide CAS NO: 103-90-2
Parachlorobenzotrifluoride
1,4-Dichlorobenzene; p-Dichlorobenzol; Chloroden; 1,4-Dichloorbenzeen; 1,4-Dichlor-benzol; 1,4-Diclorobenzene; Persia-perazol; Santochlor; Paramoth; Di-Chloricide; Paradi; Paradow; Persia-Perazol; Evola; Parazene; PDCB CAS NO:106-46-7
Para-Dichlorobenzene
PARAFFIN, N° CAS : 8002-74-2; 64742-51-4 - Paraffine, Autres langues : Paraffina, Parafina. Nom INCI : PARAFFIN. N° EINECS/ELINCS : 232-315-6; 265-154-5. Additif alimentaire : E905 Classification : Huile Minérale. La paraffine est une cire solide blanche et tendre constituée de pétrole. Elle est utilisée dans de nombreux domaines comme l'alimentaire et dans la fabrication des bougies. Elle est employée en cosmétique dans les produits de maquillage comme les mascaras ou les rouges à lèvres mais aussi dans de nombreux soins pour le corps. Elle est interdite en bio et est peu biodégradable.Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Paraffin wax
Synonyms: Paraffin wax meets analytical specification of Ph.Eur., white, pastilles;Fully refined parafin wax Deg.56;PARAFFIN IN PASTILLE FORM 51-53 PH EUR,B;PARAFFIN IN PASTILLE FORM 52-54 PH EUR,B;PARAFFIN IN BLOCK FORM 42-44 25 KG;PARAFFIN IN BLOCK FORM 46-48 1 KG;PARAFFIN IN PASTILLE FORM 56-58 PH EUR,B;PARAFFIN IN PASTILLE FORM 57-60 PH EUR,B CAS: 8002-74-2
PARAFIN LİKİT
SYNONYMS White mineral oil (petroleum);Mineral oil, white;Paraffin 60;Paraffin 60S;Paraffin oil;Paraffin oils;Paraffin S 40 CAS NO:8042-47-5
Paraformaldehyde
Paraform, Polyoxymethane, Formagene; Polyformaldehyde; Polyoxymethylene; Formaldehyde Polymer; Polyoxymethylene Glycol; Trioxymethylene; Paraformaldehydum; Paraformic aldehyde; Metaformaldehyde CAS:30525-89-4; 53026-80-5
PARAFORMALDEHYDE
4-hydroxybenzoate de propyle,Synonymes ,propylparabène parahydroxybenzoate de propyle,önipazol,paseptol,propagin,nipasol,Le 4-hydroxybenzoate de propyle ou propylparabène est un composé organique de la famille des parabènes. Il existe à l’état naturel dans de nombreuses plantes et chez quelques insectes, mais on le synthétise pour l’industrie des cosmétiques, la pharmacie et l’industrie agro-alimentaire. C’est un conservateur (E2167) que l'on trouve fréquemment dans les cosmétiques à base d’eau, comme les crèmes, lotions, shampooings et produits de bains, car il est hydrosoluble.
PARAFORMALDEHYDE 97%
Paraformaldehyde 97% Synthesis of Paraformaldehyde 97% Paraformaldehyde 97% forms slowly in aqueous formaldehyde solutions as a white precipitate, especially if stored in the cold. Formalin actually contains very little monomeric formaldehyde; most of it forms short chains of polyformaldehyde. A small amount of methanol is often added as a stabilizer to limit the extent of polymerization. Reactions of Paraformaldehyde 97% Paraformaldehyde 97% can be depolymerized to formaldehyde gas by dry heating and to formaldehyde solution by water in the presence of a base, an acid or heat. The high purity formaldehyde solutions obtained in this way are used as a fixative for microscopy and histology. The resulting formaldehyde gas from dry heating Paraformaldehyde 97% is flammable. Uses of Paraformaldehyde 97% Once Paraformaldehyde 97% is depolymerized, the resulting formaldehyde may be used as a fumigant, disinfectant, fungicide, and fixative. Longer chain-length (high molecular weight) polyoxymethylenes are used as a thermoplastic and are known as polyoxymethylene plastic (POM, Delrin). It was used in the past in the discredited Sargenti method of root canal treatment. Paraformaldehyde 97% is not a fixative; Paraformaldehyde 97% must be depolymerized to formaldehyde in solution. In cell culture, a typical formaldehyde fixing procedure would involve using a 4% formaldehyde solution in phosphate buffered saline (PBS) on ice for 10 minutes. In histology and pathology specimens preparation, usually, the fixation step is performed using 10% Neutral Buffered Formalin (4% formaldehyde) for, at least, 24 hours. Paraformaldehyde 97% is also used to crosslink proteins to DNA, as used in ChIP (chromatin immunoprecipitation) which is a technique to determine which part of DNA certain proteins are binding to. Paraformaldehyde 97% can be used as a substitute of aqueous formaldehyde to produce the resinous binding material, which is commonly used together with melamine, phenol or other reactive agents in the manufacturing of particle board, medium density fiberboard and plywood. Toxicity of Paraformaldehyde 97% As a formaldehyde releasing agent, Paraformaldehyde 97% is a potential carcinogen. Its acute oral median lethal dose in rats is 592 mg/kg. Properties of Paraformaldehyde 97% Chemical formula OH(CH2O)nH (n = 8 - 100) Appearance white crystalline solid Density 1.42 g·cm−3 (25 °C) Melting point 120 °C (248 °F; 393 K) Solubility in water low General description of Paraformaldehyde 97% Paraformaldehyde 97% is also referred as polyoxymethylene. Paraformaldehyde 97% participates as an external CO source in the synthesis of aromatic aldehydes and esters. Paraformaldehyde is an ideal fixative used in histology. Paraformaldehyde 97% is generally preferred over other fixative as the others result in more silver grains on the tissues. Paraformaldehyde 97%, appropriately combined with DMSO (dimethyl sulfoxide) ensures its uniform distribution over the tissue section. Paraformaldehyde is also used in recognizing and stabilizing the expression of intracellular antigen. Application of Paraformaldehyde 97% Paraformaldehyde 97% has been used as a fixative in histological analysis. Paraformaldehyde 97% has also been used in mitotic catastrophe assay. Paraformaldehyde 97% is the informal name of polyoxymethylene, a polymer of formaldehyde (also known by many other and confusing names, such as ‘paraform’, ‘formagene’, ‘para’, ‘polyoxymethane’). Paraformaldehyde 97% is the informal name of polyoxymethylene, a polymer of formaldehyde (also known by many other and confusing names, such as ‘paraform’, ‘formagene’, ‘para’, ‘polyoxymethane’). It is slowly formed as a white precipitate by condensation from the predominant species methanediol (formaldehyde hydrate) in solutions of formaldehyde (which may also be called ‘formalin’, ‘formal’, or ‘formalose’) on standing, in an equilibrium (Fig. 3.1). The solution is predominantly of oligomers, but when n becomes large enough the material becomes sufficiently insoluble as to precipitate, when the condensation may still continue. The resulting solid may have n range from ~ 8 to 100, or more. The reaction is driven to the left, to release formaldehyde, by a low concentration of formaldehyde, and accelerated by acidic or alkaline conditions. Solid Paraformaldehyde 97% smells plainly of the monomer (b.p. − 21 °C), so it is essentially a convenient means of delivering formaldehyde slowly. Paraformaldehyde 97% has documented uses as a disinfectant, fungicide, fixation reagent and in the preparation of formaldehyde. In fluorescence studies, paraformaldehyde 97% has been used as as a formalin fixative to fix cells and tissues. To use the chemical as a fixative, it must be converted to the monomer formaldehyde by heating as formaldehyde is the active chemical in fixation. Paraformaldehyde 97% is a polymer of formaldehyde. Paraformaldehyde 97% itself is not a fixing agent, and needs to be broken down into its basic building block formaldehyde. This can be done by heating or basic conditions until it becomes solubilized. Once that occurs, essentially they are exactly the same. Beware though, some commerical formaldehyde solutions contain methanol to prevent polymerization (into Paraformaldehyde 97%), and this methanol can potentially inhibit your experiment. We allow Paraformaldehyde 97% to heat over-night, filter, and use fresh for our fixation protocols for immunofluorescence, and we have great success. We store the Paraformaldehyde 97% in the fridge, but do not use it after a few days because it will eventually polymerize again and become less efficacious. A polymer consists of 10 to 100 formaldehyde units. Not only the hazardous effects to human health and environment but also the difficulties in processing and storing of formaldehyde gas leads to paraformaldehyde use in formaldehyde resins. Paraformaldehyde decomposes into the formaldehyde at nearly 150°C. Paraformaldehyde 97% applications Applications The most important use of Paraformaldehyde 97% is as a source of formaldehyde groups in the production of many thermosetting resins, together with phenol, urea, melamine, resorcinol and other similar reagents. These resins are used as moulding powders; in the wood industry as glues for chipboard, plywood and furniture; as bonding resins for brakes, abrasives and foundry dyes; as finishing resins for paper and textiles; as driers and glossing agents for paints; as insulating varnishes for electrical parts. Some typical formulations for the production of such resins starting from Paraformaldehyde 97% include dichloroethyl formal, methyl phenol, disinfectants, insecticides, pharmaceuticals such as vitamin A, embalming preparations, dyestuff and special plasticizers. In addition, Paraformaldehyde 97% is used as a fungicide and bactericide in industries as varied as crude oil production, beet sugar refining, and warehousing. Paraformaldehyde 97% has widespread acceptance as an additive to stop fermentation of the starch on oil-well-drilling muds. The sugar beet industry used it to minimize the growth of algae in its continuous diffusers. Hotels and motels in humid areas often use it, with or without added mothproofing agents, in small bags hung in closets to prevent the formation of mildew. Paraformaldehyde 97% possesses the common characteristics with a wide range of applications Paraformaldehyde 97% is the smallest solid form of liquid formaldehyde, formed by the polymerization of formaldehyde with a typical degree of polymerization of 8-100 units. As Paraformaldehyde 97% is basically a condensed form of formaldehyde, it possesses the common characteristics with a wide range of applications. Advantages of Paraformaldehyde 97% in resin production as compared to aqueous formaldehyde Paraformaldehyde 97% does not need to be dissolved in water in order to take part in a chemical reaction. Higher productivity from existing equipment and less water to be removed from the resin product. Paraformaldehyde 97% made with very low acid content in a chemical resistant environment can prevent the formation of acidic by-products. We offer a prilled form, which is stable and very easy to store. Paraformaldehyde 97% storage is less expensive than the storage of formaldehyde solution, which requires expensive tanks and which may need stabilization or be kept warm. It eliminates the risk of transporting liquid formalin, which is notoriously dangerous. Perfect for small uses straight from the bag. Use of Paraformaldehyde 97% is convenient and safe. It avoids pollution arising from the disposal of the distillate obtained in the thermosetting resin production which is contaminated with organic matter. Typical Properties of Paraformaldehyde 97% Color White CAS Number 30525-89-4 Appearance Free Flowing Prilled Molecular Formula OH-(CH2O)n-H where n=8 to 100 units Paraformaldehyde 97% Content 92% ± 1% / 96% ± 1% Water Content 8% ± 1% / 4% ± 1% Reactivity 2 – 8 min Mean Particle Size 250 – 350 µm Ash 0.01 – 0.05% Bulk Density 650 – 850 kg/m3 Melting Point 120 – 175 C Ph 4 – 7 Flammability combustible, with flash point (tag open cup) of about 93 C Vapour Pressure varies with air humidity, being between 23 and 26 mmHg at 25 C Applications of Paraformaldehyde 97% Resins Industry The most important use of Paraformaldehyde 97% is as a source of formaldehyde groups in the production of many thermosetting resins, together with phenol, urea, melamine, resorcinol and other similar reagents. These resins are used as moulding powders; in the wood industry as glues for chipboard, plywood and furniture; as bonding resins for brakes, abrasives and foundry dyes; as finishing resins for paper and textiles; as driers and glossing agents for paints; as insulating varnishes for electrical parts. Disinfectant Paraformaldehyde 97% generates formaldehyde gas when it is depolymerized by heating. The depolymerized material reacts with the moisture in the air to form formaldehyde gas. This process is used for the decontamination of large spaced and laminar-flow biological safety cabinets when maintenance work or filter changes require access to the sealed portion of the cabinet. It is used in the poultry industry as a disinfectant in the hatcheries, and cattle and sheep industry for sanitizing the bedding in the sheds. It releases formaldehyde gas when the temperatures increase. It reduces contamination levels caused by moulds, viruses and bacteria. Agriculture and Pesticides Most Paraformaldehyde 97% consumed by the agrochemicals industry is for the herbicides such as bismerthiazol, butachlor, acetochlor, glyphosate, and machete. Embalming Process Formalin is used during embalming processes as a disinfectant and preservative. It is used as an injection fluid in arterial and cavity embalming, and in surface embalming as a fluid for soaking surface packs or a gel applied to the skin or internal surfaces. Paraformaldehyde 97%, a powdered polymer form of formaldehyde, is also sometimes used in embalming processes. Reagent for Organic Reactions In microbiology laboratories, fixation process (immunofluorescence) uses formalin 4% concentration. A blog by researchers mentioned that preparing this solution “fresh” from Paraformaldehyde 97% is better than using formalin that has been kept for some time. It is because more methylene glycol is present compared to its dimer and trimer oligomers and such solution of formalin 4% is absent of methanol. Oil Well Drilling Chemicals Paraformaldehyde 97% is used in the manufacturing of 1,3,5-triazine used as H2S scavenger in Oil drilling process. Paraformaldehyde 97% tablets are very effective against a wide spectrum of organisms. They may be recommended for targeted degerming measures in medical practice. Their utilization requires the observance of the conditions necessary for their efficient use. The tablets should be employed only in containers which are as tight-fitting as possible (preferentially instrument cabinets, Heynemann cabinets, catheter boxes and plastic bags). Paraformaldehyde 97% tablets are well suited for the reduction of the bacterial population and the storage of nonwrapped sterilized instruments. For this purpose, 1 tablet/dm3 is needed. The exposure time required for bacterial count reduction is no less than 3 h. Despite certain limitations, Paraformaldehyde 97% tablets may be used for disinfecting. The objects to be disinfected should be neither too contaminated nor too soiled. The minimum period of exposure is 5 h, and 10 tablets/dm3 are necessary. Cold sterilization requires 10 tablets/dm3, too; but the exposure time ranges from 15 to 24 h. This method (which must be considered an expedient) should be employed only if the respective device or instrument cannot be sterilized by other sterilizing techniques. In any case, 80% relative air humidity is a must in the devices in which Paraformaldehyde 97% tablets are used. Paraformaldehyde 97% is the solid form of liquid formaldehyde, formed by the polymerization of formaldehyde with a typical degree of polymerization of 8-100 units. Since Paraformaldehyde 97% is basically a condensed form of formaldehyde, it possesses the same characteristics but with a wider range of applications. Manufactured based on the latest technology to give good solubility, homogeneous prilled and low acid content, it is suitable for all ranges of application of Paraformaldehyde 97%. Unlike granular or flake forms of Paraformaldehyde 97%, our prilled form of Paraformaldehyde 97% has higher quality consistency and higher solubility to meet with your quality requirement and save you processing time. In coating applications, low acid content in Paraformaldehyde 97% is important for a greater gloss control and stability. Paraformaldehyde 97% made with very low acid content in a chemical resistant environment can prevent formation of acidic by-products. In microbiology laboratories, fixation process (immunofluorescence) uses formalin 4% concentration. A blog by researchers mentioned that preparing this solution “fresh” from Paraformaldehyde 97% is better than using formalin that has been kept for some time. It is because more methylene glycol is present compared to its dimer and trimer oligomers and such solution of formalin 4% is absent of methanol. Paraformaldehyde 97% can be used as a substitute of formalin to produce the resinous binding material, which is commonly used together with urea, melamine, phenol, resorcinol, tannin or other reactants in the manufacturing of particle board, fibreboard and plywood. Use of Paraformaldehyde 97% in resin production offers many advantages as compared to aqueous formaldehyde: Higher productivity from existing equipment and less water to be removed from the resin product. It takes the form of prilled, is stable and very easy to store. Paraformaldehyde 97% storage is less expensive than the storage of formaldehyde solution, which requires expensive tanks and which may need stabilization or be kept warm. Use of Paraformaldehyde 97% is convenient and safe. It avoids pollution arising from the disposal of the distillate obtained in the thermosetting resin production which is contaminated with organic matter. Paraformaldehyde 97% does not need to be dissolved in water in order to take part in a chemical reaction. It eliminates the risk of transporting liquid formalin, which is notoriously dangerous. Perfect for small uses straight from the bag. Packaging & Handling of Paraformaldehyde 97% - Polyethylene bag : 25 KG nett. Other Packaging sizes by request. - Keep in a dry, cool and well-ventilated place. Provide sufficient air exchange and/or exhaust in work rooms. Paraformaldehyde 97% decomposes to formaldehyde which can build up in a shipping container depending on time and temperature during transit. The level of formaldehyde exposure may be instantaneously high when the shipping container is opened. Storage of Paraformaldehyde 97% Store in locked up. Location of storage should only be accesible to authorised personnel. Separate storage area from work place. By Application of Paraformaldehyde 97% Urea-Formaldehyde Resin Phenolic Resin Melamine Resin Fumigation Reagent for organic reactions Coating Pesticide Disinfectant Pharmaceuticals Paraformaldehyde 97% (PFA) is a polymer of formaldehyde. Paraformaldehyde 97% itself is not a fixing agent, and needs to be broken down into its basic building block, formaldehyde. This can be done by heating or basic conditions until it becomes solubilized. Formalin is the name for saturated (37%) formaldehyde solution. Beware though, some commercial formaldehyde solutions contain methanol to prevent polymerization (into Paraformaldehyde 97%). Since 100% formalin contains up to 15% of methanol as a stabilizer, it has a significant impact on cell fixation. Methanol is a permeabilizing agent. It can interfere with the staining of membrane bound proteins, and can greatly influence staining of cytoskeletal proteins. For example, when staining cellular F-actin it is imperative to use a methanol-free formaldehyde fixative. This is because methanol can disrupt F-actin during the fixation process and prevent the binding of phalloidin conjugates. "Pure" methanol-free formaldehyde can be made by heating the solid PFA. 4% Paraformaldehyde 97% is usually made in PBS or TBS at 70 °C with several drops of 5N NaOH to help clarify the solution. Prepare 4% Paraformaldehyde 97% solution in a chemical hood and then store in a refrigerator. Because the solution will re-polymerize during storage it is best to use immediately or within a few days. In the presence of air and moisture, polymerization readily takes place in concentrated solutions at room temperatures to form paraformaldehyde, a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde. Paraformaldehyde 97% is used in place of aqueous formaldehyde solutions, especially in applications where the presence of water interferes, e.g., in the plastics industry for the preparation of phenol, urea, and melamine resins, varnish resins, thermosets, and foundry resins. Other uses include the synthesis of organic products in the chemical and pharmaceutical industries (e.g., Prins reaction, chloromethylation, Mannich reaction), the production of textile auxiliaries (e.g., for crease-resistant finishes), and the preparation of disinfectants and deodorants. Paraformaldehyde 97% is prepared industrially in continuously operated plants by concentrating aqueous formaldehyde solutions under vacuum conditions. ... /It/ is currently produced in several steps which are carried out at low pressure and various temperatures. Highly reactive formaldehyde is produced under vacuum conditions starting with solutions that contain 50 - 100 ppm of formic acid and also 1 - 15 ppm of metal formates where the metals have an atomic number of 23 - 30 (e.g., Mn, Co, and Cu). The solutions are processed in thin-layer evaporators and spray dryers. Other techniques such as fractional condensation of the reaction gases in combination with the formaldehyde synthesis process and very rapid cooling of the gases are also applied. Alternatively, formaldehyde-containing gas is brought into contact with Paraformaldehyde 97% at a temperature that is above the dew point of the gas and below the decomposition temperature of Paraformaldehyde 97%. The product is obtained in the form of flakes when a highly concentrated formaldehyde solution is poured onto a heated metal surface. The hardened product is subsequently scraped off and thoroughly dried. Paraformaldehyde 97% beads are produced by introducing a highly concentrated melt into a cooling liquid (e.g., benzene, toluene, cyclohexane). Acids and alkalis are also added; they apparently accelerate polymerization and lead to the formation of higher molecular mass but less reactive Paraformaldehyde 97%. Highly soluble, highly reactive Paraformaldehyde 97% with a low degree of polymerization is very much in demand. It is produced from concentrated, aqueous - alcoholic formaldehyde solutions. Dental Paraformaldehyde 97% Paste (Jap P). Past. Paraform. Dent. Paraformaldehyde 97% 35 g, procaine hydrochloride 35 g, hydrous wool fat 30 g. The widmark test for the UV photometric determination of ethanol in blood and urine is described. Paraformaldehyde 97% can also be detected. Paraformaldehyde 97% is designated as a hazardous substance under section 311(b)(2)(A) of the Federal Water Pollution Control Act and further regulated by the Clean Water Act Amendments of 1977 and 1978. These regulations apply to discharges of this substance. This designation includes any isomers and hydrates, as well as any solutions and mixtures containing this substance. The Agency has completed its assessment of the residential, occupational and ecological risks associated with the use of pesticide products containing the active ingredient formaldehyde and Paraformaldehyde 97%. The Agency has determined that virtually all formaldehyde and Paraformaldehyde 97% containing products are eligible for reregistration provided that: 1) all risk mitigation measures are implemented; 2) current data gaps and confirmatory data needs are addressed; and 3) label amendments are made as described in Section V. Use in confined spaces such as closets is not eligible for registration because of the difficulty associated with ventilation of these spaces. ... Based on its evaluation of formaldehyde and Paraformaldehyde 97%, the Agency has determined that formaldehyde and Paraformaldehyde 97% products, unless labeled and used as specified in this document, would present risks inconsistent with FIFRA. Accordingly, should a registrant fail to implement the risk mitigation measures, submit confirmatory data as well as make the label changes identified in this document, the Agency may take regulatory action to address the risk concerns from the use of formaldehyde and Paraformaldehyde 97%. If all changes outlined in this document are fully complied with, then no risks of concern exist for the registered uses of formaldehyde and Paraformaldehyde 97% and the purposes of this determination. The Agency has completed its assessment of the residential, occupational and ecological risks associated with the use of pesticide products containing the active ingredient formaldehyde and Paraformaldehyde 97%. The Agency has determined that virtually all formaldehyde and Paraformaldehyde 97% containing products are eligible for reregistration provided that: 1) all risk mitigation measures are implemented; 2) currentdata gaps and confirmatory data needs are addressed; and 3) label amendments are made as described in Section V. Use in confined spaces such as closets is not eligible for registration because of the difficulty associated with ventilation of these spaces. ... Based on its evaluation of formaldehyde and Paraformaldehyde 97%, the Agency has determined that formaldehyde and Paraformaldehyde 97% products, unless labeled and used as specified in this document, would present risks inconsistent with FIFRA. Accordingly, should a registrant fail to implement the risk mitigation measures, submit confirmatory data as well as make the label changes identified in this document, the Agency may take regulatory action to address the risk concerns from the use of formaldehyde and Paraformaldehyde 97%. If all changes outlined in this document are fully complied with, then no risks of concern exist for the registered uses of formaldehyde and Paraformaldehyde 97% and the purposes of this determination. As the federal pesticide law FIFRA directs, EPA is conducting a comprehensive review of older pesticides to consider their health and environmental effects and make decisions about their continued use. Under this pesticide reregistration program, EPA examines newer health and safety data for pesticide active ingredients initially registered before November 1, 1984, and determines whether the use of the pesticide does not pose unreasonable risk in accordance to newer saftey standards, such as those described in the Food Quality Protection Act of 1996. Paraformaldehyde 97% is found on List A, which contains most pesticides that are used on foods and, hence, have a high potential for human exposure. List A consists of the 194 chemical cases (or 350 individual active ingredients) for which EPA issued registration standards prior to FIFRA '88. Case No: 0556; Pesticide type: fungicide, antimicrobial; Registration Standard Date: 05/31/88 PB88-231543; Case Status: OPP is reviewing data from the pesticide's producers regarding its human health and/or environmental effects, or OPP is determining the pesticide's eligibility for reregistration and developing the Reregistration Eligibility Decision (RED) document.; Active ingredient (AI): Paraformaldehyde 97%; AI Status: The producers of the pesticide have made commitments to conduct the studies and pay the fees required for reregistration, and are meeting those commitments in a timely manner. Paraformaldehyde 97% is an indirect food additive for use only as a component of adhesives. More decay was associated with tapholes in mature sugar maples (Acer saccharum) treated with a 250-mg Paraformaldehyde 97% pill than with control tapholes. This was apparent 20 months after treatment and at each successive examination to the final measurement at 56 months. Repeated use of Paraformaldehyde 97% leads to rapid development of decay in sugar maple. Paraformaldehyde 97% is listed as a synthetic organic chemical which should be degradable by biological sewage treatment provided suitable acclimatization can be achieved. Paraformaldehyde 97% is ubiquitous in the environment; it is an chemical that occurs in most life forms, including humans. It is formed naturally in the troposphere during the oxidation of hydrocarbons. Paraformaldehyde 97%'s production and use in the manufacture of a wide range of chemicals, such as resins, finding a variety of end uses such as wood products, plastics, and coatings may result in its release to the environment through various waste streams. Its use as a fumigant in agricultural premises and as a surface disinfectant in commercial premises and its use as a corrosion inhibitor in oil wells and release from slow-release fertilizers result in its direct release to the environment. If released to air, a vapor pressure of 3,890 mm Hg at 25 °C indicates Paraformaldehyde 97% will exist solely as a gas in the atmosphere. Gas-phase Paraformaldehyde 97% will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is 45 hrs. Paraformaldehyde 97% absorbs ultraviolet radiation at wavelengths of >360 nm and is susceptible to direct photolysis. Paraformaldehyde 97% has a direct photolysis half-life of 4.1 hours measured at sea-level and 40 degrees latitude. Paraformaldehyde 97% has been detected in rainwater and adsorbed to atmospheric particulates indicating it may be removed from the air by wet and dry deposition. If released to soil, Paraformaldehyde 97% is expected to have very high mobility based upon an estimated Koc of 8. In soil, Paraformaldehyde 97% gas can adsorb to clay minerals and interact with humic substances resulting in decreased mobility. Volatilization from moist soil surfaces is not expected to be an important fate process based upon a Henry's Law constant of 3.37X10-7 atm-cu m/mole. Paraformaldehyde 97% will volatilize from dry soil surfaces based upon its vapor pressure. Paraformaldehyde 97% has been found to be readily biodegradable in various screening tests. Utilizing the Japanese MITI test, 91% of the Theoretical BOD was reached in 2 weeks indicating that biodegradation is an important environmental fate process in soil and water. If released into water, Paraformaldehyde 97% is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. In a die-away test using water from a stagnant lake, degradation was complete in 30 and 40 hrs under aerobic and anaerobic conditions, respectively. The half-life of Paraformaldehyde 97% has been reported between 1-7 days in surface water and 2-14 days in groundwater, based on estimated aqueous aerobic biodegradation half lives. Volatilization from water surfaces is not expected to be an important fate process based upon this compound's Henry's Law constant. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Paraformaldehyde 97% is not expected to undergo hydrolysis in the environment because of the lack of hydrolyzable functional groups. Occupational exposure to Paraformaldehyde 97% may occur through inhalation and dermal contact with this compound at workplaces where Paraformaldehyde 97% is produced or used. Monitoring data indicate that the general population may be exposed to Paraformaldehyde 97% via inhalation of ambient air (indoor and outdoor), inhalation of cigarette smoke, ingestion of food and possibly drinking water, and dermal contact with cosmetics, aerosol products and other consumer products containing Paraformaldehyde 97%. Concentrations of Paraformaldehyde 97% in outdoor and indoor air range from about 1 to 20 ug/cu m and 25 to 100 ug/cu m, respectively. Paraformaldehyde 97% is ubiquitous in the environment; it is an endogenous chemical that occurs in most life forms, including humans. It is formed naturally in the troposphere during the oxidation of hydrocarbons, which react with hydroxyl radicals and ozone to form Paraformaldehyde 97% and other aldehydes, as intermediates in a series of reactions that ultimately lead to the formation of carbon monoxide and carbon dioxide, hydrogen and water. Of the hydrocarbons found in the troposphere, methane is the single most important source of Paraformaldehyde 97%. Terpenes and isoprene, emitted by foliage, react with hydroxyl radicals, forming Paraformaldehyde 97% as an intermediate product. Because of their short half-life, these potentially important sources of Paraformaldehyde 97% are important only in the vicinity of vegetation. Paraformaldehyde 97% is one of the volatile compounds formed in the early stages of decomposition of plant residues in the soil. Paraformaldehyde 97% occurs naturally in fruits and other foods. Other sources are forest fires, animal wastes, microbial products of biological systems, and plant volatiles(2,3). Paraformaldehyde 97% can also be formed in seawater by photochemical processes. However, calculations of sea-air exchange indicates that this process is probably a minor source for Paraformaldehyde 97% in the sea. Paraformaldehyde 97%'s production and use in the manufacture of a wide range of chemicals, such as resins, finding a variety of end uses such as wood products, plastics, and coatings may result in its release to the environment through various waste streams. Its use as a fumigant in agricultural premises and as a surface disinfectant in commercial premises and its use as a corrosion inhibitor in oil wells and release from slow-release fertilizers result in its direct release to the environment. Paraformaldehyde 97% is formed by the incomplete combustion of many organic substances and is present in coal and wood smoke and in cigarette smoke. Based on a classification scheme, an estimated Koc value of 8, determined from a log Kow of 0.35 and a regression-derived equation, indicates that Paraformaldehyde 97% is expected to have very high mobility in soil. In soil, Paraformaldehyde 97% gas can adsorb to clay minerals and interact with humic substances resulting in decreased mobility. Volatilization of Paraformaldehyde 97% from moist soil surfaces is not expected to be an important fate process given a Henry's Law constant of 3.37X10-7 atm-cu m/mole. Paraformaldehyde 97% is expected to volatilize from dry soil surfaces based upon a vapor pressure of 3,890 mm Hg at 25 °C. Paraformaldehyde 97% has been found to be readily biodegradable in various screening tests. Utilizing the Japanese MITI test, 91% of the Theoretical BOD was reached in 2 weeks indicating that biodegradation is an important environmental fate process in soil.
PARASETAMOL
SYNONYMS 4-Acetamidophenol sulfate ester potassium salt, Acetaminophen sulfate potassium salt, N-(4-Sulfoxyphenyl)acetamide monopotassium salt CAS NO:103-90-2
PATCAT 3020
Patcat 3020 представляет собой прозрачную вязкую жидкость желтого цвета.
Patcat 3020 представляет собой оловоорганическое соединение.


Номер CAS: 77-58-7
Номер ЕС: 201-039-8
Номер леев: MFCD00008963
Химическое название: дилаурат дибутилолова.
Молекулярная формула: C32H64O4Sn/(C4H9)2Sn(OOC(CH2)10CH3)2



СИНОНИМЫ:
Дибутил(додеканоилокси)станнилдодеканоат, бутинорат, давайнекс, DBTDL, DBTL, дибутилбис(лауроилокси)олово, дибутилстаннилен дилаурат, дибутилолово дидеканоат, дибутилоловодилаурат, лауриновая кислота, 1,1'-(дибутилстаннилен) сложный эфир, стабилизатор D-22, T 12 ( катализатор), Тиностат, дилаурат дибутилолова, 77-58-7, Stanclere DBTL, лаурат дибутилолова, дилаурат ди-н-бутилолова, дибутилбис(лауроилокси)олово, Ставинор 1200 SN, н-додеканоат дибутилолова, Онгростаб BLTM, Фомрез сул-4, Дибутилстаннилена дилаурат, Thermolite T 12, Mark 1038, Бис(лауроилокси)ди(н-бутил)станнан, Космос 19, Термчек 820, Станнан, дибутилбис[(1-оксододецил)окси]-, ОЛОВО ДИБУТИЛДИЛАУРАТ, Дибутил-цинн- дилаурат, Неостанн U 100, Олово, дибутилбис(лауроилокси)-, Lankromark LT 173, TVS-TL 700, Дибутилстанний дилаурат, Станнан, бис(лауроилокси)дибутил-, Станнан, дибутилбис(лауроилокси)-, Лаудран ди-н-бутилцинат, [дибутил(додеканоилокси)станнил]додеканоат, лауриновая кислота, дибутилстанниленовая соль, лауриновая кислота, производное дибутилолова, дибутилстаннандиилдиодеканоат, станнан, бис(додеканоилокси)ди-н-бутил-, Т 12, KS 20, TN 12, Олово, ди -н-бутил-, ди(додеканоат), дибутилбис(1-оксододецил)окси)станнан, лауриновая кислота, производное дибутилстаннилена, додекановая кислота, сложный эфир 1,1'-(дибутилстаннилена), Лаустан-Б, CAS-77-58 -7, Дибутилоловодилаурат, TN 12 (катализатор), Stavincor 1200 SN, Mark BT 11, Mark BT 18, Дибутилбис(лаурокси)станнан, Бутилнорат, CCRIS 4786, DXR 81, HSDB 5214, T 12 (VAN) , Стабилизатор D 22, NSC 2607, SM 2014C, EINECS 201-039-8, дибутилолово дилаурат, Metacure T-12, станнан, бис(додеканоилокси)ди-н-бутил, олово, ди(додеканоат), ди-н-бутилин дилаурат, AI3-26331, ADK STAB BT-11, дилаурат дибутилолова, 95%, UNII-L4061GMT90, DTXSID6024961, NSC2607, лауриновая кислота, производное дибутилолова, дибутилбис(1-оксододецилокси)станнан, бис(додеканоилокси)ди-н-бутилстаннан, Tox21_112324, Дибутил[бис(додеканоилокси)]станнан #, Дилаурат дибутилолова, SAJ первый сорт, Tox21_112324_1, ZINC169743348, Дилаурат дибутилолова, Селектофор(TM), WLN: 11VO-SN-4&4&OV11, Лауриновая кислота, производное дибутилстаннилена, NCGC001 66115-02, Ди -н-бутилолова дилаурат (18–19% Sn), FT-0624688, E78905, EC 201-039-8, A839138, Q-200959, сложный эфир додекановой кислоты [дибутил(1-оксододетокси)станнил], дибутилбис(лауроилокси)станнан , Дибутилбис(лауроилокси)олово, Дибутилциннбислаурат, Бутилцинн Дилаурат, Дибутилбис(лауроилокси)станнан, Дибутилбис((1-оксододецил)окси)станнан, DBTDL, DBTL, DI-N-BUTYLDILAURYLTIN, DI-N-BUTYLTIN DILAURATE, DIBUTYLBIS(LAUROYLOXY) ) Stannane, Dibitylbis (Lauroyloxy) Tin, Dibityltin didodecanoate, Dibityltin Dilaurate, Dibityltin (IV) дилаурат, Dibityltin Laurate, DBTDL, Dabco T-12, DBTL, BIS (лавороилокси) Di (n-butylanne, BATYONATATE, Cata-kin 820, DBTL, DXR 81, Davainex, дилаурат ди-н-бутилолова, дибутил-олово-дилаурат, дибутил-цинн-дилаурат, дибутилбис(лаурато)олово, дибутилбис(лаурокси)станнан, дибутилбис(лауроилокси)олово, дибутилстанний дилаурат, дибутилстаннилен дилаурат, дибутилолово дидеканоат, дибутилолово лаурат, дибутилолово н-додеканоат, Фомрез сул-4, KS 20, Космос 19, Lankromark LT 173, лаудран ди-н-бутилцинат, лауриновая кислота, производное дибутилстаннилена, лауриновая кислота, соль дибутилстаннилена, лауриновая кислота , производное дибутилолова, Laustan-B, Mark 1038, Mark BT 11, Mark BT 18, Neostann U 100, Ongrostab BLTM, SM 2014C, Стабилизатор D-22, Stanclere DBTL, Станнан, бис(додеканоилокси)ди-н-бутил- , Станнан, бис(додеканоилокси)ди-н-бутил, Станнан, бис(лауроилокси)дибутил-, Станнан, дибутилбис((1-оксододецил)окси)-, Станнан, дибутилбис(лауроилокси)-, Ставинкор 1200 SN, Ставинор 1200 SN , Т 12, Т 12 (ВАН), Т 12 (катализатор), ТН 12, ТН 12 (катализатор), ТВС Олово Лау, ТВС-ТЛ 700, Термчек 820, Термолит Т 12, Дибутилдилаурат олова, Олово, ди- н-бутил-, ди(додеканоат), олово, дибутилбис(лауроилокси)-, тиностат, UN2788 (жидкий), UN3146 (твердый), Aids010213, Aids-010213, DBTDL, Aids010213, Aids-010213, дитинбутилдилаурат (дибутилбис ((1-оксододецил)окси)-Станнан), додеканоат дибутилолова(IV), Два дилаурат дибутилолова, Две лауриловые кислоты, Дибутилолово дилаурат 95%, DBTDL, dbtl, t12, tn12, davainex, тиностат, бутинорат, DI-N- БУТИЛТИЛОВО ДИЛАУРАТ, Дибутилолово дилаурат 95%, бис(лауроилокси)дибутилстаннан, Ди-N-бутилдилаурилолово, Дибутилбис(лауроилокси)олово, DBTDL, Дитинбутилдилаурат(дибутилбис((1-оксододецил)окси)-Станнан), дибутилолово( IV) додеканоат, Дилаурат дибутилолова, Дилаурат двухбутилолова, Дилаурат дибутилолова 95%, Бис(лауроилокси)ди(н-бутил)станнан, Дилаурат ди-н-бутилолова, Дилаурат ди-н-бутилолова, Дибутилбис(1-оксододецил) окси)станнан, Дибутилбис(лаурато)олово, Дибутилбис(лаурокси)станнан, Дибутилбис(лауроилокси)олово, Дибутилстанний дилаурат, Дибутилстаннилен дилаурат, Дибутилолово дидеканоат, DBTL, BT-25, дибутилолово додеканоат, Дибутилолово лаурат, Дибутилолово дилаурат, Дибутилолово дилаурат, Ди- н-бутилдилаурилолово, дилаурат ди-N-бутилолова, дилаурат дибутилолова(IV), дибутилолово дидеканоат, дибутилбис(лауроилокси)олово, дибутил(дидодецил)станнан, дибутилбис(лауроилокси)станнан



Patcat 3020 представляет собой оловоорганическое соединение, которое используется в качестве катализатора.
Patcat 3020 представляет собой бесцветную маслянистую жидкость.
По своей структуре молекула Patcat 3020 состоит из двух лауратных групп, присоединенных к центру дибутилолова(IV).


Patcat 3020 зарегистрирован в соответствии с Регламентом REACH и производится и/или импортируется в Европейскую экономическую зону в объеме от ≥ 100 до < 1 000 тонн в год.
Patcat 3020 представляет собой прозрачную вязкую жидкость желтого цвета.


Patcat 3020 представляет собой оловоорганическое соединение.
Олово — химический элемент с символом Sn и атомным номером 50.
Это природный компонент земной коры, получаемый главным образом из минерала касситерита, где он встречается в виде диоксида олова.


Patcat 3020, известный как дилаурат дибутилолова, представляет собой прозрачную желтоватую жидкость.
В случае затвердевания Patcat 3020 следует нагреть до расплавления, в этом случае потери активности не произойдет.
Patcat 3020 представляет собой оловоорганическое соединение формулы (CH3(CH2)10CO2)2Sn(CH2CH2CH2CH3)2.


Patcat 3020 представляет собой бесцветную вязкую маслянистую жидкость.
По своей структуре молекула Patcat 3020 состоит из двух лауратных групп и двух бутильных групп, присоединенных к атому олова(IV).
Молекулярная геометрия Patcat 3020 в олове тетраэдрическая.


Судя по кристаллической структуре родственного бис(бромбензоата), атомы кислорода карбонильных групп слабо связаны с атомом олова.
По мнению некоторых авторов, Patcat 3020 представляет собой эфир лауриновой кислоты дибутилолова(IV).



ИСПОЛЬЗОВАНИЕ и ПРИМЕНЕНИЕ PATCAT 3020:
Patcat 3020 можно использовать в качестве термостабилизаторов ПВХ, и это самая ранняя разновидность, используемая в оловоорганических стабилизаторах, термостойкость меньше, чем у малеата трибутилолова, но он обладает отличной смазывающей способностью, устойчивостью к атмосферным воздействиям и прозрачностью, а также хорошей совместимостью с пластификаторами. , не расцветает, не загрязняет сульфидами, не оказывает вредного воздействия на термосварку и пригодность для печати.


Patcat 3020 в основном используется в мягких прозрачных или полумягких продуктах, обычно в количестве 1-2%.
В твердых продуктах Patcat 3020 можно использовать в качестве смазки, а при использовании с органическим оловом, содержащим малеиновую кислоту, или тиолсодержащим органическим оловом, можно улучшить текучесть смоляного материала.


Patcat 3020 является жидким при комнатной температуре, поэтому дисперсия в пластике лучше, чем у твердого стабилизатора.
По сравнению с другим органическим оловом, товар раннего цвета может вызвать желтое обесцвечивание.
Patcat 3020 также может использоваться в качестве катализаторов синтеза полиуретана, отвердителя силиконовой резины.


Чтобы повысить термостабильность, прозрачность, совместимость со смолами, а также улучшить ударную вязкость твердых изделий и другие ее свойства, в настоящее время Patcat 3020 разработал ряд модифицированных разновидностей.
Лауриновую кислоту и другие жирные кислоты обычно добавляют в чистом виде, также добавляют сложный эфир эпоксидной смолы или другой стабилизатор металлического мыла.


Patcat 3020 используется в качестве катализатора при синтезе пенополиуретанов.
Patcat 3020 обладает превосходной прозрачностью и смазывающими свойствами.
Patcat 3020 устойчив к атмосферным воздействиям.


Patcat 3020 также может использоваться в качестве стабилизатора мягких прозрачных продуктов и эффективных смазок в твердых прозрачных продуктах, а также может использоваться в реакциях сшивания акрилатного каучука и карбоксила каучука, катализатора синтеза пенополиуретана и синтетического полиэфира, а также силиконового каучука RTV.
Идеальные области применения Patcat 3020 включают двухкомпонентные полиуретановые системы с химической сшивкой на основе растворителей.


Patcat 3020 представляет собой двухкомпонентное покрытие с химической сшивкой на основе растворителя.
Patcat 3020 подходит для полиуретановых покрытий, чернил, клеев и герметиков.
Patcat 3020 подходит для вулканизированного при комнатной температуре силикагеля, клеев и герметиков.


Patcat 3020 в основном используется для изготовления жесткого пенополиуретана, напыления, заливки, плит и т. д.
Patcat 3020 можно использовать в качестве термостабилизатора в мягких изделиях из ПВХ.
Patcat 3020 подходит для продуктов, сшитых силаном.


Patcat 3020 используется в качестве катализатора при производстве полиуретанов из изоцианатов и диолов.
Patcat 3020 используется в качестве катализатора переэтерификации и вулканизации силиконов при комнатной температуре.
Patcat 3020 используется в качестве катализатора при производстве полиуретана и вулканизации силиконовой резины при комнатной температуре.


Patcat 3020 также используется в термостабилизаторах ��ВХ.
Patcat 3020 используется потребителями, в изделиях, профессиональными работниками (широко распространенное применение), при разработке рецептур или переупаковке, на промышленных объектах и в производстве.


Другие выбросы Patcat 3020 в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха), использовании на открытом воздухе, использовании на открытом воздухе в долговечных материалах. с низкой скоростью выделения (например, металлические, деревянные и пластиковые конструкции и строительные материалы) и для использования внутри помещений с долговечными материалами с низкой скоростью выделения (например, полы, мебель, игрушки, строительные материалы, шторы, обувь, кожаные изделия, бумага и картонные изделия, электронное оборудование).


Выброс Patcat 3020 в окружающую среду может происходить в результате промышленного использования: в качестве технологической добавки, в составе материалов, в технологических добавках на промышленных объектах, при производстве изделий и в качестве технологической добавки.
Patcat 3020 используется в следующих продуктах: клеях, герметиках и покрытиях.


Другие выбросы Patcat 3020 в окружающую среду могут происходить при: использовании внутри помещений (например, жидкости/моющие средства для машинной мойки, средства по уходу за автомобилем, краски и покрытия или клеи, ароматизаторы и освежители воздуха), использовании на открытом воздухе, использовании на открытом воздухе в долговечных материалах. с низкой скоростью выделения (например, металлические, деревянные и пластиковые конструкции и строительные материалы) и для использования внутри помещений с долговечными материалами с низкой скоростью выделения (например, полы, мебель, игрушки, строительные материалы, шторы, обувь, кожаные изделия, бумага и картонные изделия, электронное оборудование).


Patcat 3020 можно найти в сложных изделиях, не предназначенных для выпуска: транспортные средства, машины, механические устройства и электрические/электронные изделия (например, компьютеры, камеры, лампы, холодильники, стиральные машины), а также электрические батареи и аккумуляторы.
Patcat 3020 также находит применение в качестве катализатора при производстве полиолефинов, сшиваемых силаном.


Patcat 3020 можно найти в продуктах, в основе которых лежат ткани, текстиль и одежда (например, одежда, матрасы, шторы или ковры, текстильные игрушки), кожа (например, перчатки, обувь, сумки, мебель), резина (например, шины, обувь, игрушки) и дерево (например, полы, мебель, игрушки).
Patcat 3020 используется в следующих продуктах: клеи и герметики, покрытия и шпатлевки, шпаклевки, штукатурки, пластилин.


Patcat 3020 используется в следующих областях: строительство.
Другие выбросы Patcat 3020 в окружающую среду, скорее всего, происходят в результате: использования внутри помещений (например, жидкостей/моющих средств для машинной мойки, средств по уходу за автомобилем, красок и покрытий или клеев, ароматизаторов и освежителей воздуха) и наружного использования.


Patcat 3020 используется в следующих продуктах: полимеры, клеи и герметики, покрытия, химикаты и красители для бумаги, продукты и красители для обработки текстиля, продукты для обработки металлических поверхностей, продукты для обработки неметаллических поверхностей, полироли и воски, а также моющие и чистящие средства. .
Patcat 3020 используется в промышленности, что приводит к производству другого вещества (использование промежуточных продуктов).


Выброс Patcat 3020 в окружающую среду может происходить в результате промышленного использования: при составлении смесей, в составе материалов, в технологических вспомогательных средствах на промышленных объектах, при производстве изделий, в качестве технологической добавки и в качестве технологической добавки.
Patcat 3020 используется в следующих областях: строительные работы, приготовление смесей и/или переупаковка.


Patcat 3020 используется в следующих продуктах: полимеры, клеи и герметики, покрытия, средства для обработки металлических поверхностей, средства для обработки неметаллических поверхностей, химикаты и красители для бумаги, полироли и воски, средства и красители для обработки текстиля, а также средства для стирки и чистки. .
Patcat 3020 используется в промышленности, что приводит к производству другого вещества (использование промежуточных продуктов).


Patcat 3020 используется для производства: химикатов, пластиковых изделий, электрического, электронного и оптического оборудования, машин и транспортных средств, текстиля, кожи или меха, древесины и изделий из дерева, целлюлозы, бумаги и бумажных изделий, резиновых изделий, готовых металлических изделий и мебель.


Выброс Patcat 3020 в окружающую среду может происходить в результате промышленного использования: при производстве изделий, в качестве вспомогательного средства для обработки, в вспомогательных средствах для обработки на промышленных объектах, в качестве вспомогательного средства для обработки, в составе материалов и в качестве промежуточного этапа в дальнейшем производстве другого вещества (использование промежуточных продуктов).


Выброс Patcat 3020 в окружающую среду может произойти в результате промышленного использования: производства вещества.
Patcat 3020 используется в качестве добавки к краске.
Вместе с диоктаноатом дибутилолова Patcat 3020 используется в качестве катализатора при производстве полиуретанов из изоцианатов и диолов.


Patcat 3020 также полезен в качестве катализатора переэтерификации и вулканизации силиконов при комнатной температуре.
Patcat 3020 также добавляют в корм для животных для удаления слепых, круглых и ленточных червей у кур и индеек, а также для профилактики или лечения гексамитоза и кокцидиоза.


В качестве катализатора используется Patcat 3020.
Patcat 3020 используется в диапазоне 0,1–0,5% относительно полиола в качестве первичного катализатора для большинства составов полиуретана и в качестве вторичного катализатора рекомендуется 0,03–0,3%.


Patcat 3020 также используется в качестве стабилизатора в поливинилхлориде, винилэфирных смолах, лаках и эластомерах.
Для силиконовых систем требуется 0,1 – 1% для отверждения.
Рекомендуется определить подходящую дозу Patcat 3020 экспериментально.


-Patcat 3020 Катализатор для систем полиуретановых покрытий
Patcat 3020 — катализатор для двухкомпонентных полиуретановых систем на основе растворителей.
Это решение Patcat 3020 подходит для ускорения процессов сшивки.



ПРЕИМУЩЕСТВА PATCAT 3020:
Преимущества катализаторов дибутилоловодилаурата для полиуретановых покрытий
*Patcat 3020 улучшает сушку систем химического отверждения, отдавая предпочтение реакции изоцианат/полиол по сравнению с другими побочными реакциями, такими как реакция изоцианат/вода.
*Patcat 3020 повышает устойчивость к царапинам, твердость и механические свойства.
*Patcat 3020 можно использовать для ускорения процесса отверждения полиуретанов, силиконовых смол, силиконовых смол RTV и полимеров, модифицированных силаном.



ОСОБЕННОСТИ PATCAT 3020:
*Patcat 3020 подходит для ускорения процесса сшивки двухкомпонентных полиуретановых покрытий на основе растворителей.
*Patcat 3020 улучшает сушку систем химического отверждения, благоприятствуя реакции изоцианат/полиол по сравнению с другими побочными реакциями, такими как реакция изоцианат/вода.
*Patcat 3020 повышает устойчивость к царапинам, твердость и механические свойства.
*Patcat 3020 можно использовать для ускорения процесса отверждения полиуретанов, силиконовых смол, силиконовых смол RTV и силаново-модифицированных полимеров.



ТИП СОЕДИНЕНИЯ PATCAT 3020:
*Бытовой токсин
*Промышленный/рабочий токсин
*Органическое соединение
*Металлоорганические
*Синтетическое соединение
*Оловянное соединение



АЛЬТЕРНАТИВНЫЕ РОДИТЕЛИ PATCAT 3020:
*Жирные кислоты с прямой цепью
*Монокарбоновые кислоты и производные.
*Карбоновые кислоты
*Оловоорганические соединения
*Органические соли
*Органические оксиды
*Производные углеводородов
*Карбонильные соединения



ЗАМЕНИТЕЛИ PATCAT 3020:
*Жирные кислоты со средней длиной цепи
*Жирные кислоты с прямой цепью
*Монокарбоновая кислота или ее производные.
*Карбоновая кислота
*Производное карбоновой кислоты
*Органическое кислородное соединение
*Органический оксид
*Производное углеводородов
*Органическая соль
*Оловоорганическое соединение
*Кислородорганическое соединение
*Металлоорганическое соединение
*Органический фрагмент постпереходного металла
*Карбонильная группа
*Алифатическое ациклическое соединение.



ХИМИЧЕСКИЕ СВОЙСТВА PATCAT 3020:
Patcat 3020 представляет собой бледно-желтую легковоспламеняющуюся жидкость, растворимую в ацетоне и бензоле, не растворяющуюся в воде.
Patcat 3020 обладает пр��восходной прозрачностью, смазывающей способностью и устойчивостью к атмосферным воздействиям.
Patcat 3020 используется в мягких и прозрачных изделиях из ПВХ.
После обработки блеск поверхности и прозрачность готовой продукции хорошие, загрязнения при вулканизации отсутствуют.


*Органическая добавка олова
Patcat 3020 представляет собой органическую добавку олова и может растворяться в бензоле, толуоле, четыреххлористом углероде, этилацетате, хлороформе, ацетоне, петролейном эфире и других органических растворителях и всех промышленных пластификаторах, но нерастворим в воде.
Многоцелевой высококипящий органический оловянный катализатор циркуляции Patcat 3020 обычно специально обрабатывается сжижением, а при комнатной температуре представляет собой бледно-желтую или бесцветную маслянистую жидкость, при низкой температуре - в виде белых кристаллов, и его можно использовать для добавок ПВХ, он также имеет превосходные свойства. смазывающая способность, прозрачность, устойчивость к атмосферным воздействиям и лучшая устойчивость к сульфидным загрязнениям.



МЕТОД ПРОИЗВОДСТВА PATCAT 3020:
Patcat 3020 конденсируется DBTO и лауриновой кислотой при 60 ℃ .
После конденсации производят вакуумное обезвоживание, охлаждение, фильтрацию под давлением полученных продуктов.



РОДСТВЕННЫЕ СОЕДИНЕНИЯ PATCAT 3020:
Диоктаноат дибутилолова (CH3(CH2)6CO2)2Sn(CH2CH2CH2CH3)2: CAS#4731-77-5
Диацетат дибутилолова (CH3CO2)2Sn(CH2CH2CH2CH3)2: CAS № 1067-33-0.



РАЗБОР PATCAT 3020:
При нагревании до температуры разложения (более 250 °C) Patcat 3020 выделяет едкий дым и пары.



ПРОИЗВОДИТЕЛЬНОСТЬ PATCAT 3020:
Patcat 3020 является основным катализатором для ускорения изоцианат-гидроксильной реакции, а также реакции изоцианатов со спиртами.
Patcat 3020 можно комбинировать с третичными аминами и 2-этилгексаноатом кальция.
Patcat 3020 также можно использовать для реакции силанольной конденсации.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА PATCAT 3020:
Содержание олова: 18,50 + 0,5%
Внешний вид: Прозрачная желтоватая жидкость.
Индекс преломления: 1,4610 + 0,005 (25°C)
Удельный вес (прибл.): 1,040 (г/см³ при 25°C)
Цвет: максимум 4 (Гарднер)
Вязкость: < 75 сП (@ 25°C)
Точка вспышки: >150°C (PMCC)
Точка затвердевания: ≤ -3°C
Химическая формула: (CH3(CH2)10CO2)2Sn((CH2)3CH3)2
Молярная масса: 631,570 г•моль−1

Внешний вид: Бесцветная маслянистая жидкость или мягкие восковые кристаллы.
Запах: Жирный
Плотность: 1,066 г/см3
Температура плавления: от 22 до 24 ° C (от 72 до 75 ° F; от 295 до 297 К).
Точка кипения: 205 °C при 1,3 кПа.
Растворимость в воде: Практически нерастворим (0,00143 г/л при 68 °F (20 °C))
Растворимость: Практически нерастворим в метаноле, растворим в петролейном эфире.
бензол, ацетон, эфир, четыреххлористый углерод, органические эфиры
Давление пара: <0,01 гПа (0,2 мм рт.ст. при 25 °C)
Индекс преломления (nD): 1,4683 при 20 °C (для света с длиной волны 589,29 нм)
Вязкость: 42 сП

Химическая формула: (CH3(CH2)10CO2)Sn((CH2)3CH3)2
Молярная масса: 631,570 g•mol−1
Внешний вид: Бесцветная маслянистая жидкость или мягкие восковые кристаллы.
Запах: Жирный
Плотность: 1,066 г/см3
Температура плавления: от 22 до 24 ° C (от 72 до 75 ° F; от 295 до 297 К).
Точка кипения: 205 °C при 1,3 кПа.
Растворимость в воде: Практически нерастворим (менее 1 мг/мл при 68 °F (20 °C))
Растворимость: Практически нерастворим в метаноле.
Растворим в: петролейном эфире, бензоле, ацетоне, эфире,
четыреххлористый углерод, органические эфиры
Давление пара: <0,01 гПа (0,2 мм рт. ст. при 160 °C)

Показатель преломления (nD): 1,4683 при 20 °C (для света с длиной волны 589,29 нм)
Вязкость: 42 сП
Внешний вид: жидкость от бесцветного до желтого цвета.
Содержание олова: 17,0~19,0%
Плотность при 25 ℃ : 1,06 г/мл.
Точка кипения при 12 мм рт. ст.: > 205 ℃.
Температура вспышки, закрытая чашка: 113 ℃.
Показатель преломления (25 ℃ ): 1,471
Формула соединения: C32H64O4Sn
Молекулярный вес: 631,56
Внешний вид: Желтая жидкость

Точка плавления: 22-24 °С.
Точка кипения: 205 °С.
Плотность: 1,066 г/мл
Растворимость в H2O: нет данных.
Точная масса: 632,382655.
Моноизотопная масса: 632,382655
Молекулярный вес: 631,6
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 4
Количество вращающихся облигаций: 30
Точная масса: 632,382663.
Моноизотопная масса: 632,382663
Топологическая площадь полярной поверхности: 52,6 Å ²

Количество тяжелых атомов: 37
Официальное обвинение: 0
Сложность: 477
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атома: 0
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да

Внешний вид: желтая жидкость для пасты (приблизительно).
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Удельный вес: 1,06600 при 25,00 °C.
Индекс преломления: 1,47100 при 20,00 °C.
Температура плавления: 23,00 °С. @ 760,00 мм рт. ст.
Точка кипения: от 560,00 до 561,00 °C. @ 760,00 мм рт.ст. (расчетное значение)
Температура вспышки: > 230,00 °F. ТСС (> 110,00 °С.)
logP (н/в): 3,120
Растворим в: воде, 3 мг/л при 25 °C (расчетное значение).

Физическое состояние: твердое
Цвет: бесцветный, до, светло-желтый
Запах: жирный запах
Температура плавления: 28,5 °С.
Начальная точка кипения и диапазон кипения: 205 °C при 130 гПа - (ECHA)
Горючесть (твердого тела, газа): Данные отсутствуют.
Верхний/нижний пределы воспламеняемости или взрывоопасности: данные отсутствуют.
Температура вспышки: 189–193 °C – в закрытом тигле.
Температура самовоспламенения: Нет данных.
Температура разложения: > 250 °C -
pH: данные отсутствуют
Вязкость Кинематическая вязкость: данные отсутствуют.
Вязкость, динамическая: данные отсутствуют.

Растворимость в воде 0,00143 г/л при 20°С.
Коэффициент распределения: н-октанол/вода Pow: 27,700; log Pow: 4,44 при 21 °C
Давление пара: < 0,01 гПа при 25 °C.
Плотность: 1066 г/см3 при 25 °C – лит.
Относительная плотность: данные отсутствуют.
Относительная плотность пара: данные отсутствуют.
Характеристики частиц: данные отсутствуют.
Взрывоопасные свойства: данные отсутствуют.
Окислительные свойства: нет
Другая информация по безопасности: данные отсутствуют.

Внешний вид: желтоватая маслянистая жидкость.
Содержание олова: 18,2
Плотность: 1,05±0,02
Индекс преломления: 1,468±0,001
Точка кипения: > 204 ℃ /12 мм.
Точка плавления: 22-24 ℃
Точка замерзания: ≤8 ℃
Точка вспышки: > 230 ℃
Летучий: ≤0,4%

Точка кипения: >250 °C (1013 гПа)
Плотность: 1,05 г/см3 (20 °C)
Температура вспышки: 191 °С.
Температура воспламенения: >200 °C
Точка плавления: 25–27 °C.
Давление пара: <0,1 гПа (20 °C)
Растворимость: <1,43 мг/л
Формула: (C4H9)2Sn(OOC(CH2)10CH3)2 / C32H64O4Sn
Молекулярная масса: 631,6
Точка кипения при 1,3 кПа: 205°C.
Температура плавления: 22-24°С.
Давление пара: незначительное

Растворимость в воде: нет
Температура вспышки: 191°С.
Плотность (при 20°C): 1,05 г/см³.
Коэффициент распределения октанол/вода как log Pow: 4,44
Плотность: 1,066 г/мл при 25 °C (лит.)
Точка кипения: 560,5±19,0 °C при 760 мм рт.ст.
Точка плавления: 22-24°C.
Молекулярная формула: C32H64O4Sn
Молекулярный вес: 631,558
Температура вспышки: 292,8±21,5 °C.
Точная масса: 632,382690.
ПСА: 52,60000
ЛогП: 17,44

Давление пара: 0,0±1,5 мм рт.ст. при 25°C.
Индекс преломления: n20/D 1,471 (лит.)
Стабильность: Стабильность Горючий.
Несовместим с сильными окислителями.
Растворимость в воде: <0,1 г/100 мл при 20 ºC.
Точка замерзания: 8 ℃
Формула соединения: C32H64O4Sn
Молекулярный вес: 631,56 г/моль
Внешний вид: Желтая жидкость
Точка плавления: 22-24 °С.
Точка кипения: 205 °С.
Плотность: 1,066 г/мл
Растворимость в H2O: Неприменимо.
Точная масса: 632,382655 г/моль.
Моноизотопная масса: 632,382655 г/моль.



МЕРЫ ПЕРВОЙ ПОМОЩИ PATCAT 3020:
-После ингаляции:
Свежий воздух.
Немедленно вызвать врача.
-При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
Немедленно позвоните врачу.
-После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
-После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ PATCAT 3020:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Беритесь осторожно.
Утилизируйте должным образом.



МЕРЫ ПОЖАРОТУШЕНИЯ PATCAT 3020:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Вода
Мыло
Углекислый газ (CO2)
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА PATCAT 3020:
-Параметры управления:
*Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Безопасные очки.
*Защита кожи:
Полный контакт:
Материал: хлоропрен
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 30 мин.
*Защита тела:
защитная одежда
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ PATCAT 3020:
-Меры безопасного обращения:
*Советы по безопасному обращению:
Работа под капотом.
*Гигиенические меры:
Немедленно смените загрязненную одежду.
Вымойте руки и лицо после работы с веществом.
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.
Хранить в хорошо проветриваемом месте.
Храните взаперти или в месте, доступном только квалифицированным или уполномоченным лицам.



СТАБИЛЬНОСТЬ И РЕАКЦИОННОСТЬ PATCAT 3020:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).


Patent Blue
2-PHOSPHONOBUTANE-1,2,4-TRICARBOXYLIC ACID; PBTC; Bayhibit AM; PBS-AM; Phosphonobutanetricarboxylic acid; 2-Phosphono-1,2,4-butanecarboxylic acid; CAS NO: 37971-36-1
PATENT BLUE V
SYNONYMS C.I. 42051; C.I. Food Blue 5; C.I. Acid Blue 3; Merantine Blue V; Acidal Carmine V; Alphazurine 2 G; C.I. 42051; Bleu patente V; C.I. Food Blue 5; Carmine Blue V; L-Blau 3; Bis[hydrogen [4-[4-(diethylamino)-5'-hydroxy-2',4'-disulphonatobenz hydrylidene] cyclohexa- 2,5-dien-1-ylidene]diethylammonium] calcium salt (2:1); [4-(alpha-(4- diethylaminophenyl)- 5-hydroxy-2,4-disulfophenyl-methylidene) 2,5-cyclohexadien-1-ylidene] diethylammonium hydroxide inner salt; N-(4-((4-(Diethylamino)phenyl) (5-hydroxy-2,4-disulfophenyl) methyl- ene)-2,5-cyclohexadien-1- ylidene)-N-ethylethanaminium, hydroxide inner salt calcium salt; m-Hydroxytetraethyldiaminotriphenylcarbinol anhydride disulfonic acid calcium salt; CAS NO 3536-49-0
PBS-AM
2-PHOSPHONOBUTANE-1,2,4-TRICARBOXYLIC ACID; PBTC; Bayhibit AM; PBS-AM; Phosphonobutanetricarboxylic acid; 2-Phosphono-1,2,4-butanecarboxylic acid; CAS NO: 37971-36-1
PBTC
SYNONYMS PBTC; Bayhibit AM; PBS-AM; Phosphonobutanetricarboxylic acid; 2-Phosphono-1,2,4-butanecarboxylic acid; CAS NO. 37971-36-1
PBTC ( 2-PHOSPHONOBUTANE-1,2,4-TRICARBOXYLIC ACID)
Synonyms: PBTCA; PBTC; Phosphonobutane tricarboxylic Acid; 2-Phosphonobutane-1,2,4-Tricarboxylic Acid; PBS-AM; Phosphonobutanetricarboxylic acid; 2-Phosphono-1,2,4-butanecarboxylic acid; Phosphonono Butanetricarboxylic Acid; 2-phosphono-1,2,4-butanetricarboxylic acid. cas :40372-66-5
PBTCA
2-Phosphonobutane -1,2,4-Tricarboxylic Acid; PBTC;PBTCA;PHOSPHONOBUTANE TRICARBOXYLIC ACID;2-Phosphonobutane -1,2,4-Tricarboxylic Acid;2-Phosphonobutane-1,2,4-tricarboxylic acid PBTC; PBTC; Bayhibit AM; PBS-AM; Phosphonobutanetricarboxylic acid; 2-Phosphono-1,2,4-butanecarboxylic acid; CAS NO:37971-36-1
PBTCA (2-PHOSPHONOBUTANE-1,2,4-TRICARBOXYLIC ACID 
P-CHLORO-M-CRESOL, N° CAS : 59-50-7. Nom INCI : P-CHLORO-M-CRESOL. Nom chimique : 4-Chloro-3-methylphenol. chlorocresol . Synonymes : 4-chloro-m-cresol;p-Chloro-m-crésol;Chlorocrésol;4-Chloro-3-méthylphenol;2-Chloro-5-hydroxytoluene;2-CHLORO-HYDROXYTOLUENE;4-Chloro-1-hydroxy-3-methylbenzene;4-chloro-3-cresol;4-Chloro-3-hydroxytoluene;4-chloro-3-methyl phenol;4-CHLORO-META-CRESOL;6-CHLORO-3-HYDROXYTOLUENE;6-Chloro-m-cresol;AI3-00075;APTAL;BAKTOL;BAKTOLAN;CANDASEPTIC;Caswell No 185A;Chlorocresolo;Chlorocrésol;Chlorocresolo; Chlorocresolum (Latin); Chlorokresolum; Clorocresol (Spanish); EPA Pesticide Chemical Code 064206;m-Cresol, 4-chloro-; OTTAFACT; P-CHLOR-M-CRESOL; p-Chloro-m-crésol;P-CHLOROCRESOL;Parachlorometacresol;PARMETOL;PAROL;PCMC;PERITONAN;Phenol, 4-chloro-3-methyl-;PREVENTOL CMK;RASCHIT;RASCHIT K;RASEN-ANICON;RCRA waste number U039 ;N° EINECS/ELINCS : 200-431-6. Classification : Règlementé, Conservateur, Ses fonctions (INCI), Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Noms français : 2-CHLORO-5-HYDROXYTOLUENE; 2-CHLORO-HYDROXYTOLUENE; 3-METHYL-4-CHLOROPHENOL; 4-CHLORO-3-METHYLPHENOL; 4-CHLORO-5-METHYLPHENOL ; 4-CHLORO-M-CRESOL; 4-CHLOROCRESOL; 4-CHLOROCRESOL (META-); 6-CHLORO-3-HYDROXYTOLUENE; 6-CHLORO-M-CRESOL; CHLORO-4 HYDROXY-3 TOLUENE; CHLORO-4 METHYL-3 PHENOL;Chloro-4 méthyl-3 phénol; M-CRESOL, 4-CHLORO; P-CHLOR-M-CRESOL; P-CHLORO-M-CRESOL; p-Chlorocresol; p-Chlorocrésol; PHENOL, 4-CHLORO-3-METHYL; PHENOL, 4-CHLORO-3-METHYL-. Noms anglais : p-Chlorocresol. Utilisation et sources d'émission : Agent désinfectant, agent antiseptique. 1237629 [Beilstein]; 200-431-6 [EINECS]; 441; 4-Chlor-3-methylphenol [German] ; 4-Chloro-3-methylphenol [ACD/IUPAC Name]; 4-Chloro-3-méthylphénol [French] [ACD/IUPAC Name]; 4-Chloro-m-cresol; 59-50-7 [RN]; chlorocresol; chlorocrésol [French] ; clorocresol [Spanish] ; GO7100000; p-Chlorocresol [Wiki]; p-Chloro-m-cresol; PCMC; Phenol, 4-chloro-3-methyl- [ACD/Index Name]; QR BG E1 [WLN]; хлорокрезол [Russian]; كلوروكريسول [Arabic]; 122307-41-9 [RN]; 1-Chloro-2-methyl-4-hydroxybenzene; 2-Chloro-5-hydroxytoluene; 2-Chloro-hydroxytoluene; 3-hydroxy-10,13-dimethyl-17-(6-methylheptan-2-yl)-1,2,3,4,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-7-one; 4-06-00-02064 (Beilstein Handbook Reference) [Beilstein]; 43M; 4-Chloro-1-hydroxy-3-methylbenzene; 4-Chloro-3-methoxy-2-methylpyridine-n-oxide; 4-chloro-3-methyl-phenol; 4-Chloro-3-Methylphenol (en); 4-Chloro-3-methylphenol 100 ?g/mL in Methanol; 4-Chloro-3-methylphenol 100 µg/mL in Methanol; 4-Chloro-3-methylphenol, BP, EP grade; 4-Chloro-3-methylphenol-2,6-d2; 4-Chloro-5-methylphenol; 4-Chloro-m-cresol;PCMC;Chlorocresol; 6-Chloro-3-hydroxytoluene; 6-Chloro-m-cresol; 93951-72-5 [RN]; Aptal; Baktol; Baktolan; C006984; Candaseptic; Chlorcresolum; Chlorkresolum; Chloro-3-cresol; Chlorocresol (4-Chloro-3-methylphenol); Chlorocresol (NF); Chlorocresol [USAN:INN]; Chlorocresolo; Chlorocresolum [INN-Latin]; Chlorocresolum [Latin]; Chlorokresolum; Clorocresol [INN-Spanish]; Clorocresol [Spanish]; Clorocresolo [DCIT]; CMK; EINECS 200-431-6; HSCI1_000352; DI1_000768; InChI=1/C7H7ClO/c1-5-4-6(9)2-3-7(5)8/h2-4,9H,1H Lysochlor; m-Cresol, 4-chloro-; NCGC00091338-02; Ottafact; para-Chloro-meta-cresol; Parachlorometacresol; parmatol; Parmetol; Parol [Wiki]; p-Chlor-m-cresol; Peritonan; Pharmakon1600-01500178; PHEN-2,6-D2-OL,4-CHLORO-3-METHYL- (9CI); Phenol, 4-chloro-5-methyl-; Preventol CMK; Raschit; Raschit K; 4-chloro-3-methylphenol; 4-chloro-m-cresol; chlorocresol; 4-chloro-m-cresol; 4-chloro-3-methylphenol; chlorocresol;4-chloro-m-cresol;4-chloro-3-methylphenol; Phenol, 4-chloro-3-methyl-. Translated names : 4-chlor-3-methylfenol (cs) ; 4-Chlor-3-methylphenol (de); 4-chlor-3-metilfenolis (lt); 4-Chlor-m-kresol (de); 4-chlor-m-krezolis, (lt); 4-chloro-3-metylofenol (pl); 4-chloro-3-méthylphénol (fr); 4-chloro-m-crésol (fr); 4-chloro-m-krezol (pl); 4-chlór-3-metylfenol (sk); 4-chlór-meta-krezol (sk); 4-clor-3-metilfenol (ro); 4-clor-m-cresol (ro); 4-cloro-3-metilfenol (es); 4-cloro-m-cresol (es); 4-hlor-3-metilfenols (lv); 4-hlor-m-krezols (lv); 4-kloori-3-metyylifenoli (fi); 4-klor-3-metylfenol (no); 4-klor-m-kresol (no); 4-kloro-3-metil-fenol (hr); 4-kloro-3-metilfenol (sl); 4-kloro-3-metüülfenool (et); 4-kloro-m-kresool (et); 4-kloro-m-krezol (hr); 4-klór-3-metilfenol (hu); 4-klór-m-krezol (hu); 4-хлоро-3-метилфенол (bg); 4-хлоро-m-крезол (bg); Chloorkresol (nl); chlorcresol (da); chlorkresol (cs); Chlorkrezolis (lt); chlorocresol (da); Chlorocrésol (fr); Chlorokresol (de); chlórkrezol (sk); clor crezol (ro); Clorocresol (es); Clorocresolo (it); Clorocrezol (ro); Hlorkrezols (lv); kloorikresoli (fi); klorkresol (no); Klorokresol (mt); Klorokresoli (fi); Klorokresool (et); Klorokrezol (hr); klórkrezol (hu); χλωροκρεζόλη (el); Χλωροκρεσόλη (el); Хлорокрезол (bg). : 4-Chlor- 3-methylphenol; 4-chloro-3-methyl phenol; 4-Chloro-m-cresol, PCMC, 2-Chloro-5-hydroxytoluene; p-chloro-m-cresol
PCL-ЖИДКОСТЬ

PCL-Liquid — это смесь разветвленных алкиловых эфиров жирных кислот, используемых в качестве уникального смягчающего средства, обеспечивающего исключительную эластичность кожи.
PCL-Liquid демонстрирует высокую способность к распределению и хорошие смачивающие свойства кожи, делает кожу мягкой, гладкой и эластичной, обладает водоотталкивающими свойствами, образует на коже тонкую гидрофобную пленку, которая защищает ее от высыхания, поддерживает естественную проницаемость кожи для водяного пара и противодействует окклюзии.
PCL-Liquid не имеет запаха в чистом виде.

CAS: 110-27-0
MF: C17H34O2
MW: 270,45
EINECS: 203-751-4

Синонимы
Изопропилмиристат, 96% 25GR;IPM 100;IPM-EX;IPM-R;Radia 7730 (IPM);Изопропилмиристат Vetec(TM) ч.д., 98%;МИРИСТИНОВАЯ КИСЛОТА ИЗОПРОПИЛОВЫЙ ЭФИР МИНИМУМ;ИЗО-ПРОПИЛ N-ТЕТРАДЕКАНОАТ;ИЗОПРОПИЛМИРИСТАТ;110-27-0;Изопропилтетрадеканоат;Estergel;Тетрадекановая кислота, 1-метилэтиловый эфир;Bisomel;Isomyst;Promyr;Deltyl Extra;Kesscomir;Tegester;Sinnoester MIP;Crodamol IPM;Plymoutm IPM;Starfol IPM;Unimate IPM;Kessco IPM;Emcol-IM;пропан-2-ил тетрадеканоат;Wickenol 101;изопропиловый эфир миристиновой кислоты;Stepan D-50;Emerest 2314;1-метилэтил тетрадеканоат;Deltylextra;JA-FA IPM;Crodamol I.P.M.;Kessco изопропилмиристат;тетрадекановая кислота, изопропиловый;FEMA № 3556;миристиновая кислота, изопропиловый эфир;тетрадекановая кислота, изопропиловый эфир;Caswell № 511E;изопропилмиристат [USAN];1-тридеканкарбоновая кислота, изопропиловый эфир;HSDB 626;NSC 406280;UNII-0RE8K4LNJS;0RE8K4LNJS;EINECS 203-751-4;Estergel (TN);EPA Пестицидный химический код 000207;NSC-406280;BRN 1781127;метилэтилтетрадеканоат;MFCD00008982;изо-пропил N-тетрадеканоат;DTXSID0026838;CHEBI:90027;EC 203-751-4;Метилэтиловый эфир тетрадекановой кислоты;1405-98-7;NCGC00164071-01;WE(2:0(1Me)/14:0);изопропилмиристат;МИРИСТИНОВАЯ КИСЛОТА, ЭФИР ИЗОПРОПИЛОВОГО СПИРТА;Изопропилмиристат, 98%;ТЕТРАДЕКОНОВАЯ КИСЛОТА, 1-МЕТИЛЭТИЛОВЫЙ ЭФИР;DTXCID306838;ИЗОПРОПИЛМИРИСТАТ (II);ИЗОПРОПИЛМИРИСТАТ [II];ИЗОПРОПИЛМИРИСТАТ (MART.);ИЗОПРОПИЛМИРИСТАТ [MART.];ИЗОПРОПИЛМИРИСТАТ (USP-RS);ИЗОПРОПИЛМИРИСТАТ [USP-RS];CAS-110-27-0;ИЗОПРОПИЛМИРИСТАТ (EP MONOGRAPH);ИЗОПРОПИЛМИРИСТАТ [EP MONOGRAPH];IPM-EX;Изопропилмиристат; 1-Метилэтилтетрадеканоат;IPM-R;1-метилэтиловый эфир тетрадекановой кислоты;Deltyextra;Изопропиловый эфир миристиновой кислоты;Tegosoft M;Изопропилмиристат [USAN:NF];Liponate IPM;Crodamol 1PM;IPM 100;изопропилмиристат;Lexol IPM;Изопропилтетрадеканоат;Radia 7190;Изопропилмиристат (NF);Изопропилтетрадекановая кислота;SCHEMBL2442;Изопропилмиристат, >=98%;CHEMBL207602;ИЗОПРОПИЛМИРИСТАТ [MI];WLN: 13VOY1&1;FEMA 3556;изопропиловый эфир тетрадекановой кислоты;ИЗОПРОПИЛМИРИСТАТ [FHFI];ИЗОПРОПИЛМИРИСТАТ [HSDB];ИЗОПРОПИЛМИРИСТАТ [VANDF];Изопропилмиристат, >=90% (GC);Tox21_112080;Tox21_202065;Tox21_303171;ИЗОПРОПИЛМИРИСТАТ [WHO-DD];LMFA0701067;NSC406280;s2428;AKOS015902296;Tox21_112080_1;DB13966;Код пестицида USEPA/OPP: 000207;NCGC00164071-02;NCGC00164071-03;NCGC00256937-01;NCGC00259614-01;LS-14615;DB-040910;HY124190;CS-0085813;M0481;NS00006471;Раствор изопропилмиристата. 500 мл, стерильный;D02296;F71211

Может быть синтезирован обычной этерификацией PCL-Liquid с миристиновой кислотой.
PCL-Liquid является смягчающим средством в косметических и фармацевтических основах.
PCL-Liquid является эфиром жирной кислоты.
PCL-Liquid является эфиром изопропилового спирта и миристиновой кислоты.
PCL-Liquid в основном используется как солюбилизатор, эмульгатор и смягчающее средство в косметических и местных лекарственных средствах.
PCL-Liquid также находит применение в качестве ароматизатора в пищевой промышленности.

Фармацевтические вторичные стандарты для применения в контроле качества предоставляют фармацевтическим лабораториям и производителям удобную и экономически эффективную альтернативу приготовлению внутренних рабочих стандартов.

PCL-Liquid является смягчающим средством.
PCL-Liquid помогает защитить кожу.
PCL-Liquid делает кожу мягкой, гладкой и эластичной.
PCL-Liquid помогает коже поддерживать ее естественное равновесие.
PCL-Liquid быстро распределяется по коже и обладает сильным пленкообразующим эффектом, не будучи окклюзивным.

Таким образом, PCL-Liquid не подавляет естественное дыхание кожи.
PCL-Liquid не оставляет ощущения липкости или жирности на коже.
PCL-Liquid поддерживает естественное содержание влаги в коже.
PCL-Liquid имитирует состав натурального масла прикорневой железы, но, конечно, не имеет животного происхождения.
PCL-Liquid обеспечивает низкое изменение вязкости в зависимости от температуры.
PCL Liquid особенно подходит для эмульсий типа «вода в масле».

Химические свойства PCL-Liquid
Точка плавления: ~3 °C (лит.)
Точка кипения: 193 °C/20 мм рт. ст. (лит.)
Плотность: 0,85 г/мл при 25 °C (лит.)
Давление пара: <1 гПа (20 °C)
Показатель преломления: n20/D 1,434 (лит.)
FEMA: 3556 | ИЗОПРОПИЛМИРИСТАТ
Fp: >230 °F
Температура хранения: 2-8 °C
Растворимость: <0,05 мг/л
Форма: Жидкость
Удельный вес: 0,855 (20/4℃)
Цвет: Прозрачный
Запах: без запаха
Растворимость в воде: Смешивается со спиртом. Не смешивается с водой и глицерином.
Merck: 14,5215
Номер JECFA: 311
BRN: 1781127
Стабильность: Стабильный. Горючий. Несовместим с сильными окислителями.
InChIKey: AXISYYRBXTVTFY-UHFFFAOYSA-N
LogP: 7,71
Ссылка на базу данных CAS: 110-27-0 (Ссылка на базу данных CAS)
Ссылка на химию NIST: PCL-Liquid (110-27-0)
Система реестра веществ EPA: PCL-Liquid (110-27-0)

PCL-Liquid — это бесцветная и не имеющая запаха жидкость со слабым запахом, смешивающаяся с растительным маслом.
PCL-Liquid нелегко гидролизовать или сделать прогорклым.
Показатель преломления nD20 составляет 1,435~1,438, а относительная плотность (20°C) составляет 0,85~0,86.
PCL-Liquid используется во многих областях, включая фармацевтику, производство продуктов питания и средств личной гигиены.
PCL-Liquid представляет собой прозрачную, бесцветную, практически не имеющую запаха жидкость с низкой вязкостью, которая застывает при температуре около 5°C.
PCL-Liquid состоит из эфиров пропан-2-ола и насыщенных высокомолекулярных жирных кислот, в основном миристиновой кислоты.
PCL-Liquid практически не имеет запаха, очень немного жирная, но не прогорклая

Анализ содержания
Вес образца 1,5 г.
Затем PCL-Liquid определяется методом анализа эфиров (OT-18).
Эквивалентный фактор (e) в расчете составляет 135,2.
Или PCL-Liquid определяется методом неполярной колонки газовой хроматографии (GT-10-4).

Применение
PCL-Liquid — это эфир жирной кислоты, который используется в качестве растворителя в эмульсии вода-в-масле, маслах и мазях на жировой основе.

Использование PCL-Liquid рекомендуется в главе «Тест на стерильность» Европейской, Японской и Американской фармакопеи (EP, 2.6.13, JP, 4.06 и USP, 71) в качестве разбавителя для масел и масляных растворов, а также для мазей и кремов.

Действительно, растворяющие свойства PCL-Liquid улучшают фильтруемость этих образцов.
PCL-Liquid известен как усилитель проникновения для местных препаратов.
PCL-Liquid — это прозрачная, маловязкая маслянистая жидкость с очень хорошей способностью распределяться по коже.

PCL-Liquid в основном используется в косметике в качестве масляного компонента для эмульсий, масел для ванн и как растворитель для активных веществ.

PCL-Liquid является смягчающим средством, увлажнителем, связующим веществом и смягчителем кожи, который также способствует проникновению продукта.
PCL-Liquid, сложный эфир миристиновой кислоты, естественным образом встречается в кокосовом масле и мускатном орехе.
Хотя PCL-Liquid обычно считается комедогенным, некоторые производители ингредиентов четко указывают некомедогенность в своих паспортах.

В косметических и местных лекарственных препаратах, где требуется хорошее впитывание через кожу.
Желеобразный PCL-Liquid продавался как Estergel.

Фармацевтическое применение
PCL-Liquid является нежирным смягчающим средством, которое легко впитывается кожей.
PCL-Liquid используется в качестве компонента полутвердых основ и в качестве растворителя для многих веществ, применяемых местно.
Применения в местных фармацевтических и косметических составах включают масла для ванн; макияж; средства по уходу за волосами и ногтями; кремы; лосьоны; средства для губ; средства для бритья; смазки для кожи; дезодоранты; ушные суспензии; и вагинальные кремы.
Например, PCL-Liquid является самоэмульгирующимся компонентом предлагаемой формулы холодного крема, который подходит для использования в качестве носителя для лекарств или дерматологических активных веществ; PCL-Liquid также используется в косметике в стабильных смесях воды и глицерина.

PCL-Liquid используется в качестве усилителя проникновения для трансдермальных составов и используется в сочетании с терапевтическим ультразвуком и ионофорезом.
PCL-Liquid используется в водно-масляной гелевой эмульсии с пролонгированным высвобождением и в различных микроэмульсиях.
Такие микроэмульсии могут повышать биодоступность при местном и трансдермальном применении.
PCL-Liquid также используется в микросферах и значительно увеличивает высвобождение препарата из микросфер, загруженных этопозидом. PCL-Liquid используется в мягких клеях для чувствительных к давлению клейких лент.

Фармакология

PCL-Liquid используется в фармацевтических препаратах, поскольку он улучшает растворимость и увеличивает всасывание через ��ожу.

Наружное применение включает нераздражающий препарат йода для дезинфекции кожи и аэрозольные бактерицидные препараты для женской гигиены без раздражения кожи и слизистых оболочек.
Препараты для внутреннего применения включают пероральные стероидные составы и анестезирующие инъекционные растворы.
Ветеринарные препараты, содержащие PCL-Liquid, включают пероральные или парентеральные составы для лечения легочных червей и спрей для коровьего вымени для лечения мастита, борьбы с инфекцией и улучшения общего состояния кожи.

Было обнаружено, что PCL-Liquid является эффективным средством для внутримышечной инъекции пенициллина кроликам и для подкожного введения эстрогенов овариэктомированным крысам.
В анализах на человеческих предплечьях вазоконстрикторная активность мазевых препаратов, содержащих 0,025% бетаметазона 17-бензоата в белом мягком парафине, увеличивалась за счет присутствия изопропилмиристата.
Донован, Охмарт и Стоклоза отметили, что хорошие растворяющие свойства PCL-Liquid могут повышать терапевтическую активность составов за счет явного изменения размера частиц активных ингредиентов, поэтому необходимы дальнейшая оценка и клиническое исследование, прежде чем рекомендовать его использование в импровизированном приготовлении.
Исследования, в которых противогрибковая активность эфиров парабенов, растворенных поверхностно-активными веществами, снижалась PCL-Liquid, показывают, что на эффективность лекарственных веществ может влиять присутствие поверхностно-активных веществ и маслянистых ингредиентов, таких как изопропилмиристат.

Способ производства
PCL-Liquid представляет собой продукт этерификации миристиновой кислоты, полученной из повторно пропаренной кокосовой мякоти с изопропиловым спиртом.
(1) 200 кг миристиновой кислоты и 450 кг изопропилового спирта добавляли в реакционный сосуд по очереди.

После смешивания добавляли 360 кг серной кислоты (98%).

Реакционную смесь нагревали до кипения в течение 10 часов.

Затем PCL-Liquid извлекали, промывали ледяной водой и нейтрализовали водным раствором Na2CO3 (10%).

При нормальном давлении перегоняли изопропиловый спирт и воду. При пониженном давлении PCL-Liquid перегоняли (185°C/1,0 кПа~195°C/2,7 кПа).

(2) В реакционный сосуд добавляли 90 кг изопропилового спирта, а затем добавляли серную кислоту в качестве катализатора в количестве 5% от общего количества.
Во время смешивания медленно добавляли 228 кг миристиновой кислоты.
Смесь нагревали до кипения, и вода непрерывно отделялась.
Пока вода не отделялась, температуру реакции снижали и брали зонд для измерения кислотного числа.
Когда кислотное число достигало 1,5 мг KOH/г, реакция завершалась.
Затем добавляли щелочь для нейтрализации.
После удаления воды при пониженном давлении давление дополнительно снижали для деалкоголизации, пока кислотное число не составляло 0,05~1,0 мг KOH/г.
Конечным продуктом тогда является PCL-Liquid.

Методы производства
PCL-Liquid может быть получен либо путем этерификации миристиновой кислоты с пропан-2-олом, либо путем реакции миристоилхлорида и пропан-2-ола с помощью подходящего дегидрохлорирующего агента.
Высокочистый материал также доступен в продаже, полученный путем ферментативной этерификации при низкой температуре.
PCL-ЖИДКОСТЬ 100
PCL-Liquid 100 представляет собой смесь разветвленных алкиловых эфиров жирных кислот, используемых в качестве уникального смягчающего средства, обеспечивающего исключительную эластичность кожи.
PCL-Liquid 100 демонстрирует высокую способность к распределению и хорошие свойства смачивания кожи, что делает кожу мягкой, гладкой и эластичной, а также обладает водоотталкивающими свойствами.
PCL-Liquid 100 также образует на коже тонкую гидрофобную пленку, которая защищает от высыхания, сохраняя при этом естественную проницаемость кожи для водяного пара и противодействуя окклюзии.

CAS: 90411-68-0
MF: C24H48O2
MW: 0
EINECS: 291-445-1

Синонимы
Гексановая кислота, 2-этил-, C16-18-алкиловые эфиры; Гексанур, 2-этил-, C16-18-алкиловый эфир; PCL; ЖИДКОСТЬ; 134647WMX4; Гексадецил 2-этилгексаноат; 59130-69-7; Цетил 2-этилгексаноат; цетил этилгексаноат; ГЕКСАНОЙНАЯ КИСЛОТА, 2-ЭТИЛ-, ГЕКСАДЕЦИЛОВЫЙ ЭФИР; 134647WMX4; EINECS 261-619-1; Schercemol CO; Exceparl HO; Tegosoft C;UNII-134647WMX4;Pelemol 168;90411-68-0;Hest CSO (соль/смесь);Crodamol CAP (соль/смесь);EC 261-619-1;Tegosoft liquid (соль/смесь);SCHEMBL15239;Lanol ​​1688 (соль/смесь);HEXADECYL2-ETHYLHEXANOATE;DTXSID20866741;2-этилгексановая кислота, цетиловый эфир;AKOS028108429;DB11349;NS00007021;Гексановая кислота, 2-этил-, C16-18-алкиловые эфиры;Q27251471

PCL-Liquid 100 обладает высокой устойчивостью к окислению.
PCL Liquid 100 — смягчающее средство.
Это биоинспирированное эфирное масло помогает защитить вашу кожу.
PCL-Liquid 100 делает кожу мягкой, гладкой и эластичной.
PCL-Liquid 100 помогает коже поддерживать ее естественное равновесие.
PCL-Liquid 100 быстро распределяется по коже и обладает сильным пленкообразующим эффектом, не будучи окклюзивным.
Таким образом, PCL-Liquid 100 не подавляет естественное дыхание кожи.
PCL-Liquid 100 не оставляет ощущения липкости или жирности на коже.
PCL-Liquid 100 сохраняет естественное содержание влаги в коже.
PCL-Liquid 100 имитирует состав натурального масла прикорневой железы, но, конечно, не животного происхождения.
PCL-Liquid 100 обеспечивает низкое изменение вязкости в зависимости от температуры.
PCL Liquid 100 особенно подходит для эмульсий W/O.

PCL-Liquid 100 — это эфир цетеарилового спирта и 2-этилгексановой кислоты, ранее называвшийся цетеарил октаноатом.
PCL-Liquid 100 — это прозрачная, маслянистая, водостойкая жидкость, которая защищает кожу от потери влаги, действуя как смягчающее средство.
PCL-Liquid 100, имеющий сопоставимый химический состав, но немного отличающиеся свойства и безопасность, не следует путать с этим ингредиентом.
PCL-Liquid 100, широко известный как «масло перьев морских птиц», может заменить натуральный сквалан.
PCL-Liquid 100 обладает хорошей способностью к образованию пленки, легкой текстурой, водонепроницаем и смягчает кожу, является хорошим увлажнителем без вязкости.
PCL-Liquid 100 может использоваться в губных помадах в качестве диспергатора пигмента, базового масляного агента, блеска для губной помады и смягчающего средства для крема и лосьона и т. д.

PCL-Liquid 100 представляет собой сложный эфир цетилового спирта и 2-этилгексановой кислоты.
PCL-Liquid 100 присутствует в косметических продуктах в качестве кондиционирующего и смягчающего средства для кожи.
PCL-Liquid 100 представляет собой синтетическую смесь эфиров жирных кислот, которая напоминает секрецию копчиковой железы водоплавающих птиц.
Таким образом, PCL-Liquid 100 придает водоотталкивающие свойства косметическим рецептурам.
PCL-Liquid 100 также используется в качестве агента, улучшающего «растекаемость» и «пережиривающего» материала для сухой кожи.

PCL-Liquid 100 — это смесь эфиров цетилового и стеарилового спиртов с 2-этилгексановой кислотой, бесцветное масло со слабым собственным запахом.
Прежнее название PCL-Liquid 100 — цетеарил октаноат.

PCL-Liquid 100 — это многофункциональное косметическое масло, используемое во многих видах средств по уходу за кожей и волосами.
PCL-Liquid 100 нерастворимо в воде, свободно смешивается с растительными, минеральными и синтетическими маслами и жирами и предназначено для масляной фазы в эмульсиях типа «масло в воде» и «вода в масле».

PCL-Liquid 100 — это легко эмульгируемое масло, используемое в качестве смягчающего средства, усилителя растекаемости и увлажнителя.
PCL-Liquid 100, тесно связанный с биологическими жирами кожи, оставляет приятное послевкусие (не липкий и не жирный) и придает гладкий, глянцевый вид препаратам, делая кожу мягкой и эластичной.

Благодаря своей разветвленной цепной структуре PCL-Liquid 100 очень легко наносится.

PCL-Liquid 100 используется в качестве базового масла при производстве широкого спектра косметических и фармацевтических препаратов, которые легко наносятся и быстро впитываются кожей.

Благодаря своей хорошей устойчивости к окислению PCL-Liquid 100 можно использовать в солнцезащитных средствах.
Кроме того, PCL-Liquid 100 образует на коже неокклюзивную, «дышащую» пленку, которая действует как водоотталкивающее средство и защищает от обезвоживания.

Благодаря своим многочисленным полезным свойствам PCL-Liquid 100 используется во многих средствах по уходу за волосами, кожей и загаром, а также в декоративной косметике.
Токсикологические исследования изучили использование PCL-Liquid 100 в косметических препаратах. Полученные результаты не выявили токсикологической опасности при применении продукта в рекомендуемых концентрациях для рекомендуемых применений.

Применение
PCL-Liquid 100 действует как смягч��ющее средство, усилитель текстуры и кондиционирующий агент в косметике и средствах личной гигиены.
Уход за кожей: PCL-Liquid 100 разглаживает и смягчает кожу.
PCL-Liquid 100 придает кремам и лосьонам сложную растекаемость и является кислородоустойчивым в дополнение к своим увлажняющим свойствам.
В несмываемых продуктах PCL-Liquid 100 можно использовать до 35% времени.
Кроме того, PCL-Liquid 100 служит заменой спермацетового воска, полученного из китов.
Многочисленные косметические продукты, включая тональные основы, увлажняющие средства для лица, губные помады, блески для губ, подводки для губ/глаз, кондиционеры и средства против старения, содержат PCL-Liquid 100.
PCL-ТВЕРДЫЙ
PCL-Solid — это смесь эфиров длинноцепочечных жирных кислот, используемых в качестве смягчающего средства с хорошо развитыми свойствами придания консистенции.
PCL-Solid — это бесцветный воск, который плавится при температуре кожи, имеет нейтральный запах, придает эмульсиям приятную консистенцию и повышает их стабильность.
PCL-Solid создает ощущение мягкой, приятной, гладкой кожи, обладает высоким уровнем потенциала пережиривания, также демонстрирует сильные водоотталкивающие свойства и образует гидрофобную пленку, которая защищает кожу от высыхания.

CAS: 24980-41-4
MF: C6H10O2
MW: 114.1424
EINECS: 244-492-7

Синонимы
Ploycarprolactone;Polycaprolactone Standard (Mw 2,000);Polycaprolactone Standard (Mw 4,000);Polycaprolactone Standard (Mw 13,000);Polycaprolactone Standard (Mw 20,000);Polycaprolactone Standard (Mw 40,000);Polycaprolactone Standard (Mw 60,000);Polycaprolactone Standard (Mw 100,000)

PCL Solid — надежное смягчающее средство с ценными ухаживающими свойствами.
PCL-Solid плавится немного выше температуры кожи.
PCL-Solid придает эмульсиям приятную консистенцию и помогает повысить их стабильность.
PCL-Solid создает ощущение мягкой, приятной и гладкой кожи.
PCL Solid усиливает ухаживающие свойства составов.

PCL-Solid — это полукристаллический полимер, химически синтезированный биоразлагаемый полимерный материал, его структурная повторяющаяся единица содержит 5 неполярных метилен-CH2 крахмала и т. д.
Смешивание веществ может производить полностью биоразлагаемые материалы.

PCL-Solid — это эпсилон-лактон, представляющий собой оксепан, замещенный оксогруппой в положении 2.

PCL-Solid — это синтетический, полукристаллический, биоразлагаемый полиэфир с температурой плавления около 60 °C и температурой стеклования около −60 °C.
Наиболее распространенное применение PCL-Solid — это производство специальных полиуретанов. PCL-Solid придает полученному полиуретану хорошую устойчивость к воде, маслу, растворителю и хлору.

PCL-Solid часто используется в качестве добавки к смолам для улучшения их технологических характеристик и свойств конечного использования (например, ударопрочности).
PCL совместим с рядом других материалов, его можно смешивать с крахмалом для снижения его стоимости и повышения биоразлагаемости, или PCL-Solid можно добавлять в качестве полимерного пластификатора в поливинилхлорид (ПВХ).
PCL-Solid также используется для шинирования, моделирования и в качестве сырья для систем прототипирования, таких как 3D-принтеры для изготовления сплавленных нитей.

Химические свойства PCL-Solid
Температура плавления: 60 °C (лит.)
Плотность: 1,146 г/мл при 25 °C
Tg: -60
Температура хранения: -20 °C
Форма: гранулы
Запах: без запаха
InChI: InChI=1S/C6H10O2/c7-6-4-2-1-3-5-8-6/h1-5H2
InChIKey: PAPBSGBWRJIAAV-UHFFFAOYSA-N
Система реестра веществ EPA: PCL-Solid (24980-41-4)

Использование
Биоразлагаемый, биосовместимый и биорезорбируемый полимер, состоящий из ε-капролактона.
PCL-Solid использовался при изготовлении исследовательских медицинских устройств и исследовательских решений для тканевой инженерии, таких как ортопедические или устройства для фиксации мягких тканей. Разложение этого материала было тщательно изучено и, как было показано, безопасно рассасывается организмом после имплантации.
Модификация молекулярной массы и состава полимера позволяет контролировать скорость разложения и механическую стабильность полимера.
Средство для экструзии, смазка для матриц, разделительное средство для форм, средство для дисперсии пигментов и наполнителей и сегменты полиэфиров в уретанах и блочных полиэфирах.

Биомедицинское применение
PCL-Solid разлагается путем гидролиза его эфирных связей в физиологических условиях (например, в организме человека) и поэтому получил большое внимание для использования в качестве имплантируемого биоматериала.
В частности, PCL-Solid особенно интересен для изготовления долгосрочных имплантируемых устройств из-за его разложения, которое происходит даже медленнее, чем у полилактида.

PCL-Solid широко используется в долгосрочных имплантатах и ​​приложениях с контролируемым высвобождением лекарств.
Однако, когда PCL-Solid применяется в тканевой инженерии, PCL страдает от некоторых недостатков, таких как медленная скорость разложения, плохие механические свойства и низкая адгезия клеток.
Включение керамики на основе фосфата кальция и биоактивных стекол в PCL-Solid позволило получить класс гибридных биоматериалов с существенно улучшенными механическими свойствами, контролируемыми скоростями деградации и повышенной биоактивностью, которые подходят для инженерии костной ткани.

PCL-Solid был одобрен Управлением по контролю за продуктами и лекарствами (FDA) для конкретных применений в организме человека в качестве (например) устройства для доставки лекарств, шовного материала или адгезионного барьера.
PCL-Solid используется в быстрорастущей области эстетики человека после недавнего внедрения микросферического дермального наполнителя на основе PCL, относящегося к классу стимуляторов коллагена (Ellansé).

Благодаря стимуляции выработки коллагена продукты на основе PCL способны корректировать признаки старения лица, такие как потеря объема и дряблость контуров, обеспечивая немедленный и долгосрочный естественный эффект.
PCL-Solid исследуется как каркас для восстановления тканей с помощью тканевой инженерии, мембраны GBR.

PCL-Solid использовался в качестве гидрофобного блока амфифильных синтетических блок-сополимеров, используемых для формирования везикулярной мембраны полимерсом.
В гранулы PCL-Solid инкапсулировали различные лекарственные средства для контролируемого высвобождения и целевой доставки лекарств.

В стоматологии (как композит под названием Resilon) PCL-Solid используется в качестве компонента «ночных кап» (зубных шин) и для пломбирования корневых каналов.

PCL-Solid действует как гуттаперча, имеет схожие свойства обработки и для повторной обработки может размягчаться при нагревании или растворяться в растворителях, таких как хлороформ. Подобно гуттаперче, существуют основные конусы всех размеров ISO и вспомогательные конусы разных размеров и конусности.
Основное различие между пломбировочным материалом на основе поликапролактона (Resilon и Real Seal) и гуттаперчей заключается в том, что PCL-Solid является биоразлагаемым, тогда как гуттаперча — нет.
В экспертном стоматологическом сообществе нет единого мнения относительно того, желателен ли биоразлагаемый пломбировочный материал для корневых каналов, такой как Resilon или Real Seal.

Свойства и применение
PCL-Solid — это биоразлагаемый полукристаллический полиэфир для использования в тканевой инженерии и исследовательских приложениях по доставке лекарств.
Из-за увеличенной длины алифатической цепи PCL-Solid разлагается значительно медленнее, чем другие распространенные биоразлагаемые полимеры, такие как полилактид.
PCL-Solid имеет низкую температуру плавления (55–60 °C), что делает его идеальным для термической обработки и расширяет его применение в новых приложениях, таких как 3D-биопечать.
В дополнение к своим благоприятным термическим свойствам PCL-Solid также обладает высокой растворимостью в органических растворителях, что обеспечивает множество других вариантов обработки.
PCL-Solid имеет низкое содержание остаточной воды, мономера и катализатора (олова), что делает его идеальным выбором для использования в тканевой инженерии и исследованиях 3D-биопечать.

Синтез
PCL-Solid получают путем полимеризации с раскрытием кольца ε-капролактона с использованием катализатора, такого как октоат олова.
Для полимеризации с раскрытием кольца капролактона можно использовать широкий спектр катализаторов.
PCMC
Chlorocresol; 3-Methyl-4-chlorophenol; 4-Chloro-3-methyl phenol; Parachlorometacresol; p-Chloro-m-cresol; 2-Chloro-5-hydroxytoluene; 2-Chloro-hydroxytoluene; 4-Chloro-1-hydroxy-3-methylbenzene; 4-Chloro-3-cresol; 4-Chloro-3-methylphenol; 4-Chloro-5-methylphenol; 4-Chloro-m-cresol; 6-Chloro-3-hydroxytoluene; 6-Chloro-m-cresol; Chlorkresolum; Chloro-3-cresol; Chlorocresol; Chlorocresolo; Chlorocresolum; Clorocresolo; Parachlorometacresol; Parmetol; Parol; Peritonan; Perol; p-Chlor-m-cresol; p-Chloro-m-cresol; p-Chlorocresol CAS NO:59-50-7
PCMX
PCMX Chloroxylenol, also known as para-chloro-meta-xylenol (PCMX), is an antiseptic and disinfectant which is used for skin disinfection, and together with alcohol for cleaning surgical instruments.[2] PCMX is also used within a number of household disinfectants and wound cleaners.[3] PCMX is thought to act by disrupting microbial cell walls and inactivating cellular enzymes, and is less effective than some other available agents. PCMX is available as a liquid. History of PCMX PCMX was first made in 1927. It is on the World Health Organization's List of Essential Medicines.[8] It is sold in a number of formulations and under a number of brand names, including Dettol. Soon after it was created parachlorometaxylenol was then called PCMX, but this was thought to be a poor name and it was renamed Dettol. Then in 1932 it was marketed in Britain and in India. It had a white on green bottle with a white sword depicted. PCMX is sold, in the same style bottle, in Argentina and Uruguay to this day. Properties of PCMX Side effects are generally few but can include skin irritation.[2][5] It may be used mixed with water or alcohol. PCMX is most effective against gram-positive bacteria.[2] It works by disruption of the cell wall and stopping the function of enzymes. Uses of PCMX PCMX is used in hospitals and households for disinfection and sanitation. It is also commonly used in antibacterial soaps, wound-cleansing applications and household antiseptics such as Dettol liquid (to which it contributes its distinctive odor), cream and ointments.[13]Following independent laboratory testing specific Dettol products have demonstrated effectiveness against the Covid-19 virus (SARS-CoV-2) when used in accordance with the directions for use. Side effects of PCMX PCMX is not significantly toxic to humans, is practically non-toxic to birds, and is moderately toxic to freshwater invertebrates. It is highly toxic to fish, cats, and some amphibians and should not be used around them. PCMX is a mild skin irritant and may trigger allergic reactions in some individuals. Humans Excessive exposure to PCMX has the potential for causing death. It can be poisonous when swallowed and even when it is unintentionally inhaled. A medical study in Hong Kong which analyzed 177 cases of Dettol ingestion that resulted in emergency department treatment (95% of which were intentional), concluded that "Dettol poisoning resulted in serious complications in 7% of patients, including death." Animals PCMX is toxic to many animals, especially cats. Phenolic compounds are of particular concern because cats are unable to fully metabolize them. A cat may swallow the product by licking its paws after they have come into contact with it. In Australia, PCMX spray has been shown to be lethal to cane toads, an invasive species that was introduced from Hawaii as a result of bad judgment in 1935. It had been hoped that the amphibian would control the cane beetle but it became highly destructive within the ecosystem. Spraying the disinfectant at close range has been shown to cause rapid death to toads. PCMX is not known whether the toxins are persistent or whether they harm other Australian flora and fauna. Owing to concerns over potential harm to other Australian wildlife species, the use of PCMX as an agent for pest control was banned in Western Australia by the Department of Environment and Conservation in 2011. Society and culture A number of brand names are available. PCMX is the active ingredient in Dettol. PCMX comprises 4.8% of Dettol's total admixture,[19] with the rest made up by pine oil, isopropanol, castor oil, soap and water. Chloroxylenol (PCMX) also called 4-Chloro-3, 5-dimethylphenol, is a white crystal. PCMX is a secure, high-efficient, broad spectrum and low-toxic antiseptic. PCMX has large potency to Gram-positive, Gram-negative, epiphyte and mildew approved by FDA . PCMX has good chemical stability and doesn’t lose the activity in normal storage conditions. Solubility in water is 0.03 wt%, freely soluble in organic solvent such as alcohols, ethers, polyglycols, etc. and solutions of alkali hydroxides frequently used in personal clean care products. This product (PCMX) is low-poison antibacterial, frequently used in personal care products such as hand - cleaning detergent, soap, dandruff control shampoo and healthy products, etc. Common dosage in lotion as follows: 0.5~1wt% in liquid detergent, 1wt% in antibacterial handing detergent, 4.5~5 wt% in disinfectant. What’s more, PCMX has been used in other fields such as glue, painting, textile, pulp, etc. This study examines the bactericidal and fungicidal efficiency of parachlorometaxylenol (PCMX) and its active ingredient, chlorxylenol at 10% and 20% concentrations, on four microbial isolates from abattoirs' (slaughter houses) floors in an open environment in Port Harcourt metropolis, Rivers State Nigeria. The study was carried out between the months of January 2005 and June 2006. Mixed culture of Vibrio species, Salmonella sp, Campylobacter sp and Candida albicans isolated from five different abattoirs: Agip, Trans -Amadi, Woji, Rumuodara and Rumuokoro: were used as test bacteria and fungi respectively, using agar diffusion and tranditional plate count methods. The four microbial isolates were exposed to parachlorometaxylenol (PCMX) and chlorxylenol after the addition of quenching agent (QAC), at time interval starting from Omin, lOmin, 20min, 30min, 40,min, 50min,and 60min. Analysis of Variance (ANOVA) was calculated on the resistance and the susceptibility of these four isolates to the test disinfectants, the results showed that there was no significant difference in the test disinfectants effectiveness on these test organisms. The findings showed that Vibrio, Salmonella and Campylobacter were more sensitive to parachlorometaxylenol (PCMX) also called Dettol, while Candida albicans was more sensitive to Chlorxylenol. Also observed from this work is candidiasis infection through cross-contamination can be taken care of in the body of its victim by washing in 10% chloroxylenol. At ambient temperature, a 25% solution of PCMX in isopropanol is not corrosive to stainless steel or aluminum. Brass is slightly affected as is mild steel. Mild steel is slightly affected by isopropanol alone. PCMX is stable when exposed to sunlight and humidity from ambient storage over 24 hours. It is also stable at elevated temperatures (54 °C). Choroxylenol is hydrolytically stable. Drug Indication of PCMX The predominant medical applications for which PCMX is formally indicated for therapeutic use is as an application to the skin for use in cuts, bites, stings, abrasions, and for use as antiseptic hand cleaner. PCMX is a substituted phenol which has been widely used for many years as an ingredient of antiseptic and disinfectant products intended for external use [L1999]. PCMX is known to be bactericidal in low concentration to a wide range of Gram positive and Gram negative bacteria. Absorption No PCMX was detected in the blood following the dermal administration of 2 g of p-PCMX in an ethanol/olive oil vehicle in human subjects. After a dose of 5 g, only traces were found, after 8 g, 1 mg % (1 mg/dL) was found in the blood after 3 hours, and 4 mg % (4 mg/dL) after 24 hours [A32349]. After a dose of 20 g, 4 mg % (4 mg/dL) was measured after half an hour, and 1 mg % (1 mg/dL) was present at 72 hours [A32349]. For antiseptic purposes, PCMX is considered to be well-absorbed when applied to the skin. Volume of Distribution The only data available regarding the volume of distribution of PCMX is the mean Vss of 22.45 L determined after 200 mg intravenous single dose of PCMX was administered to healthy mongrel dog subjects. Clearance The only data available regarding the clearance of PCMX is the mean clearance rate of 13.76 L/hr following a 200 mg intravenous single dose of the substance into healthy mongrel dog subjects [L1989, L1993]. Moreover, in another study, when 8 g of PCMX was administered dermal on a human subject in an alcohol/glycerin vehicle, 11% was excreted in 48 hours. The pharmacokinetic and metabolic profile of p-chloro-m-xylenol (PCMX) was studied in healthy mongrel dogs after intravenous and oral administration of single doses of 200 and 2000 mg of PCMX, respectively. ... The mean half-life and mean residence time were 1.84 and 1.69 hr. respectively. The apparent volume of distribution at steady state was estimated to be 22.4 liters, and the plasma clearance was 14.6 liters/hr. The bioavailability of PCMX was 21%. ... PCMX's metabolite data show that a presystemic elimination process (first-pass effect) is also occurring. PCMX plasma concentrations after intravenous administration of 500-, 200-, and 100-mg doses were found to be proportional to the dose given. Metabolism/Metabolites Certain animal studies have shown that following dermal application of PCMX, that the absorption was rapid with a Cmax = 1-2 hours, and that the administered substance was excreted via the kidney with almost complete elimination within 24 hours. The primary metabolites discovered in the excreted urine were glucuronides and sulfates [L1992]. Some PCMX monographs liken its pharmacokinetic profile to that of another antiseptic - triclosan - which is rapidly excreted in the urine also as a glucuronide metabolite, as observed in the human model. Moreover, In one human subject administered 5 mg intragluteally, 14% was excreted with glucuronic acid and 17% with sulfuric acid at 3 days. Any PCMX absorbed into the body is likely extensively metabolized by the liver and rapidly excreted, mainly in the urine, as sulphate and glucuronide conjugates. One study estimated the mean terminal half-life and mean residence time after a 200 mg intravenous single dose of PCMX in healthy mongrel dog subjects to be 1.7 and 1.69 hours, respectively. Alternatively, some product monographs liken PCMX to a similar liquid antiseptic, triclosan, whose calculated urinary excretion half-life in man is approximately 10 hours. As a phenol antiseptic, it is believed that the hydroxyl -OH groups of the PCMX molecule binds to certain proteins on the cell membrane of bacteria, and disrupts the membrane so as to allow the contents of the bacterial cell to leak out [A1351]. This allows PCMX to enter the bacterial cell to bind further with more proteins and enzymes to disable the cell's functioning [A1351]. At particularly high concentrations of PCMX, the protein and nucleic acid content of targeted bacterial cells become coagulated and cease to function, leading to rapid cell death. Pursuant to section 8(d) of TSCA, EPA promulgated a model Health and Safety Data Reporting Rule. The section 8(d) model rule requires manufacturers, importers, and processors of listed chemical substances and mixtures to submit to EPA copies and lists of unpublished health and safety studies. PCMX is included on this list. Section 4(g)(2)(A) of FIFRA calls for the Agency to determine, after submission of relevant data concerning an active ingredient, whether products containing the active ingredients are eligible for reregistration. The Agency has previously identified and required the submission of the generic (i.e. active ingredient specific) data required to support reregistration of products containing PCMX active ingredients. The Agency has completed its review of these generic data, and has determined that the data are sufficient to support reregistration of all products containing PCMX. Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses. A number of active ingredients have been present in OTC drug products for various uses, as described below. However, based on evidence currently available, there are inadequate data to establish general recognition of the safety and effectiveness of these ingredients for the specified uses: PCMX is included in topical acne drug products. Toxicity Summary of PCMX As PCMX is predominantly employed as an active ingredient in various liquids or creams as cleaners, disinfectants, or antiseptics that are generally designed to be used topically, it is widely accepted that the use of such liquids - when used appropriately - is unlikely to present a sufficient volume that could be ingested to cause any medical problems [L1992]. In the event of accidental eye contact, was with Luke warm water [L1992]. PCMX is known to have a low systemic toxicity, even at dosage levels many times higher that those likely to be absorbed during normal usage of the agent. Environmental Fate/Exposure Summary of PCMX PCMX's production and use as an antibacterial, germicide, antiseptic and in mildew prevention may result in its release to the environment through various waste streams. If released to air, a vapor pressure of 0.1 mm Hg at 20 °C indicates PCMX will exist solely as a vapor in the atmosphere. Vapor-phase PCMX will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5.8 hours. PCMX does not absorb at wavelengths >290 nm and has been reported to be stable to sunlight for up to 24 hours. If released to soil, PCMX is expected to have low mobility based upon an estimated Koc of 1,400. Volatilization from moist soil surfaces is not expected to be an important fate process based upon an estimated Henry's Law constant of 5.1X10-7 atm-cu m/mole. PCMX is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 10 hours and 9 days, respectively. Degradation of PCMX appears to be slower than other phenol derivatives. Studies in sewage showed 80-95% of the original compound remaining after 2 days and 60-70% remaining after 7 days. This is consistent with other studies that showed less than 40% degradation in activated sludge over 7 days. If released into water, PCMX is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. An estimated BCF of 66 suggests the potential for bioconcentration in aquatic organisms is moderate. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Occupational exposure to PCMX may occur through inhalation and dermal contact with this compound at workplaces where PCMX is produced or used. The most likely route of exposure to the general population is through dermal contact when using soaps or cleaning products that contain PCMX as an antibacterial. A smaller population may be exposed to PCMX when taking medications that contain PCMX as an active ingredient. PCMX's production and use as an antibacterial, germicide, antiseptic and in mildew prevention(1) may result in its release to the environment through various waste streams(SRC). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 1,400(SRC), determined from a log Kow of 3.27(2) and a regression-derived equation(3), indicates that PCMX is expected to have low mobility in soil(SRC). Volatilization of PCMX from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 5.1X10-7 atm-cu m/mol(SRC), derived using a fragment constant estimation method(4). PCMX is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(4). Degradation of PCMX appears to be slower than other phenol derivatives(5,6). Studies in sewage showed 95-80% of the original compound remaining after 2 days and 60-70% remaining after 7 days(5). This is consistent with other studies that showed less than 40% degradation in activated sludge over 7 days(6). ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), PCMX, which has an estimated vapor pressure of 1.8X10-3 mm Hg at 25 °C(SRC), determined from a fragment constant method(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase PCMX is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 6 hours(SRC), calculated from its rate constant of 6.7X10-11 cu cm/molecule-sec at 25 °C(SRC) that was derived using a structure estimation method(3). PCMX does not contain chromophores that absorb at wavelengths >290 nm(4) and has been reported to be stable to sunlight for up 24 hours(5). The rate constant for the vapor-phase reaction of PCMX with photochemically-produced hydroxyl radicals has been estimated as 6.7X10-11 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 5.8 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). PCMX is not expected to undergo hydrolysis in the environment due to the lack of functional groups that hydrolyze under environmental conditions(2). PCMX does not absorb at wavelengths >290 nm(3) and has been reported to be stable to sunlight for up to 24 hours(4). An estimated BCF of 66 was calculated for PCMX(SRC), using a log Kow of 3.27(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is moderate(SRC), provided the compound is not metabolized by the organism(SRC). The Koc of PCMX is estimated as 1,400(SRC), using a log Kow of 3.27(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that PCMX is expected to have low mobility in soil. The Henry's Law constant for PCMX is estimated as 5.1X10-7 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that PCMX is expected to be essentially nonvolatile from moist soil and water surfaces(2). PCMX is not expected to volatilize from dry soil surfaces(SRC) based upon an estimated vapor pressure of 1.8X10-3 mm Hg(SRC), determined from a fragment constant method(3). Occupational exposure to PCMX may occur through inhalation and dermal contact with this compound at workplaces where PCMX is produced or used(SRC). The most likely route of exposure to the general population is through dermal contact when using soaps or cleaning products that contain PCMX as an antibacterial(SRC). A smaller population may be exposed to PCMX when taking medications that contain PCMX as an active ingredient(1). Because of the broad-spectrum antimicrobial activity of para-chlorometa- xylenol (PCMX) and the need for additional topical agents for bacterial control of the burn wound, PCMX was tested in an in vitro topical antimicrobial susceptibility well assay system. For testing, data from 50 strains of Staphvlococcus aureus and 100 strains of various gram-negative micro-organisms were isolated from wounds of acute burn patients. Results showed that burns colonized by organisms other than P. aeruginosa could be treated with PCMX as a single agent, whereas burn wounds not so colonized could be treated with mixtures of PCMX and an antimicrobial that has anli-Pseudomonas activity. Alternatively, PCMX could be mixed with antimicrobials against which organisms show random resistance and thus expand their spectrum of activity. Therefore, further testing and development of PCMX as a topical antimicrobial preparation seems warranted. Para-Chloro-Meta-Xylenol (PCMX) is an antiseptic and disinfectant. Used for skin disinfection and cleaning surgical instruments. It is also used within a number of household disinfectants and wound cleaners. PCMX is an antimicrobial chemical compound used as a preservative to control bacteria, algae, and fungi in adhesives, emulsions, paints, cooling fluids, glue, cosmetics, hygiene products such as hair conditioners and deodorants, topical medications, urinary antiseptics and metal working fluids. Liquid PCMX solutions are used for cleaning and disinfecting wounds, abrasions and abscesses while creams are used for cuts, scratches, insect bites, and burns. Powders are used to treat problems of the feet and skin inflammations. Uses of PCMX: Preservative in cooling fluids, creams, topical and urinary antiseptics. Chloroxylenol (PCMX) acts against a wide range of bacteria. Liquids are used for the cleaning and disinfecting of wounds and abrasions as well as abscesses. The creams are used for cuts, scratches, insect bites, burns and similar problems. Powders can be used to treat tinea problems of the feet and skin inflammations. Also in pharmaceutical products, hair conditioners, toilet and deodorants, soaps, electrocardiogram paste, etc. Chloroxylenol, or para-chloro-meta-xylenol (PCMX), is an antiseptic and disinfectant agent used for skin disinfection and surgical instruments. PCMX is found in antibacterial soaps, wound-cleansing applications, and household antiseptics. The halophenol is shown to be most effective against Gram positive bacteria where it disrupts the cell wall due to its phenolic nature 1. PCMX is on the World Health Organization's List of Essential Medicines. PCMX is a substituted phenol which has been widely used for many years as an ingredient of antiseptic and disinfectant products intended for external use. It is known to be bactericidal in low concentration to a wide range of Gram positive and Gram negative bacteria. As a phenol antiseptic, it is believed that the hydroxyl -OH groups of the PCMX molecule binds to certain proteins on the cell membrane of bacteria, and disrupts the membrane so as to allow the contents of the bacterial cell to leak out. This allows PCMX to enter the bacterial cell to bind further with more proteins and enzymes to disable the cell's functioning. At particularly high concentrations of PCMX, the protein and nucleic acid content of targeted bacterial cells become coagulated and cease to function, leading to rapid cell death. Volume of distribution The only data available regarding the volume of distribution of PCMX is the mean Vss of 22.45 L determined after 200 mg intravenous single dose of PCMX was administered to healthy mongrel dog subjects 6,8. Protein binding One study determined the protein binding of PCMX to be approximately 85.2% +/- 2.32% for serum albumin and 89.8% +/- 2.99% for whole human serum. Metabolism Certain animal studies have shown that following dermal application of PCMX, that the absorption was rapid with a Cmax = 1-2 hours, and that the administered substance was excreted via the kidney with almost complete elimination within 24 hours. The primary metabolites discovered in the excreted urine were glucuronides and sulfates. Some PCMX monographs liken its pharmacokinetic profile to that of another antiseptic - triclosan - which is rapidly excreted in the urine also as a glucuronide metabolite, as observed in the human model. Moreover, In one human subject administered 5 mg intragluteally, 14% was excreted with glucuronic acid and 17% with sulfuric acid at 3 days 4. Any PCMX absorbed into the body is likely extensively metabolized by the liver and rapidly excreted, mainly in the urine, as sulphate and glucuronide conjugates. Route of elimination of PCMX The major route of excretion is likely in urine 8,7, although some amounts may be found in bile and traces in exhaled air. Half-life One study estimated the mean terminal half-life and mean residence time after a 200 mg intravenous single dose of PCMX in healthy mongrel dog subjects to be 1.7 and 1.69 hours, respectively 6,8. Alternatively, some product monographs liken PCMX to a similar liquid antiseptic, triclosan, whose calculated urinary excretion half-life in man is approximately 10 hours. Clearance of PCMX The only data available regarding the clearance of PCMX is the mean clearance rate of 13.76 L/hr following a 200 mg intravenous single dose of the substance into healthy mongrel dog subjects. Moreover, in another study, when 8 g of PCMX was administered dermal on a human subject in an alcohol/glycerin vehicle, 11% was excreted in 48 hours. Toxicity of PCMX As PCMX is predominantly employed as an active ingredient in various liquids or creams as cleaners, disinfectants, or antiseptics that are generally designed to be used topically, it is widely accepted that the use of such liquids - when used appropriately - is unlikely to present a sufficient volume that could be ingested to cause any medical problems 7. In the event of accidental eye contact, was with Luke warm water 7. PCMX is known to have a low systemic toxicity, even at dosage levels many times higher that those likely to be absorbed during normal usage of the agent. Drug overdose There have been many cases of intoxication with oral PCMX liquid, a widespread household disinfectant that contains PCMX 4.8%, pine oil, and isopropyl alcohol [4–8]. PCMX was involved in 10% of hospital admissions related to self-poisoning in Hong Kong. In a retrospective study of 67 cases, serious complications were relatively common (8%) and these included aspiration of PCMX with gastric contents, resulting in pneumonia, cardiopulmonary arrest, bronchospasm, adult respiratory distress syndrome, and severe laryngeal edema with upper airway obstruction. Of 89 patients, five developed minor hematemesis, in the form of coffee-colored or blood-stained vomitus [6]. One patient had a gastroscopy performed on the day after admission, which showed signs of chemical burns in the esophagus and stomach. Gastroscopy in another patient on day 11, done to rule out an esophageal stricture, showed no abnormality. All patients with hematemesis recovered completely. The authors suggest that upper gastrointestinal hemorrhage after PCMX ingestion tends to be mild and self-limiting. Gastroscopy, which may increase the risk of aspiration in patients with impaired consciousness, is not required unless other causes of gastrointestinal bleeding are suspected. Furthermore, PCMX poisoning can be associated with an increased risk of aspiration, possibly caused by the use of gastrointestinal lavage in 88% of the patients and vomiting in 62%. Of 121 patients who ingested PCMX 200–500 ml, three developed renal impairment, as evidenced by raised plasma urea and creatinine [7]. Two of these patients also had serious complications, including aspiration leading to pneumonia and adult respiratory distress syndrome; one died. Renal impairment only appears to be observed when relatively large amounts of PCMX are ingested [7]. PCMX is used in cosmetic products as an antimicrobial at concentrations up to 5.0 percent. It is absorbed through the human skin and gastrointestinal tract. Following oral ingestion by a human of a product formulated with PCMX, both free and conjugated PCMX were detected in the urine. PCMX at 100 percent concentration was a moderate irritant to the rabbit eye, whereas a 0.1 percent aqueous PCMX solution was a nonirritant to rabbit skin. PCMX was nonmutagenic in the Salmonella mutagenesis assay, both with and without metabolic activation. No carcinogenicity or adequate teratogenicity studies have been reported. In clinical studies, formulations containing up to 1 .O percent Chloroxyleno1 were nonsensitizing and essentially nonirritating to the skin. The incidence of skin sensitization among 1752 dermatitis patients exposed to 1 .O percent PCMX was less than 1 .O percent. On the basis of the available information included in this report, it is concluded that PCMX is safe as a cosmetic ingredient in the present practices of use.
PE WAX (ПОЛИЭТИЛЕНОВЫЙ ВОСК)
PE WAX (полиэтиленовый воск) представляет собой полиэтиленовый полимер с низкой молекулярной массой формулы (C2H4)n.
PE WAX (полиэтиленовый воск) имеет множество применений.


НОМЕР КАС: 9002-88-4
Химическая формула: (C2H4)n



Полиэтиленовый воск высокой плотности, полиэтиленовый воск, полиэтиленовый воск, полимерный воск



PE WAX (полиэтиленовый воск) — полиэтиленовый полимер с низкой молекулярной массой.
Из-за своей низкой молекулярной массы PE WAX (полиэтиленовый воск) имеет воскоподобные физические характеристики, которые включают такие свойства, как низкая вязкость, высокая твердость (хрупкость) и относительно высокая температура плавления.


PE WAX (полиэтиленовый воск) представляет собой полиэтиленовый полимер с низкой молекулярной массой формулы (C2H4)n.
PE WAX (полиэтиленовый воск) обладает скользкими свойствами благодаря своей развитой молекулярной структуре.
PE WAX (полиэтиленовый воск) получают из этилена посредством процесса, называемого полимеризацией.


PE WAX (полиэтиленовый воск) имеет ограниченную полиоднородность и молекулярную массу.
В результате PE WAX (полиэтиленовый воск) обладает непревзойденной термостабильностью и гибкостью по отношению к другим химическим веществам.
Полиэтиленовый воск, также известный как полиэтиленовый воск, получают из этилена в результате процесса, называемого полимеризацией.


Производители изменяют процесс полимеризации, чтобы получить продукт желаемого качества.
Однако некоторые основные свойства материала являются общими для всех полиэтиленовых восков.
PE WAX (полиэтиленовый воск) представляет собой полиэтилен сверхнизкой молекулярной массы, состоящий из мономерных цепочек этилена.


PE WAX (полиэтиленовый воск) имеет множество применений.
PE WAX (полиэтиленовый воск) доступен как при специальном производстве, так и в качестве побочного продукта производства полиэтилена.
PE WAX (полиэтиленовый воск) доступен в формах HDPE и LDPE.


PE WAX (полиэтиленовый воск) также имеет ограниченную полидиспаратность и молекулярную массу.
Следовательно, PE WAX (полиэтиленовый воск) обладает высокой устойчивостью к химическому воздействию, имеет непревзойденную термостойкость и очень гибок в применении.


PE WAX (полиэтиленовый воск) — полиэтилен сверхнизкой молекулярной массы, состоящий из мономерных цепей этилена.
PE WAX (полиэтиленовый воск) имеет множество применений.
PE WAX (полиэтиленовый воск) доступен как при специальном производстве, так и в качестве побочного продукта производства полиэтилена.


Являясь полностью насыщенным гомополимером этилена, PE WAX (полиэтиленовый воск) является линейным и кристаллическим.
Вот почему PE WAX (полиэтиленовый воск) находит применение в производстве смесей, пластиковых добавок и резины.
Благодаря своей высокой кристаллической природе PE WAX (полиэтиленовый воск) обладает уникальными свойствами, такими как твердость при высоких температурах и низкая растворимость в широком диапазоне растворителей.


PE WAX (полиэтиленовый воск) термопластик, поэтому вы можете догадаться, как он ведет себя при воздействии тепла.
Плавление термопластов PE WAX (полиэтиленовый воск) происходит при температуре 110 °C.
Интересной особенностью этих материалов является способность нагреваться и охлаждаться без значительной деградации.


Тем не менее, вы можете использовать различные методы, чтобы отличить PE WAX (полиэтиленовый воск) от других материалов, например, на вид, на ощупь и по запаху.
PE WAX (полиэтиленовый воск) похож на пластиковые листы.
PE WAX (полиэтиленовый воск) — полупрозрачный желтый материал.


PE WAX (полиэтиленовый воск) имеет глянцевую поверхность.
Если вы разрежете PE WAX (полиэтиленовый воск), не останется ни примесей, ни каких-либо разделений.
PE WAX (полиэтиленовый воск) обладает смазочными свойствами, которые можно почувствовать на ощупь.


При комнатной температуре PE WAX (полиэтиленовый воск) хрупкий и хрупкий.
Если вы хотите протестировать материал, рассмотрите возможность кипячения PE WAX (полиэтиленового воска) в воде в течение пяти минут.
Настоящий PE WAX (полиэтиленовый воск) не меняет форму.


Если PE WAX (полиэтиленовый воск) содержит парафин или какие-либо другие примеси, вы узнаете об этом по изменению формы.
PE WAX (полиэтиленовый воск) можно использовать в качестве диспергатора, антискользящего агента, добавки к смоле и антиадгезива для форм.
Как окисленный продукт, OPEW разрешен в ЕС под номером E E914 только для обработки поверхности некоторых фруктов.


Существует множество методов производства PE WAX (полиэтиленового воска).
PE WAX (полиэтиленовый воск) может быть получен путем прямой полимеризации этилена в особых условиях, которые контролируют молекулярную массу и разветвление цепи конечного полимера.


Другой метод включает термическое и/или механическое разложение полиэтиленовой смолы с высокой молекулярной массой для создания фракций с более низкой молекулярной массой.
Третий метод включает отделение низкомолекулярной фракции от производственного потока высокомолекулярного полимера.
Эти два последних метода производят фракции с очень низкой молекулярной массой, которые следует удалять, чтобы избежать образования продукта с низкой температурой вспышки, что может привести к воспламеняемости, миграции, засорению оборудования и другим проблемам безопасности и обработки.


Летучие вещества в этих нерафинированных восках также могут стать причиной значительной потери выхода при переработке.
PE WAX (полиэтиленовый воск) — полиэтиленовый полимер с низкой молекулярной массой.
По сравнению с натуральными восками PE WAX (полиэтиленовый воск) обладает более скользкими свойствами благодаря улучшенной молекулярной структуре.


По этой причине PE WAX (полиэтиленовый воск) широко используется в группе смазочных материалов.
PE WAX (полиэтиленовый воск) также используется в области добавок к смолам,
смазка для пресс-форм, термоплавкие клеи и обработка резины.


PE WAX (полиэтиленовый воск) — это продукт, используемый во многих областях благодаря своим свойствам пигментной нагревательной смазки и термостойкости.
PE WAX (полиэтиленовый воск) плохо растворяется в растворителях из-за плотной кристаллической структуры компонентов.
Другая цель использования PE WAX (полиэтиленового воска) — в качестве гомогенизирующего агента в рецептуре.


PE WAX (полиэтиленовый воск) представляет собой полиэтиленовый полимер с низкой молекулярной массой формулы (C2H4)n.
PE WAX (полиэтиленовый воск) обладает скользкими свойствами благодаря своей развитой молекулярной структуре.
PE WAX (полиэтиленовый воск) получают из этилена посредством процесса, называемого полимеризацией.


PE WAX (полиэтиленовый воск) имеет ограниченную полиоднородность и молекулярную массу.
В результате PE WAX (полиэтиленовый воск) обладает непревзойденной термостабильностью и гибкостью по отношению к другим химическим веществам.
PE WAX (полиэтиленовый воск) — известная смазка, широко используемая на наружных поверхностях.


PE WAX (полиэтиленовый воск), известный своими исключительными смазывающими свойствами, помогает отделить расплав от металла, обеспечивая плавное взаимодействие между металлом и ПВХ и усиливая блеск изделия.
Эти преимущества обусловлены, прежде всего, природными смазочными свойствами PE WAX (полиэтиленового воска).


PE WAX (полиэтиленовый воск) представляет собой полиэтиленовый полимер с низкой молекулярной массой, который используется благодаря своим полезным свойствам смазывания, модуляции вязкости и улучшенному внешнему виду продукта.
PE WAX (полиэтиленовый воск) представляет собой полукристаллический, твердый и хрупкий материал, обычно имеющий вид небольших гранул или хлопьев.


PE WAX (полиэтиленовый воск) широко известен как ключевой ингредиент средств по уходу за губами и глазами, особенно в стиках и туши.
PE WAX (полиэтиленовый воск) является отличным структурообразователем и обеспечивает консистенцию состава.
PE WAX (полиэтиленовый воск) представляет собой полиэтилен сверхнизкой молекулярной массы, состоящий из мономерных цепочек этилена.


PE WAX (полиэтиленовый воск) имеет множество применений.
PE WAX (полиэтиленовый воск) доступен как при специальном производстве, так и в качестве побочного продукта производства полиэтилена.
PE WAX (полиэтиленовый воск) доступен в формах HDPE и LDPE.


PE WAX (полиэтиленовый воск) представляет собой полиэтиленовый гомополимерный воск, превосходный и стабильный ингредиент в конечных рецептурах для улучшения внешнего вида и термических свойств продукта для широкого спектра отраслей промышленности, включая термоплавкие клеи, ПВХ, цветные маточные смеси, дорожную разметку из резины и термопластов, и т. д.


PE WAX (полиэтиленовый воск) может представлять собой полиэтилен низкой плотности (LDPE) или полиэтилен высокой плотности (HDPE).
Есть три основные характеристики, которые отличают PE WAX (полиэтиленовый воск).
Во-первых, молекулярная масса.


Во-вторых, длина разветвления полимера.
И, наконец, мономерная или полимерная композиция.
Изменение любой из этих характеристик приведет к изменению физических характеристик PE WAX (полиэтиленового воска), таких как вязкость, твердость, температура плавления и, например, реакционная способность.


PE WAX (полиэтиленовый воск) состоит из полимерной цепи с этиленом, который имеет низкую молекулярную массу.
В основном PE WAX (полиэтиленовый воск) существует как побочный продукт полимеризации сырой нефти в этилен.
PE WAX (полиэтиленовый воск) подразделяется на воск HDPE и воск LDPE.


Обычно полиэтилен высокой плотности более кристаллический и плотный, поэтому, если у вас есть способ определить эти свойства, вы сможете различить разницу между этими вариантами.
Благодаря низкой молекулярной массе PE WAX (полиэтиленового воска) и полидиспаратности он обладает превосходной термостабильностью, гибкостью и высокой устойчивостью к химическим веществам.


PE WAX (полиэтиленовый воск) — это тип синтетического воска, полученного в результате полимеризации газообразного этилена.
PE WAX (полиэтиленовый воск) обычно производится путем полимеризации этилена под высоким давлением с использованием специальных катализаторов.
PE WAX (полиэтиленовый воск) получают из этилена в результате процесса, называемого полимеризацией.


Производители изменяют процесс полимеризации, чтобы получить продукт желаемого качества.
Однако некоторые основные свойства материала являются общими для всех PE WAX (полиэтиленового воска).
Являясь полностью насыщенным гомополимером этилена, PE WAX (полиэтиленовый воск) является линейным и кристаллическим.


Вот почему PE WAX (полиэтиленовый воск) находит применение в производстве смесей, пластиковых добавок и резины.
Благодаря своей высокой кристаллической природе PE WAX (полиэтиленовый воск) обладает уникальными свойствами, такими как твердость при высоких температурах и низкая растворимость в широком диапазоне растворителей.


PE WAX (полиэтиленовый воск) может представлять собой полиэтилен низкой плотности (LDPE) или полиэтилен высокой плотности (HDPE).
Как правило, HDPE имеет тенденцию быть более плотным и кристаллическим, поэтому вы можете отличить их, если у вас есть способ определить эти свойства.
Тем не менее, вы можете использовать различные методы, чтобы отличить PE WAX (полиэтиленовый воск) от других материалов, например, на вид, на ощупь и по запаху.


PE WAX (полиэтиленовый воск) похож на пластиковые листы.
PE WAX (полиэтиленовый воск) — полупрозрачный желтый материал.
PE WAX (полиэтиленовый воск) имеет глянцевую поверхность.


Если вы разрежете PE WAX (полиэтиленовый воск), не останется ни примесей, ни каких-либо разделений.
PE WAX (полиэтиленовый воск) обладает смазочными свойствами, которые можно почувствовать на ощупь.
При комнатной температуре PE WAX (полиэтиленовый воск) хрупкий и хрупкий.


Это не похоже на подделку, которая грубая и жирная.
Если вы хотите протестировать PE WAX (полиэтиленовый воск) l, прокипятите его в воде в течение пяти минут.
Настоящий PE WAX (полиэтиленовый воск) не меняет форму.
Если PE WAX (полиэтиленовый воск) содержит парафин или какие-либо другие примеси, вы узнаете об этом по изменению формы.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Полученный PE WAX (полиэтиленовый воск) имеет широкий спектр применения благодаря своим уникальным свойствам.
PE WAX (полиэтиленовый воск) используется в различных областях по всему миру.
PE WAX (полиэтиленовый воск) используется в качестве важнейшего сырья при производстве покрытий, косметики, изделий из ПВХ и чернил.


PE WAX (полиэтиленовый воск) используется в качестве диспергатора при производстве цветных маточных смесей.
PE WAX (полиэтиленовый воск) повышает прочность воскового продукта и температуру размягчения, придавая ему хороший блеск.
PE WAX (полиэтиленовый воск) помогает свечам гореть ярко и безопасно, не образуя облако черного дыма.


В промышленности ПВХ PE WAX (полиэтиленовый воск) используется в процессе формования в качестве внутренней смазки.
Это помогает повысить прочность труб и других пластиковых изделий.
PE WAX (полиэтиленовый воск) гарантирует, что изделия из ПВХ имеют улучшенную проходимость и гладкость.


При производстве пленки ПВХ PE WAX (полиэтиленовый воск) может повысить прозрачность и блеск пленки, а также улучшить ее поперечную и продольную прочность.
В производстве красок и покрытий PE WAX (полиэтиленовый воск) используется в качестве диспергатора, поскольку он обеспечивает огромный антипродажный эффект.


PE WAX (полиэтиленовый воск) помогает обеспечить трехмерный эффект печатной продукции и хороший глянец.
Добавление всего лишь 1% PE WAX (полиэтиленового воска) в чернила может повлиять на их текучесть и снизить вязкость.
Кроме того, PE WAX (полиэтиленовый воск) повышает устойчивость к истиранию и царапинам, а также повышает гладкость чернил.


PE WAX (полиэтиленовый воск) ускоряет фиксацию цвета, повышает гидрофильность и завершает печать точек.
В то же время PE WAX (полиэтиленовый воск) может уменьшить эффект выщипывания и слеживания и улучшить печатные возможности чернил.
PE WAX (полиэтиленовый воск) можно эмульгировать в воде и диспергировать в органических растворителях для получения восковой эмульсии или дисперсии с частицами соответствующего размера.


PE WAX (полиэтиленовый воск) используется в покрытиях и чернилах.
PE WAX (полиэтиленовый воск) используется в качестве скользящего и антиадгезионного средства.
PE WAX (полиэтиленовый воск) часто используется в качестве скользящего агента в покрытиях и чернилах для снижения коэффициента трения между поверхностями.


PE WAX (полиэтиленовый воск) помогает улучшить гладкость и скользкость покрытия или красочной пленки, предотвращая прилипание или слипание при контакте поверхностей.
Это свойство особенно полезно при применении PE WAX (полиэтиленового воска), например, при покрытии бумаги, гибкой упаковке и полиграфии.


Следовательно, PE WAX (полиэтиленовый воск) обладает высокой устойчивостью к химическому воздействию и хорошей термостабильностью.
Экструзионная обработка используется в качестве смазки и процесса впрыска.
PE WAX (полиэтиленовый воск) используется в качестве смазки для полиэтилена высокой плотности, полипропилена и ПВХ.


В качестве стабилизатора используется ПВХ-композит.
PE WAX (полиэтиленовый воск) используется в качестве смазки и дисперсии в производстве компаундов.
PE WAX (полиэтиленовый воск) также способствует легкости обработки, позволяя материалу отделяться от формы во время обработки.


PE WAX (полиэтиленовый воск) используется в качестве смазки при прокладке кабеля.
PE WAX (полиэтиленовый воск) используется для улучшения истираемости красок, увеличения долговечности, а также в качестве проявителя пигмента и разлагаемого носителя.
PE WAX (полиэтиленовый воск) используется в полотёрах с высоким содержанием полимеров.


PE WAX (полиэтиленовый воск) используется для придания непрозрачности при производстве свечей.
PE WAX (полиэтиленовый воск) используется в количестве 5-10% для обеспечения дисперсии наполнителя.
PE WAX (полиэтиленовый воск) используется для повышения прочности автомобильной полироли.


PE WAX (полиэтиленовый воск) используется в качестве диспергатора в термореактивных красках (красках для разметки дорог) для придания блеска и трехмерности.
PE WAX (полиэтиленовый воск) используется в качестве пленкообразующего вспомогательного средства для повышения устойчивости бумаги к царапинам и механическим движениям.
PE WAX (полиэтиленовый воск) используется в косметической промышленности для придания блеска косметическим средствам.


PE WAX (полиэтиленовый воск) используется в качестве смягчителя и смазки для увеличения долговечности волокон и предотвращения разрывов.
PE WAX (полиэтиленовый воск) используется в полиуретановых покрытиях для обеспечения устойчивости к истиранию.
PE WAX (полиэтиленовый воск) используется в печатных красках на водной основе и лаках для печати для повышения износостойкости и уменьшения трения скольжения.


Рынок PE WAX (полиэтиленового воска) будет включать пластиковые добавки, свечи, косметику и резину.
Другие области применения PE WAX (полиэтиленового воска) — упаковка, смазочные материалы, древесина и покрытия.
PE WAX (полиэтиленовый воск) используется в производстве пластмасс и в литьевой промышленности.


PE WAX (полиэтиленовый воск) применяется при производстве водопроводных и канализационных труб, а также газонапорных труб.
PE WAX (полиэтиленовый воск) используется при производстве труб ПВХ.
PE WAX (полиэтиленовый воск) используется при производстве проводов для кабелей.


PE WAX (полиэтиленовый воск) используется. Рафинированные полиэтиленовые воски нетоксичны и используются в пищевых продуктах, косметике и продуктах здорового питания.
PE WAX (полиэтиленовый воск) используется в резиновой промышленности в качестве смазочного материала.
При производстве всех видов свечей полиэтиленовый воск повышает термостойкость и твердость свечей.


PE WAX (полиэтиленовый воск) используется для предотвращения окисления поверхности металла в процессе нанесения покрытия.
PE WAX (полиэтиленовый воск) используется при производстве мастербатчей (Masterbatch) для лучшего распределения пигментов и контроля давления в процессе производства мастербатчей.


PE WAX (полиэтиленовый воск) используется в асфальте в качестве добавки.
PE WAX (полиэтиленовый воск) используется в производстве чернил и цветного тонера.
В клее-расплаве PE WAX (полиэтиленовый воск) за счет увеличения температуры застывания без увеличения вязкости приведет к усилению (улучшению) функции клея-расплава при высоких температурах.


PE WAX (полиэтиленовый воск) используется в эмульсиях.
PE WAX (полиэтиленовый воск) будет широко используемым типом полиэтилена в мире.
PE WAX (полиэтиленовый воск) по своему применению будет иметь два типа:


PE WAX (полиэтиленовый воск) используется в качестве технологической добавки (PA) и смазки (используется для обеспечения качества и улучшения процесса производства ПВХ и полимеров).
PE WAX (полиэтиленовый воск) используется в качестве основного материала или добавки, которая участвует в улучшении и изменении свойств конечного продукта.


Использование PE WAX (полиэтиленового воска) уменьшает трение и увеличивает производительность экструзии.
Использование PE WAX (полиэтиленового воска) не меняет цвет изделия, поскольку полиэтиленовый воск обладает хорошей стойкостью к окислению.
PE WAX (полиэтиленовый воск) не ухудшает термо- и светостабильность изделия, поскольку полиэтиленовый воск не содержит остатков катализаторов.


PE WAX (полиэтиленовый воск) повышает светостойкость последнего продукта.
PE WAX (полиэтиленовый воск) не содержит токсичных материалов, поэтому полиэтиленовый воск можно использовать для упаковки пищевых продуктов.
PE WAX (полиэтиленовый воск) наносится горячим расплавом.


PE WAX (полиэтиленовый воск) обладает уникальными полимерными свойствами, которые делают их полезными во многих сферах.
Основные функции PE WAX (полиэтиленового воска) во многих составах заключаются либо в обеспечении смазки, либо в обеспечении физической модификации формулы путем изменения вязкости и/или температуры плавления.


PE WAX (Полиэтиленовый воск) применяется термоклеем (повышение температуры застывания клеев без увеличения вязкости смеси, улучшение поведения термоклеев при высоких температурах).
PE WAX (полиэтиленовый воск) используется для диспергирования загрузок и пигментов (маточная смесь).


PE WAX (полиэтиленовый воск) используется для мелования бумаги (улучшает блеск и гибкость, обеспечивая высококачественную отделку).
PE WAX (полиэтиленовый воск) помогает сделать смеси резины и ПВХ, в частности, более технологичными.
PE WAX (полиэтиленовый воск) используется в производстве красок и тонеров, добавок в парафиновых смесях, продуктов для наполнения кабелей, добавок для асфальта, эмульсий, текстиля, полиролей и свечей (обеспечивающих повышенную твердость и термостойкость).


PE WAX (полиэтиленовый воск) обладает уникальными полимерными свойствами, которые делают их полезными во многих областях.
Основные функции PE WAX (полиэтиленового воска) во многих составах заключаются либо в обеспечении смазки, либо в обеспечении физической модификации формулы путем изменения вязкости и/или температуры плавления.


PE WAX (полиэтиленовый воск) увеличивает дисперсию неорганических и органических пигментов в матричном полимере во время обработки мастербаха.
Кроме того, PE WAX (полиэтиленовый воск) помогает производить гранулы за счет снижения температуры размягчения системы.
PE WAX (полиэтиленовый воск) – очень хорошая внешняя смазка для ПВХ.


При использовании PE WAX (полиэтиленового воска) при нанесении ПВХ окончательная поверхность изделия становится блестящей.
PE WAX (полиэтиленовый воск) используется в качестве добавок к пластикам, свечам, косметике и резине.
PE WAX (полиэтиленовый воск) используется в упаковке, смазочных материалах, древесине и покрытиях.


PE WAX (полиэтиленовый воск) находит применение в широком спектре отраслей промышленности благодаря своим хорошим физическим и химическим свойствам.
Поскольку PE WAX (полиэтиленовый воск) может иметь широкий диапазон температур плавления, плотности и других свойств, понятно, почему он так широко используется.
Эмульгируемые разновидности особенно важны в текстильной промышленности.


PE WAX (полиэтиленовый воск) также используется для покрытия бумаги, вспомогательных средств для кожи, мелков и косметики.
Неэмульгируемый тип наиболее распространен в печатной краске, пигментных концентратах и красках.
В текстильном секторе PE WAX (полиэтиленовый воск), вероятно, находит наиболее интенсивное применение.


Эмульсии из PE WAX (полиэтиленового воска) обеспечивают стабильное размягчение.
Несмотря на то, что эти эмульсии устойчивы к кислотам и другим химикатам, они благоприятны для ткани – не желтеют ткани, не меняют цвет и не задерживают хлор.


В упаковочном секторе также интенсивно используется PE WAX (полиэтиленовый воск).
PE WAX (полиэтиленовый воск) обладает уникальными полимерными свойствами, которые делают их полезными во многих областях.
Основные функции PE WAX (полиэтиленового воска) во многих составах заключаются либо в обеспечении смазки, либо в обеспечении физической модификации формулы путем изменения вязкости и/или температуры плавления.


- В индустрии покрытий исторически использовались воски.
Важность PE WAX (полиэтиленового воска) заключается в том, что он, помимо других свойств, придает водоотталкивающие свойства, улучшает скольжение и стойкость к появлению следов.
При правильном использовании PE WAX (полиэтиленовый воск) обеспечивает следующее:
*Анти-провисание
*Анти-оседание
* Устойчивость к истиранию
*Маркировка сопротивления
*Мар сопротивление

В производстве красок PE WAX (полиэтиленовый воск) имеет аналогичные преимущества.
Большинство типов чернил содержат PE WAX (полиэтиленовый воск) для улучшения коэффициента трения и увеличения истирания.



7 ПРИМЕНЕНИЙ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
PE WAX (полиэтиленовый воск) доступен в форме порошка, молочно-белых маленьких стеклянных микрошариков и в форме блоков.
PE WAX (полиэтиленовый воск) обладает низкой вязкостью, высокой температурой размягчения, хорошей прочностью и другими свойствами, нетоксичен, обладает хорошей термостойкостью, низким содержанием летучих веществ при высоких температурах, дисперсией цветной пасты, обладает не только отличной внешней смазывающей способностью, но и сильной внутренней смазывающее действие.

PE WAX (полиэтиленовый воск) может улучшить производительность грануляции пластика, хорошую влагостойкость при комнатной температуре, сильную химическую стойкость, хорошие электрические свойства.
PE WAX (полиэтиленовый воск) может улучшить внешний вид готовой продукции.

Благодаря превосходной внешней смазке и сильной внутренней смазке PE WAX (полиэтиленовый воск) совместим с полиэтиленом высокого давления, полиэтиленом, полипропиленом и другими эпоксидными смолами.
PE WAX (полиэтиленовый воск) может использоваться в качестве смазки при экструзии, литьевом формовании и литьевом производстве.

PE WAX (полиэтиленовый воск) может повысить эффективность производства и обработки, избежать и избавиться от пластиковой пленки, трубной арматуры, склеивания пластиковых листов, улучшить гладкость и гладкость готовых изделий, а также улучшить внешний вид готовых изделий.

PE WAX (полиэтиленовый воск) может использоваться в качестве диспергатора для широкого спектра термопластичных маточных смесей и смазочного диспергатора для маточных смесей для наполнения пластмасс и растворяющихся маточных смесей, а также может улучшить производительность и производительность обработки, блеск поверхности, смазывающую способность и термостойкость полиэтилена высокой плотности. ПП и ПВХ.

PE WAX (полиэтиленовый воск) используется в качестве внутреннего диспергатора при производстве и переработке маточной смеси. Он обычно используется в маточной смеси полиэтиленовых углеводородов высокого давления.
PE WAX (полиэтиленовый воск) используется в качестве диспергатора цветной пасты, смазки и полирующей жидкости в процессе производства ПВХ-профилей, труб, труб, формованных изделий из ПЭ и ПП.

Смазка PE WAX (полиэтиленовый воск) улучшает плавление, пластичность и блеск поверхности пластиковых изделий.
PE WAX (полиэтиленовый воск) можно использовать в качестве диспергатора и полирующей жидкости для печатных красок и лаков, особенно для красок для дорожной разметки и красок для рисования линий, которые обладают отличным противоосадочным эффектом и придают продуктам хороший блеск и иерархию.

PE WAX (полиэтиленовый воск) используется в производстве различных горячих растворителей, термореактивных пластиковых электростатических порошков и загустителей ПВХ-смесей.
PE WAX (полиэтиленовый воск) обычно используется при производстве автомобильного воска, автомобильного воска, лакового воска и восковых изделий из различных видов восковых изделий, для улучшения температуры размягчения восковых изделий, повышения их прочности на сжатие и гладкости поверхности.

В области вулканизированной резины PE WAX (полиэтиленовый воск) улучшает блеск поверхности и блеск продукта после снятия пленки, уменьшает количество используемого парафина и снижает стоимость продукта.

PE WAX (полиэтиленовый воск) используется в печатных красках на масляной основе и в архитектурных покрытиях. Обычно выбирают полиэтиленовый воск, окисленный воздухом, добавляют деэмульгаторы для получения увлажняющей эмульсии или дисперсии и акриловой эмульсии.
Окисленный воздухом PE WAX (полиэтиленовый воск) в некотором смысле улучшает водопоглощение.



В КАКИХ ОБЛАСТЯХ ИСПОЛЬЗУЕТСЯ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК)?
*Кабельная промышленность
*Л��кокрасочная промышленность
*Мебельная промышленность
*Индустрия оконных профилей
*Пластиковая промышленность
*Кожевенная промышленность
*Производство мастербатчей



ОСОБЕННОСТИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
1. Высокая температура размягчения, низкая вязкость, большая молекулярная масса и малые потери тепла.
2. PE WAX (полиэтиленовый воск) обладает сильным внешним смазочным эффектом.
По сравнению с обычным полиэтиленовым воском (полиэтиленовым воском) он может замедлить пластификацию и снизить крутящий момент.
3. PE WAX (полиэтиленовый воск) легко диспергируется и улучшает блеск изделий.
4. Хорошая совместимость и защита от осадков.
5. Хорошее отделение пресс-формы, хорошее отслаивание металла, длительное время непрерывного производства.
6. Хорошая термическая стабильность на более поздней стадии, отсутствие олигомеров, парафина и т. д.



СВОЙСТВА ВОСКА ПЭ (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Свойства PE WAX (полиэтиленового воска) характеризуется низкой молекулярной массой и линейной структурой.
PE WAX (полиэтиленовый воск) обычно представляет собой твердый материал белого или светло-желтого цвета с восковой текстурой. Некоторые ключевые свойства воска включают в себя:

*Низкая температура плавления:
Легкоплавкий PE WAX (полиэтиленовый воск) имеет относительно низкую температуру плавления, что позволяет ему легко плавиться и обеспечивать смазку при низких температурах.

*Высокая твердость:
PE WAX (полиэтиленовый воск) обладает высокой степенью твердости, что делает его полезным для применений, требующих устойчивости к истиранию и долговечности.

*Низкая вязкость:
PE WAX низкой вязкости (полиэтиленовый воск) имеет низкую вязкость, что означает, что он легко течет и обеспечивает отличную внутреннюю смазку.

*Химическая устойчивость:
PE WAX (полиэтиленовый воск) обладает хорошей устойчивостью ко многим химическим веществам, включая кислоты, щелочи и органические растворители.



ОСОБЕННОСТИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
*Высокая температура плавления.
*Высокая химическая стойкость
*Выдающаяся термическая стабильность
*Идеальная смазка
*Высокая температура размягчения.
*Высокое сопротивление напору
*Совместимость с другими видами воска.



ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК) ДОСТУПЕН В РАЗЛИЧНЫХ ФОРМАХ, В ТОМ ЧИСЛЕ:
*Хлопья
*Гранулы
*Комки
*Пудра



ХАРАКТЕРИСТИКИ И ОСОБЕННОСТИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
*Высокая температура размягчения.
*Высокая температура плавления.
*Отличная термическая стабильность
*Высокая химическая стойкость
* Высокая совместимость с разновидностями воска.
*Идеальная смазка
*Идеальное сопротивление головы



ФУНКЦИИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
*Высокая прочность переплета
*Гелеобразующий агент
*Модификатор вязкости
*Пластификатор
*Улучшает структуру, удержание масла и отдачу от ручного применения.



СОВМЕСТИМОСТЬ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
Полиэтиленовый воск совместим со многими растительными и минеральными восками, а также с различными натуральными и синтетическими ингредиентами.



ПРОЦЕСС ПРОИЗВОДСТВА ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
Производство полиэтиленового воска (PE Wax) тесно связано с полимеризацией и последующей переработкой полиэтилена.
Для производства полиэтиленового воска обычно используются несколько методов, и выбор процесса часто зависит от требуемых свойств конечного продукта.
Вот обзор некоторых распространенных производственных процессов:

1. Полимеризация:
*Газ этилен:
Первичное сырье, газообразный этилен, полимеризуется для создания полиэтилена.

*Катализаторы:
Катализаторы Циглера-Натта или металлоценовые катализаторы часто используются для инициирования полимеризации.


2. Взлом:
*Высокомолекулярный полиэтилен:
Для преобразования высокомолекулярного полиэтилена в полиэтиленовый воск используется процесс термического или каталитического крекинга.

*Исход:
Это снижает молекулярную массу и производит полиэтиленовый воск вместе с другими побочными продуктами полиэтилена.


3. Окисление:
Воздух или кислород: вводится в полиэтилен при повышенных температурах.
*Цель:
Для создания окисленных полиэтиленовых восков с функциональными группами, улучшающими совместимость с полярными смолами.


4. Восстановление растворителя:
В некоторых методах для очистки или модификации полиэтиленового воска используются растворители.

*Дистилляция:
Растворители обычно извлекаются путем перегонки и могут быть повторно использованы в процессе.


5. Добавки:
*Модификаторы:
Функциональные группы, стабилизаторы или смазочные материалы добавляются для улучшения определенных свойств.

*Смешивание:
Тщательное перемешивание обеспечивает равномерное распределение добавок.


6. Экструзия или гранулирование:
*Форма:
Готовый полиэтиленовый воск часто формуют в виде гранул или хлопьев для облегчения обращения и нанесения.

*Резание:
Специализированное оборудование используется для резки или придания воску желаемой формы и размера.


7. Контроль качества:
Тестирование:
PE Wax проходит серию испытаний, подтверждающих его соответствие установленным стандартам качества.



ХАРАКТЕРИСТИКИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
*Высокая температура размягчения.
*Высокая температура плавления.
*Отличная термическая стабильность
*Высокая химическая стойкость
* Высокая совместимость с разновидностями воска.
*Идеальная смазка
*Идеальное сопротивление головы



СВОЙСТВА И ОСОБЕННОСТИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
PE WAX (полиэтиленовый воск) получают из этилена в результате процесса, называемого полимеризацией.
Производители изменяют процесс полимеризации, чтобы получить PE WAX (полиэтиленовый воск) желаемого качества.
Однако некоторые основные свойства материала являются общими для всех PE WAX (полиэтиленового воска).

Являясь полностью насыщенным гомополимером этилена, PE WAX (полиэтиленовый воск) является линейным и кристаллическим.
Вот почему PE WAX (полиэтиленовый воск) находит применение в производстве смесей, пластиковых добавок и резины.
Благодаря своей высокой кристаллической природе PE WAX (полиэтиленовый воск) обладает уникальными свойствами, такими как твердость при высоких температурах и низкая растворимость в широком диапазоне растворителей.

PE WAX (полиэтиленовый воск) термопластик, поэтому вы можете догадаться, как он ведет себя при воздействии тепла.
Термопласты плавятся из PE WAX (полиэтиленового воска) при 110 °C.
Интересной особенностью этих материалов является способность нагреваться и охлаждаться без значительной деградации.

PE WAX (полиэтиленовый воск) также имеет ограниченную полидиспаратность и молекулярную массу.
Следовательно, PE WAX (полиэтиленовый воск) обладает высокой устойчивостью к химическому воздействию, имеет непревзойденную термостойкость и очень гибок в применении.



ОСОБЕННОСТИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Технические данные полиэтиленового воска
Полиэтилен сверхнизкой молекулярной массы (среднее число молекулярной массы Min менее 10 000) обладает свойствами и функциями как воск.
PE WAX (полиэтиленовый воск) будет производиться путем полимеризации под высоким давлением с катализаторами, содержащими кислород, или полимеризации под низким давлением с использованием катализатора Циглера, Натта или путем разрыва цепей.

Большинство производителей PE WAX (полиэтиленового воска) очищали конечные материалы различных сортов полиэтилена высокой плотности, таких как BL3, EX3, EX5 и 0035, путем удаления гексана, спирта и летучих веществ (влажности и масла), чтобы обеспечить высокое качество. -качественный и хрустящий полиэтиленовый воск.
Все марки PE WAX (полиэтиленового воска) имеют одинаковую структуру, но конечные продукты будут иметь разные характеристики из-за разных процессов производства.

PE WAX (полиэтиленовый воск) широко используется с целью снижения вязкости в различных отраслях промышленности.
Функциональный PE WAX (полиэтиленовый воск) обладает как физическими, так и химическими свойствами PE WAX (полиэтиленовый воск) и кислородсодержащих материалов.
PE WAX (полиэтиленовый воск) находит применение в различных отраслях промышленности в качестве диспергаторов пигментов, добавок для чернил, производства пластмасс, производства косметики, цветного тонера и клеев.

PE WAX (полиэтиленовый воск) — это побочный продукт нефтехимических производств BL3, EX5, f7000, 0035 и X3, который производится из первоклассного кускового полиэтилена.
PE WAX (полиэтиленовый воск) имеет меньшую прочность и гибкость по сравнению с другим полиэтиленом, но его устойчивость к химическим веществам и внешнему давлению очень высока.

Качество PE WAX (полиэтиленового воска) будет зависеть от вязкости, температуры плавления, плотности и способн��сти мигрировать на поверхность и ее цвета.
PE WAX (полиэтиленовый воск) хлопьев PETRO-ACC будет полностью белым (не желтоватым) и без черных точек с содержанием летучих веществ менее 3%.

PE WAX (полиэтиленовый воск) выполняет хорошие функции смазки: с помощью шарикоподшипникового механизма вы можете проверить и изучить его смазочные свойства.
В этом механизме частицы PE WAX (полиэтиленового воска) мигрируют на поверхность и в качестве границы раздела покрывают поверхность и предотвращают контакт поверхности материала с поверхностью машин и форм.



В ЧЕМ РАЗНИЦА МЕЖДУ ПОЛНОСТЬЮ РАФИНИРОВАННЫМ И СЫРЫМ ПЭ ВОСКОМ (ПОЛИЭТИЛЕНОВЫМ ВОСКОМ)?
Необработанный полиэтиленовый воск (полиэтиленовый воск) получают путем экстракции низкомолекулярных фракций из потоков полиэтиленовой смолы высокой плотности.
Эти потоки содержат загрязняющие вещества и непарафиновые фракции, такие как катализатор, летучие фракции и воду.
Рафинированный полиэтиленовый воск (полиэтиленовый воск), полученный в процессе производства полиэтиленовых смол высокой плотности, подвергается обширному процессу очистки, в ходе которого удаляются катализатор, летучие фракции и вода.
Конечный продукт обычно получают путем гранулирования в сыпучие гранулы размером от 1 до 3 мм.



ПРОЧНОСТЬ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Долговечность является ключевым фактором при оценке качества и применимости PE WAX (полиэтиленового воска) в различных отраслях промышленности.
Вот что вам нужно знать о долговечности PE WAX (полиэтиленового воска):

1. Термическая стабильность:
PE WAX (полиэтиленовый воск) обычно демонстрирует хорошую термическую стабильность, что важно для высокотемпературных применений, таких как термоплавкие клеи и обработка пластмасс.

2. Химическая стойкость:
PE WAX (полиэтиленовый воск) химически инертен в большинстве условий, что делает его устойчивым к различным растворителям, кислотам и основаниям.
Однако окисленные сорта могут реагировать по-другому.

3. Длительный срок годности:
При хранении в надлежащих условиях PE WAX (полиэтиленовый воск) может иметь увеличенный срок хранения, часто от 2 до 5 лет в зависимости от рекомендаций производителя.

4. Механическая долговечность:
PE WAX (полиэтиленовый воск) может улучшить механические свойства композитных материалов, обеспечивая дополнительную долговечность готового продукта.

5. Устойчивость к ультрафиолетовому излучению:
Некоторые сорта PE WAX (полиэтиленового воска) могут обеспечивать устойчивость к ультрафиолетовому излучению, тем самым увеличивая срок службы продуктов, подвергающихся воздействию солнечного света.

6. Окисление:
Несмотря на то, что PE WAX (полиэтиленовый воск) в целом стабилен, его можно окислить с образованием окисленных восков с различными характеристиками.
Непреднамеренное окисление может повлиять на долговечность изделия.

7. Влагостойкость:
PE WAX (полиэтиленовый воск) гидрофобен, что делает его устойчивым к водопоглощению, что, в свою очередь, способствует его долговечности.

8. Совместимость:
Совместимость PE WAX (полиэтиленового воска) с другими полимерами и добавками может влиять на общую долговечность конечного продукта в композитных материалах или смесях.

9. Износ:
В смазочных целях PE WAX (полиэтиленовый воск) может снизить износ, продлевая срок службы механических деталей.
Для конкретных применений крайне важно ознакомиться с техническими данными и провести необходимые испытания, чтобы убедиться, что марка PE WAX (полиэтиленового воска), которую вы рассматриваете, соответствует вашим требованиям к долговечности.
Всегда согласовывайте выбор PE WAX (полиэтиленового воска) с его предполагаемым применением для достижения оптимальной долговечности.



ХАРАКТЕРИСТИКИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Эксплуатационные характеристики PE WAX (полиэтиленового воска) определяют его эффективность в широком спектре применений.
На эти характеристики влияют его молекулярная масса, степень очистки, тип (например, окисленный или неокисленный) и любые присутствующие добавки.
Ниже приведены основные характеристики производительности:

1. Смазывающая способность:
PE WAX (полиэтиленовый воск) служит превосходной внутренней и внешней смазкой для ПВХ и других пластмасс, обеспечивая плавную обработку и улучшая свойства поверхности.

2. Контроль вязкости:
В жидких составах, таких как чернила и покрытия, PE WAX (полиэтиленовый воск) играет роль в контроле и снижении вязкости.

3. Дисперсность:
PE WAX (полиэтиленовый воск) улучшает дисперсию пигментов и наполнителей в цветных мастербатчах и печатных красках.

4. Глянец и отделка поверхности:
PE WAX (полиэтиленовый воск) может улучшить блеск и гладкость поверхностей при нанесении красок, лаков и покрытий.

5. Адгезия:
Хотя PE WAX (полиэтиленовый воск) сам по себе не является клеем, его присутствие может изменить адгезионные свойства некоторых составов, таких как термоплавкие клеи.

6. Тепловая стабильность:
PE WAX (полиэтиленовый воск) демонстрирует стабильность при повышенных температурах, что имеет решающее значение для обработки пластмасс, экструзии и формования.

7. Устойчивость к царапинам:
При использовании в покрытиях или при обработке поверхности PE WAX (полиэтиленовый воск) обеспечивает повышенную устойчивость к царапинам и повреждениям.

8. Водоотталкивающие свойства:
Гидрофобная природа PE WAX (полиэтиленового воска) придает водоотталкивающие свойства обработанным поверхностям или материалам.

9. Химическая инертность:
PE WAX (полиэтиленовый воск) химически стабилен и не вступает в реакцию с большинством веществ, что обеспечивает целостность рецептур.

10. Совместимость:
PE WAX (полиэтиленовый воск) совместим с различными полимерами и смолами, что делает его универсальной добавкой для широкого спектра применений.

11. Сопротивление блокированию:
PE WAX (полиэтиленовый воск) можно использовать для уменьшения или устранения склонности к слипанию (нежелательной адгезии между слоями) в пленках или листах.

12. Точка плавления:
Температура плавления может варьироваться в зависимости от марки и является важным фактором при определении пригодности PE WAX (полиэтиленового воска) для конкретных применений.
При выборе PE WAX (полиэтиленового воска) для конкретного применения жизненно важно понимать эти эксплуатационные характеристики.



КОМПОНЕНТЫ И МАТЕРИАЛЫ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
PE WAX (полиэтиленовый воск) представляет собой синтезированный воск, полученный в основном из полиэтилена, полимера, изготовленного из мономеров этилена.
Хотя основной состав PE WAX (полиэтиленового воска) представляет собой полиэтилен, его общий состав и свойства могут варьироваться в зависимости от метода обработки и любых используемых добавок или модификаторов.
Вот разбивка компонентов PE WAX (полиэтиленового воска) и сопутствующих материалов:

1. Базовый компонент:
Полиэтилен:
Как следует из названия, PE WAX (полиэтиленовый воск) в основном состоит из полиэтилена. Это тип термопластичного полимера, изготовленного из мономеров этилена.
PE WAX (полиэтиленовый воск) по сути представляет собой версию полиэтилена с более низкой молекулярной массой.


2. Модификаторы (для конкретных марок или типов):
Функциональные группы:
Для некоторых PE WAX (полиэтиленового воска), особенно окисленных вариантов, могут быть введены функциональные группы, такие как карбоновые кислоты или спирты, для улучшения определенных свойств.

*Стабилизаторы:
Для повышения термической стабильности PE WAX (полиэтиленового воска), особенно при использовании в условиях высоких температур.

*Пластификаторы:
Иногда добавляется для изменения гибкости или формуемости PE WAX (полиэтиленового воска).


3. Присадки (для конкретных применений):
*Смазочные материалы:
Иногда добавляется для улучшения смазочных свойств PE WAX (полиэтиленового воска) в определенных применениях.

*Красители или пигменты:
Когда требуется цвет, особенно в косметических или декоративных целях.

*Наполнители:
Для изменения физических свойств воска могут быть добавлены такие материалы, как тальк или карбонат кальция.


4. Остаточные катализаторы:
Следы катализаторов, таких как катализаторы Циглера-Натта, могут присутствовать, если они использовались при полимеризации этилена.


5. Примеси:
В зависимости от процесса переработки и очистки могут присутствовать незначительные количества других нефтехимических производных или остаточных растворителей.
При покупке PE WAX (полиэтиленового воска) или его использовании для конкретных применений важно проверить его спецификацию или паспорт материала.



КАК ПРОИЗВОДИТСЯ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК)?
Существует множество методов производства PE WAX (полиэтиленового воска).
PE WAX (полиэтиленовый воск) может быть изготовлен путем прямой полимеризации этилена в особых условиях, контролирующих молекулярную массу.
Другой метод включает расщепление высокомолекулярного полиэтилена на фракции с более низкой молекулярной массой.
Третий метод включает отделение низкомолекулярной фракции от высокомолекулярного полимера.



РАЗЛИЧИЯ МЕЖДУ ТИПАМИ ПЭ ВОСКОВ (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Есть три основные характеристики, которые отличают один полиэтиленовый воск от другого.
Они есть
I) Молекулярная масса,
II) Степень и длина разветвления полимера,
III) Мономерно-полимерная композиция.
Изменение любого из этих факторов приведет к изменению физических характеристик PE WAX (полиэтиленового воска), таких как вязкость, твердость, температура плавления, реакционная способность и т. д.



РАЗНИЦА МЕЖДУ ПЭ ВОСКОМ (ПОЛИЭТИЛЕНОВЫМ ВОСКОМ) И ПАРАФИНОВЫМ ВОСКОМ:
Парафин обычно получают как побочный продукт нефтепереработки.
Его молекулярная масса обычно вдвое меньше, чем у большинства PE WAX (полиэтиленового воска).
Из-за этого и других различий парафин обычно имеет гораздо более низкую температуру плавления и мягче, чем большинство полиэтиленовых восков (полиэтиленовых восков).



СПЕЦИФИКАЦИЯ ВОСКА ПЭ (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
PE WAX (полиэтиленовый воск) термостабилен, малорастворим, химически стоек и тверд.
Сочетание этих свойств с устойчивостью к истиранию и широкой температурой плавления делает PE WAX (полиэтиленовый воск) бесспорным выбором для широкого спектра промышленного применения.



РАЗНИЦА МЕЖДУ ПЭ ВОСКОМ (ПОЛИЭТИЛЕНОВЫМ ВОСКОМ) И ПОЛИЭТИЛЕНОМ:
PE WAX (Полиэтиленовый воск) – химический материал, который ведет себя в виде мелких белых микрошариков или хлопьев, с высокой температурой плавления, высокой твердостью, сильным блеском, белоснежным цветом и т. д.
PE WAX (полиэтиленовый воск) часто используется в покрытиях, чернилах, дерме, косметике и т. д. и играет важную роль.

Полиэтилен является сырьем для полиэтилена, который представляет собой полимер, полученный полимеризацией мономера этилена.
Полиэтилен разделяют на полиэтилен высокой плотности, полиэтилен низкой плотности и линейный полиэтилен низкой плотности в зависимости от способа полимеризации, молекулярной массы и строения цепи.

Полиэтилен низкой плотности, широко известный как полиэтилен высокого давления, в основном используется в пластиковых пакетах, сельскохозяйственных пленках и т. д. из-за его низкой плотности и самого мягкого материала.

Полиэтилен высокой плотности, широко известный как полиэтилен низкого давления, обладает более высокой термостойкостью, маслостойкостью, стойкостью к проникновению пара и устойчивостью к растрескиванию под воздействием окружающей среды по сравнению с ПЭНП и ЛПЭНП, а также хорошей электроизоляцией, ударопрочностью и морозостойкостью и в основном используется при выдувном и литьевом формовании.

LLDPE похож на LDPE по внешнему виду, менее прозрачен, но имеет хороший поверхностный блеск, низкотемпературную вязкость, высокий модуль упругости, сопротивление изгибу и сопротивление растрескиванию под напряжением, а также лучшую ударную вязкость при низких температурах.

PE WAX (полиэтиленовый воск) является добавкой в производстве, обладает хорошей диспергируемостью и смазывающей способностью.
В этом разница между PE WAX (полиэтиленовым воском) и полиэтиленом.



PE WAX (ПОЛИЭТИЛЕНОВЫЙ ВОСК); КОД HS, ХИМИЧЕСКАЯ ФОРМУЛА И НОМЕР CAS
Чтобы облегчить международную торговлю, стандартизировать категоризацию продуктов и обеспечить правильное отслеживание, используются различные коды и идентификаторы.
Вот основные сведения о PE WAX (полиэтиленовом воске):

Код ТН ВЭД:
Код Гармонизированной системы (HS) для PE WAX (полиэтиленового воска) может варьироваться в зависимости от региона и конкретной марки продукта.
Обычно используемый код HS для PE WAX (полиэтиленового воска) — 3404.90, но важно свериться с местными таможенными и торговыми правилами, чтобы получить наиболее точный и актуальный код для вашего региона.

Химическая формула:
PE WAX (полиэтиленовый воск) представляет собой полимер, поэтому у него нет фиксированной химической формулы, как у небольших молекул.
Однако основная единица PE WAX (полиэтиленового воска), которая повторяется в полимерной цепи, получена из этилена с формулой -CH2-CH2-.

Количество CAS:
Номер Chemical Abstracts Service (CAS) для полиэтилена: 9002-88-4.
Стоит отметить, что номера CAS присвоены каждому химическому веществу, описанному в открытой научной литературе, что обеспечивает уникальный идентификатор.

Для конкретных торговых или производственных операций рекомендуется проверить эти данные в соответствующих отраслевых органах, регулирующих органах или проверенных поставщиках, чтобы обеспечить точность и соответствие требованиям.



ПРОИСХОЖДЕНИЕ ВОСКА ПЭ (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
PE WAX (полиэтиленовый воск) может быть получен с помощью различных процессов, включая прямую полимеризацию этилена, разложение полиэтиленовой смолы с высокой молекулярной массой или прямой синтез из гомополимеров этилена с более низкой молекулярной массой.



ФИЗИЧЕСКИЙ ВИД ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Обычно встречается в виде белых шариков, хлопьев или порошков.
PE WAX (полиэтиленовый воск) также может быть доступен в форме гранул.



СВОЙСТВА ВОСКА ПЭ (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
PE WAX (полиэтиленовый воск) известен своей превосходной устойчивостью к химическим агентам, термической стабильностью и высокой температурой плавления.
Благодаря своей природе PE WAX (полиэтиленовый воск) обеспечивает снижение внутреннего и внешнего трения.



СОВМЕСТИМОСТЬ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
PE WAX (полиэтиленовый воск) совместим с множеством материалов, что делает его универсальным в применении.
PE WAX (полиэтиленовый воск) часто смешивают с парафином для улучшения определенных характеристик.



ПРИМЕНЕНИЕ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
Преимущественно PE WAX (полиэтиленовый воск) используется в качестве смазки, улучшителя текучести или технологической добавки, особенно в промышленности пластмасс.
Кроме того, PE WAX (полиэтиленовый воск) служит диспергатором пигментов и наполнителей.

Помните, что хотя PE WAX (полиэтиленовый воск) широко распространен во многих отраслях промышленности, крайне важно выбрать подходящий сорт и тип для конкретных применений, чтобы обеспечить оптимальную производительность.



ВИДЫ И МАРКИ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
Понимание типов и сортов PE WAX (полиэтиленового воска) необходимо для выбора правильного варианта для вашего конкретного применения. Вот основные категории:

Типы:
*PE WAX низкой плотности (полиэтиленовый воск):
Легче по весу, используется в приложениях, требующих меньшей жесткости и большей гибкости.

*PE WAX высокой плотности (полиэтиленовый воск):
Обеспечивает большую жесткость и подходит для более требовательных применений, включая смазочные материалы промышленного класса.

*Окисленный полиэтиленовый воск (полиэтиленовый воск):
Обработанный для включения кислородсодержащих функциональных групп, этот тип часто используется в качестве эмульгатора.

*Неокисленный полиэтиленовый воск (полиэтиленовый воск):
Обычно используется в качестве смазки и понизителя трения.

*Функционализированный PE WAX (полиэтиленовый воск):
Модифицирован для специальных целей, например, для улучшения адгезии или совместимости с полярными смолами.

*Оценки:
Промышленный класс:
PE WAX (полиэтиленовый воск) идеально подходит для использования в тяжелых условиях, таких как дорожное строительство, промышленные смазочные материалы и производство красок.

*Пищевой:
PE WAX (полиэтиленовый воск) соответствует строгим требованиям безопасности и подходит для упаковочных материалов для пищевых продуктов.

*Фармацевтический класс:
PE WAX (полиэтиленовый воск) проходит строгие испытания на чистоту и используется в фармацевтических целях.

*Косметический класс:
PE WAX (полиэтиленовый воск) используется в производстве косметики и средств личной гигиены с соблюдением строгих стандартов безопасности и качества.

*Пользовательские оценки:
Иногда PE WAX (полиэтиленовый воск) разрабатывается по индивидуальному заказу для удовлетворения конкретных требований, включая различную молекулярную массу или содержание специальных добавок для конкретных применений.

При выборе PE WAX (полиэтиленового воска) очень важно проконсультироваться с поставщиками и экспертами, чтобы понять, какой тип и марка лучше всего соответствуют вашим потребностям.
При выборе всегда учитывайте такие факторы, как термическая стабильность, твердость и химическая стойкость.



НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
*Высокая температура размягчения.
*Высокая температура плавления.
*Отличная термическая стабильность
*Высокая химическая стойкость
* Высокая совместимость с разновидностями воска.
*Идеальная смазка
*Идеальное сопротивление головы



ЧЕМ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК) ОТЛИЧАЕТСЯ ОТ ПАРАФИНА И ДРУГИХ ВОСКОВ?
Парафин обычно получают как побочный продукт нефтепереработки.
Его молекулярная масса обычно вдвое меньше, чем у большинства PE WAX (полиэтиленового воска).

Из-за этого и других различий парафин обычно имеет гораздо более низкую температуру плавления и мягче, чем большинство полиэтиленовых восков (полиэтиленовых восков).
Воски FT — это еще один класс восков, которые производятся лишь ограниченным числом поставщиков (например, Shell и Sasol) из-за больших требований к капиталу, необходимых для строительства этих заводов.

Воски FT производятся в процессе производства синтетического топлива.
Изменения свойств восков FT обычно ограничиваются изменением температуры плавления.



ИСТОРИЯ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
История PE WAX (полиэтиленового воска), как и других нефтехимических производных, уходит корнями в эволюцию науки о полимерах и нефтегазовой промышленности.
Вот краткая хронология его развития:

1930-е годы:
Полиэтилен, основной материал для PE WAX (полиэтиленового воска), был открыт учеными Эриком Фосеттом и Реджинальдом Гибсоном из компании ICI (Imperial Chemical Industries) в Англии.
Они произвели полиэтилен случайно, пытаясь прореагировать этилен под высоким давлением с бензальдегидом.

Конец 1930-х - 1940-е годы:
Был признан потенциал полиэтилена как революционного пластика.
С приближением Второй мировой войны изоляционные свойства материала сделали его решающим для прокладки радиолокационных кабелей.
В эти годы также были изучены методы получения других полезных продуктов из полиэтилена, включая PE WAX (полиэтиленовый воск).

1950-е годы:
В послевоенную эпоху произошел значительный бум в индустрии пластмасс.
Широкое распространение получили многочисленные преимущества и возможности применения продуктов, полученных из полиэтилена.
PE WAX (полиэтиленовый воск) начал приобретать известность в качестве промышленной смазки, вспомогательного средства для обработки пластмасс и в косметической промышленности.

1970-е и 1980-е годы:
С развитием технологий нефтепереработки и переработки полимеров стало доступно больше типов и сортов PE WAX (полиэтиленового воска).
Появился окисленный и функционализированный PE WAX (полиэтиленовый воск), отвечающий разнообразным потребностям промышленности.

1990-е годы по настоящее время:
Применение PE WAX (полиэтиленового воска) еще больше расширилось.
Сегодня PE WAX (полиэтиленовый воск) не ограничивается только промышленным и косметическим применением.
PE WAX (полиэтиленовый воск) используется во множестве продуктов: от чернил до покрытий, текстиля и т. д.

Экологические соображения также привели к усилиям по производству более устойчивых и экологически чистых вариантов PE WAX (полиэтиленового воска).
Развитие PE WAX (полиэтиленового воска) повторяет развитие более крупной полимерной и нефтехимической промышленности.
По мере развития технологий и научного понимания росли и области применения и разновидности этого универсального продукта.



ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК) ДРУГИЕ НАЗВАНИЯ:
Полиэтиленовый воск (PE Wax) известен в промышленности и на рынке под разными названиями, часто в зависимости от его конкретного применения, свойств или даже на основе торговой марки производителей.
Вот некоторые из его общепризнанных названий и терминов, связанных с ним:

*Полиэтиленовый гомополимерный воск:
Этот термин является более техническим и уточняет его химическую природу, уточняя, что это гомополимер, полученный из этилена.

*PE WAX (полиэтиленовый воск):
Распространенная аббревиатура, используемая в промышленности и коммерческих сферах.

*Поливакс:
Часто используется как общий термин для восков на основе полиэтилена.

*Воски Фишера-Тропша:
Хотя это и не строго PE WAX (полиэтиленовый воск), эти воски иногда путают с PE WAX (полиэтиленовым воском) или классифицируют вместе с ним из-за их схожего внешнего вида и свойств.

*Низкомолекулярный полиэтилен (НМПЭ):
Имеется в виду тот факт, что PE WAX (полиэтиленовый воск) получают из полиэтилена с низкой молекулярной массой.

*Этеновый гомополимерный воск:
Еще один термин, отражающий его химическое происхождение.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
НОМЕР КАС: 9002-88-4
ХИМИЧЕСКОЕ НАЗВАНИЕ: PE воск, PE воск, полиэтиленовый воск, полиэтиленовый воск, гомополимер.
ТЕМПЕРАТУРА ПЛАВЛЕНИЯ: 107–121 °С.
ТОЧКА КИПЕНИЯ: 173,89 °С.
ВЯЗКОСТЬ: < 300 мПас
ТЕМПЕРАТУРА ВСПЫШКИ: > 193 °C (CC)
ВЯЗКОСТЬ РАСПЛАВА (140 °C), сП: 40-60
ПРОНИКНОВЕНИЕ DMM: < 5
ПЛОТНОСТЬ г/мл: 0,95
Плотность: 0,92±0,03
Внешний вид: чешуйка/жемчуг
Точка плавления: 100±10
Белый цвет
Растворимость в воде: Нерастворимый
Летучий (%): Макс. 2
Температура плавления капли: 90 – 95° C.
Температура плавления: 100 – 110° C.
Температура вспышки: 135°С.
Плотность при 20°C: 0,9 ± 0,02 кг/м3.
Содержание масла: 0,5-1 %.
Вязкость при 140°C: 28,5–33,4 сСт.
Влажность: 1,1 %
Пенетрация при 25°C: 0,02–0,05 мм.
Внешний вид: белые хлопья (сухие)



МЕРЫ ПЕРВОЙ ПОМОЩИ ПЭ ВОСКОМ (ПОЛИЭТИЛЕНОВЫМ ВОСКОМ):
-Описание мер первой помощи:
*При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
*В случае зрительного контакта:
В качестве меры предосторожности промойте глаза водой.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Хранить в подходящих закрытых контейнерах для утилизации.



МЕРЫ ПОЖАРОТУШЕНИЯ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
-Дальнейшая информация:
Данные недоступны



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
*Защита кожи:
Работайте в перчатках.
Вымойте и высушите руки.
*Защита тела:
Непроницаемая одежда
*Защита органов дыхания:
Защита органов дыхания не требуется.
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ПЭ ВОСКА (ПОЛИЭТИЛЕНОВОГО ВОСКА):
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Хранить в прохладном месте.
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Открытые контейнеры необходимо тщательно закрыть и хранить в вертикальном положении во избежание утечки.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ПЭ ВОСК (ПОЛИЭТИЛЕНОВЫЙ ВОСК):
-Реактивность:
Данные недоступны
-Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Данные недоступны

PEA GREEN
Food Green S; FD&C Green 4; Acid green 50; Lissamine Green B; Wool Green S; C.I. 44090; E142
Pea Protein
Pea Protein; Hydrolyzed Pea Protein; cas no: -
PEANUT FLAVOR
cas no 9000-69-5 Poly-D-galacturonic acid methyl ester;
PECEOL ISOSTEARIQUE = ГЛИЦЕРОЛА МОНОИЗОСТЕАРАТ

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина — самоэмульгирующийся воск.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина входит в состав десятков средств личной гигиены, включая увлажняющие средства, кремы для глаз, солнцезащитные средства, косметику и кремы для рук.
Direct Chems поставляет PECEOL ISOSTEARIQUE = Моноизостеарат глицерина, который самоэмульгируется в форме жемчужин и может использоваться в качестве усилителя вязкости, добавляя смягчающие свойства, что делает кожу более мягкой и эластичной.

CAS: 123-94-4
MF: C21H42O4
MW: 358,56
EINECS: 204-664-4

Синонимы
DL-АЛЬФА-СТЕАРИН;EMALEX GMS-10SE;EMALEX GMS-195;EMALEX GMS-15SE;EMALEX GMS-B;EMALEX GMS-ASE;EMALEX GMS-A;EMALEX GMS-55FD;Глицерилмоностеарат;123-94-4;Моностеарин;31566-31-1;ГЛИЦЕРОЛА МОНОСТЕАРАТ;Глицерилстеарат;Тегин;1-Стеароил-рац-глицерин;2,3-дигидроксипропилоктадеканоат;1-МОНОСТЕАРИН;Глицерин 1-моностеарат;Глицерин 1-моностеарат; 1-стеарат глицерина; стеарин, 1-моно-; 1-моноглицерид стеариновой кислоты; 1-глицерилстеарат; 1-стеарат глицерина; Sandin EU; 1-моностеароилглицерин; октадекановая кислота, 2,3-дигидроксипропиловый эфир; Aldo MSD; Aldo MSLG; 1-моностеарат глицерина; стеароилглицерин; альфа-моностеарин; Tegin 55G; Emerest 2407; Aldo 33; Aldo 75; моностеарат глицерина; Arlacel 165; 3-стеароилокси-1,2-пропандиол; Cerasynt SD; 11099-07-3; 2,3-дигидроксипропилстеарат; альфа.-моностеарин; моноглицерил стеарат;Глицерин альфа-моностеарат;Цефатин;Дермагин;Монелгин;Седетин;Адмул;Орбон;Цитомулган М;ДрюмульсВ;Церасинт S;Дрюмульс TP;Тегин 515;Церасинт SE;Церасинт WM;Циклохем GMS;Друмульс AA;Протахем GMS;Витконол MS;Витконол MST;FEMA № 2527;Стеараты глицерина;Моностеарат (глицерид);Стеарин, моно-;Унимат GMS;Глицерилмонооктадеканоат;Огин М;Эмкол CA;Эмкол MSK;Ходаг GMS;Огин GRB;Огин MAV;Алдо MS;Алдо HMS;Армостат 801;Кесско 40;Стеариновый моноглицерид;Абракол S.L.G.;Arlacel 161;Arlacel 169;Imwitor 191;Imwitor 900K;NSC 3875;Atmul 67;Atmul 84;Starfol GMS 450;Starfol GMS 600;Starfol GMS 900;Cerasynt 1000-D;Emerest 2401;Aldo-28;Aldo-72;Atmos 150;Atmul 124;Estol 603;Ogeen 515;Tegin 503;Grocor 5500;Grocor 6000;Стеарат глицерина, чистый;Альфа-моноглицерид стеариновой кислоты;Cremophor gmsk;Глицерил 1-октадеканоат;Cerasynt-sd;Lonzest gms;Cutina gms;Lipo GMS 410;Lipo GMS 450;Lipo GMS 600;стеарат глицерина;1-МОНОСТЕАРОИЛ-рац-ГЛИЦЕРОЛ;Nikkol mgs-a;Глицерилмонопальмитостеарат;USAF KE-7;1-октадеканоил-рац-глицерин;EMUL P.7;22610-63-5;EINECS 204-664-4;EINECS 245-121-1;Стеариновая кислота, моноэфир с глицерином;Глицерин .альфа.-моностеарат;Глицероил моностеарас;Глицероил моностеарат, очищенный;Imwitor 491;Сорбон мг-100;Цитрол gms 0400;UNII-258491E1RZ;NSC3875;Стеариновая кислота .альфа.-моноглицерид;(1)-2,3-дигидроксипропилстеарат;МОНОСТЕАРИН (L);NSC-3875;1-монооктадеканоилглицерин;EINECS 250-705-4;1,2,3-пропантриолмонооктадеканоат;октадекановая кислота, эфир с 1,2,3-пропантриолом;ГЛИЦЕРИЛ 1-СТЕАРАТ;AI3-00966;MG(18:0/0:0/0:0)[rac];85666-92-8;DTXSID7029160;CHEBI:75555;1-стеароил-rac-глицерин (90%);EC 250-705-4

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также действует как быстро проникающее смягчающее средство, которое помогает удерживать влагу, смазывать, кондиционировать и смягчать кожу.
Они замедляют потерю влаги, поэтому идеально подходят для добавления в натуральные формулы.
Присутствие PECEOL ISOSTEARIQUE = глицерин моноизостеарат позволяет другим ингредиентам в формуле продолжать эффективно функционировать, чтобы превзойти свои полезные свойства, продлевая срок годности, предотвращая замерзание продуктов и образование корок на поверхности.
Одним из важных факторов является PECEOL ISOSTEARIQUE = глицерин моноизостеарат позволяет добавлять масла в продукты, но снижает жирность, поэтому конечный продукт имеет гладкую, кремообразную текстуру.
PECEOL ISOSTEARIQUE = глицерин моноизостеарат — это длинноцепочечная молекула, обычно встречающаяся в организме как побочный продукт распада жиров.
PECEOL ISOSTEARIQUE = глицерин моноизостеарат — одна из панелей сывороточных метаболических биомаркеров для обнаружения и диагностики рака, особенно рака яичников.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также используется при разработке средств доставки лекарственных средств, таких как наночастицы и микроэмульсии.

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также может использоваться в качестве эмульгирующего агента, что позволяет суспендировать фармацевтические препараты в биоразлагаемой форме.
Рац-1-моноацилглицерин, состоящий из равных количеств 3-стеароил-sn-глицерина и 1-стеароил-sn-глицерина.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина, обычно известный как GMS, является моноглицеридом, обычно используемым в качестве эмульгатора в пищевых продуктах.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина имеет форму белого, не имеющего запаха и сладкого на вкус хлопьевидного порошка, который является гигроскопичным.
Химически PECEOL ISOSTEARIQUE = Моноизостеарат глицерина является глицериновым эфиром стеариновой кислоты.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также используется в качестве гидратационного порошка в формулах для упражнений
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина — это соединение, которое обычно используется в качестве пищевой добавки и в различных промышленных приложениях.

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина — это тип моноглицерида, представляющий собой молекулу, состоящую из глицерина, связанного с одной жирной кислотой, в данном случае стеариновой кислотой.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина известен своими эмульгирующими свойствами, что делает его полезным в производстве продуктов питания, косметике и фармацевтике.

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина Химические свойства
Точка плавления: 78-81 °C
Точка кипения: 476,9 ± 25,0 °C (прогнозируемая)
Плотность: 0,9678 г/см3
FEMA: 2527 | ГЛИЦЕРИЛ МОНОСТЕАРАТ
Температура хранения: -20 °C
Растворимость: Хлороформ (немного)
Форма: Твердое
pka: 13,16 ± 0,20 (прогнозируемая)
Цвет: от белого до грязно-белого
Запах: при 100,00 %. мягкий жирный восковой
Тип запаха: жирный
Номер JECFA: 918
Merck: 4489
BRN: 1728685
Гидрофильно-липофильный баланс (ГЛБ): 5,5
Диэлектрическая проницаемость: 4,9 (77,0 ℃)
InChIKey: VBICKXHEKHSIBG-UHFFFAOYSA-N
LogP: 7,23
Ссылка на базу данных CAS: 123-94-4 (Ссылка на базу данных CAS)
Ссылка на химию NIST: PECEOL ISOSTEARIQUE = моноизостеарат глицерина (123-94-4)
Система реестра веществ EPA: PECEOL ISOSTEARIQUE = моноизостеарат глицерина (123-94-4)

Физические и химические свойства PECEOL ISOSTEARIQUE = глицерина моноизостеарат был тщательно изучен.
Исследовано влияние PECEOL ISOSTEARIQUE = глицеринмоноизостеарата на физико-химические, термические и реологические свойства кукурузного и картофельного крахмалов, что показало, что GMS может изменять набухаемость, растворимость и синерезис крахмалов.
PECEOL ISOSTEARIQUE = глицеринмоноизостеарат также влияет на температуры перехода и энтальпию желатинизации, а также на текстурные свойства лапши, изготовленной из этих крахмалов.
В другом исследовании изучалась стабильность фазы α-геля системы PECEOL ISOSTEARIQUE = глицеринмоноизостеарат-вода, что показало, что внутренние факторы, такие как соэмульгаторы, и внешние факторы, такие как скорость охлаждения и сдвиг, могут влиять на стабильность фазы.
Также были изучены эффекты PECEOL ISOSTEARIQUE = глицеринмоноизостеарата на производительность термопластичного крахмала, демонстрирующие его влияние на температуру плавления, температуру разложения и сорбцию влаги.
Применение
PECEOL ISOSTEARIQUE = глицеринмоноизостеарат — это самоэмульгирующийся глицерилстеарат.

PECEOL ISOSTEARIQUE = глицеринмоноизостеарат обеспечивает стабильную, однородную эмульсию типа «масло в воде».
PECEOL ISOSTEARIQUE = глицеринмоноизостеарат используется при разработке средств доставки лекарств, таких как наночастицы и микроэмульсии.
PECEOL ISOSTEARIQUE = глицеринмоноизостеарат — это пищевая добавка, используемая в качестве загустителя, эмульгатора, антислеживателя и консерванта; эмульгирующего агента для масел, восков и растворителей; защитного покрытия для гигроскопичных порошков; отвердитель и контролирующий разделительный агент в фармацевтических препаратах; и смоляная смазка.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также используется в косметике и средствах по уходу за волосами.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина в основном используется в выпечке для придания «тела» еде.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина в некоторой степени отвечает за придание мороженому и взбитым сливкам их гладкой текстуры.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина иногда используется в качестве противочерствеющего агента в хлебе.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина также может использоваться в качестве добавки в пластик, где GMS работает как антистатик и противозапотевающий агент.

PECEOL ISOSTEARIQUE = Моноизостеарат глицерина распространен в пищевой упаковке.
Структура, синтез и распространение
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина существует в виде трех стереоизомеров, энантиомерной пары 1-глицерина моностеарата и 2-глицерина моностеарата.
Обычно они встречаются в виде ��меси, поскольку многие их свойства схожи.
Коммерческий материал, используемый в пищевых продуктах, производится промышленным способом путем реакции глицеролиза между триглицеридами (из растительных или животных жиров) и глицерином.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина встречается в организме естественным образом как продукт расщепления жиров панкреатической липазой.
PECEOL ISOSTEARIQUE = Моноизостеарат глицерина присутствует в очень низких концентрациях в некоторых маслах семян.
PECEOL ISOSTEARIQUE = МОНОИЗОСТЕАРАТ ГЛИЦЕРИНА
Peceol Isostearique = моноизостеарат глицерина представляет собой гигроскопичный белый хлопьевидный порошок без запаха и сладкого вкуса.
Peceol Isostearique = моноизостеарат глицерина представляет собой сложный эфир глицерина и стеариновой кислоты.


Номер CAS: 66085-00-5
Номер ЕС: 266-124-4
Номер леев: MFCD00152509
INCI/химическое название: глицерилизостеарат
Молекулярная формула: C21H42O4.



СИНОНИМЫ:
Изооктадекановая кислота, моноэфир с 1,2,3-пропантриолом, изостеариановая кислота, 1,2,3-пропаниоловый эфир (1:1), глицерина моноизостеарат, изооктадекановая кислота, моноэфир с глицерином, АЛЬФА-МОНОИЗОСТЕАРИЛГЛИЦЕРИЛОВЫЙ ЭФИР, изооктадеканзура, моноэфир с глицерином, глицероизосте, 80 тыс. , Einecs 266-124-4, глицероизостеарат, моноизостеарат глицерина, альфа-моноизостеарилглицериловый эфир, изооктадеканзура, моноэфир с глицерином, изостеариковая кислота, 1,2,3-пропаниоловый эфир (1:1), изооктадекановая кислота, моноэфир с глицерином, изооктадекановая кислота, с1,2 ,3-пропантриол, изооктадекановая кислота, моноэфир с 1,2,3-пропантриолом, изостеариановая кислота, 1,2,3-пропаниоловый эфир (1:1), моноизостеарат глицерина, изооктадекановая кислота, моноэфир с глицерином, альфа-моноизостеарилглицериловый эфир, изооктадекансер, моноэфир с глицерином, Глицероизостеарат, Имвитор-780К, Emerest 2410, 2,3-дигидроксипропил-16-метилгептадеканоат, моноизостеарат глицерина, моноизостеарат глицерина, глицерилизостеарат, 66085-00-5, 50486-18-5, HYE7O27HAO, 67938-24-3, изооктадекановая кислота, моноэфир с 1,2,3-пропантриолом, АКД-2А, изостеариновая кислота, сложный эфир 1,2,3-пропанриола (1:1), изооктадекановая кислота, моноэфир с глицерином, 2,3-дигидроксипропилизооктадеканоат, UNII-HYE7O27HAO, EINECS 256-603-6, EINECS 266-124-4, EINECS 267-822-1, MGIS, NIKKOL MGIS, моноизостеарат глицерина, ГЛИЦЕРОИЗОСТЕАРАТ, EC 266-124-4, PRISORINE 2040, PRISORINE GMIS 2040, SCHEMBL2516961, DTXSID7086 7203, ГЛИЦЕРИЛИЗОСТЕАРАТ [II], МОНОГЛИЦЕРИД ИЗОСТЕАРИНОВОЙ КИСЛОТЫ, моноизостеарат глицерина, AldrichCPR, 2,3-дигидроксипропил16-метилгептадеканоат, DS-016296, NS00004917, Q27280163



Peceol Isostearique = моноизостеарат глицерина представляет собой сложный эфир моноизостеарата глицерина, высокоактивное, насыщенное жидкое смягчающее средство, полученное из изостеариновой кислоты.
Peceol Isostearique = моноизостеарат глицерина обладает эмульгирующими свойствами с низким ГЛБ и обеспечивает мягкое кондиционирование, хорошее увлажнение и превосходное распределение при жидкостях для личной гигиены.


Peceol Isostearique = моноизостеарат глицерина рекомендуется для использования в средствах личной гигиены и косметических составах.
Peceol Isostearique = моноизостеарат глицерина — натуральный продукт, обнаруженный в Streptomyces albidoflavus, по имеющимся данным.
Peceol Isostearique = моноизостеарат глицерина представляет собой органическую молекулу, используемую в качестве эмульгатора.


Peceol Isostearique = моноизостеарат глицерина представляет собой гигроскопичный белый хлопьевидный порошок без запаха и сладкого вкуса.
Peceol Isostearique = моноизостеарат глицерина представляет собой сложный эфир глицерина и стеариновой кислоты.
Панкреатическая липаза естественным образом расщепляет жир в организме и содержится в жирной пище.


Peceol Isostearique = моноизостеарат глицерина, используемый в качестве эмульгатора в мороженом, предотвращает образование крупных кристаллов льда и придает гладкую текстуру.
Peceol Isostearique = моноизостеарат глицерина, который позволяет образовывать стабильные эмульсии, которые не разрушаются при замораживании, продлевает срок хранения, сохраняя мороженое твердым и сухим, не затвердевая.


Peceol Isostearique = моноизостеарат глицерина, который облегчает контроль процесса аэрации для оптимального вздутия, следует добавлять в смесь в количестве 0,3-0,4% перед гомогенизацией и пастеризацией.


Peceol Isostearique = моноизостеарат глицерина в хлебобулочных изделиях, таких как хлеб и пирожные; Вызывает образование мягкой, влажной внутренней части продукта с хорошей пористой структурой, придает продуктам белый блеск и объем, удерживает влагу, задерживает образование рыхлой структуры и черствения, увеличивает срок хранения продукта.


Раскройте универсальный потенциал Peceol Isostearique = моноизостеарата глицерина, высокоочищенного и многофункционального химического соединения, которое предлагает множество применений в различных отраслях промышленности.
Это соединение с номером CAS, 66085-00-5, является настоящей жемчужиной в мире специальных химикатов и может похвастаться уникальным сочетанием свойств, которые делают Peceol Isostearique = моноизостеарат глицерина незаменимым инструментом для исследователей, разработчиков рецептур и новаторов.


По своей сути Peceol Isostearique = моноизостеарат глицерина представляет собой сложный эфир, полученный в результате этерификации глицерина и изостеариновой кислоты.
Эта сложная молекулярная структура наделяет соединение замечательным набором характеристик, что делает Peceol Isostearique = моноизостеарат глицерина ценным активом в широком спектре применений.


Peceol Isostearique = моноизостеарат глицерина с чистотой не менее 95 % обеспечивает стабильную и надежную работу, позволяя вам расширить границы ваших исследований и разработок.
Универсальность Peceol Isostearique = моноизостеарата глицерина поистине поразительна.


В сфере средств личной гигиены и косметических составов Peceol Isostearique = моноизостеарат глицерина проявляет себя как многофункциональный ингредиент, выступающий в качестве эмульгатора, смягчающего средства и средства для ухода за кожей.
Его способность повышать стабильность, текстуру и сенсорные свойства широкого спектра продуктов, от лосьонов и кремов до гелей и сывороток, делает Peceol Isostearique = моноизостеарат глицерина незаменимым инструментом для косметических химиков и разработчиков рецептур.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ PECEOL ISOSTEARIQUE = МОНОИЗОСТЕАРАТ ГЛИЦЕРИНА:
Peceol Isostearique = моноизостеарат глицерина также обладает увлажняющими свойствами, которые делают его идеальным для AP/DEO и насыщенных кремов для рук и тела.
Было показано, что Peceol Isostearique = моноизостеарат глицерина способствует образованию пленки при уходе за кожей.
Благодаря своим пигмент-диспергирующим свойствам Peceol Isostearique = моноизостеарат глицерина используется в декоративной косметике.


Peceol Isostearique = моноизостеарат глицерина — безопасный и экологически чистый ингредиент.
Peceol Isostearique = моноизостеарат глицерина является продуктом растительного происхождения, поддающимся холодной обработке, и биоразлагаемым.
Peceol Isostearique = моноизостеарат глицерина используется в увлажняющих кремах, кремах и других средствах по уходу за лицом и телом.


Косметическое использование Peceol Isostearique = моноизостеарата глицерина: кондиционирование кожи (смягчение) и поверхностно-активное вещество (эмульгирование).
Peceol Isostearique = моноизостеарат глицерина используется как эмульгатор и стабилизатор в пищевой промышленности.
Peceol Isostearique = моноизостеарат глицерина доступен на рынке в виде порошка или шариков.


Peceol Isostearique = моноизостеарат глицерина представляет собой пищевую добавку с уникальным запахом, белого или иногда бежевого цвета, известную в пищевой промышленности под пищевым кодом e 471.
Peceol Isostearique = моноизостеарат глицерина является очень эффективным эмульгатором для эмульгирования масляно-водной фазы.


Peceol Isostearique = моноизостеарат глицерина также эффективен для продления расслоения и срока годности пищевых продуктов.
Peceol Isostearique = моноизостеарат глицерина особенно используется в хлебобулочной, хлебопекарной и кондитерской промышленности, а также в нефтяной промышленности.
Помимо пищевой промышленности, Peceol Isostearique = моноизостеарат глицерина используется в косметической, моющей, пластмассовой и фармацевтической промышленности.


Peceol Isostearique = моноизостеарат глицерина добавляют в рецептуры мороженого, крахмалосодержащих продуктов, молочных продуктов, жевательной резинки, шоколада и других пищевых продуктов.
Peceol Isostearique = моноизостеарат глицерина используется в качестве смягчителя в текстильных изделиях и в качестве смазки в пластмассовых изделия��.


При использовании Peceol Isostearique = моноизостеарата глицерина количество яичного желтка, используемого в продуктах, уменьшается, что снижает стоимость.
В шоколадных изделиях Peceol Isostearique = моноизостеарат глицерина обеспечивает хорошую дисперсию масла даже при высоких температурах, уменьшает липкость и расслоение при производстве и хранении, улучшает текстуру и консистенцию, уменьшает кристаллизацию сахара, уменьшает помутнение и потерю специфического блеска продукта, предотвращает продукты. например, карамели и нуги, от попадания на зубы, предотвращает попадание ароматических веществ на зубы.


Peceol Isostearique = моноизостеарат глицерина обеспечивает лучшую дисперсию и стабилизацию и действует как пластификатор в жевательных резинках.
В маргариновых продуктах Peceol Isostearique = моноизостеарат глицерина снижает напряжение на границе раздела масла и воды, что приводит к образованию устойчивых эмульсий.


При использовании с соевым лецитином растворимость Peceol Isostearique = моноизостеарата глицерина увеличивается.
Peceol Isostearique = моноизостеарат глицерина, который улучшает вкус продукта и увеличивает его растекаемость, эмульгирует воду в маргарине и стабилизирует воду в масле.


Peceol Isostearique = моноизостеарат глицерина представляет собой эмульгатор, не содержащий ПЭГ.
Peceol Isostearique = моноизостеарат глицерина используется для приготовления крема «Кокон-мечта».
Peceol Isostearique = моноизостеарат глицерина представляет собой сложный эфир, который действует как эмульгатор и смягчающее средство в кремах и лосьонах.


Peceol Isostearique = моноизостеарат глицерина помогает упростить обработку, позволяя осуществлять эмульгирование холодным способом.
Peceol Isostearique = моноизостеарат глицерина дает меньше мыла, чем его аналог с прямой цепью.
Peceol Isostearique = моноизостеарат глицерина — натуральный продукт, обнаруженный в Streptomyces albidoflavus, по имеющимся данным.


Peceol Isostearique = моноизостеарат глицерина — пищевая добавка, используемая в качестве загустителя, эмульгатора, средства против слеживания и консерванта; эмульгатор для масел, восков и растворителей; защитное покрытие от гигроскопичной пыли; отверждающий и контролирующий высвобождающий агент в фармацевтических препаратах; и смоляная смазка.
Peceol Isostearique = моноизостеарат глицерина также используется в косметике и средствах по уходу за волосами.


Peceol Isostearique = моноизостеарат глицерина широко используется в кулинарии для придания пище «телистости».
Peceol Isostearique = моноизостеарат глицерина отвечает за придание мороженому и взбитым сливкам их мягкой текстуры.
Peceol Isostearique = моноизостеарат глицерина иногда используется в качестве средства против змей в хлебе.


Жидкий эмульгатор Peceol Isostearique = моноизостеарат глицерина используется в качестве смягчающих средств, эмульгаторов, загустителей, стабилизаторов, замутнителей и перламутровых агентов.
Peceol Isostearique = моноизостеарат глицерина используется в эмульсиях для ухода за кожей и волосами.


Имея молекулярную формулу C21H42O4 и молекулярную массу 358,6 г/моль, Peceol Isostearique = моноизостеарат глицерина предлагает множество применений в различных отраслях промышленности.
Созданный с тщательным вниманием к деталям, Peceol Isostearique = уникальные свойства моноизостеарата глицерина делают его незаменимым инструментом для ваших химических нужд.


Исследуйте его потенциал и откройте новые возможности в своих исследованиях, рецептурах или производственных процессах.
Помимо индустрии средств личной гигиены, Peceol Isostearique = моноизостеарат глицерина находит свое применение в мире продуктов питания и питания.
В качестве пищевого эмульгатора Peceol Isostearique = моноизостеарат глицерина играет решающую роль в стабилизации и улучшении текстуры различных пищевых продуктов, от выпечки и кондитерских изделий до молочных продуктов и соусов.


Его универсальность позволяет Peceol Isostearique = моноизостеарату глицерина легко интегрироваться во множество кулинарных применений, удовлетворяя постоянно растущие потребности современной пищевой промышленности.
В сфере промышленного применения Peceol Isostearique = моноизостеарат глицерина демонстрирует свои способности в качестве смазки, разделительного агента и пластификатора.


Его уникальная химическая структура позволяет Peceol Isostearique = моноизостеарату глицерина придавать желаемые свойства широкому спектру материалов: от полимеров и покрытий до чернил и клеев.
Peceol Isostearique = Способность моноизостеарата глицерина повышать производительность, снижать трение и улучшать технологичность делает его ценным активом в производственном и машиностроительном секторах.



ОСОБЕННОСТИ PECEOL ISOSTEARIQUE = МОНОИЗОСТЕАРАТА ГЛИЦЕРИНА:
*Высокоочищенное и очищенное соединение с минимальной чистотой 95%.
*Получается в результате этерификации глицерина и изостеариновой кислоты.
*Многофункциональные свойства в качестве эмульгатора, смягчающего средства и средства для кондиционирования кожи.
*Универсальное применение Peceol Isostearique = моноизостеарата глицерина в средствах личной гигиены, пищевых продуктах и промышленных рецептурах.
*Peceol Isostearique = моноизостеарат глицерина повышает стабильность, текстуру и сенсорные свойства широкого спектра продуктов.
*Peceol Isostearique = моноизостеарат глицерина служит смазкой, разделительным агентом и пластификатором в различных промышленных применениях.
*Peceol Isostearique = моноизостеарат глицерина соответствует соответствующим нормативным стандартам и рекомендациям.



ФУНКЦИИ PECEOL ISOSTEARIQUE = МОНОИЗОСТЕАРАТ ГЛИЦЕРИНА:
* Смягчающее средство
*Эмульгатор



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ПЕЦЕОЛ ИЗОСТЕАРИК = МОНОИЗОСТЕАРАТ ГЛИЦЕРИНА:
РН КАС: 66085-00-5
Молекулярная формула: C21H42O4.
Молекулярный вес: 358,56
Альтернативное имя: Эмерест 2410.
Классификация: ПАВ
Молекулярная формула: C21H42O4.
Молекулярный вес: 358,56
Номер CAS: [66085-00-5]
Код продукта: RCA08500
MOL-файл: Скачать
Химическая формула: C21H42O4.
Молекулярный вес: 358,6 г/моль
Улыбается: CC(C)CCCCCCCCCCCCCCCC(=O)OCC(CO)O
Молекулярный вес: 358,6 г/моль

XLogP3: 7.1
Количество доноров водородной связи: 2
Количество акцепторов водородной связи: 4
Количество вращающихся облигаций: 19
Точная масса: 358,30830982 г/моль.
Моноизотопная масса: 358,30830982 г/моль.
Топологическая площадь полярной поверхности: 66,8 Å ²
Количество тяжелых атомов: 25
Официальное обвинение: 0
Сложность: 292
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атомов: 1
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0

Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Точка кипения: от 481,00 до 482,00 °C при 760,00 мм рт. ст. (оценка)
Температура вспышки: 309,00 °F TCC (153,80 °C) (оценка)
logP (в/в): 7,274 (оценка)
Растворим в воде: 0,01421 мг/л при 25 °C (оценка)
Номер CAS: 66085-00-5
Ссылка №: 3D-RCA08500
Чистота: Мин. 95%
Химическая формула: C21H42O4.
Молекулярный вес: 358,6 г/моль
Код ТН ВЭД: 2915907098

Название: ГЛИЦЕРИН МОНОИЗОСТЕАРАТ
КАС: 66085-00-5
EINECS(EC#): 266-124-4
Молекулярная формула: C21H42O4.
Номер леев: MFCD00152509
Молекулярный вес: 358,56
Запах: Легкий восковой запах при 100,00 %.
LogP: 7,274 (оценка)
Система регистрации веществ EPA: моноизостеарат глицерина (66085-00-5)
Название ИЮПАК: 2,3-дигидроксипропил-16-метилгептадеканоат.
Растворимость в воде: 0,01421 мг/л при 25 °C (оценка).
Точка кипения: 481,5°C при 760 мм рт.ст.

Плотность: 0,957 г/см3
Ключ ИнЧИ: ASKIVFGGGGIGKH-UHFFFAOYSA-N
ИнЧИ: ИнЧИ=1S/C21H42O4/c1-19(2)15-13-11-9-7-5-3-4-6-8-10-12-14-16-21(24)25-18- 20(23)17-22/ч19-20,22-23Н,3-18Н2,1-2Н3
Канонические УЛЫБКИ: CCC(C)CCCCCCCCCCCC(=O)OCC(CO)O
Индекс преломления: 1,468
CBNumber: Не указано
FDA UNII: HYE7O27HAO
Система регистрации веществ EPA: моноизостеарат глицерина (66085-00-5)
Регистрационный номер CAS: 66085-00-5
Молекулярный вес: 358,56
ЕИНЭКС: 266-124-4



МЕРЫ ПЕРВОЙ ПОМОЩИ PECEOL ISOSTEARIQUE = ГЛИЦЕРИНА МОНОИЗОСТЕАРАТ:
-Описание мер первой помощи:
*Общие советы:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
Проконсультируйтесь с врачом.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.
*В случае зрительного контакта:
В качестве меры предосторожности промойте глаза водой.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ СЛУЧАЙНОГО ВЫБРОСА PECEOL ISOSTEARIQUE = ГЛИЦЕРИНА МОНОИЗОСТЕАРАТА:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Соберите и утилизируйте, не создавая пыли.
Подметать и лопатой.
Хранить в подходящих закрытых контейнерах для утилизации.



МЕРЫ ПОЖАРОТУШЕНИЯ PECEOL ISOSTEARIQUE = ГЛИЦЕРИНА МОНОИЗОСТЕАРАТ:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
-Дальнейшая информация:
Данные недоступны



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА PECEOL ISOSTEARIQUE = ГЛИЦЕРИНА МОНОИЗОСТЕАРАТ:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
*Защита кожи:
Работайте в перчатках.
Вымойте и высушите руки.
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита тела:
Выберите защиту тела
*Защита органов дыхания:
Защита органов дыхания не требуется.
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ПЕСЕОЛ ИЗОСТЕАРИК = МОНОИЗОСТЕАРАТ ГЛИЦЕРИНА:
-Меры безопасного обращения:
*Гигиенические меры:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Хранить в прохладном месте.
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ PECEOL ISOSTEARIQUE = ГЛИЦЕРИНА МОНОИЗОСТЕАРАТ:
-Реактивность:
Данные недоступны
-Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Данные недоступны

PECTIN
Poly-D-galacturonic acid methyl ester; APPLE PECTIN;POLY-D-GALACTURONIC ACID METHYL ESTER;POLYGALACTURONIC ACID METHYL ESTER;PARTIALLY METHOXYLATED POLYGALACTURONIC ACID;PECTIN, FROM LEMON;PECTIN;PECTIN, APPLE;PECTIN, CITRUS CAS NO:9000-69-5
PEG 100 STEARATE
PEG 100 Stearate PEG 100 Stearate is a polyethylene glycol ester of stearic acid. PEG 100 Stearate functions as an effective emollient, emulsifier and surfactant. PEG 100 Stearate is used in facial cleansers, creams and lotions, shampoos. PEG 100 STEARATE is classified as : Surfactant CAS Number: 9004-99-3 COSING REF No: 77453 Chem/IUPAC Name: Poly(oxy-1,2-ethanediyl), .alpha.-(1-oxooctadecyl)-.omega.-hydroxy- (100 mol EO average molar ratio) What Is It? Polyethylene Glycol (PEG) Stearates (PEG-2 Stearate, PEG-6 Stearate, PEG-8 Stearate, PEG-12 Stearate, PEG-20 Stearate, PEG-32 Stearate, PEG-40 Stearate, PEG-50 Stearate, PEG 100 Stearate, PEG-150 Stearate) are esters of polyethylene glycol and stearic acid. The PEG Stearates are soft to waxy solids that are white to tan in color. In cosmetics and personal care products, PEG Stearates are used in skin creams, conditioners, shampoos, body cleansers and soapless detergents. Why is it used in cosmetics and personal care products? The PEG 100 Stearates clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away. Scientific Facts: The PEG 100 Stearates are produced from stearic acid, a naturally occurring fatty acid. The numerical value of each PEG Stearate corresponds to the average number of ethylene oxide monomers in the polyethylene chain. Polyethylene glycol ingredients may also be named with a number that indicates molecular weight, for example polyethylene glycol (400) stearate is another name for PEG-8 Stearate. Why is PEG 100 Stearate in My Skincare Product? PEG or polyethylene glycol stearate is an ingredient that is used in skincare and body care products. PEG 100 stearate is a soft waxy substance used in moisturizers, conditioners, shampoos, cleansers, and soap-free detergents. The 100 in PEG 100 stearate refers to the number of ethylene oxide monomers present on the molecule. PEG 100 stearate is mainly utilized in your skincare products due to its emulsifying abilities. Emulsifiers help to mix oil and water-based ingredients so that they produce a smooth, stable texture. This emulsifying characteristic of PEG 100 stearate also helps to lift oil and dirt from the skin so that it can be rinsed away, making it a staple addition to cleansers and body washes. PEG 100 stearate is a PEG; PEGs are a class of ingredients that have been involved in controversy over their use, particularly from the clean or green beauty industry. This controversy is in part due to claims that it is linked to toxicity within the body due to the presence of impurities during the manufacturing process. This toxicity claim has been evaluated by both the US Food and Drug Administration (FDA) and the Cosmetic Ingredient Review Expert Panel, both of these groups are responsible for evaluation and regulation of skincare ingredients in the US. Through their research, they determined PEG compounds safe for their indicated uses in skincare and personal care products. In 2002 the Cosmetic Ingredient Review Expert Panel reviewed newly available data and reaffirmed the approval. However, if you are concerned, discuss PEG 100 Stearate with a doctor or dermatologist, who can advise you whether your medical history may place you at risk with this ingredient. THE GOOD:PEG 100 stearate is used as an emollient and a moisturizer THE NOT SO GOOD: WHO IS IT FOR?All skin types except those that have an identified allergy to it. SYNERGETIC INGREDIENTS:Works well with most ingredients KEEP AN EYE ON:Due to kidney issues associated with the use of PEG 100 stearate products on burn patients, it is recommended to not use PEG 100 stearate containing products on broken skin. Is PEG 100 Stearate Safe? Toxicity The safety of PEG compounds has been called into question in recent years. The questioning of the safety of this ingredient is due to toxicity concerns that result from impurities found in PEG compounds. The impurities of concern are ethylene oxide and 1,4 dioxane, both are by-products of the manufacturing process. Both 1,4 dioxane and ethylene oxide have been suggested to be linked with breast and uterine cancers. While these impurities may have been a concern previously, ingredient manufacturers and improved processes have eliminated the risk of impurities in the final product. The level of impurities that were found initially in PEG manufacturing was low in comparison to the levels proposed to be linked to cancers. Longitudinal studies or studies over a long period of use of PEG compounds have not found any significant toxicity or any significant impact on reproductive health. When applied topically, PEG 100 Stearate is not believed to pose significant dangers to human health. It doesn’t penetrate deeply into the skin and isn’t thought to have bioaccumulation concerns when used topically. Irritation Through research, PEG compounds have exhibited evidence that they are non-irritating ingredients to the eyes or the skin. This research used highly concentrated forms of the ingredient, concentrations that would not be found in your skincare products. The Cosmetic Ingredient Review Expert Panel found PEG compounds to be non-photosensitizing and non-irritating at concentrations up to 100%. However, despite the evidence suggesting that PEG compounds are non-irritating, some research has indicated that irritation can occur when the skin is broken or already irritated. In a study that was trialing the use of PEG containing antimicrobial cream on burn patients, some patients experienced kidney toxicity. The concentration of PEG compounds was identified to be the culprit. Given that there was no evidence of toxicity in any study of PEGs and intact skin, the Cosmetic Ingredient Review Expert Panel amended their safety guidelines to exclude the use of PEG containing products on broken or damaged skin. Is PEG 100 Stearate Vegan? Depending on the source of the stearic acid used to make PEG 100 stearate, it may be vegan. Most of the time, stearic acid is derived from plants. However, it can also be derived from animal origin. If it is of animal origin, the product has to comply with animal by-product regulation. Check with the brand you are thinking of using to determine whether their PEG 100 stearate is derived from a plant or animal source. Why Is PEG 100 Stearate Used? Emulsifier PEG 100 Stearate is included in skincare and beauty products for a variety of reasons, ranging from making the skin softer to helping product formulations better keep their original consistency. As an emollient, PEG 100 stearate is included within skincare product formulations to give the skin a softer feel. It achieves this through strengthening the skin’s moisture barrier by forming a thin fatty layer on the skin’s surface, which prevents moisture loss and increases overall hydration. This moisturizing effect increases the hydration of skin cells, which in turn makes the skin softer and boosts skin health. Texture Another use for PEG 100 stearate has to do with its emulsification properties. Emulsifiers are valued in the skincare and personal care industries because of their ability to mix water and oils. Without this ability, the oils in many formulations would begin to separate from the water molecules, thus undermining product texture and consistency. PEG 100 stearate is also used to help to cleanse through mixing oil and dirt so that it can be rinsed away. Surfactant Lastly, PEG 100 stearate can also act as a surfactant, when used in body and facial cleansers. Surfactants disrupt surface tension, helping to mix water and oil. This characteristic helps the ingredient cleanse the skin by mixing oil with water, lifting dirt trapped inside the skin’s oils, and rinsing it away from the skin. What Types of Products Contain PEG 100 Stearate? There are many products in the skin and personal care industry that are formulated with PEG 100 stearate because of its benefits to formulations and its relative safety. Facial cleansers, shampoos, lotions, and face creams have all been known to contain this ingredient. If you’ve had problems with this ingredient before, or if your doctor has advised you to stay away from PEG 100 stearate, it’s vital to read ingredient labels for any personal care product as it has many applications. What are PEGs? You have probably noticed that many of cosmetics and personal care products you use have different types of PEGs among ingredients. PEG, which is the abbreviation of polyethylene glycol, is not a definitive chemical entity in itself, but rather a mixture of compounds, of polymers that have been bonded together. Polyethylene is the most common form of plastic, and when combined with glycol, it becomes a thick and sticky liquid. PEGs are almost often followed by a number, for example PEG-6, PEG-8, PEG 100 and so on. This number represents the approximate molecular weight of that compound. Typically, cosmetics use PEGs with smaller molecular weights. The lower the molecular weight, the easier it is for the compound to penetrate the skin. Often, PEGs are connected to another molecule. You might see, for example, PEG 100 stearate as an ingredient. This means that the polyethylene glycol polymer with an approximate molecular weight of 100 is attached chemically to stearic acid. In cosmetics, PEGs function in three ways: as emollients (which help soften and lubricate the skin), as emulsifiers (which help water-based and oil-based ingredients mix properly), and as vehicles that help deliver other ingredients deeper into the skin. What effect do PEG 100 Stearate have on your skin? Polyethylene glycol compounds have not received a lot of attention from consumer groups but they should. The most important thing to know about PEGs is that they have a penetration enhancing effect, the magnitude of which is dependent upon a variety of variables. These include: both the structure and molecular weight of the PEG, other chemical constituents in the formula, and, most importantly, the overall health of the skin. PEGs of all sizes may penetrate through injured skin with compromised barrier function. So it is very important to avoid products with PEGs if your skin is not in best condition. Skin penetration enhancing effects have been shown with PEG-2 and PEG-9 stearate. This penetration enhancing effect is important for three reasons: 1) If your skin care product contains a bunch of other undesirable ingredients, PEGs will make it easier for them to get down deep into your skin. 2) By altering the surface tension of the skin, PEGs may upset the natural moisture balance. 3) PEG 100 Stearate are not always pure, but often come contaminated with a host of toxic impurities. Impurities and other PEG 100 Stearate risks According to a report in the International Journal of Toxicology by the cosmetic industry’s own Cosmetic Ingredient Review (CIR) committee, impurities found in various PEG compounds include ethylene oxide; 1,4-dioxane; polycyclic aromatic compounds; and heavy metals such as lead, iron, cobalt, nickel, cadmium, and arsenic. Many of these impurities are linked to cancer. PEG compounds often contain small amounts of ethylene oxide. Ethylene oxide (found in PEG-4, PEG-7, PEG4-dilaurate, and PEG 100) is highly toxic — even in small doses — and was used in World War I nerve gas. Exposure to ethylene glycol during its production, processing and clinical use has been linked to increased incidents of leukemia as well as several types of cancer. Finally, there is 1,4-dioxane (found in PEG-6, PEG-8, PEG-32, PEG-75, PEG-150, PEG-14M, and PEG-20M), which, on top of being a known carcinogen, may also combine with atmospheric oxygen to form explosive peroxides — not exactly something you want going on your skin. Even though responsible manufacturers do make efforts to remove these impurities (1,4-dioxane that can be removed from cosmetics through vacuum stripping during processing without an unreasonable increase in raw material cost), the cosmetic and personal care product industry has shown little interest in doing so. Surprisingly, PEG compounds are also used by natural cosmetics companies. If you find PEG 100 Stearate in your cosmetics… Although you might find conflicting information online regarding Polyethylene Glycol, PEGs family and their chemical relatives, it is something to pay attention to when choosing cosmetic and personal care products. If you have sensitive or damaged skin it might be a good idea to avoid products containing PEGs. Using CosmEthics app you can easy add PEGs to personal alerts. In our last blog post we wrote about vegan ingredients. Natural glycols are a good alternative to PEGs, for example natural vegetable glycerin can be used as both moisturiser and emulsifier. CosmEthics vegan list can help you find products that use vegetable glycerin as wetting agent. At present, there is not enough information shown on product labels to enable you to determine whether PEG compounds are contaminated. But if you must buy a product containing PEGs just make sure that your PEGs are coming from a respected brand. Glyceryl stearate and PEG 100 stearate is a combination of two emulsifying ingredients. The stabilising effect of both means that the product remains blended and will not separate. Description Glyceryl stearate is a solid and waxy compound. It is made by reacting glycerine (a soap by-product) with stearic acid (a naturally occurring, vegetable fatty acid). PEG 100 stearate is an off-white, solid ester of polyethylene glycol (a binder and a softener) and stearic acid. The surfactant qualities of glyceryl stearate and PEG 100 stearate allow oil and water to mix. Creams and lotions are water and oil droplets held together by materials called emulsifiers, without them oil droplets would float on top of the water. When used in a moisturiser, this forms a protective barrier on the surface of skin, greatly assisting moisture retention. Glyceryl Stearate (and) PEG 100 Stearate is a very versatile non-ionic oil-in-water emulsifier that creates silky smooth, ultra-light emulsions. Most datasheets I’ve seen state the content of each Glyceryl Stearate and PEG 100 Stearate as 48–52%, which averages out to a 50/50 blend, though check the datasheet from your supplier for the particular one you have. Appearance I’ve only seen it as brittle white flakes, but some manufacturers sell it as a powder or in pellets. Usage rate 1–25%, depending on the use. SEPPIC lists 5% for a fluid lotion, 10% for lotion, 15% for a thick lotion, 20% for a fluid cream, and 25% for a thick cream. Texture Brittle, hard; weightless in emulsions. Scent Nothing noticeable Absorbency Speed Very light Approximate Melting Point 50–60°C (122–140°F) pH 5.5–7 (3 % solution); tolerates a final pH range of approximately 4–9. Charge Non-ionic Solubility Oil Why do we use it in formulations? Glyceryl Stearate (and) PEG 100 Stearate is a very effective and crazy versatile emulsifier. It can be used to create everything from sprayable milks to ultra-thick emulsified body butters, and everything in between! Unlike emulsifying waxes like Polawax, Emulsifying Wax NF, Olivem 1000, and Ritamulse SCG, Glyceryl Stearate (and) PEG 100 Stearate does not substantially thicken emulsions, even in emulsions with very large oil phases. It is also substantially more stable in very thin emulsions. For example, let’s imagine we have four different emulsions; 2 emulsified with Polawax, and 2 emulsified with Glyceryl Stearate (and) PEG 100 Stearate. One of each emulsifier has a 15% oil phase, and the other two have a 30% oil phase—the only ingredients in the oil phase are a liquid oil and the emulsifier. There are no added thickeners, like gums or fatty alcohols (cetyl alcohol, cetearyl alcohol, etc.) The Polawax emulsions will have drastically different viscosities. The 15% one will be fairly thin, but still lotion-y. It would work well in a pump-top bottle, or possibly even a bottle with a treatment pump cap. The 30% one will be more like a cream; thick and rich, and much better suited to a jar or tub. The Glyceryl Stearate (and) PEG 100 Stearate emulsions will have very similar viscosities. The 15% one will be about the consistency of partly skimmed milk, while the 30% one will be more like cream. The 30% one is more viscous because the inner phase (the oil phase) is larger, but that viscosity difference is pretty small—especially when compared to differing phase sizes in an emulsion made with Polawax. Both Glyceryl Stearate (and) PEG 100 Stearate emulsions could be packaged in a spray bottle, and are far too thin for any sort of pump bottle or jar. Because Glyceryl Stearate (and) PEG 100 Stearate does not thicken emulsions, it gives us the ability to control the viscosity and oil phase size independently. For instance, you can create an emulsion with a 50% oil phase and decide if you want it to be a thinner, pumpable lotion or a thick, solid cream. You can also choose what you want to thicken it with, allowing you significantly more control over the skin feel of the finished product. With an emulsifying wax like Polawax, that product could only be solid, and the skin feel will be harder to adjust given the unavoidable presence of the thickeners in Polawax. Additionally, because Glyceryl Stearate (and) PEG 100 Stearate doesn’t add viscosity to our emulsions, it has the ability to create far lighter feeling emulsions—in that way, it’s almost ‘invisible’ in your formulations. If you want to add the fluffy creaminess and weight of cetearyl alcohol, you’ll have to add it yourself—if you used Emulsifying Wax NF instead, that already contains 65–80% cetearyl alcohol, so you can’t avoid it. Glyceryl Stearate (and) PEG 100 Stearate also works at lower rates than more common emulsifying waxes. Compared to Emulsifying Wax NF, Glyceryl Stearate (and) PEG 100 Stearate contains a higher percentage of the emulsifying ingredient. Emulsifying Wax NF contains 20–35% Polysorbate 60, while Glyceryl Stearate (and) PEG 100 Stearate contains approximately 50% PEG 100 Stearate. I’ve seen (and successfully used) Glyceryl Stearate (and) PEG 100 Stearate at 9–17% of the oil phase, compared to 20–25% for emulsifying waxes like Polawax, Emulsifying Wax NF, Olivem 1000, and Ritamulse SCG. Do you need it? I highly recommend it if you love making lotions—it gives you far more control over your emulsions than emulsifying waxes like Polawax and Ritamulse SCG. Refined or unrefined? Glyceryl Stearate (and) PEG 100 Stearate only exists as a refined product. Strengths It’s extremely versatile, allowing you to independently adjust the viscosity and oil phase size of your formulations. It easily creates stable emulsions at low usage rates and works brilliantly over a wide variety of oil phase sizes. It’s lightweight, inexpensive, and very effective. Weaknesses It isn’t considered natural; that doesn’t bother me as it is a perfectly safe ingredient, but I can’t offer a suitable naturally-accepted alternative at this time. Alternatives & Substitutions Glyceryl Stearate (and) PEG 100 Stearate is a tricky ingredient to substitute out. Generally speaking, you’ll need another complete emulsifying wax (something like Emulsifying Wax NF or Olivem 1000), but those complete emulsifying waxes contribute significantly more thickening to finished products, meaning formulations designed to work with Glyceryl Stearate (and) PEG 100 Stearate will likely be significantly more viscous if you use a thickening emulsifying wax in its place. Depending on the formulation you may be able to adequately compensate by removing any additional fatty thickeners, but this will take some experimenting to get right. If the formulation is for an ultra-light body milk or a very thick emulsified body butter type project, it will be difficult to substitute the emulsifier. You will likely be in re-formulation territory, or you will need to accept a more viscous and/or waxier/heavier end product. How to Work with It Include Glyceryl Stearate (and) PEG 100 Stearate in your heated oil phase. Storage & Shelf Life Stored somewhere cool, dark, and dry, Glyceryl Stearate (and) PEG 100 Stearate should last at least two years. Tips, Tricks, and Quirks Glyceryl Stearate (and) PEG 100 Stearate is different from Glyceryl Stearate SE, though both are emulsifiers. The Body Shop uses Glyceryl Stearate (and) PEG 100 Stearate to emulsify their signature body butters! Polyethylene Glycol (PEG) Stearates (PEG-2 Stearate, PEG-6 Stearate, PEG-8 Stearate, PEG-12 Stearate, PEG-20 Stearate, PEG-32 Stearate, PEG-40 Stearate, PEG-50 Stearate, PEG-100 Stearate, PEG-150 Stearate) are esters of polyethylene glycol and stearic acid. The PEG Stearates are soft to waxy solids that are white to tan in color. In cosmetics and personal care products, PEG Stearates are used in skin creams, conditioners, shampoos, body cleansers and soapless detergents. PEG 100 Stearate is used in cosmetics and beauty products primarily as a surfactant and cleansing agent, because PEG Stearates' ability to clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away, according to. However, it is also seen as an emollient, because of secondary properties. * A surfactant and cleansing agent * Please read TIA’s article on What Is PEG 100 Stearate : PEGs Functions of PEG 100 Stearate : PEG 100 Stearate is used in cosmetics and beauty products primarily as a surfactant and cleansing agent, because PEG Stearates' ability to clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away, according to CosmeticsInfo.org. However, it is also seen as an emollient, because of secondary properties. Unlike typical PEGs, (whose identifying number corresponds to their molecular weight) the numerical value of each PEG Stearate corresponds to the average number of ethylene oxide monomers in the polyethylene chain (from 2 - 150). Despite the many fears regarding PEGs, they are seen as an ingredient in a large number of products because of their diverse properties. In a study published in the Toxicology journal in 2005, entitled "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products," it was concluded that: "Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths. ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics." PEG 100 Stearate is not considered to be an irritant or sensitizer (it gave only minimal irritation in studies up to 100%), and are CIR and FDA approved for use, but not on broken skin (Source). Safety Measures/Side Effects of PEG 100 Stearate: However. The Cosmetics Database found PEG 40 Stearate to be a moderate to high hazard ingredient depending on usage. The EWG issues warnings regarding: cancer, developmental and reproductive toxicity, contamination concerns, irritation, and organ system toxicity. According to a study published in the International Journal of Toxicology, PEGs (including PEG 40 Stearate) can contain harmful impurities, including: Ethylene Oxide, known to increase the incidences of uterine and breast cancers and of leukemia and brain cancer, according to experimental results reported by the National Toxicology Program; 1,4-dioxane, a known carcinogen; PAHs, known to increase the risk of breast cancer; lead; iron; and arsenic (Source). Products and formulas containing PEG 40 Stearate should not be used on broken or irritated skin. Although PEGs are considered safe for use topically on healthy skin, studies showed that patients suffering from severe burns were treated with PEG-based antimicrobial cream; this treatment resulted in kidney toxicity. "The PEG content of the antimicrobial cream was determined to be the causative agent. However, no evidence of systemic toxicity occurred in studies with intact skin. Because of the observation of kidney effects in burn patients, the CIR Expert Panel qualified their conclusion on the safety of the PEG ingredients to state that cosmetic formulations containing these ingredients should not be used on damaged skin" SYNONYMS of PEG 100 Stearate Polyoxyl (40) stearate, polyoxyethylene (40) monostearate; INS No. 431 DEFINITION Consists of a mixture of the mono- and diesters of edible commercial stearic acid and mixed polyoxyethylene diols (having an average polymer length of about 40 oxyethylene units) together with free polyol. Structural formula Nominal formula and approximate composition: free polyol monoester diester where RCO- is a fatty acid moiety, and "n" has an average value of approximately 40. The distribution of polymers is approximately in accordance with the Poisson expression. Assay Not less than 84.0 and not more than 88.0% of oxyethylene groups equivalent to not less than 97.5 and not more than 102.5% of polyoxyethylene (40) stearate calculated on the anhydrous basis. DESCRIPTION of PEG 100 Stearate Cream-coloured and exists as flakes or as a waxy solid at 25o with a faint odour FUNCTIONAL USESEmulsifier of PEG 100 Stearate CHARACTERISTICS of PEG 100 Stearate IDENTIFICATION of PEG 100 Stearate Solubility (Vol. 4) Soluble in water, ethanol, methanol and ethylacetate; insoluble in mineral oil Congealing range (Vol. 4)39 - 44o Infrared absorption The infrared spectrum of the sample is characteristic of a partial fatty acid ester of a polyoxyethylated polyol Colour reaction To 5 ml of a 5% (w/v) aqueous solution of the sample add 10 ml of ammonium cobaltothiocyanate solution and 5 ml of chloroform, shake well and allow to separate; a blue colour is produced in the chloroform layer. (Ammonium cobaltothiocyanate solution: 37.5 g of cobalt nitrate and 150 g of ammonium thiocyanate made up to 100 ml with water - freshly prepared). Saponification (Vol. 4) 100 g of the sample yields approximately 13-14 g of fatty acids and 85-87 g of polyols PURITY of PEG 100 Stearate Water (Vol. 4) Not more than 3% (Karl Fischer Method) Acid value (Vol. 4) Not more than 1 Saponification value (Vol. 4) Not less than 25 and not more than 35 Hydroxyl value (Vol. 4) Not less than 27 and not more than 40 Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, “Instrumental Methods.” METHOD OF ASSAY of PEG 100 Stearate Determine the content of Oxyethylene groups. Polyoxyethylene (100) stearate has been used in a study to assess the phase behaviors of special hot microemulsion to produce drug-loaded nanostructured lipid carriers. [3] It has also been used in a study to investigate its effects on multidrug resistance (MDR). Polyoxyethylene 100 monostearate, also known as ethylene glycol monostearate or myrj 52, belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid. Polyoxyethylene 40 monostearate is considered to be a practically insoluble (in water) and relatively neutral molecule. Polyoxyethylene 40 monostearate has been primarily detected in urine. Within the cell, polyoxyethylene 40 monostearate is primarily located in the membrane (predicted from logP) and cytoplasm. A sample work-up method for gas chromatographic profiling of polyethylene glycol related cmpd in pharmaceutical matrixes is described. After a short sample clean-up, carbon-oxygen linkages were partially cleaved with 0.07/M BBr3 in CH2Cl2 at room temp. The reaction was stopped after 1 min by addn of 0.01M hydrochloric acid. The products were trimethylsilylated and injected onto a WCOT 50 m X 0.25 mm CP-SIL 5 CB fused silica column. Eleven model cmpd, representing 4 common types of polyethylene glycol deriv, were evaluated by this method. Characteristic profiles can be obtained from polyethylene glycol deriv carrying different functional groups. Minimum detectable amt are in the range of 200 ug. Polyoxyl 100 Stearate is used in cosmetics and beauty products primarily as a surfactant and emulsifier. It occurs naturally as a white, waxy or flaky substance, according to The Food and Agriculture Organization of the United Nations. CosmeticsInfo.org notes that Polyoxyl 40 Stearate, as part of the PEG Stearate group, are formed from a naturally fatty acid known as Stearic Acid. The PEG Sterates are used in cosmetics and skin care formulas because they can "clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away. Polyethylene glycol (PEG 100 Stearate ; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 100 Stearate is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 100 Stearate is commonly expressed as H−(O−CH2−CH2)n−OH.[3] Uses of PEG 100 Stearate Medical uses of PEG 100 Stearate PEG 100 Stearate is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 100 Stearate is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 100 Stearate could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of PEG 100 Stearate The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 100 Stearate in the 1980s Terra cotta warrior, showing traces of original color Because PEG 100 Stearate is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 100 Stearate is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 100 Stearate one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 100 Stearate has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 100 Stearate is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 100 Stearate has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 100 Stearate preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 100 Stearate is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 100 Stearate derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 100 Stearate has been used as the hydrophilic block of amphiphilic block copolymers
PEG 120 METHYL GLUCOSE DIOLEATE
PEG 120 METHYL GLUCOSE DIOLEATE (Peg 120 Methyl Glucose Dioleate) A surfactant and emulsifier PEG 120 Methyl Glucose Dioleate is the polyethylene glycol ether of the diester of natural Methylglucose and Oleic Acid. It is used in beauty products and cosmetics as a surfactant and emulsifier. It is used as a thickener in hair and skin care products. It is considered a non-irritant, and also has a specific property that allows it to reduce the irritation value of whole formulas (Source). The high molecular weight of this specific PEG makes it impenetratable to healthy skin; it is FDA and CIR approved for use, but not on broken skin Functions: PEG 120 Methyl Glucose Dioleate is the polyethylene glycol ether of the diester of natural Methylglucose and Oleic Acid. It is used in beauty products and cosmetics as a surfactant and emulsifier. It is used as a thickener in hair and skin care products. It is considered a non-irritant, and also has a specific property that allows it to reduce the irritation value of whole formulas (Source). The high molecular weight of this specific PEG makes it impenetratable to healthy skin; it is FDA and CIR approved for use, but not on broken skin. Despite the many fears regarding PEGs (including PEG 120 Methyl Glucose Dioleate), they are seen as an ingredient in a large number of products because of their diverse properties. In a study published in the Toxicology journal in 2005, entitled "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products," it was concluded that: "Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths, ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics." Safety Measures/Side Effects PEG 120 Methyl Glucose Dioleate: Benefits: •Very effective non-ionic, liquid thickener for various surfactant and emulsion systems •Due to its liquid form it is easily incorporated into a wide range of products •Excellent in cold processed formulations •Can be used for clear surfactant systems •Does not need to be neutralized with an alkali •Recommended for mild cleansing systems to reduce irritancy of surfactants Use: Use levels 0.5-3% depending on application and amount of thickening required. Note: at colder temperatures Glucose-D can solidify and become thick like a gel. For easier handling we recommend to put the bottle first into a water bath (about 50-60oC) for 10min. For external use only. Applications: Body washes, shampoos, face cleansers. Country of Origin: USA Raw material source: Rapeseed oil, ethylene oxide Manufacture: Peg 120 Methyl Glucose Dioleate and methyl gluceth-10 are produced from fatty acids and then reacted with ethylene oxide. Peg 120 Methyl Glucose Dioleate is derived from corn, it is a thickening agent for mild cleansing systems, it also reduces the irritancy of surfactant packages. It is the polyethylene glycol ether of the diester of natural Methyl glucose and Oleic Acid. It is used in beauty products and cosmetics as a surfactant and emulsifier. It is used as a thickener in hair and skin care products. GlucamateTM DOE-120 thickener is an ethoxylated methyl glucose ether which has been esterified with oleic acid. It is an extremely effective nonionic thickener for hair care and skin care products. This product is recommended for use in shower gels, facial cleansers and shampoos. TYPICAL PRODUCT SPECIFICATIONS NOTES : Peg 120 Methyl Glucose Dioleate is a PEG ether of the diester of methyl glucose and oleic acid with avg. 120 moles of ethylene oxide Peg 120 Methyl Glucose Dioleate uses and applications include: Thickener, emulsifier, solubilizer for shampoos, cosmetics, topical pharmaceuticals; anti-irritant for surfactants CLASS : Surfactants FUNCTIONS : Surfactant, Emulsifier, Acid INDUSTRY : Cosmetic, Pharmaceutical APPEARANCE Pale yellow flake Yellow-brown viscous liquid FUNCTION : Peg 120 Methyl Glucose Dioleate is an extremely effective nonionic thickener for hair care and skin care products. STORAGE : Store in a cool dry place. Store only with compatible chemicals. Keep tightly closed. USE: It is a kind of high-efficient thickener in shampoo, body wash, facial cleanser and baby cleanser Physical and Chemical Properties Polypropylene glycol-20 methyl glucose ether acetate is soluble in oils and organic solvents, but is essentially insoluble in water.2 A log Kow of 13.98 has been reported for d-glucopyranoside, methyl, 2,6-di-9-octadecenoate, (Z,Z)-(Chemical Abstracts Service Number 82933-91-3), another name for methyl glucose dioleate.3 A log Kow ≈ 7.09 has been reported for methyl glucose sesquistearate.4 Specifications for methyl glucoside-coconut oil ester (methyl glucose sesquicocoate) as a direct food additive are as follows5: acid number (10-20), hydroxyl number (200-300), pH (4.8-5.0, for 5% aqueous), and saponification number (178-190). Physical and chemical properties associated with methyl glucose polyether and ester trade name materials are included in Tables 3, 4, and 5.6 Studies on most of these trade name materials are included in the toxicology section of this article. Additionally, the chemical and physical properties of isostearic acid (esters with methyl α-d-glucoside [registered with the European Chemicals Industry, ECHA], defined as 80% methyl glucoside isostearate esters [mainly di-], 16% isostearic acid, and 4% methyl glucoside)7 are included in Table 6. Data on this mixture are also included in the toxicology section. Method of Manufacture Methyl glucoside (methyl α-d-glucopyranoside) forms the backbone of the methyl glucose polyethers and esters reviewed in this safety assessment. It is cyclic or "internal" full acetal that is formed from 1 mole of methanol and 1 mole of glucose. It has been characterized as an unusually stable glucoside that exists in discrete α or β forms.16 The pathways for methyl glucoside ester and polyether methyl glucoside synthesis starting from methyl glucoside are diagrammed in Figure 1.Manufacture of methyl glucoside esters, such as methyl glucose caprylate/caprate, methyl glucose dioleate, methyl glucose isostearate, methyl glucose laurate, methyl glucose sesquicaprylate/sesquicaprate, methyl glucose sesquicocoate, methyl glucose sesquiisostearate, methyl glucose sesquilaurate, methyl glucose sesquioleate, and methyl glucose sesquistearate, is typically achieved via transesterification of an appropriate fatty acid methyl ester (eg, methyl laurate to get methyl glucose laurate) with methyl glucoside (releasing methanol as a by-product).8-13 However, esterifications via a variety of other classical techniques, such as reacting the free fatty acids with methyl glucoside and a catalyst, are also known methods of manufacture for these ingredients.14,15 Under most conditions, the primary alcohol group at C6 of the methyl glucoside core is the most reactive to esterification and is the first site to be substituted. The polyether methyl glucosides, such as PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, PPG-25 methyl glucose ether, methyl gluceth-10, and methyl gluceth-20, are typically manufactured by reaction of methyl glucoside with the required amount of the appropriate epoxide (eg, propylene oxide is used to produce PPG-10 methyl glucose; ethylene oxide is utilized to produce methyl gluceth-10).10 For those ingredients with both ester and polyether groups, such as Peg 120 Methyl Glucose Dioleate, PEG-20 methyl glucose distearate, PEG-80 methyl glucose laurate, PEG-20 methyl glucose sesquicaprylate/sesquicaprate, PEG-20 methyl glucose sesquilaurate, PEG-20 methyl glucose sesquistearate, PEG-120 methyl glucose triisostearate, PEG-120 methyl glucose trioleate, PPG-20 methyl glucose ether acetate, and PPG-20 methyl glucose ether distearate, these same methods are utilized, sequentially. An example would be PEG-80 methyl glucose laurate, which is produced in 2 steps: (1) esterification of methyl glucoside with methyl laurate, followed by (2) polyetherification with ethylene oxide. Use Cosmetic The methyl glucose polyethers reportedly function as skin and hair-conditioning agents, whereas, the methyl glucose esters reportedly function only as skin-conditioning agents in cosmetic products.1 Ingredients classified as both methyl glucose polyethers and esters based on their chemical structures function as skin-conditioning agents, surfactants, and viscosity-increasing agents in cosmetic products. According to the information supplied to the Food and Drug Administration (FDA) by industry as part of the Voluntary Cosmetic Registration Program (VCRP) in 2013 (summarized in Table 7), methyl glucose dioleate, methyl glucose sesquioleate, methyl glucose sesquistearate, PPG-10 methyl glucose ether, PPG-20 methyl glucose ether, PPG-20 methyl glucose ether distearate, methyl gluceth-10, methyl gluceth-20, Peg 120 Methyl Glucose Dioleate, PEG-20 methyl glucose distearate, PEG-20 methyl glucose sesquistearate, and PEG-120 methyl glucose trioleate are being used in cosmetic products.17 A survey of ingredient use concentrations that was conducted by the Personal Care Products Council (Council) in 2013 (Table 7) indicates that the polyethers and esters are being used at concentrations up to 15% and 4%, respectively.18,19 The maximum use concentration was 15% for methyl gluceth-10 and methyl gluceth-20 used in rinse-off skin-cleansing products. For leave-on products, the 15% maximum use concentration was for methyl gluceth-10 used in face and neck creams, lotions, and powders (not sprays). The Council survey results also provided a use concentration for the newly reported VCRP use(s) of methyl glucose sesquistearate (1% maximum use concentration), but not PEG-20 methyl glucose sesquistearate, in lipsticks. Additionally, a maximum use concentration of 0.05% for PEG-20 methyl glucose distearate in lipsticks was reported in this survey. Uses of methyl glucose sesquistearate and PEG-20 methyl glucose sesquistearate, but not PEG-20 methyl glucose distearate, in lipsticks were also reported in FDA's VCRP. Cosmetic products containing methyl glucose polyethers and esters may be applied to the skin and hair, or, incidentally, may come in contact with the eyes and mucous membranes. Products containing these ingredients may be applied as frequently as several times per day and may come in contact with the skin or hair for variable periods following application. Daily or occasional use may extend over many years. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is the polyethylene glycol ether of the diester of natural Methylglucose and Oleic Acid. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in beauty products and cosmetics as a surfactant and emulsifier. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as a thickener in hair and skin care products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is considered a non-irritant, and also has a specific property that allows PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) to reduce the irritation value of whole formulas (Source). The high molecular weight of this specific PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) impenetratable to healthy skin; PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is FDA and CIR approved for use, but not on broken skin PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) thickener is an ethoxylated methyl glucose ether which has been esterified with oleic acid. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is an extremely effective nonionic thickener for hair care and skin care products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is recommended for use in shower gels, facial cleansers and shampoos. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a very popular skin care ingredient and are used to dissolve oil and grease. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in skin care products as thickeners and stabalizers, and to PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) help dissolve oil on skin. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is an extremely effective non-ionic thickener for hair care and skin care products, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in shower gels, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in facial cleansers and PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in shampoos. Actives: 70-80%. Remaining part: water. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is viscous liquid, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) light yellow color. An LD50 of > 5 g/kg was also reported for PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) in a study involving rats (number and strain not stated). PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Details relating to the test protocol were not stated. The ocular irritation potential of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in the Draize test using 5 male or female New Zealand albino rabbits.37 The test substance (100 µl) was instilled into one eye of each animal. Instillation was followed by massaging for 30 seconds. Untreated eyes served as controls. Reactions were scored at 24 h, 48 h, 72 h, and 7 days post-instillation PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) , and maximum average Draize scores (MAS; range: 0 to 110) were determined. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was classified as a slight irritant (maximum average Draize score = 8.8). An in vitro assay was conducted to determine if there was a correlation with the in vivo Draize test conducted on rabbits. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Using sheep red blood cells, this in vitro assay assessed hemolysis and protein denaturation. The extent of hemolysis was determined spectrophotometrically. Assay results for PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) were as follows: effective concentration that caused 50% hemolysis (H50) = 1,125.56 µg/ml; denaturation index (DI) = 12.82%; H50/DI = 87.80. The Pearson and Spearman PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) correlation coefficients between the log H50/DI and the MAS were 0.752 and 0.705, respectively. Thus, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was also classified as a slight irritant in the in vitro assay. The ocular irritation potential of 100% PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in the Draize test using rabbits (number and strain not stated).32 The test substance did not induce ocular irritation. In comparative irritation tests, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (concentrations not stated) significantly reduced the ocular irritation induced by SLS and AOS in rabbits (number and strain not stated). The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) abbreviated chemical names were not defined. The skin irritation potential of 100% The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (GlucamTM DOE-120 Thickener) was evaluated using rabbits (number and strain not stated).32 Details relating to the test protocol were not included. A primary irritation The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) index of 0.45 (range: 0 to 8) was reported. % PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in an HRIPT (occlusive patches) involving 53 atopic volunteers. n the Ames plate incorporation test, the genotoxicity of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (in ethanol) was evaluated at doses up to 5000 µg/plate. It was concluded that PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was not genotoxic in any of the bacterial strains tested, with or without metabolic activation. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is derived from corn, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a thickening agent for mild cleansing systems, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) also reduces the irritancy of surfactant packages. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is the polyethylene glycol ether of the diester of natural Methyl glucose and Oleic Acid. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in beauty products and cosmetics as a surfactant and emulsifier. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as a thickener in hair and skin care products. Ingredients: PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) : PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a naturally derived cleansing and thickening agent for shampoos and other cleansing products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) also has good moisture retention properties which can help PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) improve the skin-feel of surfactant-based products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is derived from corn and palm and then ethoxylated to make PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) wate soluble. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is usually a petrochemical process. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Soluble in hot water. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) comes as flakes that will soften and dissolve into a water base but PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) can be quite slow at room temperature. The best procedure is to heat a little of your water to 50-60C and add the PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) , forming a fluid paste which can then be added into the rest of your formula for thickening. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) uses as a thickening and cleansing agent for shampoos and cleansing products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is Polyethylene glycol ether of the diester of methyl glucose and oleic acid with an average of 120 moles of ethylene oxide. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Surfactant/thickener/solubilizer/emulsifier mainly used in cosmetics and personal care products. For those ingredients with both ester and polyether groups, such as PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) , PEG-20 methyl glucose distearate, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) , PEG-20 methyl glucose sesquicaprylate/sesquicaprate, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) PEG-20 methyl glucose sesquistearate, PEG-120 methyl glucose triisostearate, PEG-120 methyl glucose trioleate, PPG-20 methyl glucose ether acetate, and PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) these same methods are utilized, sequentially. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) ether of the diester of methyl glucose and oleic acid with avg. 120 moles of ethylene oxide PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) uses and applications include: PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as Thickener, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as emulsifier, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as solubilizer for shampoos, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in cosmetics, topical pharmaceuticals; anti-irritant for surfactants. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is commonly included in medications in the following forms. Cas no of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is 86893-19-8. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) ; DOE 120 is an extremely effective nonionic thickener for hair care and skin care products, derives from natural methyl glucoside. And it has non-irritation for eyes, which ideally is applied for baby shampoos and face wash products. It is a good ingredient for low irritation formulation, based on its specific property梔istinctly reduce the irritation of whole formulation. Appearance of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Pale yellow flake liquid Odor of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Mild characteristic Acid value, mg/g of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) 1MAX Hydroxyl value, mg/g of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) 14-26 Saponification value, mg/g of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) 14-26 Iodine value of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) 5-15 pH,(5% aqueous solution) of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) 4.5-8.0 PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) : PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a polyethylene glycol ether of the diester of methylglucose and oleic acid with an average of 120 moles of ethylene oxide. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in skin care and hair care products as a surfactant and emulsifier. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is considered a non-irritant, and also has a specific property that allows PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) to reduce the irritation value of whole formulas. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is known to be a moderate hazard depending on use and warns of contamination and toxicity concerns. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) including products should not be used on broken or irritated skin as studies showed that patients suffering from severe burns treated with PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) based antimicrobial cream has resulted in kidney toxicity. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is also known to increase the incidences of uterine and breast cancers and of leukemia and brain cancer according to a study published in the PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) International Journal of Toxicology. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is FDA and CIR approved for use, but not on broken skin. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a naturally derived cleansing and thickening agent for shampoos and other cleansing products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) also has good moisture retention properties which can help PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) improve the skin-feel of surfactant-based products. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is a very popular skin care ingredient and are used to dissolve oil and grease. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in skin care products as thickeners and stabalizers, and to PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) help dissolve oil on skin. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is an extremely effective non-ionic thickener for hair care and skin care products, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in shower gels, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in facial cleansers and PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) recommended in shampoos. Actives: 70-80%. Remaining part: water. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is viscous liquid, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) light yellow color. An LD50 of > 5 g/kg was also reported for PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) in a study involving rats (number and strain not stated). PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Details relating to the test protocol were not stated. The ocular irritation potential of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in the Draize test using 5 male or female New Zealand albino rabbits.37 The test substance (100 µl) was instilled into one eye of each animal. Instillation was followed by massaging for 30 seconds. Untreated eyes served as controls. Reactions were scored at 24 h, 48 h, 72 h, and 7 days post-instillation PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) , and maximum average Draize scores (MAS; range: 0 to 110) were determined. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was classified as a slight irritant (maximum average Draize score = 8.8). An in vitro assay was conducted to determine if there was a correlation with the in vivo Draize test conducted on rabbits. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) Using sheep red blood cells, this in vitro assay assessed hemolysis and protein denaturation. The extent of hemolysis was determined spectrophotometrically. Assay results for PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) were as follows: effective concentration that caused 50% hemolysis (H50) = 1,125.56 µg/ml; denaturation index (DI) = 12.82%; H50/DI = 87.80. The Pearson and Spearman PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) correlation coefficients between the log H50/DI and the MAS were 0.752 and 0.705, respectively. Thus, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was also classified as a slight irritant in the in vitro assay. The ocular irritation potential of 100% PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in the Draize test using rabbits (number and strain not stated).32 The test substance did not induce ocular irritation. In comparative irritation tests, PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (concentrations not stated) significantly reduced the ocular irritation induced by SLS and AOS in rabbits (number and strain not stated). The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) abbreviated chemical names were not defined. The skin irritation potential of 100% The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (GlucamTM DOE-120 Thickener) was evaluated using rabbits (number and strain not stated).32 Details relating to the test protocol were not included. A primary irritation The PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) index of 0.45 (range: 0 to 8) was reported. % PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was evaluated in an HRIPT (occlusive patches) involving 53 atopic volunteers. n the Ames plate incorporation test, the genotoxicity of PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) (in ethanol) was evaluated at doses up to 5000 µg/plate. It was concluded that PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) was not genotoxic in any of the bacterial strains tested, with or without metabolic activation. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is the polyethylene glycol ether of the diester of natural Methyl glucose and Oleic Acid. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used in beauty products and cosmetics as a surfactant and emulsifier. PEG 120 Methyl Glucose Dioleate (PEG-120 Methyl Glucose Dioleate, PEG 120 METHYL GLUCOSE DIOLEATE) is used as a thickener in hair and skin care products. PEG 120 Methyl Glucose Dioleate (P
PEG 1500
PEG 1500 Properties of PEG 1500 Related Categories Essential Chemicals, Poly(ethylene glycol) (PEG) and PEG Solutions, Research Essentials Less... form solution mol wt of PEG 1500 Mr ~1500 packaging of PEG 1500 pkg of 10 × 4 mL mfr. no. Roche shipped in wet ice storage temp. 2-8°C SMILES string C(CO)O Show More (10) Description of PEG 1500 General description of PEG 1500 Poly(ethylene glycol) ( PEG 1500) is a non-ionic hydrophilic polymer and is available in different molecular weights. It helps in the purification and crystal growth of proteins and nucleic acids. PEG and dextran together result in aqueous polymer two phase system, which is required for the purification of biological materials. PEG also interacts with cell membrane, thereby allowing cell fusion.[4][5] Application of PEG 1500 Polyethylene Glycol 1500 (PEG 1500) has been used to mediate cell fusion.[1][2][3] Physical form of PEG 1500 Solution, filtered through 0.2 μm pore size membrane, 50% PEG 1500 (w/v) in 75 mM Hepes (pH 8.0), bottled under nitrogen, ready to use Other Notes of PEG 1500 For life science research only. Not for use in diagnostic procedures. Product name : Polyglycol PEG 1500 Grade of PEG 1500 : Extra pure Synonym of PEG 1500 : Polyglycol, Polyethylene oxide, Polyoxy ethylene, PEG 1500 Formula of PEG 1500 : HO(C₂H₄O)nH Description of PEG 1500 Cas no of PEG 1500 : 25322-68-3 EC no. of PEG 1500 : 500-038-2 Product Description of PEG 1500 Application field of PEG 1500: Pharmacology and Cosmetics production (as base for creams, toothpastes and lipsticks) Detergent & Household goods production (as soap bars glue, soluble agent in detergent pastes, fixing agent for odors in soaps and detergents, as additive in general cleaners, polishers, air fresheners, automatic dishwashing detergents) Production of textile supporting substances (component of dispergators and protective solutions) Rubber goods production (non adhesive agent for forms treatment) Metal works industry (agent for cleaning and polishing pastes, lubricating & cooling liquids). Polyethylene glycol PEG 1500 Polyethylene glycol (PEG; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG 1500 is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 1500 is commonly expressed as H−(O−CH2−CH2)n−OH.[3] Uses of PEG 1500 Medical uses Main articles: Macrogol and PEGylation PEG is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 1500 is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] An example of PEG hydrogels (see "Biological uses" section) in a therapeutic has been theorized by Ma et al. They propose using the hydrogel to address periodontitis (gum disease) by encapsulating stem cells in the gel that promote healing in the gums.[6] The gel and encapsulated stem cells was to be injected to the site of disease and crosslinked to create the microenvironment required for the stem cells to function. A PEGylated lipid is used as an excipient in both the Moderna and Pfizer–BioNTech vaccines for SARS-CoV-2. Both RNA vaccines consist of Messenger RNA, or mRNA, encased in a bubble of oily molecules called lipids. Proprietary lipid technology is used for each. In both vaccines, the bubbles are coated with a stabilizing molecule of polyethylene glycol.[medical citation needed] As of December 2020 there is some concern that PEG could trigger allergic reaction,[7] and in fact allergic reactions are the driver for both the UK and Canadian regulators to issue an advisory, noting that: two individuals "individuals in the U.K... were treated and have recovered" from anaphylactic shock.[8][9] As of 18 December, the US CDC stated that in their jurisdiction six cases of "severe allergic reaction" had been recorded from more than 250,000 vaccinations, and of those six only one person had a "history of vaccination reactions".[10] Chemical uses The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG in the 1980s Terra cotta warrior, showing traces of original color Because PEG is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[11] Polyethylene glycol has a low toxicity and is used in a variety of products.[12] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[13] Since PEG is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[14] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG is used when working with green wood as a stabilizer, and to prevent shrinkage.[15] PEG has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[16] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[17] PEG is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 1500 derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 1500 has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[18] PEG 1500 has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[19] Biological uses of PEG 1500 PEG can be modified and crosslinked into a hydrogel and used to mimic the extracellular matrix (ECM) environment for cell encapsulation and studies.[20][21] An example study was done using PEG-Diacrylate hydrogels to recreate vascular environments with the encapsulation of endothelial cells and macrophages. This model furthered vascular disease modeling and isolated macrophage phenotype's effect on blood vessels.[22] PEG is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[11] PEG is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[4] Polymer segments derived from PEG polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG precipitation is used to concentrate viruses. PEG is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[23] The size of the PEG polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo.[24][25] In blood banking, PEG is used as a potentiator to enhance detection of antigens and antibodies.[4][26] When working with phenol in a laboratory situation, PEG 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance.[27][28] Commercial uses PEG is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG is also under investigation for use in body armor, and in tattoos to monitor diabetes.[29][30] In low-molecular-weight formulations (e.g. PEG 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG is also used as an anti-foaming agent in food and drinks[31] – its INS number is 1521[32] or E1521 in the EU.[33] Industrial uses A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[34] Dimethyl ethers of PEG are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[35] PEG is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG is injected into industrial processes to reduce foaming in separation equipment. PEG is used as a binder in the preparation of technical ceramics.[36] Recreational uses PEG is used to extend the size and durability of very large soap bubbles. PEG is the main ingredient in many personal lubricants. (Not to be confused with propylene glycol.) Health effects PEG is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of a detectable level of anti-PEG antibodies in approximately 72% of the population, never treated with PEGylated drugs, based on plasma samples from 1990–1999.[37] The FDA has been asked to investigate the possible effects of PEG in laxatives for children. Since 1999, the FDA has received over 1,000 incident reports from parents reporting serious or life threatening side effects after their children were given one or more doses of PEG as an osmotic laxative.[38] Miralax has not been tested on children. PEG is not recommended to those under 18. Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG, hypersensitive reactions to PEG are an increasing concern.[39][40] Allergy to PEG is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG or were manufactured with PEG.[39] When PEG is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic (a molecule which stimulates an immune response), stimulating an anti-PEG antibody response in some patients. This effect has only been shown for a few of the many available PEGylated therapeutics, but it has significant effects on clinical outcomes of affected patients.[41] Other than these few instances where patients have anti-PEG immune responses, it is generally considered to be a safe component of drug formulations.[medical citation needed] Available forms and nomenclature PEG, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[42] PEGs are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[43] PEG and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG, or methoxypoly(ethylene glycol), abbreviated mPEG. Lower-molecular-weight PEGs are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high-purity PEG has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray crystallography.[43] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG. PEGs are also available with different geometries. Branched PEGs have three to ten PEG chains emanating from a central core group. Star PEGs have 10 to 100 PEG chains emanating from a central core group. Comb PEGs have multiple PEG chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEGs indicate their average molecular weights (e.g. a PEG with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 400.) Most PEGs include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (ĐM). Mw and Mn can be measured by mass spectrometry. PEGylation is the act of covalently coupling a PEG structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEGylated protein. PEGylated interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[44] PEGs potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[45] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[46] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) PEG and related polymers (PEG phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[47] PEGs and methoxypolyethylene glycols are manufactured by Dow Chemical under the trade name Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, MiraLax, GoLytely, Colace used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight (e.g. macrogol 3350, macrogol 4000 or macrogol 6000). Production Polyethylene glycol 400, pharmaceutical quality Polyethylene glycol 4000, pharmaceutical quality The production of polyethylene glycol was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were polyethylene glycols.[48] Polyethylene glycol is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[49] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants. HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain PEG with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular weight polyethylene glycol, is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used. Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight polyethylene glycol.
PEG 200
PEG-200, polyethylene glycol (200-600) , CAS : 25322-68-3. Synonymes : polyethylene glycol (200-600);PEG;Polymère d'oxyéthylène;Poly(oxy-1,2-éthynediyl), alpha-hydro-oméga-hydroxy;Oxyethylene polymer.N° CAS : 25322-68-3. Origine(s) : Synthétique.Nom INCI : PEG-200. Additif alimentaire : E1521. Classification : PEG/PPG, Composé éthoxylé, Glycol, Polymère de synthèse. Ses fonctions (INCI). Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Solvant : Dissout d'autres substances
PEG 300
PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Properties of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Quality Level 200 vapor pressure <0.1 hPa ( 20 °C) autoignition temp. 370 °C potency 28000 mg/kg LD50, oral (Rat) >20000 mg/kg LD50, skin (Rabbit) pH 4-7 (20 °C, 100 g/L in H2O) bp >220 °C/1013 hPa (decomposes) mp -15--10 °C transition temp flash point 220 °C density 1.13 g/cm3 at 20 °C SMILES string C(CO)O InChI 1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2 InChI key LYCAIKOWRPUZTN-UHFFFAOYSA-N storage conditions Store below +30°C. Name PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Accession Number DB11161 Description Polyethylene glycol 300 (PEG 300) is a water-miscible polyether with an average molecular weight of 300 g/mol. It is a clear viscous liquid at room temperature with non-volatile, stable properties 1. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) are widely used in biochemistry, structural biology, and medicine in addition to pharmaceutical and chemical industries. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) serve as solubilizers, excipients, lubricants, and chemical reagents. Low molecular weight glycols are observed to exhibit antibacterial properties as well. PEG 300 is found in eye drops as a lubricant to temporarily relieve redness, burning and irritation of the eyes. Type Small Molecule Groups Approved Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300); /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is commonly expressed as H−(O−CH2−CH2)n−OH.[ Uses of Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Medical uses of Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Main article: Macrogol PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) in the 1980s Terra cotta warrior, showing traces of original color Because PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[13] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14] Biological uses PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. Polymer segments derived from PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) precipitation is used to concentrate viruses. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo.[16][17] In blood banking, PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used as a potentiator to enhance detection of antigens and antibodies.[4][18] When working with phenol in a laboratory situation, PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance.[19][20] Commercial uses PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also under investigation for use in body armor, and in tattoos to monitor diabetes.[21][22] In low-molecular-weight formulations (e.g. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521[24] or E1521 in the EU.[25] Industrial uses A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300), with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is injected into industrial processes to reduce foaming in separation equipment. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used as a binder in the preparation of technical ceramics.[28] Recreational uses PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is used to extend the size and durability of very large soap bubbles. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is the main ingredient in many personal lubricants. Health effects PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) antibodies in approximately 72% of the population based on plasma samples from 1990–1999.[medical citation needed] The FDA has been asked to investigate the possible effects of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) in laxatives for children.[29] Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300), hypersensitive reactions to PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) are an increasing concern.[medical citation needed] Allergy to PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) or were manufactured with PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300).[30] When PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) antibody response in some patients. This effect has only been shown for a few of the many available PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)ylated therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) immune responses, it is generally considered to be a safe component of drug formulations. Available forms and nomenclature PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300), PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300), or methoxypoly(ethylene glycol), abbreviated mPEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300). Lower-molecular-weight PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300). PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s are also available with different geometries. Branched PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s have three to ten PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) chains emanating from a central core group. Star PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s have 10 to 100 PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) chains emanating from a central core group. Comb PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s have multiple PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s indicate their average molecular weights (e.g. a PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) 400.) Most PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)ylation is the act of covalently coupling a PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)ylated protein. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)ylated interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[34] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[36] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)) and related polymers (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) is very sensitive to sonolytic degradation and PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37] PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300)s and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight. Production of Polyethylene glycol (PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) Polyethylene glycol 400, pharmaceutical quality Polyethylene glycol 4000, pharmaceutical quality The production of polyethylene glycol was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were polyethylene glycols.[38] Polyethylene glycol is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[39] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants. HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain PEG 300 (Polyethylene Glycol 300, Polietilen Glikol 300) with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular weight polyethylene glycol, is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used. Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight polyethylene glycol.
PEG 300, 400, 1500, 6000, 8000
PEG; Macrogol; Polyoxyethlene; Aquaffin; Nycoline; alpha-hydro-omega-hydroxypoly(oxy-1,2-ethanediyl); polyethylene glycols; Poly Ethylene Oxide; Polyoxyethylene; Polyglycol; 1,2-ethanediol Ehoxylated; Polyoxyethylene ether; Polyoxyethylene; Poly(ethylene glycol); PEG 300; PEG 400; PEG 1500; PEG 6000; PEG 8000 CAS NO: 25322-68-3
PEG 3350
PEG 3350 Polyethylene glycol (PEG 3350; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 3350 is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 3350 is commonly expressed as H−(O−CH2−CH2)n−OH. Uses of Polyethylene glycol (PEG 3350 Medical uses of Polyethylene glycol (PEG 3350) Main article: Macrogol PEG 3350 is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 3350 is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 3350 could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of Polyethylene glycol (PEG 3350) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 3350 in the 1980s Terra cotta warrior, showing traces of original color Because PEG 3350 is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 3350 is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 3350 one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 3350 has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 3350 is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 3350 has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 3350 preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 3350 is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 3350 derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 3350 has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[13] PEG 3350 has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14] Biological uses PEG 3350 is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6] PEG 3350 is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG 3350 is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. Polymer segments derived from PEG 3350 polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 3350 precipitation is used to concentrate viruses. PEG 3350 is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG 3350-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the PEG 3350 polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG 3350 is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, PEG 3350 is used as a potentiator to enhance detection of antigens and antibodies. When working with phenol in a laboratory situation, PEG 3350 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. Commercial uses PEG 3350 is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG 3350 is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG 3350 is also under investigation for use in body armor, and in tattoos to monitor diabetes. In low-molecular-weight formulations (e.g. PEG 3350 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG 3350 is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521 or E1521 in the EU. Industrial uses A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of PEG 3350 are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG 3350 has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] PEG 3350 is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG 3350, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG 3350 is injected into industrial processes to reduce foaming in separation equipment. PEG 3350 is used as a binder in the preparation of technical ceramics.[28] Recreational uses PEG 3350 is used to extend the size and durability of very large soap bubbles. PEG 3350 is the main ingredient in many personal lubricants. Health effects PEG 3350 is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti PEG 3350 antibodies in approximately 72% of the population based on plasma samples from 1990–1999.[medical citation needed] The FDA has been asked to investigate the possible effects of PEG 3350 in laxatives for children.[29] Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG 3350, hypersensitive reactions to PEG 3350 are an increasing concern.[medical citation needed] Allergy to PEG 3350 is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG 3350 or were manufactured with PEG 3350.[30] When PEG 3350 is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG 3350 antibody response in some patients. This effect has only been shown for a few of the many available PEG 3350 therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG 3350 immune responses, it is generally considered to be a safe component of drug formulations. Available forms and nomenclature PEG 3350, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 3350 is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 3350 has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] PEG 3350s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33] PEG 3350 and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 3350 and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 3350 are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG 3350, or methoxypoly(ethylene glycol), abbreviated mPEG 3350. Lower-molecular-weight PEG 3350s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 3350 has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG 3350. PEG 3350s are also available with different geometries. Branched PEG 3350s have three to ten PEG 3350 chains emanating from a central core group. Star PEG 3350s have 10 to 100 PEG 3350 chains emanating from a central core group. Comb PEG 3350s have multiple PEG 3350 chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEG 3350s indicate their average molecular weights (e.g. a PEG 3350 with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 3350 400.) Most PEG 3350s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 3350ylation is the act of covalently coupling a PEG 3350 structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 3350 protein. PEG 3350 interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG 3350 is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[34] PEG 3350s potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[36] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (PEG 3350) and related polymers (PEG 3350 phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG 3350 is very sensitive to sonolytic degradation and PEG 3350 degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG 3350 degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37] PEG 3350s and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight. Production of Polyethylene glycol (PEG 3350) Polyethylene glycol 400, pharmaceutical quality Polyethylene glycol 4000, pharmaceutical quality The production of polyethylene glycol was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were polyethylene glycols.[38] Polyethylene glycol is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[39] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants. HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain PEG 3350 with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular weight polyethylene glycol, is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used. Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight polyethylene glycol. Polyethylene glycol (PEG 3350) is a versatile polyether being utilized in various applications, in particular in medicine. Polyethylene oxide (PEO) is another name for PEG 3350. Typically, ethylene oxide macromolecules (Fig. 18.9) with molecular weights less than 20,000 g/mol are called PEG 3350, while those having values above 20,000 g/mol are named PEO. It is reported that PEG 3350 is soluble in water, ethanol, acetonitrile, benzene, and dichloromethane, while it is insoluble in diethyl ether and hexane. PEG 3350 is available in different structures such as branched, star, and comb-like macromolecules. PEG 3350ylation is an attractive process in which PEG 3350 is bonded to another molecule, which is promising in therapeutic methods. PEG 3350 can hinder the protein adsorption which is essential in drug delivery to minimize the protein corona formation [29]. Polyethylene glycol (PEG 3350) is a hydrophilic polymer of ethylene oxide. The non-immunogenic, biocompatible and flexible nature of PEG 3350 makes it a suitable synthetic dressing material for wound healing. The low toxic PEG 3350 macromers are well bonded with growth factor like EGF and can be delivered at the wound site [98]. The mechanical stability of PEG 3350 can be enhanced by blending PEG 3350 with chitosan and PLGA. Blending also increases thermal stability and crystallinity of the particular polymer [99]. Such PEG 3350-based dressings have been widely used to treat a diabetic wound by promoting and inducing growth of skin cells and collagen deposition. It also reduces scar formation [100]. The injectable hybrid hydrogel dressing system is developed from PEG 3350-based hyperbranched multiacrylated co-polymer and HA in combination with adipose-derived stem cells to support the viability of cells in vitro and in vivo. It prevents wound contraction and enhances angiogenesis by acting as temporary hydrogel for wound healing purpose [101]. Hydrophilic Materials Based on Polyethylene Glycol Polyethylene glycol (PEG 3350) is the most relevant antifouling polymer in biomedical devices. PEG 3350 antifouling properties are thought to be related to surface hydration and steric hindrance effects (Chen et al., 2010). PEG 3350 chains linked to a material surface assume a brush-like configuration at the water/surface interface, limiting the approach to the surface by bacteria. Compression of the highly hydrated layer of PEG 3350 chains is unfavorable because it would involve a reduction in PEG 3350 chain mobility and removal of water molecules. Surface packing density and polymer chain length can be used to control PEG 3350 antifouling properties (Roosjen et al., 2004). PEG 3350-functionalized PUs were developed by PEG 3350 introduction either in the polymer backbone (Corneillie et al., 1998) or polymer side chain (Francolini et al., 2019). Auto-oxidization in the presence of oxygen, metal ions, and enzymes able to oxidize PEG 3350 hydroxyl groups, however, may limit long-term effectiveness. Polyethylene glycol (PEG 3350) is another important type of PCM for textile applications. The repeating unit in PEG 3350 is oxyethylene (–O–CH2–CH2–) containing hydroxyl group on either side of the chain. The melting point of PEG 3350 depends on its molecular weight and is proportional as the molecular weight increases. The phase-change temperature of PEG 3350 can be determined using DSC (Pielichowski and Flejtuch, 2002). PEG 3350 with degree of polymerization 1000 has phase-change temperature of 35°C, while PEG 3350 with degree of polymerization 20,000 has melting temperature of 63°C (Craig and Newton, 1991; Hopp et al., 2000). Jiang et al. (2016) synthesized a dual-functional magnetic microcapsules containing a PCM core and an organo-silica shell for the electromagnetic shielding and thermal regulating applications. Fig. 20.6 shows the resulting DSC curves where the areas under the peaks indicate the amount of latent heat contained using different organosilanes/PEG 3350 weight ratios. PEG 3350 is the basis of a number of laxatives.[3] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 3350 is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[4] The possibility that PEG 3350 could be used to fuse nerve cells is being explored by researchers studying spinal cord injury.[3] Chemical uses The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 3350 in the 1980s Terra cotta warrior, showing traces of original color Because PEG 3350 is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[5] Polyethylene glycol has a low toxicity and is used in a variety of products.[6] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[7] Since PEG is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 3350 one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 3350 has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[8] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[3] In addition, PEG 3350 is used when working with green wood as a stabilizer, and to prevent shrinkage.[9] PEG has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[10] These painted artifacts were created during the Qin Shi Huang Di dynasty (first emperor of China). Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xian air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 3350 preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[11] PEG 3350 is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 3350 derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 3350 is a polyol and can be reacted with an isocyanate to make polyurethane. PEG 3350 has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[12] Biological uses PEG 3350 is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions. PEG 3350 is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[3] Polymer segments derived from PEG polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 3350 precipitation is used to concentrate viruses. PEG is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[13] The size of the PEG polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, PEG is used as a potentiator to enhance detection of antigens and antibodies.[3][16] When working with phenol in a laboratory situation, PEG 300 can be used on phenol skin burns to deactivate any residual phenol. In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. What is Polyethyleneglycol? Polyethyleneglycol, or PEG 3350 for short, is a polyether consisting of a (-O-CH2-CH2-) backbone that is commonly used in many fields of academic research, industrial processing and commercial applications. PEG 3350s can also commonly be referred to as polyoxyethylene (POE) and polyethyleneoxide (PEO), but regardless of the name that is used, the simple structure of PEG 3350s (which consists of solely carbon, hydrogen and oxygen, see image below) affords safe compounds that are used throughout everyday life. Additionally, it is this simple structure that separates PEG 3350s from similar compounds like propylene glycol and polypropyleneglycol. The two aforementioned compounds (polyethyleneglycol vs. propylene glycol) are derivatives of propylene oxide, which, when polymerized, bestows a completely different set of physical characteristics to the compound as compared to PEG 3350. The method in which PEG 3350s are created allows for a wide variability in their physical attributes, allowing them to be utilized by many commercial markets. By controlling a PEG 3350’s size (i.e. molecular weight) and its size distribution, a wide variety of physical properties can be achieved, which sets Oxiteno’s line of PEG 3350 products, the 6000 powder series, apart from other name brands of polyethyleneglycols. Due to the vast number of product types offered 6000 powder products (click here for a full listing), many physical forms (liquids, pastes, solids, flakes, powder, etc.) and viscosities of PEG 3350s are available. It is the numerous attributes of PEG 3350s that allow for their inclusion in a vast array of applications, ranging from the pharmaceutical industry to cosmetic markets. While the structure of PEG 3350 is simple, it is this compound’s solubility in water is what makes it such a versatile additive to enhance many industrial applications. Because line of PEG 3350 products are non-toxic and hydrophilic (water-loving), these polymers are used in the home (i.e. to treat surfaces in cleaning agents made by cleaning chemicals manufacturers) as well as in the food production industry (to reduce the amount of foam during the processing of food products). PEG 3350s are generally considered to be biologically inert, making them safe to use throughout the medical and food-processing industries. What is Polyethyleneglycol Used For? Due to the variety of physical properties that can be achieved through PEG 3350 series, formulators in nearly all industries can benefit from this line of PEG 3350 products. A PEG 3350’s unique ability to enhance a dye’s solubility in aqueous formulations causes it to be used throughout the textile industry as dye carriers. PEG 3350s are also exceptional at retaining moisture in complex formulations, as well as to an applied surface, making them excellent humectants and anti-caking agents for cosmetic chemical suppliers and coatings chemical suppliers. This unique relationship with water is further exploited by many other markets as PEG 3350s can help to stabilize emulsions and act as water-miscible co-solvents for aqueous formulations. The food industry uses these compounds as additives to reduce the amount of foam during food processing. Additionally, PEG 3350s find themselves very useful in the pharmaceutical industry due to their ability to act as rheological modifiers, thus being used as excipients. New research techniques are increasingly incorporating PEG 3350 compounds via the use of ‘PEG 3350ylation’ onto protein and peptide therapeutics, thus improving their pharmacokinetics and leading to safer and more effective drugs1-2. Many of PEG 3350 series meet the requirements set forth by the National Formulary (NF) guidelines for safe preparation, manufacture and use of a variety of PEG 3350 compounds that can be used as excipients, botanicals and other similar products. Is Polyethyleneglycol Safe? PEG 3350s are generally considered to be a biologically inert substance, meaning that this class of oligomers and polymers are recognized to be safe for use in food, cosmetic and pharmaceutical applications. So, is polyethyleneglycol toxic? Due to the PEG 3350’s structure and its water solubility, these compounds are generally considered to be non-toxic, as studies of demonstrated their safety for use within the field of drug delivery1-2, for application to the skin in cosmetics3 and as additives in the food and vitamin processing industry4. Where applicable, line of PEG 3350s, 6000 powder, adhere to the guidelines for the manufacturing set forth by the National Formulary (NF). Having initially been established by the U.S. Federal Food, Drug, and Cosmetics Act of 1938, these guidelines are currently recognized by the U.S. Food and Drug Administration (FDA). These manufacturing and production guidelines are annually reviewed, requiring to not only adhere to these strict standards, but maintain constant surveillance over the preparation of these non-toxic additives. Additionally, many of PEG 3350 products that are used in agricultural applications are safe for the environment and are on the Environmental Protection Agencies’ (EPA) inert ingredient list, meeting the requirements set forth in 40 CFR 180.910 and 40 CFR 180.930. This makes PEG 3350s attractive for agrochemical companies. Polyethylene Glycol · Adhesives · Agriculture · Ceramics · Chemical Intermediates · Cosmetics · Toiletries · Electroplating / Electropolishing · Food Processing · Household Products · Lubricants · Metal / Metal Fabrication · Paints & Coatings · Paper Industry · Pharmaceuticals · Printing · Rubber & Elastomers · Textiles · Wood Processing AVAILABLE FORMS AND NOMENCLATURE PEG 3350, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 3350 is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 3350 has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass PEG 3350s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[ PEG 3350 and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 3350 and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 3350 are also available, depending on the initiator used for the polymerization process - the most common initiator is a monofunctional methyl ether PEG 3350, or methoxypoly(ethylene glycol), abbreviated mPEG 3350. Lower-molecular-weight PEG 3350s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 3350 has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10-1000 fold that of polydisperse PEG 3350. PEG 3350s are also available with different geometries. The numbers that are often included in the names of PEG 3350s indicate their average molecular weights (e.g. a PEG 3350 with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 3350 400.) Most PEG 3350s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index(Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 3350 is the act of covalently coupling a PEG 3350 structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 3350 protein. PEG 3350 interferon alfa-2a or -2b are commonly used injectable treatments for hepatitis C infection. PEG 3350 is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules
PEG 3350
Состав: Полиэтиленгликоль 3350 (ПЭГ 3350).

H(OCH2CH2)nOH

п = около 76

Номер CAS: 25322-68-3

Обозначение INCI: PEG-75

Свойства продукта*)
Полигликоль 3350 представляет собой белое воскообразное твердое вещество при комнатной температуре.

Две его концевые гидроксильные группы и эфирные группы в основном контролируют физические и химические свойства полиэтиленгликоля 3350.

Таким образом, полиэтиленгликоль 3350 растворим в воде и полярных органических растворителях, таких как ацетон или метанол.

Полиэтиленгликоль 3350 нерастворим в чистых углеводородах.

Полиэтиленгликоль 3350 демонстрирует типичные химические реакции спиртов/диолов.

Температура затвердевания полиэтиленгликоля 3350 составляет около 55°C.

Хранилище
Полиэтиленгликоль 3350 можно хранить не менее двух лет при хранении в закрытой таре в сухом и холодном месте.


Приложения
Полиэтиленгликоль 3350 используется в различных областях:

Области применения:
- Реактивные диольные/полиэфирные компоненты в полиэфирных или полиуретановых смолах.
- Компонент вспомогательных средств для обработки кожи и текстиля.
- Косметические/фармацевтические составы (например, увлажнитель или пластификатор для кремов, таблеток, зубной пасты)
- Смазка и антиадгезион для обработки резины и эластомеров.
- Пластификатор и связующее для производства керамики и бетона.
- Компонент смазочных составов
- Водорастворимый смазочный компонент в жидкостях для металлообработки.
- Увлажнитель для бумажных, деревянных и целлюлозных пленок.
- Растворитель и увлажнитель для красителей и чернил.
- Модификатор для производства регенерированной вискозы
- Увлажнитель и пластификатор для клеев.



Данные продукта*)
содержание воды (DIN 51777) % м/м: макс. 0,5
Индекс цвета APHA(EN 1557) (25 % в воде): макс. 30
pH (5 % по весу в воде) (DIN EN 1262): 5 – 7
гидроксильное число (DIN 53240) мг КОН/г: 30 – 37
молекулярная масса г/моль: 3050 – 3685
точка затвердевания (EP III) °C: 53 – 57
вязкость при 20°C (50 % по весу в воде) (DIN 51562) мПас: 85 – 105
температура вспышки (DIN 51376) °C: 260
температура воспламенения (DIN 51794) °C: >320
оксид этилена ppm: макс. 1
диоксан ppm: макс. 1











peg 40 hydrogenated castor oil
cas no 9004-99-3 Poly(oxy-1,2-ethanediyl) .alpha.-(1-oxooctadecyl)-.omega.-hydroxy- (40 mol EO average molar ratio); polyoxyethylene (40) monostearate; polyethylene glycol (40) monostearate; Myrj 52;
PEG 40 STEARATE
PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) Polyethylene Glycol (PEG) Stearates (PEG-2 Stearate, PEG-6 Stearate, PEG-8 Stearate, PEG-12 Stearate, PEG-20 Stearate, PEG-32 Stearate, PEG-40 Stearate, PEG-50 Stearate, PEG-100 Stearate, PEG-150 Stearate) are esters of polyethylene glycol and stearic acid. The PEG Stearates are soft to waxy solids that are white to tan in color. In cosmetics and personal care products, PEG Stearates are used in skin creams, conditioners, shampoos, body cleansers and soapless detergents. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) is used in cosmetics and beauty products primarily as a surfactant and cleansing agent, because PEG Stearates' ability to clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away, according to. However, it is also seen as an emollient, because of secondary properties. * A surfactant and cleansing agent * Please read TIA’s article on What Is PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate): PEGs Functions of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate): PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) is used in cosmetics and beauty products primarily as a surfactant and cleansing agent, because PEG Stearates' ability to clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away, according to CosmeticsInfo.org. However, it is also seen as an emollient, because of secondary properties. Unlike typical PEGs, (whose identifying number corresponds to their molecular weight) the numerical value of each PEG Stearate corresponds to the average number of ethylene oxide monomers in the polyethylene chain (from 2 - 150). Despite the many fears regarding PEGs, they are seen as an ingredient in a large number of products because of their diverse properties. In a study published in the Toxicology journal in 2005, entitled "Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products," it was concluded that: "Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths. ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics." PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) is not considered to be an irritant or sensitizer (it gave only minimal irritation in studies up to 100%), and are CIR and FDA approved for use, but not on broken skin (Source). Safety Measures/Side Effects of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE): However. The Cosmetics Database found PEG 40 Stearate to be a moderate to high hazard ingredient depending on usage. The EWG issues warnings regarding: cancer, developmental and reproductive toxicity, contamination concerns, irritation, and organ system toxicity. According to a study published in the International Journal of Toxicology, PEGs (including PEG 40 Stearate) can contain harmful impurities, including: Ethylene Oxide, known to increase the incidences of uterine and breast cancers and of leukemia and brain cancer, according to experimental results reported by the National Toxicology Program; 1,4-dioxane, a known carcinogen; PAHs, known to increase the risk of breast cancer; lead; iron; and arsenic (Source). Products and formulas containing PEG 40 Stearate should not be used on broken or irritated skin. Although PEGs are considered safe for use topically on healthy skin, studies showed that patients suffering from severe burns were treated with PEG-based antimicrobial cream; this treatment resulted in kidney toxicity. "The PEG content of the antimicrobial cream was determined to be the causative agent. However, no evidence of systemic toxicity occurred in studies with intact skin. Because of the observation of kidney effects in burn patients, the CIR Expert Panel qualified their conclusion on the safety of the PEG ingredients to state that cosmetic formulations containing these ingredients should not be used on damaged skin" SYNONYMS of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) Polyoxyl (40) stearate, polyoxyethylene (40) monostearate; INS No. 431 DEFINITION Consists of a mixture of the mono- and diesters of edible commercial stearic acid and mixed polyoxyethylene diols (having an average polymer length of about 40 oxyethylene units) together with free polyol. Structural formula Nominal formula and approximate composition: free polyol monoester diester where RCO- is a fatty acid moiety, and "n" has an average value of approximately 40. The distribution of polymers is approximately in accordance with the Poisson expression. Assay Not less than 84.0 and not more than 88.0% of oxyethylene groups equivalent to not less than 97.5 and not more than 102.5% of polyoxyethylene (40) stearate calculated on the anhydrous basis. DESCRIPTION of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) Cream-coloured and exists as flakes or as a waxy solid at 25o with a faint odour FUNCTIONAL USESEmulsifier of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) CHARACTERISTICS of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) IDENTIFICATION of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) Solubility (Vol. 4) Soluble in water, ethanol, methanol and ethylacetate; insoluble in mineral oil Congealing range (Vol. 4)39 - 44o Infrared absorption The infrared spectrum of the sample is characteristic of a partial fatty acid ester of a polyoxyethylated polyol Colour reaction To 5 ml of a 5% (w/v) aqueous solution of the sample add 10 ml of ammonium cobaltothiocyanate solution and 5 ml of chloroform, shake well and allow to separate; a blue colour is produced in the chloroform layer. (Ammonium cobaltothiocyanate solution: 37.5 g of cobalt nitrate and 150 g of ammonium thiocyanate made up to 100 ml with water - freshly prepared). Saponification (Vol. 4) 100 g of the sample yields approximately 13-14 g of fatty acids and 85-87 g of polyols PURITY of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) Water (Vol. 4) Not more than 3% (Karl Fischer Method) Acid value (Vol. 4) Not more than 1 Saponification value (Vol. 4) Not less than 25 and not more than 35 Hydroxyl value (Vol. 4) Not less than 27 and not more than 40 Lead (Vol. 4) Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, “Instrumental Methods.” METHOD OF ASSAY of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) Determine the content of Oxyethylene groups. Polyoxyethylene (40) stearate has been used in a study to assess the phase behaviors of special hot microemulsion to produce drug-loaded nanostructured lipid carriers. [3] It has also been used in a study to investigate its effects on multidrug resistance (MDR). Polyoxyethylene 40 monostearate, also known as ethylene glycol monostearate or myrj 52, belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid. Polyoxyethylene 40 monostearate is considered to be a practically insoluble (in water) and relatively neutral molecule. Polyoxyethylene 40 monostearate has been primarily detected in urine. Within the cell, polyoxyethylene 40 monostearate is primarily located in the membrane (predicted from logP) and cytoplasm. A sample work-up method for gas chromatographic profiling of polyethylene glycol related cmpd in pharmaceutical matrixes is described. After a short sample clean-up, carbon-oxygen linkages were partially cleaved with 0.07/M BBr3 in CH2Cl2 at room temp. The reaction was stopped after 1 min by addn of 0.01M hydrochloric acid. The products were trimethylsilylated and injected onto a WCOT 50 m X 0.25 mm CP-SIL 5 CB fused silica column. Eleven model cmpd, representing 4 common types of polyethylene glycol deriv, were evaluated by this method. Characteristic profiles can be obtained from polyethylene glycol deriv carrying different functional groups. Minimum detectable amt are in the range of 200 ug. Polyoxyl 40 Stearate is used in cosmetics and beauty products primarily as a surfactant and emulsifier. It occurs naturally as a white, waxy or flaky substance, according to The Food and Agriculture Organization of the United Nations. CosmeticsInfo.org notes that Polyoxyl 40 Stearate, as part of the PEG Stearate group, are formed from a naturally fatty acid known as Stearic Acid. The PEG Sterates are used in cosmetics and skin care formulas because they can "clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away. Polyethylene glycol (PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate); /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is commonly expressed as H−(O−CH2−CH2)n−OH.[3] Contents 1 Uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.1 Medical uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.2 Chemical uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.3 Biological uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.4 Commercial uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.5 Industrial uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 1.6 Recreational uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 2 Health effects of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 3 Available forms and nomenclature of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 4 Production of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) Uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) Medical uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) in the 1980s Terra cotta warrior, showing traces of original color Because PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[13] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14] Biological uses PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[4] Polymer segments derived from PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) precipitation is used to concentrate viruses. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo.[16][17] In blood banking, PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used as a potentiator to enhance detection of antigens and antibodies.[4][18] When working with phenol in a laboratory situation, PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance.[19][20] Commercial uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also under investigation for use in body armor, and in tattoos to monitor diabetes.[21][22] In low-molecular-weight formulations (e.g. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521[24] or E1521 in the EU.[25] Industrial uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate), with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is injected into industrial processes to reduce foaming in separation equipment. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used as a binder in the preparation of technical ceramics.[28] Recreational uses of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is used to extend the size and durability of very large soap bubbles. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is the main ingredient in many personal lubricants. Health effects of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) antibodies in approximately 72% of the population based on plasma samples from 1990–1999.[medical citation needed] The FDA has been asked to investigate the possible effects of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) in laxatives for children.[29] Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate), hypersensitive reactions to PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) are an increasing concern.[medical citation needed] Allergy to PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) or were manufactured with PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate).[30] When PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) antibody response in some patients. This effect has only been shown for a few of the many available PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)ylated therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) immune responses, it is generally considered to be a safe component of drug formulations. Available forms and nomenclature of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate), PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate), or methoxypoly(ethylene glycol), abbreviated mPEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate). Lower-molecular-weight PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate). PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s are also available with different geometries. Branched PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s have three to ten PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) chains emanating from a central core group. Star PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s have 10 to 100 PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) chains emanating from a central core group. Comb PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s have multiple PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s indicate their average molecular weights (e.g. a PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) 400.) Most PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)ylation is the act of covalently coupling a PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)ylated protein. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)ylated interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[34] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[36] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)) and related polymers (PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) is very sensitive to sonolytic degradation and PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37] PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate)s and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight (e.g. macrogol 3350, macrogol 4000 or macrogol 6000). Production of PEG 40 STEARATE (POLYOXYETHYLENE 40 STEARATE) (Polioksietilen 40 stearat) (Polyoxyl 40 stearate) Polyethylene glycol 40, pharmaceutical quality Polyethylene glyco
PEG 4000
PEG 4000 Polyethylene glycol (PEG 4000; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 4000 is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 4000 is commonly expressed as H−(O−CH2−CH2)n−OH. Uses of Polyethylene glycol (PEG 4000 Medical uses of Polyethylene glycol (PEG 4000) Main article: Macrogol PEG 4000 is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 4000 is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 4000 could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of Polyethylene glycol (PEG 4000) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 4000 in the 1980s Terra cotta warrior, showing traces of original color Because PEG 4000 is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 4000 is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 4000 one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 4000 has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 4000 is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 4000 has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 4000 preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 4000 is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 4000 derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 4000 has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[13] PEG 4000 has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14] Biological uses PEG 4000 is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6] PEG 4000 is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG 4000 is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. Polymer segments derived from PEG 4000 polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 4000 precipitation is used to concentrate viruses. PEG 4000 is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG 4000-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the PEG 4000 polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG 4000 is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, PEG 4000 is used as a potentiator to enhance detection of antigens and antibodies. When working with phenol in a laboratory situation, PEG 4000 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. Commercial uses PEG 4000 is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG 4000 is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG 4000 is also under investigation for use in body armor, and in tattoos to monitor diabetes. In low-molecular-weight formulations (e.g. PEG 4000 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG 4000 is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521 or E1521 in the EU. Industrial uses A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of PEG 4000 are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG 4000 has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] PEG 4000 is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG 4000, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG 4000 is injected into industrial processes to reduce foaming in separation equipment. PEG 4000 is used as a binder in the preparation of technical ceramics.[28] Recreational uses PEG 4000 is used to extend the size and durability of very large soap bubbles. PEG 4000 is the main ingredient in many personal lubricants. Health effects PEG 4000 is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti PEG 4000 antibodies in approximately 72% of the population based on plasma samples from 1990–1999.[medical citation needed] The FDA has been asked to investigate the possible effects of PEG 4000 in laxatives for children.[29] Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG 4000, hypersensitive reactions to PEG 4000 are an increasing concern.[medical citation needed] Allergy to PEG 4000 is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG 4000 or were manufactured with PEG 4000.[30] When PEG 4000 is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG 4000 antibody response in some patients. This effect has only been shown for a few of the many available PEG 4000 therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG 4000 immune responses, it is generally considered to be a safe component of drug formulations. Available forms and nomenclature PEG 4000, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 4000 is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 4000 has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] PEG 4000s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33] PEG 4000 and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 4000 and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 4000 are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG 4000, or methoxypoly(ethylene glycol), abbreviated mPEG 4000. Lower-molecular-weight PEG 4000s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 4000 has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG 4000. PEG 4000s are also available with different geometries. Branched PEG 4000s have three to ten PEG 4000 chains emanating from a central core group. Star PEG 4000s have 10 to 100 PEG 4000 chains emanating from a central core group. Comb PEG 4000s have multiple PEG 4000 chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEG 4000s indicate their average molecular weights (e.g. a PEG 4000 with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 4000 400.) Most PEG 4000s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 4000ylation is the act of covalently coupling a PEG 4000 structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 4000 protein. PEG 4000 interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG 4000 is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[34] PEG 4000s potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[36] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (PEG 4000) and related polymers (PEG 4000 phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG 4000 is very sensitive to sonolytic degradation and PEG 4000 degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG 4000 degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37] PEG 4000s and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight. Production of Polyethylene glycol (PEG 4000) Polyethylene glycol 400, pharmaceutical quality Polyethylene glycol 4000, pharmaceutical quality The production of polyethylene glycol was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were polyethylene glycols.[38] Polyethylene glycol is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[39] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants. HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain PEG 4000 with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular weight polyethylene glycol, is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used. Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight polyethylene glycol. Polyethylene glycol (PEG 4000) is a versatile polyether being utilized in various applications, in particular in medicine. Polyethylene oxide (PEO) is another name for PEG 4000. Typically, ethylene oxide macromolecules (Fig. 18.9) with molecular weights less than 20,000 g/mol are called PEG 4000, while those having values above 20,000 g/mol are named PEO. It is reported that PEG 4000 is soluble in water, ethanol, acetonitrile, benzene, and dichloromethane, while it is insoluble in diethyl ether and hexane. PEG 4000 is available in different structures such as branched, star, and comb-like macromolecules. PEG 4000ylation is an attractive process in which PEG 4000 is bonded to another molecule, which is promising in therapeutic methods. PEG 4000 can hinder the protein adsorption which is essential in drug delivery to minimize the protein corona formation [29]. Polyethylene glycol (PEG 4000) is a hydrophilic polymer of ethylene oxide. The non-immunogenic, biocompatible and flexible nature of PEG 4000 makes it a suitable synthetic dressing material for wound healing. The low toxic PEG 4000 macromers are well bonded with growth factor like EGF and can be delivered at the wound site [98]. The mechanical stability of PEG 4000 can be enhanced by blending PEG 4000 with chitosan and PLGA. Blending also increases thermal stability and crystallinity of the particular polymer [99]. Such PEG 4000-based dressings have been widely used to treat a diabetic wound by promoting and inducing growth of skin cells and collagen deposition. It also reduces scar formation [100]. The injectable hybrid hydrogel dressing system is developed from PEG 4000-based hyperbranched multiacrylated co-polymer and HA in combination with adipose-derived stem cells to support the viability of cells in vitro and in vivo. It prevents wound contraction and enhances angiogenesis by acting as temporary hydrogel for wound healing purpose [101]. Hydrophilic Materials Based on Polyethylene Glycol Polyethylene glycol (PEG 4000) is the most relevant antifouling polymer in biomedical devices. PEG 4000 antifouling properties are thought to be related to surface hydration and steric hindrance effects (Chen et al., 2010). PEG 4000 chains linked to a material surface assume a brush-like configuration at the water/surface interface, limiting the approach to the surface by bacteria. Compression of the highly hydrated layer of PEG 4000 chains is unfavorable because it would involve a reduction in PEG 4000 chain mobility and removal of water molecules. Surface packing density and polymer chain length can be used to control PEG 4000 antifouling properties (Roosjen et al., 2004). PEG 4000-functionalized PUs were developed by PEG 4000 introduction either in the polymer backbone (Corneillie et al., 1998) or polymer side chain (Francolini et al., 2019). Auto-oxidization in the presence of oxygen, metal ions, and enzymes able to oxidize PEG 4000 hydroxyl groups, however, may limit long-term effectiveness. Polyethylene glycol (PEG 4000) is another important type of PCM for textile applications. The repeating unit in PEG 4000 is oxyethylene (–O–CH2–CH2–) containing hydroxyl group on either side of the chain. The melting point of PEG 4000 depends on its molecular weight and is proportional as the molecular weight increases. The phase-change temperature of PEG 4000 can be determined using DSC (Pielichowski and Flejtuch, 2002). PEG 4000 with degree of polymerization 1000 has phase-change temperature of 35°C, while PEG 4000 with degree of polymerization 20,000 has melting temperature of 63°C (Craig and Newton, 1991; Hopp et al., 2000). Jiang et al. (2016) synthesized a dual-functional magnetic microcapsules containing a PCM core and an organo-silica shell for the electromagnetic shielding and thermal regulating applications. Fig. 20.6 shows the resulting DSC curves where the areas under the peaks indicate the amount of latent heat contained using different organosilanes/PEG 4000 weight ratios. PEG 4000 is the basis of a number of laxatives.[3] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 4000 is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[4] The possibility that PEG 4000 could be used to fuse nerve cells is being explored by researchers studying spinal cord injury.[3] Chemical uses The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 4000 in the 1980s Terra cotta warrior, showing traces of original color Because PEG 4000 is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[5] Polyethylene glycol has a low toxicity and is used in a variety of products.[6] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[7] Since PEG is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 4000 one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 4000 has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[8] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[3] In addition, PEG 4000 is used when working with green wood as a stabilizer, and to prevent shrinkage.[9] PEG has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[10] These painted artifacts were created during the Qin Shi Huang Di dynasty (first emperor of China). Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xian air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 4000 preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[11] PEG 4000 is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 4000 derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 4000 is a polyol and can be reacted with an isocyanate to make polyurethane. PEG 4000 has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[12] Biological uses PEG 4000 is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions. PEG 4000 is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[3] Polymer segments derived from PEG polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 4000 precipitation is used to concentrate viruses. PEG is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[13] The size of the PEG polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, PEG is used as a potentiator to enhance detection of antigens and antibodies.[3][16] When working with phenol in a laboratory situation, PEG 300 can be used on phenol skin burns to deactivate any residual phenol. In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. What is Polyethyleneglycol? Polyethyleneglycol, or PEG 4000 for short, is a polyether consisting of a (-O-CH2-CH2-) backbone that is commonly used in many fields of academic research, industrial processing and commercial applications. PEG 4000s can also commonly be referred to as polyoxyethylene (POE) and polyethyleneoxide (PEO), but regardless of the name that is used, the simple structure of PEG 4000s (which consists of solely carbon, hydrogen and oxygen, see image below) affords safe compounds that are used throughout everyday life. Additionally, it is this simple structure that separates PEG 4000s from similar compounds like propylene glycol and polypropyleneglycol. The two aforementioned compounds (polyethyleneglycol vs. propylene glycol) are derivatives of propylene oxide, which, when polymerized, bestows a completely different set of physical characteristics to the compound as compared to PEG 4000. The method in which PEG 4000s are created allows for a wide variability in their physical attributes, allowing them to be utilized by many commercial markets. By controlling a PEG 4000’s size (i.e. molecular weight) and its size distribution, a wide variety of physical properties can be achieved, which sets Oxiteno’s line of PEG 4000 products, the 6000 powder series, apart from other name brands of polyethyleneglycols. Due to the vast number of product types offered 6000 powder products (click here for a full listing), many physical forms (liquids, pastes, solids, flakes, powder, etc.) and viscosities of PEG 4000s are available. It is the numerous attributes of PEG 4000s that allow for their inclusion in a vast array of applications, ranging from the pharmaceutical industry to cosmetic markets. While the structure of PEG 4000 is simple, it is this compound’s solubility in water is what makes it such a versatile additive to enhance many industrial applications. Because line of PEG 4000 products are non-toxic and hydrophilic (water-loving), these polymers are used in the home (i.e. to treat surfaces in cleaning agents made by cleaning chemicals manufacturers) as well as in the food production industry (to reduce the amount of foam during the processing of food products). PEG 4000s are generally considered to be biologically inert, making them safe to use throughout the medical and food-processing industries. What is Polyethyleneglycol Used For? Due to the variety of physical properties that can be achieved through PEG 4000 series, formulators in nearly all industries can benefit from this line of PEG 4000 products. A PEG 4000’s unique ability to enhance a dye’s solubility in aqueous formulations causes it to be used throughout the textile industry as dye carriers. PEG 4000s are also exceptional at retaining moisture in complex formulations, as well as to an applied surface, making them excellent humectants and anti-caking agents for cosmetic chemical suppliers and coatings chemical suppliers. This unique relationship with water is further exploited by many other markets as PEG 4000s can help to stabilize emulsions and act as water-miscible co-solvents for aqueous formulations. The food industry uses these compounds as additives to reduce the amount of foam during food processing. Additionally, PEG 4000s find themselves very useful in the pharmaceutical industry due to their ability to act as rheological modifiers, thus being used as excipients. New research techniques are increasingly incorporating PEG 4000 compounds via the use of ‘PEG 4000ylation’ onto protein and peptide therapeutics, thus improving their pharmacokinetics and leading to safer and more effective drugs1-2. Many of PEG 4000 series meet the requirements set forth by the National Formulary (NF) guidelines for safe preparation, manufacture and use of a variety of PEG 4000 compounds that can be used as excipients, botanicals and other similar products. Is Polyethyleneglycol Safe? PEG 4000s are generally considered to be a biologically inert substance, meaning that this class of oligomers and polymers are recognized to be safe for use in food, cosmetic and pharmaceutical applications. So, is polyethyleneglycol toxic? Due to the PEG 4000’s structure and its water solubility, these compounds are generally considered to be non-toxic, as studies of demonstrated their safety for use within the field of drug delivery1-2, for application to the skin in cosmetics3 and as additives in the food and vitamin processing industry4. Where applicable, line of PEG 4000s, 6000 powder, adhere to the guidelines for the manufacturing set forth by the National Formulary (NF). Having initially been established by the U.S. Federal Food, Drug, and Cosmetics Act of 1938, these guidelines are currently recognized by the U.S. Food and Drug Administration (FDA). These manufacturing and production guidelines are annually reviewed, requiring to not only adhere to these strict standards, but maintain constant surveillance over the preparation of these non-toxic additives. Additionally, many of PEG 4000 products that are used in agricultural applications are safe for the environment and are on the Environmental Protection Agencies’ (EPA) inert ingredient list, meeting the requirements set forth in 40 CFR 180.910 and 40 CFR 180.930. This makes PEG 4000s attractive for agrochemical companies. Polyethylene Glycol · Adhesives · Agriculture · Ceramics · Chemical Intermediates · Cosmetics · Toiletries · Electroplating / Electropolishing · Food Processing · Household Products · Lubricants · Metal / Metal Fabrication · Paints & Coatings · Paper Industry · Pharmaceuticals · Printing · Rubber & Elastomers · Textiles · Wood Processing AVAILABLE FORMS AND NOMENCLATURE PEG 4000, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 4000 is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 4000 has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass PEG 4000s are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[ PEG 4000 and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 4000 and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 4000 are also available, depending on the initiator used for the polymerization process - the most common initiator is a monofunctional methyl ether PEG 4000, or methoxypoly(ethylene glycol), abbreviated mPEG 4000. Lower-molecular-weight PEG 4000s are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 4000 has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10-1000 fold that of polydisperse PEG 4000. PEG 4000s are also available with different geometries. The numbers that are often included in the names of PEG 4000s indicate their average molecular weights (e.g. a PEG 4000 with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 4000 400.) Most PEG 4000s include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index(Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 4000 is the act of covalently coupling a PEG 4000 structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 4000 protein. PEG 4000 interferon alfa-2a or -2b are commonly used injectable treatments for hepatitis C infection. PEG 4000 is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules
PEG 6 CAPRYLIC CAPRIC TRIGLYCERIDE
PEG 6 IUPAC Name decanoic acid;hexadecanoic acid;octadecanoic acid;octanoic acid;propane-1,2,3-triol PEG 6 InChI InChI=1S/C18H36O2.C16H32O2.C10H20O2.C8H16O2.C3H8O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16(17)18;1-2-3-4-5-6-7-8-9-10(11)12;1-2-3-4-5-6-7-8(9)10;4-1-3(6)2-5/h2-17H2,1H3,(H,19,20);2-15H2,1H3,(H,17,18);2-9H2,1H3,(H,11,12);2-7H2,1H3,(H,9,10);3-6H,1-2H2 PEG 6 InChI Key NGPTYCZGBCGWBE-UHFFFAOYSA-N PEG 6 Canonical SMILES CCCCCCCCCCCCCCCCCC(=O)O.CCCCCCCCCCCCCCCC(=O)O.CCCCCCCCCC(=O)O.CCCCCCCC(=O)O.C(C(CO)O)O PEG 6 Molecular Formula C55H112O11 PEG 6 CAS 77944-79-7 PEG 6 Molecular Weight 949.5 g/mol PEG 6 Hydrogen Bond Donor Count 7 PEG 6 Hydrogen Bond Acceptor Count 11 PEG 6 Rotatable Bond Count 46 PEG 6 Exact Mass 948.820464 g/mol PEG 6 Monoisotopic Mass 948.820464 g/mol PEG 6 Topological Polar Surface Area 210 Ų PEG 6 Heavy Atom Count 66 PEG 6 Formal Charge 0 PEG 6 Complexity 604 PEG 6 Isotope Atom Count 0 PEG 6 Defined Atom Stereocenter Count 0 PEG 6 Undefined Atom Stereocenter Count 0 PEG 6 Defined Bond Stereocenter Count 0 PEG 6 Undefined Bond Stereocenter Count 0 PEG 6 Covalently-Bonded Unit Count 5 PEG 6 Compound Is Canonicalized Yes PEG 6 benefits PEG 6s are compounds made from naturally occurring fatty acids. It is a clear liquid and slightly sweet in taste. Along with their high fat content, texture and antioxidant qualities in triglycerides, they use them exclusively for soaps and skin care products. PEG 6 Emolyan Softeners are ingredients that soften your skin. Softeners work by trapping moisture in your skin and creating a protective layer to keep moisture out. PEG 6 is an effective skin softening agent. PEG 6 Dispersing agent Dispersants are parts of any chemical or organic compound that hold the ingredients together and stabilize them.Mixing other active ingredients, pigments or fragrances in a good dispersing agent prevents the ingredients from mixing together or sinking into the bottom of the mixture. The waxy and thick consistency of PEG 6s makes them an excellent dispersing agent. PEG 6 Solvent Solvents are ingredients that can dissolve or break down some ingredients or compounds. Ingredients are solvents based on how their molecules are constructed and shaped, and how they interact with other substances.PEG 6 can dissolve compounds designed to clump together. While some solvents have toxic components, PEG 6 does not carry these risks. PEG 6 Antioxidant Antioxidants work to neutralize the toxins you are exposed to every day in your environment. Antioxidants stop the chain reaction called oxidation that can age your skin and damage your body.PEG 6 is full of antioxidants that help protect your skin and make you feel younger. PEG 6 uses PEG 6 can be found in topical skin care products you use on and around your face. Used for: Extends the shelf life of these products,add a light and oil-free glow to your skin,increasing the antioxidants in the product. These products include: Moisturizing face creams,anti aging serums,sunscreens,eye creams. PEG 6 in cosmetics PEG 6 is a popular ingredient in makeup and other cosmetics. The ingredient distributes pigments evenly in a cosmetic formula without leaving your skin feeling sticky. This ingredient is often listed in these cosmetics: Lipstick,lip balm,Lip pencil,cream and liquid foundations,eyeliner. Is PEG 6 safe? PEG 6 carries very low toxicity, if available for topical use. The FDA states that it is generally considered safe in low amounts as a food additive. This means that consuming trace amounts that may be in your lipstick or lip balm is non-toxic.If you do not have a severe allergy to coconut oil, the risk of allergic reactions triggered by using PEG 6 is very low.There are some environmental concerns for PEG 6 use. We don't know enough about how it disperses in nature and whether it could ultimately pose a threat to wildlife. More research is needed to determine the safest ways to dispose of products containing PEG 6s. PEG 6 Take away Current research states that PEG 6 is safe for most people. Consuming small amounts as a food additive, sweetener or cosmetic product does not pose a risk to your health.Capric acid / PEG 6 is one of the cleanest ingredients you can find as a natural alternative to chemical ingredients.Everyone's skin reacts differently to different chemicals. Always be careful when using a new cosmetic product or face cream. PEG 6 is an ingredient used in soap and cosmetics. It is usually made by combining coconut oil with glycerin. This component is sometimes called capric triglyceride. Sometimes mistakenly fractionated is also called coconut oil.PEG 6 has been widely used for more than 50 years. It smoothes the skin and works as an antioxidant. It also binds other ingredients together and can work as a kind of preservative to make the active ingredients in cosmetics last longer.PEG 6 is valued as a more natural alternative to other synthetic chemicals found in topical skin products. Companies that claim their products to be "all natural" or "organic" often contain PEG 6.Although technically made from natural ingredients, the PEG 6 used in products is generally not found in nature. A chemical process separates the oily liquid so a "pure" version can be added to the products.It is low viscosity, softener and lubricant that does not feel greasy. It is widely used especially in "oil-free" products. It is a great advantage that it is not oxidized. It is an ideal solvent for active ingredients to be used in skin and hair care, as well as make-up products.Derived from coconut oil and glycerin, it’s considered an excellent emollient and skin-replenishing ingredient. It’s included in cosmetics due to its mix of fatty acids that skin can use to replenish its surface and resist moisture loss. PEG 6 can also function as a thickener, but its chief job is to moisturize and replenish skin. This ingredient’s value for skin is made greater by the fact that it’s considered gentle.PEG 6 is an oily liquid made from palm kernel or coconut oil. It is a mixed ester composed of caprylic and capric fatty acids attached to a glycerin backbone. PEG 6 are sometimes erroneously referred to as fractionated coconut oil, which is similar in composition but typically refers to coconut oil that has had its longer chain triglycerides removed. Chemically speaking, fats and oils are made up mostly of triglycerides whose fatty acids are chains ranging from 6–12 carbon atoms, in this case the ester is comprised of capric (10 carbon atoms) and caprylic (8 carbon atoms).PEG 6 creates a barrier on the skin's surface, which helps to reduce skin dryness by decreasing the loss of moisture. Its oily texture helps to thicken and provides a slipperiness, which helps make our lotions and natural strength deodorants easy to apply and leaves a non-greasy after-touch.PEG 6 are naturally occurring in coconut and palm kernel oils at lower levels but to make this pure ingredient, the oils are split and the specific fatty acid (capric acid and caprylic acid are isolated and recombined with the glycerin backbone to form the pure capric/caprylic triglyceride which is then further purified (bleached and deodorized) using clay, heat and steam. No other additives or processing aids are used.PEG 6 is a mixed ester composed of caprylic and capric fatty acids attached to a glycerin backbone. PEG 6 are sometimes erroneously referred to as fractionated coconut oil, which is similar in composition but typically refers to coconut oil that has had its longer chain triglycerides removed. Chemically speaking, fats and oils are made up mostly of triglycerides whose fatty acids are chains ranging from 6–12 carbon atoms, in this case the ester is comprised of capric (10 carbon atoms) and caprylic (8 carbon atoms).PEG 6 are a specialized esterification of Coconut Oil using just the Caprylic and Capric Fatty Acids, while Fractionated Coconut Oil is a, standard, distillation of Coconut Oil which results in a combination of all of the fatty acids, pulled through the distillation process. PEG 6 is non-greasy and light weight. It comes in the form of an oily liquid and mainly works as an emollient, dispersing agent and solvent.PEG 6 is a mixed triester derived from coconut oil and glycerine which comes in the form of an oily liquid, and is sometimes mistakenly referred to as fractionated coconut oil which shares a similar INCI name.It is usually used in skin care as an emollient, dispersing agent and solvent. As an emollient, it quickly penetrates the surface to condition the skin and hair, and provides a lightweight, non-greasy lubricating barrier. As a dispersing agent, it helps enhance the delivery of vitamins, pigments and active ingredients contained in a solution so that they become evenly spread and fully absorbed by the epidermis. It's oily texture thickens cosmetic formulas and provides a slipperiness, which in turn allows the easy spreadability of solutions and a smooth after-feel.Cosmetic formulators value this product for its lack of colour and odour, as well as for its stability. It has such great stability and resistance to oxidation that it has an almost indefinite shelf life.PEG 6 are a stable, oxidation-resistant esterification of plant origin. They are rapidly absorbed and are a good substitute for vegetable oils in emulsions. The product provides softness and suppleness and does not cause greasiness.They are also insoluble in water and are ideal as an additive for dry oils, emulsions, serums, creams targeted towards oily and impure skin and macerates in oil.PEG 6 – also known as MCT Oil – is a classic emollient derived from renewable natural raw materials. It is produced from vegetable Glycerine and fractionated vegetable Fatty Acids, mainly Caprylic and Capric Acids. MCT Oil is a clear and colourless liquid, neutral in odour and taste. It is fully saturated and therefore highly resistant to oxidation. Our production units, based in Germany and Malaysia, are backwards integrated into the feedstock and dedicated to the production of MCT Oils. PEG 6 is a clear liquid derived from coconut oil, which is an edible substance that comes from the coconut nut of the coconut palm tree. Coconut palms, cocos nucifera, grow around the world in lowland tropical and subtropical areas where annual precipitation is low.PEG 6 is a digestible ingredient used in hundreds of personal care and household products, such as baby wipes, lotion, makeup, deodorant, sunscreen, and hair-care items.We use PEG 6 in our products as a moisturizer. Palm oil is a common alternative, but it is an endangered resource. The Cosmetic Ingredient Review has deemed PEG 6 safe in cosmetic formulations, and the Food and Drug Administration has deemed PEG 6 as generally recognized as safe (GRAS) in food.[10] Whole Foods has deemed the ingredient acceptable in its body care quality standards.[11] Studies show that PEG 6 have very low toxicity to people and animals when eaten, injected, or put on the skin or eyes.[12] Studies also show PEG 6 is not a skin irritant.Caprylic triglyceride is the mixed triester of glycerin and caprylic and capric acids. It is made by first separating the fatty acids and the glycerol in coconut oil. This is done by hydrolyzing the coconut oil, which involves applying heat and pressure to the oil to split it apart. The acids then go through esterification to add back the glycerol. The resulting oil is called PEG 6. It has different properties from raw coconut oil.PEG 6 is produced by reacting coconut oil with glycerol through esterification. MCT Oil is not oil; it is an ester which primarily contains the Caprylic and Capric medium chain triglycerides present in the coconut oil. PEG 6 is a clear, colorless and virtually odorless liquid that dispenses quickly at room temperature as compared to its raw material coconut oil which is solid at room temperature. PEG 6 are commonly used in cosmetics as it absorbs rapidly into the skin and adds a smooth and dry oil feel to the skin. It is often used as an ingredient in cream, lotion, moisturizer, cleanser & face wash, serum, and others. PEG 6 developed around fifty years ago as an energy source for patients suffering from fat malabsorption syndrome which still finds applications in medical, nutritional products due to the purity and the unique attributes of PEG 6.
PEG 60 HYDROGENATED CASTOR OIL
PEG 60 HYDROGENATED CASTOR OIL PEG-60 Hydrogenated Castor Oil Details A castor oil derived, white, lard-like helper ingredient that is used as a solubilizer to put fragrances (those are oil loving things) into water-based products such as toners. Is peg 60 hydrogenated castor oil safe? Is PEG-60 Hydrogenated Castor Oil Safe In Skincare Products? PEG-60 Hydrogenated Castor Oil is usually used in concentrations between 0,5% and 10%. In these small amounts, it's considered to be safe. What Is PEG-60 Hydrogenated Castor Oil? You’ve probably guessed it from the name. PEG-60 Hydrogenated Castor Oil is derived from… well, castor oil. What does it look like? It’s a white, lard-like paste. Struggling to create an anti-aging skincare routine that really works? Download your FREE “Best Anti-Aging Skincare Routine” cheatsheet below to get started. What Does PEG-60 Hydrogenated Castor Oil Do In Skincare Products? PEG-60 Hydrogenated Castor Oil has three jobs in skincare products: Surfactant: That’s a fancy way of calling a cleansing agent. It helps water mix with oil and dirt so that they can be rinsed away, leaving skin and hair both clean and soft. Emulsifier: It allows the watery and oily parts of a formula to mix together, preventing the texture from separating into two layers. Solubizing agent: It helps other ingredients to dissolve in a solvent in which they wouldn’t normally dissolve. For example, it’s used to add fragrances (which typically dissolve in oils) into water-based products. Is hydrogenated castor oil good for your skin? This makes it easier for them to be washed away and lends this ingredient popularity in facial and body cleansers. As an occlusive agent, PEG 60 Hydrogenated Castor Oil creates a protective hydrating layer on the skin's surface, acting as a barrier against the loss of natural moisture. PEG-60 HYDROGENATED CASTOR OIL PEG-60 HYDROGENATED CASTOR OIL is classified as : Emulsifying Surfactant CAS Number 61788-85-0 COSING REF No: 77219 Chem/IUPAC Name: Castor oil (Ricinus communis), hydrogenated, ethoxylated (60 mol EO average molar ratio) PEG-60 Hydrogenated Castor Oil What Is It? PEG-8 Castor Oil, PEG-9 Castor Oil, PEG-10 Castor Oil, PEG-11 Castor Oil, PEG-15 Castor Oil, PEG-16 Castor Oil, PEG-20 Castor Oil, PEG-25 Castor Oil, PEG-26 Castor Oil, PEG-29 Castor Oil, PEG-44 Castor Oil, PEG-50 Castor Oil, PEG-54 Castor Oil, PEG-55 Castor Oil, PEG-60 Castor Oil, PEG-75 Castor Oil, PEG-80 Castor Oil, PEG-100 Castor Oil and PEG-200 Castor Oil are polyethylene glycol derivatives of castor oil. PEG-8 Hydrogenated Castor Oil, PEG-10 Hydrogenated Castor Oil, PEG-16 Hydrogenated Castor Oil, PEG-20 Hydrogenated Castor Oil, PEG-25 Hydrogenated Castor Oil, PEG-35 Hydrogenated Castor Oil, PEG-45 Hydrogenated Castor Oil, PEG-50 Hydrogenated Castor Oil, PEG-54 Hydrogenated Castor Oil, PEG-55 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, PEG-65 Hydrogenated Castor Oil, PEG-80 Hydrogenated Castor Oil, PEG-100 Hydrogenated Castor Oil and PEG-200 Hydrogenated Castor Oil are polyethylene glycol derivatives of hydrogenated castor oil. In cosmetics and personal care products, the PEG Castor Oil and PEG Hydrogenated Castor Oil ingredients are used in the formulation of a wide variety of products including bath products, aftershave lotions, skin care products, cleansing products, deodorants, fragrances, makeup, hair conditioners, shampoos, hair care products, personal cleanliness products, and nail polish and enamels. Why is it used in cosmetics and personal care products? The following functions have been reported for the PEG Castor Oil and PEG Hydrogenated Castor Oil ingredients. Skin conditioning agent - emollient - PEG-8 Castor Oil, PEG-9 Castor Oil, PEG-10 Castor Oil, PEG-11 Castor Oil, PEG-15 Castor Oil, PEG-16 Castor Oil, PEG-8 Hydrogenated Castor Oil, PEG-10 Hydrogenated Castor Oil, PEG-16 Hydrogenated Castor Oil, PEG-65 Hydrogenated Castor Oil Surfactant - cleansing agent - PEG-10 Castor Oil, PEG-44 Castor Oil, PEG-50 Castor Oil, PEG-54 Castor Oil, PEG-55 Castor Oil, PEG-60 Castor Oil, PEG-80 Castor Oil, PEG-100 Castor Oil, PEG-200 Castor Oil, PEG-45 Hydrogenated Castor Oil, PEG-50 Hydrogenated Castor Oil, PEG-54 Hydrogenated Castor Oil, PEG-55 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, PEG-80 Hydrogenated Castor Oil, PEG-100 Hydrogenated Castor Oil, PEG-200 Hydrogenated Castor Oil Surfactant - emulsifying agent - PEG-8 Castor Oil, PEG-9 Castor Oil, PEG-10 Castor Oil, PEG-11 Castor Oil, PEG-15 Castor Oil, PEG-16 Castor Oil, PEG-20 Castor Oil, PEG-25 Castor Oil, PEG-26 Castor Oil, PEG-29 Castor Oil, PEG-8 Hydrogenated Castor Oil,PEG-10 Hydrogenated Castor Oil, PEG-16 Hydrogenated Castor Oil, PEG-20 Hydrogenated Castor Oil, PEG-25 Hydrogenated Castor Oil, PEG-35 Hydrogenated Castor Oil, PEG-65 Hydrogenated Castor Oil Surfactant - solubilizing agent - PEG-26 Castor Oil, PEG-29 Castor Oil, PEG-44 Castor Oil, PEG-50 Castor Oil, PEG-54 Castor Oil, PEG-55 Castor Oil, PEG-60 Castor Oil, PEG-75 Castor Oil, PEG-80 Castor Oil, PEG-100 Castor Oil, PEG-200 Castor Oil, PEG-35 Hydrogenated Castor Oil, PEG-45 Hydrogenated Castor Oil, PEG-50 Hydrogenated Castor Oil, PEG-54 Hydrogenated Castor Oil, PEG-55 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, PEG-80 Hydrogenated Castor Oil, PEG-100 Hydrogenated Castor Oil, PEG-200 Hydrogenated Castor Oil Scientific Facts: PEG Castor Oil and PEG Hydrogenated Castor Oil ingredients are produced from castor oil and hydrogenated castor oil, respectively. Castor oil is obtained by the cold pressing of seeds of the Ricinus communis plant followed by clarification of the oil by heat. PEG 60 Hydrogenated Castor Oil ALL ABOUT PEG 60 HYDROGENATED CASTOR OIL Content What is Peg 60 Hydrogenated Castor Oil? How does Peg 60 Hydrogenated Castor Oil Work?PEG 60 Hydrogenated Castor Oil SolubilityPEG 60 Hydrogenated Castor Oil UsesPEG 60 Hydrogenated Castor Oil Side Effects WHAT IS PEG 60 HYDROGENATED CASTOR OİL ? PEG 60 Hydrogenated Castor Oil is the Polyethylene Glycol derivatives of Hydrogenated Castor Oil, and it functions as a surfactant, a solubilizer, an emulsifier, an emollient, a cleansing agent, and a fragrance ingredient when added to cosmetics or personal care product formulations. NDA’s PEG 60 Hydrogenated Castor Oil is a semi-solid ingredient. HOW DOES PEG 60 HYDROGENATED CASTOR OIL WORK? PEG 60 HYDROGENATED CASTOR OİL is soluble in both water and oil and is traditionally used to emulsify and solubilize oil-in-water formulations. Its foam-enhancing properties make it ideal for use in liquid cleansers, and its soothing and softening emollient quality makes it a popular addition to formulations for moisturizers and hair care cosmetics. As a surfactant, PEG 60 Hydrogenated Castor Oil helps to decrease the surface tension between multiple liquids or between liquids and solids. Furthermore, it helps to remove the grease from oils and causes them to become suspended in the liquid. This makes it easier for them to be washed away and lends this ingredient popularity in facial and body cleansers. As an occlusive agent, PEG 60 Hydrogenated Castor Oil creates a protective hydrating layer on the skin’s surface, acting as a barrier against the loss of natural moisture. PEG 60 Hydrogenated Castor Oil SOLUBILITY When adding PEG 60 Hydrogenated Castor Oil to cosmetics formulations, it can be blended in its cold state directly into the oil phase at a suggested ratio of 3:1 (PEG 60 Hydrogenated Castor Oil to oil). Next, this can be added to the water phase. If the formula is cloudy, the amount of PEG 60 Hydrogenated Castor Oil may be increased for enhanced transparency. PEG 60 Hydrogenated Castor Oil USES PRODUCT TYPE & FUNCTION When added to this kind of formulation… Liquid Soap, Facial Cleanser, Bubble Bath, Shower Gel Face Cream, Lotion, Sunscreen Makeup, Face Mask, Skin Peel, Deodorant Shampoo, Conditioner EFFECTS PEG 60 Hydrogenated Castor Oil functions as a(n): Surfactant Solubilizer Emulsifier Emollient Cleansing Agent Fragrance Ingredient PEG 60 Hydrogenated Castor Oil helps to: Combine immiscible ingredients Gently cleanse and soothe the skin and scalp Create foam in cleansing products Offer a consistent thoroughly-blended feel to products Maintain product transparency and clarity Enhance spreadability of product on skin The recommended maximum dosage is 1-25% PEG 60 Hydrogenated Castor Oil SIDE EFFECTS As with all other New Directions Aromatics products, PEG 60 Hydrogenated Castor Oil Raw Material is for external use only. It is imperative to consult a medical practitioner before using this product for therapeutic purposes. Pregnant and nursing women as well as those with sensitive, irritated, broken, injured, or damaged skin are especially advised not to use PEG 60 Hydrogenated Castor Oil Raw Material without the medical advice of a physician. This product should always be stored in an area that is inaccessible to children, especially those under the age of 7. Prior to using PEG 60 Hydrogenated Castor Oil Raw Material, a skin test is recommended. This can be done by dissolving 1 tsp PEG 60 Hydrogenated Castor Oil Raw Material in 1 tsp of a preferred Carrier Oil and applying a dime-size amount of this blend to a small area of skin that is not sensitive. PEG 60 Hydrogenated Castor Oil must never be used near the inner nose and ears or on any other particularly sensitive areas of skin. Potential side effects of PEG 60 Hydrogenated Castor Oil include the itching, blistering, burning, and scaling of skin as well as hives. In the event of an allergic reaction, discontinue use of the product and see a doctor, pharmacist, or allergist immediately for a health assessment and appropriate remedial action. To prevent side effects, consult with a medical professional prior to use. IMPORTANT: All New Directions Aromatics (NDA) products are for external use only unless otherwise indicated. This information is not intended to diagnose, treat, cure, or prevent any disease, and it should not be used by anyone who is pregnant or under the care of a medical practitioner. Please refer to our policies for further details, and our disclaimer below. Description of PEG 60 Hydrogenated Castor Oil : Non-ionic, ethoxlyated polyethylene glycol ester made from castor oil. Off-white/yellow liquid to semi-solid. Miscible in water and oils. HLB value 15 (gives oil-in-water emulsions). pH 5.5-7 (3% in water). CAS of PEG 60 Hydrogenated Castor Oil: 61788-85-0 INCI Name of PEG 60 Hydrogenated Castor Oil: PEG 60 HYDROGENATED CASTOR OİL Benefitsof PEG 60 Hydrogenated Castor Oil: Multifunctional agent that can be used as emulsifier, surfactant and solubilizer Useful also as foam booster and solubilizer of extracts, perfumes and vitamins Use of PEG 60 Hydrogenated Castor Oil: Can be added to formulas as is, usual concentration 1 - 10%. For external use only. Applications of PEG 60 Hydrogenated Castor Oil: Universally applicable, especially in liquid soaps, lotions, body washes, shower gels, hair shampoos, facial cleansers, bubble baths, decorative cosmetics. Country of Origin of PEG 60 Hydrogenated Castor Oil: USA Raw material source: Castor oil (obtained from castor beans) Manufacture of PEG 60 Hydrogenated Castor Oil: Hydrogenation of castor oil with hydrogen gas followed by pegylation (attachment of polyethylene glycol molecules) Animal Testing of PEG 60 Hydrogenated Castor Oil: Not animal tested GMO of PEG 60 Hydrogenated Castor Oil: Not tested for GMOs Vegan of PEG 60 Hydrogenated Castor Oil: Does not contains animal-derived components PEG 60 HYDROGENATED CASTOR OİL PEG 60 HYDROGENATED CASTOR OİL is a polyethylene glycol derivative of castor oil. It has a mild fatty odor. It functions as an emulsifier, surfactant and fragrance ingredient. PEG 60 HYDROGENATED CASTOR OİL is classified as : Emulsifying Surfactant CAS Number of PEG 60 HYDROGENATED CASTOR OİL 61788-85-0 COSING REF No of PEG 60 HYDROGENATED CASTOR OİL: 78452 Chem/IUPAC Name of PEG 60 HYDROGENATED CASTOR OİL: Castor oil (Ricinus communis), hydrogenated, ethoxylated (60 mol EO average molar ratio) What is PEG 60 Hydrogenated Castor Oil? PEG 60 Hydrogenated Castor Oil is the polyethylene glycol (PEG) derivative of hydrogenated castor oil. It's uses are common in this form as an emulsifier and a fragrance ingredient.PEG 60 has the FDA-approval for external use. Studies have found PEG 60 to be safe in concentrations of up to 100%. Generally speaking, PEGs are not skin irritants. PEG 60's molecular weight of 60 means it is only minimally absorbed into the skin.However, there is quite a bit of controversy over the safety of PEG 60. While the FDA approved it for external use, the Cosmetics Database found it to be moderately hazardous. According to the database, contamination is possible with potentially toxic impurities. Studies show that applying products containing PEG 60 to severe burns can result in kidney toxicity. So never apply to broken skin due to the risk of organic toxicity.How can PEG 60 be so toxic when absorbed by the body when pure castor oil is so safe? To understand that, we need to look at the scientific process of ethoxylation.PEG 60 is a result of the ethoxylation process. When hydrogenated castor oil is ethoxylated with ethylene oxide, which is a petroleum-based chemical, the process may introduce the carcinogen 1,4 dioxane as a contaminant. It also may not. This is a possibility each time the ethoxylation process occurs. However, it is not a guarantee that the product result is without contamination.PEG 60 Hydrogenated Castor Oil is the polyethylene glycol derivatives of hydrogenated castor oil, and is an amber colored, slightly viscous liquid that has a naturally mildly fatty odor. It is used in cosmetics and beauty products as an emulsifier, surfactant, and fragrance ingredient, according to research.PEG Castor Oils and PEG Hydrogenated Castor Oils are a family of polyethylene glycol derivatives of castor oil and hydrogenated castor oil that are used in over 500 formulations representing a wide variety of cosmetic products. They are used as skin conditioning agents and as surfactants (emulsifying and or solubilizing agents). The PEG Castor Oils and PEG Hydrogenated Castor Oils include various chain lengths, depending on the quantity of ethylene oxide used in synthesis. Although not all polymer lengths have been studied, it is considered acceptable to extrapolate the results of the few that have been studied to allingredients in the family. Because a principal noncosmetic use of PEG Castor Oils is as solvents for intravenous drugs, clinical data are available that indicate intravenous exposure can result in cardiovascular changes. Results from animal studies indicate very high LD50 values, with some evidence of acute nephrotoxicity in rats but not in rabbits. Short-term studies with intravenous exposure produced some evidence of toxicity in dogs but not in rabbits. Intramusuclar injection produced no toxicity in several species, including dogs. Subchronic oral studies also were negative. No dermal or ocular irritation was observed in studies in rabbits. Irritation was seen during induction, but no sen-sitization was found on challenge in guinea-pig studies using up to 50% PEG-35 Castor Oil; however, thisingredient was found to be a potent adjuvant in guinea pigs and mice. No evidence of developmental toxicity was seen in mice and rat feeding studies. Theseingredients, tested as vehicle controls, produced no mutagenic or carcinogenic effect. Clinical data are generally negative for irritation and sensitization, although some anaphylactoid reactions have been seen in studies of intravenous drugs in which PEG-35 Castor Oil was used as the vehicle. Because the maximum concentration used in animal sensitization studies was 50% for PEG Castor Oils and 100% for PEG Hydrogenated Castor Oils, it was concluded that PEG Castor Oils are safe for use in cosmetic formulations up to a concentration of 50% and that PEG Hydrogenated Castor Oils are safe as used in cosmetic formulations.t's a non-ionic surfactant that behaves as a foam booster and solubilizer of oils in water based products. (Unlike some other solubilizers, it won't suppress foam. Yay!) It can be used in the heated phase or the cool down phase of a product at up to 100%. Castor Oil Ethoxylates have many uses, primarily as nonionic surfactants in various formulations both, industrial & domestic. These are also used as cleaning agents, antistatic agents, dispersants or emulsifiers, defoamers, softeners in textile formulations. Also these are used as emulsifiers, solubalizers in cosmetics , health care & agrochemical formulations. Castor oil ethoxylates are a type of nonionic vegetable oil ethoxylate based on castor oil which is composed of traditional fatty acids like stearic acid but also the unique ricinoleic acid.The ethoxylates act as the emulsifier, solubilizers, anti-static agents, and lubricants in various market segments including home care, personal care, and agrochemicals.
PEG 600
Polyethylene glycol 600; Poly(ethylene glycol) ; PEG; Macrogol; Polyoxyethlene; Aquaffin; Nycoline; alpha-hydro-omega-hydroxypoly(oxy-1,2-ethanediyl); polyethylene glycols; Poly Ethylene Oxide; Polyoxyethylene; Polyglycol; 1,2-ethanediol Ehoxylated; Polyoxyethylene ether; Polyoxyethylene; Poly(ethylene glycol); cas no:25322-68-3
PEG 600 DIOLEATE
cas no 9004-96-0 Polyethylene glycol 600 monooleate acid ester; PEG(14) monooleate; PEG600MO; PEG(14)MO;
PEG 600 OLEATE
PEG, Poly(ethylene glycol), peg 6000, cas no : 25322-68-3; PEG, Polymère d'oxyéthylène, alpha-hydro-oméga-hydroxypoly(oxy-1,2-éthynediyl),poly(oxyde d'éthylène), poly(oxyéthylène), PEG, PEO, No Cas: 25322-68-3; PEG, Polymère d'oxyéthylène,alpha-hydro-oméga-hydroxypoly(oxy-1,2-éthynediyl),poly(oxyde d'éthylène), poly(oxyéthylène), PEG, PEO, Le PEG est utilisé dans de nombreux secteurs de l'industrie. Il sert par exemple comme épaississant ou gélifiant à la base de nombreux produits cosmétiques (savons liquides, crèmes hydratantes, shampoings, etc.) et paramédicaux (gels hydroalcooliques, lubrifiants intimes, etc.). Il est également utilisé comme solvant dans les encres pour imprimantes ou pour fabriquer des billes de paint-ball, ou bien comme additif alimentaire et dans certaines résines polyesters.Poly(ethylene glycol), Poly(oxy-1,2-ethanediyl),.alpha.-hydro-.omega.-hydroxy; Poly(oxy-1,2-ethanediyl),α-hydro-ω-hydroxy- Ethane-1,2-diol; Poly(oxy-1,2-ethanediyl),α-hydro-ω-hydroxy-Ethane-1,2-diol, ethoxylated;poly(oxyethylene); POLYETHYLENE GLYCOL
peg 6000
Polyethylene glycol 6000; Poly(ethylene glycol) ; PEG; Macrogol; Polyoxyethlene; Aquaffin; Nycoline; alpha-hydro-omega-hydroxypoly(oxy-1,2-ethanediyl); polyethylene glycols; Poly Ethylene Oxide; Polyoxyethylene; Polyglycol; 1,2-ethanediol Ehoxylated; Polyoxyethylene ether; Polyoxyethylene; Poly(ethylene glycol); cas no:25322-68-3
PEG 6000 (POWDER)
PEG 6000 Powder Polyethylene glycol (PEG 6000 powder; /ˌpɒliˈɛθəlˌiːn ˈɡlaɪˌkɒl, -ˌkɔːl/) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG 6000 powder is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG 6000 powder is commonly expressed as H−(O−CH2−CH2)n−OH. Uses of Polyethylene glycol (PEG 6000 powder Medical uses of Polyethylene glycol (PEG 6000 powder) Main article: Macrogol PEG 6000 powder is the basis of a number of laxatives.[4] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 6000 powder is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[5] The possibility that PEG 6000 powder could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury.[4] Chemical uses of Polyethylene glycol (PEG 6000 powder) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 6000 powder in the 1980s Terra cotta warrior, showing traces of original color Because PEG 6000 powder is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[6] Polyethylene glycol has a low toxicity and is used in a variety of products.[7] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[8] Since PEG 6000 powder is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 6000 powder one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 6000 powder has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[9] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[4] In addition, PEG 6000 powder is used when working with green wood as a stabilizer, and to prevent shrinkage.[10] PEG 6000 powder has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[11] These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 6000 powder preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[12] PEG 6000 powder is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 6000 powder derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 6000 powder has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[13] PEG 6000 powder has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force.[14] Biological uses PEG 6000 powder is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions.[6] PEG 6000 powder is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG 6000 powder is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. Polymer segments derived from PEG 6000 powder polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 6000 powder precipitation is used to concentrate viruses. PEG 6000 powder is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG 6000 powder-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[15] The size of the PEG 6000 powder polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG 6000 powder is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo.[16][17] In blood banking, PEG 6000 powder is used as a potentiator to enhance detection of antigens and antibodies.[4][18] When working with phenol in a laboratory situation, PEG 6000 powder 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance.[19][20] Commercial uses PEG 6000 powder is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). PEG 6000 powder is used in a number of toothpastes[4] as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. PEG 6000 powder is also under investigation for use in body armor, and in tattoos to monitor diabetes.[21][22] In low-molecular-weight formulations (e.g. PEG 6000 powder 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. PEG 6000 powder is also used as an anti-foaming agent in food and drinks[23] – its INS number is 1521[24] or E1521 in the EU.[25] Industrial uses A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel.[26] Dimethyl ethers of PEG 6000 powder are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. PEG 6000 powder has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator.[27] PEG 6000 powder is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving PEG 6000 powder, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. PEG 6000 powder is injected into industrial processes to reduce foaming in separation equipment. PEG 6000 powder is used as a binder in the preparation of technical ceramics.[28] Recreational uses PEG 6000 powder is used to extend the size and durability of very large soap bubbles. PEG 6000 powder is the main ingredient in many personal lubricants. Health effects PEG 6000 powder is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti PEG 6000 powder antibodies in approximately 72% of the population based on plasma samples from 1990–1999.[medical citation needed] The FDA has been asked to investigate the possible effects of PEG 6000 powder in laxatives for children.[29] Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to PEG 6000 powder, hypersensitive reactions to PEG 6000 powder are an increasing concern.[medical citation needed] Allergy to PEG 6000 powder is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain PEG 6000 powder or were manufactured with PEG 6000 powder.[30] When PEG 6000 powder is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-PEG 6000 powder antibody response in some patients. This effect has only been shown for a few of the many available PEG 6000 powderylated therapeutics, but it has significant effects on clinical outcomes of affected patients.[31] Other than these few instances where patients have anti-PEG 6000 powder immune responses, it is generally considered to be a safe component of drug formulations. Available forms and nomenclature PEG 6000 powder, PEO, and POE refer to an oligomer or polymer of ethylene oxide. The three names are chemically synonymous, but historically PEG 6000 powder is preferred in the biomedical field, whereas PEO is more prevalent in the field of polymer chemistry. Because different applications require different polymer chain lengths, PEG 6000 powder has tended to refer to oligomers and polymers with a molecular mass below 20,000 g/mol, PEO to polymers with a molecular mass above 20,000 g/mol, and POE to a polymer of any molecular mass.[32] PEG 6000 powders are prepared by polymerization of ethylene oxide and are commercially available over a wide range of molecular weights from 300 g/mol to 10,000,000 g/mol.[33] PEG 6000 powder and PEO are liquids or low-melting solids, depending on their molecular weights. While PEG 6000 powder and PEO with different molecular weights find use in different applications, and have different physical properties (e.g. viscosity) due to chain length effects, their chemical properties are nearly identical. Different forms of PEG 6000 powder are also available, depending on the initiator used for the polymerization process – the most common initiator is a monofunctional methyl ether PEG 6000 powder, or methoxypoly(ethylene glycol), abbreviated mPEG 6000 powder. Lower-molecular-weight PEG 6000 powders are also available as purer oligomers, referred to as monodisperse, uniform, or discrete. Very high purity PEG 6000 powder has recently been shown to be crystalline, allowing determination of a crystal structure by x-ray diffraction.[33] Since purification and separation of pure oligomers is difficult, the price for this type of quality is often 10–1000 fold that of polydisperse PEG 6000 powder. PEG 6000 powders are also available with different geometries. Branched PEG 6000 powders have three to ten PEG 6000 powder chains emanating from a central core group. Star PEG 6000 powders have 10 to 100 PEG 6000 powder chains emanating from a central core group. Comb PEG 6000 powders have multiple PEG 6000 powder chains normally grafted onto a polymer backbone. The numbers that are often included in the names of PEG 6000 powders indicate their average molecular weights (e.g. a PEG 6000 powder with n = 9 would have an average molecular weight of approximately 400 daltons, and would be labeled PEG 6000 powder 400.) Most PEG 6000 powders include molecules with a distribution of molecular weights (i.e. they are polydisperse). The size distribution can be characterized statistically by its weight average molecular weight (Mw) and its number average molecular weight (Mn), the ratio of which is called the polydispersity index (Mw/Mn). Mw and Mn can be measured by mass spectrometry. PEG 6000 powderylation is the act of covalently coupling a PEG 6000 powder structure to another larger molecule, for example, a therapeutic protein, which is then referred to as a PEG 6000 powderylated protein. PEG 6000 powderylated interferon alfa-2a or −2b are commonly used injectable treatments for hepatitis C infection. PEG 6000 powder is soluble in water, methanol, ethanol, acetonitrile, benzene, and dichloromethane, and is insoluble in diethyl ether and hexane. It is coupled to hydrophobic molecules to produce non-ionic surfactants.[34] PEG 6000 powders potentially contain toxic impurities, such as ethylene oxide and 1,4-dioxane.[35] Ethylene Glycol and its ethers are nephrotoxic if applied to damaged skin.[36] Polyethylene oxide (PEO, Mw 4 kDa) nanometric crystallites (4 nm) Polyethylene glycol (PEG 6000 powder) and related polymers (PEG 6000 powder phospholipid constructs) are often sonicated when used in biomedical applications. However, as reported by Murali et al., PEG 6000 powder is very sensitive to sonolytic degradation and PEG 6000 powder degradation products can be toxic to mammalian cells. It is, thus, imperative to assess potential PEG 6000 powder degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results.[37] PEG 6000 powders and methoxypolyethylene glycols are manufactured by Dow Chemical under the tradename Carbowax for industrial use, and Carbowax Sentry for food and pharmaceutical use. They vary in consistency from liquid to solid, depending on the molecular weight, as indicated by a number following the name. They are used commercially in numerous applications, including as surfactants, in foods, in cosmetics, in pharmaceutics, in biomedicine, as dispersing agents, as solvents, in ointments, in suppository bases, as tablet excipients, and as laxatives. Some specific groups are lauromacrogols, nonoxynols, octoxynols, and poloxamers. Macrogol, used as a laxative, is a form of polyethylene glycol. The name may be followed by a number which represents the average molecular weight. Production of Polyethylene glycol (PEG 6000 powder) Polyethylene glycol 400, pharmaceutical quality Polyethylene glycol 4000, pharmaceutical quality The production of polyethylene glycol was first reported in 1859. Both A. V. Lourenço and Charles Adolphe Wurtz independently isolated products that were polyethylene glycols.[38] Polyethylene glycol is produced by the interaction of ethylene oxide with water, ethylene glycol, or ethylene glycol oligomers.[39] The reaction is catalyzed by acidic or basic catalysts. Ethylene glycol and its oligomers are preferable as a starting material instead of water, because they allow the creation of polymers with a low polydispersity (narrow molecular weight distribution). Polymer chain length depends on the ratio of reactants. HOCH2CH2OH + n(CH2CH2O) → HO(CH2CH2O)n+1H Depending on the catalyst type, the mechanism of polymerization can be cationic or anionic. The anionic mechanism is preferable because it allows one to obtain PEG 6000 powder with a low polydispersity. Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts such as alkalis or metal oxides can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular weight polyethylene glycol, is synthesized by suspension polymerization. It is necessary to hold the growing polymer chain in solution in the course of the polycondensation process. The reaction is catalyzed by magnesium-, aluminium-, or calcium-organoelement compounds. To prevent coagulation of polymer chains from solution, chelating additives such as dimethylglyoxime are used. Alkaline catalysts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), or sodium carbonate (Na2CO3) are used to prepare low-molecular-weight polyethylene glycol. Polyethylene glycol (PEG 6000 powder) is a versatile polyether being utilized in various applications, in particular in medicine. Polyethylene oxide (PEO) is another name for PEG 6000 powder. Typically, ethylene oxide macromolecules (Fig. 18.9) with molecular weights less than 20,000 g/mol are called PEG 6000 powder, while those having values above 20,000 g/mol are named PEO. It is reported that PEG 6000 powder is soluble in water, ethanol, acetonitrile, benzene, and dichloromethane, while it is insoluble in diethyl ether and hexane. PEG 6000 powder is available in different structures such as branched, star, and comb-like macromolecules. PEG 6000 powderylation is an attractive process in which PEG 6000 powder is bonded to another molecule, which is promising in therapeutic methods. PEG 6000 powder can hinder the protein adsorption which is essential in drug delivery to minimize the protein corona formation [29]. Polyethylene glycol (PEG 6000 powder) is a hydrophilic polymer of ethylene oxide. The non-immunogenic, biocompatible and flexible nature of PEG 6000 powder makes it a suitable synthetic dressing material for wound healing. The low toxic PEG 6000 powder macromers are well bonded with growth factor like EGF and can be delivered at the wound site [98]. The mechanical stability of PEG 6000 powder can be enhanced by blending PEG 6000 powder with chitosan and PLGA. Blending also increases thermal stability and crystallinity of the particular polymer [99]. Such PEG 6000 powder-based dressings have been widely used to treat a diabetic wound by promoting and inducing growth of skin cells and collagen deposition. It also reduces scar formation [100]. The injectable hybrid hydrogel dressing system is developed from PEG 6000 powder-based hyperbranched multiacrylated co-polymer and HA in combination with adipose-derived stem cells to support the viability of cells in vitro and in vivo. It prevents wound contraction and enhances angiogenesis by acting as temporary hydrogel for wound healing purpose [101]. Hydrophilic Materials Based on Polyethylene Glycol Polyethylene glycol (PEG 6000 powder) is the most relevant antifouling polymer in biomedical devices. PEG 6000 powder antifouling properties are thought to be related to surface hydration and steric hindrance effects (Chen et al., 2010). PEG 6000 powder chains linked to a material surface assume a brush-like configuration at the water/surface interface, limiting the approach to the surface by bacteria. Compression of the highly hydrated layer of PEG 6000 powder chains is unfavorable because it would involve a reduction in PEG 6000 powder chain mobility and removal of water molecules. Surface packing density and polymer chain length can be used to control PEG 6000 powder antifouling properties (Roosjen et al., 2004). PEG 6000 powder-functionalized PUs were developed by PEG 6000 powder introduction either in the polymer backbone (Corneillie et al., 1998) or polymer side chain (Francolini et al., 2019). Auto-oxidization in the presence of oxygen, metal ions, and enzymes able to oxidize PEG 6000 powder hydroxyl groups, however, may limit long-term effectiveness. Polyethylene glycol (PEG 6000 powder) is another important type of PCM for textile applications. The repeating unit in PEG 6000 powder is oxyethylene (–O–CH2–CH2–) containing hydroxyl group on either side of the chain. The melting point of PEG 6000 powder depends on its molecular weight and is proportional as the molecular weight increases. The phase-change temperature of PEG 6000 powder can be determined using DSC (Pielichowski and Flejtuch, 2002). PEG 6000 powder with degree of polymerization 1000 has phase-change temperature of 35°C, while PEG 6000 powder with degree of polymerization 20,000 has melting temperature of 63°C (Craig and Newton, 1991; Hopp et al., 2000). Jiang et al. (2016) synthesized a dual-functional magnetic microcapsules containing a PCM core and an organo-silica shell for the electromagnetic shielding and thermal regulating applications. Fig. 20.6 shows the resulting DSC curves where the areas under the peaks indicate the amount of latent heat contained using different organosilanes/PEG 6000 powder weight ratios. PEG 6000 powder is the basis of a number of laxatives.[3] Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. PEG 6000 powder is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood.[4] The possibility that PEG 6000 powder could be used to fuse nerve cells is being explored by researchers studying spinal cord injury.[3] Chemical uses The remains of the 16th century carrack Mary Rose undergoing conservation treatment with PEG 6000 powder in the 1980s Terra cotta warrior, showing traces of original color Because PEG 6000 powder is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies.[5] Polyethylene glycol has a low toxicity and is used in a variety of products.[6] The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments.[7] Since PEG is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make PEG 6000 powder one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. PEG 6000 powder has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm,[8] and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries.[3] In addition, PEG 6000 powder is used when working with green wood as a stabilizer, and to prevent shrinkage.[9] PEG has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China.[10] These painted artifacts were created during the Qin Shi Huang Di dynasty (first emperor of China). Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xian air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a PEG 6000 powder preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers.[11] PEG 6000 powder is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. PEG 6000 powder derivatives, such as narrow range ethoxylates, are used as surfactants. PEG 6000 powder is a polyol and can be reacted with an isocyanate to make polyurethane. PEG 6000 powder has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes.[12] Biological uses PEG 6000 powder is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions. PEG 6000 powder is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. PEG is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. César Milstein and Georges J. F. Köhler originated this technique, which they used for antibody production, winning a Nobel Prize in Physiology or Medicine in 1984.[3] Polymer segments derived from PEG polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, PEG 6000 powder precipitation is used to concentrate viruses. PEG is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be PEG-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect.[13] The size of the PEG polymer has been shown to be important, with larger polymers achieving the best immune protection. PEG is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, PEG is used as a potentiator to enhance detection of antigens and antibodies.[3][16] When working with phenol in a laboratory situation, PEG 300 can be used on phenol skin burns to deactivate any residual phenol. In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. What is Polyethyleneglycol? Polyethyleneglycol, or PEG 6000 powder for short, is a polyether consisting of a (-O-CH2-CH2-) backbone that is commonly used in many fields of academic research, industrial processing and commercial applications. PEG 6000 powders can also commonly be referred to as polyoxyethylene (POE) and polyethyleneoxide (PEO), but regardless of the name that is used, the simple structure of PEG 6000 powders (which consists of solely carbon, hydrogen and oxygen, see image below) affords safe compounds that are used throughout everyday life. Additionally, it is this simple structure that separates PEG 6000 powders from similar compounds like propylene glycol and polypropyleneglycol. The two aforementioned compounds (polyethyleneglycol vs. propylene glycol) are derivatives of propylene oxide, which, when polymerized, bestows a completely different set of physical characteristics to the compound as compared to PEG 6000 powder. The method in which PEG 6000 powders are created allows for a wide variability in their physical attributes, allowing them to be utilized by many commercial markets. By controlling a PEG 6000 powder’s size (i.e. molecular weight) and its size distribution, a wide variety of physical properties can be achieved, which sets Oxiteno’s line of PEG 6000 powder products, the 6000 powder series, apart from other name brands of polyethyleneglycols. Due to the vast number of product types offered 6000 powder products (click here for a full listing), many physical forms (liquids, pastes, solids, flakes, powder, etc.) and viscosities of PEG 6000 powders are available. It is the numerous attributes of PEG 6000 powders that allow for their inclusion in a vast array of applications, ranging from the pharmaceutical industry to cosmetic markets. While the structure of PEG 6000 powder is simple, it is this compound’s solubility in water is what makes it such a versatile additive to enhance many industrial applications. Because line of PEG 6000 powder products are non-toxic and hydrophilic (water-loving), these polymers are used in the home (i.e. to treat surfaces in cleaning agents made by cleaning chemicals manufacturers) as well as in the food production industry (to reduce the amount of foam during the processing of food products). PEG 6000 powders are generally considered to be biologically inert, making them safe to use throughout the medical and food-processing industries. What is Polyethyleneglycol Used For? Due to the variety of physical properties that can be achieved through PEG 6000 powder series, formulators in nearly all industries can benefit from this line of PEG 6000 powder products. A PEG 6000 powder’s unique ability to enhance a dye’s solubility in aqueous formulations causes it to be used throughout the textile industry as dye carriers. PEG 6000 powders are also exceptional at retaining moisture in complex formulations, as well as to an applied surface, making them excellent humectants and anti-caking agents for cosmetic chemical suppliers and coatings chemical suppliers. This unique relationship with water is further exploited by many other markets as PEG 6000 powders can help to stabilize emulsions and act as water-miscible co-solvents for aqueous formulations. The food industry uses these compounds as additives to reduce the amount of foam during food processing. Additionally, PEG 6000 powders find themselves very useful in the pharmaceutical industry due to their ability to act as rheological modifiers, thus being used as excipients. New research techniques are increasingly incorporating PEG 6000 powder compounds via the use of ‘PEG 6000 powderylation’ onto protein and peptide therapeutics, thus improving their pharmacokinetics and leading to safer and more effective drugs1-2. Many of PEG 6000 powder series meet the requirements set forth by the National Formulary (NF) guidelines for safe preparation, manufacture and use of a variety of PEG 6000 powder compounds that can be used as excipients, botanicals and other similar products. Is Polyethyleneglycol Safe? PEG 6000 powders are generally considered to be a biologically inert substance, meaning that this class of oligomers and polymers are recognized to be safe for use in food, cosmetic and pharmaceutical applications. So, is polyethyleneglycol toxic? Due to the PEG 6000 powder’s structure and its water solubility, these compounds are generally considered to be non-toxic, as studies of demonstrated their safety for use within the field of drug delivery1-2, for application to the skin in cosmetics3 and as additives in the food and vitamin processing industry4. Where applicable, line of PEG 6000 powders, 6000 powder, adhere to the guidelines for the manufacturing set forth by the National Formulary (NF). Having initially been established by the U.S. Federal Food, Drug, and Cosmetics Act of 1938, these guidelines are currently recognized by the U.S. Food and Drug Administration (FDA). These manufacturing and production guidelines are annually reviewed, requiring to not only adhere to these strict standards, but maintain constant surveillance over the preparation of these non-toxic additives. Additionally, many of PEG 6000 powder products that are used in agricultural applications are safe for the environment and are on the Environmental Protection Agencies’ (EPA) inert ingredient list, meeting the requirements set forth in 40 CFR 180.910 and 40 CFR 180.930. This makes PEG 6000 powders attractive for agrochemical companies.
PEG 7 GLYCERYL COCOATE
PEG 7 Glyceryl Cocoate What Is PEG 7 Glyceryl Cocoate? PEG 7 Glyceryl Cocoate, PEG-30 Glyceryl Cocoate, PEG-40 Glyceryl Cocoate, PEG-78 Glyceryl Cocoate and PEG-80 Glyceryl Cocoate are polyethylene glycol ethers of Glyceryl Cocoate. In cosmetics and personal care products, PEG Glyceryl Cocoate ingredients are used in the formulation of hair dyes and colors, shampoos, cleaning products, and skin care and bath products. Why is PEG 7 Glyceryl Cocoate used in cosmetics and personal care products? PEG-7 Glyceryl Cocoate acts as a lubricant on the skin's surface, which gives the skin a soft and smooth appearance. It also helps to form emulsions by reducing the surface tension of the substances to be emulsified. PEG-30, -40, -78 and -80 Glyceryl Cocoate clean the skin and hair by helping water to mix with oil and dirt so that these substances can be rinsed away. They also help other ingredients to dissolve in a solvent in which they would not normally dissolve. Scientific Facts: PEG 7 Glyceryl Cocoate ingredients are produced from coconut oil-derived fatty acids. The different chain length PEGs are formed using ethylene oxide and water, with the average number of moles of ethylene oxide used corresponding to the number in the name. PEG 7 Glyceryl Cocoate ingredients are produced from coconut oil-derived fatty acids. PEG 7 Glyceryl Cocoate functions as a skin conditioning agent, emollient, surfactant and an emulsifying agent. They are used in the formulation of hair dyes and colors, shampoos, skin care and bath products. PEG-7 GLYCERYL COCOATE is classified as : Emulsifying Surfactant COSING REF No:77274 Chem/IUPAC Name:Poly(oxy-1,2-ethanediyl), .alpha.,.alpha.',.alpha.''-1,2,3-propanetriyltris-.omega.-hydroxy-, monococonut acid ester (7 mol EO average molar ratio) Galaxy PEG 7 Glyceryl Cocoate is a water soluble polyol fatty acid ester. PEG 7 Glyceryl Cocoate is a non-ionic surface active agent and acts as an emulsifying agent. PEG-7 Glyceryl Cocoate has emollient and conditioning effects on skin. It also has super-fatting properties. What Is PEG-7 Glyceryl Cocoate? PEG 7 glyceryl cocoate is a synthetic polymer that functions as an emollient, surfactant, and emulsifier in cosmetics and skincare products. PEG 7 glyceryl cocoate is a polyethylene glycol (PEG) ether of glyceryl cocoate. Glyceryl cocoate is a monoester of glycerin and coconut fatty acids, which are both very beneficial to the skin. Glycerin, also referred to as glycerol, is a natural alcohol and humectant that helps the skin to retain moisture. Coconut fatty acids restore the skin’s lipid barrier, which also helps to improve the skin’s moisture retention. PEG 7 glyceryl cocoate is produced by the ethoxylation of glyceryl cocoate. Ethoxylation is a chemical reaction in which ethylene oxide is added to a substrate. In this case, 7 units of ethylene oxide are added to glyceryl cocoate (hence the 7 in the ingredient name). THE BREAKDOWN PEG-7 Glyceryl Cocoate THE GOOD:Helps to protect the skin’s natural barrier, improving moisture retention. It also helps to improve the texture and feel of the product. THE NOT SO GOOD:There are concerns about the presence of 1,4-dioxane in this ingredient. This is less of a concern more recently as the process of purifying PEG 7 glyceryl cocoate is highly regulated. WHO IS IT FOR?All skin types except those that have an identified allergy to it. SYNERGETIC INGREDIENTS:Works well with most ingredients KEEP AN EYE ON:Nothing to keep an eye on here. Why Is PEG 7 Glyceryl Cocoate Used? In cosmetics and skincare products, PEG 7 glyceryl cocoate functions as an emollient, surfactant, and emulsifier. PEG 7 glyceryl cocoate also helps to protect the skin’s natural barrier and retain the skin’s moisture levels. Emollient As an emollient, PEG 7 glyceryl cocoate provides a lightweight and non-greasy barrier that helps to increase moisture retention at the skin’s surface. This property makes PEG 7 glyceryl cocoate very useful for products such as lotions, creams, and facial moisturizers. While all skin types can benefit from emollients like PEG 7 glyceryl cocoate, emollients are especially helpful for those who have dry, rough, and/or flaky skin. Emollients may help to alleviate these symptoms, leaving the skin looking and feeling soft and smooth. In addition, emollients may benefit those that suffer from conditions such as eczema, psoriasis, or other inflammatory skin conditions. Surfactant PEG 7 glyceryl cocoate also functions as a surfactant because it contains one end that is hydrophilic or attracted to water and one end that is lipophilic or attracted to oil. Surfactants work by lowering the surface tension between two substances, such as two liquids or a liquid and a solid. This allows surfactants to attract and suspends oils, dirt, and other impurities that have accumulated on the skin and wash them away. Due to these properties, PEG 7 glyceryl cocoate can be found in many different cleansers, shampoos, and body washes. Emulsifier As an emulsifier, PEG 7 glyceryl cocoate is often used in formulations that contain both water and oil components. Mixing water and oil can be difficult as they tend to separate and split. To address this problem, an emulsifier like PEG 7 glyceryl cocoate can be added to improve the consistency of a product, which enables an even distribution of topical skin care benefits. Is PEG 7 Glyceryl Cocoate Safe? The safety of the PEG glyceryl cocoate ingredients, including PEG 7 glyceryl cocoate, has been assessed by the Cosmetic Ingredient Review (CIR) Expert Panel, a group responsible for evaluating the safety of skincare and cosmetic ingredients. The Expert Panel evaluated the scientific data and concluded that these ingredients were safe for use in rinse-off products and safe up to 10% in leave-on products. Despite the approval of PEG 7 glyceryl cocoate by the CIR Expert Panel, there are concerns about the presence of ethylene oxide in this ingredient. This is because the process of ethoxylation may lead to contamination with 1,4-dioxane, a potentially dangerous by-product. 1,4-dioxane is a known animal carcinogen that penetrates readily into the skin. According to the National Toxicology Program, ‘1,4-dioxane is reasonably anticipated to be a human carcinogen.’ It has also been linked with skin allergies. However, the potential presence of 1,4-dioxane can be controlled through purification steps to remove it before blending PEG-7 glyceryl cocoate into cosmetic formulations. what is PEG 7 Glyceryl Cocoate: PEG 7 Glyceryl Cocoate is a non-ionic ethoxylated surfactant with over-greasing and solubilizing properties. PEG 7 Glyceryl Cocoate is a hydrophilic oil with a light yellow color and a characteristic odor. Chemically PEG 7 Glyceryl Cocoate consists of polyethylene glycol and coconut fatty acids. In cosmetics PEG 7 Glyceryl Cocoate is used as a degreaser in shampoos and body cleansers, thanks to its lubricating, emollient and conditioned properties for the skin and hair. Furthermore PEG 7 Glyceryl Cocoate improves the foam quality of the detergents in which it is inserted. PEG 7 Glyceryl Cocoate is also used for its solubilizing properties against fat-soluble substances in aqueous systems, such as some active ingredients (menthol, camphor, salicylic acid) and essential oils and having an HLB of about 11 can also be used as a coemulsifier. PEG 7 Glyceryl Cocoate can be inserted into any type of cleansing product, for skin and hair. PEG 7 Glyceryl Cocoate is often used used as a solubilizer and emollient in hair sprays without rinsing and in micellar cleansing waters. Recommended use percentage: from 1 to 10%. PEG 7 Glyceryl Cocoate is soluble in water and aqueous solutions of tensiottivi is stable in a pH range between 5 and 8. Non-ionic, ethoxlyated polyethylene glycol ester made from glycerin & coconut oil. Clear oily liquid, characteristic odor. Soluble in water & alcohols, insoluble in oils. HLB value 11 (gives oil-in-water emulsions). PEG compounds are harmless but contentious ingredients, as the manufacturing process can involve contaminants. We choose to work with suppliers who ensure that all of our PEG compounds are completely safe for cosmetic use. PEG 7 Glyceryl cocoate is a solubilizer, used to blend all formula ingredients together into a stable and uniformly dispersed product. As part of our mission to provide the greenest formulas possible, we are working hard to remove this ingredient from our portfolio. A clear, light yellow water-loving oil that comes from coconut/palm kernel oil and glycerin. PEG 7 Glyceryl Cocoate's a mild cleansing agent popular in baby washes and sensitive skin formulas. PEG 7 Glyceryl Cocoate's also a so-called solubilizer that helps to dissolve oils and oil-soluble ingredients (e.g.essential oils or salicylic acid) in water-based formulas. INCI: PEG-7 Glyceryl Cocoate PEG 7 Glyceryl Cocoate is a multifunctional substance which is an ideal emulsifying agent, emollient and solvent material. PEG 7 Glyceryl Cocoate is of natural origin, obtained from coconut oil and glycerin. Emulsifiers: HLB 10. The product is used in recipes: A facial cleansing micellar fluid A facial cleansing gel for sensitive skin eco A body wash emulsion with a chamomile extract A nourishing and moisturizing body wash gel with silk and red poppy extracts. A hydrophilic cleansing oil for mixed skin: almond, safflower A hydrophilic cleansing oil for dry skin: avocado, borage A hydrophilic cleansing oil for mature skin: karite, argan A hydrophilic cleansing oil for acne and oily skin: sunflower, safflower A nourishing and moisturizing body wash gel with silk and red poppy extracts. A moisturizing shampoo with silk. A nourising and relaxing shampoo with red poppy flower extract. A regenerating shampoo for damaged hair with keratin. A shampoo for dyed hair with an argan oil. A shampoo for oily skin/hair with a common bahu extract. peg 7 GLYCERYL COCOATE is classified as : Emollient Emulsifying CAS Number 61789-05-7 EINECS/ELINCS No: 263-027-9 COSING REF No: 34052 Chem/IUPAC Name: Glycerides, coco mono- This synthetic polymer is based on PEG (polyethylene glycol) and fatty acids derived from coconut oil. Due to the presence of PEG, this ingredient may contain potentially toxic manufacturing impurities such as 1,4-dioxane. Function(s): Skin-Conditioning Agent - Emollient; Surfactant - Emulsifying Agent PEG 7 Glyceryl Cocoate acts as a lubricant on the skin's surface, which gives the skin a soft and smooth appearance. PEG 7 Glyceryl Cocoate also helps to form emulsions by reducing the surface tension of the substances to be emulsified. Description of PEG 7 Glyceryl Cocoate: Non-ionic, ethoxlyated polyethylene glycol ester made from glycerin & coconut oil. Clear oily liquid, characteristic odor. Soluble in water & alcohols, insoluble in oils. HLB value 11 (gives oil-in-water emulsions). CAS: 68201-46-7 INCI Name: PEG-7 glyceryl monococoate Benefits of PEG 7 Glyceryl Cocoate: Multifunctional agent with excellent emulsifying, emollient, refatting & thickening properties Very useful as surfactant and foam booster Has good conditioning effect for soft and smooth skin Use of PEG 7 Glyceryl Cocoate: Can be added to formulas as is, usual concentration 1 - 10%. For external use only. Applications of PEG 7 Glyceryl Cocoate: Universally applicable, especially in liquid soaps, lotions, body washes, shower gels, hair shampoos, facial cleansers, bubble baths, decorative cosmetics. Country of Origin of PEG 7 Glyceryl Cocoate: Germany Raw material source of PEG 7 Glyceryl Cocoate: Coconut oil and polyethylene glycol Manufacture of PEG 7 Glyceryl Cocoate: PEG glyceryl cocoate is manufactured by the ethoxylation (polymerization of ethylene oxide) of glyceryl cocoate. Animal Testing: Not animal tested GMO: GMO free (does not contain plant-derived components) Vegan: Does not contain animal-derived components Propylene Glycol / Peg 7 Glyceryl Cocoate is used for Hemolysis, Central nervous system depression, Hyperosmolality, Lactic acidosis, Skin conditioning and other conditions. Uses of PEG 7 Glyceryl Cocoate Propylene Glycol / Peg 7 Glyceryl Cocoate is used for the treatment, control, prevention, & improvement of the following diseases, conditions and symptoms: Hemolysis Central nervous system depression Hyperosmolality Lactic acidosis Skin conditioning Propylene Glycol / Peg 7 Glyceryl Cocoate may also be used for purposes not listed here. Side-effects of PEG 7 Glyceryl Cocoate The following is a list of possible side-effects that may occur in medicines that contain Propylene Glycol / Peg 7 Glyceryl Cocoate. This is not a comprehensive list. These side-effects are possible, but do not always occur. Some of the side-effects may be rare but serious. Consult your doctor if you observe any of the following side-effects, especially if they do not go away. Hypersensitivity Local irritation Diaphoresis Unresponsiveness Propylene Glycol / Peg 7 Glyceryl Cocoate may also cause side-effects not listed here. Precautions of PEG 7 Glyceryl Cocoate Before using Propylene Glycol / Peg 7 Glyceryl Cocoate, inform your doctor about your current list of medications, over the counter products (e.g. vitamins, herbal supplements, etc.), allergies, pre-existing diseases, and current health conditions (e.g. pregnancy, upcoming surgery, etc.). Some health conditions may make you more susceptible to the side-effects of the drug. Take as directed by your doctor or follow the direction printed on the product insert. Dosage is based on your condition. Tell your doctor if your condition persists or worsens. Important counseling points are listed below. Allergy Pregnancy or lactation Sensitive to any topical lotions or creams Skin disorders Skin infections When not to use Propylene Glycol / Peg 7 Glyceryl Cocoate Hypersensitivity to Propylene Glycol / Peg 7 Glyceryl Cocoate is a contraindication. In addition, Propylene Glycol / Peg 7 Glyceryl Cocoate should not be used if you have the following conditions: Hypersensitivity Frequently asked Questions about of PEG 7 Glyceryl Cocoate Is Propylene Glycol / Peg 7 Glyceryl Cocoatesafe to use when pregnant? Propylene Glycol: Please consult with your doctor for case-specific recommendations. Peg 7 Glyceryl Cocoate: Please consult with your doctor for case-specific recommendations. Is Propylene Glycol / Peg 7 Glyceryl Cocoatesafe while breastfeeding? Propylene Glycol: Please discuss the risks and benefits with your doctor. Peg 7 Glyceryl Cocoate: Please discuss the risks and benefits with your doctor. Is it safe to drive or operate heavy machinery when using this product? If you experience drowsiness, dizziness, hypotension or a headache as side-effects when usingPropylene Glycol / Peg 7 Glyceryl Cocoatemedicine then it may not be safe to drive a vehicle or operate heavy machinery. One should not drive a vehicle if using the medicine makes you drowsy, dizzy or lowers your blood-pressure extensively. Pharmacists also advise patients not to drink alcohol with medicines as alcohol intensifies drowsiness side-effects. Please check for these effects on your body when using Propylene Glycol / Peg 7 Glyceryl Cocoate. Always consult with your doctor for recommendations specific to your body and health conditions. Is PEG 7 Glyceryl Cocoate or product addictive or habit forming? Most medicines don't come with a potential for addiction or abuse. Usually, the government's categorizes medicines that can be addictive as controlled substances. Examples include schedule H or X in India and schedule II-V in the US. Please consult the product package to make sure that the medicine does not belong to such special categorizations of medicines. Lastly, do not self-medicate and increase your body's dependence to medicines without the advice of a doctor. Can I stop using PEG-7 Glyceryl Cocoate immediately or do I have to slowly wean off the use? Some medicines need to be tapered or cannot be stopped immediately because of rebound effects. Please consult with your doctor for recommendations specific to your body, health and other medications that you may be using. Overdosage of Propylene Glycol / Peg 7 Glyceryl Cocoate Do not use more than prescribed dose. Taking more medication will not improve your symptoms; rather they may cause poisoning or serious side-effects. If you suspect that you or anyone else who may have overdosed of Propylene Glycol / Peg 7 Glyceryl Cocoate, please go to the emergency department of the closest hospital or nursing home. Bring a medicine box, container, or label with you to help doctors with necessary information. Do not give your medicines to other people even if you know that they have the same condition or it seems that they may have similar conditions. This may lead to overdosage. Please consult your physician or pharmacist or product package for more information. Storage of Propylene Glycol / Peg 7 Glyceryl Cocoate Store medicines at room temperature, away from heat and direct light. Do not freeze medicines unless required by package insert. Keep medicines away from children and pets. Do not flush medications down the toilet or pour them into drainage unless instructed to do so. Medication discarded in this manner may contaminate the environment. Please consult your pharmacist or doctor for more details on how to safely discard Propylene Glycol / Peg 7 Glyceryl Cocoate. Expired Propylene Glycol / Peg-7 Glyceryl Cocoate Taking a single dose of expired Propylene Glycol / Peg 7 Glyceryl Cocoate is unlikely to produce an adverse event. However, please discuss with your primary health provider or pharmacist for proper advice or if you feel unwell or sick. Expired drug may become ineffective in treating your prescribed conditions. To be on the safe side, it is important not to use expired drugs. If you have a chronic illness that requires taking medicine constantly such as heart condition, seizures, and life-threatening allergies, you are much safer keeping in touch with your primary health care provider so that you can have a fresh supply of unexpired medications. Peg 7 Glyceryl Cocoate is the basis of a number of laxatives. Whole bowel irrigation with polyethylene glycol and added electrolytes is used for bowel preparation before surgery or colonoscopy. Peg 7 Glyceryl Cocoate is also used as an excipient in many pharmaceutical products. When attached to various protein medications, polyethylene glycol allows a slowed clearance of the carried protein from the blood. The possibility that Peg 7 Glyceryl Cocoate could be used to fuse axons is being explored by researchers studying peripheral nerve and spinal cord injury. Chemical uses of Polyethylene glycol (Peg-7 Glyceryl Cocoate) The remains of the 16th century carrack Mary Rose undergoing conservation treatment with Peg 7 Glyceryl Cocoate in the 1980s. Terra cotta warrior, showing traces of original color Because Peg 7 Glyceryl Cocoate is a hydrophilic molecule, it has been used to passivate microscope glass slides for avoiding non-specific sticking of proteins in single-molecule fluorescence studies. Polyethylene glycol has a low toxicity and is used in a variety of products. The polymer is used as a lubricating coating for various surfaces in aqueous and non-aqueous environments. Since Peg 7 Glyceryl Cocoate is a flexible, water-soluble polymer, it can be used to create very high osmotic pressures (on the order of tens of atmospheres). It also is unlikely to have specific interactions with biological chemicals. These properties make Peg 7 Glyceryl Cocoate one of the most useful molecules for applying osmotic pressure in biochemistry and biomembranes experiments, in particular when using the osmotic stress technique. Polyethylene glycol is also commonly used as a polar stationary phase for gas chromatography, as well as a heat transfer fluid in electronic testers. Peg 7 Glyceryl Cocoate has also been used to preserve objects that have been salvaged from underwater, as was the case with the warship Vasa in Stockholm, and similar cases. It replaces water in wooden objects, making the wood dimensionally stable and preventing warping or shrinking of the wood when it dries. In addition, Peg 7 Glyceryl Cocoate is used when working with green wood as a stabilizer, and to prevent shrinkage. Peg 7 Glyceryl Cocoate has been used to preserve the painted colors on Terracotta Warriors unearthed at a UNESCO World Heritage site in China. These painted artifacts were created during the Qin Shi Huang (first emperor of China) era. Within 15 seconds of the terra-cotta pieces being unearthed during excavations, the lacquer beneath the paint begins to curl after being exposed to the dry Xi'an air. The paint would subsequently flake off in about four minutes. The German Bavarian State Conservation Office developed a Peg 7 Glyceryl Cocoate preservative that when immediately applied to unearthed artifacts has aided in preserving the colors painted on the pieces of clay soldiers. Peg 7 Glyceryl Cocoate is often used (as an internal calibration compound) in mass spectrometry experiments, with its characteristic fragmentation pattern allowing accurate and reproducible tuning. Peg 7 Glyceryl Cocoate derivatives, such as narrow range ethoxylates, are used as surfactants. Peg 7 Glyceryl Cocoate has been used as the hydrophilic block of amphiphilic block copolymers used to create some polymersomes. Peg 7 Glyceryl Cocoate has also been used as a propellent on the UGM-133M Trident II Missile, in service with the United States Air Force. Biological uses of PEG-7 Glyceryl Cocoate Peg 7 Glyceryl Cocoate is commonly used as a crowding agent in in vitro assays to mimic highly crowded cellular conditions. Peg 7 Glyceryl Cocoate is commonly used as a precipitant for plasmid DNA isolation and protein crystallization. X-ray diffraction of protein crystals can reveal the atomic structure of the proteins. Peg 7 Glyceryl Cocoate is used to fuse two different types of cells, most often B-cells and myelomas in order to create hybridomas. Polymer segments derived from Peg 7 Glyceryl Cocoate polyols impart flexibility to polyurethanes for applications such as elastomeric fibers (spandex) and foam cushions. In microbiology, Peg 7 Glyceryl Cocoate precipitation is used to concentrate viruses. Peg 7 Glyceryl Cocoate is also used to induce complete fusion (mixing of both inner and outer leaflets) in liposomes reconstituted in vitro. Gene therapy vectors (such as viruses) can be Peg 7 Glyceryl Cocoate-coated to shield them from inactivation by the immune system and to de-target them from organs where they may build up and have a toxic effect. The size of the Peg 7 Glyceryl Cocoate polymer has been shown to be important, with larger polymers achieving the best immune protection. Peg 7 Glyceryl Cocoate is a component of stable nucleic acid lipid particles (SNALPs) used to package siRNA for use in vivo. In blood banking, Peg 7 Glyceryl Cocoate is used as a potentiator to enhance detection of antigens and antibodies. When working with phenol in a laboratory situation, Peg 7 Glyceryl Cocoate 300 can be used on phenol skin burns to deactivate any residual phenol (some references are required). In biophysics, polyethylene glycols are the molecules of choice for the functioning ion channels diameter studies, because in aqueous solutions they have a spherical shape and can block ion channel conductance. Commercial uses of PEG-7 Glyceryl Cocoate Peg 7 Glyceryl Cocoate is the basis of many skin creams (as cetomacrogol) and personal lubricants (frequently combined with glycerin). Peg 7 Glyceryl Cocoate is used in a number of toothpastes as a dispersant. In this application, it binds water and helps keep xanthan gum uniformly distributed throughout the toothpaste. Peg 7 Glyceryl Cocoate is also under investigation for use in body armor, and in tattoos to monitor diabetes. In low-molecular-weight formulations (e.g. Peg 7 Glyceryl Cocoate 400), it is used in Hewlett-Packard designjet printers as an ink solvent and lubricant for the print heads. Peg 7 Glyceryl Cocoate is also used as an anti-foaming agent in food and drinks – its INS number is 1521 or E1521 in the EU. Industrial uses of PEG-7 Glyceryl Cocoate A nitrate ester-plasticized polyethylene glycol (NEPE-75) is used in Trident II submarine-launched ballistic missile solid rocket fuel. Dimethyl ethers of Peg 7 Glyceryl Cocoate are the key ingredient of Selexol, a solvent used by coal-burning, integrated gasification combined cycle (IGCC) power plants to remove carbon dioxide and hydrogen sulfide from the gas waste stream. Peg 7 Glyceryl Cocoate has been used as the gate insulator in an electric double-layer transistor to induce superconductivity in an insulator. Peg 7 Glyceryl Cocoate is also used as a polymer host for solid polymer electrolytes. Although not yet in commercial production, many groups around the globe are engaged in research on solid polymer electrolytes involving Peg 7 Glyceryl Cocoate, with the aim of improving their properties, and in permitting their use in batteries, electro-chromic display systems, and other products in the future. Peg 7 Glyceryl Cocoate is injected into industrial processes to reduce foaming in separation equipment. Peg 7 Glyceryl Cocoate is used as a binder in the preparation of technical ceramics. Recreational uses Peg 7 Glyceryl Cocoate is used to extend the size and durability of very large soap bubbles. Peg 7 Glyceryl Cocoate is the main ingredient in many personal lubricants. Health effects of PEG-7 Glyceryl Cocoate Peg 7 Glyceryl Cocoate is considered biologically inert and safe by the FDA. However, a growing body of evidence shows the existence of anti Peg 7 Glyceryl Cocoate antibodies in approximately 72% of the population based on plasma samples from 1990–1999. The FDA has been asked to investigate the possible effects of Peg 7 Glyceryl Cocoate in laxatives for children. Due to its ubiquity in a multitude of products and the large percentage of the population with antibodies to Peg 7 Glyceryl Cocoate, hypersensitive reactions to Peg 7 Glyceryl Cocoate are an increasing concern. Allergy to Peg 7 Glyceryl Cocoate is usually discovered after a person has been diagnosed with an allergy to an increasing number of seemingly unrelated products, including processed foods, cosmetics, drugs, and other substances that contain Peg 7 Glyceryl Cocoate or were manufactured with Peg 7 Glyceryl Cocoate. When Peg 7 Glyceryl Cocoate is chemically attached to therapeutic molecules (such as protein drugs or nanoparticles), it can sometimes be antigenic, stimulating an anti-Peg 7 Glyceryl Cocoate antibody response in some patients. This effect has only been shown for a few of the many available Peg 7 Glyceryl Cocoate therapeutics, but it has significant effects on clinical outcomes of affected patients. Other than these few instances where patients have anti-Peg 7 Glyceryl Cocoate immune responses, it is generally considered to be a safe component of drug formulations.
PEG 75 LANOLIN
cas no 25322-68-3 PEG; Poly(ethylene glycol); PEG 8000;
PEG 8000
PEG, Poly(ethylene glycol), peg 8000, cas no : 25322-68-4; PEG, Polymère d'oxyéthylène, alpha-hydro-oméga-hydroxypoly(oxy-1,2-éthynediyl),poly(oxyde d'éthylène), poly(oxyéthylène), PEG, PEO, No Cas: 25322-68-3; PEG, Polymère d'oxyéthylène,alpha-hydro-oméga-hydroxypoly(oxy-1,2-éthynediyl),poly(oxyde d'éthylène), poly(oxyéthylène), PEG, PEO, Le PEG est utilisé dans de nombreux secteurs de l'industrie. Il sert par exemple comme épaississant ou gélifiant à la base de nombreux produits cosmétiques (savons liquides, crèmes hydratantes, shampoings, etc.) et paramédicaux (gels hydroalcooliques, lubrifiants intimes, etc.). Il est également utilisé comme solvant dans les encres pour imprimantes ou pour fabriquer des billes de paint-ball, ou bien comme additif alimentaire et dans certaines résines polyesters.Poly(ethylene glycol), Poly(oxy-1,2-ethanediyl),.alpha.-hydro-.omega.-hydroxy; Poly(oxy-1,2-ethanediyl),α-hydro-ω-hydroxy- Ethane-1,2-diol; Poly(oxy-1,2-ethanediyl),α-hydro-ω-hydroxy-Ethane-1,2-diol, ethoxylated;poly(oxyethylene); POLYETHYLENE GLYCOL
PEG 9000
PEG-10 LAURATE, N° CAS : 9004-81-3. Origine(s) : Synthétique. Nom INCI : PEG-10 LAURATE. Classification : PEG/PPG, Composé éthoxylé, Glycol, Polymère de synthèse. Ses fonctions (INCI). Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile)