Химикаты для сельского хозяйства,пищевой промышленности,корм и ароматизаторов

Huş Ekstrakt
Kayın Ağacı Ekstrakt ;Betula Pendula Twig Extract ; betula pseudopendula twig extract; betula talassica twig extract; betula verrucosa twig extract; birch twig extract (betula pendula) cas no:85940-29-0
Hünnap Ekstraktı
Hüsnü Yusuf Çiçeği Ekstrakt; Zizyphus Jujuba Fruit Extract ; jujube fruit extract cas no:90045-99-1
HYDRAZINE HYDRATE 100%
Hydrazine hydrate 100% Skip to navigationJump in search Hydrazine hydrate 100% Hydrazine-3D-vdW.pngWater molecule 3D.svg Hydrazine hydrate 100% model Units of SI and STP unless otherwise stated. edit Consult the model documentation The hydrazine hydrate 100% is the chemical compound of formula H 2 N-NH 2H 2 O. It contains 61% hydrazine hydrate 100% by mass and 39% water . Used by the Germans from the 1940s in the B-Stoffs and C-Stoffs for the propulsion of certain airplanes ( Messerschmitt 163B ), hydrazine hydrate 100% is used until today as a reducing propellant in the liquid propellants of certain space launchers . It has in particular been referenced by Arianespace for its Ariane 2 to Ariane 4 launchers in a mixture of 75% UDMH - 25% hydrazine hydrate 100% , called UH 25 . Its melting point is in fact significantly lower than that of pure hydrazine hydrate 100%: −51.7 ° C, against 1 ° C for hydrazine hydrate 100% , and its slightly higher density: 1032 kg · m -3 against 1004.5 kg · m -3 , without degradation of the energy performance of this fuel , which makes it a propellant effective for pitchers . Hydrazine hydrate 100% (Hydrazine, 64%) Hydrazine hydrate 100% is an inorganic compound with the chemical formula N2H 4. It is a simple pnictogen hydride, and is a colorless and flammable liquid with an ammonia-like odor. Hydrazine hydrate 100% is highly toxic unless handled in solution as e.g., hydrazine hydrate 100% (NH2NH2 · xH2O). As of 2015, the world hydrazine hydrate 100% market amounted to $350 million.[8] Hydrazine hydrate 100% is mainly used as a foaming agent in preparing polymer foams, but applications also include its uses as a precursor to polymerization catalysts, pharmaceuticals, and agrochemicals, as well as a long-term storable propellant for in-space spacecraft propulsion. About two million tons of hydrazine hydrate 100% were used in foam blowing agents in 2015. Additionally, hydrazine hydrate 100% is used in various rocket fuels and to prepare the gas precursors used in air bags. Hydrazine hydrate 100% is used within both nuclear and conventional electrical power plant steam cycles as an oxygen scavenger to control concentrations of dissolved oxygen in an effort to reduce corrosion.[9] Hydrazine hydrate 100% refer to a class of organic substances derived by replacing one or more hydrogen atoms in hydrazine hydrate 100% by an organic group.[10] Uses Gas producers and propellants The majority use of hydrazine hydrate 100% is as a precursor to blowing agents. Specific compounds include azodicarbonamide and azobisisobutyronitrile, which produce 100–200 mL of gas per gram of precursor. In a related application, sodium azide, the gas-forming agent in air bags, is produced from hydrazine hydrate 100% by reaction with sodium nitrite.[10] Hydrazine hydrate 100% is also used as a long-term storable propellant on board space vehicles, such as the NASA Dawn probe to Ceres and Vesta, and to both reduce the concentration of dissolved oxygen in and control pH of water used in large industrial boilers. The F-16 fighter jet, NASA Space Shuttle, and U-2 spy plane use hydrazine hydrate 100% to fuel their emergency power units.[11] Precursor to pesticides and pharmaceuticals Fluconazole, synthesized using hydrazine hydrate 100%, is an antifungal medication. Hydrazine hydrate 100% is a precursor to several pharmaceuticals and pesticides. Often these applications involve conversion of hydrazine hydrate 100% to heterocyclic rings such as pyrazoles and pyridazines. Examples of commercialized bioactive hydrazine hydrate 100% derivatives include cefazolin, rizatriptan, anastrozole, fluconazole, metazachlor, metamitron, metribuzin, paclobutrazol, diclobutrazole, propiconazole, hydrazine hydrate 100% sulfate,[12] diimide, triadimefon,[10] and dibenzoylhydrazine hydrate 100%. Hydrazine hydrate 100% compounds can be effective as active ingredients in admixture with or in combination with other agricultural chemicals such as insecticides, miticides, nematicides, fungicides, antiviral agents, attractants, herbicides or plant growth regulators.[13] Small-scale, niche, and research The Italian catalyst manufacturer Acta (chemical company) has proposed using hydrazine hydrate 100% as an alternative to hydrogen in fuel cells. The chief benefit of using hydrazine hydrate 100% is that it can produce over 200 mW/cm2 more than a similar hydrogen cell without the need to use expensive platinum catalysts.[14] As the fuel is liquid at room temperature, it can be handled and stored more easily than hydrogen. By storing the hydrazine hydrate 100% in a tank full of a double-bonded carbon-oxygen carbonyl, the fuel reacts and forms a safe solid called hydrazone. By then flushing the tank with warm water, the liquid hydrazine hydrate 100% is released. Hydrazine hydrate 100% has a higher electromotive force of 1.56 V compared to 1.23 V for hydrogen. Hydrazine hydrate 100% breaks down in the cell to form nitrogen and hydrogen which bonds with oxygen, releasing water.[14] Hydrazine hydrate 100% was used in fuel cells manufactured by Allis-Chalmers Corp., including some that provided electric power in space satellites in the 1960s. A mixture of 63% hydrazine hydrate 100%, 32% hydrazine hydrate 100% nitrate and 5% water is a standard propellant for experimental bulk-loaded liquid propellant artillery. The propellant mixture above is one of the most predictable and stable, with a flat pressure profile during firing. Misfires are usually caused by inadequate ignition. The movement of the shell after a misignition causes a large bubble with a larger ignition surface area, and the greater rate of gas production causes very high pressure, sometimes including catastrophic tube failures (i.e. explosions).[15] From January–June 1991, the U.S. Army Research Laboratory conducted a review of early bulk-loaded liquid propellant gun programs for possible relevance to the electrothermal chemical propulsion program.[15] The United States Air Force (USAF) regularly uses H-70, a 70% hydrazine hydrate 100% water mixture, in operations employing the General Dynamics F-16 “Fighting Falcon” fighter aircraft and the Lockheed U-2 “Dragon Lady” reconnaissance aircraft. The single jet engine F-16 utilizes hydrazine hydrate 100% to power its Emergency Power Unit (EPU), which provides emergency electrical and hydraulic power in the event of an engine flame out. The EPU activates automatically, or manually by pilot control, in the event of loss of hydraulic pressure or electrical power in order to provide emergency flight controls. The single jet engine U-2 utilizes hydrazine hydrate 100% to power its Emergency Starting System (ESS), which provides a highly reliable method to restart the engine in flight in the event of a stall.[16] Rocket fuel Anhydrous (pure, not in solution) hydrazine hydrate 100% being loaded into the MESSENGER space probe. The technician is wearing a safety suit. Hydrazine hydrate 100% was first used as a component in rocket fuels during World War II. A 30% mix by weight with 57% methanol (named M-Stoff in the German Luftwaffe) and 13% water was called C-Stoff by the Germans.[17] The mixture was used to power the Messerschmitt Me 163B rocket-powered fighter plane. Hydrazine was also used as a propellant with the German high test peroxide T-Stoff oxidizer. Unmixed hydrazine was referred to as B-Stoff by the Germans, a designation also used later for the ethanol/water fuel for the V-2 missile. Hydrazine is used as a low-power monopropellant for the maneuvering thrusters of spacecraft, and was used to power the Space Shuttle's auxiliary power units (APUs). In addition, monopropellant hydrazine hydrate 100% -fueled rocket engines are often used in terminal descent of spacecraft. Such engines were used on the Viking program landers in the 1970s as well as the Phoenix lander and Curiosity rover which landed on Mars in May 2008 and August 2012, respectively. In all hydrazine hydrate 100% monopropellant engines, the hydrazine hydrate 100% is passed over a catalyst such as iridium metal supported by high-surface-area alumina (aluminium oxide), which causes it to decompose into ammonia, nitrogen gas, and hydrogen gas according to the following reactions:[18] 1) {\displaystyle {\ce {N2H4 -> N2 + 2H2}}}{\displaystyle {\ce {N2H4 -> N2 + 2H2}}} 2) {\displaystyle {\ce {3N2H4 -> 4 NH3 + N2}}}{\displaystyle {\ce {3N2H4 -> 4 NH3 + N2}}} 3) {\displaystyle {\ce {4NH3 + N2H4 -> 3 N2 + 8 H2}}}{\displaystyle {\ce {4NH3 + N2H4 -> 3 N2 + 8 H2}}} The first two reactions are extremely exothermic (the catalyst chamber can reach 800 °C in a matter of milliseconds,[19]) and they produce large volumes of hot gas from a small volume of liquid,[20] making hydrazine hydrate 100% a fairly efficient thruster propellant with a vacuum specific impulse of about 220 seconds.[21] Reaction 2 is the most exothermic, but produces a smaller number of molecules than that of reaction 1. Reaction 3 is endothermic and reverts the effect of reaction 2 back to the same effect as reaction 1 alone (lower temperature, greater number of molecules). The catalyst structure affects the proportion of the NH3 that is dissociated in reaction 3; a higher temperature is desirable for rocket thrusters, while more molecules are desirable when the reactions are intended to produce greater quantities of gas.[citation needed] Other variants of hydrazine hydrate 100% that are used as rocket fuel are monomethylhydrazine hydrate 100%, (CH3)NH(NH2) (also known as MMH), and unsymmetrical dimethylhydrazine, (CH3)2N(NH2) (also known as UDMH). These derivatives are used in two-component rocket fuels, often together with dinitrogen tetroxide, N2O4. These reactions are extremely exothermic, and the burning is also hypergolic (it starts burning without any external ignition).[22] There are ongoing efforts in the aerospace industry to replace hydrazine hydrate 100% and other highly toxic substances. Promising alternatives include hydroxylammonium nitrate, 2-dimethylaminoethylazide (DMAZ)[23] and energetic ionic liquids.[citation needed] Potential routes of hydrazine hydrate 100% exposure include dermal, ocular, inhalation and ingestion.[24] Hydrazine hydrate 100% exposure can cause skin irritation/contact dermatitis and burning, irritation to the eyes/nose/throat, nausea/vomiting, shortness of breath, pulmonary edema, headache, dizziness, central nervous system depression, lethargy, temporary blindness, seizures and coma. Exposure can also cause organ damage to the liver, kidneys and central nervous system.[24][25] Hydrazine hydrate 100% is documented as a strong skin sensitizer with potential for cross-sensitization to hydrazine hydrate 100% derivatives following initial exposure.[26] In addition to occupational uses reviewed above, exposure to hydrazine hydrate 100% is also possible in small amounts from tobacco smoke.[25] The official U.S. guidance on hydrazine hydrate 100% as a carcinogen is mixed but generally there is recognition of potential cancer-causing effects. The National Institute for Occupational Safety and Health (NIOSH) lists it as a “potential occupational carcinogen”. The National Toxicology Program (NTP) finds it is "reasonably anticipated to be a human carcinogen". The American Conference of Governmental Industrial Hygienists (ACGIH) grades hydrazine hydrate 100% as "A3—confirmed animal carcinogen with unknown relevance to humans". The U.S. Environmental Protection Agency (EPA) grades it as "B2—a probable human carcinogen based on animal study evidence".[27] The International Agency for Research on Cancer (IARC) rates hydrazine hydrate 100% as "2A—probably carcinogenic to humans" with a positive association observed between hydrazine hydrate 100% exposure and lung cancer.[28] Based on cohort and cross-sectional studies of occupational hydrazine hydrate 100% exposure, a committee from the National Academies of Sciences, Engineering and Medicine concluded that there is suggestive evidence of an association between hydrazine hydrate 100% exposure and lung cancer, with insufficient evidence of association with cancer at other sites.[29] The European Commission’s Scientific Committee on Occupational Exposure Limits (SCOEL) places hydrazine hydrate 100% in carcinogen “group B—a genotoxic carcinogen”. The genotoxic mechanism the committee cited references hydrazine hydrate 100% reaction with endogenous formaldehyde and formation of a DNA-methylating agent.[30] In the event of a hydrazine hydrate 100% exposure-related emergency, NIOSH recommends removing contaminated clothing immediately, washing skin with soap and water, and for eye exposure removing contact lenses and flushing eyes with water for at least 15 minutes. NIOSH also recommends anyone with potential hydrazine hydrate 100% exposure to seek medical attention as soon as possible.[24] There are no specific post-exposure laboratory or medical imaging recommendations, and the medical work-up may depend on the type and severity of symptoms. The World Health Organization (WHO) recommends potential exposures be treated symptomatically with special attention given to potential lung and liver damage. Past cases of hydrazine hydrate 100% exposure have documented success with Pyridoxine (Vitamin B6) treatment.[26] Occupational exposure limits NIOSH Recommended Exposure Limit (REL): 0.03 ppm (0.04 mg/m3) 2-hour ceiling[27] OSHA Permissible Exposure Limit (PEL): 1 ppm (1.3 mg/m3) 8-hour Time Weighted Average[27] ACGIH Threshold Limit Value (TLV): 0.01 ppm (0.013 mg/m3) 8-hour Time Weighted Average[27] The odor threshold for hydrazine hydrate 100% is 3.7 ppm, thus if a worker is able to smell an ammonia-like odor then they are likely over the exposure limit. However, this odor threshold varies greatly and should not be used to determine potentially hazardous exposures.[31] For aerospace personnel, the USAF uses an emergency exposure guideline, developed by the National Academy of Science Committee on Toxicology, which is utilized for non-routine exposures of the general public and is called the Short-Term Public Emergency Exposure Guideline (SPEGL). The SPEGL, which does not apply to occupational exposures, is defined as the acceptable peak concentration for unpredicted, single, short-term emergency exposures of the general public and represents rare exposures in a worker's lifetime. For hydrazine hydrate 100% the 1-hour SPEGL is 2 ppm, with a 24-hour SPEGL of 0.08 ppm.[32] Handling and medical surveillance A complete surveillance program for hydrazine hydrate 100% should include systematic analysis of biologic monitoring, medical screening and morbidity/mortality information. The CDC recommends surveillance summaries and education be provided for supervisors and workers. Pre-placement and periodic medical screening should be conducted with specific focus on potential effects of hydrazine hydrate 100% upon functioning of the eyes, skin, liver, kidneys, hematopoietic, nervous and respiratory systems.[24] Common controls used for hydrazine hydrate 100% include process enclosure, local exhaust ventilation and personal protective equipment (PPE).[24] Guidelines for hydrazine hydrate 100% PPE include non-permeable gloves and clothing, indirect-vent splash resistant goggles, face shield and in some cases a respirator.[31] The use of respirators for the handling of hydrazine hydrate 100% should be the last resort as a method of controlling worker exposure. In cases where respirators are needed, proper respirator selection and a complete respiratory protection program consistent with OSHA guidelines should be implemented.[24] For USAF personnel, Air Force Occupational Safety and Health (AFOSH) Standard 48-8, Attachment 8 reviews the considerations for occupational exposure to hydrazine hydrate 100% in missile, aircraft and spacecraft systems. Specific guidance for exposure response includes mandatory emergency shower and eyewash stations and a process for decontaminating protective clothing. The guidance also assigns responsibilities and requirements for proper PPE, employee training, medical surveillance and emergency response.[32] USAF bases requiring the use of hydrazine hydrate 100% generally have specific base regulations governing local requirements for safe hydrazine hydrate 100% use and emergency response. Molecular structure Each H2N−N subunit is pyramidal. The N−N single bond distance is 1.45 Å (145 pm), and the molecule adopts a gauche conformation.[33] The rotational barrier is twice that of ethane. These structural properties resemble those of gaseous hydrogen peroxide, which adopts a "skewed" anticlinal conformation, and also experiences a strong rotational barrier. Synthesis and production Diverse routes have been developed.[10] The key step is the creation of the nitrogen–nitrogen single bond. The many routes can be divided into those that use chlorine oxidants (and generate salt) and those that do not. Oxidation of ammonia via oxaziridines from peroxide Hydrazine hydrate 100% can be synthesized from ammonia and hydrogen peroxide in the Peroxide process (sometimes called Pechiney-Ugine-Kuhlmann process, the Atofina–PCUK cycle, or ketazine process).[10] The net reaction follows:[34] {\displaystyle {\ce {2NH3 + H2O2 -> H2NNH2 + 2H2O}}}{\displaystyle {\ce {2NH3 + H2O2 -> H2NNH2 + 2H2O}}} In this route, the ketone and ammonia first condense to give the imine, which is oxidised by hydrogen peroxide to the oxaziridine, a three-membered ring containing carbon, oxygen, and nitrogen. Next, the oxaziridine gives the hydrazone by treatment with ammonia, which process creates the nitrogen-nitrogen single bond. This hydrazone condenses with one more equivalent of ketone. Pechiney-Ugine-Kuhlmann process.png The resulting azine is hydrolyzed to give hydrazine hydrate 100% and regenerate the ketone, methyl ethyl ketone: {\displaystyle {\ce {Me(Et)CNNC(Et)Me + 2 H2O -> 2 Me(Et)CO + N2H4}}}{\displaystyle {\ce {Me(Et)CNNC(Et)Me + 2 H2O -> 2 Me(Et)CO + N2H4}}} Unlike most other processes, this approach does not produce a salt as a by-product.[35] Chlorine-based oxidations In the Olin Raschig process, chlorine-based oxidants oxidize ammonia without the presence of a ketone. In the peroxide process, hydrogen peroxide oxidizes ammonia in the presence of a ketone. Hydrazine hydrate 100% is produced in the Olin-Raschig process from sodium hypochlorite (the active ingredient in many bleaches) and ammonia, a process announced in 1907. This method relies on the reaction of monochloramine with ammonia to create the nitrogen–nitrogen single bond as well as a hydrogen chloride byproduct:[12] {\displaystyle {\ce {NH2Cl + NH3 -> H2NNH2 + HCl}}}{\displaystyle {\ce {NH2Cl + NH3 -> H2NNH2 + HCl}}} Related to the Raschig process, urea can be oxidized instead of ammonia. Again sodium hypochlorite serves as the oxidant. The net reaction is shown:[36] {\displaystyle {\ce {(H2N)2CO + NaOCl + 2 NaOH -> N2H4 + H2O + NaCl + Na2CO3}}}{\displaystyle {\ce {(H2N)2CO + NaOCl + 2 NaOH -> N2H4 + H2O + NaCl + Na2CO3}}} The process generates significant byproducts and is mainly practised in Asia.[10] The Bayer Ketazine Process is the predecessor to the peroxide process. It employs sodium hypochlorite as oxidant instead of hydrogen peroxide. Like all hypochlorite-based routes, this method produces an equivalent of salt for each equivalent of hydrazine hydrate 100%.[10] Reactions Acid-base behavior Hydrazine hydrate 100% forms a monohydrate that is more dense (1.032 g/cm3) than the anhydrous material. Hydrazine hydrate 100% has basic (alkali) chemical properties comparable to those of ammonia:[37] {\displaystyle {\ce {N2H4 + H2O -> [N2H5]^+ + OH-}}}{\displaystyle {\ce {N2H4 + H2O -> [N2H5]^+ + OH-}}}{\displaystyle ,\ K_{b}=1.3\times 10^{-6},\ pK_{a}=8.1}{\displaystyle ,\ K_{b}=1.3\times 10^{-6},\ pK_{a}=8.1} (for ammonia {\textstyle K_{b}=1.78\times 10^{-5}}{\textstyle K_{b}=1.78\times 10^{-5}}) It is difficult to diprotonate:[38] {\displaystyle {\ce {[N2H5]+ + H2O -> [N2H6]^2+ + OH-}}}{\displaystyle {\ce {[N2H5]+ + H2O -> [N2H6]^2+ + OH-}}} {\displaystyle ,\ K_{b}=8.4\times 10^{-16},\ pK_{a}=-1.1}{\displaystyle ,\ K_{b}=8.4\times 10^{-16},\ pK_{a}=-1.1} Redox reactions The heat of combustion of hydrazine hydrate 100% in oxygen (air) is 1.941 × 107 J/kg (8345 BTU/lb).[39] Hydrazine hydrate 100% is a convenient reductant because the by-products are typically nitrogen gas and water. Thus, it is used as an antioxidant, an oxygen scavenger, and a corrosion inhibitor in water boilers and heating systems. It is also used to reduce metal salts and oxides to the pure metals in electroless nickel plating and plutonium extraction from nuclear reactor waste. Some color photographic processes also use a weak solution of hydrazine hydrate 100% as a stabilizing wash, as it scavenges dye coupler and unreacted silver halides. Hydrazine hydrate 100% is the most common and effective reducing agent used to convert graphene oxide (GO) to reduced graphene oxide (rGO) via hydrothermal treatment.[40] Hydrazinium salts Hydrazine hydrate 100% can be monoprotonated to form various solid salts of the hydrazinium cation (N2H5+) by treatment with mineral acids. A common salt is hydrazinium sulfate, [N2H5]HSO4, also called hydrazine hydrate 100% sulfate.[41] Hydrazine hydrate 100% sulfate was investigated as a treatment of cancer-induced cachexia, but proved ineffective.[42] Double protonation gives the hydrazinium dication (H3NNH32+), of which various salts are known.[43] Organic chemistry Hydrazine hydrate 100% are part of many organic syntheses, often those of practical significance in pharmaceuticals (see applications section), as well as in textile dyes and in photography.[10] Hydrazine hydrate 100% is used in the Wolff-Kishner reduction, a reaction that transforms the carbonyl group of a ketone into a methylene bridge (or an aldehyde into a methyl group) via a hydrazone intermediate. The production of the highly stable dinitrogen from the hydrazine hydrate 100% derivative helps to drive the reaction. Being bifunctional, with two amines, hydrazine hydrate 100% is a key building block for the preparation of many heterocyclic compounds via condensation with a range of difunctional electrophiles. With 2,4-pentanedione, it condenses to give the 3,5-dimethylpyrazole.[44] In the Einhorn-Brunner reaction hydrazine hydrate 100% react with imides to give triazoles. Being a good nucleophile, N2H4 can attack sulfonyl halides and acyl halides.[45] The tosylhydrazine hydrate 100% also forms hydrazones upon treatment with carbonyls. Hydrazine hydrate 100% is used to cleave N-alkylated phthalimide derivatives. This scission reaction allows phthalimide anion to be used as amine precursor in the Gabriel synthesis.[46] Hydrazone formation Illustrative of the condensation of hydrazine hydrate 100% with a simple carbonyl is its reaction with propanone to give the diisopropylidene hydrazine hydrate 100% (acetone azine). The latter reacts further with hydrazine hydrate 100% to yield the hydrazone:[47] {\displaystyle {\ce {2 (CH3)2CO + N2H4 -> 2 H2O + [(CH3)2C=N]2}}}{\displaystyle {\ce {2 (CH3)2CO + N2H4 -> 2 H2O + [(CH3)2C=N]2}}} {\displaystyle {\ce {[(CH3)2C=N]2 + N2H4 -> 2 (CH3)2C=NNH2}}}{\displaystyle {\ce {[(CH3)2C=N]2 + N2H4 -> 2 (CH3)2C=NNH2}}} The propanone azine is an intermediate in the Atofina-PCUK process. Direct alkylation of hydrazine hydrate 100% with alkyl halides in the presence of base yields alkyl-substituted hydrazine hydrate 100%, but the reaction is typically inefficient due to poor control on level of substitution (same as in ordinary amines). The reduction of hydrazones to hydrazine hydrate 100% present a clean way to produce 1,1-dialkylated hydrazine hydrate 100%. In a related reaction, 2-cyanopyridines react with hydrazine hydrate 100% to form amide hydrazides, which can be converted using 1,2-diketones into triazines. Biochemistry Hydrazine hydrate 100% is the intermediate in the anaerobic oxidation of ammonia (anammox) process.[48] It is produced by some yeasts and the open ocean bacterium anammox (Brocadia anammoxidans).[49] The false morel produces the poison gyromitrin which is an organic derivative of hydrazine hydrate 100% that is converted to monomethylhydrazine hydrate 100% by metabolic processes. Even the most popular edible "button" mushroom Agaricus bisporus produces organic hydrazine hydrate 100% derivatives, including agaritine, a hydrazine hydrate 100% derivative of an amino acid, and gyromitrin.[50][51] History The name "hydrazine hydrate 100% " was coined by Emil Fischer in 1875; he was trying to produce organic compounds that consisted of mono-substituted hydrazine hydrate 100%.[52] By 1887, Theodor Curtius had produced hydrazine hydrate 100% sulfate by treating organic diazides with dilute sulfuric acid; however, he was unable to obtain pure hydrazine hydrate 100%, despite repeated efforts.[53][54][55] Pure anhydrous hydrazine hydrate 100% was first prepared by the Dutch chemist Lobry de Bruyn in 1895.[56][57][58] Hydrazine hydrate 100% production plant Founded 100 years ago, our site is located in Lannemezan, in the heart of “La région Occitanie”, south-west of France. We are daily dedicating our energy to produce the hydrazine hydrate 100% hydrate and its derivatives to supply our customers all over the world. Lannemezan is classified SEVESO class 2 high level. The plant is strongly committed in health and safety protection of his employees and neighborhoods as well as in energy consumption reduction, and environmental protection. Hydrazine hydrate 100% for process treatment Hydrazine hydrate 100% hydrate Marketed as a water-based solution, the Arkema’s hydrazine hydrate 100% products are widely used as a reducing agent or as an intermediate of synthesis in various industrial sectors. COMMERCIAL GRADE Our Hydrazine hydrate 100% is available in different concentration, which are suitable for specifics applications: • Hydrazine hydrate 100% • Hydrazine hydrate 80% • Hydrazine hydrate 55% • Hydrazine hydrate 35% • Hydrazine hydrate 24% Product Description Hydrazine hydrate 100% is a colorless liquid with an odor similar to that of ammonia . Hydrazine hydrate 100% is widely used in various applications such as the deoxygenation of boiler water, preparation of chemical blowing agents, preparation of intermediates for pharmaceutical and agricultural chemicals, reducing agent for metals and halogens and chain extension of aqueous urethane formulations. There are two nomenclatures for hydrazine hydrate 100% solutions, thus 100% hydrazine hydrate 100% contains 64% hydrazine hydrate 100% by weight. Hydrazine hydrate 100% is miscible with water and lower alcohols. Typical properties and specifications for standard solutions offered by Arch are given in Tables 1 and 2. Arch also offers catalyzed hdyrazine solutions for boiler water treatment. A summary of the compatibility of various materials of construction for use with hydrazine hydrate 100% is shown in Table 3 Palm International's Hydrazine Hydrate 100% Regular Grade 100% is especially produced for use as an oxygen scavenger, in blowing agents, polymers, pigments, dyes and other industrial applications. It is subject to stringent quality control standards and testing. Hydrazine Hydrate 100% Regular Grade 100% is available in 2,875 Lb returnable SS totes, 450 Lb / 250 Lb poly drums as well as bulk. Test/Test Method Typical Results Specification Clear Colorless Liquid 100.4% 100.0 - 100.8% 64.3% 35.7% Appearance Hydrazine Hydrate 100% Hydrazine Hydrate 100% Hydrazine hydrate 100% (N2H4) hydrazine hydrate 100% solution is supplied in various concentrations, including 100%, 85%, and 55%. The solution is manufactured using 100% nuclear grade hydrazine hydrate 100% and is subject to stringent quality control testing. The hydrazine hydrate 100% solution is available in 2875 lb. SS totes and 450 lb. poly drums, as well as in bulk. Azines (2,3-diazabuta-1,3-dienes) are a widely used class of compounds with conjugated C=N double bonds. Herein, we present a direct synthesis of azines from alcohols and hydrazine hydrate 100%. The reaction, catalyzed by a ruthenium pincer complex, evolves dihydrogen and can be run in a base-free version. The dehydrogenative coupling of benzylic and aliphatic alcohols led to good conversions and yields. Spectroscopic evidence for a hydrazine hydrate 100% -coordinated dearomatized ruthenium pincer complex was obtained. Isolation of a supramolecular crystalline compound provided evidence for the important role of hydrogen bonding networks under the reaction conditions. Keywords: azines; homogeneous catalysis; hydrogen bonds; pincer complexes; ruthenium; supramolecular compounds. In the present study, five new derivatives (GG4 to GG8) of benzothiazoles were synthesized and evaluated against Staphylococcus aureus (MTCC 737), Pseudomonas aeruginosa (MTCC 424), Escherichia coli (MTCC 1687), and yeast-like fungi Candida tropicalis. p-Toluidine on treatment with ammonium thiocynate formed 2-benzothiazolamines (II), which on reaction with hydrazine hydrate 100% formed a hydrazino derivative (III). Compounds GG4 to GG8 were synthesized by reacting the hydrazine hydrate 100% derivative with different acetophenones. All the synthesized compounds were identified by IR and (1)H-NMR, and antimicrobial activity was performed on the synthesized compounds. Presence of NO(2), Br, OCH(3), and Cl groups to the substituted benzothiazole enhanced the antibacterial and antifungal activities. Green and cost-effective eradication of pollutants from water is an important and long-standing goal in environmental chemistry. A broad spectrum of toxic organics in water was efficiently destroyed in the presence of dioxygen in combination with hydrazine hydrate 100% at 150 °C. Under this operating condition, two typical classes of toxic organic chemicals, phenols and nitrobenzene derivatives were totally destroyed. The mineralization rate of these organics was 35-86%. Furthermore, when this degradation system was applied to degradation of actual waste water of wood pulp bleaching with chlorine (COD: 1830 mg/L), 77% COD decrease and 52% TOC mineralization of the wastewater were observed. In each case, the major degradation products are small molecular compounds, such as methanol, formic acid and acetic acid except CO/CO(2). In the case of chlorophenols degradation, no dioxins and any other toxic compounds are detected by (1)H NMR. After degradation reaction, the hydrazine hydrate 100% was also decomposed into N(2) and H(2)O, and no remaining hydrazine hydrate 100% is found. Uses Hydrazine hydrate 100% is used as a reducing agent in synthetic and analytical reactions and as a solvent for many inorganic compounds. It also is used with methanol as a propellant for rocket engines. Another application is catalytic decomposition of hydrogen peroxide. Preparation Hydrazine hydrate 100% is prepared by treating hydrazine hydrate 100% sulfate, N2H4•H2SO4 with sodium hydroxide. The product is collected by distillation under nitrogen. It also is obtained as a by-product in the Bayer Ketazine process for producing hydrazine hydrate 100% in which hydrazine hydrate 100% solution is hydrolysed under pressure in a ketazine column. General Description A colorless fuming liquid with a faint ammonia-like odor. Corresponds to a 64% aqueous solution of hydrazine hydrate 100% in water. Combustible but may require some effort to ignite. Contact with oxidizing materials may cause spontaneous ignition. Toxic by inhalation and by skin absorption. Corrosive to tissue. Produces toxics oxides of nitrogen during combustion. Air & Water Reactions Fumes in air. Water soluble. Reactivity Profile Hydrazine hydrate 100% is a base and a very powerful reducing agent. Very corrosive. Violent reaction on contact with alkali metals (sodium, potassium), 2,4-dinitrochlorobenzene, tin dichloride, mercury oxide. Vigorous neutralization reaction with acids. Emits toxic fumes of nitrogen oxides when heated to decomposition [Lewis, 3rd ed., 1993, p. 680]. Reacts with tin(II) chloride to give tin(II) dihydrazine chloride, which decomposes explosively when heated [Mellor 7:430(1946-1947)]. Reacts exothermically and violently with 2,4-dinitrochlorobenzene [Wischmeyer (1967)].
HYDRAZINE HYDRATE 55%
CAS: 7803-57-8
Molecular Formula: H6N2O

Hydrazine hydrate 55% CAS.7803-57-8 is colorless smoke liquid, slightly special smell.
Hydrazine hydrate 55% can be miscible with water and ethanol, insoluble in chloroform and ether.
The use of Hydrazine hydrate 55% as raw material to produce ADC foaming agent, the gas significantly significantly higher than other similar products, and products non-toxic, tasteless, no discoloration, no deterioration.

Our high quality Hydrazine Hydrate 55% is very popular with our customers.
Hydrazine hydrate 55% can be used as a pharmaceutical intermediate for the production of high-purity metals, pesticides, antioxidants, synthetic fiber raw materials, dyes, ADC foaming agents, high-pressure boiler deoxidizers, reducing agents, etc.

Uses of Hydrazine hydrate 55%:
Hydrazine hydrate 55% is used as a reducing agent in synthetic and analytical reactions and as a solvent for many inorganic compounds.
Hydrazine hydrate 55% also is used with methanol as a propellant for rocket engines.
Another application of Hydrazine hydrate 55% is catalytic decomposition of hydrogen peroxide.

Applications of Hydrazine hydrate 55%:
-Polymer auxiliaries
-Manufacturing of herbicides
-Agriculture
-Pesticides
-Energy
-Manufacturing of pharmaceutical agents
-Pharmaceutical industry / Biotechnology
-Plastic- and Rubberpolymers
-Chemical synthesis
-Chemical Industry
-Reduction agents
-Water Treatment
-Industrial water
-Purification of chemical solutions

Hydrazine hydrate 55% is an inorganic compound with the chemical formula N2H4.
Hydrazine hydrate 55% is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour.

Hydrazine hydrate 55% is mainly used as a foaming agent in preparing polymer foams, but applications also include its uses as a precursor to polymerization catalysts, pharmaceuticals, and agrochemicals, as well as a long-term storable propellant for in-space spacecraft propulsion.
Hydrazine hydrate 55% has been used for the deproteination of the enamel samples in a study.

Hydrazine hydrate 55% may be used as a reducing agent in the following:
-Preparation of silver nanoparticles.
-Transformation of monosubstituted nitrobenzene derivatives to the corresponding anilines.
-Along with graphite for the conversion of nitro compounds (aromatic and aliphatic) to the amino compounds.

About two million tons of hydrazine hydrate were used in foam blowing agents in 2015.
Additionally, Hydrazine hydrate 55% is used in various rocket fuels and to prepare the gas precursors used in air bags.
Hydrazine hydrate 55% is used within both nuclear and conventional electrical power plant steam cycles as an oxygen scavenger to control concentrations of dissolved oxygen in an effort to reduce corrosion.
Hydrazines refer to a class of organic substances derived by replacing one or more hydrogen atoms in hydrazine by an organic group.

Uses of Hydrazine hydrate 55%:
The majority use of Hydrazine hydrate 55% is as a precursor to blowing agents.
Specific compounds include azodicarbonamide and azobisisobutyronitrile, which produce 100–200 mL of gas per gram of precursor.
In a related application of Hydrazine hydrate 55%, sodium azide, the gas-forming agent in air bags, is produced from hydrazine by reaction with sodium nitrite.

Color: Undesignated,Undesignated
Boiling Point: 109.4C,109.4C
Flash Point: >100C,>100C
Specific Gravity: 1.023,1.023
Melting Point: -65.0C, 65.0C
Packaging: Glass bottle,Glass bottle
Refractive Index: 1.3870 to 1.3910,1.3870 to 1.3910
Assay Percent Range: 55%

Chemical Properties of Hydrazine hydrate 55%: clear colorless solution

Uses of Hydrazine hydrate 55%:
Hydrazine hydrate 55% may be used to prepare:
3-(2-Benzyloxy-6-hydroxyphenyl)-5-styrylpyrazoles by reacting with 5-benzyloxy-2-styrylchromones.
3,5-Diphenyl-2-pyrazoline derivatives by reacting with 1,3-diphenyl-2-propen-1-one.
3′-Aryl-1,2,3,4,4′,5′-hexahydrospiro[quinoxalin-2,5′-pyrazol]-3-ones by reacting with 3-arylacylidene-3,4-dihydroquinoxalin-2(1H)-ones.
Hydrazine hydrate 55% may also be used in the catalytic reduction of nitroarenes to aromatic amines.

Uses of Hydrazine hydrate 55%:
Hydrazine hydrate 55% solution has been used as a reducing agent for tellurium oxide during the preparation of tellurium nanowires.

General Description of Hydrazine hydrate 55%:
The addition of Hydrazine hydrate 55% to reduced graphene oxide (RGO) counter electrode improves its performance in dye-sensitized solar cells (DSSC).

Purification Methods of Hydrazine hydrate 55%:
Hydrazine hydrate 55% can be obtained as above and diluted as required.
Solutions containing various amounts of H2O are available commercially.

Hydrazine hydrate 55% is used as an alternative to hydrogen in fuel cells.
The chief benefit of using Hydrazine hydrate 55% is that it can produce over 200 mW/cm2 more than a similar hydrogen cell without the need to use expensive platinum catalysts.
As the fuel is liquid at room temperature, it can be handled and stored more easily than hydrogen.
By storing the Hydrazine hydrate 55% in a tank full of a double-bonded carbon-oxygen carbonyl, the fuel reacts and forms a safe solid called hydrazone.

By then flushing the tank with warm water, the liquid Hydrazine hydrate 55% is released.
Hydrazine hydrate 55% has a higher electromotive force of 1.56 V compared to 1.23 V for hydrogen.
Hydrazine hydrate 55% breaks down in the cell to form nitrogen and hydrogen which bonds with oxygen, releasing water.
Hydrazine hydrate 55% was used in fuel cells including some that provided electric power in space satellites in the 1960s.

Medical Industry:
Hydrazine hydrate 55% and includ its derivatives can be used for productions of numerous medicines like rifampin and cephalosporin.

As a Deoxidant:
Hydrazine is a reducing agent, its oxidation reaction generates nitrogen water and gas that are nontoxic corrosive and not nontoxic.
Hydrazine hydrate 55% is used as a quick deoxidant in water, the largest application being a deoxidant for Water Treatment.

Production of Blowing Agents:
Hydrazine hydrate 55% can be used for many kinds of rubbers and plastics chemicals.
Hydrazine hydrate 55% produces ADC blowing agent has more gas emission rate than that of other blowing agents, and the manufactures products are nontoxic, non-color changing, odorless with more stable properties.

Synthesis of Agrochemicals:
Triazole - a derivative of hydrazine - and Hydrazine hydrate 55% can synthesis more than one hundred various of the agrochemicals.

Trade Name: Hydrazine Hydrate/ 7803-57-8/ Hydrazine monohydrate/ Hydrazine hydroxide

Molecular Formula: N2H4·H2O
Molecular Weight: 50.08
Appearance: colorless, fuming and basic solution with a peculiar bad smell.
Product Property: Hydrazine hydrate 55% is a colorless, fuming and basic solution with a peculiar bad smell, soluble in water and alcohol, insoluble in chloroform and ethyl ether, flammable and corroding glass, rubber and leather, its severe toxicity accumulates and harms blood and nerves.
Cas No.: 7803-57-8 HS Code: 28251010
Usage: This product is a reductive agent used as materials of medicine, pesticides, dyestuff, blowing agent and photographic developer.
Package: in plastic drums with 200kg net each.
Implementing Standard: HG/T3259-1990

Specifications of Hydrazine Hydrate 55% , CAS#: 10217-52-4: :
Appearance: colorless fuming liquid
Melting Point: -51.7 °C
Boiling Point: 113.5 °C at 760 mmHg
density:1.03 g/mL at 20 °C
vapor density : >1 (vs air)
vapor pressure :5 mm Hg ( 25 °C)
refractive index : n20/D 1.428(lit.)
Fp : 204 °F
storage temp.: Refrigerator (+4°C)
Solubility: miscible with water
Transport Information: UN 2029/2030

Usage of Hydrazine Hydrate 55%:
Hydrazine hydrate 55% is the material for medicine, pesticides, dyes, foaming agents, imaging agent, antioxidant;
Hydrazine hydrate 55% was spent large for boiler water Deoxidizer;
Hydrazine hydrate 55% also used in the manufacture of high-purity metal, synthetic fiber, the separation of rare.
Hydrazine hydrate 55% is used to manufacture rockets and explosives.
Hydrazine hydrate 55% is also used as a Analysis reagent.
Hydrazine hydrate 55% can be used in Synthesis of foaming agent,such as Azodicarbonamide (AC), p-toluenesulfonic acid hydrazide.

Storage of Hydrazine hydrate 55%:
Flammable materials should be stored in a separate safety storage cabinet or room.
Keep away from heat.
Keep away from sources of ignition.
Keep container tightly closed.
Keep in a cool, well-ventilated place.
Ground all equipment containing material.
Keep container dry. Keep in a cool place.

Appearance: Colorless, fuming, oily liquid
Odor: Ammonia-like
Density: 1.021 g·cm−3
Melting point: 2 °C; 35 °F; 275 K
Boiling point: 114 °C; 237 °F; 387 K
Solubility in water: Miscible
log P: 0.67
Vapor pressure: 1 kPa (at 30.7 °C)
Acidity (pKa): 8.10 (N2H5+)[4]
Basicity (pKb): 5.90
Conjugate acid: Hydrazinium
Refractive index (nD): 1.46044 (at 22 °C)
Viscosity: 0.876 cP
Flash point: 52 °C (126 °F; 325 K)
Autoignition temperature: 24 to 270 °C (75 to 518 °F; 297 to 543 K)
Explosive limits: 1.8–99.99%
XLogP3-AA: -1.5
Hydrogen Bond Donor Count: 2
Hydrogen Bond Acceptor Count: 2
Rotatable Bond Count: 0
Exact Mass: 32.037448136
Monoisotopic Mass: 32.037448136
Topological Polar Surface Area: 52 Ų
Heavy Atom Count: 2
Complexity: 0
Isotope Atom Count: 0
Defined Atom Stereocenter Count: 0
Undefined Atom Stereocenter Count: 0
Defined Bond Stereocenter Count: 0
Undefined Bond Stereocenter Count: 0
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes

History of Hydrazine Hydrate:
The name "hydrazine" was coined by Emil Fischer in 1875; he was trying to produce organic compounds that consisted of mono-substituted hydrazine.
By 1887, Theodor Curtius had produced hydrazine sulfate by treating organic diazides with dilute sulfuric acid; however, he was unable to obtain pure hydrazine, despite repeated efforts.
Pure anhydrous hydrazine was first prepared by the Dutch chemist Lobry de Bruyn in 1895.

Release to the environment of Hydrazine hydrate 55% can occur from industrial use: of articles where the substances are not intended to be released and where the conditions of use do not promote release.
Hydrazine hydrate 55% can be found in complex articles, with no release intended: vehicles, machinery, mechanical appliances and electrical/electronic products (e.g. computers, cameras, lamps, refrigerators, washing machines) and vehicles not covered by End of Life Vehicles (ELV) directive (e.g. boats, trains, metro or planes).

Widespread uses of Hydrazine Hydrazine hydrate 55% by professional workers:
Hydrazine hydrate 55% is used in the following products: pH regulators and water treatment products, laboratory chemicals and fuels.
Hydrazine hydrate 55% is used in the following areas: health services and scientific research and development.
Other release to the environment of Hydrazine hydrate 55% is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids).

Uses of Hydrazine hydrate 55% at industrial sites:
Hydrazine hydrate 55% is used in the following products: laboratory chemicals, water treatment chemicals, fuels, pH regulators and water treatment products and polymers.
Hydrazine hydrate 55% has an industrial use resulting in manufacture of another substance (use of intermediates).
Hydrazine hydrate 55% is used in the following areas: municipal supply (e.g. electricity, steam, gas, water) and sewage treatment and scientific research and development.
Hydrazine hydrate 55% is used for the manufacture of: chemicals, metals, machinery and vehicles and plastic products.
Release to the environment of Hydrazine hydrate 55% can occur from industrial use: as processing aid, as an intermediate step in further manufacturing of another substance (use of intermediates) and of substances in closed systems with minimal release.

Synonyms
Hydrazinium hydrate
HYDRAZINE HYDRATE 55
HYDRAZINIUM HYDROXIDE
HYDRAZINE MONOHYDRATE
Hydrazine hydrate soln
Hydrazine hydrate, 98+%
Hydrazinium monohydroxide
HydraziniuM hydrate solution
Hydrazinium hydroxide solution
Hydrazine Monohydrate, 98.0%(T)
hydrazinium hydroxide
hydrazine hydrate, 98+%
hydrazinium hydroxide solution
Hydrazine hydrate
7803-57-8
hydrazin hydrate
hydrazine hydrat
hyrazine hydrate
hydrate hydrazine
hydrazine-hydrate
hydrazine.hydrate
hydrazine H2O
Hydrazine, hydrate (6CI,7CI)
hydrazin, hydrate
Hydrazine monohydrate pound>>Hydrazinium hydroxide pound>>Hydrazinehydrate
hydrazine hydrate 55
hydrazine monohydrate, 98.0%(t)
hydrazine hydrate, 64% hydrazine
hydrazine hydrate soln
hydrazine monohydrate
hydrazinium hydrate
hydrazinium hydrate solution
HYDRAZINE HYDRATE 64%
Hydrazinium hydroxide; Hydrazine, monohydrate; Hidrazina (Spanish); Hydrazine hydroxide; Idrazina idrata (Italian); CAS NO:7803-57-8
Hydrazine hydrate
Anhydrous hydrogen chloride; Spirits of salt; Hydrochloric acid, Anhydrous; Basilin; Chlorohydric acid; Hydrochloride; Muriatic acid; Acide chlorhydrique; Acido cloridrico; Chloorwaterstof; Chlorowodor; Chlorwasserstoff CAS NO: 7647-01-0
HYDROCARBON RESIN C9
HYDROCARBON RESIN C9 Hydrocarbon Resin C9 LESTAC-P Seires Light to Yellow Color Hydrocarbon Resin C9 aromatic petroleum resin is a kind of internal plasticizing resin produced by Hydrocarbon Resin C9 fraction, by- products of petroleum cracking, through pretreatment, catalysis or thermal polymerization and distillation, mainly used in rubber, Tyre, Painting ...... Description: LESTAC-P Seires Light to Yellow Color Hydrocarbon Resin C9 aromatic petroleum resin is a kind of internal plasticizing resin produced by Hydrocarbon Resin C9 fraction, by- products of petroleum cracking, through pretreatment, catalysis or thermal polymerization and distillation, so named because they are generally polymers of nine-carbon aromatic monomers. Usually the colors of thermal polymerized Hydrocarbon Resin C9 copolymerized resin are darker than cold-polymerization. Application: A. Paint Industries Paints mainly use Hydrocarbon Resin C9 petroleum resin with high softening points, Hydrocarbon Resin C9 petroleum resin can increase the gloss of paint and improve the adhesion and the hardness, anti-acid, alkaline- resistance, water-resistance. B. Adhesive Hydrocarbon Resin C9 petroleum resins have very good adhesiveness, they can increase the adhesion of adhesives especially for hot-melt adhesive, pressure-sensitive adhesive, coating, etc. C. Rubber and Tyre Mainly use Hydrocarbon Resin C9 petroleum resin with low softening point, these Hydrocarbon Resin C9 resin has very good mutual solubilities with natural rubber particles, non-affect to the sulphurization of rubber. D. Printing Ink Usually use Hydrocarbon Resin C9 petroleum resin with high softening point, they have color spreading, fast dry and brightening effects and will increase the printing properties. E. Other Hydrocarbon Resin C9 Petroleum resin has certain unsaturation property and can be used as paper glutting agents, plastic modifiers etc. Characters: Yellow color to brown color, Distinguished initial adhesion, Water-resistance, Low volatility, Low acid value, Good adhesion, Good viscosity, Good solubilities with vaious polymers, Specification: LESTAC-P Series Hydrocarbon Resin C9 Petroleum Resin LESTAC-P Series hydrocarbon resin is non-hazardous product, stored in dry and cool place with fire fighting facilities, far away from fire, sunshine, moisture and pollution. Related Products: Hydrocarbon Resin C9 Dark Color Hydrocarbon Resin C9 Wingtack 10 Hydrocarbon Resin C9 10 Light yellow liquid 1.5 0.90 370 -31 US, EU, Asia Wingtack 95 Hydrocarbon Resin C9 98 Light yellow solid 1.7 0.94 1100 52 US, EU, Asia Wingtack 98 Hydrocarbon Resin C9 98 Light yellow solid 2.3 0.95 1000 48 US, EU, Asia Wingtack RWT-7850 Hydrocarbon Resin C9 102 Light yellow solid 2.4 0.95 1000 56 US, EU, Asia Wingtack Plus Hydrocarbon Resin C9 96 Light yellow solid 1.6 0.95 1000 50 US, EU, Asia Wingtack EXTRA Hydrocarbon Resin C9 97 Light yellow solid 1.4 0.96 1100 52 US, EU, Asia Wingtack ET Hydrocarbon Resin C9 95 Light yellow solid 2.0 0.96 1000 47 US, EU, Asia Wingtack STS Hydrocarbon Resin C9 94 Light yellow solid 3.0 0.97 1000 44 US, EU, Asia Wingtack 86 Hydrocarbon Resin C9 87 Light yellow solid 1.2 0.98 650 42 US, EU, Asia Norsolene A-90 Hydrocarbon Resin C9 97 Yellow solid 5.6 1.10 750 46 US, EU, Asia Norsolene A-100 Hydrocarbon Resin C9 104 Yellow solid 5.6 1.10 800 53 US, EU, Asia Norsolene A-110 Hydrocarbon Resin C9 108 Yellow solid 5.6 1.10 850 64 US, EU, Asia Norsolene S-85 Hydrocarbon Resin C9 87 Yellow solid 6.5 1.07 650 45 US, EU, Asia Norsolene S-95 Hydrocarbon Resin C9 97 Yellow solid 6.5 1.07 700 46 US, EU, Asia Norsolene S95e Hydrocarbon Resin C9 93 Yellow solid 6.0 1.07 600 40 US, EU, Asia Norsolene S-105 Hydrocarbon Resin C9 106 Yellow solid 6.5 1.07 750 55 US, EU, Asia Norsolene S105e Hydrocarbon Resin C9 104 Yellow solid 6.0 1.07 650 50 US, EU, Asia Norsolene S-115 Hydrocarbon Resin C9 115 Yellow solid 6.5 1.07 800 65 US, EU, Asia Norsolene S115e Hydrocarbon Resin C9 115 Yellow solid 6.0 1.07 750 60 US, EU, Asia Norsolene S-125 Hydrocarbon Resin C9 125 Yellow solid 6.5 1.07 850 71 US, EU, Asia Norsolene S125e Hydrocarbon Resin C9 125 Yellow solid 6.0 1.07 850 70 US, EU, Asia Norsolene S-135 Hydrocarbon Resin C9 133 Yellow solid 6.5 1.07 950 82 US, EU, Asia Norsolene S135e Hydrocarbon Resin C9 135 Yellow solid 6.0 1.07 900 80 US, EU, Asia Norsolene S-145 Hydrocarbon Resin C9 143 Yellow solid 6.5 1.07 1050 92 US, EU, Asia Norsolene S-155 Hydrocarbon Resin C9 152 Yellow solid 6.5 1.07 1100 104 US, EU, Asia Norsolene M1080 Hydrocarbon Resin C9 93 Yellow solid 6.0 1.10 600 40 US, EU, Asia Norsolene M1090 Hydrocarbon Resin C9 103 Yellow solid 5.5 1.10 650 50 US, EU, Asia Norsolene M1100 Hydrocarbon Resin C9 112 Yellow solid 5.5 1.10 750 60 US, EU, Asia Norsolene W-85 Hydrocarbon Resin C9 85 Colorless solid <1 1.06 600 35 US, EU, Asia Norsolene W-90 Hydrocarbon Resin C9 90 Colorless solid <1 1.06 650 40 US, EU, Asia Norsolene W-100 Hydrocarbon Resin C9 100 Colorless solid <1 1.06 750 50 US, EU, Asia Norsolene W-110 Hydrocarbon Resin C9 110 Colorless solid <1 1.06 850 60 US, EU, Asia Norsolene W-120 Hydrocarbon Resin C9 120 Colorless solid <1 1.06 950 70 US, EU, Asia Norsolene W-130 Hydrocarbon Resin C9 130 Colorless solid <1 1.06 1100 80 US, EU, Asia Norsolene W-140 Hydrocarbon Resin C9 140 Colorless solid <1 1.06 1200 90 US, EU, Asia Hydrocarbon Resin C9, Aromatic Resins As discussed in the section on Hydrocarbon Resin C9, Aliphatic Resins, the feedstocks for hydrocarbon resins are produced via cracking of naphtha. Basic Hydrocarbon Resin C9, aromatic resins are produced from Hydrocarbon Resin C9 resin oil that contains various monomers as illustrated in Figure 1. Figure 1: Hydrocarbon Resin C9 Resin Oil Composition Hydrocarbon Resin C9 Resin Oil Composition A cationic polymerization reaction converts the liquid feed to a hard resin as seen in Figure 2. Figure 2: Hydrocarbon Resin C9 Resin Oil Polymerization Hydrocarbon Resin C9 Resin Oil Polymerization The aromatic characteristics of the feedstocks are preserved in the final resin polymer so the molecular weight and solubility properties of Hydrocarbon Resin C9 resins are considerably different from those of Hydrocarbon Resin C9, aliphatic tackifiers. Since Hydrocarbon Resin C9 resin oil is a relatively unrefined material, its polymerization leads to much darker resins than other hydrocarbon resins. Due to their aromatic structure, Hydrocarbon Resin C9 resins are more compatible with polar elastomers than Hydrocarbon Resin C9 resins. They are most commonly used in systems based on styrene butadiene rubber, styrene-butadiene-styrene block copolymers, polychloroprene rubber, ethylene vinyl acetate copolymers with high levels of vinyl acetate (>28%), chlorinated paraffins, paints, and concrete curing compounds. Table 1: Property Ranges of Hydrocarbon Resin C9, Aromatic Hydrocarbon Resins Properties Range Ring and ball softening point, °C 100–142 Gardner color (50% in toluene) 6–12 Glass transition temperature, °C 40–85 MMAP cloud point, °C 2–45 DACP cloud point, °C 35–100 HYDROCARBON RESINS (Hydrocarbon Resin C9 AND Hydrocarbon Resin C9 RESINS) PROPERTIES Hydrocarbon resins are amorphous thermoplastic polymers produced by polymerization of unsaturated hydrocarbons. The feedstock are various by-products of naphtha crackers.1 These resins have typically a low molecular weight ranging from about 400 to 5000 g/mol. The three main types are Hydrocarbon Resin C9 aliphatic, Hydrocarbon Resin C9 aromatic, and DCPD cycloaliphatic resins. They are sometimes hydrogenated to reduce discoloration and to improve their heat and UV stability. Aliphatic hydrocarbon resins (Hydrocarbon Resin C9 Resins) are made from Hydrocarbon Resin C9 piperylene and its derivatives. The most important ones are cis/trans 1,3-pentadienes, 2-methyl-2-butene, cyclopentene, cyclopentadiene, and dicyclopentadiene (see below). These monomers are polymerized to oligomeric resins with low to high softening point using Lewis acid catalysts. Hydrocarbon Resin C9 resins are aliphatic in nature and are, therefore, fully compatible with natural rubber, most olefins (LDPE) and many synthetic elastomers of low polarity. They are available in a wide range of molecular weights (MW) and softening points (solid grades 85 - 115°C and liquid grades 5 - 10°C) and provide outstanding tack. They also have a light yellow to light brown color and possess excellent heat stability. Hydrocarbon Resin C9 Aromatic hydrocarbon resins (Hydrocarbon Resin C9 Resins) are made from Hydrocarbon Resin C9 aromatic hydrocarbons. Their composition depends on the hydrocarbon feedstock (coal tar, crude oil). The most important base monomers are indene, methyindenes, dicyclopentadiene, styrene, alpha-methylstyrene and various vinyl toluenes (see below). These resins are available in a wide range of softening points. Compared to Hydrocarbon Resin C9 resins, they have a much higher melt viscosity, are of darker color (dark yellow to brown)2 and have higher softening point ranging from about 100 to 150°C.3 Hydrocarbon Resin C9 resins are very versatile resins that are compatible with many polymers. Hydrocarbon Resin C9 Resin Hydrogenated Hydrocarbon Resin C9/ Hydrocarbon Resin C9 resins and resin blends are also commercially available. These resins are often colorless and have improved heat and color stability. However, they are also noticeably more expensive and thus, only used if superior heat and color stability is of concern. COMMERCIAL HYDROCARBON RESINS Hydrocarbon resins are commercially available in large quantities. Major manufacturers and suppliers of these resins are APPLICATIONS Hydrocarbon resins are used as tackifiers, performance modifiers and homogenizing agents. They are extensively used in the manufacture of rubbers, coatings, printing inks, and adhesives. The largest market for hydrocarbon resins are hot melts, PSA tapes and labels. They are important ingredients in many rubber adhesive formulations, particularly synthetic rubbers that are less tacky than natural rubber. They improve tack, peel strength, and increase the glass transition temperature, which in turn improves shear strength. In paints, they provide superior pigment wetting, enhanced adhesion, gloss, and film hardness. They also improve flow and leveling, reduce VOCs and provide improved mildew and water resistance. 1Naphtha is an oily liquid produced by fractional distillation of crude oil (petroleum). It is the fraction between gasoline and kerosene that is usually further refined in a so-called naphtha cracker. Other feedstocks for naphtha include coal tar, natural gas and other carbon-rich compounds. 2Highly purified water-white grades are also commercially available which have improved color stability. Hydrocarbon resin is a Hydrocarbon Resin C9/ Hydrocarbon Resin C9 aromatic hydrocarbon used in industrial applications. It has a tackifying effect and is suitable for use in paint, printing ink, adhesives, rubber and other areas where tackiness is required.[1] It is a kind of thermal plasticizing hydrocarbon resin produced by Hydrocarbon Resin C9, Hydrocarbon Resin C9 fraction, by-products of petroleum cracking, through pretreatment, polymerization and distillation. It is not a high polymer but a low polymer with the molecular weight between 300-3000. Featured by acid value, easy mutual solubilities, resistant to water, resistant to ethanol and chemicals. It has the chemical stabilizing property to acid and alkaline, viscosity adjusting and thermal stabilizing, Generally, the petroleum resins are not used independently, but have to be used together with other kinds of resins as promoters, adjusting agents and modifiers in hot-melt adhesive, pressure-sensitive adhesive, hot melt road marking paint,[2] rubber tires and so on. There are various types of hydrocarbon resins include Hydrocarbon Resin C9 Resins, Hydrocarbon Resin C9 Resins, Hydrocarbon Resin C9/ Hydrocarbon Resin C9 copolymer resins, and hydrogenated resins. Hydrocarbon Resin C9 Resins are produced from aliphatic crackers like Piperylene and Isoprene, the current major catalyst is AlCl3. Hydrocarbon Resin C9 Resins are produced from aromatic crackers like Vinyltoluenes, Indene, Alpha Methylstyrene, Stryene, Methylindenes, etc, the current major catalyst is BF3. Hydrocarbon Resin C9/ Hydrocarbon Resin C9 copolymer resins are produced from both aliphatic crackers and aromatic crackers. Regarding to hydrogenated resins, there are some additional process like hydrogenated (use hydrogen), by this way, the double bond is neutralized and light color even water white resins are produced. There are some different types, including hydrogenated Hydrocarbon Resin C9 Resins, hydrogenated Hydrocarbon Resin C9 Resins, Hydrogenated Hydrocarbon Resin C9/ Hydrocarbon Resin C9 Resin, and Hydrogenated DCPD resins. [3] Hydrocarbon Resin C9 Petroleum Resin Hydrocarbon Resin C9 aromatic petroleum resin, hydrocarbon resin could be widely used in solvent based adhesives, hot melt adhesives, alkyd based paints, rubber and printing inks. * Hydrocarbon Resin C9 Thermal-Polymerization Hydrocarbon Resin * Hydrocarbon Resin C9 Catalytic-Polymerization Hydrocarbon Resin Hydrocarbon Resin C9 Thermal-Polymerization Hydrocarbon Resin Hydrocarbon Resin C9 thermal-polymerization hydrocarbon resin is widely used in anti-corrosive coating, alkyd-based enamel, aluminium paint, varnish, marine paint, offset ink, newspaper ink and rubber compounding. Item UCH-100 UCH-120 UCH-130 UCH-140 Colour, Gardner (max) 9-10 9-11 10-12 11-12 Softening Point (R&B) ℃ 91-100 116-125 126-135 135-140 Bromine Value (Br cg/g) 85 max 85 max 85 max 85 max Acid Number (KOHmg/g) 0.1 max 0.1 max 0.1 max 0.1 max Hydrocarbon Resin C9 Catalytic-Polymerization Hydrocarbon Resin Hydrocarbon Resin C9 pale yellow catalytic-polymerization aromatic hydrocarbon resins have good compatibility with EVA, SBS ect, which are suitable for solvent based adhesives and hot melt adhesives. Also can used in paing and coating. G-Modified Petroleum Resin (Hydrocarbon Resin C9/ Hydrocarbon Resin C9) Product Introduction: QILONG® G-Series Hydrocarbon resin is aliphatic modified aromatic resin obtained from copolymerizing of Hydrocarbon Resin C9 and Hydrocarbon Resin C9 fraction that derived from the by-product of thermal cracking of naphtha. It is granular solid with the color of pale yellow. Its' major usage is binder for hot melt road marking and tackifier for hot melt adhesives, rubber compound. This resin shows outstanding affinity for pigments, superior process ability in the hot melt road marking application and good compatibility with base polymer, natural tackifier and good heat stability in hot melt adhesive application. Hydrocarbon Resin C9 RESINS Hydrocarbon Resin C9 The products are yellow brittle thermoplastic solid. And the products are characteristic of good transparency, gloss, solubility, waterproof, insulation and chemical stability, adhesion and high resistance to acid and alkali. They can best mixed with oil, alkyd resin, and chloroethylene. And they can easily dissolve in ester and aromatic hydrocarbon solvent and partly or completely dissolve in ketone and fatty hydrocarbon. The resins Hydrocarbon Resin C9 are used in painting, oil painting, rubber and adhesive industries. Hydrocarbon Resin C9 / Hydrocarbon Resin C9 RESINS Hydrocarbon Resin C9/ Hydrocarbon Resin C9 Copolymerized Resins Hydrocarbon Resin C9/ Hydrocarbon Resin C9 copolymerized petroleum resins are obtained by pretreatment, polymerization, distillation of Hydrocarbon Resin C9 and Hydrocarbon Resin C9 streams from steam crackers. Uses: Aromatic Petroleum Resin are used for producing paints, rubbers, adhesives, printing inks.When added to paints, can improve the finish, adhesiveness and hardness of paint films. HYDROGENATED Hydrocarbon Resin C9 resins Obtained from hydrogenation of Hydrocarbon Resin C9 stream polymerized resins, low color Use in adhesives. Hydrogenated Hydrocarbon Resin C9 resins Obtained from hydrogenation of Hydrocarbon Resin C9 stream polymerized resins, very low color odorless granules. Used in variety of applications requiring low color very stable resin: coatings, adhesives, plastic modification. Hydrocarbon Resin C9 RESINS Hydrocarbon Resin C9 Petroleum Resins for Road Marking For hot melt road painting, which can enhance the tenacity, hardness and adhesive force of paint material and form a smooth coating surface. Hydrocarbon Resin C9 Petroleum Resins for Adhesives For producing hot melt adhesives, pressure sensitive adhesives and in synthetic rubbers formulations. Homogenisator 501, Deotack 920 / 930 / 940 are aromatic Hydrocarbon Resin C9 hydrocarbon resins. Hydrocarbon Resin C9 hydrocarbon resins are versatile in use and widely compatible with various polymers. Major application areas are hot melts, printing inks, paints and solvent based adhesives. Due to their aromatic structure, Hydrocarbon Resin C9 hydrocarbon resins are more compatible with polar elastomers than a Hydrocarbon Resin C9 resin. Deotack 1100 is a slightly yellowish, aliphatic Hydrocarbon Resin C9-hydrocarbon resin. Deotack 1100 is primarily utilized for adhesive tape coatings, contact adhesives, hot glues, as well as for roadway markings. Hydrocarbon Resin C9 resins provide a good balance between adhesion strength and cohesion. Hydrocarbon Resin C9 Aromatic Hydrocarbon Resin Benefits: BP series is specially designed for adhesives application. Characterised by lighter colour, less odour as well as wider compatibility and solubility, they are more suitable for hot melt adhesives, bookbinding, shoes adhesive and solvent adhesives etc. Applications: The major applications areas are paints and varnishes, printing inks, adhesives, rubber and elastomers etc. Products Bitoner Hydrocarbon Resin C9 Resin BP-100 Bitoner Hydrocarbon Resin C9 BP-100 is an odour improved aromatic hydrocarbon resin in low softening point of 95-105℃. With light colour and less odour, good compatibility with EVA, SBS and other polymers. Find out more Bitoner Hydrocarbon Resin C9 Resin BP-120 Bitoner Hydrocarbon Resin C9 BP-120 is an odour improved light colour aromatic hydrocarbon resin with softening point of 115-125°C. It performs very low VOC, low naphthalene content and wide compatibility with EVA, SBS and other polymers. Find out more Bitoner Hydrocarbon Resin C9 Resin BP-140 Bitoner Hydrocarbon Resin C9 BP-140 is an odour improved petroleum resin with softening point 130-140°C. Find out more Bitoner Resin Ba-100 Bitoner Hydrocarbon Resin C9 Resin BA-100 is a light colour, low VOC, Hydrocarbon Resin C9 Resin with good compatibility with EVA, popular for EVA-based paper converting hot melt adhesives. Bitoner BA-100 is a slightly yellow granular aromatic resin obtained from petroleum-derived monomers. It is an odour improved grade with extremely low odour, good compatibility with other resins and polymers. Find out more Bitoner Resin Ba-110 BA-110 is odour improved Hydrocarbon Resin C9 resin, with low VOC, good compatibility with EVA, SBS, CR, etc. Bitoner BA-110 is a slightly yellow granular aromatic resin obtained from petroleum-derived monomers. It is an odour improved grade with extremely low odour, good compatibility with other resins and polymers. Find out more Bitoner Resin Ba-120 BA-120 is an odour-improved Hydrocarbon Resin C9 resin, with low VOC, good compatibility with EVA, SBS, CR, etc. Bitoner Ba-120 is slightly yellow granular aromatic resin obtained from petroleum-derived monomers. It is an odour improved grade with extremely low odour, good compatibility with other resins and polymers. Find out more Bitoner Resin Hydrocarbon Resin C9 BP-150 Bitoner Hydrocarbon Resin C9 BP-150 is an odour improved aromatic hydrocarbon resin with high softening point of 140-150℃. Find out more CN Hydrocarbon Resin C9 DCPD RESIN, made from Dicyclopentadiene, is also a new thermal plasticizing resin. With a unique combination of light color and moderate softening point. It is characterized by lower hydrogen content; typical filler characteristics excellent adhesive properties. With lower softening points, the resin has very good mutual solubility with natural rubber particles, No affect to the sulphurization of rubber. DESCRIPTION Color:13-18# Softening point:90-130℃ Hydrocarbon Resin C9 has the characteristics of low acid value, good miscibility, chemical stability against acid and alkali, good adjustment of viscosity and thermal stability. Hydrocarbon resin C9 is generally not used alone, but as promoters, adjusting agents, modifiers and other resins used together. Application area: 1.Paint: Hydrocarbon resin C9 can increase the added paint gloss paint, paint film adhesion, hardness, acid and alkali resistance. 2.Rubbe,tyre industry: Rubber and Tyre are mainly use the low softening point of hydrocarbon resin C9. Such resins and natural rubber particles have a good miscibility of the rubber vulcanization process is not a big impact, add oil and rubber tires can play a tackifying resin, reinforcement, softening effect. 3.The ink industry: petroleum resin, ink, mainly high softening point petroleum resin. Add oil and resin ink color development can play, quick-drying and brightening effects and improve printing performance and so on. 4.Asphalt modifier: Mainly with high softening point of Hydrocarbon Resin C9 petroleum resin, increase the viscosity of bitumen to improve asphalt performance. CFN C5/C9 Copolymerized Petroleum Resin C5/C9 Copolymerized Petroleum Resin is a thermoplastic resin, Hydrocarbon Resin C9, Hydrocarbon Resin C9 fraction of petroleum by-product of decomposition with processing pre-treatment, polymerization and distillation. It is not a high polymer, but low polymer with the molecular weight range of 300-3000. Hydrocarbon Resin C9/ Hydrocarbon Resin C9 has advantages both of Hydrocarbon Resin C9 and Hydrocarbon Resin C9 petroleum resin: low acid value, good miscibility, waterproof, ethanol resistance and chemical resistance and other characteristics of acid resistance, chemical stability in acid-bases, adjustment in viscosity, good thermal stability, weather resistance and light aging resistance because of non-polar groups in its structure. Hydrocarbon Resin C9/ Hydrocarbon Resin C9 has good solubility in organic solvents especially in oil solvent, as well as good compatibility with other resins. It also has brittle, increasing viscosity, cohesiveness and plasticity. Generally, it is not used alone, but used as accelerant , regulator and modifier together with other resins. Application area: The products are used in hot melt adhesives, pressure sensitive adhesives, sealants, adhesives and other civil and rubber and tire field of adhesives used as tackifying resin; for rubber, tire, radial tire especially high requirements of rubber products. CND Hydrocarbon Resin C9 Dark Color Hydrocarbon Resin Hydrocarbon Resin C9 dark color hydrocarbon resin is yellow granular solid thermoplastic resin, it is manufactured by ethylene Hydrocarbon Resin C9 fractions, with a special production process, generated by the polymerization and the molecular weight range 300-3000 low molecular weight polymer. Hydrocarbon resin C9 has the characteristics of low acid value, good miscibility, chemical stability against acid and alkali, good adjustment of viscosity and thermal stability. Hydrocarbon resin C9 is generally not used alone, but as promoters, adjusting agents, modifiers and other resins used together. Application area: 1.Paint: Hydrocarbon resin C9 can increase the added paint gloss paint, paint film adhesion, hardness, acid and alkali resistance. 2.Rubbe,tyre industry: Rubber and Tyre are mainly use the low softening point of hydrocarbon resin C9. Such resins and natural rubber particles have a good miscibility of the rubber vulcanization process is not a big impact, add oil and rubber tires can play a tackifying resin, reinforcement, softening effect. 3.Adhesive industry: Hydrocarbon resin C9 has good adhesion, the adhesive and pressure-sensitive adhesive resin with added materials can improve the adhesive bond strength, acid resistance, alkali resistance and water resistance, and can effectively reduce production costs. 4.The ink industry: petroleum resin, ink, mainly high softening point petroleum resin. Add oil and resin ink color development can play, quick-drying and brightening effects and improve printing performance and so on. 5.other: Resin has certain Unsaturation, can be used to glue on paper CNL Light Color Hydrocarbon Resin C9 Light color Hydrocarbon resin C9 is light yellow granular solid thermoplastic resin, it is manufactured by ethylene Hydrocarbon resin C9 fractions, with a special production process, generated by the polymerization and the molecular weight range 300-3000 low molecular weight polymer. Hydrocarbon resin C9 Light color Hydrocarbon resin has the characteristics of low acid value, good miscibility, chemical stability against acid and alkali, good adjustment of viscosity and thermal stability. Hydrocarbon resin C9 is generally not used alone, but as promoters, adjusting agents, modifiers and other resins used together. Application area: 1.Paint: Light color Hydrocarbon resin C9 can increase the added paint gloss paint, paint film adhesion, hardness, acid and alkali resistance. 2.Rubbe,tyre industry: Rubber and Tyre are mainly use the low softening point of Light color hydrocarbon resin C9. Such resins and natural rubber particles have a good miscibility of the rubber vulcanization process is not a big impact, add oil and rubber tires can play a tackifying resin, reinforcement, softening effect. 3.Adhesive industry: Hydrocarbon resin C9 has good adhesion, the adhesive and pressure-sensitive adhesive resin with added materials can improve the adhesive bond strength, acid resistance, alkali resistance and water resistance, and can effectively reduce production costs. 4.The ink industry: petroleum resin, ink, mainly high softening point petroleum resin. Add oil and resin ink color development can play, quick-drying and brightening effects and improve printing performance and so on. 5.other: Resin has certain Unsaturation, can be used to glue on paper. ed materials can improve the adhesive bond strength, acid resistance, alkali resistance and water resistance, and can effectively reduce production costs. 4.The ink industry: petroleum resin, ink, mainly high softening point petroleum resin. Add oil and resin ink color development can play, quick-drying and brightening effects and improve printing performance and so on. 5.other: Resin has certain Unsaturation, can be used to glue on paper.
Hydrochloric acid
HYDROCINNAMALDEHYDE N° CAS : 104-53-0 Nom INCI : HYDROCINNAMALDEHYDE Nom chimique : 3-Phenylpropionaldehyde N° EINECS/ELINCS : 203-211-8 Ses fonctions (INCI) Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Hydrochlorothiazide
hydrochlorothiazide; HCTZ; Hypothiazide; Esidrix CAS NO: 58-93-5
HYDROFLUORIC ACID
Hydrofluoric Acid Uses of Hydrofluoric acid Production of organofluorine compounds The principal use of hydrofluoric acid is in organofluorine chemistry. Many organofluorine compounds are prepared using HF as the fluorine source, including Teflon, fluoropolymers, fluorocarbons, and refrigerants such as freon. Many pharmaceuticals contain fluorine. Production of inorganic fluorides of Hydrofluoric acid Most high-volume inorganic fluoride compounds are prepared from hydrofluoric acid. Foremost are Na3AlF6, cryolite, and AlF3, aluminium trifluoride. A molten mixture of these solids serves as a high-temperature solvent for the production of metallic aluminium. Other inorganic fluorides prepared from hydrofluoric acid include sodium fluoride and uranium hexafluoride. Properties of Hydrofluoric acid Chemical formula HF (aq) Appearance Colorless liquid Density 1.15 g/mL (for 48% soln.) Acidity (pKa) 3.17 Wet etching tanks It is used in the semiconductor industry as a major component of Wright Etch and buffered oxide etch, which are used to clean silicon wafers. In a similar manner it is also used to etch glass by treatment with silicon dioxide to form gaseous or water-soluble silicon fluorides. Hydrofluoric acid can also be used to polish and frost glass. SiO2 + 4 HF → SiF4(g) + 2 H2O SiO2 + 6 HF → H2SiF6 + 2 H2O A 5% to 9% hydrofluoric acid gel is also commonly used to etch all ceramic dental restorations to improve bonding. For similar reasons, dilute hydrofluoric acid is a component of household rust stain remover, in car washes in "wheel cleaner" compounds, in ceramic and fabric rust inhibitors, and in water spot removers. Because of its ability to dissolve iron oxides as well as silica-based contaminants, hydrofluoric acid is used in pre-commissioning boilers that produce high-pressure steam. Hydrofluoric acid is also useful for dissolving rock samples (usually powdered) prior to analysis. In similar manner, this acid is used in acid macerations to extract organic fossils from silicate rocks. Fossiliferous rock may be immersed directly into the acid, or a cellulose nitrate film may be applied (dissolved in amyl acetate), which adheres to the organic component and allows the rock to be dissolved around it. Oil refining In a standard oil refinery process known as alkylation, isobutane is alkylated with low-molecular-weight alkenes (primarily a mixture of propylene and butylene) in the presence of an acid catalyst derived from hydrofluoric acid. The catalyst protonates the alkenes (propylene, butylene) to produce reactive carbocations, which alkylate isobutane. The reaction is carried out at mild temperatures (0 and 30 °C) in a two-phase reaction. Production of Hydrofluoric acid Hydrofluoric acid was first prepared in 1771, by Carl Wilhelm Scheele. It is now mainly produced by treatment of the mineral fluorite, CaF2, with concentrated sulfuric acid at ca. 265 °C. CaF2 + H2SO4 → 2 HF + CaSO4 The acid is also a by-product of the production of phosphoric acid from apatite/fluoroapatite. Digestion of the mineral with sulfuric acid at elevated temperatures releases a mixture of gases, including hydrogen fluoride, which may be recovered. Because of its high reactivity toward glass, hydrofluoric acid is stored in plastic containers. Hydrofluoric acid can be found in nature; it is released in volcanic eruptions. Properties of Hydrofluoric acid In dilute aqueous solution hydrogen fluoride behaves as a weak acid, Infrared spectroscopy has been used to show that, in solution, dissociation is accompanied by formation of the ion pair H3O+·F−. H2O + 2HF ⇌ H+ + F− + H3O+⋅F−, pKa = 3.17 This ion pair has been characterized in the crystalline state at very low temperature. Further association has been characterized both in solution and in the solid state. HF + F− ⇌ HF2− log K = 0.6 It is assumed that polymerization occurs as the concentration increases. This assumption is supported by the isolation of a salt of a tetrameric anion H3F4− and by low-temperature X-ray crystallography. The species that are present in concentrated aqueous solutions of hydrogen fluoride have not all been characterized; in addition to HF2− which is known the formation of other polymeric species, Hn-1Fn−, is highly likely. The Hammett acidity function, H0, for 100% HF is estimated to be between −10.2 and −11. which is comparable to the value −12 for sulfuric acid. Solutions of hydrofluoric acid attack glass, so they are stored and used in vessels made of teflon. They attack human skin, so must be handled with great care: see #Health and Safety, below. Acidity of Hydrofluoric acid Unlike other hydrohalic acids, such as hydrochloric acid, hydrogen fluoride is only a weak acid in dilute aqueous solution. This is in part a result of the strength of the hydrogen–fluorine bond, but also of other factors such as the tendency of hydrofluoric acid, H2O, and F− anions to form clusters. At high concentrations, hydrofluoric acid molecules undergo homoassociation to form polyatomic ions (such as bifluoride, HF−2) and protons, thus greatly increasing the acidity. This leads to protonation of very strong acids like hydrochloric, sulfuric, or nitric when using concentrated hydrofluoric acid solutions. Although hydrofluoric acid is regarded as a weak acid, it is very corrosive, even attacking glass when hydrated. The acidity of hydrofluoric acid solutions varies with concentration owing to hydrogen-bond interactions of the fluoride ion. Dilute solutions are weakly acidic with an acid ionization constant Ka = 6.6×10−4 (or pKa = 3.18), in contrast to corresponding solutions of the other hydrogen halides, which are strong acids (pKa < 0). Concentrated solutions of hydrogen fluoride are much more strongly acidic than implied by this value, as shown by measurements of the Hammett acidity function H0(or "effective pH"). The H0 for 100% hydrofluoric acid is estimated to be between −10.2 and −11, comparable to the value −12 for sulfuric acid. In thermodynamic terms, hydrofluoric acid solutions are highly non-ideal, with the activity of hydrofluoric acid increasing much more rapidly than its concentration. The weak acidity in dilute solution is sometimes attributed to the high H—F bond strength, which combines with the high dissolution enthalpy of hydrofluoric acid to outweigh the more negative enthalpy of hydration of the fluoride ion. Paul Giguère and Sylvia Turrell have shown by infrared spectroscopy that the predominant solute species in dilute solution is the hydrogen-bonded ion pair H3O+·F−. H2O + HF ⇌ H3O+⋅F− With increasing concentration of hydrofluoric acid the concentration of the hydrogen difluoride ion also increases. The reaction 3 HF HF2− + H2F+ is an example of homoconjugation. Health and safety of Hydrofluoric acid In addition to being a highly corrosive liquid, hydrofluoric acid is also a powerful contact poison. Because of the ability of hydrofluoric acid to penetrate tissue, poisoning can occur readily through exposure of skin or eyes, or when inhaled or swallowed. Symptoms of exposure to hydrofluoric acid may not be immediately evident, and this can provide false reassurance to victims, causing them to delay medical treatment. Despite having an irritating odor, hydrofluoric acid may reach dangerous levels without an obvious odor. Hydrofluoric acid interferes with nerve function, meaning that burns may not initially be painful. Accidental exposures can go unnoticed, delaying treatment and increasing the extent and seriousness of the injury. Symptoms of hydrofluoric acid exposure include irritation of the eyes, skin, nose, and throat, eye and skin burns, rhinitis, bronchitis, pulmonary edema (fluid buildup in the lungs), and bone damage. Popular culture of Hydrofluoric acid In the series 4 episode 'Chain reaction' of the British medical drama Casualty a road traffic collision results in a spillage of hydrofluoric acid testing the resources of the department and resulting in the death of a police officer and severe burns to other motorists. This episode realistically depicts the fire service response to a chemical spillage In an episode of Breaking Bad titled "Cat's in the Bag...", Jesse Pinkman uses hydrofluoric acid to dissolve the body of Emilio Koyama. In another episode, "Box Cutter", Walter White and Jesse Pinkman use hydrofluoric acid to dissolve the body of Victor. In the film Saw VI, hydrofluoric acid is used for killing William Easton. In the film Jigsaw, Carly is killed by hydrofluoric acid injected into her bloodstream. In an episode of Titans titled "Jason Todd", a young Dick Grayson claims that his parents' murderer used hydrofluoric acid to burn their trapeze ropes. In a trio of segments of the videogame Zero Time Dilemma titled "First Come, First Saved", each of the three teams of participants are given the option to press a button that activates a hydrofluoric acid shower that pours over the other two teams. The corrosion process of the acid is both described and depicted as being fast enough to melt everything from metal and glass to the entire body of a sizable adult male in a matter of seconds, leaving only small amounts of tissue behind. Hydrofluoric Acid: What You Need to Know Incidents involving hydrogen fluoride, or hydrofluoric acid, are not common, but the consequences of exposure to this compound by any means can be devastating. This little-known acid has unique properties that make it extremely dangerous to emergency personnel and others. Frequently mistaken for or confused with hydrochloric acid, HF should be referred to as Hydrofluoric acid. I became interested in Hydrofluoric acid while working in an oil refinery that uses it as a catalyst to make high-octane gasoline. As a paramedic, I found the effects of Hydrofluoric acid on the human body fascinating. I learned what I could about it and began teaching Hydrofluoric acid safety to my coworkers. Then, in 2001, I was involved in an Hydrofluoric acid incident in which I was seriously exposed. I had been sprayed with anhydrous Hydrofluoric acid at approximately 150 pounds of pressure when a ¾" pipe broke at an ell as I was preparing to remove a plug. The Hydrofluoric acid had eaten the threads inside the ell and the weight of my pipe wrench caused the damaged pipe to give way, spraying both my legs just below my groin, and my right forearm. That exposure began a battle for my life that continues today. Luckily, our local EMS and emergency facility had been trained on the dangers of this acid and proper treatment. Many EMS and ER personnel have probably never heard of this dangerous compound, but all emergency services, fire or law enforcement personnel who operate near and may be called to respond to any facility that uses or manufactures a form of Hydrofluoric acid should receive yearly training on treatment for Hydrofluoric acid exposure. This information should be available from your county LEPC. Anhydrous hydrogen fluoride (Hydrofluoric acid) is an inorganic, corrosive compound with many industrial and commercial uses. It is manufactured by heating purified fluorspar (calcium fluoride) with concentrated sulfuric acid to produce the gas, which is then condensed by cooling or dissolving in water. It can also be refined as a by-product of the production of phosphoric acid, which is derived from the mineral apatite. Apatite sources typically contain a small amount of fluorite. The acid hydrolysis of fluorite-containing minerals generates an impure gas stream consisting of sulfur dioxide, water and Hydrofluoric acid. Separating gases from solids and treating them with sulfuric acid and oleum produces anhydrous Hydrofluoric acid. Hydrofluoric acid can also be released when other fluoride-containing compounds, such as ammonium fluoride, are combined with water or when certain plastics are exposed to fire conditions, creating carbonyl fluoride (the fluorine analog of phosgene). HYDROFLUORIC ACID FAST FACTS Hydrogen fluoride is available commercially either in an anhydrous (water-free) state or in water solutions of various concentrations. At higher concentrations, Hydrofluoric acid is a colorless gas or a fuming liquid. Hydrofluoric acid may be known as Hydrogen fluoride (UN 1052), hydrofluoric acid (UN 1790) or fluorohydric acid. Identification numbers are CAS number 7664-39-3, UN: 1052 or RTECS: MW7875000. Main Manufacturers/main importers are DuPont (US), Allied (US) and Honeywell (US). Its physical properties are: Molecular weight: 10 Boiling point: Gas at temperatures above 19°C Auto-ignition: Not relevant Vapor pressure: 150mm (70% solution at 26.7°C); 70mm (70% solution at 20.0°C) Solubility: Aqueous solutions to 70% Explosive limits: Not applicable--non-flammable (BLEVE hazard if container subjected to fire conditions) Shipping name: Hydrogen fluoride, anhydrous (1052), hydrofluoric acid, with not more than 60% strength (1790) Identification number: 1052 (hydrogen fluoride, anhydrous) (Guide 125), 1790 (hydrofluoric acid) (Guide 157) Hazardous class or division: 8 (1052) Subsidiary hazardous class or division: 6.1, Inhalation hazard (1790) Label: Corrosive, Poison (toxic) (1052), Corrosive, Poison (Toxic), Inhalation Hazard (1790) Hydrogen fluoride is used in solution form in glass and metal etching, industrial and home cleaners and rust removers, and in manufacturing electronics. Full strength, it is used to manufacture high-octane fuels in oil refineries. Other major industrial uses of hydrogen fluoride include synthesis of fluorocarbons (e.g., freon and Teflon) and production of aluminum fluoride and synthetic cryolite for use in aluminum refining. It is also employed in refining uranium for use as a nuclear fuel, in manufacturing various organic chemicals, in producing stainless steel, and for various other applications such as: Propellants and solvents Insecticide and fertilizer production Manufacture and reduction of chlorides Brewery to control fermentation Fabric industry for stain removal Leather industry for tanning Drug and dye production Manufacture of semiconductors. Present household uses include: Rust remover Aluminum brighteners Heavy-duty cleansers. Hydrofluoric acid is a colorless fuming liquid below 67°F (19.4°C), or a colorless gas. When hydrogen fluoride is combined with water it is known as hydrofluoric acid, a colorless liquid, which in low concentrations is visually indistinguishable from water. Hydrofluoric acid that is more than 40% hydrogen fluoride fumes in air. Hydrofluoric acid can be used for intra-oral repair of restorations. Contamination of tooth substrate with hydrofluoric acid cannot always be avoided. /The study objective was/ to investigate the bonding effectiveness to hydrofluoric acid contaminated dentin by, micro-tensile bond strength testing, SEM and TEM. For this study, 15 molar teeth were used of which dentin surfaces were subjected to five, different etching procedures. Group A, 37.5% phosphoric acid (Kerr Gel) (control group); group B, 37.5% phosphoric acid followed by 3% hydrofluoric acid (DenMat); group C, 37.5% phosphoric acid, followed by 9.6% hydrofluoric acid (Pulpdent); group D, 3% hydrofluoric acid followed by 37.5%, phosphoric acid; group E, 9.6% hydrofluoric acid followed by 37.5% phosphoric acid. After the bonding procedure (OptiBond FL, Kerr) a composite resin build-up (Clearfil AP-X, Kuraray), was made. After 1 week storage, specimens were prepared for micro-tensile bond testing, SEM- and, TEM-analysis. Data were analyzed using ANOVA and post hoc Tukey's HSD (p<0.05). In the control group (solely phosphoric acid), the mean microTBS was 53.4+/-10.6 MPa, which was, significantly higher than any hydrofluoric acid prepared group (group A versus groups B-E, p<0.001). No, significant differences in microTBS were found between the 3% and 9.6% hydrofluoric acid groups: group B versus group C (13.5+/-5.5 MPa and 18.7+/-4.3 MPa, respectively) or group D versus group E (19.9+/-6.8 MPa and 20.3+/-4.1 MPa, respectively). Due to its adverse effect on the bond strength of composite to dentin, contact of hydrofluoric acid to dentin should be avoided. Hydrogen fluoride is a colorless, fuming liquid or gas with a strong, irritating odor. Hydrofluoric acid is usually shipped in steel cylinders as a compressed gas. Hydrogen fluoride readily dissolves in water to form colorless hydrofluoric acid solutions; dilute solutions are visibly indistinguishable from water. Ocular tissues are extremely sensitive to hydrofluoric acid. Concentrations as low as 5 mg/L (5 ppm) may produce irritation to the eye. Although the protein aqueous precipitation of coagulation necrosis limits the penetration of other inorganic acids, hydrofluoric acid is able to penetrate the ocular tissues and produces severe damage to ocular structures. Lacrimation, pain, and conjunctival injection are early symptoms of hydrofluoric acid exposure. Corneal and conjunctival epithelium may be denuded, leading to edema and ischemia. Corneal vascularization and scarring may result. Toxicity may be delayed by up to 4 days after dilute exposures. Global perforation has also been reported. Hydrofluoric acid is an irritant to the mucosa of the upper and lower portions of the respiratory tract. As in ocular tissues, concentrations as low as 5 mg/L (5 ppm) may produce irritation to the nasal mucosa. When hydrofluoric acid is present in concentrations greater than 48%, the solution fumes, adding to the volatile airborne fraction. Mucosal edema, bronchospasm, bronchorrhea, wheezing, atelectasis, and airways obstruction may result. A chemical tracheobronchitis or pneumonitis, either of which may be hemorrhagic, and pulmonary edema may follow. Onset of signs and symptoms may be immediate, with death reported in as little as 30 minutes after exposure, or they may not appear for several days. Symptoms in survivors may be sustained for greater than 1 year. A waste containing hydrofluoric acid may (or may not) be characterized a hazardous waste following testing for corrosivity characteristics as prescribed by the Resource Conservation and Recovery Act (RCRA) regulations. Hydrogen fluoride/hydrofluoric acid has not been classified as a carcinogen. It is not known whether chronic or repeated exposure to hydrogen fluoride/hydrofluoric acid increases the risk of reproductive toxicity or developmental toxicity. Chronic or repeated exposure to hydrogen fluoride/hydrofluoric acid has been associated with fluorosis, mottling of the teeth, weight loss, malaise, anemia, leukopenia, discoloration of teeth, osteosclerosis, skeletal changes such as increased bone density of the spine and pelvis, calcification of ligaments, hyperostosis, and liver or kidney damage. A chemical polishing soln consisting of nitric acid and hydrofluoric acid (1 vol each) and glycerol (2 vols) generated enough pressure during storage for 4 hr to rupture the closed plastics container. This was caused by gas evolution from oxidation of glycerol by the strongly oxidizing mixture. A mixture of nitric acid (80 mL), hydrofluoric acid (80 mL) and glycerol (240 mL) was used immediately for etching metal, again the next day, and then stored in a stoppered flask. After some 2-3 days, the stopper was ejected and approx 300 mL was sprayed around the fume cupboard containing the flask. The metals dissolved during use further destabilize the mixture, which should not be stored under any circumstances. Mixtures of the 3 acids /hydrofluoric acid, lactic acid, and nitric acid/, used as metal polishing solutions, are unstable and should not be stored. Lactic acid and nitric acid react autocatalytically after a quiescent period, attaining a temp of about 90 °C with vigorous gas evolution after about 12 hr. A chemical polishing mixture /of hydrofluoric acid, propylene glycol, silver nitrate, and nitric acid/ was put into a closed glass bottle which burst 30 min later, and formation of silver fulminate was suggested. However, in absence of the silver salt such mixtures evolve gas and should not be stored in any event, especially after use for metal polishing, when the dissolved metal(s) tend to further destabilize the mixture. The International Maritime Dangerous Goods Code lays down basic principles for transporting hazardous chemicals. Detailed recommendations for individual substances and a number of recommendations for good practice are included in the classes dealing with such substances. A general index of technical names has also been compiled. This index should always be consulted when attempting to locate the appropriate procedures to be used when shipping any substance or article. Hydrogen fluoride, anhydrous; hydrofluoric acid solution, with more than 60% hydrogen fluoride; and hydrofluoric acid solution, with not more than 60% hydrogen fluoride are included on the dangerous goods list. Hydrofluoric acid is an indirect food additive for use only as a component of adhesives. Hydrofluoric acid is a dangerous inorganic acid that can cause local corrosion and systemic effects by ongoing absorption via the skin, mucosae, respiratory tract and digestive system. Recently, a serious toxic leak of low-concentration hydrofluoric acid solution occurred in the Pujiang area of Zhejiang Province, China. This accident resulted in 253 cases of chemical injury due to hydrofluoric acid exposure. Despite an immediate response by the local and provincial health-care system, as well as the local government, three people died due to acute poisoning and related complications. This article describes the events that took place leading to casualties as well as presenting the first-aid experience and the lessons learnt from this kind of mass injury. Hydrogen fluoride/hydrofluoric acid can be absorbed systemically into the body by ingestion, inhalation, or skin or eye contact. Eye exposure to hydrogen fluoride/hydrofluoric acid is highly unlikely to result in systemic toxicity. Inhalation is an important route of exposure. Occupational injuries to digits due to hydrofluoric acid (HFA) are frequently encountered. They have distinctive features, including intense pain, progressive tissue necrosis, and possible bone erosion. To minimize tissue damage, it is of great importance to execute prudent preoperative assessment and determine the correct surgical modality to reconstruct and maintain the function of the hand. However, proper protocols for fingers have not been presented in previous studies. Eight cases with hydrofluoric acid burn to digits were presented to the emergency room. Wounds were immediately irrigated with saline, calcium gluconate was applied topically to block destructive effects of fluoride ions. Blisters that could lead to progressive tissue destruction were debrided. A fish-mouth fasciotomy was performed and prostaglandin was administered intravenously to maintain maximal distal circulation. Wounds were evaluated daily for apparent demarcation for 6 or 7 days. Digits were reconstructed with free sensate second toe pulp-free flap to provide sufficient padding for the fingertip. All patients showed excellent recovery with stable flaps with acceptable external contour, durable soft tissue padding, and full range of motion of affected joints. In conclusion, when a patient is admitted due to hydrofluoric acid (HFA) exposure to the finger, early treatment including irrigation, topical neutralizers, and fasciotomy are of great importance to minimize tissue damage. In addition, a physician should wait at least 7 days until the degree of damage to the tissue can be classified so that the physician can decide whether aggressive debridement should be proceeded. In case of deep layer injuries of weight bearing portions such as finger pulp, reconstruction techniques utilizing durable tissues such as partial second toe pulp free flap should be employed. Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated. Hydrofluoric acid (HFA) is commonly used and many injuries occur on the upper extremities following exposure to HFA. The use of calcium gluconate (CG) -containing gel or local injections of CG are widely used for the initial treatment of Hydrofluoric acid (HFA) exposure. However, severe pain continues in some cases despite the treatment. There was a report that trans-arterial CG infusion could improve Hydrofluoric acid (HFA) burns, however, such treatment is not an established clinical procedure. A 30-year-old male presented at our hospital with severe pain in his left thumb. He had been cleaning tiles with an HFA-containing detergent. We diagnosed him with a chemical burn due to Hydrofluoric acid (HFA) exposure. Local CG injections were tried several times, but his terrible pain continued. Therefore, a direct arterial sphygmomanometry line was inserted from the left radial artery, and continuous transarterial CG injection was performed. His terrible pain dramatically improved. Direct arterial sphygmomanometry systems are widely used in the critical care field to monitor the hemodynamics and ICU staffs are used to dealing with it. Moreover, continuous saline infusion prevents the tube obstruction. Continuous CG infusion from a direct arterial sphygmomanometry line is simple and safe way to administer CG in Hydrofluoric acid (HFA) burns. Hydrofluoric acid (HF) is a highly toxic poison that can be rapidly fatal. Death usually results from the many systemic effects of dissociated fluoride ions, including hypocalcemia, hypomagnesemia, hyperkalemia, and direct cardiotoxicity. A patient is described who accidentally ingested a hydrofluoric acid-containing substance and who likely benefited from hemodialysis. His fluoride level post-dialysis was reduced by approximately 70% from a level drawn three hours prior to the initiation of hemodialysis. However, the single treatment did not reduce the fluoride level to normal. A review of the pathophysiology of hydrofluoric acid intoxication and the outcomes of prior exposures suggests that hemodialysis could play a vital role in the management of poisonings with fluoride-containing substances. However, the initial hemodialysis treatment should be prolonged beyond the standard four-hour session. Ocular tissues are extremely sensitive to hydrofluoric acid. Concentrations as low as 5 mg/L (5 ppm) may produce irritation to the eye. Although the protein aqueous precipitation of coagulation necrosis limits the penetration of other inorganic acids, hydrofluoric acid is able to penetrate the ocular tissues and produces severe damage to ocular structures. Lacrimation, pain, and conjunctival injection are early symptoms of hydrofluoric acid exposure. Corneal and conjunctival epithelium may be denuded, leading to edema and ischemia. Corneal vascularization and scarring may result. Toxicity may be delayed by up to 4 days after dilute exposures. Global perforation has also been reported. Uses & Benefits of Hydrofluoric acid (HFA) Industrial/Manufacturing Uses of Hydrofluoric acid (HFA) Hydrofluoric acid (HFA) is used to make refrigerants, herbicides, pharmaceuticals, gasoline, stainless steel kitchen products, aluminum, plastics, electrical components and incandescent light bulbs (electric light with a wire filament, used in appliances, incubators, portable lighting). Sixty percent of the hydrogen fluoride used in manufacturing is for processes to make refrigerants used in refrigeration, freezer and air conditioning systems. In laboratories and industrial settings, hydrofluoric acid can be used for etching glass and enamel, removing rust, and cleaning brass and crystal. It also is used in manufacturing silicon semiconductor chips. Hydrogen fluoride also is used as an alkylation catalyst in oil refineries to make high-octane gasoline as well as power nuclear reactors. Cleaners and Rust Removers Due to Hydrofluoric acid (HFA)s strong corrosive qualities, a diluted form of hydrofluoric acid is used in some commercial automotive cleaners, rust and stain removers and water-spot removers. Safety Information of Hydrofluoric acid (HFA) Due to its strong corrosive qualities, a diluted form of hydrofluoric acid is used in some commercial automotive cleaners, and rust and stain removers. Care should be taken when using commercially available products containing hydrofluoric acid, and safety instructions on labels should always be followed. Skin contact or inhalation of hydrofluoric acid can cause moderate to severe health effects. What Hydrofluoric acid is Hydrofluoric acid is a chemical compound that contains fluorine. It can exist as a colorless gas or as a fuming liquid, or it can be dissolved in water. When Hydrofluoric acid is dissolved in water, it may be called hydrofluoric acid. Hydrofluoric acid can be released when other fluoride-containing compounds such as ammonium fluoride are combined with water. Where Hydrofluoric acid is found and how it is used Hydrofluoric acid is used to make refrigerants, herbicides, pharmaceuticals, high-octane gasoline, aluminum, plastics, electrical components, and fluorescent light bulbs. Sixty percent of the Hydrofluoric acid used in manufacturing is for processes to make refrigerants. Hydrofluoric acid is also used for etching glass and metal. How you could be exposed to Hydrofluoric acid In a natural disaster, you could be exposed to high levels of Hydrofluoric acid when storage facilities or containers are damaged and the chemical is released. This release could occur at an industrial site or even a retail location. You could be exposed to Hydrofluoric acid if it is used as a chemical terrorism agent. If you work in an occupation that uses Hydrofluoric acid, you may be exposed to this chemical in the workplace. You may be exposed to Hydrofluoric acid as part of a hobby. How Hydrofluoric acid works Hydrofluoric acid goes easily and quickly through the skin and into the tissues in the body. There it damages the cells and causes them to not work properly. The seriousness of poisoning caused by Hydrofluoric acid depends on the amount, route, and length of time of exposure, as well as the age and preexisting medical condition of the person exposed. Breathing Hydrofluoric acid can damage lung tissue and cause swelling and fluid accumulation in the lungs (pulmonary edema). Skin contact with Hydrofluoric acid may cause severe burns that develop after several hours and form skin ulcers. Immediate signs and symptoms of exposure to Hydrofluoric acid Swallowing only a small amount of highly concentrated Hydrofluoric acid will affect major internal organs and may be fatal. Hydrofluoric acid gas, even at low levels, can irritate the eyes, nose, and respiratory tract. Breathing in Hydrofluoric acid at high levels or in combination with skin contact can cause death from an irregular heartbeat or from fluid buildup in the lungs. Even small splashes of high-concentration Hydrofluoric acid products on the skin can be fatal. Skin contact with Hydrofluoric acid may not cause immediate pain or visible skin damage(signs of exposure). Often, patients exposed to low concentrations of Hydrofluoric acid on the skin do not show effects or experience pain immediately. And, severe pain at the exposure site may be the only symptom for several hours. Visible damage may not appear until 12 to 24 hours after the exposure. Depending on the concentration of the chemical and the length of time of exposure, skin contact with Hydrofluoric acid may cause severe pain at the point of contact; a rash; and deep, slow-healing burns. Severe pain can occur even if no burns can be seen. Showing these signs and symptoms does not necessarily m
HYDROGEN PEROXIDE
SYNONYMS Peroxide; Hydrogen Dioxide; Albone; Inhibine; Perhydrol; Peroxan; Oxydol; Hydroperoxide; Hioxy; Dihydrogen Dioxide CAS NO. 7722-84-1
Hydrogen peroxide 35 %
HYDROGENATED CASTOR OIL; Castor oil, hydrogenated; CAS Number: 8001-78-3
HYDROGENATED CASTOR OIL
castor oil hydrogenated; castor oil, hydrogenated; castor wax; castorwax;hydrogenated ricinus communis oil cas no: 8001-78-3
HYDROGENATED CASTOR OIL ETHOXYLATE
Hydrogenated Castor Oil Ethoxylate Hydrogenated castor oil ethoxylate, also known as castor wax, is a hardened vegetable wax produced from pure Hydrogenated castor oil ethoxylate through the chemical process of hydrogenation. When hydrogen is introduced to pure Hydrogenated castor oil ethoxylate in the presence of a nickel catalyst, the resulting product becomes waxy, highly viscous, and more saturated.Hydrogenated castor oil ethoxylate is an ingredient prevalently found in many cosmetics, varnishes, and polishes. You most likely use it on a daily basis. Unlike pure Hydrogenated castor oil ethoxylate, which is said to have a slightly offensive smell, it is completely odorless. Hydrogenated castor oil ethoxylate is also insoluble in water.But why hydrogenate Hydrogenated castor oil ethoxylate when the pure oil works so well for so many different applications? What is the purpose of hydrogenating Hydrogenated castor oil ethoxylate, exactly? ydrogenated Hydrogenated castor oil ethoxylate, also known as castor wax, is derived from castor beans (Ricinus communis), which is typically a liquid at room temperature, that has been processed by adding hydrogen to make it more stable and raises its melting point so that it is a solid at room temperature. It is odorless and insoluble in water. Historically, ancient Egyptians used Hydrogenated castor oil ethoxylate as fuel for their lamps. Hydrogenated castor oil ethoxylate has also been used as a lubricant in machine and aircraft engines, and is added to certain paints, dyes and varnishes as well. Ingestion of pure Hydrogenated castor oil ethoxylate works as a laxative to treat constipation. Hydrogenated castor oil ethoxylate is a hard brittle, high melting point waxy substance with faint characteristic of fatty wax odor and is tasteless. It is compatible with beeswax, carnauba and candelilla wax. It is relatively insoluble in most organic solvents though it will dissolve in a number of solvents and oils at an elevated temperature but on cooling will form gels or a paste like mass. It forms a smooth, stable anionic emulsion with emulsifiers and triethanolamine stearate. It can also be emulsified with a cationic emulsifying agent, making emulsions that are also stable. It is mainly used in plastics, textiles, lubricants etc.As a pharmaceutical grade inactive ingredient, Hydrogenated castor oil ethoxylate is used to emulsify and solubilize oils and other water-insoluble substances. Identification CAS no. 61788-85-0 Label EC no. Value 500-147-5 Label Molecul formula Value C57H110O9 (C2H4O)n Label REACH status Value 01-2120775815-41 Label Synonyms Value Castor oil, hydrogenated, ethoxylated Label E-number / INCI name Value N.A. / PEG-n HYDROGENATED CASTOR OIL A brand name product that contains Hydrogenated castor oil ethoxylate is Cremophor and it contains a range of non-ionic polyethoxylated detergents. It was originally developed for use as solubilizers and emulsifiers. This research grade product is intended for use in R&D and development only. Hydrogenated castor oil ethoxylate (castor wax) is also used an extended release agent; stiffening agent; tablet and capsule lubricant. Hydrogenated castor oil ethoxylate has been used as a stimulant laxative to relieve occasional constipation, but it is rarely used today due to gentler and safer alternatives. The purpose of the hydrogenation process is to improve Hydrogenated castor oil ethoxylate's melting point, texture, odor, and shelf-life.Once hydrogenated, the resulting Hydrogenated castor oil ethoxylate product is comprised of hard, brittle flakes. Hydrogenated castor oil ethoxylate is considered an organic ingredient, as well as a vegan one, as it is vegetable-derived.One application of Hydrogenated castor oil ethoxylate is to improve certain cosmetic products. You can add the flakes to cosmetic formulations until thoroughly melted. In this capacity, Hydrogenated castor oil ethoxylate acts as an emollient and a thickener; increasing the viscosity of creams, ointments, and lotions when their composition is too runny. Hydrogenated castor oil ethoxylate also stabilizes cosmetics that come in stick-form (like lipstick) and increases these products' melting points, making for a more stable product. In part thanks to Hydrogenated castor oil ethoxylate, it's not the end of the world if we leave a tube of red lipstick in a hot car! Hydrogenated castor oil ethoxylate means our lipsticks maintain a solid structure even when they're pushed to the limit, and our deodorant doesn't crumble as we apply it.Hydrogenated castor oil ethoxylate is a hard, waxy substance with a unique structure. It works with the other oils and waxes in the antiperspirant base to give the stick a firm but spreadable consistency. In the baby diaper cream and lotion it provides a protective barrier of the lotion/cream on the skin. In all cases, because Hydrogenated castor oil ethoxylate is insoluble in water, it is not readily washed away. Hydrogenated castor oil ethoxylate is especially present in these types of products when something requires resistance to moisture and oils, such as in polishes, varnishes, and paints. Hydrogenated castor oil ethoxylate, also known as castor wax, is derived from castor beans (Ricinus communis), which is typically a liquid at room temperature, that has been processed by adding hydrogen to make it more stable and raises its melting point so that it is a solid at room temperature. It is odorless and insoluble in water. Hydrogenated castor oil ethoxylate is a hard, waxy substance with a unique structure. It works with the other oils and waxes in the antiperspirant base to give the stick a firm but spreadable consistency. In all cases, because Hydrogenated castor oil ethoxylate is insoluble in water, it is not readily washed away. Hydrogenated castor oil ethoxylate has a long history of safe use in personal care products. PEG 40 Hydrogenated castor oil ethoxylate is the Polyethylene Glycol derivatives of Hydrogenated castor oil ethoxylate, and it functions as a surfactant, a solubilizer, an emulsifier, an emollient, a cleansing agent, and a fragrance ingredient when added to cosmetics or personal care product formulations. Hydrogenated castor oil ethoxylate is soluble in both water and oil and is traditionally used to emulsify and solubilize oil-in-water formulations. Its foam-enhancing properties make it ideal for use in liquid cleansers, and its soothing and softening emollient quality makes it a popular addition to formulations for moisturizers and hair care cosmetics. As a surfactant, PEG 40 Hydrogenated castor oil ethoxylate helps to decrease the surface tension between multiple liquids or between liquids and solids. Furthermore, it helps to remove the grease from oils and causes them to become suspended in the liquid. This makes it easier for them to be washed away and lends this ingredient popularity in facial and body cleansers. As an occlusive agent, PEG 40 Hydrogenated castor oil ethoxylate creates a protective hydrating layer on the skin's surface, acting as a barrier against the loss of natural moisture. Hydrogenated castor oil ethoxylate to cosmetics formulations, it can be blended in its cold state directly into the oil phase at a suggested ratio of 3:1 (PEG 40 Hydrogenated castor oil ethoxylate to oil). Next, this can be added to the water phase. If the formula is cloudy, the amount of PEG 40 Hydrogenated castor oil ethoxylate may be increased for enhanced transparency. Hydrogenated castor oil ethoxylate Raw Material without the medical advice of a physician. This product should always be stored in an area that is inaccessible to children, especially those under the age of 7. Hydrogenated castor oil ethoxylate Raw Material in 1 tsp of a preferred Carrier Oil and applying a dime-size amount of this blend to a small area of skin that is not sensitive. PEG 40 Hydrogenated castor oil ethoxylate must never be used near the inner nose and ears or on any other particularly sensitive areas of skin. Potential side effects of PEG 40 Hydrogenated castor oil ethoxylate include the itching, PEG-30 Hydrogenated castor oil ethoxylate, PEG-33 Hydrogenated castor oil ethoxylate, PEG-35 Hydrogenated castor oil ethoxylate, PEG-36 Hydrogenated castor oil ethoxylate and PEG-40 Hydrogenated castor oil ethoxylate are polyethylene glycol derivatives of Hydrogenated castor oil ethoxylate. PEG-30 Hydrogenated castor oil ethoxylate and PEG-40 Hydrogenated castor oil ethoxylate are polyethylene glycol derivatives of Hydrogenated castor oil ethoxylate. PEG-36 Hydrogenated castor oil ethoxylate is a light yellow and slightly viscous liquid with a mild fatty odor. PEG-40 Hydrogenated castor oil ethoxylate is an amber-colored liquid. PEG Hydrogenated castor oil ethoxylates and PEG Hydrogenated castor oil ethoxylates are used in the formulation of a wide variety of cosmetics and personal care products. Hydrogenated castor oil ethoxylate is the polyethylene glycol derivatives of Hydrogenated castor oil ethoxylate, and is an amber colored, slightly viscous liquid that has a naturally mildly fatty odor. It is used in cosmetics and beauty products as an emulsifier, surfactant, and fragrance ingredient, according to research. Accordingly, Hydrogenated castor oil ethoxylate is principally 12-hydroxystearic triglyceride. Hydrogenated castor oil ethoxylate (HCO) or castor wax is used in capacitors, coatings and greases, cosmetics, electrical carbon paper, lubrication, polishes, and where resistance to moisture, oils and other petrochemical products is required. Castor wax is also useful as a top coat varnish for leather, wood & rubber. 12-Hydroxy Stearic Acid (12-HSA) is obtained by the hydrolysis of Hydrogenated castor oil ethoxylate, 12-Hydroxy Stearic Acid is a high melting, brittle, waxy solid at ambient temperatures and should be stored away from heat to avoid deterioration. A non-toxic, non-hazardous material, it has limited solubility in many organic solvents and is insoluble in water. It is used in lithium and calcium greases, and in the manufacture of acrylic polymers, as an internal lubricant for plastic mouldings, coatings for automotive, equipment, appliances and architectural applications. We are proud to boast industry leading products suitable for a wide array of application and product requirements. We believe industry leading customer service, delivery and innovation allow us to meet our ever increasing client demands. Hydrogenated castor oil ethoxylate is a wax-like hydrogenated derivative of Hydrogenated castor oil ethoxylate. Hydrogenated castor oil ethoxylate has many industrial applications. Castor wax, also called Hydrogenated castor oil ethoxylate, is an opaque, white vegetable wax. It is produced by the hydrogenation of pure Hydrogenated castor oil ethoxylate often in the presence of a nickel catalyst to increase the rate of reaction. The hydrogenation of Hydrogenated castor oil ethoxylate forms saturated molecules of castor wax; this saturation is responsible for the hard, brittle and insoluble nature of the wax. HCO (chemical name: Hydrogenated castor oil ethoxylate), also known as castor wax, is a very common oleochemical product that has many industrial and manufacturing applications. What is Hydrogenated castor oil ethoxylate? HCO is a hard, wax-like substance extracted from Hydrogenated castor oil ethoxylate beans. There is also a petroleum-based formula of Hydrogenated Caster Oil known as PEG-40. The Hydrogenated castor oil ethoxylate chemical formula of this material is C57H110O9(CH2CH2O)n. Hydrogenation refers to a chemical process where an unsaturated compound is combined with hydrogen to produce saturation. In the case of HCO, this increases the oil’s stability and raises its melting point, transforming it into a solid at room temperature.Hydrogenated castor oil ethoxylate is insoluble in water and most types of organic solvents. This makes HCO extremely valuable in the manufacturing of lubricants and industrial greases. However, HCO is soluble in hot solvents. It also has the ability to resist water while retaining its polarity, lubricity and surface wetting capabilities. Hydrogenated castor oil ethoxylate is also an extremely safe, non-toxic material that is suitable for use in personal care products and soaps. To learn more about HCO safety, please review the Hydrogenated castor oil ethoxylate SDS (Safety Data Sheet).Acme-Hardesty is a reliable source for Hydrogenated castor oil ethoxylate. We offer a complete selection of Hydrogenated castor oil ethoxylate and Derivatives such as Ricinoleic Acid, 12HSA, #1 Hydrogenated castor oil ethoxylate, HCO and several others. We are known for being one of the largest and oldest Hydrogenated castor oil ethoxylate importers and distributors found anywhere in the United States. As one of the leading Hydrogenated castor oil ethoxylate suppliers, we can accommodate your company’s Hydrogenated castor oil ethoxylate needs, whether you require a bulk shipment, a pallet or a full truckload. USES & APPLICATIONS HCO is an extremely versatile oleochemical that has a number of industrial and manufacturing applications:CASE: Because of its excellent resistance to moisture, Hydrogenated castor oil ethoxylate works extremely well as a viscosity modifier, and it also provides significant improvement in grease and oil resistance.Plastics: Hydrogenated castor oil ethoxylate performs the role of a lubricant and release agent for PVC and improves processing, dispersion and grease resistance of sheeted polyethylene. It is also useful in the preparation of various polyurethane coating formulas.Personal Care: There are multiple Hydrogenated castor oil ethoxylate uses in the manufacturing of personal care products, particularly as an emollient and thickening agent in ointments and deodorants, as well as hair care products and certain cosmetics.Waxes: Hydrogenated Caster Oil works as a binding agent in synthetic and petroleum waxes, as it makes the wax harder and more resistant to crumbling.Soaps and Detergents: Hydrogenated castor oil ethoxylate is sometimes used as an emulsifying agent in liquid soaps and detergents to enhance the stability of the liquid formula.Textiles: HCO makes an effective processing agent in various textile manufacturing applications. What does it do? Hydrogenated castor oil ethoxylate is a hard, waxy substance with a unique structure. It works with the other oils and waxes in the antiperspirant base to give the stick a firm but spreadable consistency. In all cases, because Hydrogenated castor oil ethoxylate is insoluble in water, it is not readily washed away. In monolithic tablets, the core is either prepared by direct compression or by wet granulation followed by coating the core with water impermeable materials on all the faces except the face which is in contact with the mucosa. Water-impermeable materials include Teflon, ethyl cellulose, cellophane, Hydrogenated castor oil ethoxylate, and so on. Such a system begins unidirectional drug flow toward the mucosa and avoids drug loss [163]. The results of Kurihara et al. (1996) indicate that Hydrogenated castor oil ethoxylate (HCO)-60 emulsions, when compared with conventional lecithin-stabilized emulsions, are more stable to LPL and show low uptake by RES organs, long circulations in the plasma and high distribution in tumors. Lin et al. (1992) confirmed that Hydrogenated castor oil ethoxylate-60 is a good emulsifier for the preparation of NE with better stability and prolonged and selective delivery properties. Thus, these sterically stabilized NEs could show potential as effective carriers for highly lipophilic antitumor agents to enhance the drug delivery in tumors. This was confirmed by Sakaeda et al. (1994) who found that the rate of selective delivery of Sudan II to liver, lungs, and spleen could be suppressed by using Hydrogenated castor oil ethoxylate-60-based NE. Conversely, the use of saturated MCT in NE was the most effective way to increase blood concentration of Sudan II, resulting in higher distribution to liver, lungs, spleen, and brain (Sakaeda and Hirano, 1995). Furthermore, an o/w-type NE containing Hydrogenated castor oil ethoxylate-60 was shown to be superior in the selective distribution of adriamycin-HCl to the liver and in decreasing concentration in heart and kidney (Yamaguchi et al., 1995). Again, Ueda et al. (2003) reported the effect of using a series of Hydrogenated castor oil ethoxylates having different oxyethylene numbers such as Hydrogenated castor oil ethoxylate10, Hydrogenated castor oil ethoxylate 20, Hydrogenated castor oil ethoxylate 30, Hydrogenated castor oil ethoxylate 60, and Hydrogenated castor oil ethoxylate 100 on the pharmacokinetics of menatetrenone (vitamin K2) incorporated in SO (SO)–based NE in rats. Plasma half-life of menatetrenone after administration as the NE prepared by Hydrogenated castor oil ethoxylate with 10 oxyethylene units (SO/Hydrogenated castor oil ethoxylate 10) was similar to that after the administration as SO/egg yolk phosphatides (SO/EYP), but was shorter than that as the NEs prepared by Hydrogenated castor oil ethoxylates with >20 oxyethylene units (SO/Hydrogenated castor oil ethoxylate 20, SO/Hydrogenated castor oil ethoxylate 30, SO/Hydrogenated castor oil ethoxylate 60, and SO/Hydrogenated castor oil ethoxylate 100). These findings clearly demonstrate that 20 oxyethylene units in Hydrogenated castor oil ethoxylates are the minimum requirement for the prolongation of the plasma circulation time of the incorporated drug in SO/Hydrogenated castor oil ethoxylates NEs. The earlier described studies suggest the involvement of oil or structured lipids in the enhancement of systemic circulation of the NE. Hydrogenated castor oil ethoxylate is a multi-purpose vegetable oil that people have used for thousands of years. It’s made by extracting oil from the seeds of the Ricinus communis plant. These seeds, which are known as castor beans, contain a toxic enzyme called ricin. However, the heating process that Hydrogenated castor oil ethoxylate undergoes deactivates it, allowing the oil to be used safely. Hydrogenated castor oil ethoxylate has a number of medicinal, industrial and pharmaceutical uses. It’s commonly used as an additive in foods, medications and skin care products, as well as an industrial lubricant and biodiesel fuel component. In ancient Egypt, Hydrogenated castor oil ethoxylate was burned as fuel in lamps, used as a natural remedy to treat ailments like eye irritation and even given to pregnant women to stimulate labor. Today, Hydrogenated castor oil ethoxylate remains a popular natural treatment for common conditions like constipation and skin ailments and is commonly used in natural beauty products. Here are 7 benefits and uses of Hydrogenated castor oil ethoxylate. 1. A Powerful Laxative Perhaps one of the best-known medicinal uses for Hydrogenated castor oil ethoxylate is as a natural laxative. It’s classified as a stimulant laxative, meaning that it increases the movement of the muscles that push material through the intestines, helping clear the bowels. Stimulant laxatives act rapidly and are commonly used to relieve temporary constipation. When consumed by mouth, Hydrogenated castor oil ethoxylate is broken down in the small intestine, releasing ricinoleic acid, the main fatty acid in Hydrogenated castor oil ethoxylate. The ricinoleic acid is then absorbed by the intestine, stimulating a strong laxative effect. In fact, several studies have shown that Hydrogenated castor oil ethoxylate can relieve constipation. For example, one study found that when elderly people took Hydrogenated castor oil ethoxylate, they experienced decreased symptoms of constipation, including less straining during defecation and lower reported feelings of incomplete bowel movements. While Hydrogenated castor oil ethoxylate is considered safe in small doses, larger amounts can cause abdominal cramping, nausea, vomiting and diarrhea (4Trusted Source). Although it can be used to relieve occasional constipation, Hydrogenated castor oil ethoxylate is not recommended as a treatment for long-term issues. Hydrogenated castor oil ethoxylate can be used as a natural remedy for occasional constipation. However, it can cause side effects like cramping and diarrhea and should not be used to treat chronic constipation. 2. A Natural Moisturizer Hydrogenated castor oil ethoxylate is rich in ricinoleic acid, a monounsaturated fatty acid. These types of fats act as humectants and can be used to moisturize the skin. Humectants retain moisture by preventing water loss through the outer layer of the skin. Hydrogenated castor oil ethoxylate is often used in cosmetics to promote hydration and often added to products like lotions, makeup and cleansers. You can also use this rich oil on its own as a natural alternative to store-bought moisturizers and lotions. Many popular moisturizing products found in stores contain potentially harmful ingredients like preservatives, perfumes and dyes, which could irritate the skin and harm overall health. Swapping out these products for Hydrogenated castor oil ethoxylate can help reduce your exposure to these additives. Plus, Hydrogenated castor oil ethoxylate is inexpensive and can be used on the face and body. Hydrogenated castor oil ethoxylate is thick, so it’s frequently mixed with other skin-friendly oils like almond, olive and coconut oil to make an ultra-hydrating moisturizer. Though applying Hydrogenated castor oil ethoxylate to the skin is considered safe for most, it can cause an allergic reaction in some people (6Trusted Source). Hydrogenated castor oil ethoxylate can help lock moisture in the skin. Though this natural alternative to store-bought products is considered safe for most, it can cause allergic reactions in some. 3. Promotes Wound Healing Applying Hydrogenated castor oil ethoxylate to wounds creates a moist environment that promotes healing and prevents sores from drying out. Venelex, a popular ointment used in clinical settings to treat wounds, contains a mixture of Hydrogenated castor oil ethoxylate and Peru balsam, a balm derived from the Myroxylon tree. Hydrogenated castor oil ethoxylate stimulates tissue growth so that a barrier can be formed between the wound and the environment, decreasing the risk of infection. It also reduces dryness and cornification, the buildup of dead skin cells that can delay wound healing (8). Studies have found that ointments containing Hydrogenated castor oil ethoxylate may be especially helpful in healing pressure ulcers, a type wound that develops from prolonged pressure on the skin. One study looked at the wound-healing effects of an ointment containing Hydrogenated castor oil ethoxylate in 861 nursing home residents with pressure ulcers. Those whose wounds were treated with Hydrogenated castor oil ethoxylate experienced higher healing rates and shorter healing times than those treated with other methods (9Trusted Source). Hydrogenated castor oil ethoxylate helps heal wounds by stimulating the growth of new tissue, reducing dryness and preventing the buildup of dead skin cells. 4. Impressive Anti-Inflammatory Effects Ricinoleic acid, the main fatty acid found in Hydrogenated castor oil ethoxylate, has impressive anti-inflammatory properties. Studies have shown that when Hydrogenated castor oil ethoxylate is applied topically, it reduces inflammation and relieves pain. The pain-reducing and anti-inflammatory qualities of Hydrogenated castor oil ethoxylate may be particularly helpful to those with an inflammatory disease such as rheumatoid arthritis or psoriasis. Animal and test-tube studies have found that ricinoleic acid reduces pain and swelling. One study demonstrated that treatment with a gel containing ricinoleic acid led to a significant reduction in pain and inflammation when applied to the skin, compared to other treatment methods. A test-tube component of the same study showed that ricinoleic acid helped reduce inflammation caused by human rheumatoid arthritis cells more than another treatment. Aside from Hydrogenated castor oil ethoxylate’s potential to reduce inflammation, it may help relieve dry, irritated skin in those with psoriasis, thanks to its moisturizing properties. Although these results are promising, more human studies are needed to determine the effects of Hydrogenated castor oil ethoxylate on inflammatory conditions. Hydrogenated castor oil ethoxylate is high in ricinoleic acid, a fatty acid that has been shown to help reduce pain and inflammation in test-tube and animal studies. 5. Reduces Acne Acne is a skin condition that can cause blackheads, pus-filled pimples and large, painful bumps on the face and body. It’s most common in teens and young adults and can negatively impact self-esteem. Hydrogenated castor oil ethoxylate has several qualities that may help reduce acne symptoms. Inflammation is thought to be a factor in the development and severity of acne, so applying Hydrogenated castor oil ethoxylate to the skin may help reduce inflammation-related symptoms. Acne is also associated with an imbalance of certain types of bacteria normally found on the skin, including Staphylococcus aureus. Hydrogenated castor oil ethoxylate has antimicrobial properties that may help fight bacterial overgrowth when applied to the skin. One test-tube study found that Hydrogenated castor oil ethoxylate extract showed considerable antibacterial power, inhibiting the growth of several bacteria, including Staphylococcus aureus. Hydrogenated castor oil ethoxylate is also a natural moisturizer, so it may help soothe the inflamed and irritated skin typical in those with acne. Hydrogenated castor oil ethoxylate helps fight inflammation, reduce bacteria and soothe irritated skin, all of which can be helpful for those looking for a natural acne remedy. 6. Fights Fungus Candida albicans is a type of fungus that commonly causes dental issues like plaque overgrowth, gum infections and root canal infections. Hydrogenated castor oil ethoxylate has antifungal properties and may help fight off Candida, keeping the mouth healthy. One test-tube study found that Hydrogenated castor oil ethoxylate eliminated Candida albicans from contaminated human tooth roots. Hydrogenated castor oil ethoxylate may also help treat denture-related stomatitis, a painful condition thought to be caused by Candida overgrowth. This is a common issue in elderly people who wear dentures. A study in 30 elderly people with denture-related stomatitis showed that treatment with Hydrogenated castor oil ethoxylate led to improvements in the clinical signs of stomatitis, including inflammation (17Trusted Source). Another study found that brushing with and soaking dentures in a solution containing Hydrogenated castor oil ethoxylate led to significant reductions in Candida in elderly people who wore dentures (18Trusted Source). Several studies have shown that Hydrogenated castor oil ethoxylate may help fight fungal infections in the mouth caused by Candida albicans. 7. Keeps Your Hair and Scalp Healthy Many people use Hydrogenated castor oil ethoxylate as a natural hair conditioner. Dry or damaged hair can especially benefit from an intense moisturizer like Hydrogenated castor oil ethoxylate. Applying fats like Hydrogenated castor oil ethoxylate to the hair on a regular basis helps lubricate the hair shaft, increasing flexibility and decreasing the chance of breakage. Hydrogenated castor oil ethoxylate may benefit those who experience dandruff, a common scalp condition characterized by dry, flaky skin on the head. Though there are many different causes of dandruff, it has been linked to seborrhoeic dermatitis, an inflammatory skin condition that causes red, scaly patches on the scalp. Due to Hydrogenated castor oil ethoxylate’s ability to reduce inflammation, it may be an effective treatment for dandruff that is caused by seborrhoeic dermatitis. Plus, applying Hydrogenated castor oil ethoxylate to the scalp will help moisturize dry, irritated skin and may help reduce flaking. The moisturizing and anti-inflammatory properties of Hydrogenated castor oil ethoxylate make it an excellent option to keep hair soft and hydrated and help reduce dandruff symptoms. Hydrogenated castor oil ethoxylate Precautions Many people use Hydrogenated castor oil ethoxylate to treat a variety of issues, either by ingesting the oil or applying it to the skin. Although Hydrogenated castor oil ethoxylate is generally considered safe, it can cause adverse reactions and unwanted side effects in some people. Can induce labor: It’s used by medical professionals to induce birth. For this reason, women at all stages of pregnancy should avoid consuming Hydrogenated castor oil ethoxylate. Can cause diarrhea: While it can be an effective way to alleviate constipation, you may get diarrhea if you take too much. Diarrhea can cause dehydration and electrolyte imbalances. Can cause allergic reactions: It may cause an allergic reaction in some people when applied to the skin. First try applying a small amount to a tiny patch of skin to see how your body reacts. Hydrogenated castor oil ethoxylate can cause side effects, such as allergic reactions and diarrhea, in some people. It can also induce labor, so pregnant women should avoid it. The Bottom Line People have used Hydrogenated castor oil ethoxylate for thousands of years as a powerful natural treatment for a variety of health issues. It has been shown to help relieve constipation and moisturize dry skin, among many other uses. If you are searching for an affordable, multi-purpose oil to keep in your medicine cabinet, Hydrogenated castor oil ethoxylate may be a good choice. Dehydrated Hydrogenated castor oil ethoxylate is an unique drying oil, which imparts good flexibility, fine gloss, toughness, adhesion, chemical and water resistance to the dry paint film with non-yellowing properties. Hydrogenated castor oil ethoxylate is a very suitable and even better substitute for Linseed oil. Paints with Hydrogenated castor oil ethoxylate are super white and offer superior finish. Dehydrated Hydrogenated castor oil ethoxylate is used as a primary binder for house paints, enamels, caulks, sealants and inks. In “cooked” varnishes it is combined with all the basic resins, rosins, rosin-esters, hydrocarbons and phenolics to produce clear varnishes and vehicles for pigmented coatings. Hydrogenated castor oil ethoxylate is also used in the manufacturing of lithographic inks, linoleum, putty and phenolic resins. Hydrogenated castor oil ethoxylate is used with phenolics to obtain fast drying coatings with maximum alkali resistance as required in sanitary can lining, corrosion resistant coatings, traffic paints, varnishes, ink vehicles, wire enamels, aluminium paint appliance finishes and marine finishes. Hydrogenated castor oil ethoxylate is also used to obtain fast kettling rate which gives lighter colour and lower acid varnishes. Hydrogenated castor oil ethoxylate is a release and antisticking agent used in hard candy pro- duction. its concentration is not to exceed 500 ppm. it is used in vitamin and mineral tablets, and as a component of protective coatings. Hydrogenated castor oil ethoxylate is a highly emollient carrier oil that penetrates the skin easily, leaving it soft and supple. It also serves to bind the different ingredients of a cosmetic formulation together. Hydrogenated castor oil ethoxylate is high in glycerin esters of ricinoleic acid (an unsaturated fatty acid). It is rarely, if ever, associated with irritation of the skin or allergic reactions. It is obtained through cold-pressing from seeds or beans of the Ricinus communis (Hydrogenated castor oil ethoxylate) plant. Impure Hydrogenated castor oil ethoxylate may cause irritation, as the seeds contain a toxic substance that is eliminated during processing. Its unpleasant odor makes it difficult to use in cosmetics. PEG-30 Hydrogenated castor oil ethoxylate, -30 Hydrogenated castor oil ethoxylate (hydrogenated), -40 Hydrogenated castor oil ethoxylate, -40 Hydrogenated castor oil ethoxylate (hydrogenated) are emollients, detergents, emulsifiers, and oil-in-water solubilizers recommended for fragrance oils, and for other oils that may be difficult to solubilize. The -40 Hydrogenated castor oil ethoxylate version is a powerful solubilizer for solubilizing essential oils and perfumes in oil-in-water creams
Hydrogenated Palm Stearin
Polyisobutene 800;Butene, homopolymer, hydrogenated;Polybutene, hydrogenated;Polyisobutene, hydrogenated;isobutylene homopolymer, hydrogenated;Hydrogenated polyisobutylene cas no: 68937-10-0
HYDROGENATED POLYISOBUTENE
Hydrogenated Polyisobutene, Cas : 68937-10-0, EC : polymer, Butene, homopolymer, hydrogenated Polybutene, hydrogenated, hydrogenated polyisobutene
HYDROLITE 5
Hydrolite 5 — бесцветная жидкость практически без запаха.
Hydrolite 5 – многофункциональный косметический ингредиент.


Номер CAS: 5343-92-0
Номер ЕС: 226-285-3
Номер леев: MFCD00010736
Химическое название: пентан-1,2-диол.
INCI: Пентиленгликоль.
Линейная формула: CH3CH2CH2CH(OH)CH2OH.
Молекулярная формула: C5H12O2.



СИНОНИМЫ:
1,2-дигидроксипентан, 1,2-пентиленгликоль, 4-метил-12-бутандиол, 1,2-пентандиол, 1,2-дигидроксипентан, 1,2-пентандиол, 2r, acmc-20mbh5, acmc-1axdb, 3-01-00-02191 Ссылка на руководство Beilstein, ksc271i3n, wcvrqhfdjllwfe-uhfffaoysa, (±)-пентан-1,2-диол, 1,2-дигидроксипентан, 1,2-пентиленгликоль, диол PD, Hydrolite 5, NSC 513 , (+/-)-пентан-1,2-диол, 1,2-дигидроксипентан, 1,2-пентиленгликоль, диол PD, гидролит 5, NSC 513, 1,2-пентандиол, пентан-1,2-диол , 5343-92-0, 1,2-дигидроксипентан, NSC-513, 50C1307PZG, MFCD00010736, EINECS 226-285-3, BRN 1719151, UNII-50C1307PZG, AI3-03317, NSC 513, 1,a2-апентандиол, EC 226 -285-3, 1,2-пентандиол, 96%, SCHEMBL62155, 3-01-00-02191 (Справочник Beilstein), NSC513, WCVRQHFDJLLWFE-UHFFFAOYSA-, DTXSID10863522, ПЕНТИЛЕН ГЛИКОЛЬ [WHO-DD], (+/- )-1,2-ПЕНТАНДИОЛ, AKOS009156977, AS-40006, SY032914, CS-0017222, NS00001259, P1178, EN300-52018, A829586, Q3374899, InChI=1/C5H12O2/c1-2-3-5(7 )4- 6/h5-7H,2-4H2,1H3



Hydrolite 5 — это гликоль, полученный из сахарного тростника, обладающий исключительными гигроскопическими свойствами и антибактериальным эффектом.
Hydrolite 5 – многофункциональный косметический ингредиент.
Hydrolite 5 представляет собой прозрачную бесцветную жидкость с характерным запахом.


Hydrolite 5 бросает вызов отрасли, предлагая более 5 ключевых функций, повышающих эффективность продукта.
Hydrolite 5 – это пентиленгликоль, 1,2-алкандиол, который произвел революцию на рынке косметических ингредиентов.


Hydrolite 5 увлажняет кожу и повышает эффективность активных ингредиентов.
Следуя девизу «меньше значит больше», Hydrolite 5 совершенствует современные рецепты.
Многофункциональные свойства Hydrolite 5 также улучшают растворяющие и эмульгирующие свойства косметических ингредиентов с минимальными усилиями.


В сочетании с противомикробными веществами Hydrolite 5 обеспечивает современную защиту продукта.
Hydrolite 5 подходит для всех типов кожи.
Hydrolite 5 производится из сырья, которое является побочным продуктом производства сахара и получено из сахарного тростника.


Hydrolite 5 соответствует стандарту COSMOS.
Hydrolite 5 – многофункциональный косметический ингредиент.
Hydrolite 5 — бесцветная жидкость с очень слабым запахом.


Общее название Hydrolite 5 — 1,2-пентандиол.
Hydrolite 5 растворим в воде и косметических эфирах.
Hydrolite 5 одобрен во всем мире


Рекомендуемый уровень использования Hydrolite 5 составляет 1–5%.
Hydrolite 5 — это высокоэффективная система гидратации, предназначенная для спортсменов и активных людей.
Hydrolite 5 обеспечивает превосходное увлажнение и пополнение электролитов для поддержания оптимальной работоспособности во время тренировок и физической активности.


Зеленый цвет указывает на то, что Hydrolite 5 содержит натуральные ингредиенты и не содержит искусственных добавок.
Оставайтесь увлажненными и полными энергии с Hydrolite 5!
Hydrolite 5 green — пентиленгликоль нового поколения.


Hydrolite 5 изготовлен из сахарного тростника, одобрен COSMOS, Ecocert, халяль.
Hydrolite 5 — бесцветная жидкость практически без запаха.
Рекомендуемый процент ввода Hydrolite 5 — до 5,0%.


Hydrolite 5 растворим как в воде, так и в косметических эфирах.
Hydrolite 5 стабилен и эффективен в широком диапазоне pH (3–12) и температуры.
Hydrolite 5 совместим со многими косметическими ингредиентами.


Hydrolite 5 соответствует требованиям японских квазилекарственных ингредиентов.
Hydrolite 5 используется в косметических продуктах и средствах по уходу за полостью рта.
Гидролит 5 представляет собой 1,2-пентандиол.


Hydrolite 5 представляет собой бесцветную жидкость с характерным запахом.
Благодаря своим химическим свойствам Hydrolite 5 легко растворяется в воде и масле.
Hydrolite 5 увлажняет кожу и повышает эффективность активных ингредиентов, используемых в косметических рецептурах.


Кроме того, Hydrolite 5 улучшает внешний вид и консистенцию, а также защиту продукта.
Производители косметической продукции могут использовать Hydrolite 5 в широком ассортименте косметики.
Hydrolite 5 усиливает активность активных веществ.


Hydrolite 5 увлажняет (увлажнитель).
Hydrolite 5 повышает стабильность эмульсий масло в воде.
Hydrolite 5 улучшает растворимость ингредиентов и повышает прозрачность.


Hydrolite 5 повышает эффективность консервантов (уменьшая их дозировку).
Hydrolite 5 — это экологичный пентиленгликоль: 100 % экологически чистый углерод.
Hydrolite 5 — это запатентованный процесс с использованием сырья из побочных продуктов: жома сахарного тростника и древесной массы.


Hydrolite 5 усиливает действие активных ингредиентов.
Hydrolite 5 является отличным увлажняющим средством, а также обеспечивает защиту продукта.
Hydrolite 5 улучшает эстетику формулы, включая отсутствие пигментов.


Hydrolite 5 стабилизирует эмульсии, является отличным растворителем и солюбилизатором.
Hydrolite 5 представляет собой жидкость без цвета и практически без запаха.
Hydrolite 5 растворим в воде, этаноле и гликолях.


Hydrolite 5 соответствует пищевому качеству и подходит для ухода за полостью рта.
Hydrolite 5 одобрен COSMOS/Ecocert.
Hydrolite 5 представляет собой новое поколение экологически чистого пентиленгликоля!


Hydrolite 5, на 100% изготовленный из биоуглерода и одобренный COSMOS, производится по запатентованному процессу из жома, побочного продукта, получаемого из сахарного тростника, который добывается этично и ответственно.
От классических до зеленых составов, от легких до насыщенных текстур.


Hydrolite 5 — это экологически чистая (полученная из сахарного тростника) версия оригинального пентиленгликоля.
Hydrolite 5 усиливает активность активных веществ.
Hydrolite 5 увлажняет (увлажнитель).


Hydrolite 5 повышает стабильность эмульсий масло в воде.
Hydrolite 5 улучшает растворимость ингредиентов и повышает прозрачность.
Hydrolite 5 повышает эффективность консервантов (уменьшая их дозировку).


Стабильность pH Hydrolite 5 составляет 3-12 pH.
Hydrolite 5 действует как превосходный увлажняющий крем для кожи.
Hydrolite 5 — прозрачная бесцветная жидкость с очень слабым запахом, растворимая в воде и косметических эфирах.


Hydrolite 5 уменьшает размер частиц эмульсии для достижения большей стабильности и улучшения эстетики рецептуры.
Hydrolite 5 работает синергетически с консервантами и повышает биодоступность косметических активных веществ.
Hydrolite 5 обладает отличным профилем безопасности.


Hydrolite 5 предлагает множество преимуществ по уходу за волосами и повышает водостойкость солнцезащитных составов.
Hydrolite 5 – настоящий многофункциональный прибор.
Hydrolite 5 производится по запатентованному процессу из жома, побочного продукта сахарного тростника, полученного этично и ответственно.


В условиях ужесточения регулирования, более высоких ожиданий потребителей и растущего давления на стоимость рецептур, необходимость делать больше с меньшими затратами становится приглашением вернуться к вопросу защиты продукта - прекрасная причина открыть (или открыть заново) Hydrolite 5, универсальный продукт 1, 2-алкандиол с длительной историей безопасного использования и действительно глобальным соответствием требованиям – США, Европа, Япония (включая квазилекарства) и Китай.


Hydrolite 5 — это многофункциональный ингредиент, полученный из возобновляемого сырья сахарного тростника.
Hydrolite 5 имеет те же свойства, что и оригинальный пентиленгликоль.
Hydrolite 5 увлажняет кожу и повышает эффективность активных ингредиентов, используемых в косметических рецептурах.


Кроме того, Hydrolite 5 улучшает внешний вид и консистенцию, а также защиту продукта.
Hydrolite 5 можно использовать в широком спектре косметических средств.
Hydrolite 5 на 100% изготовлен на биологической основе и совместим с COSMOS.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ ГИДРОЛИТА 5:
Применение/рекомендация Hydrolite 5: уход за солнцем (защита от солнца, после загара и автозагар), туалетные принадлежности (душ и ванна, уход за полостью рта…) > уход за полостью рта, уход за кожей (уход за лицом, чистка лица, уход за телом, уход за ребенком). ), Декоративная косметика/Макияж, Уход за волосами (шампуни, кондиционеры и средства для укладки).
Рекомендуемый уровень использования Hydrolite 5 составляет < 5,0 %.


Пентиленгликоль на биооснове, также известный как Hydrolite 5, представляет собой универсальный продукт, широко используемый в различных отраслях промышленности.
Hydrolite 5 служит многофункциональным ингредиентом в средствах личной гигиены, действуя как увлажнитель, растворитель и консервант.
Его биологическая основа делает Hydrolite 5 экологически чистой альтернативой традиционным гликолям на нефтяной основе.


Hydrolite 5 находит применение в средствах по уходу за кожей, волосами и косметических составах, обеспечивая увлажняющие и кондиционирующие свойства.
Кроме того, Hydrolite 5 повышает стабильность и срок хранения продуктов, что делает его ценным ингредиентом для производителей косметики и средств личной гигиены.


Hydrolite 5 используется в лосьонах, гелях, кремах, шампунях и эмульсиях.
Hydrolite 5 — это вариант стратегии консервации без консервантов для некоторых типов продуктов.
Hydrolite 5 используется в различных косметических средствах и средствах личной гигиены, таких как увлажняющие кремы, лосьоны для тела, сыворотки для лица, средства для мытья тела и шампуни, чтобы обеспечить длительное увлажнение кожи и волос.


Hydrolite 5 действует как соэмульгатор, уменьшая поверхностное натяжение и размер частиц в эмульсиях, обеспечивая тем самым лучшую стабильность.
Hydrolite 5 — отличный растворитель для таких ингредиентов, как парфюмерия.
Увеличивает дисперсию пигментов, улучшает интенсивность и гомогенизацию цвета при макияже.


Hydrolite 5 повышает увлажненность кожи до +10% после 4 часов применения при использовании продукта с 3% Hydrolite 5 Green.
Hydrolite 5 усиливает антимикробную защиту продуктов, поскольку действует синергично с консервантами, обеспечивая тем самым превосходную эффективность.
Hydrolite 5 повышает эффективность дигидроксиацетона (DHA) в продуктах для автозагара и, следовательно, улучшает естественный загар.


Hydrolite 5 подходит для использования в большинстве типов составов.
Hydrolite 5 сертифицирован Ecocert, Cosmos, Halal, биоразлагаем на 88% за 28 дней.
Hydrolite 5 усиливает автозагар: улучшаются свойства дигидроксиацетона (DHA).


Восприятие Hydrolite 5 также улучшается: стойкий, равномерный цвет. Hydrolite 5 увлажняет кожу лучше, чем глицерин, снижает липкость полимеров, помогает вводить в воду плохо растворимые компоненты.
Самое главное, Hydrolite 5 улучшает транспортировку полярных активных ингредиентов через липидный барьер.


Молекула Hydrolite 5 является одновременно гидрофильной и липофильной и в то же время небольшой.
Он окружает активное вещество, образуя мицеллу, и проводит Hydrolite 5 через липидный барьер.
В результате косметический продукт действует более эффективно.


Органолептические свойства Hydrolite 5 создают на коже чудесное ощущение: легкое, но питательное и бархатистое.
Снижая поверхностное натяжение, Hydrolite 5 улучшает эстетику состава и действует как соэмульгатор. Идеально подходит для «зеленых» продуктов, а также подчеркивает натуральность классических рецептов.


Hydrolite 5, также известный как пентиленгликоль, представляет собой увлажнитель растительного происхождения, который помогает удерживать влагу в коже и поддерживать ее увлажненность.
Hydrolite 5 — устойчивая и экологически чистая альтернатива другим синтетическим увлажнителям.
Это многофункциональный ингредиент Hydrolite 5, который можно использовать в самых разных косметических средствах для самых разных целей.


К ним относятся; улучшение активной эффективности, увлажнение кожи, улучшение стабильности/растворимости ингредиентов и повышение эффективности консервантов.
Hydrolite 5 — идеальный многофункциональный ингредиент, который повышает эффективность активных ингредиентов, увлажняет кожу, улучшает уход за волосами, улучшает сенсорный профиль формул и усиливает защиту продукта.


Это многофункциональный ингредиент Hydrolite 5, который можно использовать в самых разных косметических средствах для самых разных целей.
К ним относятся; улучшение активной эффективности, увлажнение кожи, улучшение стабильности/растворимости ингредиентов и повышение эффективности консервантов.
Микробам нужна вода, чтобы они могли процветать.


Увлажнители, такие как Hydrolite 5, улавливают и запирают свободную воду в рецептуре, что делает среду рецептуры стрессовой для микробов.
В некоторых случаях, например, в простых кремах, спритцерах и очищающих средствах, его можно использовать в качестве единственного консерванта, если добавить его в концентрации 4–5%.
В более сложных рецептурах, например, с большим количеством экстрактов трав, глин или красителей, стратегия связывания воды может быть слишком медленной, чтобы снизить первоначальную микронагрузку, и поэтому может оказаться неприемлемой.


Влагоустойчивый подход к сохранению продукта, при котором свободная вода связывается, является одной из самых здоровых стратегий для микробиома, поскольку Hydrolite 5 не оказывает негативного воздействия на естественную флору кожи.
Тем не менее, Hydrolite 5 стоит отметить, что единственный способ гарантировать защиту вашего продукта — это инвестиции в микротестирование.


Hydrolite 5 получил сертификат натурального сырья COSMOS.
Используемое натуральное сырье признано во всем мире.
Антибактериальные свойства Hydrolite 5 мягкие и безопасные, с минимальным раздражением кожи.


Hydrolite 5 также не содержит потенциально раздражающих короткоцепочечных ненасыщенных жирных кислот, 1,2 эпоксипентана, пероксида и т. д.
Hydrolite 5 содержит как гидрофильные, так и липофильные группы, что означает, что он растворяется в воде и многих маслах, поэтому его можно использовать в качестве хорошего растворителя в средствах по уходу за кожей и косметическом сырье.


При использовании в сыворотке или сыворотке Hydrolite 5 может помочь повысить прозрачность системы.
Поскольку Hydrolite 5 растворяется во многих маслах, его можно использовать в качестве натурального увлажняющего крема в косметике с безводными формулами.
При использовании в солнцезащитных продуктах Hydrolite 5 помогает улучшить водостойкость продукта.


Hydrolite 5 часто используется в кремах для кожи, кремах для глаз, лосьонах для кожи и средствах по уходу за детьми без консервантов.
Hydrolite 5 особенно подходит для чувствительной кожи, нежной кожи, например, у младенцев и маленьких детей, а также для ухода за возрастной сухой кожей.
Использование только Hydrolite 5 и добавление 3–5% достаточно для удовлетворения потребностей в продуктах по уходу за кожей и косметике без консервантов.


Hydrolite 5 можно хранить при комнатной температуре до 6 месяцев.
Конечно, чем короче время после использования, тем лучше.
Эффективная антибактериальная активность распространяется на широкий диапазон pH от 3 до 12 pH.


Если вам необходимо более длительное время хранения, рекомендуется одновременно добавить 1% антибактериального средства феноксиэтанола (Феноксиэтанол), что окажет синергетический эффект.


Hydrolite 5 — идеальный многофункциональный ингредиент, который увлажняет кожу, приносит пользу при уходе за волосами, повышает эффективность косметических ингредиентов, улучшает сенсорный профиль формул и усиливает защиту продукта, сохраняя при этом микробиом кожи. Hydrolite 5 на 100% биологической основе и одобрен COSMOS, получен из сахарного тростника и древесины (получено этически и ответственно).


От классических до зеленых составов, от легких до насыщенных текстур – Hydrolite 5 – идеальное многофункциональное средство для любого типа кожи.
Hydrolite 5 увлажняет кожу и повышает эффективность активных ингредиентов, используемых в косметических рецептурах.



ГДЕ ИСПОЛЬЗУЕТСЯ ГИДРОЛИТ 5?
Гидролайт 5 принадлежит к группе веществ, содержащих гидроксильные группы, таких как этанол, глицерин и сорбит.
Hydrolite 5 — бесцветная вязкая жидкость, смешивающаяся с водой и имеющая температуру кипения 242 градуса Цельсия.

В наши дни Hydrolite 5 все чаще используется в косметических продуктах, хотя существует множество других применений.
Например, Hydrolite 5 широко используется в качестве растворителя и пластификатора в промышленности пластмасс.
Hydrolite 5 также часто добавляют в чистящие средства.

Hydrolite 5 обладает как влагосвязывающими, так и антимикробными свойствами.
Будучи двухатомным спиртом, Hydrolite 5 в определенной концентрации предотвращает размножение нежелательных микроорганизмов.



КАКОВЫ ПОЗИТИВНЫЕ СВОЙСТВА ГИДРОЛИТА 5 В КОСМЕТИКЕ?
С другой стороны, Hydrolite 5 не классифицируется ни как опасный для здоровья, ни как токсичный, поскольку это вещество не может быть обнаружено в моче или тканях человека.
Поэтому Hydrolite 5 считается безвредным.

Благодаря очень хорошей переносимости Hydrolite 5, сенсибилизация кожи также практически исключена.
Еще одним чрезвычайно важным преимуществом Hydrolite 5 является то, что он, в отличие от обычного спирта, не оказывает подсушивающего эффекта даже в более высоких дозировках.
Hydrolite 5 также оказывает положительное влияние на стабильность, а также на тактильные свойства различных эмульсий, влияя на размер капель.



ФУНКЦИИ ГИДРОЛИТА 5:
*Кондиционирование кожи
*Растворитель



ПРЕИМУЩЕСТВА ГИДРОЛИТА 5:
*Hydrolite 5 уменьшает размер частиц эмульсии: помогает добиться большей стабильности и улучшает эстетику рецептуры.
*Отличный растворитель, особенно для труднорастворимых ингредиентов.
*Помощь в повышении биодоступности активных веществ.
*Широкий спектр антимикробной активности: действует синергично с консервантами.
*Hydrolite 5 повышает водостойкость солнцезащитных кремов.
*Полезно для составов по уходу за волосами.
*Отличный профиль безопасности



БОЛЕЕ 6 ОБОСНОВАННЫХ ОСНОВНЫХ ПРЕИМУЩЕСТВ ГИДРОЛИТА 5:
Hydrolite 5 бросает вызов определению многофункциональности, предлагая более 6 ключевых функций, повышающих эффективность продукта:

1. Усилитель эффективности
2. Увлажняющий крем
3. Эффективность ухода за волосами
4. Эстетика рецептуры
5. Стабильность эмульсии
6. Защита продукта

Hydrolite 5 также улучшает дисперсию пигментов, помогает получить более белые и блестящие эмульсии, облегчает впитывание в кожу и повышает эффективность охлаждающих агентов.
Все эти свойства обеспечивает молекула, стабильная в широком диапазоне pH (3-12) и при высоких температурах.



ПРЕИМУЩЕСТВА ГИДРОЛИТА 5:
• Превосходное увлажнение кожи.
• Уменьшает размер частиц эмульсии: помогает добиться большей стабильности и улучшает эстетику рецептуры
• Работает синергично с консервантами.
• Повышает биодоступность косметических активных веществ.
• Улучшает водостойкость солнцезащитных составов.
• Множество преимуществ по уходу за волосами
• Отличный профиль безопасности



ОСОБЕННОСТИ ГИДРОЛИТА 5:
• Алкандиол растительного происхождения
• Обладает сильным увлажняющим действием и широким антибактериальным спектром.
• Улучшает дисперсию пигмента
• Уменьшает частицы эмульсии
• Нелипкий, увлажнитель, усилитель
• Отличный солюбилизатор
• Стабилизатор эмульсии
• Усилитель биодоступности
• Улучшает эстетику рецептуры



КОСМЕТИЧЕСКОЕ ДЕЙСТВИЕ ГИДРОЛИТА 5:
- усиливает действие активных ингредиентов
- увлажняет кожу (+10% к увлажнению при добавлении 3% Hydrolite 5)
- улучшает сенсорные характеристики составов
- улучшает эстетику конечного продукта
- Hydrolite 5 улучшает интенсивность и однородность цвета декоративной косметики.
- повышает защиту микробиологических свойств
- соэмульгатор
- снижает липкость полимеров в рецептуре
- создает ощущение бархатистой легкости в составе
- Hydrolite 5 усиливает активное действие гидрофильного антиоксиданта карнозина, повышая его биодоступность. (этот антиоксидант содержится, например, в СО2-экстракте розмарина или шалфея
- За счет снижения дозировки активного ингредиента Hydrolite 5 помогает снизить затраты.



ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ГИДРОЛИТА 5:
- 100% углерод биологического происхождения
- Одобрено КОСМОС
- Индекс натуральности: 1
- Происхождение: сахарный тростник.
- Использование жома (побочного продукта сахарного производства)



ПРЕТЕНЗИИ ГИДРОЛИТА 5:
*Противомикробные препараты
*Увлажняющие агенты
*водостойкий/водонепроницаемый
*увлажняющий
*Загустители и стабилизаторы
*Увлажняющие агенты
*защита
*био/органический



СВОЙСТВА ГИДРОЛИТА 5:
Hydrolite 5 является многофункциональным в косметическом продукте, поскольку: - Улучшает способность кожи удерживать воду за счет увеличения ее гидратации на 10% (3%, одно применение на 13 добровольцев - гель для рук, считая через 1, 2, 3 и 4 часа). ) -
Hydrolite 5 обладает противомикробными свойствами.

Hydrolite 5 действует как растворитель – улучшает текстуру эмульсий и стабилизирует их за счет уменьшения размера капель жира в них.
Hydrolite 5 стабилен в косметических продуктах с pH от 3,0 до 12,0.
Hydrolite 5 сохраняет стабильность при хранении в закрытом, защищенном от света контейнере, в сухом, прохладном месте.



ФУНКЦИИ ГИДРОЛИТА 5:
*Кондиционирование кожи
*Растворитель



ДОЗИРОВКА ГИДРОЛИТА 5:
Дозировка Hydrolite 5 может варьироваться в зависимости от конкретной рецептуры продукта.
Hydrolite 5 обычно используется в концентрациях от 1% до 5% в средствах по уходу за кожей и волосами.



МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИМЕНЕНИЯ ГИДРОЛИТА 5:
Hydrolite 5n считается безопасным для использования в косметике, но рекомендуется следовать рекомендациям производителя по дозировке и проводить пластыри перед использованием на больших участках кожи, чтобы избежать возможных аллергических реакций или раздражения.



ФУНКЦИИ ГИДРОЛИТА 5:
Увлажнитель, противомикробный, растворяет ароматизаторы, снижает поверхностное натяжение воды, улучшает антиоксидантный эффект, улучшает цвет окрашенных продуктов, увеличивает проницаемость кожи, что способствует лучшему проникновению активных ингредиентов.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ГИДРОЛИТА 5:
Молекулярный вес: 104,15 г/моль
XLogP3-AA: 0,2
Количество доноров водородной связи: 2
Количество акцепторов водородной связи: 2
Количество вращающихся облигаций: 3
Точная масса: 104,083729621 г/моль.
Моноизотопная масса: 104,083729621 г/моль.
Топологическая площадь полярной поверхности: 40,5 Å ²
Количество тяжелых атомов: 7
Официальное обвинение: 0
Сложность: 37,1

Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атомов: 1
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Молекулярная формула: C5H12O2.
Молекулярный вес: 104,149 г/моль
УЛЫБКИ: CCCC(O)CO

Номер CAS: 5343-92-0
ИнЧИ: ИнЧИ=1/C5H12O2/c1-2-3-5(7)4-6/h5-7H,2-4H2,1H3
Ключ InChI: WCVRQHFDJLLWFE-UHFFFAOYSA-N
Номер леев: MFCD00010736
Плотность: 0,9710 г/мл
Температура вспышки: 105°C
Процентный диапазон анализа: 95% мин. (ГК)
Линейная формула: CH3(CH2)2CH(OH)CH2OH
Удельный вес: 0,971
Информация о растворимости: Растворимость в воде: смешивается.
Физическая форма: Жидкость

CAS Мин%: 96,0
Цвет: от бесцветного до желтого
Точка кипения: 206,0°С.
Инфракрасный спектр: подлинный
Индекс преломления: от 1,4387 до 1,4407.
Байльштайн: 01,II,548
Название ИЮПАК: пентан-1,2-диол.
PubChem CID: 93000
Процент чистоты: 96%
Химическое название или материал: 1,2-пентандиол, 97 %.



МЕРЫ ПЕРВОЙ ПОМОЩИ ГИДРОЛИТА 5:
-Описание мер первой помощи:
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
*В случае зрительного контакта:
Снимите контактные линзы.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Нет доступных данных



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ ГИДРОЛИТА 5:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ ГИДРОЛИТА 5:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дополнительная информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА ГИДРОЛИТА 5:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Контроль экспозиции:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Защитные очки
*Защита тела:
защитная одежда
*Защита органов дыхания:
Рекомендуемый тип фильтра: Фильтр A
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ГИДРОЛИТА 5:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ГИДРОЛИТА 5:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Возможность опасных реакций:
Нет доступных данных


HYDROLITE 6
Hydrolite 6 — прозрачная, нелипкая жидкость, подходящая для чувствительной кожи.
Hydrolite 6 — универсальный 1,2-алкандиол.


Номер CAS: 6920-22-5
Номер ЕС: 230-029-6
Номер леев: MFCD00010737
Название INCI: 1,2-ГЕКСАНДИОЛ
Химический состав: 1,2-алкандиол.
Линейная формула: CH3(CH2)3CH(OH)CH2OH
Молекулярная формула: C6H14O2.



СИНОНИМЫ:
1,2-гександиол, 6920-22-5, гексан-1,2-диол, DL-1,2-гександиол, 1,2-дигидроксигексан, 5,6-дигидроксигексан, dl-гексан-1,2-диол, MFCD00010737, TR046Y3K1G, UNII-TR046Y3K1G, (+/-)-гексан-1,2-диол, 1,2-дигидроксигексан, 1,2-гексиленгликоль, 5,6-дигидроксигексан, DL-1,2-гександиол, KMO 6 , EINECS 230-029-6, 1,2-гександиол, AI3-13210, 1,2-гександиол, 98%, EC 230-029-6, SCHEMBL53705, 1,2-гександиол, DL, DTXSID40863959, AMY11157, AKOS01591540 2 , CS-W013596, DB14108, DS-7407, PD085650, SY049796, 2,2,6,6-тетракис(гидроксимет)циклогексанол, H0688, NS00009391, F11270, EN300-1678327, J-800310, W-10464 1, Q27290177, 1 ,2-дигидроксигексан, 1,2-гексиленгликоль, 5,6-дигидроксигексан, DL-1,2-гександиол, Dermasoft Hexiol, DL-гексан-1,2-диол, Purolan® HD-LO



Hydrolite 6 представляет собой бесцветную жидкость гигроскопичной природы.
Hydrolite 6 идеально подходит для использования в качестве смягчающего, увлажняющего и увлажняющего агента в косметических средствах и средствах по уходу за кожей.
Hydrolite 6 – это водорастворимый консервант широкого спектра действия.


Hydrolite 6 является хорошим растворителем.
Hydrolite 6 — прозрачная, нелипкая жидкость, подходящая для чувствительной кожи.
Hydrolite 6 — универсальный 1,2-алкандиол.


Hydrolite 6 стабилен при высоком, низком pH и высокой температуре.
Hydrolite 6 помогает уменьшить или исключить содержание консервантов, таких как парабены, доноры формальдегида или феноксиэтанол.
Hydrolite 6 можно комбинировать с низкими дозами консервантов, таких как феноксиэтанол, и консервантами на основе кислот, такими как сорбат, бензоат и дегидроацетат, для эффективного сохранения средств личной гигиены.


Hydrolite 6 мягкий и идеально подходит для чувствительной кожи.
Hydrolite 6 дополнительно помогает солюбилизировать липофильные косметические ингредиенты, улучшать сенсорные характеристики рецептур, стабилизировать эмульсии (благодаря меньшему размеру капель) и усиливать защиту продукта.


Hydrolite 6 — это высококачественная, 100% натуральная версия 1,2-гександиола, жидкого многофункционального ингредиента для косметики.
Hydrolite 6 увлажнит кожу, улучшит сенсорный профиль составов, стабилизирует эмульсии, поможет растворить другие ингредиенты и усилит защиту продукта.


Hydrolite 6 с хорошей растворимостью в воде совместим со всеми типами рецептур.
Hydrolite 6 представляет собой бесцветную или светло-желтую жидкость с
характерный собственный запах.


Благодаря своим химическим свойствам Hydrolite 6 легко растворяется в воде и масле.
Hydrolite 6 — это 1,2-гександиол высокой чистоты, который можно использовать в средствах личной гигиены не только в качестве увлажнителя, но и в качестве безопасной замены традиционных консервантов.


Hydrolite 6 обладает широкой антимикробной способностью с ограниченным эндокринным разрушительным действием.
Производство Hydrolite 6 включает в себя процессы уменьшения нежелательного запаха 1,2-гександиола и доведения чистоты до минимум 99,5%.
Hydrolite 6 — очень известное увлажняющее средство, которое благодаря своей шелковистости используется в уходе за детьми.


Hydrolite 6 также будет эффективен для увеличения содержания влаги в коже.
Hydrolite 6 практически не имеет запаха и цвета и подходит для большинства косметических систем и соответствует нормам США, Европейского Союза (включая Данию), Японии и Китая.


Hydrolite 6 стабилизирует эмульсии и является отличным растворителем.
Hydrolite 6 подходит для использования в сфере ухода за полостью рта.
Hydrolite 6 – увлажняющий агент.


Гидролит 6 также известен под другими названиями, такими как гексан-1,2-диол и 1,2-дигидроксигексан.
Hydrolite 6 представляет собой гликолевый спирт (с двумя гидроксигруппами в положениях 1 и 2 и шестью атомами углерода), многофункциональный ингредиент, используемый в качестве растворителя, смягчающего, увлажняющего агента и консерванта в средствах по уходу за кожей и волосами.


Hydrolite 6 — прозрачная, бесцветная гигроскопичная жидкость с хорошим увлажняющим эффектом и растекаемостью.
Hydrolite 6 легко растворяется в воде и может быть легко включен в рецептуру.
Hydrolite 6 практически не имеет запаха.


Hydrolite 6 — это спирт, принадлежащий к семейству диолов или гликолей.
Этот органический химический ингредиент Hydrolite 6 содержит две гидроксильные группы (-OH) и шесть атомов углерода.
Hydrolite 6 действует как растворитель и вспомогательное поверхностно-активное вещество, повышая эффективность поверхностно-активных веществ.


Они могут действовать как пенообразователи, эмульгаторы, моющие средства, диспергаторы и смачивающие агенты в различных продуктах по уходу за кожей.
Химическая формула Hydrolite 6 — C6H14O2.
Hydrolite 6 также демонстрирует интересные свойства, повышая антимикробную эффективность многих распространенных консервантов.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ ГИДРОЛИТА 6:
Этот жидкий водорастворимый многофункциональный ингредиент Hydrolite 6 действует как смягчающее, увлажняющее и солюбилизаторное средство, а также улучшает эстетику состава и сенсорный профиль.
Hydrolite 6 также помогает защитить составы, поскольку поддерживает эффективность систем защиты косметических продуктов.


Hydrolite 6 также известен своей мягкостью, что делает его подходящим для всех типов кожи, даже для самой нежной.
Hydrolite 6 действует как многофункциональный увлажняющий крем и усилитель защиты продукта.
Hydrolite 6 стабилизирует пену растворов ПАВ.


Hydrolite 6 совместим с большинством анионных, неионных и амфотерных косметических систем и типов рецептур.
Hydrolite 6 может использоваться в обычных и экологически чистых рецептурах, а также во всех типах рецептур.
Благодаря исключительной мягкости Hydrolite 6 подходит для всех типов кожи, даже для самой нежной.


Hydrolite 6 представляет собой семейство многофункциональных устройств, отличающихся исключительной стабильностью, безопасностью и универсальностью.
В качестве усилителя защиты продукции Hydrolite 6 стал важным компонентом современных систем защиты продукции.
Промышленность использовала традиционный Hydrolite 6 на протяжении десятилетий, особенно для защиты продукции.


Hydrolite 6 теперь выходит на косметический рынок как первый полностью экологически чистый вариант.
Hydrolite 6 предназначен для использования в обычных и экологически чистых рецептурах, а также во всех типах рецептур.
По данным SpecialChem, Hydrolite 6 — это влагосвязывающий ингредиент, польза которого научно доказана для кожи и волос.


Hydrolite 6 используется в широком спектре продуктов косметической промышленности, таких как очищающие средства и средства для ванн.
Hydrolite 6 отвечает требованиям [качества и устойчивости], сочетая в себе высокую чистоту, многочисленные преимущества и [экологически] устойчивый источник сырья.


Hydrolite 6 увлажняет кожу.
Hydrolite 6 способствует растворению липофильных косметических ингредиентов.
Hydrolite 6 улучшает сенсорный профиль составов;


Hydrolite 6 стабилизирует эмульсии за счет меньшего размера капель и повышает защиту продукта.
Hydrolite 6 может использоваться во всех типах рецептур и совместим со всеми типами кожи.
Hydrolite 6 можно использовать в обычных и экологически чистых рецептурах, а также во всех типах рецептур.


Благодаря исключительной мягкости Hydrolite 6 подходит для всех типов кожи, даже для самой нежной.
Hydrolite 6 повышает консервирующую эффективность мягких органических кислот, таких как сорбат и дегидроацетат калия, что делает ненужным использование парабенов и других спорных консервантов.


Таким образом, Hydrolite 6 предлагает интересную альтернативу производителям средств по уходу за кожей для детей в контексте, когда власти Дании запретили использование пропил- и бутилпарабена в косметических продуктах для детей в возрасте до трех лет, а потребители все чаще отдают предпочтение натуральным продуктам, не содержащим консервантов. .


Hydrolite 6 — синтетический консервант, растворитель и влагосвязывающий агент.
Его основное действие в качестве консерванта направлено против бактерий, а не плесени или грибков, поэтому Hydrolite 6 никогда не будет использоваться в качестве единственного консерванта в формуле на водной основе.


Благодаря своей низкомолекулярной химической структуре Hydrolite 6 хорошо растворим в воде и может также помочь повысить эффективность других консервантов.
Hydrolite 6 также обладает улучшающими текстуру и увлажняющими свойствами при использовании в больших количествах, помогая создавать гладкие гели и сыворотки.
Уровень использования Hydrolite 6 в косметике колеблется в пределах 0,5–3%.


Hydrolite 6 поставляется в виде бесцветной жидкости.
Hydrolite 6 был проверен группой экспертов по безопасности косметических ингредиентов.
Экспертная группа пришла к выводу, что Hydrolite 6 безопасен при использовании в косметике и средствах личной гигиены.


Hydrolite 6 считается не сенсибилизирующим.
Hydrolite 6 – один из самых многофункциональных ингредиентов в косметической индустрии.
Hydrolite 6 используется в средствах по уходу за кожей и волосами, а также в косметических продуктах.


Hydrolite 6 является отличным смягчающим и увлажняющим средством, то есть сохраняет влагу на коже, одновременно смягчая ее.
Мало того, Hydrolite 6 также действует как консервант.
Hydrolite 6 предотвращает рост бактерий в рецептурах, в которых он используется, тем самым увеличивая общий срок хранения.


Гидролит 6 может подвергаться дегидратационному сочетанию, катализируемому гидридом рутения, с анилинами с образованием замещенных продуктов индола и хинолина.
Действительно многофункциональный вспомогательный ингредиент, который может выполнять несколько функций в продукте по уходу за кожей: Hydrolite 6 может придать формуле мягкость и приятное ощущение, он может действовать как увлажнитель и смягчающее средство.


Hydrolite 6 может быть растворителем для некоторых других ингредиентов (например, он помогает стабилизировать парфюмерию в водянистых продуктах), а также помогает более равномерно диспергировать пигменты в косметических продуктах.
И это еще не все: Hydrolite 6 также может усиливать антимикробную активность консервантов.


Поэтому Hydrolite 6 особенно подходит для составов с низким содержанием ароматизаторов или без них.
Приостанавливая рост микробов, Hydrolite 6 является экологически чистым консервантом и усилителем действия других консервантов.
Используемый в качестве смягчающего средства Hydrolite 6 стабилизирует эмульсии, помогая солюбилизировать другие активные ингредиенты.


В декоративной косметике и безводных формулах Hydrolite 6 используется для смачивания пигментов, контроля вязкости и липкости.
Благодаря совместимости с широким спектром ингредиентов Hydrolite 6 легко включается в рецептуры, хорошо взаимодействуя с поверхностно-активными веществами, маслами и нарушающими соединениями, улучшая ощущения, консистенцию и проникновение.


Hydrolite 6 демонстрирует хорошую совместимость с кожей (снижает раздражение или сенсибилизацию), отличный профиль биологической деградации и антиоксидантный эффект.
Этот диол содержится в Hydrolite 6 во многих очищающих средствах, кремах, лосьонах, масках, средствах по уходу за волосами и чувствительной кожей.


Hydrolite 6 – многофункциональный ингредиент, используемый в косметической промышленности.
Hydrolite 6 действует как отличный увлажнитель, сохраняя влагу на коже и одновременно смягчая ее.
Hydrolite 6 также действует как консервант, предотвращая рост бактерий в рецептурах, в которых он используется, тем самым увеличивая общий срок хранения.


Недавние исследования показали, что Hydrolite 6 обладает противовоспалительными свойствами, что делает его идеальным ингредиентом для людей с чувствительной или склонной к акне кожей.
Способность Hydrolite 6 уменьшать воспаление может помочь успокоить раздраженную кожу и уменьшить появление покраснений и пятен.
Hydrolite 6 действует как вспомогательное поверхностно-активное вещество, используемое для модификации мицелл додецилсульфата натрия.


Сообщалось о растворимости Hydrolite 6 в сверхкритическом CO2.
Гидролит 6 имеет тенденцию к самоассоциации с образованием мицеллоподобных агрегатов.
Гидролит 6 может быть использован в катализируемом рутением синтезе оксазолидин-2-онов из мочевины.



ДЛЯ ЧЕГО ИСПОЛЬЗУЕТСЯ ГИДРОЛИТ 6?
Hydrolite 6 — это ингредиент, связывающий влагу, который доказал свою пользу для кожи и волос во многих отношениях.
Hydrolite 6 используется в широком спектре продуктов косметической промышленности, таких как очищающие средства и средства для ванн.

*Уход за кожей:
Hydrolite 6 – удивительный ингредиент для очень сухой и шелушащейся кожи. Hydrolite 6 удерживает влагу в верхних слоях кожи и сохраняет ее увлажненной.
Это делает Hydrolite 6 действительно эффективным увлажнителем, который используется в продуктах по уходу за кожей, таких как увлажняющие кремы и лосьоны.

*Уход за волосами:
Hydrolite 6 помогает разглаживать и распутывать волосы благодаря высокому уровню увлажнения.
Hydrolite 6 — популярный выбор в средствах по уходу за волосами, поскольку он помогает решить многие проблемы с волосами.

*Косметическая продукция:
Hydrolite 6 действует как превосходный консервант, увеличивая срок годности продуктов.
Hydrolite 6 останавливает образование бактерий в препаратах.
Кроме того, Hydrolite 6 также является растворителем, который растворяет другие ингредиенты и помогает им равномерно распределиться в продукте.



ПРОИСХОЖДЕНИЕ ГИ��РОЛИТА 6:
Hydrolite 6 — это синтетический ингредиент, состоящий из многих химических веществ, таких как диосгенин, хризин и альфа-липоевая кислота.
Эти химические вещества полезны для кожи и волос и придают Hydrolite 6 различные полезные свойства, такие как противовоспалительные и консервирующие свойства.



ЧТО ДЕЛАЕТ ГИДРОЛИТ 6 В СОСТАВЕ?
* Смягчающее средство
*Кондиционирование волос
*Увлажнитель
*Консервант
*Сглаживание
*Растворитель



ПРОФИЛЬ БЕЗОПАСНОСТИ ГИДРОЛИТА 6:
Hydrolite 6 безопасен для кожи и волос при использовании в более низких концентрациях.
Перед полным применением рекомендуется провести патч-тест, особенно людям с очень чувствительной кожей.



АЛЬТЕРНАТИВЫ ГИДРОЛИТА 6:
* ПЕНТИЛЕН ГЛИКОЛЬ,
*КАПРИЛИЛГЛИКОЛЬ



ФУНКЦИИ ГИДРОЛИТА 6:
*Кондиционирование кожи:
Hydrolite 6 поддерживает кожу в хорошем состоянии.
*Растворитель:
Hydrolite 6 растворяет другие вещества.



ПРЕТЕНЗИИ ГИДРОЛИТА 6:
*Противомикробные препараты
*Увлажняющие агенты
*защита
*мягкость
*увлажняющий



ФУНКЦИИ ГИДРОЛИТА 6:
*Увлажнитель
* Смягчающее средство
*Растворитель
*Консервант-усилитель
*Кондиционирование кожи



ПРЕИМУЩЕСТВА ГИДРОЛИТА 6:
*Увлажнение



КАТЕГОРИИ ГИДРОЛИТА 6:
*Консервант,
*Увлажнитель,
*Растворитель,
*Усилитель текстур



ГИДРОЛИТ 6 КРАТКИЙ ОБЗОР:
*Синтетический многофункциональный ингредиент.
*Работает как консервант, растворитель, увлажнитель и усилитель текстуры.
*Активен против бактерий, а не плесени и грибков.
*Считается несенсибилизирующим в количествах, используемых в косметике.



ФУНКЦИИ ГИДРОЛИТА 6 В КОСМЕТИЧЕСКОЙ ПРОДУКЦИИ:
*КОНДИЦИОНИРОВАНИЕ КОЖИ
Hydrolite 6 поддерживает кожу в хорошем состоянии.

*РАСТВОРИТЕЛЬ
Hydrolite 6 растворяет другие вещества.



ПРЕИМУЩЕСТВА ГИДРОЛИТА 6:
Hydrolite 6 предлагает множество преимуществ
— В отрасли десятилетиями использовался традиционный Hydrolite 6, особенно для защиты продукции.
— Hydrolite 6 теперь выходит на косметический рынок как первый полностью экологически чистый вариант.
— Hydrolite 6 обладает следующими характеристиками:
— Эффективно увлажняет кожу
— Помогает растворить липофильные косметические ингредиенты.
— Улучшает сенсорный профиль составов
— Стабилизирует эмульсии за счет меньшего размера капель
— Усиливает защиту продукта



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ГИДРОЛИТА 6:
Физические свойства:
Внешний вид: бесцветная прозрачная жидкость (приблизительно).
Анализ: от 98,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Удельный вес: 0,95100 при 25,00 °C.
Индекс преломления: 1,44200 при 20,00 °C.
Точка кипения: от 223,00 до 224,00 °C при 760,00 мм рт. ст.
Давление пара: 0,019000 мм рт. ст. при 25,00 °C (расчетное значение)
Температура вспышки: > 230,00 °F TCC (> 110,00 °C)
logP (н/в): 0,520 (оценка)
Срок годности: 24,00 месяца или дольше при правильном хранении.
Хранение: хранить в сухом прохладном месте в плотно закрытой таре.
защищен от тепла и света

Растворим в: спирте, воде, воде, 2,617e+004 мг/л при 25 °C (расчетное значение).
Номер CAS: 6920-22-5
Молекулярный вес: 118,17
Байльштайн: 1719244
Номер ЕС: 230-029-6
Номер леев: MFCD00010737
Точка кипения: 223-224 °С.
Точка плавления: 2,0 °C.
Растворимость: смешивается с водой.
Молекулярный вес: 118,17 г/моль
XLogP3-AA: 0,7
Количество доноров водородной связи: 2
Количество акцепторов водородной связи: 2

Количество вращающихся облигаций: 4
Точная масса: 118,099379685 г/моль.
Моноизотопная масса: 118,099379685 г/моль.
Топологическая площадь полярной поверхности: 40,5 Å ²
Количество тяжелых атомов: 8
Официальное обвинение: 0
Сложность: 45,8
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атомов: 1
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да



МЕРЫ ПЕРВОЙ ПОМОЩИ ГИДРОЛИТА 6:
-Описание мер первой помощи:
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
*В случае зрительного контакта:
Снимите контактные линзы.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Нет доступных данных



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ ГИДРОЛИТА 6:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ ГИДРОЛИТА 6:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дополнительная информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА ГИДРОЛИТА 6:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Контроль экспозиции:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Защитные очки
*Защита тела:
защитная одежда
*Защита органов дыхания:
Рекомендуемый тип фильтра: Фильтр A
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ГИДРОЛИТА 6:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ГИДРОЛИТА 6:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Возможность опасных реакций:
Нет доступных данных


HYDROLITE CG
Hydrolite CG обладает хорошими увлажняющими свойствами.
Hydrolite CG также поддерживает эффективность косметических консервирующих систем.


Номер CAS: 1117-86-8
Номер ЕС: 214-254-7
Номер леев: MFCD00010738
Название INCI: Каприлилгликоль
Химический состав: 1,2-октандиол
Линейная формула: CH3(CH2)5CH(OH)CH2OH
Молекулярная формула: C8H18O2.



СИНОНИМЫ:
1,2-ОКТАНЕДИОЛ, 1117-86-8, октан-1,2-диол, 1,2-дигидроксиоктан, каприлилгликоль, 1,2-октиленгликоль, DTXSID9036646, CHEBI:34056, 00YIU5438U, MFCD00010738, NSC-71546, Dermosoft Octiol, LexGard O, CAPRYL GLYCOL, UNII-00YIU5438U, EINECS 214-254-7, NSC 71546, JEECIDE CAP, ORISTAR CPG, рацемический 1,2-октандиол, AI3-13058, 1,2-октандиол, 98%, EC 214-254-7, NCIOpen2_000498, SCHEMBL62856, CHEMBL3186864, DTXCID7016646, 1,2-ОКТАНЕДИОЛ [WHO-DD], BCP32882, NSC71546, Tox21_301019, LMFA05000089, (+/-)-OCTANE- 1,2-ДИОЛ, АКОС015837551, 1 ,2-октиленгликоль;октан-1,2-диол, CS-W018222, DB14589, SB45338, NCGC00248257-01, NCGC00254921-01, AS-17606, SY031445, CAS-1117-86-8, DB-027314, 010217, O0277, F21409, O-0990, 1,2-октандиол, Vetec(TM) чистота реагента, 98%, A802412, J-640303, J-660007, Q27115777, 1,2-ДИГИДРОКСИОКТАН, 1,2-ОКТАНЕДИОЛ, октан- 1,2-диол, (R,S)-октан-1,2-диол, 1,2-0-октандиол, 1,2-октандиол, 1,2-октиленгликоль, 1,2-октиленгликоль, 7,8-дигидроксиоктан , н-октан-1,2-диол, октан-1, R,S-октан-1,2-диол, 1,2-октандиол (NODiol), КАПРИЛИЛ ГЛИКОЛЬ, 1,2-ОКТАНДИОЛ, 98+%, октан -1,2-диол, 1,2-октандиол, GC 98%, 1,2-октандиол 96+%, 1,2-октандиол 98,5%, 1,2-дигидроксиоктан, 1,2-октиленгликоль, октан-1 ,2-диол, КАПРИЛИЛГЛИКОЛЬ,Октан-1,2-диол,1,2-ДИГИДРОКСИОКТАН,октан-1,,1,2-октандиол,Октан-1,2-диол,1,2-ОКТАНДИОЛ,1,2 -OCLандиол, 1,2-0-октандиол, н-октан-1,2-диол, октан-1,2-диол, 1,2-октандиол, каприлилгликоль, гликоль каприлил, 1,2-дигидроксиоктан, 1,2-октилен гликоль,



Hydrolite CG, 1,2-октандиол, является многофункциональным увлажняющим ингредиентом.
Hydrolite CG поддерживает эффективность косметических консервирующих систем, одновременно снижая и/или устраняя необходимость в парабенах, изотиазолинонах и феноксиэтаноле.


Hydrolite CG — многофункциональный ингредиент, который действует как смягчающее, увлажняющее, диспергирующее пигменты и регулятор вязкости.
Hydrolite CG также помогает защитить составы, поскольку поддерживает эффективность систем защиты косметических продуктов.
Hydrolite CG — 1,2-октандиол, многофункциональное увлажняющее средство.
ингредиент.


Hydrolite CG – это косметическое сырье.
Этот новый сорт каприлилгликоля обладает всеми свойствами, преимуществами и высоким качеством синтетического сорта Hydrolite CG с большей степенью устойчивости благодаря 100% биологическому производству.


Hydrolite CG обладает хорошими увлажняющими свойствами.
Hydrolite CG также поддерживает эффективность косметических консервирующих систем.
Hydrolite CG используется в косметике для волос и кожи.


Hydrolite CG приносит множество преимуществ для рецептур, таких как увлажнение, а также антиоксидантные свойства, а также обеспечивает полную защиту продукта за счет поддержания микробиома.
Hydrolite CG — превосходный усилитель консервантов.


Hydrolite CG хорошо сочетается с низким содержанием консервантов для защиты широкого спектра действия.
Hydrolite CG отлично подходит для эмульсий и безводных продуктов.
Hydrolite CG стабилен при высоком/низком pH и высокой температуре.


Hydrolite CG помогает уменьшить или исключить использование консервантов, таких как парабены, доноры формальдегида или феноксиэтанол.
Hydrolite CG можно комбинировать с низкими дозами консервантов, таких как феноксиэтанол, и консервантами на кислотной основе, такими как сорбат, бензоат и дегидроацетат, для эффективного сохранения средств личной гигиены.


Hydrolite CG на 100% биоразлагаем и не содержит ГМО.
Hydrolite CG имеет сертификаты Халяль и Кошер.
Hydrolite CG представляет собой легкоплавкое твердое вещество от бесцветного до белого цвета.


Hydrolite CG является потенциальным педикулицидом и полезен для клинического лечения головной вши.
Hydrolite CG зарегистрирован в соответствии с Регламентом REACH и производится и/или импортируется в Европейскую экономическую зону в объеме от ≥ 1 000 до < 10 000 тонн в год.


Hydrolite CG представляет собой соединение, используемое при получении пальмитатов галогидрина.
Гидролит CG, также известный как каприлилгликоль, представляет собой диол с молекулярной формулой CH3(CH2)5CHOHCH2OH.
Hydrolite CG представляет собой октандиол.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ ГИДРОЛИТА CG:
Hydrolite CG также используется в лакокрасочных материалах, суспензиях, бумажных фабриках и системах циркуляции воды для эффективной защиты от бактерий и грибков.
Hydrolite CG используется в качестве смягчающего, увлажняющего и увлажняющего агента в косметических средствах и средствах по уходу за кожей.


Hydrolite CG — смягчающее средство с увлажняющими свойствами, которое также можно использовать в качестве косметического стабилизатора.
В сочетании с феноксиэтанолом эти два ингредиента действуют вместе как противомикробное средство.
Hydrolite CG — новое поверхностно-активное вещество, используемое для лечения головной вши.


Hydrolite CG также используется в косметической промышленности в составе солнцезащитных гелей и средств для макияжа глаз.
Hydrolite CG имеет множество применений.
Hydrolite CG используется для улучшения разделения органических кислот и оснований методом ВЭЖХ и для синтеза пальмитатов галогенгидрина.


Кроме того, Hydrolite CG изучается на предмет его потенциального использования в качестве педикулицида, и было доказано, что он эффективен против заражения вшами.
Hydrolite CG является распространенным компонентом многих кремов и мазей, где он используется в качестве средства для ухода за кожей.
Также отмечено, что Hydrolite CG обладает некоторой антимикробной (консервирующей) способностью.


Hydrolite CG используется в косметике, как увлажняющий крем с антибактериальной активностью.
Hydrolite CG используется в средствах для ванн и шампунях с эффектом загущения и стабилизации пены.
Hydrolite CG использовался в качестве органического модификатора для улучшения разделения органических кислот и оснований методом ВЭЖХ.


Гидролит CG также использовался при получении пальмитатов галогидрина.
Гидролит CG классифицируется как диол и алифатический спирт, что указывает на его происхождение из углеводорода.
Hydrolite CG играет роль в синтезе различных органических соединений, включая полиуретаны, полиэфиры и полиамиды.


Hydrolite CG представляет собой соединение, используемое при получении пальмитатов галогидрина.
Hydrolite CG используется в следующих продуктах: косметика и средства личной гигиены, фармацевтические препараты, духи и ароматизаторы, биоциды (например, дезинфицирующие средства, средства для борьбы с вредителями) и лабораторные химикаты.


Hydrolite CG используется для производства: химикатов и .
Другие выбросы Hydrolite CG в окружающую среду могут произойти в результате: использования внутри помещений в качестве технологической добавки.
Hydrolite CG используется в следующих продуктах: косметика и средства личной гигиены, фармацевтические препараты, духи и ароматизаторы, а также чернила и тонеры.


Выбросы Hydrolite CG в окружающую среду могут происходить при промышленном использовании: при приготовлении смесей.
Hydrolite CG используется в следующих продуктах: косметике, средствах личной гигиены и фармацевтических препаратах.
Hydrolite CG используется в следующих сферах: здравоохранение.


Hydrolite CG используется для производства: химикатов.
Выбросы Hydrolite CG в окружающую среду могут происходить в результате промышленного использования: в технологических вспомогательных средствах на промышленных объектах и в качестве промежуточного этапа дальнейшего производства другого вещества (использование промежуточных продуктов).


Hydrolite CG используется потребителями, профессиональными работниками (широко распространенное применение), при составлении рецептур или переупаковке, на промышленных объектах и в производстве.
Hydrolite CG используется в следующих продуктах: моющие и чистящие средства, косметика и средства личной гигиены, биоциды (например, дезинфицирующие средства, средства борьбы с вредителями), парфюмерия и ароматизаторы, фармацевтические препараты, средства по уходу за воздухом, полироли и воски.


Выбросы Hydrolite CG в окружающую среду могут происходить в результате промышленного использования: производства вещества.
Другие выбросы Hydrolite CG в окружающую среду могут произойти в результате использования внутри помещений в качестве технологической добавки и при использовании на открытом воздухе в качестве технологической добавки.
Hydrolite CG рекомендуется для ухода за волосами и кожей.


Hydrolite CG также помогает защитить составы, поскольку поддерживает эффективность систем защиты косметических продуктов.
Hydrolite CG поддерживает эффективность косметических консервирующих систем, одновременно снижая и/или устраняя необходимость в парабенах, изотиазолинонах и феноксиэтаноле.


Косметическое применение Hydrolite CG: кондиционирование волос, увлажнители, кондиционирование кожи и смягчающее средство для кондиционирования кожи.
Hydrolite CG — это 1,2-октандиол, многофункциональный ингредиент, который действует как смягчающее и увлажняющее средство.
Hydrolite CG также помогает защитить составы, поскольку поддерживает эффективность систем защиты косметических продуктов.


Hydrolite CG действует как многофункциональный увлажняющий крем и усилитель защиты продукта.
Hydrolite CG также может улучшить сенсорное восприятие составов, улучшить дисперсию пигментов и добавить смачивающие свойства.
Hydrolite CG совместим с большинством анионных, неионных и амфотерных косметических систем и большинством типов рецептур.


-Применение Hydrolite CG:
Диолы способствуют высокой растворимости в воде, гигроскопичности и реакционной способности со многими органическими соединениями, обычно с линейной и алифатической углеродной цепью.
Hydrolite CG, линейный диол, содержащий две первичные гидроксильные группы, обладает бактериостатическими и бактерицидными свойствами, которые используются в косметике в качестве консерванта.



СВОЙСТВА ГИДРОЛИТА ЦГ:
Увлажнение: +15% по сравнению с необработанной кожей через 4 часа (in vivo).
• Уважает микробиом кожи.
• Совместное смачивание: улучшает дисперсию пигментов.
• Усилитель защиты продукта
• Подходит для ухода за полостью рта.
• От бесцветного до белого, от жидкого до твердого состояния, со слабым характерным запахом.
• Водорастворимый
• Дозировка: до 2%
• pH при использовании: от 3 до 12.
• До 100°С



ПРЕТЕНЗИИ ГИДРОЛИТА CG:
*Увлажняющие агенты
*Противомикробные препараты
*сенсорное улучшение
*защита
*увлажняющий



МЕТОДЫ ПРОИЗВОДСТВА ГИДРОЛИТА ЦГ:
Гидролит CG может быть получен эпоксидированием 1-олефина надмуравьиной кислотой, продуктом реакции пероксида водорода и муравьиной кислоты, гидроксилированием водой или переэтерификацией сложного эфира, полученного побочной реакцией с метанолом.



МЕТОДЫ ОЧИСТКИ ГИДРОЛИТА ЦГ:
Диол перегоняют в вакууме и/или перекристаллизовывают из петролейного эфира.
-нафтилуретан имеет m 112-114о.
S-(-)-Октан-1,2-диол [87720-91-0] также кристаллизуется из петролейного эфира с m 35-37о и D-4,7о (с 35, EtOH); R-(+)-октан-1,2-диол [87720-90-9] имеет аналогичные свойства, но с положительным оптическим вращением.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ГИДРОЛИТА ЦГ:
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Температура плавления: от 36,00 до 38,00 °C. @ 760,00 мм рт. ст.
Точка ��ипения: от 243,00 до 244,00 °C. @ 760,00 мм рт.ст. (расчетное значение)
Точка кипения: от 131,00 до 133,00 °C. @ 10,00 мм рт. ст.
Давление пара: 0,006000 мм рт. ст. при 25,00 °C. (стандартное восточное время)
Температура вспышки: 228,00 °F. TCC (109,10 °C) (оценка)
logP (в/в): 1,539 (оценка)
Растворим в:
алкоголь
вода, 2933 мг/л при 25 °C (расчетное значение)
Нерастворим в: воде
Молекулярный вес: 146,23 г/моль

XLogP3: 1,8
Количество доноров водородной связи: 2
Количество акцепторов водородной связи: 2
Количество вращающихся облигаций: 6
Точная масса: 146,130679813 г/моль.
Моноизотопная масса: 146,130679813 г/моль.
Топологическая площадь полярной поверхности: 40,5 Å ²
Количество тяжелых атомов: 10
Официальное обвинение: 0
Сложность: 64,3
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атомов: 1

Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да
Молекулярная формула/молекулярный вес: C8H18O2 = 146,23.
Физическое состояние (20 °C): Твердое
Температура хранения: Комнатная температура
(Рекомендуется хранить в прохладном и темном месте, <15 °C)
РН КАС: 1117-86-8
Регистрационный номер Reaxys: 1719619
Идентификатор вещества PubChem: 87574263
Номер леев: MFCD00010738

Номер CB: CB8747116
Молекулярная формула: C8H18O2.
Молекулярный вес: 146,23
Номер леев: MFCD00010738
Файл MOL: 1117-86-8.mol
Точка плавления: 36-38 °C (лит.)
Точка кипения: 131-132 °C при 10 мм рт. ст. (лит.)
Плотность: 0,914
Плотность пара: >1 (по сравнению с воздухом)
Давление пара: 0,28 Па при 25 °C.
Индекс преломления: 1,4505 (оценка)
Температура вспышки: > 230 °F

Температура хранения: в сухом запечатанном виде, комнатная температура.
Растворимость: 3 г/л (20 °C)
pKa: 14,60 ± 0,10 (прогнозируется)
Форма: Твердое вещество с низкой температурой плавления
Цвет: от бесцветного до белого
Растворимость в воде: 3 г/л (20 °C).
РН: 1719619
LogP: 2,1 при 25 °C
Ссылка на базу данных CAS: 1117-86-8 (ссылка на базу данных CAS)
Оценка еды по версии EWG: 1
FDA UNII: 00YIU5438U
Справочник по химии NIST: 1,2-октандиол (1117-86-8)
Система регистрации веществ EPA: 1,2-октандиол (1117-86-8)

КАС: 1117-86-8
Формула: C8H18O2
Молекулярный вес: 146,23 г/моль
Количество: 1X250MG
Условия хранения: 20 °C.
Химическая формула: C8H18O2.
Молярная масса: 146,227 g/mol
Внешний вид: Белый полутвердый
Температура плавления: от 30 до 35 ° C (от 86 до 95 ° F; от 303 до 308 К).
Точка кипения: 140 ° C (284 ° F; 413 К) при 16 мм рт. ст.
Номер CAS: 1117-86-8
Синонимы: октан-1,2-диол.
Молекулярная форма: C8H18O2

Внешний вид: нет данных
Мол. Вес: 146,23
Хранение: 2–8 °C в холодильнике.
Химическое название: 1,2-октандиол/октан-1,2-диол/каприлилгликоль.
Номер CAS: 1117-86-8
Молекулярная формула: C8H18O2.
Молекулярный вес: 146,23
Внешний вид: Бесцветная жидкость или белое твердое вещество.
Анализ: 98% (мин)
Точка плавления: 36-38 °С.
Номер CAS: 1117-86-8
Молекулярный вес: 146,227
Плотность: 0,9 ± 0,1 г/см³.

Точка кипения: 243,0 ± 8,0 °C при 760 мм рт.ст.
Молекулярная формула: C8H18O2.
Точка плавления: 36-38 °C (лит.)
Молекулярная формула: C8H18O2.
Молекулярный вес: 146,227
Температура вспышки: 109,1 ± 13,0 °C.
Точная масса: 146,130676.
ПСА: 40,46000
ЛогП: 1,32
Плотность пара: >1 (по сравнению с воздухом)
Давление пара: 0,0 ± 1,1 мм рт.ст. при 25 °C.
Индекс преломления: 1,453
Растворимость в воде: 3 г/л (20 °C).



МЕРЫ ПЕРВОЙ ПОМОЩИ ГИДРОЛИТА CG:
-Описание мер первой помощи:
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
*В случае зрительного контакта:
Снимите контактные линзы.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Нет доступных данных



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ HYDROLITE CG:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ ГИДРОЛИТА CG:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дополнительная информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА ГИДРОЛИТА CG:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Контроль экспозиции:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Защитные очки
*Защита тела:
защитная одежда
*Защита органов дыхания:
Рекомендуемый тип фильтра: Фильтр A
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ГИДРОЛИТА CG:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ГИДРОЛИТА CG:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Возможность опасных реакций:
Нет доступных данных


HYDROLYZED COLLAGEN
HYDROLYZED GELATIN, N° CAS : 68410-45-7, Nom INCI : HYDROLYZED GELATIN, N° EINECS/ELINCS : 270-082-2, Ses fonctions (INCI): Agent d'entretien de la peau : Maintient la peau en bon état
HYDROLYZED KERATIN
HYDROLYZED MILK PROTEIN; Hydrolyzed protein CAS Number‎: ‎92797-39-2
HYDROLYZED MILK PROTEIN
Hydrolyzed milk protein; Protein hydrolysates, milk; Proteins, milk, hydrolysate. cas no: 8049-98-7
HYDROLYZED RICE PROTEIN
soy protein hydrolyzate; soy protein hydrolyzate with enzyme-modified lecithin; soyaline; soybean peptone cas no: 68607-88-5
HYDROLYZED SOY PROTEIN
manduline; hydrolyzed prunus amugdalus dulcis protein; hydrolysate of sweet almond cas no: 235433-31-5
HYDROLYZED SWEET ALMOND PROTEIN
HYDROLYZED WHEAT PROTEIN; Glutens, enzyme-modified; WHEATPROTEINHYDROLYSATE; Wheat gluten, enzyme-modified;HYDROYZED WHEAT PROTEIN; Hydrolyzed Wheat Protein Concentrate cas no: 70084-87-6
HYDROLYZED WHEAT PROTEIN
HYDROQUINONE; 1,4-Dihydroxybenzene; p-Dihydroxybenzene; 1,4-Benzenediol; Quinol; 1,4-benzenediol; p Benzendiol; Benzoquinol; 1,4-Hydroxybenzene; p-Hydroquinone; p-Dihydroxybenzene; 1,4-Benzendil; Aida; Black and White Bleaching Cream; Eldoquin; Elopaque; quinnone; 1, 4-dihydroxy-benzeen cas no: 123-31-9
HYDROQUINONE
1,4-Dihydroxybenzene; Quinol; 1,4-Dihydroxybenzene; p-Dihydroxybenzene; 1,4-Benzenediol; Quinol; 1,4-benzenediol; p Benzendiol; Benzoquinol; 1,4-Hydroxybenzene; p-Hydroquinone; p-Dihydroxybenzene; 1,4-Benzendil; Aida; Black and White Bleaching Cream; Eldoquin; Elopaque; quinnone; 1, 4-dihydroxy-benzeen; 1,4-Dihydroxybenzen; 1,4-Dihydroxy-benzol; 1,4- Diidrobenzene; Hydrochinon; Idrochinone ;Hidroquinoa; CAS NO:123-31-9
HYDROVITON 24

Hydroviton 24 — это усовершенствованный 24-часовой увлажняющий комплекс, состоящий из синергической смеси натуральных увлажняющих факторов.
Hydroviton 24 не является окклюзивным, поэтому позволяет коже дышать и может быть легко сформулирован в продуктах.
Hydroviton 24 также не является продуктом животного происхождения, не содержит консервантов, экономически эффективен, имеет светлый цвет и не имеет запаха в вашей формуле.

CAS: 50-70-4
MF: C6H14O6
MW: 182.17
EINECS: 200-061-5

Синонимы
Esasorb; Glucitol, D-; Gulitol; Шестиатомный спирт; Hydex 100 гран.206; Karion, сионит; L-gulitol; Liponic 70-NC

Hydroviton 24 действует как увлажнитель.
Hydroviton 24 — это синергическая смесь NMF, увлажнителей, гигроскопичных веществ, омолаживающих кожу веществ, защитных веществ для кожи и усилителей проникновения.
Hydroviton 24 — это продукт неживотного происхождения, не содержащий консервантов.
Hydroviton 24 дерматологически и токсикологически безопасен и может легко входить в состав продуктов.
Hydroviton 24 обеспечивает 24-часовой увлажняющий эффект, продемонстрированный в тестах in vivo.
Hydroviton 24 используется в составах для ухода за кожей.
Hydroviton 24 соответствует требованиям Китая.
Многоатомный спирт CH2OH(CHOH)4CH2OH, полученный из глюкозы; Hydroviton 24 изомерен маннитолу.
Hydroviton 24 содержится в плодах шиповника и рябины и производится путем каталитического восстановления глюкозы водородом.
Hydroviton 24 используется в качестве подсластителя (в диабетических продуктах питания), а также в производстве витамина С и различных косметических средств, продуктов питания и лекарств.

Применение
Hydroviton 24 — это жидкий увлажняющий фактор, состоящий из смеси аминокислоты, лактата натрия, мочевины, аллантоина и поливалентных спиртов.
Hydroviton 24 улучшает естественные увлажняющие факторы (NMF) в корнеоцитах рогового слоя, обеспечивая увлажнение кожи в течение 24 часов.
Hydroviton 24 — это неокклюзионный ингредиент, позволяющий коже дышать.

Химические свойства Hydroviton 24
Точка плавления: 98-100 °C (лит.)
альфа: 4 º (по eur. pharm.)
Точка кипения: bp760 105°
Плотность: 1,28 г/мл при 25 °C
Плотность пара: <1 (по сравнению с воздухом)
Давление пара: <0,1 мм рт. ст. (25 °C)
Показатель преломления: n20/D 1,46
FEMA: 3029 | D-СОРБИТОЛ
Fp: >100°C
Температура хранения: комнатная
Растворимость: Очень хорошо растворим в воде, мало растворим в этаноле
Форма: жидкость
pka: pKa (17,5°): 13,6
Цвет: Белый
Удельный вес: 1,28
Запах: Без запаха
Диапазон pH: 5 - 7 при 182 г/л при 25 °C
PH: 5,0-7,0 (25℃, 1M в H2O)
Оптическая активность: [α]20/D 1,5±0,3°, c = 10% в H2O
Тип запаха: карамельный
Растворимость в воде: РАСТВОРИМЫЙ
Чувствительность: Гигроскопичный
λмакс λ: 260 нм Aмакс: 0,04
λ: 280 нм Aмакс: 0,045
Merck: 14,8725
BRN: 1721899
Диэлектрическая проницаемость: 33,5 (27℃)
Стабильность: Стабильно. Избегайте сильных окислителей. Защищать от влаги.
InChIKey: FBPFZTCFMRRESA-JGWLITMVSA-N
LogP: -4,67
Ссылка на базу данных CAS: 50-70-4 (Ссылка на базу данных CAS)
Ссылка на химию NIST: Hydroviton 24 (50-70-4)
Система реестра веществ EPA: Hydroviton 24 (50-70-4)

Применение
Hydroviton 24 — это увлажнитель, представляющий собой полиол (многоатомный спирт), получаемый путем гидрирования глюкозы с хорошей растворимостью в воде и плохой растворимостью в масле. Hydroviton 24 примерно на 60% слаще сахара и имеет калорийность 2,6 ккал/г.
Hydroviton 24 очень гигроскопичен и имеет приятный сладкий вкус.
Hydroviton 24 сохраняет влажность в тертом кокосе, кормах для домашних животных и конфетах.
В замороженных десертах без сахара Hydroviton 24 понижает температуру замерзания, добавляет твердые частицы и придает некоторую сладость.
Hydroviton 24 используется в низкокалорийных напитках для придания консистенции и вкуса.
Hydroviton 24 используется в диетических продуктах, таких как конфеты без сахара, жевательная резинка и мороженое.
Hydroviton 24 также используется в качестве модификатора кристаллизации в мягких кондитерских изделиях на основе сахара.

Способ производства
1. Залейте приготовленный 53%-ный водный раствор глюкозы в автоклав, добавив никелевый катализатор в количестве 0,1% от веса глюкозы; после замены воздуха добавьте водород при давлении около 3,5 МПа, 150 °C и pH 8,2-8,4; контролируйте конечную точку с остаточным содержанием сахара ниже 0,5%.
После осаждения в течение 5 мин пропустите полученный раствор сорбита через ионообменную смолу для получения очищенного продукта.
Фиксированное количество расхода материала: соляная кислота 19 кг/т, каустическая сода 36 кг/т, твердое основание 6 кг/т, порошок алюминиево-никелевого сплава 3 кг/т, перорально вводимая глюкоза 518 кг/т, активированный уголь 4 кг/т.

2. Гидровитон 24 получают путем гидрирования глюкозы с никелевым катализатором при высокой температуре и высоком давлении, после чего продукт дополнительно очищают через ионообменную смолу, концентрируют, кристаллизуют и разделяют для получения конечного продукта.

3. Отечественное производство сорбита в основном применяется непрерывно или периодически гидрированием рафинированной глюкозы, полученной при осахаривании крахмала:
C6H12O6 + H2 [Ni] → C6H14O6
Залить приготовленный 53% водный раствор глюкозы в автоклав, добавив никелевый катализатор в количестве 0,1% от веса глюкозы; после замены воздуха добавить водород при давлении около 3,5 МПа, 150 °C и pH 8,2-8,4; контролировать конечную точку с остаточным содержанием сахара менее 0,5%. После осаждения в течение 5 мин, пропустить полученный раствор сорбита через ионообменную смолу для получения очищенного продукта.
Вышеуказанный процесс прост без необходимости изоляции перед получением качественной продукции, а также без загрязнения «тремя отходами».
Однако для крахмала выход составляет всего 50%, и, следовательно, имеет более высокую стоимость.
Внедрение новой технологии путем прямого гидрирования на осахаривающем растворе крахмала позволяет получить выход до 85%.
HYDROVITON PLUS 2290
Hydroviton Plus 2290 представляет собой водорастворимое соединение, которое легко приготовить.
Hydroviton Plus 2290 – активный ингредиент, который обеспечивает немедленное и длительное увлажнение кожи.


Номер CAS: 7647-14-5, 69-79-4, 50-99-7, 9067-32-7, 97-59-6, 28874-51-3, 77-92-9, 5949-29-1 , 57-48-7, 56-81-5, 57-13-6, 5343-92-0
Название INCI: Вода (Aqua) (и) Пентиленгликоль (и) Глицерин (и) Фруктоза (и) Мочевина (и) Лимонная кислота (и) Гидроксид натрия (и) Мальтоза (и) Натрий PCA (и) Хлорид натрия (и) ) Лактат натрия (и) Трегалоза (и) Аллантоин (и) Гиалуронат натрия (и) Глюкоза



Hydroviton Plus 2290 — это умная смесь небольших гигроскопичных молекул, которые проникают в кожу и восстанавливают NMF.
Hydroviton Plus 2290 — это увлажняющий крем мгновенного действия длительного действия, обеспечивающий интенсивное увлажнение волос и увлажнение кожи в течение 72 часов.
Hydroviton Plus 2290 — это умная смесь небольших гигроскопичных молекул, которые проникают в кожу и восстанавливают NMF.


Hydroviton Plus 2290 — это увлажняющий крем мгновенного действия длительного действия, обеспечивающий интенсивное увлажнение волос и увлажнение кожи в течение 72 часов.
Hydroviton Plus 2290 — бесцветная прозрачная жидкость, используемая в увлажняющих средствах и средствах по уходу за волосами.
Гидровитон Плюс 2290 представляет собой прозрачную жидкость от бесцветного до светло-желтого цвета без запаха.


Hydroviton Plus 2290 представляет собой водорастворимое соединение, которое легко приготовить.
Hydroviton Plus 2290 – активный ингредиент, который обеспечивает немедленное и длительное увлажнение кожи.


Hydroviton Plus 2290 — это умная смесь небольших гигроскопичных молекул, которые проникают в кожу и восстанавливают NMF.
Hydroviton Plus 2290 — это увлажняющий крем мгновенного действия длительного действия, обеспечивающий интенсивное увлажнение волос и увлажнение кожи в течение 72 часов.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ HYDROVITON PLUS 2290:
Hydroviton Plus 2290 — это увлажняющий крем мгновенного действия длительного действия, обеспечивающий интенсивное увлажнение волос и увлажнение кожи в течение 72 часов.
Hydroviton Plus 2290 действует как увлажняющий агент. Обеспечивает мгновенный, длительный и интенсивный эффект на волосы и кожу (48 часов).
Hydroviton Plus 2290 – это природный биомиметический синергетический комплекс с гиалуроновой кислотой.


Hydroviton Plus 2290 безопасен для кожи: содержит сахара и увлажняющие вещества, естественным образом присутствующие в коже.
Hydroviton Plus 2290 обеспечивает кратковременное и длительное увлажнение для максимального увлажнения кожи.
72 часа интенсивного и непрерывного увлажнения.


Hydroviton Plus 2290 поддерживает и восстанавливает содержание воды в эпидермисе, увлажняя и придавая коже эластичность.
Кроме того, Hydroviton Plus 2290 улучшает управление собственными запасами влаги кожи.


Hydroviton Plus 2290 увеличивает содержание воды в волосах на 51%.
Hydroviton Plus 2290 и Hydroviton Plus – клинически доказано, что после однократного применения повышается гидратация кожи на 17% на срок до 48 часов и на 10% на срок до 72 часов.


В частности, Hydroviton Plus 2290 – биомиметический комплекс, способный проникать в кожу и сохраняться в течение длительного времени.
Основанный на смеси натуральных ингредиентов, Hydroviton Plus 2290 действует посредством методов двойного увлажнения, сочетая небольшие гигроскопичные молекулы (чья роль заключается в восстановлении способности кожи удерживать воду) и полимеры (которые создают на поверхности кожи пленку, защищающую от возможного обезвоживания). ).


Hydroviton Plus 2290 – увлажняющий комплекс длительного действия, насыщает кожу высокогигроскопичными веществами, удерживающими и связывающими воду в эпидермисе; растительные церамиды – восстанавливают и дополняют естественные липиды межклеточного цемента рогового слоя.


Запечатывая цемент, они предотвращают выход воды из эпидермиса (TEWL), увлажняют и разглаживают; экстракты листьев розмарина, коры ивы и березы – обладают вяжущими, бактериостатическими и разглаживающими свойствами.
Улучшают цвет кожи и нормализуют секреторную деятельность сальных желез; аллантоин – увлажняет и успокаивает раздражения.



HYDROVITON PLUS 2290 СОСТОИТ:
- Натуральные увлажняющие факторы (такие как лактат натрия, молочная кислота, мочевина, аллантоин, натрий PCA, глицерин, Hydrolite 5).
Благодаря своим гигроскопическим свойствам они удерживают влагу внутри кожи и помогают поддерживать эластичность кожи.

- Натуральные увлажняющие сахара (такие как D-трегалоза, мальтоза и фруктоза).
Они обладают превосходными увлажняющими свойствами и благодаря своей низкой молекулярной массе способны проникать в кожу.

- Гиалуроновая кислота
Водорастворимый Hydroviton Plus 2290 используется при комнатной температуре и предпочтительно добавляется в конце производственного процесса.
От 1% до 4% рекомендуется для таких применений, как увлажняющие кремы для лица и тела, средства по уходу за детьми, средства для рук и ног, средства после загара и т. д.

Клинические исследования показывают, что Гидровитон Плюс 2290 предотвращает обезвоживание кожи, повышает ее способность удерживать воду и предотвращает преждевременное старение кожи.

Кроме того, всего за 2 часа применения Hydroviton Plus 2290 увлажняет поверхностные слои и обеспечивает коже комфорт до 72 часов с увеличением гидратации на +10%.



КАК ИСПОЛЬЗОВАТЬ ГИДРОВИТОН ПЛЮС 2290:
Hydroviton Plus 2290 — это интенсивный увлажняющий крем, который поднимет кожу и увлажнит ее на срок до 72 часов.



ПРЕТЕНЗИИ HYDROVITON PLUS 2290:
*Увлажняющие агенты
*долгоиграющий
*увлажняющий



ПРЕИМУЩЕСТВА HYDROVITON PLUS 2290:
• Hydroviton Plus 2290 повышает увлажненность кожи.
• Hydroviton Plus 2290 подтягивает и подтягивает кожу.
• Hydroviton Plus 2290 повышает эластичность.
• Hydroviton Plus 2290 усиливает сияние.
• Hydroviton Plus 2290 разглаживает морщины.



СОСТАВ ГИДРОВИТОН ПЛЮС 2290:
• Hydroviton Plus 2290: мгновенное увлажняющее средство длительного действия, обеспечивающее увлажнение кожи на 48 часов.
• Hydroviton Plus 2290: повышает увлажненность кожи на 17% на срок до 48 часов и на 10% на срок до 72 часов.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА HYDROVITON PLUS 2290:
Номер CAS: 7647-14-5, 69-79-4, 50-99-7, 9067-32-7, 97-59-6, 28874-51-3, 77-92-9, 5949-29-1 , 57-48-7, 56-81-5, 57-13-6, 5343-92-0
Название INCI: Вода (Aqua) (и) Пентиленгликоль (и) Глицерин (и) Фруктоза (и) Мочевина (и) Лимонная кислота (и) Гидроксид натрия (и) Мальтоза (и) Натрий PCA (и) Хлорид натрия (и) ) Лактат натрия (и) Трегалоза (и) Аллантоин (и) Гиалуронат натрия (и) Глюкоза



МЕРЫ ПЕРВОЙ ПОМОЩИ ПРИ применении HYDROVITON PLUS 2290:
-Описание мер первой помощи.
*Общие советы:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промыть кожу с
вода/душ.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения.
Нет доступных данных



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ HYDROVITON PLUS 2290:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженный участок.



МЕРЫ ПОЖАРОТУШЕНИЯ HYDROVITON PLUS 2290:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дополнительная информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА HYDROVITON PLUS 2290:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Контроль экспозиции:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Защитные очки
*Защита тела:
защитная одежда
*Защита органов дыхания:
Рекомендуемый тип фильтра: Фильтр A
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ HYDROVITON PLUS 2290:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ HYDROVITON PLUS 2290:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Возможность опасных реакций:
Нет доступных данных

HYDROXYCETYL HYDROXYETHYL DIMONIUM CHLORIDE
HYDROXYCINNAMIC ACID, N° CAS : 7400-08-0, Nom INCI : HYDROXYCINNAMIC ACID, Nom chimique : 4-Hydroxycinnamic acid; 4-Coumaric acid, N° EINECS/ELINCS : 231-000-0, Ses fonctions (INCI) : Agent d'entretien de la peau : Maintient la peau en bon état
Hydroxyethyl Cellulose
hydroxyethyl cellulose; Cellulose, hydroxyethyl ether; Hydroxyethylcellulose; 2-Hydroxyethyl cellulose; Hyetellose; Natrosol; Cellosize cas no: 9004-62-0
HYDROXYETHYL CETYLDIMONIUM PHOSPHATE
HYDROXYETHYL ETHYLCELLULOSE, N° CAS : 9004-58-4, Nom INCI : HYDROXYETHYL ETHYLCELLULOSE, Classification : Composé éthoxylé, Ses fonctions (INCI), Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Agent émulsifiant : Favorise la formation de mélanges intimes entre des liquides non miscibles en modifiant la tension interfaciale (eau et huile). Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion. Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Noms français : ETHER D'HYDROXY-2 ETHYL CELLULOSE; ETHER D'HYDROXY-2 ETHYLCELLULOSE. Noms anglais : CELLULOSE ETHYL HYDROXYETHYL ETHER; CELLULOSE, ETHYL 2-HYDROXYETHYL ETHER; ETHYL 2-HYDROXYETHYL ETHER CELLULOSE; ETHYL HYDROXY ETHYL CELLULOSE; ETHYL HYDROXYETHYL CELLULOSE; ETHYLHYDROXY ETHYL CELLULOSE; ETHYLHYDROXYETHYL CELLULOSE. Utilisation: Fabrication de produits pharmaceutiques et de laques
HYDROXYETHYL METACRYLATE (HEMA)
Hydroxyethyl Metacrylate (HEMA) Applications of Hydroxyethyl metacrylate (HEMA) Polyhydroxyethylmethacrylate is hydrophobic; however, when the polymer is subjected to water it will swell due to the molecule's hydrophilic pendant group. Depending on the physical and chemical structure of the polymer, it is capable of absorbing from 10 to 600% water relative to the dry weight. Because of this property, it was one of the first materials to be successfully used in the manufacture of soft contact lenses. When treated with polyisocyanates, poly(Hydroxyethyl metacrylate (HEMA)) makes a crosslinked polymer, an acrylic resin, that is a useful component in some paints. Poly(2-hydroxyethylmethacrylate) Properties of Hydroxyethyl metacrylate (HEMA) Poly(2-hydroxyethylmethacrylate) is an inert, water-stable, nondegradable hydrogel with high transparency. The physical properties of Hydroxyethyl metacrylate (HEMA) (e.g., swelling, stiffness, rheology) can be tuned by varying cross-linking density, incorporating different chemistries through copolymerization, and introducing mesoscopic pores. Specifically, a reduction in cross-linking density results in a softer, more malleable hydrogel that may be better suited for soft tissue regeneration. Moreover, copolymerization with acetic acid, methylmethacrylate, or dextran can adjust the permanence, hydrophilicity, and cellular adhesion in vivo. Finally, the introduction of mesoscopic porogens can facilitate vascular ingrowth, improve cellular attachment, and overcome limited permeability. Although Hydroxyethyl metacrylate (HEMA) is considered nondegradable (which makes it ideally suited for long-term applications in vivo), degradable Hydroxyethyl metacrylate (HEMA) copolymers have been fabricated by the integration of enzymatically susceptible monomers (e.g., dextran) or cross-linking agents. These degradable materials show promise for controlled release of pharmaceuticals and proteins. Applications of Hydroxyethyl metacrylate (HEMA) Due to its excellent optical properties, Hydroxyethyl metacrylate (HEMA) has primarily been used in ophthalmic applications under the generic names etafilcon A and vifilcon A. In addition, it has been examined for controlled release of proteins and drugs, engineering of cardiac tissue, axonal regeneration in spinal cord injury, and replacement of intervertebral discs. However, two limitations of Hydroxyethyl metacrylate (HEMA) are its propensity for calcification and the toxicity of the 2-hydroxyethylmethacrylate monomers. Phase I testing of Hydroxyethyl metacrylate (HEMA) for corneal prostheses (keratoprosthesis) revealed calcium salt deposition within 2.5 years after implantation. At the same time, residual Hydroxyethyl metacrylate (HEMA) monomer can compromise the mechanical properties of the hydrogel, and leach into surrounding tissue with toxic effects Because 2-hydroxyethyl methacrylate is very important in macromolecular chemistry. This paper reviews the main properties of the polymers or copolymers prepared from it by summarizing the information published in articles or patients. The following plan is adopted: Preparation and purification of 2-hydroxyethyl methacrylate Polymerization and copolymerization of 2-hydroxyethyl methacrylate and physical properties Chemical modifications of monomer Chemical modifications of poly-2-hydroxyethyl methacrylate and related copolymers Grafting reactions of polymer or copolymer Applications in biomedical fields The following abbreviations will be used: Hydroxyethyl metacrylate (HEMA) for 2-hydroxyethyl methacrylate (rather than GMA, which is chiefly employed in medical journals) and Hydroxyethyl metacrylate (HEMA) for the corresponding polymers. EGDMA will be used for ethylene glycol dimethacrylate, an impurity synthesized in the preparation of monomer. Hydroxyethyl metacrylate (HEMA) is perhaps the most widely studied and used neutral hydrophilic monomer. The monomer is soluble, its homopolymer is water-insoluble but plasticized and swollen in water. This monomer is the basis for many hydrogel products such as soft contact lenses, as well as polymer binders for controlled drug release, absorbents for body fluids and lubricious coatings. As a co-monomer with other ester monomers, Hydroxyethyl metacrylate (HEMA) can be used to control hydrophobicity or introduce reactive sites. 2-Hydroxyethyl methacrylate is perhaps the most widely studied and used neutral hydrophilic monomer. The monomer is soluble, its homopolymer is water-insoluble but plasticized and swollen in water. This monomer is the basis for many hydrogel products such as soft contact lenses, as well as polymer binders for controlled drug release, absorbents for body fluids and lubricious coatings. As a co-monomer with other ester monomers, Hydroxyethyl metacrylate (HEMA) can be used to control hydrophobicity or introduce reactive sites. glycol methacrylate Technical grade: Purity %=min. 97; Acid Content %=max 1.5; EGDMA content %=max 0.2; Color=50 Because 2-hydroxyethyl methacrylate is very important in macromolecular chemistry. This paper reviews the main properties of the polymers or copolymers prepared from it by summarizing the information published in articles or patients. The following plan is adopted: Preparation and purification of 2-hydroxyethyl methacrylate Polymerization and copolymerization of 2-hydroxyethyl methacrylate and physical properties Chemical modifications of monomer Chemical modifications of poly-2-hydroxyethyl methacrylate and related copolymers Grafting reactions of polymer or copolymer Applications in biomedical fields The following abbreviations will be used: Hydroxyethyl metacrylate (HEMA) for 2-hydroxyethyl methacrylate (rather than GMA, which is chiefly employed in medical journals) and Hydroxyethyl metacrylate (HEMA) for the corresponding polymers. EGDMA will be used for ethylene glycol dimethacrylate, an impurity synthesized in the preparation of monomer. method is the reaction of ethylene oxide and methacrylic acid. The Hydroxyethyl metacrylate (HEMA) prepared by these two methods contains impurities in various percentages: e.g., methacrylic acid results from a hydrolysis reaction of Hydroxyethyl metacrylate (HEMA) and EGDMA coming from esterification between methacrylic acid or Hydroxyethyl metacrylate (HEMA) and ethylene glycol. Since Hydroxyethyl metacrylate (HEMA) is a commercial product, it seems more useful to summarize the various purification procedures rather than the numerous works about industrial preparations because the commercial product contains EGDMA and methacrylic acid in monomer proportions. The main procedures use the solubility of Hydroxyethyl metacrylate (HEMA) in water or diethyl ether and its nonsolubility in hexane. EGDMA is soluble in hexane. Therefore, Hydroxyethyl metacrylate (HEMA) is dissolved in four volumes of water and EGDMA is extracted with hexane. Then the aqueous solution of Hydroxyethyl metacrylate (HEMA) is salted to complex methacrylic acid. Hydroxyethyl metacrylate (HEMA) is extracted with diethyl ether, the solution is dried, and Hydroxyethyl metacrylate (HEMA) is distilled under vacuum. The elimination of methacrylic acid can also be carried out by soaking technical Hydroxyethyl metacrylate (HEMA) with anhydrous sodium carbonate and extracting EGDMA with hexane. Then Hydroxyethyl metacrylate (HEMA) is extracted with diethyl ether and distilled as previously described. The use of ion-exchange resins (Amberlyst A 21) is a simple method of elimination of methacrylic acid but the yield is rather poor. N,N'-Dicyclohexylcarbodiimide has also been used for the elimination of methacrylic acid, but variations in the quality of the reagent often outweigh the value of the method. Lastly, extraction of EGDMA with hexane followed by the washing of a dilute solution of Hydroxyethyl metacrylate (HEMA) in water with sodium hydroxyde or sodium bicarbonate and the extraction of Hydroxyethyl metacrylate (HEMA) with chloroform gives, after drying and evaporation of chloroform, a product of high purity for the preparation of resins for optical microscopy. The purity of the monomer can be checked by using vapor-phase chromatography, liquid chromatography, or thin layer chromatography. Detailed distillation procedures to avoid polymerization of Hydroxyethyl metacrylate (HEMA) have been described. Polymerization As for the majority of methacrylic derivatives, Hydroxyethyl metacrylate (HEMA) can be polymerized by radical initiators or by various methods (y-rays, UV, and plasma). When the monomer is purified (without EGDMA, which is a crosslinking product), a soluble polymer can be synthesized, but when the monomer contains even a low percentage of EGDMA, the prepared copolymers produce swollen gels in water and in many other solvents A summary of the main procedures of polymerization is given in Table 1. Syndiotactic Hydroxyethyl metacrylate (HEMA) has been synthesized by UV catalysis at - 40"C, and isotactic Hydroxyethyl metacrylate (HEMA) has been prepared through hydrolysis of poly(benzoxyethy1 methacrylate) which had been synthesized from the corresponding polymers with dibutyl lithium cuprate as catalyst. Physical Properties of Hydroxyethyl metacrylate (HEMA) Because Hydroxyethyl metacrylate (HEMA) has numerous applications in biomedicine, its physical properties have been widely studied. Studies of Diffusion. The permeability of Hydroxyethyl metacrylate (HEMA), used as a membrane for oxygen, has been compared to other macromolecules. The diffusion of water through hydrogels of Hydroxyethyl metacrylate (HEMA), crosslinked with low percentages of EGDMA, has also been studied. The influence of the degree of crosslinking, the diffusion laws, the measurement of the equilibrium constant with water, and a structural study of swollen gels were recently published. Mechanical and Viscoelastic Properties. These properties were summarized in two previous reviews. Composites with crosslinked Hydroxyethyl metacrylate (HEMA) have good elastic properties. The influence of aqueous solutions of sodium chloride on the elasticity of Hydroxyethyl metacrylate (HEMA) has also been studied in relation to its use for optical lenses. Viscometry, Thermal, and Dielectric Properties, and NMR Characterizations. Because the Mark-Houwink parameters in many solvents are well known, the molecular weights of Hydroxyethyl metacrylate (HEMA) can be measured by viscosity. Lastly, in order to use the Hydroxyethyl metacrylate (HEMA) in the biomedical field, the purification of polymer gel has been described. Copolymerization Reactions of Hydroxyethyl metacrylate (HEMA) Copolymerization reactions of this monomer have been studied for its fundamental properties (determination of reactivity ratios, AlfreyPrice parameters) and its applications in various fields. Some examples of block copolymerization with styrene, 2- phenyl-1,2,3-dioxaphospholane, and with macromonomers of polyamine or polyurethane can be cited. Lastly, fundamental studies on the copolymerization of methyl methacrylate with Hydroxyethyl metacrylate (HEMA) and the determination of the composition of its copolymer have been made, and a model of the copolymerization of Hydroxyethyl metacrylate (HEMA) and EDGMA was recently published. Because Hydroxyethyl metacrylate (HEMA) has a primary alcohol function a great number of nucleophilic reactions have been achieved and generally the modified monomer can be polymerized. CHEMICAL MODIFICATIONS OF Hydroxyethyl metacrylate (HEMA) AND RELATED COPOLYMERS A relatively low number of chemical modifications of Hydroxyethyl metacrylate (HEMA) have been registered because chemical modifications of the corresponding monomer as well as its polymerization are easy to achieve. GRAFTING REACTIONS OF POLYMER AND COPOLYMER By using various techniques, the grafting of Hydroxyethyl metacrylate (HEMA) and copolymers prepared with Hydroxyethyl metacrylate (HEMA) as a comonomer has been carried out with natural polymers such as cellulose, dextran, and starch. APPLICATIONS IN BIOMEDICAL FIELDS Because Hydroxyethyl metacrylate (HEMA) can be easily polymerized, possesses a hydrophilic pendant group, and can form hydrogels, an increasing number of applications have been found in various biomedical fields. Although, as previously mentioned, a complete listing of the literature references appears impossible, we have tried to present the main areas of interest for Hydroxyethyl metacrylate (HEMA), either when used alone or in combination with other chemical reagents. 7.1. Irritant and Toxic Effects First of all, the low toxicity of the monomer is widely accepted but few reports are available on the (potent) irritant effects of Hydroxyethyl metacrylate (HEMA). Intradermal injection of crude Hydroxyethyl metacrylate (HEMA) monomer at low concentrations in saline solution (-1%) was found to induce a very mild irritation in the rat, while higher concentrations (up to 20%) were associated with a pronounced reaction. Similar findings were observed with sodium benzoate (an end product of benzoyl peroxide degradation used as a polymerization initiator) emphasizing the irritant role of residues. Hydroxyethyl metacrylate (HEMA) gels implanted into muscles of rats were found to release residual irritant continuously but at a very low rate, thus inducing no cellular reaction. Hydroxyethyl metacrylate (HEMA) used at 0.01-1% concentrations was found to alter the fine structure of cultured cells with quantitative video microscopy. On the other hand, numerous clinical trials, listed hereafter within a specific organ description, have found minimal irritant reactions. Histological Embedding The use of Hydroxyethyl metacrylate (HEMA) in histological practice (i.e., the study of living tissues and cells at the microscopic level) was proposed by Rosenberg and Wichterle (1631. The hydrophilic properties of the monomer permit it to be used as a combined dehydrating agent for the tissues and as an embedding medium for electron microscopy. 2-HYDROXYETHYL METHACRYLATE 15 of pure Hydroxyethyl metacrylate (HEMA) appeared difficult to section, and they had poor resistance under an electron beam. The quality of commercially available Hydroxyethyl metacrylate (HEMA) was reported to vary considerably up to 1965. Copolymers with n-butyl methacrylate or styrene were also found less satisfactory than the epoxy resins. During the last decade, Hydroxyethyl metacrylate (HEMA) has found a new interest in light microscopy. An extensive review was made by Bennett et al. "1. Briefly, Hydroxyethyl metacrylate (HEMA) embedding is favored for light microscopy because: 1) The embedding duration is shorter than for classical methods. Hydroxyethyl metacrylate (HEMA) was used to embed large and very large specimen. 2) Preservation of tissular and cellular structures is far superior to other classical methods. This is due to the adherence of tissue sections onto the microscopic glass slides and because the resin is not removed prior to staining. 3) Sectioning is easier and semithin sections (i.e., 2 to 3 pm in thickness) can be obtained on conventional microtomes with steel or Ralph's glass knives. Furthermore, once cut, the sections spread on water and do not shrink. 4) Numerous staining methods can be performed on Hydroxyethyl metacrylate (HEMA) sections. Classical stains (excepted those having a hydro-alcoholic vehicle which makes the section swell) have been reported to work well, sometimes after minor modifications. Enzymological studies can readily be done, and large amounts of enzymes are preserved. Calcified tissue enzymes have been demonstrated on undecalcified sections. At the present time, several Hydroxyethyl metacrylate (HEMA)-based commercial kits are available. However, the slow hydrolysis of the resin makes it difficult to obtain regular results; the regenerated methacrylic acid appears to combine with basic stains, and small amounts (1.5% or less) impair correct staining by strongly obscuring the background. Several purification methods specially devoted to histotechnology have been designed. Copolymerization with dimethylamino ethyl methacrylate was proposed to complex the carboxylic groups of methacrylic acid. Hydroxyethyl metacrylate (HEMA) alone was repeatedly found to be a poor medium for calcified tissues because the size of the molecule makes it difficult to infiltrate such tissues. Combined with methyl methacrylate (MMA) or various types of aikyl methacrylates or acrylates, Hydroxyethyl metacrylate (HEMA) was shown to provide suitable embedding media. Hydroxyethyl metacrylate (HEMA) is usually polymerized by a redox reaction (benzoyl peroxide and N,N‘-dimethyl aniline), and the method has been used to embed in the cold, thus preserving enzyme activities. MONTHEARD, CHATZOPOULOS, AND CHAPPARD they induce staining artifacts. Other initiators have also been proposed (barbiturate cyclo compounds, butazolidine). Hydroxyethyl metacrylate (HEMA) has been shown to produce better sections when small amounts of crosslinkers are used. We recently showed that Hydroxyethyl metacrylate (HEMA) embedding is an inhomogeneous mechanism and that it varies according to the volume of monomer to be bulk polymerized. Dentistry Synthetic apatitic calcium phosphate cements were prepared with a Hydroxyethyl metacrylate (HEMA) hydrogel containing tetracalcium phosphate and dicalcium phosphate. Hydroxyethyl metacrylate (HEMA) was found to be a highly biocompatible and resorbable material for primary teeth endodontic filling. However, due to its hydrophilicity, Hydroxyethyl metacrylate (HEMA) appeared more useful in dentistry as a bonding reagent between dentine and other types of restorative resins; varying mixtures of Hydroxyethyl metacrylate (HEMA) and glutaraldehyde were investigated. Other bonding complexes using Hydroxyethyl metacrylate (HEMA) have been reported for enamel and dentine. Hydroxyethyl metacrylate (HEMA) was found to be a suitable vehicle for dentin self-etching primers (such as acidic monomers). Other clinical trials have been done with an antiseptic (chlorhexidine) entrapped in a Hydroxyethyl metacrylate (HEMA)/MMA copolymer membrane to develop a controlled release delivery system. However, Hydroxyethyl metacrylate (HEMA) was found unsuitable as a permanent soft lining material for covering the oral mucosa in denture-bearing areas. Immobilization of Molecules and Cells Immobilization implies the entrapment within a polymeric network of a definite "foreign" compound (i.e., an enzyme, a drug, a cell, . . .), whether it is simply confined or grafted onto the polymeric chains. The ability of various drugs to diffuse into polymers may be used in various types of biotechnologies such as membrane separation and drug delivery devices. The prediction of drug solubilities in Hydroxyethyl metacrylate (HEMA) and other polymers has been studied. Immobilization of chloramphenicol in Hydroxyethyl metacrylate (HEMA) hydrogels crosslinked with EGDMA was found to be released upon swelling of the gel in water; the diffusion obeyed Fick's second law. The kinetics of thiamine (vitamin B1) diffusion from previously loaded Hydroxyethyl metacrylate (HEMA) beads was studied at 37.5"C in water. Theophyllin release from an amphiphilic composite made of Hydroxyethyl metacrylate (HEMA) and polyisobutylene was studied from a kinetic point of view. Hydroxyethyl metacrylate (HEMA) membranes are favored as transdermal delivery systems for long-term constant drug delivery. Vidarabine (an antiviral agent) was entrapped to Hydroxyethyl metacrylate (HEMA) membranes and used for transdermal patches: the blood-drug concentrations could be predicted and the permeability coefficient of the membranes could be adjusted by controlling hydration. Similar observations were obtained with progesteron. Nitroglycerin was also entrapped in Hydroxyethyl metacrylate (HEMA) membranes to provide a transdermal delivery system. Synthetic organ substitutes having the capacity to slowly release hormones have been designed: diffusivity of insulin through Hydroxyethyl metacrylate (HEMA) membranes was studied. Because Hydroxyethyl metacrylate (HEMA) hydrogels are hardly degraded in vivo, it was found that entrapment of drugs (testosterone) in a blend of Hydroxyethyl metacrylate (HEMA)/albumin resulted in a slowly degraded matrix with continuous release of the drug. Testicular prosthesis releasing testosterone have been done. Anticancer drugs have been extensively entrapped in matrices of Hydroxyethyl metacrylate (HEMA), thus providing a hard material which can be implanted into the tumor where it delivers higher amounts of drug in situ. 5- Fluorouracil was embedded in Hydroxyethyl metacrylate (HEMA)/bisglycol acrylate copolymer in 3 mm diameter beads which could be implanted subcutaneously. Methotrexate and 3'3'-dibromoaminopterin were absorbed on Hydroxyethyl metacrylate (HEMA) and used as local intratumoral implants in Gardner's lymphosarcoma of the C3H mouse. The effect of crosslinking on the swelling of Hydroxyethyl metacrylate (HEMA) gels (and the drug diffusion coefficient through these gels) has been explored. Finally, various substances have been immobilized in Hydroxyethyl metacrylate (HEMA) in order to prepare diagnostic tools. An antiserum-raised methotrexate was entrapped in Hydroxyethyl metacrylate (HEMA) during polymerization. The lyophilized powder was used for radioimmunoassay of this anticancer drug. The entrapment of immunoglobulins has been used for immunochemical studies. The Fc fragment of immunoglobulins has been grafted onto Separon Hydroxyethyl metacrylate (HEMA) resins after periodate oxidation, thus providing immuno-affinity sorbents for the isolation of proteins. A dye, Cibracron Blue F3GA, was entrapped within the pores of a nylon/ Hydroxyethyl metacrylate (HEMA) gel used for protein purification. Biocompatibility of Hydroxyethyl metacrylate (HEMA) Biocompatibility of Hydroxyethyl metacrylate (HEMA) has been studied at the cell and tissue levels. Cell cultures on Hydroxyethyl metacrylate (HEMA)-coated slides or on Hydroxyethyl metacrylate (HEMA) hydrogels are used to investigate the intimate mechanisms of cellular compatibility. Implanting pieces of gel in an animal by a surgical procedure allows the study of the adverse reactions of the whole organisms against the resin. Because implantations in the eye or in direct contact with blood induces specific problems, these two aspects of the biocompatibility will be treated separately below. Cell Culture The hydrophilicity of the resin was primarily thought to be favorable for cell culture. Cellular adherence to Hydroxyethyl metacrylate (HEMA) has been recognized since 1975 when myoblasts from chicken embryos were cultured on polysiloxane grafted with Hydroxyethyl metacrylate (HEMA). Spreading of cells of hamster kidney was found higher on modified Hydroxyethyl metacrylate (HEMA) than on polystyrene due to the hydrophilic properties of the resin. Similar experiments done with endothelial cells of newborn cords have shown that cells first adhere to the hydrophilic substrate, then spread and proliferate. However, pure and unmodified Hydroxyethyl metacrylate (HEMA) appears unable to support attachment and growth of mammalian cells. Implants Hydroxyethyl metacrylate (HEMA) is a suitable biomaterial for implantation because of its lack of toxicity and high resistance to degradation. Numerous composite biomaterials based on Hydroxyethyl metacrylate (HEMA) and collagen blends have been used. By using various additives, the mechanical properties of Hydroxyethyl metacrylate (HEMA) hydrogels can be adjusted to various biomedical applications. Hydroxyethyl metacrylate (HEMA)/methacrylic acid copolymers were found more biocompatible than Hydroxyethyl metacrylate (HEMA) alone which induces a giant cell inflammatory reaction when implanted. When collagen was entrapped in Hydroxyethyl metacrylate (HEMA) gels, their composites were found highly biocompatible when implanted subcutaneously in rats. Composites with a low collagen content were found to be better preserved in long-term implantation studies whereas those containing higher amounts of collagen exhibited calcification in the early stages, followed by full biodegradation. Calcification of a synthetic biomaterial implies poor biocompatibility. Although the chemical composition appears important, the macroscopic structure and surface characters of a Hydroxyethyl metacrylate (HEMA) implant have been shown to play a key role. 2-HYDROXYETHYL METHACRYLATE 21 of calcification; in addition, hydrogels of Hydroxyethyl metacrylate (HEMA) and methacrylic acid copolymers were found to pick up large amounts of Ca2+ when exposed to aqueous solutions of calcium. This effect was taken into account when porous sponges of Hydroxyethyl metacrylate (HEMA) were compared to demineralized bone for inducing ectopic bone formation. Hydrogels of Hydroxyethyl metacrylate (HEMA) have an excellent biocompatibility but present poor mechanical properties. The mechanical and hydration properties of Hydroxyethyl metacrylate (HEMA) and other polyhydroxyalkyl methacrylate membranes have been studied. Composites of silicone rubber and fine particles of hydrated Hydroxyethyl metacrylate (HEMA) were found to combine both advantages. Radiation grafting of Hydroxyethyl metacrylate (HEMA) was done on polyurethane films (with good mechanical properties) and found to increase hydrophilicity and tolerance. Hydroxyethyl metacrylate (HEMA) was grafted on polyether urethane area membranes used for hemodialysis; permeability and blood tolerance were improved but tensile strength was reduced. Hemodialysis membranes of Hydroxyethyl metacrylate (HEMA) crosslinked with ethylene dimethacrylate have been prepared. The interaction of urea (the end product of protein catabolism) with Hydroxyethyl metacrylate (HEMA) hydrogels revealed that small amounts of methacrylic acid may dramatically increase the swelling properties of the gel. Prosthetic Vascular Implants and Blood Compatibility A very interesting property of Hydroxyethyl metacrylate (HEMA)-based hydrogels is their high hemocompatibility. In the presence of blood, thrombus formation is delayed. Because blood is a complex milieu, in this paragraph we consider all the relationships of Hydroxyethyl metacrylate (HEMA) with blood cells, endothelial cells (i.e., the inner cells of the blood vessels), orland blood components. Due to the hydrophilicity of Hydroxyethyl metacrylate (HEMA), films of styrene-butadiene-styrene had a better blood compatibility when grafted with Hydroxyethyl metacrylate (HEMA). Copolymers of Hydroxyethyl metacrylate (HEMA)/styrene or Hydroxyethyl metacrylate (HEMA)/dimethyl siloxane suppress platelet adhesion and aggregation (and thus reduce thrombus formation) by the creation of hydrophilic/hydrophobic microdomains. Similar findings were obtained with Hydroxyethyl metacrylate (HEMA)/polyethylene oxide and Hydroxyethyl metacrylate (HEMA)/ polypropylene oxide copolymers. A Hydroxyethyl metacrylate (HEMA)-polyamine copolymer was found to induce no blood platelet adherence or activation. Also, this copolymer was used to separate T from B lymphocytes subpopulations via its hydrophilic-hydrophobic microdomain compositio. Vascular tubes of polyethylene Blended with 14% Hydroxyethyl metacrylate (HEMA) have a very low thrombogeneity due to hydrophilization of the plastic. Radiation grafting of Hydroxyethyl metacrylate (HEMA) and N-vinyl pyrrolidone on silicone rubber was used to improve the hydrophilicity of artery-to-vein shunts and thus to reduce thrombus formation. A highly antithrombogenic polymer was prepared by immobilizing the fibrinolytic enzyme urokinase in a Hydroxyethyl metacrylate (HEMA) hydrogel. Another important aspect of blood compatibility is the power of a biomaterial to activate the complement system. It is a complex system of plasma proteins activated in cascade and involved in the inflammation process. Intraocular lenses made of Hydroxyethyl metacrylate (HEMA) were found ineffective in vifro to activate the serum complement system (C3a, C4a, C5a). Hydroxyethyl metacrylate (HEMA)-grafted polyethylene tubes were not found to inactivate the complement. On the other hand, copolymers of Hydroxyethyl metacrylate (HEMA)/ethyl methacrylate were reported to activate the complement when the polymer contained 60% or more Hydroxyethyl metacrylate (HEMA). Low density lipoprotein adsorption on Hydroxyethyl metacrylate (HEMA) was found to be low due to the hydrophilicity of the resin. Particles of Hydroxyethyl metacrylate (HEMA) were used to study the phagocytic processes of macrophages and neutrophils. The hemocompatibility of Hydroxyethyl metacrylate (HEMA) has led to the development of a medical method used to remove endo or exo toxins from blood. Hemoperfusion takes advantage of activated charcoal to bind such toxics (barbiturates, tricyclic antidepressants). Activated carbon particles have been encapsulated with Hydroxyethyl metacrylate (HEMA) for the construction of hemoperfusion columns; heparinized blood is purified by adsorption of irrelevant toxic molecules onto the entrapped charcoal particles and the cleaned blood is then perfused to the patient. Composites of Hydroxyethyl metacrylate (HEMA), PEG, and activated carbon were found useful for other blood perfusion applications. Another important application of Hydroxyethyl metacrylate (HEMA) is the occlusion of blood vessels in various organs and principally in tumors (which are always hypervascularized). Spherical particles of Hydroxyethyl metacrylate (HEMA) of regular shape were produced by suspension polymerization. When injected in a vessel close to the tumor, the small beads act as emboli and obliterate the smaller vessels. Thus tumor vascularization is stopped and endovascular embolization is followed by tumoral cell necrosis and size reduction of the tumor. The swelling in water of Hydroxyethyl metacrylate (HEMA) beads makes them suitable to close obliteration of vessels. Detailed procedures have been published for preparing such porous Hydroxyethyl metacrylate (HEMA) beads of regular size suitable as artificial thrombi. Optical Lenses The main application of Hydroxyethyl metacrylate (HEMA) hydrogels is the preparation of contact and intraocular lenses used after cataract extraction. Black pigmented Hydroxyethyl metacrylate (HEMA) was used to prepare light-occluding lens after opthalmic surgery. Gentamicin-soaked contact lenses made of a 61.4% Hydroxyethyl metacrylate (HEMA) hydrogel were found to retain bactericidal concentrations of the antibiotic up to 3 days of eye contact. Diffusion of oxygen through hydrophilic contact lens is necessary to avoid corneal oedema. With Hydroxyethyl metacrylate (HEMA) lenses, this is obtained with a 33-pm thickness. Deep corneal stromal opacities were seen in Hydroxyethyl metacrylate (HEMA) contact lenses and were related to chronic corneal anoxia. Deposits are sometimes observed within contact lenses. They occur after 12 months of daily lens wear and may be associated with vision decrement. The protein deposits on contact lenses vary according to the copolymer: With Hydroxyethyl metacrylate (HEMA)Imethacrylic acid copolymers, lenses absorb large amounts of lysosyme, and Hydroxyethyl metacrylate (HEMA) IMMA copolymer preferentially adsorbs albumin. Contact lenses of copolymers of Hydroxyethyl metacrylate (HEMA) with methacrylic acid or various silanes were found to adsorb less lysosyme than unsilanized lenses. Deposits of calcium in contact lens made of Hydroxyethyl metacrylate (HEMA) have been reported. Intraocular strips of Hydroxyethyl metacrylate (HEMA) hydrogels containing small amounts (1.2-1.4%) of methacrylic acid were found to be favorably tolerated in vivo due to the high water and carboxylic group content. Hydroxyethyl metacrylate (HEMA) intraocular lens were found to be better tolerated than conventional amino-polyamide-base implants, but the presence of microvilli on corneal cells suggests the release of impurities from the resin. Hydroxyethyl metacrylate (HEMA)-based intraocular lenses were found to be well preserved after Nd:YAG laser surgery. Various drugs (chloramphenicol, pilocarpine, dexamethasone) were found to have a longer washout period when entrapped in intraocular lenses than in the human lens. The clinicobiological results of Hydroxyethyl metacrylate (HEMA) intraocular lenses were found to be the most favorable, with 92% of implanted patients recovering visual acuity.
HYDROXYETHYLETHYLENEDIAMINTRIACETIC ACID
Cellulose,2-hydroxyethylmethylether;'Tylose'® MH 300;Hydroxythyl Methyl Cellulose;HydroxythylMethylCellulose(Hemc);HEMC;HYDROETHYLMETHYL CELLULOSE (HEMC);METHYL HYDROXYETHYL CELLULOSE (20-40CPS: 2% IN WATER);Methyl Hydroxyethyl Cellulose (20-40mPa.s, 2% in Water at 20deg C) CAS NO:9032-42-2
Hydroxylamine Sulfate
SYNONYMS Hydroxylammonium sulfate; Hydroxylamine, sulfate (2:1) (salt); bis(hydroxylamine) sulfate; hydroxylamine neutral sulfate; bis(hydroxylammonium) sulfate; Hydroxylamine sulfate;OXAMMONIUM SULFATE CAS NO. 10039-54-0
Hydroxyphosphono Acetic Acid (HPAA)
HPAA; HPA; Belcor 575; 2-Hydroxy Phosphono Acetic Acid; CAS NO:23783-26-8
Hydroxypivalic Acid
(2-Hydroxyethyl)(2-hydroxyhexadecyl)dimethylammonium chloride; HYDROXYCETYL HYDROXYETHYL DIMONIUM CHLORIDE
Hydroxypropyl Cellulose
HYDROXYPROPYL DISTARCH PHOSPHATE; Hydroxypropyl di-starch phosphate; Hydroxypropylated distarch phosphate cas no: 53124-00-8
HYDROXYPROPYL DISTARCH PHOSPHATE
HYDROXYPROPYL GUAR, N° CAS : 68442-94-4 / 39421-75-5, Nom INCI : HYDROXYPROPYL GUAR, N° EINECS/ELINCS : 270-497-9 / - Ses fonctions (INCI) : Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion.Agent filmogène : Produit un film continu sur la peau, les cheveux ou les ongles. Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
HYDROXYPROPYLTRIMONIUM CHLORIDE
HYDROXYSTEARYL ALCOHOL, N° CAS : 2726-73-0, Nom INCI : HYDROXYSTEARYL ALCOHOL. Nom chimique : 1, 12-Ocatadecanediol. Classification : Alcool
Hypophosphorous Acid
Hypophosphorous acid; Phosphinic Acid; Acide phosphinique; Phosphinsäure; ácido fosfínico; cas no: 6303-21-5
HYPOPHOSPHORUS ACID
IMBENTIN PPF; POE/POP adduct cas no: 69013-18-9
IBUPROFEN
2-(4-isobutylphenyl)propionic Acid; Apsifen; Apsifen-F; Alpha-Methyl-4-(2-methylpropyl)benzeneacetic acid; Acide (Isobutyl-4 Phenyl)-2 Propionique (French); Ibuprocin; para-Isobutylhydratropic acid; (+/-)-2-(p-Isobutyl phenyl)propionic acid; (+)-2-(4-Isobutyl phenyl)propionic acid; 4-Isobutyl- alpha-methylphenylacetic acid; Ibufen; Ibuprin; Alpha-methyl-4-(2-Methylpropyl)- Benzeneacetic Acid; cas no: 15687-27-1
ICE TEA LİMON AROMASI
ice tea lemon flavor
IDACOL ACID RED 33
IDACOL ACID RED 33 IUPAC Name disodium;5-amino-4-hydroxy-3-phenyldiazenylnaphthalene-2,7-disulfonate IDACOL ACID RED 33 InChI InChI=1S/C16H13N3O7S2.2Na/c17-12-8-11(27(21,22)23)6-9-7-13(28(24,25)26)15(16(20)14(9)12)19-18-10-4-2-1-3-5-10;;/h1-8,20H,17H2,(H,21,22,23)(H,24,25,26);;/q;2*+1/p-2 IDACOL ACID RED 33 InChI Key LQJVOKWHGUAUHK-UHFFFAOYSA-L IDACOL ACID RED 33 Canonical SMILES C1=CC=C(C=C1)N=NC2=C(C3=C(C=C(C=C3C=C2S(=O)(=O)[O-])S(=O)(=O)[O-])N)O.[Na+].[Na+] IDACOL ACID RED 33 Molecular Formula C16H11N3Na2O7S2 IDACOL ACID RED 33 CAS 3567-66-6 IDACOL ACID RED 33 Deprecated CAS 64553-75-9 IDACOL ACID RED 33 European Community (EC) Number 222-656-9 IDACOL ACID RED 33 UNII 9DBA0SBB0L IDACOL ACID RED 33 DSSTox Substance ID DTXSID1044562 IDACOL ACID RED 33 Food Additive Classes Food Additives -> COLOUR IDACOL ACID RED 33 Molecular Weight 467.4 g/mol IDACOL ACID RED 33 Hydrogen Bond Donor Count 2 IDACOL ACID RED 33 Hydrogen Bond Acceptor Count 10 IDACOL ACID RED 33 Rotatable Bond Count 2 IDACOL ACID RED 33 Exact Mass 466.983381 g/mol IDACOL ACID RED 33 Monoisotopic Mass 466.983381 g/mol IDACOL ACID RED 33 Topological Polar Surface Area 202 Ų IDACOL ACID RED 33 Heavy Atom Count 30 IDACOL ACID RED 33 Formal Charge 0 IDACOL ACID RED 33 Complexity 757 IDACOL ACID RED 33 Isotope Atom Count 0 IDACOL ACID RED 33 Defined Atom Stereocenter Count 0 IDACOL ACID RED 33 Undefined Atom Stereocenter Count 0 IDACOL ACID RED 33 Defined Bond Stereocenter Count 0 IDACOL ACID RED 33 Undefined Bond Stereocenter Count 0 IDACOL ACID RED 33 Covalently-Bonded Unit Count 3 IDACOL ACID RED 33 Compound Is Canonicalized Yes IDACOL ACID RED 33 Applications: Cosmetics Pharmaceuticals Soaps - Cold Process and Melt and Pour D&C Red 33 also known as IDACOL ACID RED 33 or simply Red 33 is a red azo dye used as a colorant in mouthwashes, dentifrices, cosmetics, and hair dyes.[1] IDACOL ACID RED 33 is a disodium salt of 5-amino-4-hydroxy-3-(phenylazo)-2,7-naphthalenedisulfonic acid, which can be purified through high performance liquid chromatography.IDACOL ACID RED 33 is a red dye used as a colorant in cosmetic products.The electrochemical oxidation (EO) performance of prepared electrode was investigated using IDACOL ACID RED 33 (AR33) as a model pollutant.IDACOL ACID RED 33 4.FD.033000 is an FDA and global approved, high purity water soluble powder dye. Main applications are make-up, sun care, skin care and toiletries products.The color additive IDACOL ACID RED 33 may be safely used for coloring ingested drugs in amounts not to exceed 0.75 milligram per daily dose of the drug. IDACOL ACID RED 33 may be safely used for coloring externally applied drugs, mouthwashes, and dentifrices in amounts consistent with current good manufacturing practice. IDACOL ACID RED 33 may also be safely used for coloring cosmetic lip products in amounts not to exceed 3 percent total color by weight of the finished cosmetic products. IDACOL ACID RED 33 may be safely used for coloring mouthwashes (including breath fresheners), dentifrices, and externally applied cosmetics in amounts consistent with current good manufacturing practice.IDACOL ACID RED 33 is a drug and cosmetic synthetic dye. The FDA lists it as a safe additive for drugs and cosmetics as per FDA standards. In cosmetics, it can be used externally and in general cosmetics, including lipsticks, but is not to be used in cosmetics close to the eye.IDACOL ACID RED 33 (D&C Red No. 33) and IDACOL ACID RED 33 are synthetic colorants. In cosmetics and personal care products, IDACOL ACID RED 33 and IDACOL ACID RED 33 Lake are used in the formulation of a wide variety of product types, including makeup and lipstick.IDACOL ACID RED 33 is used to impart a red color to cosmetics and personal care products.The color additive IDACOL ACID RED 33 is principally the disodium salt of 5-amino-4-hydroxy-3-(phenylazo)-2,7-naphthalenedisulfonic acid (CAS Reg. No. 3567-66-6). To manufacture the additive, the product obtained from the nitrous acid diazotization of aniline is coupled with 4-hydroxy-5-amino-2,7-naphthalenedisulfonic acid in an alkaline aqueous medium. The color additive is isolated as the sodium salt.Color additive mixtures for drug use made with IDACOL ACID RED 33 may contain only those diluents that are suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures for coloring drugs.Specifications. IDACOL ACID RED 33 shall conform to the following specifications and shall be free from impurities other than those named to the extent that such impurities may be avoided by current good manufacturing practices:Sum of volatile matter at 135 deg. C (275 deg. F) and chlorides and sulfates (calculated as sodium salts), not more than 18 percent.Uses and restrictions. The color additive IDACOL ACID RED 33 may be safely used for coloring ingested drugs, other than mouthwashes and dentifrices, in amounts not to exceed 0.75 milligram per daily dose of the drug. d&c red no. 33 may be safely used for coloring externally applied drugs, mouthwashes, and dentifrices in amounts consistent with current good manufacturing practice.All batches of IDACOL ACID RED 33 shall be certified in accordance with regulations in part 80 of this chapter.IDACOL ACID RED 33 is used frequently to obtain those amazing colors in bath bombs and bubble products due to the fact that it will color the water but not skin or the tub unless used in large quantity.There is currently a conflict of opinion and clarity on the FDA website as to the use of IDACOL ACID RED 33 in bath bombs.IDACOL ACID RED 33 is a colorant, or dye. We add dyes to products for a variety of reasons including helping you see where you applied the product, when a product is used up, or for aesthetic reasons. This dye is available from multiple suppliers, which are responsible for its contents.Liquid IDACOL ACID RED 33 is a pre-mixed water based liquid dye. Great for soaps, bath salts, bath bombs, body powders, and other water based or dry formulations. Add to your water phase drop by drop until you get the desired color.FNWL uses the standardized name for this color additive. Standardized names, however, can sometimes be vague. In our experience, IDACOL ACID RED 33 is a deep shade of red with a slightly pinkish-violet tint. The amount of colorant that you use will affect the intensity and vibrancy of the hue.The test of photocatalytic activities of the heat-treated TiO2 powders were carried out through the photocatalytic degradation of IDACOL ACID RED 33 dye in aqueous solution under the irradiation of visible light.The results indicate that the TiO2 photocatalyst heat-treated at 400 °C within 60 min shows the highest photocatalytic activity which can effectively degrade the IDACOL ACID RED 33 under the irradiation of visible light. The total degradation process of IDACOL ACID RED 33 has been monitored by UV–vis spectra and ion chromatography. At last, the IDACOL ACID RED 33 molecules in aqueous solution are completely degraded and become some simple inorganic ions such as NO3− and SO42−, etc.UV–Vis spectra of IDACOL ACID RED 33 solutions under different conditions (10 mg/L IDACOL ACID RED 33 concentration, 1.0 g/L Er3+:Y3Al5O12/TiO2–ZrO2 (with Ti/Zr = 7:3 molar ratio), Er3+:Y3Al5O12/TiO2 or Er3+:Y3Al5O12/ZrO2 (with 10 wt% Er3+:Y3Al5O12 at 500 °C for 50 min heat treatment) catalyst amount, 100 mL total volume and 60 min solar light irradiation. (a) IDACOL ACID RED 33 dye solution without any catalyst in the dark (original solution); (b) IDACOL ACID RED 33 dye solution without any catalyst under solar light irradiation; (c) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/ZrO2 composite in the dark; (d) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2–ZrO2 composite in the dark; (e) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2 composite in the dark; (f) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/ZrO2 composite under solar light irradiation; (g) IDACOL ACID RED 33 dye solution with TiO2 powder under solar light irradiation; (h) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2 composite under solar light irradiation; (i) IDACOL ACID RED 33 dye solution with Er3+:Y3Al5O12/TiO2–ZrO2 composite under solar light irradiation)
IHLAMUR AROMASI
linden flavor
Ihlamur Ekstrakt
Citrus aurantifolia extract ;citrus aurantifolia swingle flower extract; lime flower extract; sour lime flower extract; extract of the flowers of the lime, citrus aurantifolia, rutaceae cas no:90063-52-8
IMBENTIN PPF
SynonymsE132;Was35;l-blau2;murabba;CI 73015;1311blue;Greell S;12070blue;acidbluew;c.i.75781 CAS No.860-22-0
IMWITOR 960 K
IMWITOR 960 K IMWITOR 960 K Personal Care & Cosmetics IMWITOR 960 K is a classic emulsifier for rich creams and butters. Works best at neutral pH. This self-emulsifying glyceryl stearate quality contains a monoester content of approx. 30%. Glyceryl stearate SE/Mono- and diglycerides based on edible fats. Solubilizing agent for actives. Bacteriostatic. Penetration enhancing. Emulsions Oil in Water Claims Emulsifiers > Emulsifiers O/W (Oil in Water) Solubilizers Appearance Flakes Product Status COMMERCIAL Product information INGREDIENT IDENTIFICATION Name IMWITOR® 960 K Segment Personal care INCI name Glyceryl Stearate SE An oily kind of ingredient that can magically blend with water all by itself. This is called self-emulsifying and SE in its name stands for that. The difference between "normal" Glyceryl Stearate and this guy is that the SE grade contains a small amount of water-loving soap molecules, such as sodium stearate. This increases Glyceryl Stearate's affinity for water and gives it stronger emulsifying abilities. What Is It? Glyceryl Stearate and Glyceryl Stearate SE are esterification products of glycerin and stearic acid. Glyceryl Stearate is a white or cream-colored wax-like solid. IMWITOR 960 K is a "Self-Emulsifying" form of Glyceryl Stearate that also contains a small amount of sodium and or potassium stearate. In cosmetics and personal care products, Glyceryl Stearate is widely used and can be found in lotions, creams, powders, skin cleansing products, makeup bases and foundations, mascara, eye shadow, eyeliner, hair conditioners and rinses, and suntan and sunscreen products. Why is it used in cosmetics and personal care products? Glyceryl Stearate acts as a lubricant on the skin's surface, which gives the skin a soft and smooth appearance. It also slows the loss of water from the skin by forming a barrier on the skin's surface. Glyceryl Stearate, and Glyceryl Stearate SE help to form emulsions by reducing the surface tension of the substances to be emulsified. Scientific Facts: Glyceryl Stearate is made by reacting glycerin with stearic acid, a fatty acid obtained from animal and vegetable fats and oils. IMWITOR 960 K is produced by reacting an excess of stearic acid with glycerin. The excess stearic acid is then reacted with potassium and/or sodium hydroxide yielding a product that contains Glyceryl Stearate as well as potassium stearate and/or sodium stearate. Oil-Soluble, Self-Emulsifying Water-in-Oil Emulsifier IMWITOR 960 K is classified as : Emulsifying CAS Number 11099-07-3 EINECS/ELINCS No: 234-325-6 COSING REF No: 76256 Chem/IUPAC Name: Octadecanoic acid, reaction products with 1,2,3-propanetriol (1:1), neutralized WHAT IS GLYCERYL STEARATE? Glyceryl Stearate, also referred to as Glyceryl Monostearate, is a fatty acid derived from vegetable oil, Soy Oil, or Palm Kernel Oil; however, it is also naturally occurring in the human body. This wax-like substance appears white or cream in color and is produced when Glycerin and Stearic Acid undergo esterification. Traditionally, it is used in formulations for its emulsifying properties. Glyceryl Stearate SE also contains Sodium Stearate and/or Potassium Stearate. The “SE” of Glyceryl Stearate SE stands for “Self-Emulsifying,” as it is a self-emulsifying form of Glyceryl Stearate. HOW DOES GLYCERYL STEARATE WORK? When applied topically, its Glycerol constituent makes Glyceryl Stearate SE a fast-penetrating emollient that helps to create a protective barrier on the surface of the skin. This helps retain hydration and slow the loss of moisture. This reduced rate of water evaporation helps to lubricate, condition, soften, and smoothe the skin. Its protective properties extend to its antioxidant qualities, which help protect the skin against damage caused by free radicals. When added to natural formulations, Glyceryl Stearate and Glyceryl Stearate SE have stabilizing effects on the final product, which means it helps the other ingredients in the formulation to continue functioning effectively in order to go on exhibiting their beneficial properties. In this way, it helps to balance the product’s pH value and thereby prevents the product from becoming overly acidic or alkaline. Furthermore, it helps increase shelf life, prevents products from freezing or from developing crusts on their surfaces, and it helps lessen the greasy nature of some oils that may be added to cosmetics formulations. In formulations that are oil-based, the thickening properties of Glyceryl Stearate SE help to scale down the need for co-emulsifiers and, in emulsions with big water phases, Glyceryl Stearate SE can help develop liquid crystal phases as well as crystalline gel phases. As an opacifier, it makes transparent or translucent preparations opaque, thus protecting them from or increasing their resistance to being penetrated by visible light. This also helps to boost or balance the appearance of pigments and to improve the density of the final product for a luxuriously smooth and creamy texture. APPLICATIONS FOR GLYCERYL STEARATE SEIMWITOR 960 K must be added to formulations in their heated oil phases. The higher the concentration of Glyceryl Stearate SE, the thicker the end product will be. PRODUCT TYPE & FUNCTION EFFECTS When added to this kind of formulation… Shampoo/Conditioner IMWITOR 960 K functions as a(n): Moisturizer Opacifier Softener Conditioner Thickener It helps to: Hydrate the hair and scalp to protect against dryness Prevent frizz Make products opaque in appearance Increase viscosity Reduce tangling The recommended maximum dosage is 2-5% When added to these kinds of formulations… Makeup (Foundation, Mascara, Eye Shadow, Eyeliner) IMWITOR 960 K functions as a(n): Opacifier Softener Emollient It helps to: Soften and smoothe the skin Balance and sustain the skin's moisture levels without leaving a greasy residue Keep makeup on the skin, rather than allowing it to fall off Keep mascara from clumping Ensure smooth application of eyeliner and eyeshadow The recommended maximum dosage is 2-5% When added to these kinds of formulations… Moisturizer Face Wash Face Mask/Peel Body Wash/Gel IMWITOR 960 K functions as a(n): Opacifier Thickener Co-emulsifier Emollient Softener Moisturizer Cleanser It helps to: Emulsify formulations and increase their viscosity, which contributes a creamier texture Lift and remove dirt Soothe skin Create an oily layer on the skin’s surface, which helps it retain water Hydrate and soften the skin to reduce irritation, cracking, and peeling Recommended maximum dosages are: Body Lotion: 1.5-2.5% Face Cream: 1.5-2.5% Sunscreen: 1.5-2.5% Ointments: 2-5% CONTRAINDICATIONS FOR GLYCERYL STEARATE As with all other New Directions Aromatics products, Glyceryl Stearate SE Raw Material is for external use only. It is imperative to consult a medical practitioner before using this wax for therapeutic purposes. Pregnant and nursing women, as well as those with sensitive skin, are especially advised not to use Glyceryl Stearate SE Raw Material without the medical advice of a physician. This product should always be stored in an area that is inaccessible to children, especially those under the age of 7. Prior to using Glyceryl Stearate SE Raw Material, a skin test is recommended. This can be done by melting 1 Glyceryl Stearate wax flake in 1 ml of a preferred Carrier Oil and applying a dime-size amount of this blend to a small area of skin that is not sensitive. Potential side effects of Glyceryl Stearate SE include irritation, rash, stinging, burning, nausea, flatulence, abdominal cramps, and diarrhea. In the event of an allergic reaction, discontinue use of the product and see a doctor, pharmacist, or allergist immediately for a health assessment and appropriate remedial action. To prevent side effects, consult with a medical professional prior to use. Molecular Weight 1704.7 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 6 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 16 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 90 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 1704.409171 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 1703.405816 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 281 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 117 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 754 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 2 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 0 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 7 Computed by PubChem Compound Is Canonicalized Yes
INDIGO CARMINE
Acid Blue 74, Indigo-5,5′-disulfonic acid disodium salt, Indigocarmine cas no: 860-22-0
INDIGOTINE, INDIGO CARMINE
IPBC; 3-Iodo-2-propynyl N-butylcarbamate; Troysan; 3-Iodo-2-propynyl butylcarbamate; 3-IODO-2-PROPYNYL BUTYLCARBAMATE; 3-IODO-2-PROPYNYL N-BUTYLCARBAMATE; 3-Iodopropynyl butylcarbamate; asc 67000; IBP; IODOCARB; IODOPROPYNYL BUTYLCARBAMATE; Kitazine P; o,o-bis(1-methylethyl) s-(phenylmethyl) phosphorothioate; PERMATOX; TROYSAN POLYPHASE 588; 3-iodo-2-propynyl; butyl-carbamicaci3-iodo-2-propynylester; Carbamicacid,butyl-,3-iodo-2-propynylester; ipbc(3-iodo-2-propynylnbutylcarbamate); troysankk-108a; troysanpolyphaseanti-mildew; woodlife; Butylcarbamic acid 3-iodo-2-propynyl ester CAS NO: 55406-53-6
INOSITOL
Inositol; Meat sugar; meso-Inositol; Dambose; Cyclohexanehexol; Hexahydrocyclohexane; 1,2,3,4,5,6-hexahydroxycyclohexane; Inosital; Inositene; Inositina; Insitolum; Mesoinosite; Mesoinositol; Phaseomannite; Phaseomannitol; i-Inositol; Other RN: 53319-35-0 cas no: 87-89-8
IONOL CP
IONOL CP представляет собой белый кристаллический антиоксидант и относится к группе не окрашивающих, стерически затрудненных фенолов.
IONOL CP - это пищевой антиоксидант, отвечающий большинству требований по охране труда и технике безопасности, включая требования FDA, а IONOL CP производится в соответствии с принципами HACCP для обеспечения безопасности пищевых продуктов.
Кроме того, IONOL CP соответствует аналитическим требованиям FCC (Food Chemical Codex) и фармакопеи EurPh и USP.

Номер CAS: 128-37-0
Номер ЕС: 204-881-4
Молекулярная формула: C15H24O
Молекулярный вес: 220,4 г/моль

IONOL CP также известен как бутилированный гидрокситолуол (BHT).
IONOL CP - это высококачественный антиоксидант с типичной чистотой 99,8%.

IONOL CP представляет собой 2,6-дитерт-бутил (1,1-диметилэтил)-4-метилфенол.
СодержаниеC15H240 должно составлять не менее 98,5% в пересчете на безводный.

IONOL CP, IONOL 220, IONOL 103 и IONOL 99 являются высокоэффективными антиоксидантами для всесезонных смазок, жидкостей для автоматических трансмиссий, дифференциальных жидкостей и турбинных масел.

Крометого, доказано, что ионные антиоксиданты увеличивают срок службы многих промышленных масел, сокращая время простоя оборудования.
Области применения включают гидравлические жидкости, трансформаторные масла, прядильные масла, а также жидкости для прокатки металла и смазочно-охлаждающие жидкости.

Антиоксиданты IONOL являются отличными стабилизаторами для всех марок реактивного топлива А1 на основе керосина для гражданского и военного применения.
Концентрация, необходимая для защиты и стабилизации авиационного топлива, также определяется этими международными спецификациями.
Например, DERD 2494 определяет добавочныйуровень в диапазоне 17,0 – 24,0 мг/л для гидроочищенных топлив.

Области применения IONOL CP:

Полимеры:
IONOL CP используется для стабилизации пластмасс, натурального и синтетического каучука, восков, синтетических и натуральных смол, а также для изделий и смесей, которые производятся из любого из вышеперечисленных компонентов.
Стабилизация с помощью IONOL CP начинается с производства пластмасс и обеспечивает, в зависимости от количества дозировки, стабильность полимерного сырья при хранении до переработки в готовое изделие.

Во время переработки полимерного сырья в конечный продукт дополнительная долговременная стабилизация с помощью IONOL CP может быть очень эффективной.
Область применения IONOL CP широко распространена благодаря превосходному соотношению затрат и эффективности, а такжепрактически универсальным возможностям применения IONOL CP в пластмассах, особенно для изделий, требующих одобрения в соответствии с законодательством о контакте с пищевыми продуктами.

Клеи и горячие расплавы:
Клеи и горячие расплавы также подвержены самоокислительному повреждению, вызванному механическимстрессом, высокой температурой и светом.
IONOL CP используется как для процесса, так и для долговременной стабилизации.

Пахучие вещества:
В пахучих веществах, например, в средствах по уходу за телом, IONOL CP предотвращает процессы самоокисления, которые приводят к образованию нежелательных и неприятно пахнущих продуктов разложения.

Продукты питания:
В пищевых продуктах IONOL CP замедляет разрушительное действие жиров, каротиноидов, витаминов, а также других основных компонентов пищи, вызванных окислением атмосферным кислородом.

Полиолы:
Полиолыподвержены окислительным повреждениям под действием света и тепла в присутствии кислорода из-за радикальных реакций.
При использовании IONOL CP реакционноспособные радикалы захватываются и превращаются в нереактивные соединения.

Цепная реакция остановлена, и можно избежать дальнейшего ущерба.
IONOL CP используется в качестве долговременного стабилизатора для защиты полиолов во время хранения (например, перед использованием в полиуретанах) от реакций разложения.
В зависимости от применения оптимальная дозировка составляет 0,1 - 1,0%.

Дальнейшие примененияIONOL CP:

Полиуретаны:
IONOL CP используется для полиуретанов в качестве обрабатывающего и долговременного стабилизатора.
В частности, при производстве пенополиуретанов IONOL CP более эффективен, чем многие другие антиоксиданты.

Из-за высокихтемператур, которые возникают внутри блочных пенопластов во время производства, может произойти частичное сильное пригорание.
IONOL CP очень эффективен и мобильен, а также предотвращает пригорание.

Таким образом, стало возможным производство неповрежденной и не обесцвечивающейся пены.
В зависимостиот применения оптимальная дозировка составляет 0,1- 1,0 php.
В соответствии с главой XXXIX правил BfR BHT рекомендуется в качестве антивозрастного средства для готовых изделий, изготовленных из полиуретанов.

Печатные краски:
Срок годностичернил printin g может быть сокращен в результате окисления.
Во время обработки могут произойти физические изменения.

Использование IONOL CP оказывает положительное влияние на стабильность, стойкость к выравниванию, а также на осветляющие и отверждающие свойства печатных красок.
Прилитографической печати IONOL CP предотвращает образование кожицы и ускоряет процесс высыхания.
Средние количества, подлежащие использованию, составляют 0,5 – 1,0%.

Применение IONOL CP:
IONOL CP - это маслорастворимый антиоксидант, широко используемый в стране и за рубежом.
Хотя IONOL CP токсичен, IONOL CP обладает сильной антиоксидантной способностью, хорошей термостойкостью и стабильностью, не имеет специфического запаха, не вызывает цветной реакции ионов металлов и имеет низкую цену, всего 1/8 ~ 1/5 BHA.

Обычно IONOL CP используется в сочетании с BHA и лимонной кислотой или другимиорганическими кислотами в качестве синергиста.
Китайские продукты можно использовать для производства пищевого масла, жареной пищи, печенья, лапши быстрого приготовления, ореховых консервов, сухих рыбных продуктов с максимальным содержанием 0,2 г/кг.
IONOL CP также обладает определенным антибактериальным действием, но слабее, чем BHA.

Характеристики IONOL CP:
IONOL CP представляет собой белый кристаллический антиоксидант и относится к группе не окрашивающих, стерически затрудненных фенолов.
IONOL CP в основном используется для стабилизации полимеров, которые вступают в контакт с пищевыми продуктами и / илипитьевой водой, полиолами, полиуретанами, клеями и горячими расплавами для возможного контакта с пищевыми продуктами, пахучими веществами и / или парфюмерией, пищевыми продуктами и печатными красками.

Существует BfR (ранее BGA, BgVV), одобрение FDA для IONOL CP, а также продукт соответствует всем требованиям, установленным в Регламенте 231/2012 в отношении спецификаций для пищевых добавок, в частности, критериям для E321.
Кроме того, IONOL CP соответствует аналитическим требованиям FCC (Food Chemical Codex) и Фармакопей.

ИОНOL CP представляет собой бесцветный, белый или не совсем белый кристалл или кристаллический порошок.
IONOL CP легко растворим в ацетоне, растворим в этаноле, нерастворим в воде и пропиленгликоле.

Температура замерзания:
Температура замерзания IONOL CP (General 0613) составляет 69~ 70 °C.

AbsКоэффициент поглощения Абс:
Возьмите IONOL CP, точное взвешивание, плюс растворение в этаноле и количественное разведение, чтобы получить раствор, содержащий около 50 мг на л/ л. Согласно УФ-видимой спектрофотометрии (общее правило 0 @1), поглощение измеряли при длине волны 278 нм, а коэффициент поглощения (dish) составлял от 80,0 до 90. 0.

Природа IONOL CP:
IONOL СР представляет собой бесцветный кристаллический или белый кристаллический порошок, без запаха, вкуса.
IONOL CP растворим в этаноле (25%, 25 °C), ацетоне (40%), бензоле (40%), соевом масле, хлопковом масле, нерастворим в воде, глицерине, пропиленгликоле.
IONOL CP легкий, термостойкий, при нагревании может улетучиваться с водяным паром, ион металла не меняет цвет.

Способ приготовления IONOL CP:
п-крезол итрет-бутиловый спирт растворяются при нагревании, а фосфорная кислота используется в качестве катализатора для реакции при определенной температуре.
Продукт реакции сначала промывают раствором гидроксида натрия до щелочного состояния, затем промывают водой до нейтрального состояния и, наконец, дистиллируют, при перекристаллизации получают дибутилгидрокситолуол.
Или изобутилен смешивают с крезолом и концентрированной серной кислотой, проводят реакцию при определенной температуре в течение определенного времени, и сырой продукт нейтрализуют, а затем сырой продукт растворяют в этаноле, добавляя тиомочевину, горячую фильтрацию, отжимную сушку, полученную сушкой.

Дифференциальный диагноз IONOL ХП:
В хроматограмме, записанной в разделе "Определение содержания", время удержания основного пика исследуемого раствора должносоответствовать времени удержания основного пика эталонного раствора.
Инфракрасный спектр поглощения IONOL CP должен соответствовать спектру поглощения эталонного продукта (Общее правило 0402).

Реакционный поток IONOLа CP:
Современные представления оразложении органических соединений (например, полимеров в пластмассах, синтетических или природных масел в смазочных материалах или ненасыщенных жирных кислот в пищевых продуктах) исходят из того факта, что разложение инициируется образованием углеводородных радикалов R.

Эта реакциявызывается теплом, светом и/или механической энергией:
R-H + инициатор -----> R

В реакции распространения цепи радикал R реагирует с атмосферным кислородом с образованием перекисного радикала R-OO, а последний с дополнительной молекулой углеводородов с образованием радикала R иперекисного соединения R-OOH.

R + O2 -----> R-OO
R-OO + R-H -----> R-OOH + R

Радикал R, образовавшийся на второй стадии реакции, далее вступает в цепную реакцию с кислородом в соответствии с уравнением реакции, подробно изложенным на предыдущей странице.
Перекись R-OOH дляmed на второй стадии реакции может разлагаться на альдегиды, кетоны и карбоновые кислоты и, в зависимости от типа поврежденного органического соединения, вызывать изменение цвета, коррозию или неприятный запах (например, прогорклые жиры).

Описанная выше цепная реакция может быть остановлена так называемой рекомбинацией радикалов.
Вероятность такой цепной реакции очень мала, так что радикальное разложение органических соединений не может остановиться без добавления антивозрастных средств.
AntiАнтивозрастные средства на основе стерически затрудненных фенолов действуют как поглотители радикалов, то есть они непосредственно вмешиваются в процесс разложения радикалов, химически связывая радикалы и предотвращая цепную реакцию распространения.

Хранение IONOL CP:
Срок годности IONOL CP составляет 24 месяца при правильной упаковке и хранении (в сухом, прохладном, хорошо проветриваемом помещении, при температуре <50 °C).
Несоблюдение этих требований может привести к пожелтению.

Стандартная упаковка IONOL CP:
Бумажные пакеты с полиэтиленовой подкладкой, 25 кг нетто, упакованные в термоусадочнуюпленку на поддонах (вес нетто: 750 кг или 1000 кг) или 20 кг нетто, упакованные в термоусадочную пленку на поддонах (вес нетто: 1000 кг).
Бочонки с волокном, 40 кг нетто.
Биг-бэги, 500/1000 кг нетто.

Меры первой помощи IONOL CP:

Общие меры первой помощи:
Никогда не давайте ничеговнутрь человеку, находящемуся без сознания.
Если вы чувствуете недомогание, обратитесь к врачу (по возможности покажите этикетку).

Меры первой помощи после вдыхания:
Обеспечьте дыхание свежим воздухом.
Дайте пострадавшему отдохнуть.

Меры первой помощи при контакте с кожей:
ReПереместите пострадавшую одежду и промойте все открытые участки кожи мягким мылом и водой, а затем смойте теплой водой.

Меры первой помощи при попадании в глаза:
Немедленно смойте большим количеством воды.
Обратитесь к врачу, если боль, мигание или покраснение не проходят.

Меры первой помощи после приема внутрь:
Прополоскать рот.
Не вызывайте рвоту.
Обратитесь за неотложной медицинской помощью.

Противопожарные мероприятия IONOL CP:

Подходящие средства пожаротушения:
Пена.
Сухой порошок.
Углекислый газ.
Брызги воды.
Песок.

Неподходящие средства пожаротушения:
Не используйте сильную струю воды.

Особые опасности, связанные с данным веществом или смесью:

Пожароопасность:
Не классифицируется как легковоспламеняющийся, но будет гореть.

Опасные продукты разложения при пожаре:
Моноксид углерода.
Углекислый газ.

Советы для пожарных:

Инструкции по пожаротушению:
Используйте водяные брызги или туман для охлаждения открытых контейнеров.
Соблюдайте осторожность при тушении любого химического пожара.
Не допускайте попадания противопожарной воды в окружающую среду.

ProЗащита при тушении пожара:
Не входите в зону пожара без надлежащего защитного снаряжения, включая средства защиты органов дыхания.

Идентификаторы IONOL CP:
Химическое название: 2,6-Ди-трет-бутил-4-метилфенол
CAS-номер: 128-37-0
Молекулярный вес: 220,4 г/моль

Форма продукта: Веществоoduct form: Substance
Название вещества: IONOL CP
Химическое название: 2,6-ди-трет-бутил-п-крезол
Номер ЕС: 204-881-4
CAS-номер: 128-37-0
Регистрационный номер REACH: 01-2119565113-46
Формула: C15H24O
Синонимы: 2,6-ди-терк-бутил-4-метилфенол

Типичные свойстваIONOL CP:
Внешний вид: Белое кристаллическое твердое визуальное
Температура кипения при 1013 ГПа: 265 °C
Насыпная плотность: 0,66 кг/л
Плотность при 80°C: 0,899 г/мл
Температура вспышки: 127°C ASTM D93
Показатель преломления: 1,4859
Растворимость в воде при 25°C: 0,6 мг/л
Растворимость вацетоне при 20°C: > 50 %
Растворимость в хлороформе при 20°C: > 50%
Растворимость в гептане при 20°C: 47,8 %
Растворимость в метаноле при 20°C: 26,6 %
Растворимость в толуоле при 20°C: > 50%

Физическое состояние: Твердое
Внешний вид: Кристаллический.
Цвет: Белый.
Запах: Характерный.
Температура плавления: 70 °C
Температура кипения: 265 °C (Справочник и/или научные статьи)
Температура вспышки: 127 °C (Справочник и/или научные статьи)
Температура самовоспламенения: Не применимо
Воспламеняемость (твердое вещество, газ): Не воспламеняется.
Давление параe: 3,82 Па (24,85 ºC)
Относительная плотность: 1,048 (Справочник и/или научные статьи)
Растворимость: В воде: 0,6 г/мл (Справочник и/или научные статьи)
Журнал военнопленных: 5.2 (Справочник и/ или научные статьи)
Вязкость, кинематическая: 3,47 сСт (80 °С), 1,54 сСт (120 °С), 0,920 сСт (160 °С) (Справочник и/или научные статьи)
Окислительные свойства: Исследование не требуется проводить, поскольку вещество не способно вступать в реакцию
экзотермически с горючими материалами.
Нижний предел взрываемости (LEL): 7,5 г/м3

Молекулярнаяформула: C15H24O
Молярная масса: 220,35
Плотность: 1.048
Температура плавления: 69-73°C (лит.)
Точка соединения: 265 °C (лит.)
Температура вспышки: 127 °C
Растворимость в воде: нерастворимая
Растворимость: Растворим в толуоле, растворим в ацетоне, этаноле, бензоле, эфире, изопропаноле, метаноле, 2-бутаноне, эфире этиленгликоля, петролейном эфире и других органических растворах, нерастворим в воде и растворе щелочи.
Давление пара: <0,01 мм рт. ст. (20 °C)
Плотность пара: 7,6 (по сравнению с воздухом)
Возникновение: Бесцветный кристаллический или белый кристаллическийпорошок
Цвет: белый
Запах: слабый характерный запах
Предел воздействия: ACGIH: TWA 2 мг / м3 NIOSH: TWA 10 мг / м3
Мерк: 14,1548
Артикул: 1911640
pKa: pKa 14 (H2Ot = 25c = 0,002-0,01) (неопределенный)
Условия хранения: 2-8 °C
Стабильность: Стабильная, но светочувствительная. Несовместим с хлоридами кислот, ангидридами кислот, латунью, медью, медными сплавами, сталью, щелочами, окислителями. Горючий.
Показатель преломления: 1,4859
ЛЕИ: MFCD00011644

Технические характеристики IONOL CP:
Чистота: минимум 99,8 вт/вт-%
Температура плавления: 70±1ºC
WaterСодержание воды: не более 0,12 вт/вт-%
Цвет (30% мас./мас.% в ацетоне): не более 30 apha
Сульфатная зола: не более 0,002 вт/вт-%

Другие продукты IONOL:
IONOL CP
IONOL 75
IONOL 75S30
IONOL 75T30
IONOL BS35
IONOL BT45
IONOL BF200
IONOL BF350
IONOL BF1000
IONOL K65
IONOL K72
IONOL K78
IONOL K98
IONOL 99
IONOL 103
IONOL 135
IONOL 220
IONOL 220 AH
IONOL PET FOOD
IONOL AQUA 50
IONOL CPS
IONOL CP MOLTEN
IONOL 175N
IONOL 175N PLUS
IONOL FEED 501
IONOL FEED 101
IONOL 200N
IONOL CPF
IONOL CPA
IONOL CPC
IONOL CPD
IONOL FEED 502
IONOL CPA FLAKES
IONOL LC
IONOL BHT TECHNICAL GRADE
IONOL BHT TECHNICAL FLAKES

Синонимы IONOL CP:
bht
BHT
dbpc
Т501
2,6-DBPC
BHTOX-BHT
ralox bht
BHT (МЕШКИ)
bht (мешки)
Антиоксидант 264
501 антиоксидант
антиоксидант bht
BHT, ГРАНУЛИРОВАННЫЙ, FCC
bht, гранулированный, fcc
Антиоксидант T501
антиоксидант bht
Аниониоксидант BHT
дибутилметилфенол
бутилгидрокситолуол
ionol cp-антиоксидант
bht, гранулированный, технический
BHT, ГРАНУЛИРОВАННЫЙ, ТЕХНИЧЕСКИЙ
2-бутил-3-метилфенол
3-бутил-4-метилфенол
бутилатd гидрокситолуола
бутилгидрокситолуол bht
Бутилированный гидрокситолуол
2,6-Ди-трет-бути-п-крезол
бутилированный гидрокситолуол
ди-трет-бутил-пара-крезол
2,6-ди-трет-бутил-п-крезол
2,6-ди-трет-бутил-4-крезол
2,6-ди-трет. бутил-п-крезол
ди-трет-бутилгидрокситолуолoluene
Резиновый антивозрастной агент 264
2,6-дитертиарибутилпаракрезол
2,6-Ди-трет-бутил-4-метилфенол
4-метил-2,6-ди(трет-бутил)фенол
3,5-ди-трет-4-бутилгидрокситолуол
2,6-ди-трет-бутил-4-метилфенол
БУТИЛАТГИДРОКСИТОЛУОЛ ГРАНУЛИРОВАННЫЙ NF
бутилатгидрокситолуолгранулированный, nf
bht (ди-трет.-бутил-4-гидрокситолуол)
2,6,-ди-трет-бутил-4-метилфенол cp
3,5-ди-трет-4бутилгидрокситолуол (bht)
2,6-ди- (трет-бутил)-4-метилфинол-d21
Производитель бутилированного гидрокситолуола
2,6-дитербутил-4-метилфенол[128,37,0]
2,6-бис(1,1-диметилэтил)-4-метилфенол
2,6-дитеритрийбутил-4-метилфенол (bht)
внт 2,6 - ди - трет - бутил -4-метилфенол
бутилерет гидрокситолуол (2,6-ди-трет-бутил-п-крезол)
IONOL CP128-37-0204-881- 4C15H24O
IONOL(R) CPA
IONOL (R) CPD
Iонол(R) CPC
IONOL (R) CPM
2,6-бис(1,1-диметилэтил)-4-метилфенол
2,6-ди-трет-бутил-п-крезол
бутилированный гидрокситолуол
dbpc
ralox bht
бутилгидрокситолуол
2,6-ди-трет. бутил-п-крезол
дибутилметилфенол
bht
бутилгидрокситолуол bht
4-метил-2,6-di(трет-бутил)фенол
антиоксидант bht
антиоксидант bht
2,6-ди-трет-бутил-4-крезол
2,6-ди-трет-бутил-4-метилфенол
501 антиоксидант
бутилированный гидрокситолуол
бутилерет гидрокситолуол (2,6-ди-трет-бутил-п-крезол)
2,6-ди- (трет-бутил)-4-метилфинол-d21
3,5-ди-трет-4бутилгидрокситолуол (bht)
bht (мешки)
bht fcc|nf
bht, гранулированный, fcc
bht, гранулированный, технический
бутилатгидрокситолуол гранулированный nf
ди-трет-бутилгидрокситолуол
2,6-дитеритрийбутил-4-метилфенол (bht)
бутилированный гидрокситолуол (bht и 2,6-dbpc)
ди-трет-бутил-пара-крезол
2,6-дитертиарибутилпаракрезол
bht (ди-трет.-бутил-4-гидрокситолуол)
ionol cp-антиоксидант
2,6-дитербутил-4-метилфенол[128,37,0]
внт 2,6 - ди - трет - бутил -4-метилфенол
2,6,-ди-трет-бутил-4-метилфенол cp
BHTOX-BHT
Аниониоксидант BHT
Т501
Антиоксидант 264
2,6-DBPC
3,5-ди-трет-4-бутилгидрокситолуол
Антиоксидант T501
3-бутил-4-метилфенол
2-бутил-3-метилфенол
2,6-Ди-трет-бути-п-крезол
Резиновый антивозрастной агент 264
IPBC
IPBC (Iodopropynyl butylcarbamate) Iodopropynyl butylcarbamate Iodopropynyl Butyl Carbamate (IPBC) is a water-soluble preservative used globally in the paints & coatings, wood preservatives, personal care, and cosmetics industries. IPBC is a member of the carbamate family of biocides.[1] IPBC was invented in the 1970s and has a long history of effective use as an antifungal technology. History IPBC was initially developed for use in the paint & coatings industry as a dry-film preservative to protect interior and exterior coatings from mold, mildew, and fungal growth, while also offering cost performance and sustainability benefits. IPBC exhibits efficacy against a broad spectrum of fungal species, typically at very low use levels. IPBC today is incorporated into a wide variety of interior and exterior paint formulations around the world. Use is restricted in some countries due to its toxicity, especially acute inhalation toxicity. IPBC is also becoming recognized as a contact allergen.[2] Uses IPBC is an effective fungicide at very low concentrations in cosmetic and other products, and has shown very low sensitivity in humans tested with this preservative. IPBC was approved in 1996 for use up to 0.1% concentrations in topical products and cosmetics. However, this preservative is mostly found in cosmetics at about one-eighth that level [Maier et al., 2009]. IPBC Toxicity and Safety Tests show it to be generally safe: When used properly in leave-on skin products, IPBC is extremely safe [Steinberg, 2002]. Previous to being approved for cosmetic use in 1996, extensive safety and toxicity tests were conducted on IPBC and their results were gathered along with earlier studies in a report of the Safety Assessment of IPBC by the Cosmetic Ingredient Review [CIR Final Report, Lanigan 1998]. This final report found IPBC to be a non-carcinogen with no genotoxicity and in reproductive and developmental toxicity studies using rats and mice, IPBC had no significant effect on fertility, reproductive performance, or on the incidence of fetal malformation [Lanigan, 1998]. Toxicity The study, "Final Report on the Safety Assessment of Iodopropynyl Butylcarbamate", discusses the results of 32 studies between 1990 and 1994 in 3,582 subjects using skin application of IPBC at relevant concentrations. [3] All 32 studies showed no evidence of contact sensitization compared to placebo controls, with the report stating "With each test formulation, a few panelists had erythema, edema, and/or a papular response, but overall, the results were negative." In addition, the study mentions two skin sensitivity studies on 183 children ages 3 – 12 yrs which showed no adverse effects as well as no significant irritation from IPBC. Since the early safety report, there have been a few reports of human skin sensitivity to IPBC in individual patients – all of which showed complete recovery after discontinuance of use of any product containing the IPBC which was presumably an allergen for these patients [Toholka & Nixon, 2014; Pazzaglia & Tosti, 1999]. Post-1996 tests of human sensitivity to IPBC have all shown quite low sensitivity, having overall reported human skin testing (patch test) on 53,774 subjects with only 491 of those subjects showing any reaction (0.8%) to IPBC. In every study, positive patch test reactions occurred in less than 1% of subjects tested in all but one study. This is a very low reaction rate, but it is not zero, and the industry reports this low rate of reaction even though in the largest study of 25,435 subjects over 69% of the reactions were either weak or doubtful [Warshaw et al., 2013a]. These combined studies showing prevalence of reaction below 1% means that IPBC at this time does not have the reaction rates necessary to be included as an allergen in standard allergy series. But, it remains under close monitoring as it is a relatively new preservative for cosmetic products and will presumably increase in usage [Sasseville, 2004]. Most human patch tests performed before 2004 were with 0.1% IPBC solutions, i.e. 10 times the concentration used in many cosmetic products. Some used 0.5% IPBC. In 2004, it was suggested that a better concentration for tests of this substance would be 0.2% [Brasch et al., 2004] and this has contributed to the diagnosis of more sensitizations to this substance [Martin-Gorgojo & Johansen, 2013]. One study showed significantly increased sensitivity between 2005 and 2010 using 0.5% IPBC in patch tests [Warshaw et al., 2013b]. See also Ingredients of cosmetics Iodopropynyl butylcarbamate Ipbc.svg Names IUPAC name 3-Iodoprop-2-yn-1-yl butylcarbamate Other names 3-Iodo-2-propynyl N-butylcarbamate; 3-Iodo-2-propynyl butylcarbamate; Iodocarb Identifiers CAS Number 55406-53-6 check 3D model (JSmol) Interactive image Abbreviations IPBC ChEBI CHEBI:83279 ☒ ChemSpider 55933 check ECHA InfoCard 100.054.188 PubChem CID 62097 UNII 603P14DHEB check Properties Chemical formula C8H12INO2 Molar mass 281.093 g·mol−1 IODOPROPYNYL BUTYLCARBAMATE IODOPROPYNYL BUTYLCARBAMATE is classified as : Preservative CAS Number 55406-53-6 EINECS/ELINCS No: 259-627-5 Restriction (applies to EU only): VI/56 COSING REF No: 34582 Chem/IUPAC Name: 3-Iodo-2-propynyl butylcarbamate Iodopropynyl Butylcarbamate What Is Iodopropynyl Butylcarbamate? Iodopropynyl Butylcarbamate, also known as IPBC, is a white or slightly off-white crystalline powder that contains iodine. It is used in a wide variety of cosmetics and personal-care products Why is Iodopropynyl Butylcarbamate used in cosmetics and personal care products? Iodopropynyl Butylcarbamate prevents or retards bacterial growth, thereby protecting cosmetics and personal-care products from spoilage. Follow this link for more information about how preservatives protect cosmetics and personal care products. Scientific Facts: Iodopropynyl Butylcarbamate is an internationally recognized preservative that has been used for years because of a wide field of application. The need for a broad-spectrum and safe preservative system for cosmetics has led to the development of several combinations of IPBC with other preservatives effective against a wide variety of organisms. IPBC is also used as a preservative in household products, paints, cements and inks. 3-iodo-2-propynyl butylcarbamate is an off-white solid. 3-iodoprop-2-yn-1-yl butylcarbamate is a carbamate ester that is carbamic acid in which the nitrogen has been substituted by a butyl group and in which the hydrogen of the carboxy group is replaced by a 1-iodoprop-2-yn-3-yl group. A fungicide, it is used as a preservative and sapstain control chemical in wood products and as a preservative in adhesives, paints, latex paper coating, plastic, water-based inks, metal working fluids, textiles, and numerous consumer products. It has a role as a xenobiotic, an environmental contaminant and an antifungal agrochemical. It is a carbamate ester, an organoiodine compound, an acetylenic compound and a carbamate fungicide. Molecular Weight of IPBC: 281.09 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of IPBC: 2.1 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of IPBC: 1 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of IPBC: 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of IPBC: 5 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of IPBC: 280.99128 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of IPBC: 280.99128 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of IPBC: 38.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of IPBC: 12 Computed by PubChem Formal Charge of IPBC: 0 Computed by PubChem Complexity of IPBC: 192 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of IPBC: 0 Computed by PubChem Defined Atom Stereocenter Count of IPBC: 0 Computed by PubChem Undefined Atom Stereocenter Count of IPBC: 0 Computed by PubChem Defined Bond Stereocenter Count of IPBC: 0 Computed by PubChem Undefined Bond Stereocenter Count of IPBC: 0 Computed by PubChem Covalently-Bonded Unit Count of IPBC: 1 Computed by PubChem Compound of IPBC Is Canonicalized Yes Iodopropynyl Butylcarbamate Details It's one of those things that help your cosmetics not to go wrong too soon, aka a preservative. Its strong point is being effective against yeasts and molds, and as a nice bonus seems to be non-comedogenic as well. It is safe in concentrations of less than 0.1% but is acutely toxic when inhaled, so it's not the proper preservative choice for aerosol formulas like hairsprays. Used at 0.1%, Iodopropynyl Butylcarbamate has an extremely low rate of skin-irritation when applied directly for 24 hours (around 0.1% of 4,883 participants) and after 48 hours that figure was 0.5%, so it counts as mild and safe unless your skin is super-duper sensitive. iodopropynyl butylcarbamate Where is iodopropynyl butylcarbamate found? Iodopropynyl butylcarbamate is a preservative used in cosmetics, wet wipes (toilet paper), and other personal care products. It is also used as a biocide in paints, primers, and industrial coolants and cooling lubricants. How can you avoid contact with iodopropynyl butylcarbamate? Avoid products that list any of the following names in the ingredients: • Butyl-3-iodo-2-propynylcarbamate • Carbamic acid, butyl-3-iodo-2-propynyl ester • Iodopropynyl butylcarbamate • 3-Iodo-2-propynyl butylcarbamate • EPA Pesticide Chemical Code 107801 • BRN 2248232 • Caswell No. 501A • EINECS 259-627-5 • HSDB 7314 • 3-Iodo-2-propynyl butyl carbamate What are some products that may contain iodopropynyl butylcarbamate? Baby Care • Baby lotion • Baby wash and shampoo • Diaper rash cream • Flushable moist wipes Body Washes and Soaps • Cleansing towelettes • Makeup remover towelettes Cosmetics • Concealer • Eye lash tint • Liquid eye liner Hair Dye Hair Hair Styling Products • Gel • Hairspray • Pomade • Root lifter Industrial Coolants and Cooling Lubricants Lip Balm Lotions and Skin Care Products • Acne treatment • Anti-itch cream • Bar soap • Body lotion • Moisturizer • Wrinkle cream Paints and Stains Shampoos and Conditioners Shaving Creams and Gels Sunscreens Yard care • Insect killer • Weed killer Iodopropynyl butylcarbamate (IPBC) is an internationally recognized chemical that has been used for years because of its wide field of application. Initially used as a water-based paint and wood preservative and then in metalworking fluids, its role has expanded into the more recent uses in cosmetic products. The need for a potent, broad-spectrum, and safe preservative system in cosmetics allowed for the discovery of several combinations of IPBC effective against a wide variety of organisms. Although IPBC has claimed to be safe when used at concentrations less than 0.1%, the introduction of IPBC into cosmetics has led to several reports labeling IPBC as a potential new contact allergen. As the use of this seemingly safe preservative becomes vast, an increased number of cases of IPBC-induced contact allergy is likely.
IPBC 30
Chemical name: 3-iodo-2-propynyl butyl carbomate Description; Nipacide IPBC 30 is a 30% active IPBC clear glycolic fungicide, Nipacide IPBC 30 has been developed for fungal dry film protection of water based coatings. Nipacide IPBC 30 can also be used for wet state, in-can fungal protection. Nipacide IPBC 30 is effective against a wide range of fungal and yeast species and exhibits some activity against gram negative and gram positive bacteria. Dry –film degradation in paints and decorative coatings can be avoided by using the correct dry-film fungicides at the most cost effective use level. Ideal dry-film properties achieved by Nipacide IPBC3 30 include: • High activity against a broad range of fungi and algae • Excellent activity at relatively low use concentrations • Carbendazim free • pH stable • UV stable • Low water solubility • Approved under the Biocidal Products Directive • Cost effective protection Applications; Nipacide IPBC 30 is recommended for protection of a wide range of coating applications including water based decorative paints, wood stains and colours. Nipacide IPBC 30 can also be used in solvent based applications. Increased antifungal activity can also be achieved by using Nipacide IPBC 30 for in-can use in adhesives grouts and sealants. Nipacide IPBC 30 is effective against a wide range of spoilage organisms effective over a wide pH range. Nipacide IPBC 30 should not be used in products heated above 400 C. Use level; Nipacide IPBC 30 should be evaluated in finished products at levels between 0.50% and 2.0% for dry film applications. The level of protection will depend on many factors including the end destination of coating, relative humidity, sun strength and others and can be determined by evaluation by our team of microbiologists at the Microbiology facility. For in-can antifungal activity Nipacide IPBC 30 should be evaluated between 0.10% and 0.30%. Microbiological data; Even though Nipacide IPBC 30 is designed for dry-film applications it also exhibits activity against a wide range of bacteria, fungi and yeast. This can be demonstrated by the following MIC data. Chemical compatibility; Nipacide IPBC 30 is compatible with most raw materials used in the manufacture of industrial and decorative coatings. Nipacide IPBC 30 compatibility should always be checked and evaluated before use.
IPHA 15%
IPHA 15% Isopropyl alcohol (IPHA 15%) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a compound with the chemical formula CH3CHOHCH3.[8] It is a colorless, flammable chemical compound with a strong odor. As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. It is used in the manufacture of a wide variety of industrial and household chemicals, and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. isopropyl alcohol (IPHA 15%) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist Recommended use: Monomer stabilizer. Polymerization chainstopper. Synthesis intermediate. Photochemical additive. For industrial use. Other names of isopropyl alcohol (IPHA 15%), colorless, flammable liquid are known. For example, in the lab it may be simply denoted by isopropanol, isopro, iso, isopropyl, or acronym IPA. It is also an inorganic compound sometimes called 2-propanol, possibly referred to as an isomer, also known as propanol. Of course, isopropyl alcohol (IPHA 15%) is most commonly known as simple spirit. isopropyl alcohol (IPHA 15%), also known as isopropanol; clear, mixture of ethanol and acetone has an odor; it is a flammable alcohol. It forms solutions in any proportion with water, ethanol, acetone, chloroform and benzene, can be subjected to all typical reactions of secondary alcohols, and gives strong reactions with strong oxidizing agents. isopropyl alcohol (IPHA 15%), which is used as a low cost solvent in many applications, is similar to ethyl alcohol in terms of solvent properties and evaporation rate. If it burns, it decomposes to form carbon monoxide, which is toxic. IPHA 15% is useful for use in lacquers, inks and thinners in terms of its high latent solvent power, moderate evaporation rate and many other solvents it forms for cellulose nitrate, cellulose acetate butyrate and cellulose acetate procyanate. The use of isopropyl alcohol (IPHA 15%) in the production of monoisoprolamine for herbicides is the fastest growing segment in terms of use, and its use as a solvent in coatings and inks remains either the same or increases slightly. IPHA 15% is usually used by diluting with water when necessary for cleaning and stain removal. IPHA 15% is also used to remove oxidation and residual resin residues in electronic circuit boards. As a solvent IPHA 15%; in extraction and purification of natural products such as vegetable and animal oils, gum resins, waxes, colorants, flavors, alkaloids, vitamins and alginates; as a carrier in the production of foodstuffs; in purification, crystallization and precipitation of organic chemicals; It finds application in synthetic polymers such as phenolic varnishes and nitrocellulose lacquers. Also as a solvent; Participates in formulations of cosmetics, hair tonics, perfumes, skin lotions, hair dye rinse, skin cleaners, deodorant, nail polish, shampoo, hair sprays, air fresheners. As coating and paint solvent; It finds application in the production of cement, primer, paint and ink and acts as a cleaning and drying agent in liquid soap and detergent. isopropyl alcohol (IPHA 15%) (IPA); It is also used in the production of acetone and its derivatives and other chemicals such as isopropyl acetate, isopropylamine, diisopropyl ether, isopropyl xanthate, fatty acid esters, herbicidal esters and aluminum isopropoxide. Other Area of ​​Usage; It can be considered as a cooling agent in beer production, dehydrating agent in polyvinyl fluoride production, polymerization modifier and as a flavoring agent in home tobacco and personal care products. About IPHA 15% IPHA 15% has not been registered under the REACH Regulation, therefore as yet ECHA has not received any data about IPHA 15% from registration dossiers. IPHA 15% is used by professional workers (widespread uses), in formulation or re-packing and at industrial sites. Widespread uses by professional workers IPHA 15% is used in the following products: washing & cleaning products and water treatment chemicals. ECHA has no public registered data on the types of manufacture using IPHA 15%. Other release to the environment of IPHA 15% is likely to occur from: indoor use as reactive substance. Uses at industrial sites IPHA 15% is used in the following products: pH regulators and water treatment products, water treatment chemicals, adhesives and sealants and polymers. IPHA 15% is used for the manufacture of: rubber products. Release to the environment of IPHA 15% can occur from industrial use: as processing aid and as processing aid. The pure N-Isopropylhydroxylamine (IPHA 15%) is a white crystalline flake; however, it is sold as a 15% solution in water [2]. The aqueous solution is colourless with a slight amine odour [2]. IPHA 15% is marketed as a free-radical scavenger and uses in acrylonitrile-butadiene rubber and styrene-butadiene rubber manufacturing under the trade name CHAINGUARDTMI-15 Hydroxylamine. It is also used as an oxygen scavenger and metal passivator to control corrosion in boilers and marketed with the trade name HYDROGUARDTM I-15 Hydroxylamine [2]. IPHA 15% may also be used in other applications, such as photographic processing, “popcorn” polymer inhibition, monomer stabilization, reducing agent, dye affinity aid; ORE recovery (chelator) and as a synthetic building block [1]. The estimated rate constant of oral absorption of IPHA 15% through human gastrointestinal tract (jejunum) is 0.014 min-1by ACD/ADME Suite version 5.0 (Advanced Chemistry development, Toronto, ON, Canada). This low rate of oral absorption is consistent with the pKa (6.16) of the basic (pH of 15% aqueous solution = 10.6) compound. Most of IPHA 15% will remain ionized in human jejunum which has a pH of 6.5, lowering oral absorption. Even with the slow rate of oral absorption, the overall amount of absorption is estimated to be 99% (ACD/ADME Suite). It has also been estimated to have a moderate volume of distribution of 1.1 L/kg in human, consistent with the low log Kow for this compound. Similarly, plasma protein binding of IPHA 15% is estimated to be ~52% in humans by ACD/ADME Suite. No toxicological information for IPHA 15% is found for comparison with the rate of absorption and acute toxicity. The steady-state dermal permeability coefficient of aqueous IPHA 15% through human epidermis has been estimated to be 7.42 x 10-4cm/h by Dermwin version 2.01 (EPI Suite version 4.0). On the basis of this data, negligible penetration of dermally applied IPHA 15% is expected. However, no dermal toxicity data are available for comparison. Distribution Due to its basic nature (pH = 10.6 of 15% aqueous solution [1]), non-lipophilicity (log Kow= 0.15) and moderate plasma protein binding (~52%), a moderate volume of distribution (1.1 L/kg) is estimated for IPHA 15% in humans by ACD/ADME Suite. Accumulation Due to moderate plasma protein binding and low volume of distribution, IPHA 15% is expected to have very low bioaccumulation potential. Metabolism No data on the metabolism of IPHA 15% in rat or other species has been reported. As shown in the chemical structure, IHPA contains the two moieties of isopropyl and hydroxyamine. Therefore, it’s metabolism will be predicted based on the metabolism of both isopropyl and hydroxyamine. The isopropyl group can be metabolized to by cytochrome P450 via hydroxylation, this will lead to the hydroxylated IPHA 15% metabolite. The hydroxyamine group is expected to be metabolically stable, and will not be further metabolized by cytochrome P450 or other Phase I or II enzymes,in vivoorin vitro. Based on these rationale, the potential metabolite of IPHA 15% will be hydroxylated isopropylhydroxyamine. Excretion Both IPHA 15% and the hydroxylated isopropylhydroxyamine metabolite are water-soluble; therefore, would be expected to excreted primarily in urine. Summary This analysis estimated a relative dermal absorption of 3.5% to 7.4% of the applied dose for an aqueous solution of N-isopropylhydroxylamine (IPHA 15%), CAS No. 5080-22-8. A literature search of several databases did not find experimental dermal absorption results for IPHA 15%. QSARs were used to estimate the skin permeability coefficient and which was then extrapolated to a relative dermal absorption. Although one analog of IPHA 15% was found, it did not have experimental dermal absorption results so read across could not be applied. Introduction An evaluation of the potential human dermal absorption was conducted for IPHA 15% in order to refine the DNEL derivation for the ANGUS Chemical registration of IPHA 15% for REACH. The previous DNEL analysis conservatively assumed 100% relative dermal absorption. 1. Physical state. The substance is in aqueous solution under the use conditions; liquids are taken up more readily than dry particulates. 2. Exposure. IPHA 15% is used in 15% aqueous solutions in HYDROGUARD and CHAINGUARD, these products are for industrial use in water-treatment operations and polymer reaction-control applications. It was suggested that transferring the chemical from a product container into a process tank would present the highest exposure potential; other tasks would expose the worker to more dilute solutions. 3. Physical and chemical properties. IPHA 15% has a molecular weight of 75. Molecular weight is an indicator of the molecule volume and the penetration rate of a molecule into the skin is inversely proportional to its volume. One would not expect the molecular weight of IPHA 15% to significantly limit is dermal penetration. 4. Octanol/water partition coefficient, Kow. The estimated log Kow for IPHA 15% is 0.15 and it is classified as lipophobic. The Kow, is the ratio of the chemical concentration in octanol to its concentration in water, with octanol acting as a model for the lipids (fats) in an organism. A log Kow value below 0 will limit penetration into the stratum corneum and limit dermal absorption. A high log Kow value corresponds to a highly lipophilic chemical which will tend to partition into the skin lipids rather than the aqueous matrix. 5. Vapor pressure. If a substance has a significant vapor pressure it may evaporate before it has time to penetrate the skin or the skin penetration may be significantly reduced. The vapor pressure for IPHA 15% was reported as 0.26 mm Hg at 20°C (15% aqueous IPHA 15% in CHAINGUARD™ ) and evaporation may reduce the dermal load and possibly limit the dermal penetration. 6. Lag time. This is the experimentally determined duration for the substance to penetrate the skin and be measured in the receptor fluid in the test cell. A long lag time may be due to the stratum corneum providing a barrier which prevents substance penetration. A long lag time may also be due to the substance penetrating slowly or formation of a skin residue. The calculations using the skin permeability coefficient assume the substance immediately penetrates the skin and do not consider the lag time in uptake. The USEPA DERMWIN v2.01 predicted tau as 0.281 hr, tau is lag time in update; it predicted t*as 0.674 hr, t* is time to steady state penetration. 7. Water solubility. This limits the substance concentration in an aqueous solution. Substances which are soluble tend to penetrate the skin well. Substances with a high water solubility may be too hydrophilic to cross the stratum corneum. IPHA 15% has a high predicted water solubility and it is hydrophilic. 8. Water dissociation. Substances which dissociate (ionize) in water do not tend to penetrate the skin well. IPHA 15% does not ionize. Therefore, using the REACH stepwise approach one would expect the low log Kow and the hydrophilic nature of IPHA 15% to limit its dermal penetration. Evaporation may reduce the dermal load and possibly limit the dermal penetration. IPHA 15% is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. IPHA 15% is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. IPHA 15% has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)IPHA 15% Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, IPHA 15% can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. IPHA 15% (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. IPHA 15% is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of IPHA 15% IPHA 15% IPHA 15% is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of IPHA 15% IPHA 15% is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, IPHA 15% is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated IPHA 15% to separate into a distinct layer. IPHA 15% forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) IPHA 15%. Water–IPHA 15% mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. IPHA 15% becomes increasingly viscous with decreasing temperature and freezes at −89 °C (−128 °F). IPHA 15% has a maximal absorbance at 205 nm in an ultraviolet–visible spectrum. Reactions of IPHA 15% IPHA 15% can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of IPHA 15% over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 IPHA 15% is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. IPHA 15% may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, IPHA 15% reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of IPHA 15% In 1920, Standard Oil first produced IPHA 15% by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of IPHA 15% In 1994, 1.5 million tonnes of IPHA 15% were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the IPHA 15% be separated from water and other by-products by distillation. IPHA 15% and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight IPHA 15% and 12.1% by weight water.[18] Pure (anhydrous) IPHA 15% is made by azeotropic distillation of the wet IPHA 15% using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of IPHA 15% Small amounts of IPHA 15% are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of IPHA 15% Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily IPHA 15% rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces IPHA 15%, by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of IPHA 15% See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone IPHA 15% may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of IPHA 15% One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of IPHA 15% were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. IPHA 15% is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some IPHA 15% is used as a chemical intermediate. IPHA 15% may be converted to acetone, but the cumene process is more significant. [16] Solvent of IPHA 15% IPHA 15% dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] IPHA 15% is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate IPHA 15% is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] IPHA 15% reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of IPHA 15% Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60–70% solution of IPHA 15% or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for IPHA 15%. A 75% v/v solution in water may be used as a hand sanitizer.[22] IPHA 15% is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although IPHA 15% can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. IPHA 15% can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive IPHA 15% is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. IPHA 15% is often sold in aerosol cans as a windshield or door lock deicer. IPHA 15% is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of IPHA 15% and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, IPHA 15% provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. IPHA 15% solutions of 70–99% are used to preserve specimens. IPHA 15% is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in IPHA 15%. Safety of IPHA 15% IPHA 15% vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of IPHA 15% over magnesium has been reported to form peroxides, which may explode upon concentration. IPHA 15% is a skin irritant. Wearing protective gloves is recommended. Toxicology of IPHA 15% IPHA 15% and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of IPHA 15% poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] IPHA 15% does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] IPHA 15% is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of IPHA 15% are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of IPHA 15% of tens of mg/dL, while those by fatal IPHA 15% ingestion usually have blood concentrations of hundreds of mg/dL.
Iron 3 Chloride
ferricchloride iron (III) chloride iron trichloride iron(3+) trichloride iron(III) chloride trichloroiron CAS Number:7705-08-0
IRON III CHLORIDE
FERRIC SULFATE Iron(III) sulfate Iron persulfate Iron tersulfate Diiron tris(sulphate) Diiron trisulfate Ferric persulfate Ferric tersulfate Iron sesquisulfate Ferric sesquisulfate Iron(3+) sulfate Sulfuric acid, iron(3+) salt (3:2) Coquimbite mineral Iron sulfate (2:3) Iron sulfate (Fe2(SO4)3) Iron(3+) sulfate, (2:3) Ferricsulfate Sulfuric acid, iron(3+) salt Iron-S-hydrate iron(III)sulphate Ferric sulfate (USP) Sulfuric acid,iron salt iron(III) sulfate(VI) CAS: 10028-22-5
IRON III SULFATE
IRON SULPHATE; Green Vitriol; Copperas; Melanterite; Ferrous sulfate heptahydrate; Sulfuric acid, iron(2+) salt, heptahydrate; Ferrosulfat (German); cas no: 7782-63-0
IRON(II) SULFATE DRİED
Ferrous sulfate monohydrate; Iron sulfate monohydrate; Iron(2+) sulfate monohydrate; dried ferrous sulfate ;ferrous sulfate (dried); iron(II) sulfate monohydrate; Ferrosulfate hydrate cas no:13463-43-9
IRON(II) SULFATE-7-HYDRATE
Iron(II) sulfate heptahydrate ;Ferrous sulfate heptahydrate ;Green Vitriol; Copperas; Melanterite;Ferrous sulfate heptahydrate; Sulfuric acid, iron(2+) salt, heptahydrate; Ferrosulfat (German); cas no: 7782-63-0
IRON(III) PYROPHOSPHATE
Diphosphoric acid iron(III) salt, Ferric pyrophosphate ;pyrophosphoric acid iron(3+) salt (3:4); iron (III) pyrophosphate; iron pyrophosphate ;tetrairon tris(pyrophosphate) cas no: 10058-44-3
Isırgan Ekstrakt
Urtica diocia extract ;urtica dioica extract; bichu booti extract; extract of the aerial parts of the nettle, urtica dioica l., urticaceae; nettle wort extract cas no: 84012-40-8
ISOAMYL ACETATE
BANANA OIL; ISOAMYL ACETATE, N° CAS : 123-92-2. Nom INCI : ISOAMYL ACETATE. Nom chimique : Isopentyl acetate. N° EINECS/ELINCS : 204-662-3. Noms français : 3-METHYL-1-BUTYL ACETATE; 3-METHYLBUTYL ACETATE; 3-METHYLBUTYL ETHANOATE; ACETATE D'ISOAMYLE; ACETATE D'ISOPENTYLE; ACETATE DE METHYL-3 BUTYLE; ACETIC ACID 3-METHYLBUTYL ESTER ;Acétate d'isoamyle. Noms anglais : ACETIC ACID ISOAMYL ESTER; ACETIC ACID ISOPENTYL ESTER; BANANA OIL; Isoamyl acetate; ISOAMYL ACETIC ESTER; ISOAMYL ETHANOATE ISOPENTYL ACETATE; ISOPENTYL ALCOHOL, ACETATE; Pentyl acetate, all isomers [123-92-2]. Utilisation : L'acétate d'isoamyle a beaucoup d'applications industrielles, notamment : comme saveur artificielle de poire ou de banane dans les aliments, dans les produits pour masquer les odeurs, comme test qualitatif pour les appareils respiratoires (test de l'huile de banane) en tant que solvant pour des vernis et des laques, dans les vernis à ongles, dans les films photographiques
ISOAMYL ALCOHOL
ISOAMYL ALLYLGLYCOLATE, N° CAS : 67634-00-8. Nom INCI : ISOAMYL ALLYLGLYCOLATE. Nom chimique : Acetic Acid, (3-Methylbutoxy), 2-Propenyl Ester, N° EINECS/ELINCS : 266-803-5 Ses fonctions (INCI). Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Isoascorbic Acid
Isoascorbic Acid; D-erythro-Hex-2-enoic acid γ-lactone; D-Araboascorbic acid; Erythorbic acid; Glucosaccharonic acid; NSC 8117; cas no: 89-65-6
ISOBORNYL ACETATE
Isobornyl Acetate Isobornyl acetate (izobornil asetat, isobornyl acetate) readily hydrolyzes (within hours) to isobornyl alcohol during the first step of its biochemical pathway. The alcohol will become conjugated with glucoronic acid and be excreted in the urine (expected within hours to days). IDENTIFICATION: Isobornyl acetate (izobornil asetat, isobornyl acetate) is a colorless to straw-colored liquid. It has an odor like pine needles. It is not very soluble in water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a natural component in many plants. USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is an important commercial chemical. It is used in perfuming soaps, air fresheners and in making camphor. It is also used as a flavoring ingredient. EXPOSURE: Workers that use Isobornyl acetate (izobornil asetat, isobornyl acetate) may breathe in vapors or have direct skin contact. The general population may be exposed by vapors, dermal contact and consumption of food flavored with Isobornyl acetate (izobornil asetat, isobornyl acetate). If Isobornyl acetate (izobornil asetat, isobornyl acetate) is released to the environment, it will be broken down in air. It is not expected to be broken down by sunlight. It will move into air from moist soil and water surfaces. It is expected to move through soil. It will be broken down by microorganisms, and is expected to build up in fish. RISK: Allergic skin reactions were not observed in volunteers following direct skin exposure. Other data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to produce toxic effects in humans were not available. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a mild skin irritant in laboratory animals. Kidney and liver damage and changes in kidney function were reported in laboratory animals following repeated exposure to moderate-to-high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) over time. No effects were reported at low doses. No evidence of infertility, abortion, or birth defects was reported in laboratory animals exposed to high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) before and during pregancy. Data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in laboratory animals were not available. The potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens. For Isobornyl acetate (izobornil asetat, isobornyl acetate) (USEPA/OPP Pesticide Code: 128875) there are 0 labels match. /SRP: Not registered for current use in the USA, but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in large amounts for perfuming soap, bath products, and air fresheners. However, the major use of Isobornyl acetate (izobornil asetat, isobornyl acetate) is as an intermediate in the production of camphor. Isobornyl acetate (izobornil asetat, isobornyl acetate) is prepared from camphene and acetic acid in the presence of acidic catalysts (e.g., sulfuric acid), or on a styrene-divinylbenzene acid ion-exchanger. Residues of Isobornyl acetate (izobornil asetat, isobornyl acetate) are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only. IDENTIFICATION AND USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in soaps, detergents, creams and lotions and perfumes. HUMAN STUDIES: A maximization test was carried out on 25 volunteers. The material was tested at a concentration of 10% and produced no sensitization reactions. ANIMAL STUDIES: Isobornyl acetate (izobornil asetat, isobornyl acetate) applied full strength to intact or abraded rabbit skin for 24 hr under occlusion was mildly irritating. Isobornyl acetate (izobornil asetat, isobornyl acetate) was administered daily to rats in doses of 0, 15, 90 or 270 mg/kg bw for 13 wk. Male rats had signs of nephrotoxicity at 90 mg/kg and 270 mg/kg/day, as well as signs of hepatotoxicity at 270 mg/kg. Isobornyl acetate (izobornil asetat, isobornyl acetate) was investigated in a 1-generation reproduction study in rats and it did not produce developmental toxicity. Increased incidences of excess salivation occurred in parent generation male and female rats at 100 and/or 300 mg/kg/d throughout the dosage period, and low incidences of urine-stained abdominal fur were seen in females at 300 mg/kg/d during the gestation period. Isobornyl acetate (izobornil asetat, isobornyl acetate)'s production and use in toilet waters, bath preparations, antiseptics, soaps, making synthetic camphor and as a flavoring agent may result in its release to the environment through various waste streams. Its use in compounding needle odors and theater sprays will result in its direct release to the environment. Isobornyl acetate (izobornil asetat, isobornyl acetate) is reported in a wide variety of herbs and other plants. If released to air, an estimated vapor pressure of 0.11 mm Hg at 25 °C indicates Isobornyl acetate (izobornil asetat, isobornyl acetate) will exist solely as a vapor in the atmosphere. Vapor-phase Isobornyl acetate (izobornil asetat, isobornyl acetate) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 50 hrs. Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm and, therefore, is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to have moderate mobility based upon an estimated Koc of 420. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 9.5X10-5 atm-cu m/mole. Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg and exists as a liquid under environmental conditions; therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil. Using the OECD Biodegradability test, isoborneol acetate was biodegraded in 10 days, suggesting that biodegradation is an important environment fate process in soil or water. If released into water, Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 17 hrs and 9.5 days, respectively. An estimated BCF of 320 suggests the potential for bioconcentration in aquatic organisms is moderate. Hydrolysis is not expected to be an important environmental fate process as indicated by estimated base-catalyzed second-order half-lives of 2.3 yrs and 84 days at pH values of 7 and 8, respectively. Occupational exposure to Isobornyl acetate (izobornil asetat, isobornyl acetate) may occur through inhalation and dermal contact with this compound at workplaces where Isobornyl acetate (izobornil asetat, isobornyl acetate) is produced or used. Monitoring data indicate that the general population may be exposed to Isobornyl acetate (izobornil asetat, isobornyl acetate) via inhalation of ambient air, ingestion of food, and dermal contact with consumer products containing Isobornyl acetate (izobornil asetat, isobornyl acetate). Isobornyl acetate (izobornil asetat, isobornyl acetate) is reported in a wide variety of herbs and other plants(1). It is a natural emmission from pine and fir trees(2). The compound is reported as occurring in thymus, Parmesan cheese, dill herb, Ocimum basilicum, rosemary and custard apple(3). Isobornyl acetate (izobornil asetat, isobornyl acetate)'s production and use in toilet waters, bath preparations, antiseptics, soaps, making synthetic camphor(1) and as a flavoring agent(1,2) may result in its release to the environment through various waste streams. Its use in compounding pine needle odors and theater sprays(1) will result in its direct release to the environment(SRC). TERRESTRIAL FATE: Based on a classification scheme(1), an estimated Koc value of 420(SRC), determined from a structure estimation method(2), indicates that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to have moderate mobility in soil(SRC). Volatilization of Isobornyl acetate (izobornil asetat, isobornyl acetate) from moist soil surfaces is expected to be an important fate process(SRC) given an estimated Henry's Law constant of 9.5X10-5 atm-cu m/mole(SRC), developed using a fragment constant estimation method(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg(2) and exists as a liquid under environmental conditions; therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil. Using the OECD Biodegradability test, isoborneol acetate was biodegraded in 10 days(3), suggesting that biodegradation is an important environment fate process in soil(SRC). ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere(1), Isobornyl acetate (izobornil asetat, isobornyl acetate), which has an estimated vapor pressure of 0.11 mm Hg at 25 °C(SRC), determined from a fragment constant method(2), is expected to exist solely as a vapor in the ambient atmosphere. Vapor-phase Isobornyl acetate (izobornil asetat, isobornyl acetate) is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals(SRC); the half-life for this reaction in air is estimated to be 50 hrs(SRC), calculated from its rate constant of 7.7X10-12 cu cm/molecule-sec at 25 °C(SRC) that was derived using a structure estimation method(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm(3) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). AEROBIC: Isobornyl acetate (izobornil asetat, isobornyl acetate) was biodegraded in 10 days in the OECD Ready Biodegradability test. The compound was 29.0 and 99.8% removed in wastewater treat plants under primary gravitational settling and activated sludge treatement process, respectively(1). The rate constant for the vapor-phase reaction of Isobornyl acetate (izobornil asetat, isobornyl acetate) with photochemically-produced hydroxyl radicals has been estimated as 7.7X10-12 cu cm/molecule-sec at 25 °C(SRC) using a structure estimation method(1). This corresponds to an atmospheric half-life of about 50 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm(1). A base-catalyzed second-order hydrolysis rate constant of 9.5X10-2 L/mole-sec(SRC) was estimated using a structure estimation method(1); this corresponds to half-lives of 2.3 yrs and 84 days at pH values of 7 and 8, respectively(1). Isobornyl acetate (izobornil asetat, isobornyl acetate) does not contain chromophores that absorb at wavelengths >290 nm(2) and, therefore, is not expected to be susceptible to direct photolysis by sunlight(SRC). An estimated BCF of 320 was calculated in fish for Isobornyl acetate (izobornil asetat, isobornyl acetate)(SRC), using a log Kow of 4.30(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is high(SRC). Using a structure estimation method based on molecular connectivity indices(1), the Koc of Isobornyl acetate (izobornil asetat, isobornyl acetate) can be estimated to be 420(SRC). According to a classification scheme(2), this estimated Koc value suggests that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to moderate mobility in soil(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate) readily hydrolyzes (within hours) to isobornyl alcohol during the first step of its biochemical pathway. The alcohol will become conjugated with glucoronic acid and be excreted in the urine (expected within hours to days). IDENTIFICATION: Isobornyl acetate (izobornil asetat, isobornyl acetate) is a colorless to straw-colored liquid. It has an odor like pine needles. It is not very soluble in water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a natural component in many plants. USE: Isobornyl acetate (izobornil asetat, isobornyl acetate) is an important commercial chemical. It is used in perfuming soaps, air fresheners and in making camphor. It is also used as a flavoring ingredient. EXPOSURE: Workers that use Isobornyl acetate (izobornil asetat, isobornyl acetate) may breathe in vapors or have direct skin contact. The general population may be exposed by vapors, dermal contact and consumption of food flavored with Isobornyl acetate (izobornil asetat, isobornyl acetate). If Isobornyl acetate (izobornil asetat, isobornyl acetate) is released to the environment, it will be broken down in air. It is not expected to be broken down by sunlight. It will move into air from moist soil and water surfaces. It is expected to move through soil. It will be broken down by microorganisms, and is expected to build up in fish. RISK: Allergic skin reactions were not observed in volunteers following direct skin exposure. Other data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to produce toxic effects in humans were not available. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a mild skin irritant in laboratory animals. Kidney and liver damage and changes in kidney function were reported in laboratory animals following repeated exposure to moderate-to-high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) over time. No effects were reported at low doses. No evidence of infertility, abortion, or birth defects was reported in laboratory animals exposed to high oral doses of Isobornyl acetate (izobornil asetat, isobornyl acetate) before and during pregancy. Data on the potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in laboratory animals were not available. The potential for Isobornyl acetate (izobornil asetat, isobornyl acetate) to cause cancer in humans has not been assessed by the U.S. EPA IRIS program, the International Agency for Research on Cancer, or the U.S. National Toxicology Program 14th Report on Carcinogens. For Isobornyl acetate (izobornil asetat, isobornyl acetate) (USEPA/OPP Pesticide Code: 128875) there are 0 labels match. /SRP: Not registered for current use in the USA, but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. Isobornyl acetate (izobornil asetat, isobornyl acetate) is used in large amounts for perfuming soap, bath products, and air fresheners. However, the major use of Isobornyl acetate (izobornil asetat, isobornyl acetate) is as an intermediate in the production of camphor. The Henry's Law constant for Isobornyl acetate (izobornil asetat, isobornyl acetate) is estimated as 9.5X10-5 atm-cu m/mole(SRC) developed using a fragment constant estimation method(1). This Henry's Law constant indicates that Isobornyl acetate (izobornil asetat, isobornyl acetate) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 17 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 9.5 days(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC).Isobornyl acetate (izobornil asetat, isobornyl acetate) has an estimated vapor pressure of 0.11 mm Hg(SRC), determined from a fragment constant method(13) and exists as a liquid under environmental conditions: therefore, Isobornyl acetate (izobornil asetat, isobornyl acetate) may volatilize from dry soil(SRC). Isobornyl acetate (izobornil asetat, isobornyl acetate) dissipated within one week when added along with 21 other fragrance materials to a Georgetown, DE anaerobically digested municipal sludge and applied to four soils (sandy agricultural loam, silty midwestern agrigultural loam, high organic carbon soil, and a highly weathered oxide-rich soil)(3). Isobornyl acetate (izobornil asetat, isobornyl acetate) was reported at an average concentration of 5,130 ng/L in municipal wastewater influent and an average concentration of 24 ng/L in treated effluent, following a 3-day period in September 1997 at an activated sludge treatment plant in Loveland, OH. Influent and effluent average concentrations of 2,830 and 58 ng/L, respectively, when subjected to trickling filter wastewater treatment(1). Isobornyl acetate (izobornil asetat, isobornyl acetate) was present in frankfurters in both 30% and 5% fat content samples analyzed(1). It was tested for but not detected in headspace volatiles from frankfurters(2). Isobornyl acetate (izobornil asetat, isobornyl acetate) was detected not qunatified in emissions from pine-scented plug-in air fresheners(1). Occupational exposure to Isobornyl acetate (izobornil asetat, isobornyl acetate) may occur through inhalation and dermal contact with this compound at workplaces where Isobornyl acetate (izobornil asetat, isobornyl acetate) is produced or used. Monitoring data indicate that the general population may be exposed to Isobornyl acetate (izobornil asetat, isobornyl acetate) via inhalation of ambient air, ingestion of food, and dermal contact with consumer products containing Isobornyl acetate (izobornil asetat, isobornyl acetate). Isobornyl acetate (izobornil asetat, isobornyl acetate) is conifer herbal camphoraceous coniferous earthy pineneedle pine balsamic camphor aromatherapy lilac mens fougere needle woody lavender spruce citrus nutmeg ginger meat fruit-flavour. Isobornyl acetate (izobornil asetat, isobornyl acetate) (an isomer of bornyl acetate) is a component of many essential oils, which was observed to be inhibitory to microorganisms. It was also shown to have sedative effect on mice after inhalation. Isobornyl acetate (izobornil asetat, isobornyl acetate) is mainly used in cosmetics as a flavor and fragrance agent. Isobornyl acetate (izobornil asetat, isobornyl acetate) (IBCH, Sandenol) is an organic compound used primarily as a fragrance because of its aroma which is similar to sandalwood oil. Its chemical structure is closely related to that of both α-Santalol and β-Santalol,[3] which are the primary constituents of sandalwood oil. Sandalwood trees are endangered due to overharvesting,[4] leading to a high cost for the natural oil. IBCH is therefore produced as an economical alternative to the natural product. Applications of Isobornyl acetate (izobornil asetat, isobornyl acetate) Isobornyl acetate (izobornil asetat, isobornyl acetate) is one of the most important chemicals used in the perfumery industry. It is used in toiletries and soaps as a flavoring agent and antiseptics. One of main applications is as an intermediate to produce camphor. Solubility of Isobornyl acetate (izobornil asetat, isobornyl acetate) Not miscible or difficult to mix with water. Isobornyl acetate (izobornil asetat, isobornyl acetate) is a kind of acetate ester. It can be manufactured through the esterification between acetate and camphene. It is a kind of flavoring agent with fragrance. It can be used as the intermediate needed for producing medical synthetic camphor.
ISOBUTANOL
ISOBUTYL PALMITATE, N° CAS : 110-34-9, Nom INCI : ISOBUTYL PALMITATE, Nom chimique : Isobutyl palmitate, N° EINECS/ELINCS : 203-758-2. Ses fonctions (INCI). Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état
ISOCETYL PALMITATE
ISOCETYL PALMITATE (İzosetil Palmitat) IUPAC Name 14-methylpentadecyl hexadecanoate ISOCETYL PALMITATE (İzosetil Palmitat) InChI InChI=1S/C32H64O2/c1-4-5-6-7-8-9-10-11-14-17-20-23-26-29-32(33)34-30-27-24-21-18-15-12-13-16-19-22-25-28-31(2)3/h31H,4-30H2,1-3H3 ISOCETYL PALMITATE (İzosetil Palmitat) InChI Key OUZOBPPZPCBJAR-UHFFFAOYSA-N ISOCETYL PALMITATE (İzosetil Palmitat) Canonical SMILES CCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C ISOCETYL PALMITATE (İzosetil Palmitat) Molecular Formula C32H64O2 ISOCETYL PALMITATE (İzosetil Palmitat) CAS 127770-27-8 ISOCETYL PALMITATE (İzosetil Palmitat) UNII 355356620Z ISOCETYL PALMITATE (İzosetil Palmitat) DSSTox Substance ID DTXSID2074584 ISOCETYL PALMITATE (İzosetil Palmitat) Related Compounds Similar Compounds 5,069 Records ISOCETYL PALMITATE (İzosetil Palmitat) Related Substances Same 18 Records ISOCETYL PALMITATE (İzosetil Palmitat) Use Classification Cosmetics -> Emollient; Skin conditioning ISOCETYL PALMITATE (İzosetil Palmitat) Molecular Weight 480.8 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) XLogP3-AA 14.9 ISOCETYL PALMITATE (İzosetil Palmitat) Hydrogen Bond Donor Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Hydrogen Bond Acceptor Count 2 ISOCETYL PALMITATE (İzosetil Palmitat) Rotatable Bond Count 29 ISOCETYL PALMITATE (İzosetil Palmitat) Exact Mass 480.490631 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) Monoisotopic Mass 480.490631 g/mol ISOCETYL PALMITATE (İzosetil Palmitat) Topological Polar Surface Area 26.3 Ų ISOCETYL PALMITATE (İzosetil Palmitat) Heavy Atom Count 34 ISOCETYL PALMITATE (İzosetil Palmitat) Formal Charge 0 ISOCETYL PALMITATE (İzosetil Palmitat) Complexity 391 ISOCETYL PALMITATE (İzosetil Palmitat) Isotope Atom Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Defined Atom Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Undefined Atom Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Defined Bond Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Undefined Bond Stereocenter Count 0 ISOCETYL PALMITATE (İzosetil Palmitat) Covalently-Bonded Unit Count 1 ISOCETYL PALMITATE (İzosetil Palmitat) Compound Is Canonicalized Yes ISOCETYL PALMITATE Properties Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat) in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms.Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and other dairy products. Palmitates are the salts and esters of ISOCETYL PALMITATE (İzosetil Palmitat). The palmitate anion is the observed form of ISOCETYL PALMITATE (İzosetil Palmitat) at physiologic pH (7.4).Aluminium salts of ISOCETYL PALMITATE (İzosetil Palmitat) and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and ISOCETYL PALMITATE (İzosetil Palmitat).Palmitic acid was discovered by Edmond Frémy in 1840, in saponified palm oil.This remains the primary industrial route for its production, with the triglycerides (fats) in palm oil being hydrolysed by high temperature water (above 200 °C or 390 °F), and the resulting mixture fractionally distilled to give the pure product.Palmitic acid is naturally produced by a wide range of other plants and organisms, typically at low levels. It is naturally present in butter, cheese, milk, and meat, as well as cocoa butter, soybean oil, and sunflower oil. Karukas contain 44.90% ISOCETYL PALMITATE (İzosetil Palmitat).The cetyl ester of ISOCETYL PALMITATE (İzosetil Palmitat) (cetyl palmitate) occurs in spermaceti.Excess carbohydrates in the body are converted to ISOCETYL PALMITATE (İzosetil Palmitat). Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, ISOCETYL PALMITATE (İzosetil Palmitat) is a major body component of animals. In humans, one analysis found it to make up 21–30% (molar) of human depot fat, and it is a major, but highly variable, lipid component of human breast milk. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC), which is responsible for converting acetyl-CoA to malonyl-CoA, which in turn is used to add to the growing acyl chain, thus preventing further palmitate generation.In biology, some proteins are modified by the addition of a palmitoyl group in a process known as palmitoylation. Palmitoylation is important for membrane localisation of many proteins.Palmitic acid is used to produce soaps, cosmetics, and industrial mold release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate.Because it is inexpensive and adds texture and "mouth feel" to processed foods (convenience food), ISOCETYL PALMITATE (İzosetil Palmitat) and its sodium salt find wide use in foodstuffs. Sodium palmitate is permitted as a natural additive in organic products.The aluminium salt is used as a thickening agent of napalm used in military actions.Hydrogenation of ISOCETYL PALMITATE (İzosetil Palmitat) yields cetyl alcohol, which is used to produce detergents and cosmetics.Recently, a long-acting antipsychotic medication, paliperidone palmitate (marketed as INVEGA Sustenna), used in the treatment of schizophrenia, has been synthesized using the oily palmitate ester as a long-acting release carrier medium when injected intramuscularly. The underlying method of drug delivery is similar to that used with decanoic acid to deliver long-acting depot medication, in particular, neuroleptics such as haloperidol decanoate.According to the World Health Organization, evidence is "convincing" that consumption of ISOCETYL PALMITATE (İzosetil Palmitat) increases the risk of developing cardiovascular disease,based on studies indicating that it may increase LDL levels in the blood. Retinyl palmitate is a source of vitamin A added to low-fat milk to replace the vitamin content lost through the removal of milk fat. Palmitate is attached to the alcohol form of vitamin A, retinol, to make vitamin A stable in milk.Treatment of commercially available 2-(decyl)dodecanoic acid or 2-(tetradecyl)ISOCETYL PALMITATE (İzosetil Palmitat) (37) in methanol in the presence of concd sulfuric acid gave the methyl ester 38 in a quantitative yield. In the essentially same way, 3-(nonyl)dodecanoic acid or 3-(tridecyl)ISOCETYL PALMITATE (İzosetil Palmitat) (40) gave the corresponding methyl esters 41 in almost quantitative yields. Reduction of the methyl esters with LiAlH4 in dry ether gave the corresponding alcohols 39 and 42 in good yields, respectively (Scheme 8).11The homologous series with n = 5 and m = 7 includes cis-9,10-methylene-hexadecanoic acid, and the homologous series with n = 5 and m = 9 includes lactobacillic acid (cis-11,12-methylene-octadecanoic acid). The homologous series with n = 7 and m = 6 includes dihydromalvalic acid (systematic name: 2-octyl-cyclopropaneheptanoic acid), and the homologous series with n = 7 and m = 7 includes dihydrosterculic acid (systematic name: cis-9,10-methylene-octadecanoic acid), see Fig. 6.Experimental Hf data (Table A3) in the range of n-heptanoic acid (nC= 7) and ISOCETYL PALMITATE (İzosetil Palmitat) (nC= 16) were used as the training set for deriving a QPPR of the form of Eq. 3 for the n-alkanoic acid series. The uncertainty level for the data ranges between <0.2% to <3%. The resultant parameter values obtained: B0= (3.461 ± 0.076) × 107 and B1= 1.005525 ± 0.026 with a correlation coefficient R2= 0.998967 and a randomly distributed residual plot (Fig. A3). As in the case of the n-mercaptans, the value of B1 is essentially 1.Essential oils are principal components of the leaves of fenugreek with main compounds as (2E)-hexenal (26.61%), ISOCETYL PALMITATE (İzosetil Palmitat) (10.14%) and (E)-β-ionone (7.99%) among others (Riasat et al., 2017). These fragrant molecules are however not the major constituent of the seeds and are not herein addressed as the pharmacologically relevant constituents. In one particular analysis study by Shahinuzzaman et al. (2015), the essential oil constituents of fenugreek seeds were shown to contain fatty acids as major components: decane, 5,6-bis(2,2-dimethylpropylidene)-, (E,Z)- (19.58%), ISOCETYL PALMITATE (İzosetil Palmitat), methyl ester (18.81%) and dihydro methyl jasmonate (10.99%) (Table 17.1). Hence fatty acids and derivatives are the major essential oil components of fenugreek seeds.The content of essential oils of Centaurea species are characterized by the presence of sesquiterpenes skeleton (caryophyllene, eudesmol and germacrene); hydracarbons (tricosane, pentacosane and heptacosane); fatty acids (ISOCETYL PALMITATE (İzosetil Palmitat), tetradecanoic acid, and dodecanoic acid) and monoterpenes (aspinene, terpinene and carvacrol).Common names of fatty acids are more often used than the IUPAC names (Table 31.1). The most common saturated fatty acids, palmitic and stearic acids, contain 16 and 18 carbon atoms, respectively. Their IUPAC names are ISOCETYL PALMITATE (İzosetil Palmitat) and octadecanoic acid, respectively.The aromatics and their derivatives such as benzene, methylbenzene, and phenol, fatty acids such as a ISOCETYL PALMITATE (İzosetil Palmitat), nitrogen-containing compounds such as amines and amides, and other group alcohols, aldehydes, and ketones were oxygen-containing compounds.DL in ethanol-water cosolvent (EWCS) were more dispersive, and their relative content were lower than 10%, except for ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester with its relative content of 15.06%. Typically, the content of ISOCETYL PALMITATE (İzosetil Palmitat) produced in HTL reached 17.27% but decreased to 9.79% in EWCS and 3.21% in pure ethanol, while the ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester content increased from 0% in HTL to 15.06% in EWCS, and then up to 38.4% in pure ethanol. Furthermore, the other ethyl esters such as 5,8,11,14-eicosatetraenoic acid, ethyl ester, (all-Z)- and ethyl linoleate were also higher in bio-oil from EWCS and pure ethanol. This indicated that the addition of ethanol into liquefaction system could serve as a substrate, reacting with acidic components like ISOCETYL PALMITATE (İzosetil Palmitat) and obtaining corresponding esters like ISOCETYL PALMITATE (İzosetil Palmitat) ethyl ester, which is known as etherification. Biswas et al. observed from GS-MS of Sargassum tenerrimum algae-derived bio-oil using water as a solvent for HTL at 280°C (STW280) were 3-pyridiol, p-hydroxybiphenyl, ISOCETYL PALMITATE (İzosetil Palmitat), bis(2-ethylhexyl) phthalate, stigmastan-3,5-diene, and hexadecanamide. For C2H5OH as the solvent (ST-E280) the main compounds were ISOCETYL PALMITATE (İzosetil Palmitat)-ethyl ester, ethyl oleate, tetradecanoic acid-ethyl ester, and isosorbide. Hexadecanoic acid-methyl ester, methyl tetradecanoate, 8-octadecenoic acid methyl ester, and methyl hexadec-9-enoate were the compounds found in major concentrations in bio-oil obtained.This compound, composed of cyclic phosphate and cyclopropane-containing ISOCETYL PALMITATE (İzosetil Palmitat), inhibited more than 80% of the affinity-purified calf thymus DNA polymerase α activity at a concentration of 10 μg/mL.Preparation of one diastereomer of cyclopropane-containing ISOCETYL PALMITATE (İzosetil Palmitat) (81) was summarized in Scheme 7, starting with enzymatic hydrolysis of meso diester (74).Palmitic Acid Palmitic acid (also known as ISOCETYL PALMITATE (İzosetil Palmitat)) is a fatty acid that is found naturally in animals and plants and also can be created in laboratory settings. Palmitic acid is widely used in a variety of applications, including personal care products and cosmetics.Palmitic acid (ISOCETYL PALMITATE (İzosetil Palmitat)) has been for long time negatively depicted for its putative detrimental health effects, shadowing its multiple crucial physiological activities. ISOCETYL PALMITATE (İzosetil Palmitat) is the most common saturated fatty acid accounting for 20–30% of total fatty acids in the human body and can be provided in the diet or synthesized endogenously via de novo lipogenesis (DNL). ISOCETYL PALMITATE (İzosetil Palmitat) tissue content seems to be controlled around a well-defined concentration, and changes in its intake do not influence significantly its tissue concentration because the exogenous source is counterbalanced by ISOCETYL PALMITATE (İzosetil Palmitat) endogenous biosynthesis. Particular physiopathological conditions and nutritional factors may strongly induce DNL, resulting in increased tissue content of ISOCETYL PALMITATE (İzosetil Palmitat) and disrupted homeostatic control of its tissue concentration. The tight homeostatic control of ISOCETYL PALMITATE (İzosetil Palmitat) tissue concentration is likely related to its fundamental physiological role to guarantee membrane physical properties but also to consent protein palmitoylation, palmitoylethanolamide (PEA) biosynthesis, and in the lung an efficient surfactant activity. In order to maintain membrane phospholipids (PL) balance may be crucial an optimal intake of ISOCETYL PALMITATE (İzosetil Palmitat) in a certain ratio with unsaturated fatty acids, especially PUFAs of both n-6 and n-3 families. However, in presence of other factors such as positive energy balance, excessive intake of carbohydrates (in particular mono and disaccharides), and a sedentary lifestyle, the mechanisms to maintain a steady state of ISOCETYL PALMITATE (İzosetil Palmitat) concentration may be disrupted leading to an over accumulation of tissue ISOCETYL PALMITATE (İzosetil Palmitat) resulting in dyslipidemia, hyperglycemia, increased ectopic fat accumulation and increased inflammatory tone via toll-like receptor 4. It is therefore likely that the controversial data on the association of dietary ISOCETYL PALMITATE (İzosetil Palmitat) with detrimental health effects, may be related to an excessive imbalance of dietary ISOCETYL PALMITATE (İzosetil Palmitat)/PUFA ratio which, in certain physiopathological conditions, and in presence of an enhanced DNL, may further accelerate these deleterious effects.Palmitic acid (16:0, ISOCETYL PALMITATE (İzosetil Palmitat)) is the most common saturated fatty acid found in the human body and can be provided in the diet or synthesized endogenously from other fatty acids, carbohydrates and amino acids.n average, a 70-kg man is made up of 3.5 Kg of ISOCETYL PALMITATE (İzosetil Palmitat). As the name suggests, ISOCETYL PALMITATE (İzosetil Palmitat) is a major component of palm oil (44% of total fats), but significant amounts of ISOCETYL PALMITATE (İzosetil Palmitat) can also be found in meat and dairy products (50–60% of total fats), as well as cocoa butter (26%) and olive oil (8–20%). Furthermore, ISOCETYL PALMITATE (İzosetil Palmitat) is present in breast milk with 20–30% of total fats.The tight homeostatic control of ISOCETYL PALMITATE (İzosetil Palmitat) tissue concentration is likely related to its fundamental physiological role in several biological functions. Particularly in infants ISOCETYL PALMITATE (İzosetil Palmitat) seems to play a crucial role as recently thoroughly revised by Innis (Innis, 2016). The disruption of ISOCETYL PALMITATE (İzosetil Palmitat) homeostatic balance, implicated in different physiopathological conditions such as atherosclerosis, neurodegenerative diseases and cancer, is often related to an uncontrolled ISOCETYL PALMITATE (İzosetil Palmitat) endogenous biosynthesis, irrespective of its dietary contribution.FA synthesis starts with citrate conversion to acetyl-CoA and then malonyl-CoA, which is then elongated to form palmitate and other FA. Key enzymes in this process are acetyl-CoA carboxylase (ACC), which catalyzes the DNL limiting step reaction, and the FA synthase (FAS). The main sources of citrate for DNL are glucose and glutamine-derived α-ketoglutarate (α-KG), especially under hypoxia or disruption of the mitochondrial oxidative machinery.Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat), is one of the most common saturated fatty acids found in animals, plants, and microorganisms.Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents.Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent.Palmitic acid, or ISOCETYL PALMITATE (İzosetil Palmitat) in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms.[9][10] Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and other dairy products. Palmitates are the salts and esters of ISOCETYL PALMITATE (İzosetil Palmitat). The palmitate anion is the observed form of ISOCETYL PALMITATE (İzosetil Palmitat) at physiologic pH (7.4).Aluminium salts of ISOCETYL PALMITATE (İzosetil Palmitat) and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and ISOCETYL PALMITATE (İzosetil Palmitat).
ISODECYL OLEATE
ISODECYL OLEATE Isodecyl Oleate What Is Isodecyl Oleate? Decyl Oleate and Isodecyl Oleate are made from decyl alcohol and oleic acid. Decyl Oleate is made from straight chained decyl alcohol, while Isodecyl Oleate is made from branched chain decyl alcohol. Decyl Oleate and Isodecyl Oleate are used in a variety of cosmetics and personal care products, including makeup, and skin and hair care products. Why is Isodecyl Oleate used in cosmetics and personal care products? Decyl Oleate and Isodecyl Oleate act as lubricants on the skin surface, which gives the skin a soft and smooth appearance. These ingredients also form a thin film on the skin that is neither greasy nor tacky. The unique properties of Decyl Oleate and Isodecyl Oleate facilitate the application and removal of makeup. Scientific Facts: Decyl Oleate and Isodecyl Oleate are made from a naturally occurring fatty acid, oleic acid. Decyl Oleate and Isodecyl Oleate have good lubrication properties and possess low viscosity. Molecular Weight 422.7 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA 11.8 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count 24 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass 422.412381 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass 422.412381 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area 26.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count 30 Computed by PubChem Formal Charge 0 Computed by PubChem Complexity 373 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count 0 Computed by PubChem Defined Atom Stereocenter Count 0 Computed by PubChem Undefined Atom Stereocenter Count 0 Computed by PubChem Defined Bond Stereocenter Count 1 Computed by PubChem Undefined Bond Stereocenter Count 0 Computed by PubChem Covalently-Bonded Unit Count 1 Computed by PubChem Compound Is Canonicalized Yes CAS Number 3687-46-5 EINECS/ELINCS No: 222-981-6 COSING REF No: 75506 Chem/IUPAC Name: Decyl oleate What Is Decyl Oleate ? Decyl Oleate and Isodecyl Oleate are made from decyl alcohol and oleic acid. Decyl Oleate is made from straight chained decyl alcohol, while Isodecyl Oleate is made from branched chain decyl alcohol. Decyl Oleate and Isodecyl Oleate are used in a variety of cosmetics and personal care products, including makeup, and skin and hair care products. Why is Decyl Oleate used in cosmetics and personal care products? Decyl Oleate and Isodecyl Oleate act as lubricants on the skin surface, which gives the skin a soft and smooth appearance. These ingredients also form a thin film on the skin that is neither greasy nor tacky. The unique properties of Decyl Oleate and Isodecyl Oleate facilitate the application and removal of makeup.Decyl oleate * Made from the naturally occurring fatty acid, oleic acid. Primarily used as a lubricant.Emollient, Skin conditioning It creates a thin, non-greasy film that gives the skin a smooth and soft appearance. It's frequently used used in products geared at removing makeup. You can find this ingredient in cosmetics such as facial moisturizer/lotion, anti-aging treatment, sunscreen, eye shadow, hand & foot cream, conditioner, aftershave and eye cream.Functions: Primarily used as a lubricant. It creates a thin, non-greasy film that gives the skin a smooth and soft appearance. It's frequently used used in products geared at removing makeup. You can find this ingredient in cosmetics such as facial moisturizer/lotion, anti-aging treatment, sunscreen, eye shadow, hand & foot cream, conditioner, aftershave and eye cream. Safety Measures/Side Effects: The Cosmetic Ingredient Review (CIR) Expert Panel has assessed this ingredient as non-toxic and non-irritating, thus determining it as safe to use in cosmetic products. It has been shown to be comedogenic (clog the pores), and should be avoided by those with oily and acne prone skin types.Decyl Oleate and lsodecyl Oleate are esters of oleic acid. Decyl Oleate is used in cosmetic products at concentrations ranging from I 0.1 to > 50%. Isodecyl Oleate is used at concentrations of > 0.1-25%. Animal studies have shown both Decyl Oleate and lsodecyl Oleate to possess low acute oral toxicities in rats with LD50s of > 40 ml/kg, Single application dermal and eye studies with rabbits have shown these materials at 100% concentrations produce little or no irritation. Daily applications of 159b or 100% concentrations for 60 days to the skin of rabbits produced a moderate degree of irritation with both Decyl and lsodecyl Oleate. Neither of the ingredients was found to be a sensitizer when tested in guinea pigs at concentrations of 15%. Repeated insult patch tests containing 1-5'1'0 Decyl Oleate showed no signs of sensitization. Testing with formulations containing 5.5% Decyl Oleate produced a low number of reactions in 402 human subjects in the SchwartzPeck Prophetic Patch Test and 204 subjects with undiluted lsodecyl Oleate on nine subjects showed a total irritation score of 1 .O out of a maximum of 756. It is concluded that, because of both the chemical similarity of these compounds and the similarity of the available animal and human data, Decyl and lsodecyl Oleates warrant a conclusion of safe in the concentrations of present practices and use in cosmetics. ecyl Oleate and lsodecyl Oleate are esters of oleic acid. Formed by ester- D ification of oleic acid with decyl or isodecyl alcohol, they have the following structural formulas: Decyl Oleate- lsodecyl Oleate- CH3 (CH CH=CH(CH2) 7COOCH2 (CH2) 6CH (CH3) 27 Methyl Oleate is a compound chemically related to Decyl Oleate and lsodecyl Oleate. Its structural formula is as follows: CH3 (CH2) 7CH=CH (CH2) 7COOCH 3 The safety of methyl oleate is not under review in this report. Information and data pertaining to this compound are included to permit a more complete appraisal of the safety of Decyl Oleate and lsodecyl Oleate.Some of the chemical and physical properties of these esters are given in Reactivity Unsaturated fatty acids and their esters readily undergo aut~xidation.'~) Methyl oleate can serve as a model for autoxidation reactions which all the oleic acid esters exhibited. This compound undergoes autoxidation to give primarily trans-hydro peroxide^,'^) which are highly unstable and readily decompose to keto and hydroxy keto acids.(6) Some hydroperoxides have been found to possess carcinogenic potential.") Methyl oleate undergoes photochemical decomposition in direct sunlight and in the presence of oxygen to form the ozonide of methyl oleic acid.(*) The most important secondary products of autoxidation include alpha, beta-u nsatu rated carbonyl com pou nds.(5) Hemati n com pou nds, (') metals, (lo) and chlorinated hydrocarbon i nsecticides' ") accelerate the autoxidation reaction by shortening the induction period. Analytical Methods Methyl oleate can be generated in purities of 98% or better by repeated distillation with urea at a low temperature.('2) Analysis of this and related compounds is done by gas-liquid or thin-layer chromatography. The position of the double bond can be determined by von Rudolph's oxidation procedure. Infrared spectroscopy can be used to delineate cis-trans i~omers.('~-~~) Although gas-liquid chromatography remains the preferred routine analytical method for fatty acid ester mixtures, utilization of high performance liquid chromatography (HPLC) is increasing; for the latter has the advantage of identifying polymerized and oxidized esters which the former does not dete. PURPOSE AND FREQUENCY OF USE IN COSMETICS Decyl and lsodecyl Oleates have been widely used in cosmetic products. When applied to the skin alone, they deposit a thin oily film that is neither greasy nor tacky. They have good lubrication properties and possess low viscosity.(") Both materials are used as dispersants and lubricants in cosmetic formulations, and these are particularly important in makeup and makeup removers, in which they are used as wetting agents for iron oxide pigments; particles of such pigment are dispersed and easily suspended. The use of these ingredients facilities the application and removal of a suspension. By virtue of its branched chain structure, lsodecyl Oleate possesses several distinct properties. It has the ability to lower the freezing point of the emulsion phase of products, as well as to control product viscosity. In dispersible bath oils, it forms a white emulsion, giving the tub water a rich and milky appearance. It also has the ability to suspend aluminum chlorohydrate, which makes it valuable for dry antiperspirant formulations. Lipstick formulations have employed lsodecyl Oleate because its coupling properties increase the hardness and strength of the product without reducing its flow characteristics. Table 2 indicates categories of product use and concentrations of use for Decyl and lsodecyl Oleate.('*) The cosmetic product formulation computer printout which is made available by the Food and Drug Administration (FDA) is compiled through voluntary filing of such data in accordance with Title 21 Part 720.4 of the Code of Federal Regulations (1979). Ingredients are listed in prescribed concentration ranges under specific product type categories. Since certain cosmetic ingredients are supplied by the manufacturer at less that 100% concentration, the value reported by the cosmetic formulator may not necessarily reflect the true, effective concentration found in the finished product; the effective concentration in such a case would be a fraction of that reported to the FDA. The fact that data are only submitted within the framework of preset concentration ranges also provides the opportunity for overestimation of the actual concentration of an ingredient in a particular product. An entry at the lowest end of a concentration range is considered the same as one entered at the highest end of that range, thus introducing the possibility of a two- to ten-fold error in the assumed ingredient concentration. The compounds are employed in a variety of cosmetics, including makeup preparations, skin care preparations, and eye-shadow. Concentrations of use range from 50.1 to > for Decyl Oleate and > 0.1-25% for I sod ec y I 0 leate. Products containing these two materials are applied with varying frequency to all areas of the skin. In such formulations as blushers and moisturizing creams, exposure may occur several times a day, while in other cases there may be daily (deodorants) or less frequent (rinses, hair conditioners) applications. This occasional or daily use may extend over a period of years. Animal Toxicology Decyl Oleate: This ingredient was administered to Wistar rats by intragastric intubation at dose levels of 2.5, 5.0, 10.0, 20.0, and 40.0 mllkg COSMETIC INGREDIENT REVIEW two female rats per dose The animals were fasted for 24 hours prior to dosing. All animals were observed daily for 14 days following administration and no deaths were recorded. The acute LD50 of undiluted Decyl Oleate was greater than 40.0 mllkg of body weight. Wistar-derived rats (groups of five male, five female) were dosed by gavage with either 5.0 glkg of undiluted Decyl Oleate or 5.0 glkg of 20 percent Decyl Oleate, 80% mineral The rats were fasted for 18 hours prior to dosing. The animals were observed for signs of pharmacologic activity and drug toxicity at 1, 3, 6, and 24 hours post-dosing, after which daily observations were made for a total of 14 days. One death was recorded for male animals in the diluted sample group, and one female died following treatment with the undiluted sample. No treatment-related effects were noted in any of the surviving animals. Examination of tissues of nons,urvivors and survivors at gross autopsy revealed no abnormalities. lsodecyl Oleate: This ingredient was administered to Wistar rats by intragastric intubation at dose levels of 2.5, 5.0, 10.0, 20.0, and 40.0 mllkg (two female and three male rats per dose The animals were fasted for 24 hours prior to dosing. One death was recorded at the highest dose level. The acute LD50 of undiluted Isodecyl Oleate was reported to be greater than 40.0 ml/kg of body weight. Dermal irritation Decyl Oleate: Drai~e'~~) and Federal Hazardous Substances Labeling Act(22) (FHSA) methods were used to conduct primary skin irritation studies. Test samples of Decyl Oleate (undiluted, 10 percent in corn oil and 20% in mineral oil) were applied (0.5 ml) to clipped areas of intact and abraded albino rabbits skin (six animals in each group). The abrasions were longitudinal, epidermal incisions sufficiently deep to penetrate the stratum corneum, but not so deep as to disturb the dermis. Following application of the test material, the exposed area was covered with a patch and the entire experimental area was sealed with impervious sheeting. The animals were immobilized for a 24-hour period. The mean scores for 24- and 72-hour gradings were averaged to determine final irritation values. The primary irritation index (PII) for undiluted Decyl Oleate was calculated to be 0.28.L25) Itwas also determined that Decyl Oleate had primary irritation indices of 0.08 as a 10 percent solution in corn oil(22) and 0.05 as a 20% solution in mineral A modified Draize method was used to conduct primary dermal irritation studies with undiluted and 15% Decyl Oleate diluted in polyoxyethylene sorbitan stearate (3%), a perservative (2%)) and water; the material was found to be nonirritating (Table 3).("j) ISODECYL OLEATE ISODECYL OLEATE is classified as : Emollient Skin conditioning CAS Number 59231-34-4 EINECS/ELINCS No: 261-673-6 COSING REF No: 34643 Chem/IUPAC Name: Isodecyl oleate Isodecyl Oleate Definition Isodecyl Oleate is a moisturizer that can also be found in cosmetics. As a moisturizer in our products, decyl oleate helps prevent a product or surface, like leather, from drying out by helping it retain moisture. This makes it softer and more pliable. Clinical Assessment of Safety Decyl Oleate: A human repeated insult patch test was conducted on 103 subjects with a skin conditioner containing 1-5% Decyl Oleate. Patches containing approximately 0.2 ml of undiluted sample were applied on Monday, Wednesday, and Friday for three consecutive weeks. Fourteen days after the final insult patch, challenge patches containing the undiluted skin conditioner were applied, and results were graded 48 and 96 hours later. No evidence of sensitization was found; no information on irritation potential was Four formulations of a foundation containing Decyl Oleate (5.5%) were tested in the Schwartz-Peck Prophetic Patch Test and the Draize-Shelanski Repeated Insult Patch Test. "Virtually zero reactions occurred in 402 subjects in the Schwartz-Peck Test and 204 subjects in the Draize-Shelanski Test."(23) lsodecyl Oleate: A single insult (24-hour) occlusive patch test was conducted on 19 human subjects with undiluted lsodecyl Oleate. The test material did not elicit any erythematous reactions. A summary report of the study concluded that Isodecyl Oleate exhibits an acceptably low incidence of primary skin irritation under occlusive patch test According to an industry raw material evaluation, a procedure was undertaken with lsodecyl Oleate under the conditions of a Maibach-type Cumulative lrritancy Assay. When lsodecyl Oleate was applied undiluted under patch conditions to the skin of nine subjects for 21 consecutive days, it was found to have a total irritation score of 1 .O out of a maximum possible 756.(30) SUMMARY Decyl Oleate and lsodecyl Oleate are esters of oleic acid. Decyl Oleate is used in cosmetic products at concentrations ranging from 10.1 to >50°/o. lsodecyl Oleate is used at concentrations of > 0.1 -25%. Animal studies have shown Decyl Oleate and lsodecyl Oleate to possess low acute oral toxicities in rats; both have LD50s of > 40 mllkg. Single application dermal and eye studies with rabbits have shown that these materials in concentrations up to 100% produce little or no irritation. When 15% or 100°/o concentrations were applied to the skin of rabbits daily for 60 days, both Decyl Oleate and lsodecyl Oleate produced moderate degrees of irritation. Neither ingredient was found to be a sensitizer when it was tested in guinea pigs at concentrations of 15%. Repeated human insult patch tests on 103 subjects with a skin conditioner containing 1-5% Decyl Oleate showed no signs of sensitization. Industrial testing with formulations containing 5.5% Decyl Oleate produced a low number of reactions in 402 human subjects in the Schwartz-Peck Prophetic Patch Test and in 204 subjects in the Draize-Shelanski Patch Test. Repeated insult patch tests with undiluted Isodecyl Oleate on an unspecified number of human subjects showed a total irritation score of 1 .O out of a possible maximum of 756. A single insult occlusive patch test on 19 human subjects with undiluted lsodecyl Oleate produced a low level of primary skin irritation. No chronic, oral subchronic, carcinogenicity, mutagenicity, or teratogenicity animal testing data were available to the Panel. Nor were there any phototoxicity or photosensitization studies in humans.
ISONONANOIC ACID
3,5,5-TRIMETHYL HEXANOIC ACID; Isononanoic acid; 3,5,5-Trimethylhexansäure (German); ácido 3,5,5-trimetilhexanoico (Spanish); Acide 3,5,5-trimethylhexanoïque (French); cas no: 3302-10-1
ISONONYL ISONONANOATE
ONANOATE, N° CAS : 59219-71-5 / 42131-25-9, ISONONYL ISONONANOATE. Nom chimique : 3,5,5-Trimethylhexyl 3,5,5-trimethylhexanoate, Ses fonctions (INCI). Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Emollient : Adoucit et assouplit la peau. Agent d'entretien de la peau : Maintient la peau en bon état
Isoparaffin Fluid
C10-12 alkane/cycloalkane; naphtha (petroleum) hydrotreated heavy cas no :64742-48-9
ISOPHORONDIAMINE -BAXXODUR EC201
ISOPHORONE; 1,1,3-Trimethyl-3-cyclohexene-5-one; Alpha-isophorone; 3,5,5-Trimethylcyclohex-2-enone; Isoforone (Italian); 3,5,5-Trimethyl-2-Cyclohexenone; 3,5,5-Trimethylcyclohexenone; Isoforon; Isoacetophorone; 3,5,5-Trimethyl-2-cyclohexen-1-one; Izoforon (Polish); 3,5,5-Trimethyl-2-cyclohexen-1-on (German); 1,5,5-Trimethyl-1-cyclohexen-3-one; Isooctopherone; cas no: 78-59-1
ISOPHORONE
5-Amino-1,3,3-Trimethyl Cyclohexanemethanamine; 1-Amino-3-aminomethyl-3,5,5-trimethyl cyclohexane; 3-Aminomethyl-3,5,5-trimethyl cyclohexylamine; 3-Aminomethyl-3,5,5-trimethylcyclohexylamin (German); 3-Aminometil-3,5,5-trimetilciclohexilamina (Spanish); 3-Aminométhyl-3,5,5-triméthyl cyclohexylamine (French) cas no: 2855-13-2
ISOPHORONE DIAMINE
ISOPHTHALIC ACID; Benzene-1,3-dicarboxylic acid; Isophthalic acid; meta-Phthalic acid cas no: 121-91-5
ISOPHTHALIC ACID
ISOPROPYL ALCOHOL, N° CAS : 67-63-0 - Isopropanol, Autres langues : Alcohol isopropílico, Alcool isopropilico, Isopropylalkohol, Nom INCI : ISOPROPYL ALCOHOL, Nom chimique : Propan-2-ol, isopropanol, N° EINECS/ELINCS : 200-661-7, Classification : Alcool. Ses fonctions (INCI). Anti-moussant : Supprime la mousse lors de la fabrication / réduit la formation de mousse dans des produits finis liquides Solvant : Dissout d'autres substances. Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. Noms français : 2-Propanol; Alcool isopropylique; Diméthylcarbinol; Isopropanol; Propan-2 ol; Propanol-2. Noms anglais : 2-Propanol; Isopropyl alcohol; Famille chimique : Alcool. Utilisation : L'alcool isopropylique est un bon solvant pour les cires, les huiles, les résines et de nombreux autres produits. Ainsi, il est surtout utilisé comme solvant : Dans les formulations de vernis, peintures, couches d'apprêt, encres, décapants et adhésifs. Dans les secteurs alimentaire et pharmaceutique, pour l'extraction et la purification de différents produits naturels : alcaloïdes, arômes, gommes, huiles, protéines, vitamines, etc.. En électronique, comme solvant de nettoyage des circuits intégrés et des semi-conducteurs. Dans plusieurs produits d'usage domestique, tels que détergent à plancher, cire à chaussures, insecticide, nettoyant pour les vitres, rafraîchisseur d'air, dégivreur de vitre d'automobile, désinfectant. Dans les cosmétiques, tels que lotions, parfums, shampoings, nettoyants pour la peau, vernis à ongle, démaquillants, déodorants, huiles pour le corps, fixatifs pour cheveux, etc. Il est aussi utilisé comme matière première pour la production d'acétone et de ses dérivés, de la glycérine, de l'isopropylamine (pesticides), et comme milieu de réaction pour la production de carboxyméthylcellulose et de nombreux ingrédients pharmaceutiques. Dans le domaine médical, l'alcool isopropylique est utilisé comme antiseptique et désinfectant, principalement sous forme de mélange de 70 % d'alcool isopropylique et de 30 % d'eau, communément appelé alcool à friction. On trouve aussi l'alcool isopropylique dans de nombreux autres produits d'usage médical : liniment, teinture d'iode, solutions pour l'anesthésie locale, comptant au-delà de 200 usages différents. On l'utilise aussi comme additif d'essence pour augmenter l'indice d'octane, comme agent dégivreur de carburateur et comme cosolvant du méthanol dans les mélanges d'essences à moteur. De plus, il est utilisé comme dénaturant de l'alcool éthylique.
ISOPHTHALIC ACID
Isophthalic acid = IPA = PIA

CAS Number: 121-91-5
EC Number: 204-506-4
Chemical formula: C8H6O4
Molar mass: 166.132 g·mol−1

Isophthalic acid is a colorless crystalline solid.
Isophthalic acid is used as an intermediate primarily for unsaturated polyester resins and alkyd and polyester coating resins; other applications include use in aramid fibers, as a component of copolyester resins and in high-temperature polymers.
Nearly pure isophthalic acid has a purity of >99.8%.
This material is called purified isophthalic acid or PIA.
Currently, there is significant global overcapacity for isophthalic acid, with sufficient spare capacity for the next five years.

Isophthalic acid (1,3-benzenecarboxylic acid) is the meta form of phthalic acid.
Isophthalic acid is a white crystalline solid subliming at 345°C.
Isophthalic acid is slightly soluble in water, alcohol and acetic acid (insoluble in benzene).
Isophthalic acid is obtained by oxidizing meta-xylene with chromic acid, or by fusing potassium meta-sulphobenzoate, or meta-brombenzoate with potassium formate.
IPA has excellent performance characteristics including exceptional hardness, corrosion and stain resistance, hydrolytic stability of coatings and gel coats, outstanding thermal stability and low resin color in coatings industry.

Isophthalic acid is a key ingredient in FRP (Fiberglass Reinforced Plastics) markets for such products as marine, automotive, and corrosion resistant pipes and tanks.
Polyesters containing isophthalic acid are also used extensively in industrial coatings applications for home appliances, automobiles, aluminum siding, and metal office furniture.
Isophthalic acid used as an intermediate for polyesters, polyurethane resins, plasticizers.

Applications of Isophthalic acid:
Isophthalic acid can be used as a reactant to prepare:
Poly(m-phenyleneisophthalamide) by polycondensation with m-phenylenediamine via thermal solid-phase polymerization reaction.

Isophthalic acid can also be used as a ligand to synthesize:
Metal coordination polymers by hydrothermal and sonochemical process.
Isophthalic acid-zirconium(IV) nanocomposite, which is used as a precursor to prepare crystalline tetragonal ZrO2 via thermal decomposition method.

Melting point: 341-343 °C (lit.)
Boiling point: 214.32°C (rough estimate)
Density: 1,54 g/cm3
refractive index: 1.5100 (estimate)
storage temp.: Sealed in dry,Room Temperature
solubility: 0.12g/l
form: Crystalline Powder
pka: 3.54(at 25℃)
color: White to off-white
Water Solubility: 0.01 g/100 mL (25 ºC)
Merck: 14,5197
BRN: 1909332
Stability: Stable. Incompatible with strong oxidizing agents, strong bases.

Isophthalic acid is an aromatic dicarboxylic acid industrially produced by the oxidation of m-xylene.
Commercially, Isophthalic acid is used primarily as a component of PET (polyethylene terephthalate) copolymer, which is used in bottle resins and, to a much lesser extent, for fibers.
Isophthalic acid reduces the crystallinity of PET, which serves to improve clarity and increase the productivity of bottle-making.
Isophthalic acid’s second major use is as a component of high-quality alkyds and polyester resins for industrial coatings and unsaturated polyesters for fiberglass-reinforced plastics applications.

Appearance: White crystalline solid
Density: 1.526 g/cm3, Solid
Solubility in water: Insoluble
Acidity (pKa): 3.46, 4.46
Magnetic susceptibility (χ): -84.64·10−6 cm3/mol

Purified Isophthalic Acid (PIA) is used primarily in unsaturated polyester resins.
Isophthalic acid improves the property balance for coating resins and enhances clarity of PET-bottle grade resins.
Isophthalic Acid is used as an intermediate primarily for unsaturated polyester resins and alkyd and polyester coating resins; other applications include use in aramid fibers, as a component of copolyester resins and in high-temperature polymers.

CHEBI:30802
ChemSpider: 8182
ECHA InfoCard: 100.004.098
PubChem CID: 8496
UNII: X35216H9FJ

Isophthalic acid, CAS number: 121-91-5, also known as PIA or PIPA, is an organic compound with the formula C6H4(CO2H)2.
PIA, Purified Isophtalic Acid, is an aromatic dicarboxylic acid, an isomer of phthalic acid and terephthalic acid.
Together with terephthalic acid, PTA, the isophthalic acid (CAS: 121-91-5) is used in the production of resins for drink bottles, PET resin.
PIA, Purified Isophthalic acid is produced starting from meta-xylene using oxygen, in the presence of a catalyst.
Main application areas for Isophthalic acid are: PET Bottle Grade Resins, Fibres, Low-Melt Fibres, Polyamide Resins, UPR - Unsaturated Polyester Resins, Powder Coating Resins, Coil Coating Resins, Polymer Modifier, Adhesives, High-performance Polymerpolybenzimidazole.

Preparation of Isophthalic acid:
Isophthalic acid is produced on the billion kilogram per year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.
The world's largest producer of isophthalic acid is Lotte Chemical Corporation.
In the laboratory, chromic acid can be used as the oxidant.
Isophthalic acid also arises by fusing potassium meta-sulfobenzoate, or meta-bromobenzoate with potassium formate (terephthalic acid is also formed in the last case).
The barium salt, as its hexahydrate, is very soluble in water (a distinction between phthalic and terephthalic acids).
Uvitic acid, 5-methylisophthalic acid, is obtained by oxidizing mesitylene or by condensing pyroracemic acid with baryta water.

Name: ISOPHTHALIC ACID
Source of Sample: Aldrich Chemical Company, Inc., Milwaukee, Wisconsin
CAS Registry Number: 121-91-5
Compound Type: Pure
Copyright: Copyright © 1980, 1981-2021 John Wiley & Sons, Inc. All Rights Reserved.
Formula: C8H6O4
Instrument Name: PERKIN-ELMER 1710
Melting Point: 342C
Molecular Weight: 166.13
Sample Description: WHITE CRYSTALLINE POWDER
Solubility: Insoluble in= BENZENE, PETROLEUM ETHER
Soluble in: GLACIAL ACETIC ACID, ALCOHOL
SpectraBase Batch ID: EhD9M7pruGY

Isophthalic acid is an organic compound with the formula C6H4(CO2H)2.
Isophthalic acid ,colorless solid, is an isomer of phthalic acid and terephthalic acid.
The main industrial uses of purified isophthalic acid (PIA) are for the production of polyethylene terephthalate (PET) resin and for the production of unsaturated polyester resin (UPR) and other types of coating resins.
Isophthalic acid is one of three isomers of benzenedicarboxylic acid, the others being phthalic acid and terephthalic acid.
Isophthalic Acid is an organic compound with the molecular formula C8H6O4.
Isophthalic acid’s a colourless solid and Isophthalic acid’s an isomer of phthalic acid and terephthalic acid.

Applications of Isophthalic acid:
Aromatic dicarboxylic acids are used as precursors (in form of acyl chlorides) to commercially important polymers, e.g. the fire-resistant material Nomex.
Mixed with terephthalic acid, isophthalic acid is used in the production of PET resins for drink plastic bottles and food packaging.
The high-performance polymer polybenzimidazole is produced from isophthalic acid.
Also, Isophthalic acid is used as an important input to produce insulation materials.

Isophthalic acid (IPA) is a non-toxic organic compound with the formula C6H4(CO2H)2.
Isophthalic acid is an isomer of phthalic acid and terephthalic acid.
These aromatic dicarboxylic acids are used as precursors (in the form of acylchlorides) to commercially important polymers.
The high-performance polymer polybenzimidazole is produced from isophthalic acid.
Isophthalic acid is produced on the billion kilogram/year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.

Description of Isophthalic acid:
Isophthalic acid is an organic compound with the formula C6H4(CO2H)2.
Isophthalic acid is an isomer of phthalic acid and terephthalic acid.
These aromatic dicarboxylic acids are used as precursors (in form of acyl chlorides) to commercially important polymers, e.g. the fire-resistant material Nomex.
Mixed with terephthalic acid, iso phthalic acid is used in the production of resins for drink bottles.
The high-performance polymer poly benzimidazole is produced from iso phthalic acid.

Chemical Properties of Isophthalic acid:
Isophthalic acid is a white crystalline powder or needle-like crystals and Isophthalic acid’s an isomer of phthalic acid and terephthalic acid.
Isophthalic acid is insoluble in cold water but soluble in oxygenated solvents and alcohol.
Isophthalic acid is combustible and finely dispersed particles will form explosive mixtures in air.

Isophthalic Acid (PIA) is mainly used in the production of bottle PET, also used in the production of alkyd resin, polyester resin, also used in the production of photosensitive materials, pharmaceutical intermediates and so on.
One of the largest applications for PIA is in unsaturated polyester resins for high-quality gel coats.
The hardness, stain and detergent resistance characteristics of PIA are ideal for polyester solid-surface countertops that are an inexpensive alternative to acrylics.

Uses of Isophthalic acid:
Purified Isophthalic Acid (PIA) is mainly used as intermediate for high performance UPR, resins for coatings, high solids paints, gel coats, modifier of PET for bottles.
Isophthalic acid is used as an intermediate for high performance unsaturated polyesters, resins for coatings, high solids paints, gel coats and modifier of polyethylene terephthalate for bottles.
Isophthalic acid acts as precursors for the fire-resistant material nomex as well as used in the preparation of high-performance polymer polybenzimidazole.
Isophthalic acid is also employed as an input for the production of insulation materials.

What Does Isophthalic Polyester Coating Mean?
Isophthalic acid is a high-quality surface protection gel or lining that contains polyester resins, which that include isophthalic acid (purified isophthalic acid or PIA) as an intermediate or saturated monomer.
The isophthalic acid enhances chemical resistance, though Isophthalic acid increases the product cost of isophthalic polyester.
Isophthalic acid is applied in chemical service applications on automobiles, marine vessels, tanks and pipelines to provide corrosion resistance.

Preparation of Isophthalic acid:
Iso phthalic acid is produced on the billion kilogram per year scale by oxidizing meta-xylene using oxygen.
The process employs a cobalt-manganese catalyst.
In the laboratory, chromic acid can be used as the oxidant.
Isophthalic acid also arises by fusing potassium meta-sulpho benzoate , or meta - brom benzoate with potassium formate (terephthalic acid is also formed in the last case).
The barium salt (as its hexa hydrate) is very soluble (a distinction between phthalic and terephthalic acids).
Uvitic acid, 5- methylisophthalic acid, is obtained by oxidizing mesitylene or by condensing pyroracemic acid with baryta water.

The (1,3-benzenecarboxylic acid) is the meta form of phthalic acid.
Isophthalic acid is a white crystalline solid subliming at 345°C.
Isophthalic acid is slightly soluble in water, alcohol and acetic acid (insoluble in benzene).
Isophthalic acid is obtained by oxidizing meta-xylene with chromic acid, or by fusing potassium meta-sulphobenzoate, or meta-brombenzoate with potassium formate.
Isophthalic acid is a key ingredient in FRP (Fiberglass Reinforced Plastics) markets for such products as marine, automotive, and corrosion resistant pipes and tanks.
Polyesters containing PIA (Purified Isophthalic Acid) are also used extensively in industrial coatings applications for home appliances, automobiles, aluminum siding, and metal office furniture.

Purity (% w/w): Min. 99,9
Acid Number (mg KOH/g): 675 ± 2
3-CBA (ppm): Max. 25
m-Toluic Acid (ppm): Max. 150
b* - Value: Max. 1,0
Total Metal content (ppm): None > 2 and Total Max. 10
Ash (ppm): Max. 15
Water (w/w %): Max. 0,1
Mean Particle Size (Micron): 110 ± 15

Synonyms:
1,3-BENZENEDICARBOXYLIC ACID
meta-PHTHALIC ACID

Preferred IUPAC name:
Benzene-1,3-dicarboxylic acid

Other names:
Isophthalic acid
meta-Phthalic acid
ISOPHTHALIC ACID
121-91-5
Benzene-1,3-dicarboxylic acid
1,3-Benzenedicarboxylic acid
m-Phthalic acid
m-Benzenedicarboxylic acid
Acide isophtalique
Kyselina isoftalova
iso-phthalic acid
NSC 15310
UNII-X35216H9FJ
Acide isophtalique [French]
Kyselina isoftalova [Czech]
meta-benzenedicarboxylic acid
HSDB 2090
EINECS 204-506-4
CHEBI:30802
X35216H9FJ
BRN 1909332
AI3-16107
1,3-Benzenedicarboxylic acid, homopolymer
DSSTox_CID_1485
DSSTox_RID_76179
DSSTox_GSID_21485
WLN: QVR CVQ
4-09-00-03292 (Beilstein Handbook Reference)
MLS001075180
3-Carboxybenzoic acid; Isoterephthalic acid; NSC 15310; m-Benzenedicarboxylic acid
26776-13-6
CAS-121-91-5
NSC15310
NCGC00164010-01
SMR000112097
isopthalic acid
CCRIS 8899
m-Dicarboxybenzene
MFCD00002516
1,3-dicarboxybenzene
ACMC-1BQVP
Isophthalic acid, 99%
benzene-1,3-dioic acid
55185-18-7
EC 204-506-4
Isophthalic acid pound PIA)
SCHEMBL22462
Benzene,1,3-dicarboxylic acid
CHEMBL1871181
DTXSID3021485
HMS2269O09
AMY30288
ZINC3845021
Tox21_200409
Tox21_300106
BBL011591
Isophthalic acid, analytical standard
NSC-15310
SBB060284
STL163327
AKOS000119766
DS-6425
MCULE-2481502954
NCGC00164010-02
NCGC00164010-03
NCGC00254219-01
NCGC00257963-01
BP-21126
CS-0020265
FT-0627450
FT-0693429
I0155
ST50824886
A23846
C22203
21179-EP2284165A1
21179-EP2292597A1
21179-EP2301536A1
21179-EP2301538A1
21179-EP2311455A1
21179-EP2311830A1
21179-EP2314295A1
21179-EP2374780A1
21179-EP2374781A1
21179-EP2374895A1
Q415253
J-004707
J-521560
1,3-Benzenedicarboxylic acid, polymer with dimethyl 1,4-benzenedicarboxylate, 2,2-dimethyl-1,3-propanediol, 1,2-ethanediol and nonanedioic acid
8G0
ISOPROPANOL
ISOPROPANOL Isopropyl Alcohol Isopropanol (izopropil alkol, Isopropanol, IPA) is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. Isopropanol (izopropil alkol, Isopropanol, IPA) is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. Isopropanol (izopropil alkol, Isopropanol, IPA) has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)Isopropanol (izopropil alkol, Isopropanol, IPA) Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, Isopropanol (izopropil alkol, Isopropanol, IPA) can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. Isopropanol (izopropil alkol, Isopropanol, IPA) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. Isopropanol (izopropil alkol, Isopropanol, IPA) is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, Isopropanol (izopropil alkol, Isopropanol, IPA) is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated Isopropanol (izopropil alkol, Isopropanol, IPA) to separate into a distinct layer. Isopropanol (izopropil alkol, Isopropanol, IPA) forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) Isopropanol (izopropil alkol, Isopropanol, IPA). Water-Isopropanol (izopropil alkol, Isopropanol, IPA) mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. Isopropanol (izopropil alkol, Isopropanol, IPA) becomes increasingly viscous with decreasing temperature and freezes at -89 °C (-128 °F). Isopropanol (izopropil alkol, Isopropanol, IPA) has a maximal absorbance at 205 nm in an ultraviolet-visible spectrum. Reactions of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of Isopropanol (izopropil alkol, Isopropanol, IPA) over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 Isopropanol (izopropil alkol, Isopropanol, IPA) is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. Isopropanol (izopropil alkol, Isopropanol, IPA) may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, Isopropanol (izopropil alkol, Isopropanol, IPA) reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of Isopropanol (izopropil alkol, Isopropanol, IPA) In 1920, Standard Oil first produced Isopropanol (izopropil alkol, Isopropanol, IPA) by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of Isopropanol (izopropil alkol, Isopropanol, IPA) In 1994, 1.5 million tonnes of Isopropanol (izopropil alkol, Isopropanol, IPA) were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the Isopropanol (izopropil alkol, Isopropanol, IPA) be separated from water and other by-products by distillation. Isopropanol (izopropil alkol, Isopropanol, IPA) and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight Isopropanol (izopropil alkol, Isopropanol, IPA) and 12.1% by weight water.[18] Pure (anhydrous) Isopropanol (izopropil alkol, Isopropanol, IPA) is made by azeotropic distillation of the wet Isopropanol (izopropil alkol, Isopropanol, IPA) using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of Isopropanol (izopropil alkol, Isopropanol, IPA) Small amounts of Isopropanol (izopropil alkol, Isopropanol, IPA) are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of Isopropanol (izopropil alkol, Isopropanol, IPA) Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily Isopropanol (izopropil alkol, Isopropanol, IPA) rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces Isopropanol (izopropil alkol, Isopropanol, IPA), by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of Isopropanol (izopropil alkol, Isopropanol, IPA) See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone Isopropanol (izopropil alkol, Isopropanol, IPA) may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of Isopropanol (izopropil alkol, Isopropanol, IPA) One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of Isopropanol (izopropil alkol, Isopropanol, IPA) were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. Isopropanol (izopropil alkol, Isopropanol, IPA) is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some Isopropanol (izopropil alkol, Isopropanol, IPA) is used as a chemical intermediate. Isopropanol (izopropil alkol, Isopropanol, IPA) may be converted to acetone, but the cumene process is more significant. [16] Solvent of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] Isopropanol (izopropil alkol, Isopropanol, IPA) is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate Isopropanol (izopropil alkol, Isopropanol, IPA) is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] Isopropanol (izopropil alkol, Isopropanol, IPA) reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of Isopropanol (izopropil alkol, Isopropanol, IPA) Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60-70% solution of Isopropanol (izopropil alkol, Isopropanol, IPA) or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for Isopropanol (izopropil alkol, Isopropanol, IPA). A 75% v/v solution in water may be used as a hand sanitizer.[22] Isopropanol (izopropil alkol, Isopropanol, IPA) is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although Isopropanol (izopropil alkol, Isopropanol, IPA) can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. Isopropanol (izopropil alkol, Isopropanol, IPA) can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive Isopropanol (izopropil alkol, Isopropanol, IPA) is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. Isopropanol (izopropil alkol, Isopropanol, IPA) is often sold in aerosol cans as a windshield or door lock deicer. Isopropanol (izopropil alkol, Isopropanol, IPA) is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of Isopropanol (izopropil alkol, Isopropanol, IPA) and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, Isopropanol (izopropil alkol, Isopropanol, IPA) provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. Isopropanol (izopropil alkol, Isopropanol, IPA) solutions of 70-99% are used to preserve specimens. Isopropanol (izopropil alkol, Isopropanol, IPA) is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in Isopropanol (izopropil alkol, Isopropanol, IPA). Safety of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of Isopropanol (izopropil alkol, Isopropanol, IPA) over magnesium has been reported to form peroxides, which may explode upon concentration. Isopropanol (izopropil alkol, Isopropanol, IPA) is a skin irritant. Wearing protective gloves is recommended. Toxicology of Isopropanol (izopropil alkol, Isopropanol, IPA) Isopropanol (izopropil alkol, Isopropanol, IPA) and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of Isopropanol (izopropil alkol, Isopropanol, IPA) poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] Isopropanol (izopropil alkol, Isopropanol, IPA) does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] Isopropanol (izopropil alkol, Isopropanol, IPA) is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of Isopropanol (izopropil alkol, Isopropanol, IPA) are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of Isopropanol (izopropil alkol, Isopropanol, IPA) of tens of mg/dL, while those by fatal Isopropanol (izopropil alkol, Isopropanol, IPA) ingestion usually have blood concentrations of hundreds of mg/dL. Isopropanol (izopropil alkol, Isopropanol, IPA) will attack some forms of plastics, rubber, and coatings. Isopropanol (izopropil alkol, Isopropanol, IPA) is an isomer of propyl alcohol with antibacterial properties. Although the exact mechanism of isopropanol's disinfecting action is not known, it might kill cells by denaturing cell proteins and DNA, interfering with cellular metabolism, and dissolving cell lipo-protein membranes. Isopropanol is used in soaps and lotions as an antiseptic. Any clothing which becomes wet with liquid Isopropanol (izopropil alkol, Isopropanol, IPA) should be removed immediately and not reworn until the Isopropanol (izopropil alkol, Isopropanol, IPA) is removed from the clothing. Clothing should then be placed in closed containers for storage until it can be discarded or until provision can be made for the removal of Isopropanol (izopropil alkol, Isopropanol, IPA) from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the Isopropanol (izopropil alkol, Isopropanol, IPA), the person performing the operation should be informed of Isopropanol (izopropil alkol, Isopropanol, IPA)'s hazardous properties. When a stream of hydrogen entrained Isopropanol (izopropil alkol, Isopropanol, IPA) vapors and palladium particles, the mixture caught fire on exposure to air. Solutions of 90% nitroform in 10% Isopropanol (izopropil alkol, Isopropanol, IPA) in polyethylene bottles exploded. The reaction between Isopropanol (izopropil alkol, Isopropanol, IPA) and phosgene forms isopropyl chloroformate and hydrogen chloride. In the presence of iron salts thermal decomposition can occur, which in some cases can become explosive. Mixing oleum and Isopropanol (izopropil alkol, Isopropanol, IPA) in a closed container caused the temperature and pressure to increase. Isopropanol (izopropil alkol, Isopropanol, IPA) (without residue) may be used in inks for marking food supplements in tablet form, gum, and confectionery. Isopropanol (izopropil alkol, Isopropanol, IPA) may be present in the following foods under the conditions specified: (a) In spice oleoresins as a residue from the extraction of spice, at a level not to exceed 50 parts per million. (b) In lemon oil as a residue in production of the oil, at a level not to exceed 6 parts per million. (c) In hops extract as a residue from the extraction of hops at a level not to exceed 2.0 percent by weight: Provided, that, (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract specifies the presence of the Isopropanol (izopropil alkol, Isopropanol, IPA) and provides for the use of the hops extract only as prescribed by paragraph (c)(1) of this section. WORKERS IN AN Isopropanol (izopropil alkol, Isopropanol, IPA) PACKAGING PLANT BECAME ILL AFTER ACCIDENTAL EXPOSURE TO CARBON TETRACHLORIDE. Isopropanol (izopropil alkol, Isopropanol, IPA) POTENTIATION OF CARBON TETRACHLORIDE TOXICITY HAS BEEN SHOWN PREVIOUSLY ONLY IN RATS. ACETONE, A PRODUCT OF Isopropanol (izopropil alkol, Isopropanol, IPA) METABOLISM, IS A MAJOR POTENTIATOR OF CARBON TETRACHLORIDE TOXICITY. IDENTIFICATION: Isopropanol (izopropil alkol, Isopropanol, IPA) is an aliphatic alcohol hydrocarbon. It is prepared from propylene, which is obtained in the cracking of petroleum or by the reduction of acetone. It is a colorless liquid which is soluble in water, alcohol, ether, acetone, benzene and chloroform. It is insoluble in salt solutions. It has a slight odor resembling a mixture of ethanol and acetone and has a slight bitter taste. It is used in antifreeze, industrial solvent, solvent for gums, shellac, essential oils, in quick drying oils, creosote and resins; extraction of alkaloids; in quick drying inks; in denaturing ethyl alcohol; in body rubs, hand lotions, after shave lotions, cosmetics and pharmaceuticals; in manufacture of acetone, glycerol, isopropyl acetate; antiseptic; rubefacient ; and pharmaceutical aid. HUMAN EXPOSURE: Toxic effects include central nervous depression, liver, kidney, cardiovascular depression and brain damage. It can cause drowsiness, ataxia, stupor, coma and respiratory depression, irritation of mucous membranes and eyes, gastritis, gastric hemorrhage, vomiting, pancreatitis, cold clammy skin, hypothermia, miosis, tachycardia, slow and noisy respiration. High risk of circumstances of poisoning: Accidental ingestion of rubbing alcohols/toiletries by children. There is a potential exposure from dermal and inhalation exposure in children during Isopropanol (izopropil alkol, Isopropanol, IPA) sponging for control of fever. Intentional ingestion for alcoholic effect or in suicide attempts. Occupational or accidental exposure to liquid or its vapor in industrial applications. Individuals exposed to Isopropanol (izopropil alkol, Isopropanol, IPA) include the following: workers in the pharmaceutical industry, cosmetic industry, chemical industry, petroleum workers, laboratory workers, printers, painters and carpenters and cabinet makers. There is little absorption through intact skin. Isopropanol (izopropil alkol, Isopropanol, IPA) is a potent eye and skin irritant. 80% of an oral dose is absorbed within 30 minutes. Absorption is complete within 2 hours although this may be delayed in a large overdose. Alveolar concentration is correlated to the environmental concentration at any given time. Isopropanol (izopropil alkol, Isopropanol, IPA) is absorbed through intact skin on prolonged exposure. Isopropanol (izopropil alkol, Isopropanol, IPA) distributes in body water with an apparent volume of distribution of 0.6-0.7 L/kg. 20-50% of an absorbed dose is excreted unchanged. Most Isopropanol (izopropil alkol, Isopropanol, IPA) is oxidized in the liver by alcohol dehydrogenase to acetone, formate and finally carbon dioxide. Acetone is slowly eliminated by the lung (40%) or kidney. Clinically insignificant excretion occurs into the stomach and saliva. Related keto acids are not produced in sufficient quantities to cause a severe metabolic acidosis. Inebriation, peripheral vasodilation has occurred. In children, hypoglycemia is particularly severe when poisoning following fasting, exercise or chronic malnutrition Lactic acidosis may occur in patients with severe liver disease, pancreatitis or receiving biguanide therapy or as a result of the hypovolemia which frequently accompanies severe intoxication. ANIMAL STUDIES: Isopropanol (izopropil alkol, Isopropanol, IPA) most closely follows first order kinetics, with a half life of 2.5 to 3.2 hours. The elimination half life of the active metabolite acetone is significantly prolonged to about 5 hours in rats. In rat hepatocytes the following has been observed: marked depletion of glutathione, increased malondialdehyde production, decreased protein sulfhydryls content and leakage of lactic dehydrogenase with loss of membrane activity. A complete history and physical examination should be performed to detect pre existing conditions that might place the employee at increased risk, and to establish a baseline for future health monitoring. Examination of the skin, liver, kidneys, and respiratory system should be stressed. Skin disease: Isopropanol (izopropil alkol, Isopropanol, IPA) is a defatting agent and can cause dermatitis on prolonged exposure. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. Liver disease: Although Isopropanol (izopropil alkol, Isopropanol, IPA) is not known as a liver toxin in humans, the importance of this organ in the biotransformation and detoxification of foreign substances should be considered before exposing persons with impaired liver function. Kidney disease: Although Isopropanol (izopropil alkol, Isopropanol, IPA) is not known as a kidney toxin in humans, the importance of this organ in the elimination of toxic substances justifies special consideration in those with impaired renal function. Chronic respiratory disease: In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropanol (izopropil alkol, Isopropanol, IPA) might cause exacerbation of symptoms due to its irritant properties. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis. The assessment of Isopropanol (izopropil alkol, Isopropanol, IPA) exposure can be accomplished through measurement of either Isopropanol (izopropil alkol, Isopropanol, IPA) or acetone. Isopropanol (izopropil alkol, Isopropanol, IPA) measurement has not been found to be a good assessment of low level exposure, due to its low sensitivity. However, measurement of acetone has been found to be a good indicator of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure for exposures as low as 70 ppm, and has been found to correlate well with air concentrations. Whole Blood Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) level associated with serious toxic symptoms is 150 mg/l. Serum or Plasma Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - not established; and Toxic - not established. Urine Reference Ranges: The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. However only acetone was found to be a useful test, due to its greater sensitivity and good correlation with air exposure levels. Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Not established. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. ... In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s production and use in the manufacture of acetone, glycerol, and isopropyl acetate and as a solvent for a variety of applications may result in its release to the environment through various waste streams. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s use in hydraulic fracturing fluids results in its direct release to the environment. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has been identified as a metabolic product of aerobic microorganisms, anaerobic microorganisms, fungi, and yeast. If released to air, a vapor pressure of 45.4 mm Hg at 25 °C indicates Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will exist solely as a vapor in the ambient atmosphere. Vapor-phase Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3.2 days. If released to soil, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to have very high mobility based upon an estimated Koc of 1.5. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 8.10X10-6 atm-cu m/mole. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces based upon its vapor pressure. If released into water, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 86 hours and 29 days, respectively. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to occur due to the lack of hydrolyzable functional groups. Biodegradation is expected to be an important fate process based on the results of microbial screening tests. Occupational exposure to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may occur through inhalation and dermal contact with this compound at workplaces where Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is produced or used. Monitoring data indicate that the general population may be exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound directly and from consumer products containing Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). ANAEROBIC: Typical Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) removal efficiencies for an anaerobic lagoon treatment facility, with a retention time of 15 days, were 50% after loading with dilute waste, and 69 and 74% after loading with concentrated wastes(1). In closed bottle studies, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was completely degraded anaerobically by an acetate-enriched culture, derived from a seed of domestic sludge(1). The culture started to use cross-fed Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), after 4 days, at a rate of 200 mg/L/day(1). In a mixed reactor with a 20-day retention time, seeded by the same culture, 56% removal was achieved in the 20 days following 70 days of acclimation to a final concentration of 10,000 mg/L(1). The avg percent removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in semi-pilot scale anaerobic lagoons was 50% in 7.5-10 days for dilute wastes with 60 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 69-74% in 20-40 days for concentrated wastes with 175 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)(2). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was readily mineralized to methane and carbon dioxide under methanogenic conditions(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) under these conditions in fuel impacted river sediments and industrial/sewage impacted creek sediments was 2.4 ppm C/day (82% of expected methane recovery) and 3.0 ppm C/day (91% of expected methane recovery), respectively(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a sediment slurry from a shallow anoxic aquifer under methanogenic conditions was 7.6 ppm C/day (112% of theoretical methane recovery)(4). In anaerobic bioreactor studies using a granular sludge inocula, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (at 125 ppm initial concentration) degraded with 115.5% of theoretical methane production over a 21-day incubation period(5); acetone was identified as a metabolite(5). In laboratory anaerobic sludge reactor tests using liquid hen manure as inoculum, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was degraded 100% in a 13-day incubation period with lag period(6). The Henry's Law constant for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is 8.10X10-6 atm-cu m/mole at 25 °C(1). This Henry's Law constant indicates that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 86 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 29 days(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 45.2 mm Hg at 25 °C(3). The volatilization of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) from a runoff tank of an industrial wastewater treatment facility was measured; the volatilization rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) ranged between 0.64-0.69 mg/sq m-min(4). The evaporation rate of a 1:1 Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA):water mixture from a shallow pool was 1.5 kg/sq-m per hour at a wind speed of 4.5 m/s and pool temperature of 20 °C and an ambient air temperature of 22 °C(5). Laboratory studies demonstrated that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will volatilize from water to air in the absence of wind(6).
ISOPROPYL ACETATE
Isopropyl Acetate (İzopropil Asetat) IUPAC Name propan-2-yl acetate Isopropyl Acetate (İzopropil Asetat) InChI InChI=1S/C5H10O2/c1-4(2)7-5(3)6/h4H,1-3H3 Isopropyl Acetate (İzopropil Asetat) InChI Key JMMWKPVZQRWMSS-UHFFFAOYSA-N Isopropyl Acetate (İzopropil Asetat) Canonical SMILES CC(C)OC(=O)C Isopropyl Acetate (İzopropil Asetat) Molecular Formula C5H10O2 Isopropyl Acetate (İzopropil Asetat) CAS 108-21-4 Isopropyl Acetate (İzopropil Asetat) European Community (EC) Number 203-561-1 Isopropyl Acetate (İzopropil Asetat) ICSC Number 0907 Isopropyl Acetate (İzopropil Asetat) NSC Number 9295 Isopropyl Acetate (İzopropil Asetat) RTECS Number AI4930000 Isopropyl Acetate (İzopropil Asetat) UN Number 1220 Isopropyl Acetate (İzopropil Asetat) UNII 1Y67AFK870 Isopropyl Acetate (İzopropil Asetat) JECFA Number 305 Isopropyl Acetate (İzopropil Asetat) FEMA Number 2926 Isopropyl Acetate (İzopropil Asetat) DSSTox Substance ID DTXSID2025478 Isopropyl Acetate (İzopropil Asetat) Physical Description Isopropyl acetate appears as a clear colorless liquid. Flash point 40°F. Vapors are heavier than air. Contact with the material may irritate skin, eyes or mucous membranes. May be toxic by ingestion, inhalation and skin absorption. Used as a solvent. Isopropyl Acetate (İzopropil Asetat) Color/Form Water-white liquid Isopropyl Acetate (İzopropil Asetat) Odor Aromatic Isopropyl Acetate (İzopropil Asetat) Taste ON DILUTION A SWEET APPLE-LIKE FLAVOR Isopropyl Acetate (İzopropil Asetat) Boiling Point 190 to 196 °F at 743.3 mm Hg Isopropyl Acetate (İzopropil Asetat) Melting Point -100.1 °F Isopropyl Acetate (İzopropil Asetat) Flash Point 36 °F Isopropyl Acetate (İzopropil Asetat) Solubility 1 to 10 mg/mL at 68° F Isopropyl Acetate (İzopropil Asetat) Density 0.874 at 68 °F Isopropyl Acetate (İzopropil Asetat) Vapor Density 3.5 Isopropyl Acetate (İzopropil Asetat) Vapor Pressure 1 mm Hg at -36.9 °F ; 100 mm Hg at 96.3° F; 760 mm Hg at 192.2° F Isopropyl Acetate (İzopropil Asetat) LogP log Kow = 1.02 Isopropyl Acetate (İzopropil Asetat) LogKoa 2.93 Isopropyl Acetate (İzopropil Asetat) Henrys Law Constant 2.78e-04 atm-m3/mole Isopropyl Acetate (İzopropil Asetat) Atmospheric OH Rate Constant 3.40e-12 cm3/molecule*sec Isopropyl Acetate (İzopropil Asetat) Autoignition Temperature 860 °F Isopropyl Acetate (İzopropil Asetat) Viscosity 0.49 CENTIPOISE @ 25 °C Isopropyl Acetate (İzopropil Asetat) Heat of Combustion -9420 Btu/lb= -5230 cal/g= -219X10+3 J/kg Isopropyl Acetate (İzopropil Asetat) Heat of Vaporization 150 Btu/lb= 81 cal/g= 3.4X10+5 J/kg Isopropyl Acetate (İzopropil Asetat) Surface Tension 26 dynes/cm= 0.026 N/m @ 20 °C Isopropyl Acetate (İzopropil Asetat) Ionization Potential 9.95 eV Isopropyl Acetate (İzopropil Asetat) Molecular Weight 102.13 g/mol Isopropyl Acetate (İzopropil Asetat) XLogP3-AA 0.9 Isopropyl Acetate (İzopropil Asetat) Hydrogen Bond Donor Count 0 Isopropyl Acetate (İzopropil Asetat) Hydrogen Bond Acceptor Count 2 Isopropyl Acetate (İzopropil Asetat) Rotatable Bond Count 2 Isopropyl Acetate (İzopropil Asetat) Exact Mass 102.06808 g/mol Isopropyl Acetate (İzopropil Asetat) Monoisotopic Mass 102.06808 g/mol Isopropyl Acetate (İzopropil Asetat) Topological Polar Surface Area 26.3 Ų Isopropyl Acetate (İzopropil Asetat) Heavy Atom Count 7 Isopropyl Acetate (İzopropil Asetat) Formal Charge 0 Isopropyl Acetate (İzopropil Asetat) Complexity 66.5 Isopropyl Acetate (İzopropil Asetat) Isotope Atom Count 0 Isopropyl Acetate (İzopropil Asetat) Defined Atom Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Undefined Atom Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Defined Bond Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Undefined Bond Stereocenter Count 0 Isopropyl Acetate (İzopropil Asetat) Covalently-Bonded Unit Count 1 Isopropyl Acetate (İzopropil Asetat) Compound Is Canonicalized Yes General description Isopropyl acetate is an isopropyl ester of acetic acid. It participates in the mesoporous Al-MCM-41 (Si/Al = 55 and 104) and Al, Zn-MCM-41 (Si/(Al+Zn) = 52) molecular sieves catalyzed alkylation of m-cresol. It is widely used for the incorporation of aroma to various cosmetics and food products. Vapor-liquid equilibria for its binary mixture with CO2 at higher pressures has been evaluated.It is a colorless, flammable liquid, having a pleasant fruity type of odor. Application Isopropyl acetate may be employed as model oxygenate compound to evaluate the catalytic efficiency of La0.8Sr0.2MnO3+x perovskite catalyst for the oxidation of various oxy-derivative compounds.It may be used as extracting reagent for the N,N-dimethyl-2-[5-(cyanomethyl)-1H-indol-3-yl]ethylamine. Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.Isopropyl acetate is an ester, an organic compound which is the product of esterification of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor.Isopropyl acetate is a solvent with a wide variety of manufacturing uses that is miscible with most other organic solvents, and moderately soluble in water. It is used as a solvent for cellulose, plastics, oil and fats. It is a component of some printing inks and perfumes.Isopropyl acetate decomposes slowly on contact with steel in the presence of air, producing acetic acid and isopropanol. It reacts violently with oxidizing materials and it attacks many plastics.Isopropyl acetate is quite flammable in both its liquid and vapor forms, and it may be harmful if swallowed or inhaled.The Occupational Safety and Health Administration has set a permissible exposure limit (PEL) of 250 ppm (950 mg/m3) over an eight-hour time-weighted average for workers handling isopropyl acetate.Isopropyl acetate appears as a clear colorless liquid. Flash point 40°F. Vapors are heavier than air. Contact with the material may irritate skin, eyes or mucous membranes. May be toxic by ingestion, inhalation and skin absorption. Used as a solvent.Isopropyl acetate is found in alcoholic beverages. Isopropyl acetate is isolated from ripening melons, apples, bananas, blackcurrants, other fruits and grape oil. Also present in cheddar cheese, soybean, beer, red wine, white wine and plum brandy. Isopropyl acetate is a flavouring ingredient Isopropyl acetate is a solvent with a wide variety of manufacturing uses that is miscible with most other organic solvents, and moderately soluble in water. It is used as a solvent for cellulose, plastics, oil and fats. It is a component of some printing inks and perfumes. Isopropyl acetate is an ester, an organic compound which is the product of condensation of acetic acid and isopropanol. It is a clear, colorless liquid with a characteristic fruity odor. Application Isopropyl acetate may be employed as a model oxygenate compound to evaluate the catalytic efficiency of La0.8Sr0.2MnO3+x perovskite catalyst for the oxidation of various oxy-derivative compounds.It may be used as an extracting reagent for the N,N-dimethyl-2-[5-(cyanomethyl)-1H-indol-3-yl]ethylamine. Coatings, Cleaning fluids, Printing inks, Cosmetic /personal care solvent,Fragrance solvent Features: Non-HAP (Hazardous air pollutant) Solvent; Good resin solvent; Mild odor; Fast evaporating Substituents: Acetate salt, Carboxylic acid ester, Hydrocarbon derivative, Organooxygen compound, Carbonyl group, Aliphatic acyclic compound Isopropyl acetate is used mainly as a solvent for rotogravure and flexographic printing inks.Other applications include coatings, cleaning fluids, cosmetics, and fragrances.Isopropyl acetate liquid and vapor are flammable. The product is stable at recommended temperatures and pressures. Isopropyl acetate is incompatible with alkali metal hydroxides,such as sodium hydroxide, as well as nitric acid and strong oxidizers, and contact should be avoided.Eye contact with liquid isopropyl acetate may cause severe irritation and severe corneal injury. Eye contact with vapor may cause mild discomfort and redness. Prolonged skin contact may cause slight irritation with local redness and discomfort and possible drying or flaking of the skin. It is unlikely to result in absorption of harmful amounts. Excessive inhalation of isopropyl acetate vapors may cause irritation to the nose, throat, and lungs, as well as central nervous system effects. In confined or poorly ventilated areas,unconsciousness or death could occur. Isopropyl acetate is highly biodegradable, unlikely to bioaccumulate in the food chain, and is practically non-toxic to fish and aquatic organisms.Worker exposure is possible during manufacturing or other industrial processes using isopropyl acetate. Consumers could be exposed by using cosmetics, fragrances, or other products made with it.nt Isopropyl acetate is broadly used as a solvent in commercial printing processes for: Exposure Potential Isopropyl acetate is used in the production of industrial and consumer products. Based on the uses for isopropyl acetate the public could be exposed through: Workplace exposure.Exposure can occur either in an isopropyl acetate manufacturing facility or in the various industrial or manufacturing facilities that use it. Those working with isopropyl acetate in manufacturing operations could be exposed during maintenance, sampling, testing, or other procedures. Each facility should have a thorough training program for employees and appropriate work processes and safety equipment in place to limit unnecessary exposure. Consumer exposure to products containing isopropyl acetate for direct consumer use. Consumers could be exposed to isopropyl acetate by using cosmetics or other products containing it. See Health Information. Isopropyl acetate may be released to air by evaporation from products that contain it. Although the substance is moderately soluble, when introduced to water, it will have a tendency to evaporate. Because the chemical is highly biodegradable, it will be treated by sewage treatment plants. Large release - Industrial spills or releases are infrequent and generally contained. If a large spill does occur, dike the area to contain the spilled material. Isolate the area and evacuate unnecessary personnel. Eliminate all sources of ignition. Ground and bond all containers and handling equipment. In case of fire - Keep people away and prevent unnecessary entry. Isopropyl acetate vapor is an explosion hazard. Vapors are heavier than air and may travel long distances and accumulate in low-lying areas. Wear positive-pressure, self-contained breathing apparatus (SCBA) and protective fire-fighting clothing or fight fire from a safe distance. Use water fog or fine spray, dry-chemical or carbon-dioxide fire extinguishers, or foam. Do not use a direct water stream as it may spread the fire. Follow emergency procedures carefully. Eye and Skin Contact - Eye contact with liquid isopropyl acetate may cause severe irritation and severe corneal injury. Eye contact with vapor may cause mild discomfort and redness. Prolonged skin contact may cause slight irritation with local redness and discomfort and possible drying or flaking of the skin. Prolonged contact is unlikely to result in absorption of harmful amounts. Inhalation - Excessive inhalation of isopropyl acetate vapors may cause irritation to the nose, throat, and lungs, as well as central nervous system effects. In confined or poorly ventilated areas, unconsciousness or death could occur.Ingestion - Isopropyl acetate has very low toxicity if small amounts are swallowed. Cancer and Birth Defect Information - This material did not cause cancer in laboratory animals. In laboratory tests isopropyl acetate has been toxic to the fetus at doses toxic to the mother, but is not expected to interfere with reproduction. This material was negative in in vitro and animal genetic toxicity studies. Isopropyl acetate is moderately volatile, and will evaporate from products that contain it. Although the substance is moderately soluble in water, it will have a tendency to evaporate from it. It has minimal tendency to bind to soil or sediment. Isopropyl acetate is unlikely to persist in the environment. The substance is highly biodegradable, which suggests the chemical will be removed from water and soil environments, including biological wastewater treatment plants. Isopropyl acetate is not likely to accumulate in the food chain (bioconcentration potential is low) and is practically nontoxic to fish and other aquatic organisms on an acute basis. Isopropyl acetate liquid and vapor are flammable. Isopropyl acetate vapors are heavier than air and can travel long distances, posing an explosion hazard. The material is stable at recommended storage and use temperatures. Store away from heat, sparks, and flame. Exposure to elevated temperatures can cause isopropyl acetate to decompose. Isopropyl acetate is incompatible with alkali metal hydroxides, such as sodium hydroxide, as well as nitric acid and strong oxidizers, and contact should be avoided. Regulations may exist that govern the manufacture, sale, transportation, use, and/or disposal of isopropyl acetate. These regulations may vary by city, state, country, or geographic region. HAZARD SUMMARY * Isopropyl Acetate can affect you when breathed in. * Contact can irritate and burn the eyes. * Contact can cause severe skin burns. Repeated exposure can cause dryness and cracking of the skin. * Breathing Isopropyl Acetate can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. * High exposure can cause headache, drowsiness, poor muscle coordination, unconsciousness and coma. * Isopropyl Acetate may affect the liver. * Isopropyl Acetate is a FLAMMABLE LIQUID and a DANGEROUS FIRE HAZARD. IDENTIFICATION Isopropyl Acetate is a colorless liquid with a fruity odor. It is used as a solvent for cellulose, plastics, oils and fats, and in printing inks and perfume. HOW TO DETERMINE IF YOU ARE BEING EXPOSED The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard, 1910.1200, requires private employers to provide similar training and information to their employees. * Exposure to hazardous substances should be routinely evaluated. This may include collecting personal and area air samples. You can obtain copies of sampling results from your employer. You have a legal right to this information under OSHA 1910.1020. * If you think you are experiencing any work-related health problems, see a doctor trained to recognize occupational diseases. Take this Fact Sheet with you. * ODOR THRESHOLD = 4.1 ppm. * The range of accepted odor threshold values is quite broad. Caution should be used in relying on odor alone as a warning of potentially hazardous exposures. WORKPLACE EXPOSURE LIMITS OSHA: The legal airborne permissible exposure limit (PEL) is 250 ppm averaged over an 8-hour workshift. NIOSH: No exposure limit has been established. ACGIH: The recommended airborne exposure limit is 100 ppm averaged over an 8-hour workshift and 200 ppm as a STEL (short term exposure limit). WAYS OF REDUCING EXPOSURE * Where possible, enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust ventilation or enclosure is not used, respirators should be worn. * Wear protective work clothing. * Wash thoroughly immediately after exposure to Isopropyl Acetate and at the end of the workshift. * Post hazard and warning information in the work area. In addition, as part of an ongoing education and training effort, communicate all information on the health and safety hazards of Isopropyl acetate to potentially exposed workers. This Fact Sheet is a summary source of information of all potential and most severe health hazards that may result from exposure. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential effects described below. HEALTH HAZARD INFORMATION Acute Health Effects The following acute (short-term) health effects may ocur immediately or shortly after exposure to Isopropyl Acetate: * Contact can irritate and burn the eyes. * Contact can cause severe skin burns. * Breathing Isopropyl Acetate can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. * High exposure can cause headache, drowsiness, poor muscle coordination, unconsciousness and coma. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Isopropyl Acetate and can last for months or years: Cancer Hazard * According to the information presently available to the New Jersey Department of Health and Senior Services, Isopropyl Acetate has not been tested for its ability to cause cancer in animals. Reproductive Hazard * According to the information presently available to the New Jersey Department of Health and Senior Services, Isopropyl Acetate has not been tested for its ability to affect reproduction. Other Long-Term Effects * Repeated exposure can cause dryness and cracking of the skin. * Isopropyl Acetate can irritate the lungs. Repeated exposure may cause bronchitis to develop with cough, phlegm, and/or shortness of breath. * Isopropyl Acetate may affect the liver. * This chemical has not been adequately evaluated to determine whether brain or other nerve damage could ocur with repeated exposure. However, many solvents and other petroleum-based chemicals have been shown to cause such damage. Effects may include reduced memory and concentration, personality changes (withdrawal, irritability), fatigue, sleep disturbances, reduced coordination, and/or effects on nerves supplying internal organs (autonomic nerves) and/or nerves to the arms and legs (weakness, "pins and needles"). MEDICAL Medical Testing If symptoms develop or overexposure is suspected, the following are recommended: * Lung function tests. * Liver function tests. * Evaluate for brain effects such as changes in memory, concentration, sleeping patterns and mood (especially irritability and social withdrawal), as well as headaches and fatigue. Consider evaluations of the cerebellar, autonomic and peripheral nervous systems. Positive and borderline individuals should be referred for neuropsychological testing. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure. Request copies of your medical testing. You have a legal right to this information under OSHA 1910.1020. Mixed Exposures * Because smoking can cause heart disease, as well as lung cancer, emphysema, and other espiratory problems, it may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems. * Because more than light alcohol consumption can cause liver damage, drinking alcohol may increase the liver damage caused by Isopropyl Acetate. WORKPLACE CONTROLS AND PRACTICES Unless a less toxic chemical can be substituted for a hazardous substance, ENGINEERING CONTROLS are the most effective way of reducing exposure. The best protection is to enclose operations and/or provide local exhaust ventilation at the site of chemical release. Isolating operations can also reduce exposure. Using respirators or protective equipment is less effective than the controls mentioned above, but is sometimes necessary. In evaluating the controls present in your workplace, consider: (1) how hazardous the substance is, (2) how much of the substance is released into the workplace and (3) whether harmful skin or eye contact could occur. Special controls should be in place for highly toxic chemicals or when significant skin, eye, or breathing exposures are possible. In addition, the following controls are recommended: * Where possible, automatically pump liquid Isopropyl Acetate from drums or other storage containers to process containers. * Before entering a confined space where Isopropyl Acetate may be present, check to make sure that an explosive concentration does not exist. Good WORK PRACTICES can help to reduce hazardous exposures. The following work practices are recommended: * Workers whose clothing has been contaminated by Isopropyl Acetate should change into clean clothing promptly. * Contaminated work clothes should be laundered by individuals who have been informed of the hazards of exposure to Isopropyl Acetate. * Eye wash fountains should be provided in the immediate work area for emergency use. * If there is the possibility of skin exposure, emergency shower facilities should be provided. * On skin contact with Isopropyl Acetate, immediately wash or shower to remove the chemical. At the end of the workshift, wash any areas of the body that may have contacted Isopropyl Acetate, whether or not known skin contact has occurred. * Do not eat, smoke, or drink where Isopropyl Acetate is handled, processed, or stored, since the chemical can be swallowed. Wash hands carefully before eating, drinking, smoking, or using the toilet. PERSONAL PROTECTIVE EQUIPMENT WORKPLACE CONTROLS ARE BETTER THAN PERSONAL PROTECTIVE EQUIPMENT. However, for some jobs (such as outside work, confined space entry, jobs done only once in a while, or jobs done while workplace controls are being installed), personal protective equipment may be appropriate. OSHA 1910.132 requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment. The following recommendations are only guidelines and may not apply to every situation. Clothing * Avoid skin contact with Isopropyl Acetate. Wear solventresistant gloves and clothing. Safety equipment suppliers/ manufacturers can provide recommendations on the most protective glove/clothing material for your operation. * All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work. Eye Protection * Wear indirect-vent, impact and splash resistant goggles when working with liquids. * Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances. * Contact lenses should not be worn when working with this substance. Respiratory Protection IMPROPER USE OF RESPIRATORS IS DANGEROUS. Such equipment should only be used if the employer has a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing and medical exams, as described in OSHA 1910.134. * Where the potential exists for exposure over 100 ppm, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positivepressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode. * Exposure to 1,800 ppm is immediately dangerous to life and health. If the possibility of exposure above 1,800 ppm exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressuredemand or other positive-pressure mode equipped with an emergency escape air cylinder. HANDLING AND STORAGE * Prior to working with Isopropyl Acetate you should be trained on its proper handling and storage. * Isopropyl Acetate is not compatible with OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE); STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); and COMBUSTIBLE MATERIALS. * Store in tightly closed containers in a cool, well-ventilated area away from MOISTURE and HEAT. * Sources of ignition, such as smoking and open flames, are prohibited where Isopropyl Acetate is used, handled, or stored. * Metal containers involving the transfer of Isopropyl Acetate should be grounded and bonded. * Use only non-sparking tools and equipment, especially when opening and closing containers of Isopropyl Acetate. Q: When are higher exposures more likely? A: Conditions which increase risk of exposure include physical and mechanical processes (heating, pouring, spraying, spills and evaporation from large surface areas such as open containers), and "confined space" exposures (working inside vats, reactors, boilers, small rooms, etc.). Q: Is the risk of getting sick higher for workers than for community residents? A: Yes. Exposures in the community, except possibly in cases of fires or spills, are usually much lower than those found in the workplace. However, people in the community may be exposed to Contaminated water as well as to chemicals in the air over long periods. This may be a problem for Industrial Hygiene Information Industrial hygienists are available to answer your questions regarding the control of chemical exposures using exhaust ventilation, special work practices, good housekeeping, good hygiene practices, and personal protective equipment including respirators. In addition, they can help to interpret the results of industrial hygiene survey data. Medical Evaluation If you think you are becoming sick because of exposure to chemicals at your workplace, you may call personnel at the Department of Health and Senior Services, Occupational Health Service, who can help you find the information you need. Public Presentations Presentations and educational programs on occupational health or the Right to Know Act can be organized for labor unions, trade associations and other groups. A carcinogen is a substance that causes cancer. The CAS number is assigned by the Chemical Abstracts Service to identify a specific chemical. CFR is the Code of Federal Regulations, which consists of the regulations of the United States government. A combustible substance is a solid, liquid or gas that will burn. A corrosive substance is a gas, liquid or solid that causes irreversible damage to human tissue or containers. A fetus is an unborn human or animal. A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly. The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air. IARC is the International Agency for Research on Cancer, a scientific group that classifies chemicals according to their cancer-causing potential. IRIS is the Integrated Risk Information System database of the federal EPA. A miscible substance is a liquid or gas that will evenly dissolve in another. It is a measure of concentration (weight/volume). A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer. NAERG is the North American Emergency Response Guidebook. It was jointly developed by Transport Canada, the United States Department of Transportation and the Secretariat of Communications and Transportation of Mexico. It is a guide for first responders to quickly identify the specific or generic hazards of material involved in a transportation incident, and to protect themselves and the general public during the initial response phase of the incident. NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard. NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA. NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer. OSHA is the Occupational Safety and Health Administration, which adopts and enforces health and safety standards. PEL is the Permissible Exposure Limit which is enforceable by the Occupational Safety and Health Administration. PIH is a DOT designation for chemicals which are Poison Inhalation Hazards. >>>>>>>>>>>>>>>>> E M E R G E N C Y I N F O R M A T I O N <<<<<<<<<<<<<<<<< Common Name: ISOPROPYL ACETATE DOT Number: UN 1220 FIRE HAZARDS * Isopropyl Acetate is a FLAMMABLE LIQUID. * Use dry chemical, CO2, alcohol or polymer foam extinguishers, as water may not be effective in fighting fires. * POISONOUS GASES ARE PRODUCED IN FIRE. * CONTAINERS MAY EXPLODE IN FIRE. * Use water spray to keep fire-exposed containers cool. * Vapors may travel to a source of ignition and flash back. * Vapor is heavier than air and may travel a distance to cause a fire or explosion far from the source. * If employees are expected to fight fires, they must be trained and equipped as stated in OSHA 1910.156. SPILLS AND EMERGENCIES If Isopropyl Acetate is spilled or leaked, take the following steps: * Evacuate persons not wearing protective equipment from area of spill or leak until clean-up is complete. * Remove all ignition sources. * Cover with an activated charcoal adsorbent and place in covered containers for disposal. * Ventilate and wash area after clean-up is complete. * Keep Isopropyl Acetate out of a confined space, such as a sewer, because of the possibility of an explosion, unless the sewer is designed to prevent the build-up of explosive concentrations. * It may be necessary to contain and dispose of Isopropyl Acetate as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations. * If employees are required to clean-up spills, they must be properly trained and equipped. OSHA 1910.120(q) may be applicable. FOR LARGE SPILLS AND FIRES immediately call your fire department. You can request emergency information from the following: FIRST AID For POISON INFORMATION Eye Contact * Immediately flush with large amounts of water for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. Skin Contact * Remove contaminated clothing. Wash contaminated skin with soap and water. Breathing * Remove the person from exposure. * Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped. * Transfer promptly to a medical facility. PHYSICAL DATA Vapor Pressure: 42 mm Hg at 68oF (20oC) Flash Point: 36oF (2oC) Water Solubility: Slightly soluble
ISOPROPYL ALCOHOL
Isopropyl Alcohol Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an organic compound, an isomer of n-propanol, aliased dimethylmethanol, 2-propanol. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a colorless, transparent liquid with a scent like a mixture of ethanol and acetone. Soluble in water, also soluble in most organic solvents such as alcohol, ether, benzene, chloroform, etc. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has a wide range of uses as an organic raw material and solvent. 1)As a chemical raw material, it can produce acetone, hydrogen peroxide, methyl isobutyl ketone, diisobutyl ketone, isopropylamine, diisopropyl ether, isopropyl chloride, and fatty acid isopropyl ester and chloro fatty acid isopropyl ester. 2)In the fine chemical industry, it can be used to produce isopropyl nitrate, isopropyl xanthate, triisopropyl phosphite, aluminum isopropoxide, pharmaceuticals and pesticides, etc. It can also be used to produce diisopropanone, isopropyl acetate and Thymol and gasoline additives. 3)Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Can be used to produce coatings, inks, extractants, aerosols, etc. 4) In the electronics industry, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be used as a cleaning and degreasing agent. 5) In the oil and fat industry, the extractant of cottonseed oil can also be used for degreasing of animal-derived tissue membranes. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (IUPAC name propan-2-ol; commonly called isopropanol or 2-propanol) is a colorless, flammable chemical compound (chemical formula CH3CHOHCH3) with a strong odor.[8] As an isopropyl group linked to a hydroxyl group, it is the simplest example of a secondary alcohol, where the alcohol carbon atom is attached to two other carbon atoms. It is a structural isomer of 1-propanol and ethyl methyl ether. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used in the manufacture of a wide variety of industrial and household chemicals and is a common ingredient in chemicals such as antiseptics, disinfectants, and detergents. Names of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is also known as 2-propanol, sec-propyl alcohol, IPA, or isopropanol. IUPAC considers isopropanol an incorrect name as the hydrocarbon isopropane does not exist. Properties of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is miscible in water, ethanol, ether, and chloroform. It dissolves ethyl cellulose, polyvinyl butyral, many oils, alkaloids, gums and natural resins.[9] Unlike ethanol or methanol, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not miscible with salt solutions and can be separated from aqueous solutions by adding a salt such as sodium chloride. The process is colloquially called salting out, and causes concentrated Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) to separate into a distinct layer. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) forms an azeotrope with water, which gives a boiling point of 80.37 °C (176.67 °F) and a composition of 87.7 wt% (91 vol%) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). Water–Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) mixtures have depressed melting points.[10] It has a slightly bitter taste, and is not safe to drink. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) becomes increasingly viscous with decreasing temperature and freezes at −89 °C (−128 °F). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has a maximal absorbance at 205 nm in an ultraviolet–visible spectrum. Reactions of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be oxidized to acetone, which is the corresponding ketone. This can be achieved using oxidizing agents such as chromic acid, or by dehydrogenation of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) over a heated copper catalyst: (CH3)2CHOH → (CH3)2CO + H2 Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often used as both solvent and hydride source in the Meerwein-Ponndorf-Verley reduction and other transfer hydrogenation reactions. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be converted to 2-bromopropane using phosphorus tribromide, or dehydrated to propene by heating with sulfuric acid. Like most alcohols, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) reacts with active metals such as potassium to form alkoxides that can be called isopropoxides. The reaction with aluminium (initiated by a trace of mercury) is used to prepare the catalyst aluminium isopropoxide.[14] History of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) In 1920, Standard Oil first produced Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) by hydrating propene. Its major use at the time was not rubbing alcohol but for oxidation to acetone, whose first major use was in World War I for the preparation of cordite, a smokeless, low explosive propellant. Production of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) In 1994, 1.5 million tonnes of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) were produced in the United States, Europe, and Japan.[16] It is primarily produced by combining water and propene in a hydration reaction or by hydrogenating acetone. There are two routes for the hydration process and both processes require that the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) be separated from water and other by-products by distillation. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and water form an azeotrope, and simple distillation gives a material that is 87.9% by weight Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 12.1% by weight water.[18] Pure (anhydrous) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is made by azeotropic distillation of the wet Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) using either diisopropyl ether or cyclohexane as azeotroping agents.[16] Biological of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Small amounts of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) are produced in the body in diabetic ketoacidosis.[19] Indirect hydration of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Indirect hydration reacts propene with sulfuric acid to form a mixture of sulfate esters. This process can use low-quality propene, and is predominant in the USA. These processes give primarily Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) rather than 1-propanol, because adding water or sulfuric acid to propene follows Markovnikov's rule. Subsequent hydrolysis of these esters by steam produces Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), by distillation. Diisopropyl ether is a significant by-product of this process; it is recycled back to the process and hydrolyzed to give the desired product. CH3CH=CH2 + H2O H2SO4⟶ (CH3)2CHOH Direct hydration of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) See also: Heteropoly acid Direct hydration reacts propene and water, either in gas or liquid phase, at high pressures in the presence of solid or supported acidic catalysts. This type of process usually requires higher-purity propylene (> 90%).[16] Direct hydration is more commonly used in Europe. Hydrogenation of acetone Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be prepared via the hydrogenation of acetone, however this approach involves an extra step compared to the above methods, as acetone is itself normally prepared from propene via the cumene process.[16] It may remain economical depending on the value of the products. A known issue is the formation of MIBK and other self-condensation products. Raney nickel was one of the original industrial catalysts, modern catalysts are often supported bimetallic materials. This is an efficient process and easy Uses of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) One of the small scale uses of isopropanol is in cloud chambers. Isopropanol has ideal physical and chemical properties to form a supersaturated layer of vapor which can be condensed by particles of radiation. In 1990, 45,000 metric tonnes of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) were used in the United States, mostly as a solvent for coatings or for industrial processes. In that year, 5400 metric tonnes were used for household purposes and in personal care products. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is popular in particular for pharmaceutical applications,[16] due to its low toxicity. Some Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used as a chemical intermediate. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be converted to acetone, but the cumene process is more significant. [16] Solvent of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) dissolves a wide range of non-polar compounds. It also evaporates quickly, leaves nearly zero oil traces, compared to ethanol, and is relatively non-toxic, compared to alternative solvents. Thus, it is used widely as a solvent and as a cleaning fluid, especially for dissolving oils. Together with ethanol, n-butanol, and methanol, it belongs to the group of alcohol solvents, about 6.4 million tonnes of which were used worldwide in 2011.[20] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is commonly used for cleaning eyeglasses, electrical contacts, audio or video tape heads, DVD and other optical disc lenses, removing thermal paste from heatsinks on CPUs and other IC packages, etc. Intermediate Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is esterified to give isopropyl acetate, another solvent. It reacts with carbon disulfide and sodium hydroxide to give sodium isopropylxanthate, a herbicide and an ore flotation reagent.[21] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) reacts with titanium tetrachloride and aluminium metal to give titanium and aluminium isopropoxides, respectively, the former a catalyst, and the latter a chemical reagent.[16] This compound may serve as a chemical reagent in itself, by acting as a dihydrogen donor in transfer hydrogenation. Medical of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Rubbing alcohol, hand sanitizer, and disinfecting pads typically contain a 60–70% solution of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or ethanol in water. Water is required to open up membrane pores of bacteria, which acts as a gateway for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). A 75% v/v solution in water may be used as a hand sanitizer.[22] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is used as a water-drying aid for the prevention of otitis externa, better known as swimmer's ear.[23] Early uses as an anesthetic Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can be used for anesthesia, its many negative attributes or drawbacks prohibit this use. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) can also be used similarly to ether as a solvent[24] or as an anesthetic by inhaling the fumes or orally. Early uses included using the solvent as general anesthetic for small mammals[25] and rodents by scientists and some veterinarians. However, it was soon discontinued, as many complications arose, including respiratory irritation, internal bleeding, and visual and hearing problems. In rare cases, respiratory failure leading to death in animals was observed. Automotive Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a major ingredient in "gas dryer" fuel additives. In significant quantities, water is a problem in fuel tanks, as it separates from gasoline and can freeze in the supply lines at low temperatures. Alcohol does not remove water from gasoline, but the alcohol solubilizes water in gasoline. Once soluble, water does not pose the same risk as insoluble water, as it no longer accumulates in the supply lines and freezes but is consumed with the fuel itself. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often sold in aerosol cans as a windshield or door lock deicer. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is also used to remove brake fluid traces from hydraulic braking systems, so that the brake fluid (usually DOT 3, DOT 4, or mineral oil) does not contaminate the brake pads and cause poor braking. Mixtures of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and water are also commonly used in homemade windshield washer fluid. Laboratory As a biological specimen preservative, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) provides a comparatively non-toxic alternative to formaldehyde and other synthetic preservatives. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) solutions of 70–99% are used to preserve specimens. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is often used in DNA extraction. A lab worker adds it to a DNA solution to precipitate the DNA, which then forms a pellet after centrifugation. This is possible because DNA is insoluble in Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). Safety of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) vapor is denser than air and is flammable, with a flammability range of between 2 and 12.7% in air. It should be kept away from heat and open flame.[26] Distillation of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) over magnesium has been reported to form peroxides, which may explode upon concentration. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a skin irritant. Wearing protective gloves is recommended. Toxicology of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and its metabolite, acetone, act as central nervous system (CNS) depressants.[31] Poisoning can occur from ingestion, inhalation, or skin absorption. Symptoms of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) poisoning include flushing, headache, dizziness, CNS depression, nausea, vomiting, anesthesia, hypothermia, low blood pressure, shock, respiratory depression, and coma.[31] Overdoses may cause a fruity odor on the breath as a result of its metabolism to acetone.[32] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) does not cause an anion gap acidosis but it produces an osmolal gap between the calculated and measured osmolalities of serum, as do the other alcohols.[31] Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is oxidized to form acetone by alcohol dehydrogenase in the liver,[31] and has a biological half-life in humans between 2.5 and 8.0 hours.[31] Unlike methanol or ethylene glycol poisoning, the metabolites of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) are considerably less toxic, and treatment is largely supportive. Furthermore, there is no indication for the use of fomepizole, an alcohol dehydrogenase inhibitor, unless co-ingestion with methanol or ethylene glycol is suspected. In forensic pathology, people who have died as a result of diabetic ketoacidosis usually have blood concentrations of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) of tens of mg/dL, while those by fatal Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) ingestion usually have blood concentrations of hundreds of mg/dL. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will attack some forms of plastics, rubber, and coatings. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an isomer of propyl alcohol with antibacterial properties. Although the exact mechanism of isopropanol's disinfecting action is not known, it might kill cells by denaturing cell proteins and DNA, interfering with cellular metabolism, and dissolving cell lipo-protein membranes. Isopropanol is used in soaps and lotions as an antiseptic. Any clothing which becomes wet with liquid Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) should be removed immediately and not reworn until the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is removed from the clothing. Clothing should then be placed in closed containers for storage until it can be discarded or until provision can be made for the removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), the person performing the operation should be informed of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s hazardous properties. When a stream of hydrogen entrained Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) vapors and palladium particles, the mixture caught fire on exposure to air. Solutions of 90% nitroform in 10% Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in polyethylene bottles exploded. The reaction between Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and phosgene forms isopropyl chloroformate and hydrogen chloride. In the presence of iron salts thermal decomposition can occur, which in some cases can become explosive. Mixing oleum and Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a closed container caused the temperature and pressure to increase. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (without residue) may be used in inks for marking food supplements in tablet form, gum, and confectionery. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may be present in the following foods under the conditions specified: (a) In spice oleoresins as a residue from the extraction of spice, at a level not to exceed 50 parts per million. (b) In lemon oil as a residue in production of the oil, at a level not to exceed 6 parts per million. (c) In hops extract as a residue from the extraction of hops at a level not to exceed 2.0 percent by weight: Provided, that, (1) The hops extract is added to the wort before or during cooking in the manufacture of beer. (2) The label of the hops extract specifies the presence of the Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and provides for the use of the hops extract only as prescribed by paragraph (c)(1) of this section. WORKERS IN AN Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) PACKAGING PLANT BECAME ILL AFTER ACCIDENTAL EXPOSURE TO CARBON TETRACHLORIDE. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) POTENTIATION OF CARBON TETRACHLORIDE TOXICITY HAS BEEN SHOWN PREVIOUSLY ONLY IN RATS. ACETONE, A PRODUCT OF Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) METABOLISM, IS A MAJOR POTENTIATOR OF CARBON TETRACHLORIDE TOXICITY. IDENTIFICATION: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is an aliphatic alcohol hydrocarbon. It is prepared from propylene, which is obtained in the cracking of petroleum or by the reduction of acetone. It is a colorless liquid which is soluble in water, alcohol, ether, acetone, benzene and chloroform. It is insoluble in salt solutions. It has a slight odor resembling a mixture of ethanol and acetone and has a slight bitter taste. It is used in antifreeze, industrial solvent, solvent for gums, shellac, essential oils, in quick drying oils, creosote and resins; extraction of alkaloids; in quick drying inks; in denaturing ethyl alcohol; in body rubs, hand lotions, after shave lotions, cosmetics and pharmaceuticals; in manufacture of acetone, glycerol, isopropyl acetate; antiseptic; rubefacient ; and pharmaceutical aid. HUMAN EXPOSURE: Toxic effects include central nervous depression, liver, kidney, cardiovascular depression and brain damage. It can cause drowsiness, ataxia, stupor, coma and respiratory depression, irritation of mucous membranes and eyes, gastritis, gastric hemorrhage, vomiting, pancreatitis, cold clammy skin, hypothermia, miosis, tachycardia, slow and noisy respiration. High risk of circumstances of poisoning: Accidental ingestion of rubbing alcohols/toiletries by children. There is a potential exposure from dermal and inhalation exposure in children during Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) sponging for control of fever. Intentional ingestion for alcoholic effect or in suicide attempts. Occupational or accidental exposure to liquid or its vapor in industrial applications. Individuals exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) include the following: workers in the pharmaceutical industry, cosmetic industry, chemical industry, petroleum workers, laboratory workers, printers, painters and carpenters and cabinet makers. There is little absorption through intact skin. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a potent eye and skin irritant. 80% of an oral dose is absorbed within 30 minutes. Absorption is complete within 2 hours although this may be delayed in a large overdose. Alveolar concentration is correlated to the environmental concentration at any given time. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is absorbed through intact skin on prolonged exposure. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) distributes in body water with an apparent volume of distribution of 0.6-0.7 L/kg. 20-50% of an absorbed dose is excreted unchanged. Most Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is oxidized in the liver by alcohol dehydrogenase to acetone, formate and finally carbon dioxide. Acetone is slowly eliminated by the lung (40%) or kidney. Clinically insignificant excretion occurs into the stomach and saliva. Related keto acids are not produced in sufficient quantities to cause a severe metabolic acidosis. Inebriation, peripheral vasodilation has occurred. In children, hypoglycemia is particularly severe when poisoning following fasting, exercise or chronic malnutrition Lactic acidosis may occur in patients with severe liver disease, pancreatitis or receiving biguanide therapy or as a result of the hypovolemia which frequently accompanies severe intoxication. ANIMAL STUDIES: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) most closely follows first order kinetics, with a half life of 2.5 to 3.2 hours. The elimination half life of the active metabolite acetone is significantly prolonged to about 5 hours in rats. In rat hepatocytes the following has been observed: marked depletion of glutathione, increased malondialdehyde production, decreased protein sulfhydryls content and leakage of lactic dehydrogenase with loss of membrane activity. A complete history and physical examination should be performed to detect pre existing conditions that might place the employee at increased risk, and to establish a baseline for future health monitoring. Examination of the skin, liver, kidneys, and respiratory system should be stressed. Skin disease: Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is a defatting agent and can cause dermatitis on prolonged exposure. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. Liver disease: Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not known as a liver toxin in humans, the importance of this organ in the biotransformation and detoxification of foreign substances should be considered before exposing persons with impaired liver function. Kidney disease: Although Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not known as a kidney toxin in humans, the importance of this organ in the elimination of toxic substances justifies special consideration in those with impaired renal function. Chronic respiratory disease: In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Periodic Medical Examination: The aforementioned medical examinations should be repeated on an annual basis. The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) measurement has not been found to be a good assessment of low level exposure, due to its low sensitivity. However, measurement of acetone has been found to be a good indicator of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure for exposures as low as 70 ppm, and has been found to correlate well with air concentrations. Whole Blood Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) level associated with serious toxic symptoms is 150 mg/l. Serum or Plasma Reference Ranges: Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - not established; and Toxic - not established. Urine Reference Ranges: The assessment of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) exposure can be accomplished through measurement of either Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) or acetone. However only acetone was found to be a useful test, due to its greater sensitivity and good correlation with air exposure levels. Normal - none detected (Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)); Exposed - BAT (sampling time is end of exposure or end of shift, measured as the metabolite, acetone), 50 mg/l; Toxic - Not established. Persons with pre existing skin disorders may be more susceptible to the effects of this agent. ... In persons with impaired pulmonary function, especially those with obstructive airway diseases, the breathing of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) might cause exacerbation of symptoms due to its irritant properties. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s production and use in the manufacture of acetone, glycerol, and isopropyl acetate and as a solvent for a variety of applications may result in its release to the environment through various waste streams. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s use in hydraulic fracturing fluids results in its direct release to the environment. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) has been identified as a metabolic product of aerobic microorganisms, anaerobic microorganisms, fungi, and yeast. If released to air, a vapor pressure of 45.4 mm Hg at 25 °C indicates Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will exist solely as a vapor in the ambient atmosphere. Vapor-phase Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3.2 days. If released to soil, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to have very high mobility based upon an estimated Koc of 1.5. Volatilization from moist soil surfaces is expected to be an important fate process based upon a Henry's Law constant of 8.10X10-6 atm-cu m/mole. Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from dry soil surfaces based upon its vapor pressure. If released into water, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is expected to be an important fate process based upon this compound's Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 86 hours and 29 days, respectively. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to occur due to the lack of hydrolyzable functional groups. Biodegradation is expected to be an important fate process based on the results of microbial screening tests. Occupational exposure to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) may occur through inhalation and dermal contact with this compound at workplaces where Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is produced or used. Monitoring data indicate that the general population may be exposed to Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) via inhalation of ambient air, ingestion of food and drinking water, and dermal contact with this compound directly and from consumer products containing Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA). ANAEROBIC: Typical Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) removal efficiencies for an anaerobic lagoon treatment facility, with a retention time of 15 days, were 50% after loading with dilute waste, and 69 and 74% after loading with concentrated wastes(1). In closed bottle studies, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was completely degraded anaerobically by an acetate-enriched culture, derived from a seed of domestic sludge(1). The culture started to use cross-fed Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA), after 4 days, at a rate of 200 mg/L/day(1). In a mixed reactor with a 20-day retention time, seeded by the same culture, 56% removal was achieved in the 20 days following 70 days of acclimation to a final concentration of 10,000 mg/L(1). The avg percent removal of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in semi-pilot scale anaerobic lagoons was 50% in 7.5-10 days for dilute wastes with 60 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) and 69-74% in 20-40 days for concentrated wastes with 175 ppm Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)(2). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was readily mineralized to methane and carbon dioxide under methanogenic conditions(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) under these conditions in fuel impacted river sediments and industrial/sewage impacted creek sediments was 2.4 ppm C/day (82% of expected methane recovery) and 3.0 ppm C/day (91% of expected methane recovery), respectively(3). The degradation rate of Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) in a sediment slurry from a shallow anoxic aquifer under methanogenic conditions was 7.6 ppm C/day (112% of theoretical methane recovery)(4). In anaerobic bioreactor studies using a granular sludge inocula, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) (at 125 ppm initial concentration) degraded with 115.5% of theoretical methane production over a 21-day incubation period(5); acetone was identified as a metabolite(5). In laboratory anaerobic sludge reactor tests using liquid hen manure as inoculum, Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) was degraded 100% in a 13-day incubation period with lag period(6). The Henry's Law constant for Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is 8.10X10-6 atm-cu m/mole at 25 °C(1). This Henry's Law constant indicates that Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA) is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 86 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 29 days(SRC). Isopropyl alcohol (izopropil alkol, isopropyl alcohol, IPA)'s Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Isopropyl alcohol (izopropil
ISOPROPYL MYRISTATE
Tetradecanoic acid 1-methylethyl ester; Estergel; Myristic Acid, Isopropyl Ester; Bisomel; Tegester; Tetradecanoic Acid, Isopropyl; cas no: 110-27-0
ISOPROPYL PALMITATE
IPP; Isopal; Hexadecanoic acid, 1-methylethyl ester; Palmitic acid, Isopropyl ester; Deltyl; Hexadecanoic acid, Isopropyl ester; Isopal; Isopropyl hexadecanoate; 1-methylethyl hexandecanoate; cas no: 142-91-6
ISOPROPYL STEARATE
propan-2-yl octadecanoate; ISOPROPYL STEARATE, N° CAS : 112-10-7, Nom INCI : ISOPROPYL STEARATE, Nom chimique : Isopropyl stearate, N° EINECS/ELINCS : 203-934-9. Ses fonctions (INCI): Agent fixant : Permet la cohésion de différents ingrédients cosmétiques. Emollient : Adoucit et assouplit la peau.Agent d'entretien de la peau : Maintient la peau en bon état. Noms français : ESTER ISOPROPYLIQUE DE L'ACIDE STEARIQUE; STEARATE D'ISOPROPYLE. Noms anglais : ISOPROPYL STEARATE; OCTADECANOIC ACID, 1-METHYLETHYL ESTER; OCTADECANOIC ACID, ISOPROPYL ESTER; STEARIC ACID, ISOPROPYL ESTER. Utilisation et sources d'émission: Produit organique. 112-10-7 [RN] 203-934-9 [EINECS] Isopropyl stearate [ACD/IUPAC Name] Isopropylstearat [German] [ACD/IUPAC Name] MFCD00026666 Octadecanoic acid, 1-methylethyl ester [ACD/Index Name] Stéarate d'isopropyle [French] [ACD/IUPAC Name] [112-10-7] 10/7/112 1-METHYLETHYL OCTADECANOATE 4-02-00-01219 [Beilstein] 4-02-00-01219 (Beilstein Handbook Reference) [Beilstein] 7/10/112 EINECS 203-934-9 https://mcule.com/MCULE-3731648811 isopropyl octadecanoate Octadecanoic acid 1-methylethyl ester octadecanoic acid isopropyl ester Octadecanoic acid, isopropyl ester Octadecanoic acid,1-methylethyl ester propan-2-yl octadecanoate Revenge Stearic acid isopropyl ester Stearic acid, isopropyl ester Tegosoft S Wickenol 127
Isostearic acid
isostearic acid; steraric acid; ,isooctadecanoic acid; 16-METHYLHEPTADECANOIC ACID CAS NO: 2724-58-5
ISOSTEARYL ISOSTEARATE
ISOSTEARYL ISOSTEARATE ISOSTEARYL ISOSTEARATE ISOSTEARYL ISOSTEARATE is classified as : Binding Emollient Skin conditioning CAS Number 41669-30-1 EINECS/ELINCS No: 255-485-3 COSING REF No: 34765 Chem/IUPAC Name: Isooctadecyl isooctadecanoate Isostearyl Isostearate Isostearyl Isostearate is a fluid emollient for oils. It provides a rich feel and improves spreading on the skin. It is appropriate for use in lipsticks and as a binding agent for make-up powders. This product does not modify pigment coloration, and provides superfatting properties to compensate for the drying effect of powders Details An emollient ester (oily liquid from Isostearyl Alcohol + Isostearic Acid) that gives excellent slip, lubricity and luxurious softness on skin. It's also popular in makeup products to disperse pigments nicely and evenly. Molecular Weight of Isostearyl Isostearate 537 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of Isostearyl Isostearate 16.8 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Isostearyl Isostearate 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Isostearyl Isostearate 2 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Isostearyl Isostearate 32 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Isostearyl Isostearate 536.553232 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Isostearyl Isostearate 536.553232 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Isostearyl Isostearate 26.3 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Isostearyl Isostearate 38 Computed by PubChem Formal Charge of Isostearyl Isostearate 0 Computed by PubChem Complexity of Isostearyl Isostearate 456 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Isostearyl Isostearate 0 Computed by PubChem Defined Atom Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Undefined Atom Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Defined Bond Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Undefined Bond Stereocenter Count of Isostearyl Isostearate 0 Computed by PubChem Covalently-Bonded Unit Count of Isostearyl Isostearate 1 Computed by PubChem Compound of Isostearyl Isostearate Is Canonicalized Yes The stearate esters (Butyl Stearate, Cetyl Stearate, Isocetyl Stearate, Isopropyl Stearate, Myristyl Stearate, Ethylhexyl Stearate, Isobutyl Stearate) are oily liquids or waxy solids. Ethylhexyl Stearate may also be called Octyl Stearate. In cosmetics and personal care products, stearate esters are used most frequently in the formulation of eye makeup, skin makeup, lipstick and skin care products. Stearate esters act primarily as lubricants on the skin's surface, which gives the skin a soft and smooth appearance. Butyl Stearate also decreases the thickness of lipsticks, thereby lessening the drag on lips, and imparts water repelling characteristics to nail polishes. Butyl Stearate and Isopropyl Stearate dry to form a thin coating on the skin. Isocetyl Stearate can also be used to dissolve other substances, usually liquids. Function(s) of Isopropyl Stearate: Binder; Skin-Conditioning Agent - Emollient; BINDING; SKIN CONDITIONING Use restrictions of Isopropyl Stearate: Determined safe for use in cosmetics, subject to concentration or use limitations - Safe for use in cosmetics with some qualifications Irritation (skin, eyes, or lungs): Human irritant - strong evidence (only for products for use around the eyes, on the skin, or may be aerosolized (airborne)) GHS Hazard Statements of Isopropyl Stearate: Aggregated GHS information from 2 notifications provided by 23 companies to the ECHA C&L Inventory. H413 (100%): May cause long lasting harmful effects to aquatic life Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from all companies. Only Hazard Codes with percentage values above 10% are shown. Molecular Formula: C21H42O2 Molecular Weight: 326.565 g/mol IUPAC Name: propan-2-yl octadecanoate CAS: 112-10-7 EC Number: 203-934-9 Isostearyl Isostearate is a fluid emollient for oils. It provides a rich feel and improves spreading on the skin. It is appropriate for use in lipsticks and as a binding agent for make-up powders. This product does not modify pigment coloration, and provides superfatting properties to compensate for the drying effect of powders. Skincare ingredients: Isostearyl Isostearate What is Isostearyl isostearate? Great for: Emollient like jojoba oil with a virtually non-existent after-feel How it works: It provides a rich but non-greasy skin feel and improves spreading on the skin. It is often used in lipsticks and to bind together make-up powders. Where does isostearyl isostearate come from? Isostearyl isostearate is the ester (the product of an alcohol and an acid) of isosteric alcohol and isostearic acid. Isostearic acid is an isomer of stearic acid, a naturally-occurring fatty acid found in cocoa and shea butter. Isostearic acid and stearic acid have the same chemical formula, but the arrangement of their atoms vary slightly which gives it very different physical properties. For example, stearic acid is solid at room temperature and isostearic acid is clear yellow liquid. Formulation tips Undiluted Isopropyl Isostearate was classified as a slight ocular irritant but otherwise is considered very safe.
ISOTRIDECYL STEARATE

Isotridecyl Stearate is a pharmaceutical-grade intermediate that is required during the organic synthesis procedure. Its molecular weight is 466.82 and its purity level is 99.0%. The boiling point of this chemical is 489.8 degrees C at 760 mm Hg. Its relative density is 0.857g/cm3. It is accessible in colourless or pale yellow transparent liquid form. Isotridecyl Stearate has 255.5 degrees C flashpoint. The Standard of this substance has been verified on the basis of its shelf life, composition, chemical attributes, possible toxin content and processing method. Importance is also given on checking its chemical stability when used under different temperature.


CAS NO : 31565-37-4
EC NO : 250-703-3
IUPAC NAMES: 
11-methyldodecyl octadecanoate


SYNONYMS
Isotridecyl stearate;Octadecanoic acid, isotridecyl ester;31565-37-4;11-methyldodecyl octadecanoate;UNII-J8793TKA30;J8793TKA30;Stearic acid, isotridecyl ester;EINECS 250-703-3;SCHEMBL2699239;Isotridecyl Stearate, veg. based; 11-methyldodecyl ester;ZINC95803367;W-110802;Q27281337;11-methyldodecyl octadecanoate
;11-methyldodecyl stearate;octadecanoic acid isotridecyl ester;octadecanoic acid, 11-methyldodecyl ester;octaearic acid;isotridecyl ester; isotridecyl ester;Isotridecylstearat;isotridecyl stearate;isotridecyl ester;Octadecanoic acid, isotridecyl ester;Isotridecylstearate; Octadecanoicacid,isotridecylester; Stearicacid,isotridecylester; 11-methyldodecylstearate; 11-methyldodecyloctadecanoate; 31565-37-4;11-methyldodecyl octadecanoate 31565-37-4 CTK4G7366 EINECS 250-703-3 Exceparl TD-S Isotridecyl stearate Isotridecyl Stearate; veg. based ISOTRIDECYL STEARATE;isotridecyl stearateIsotridecyl octadecanoate; J8793TKA30 LS-166598 NS00019608 Octadecanoic acid; isotridecyl ester Octadecanoic acid;isotridecyl ester Q27281337 SCHEMBL2699239;11-methyldodecyl ester;isotridecyl ester Stearicacid;isotridecyl ester (7CI,8CI) UNII-J8793TKA30 W-110802 ZINC95803367


Isotridecyl stearate is the raw material for spin finishes and oiling agent for textile, rubber processing agent, Plastic lubricant, Paint, Ink additive.
Isotridecyl stearate is a clear, colourless oily liquid that works as a medium feel emollient.
Isotridecyl stearate absorbs very quickly into the skin, leaves no shine and gives a nice, velvety after-feel.
Isotridecyl stearate is used in cosmetics as a thickening agent and emollient.
Isotridecyl stearate is a lubricity additive, provides a substantially lubricious film
Isotridecyl stearate has good metal adhesion properties
Isotridecyl stearate has good corrosion protection properties
* Characterised by a viscosity of 16C at 40 C
* Characterised by a pour point of 7 C


Isotridecyl stearate is used in Neat oils, Soluble oils, Semi-Synthetics, Vanishing oils
Isotridecyl stearate is used in cosmetics for skin conditioning/moisturizing.

Industry Uses
-Finishing agents
-Lubricants and lubricant additives
Consumer Uses
-Lubricants and greases
-Metal products not covered elsewhere


Industry Processing Sectors
-Fabricated metal product manufacturing
-Textiles, apparel, and leather manufacturing

The stearate esters (Butyl Stearate, Cetyl Stearate, Isocetyl Stearate, Isopropyl Stearate, Myristyl Stearate, Ethylhexyl Stearate, Isobutyl Stearate) are oily liquids or waxy solids.
Ethylhexyl Stearate may also be called Octyl Stearate. In cosmetics and personal care products, stearate esters are used most frequently in the formulation of eye makeup, skin makeup, lipstick and skin care products.
Why is it used in cosmetics and personal care products?
Stearate esters act primarily as lubricants on the skin's surface, which gives the skin a soft and smooth appearance.
Butyl Stearate also decreases the thickness of lipsticks, thereby lessening the drag on lips, and imparts water-repelling characteristics to nail polishes.
Butyl Stearate and Isopropyl Stearate dry to form a thin coating on the skin. Isocetyl Stearate can also be used to dissolve other substances, usually liquids.

Scientific Facts:
The stearate esters are prepared by reacting stearic acid with the appropriate alcohol (butyl, cetyl, isobutyl, isocetyl, isopropyl, myristyl or ethylhexyl alcohol).
Stearate esters have the unique properties of low viscosity and oily nature, which results in a nongreasy, hydrophobic film when applied to the skin or lips.
Stearic acid is found in animal and vegetable fats.

Function in the product
Affects the application properties of cosmetics - gives a good glide when spreading (e.g. lipsticks on the lips), reduces sticking and greasiness of the cosmetic. Stick plasticizer - gives the sticks elasticity, prevents them from crushing.

Cosmetic action
Used in skin and hair care preparations, it creates an occlusive layer on the surface, which prevents excessive evaporation of water from the surface (indirect moisturizing effect), thus conditioning, i.e. softening and smoothing the skin and hair.

ITACONIC ACID
Itaconic Acid Itaconic acid, or methylidenesuccinic acid, is an organic compound. This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Production Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). However, cells of macrophage lineage have to "pay the price" for making itaconate, and they lose the ability to perform mitochondrial substrate-level phosphorylation. Laboratory synthesis Dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid. Reactions Upon heating, itaconic anhydride isomerizes to citraconic acid anhydride, which can be hydrolyzed to citraconic acid (2-methylmaleic acid). Steps in conversion of citric acid to citraconic acid via itaconic and aconitic acids. Partial hydrogenation of itaconic acid over Raney nickel affords 2-methylsuccinic acid. Itaconic acid is primarily used as a co-monomer in the production of acrylonitrile butadiene styrene and acrylate latexes with applications in the paper and architectural coating industry. Properties and Application of Itaconic Acid Itaconic acid is a white crystalline powder having a hygroscopic property and a specific odor. Its melting point is 167–168 °C and the boiling point is 268 °C. Water solubility is 83.1 g l−1, and a solution (80 mg l−1) of itaconic acid in pure water has a pH of 2.0. The density of itaconic acid is 1.63 (20 °C). The pKa values of itaconic acid, its two dissociation steps, are 3.84 and 5.55 (25 °C). The equilibrium constants are K1 = 1.4 × 10−4 and K2 = 3.6 × 10−6 (25 °C). Itaconic acid is mainly used in the plastic and paint industry. It is an unsaturated dicarbonic acid, and can readily be incorporated into polymers and used at a concentration of 1–5% (w/w) as a comonomer in polymers. The polymerized methyl, ethyl, or vinyl esters of itaconic acid are used as plastics, adhesives elastomers, and coatings. Styrene butadiene copolymers containing itaconic acid yield rubber-like resins of excellent strength and flexibility and water-proofing coatings with good electrical insulation. Other fields for use are synthetic fibers, lattices, detergents, and cleaners. On the other hand, several mono- and diesters of partially substituted itaconic acid possess anti-inflammatory or analgesic activities, and a special new market has opened for the use of itaconic acid pharmaceutical fields. A small quantity of itaconic acid is used as acidulant. Itaconic acid (2-methylenesuccinic acid, 1-propene-2–3-dicarboxylic acid) is an unsaturated, weak dicarboxylic acid (pKa =3.83 and 5.41), discovered in 1837 as a thermal decomposition product of citric acid. The presence of the conjugated double bond of the methylene group allows polymerization both by addition and condensation. Esterification of the two carboxylic groups with different co-monomers is also possible (Kuenz et al., 2012). These diverse properties have led to a variety of applications in the pharmaceutical, architectural, paper, paint, and medical industries such as plastics, resins, paints, synthetic fibers, plasticizers, and detergents. Recently, itaconic acid applications have penetrated the dental, ophthalmic and drug delivery fields (Hajian and Yusoff, 2015). Itaconic acid polymers could even replace the petroleum-based polyacrylic acid, which has a multi-billion dollar market (Saha et al., 2019). Not surprisingly, the US Department of Energy assigned itaconic acid as one of the top 12 most promising building block chemicals for bio-based economy in 2004 (Werpy and Petersen, 2004). Little is known about the reasons why fungi produce itaconate. Like the other organic acids, as outlined above, also itaconic acid might serve as acidifier of the environment and thus provide selective advantage for the acid-tolerant A. terreus over other micro-organisms. However, itaconic acid also has clear inhibitory properties: in macrophages of mammals, bacterial infection prompts the induction of a gene encoding a cis-aconitate decarboxylase, resulting in itaconic acid formation that inhibits bacterial metabolism as part of the immune response. The effect has been attributed to the inhibition of succinate dehydrogenase and isocitrate lyase (McFadden et al., 1971), the latter being a key enzyme of the glyoxylate cycle, required for the survival of pathogens inside a host. In turn, a few strains of these bacteria have evolved to be capable of degrading itaconate (Sasikaran et al., 2014). Itaconic acid also induces a transcription factor which is essential for protection against oxidative and xenobiotic stresses, and to attenuate inflammation (Kobayashi et al., 2013; Bambouskova et al., 2018). Whether a similar function of itaconate exists in the fungi producing it has not yet been studied. The biosynthetic pathway of itaconic acid resembles that of citric acid, the latter acid being a direct precursor of the former. The only difference is that citric acid in A. terreus is further metabolized via cis-aconitate to itaconate by cis-aconitate decarboxylase (Bonnarme et al., 1995). To this end, cis-aconitate is transported out of the mitochondria by a specific antiporter in exchange for oxaloacetate (Li et al., 2011a,b). Itaconic acid – formed upon cis-aconitate decarboxylation – is finally secreted out of mycelia by a specific cell membrane transporter. Genes encoding these three enzymes, and a fourth one encoding a transcription factor, constitute the “itaconate gene cluster” in the A. terreus genome, while the cluster is notably absent in A. niger. Although several itaconate producers have been tested, the plant pathogenic Basidiomycete Ustilago maydis (the corn smut fungus) – and particularly its low pH-stable relative Ustilago cynodontis (Hosseinpour Tehrani et al., 2019b) – seems to be the only one with a reasonable chance to become another industrial platform organism (Hosseinpour Tehrani et al., 2019a). Ustilago has developed an alternative biochemical pathway to synthetize itaconate inasmuch as cis-aconitate is converted to the thermodynamically favored trans-aconitate by aconitate-delta-isomerase. Trans-aconitate is then decarboxylated to itaconate by trans-aconitate-decarboxylase. Production of Itaconic Acid by Fermentation Processes Itaconic acid is produced in batch fermentation in a process largely similar to that of citric acid. The carbon source should be in an easily metabolizable form (glucose syroup, molasses, and crude starch hydrolysates) and diluted to approximately 10% wt. Phosphate limitation is necessary for growth restriction. Some trace metals should also be in limited amounts and this is usually achieved by treating the media with hexacyanoferratl or addition of copper. The pH is kept between 2.8 and 3.2. Lower pH values favor the formation of byproducts. Yields of 50–60% of the theoretical yield are obtained in 8–10 days [5]. For many years, there seems to be almost no research interest for the production of itaconic acid and the process remained unchanged since its introduction. The situation is different today. Itaconic acid is listed by the US Department of Energy (DOE) as one of the 12 building blocks with the highest potential to be produced by industrial biotechnology [11]. Its current low production limits its uses. Metabolic engineering strategies, as an approach for yield improvement, have not yet been applied with A. terreus, as they were restricted by the poor knowledge of the genetics of itaconic acid biosynthesis. Recently, however, three genes – crucial in itaconic acid production by A. terreus – were identified by researchers in Toegepast Natuurwetenschappelijk Onderzoek (TNO), the Netherlands [15]. Apart from the new knowledge on the genetics of biosynthesis, the development of new fermentation technologies and more sophisticated bioprocess control has led to renewed interest in improving itaconic acid production. Novel fed-batch strategies and continuous processes using immobilized cultures are being developed and investigated. Itaconic acid is a dicarboxylic acid, which is used in industry as a precursor of polymers used in plastics, adhesives, and coatings. New uses of itaconic acid-derived polymers are under active investigation. The production of itaconic acid for 2001 was quoted as 15 000 tons. There is a renewed interest in this chemical as industry searches for substitutes of petroleum-derived chemicals. Virtually all itaconic acid produced is by fermentation by specific strains of A. terreus. Itaconic acid production is a further perversion of the Krebs cycle, citrate is converted as normally into cis-aconitate, which for reasons unknown is, in some organisms, decarboxylated into itaconitate, which has no known metabolic role in the cell. The fact that different strains of Aspergillus and more generally of fungi can divert metabolic pathways to the overproduction and secretion of useful chemicals, coupled with the fact that these organisms can grow on residues of processes such as sugar and ethanol production, open the possibility of engineering pathways to produce high value chemicals through ‘green’, low polluting, waste-eliminating procedures. Production Itaconic Acid Itaconic acid is an example of a di-carbonic unsaturated acid. These acids are used as building blocks for large numbers of compounds, such as resins, paints, plastics, and synthetic fibers (acrylic plastic, super absorbants, and antiscaling agents) [67]. The CAC intermediate cis-aconitate is enzymatically processed by cis-aconitate dehycarboxylase (CadA) to produce itaconic acid [68]. At the industrial scale the most explored organism for the fermentative production of itaconic acid is Aspergillus terrus. The biosynthetic pathway of itaconic acid is like citrate biosynthesis, where the flux of the CAC is used in the catalytic conversion of cis-aconitate into itaconic acid. Thus citrate is synthesized from oxaloacetate and acetyl CoA, while oxaloacetate is synthesized from pyruvate by anaplerosis, which starts from the pyruvate that is the end product of glycolysis (Fig. 13.17). Itaconic acid (methylenesuccinic acid, C5H6O4) (Figure 17) is a white colorless crystalline, hygroscopic powder soluble in water, ethanol, and acetone. It is an unsaturated diprotic acid, which derives its unique chemical properties from the conjugation of one of its two carboxylic acid groups with its methylene group. Itaconic acid was discovered by Baup in 1837 as a product of pyrolytic distillation of citric acid. The name itaconic was devised as an anagram of aconitic. Itaconic acid is formed in fermentation of some sugars. In 1929, Kinoshita first showed the acid to be a metabolic product of Aspergillus itaconicus. A derivative of itaconic acid (trans-phenylitaconic acid) was isolated from another natural source (Artemisia argyi). The biosynthetic pathway of itaconic acid from glucose is similar to that of citric acid, which occurs via the glycolytic pathway and anaplerotic formation of oxaloacetate by CO2 fixation and via the TCA cycle (Figure 2). Itaconic acid is formed by the cytosolic enzyme aconitate decarboxylase from cis-aconitic acid. Another biosynthetic pathway from pyruvate through citramalic acid, citraconic acid, and itartaric acid also results in itaconic acid (Figure 18). In contrast to several other organic acids (e.g., citric, isocitric, lactic, fumaric, and l-malic acid) itaconic acid is used exclusively in nonfood applications, especially in the polymer industry. Itaconic acid derivatives are used in medicine, cosmetics, lubricants, thickeners, and herbicides (e.g., substituted itaconic acid anilides). Itaconic acid is produced solely by batch submerged fungal fermentation. Aspergillus terreus has been used from the 1940s in the fermentation process, which is similar to that of citric acid (see ‘Citric acid’), that is, it requires an excess of readily metabolizable sugar (glucose syrup, crude starch hydrolysates, and decationized molasses – up to 200 g l−1 sugar), continuous aeration, a low initial pH (between 3 and 5), sufficient nitrogen, high magnesium sulfate concentration (0.5%), low phosphate to limit biomass production, and a limitation in metal ions (zinc, copper, and iron). However, there exists one significant difference in that the sensitivity of this fungus to the formed acid, in contrast to A. niger, necessitates maintaining of the pH at 2.8–3.1 throughout the fermentation, in order to obtain high amounts of the acid. At present, the published production yield of itaconic acid is about 85% of theoretical, accompanied by product concentrations of about 80 g l−1 during a cultivation at 39–42 °C for 8–10 days. Recovery of itaconic acid is accomplished by first separating the fungal biomass by filtration followed by evaporation, treatment with active carbon, and crystallization and recrystallization. Actual markets for itaconic acid are currently limited because the fungal fermentation is carried out at a relatively high cost. New biotechnological approaches, such as published immobilization techniques, screening programs for other producing organisms (such as yeast), and genetic engineering of A. terreus (the annotated genome sequence of A terreus strain NIH 2624 has been publicly released), or of A. niger, could lead to higher production of itaconic acid. Also, the use of alternative substrates may reduce costs and thus open the market for new and expanded applications of this acid. This valuable acid can be produced by several organisms, such as Candida sp., Pseudozyma antarctica, and several species of Aspergillus [49], but the two most common microorganisms used are Aspergillus terreus, used in industrial processes, and Ustilago maydis, which is currently being actively investigated as a possible industrial product. The acid is used commercially as a comonomer in some synthetic rubbers (styrene-butadiene and nitrilic) and as a plasticizer in the formulation of other polymers. Its production is traditionally done using sugars as raw materials, in a technology that was developed in the first half of the 20th century [50], but that was not developed due to the low competitivity of the acid with the petrochemical acrylic acid. With the development of integrated and sustainable processes, the interest in the bioproduction of itaconic acid is renewed. Itaconic acid, or methylidenesuccinic acid, is an organic compound. This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Production Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). However, cells of macrophage lineage have to "pay the price" for making itaconate, and they lose the ability to perform mitochondrial substrate-level phosphorylation. Dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid. Reactions Upon heating, itaconic anhydride isomerizes to citraconic acid anhydride, which can be hydrolyzed to citraconic acid (2-methylmaleic acid). Steps in conversion of citric acid to citraconic acid via itaconic and aconitic acids. Partial hydrogenation of itaconic acid over Raney nickel affords 2-methylsuccinic acid. Itaconic acid is primarily used as a co-monomer in the production of acrylonitrile butadiene styrene and acrylate latexes with applications in the paper and architectural coating industry. Itaconic acid is produced using A. terreus, from simple sugars. The production can be done using submerged solid fermentation, and the typical substrates are derived from sugar production, such as molasses. The accepted mechanism for itaconic acid production consists of the conversion of cis-aconitate to itaconate by an enzymatically catalyzed decarboxylation [53] (Fig. 18.6). Cis-aconitate is part of the Krebs cycle, so that the process is aerobic—actually extremely oxygen dependent, as determined by Gyamerah [54]. Calcium and zinc are important [55], as well as copper [56], and the maintenance of a low phosphate level is essential [53]. The ideal temperature is 40°C, and pH must be reduced to 2 to start the production. The process is extremely aerobic for the first 72 h of the process, with yields around 60%w/w (product/substrate) [55]. The final concentration ranges between 30 and 60 g/L depending on the substrate [56–58]. After fermentation, the broth is clarified and the free acid can be concentrated and crystallized, but if a base is used for partial neutralization during the process (which can increase the yield), it is necessary to remove the cations used in the crystallization. The production of itaconic acid in SSF is still elusive: reports describe productions on the order of 5–40 g/kg dry substrate [59]. Some of the reports that describe higher yields, around 60%, actually use a support soaked with a nutritive solution [60,61]. A comparison between synthetic liquid and solid media showed that the process in SSF has a lower conversion (16%–23%) than that of the submerged process (around 60%). There is no definite explanation for the lower production in solid-state yet, but there seems to be an excess of phosphate or the lack of essential nutrients in most solid substrates tested for itaconic acid reduction. First obtained from the distillation of citric acid, since 1960 itaconic acid has been produced by fermentation of carbohydrates by A. terreus (Mitsuyasu et al., 2009; Hajian and Yusoff, 2015). Itaconic acid has been applied in a numerous range of industries with the larger producers in the world being the USA, Japan, Russia, and China (Global Industry Analysts Inc., 2011). During the 1950s, itaconic acid was used in industrial adhesives. In that period, itaconic acid was used at an industrial scale and large amounts of it were required. It has been employed as a detergent and in shampoos, as well as in plastics, elastomers, fiberglass, and in the coating process of carpets and book covers (Mitsuyasu et al., 2009; Jin et al., 2010). Besides that itaconic acid may also be used as artificial gems and synthetic glasses (Kin et al., 1998). Lately, the applications of the compound have reached the biomedical fields, such as the ophthalmic, dental and drug delivery fields (Hajian and Yusoff, 2015). Several studies have focused on improving and optimizing the production of itaconic acid from A. terreus in recent years. The biotechnological aspects involved in the metabolic pathways of itaconic acid and the production process parameters have been reviewed by Klement and Büchs (2013). Regarding the production, Amina et al. (2013) obtained itaconic acid using oil byproduct jatropha curcas seed cake, while Li et al. (2011), Huang et al. (2014), and van der Straat et al. (2014) studied the itaconic acid production by using genetic engineering techniques. In this process the relevant pathways have been revealed and new microbial production platforms designed, contributing to an enhanced production of itaconic acid. Furthermore, the reduction of its production costs is an important aspect for itaconic acid producers, either by optimizing processes or by using cost-favorable raw materials. Itaconic acid or methylene succinic acid is a high-value platform chemical that finds application in polymer industry, wastewater treatment, and ion-exchange chromatography sector (Willke and Vorlop, 2001). It can be converted to 3-methyltetrahydrofuran that has superior emission and combustion properties when compared to gasoline. Industrial production of itaconic acid is carried out with A. terreus using glucose as the sole carbon source. Itaconic acid production by metabolically engineered Neurospora crassa using lignocellulosic biomass was evaluated by Zhao et al. (2018). Cis-aconitic acid decarboxylase gene was heterologously expressed in N. crassa to synthesize itaconic acid. The engineered strain was capable of producing itaconic acid (20.41 mg/L) directly from lignocellulosic biomass. Itaconic acid production from biomass hydrolyzate using Aspergillus strains was reported by Jiménez-Quero et al. (2016). Acid and enzymatic hydrolyzates were evaluated for the production of itaconic acid. Maximum itaconic acid production (0.14%) was observed when submerged fermentation was carried out with corncob hydrolyzate by A. oryzae. The study reveals the possibility of SSF of biomass for the production of itaconic acid. Klement et al. (2012) evaluated itaconic acid production by Ustilago maydis from hemicellulosic fraction of pretreated beech wood. One of the advantages of U. maydis is that the strain grows as yeast-like single cells, and it can survive under high osmotic stress. The study revealed that under mild pretreatment conditions, U. maydis would be a promising candidate for itaconic acid production. Fine tuning of pretreatment conditions should be carried out for the improved production of itaconic acid. Production Itaconic Acid Itaconic acid is an example of a di-carbonic unsaturated acid. These acids are used as building blocks for large numbers of compounds, such as resins, paints, plastics, and synthetic fibers (acrylic plastic, super absorbants, and antiscaling agents) [67]. The CAC intermediate cis-aconitate is enzymatically processed by cis-aconitate dehycarboxylase (CadA) to produce itaconic acid [68]. At the industrial scale the most explored organism for the fermentative production of itaconic acid is Aspergillus terrus. The biosynthetic pathway of itaconic acid is like citrate biosynthesis, where the flux of the CAC is used in the catalytic conversion of cis-aconitate into itaconic acid. Thus citrate is synthesized from oxaloacetate and acetyl CoA, while oxaloacetate is synthesized from pyruvate by anaplerosis, which starts from the pyruvate that is the end product of glycolysis (Fig. 13.17) [69]. Itaconic acid (IA) can be used: • As a comonomer in the polymerization of polyacrylonitrile (PAN) to promote the thermo-oxidative stabilization of polymer.[1] • In combination with acrylamide to form (poly[acrylamide-co-(itaconicacid)]) to synthesize biodegradable superabsorbent polymers.[2] • To synthesize biobased polyester composite in fabric industry. Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid. Itaconic acid (2-methylidenebutanedioic acid) is an unsaturated di-carbonic acid. It has a broad application spectrum in the industrial production of resins and is used as a building block for acrylic plastics, acrylate latexes, super-absorbents, and anti-scaling agents (Willke and Vorlop, 2001; Okabe et al., 2009). Since the 1960s the production of itaconic acid is achieved by the fermentation with Aspergillus terreus on sugar containing media (Willke and Vorlop, 2001). Although also other microorganisms like Ustilago zeae (Haskins et al., 1955), U. maydis, Candida sp. (Tabuchi et al., 1981), and Rhodotorula sp. (Kawamura et al., 1981) were found to produce itaconic acid, A. terreus is still the dominant production host, because so far only bred strains of this species can reach levels of up to 80–86 g/L (Okabe et al., 2009; Kuenz et al., 2012). Since the 1990s, itaconic acid as a renewable material is attracting a lot of interest. Currently, the worldwide production capacity of itaconic acid is expected to be about 50 kt per year, facing a demand of about 30 kt (Shaw, 2013, Itaconix Corporation, personal communication). Especially, for the production of polymers it is of interest, because in the future it can function as a substitute for acrylic and methacrylic acid used for the production of plastics (Okabe et al., 2009). However, these applications require an even lower price of the starting material. The current knowledge about the biotechnological production of itaconic acid was recently reviewed (Willke and Vorlop, 2001; Okabe et al., 2009). The latter review covers the industrial production of itaconic acid and the applications of this product. Therefore, we focus in this report on the recent advances with an emphasis on the biochemistry of the process and new genetic engineering targets. For rational strain improvement, it is essential to understand the underlying biological concepts and biochemical pathways leading to the production of this important organic acid in microorganisms. Biosynthesis Pathway Kinoshita (1932) recognized that a filamentous fungus was able to produce itaconic acid and consequently described this species as A. itaconicus. The biosynthesis of itaconic acid was for a long time hotly debated, because it was not clear whether itaconic acid arises from a pathway including parts of the tricarboxylic acid (TCA) cycle or an alternative pathway via citramalate or the condensation of acetyl-CoA. Bentley and Thiessen (1957a) proposed a pathway for the biosynthesis of itaconic acid, which is depicted in Figure 1. Starting from a sugar substrate like glucose the carbon molecules are processed via glycolysis to pyruvate. Then the pathway is split and part of the carbon is metabolized to Acetyl-CoA releasing a carbon dioxide molecule. The other part is converted to oxaloacetate so that the previously released carbon dioxide molecule is again incorporated. In the first steps of the citric acid cycle, citrate and cis-aconitate are formed. In the last step, the only itaconic acid pathway dedicated step, cis-aconitate decarboxylase (CadA) forms itaconic acid releasing carbon dioxide. This pathway was confirmed by tracer experiments with 14C and 13C labeled substrates (Bentley and Thiessen, 1957a; Winskill, 1983; Bonnarme et al., 1995) and also the necessary enzymatic activities have been all determined (Jaklitsch et al., 1991). The formation of carboxylic acids, like citric and itaconic acid, involves the shuttling of intermediate metabolites between different intracellular compartments and utilizes the different enzymatic capabilities of the respective compartment. In case of itaconic acid the compartmentalization of the pathway was analyzed by fractionized cell extracts distinguishing the enzymatic activity of a mitochondrial from a cytosolic enzyme. It was found that the key enzyme of the pathway, CadA, is not located in the mitochondria but in the cytosol (Jaklitsch et al., 1991), whereas the enzymes preceding in the pathway, namely citrate synthase and aconitase, are found in the mitochondria. However, a residual level of aconitase and citrate synthase activity is also found in the cytosolic fraction. The proposed mechanism is that cis-aconitate is transported via the malate–citrate antiporter into the cytosol (Jaklitsch et al., 1991). However, so far it was not shown whether cis-aconitate makes use of the mitochondrial malate–citrate antiporter or uses another mitochondrial carrier protein to be translocated to the cytosol. Besides A. terreus, itaconic acid is known to be produced also by other fungi like U. zeae (Haskins et al., 1955), U. maydis (Haskins et al., 1955; Klement et al., 2012), Candida sp. (Tabuchi et al., 1981), and Rhodotorula sp. (Kawamura et al., 1981). No further investigations exist about the underlying reaction principles leading to itaconic acid formation in those species. However, recent evidence (Strelko et al., 2011; Voll et al., 2012) points into the direction that CadA activity constitutes the general pathway toward the formation of itaconic acid in nature. Very recently, itaconic acid was detected in mammalian cells, where it was found in macrophage-derived cells (Strelko et al., 2011). Those cells also possess a CadA activity and have the ability to form itaconic acid de novo. But, up to now no specific gene encoding this enzymatic activity was identified in mammalian cells. However, the physiological role of itaconic acid in mammalian cells is still unknown. Strelko et al. (2011) speculate on the role of itaconic acid as an inhibitor of metabolic pathways, because it is described as an enzymatic inhibitor. On the one hand, itaconic acid is known to inhibit isocitrate lyase (Williams et al., 1971; McFadden and Purohit, 1977), which is the crucial part of the glyoxylate shunt, and thus can act as an antibacterial agent. On the other hand, itaconic acid can inhibit fructose-6-phosphate 2-kinase (Sakai et al., 2004) and thus have a direct influence on the central carbon metabolism. In rats it was shown that a itaconate diet leads to a reduced visceral fat accumulation, because of a suppressed glycolytic flux (Sakai et al., 2004). Itaconic Acid Pathway Specific Enzymes and Genes The reaction catalyzed by the cis-aconitic acid decarboxylase was already described in 1957 (Bentley and Thiessen, 1957a,b). Subsequently performed 13C and 14C labeling experiments (Winskill, 1983; Bonnarme et al., 1995) confirmed the reaction scheme depicted in Figure 2. Itaconic acid is formed by an allylic rearrangement and decarboxylation from cis-aconitic acid removing either carbon C1 or C5 from the starting citric acid molecule (because of the symmetry of the molecule). Catabolization of Itaconic Acid Much is known about the biosynthesis of itaconic acid and the underlying enzymatic mechanisms, but for a complete biochemical picture of a certain metabolite, also the knowledge about its degradation is necessary. Unfortunately, the information about the degradation pathway of itaconic acid is sc
İğde Ekstrakt
Elaeagnus glabra extract ;extract of the whole plant, elaeagnus glabra, elaeagnaceae; man hu tui zi extract cas no:N/A
İHTİYOL
ichthammol ;Ammonium Ichthosulfonate; Ammonium Sulfoichtolate; DSSO cas no:8029-68-3
İMIDAZOLINLER 
isopropyl myristate; Tetradecanoic acid 1-methylethyl ester; Estergel; Myristic Acid, Isopropyl Ester; Bisomel; Tegester; Tetradecanoic Acid, Isopropyl; cas no: 110-27-0; 1405-98-7
İncir Ekstrakt
Ficus Carica Extract; extract of the fruit and leaves of the fig, ficus carica l., moraceae; ficus kopetdagensis extract; fig extract (ficus carica) cas no:90028-74-3
İYOT
iodine; molecular iodine; diiodane; diiodine; eranol; molecular iodine; vistarin cas no:7553-56-2
İYOT (I)
iodine element; molecular iodine ; diiodine cas no:7553-56-2
İZOBUTANOL
Isopropyl Alcohol; Dimethylcarbinol; sec-Propyl alcohol; Rubbing alcohol; Petrohol; 1-Methylethanol; 1-Methylethyl alcohol; 2-Hydroxypropane; 2-Propyl alcohol; Isopropyl alcohol; Propan-2-ol; IPA; 2-Propanol; Alcool Isopropilico (Italian); Alcool Isopropylique (French); I-Propanol (German); I-Propylalkohol (German); Iso-Propylalkohol (German); cas no: 67-63-0
İZOPROPIL ALKOL
Nom INCI : JOJOBA ALCOHOL Classification : Alcool Ses fonctions (INCI) Emollient : Adoucit et assouplit la peau Agent d'entretien de la peau : Maintient la peau en bon état Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
JEFFAMINE D 2000
Jeffamine D 2000 Jeffamine D 2000 Amine is an extremely low vapor pressure difunctional primary amine. Used in epoxy adhesives. Rarely used alone, but rather in conjunction with other curing agents. Jeffamine D 2000 Amine enhances flexibility, toughness and high peel strength. Listed with TSCA, DSL, EINECS/ELINCS, AICS and ENCS. Product Type Crosslinking / Curing / Vulcanizing Agents > Amines /Amides Chemical Composition Polyoxypropylenediamine CAS Number 9046-10-0 JEFFAMINE D 2000 Technical Bulletin JEFFAMINE® D-2000 Polyetheramine JEFFAMINE D-2000 polyetheramine is characterized by repeating oxypropylene units in the backbone. As shown by the representative structure, JEFFAMINE D 2000 polyetheramine is a difunctional, primary amine with average molecular weight of about 2000. The primary amine groups are located on secondary carbon atoms at the end of the aliphatic polyether chains.(x) H2NONH2CH3 CH3x ≈ 33 APPLICATIONS • Key ingredient in the formulation of polyurea and RIM • Co-reactant in epoxy systems which require increased flexibility and toughness BENEFITS • Low viscosity, color and vapor pressure • Improved flexibility from high molecular weight polyether backbone • Increases peel strength SALES SPECIFICATIONS Property Specifications Test Method* Appearance Colorless to pale yellow liquid ST-30.1 with slight haze permitted Color, Pt-Co 25 max. ST-30.12 Primary amine, % of total amine 97 min. ST-5.34 Total acetylatables, meq/g 0.98 – 1.1 ST-31.39 Total amine, meq/g 0.98 – 1.05 ST-5.22 Water, wt% 0.25 max. ST-31.53, 6 Typical Physical Properties AHEW (amine hydrogen equivalent wt.), g/eq 514 Equivalent wt. with isocyanates, g/eq 1030 Viscosity, cSt, 25°C (77°F) 248 Density, g/ml (lb/gal), 25°C 0.991(8.26) Flash point, PMCC, °C (°F) 185 (365) pH, 5% aqueous solution 10.5 Refractive index, nD 20 1.4514 Vapor pressure, mm Hg/°C 0.93/235 4.95/254 At temperatures above 100°F (38oC) Tanks Stainless steel or aluminum Lines, Valves Stainless steel Pumps Stainless steel or Carpenter 20 equivalent Atmosphere Nitrogen JEFFAMINE D 2000 polyetheramine may be stored under air at ambient temperatures for extended periods. A nitrogen blanket is suggested for all storage, however, to reduce the effect of accidental exposure to high temperatures and to reduce the absorption of atmospheric moisture and carbon dioxide. It should be noted that pronounced discoloration is likely to occur at temperatures above 140°F (60oC), whatever the gaseous pad. Cleanout of lines and equipment containing JEFFAMİNE D 2000 polyetheramine can be accomplished using warm water and steam. In the event of spillage of this product, the area may be flushed with water. The proper method for disposal of waste material is by incineration with strict observance of all federal, state, and local regulations. Jeffamine D 2000 is a 2000 MW primary aliphatic polyether diamine based on polyoxypropylenediamine. Jeffamine D-2000 is suitable for use in polyurea coatings, adhesives, sealants and elastomer applications. 247 cps at 25C. Supplied as a light yellow liquid. AHEW: 515 Jeffamine D 2000 is an excellent product. However, it is Tri-iso's opinion that Endamine D 2000 represents a better value overall. Endamine D 2000 is a direct drop-in replacement for Jeffamine D 2000, and is also a 2000MW primary aliphatic diamine based on polyoxypropylenediamine. JEFFAMINE D2000 Polyoxypropylenediamine is an amine-terminated polyoxypropylene diol that has wide use in epoxy and polyurea systems. Jeffamine D 2000 Amine by Huntsman is an extremely low vapor pressure difunctional primary amine. Used in epoxy adhesives. Rarely used alone, but rather in conjunction with other curing agents. Jeffamine D 2000 Amine enhances flexibility, toughness and high peel strength. Listed with TSCA, DSL, EINECS/ELINCS, AICS and ENCS. DOCUMENTS JEFFAMINE® D-2000 Polyoxypropylenediamine Datasheet New Secondary Amine Chain Extenders for Aliphatic Polyurea Materials Physical Properties of Aromatic Polyurea Elastomer Coatings After Exposure to Extreme Conditions The Influence of Isomer Composition and Functionality on the Final Properties of Aromatic Polyurea Spray Coatings Tuning the Properties of Polyurea Elastomer Systems via Raw Material Selection and Processing Parameter Modulation Adhesion Properties of Epoxy Formulations Containing JEFFAMINE Polyetheramine Curing Agents Huntsman Performance Products makes their documentation available in the regions indicated below: JEFFAMINE D 2000 Polyoxypropylenediamine is an amine-terminated polyoxypropylene diol that has wide use in epoxy and polyurea systems. These include amines, such as ethyleneamines and polyetheramines, alkylene carbonates, and a broad spectrum of surfactants and surfactant intermediates. Product applications include dispersants for coatings, amine neutralizers for latex paints, wetting agents, and emulsifiers for polymer dispersion. 248Huntsman Jeffamine D-2000 Home / Chemicals / Jeffamine D-2000 | Quote Request | Polyether Amine Jeffamine D-2000 is a 2000 MW primary aliphatic polyether diamine based on polyoxypropylenediamine. Jeffamine D-2000 is suitable for use in polyurea coatings, adhesives, sealants and elastomer applications. 247 cps at 25C. Supplied as a light yellow liquid. AHEW: 515 Jeffamine D 2000 is an excellent product. However, it is Tri-iso's opinion that Endamine D2000 represents a better value overall. Endamine D2000 is a direct drop-in replacement for Jeffamine D-2000, and is also a 2000MW primary aliphatic diamine based on polyoxypropylenediamine. Jeffamine D-2000 Amine It is a kind of polyalkane epoxy compound terminated by primary Amine group or secondary Amine group, its molecular skeleton is polyether and its reactive group is Amine end group. Based on different molecular weights and different numbers of functional groups, there can be various kinds of grades ZD-1200, ZD-140, ZD-123, ZT-143 and ZT-1500. Amine-terminated polyether is the key raw material for spray polyurea elastomer,and it can be widely used to protect the materials such as waterproof and anticorrosion coatings of building concrete and steel structure; and moreover, it can be also used as anti-skid and hard-wearing lining for transportation vehicles, anticorrosive coating for cross-sea bridges, protective decoration for top grade floors at sterile plants and hospitals as well as the walls of high-grade swimming pools, internal and external protective coatings for land and benthal oil pipelines, wear-resistant coatings for decks and screw propellers of ships and boats, antiseptic and rust-proof lining for oil tanks, air tanks and water storage tanks, leakage-proof and antiseptic coatings for temporary parking aprons and activated sludge tanks, leakage-proof, anti-seepage and antiseptic materials for municipal refuse disposal areas, stadiums and runways. In addition of that, it is largely used for water-proof and protective coatings of high-speed railway bridges. Amine-terminated polyether is a kind of curing agent for epoxy resin. It can be used to pour large-scale epoxy resin components to make the cured resin crystal-clear. It can be also widely used in the fields of epoxy composite materials, epoxy coatings,epoxy electrophoretic coatings,binding agents, circuit boards, sealants, artworks, etc. Amine-terminated polyether is a kind of curing agent used on the combined blade materials for wind power generation. Amine-terminated polyether is an additive for gasoline, diesel and lubricating oil.And meanwhile, it is widely employed in the fields of surface active agents, water-soluble paints and so on. ZD-123 Amine-terminated polyether is a kind of polypropylene oxide compound mainly terminated by secondary Amine group. It structure is shown as follows: Molecular weight Wn About 230 Degree of functionality ~2 Total amine value MEQ/g 8.10-9.10 Rate of primary Amine group % ≥95 Color APHA ≤25 Moisture % ≤0.25 Applications: ●Curing agent for epoxy resin; curing agent for ornament glue (hard glue); curing agent for wind blade adhesive; ●hot-melt adhesive for polyamide; curing agent for electron end-sealing material; ●curing agent for electron potting compound; curing agent for electron encapsulating material ●fast curing RIM; curing agent for building structure adhesive; ●curing agent for modified polyether amine; ●curing agent for heavy anti-corrosion coatings; ●curing agent for composite materials of fishing rods, golf clubs and tennis rackets. Properties: ● low viscosity, low chromaticity and low vapor pressure.
JEFFAMINE T-5000
Jeffamine T-5000 представляет собой трехфункциональный первичный амин.
Джеффамин Т-5000 представляет собой бесцветную или светло-желтую жидкость при комнатной температуре с молекулярной массой около 5000.


Номер CAS: 64852-22-8
Номер лея : MFCD00804529
INCI/Химическое название: Глицерил поли( оксипропилен) триамин
Тип продукта: Усилители адгезии > Полиэтиленимины
Химический состав: Полиэфирамин
Химическое название: Полиэфирамин
Молекулярная формула: (C3H6O ) мульт (C3H6O) мульт (C3H6O) мультC



альфа,альфа',альфа''-1,2,3-пропантриилтрис(омега-(2-аминометилэтокси)-поли(окси(метил-1,2-этандиил)), JEFFAMINE T5000, эквивалент полиэфирамина T-5000 , полипропиленгликоль бис (2-аминопропиловый эфир), полиэфирамин , полиэфирамины , 2-( аминоокси )пропан-1-амин, ПОЛИЭТЕРАМИН Т 5000, [омега-(2-аминометилэтокси)-, полиэфирамин Т5000 ( Baxxodur ), глицеролтрис (поли( пропиленгликоль ), ZT -1500 Полиэфир с аминоконцевыми группами, глицерилполи ( оксипропилен ) триамин , ПОЛИ(ПРОПИЛЕНОКСИД), ТРИАМИНОВЫЙ ТЕРМИТ, ПОЛИ(ПРОПИЛЕНОКСИД), ТРИАМИНОВЫЙ ТЕРМИНОВЫЙ, глицерин трис (поли(пропиленгликоль)аминовый концевой), 2-аминопропан-1- ол,пропан-1,2-диол,пропан-1,2,3-триол, ПОЛИЭТЕРАМИН Т 5000, ПОЛИ(ПРОПИЛЕНОКСИД), ТРИАМИНОВЫЙ КОНЦЕВЫЙ, [омега-(2-аминометилэтокси)-, 2-этандиил)]. альфа.,.альфа.',.альфа.''-1,2,3-пропантриилтрис[.омега.-(2-аминометилэтокси)-поли[окси(метил-1, глицеролтрис (поли( пропиленгликоль ), GLYCEROL TR, JeffamineT 3000, Jeffamine T 5000, T 5000, XTJ 509, lyceroltris (поли ( пропиленгликоль ), GLYCEROL TRIS [ПОЛИ (ПРОПИЛЕНГЛИКОЛЬ), АМИННЫЙ ЭФИР), полиокси (метил-1,2-этандиил), а.,.альфа .,.альфа-1,2,3-пропантриилтрис .omega .-(2-аминометилэтокси)-, глицерилполи ( оксипропилен ) триамин , поли[окси(метил-1,2-этандиил)],α,α,', α”-1,2,3-пропантриилтрис[ω-(2-аминометил-этокси)-, Полиэфирамин T5000 ( Baxxodur , ПОЛИ (ОКСИД ПРОПИЛЕНА), ТРИАМИН-ТЕРМИТИРОВАННЫЙ, ПОЛИЭТЕРАМИН T 5000,



Jeffamine T-5000 обеспечивает гибкость и способствует адгезии в качестве сореагента в эпоксидных системах.
Преимущества Jeffamine T-5000 включают повышенную прочность на отслаивание, прочность и тусклость цвета .
Jeffamine T-5000 представляет собой трехфункциональный первичный амин.


Джеффамин Т-5000 представляет собой бесцветную или светло-желтую жидкость при комнатной температуре с молекулярной массой около 5000.
Jeffamine T-5000 совместим с различными органическими растворителями.
Jeffamine T-5000 обладает устойчивостью к поверхностной коррозии в эпоксидно-полиуретановых системах.


Jeffamine T-5000 эквивалентен.
Jeffamine T-5000 представляет собой трехфункциональный первичный амин с молекулярной массой около 5000.
Jeffamine T-5000 представляет собой прозрачный, почти бесцветный, вязкий, жидкий продукт.


Джеффамин Т-5000 представляет собой бесцветную или желтоватую жидкость.
Jeffamine T-5000 представляет собой разновидность полипропиленоксида, в основном оканчивающегося первичной аминогруппой.
Jeffamine T-5000 представляет собой первичный полиэфирамин с трифункциональностью . Молекулярная масса Джеффамина Т-5000 составляет около 5000.


Jeffamine T-5000 представляет собой прозрачный, почти бесцветный, вязкий, жидкий продукт.
Jeffamine T-5000 представляет собой первичный трехфункциональный алифатический полиэфирамин с молекулярной массой 5000 МВт.
Jeffamine T-5000 подходит для использования в покрытиях из полимочевины , клеях, герметиках и эластомерах, а также в эпоксидных системах. 819 гц при 25°С.


Jeffamine T-5000 поставляется в виде прозрачной, почти бесцветной вязкой жидкости. AHEW: 952, Эквивалентный вес с изоцианатами : 1904.
Jeffamine T-5000 – отличный продукт.
Тем не менее, по мнению Triiso , Jeffamine T-5000 представляет собой более выгодную цену Endamine T5000 в целом.


Endamine T5000 является прямой заменой Jeffamine T5000, а также представляет собой первичный трифункциональный алифатический амин мощностью 5000 МВт.
Jeffamine T-5000 представляет собой полиоксипропилен с молекулярной массой 5000. триамин , который можно добавлять к различным отвердителям для придания гибкости и улучшения прочности на отслаивание адгезивных систем с небольшим ухудшением других свойств.


Jeffamine T-5000 представляет собой трехфункциональный первичный амин с молекулярной массой около 5000.
Jeffamine T-5000 представляет собой прозрачный, почти бесцветный, вязкий, жидкий продукт.
Jeffamine T-5000 — это полиэфирамин от Huntsman.


Jeffamine T-5000 — сшивающий агент для полимочевины и сореагент в эпоксидных системах.
Jeffamine T-5000 обладает такими преимуществами, как повышенная прочность на отслаивание, слабый цвет и повышенная прочность.
Jeffamine T-5000 представляет собой трехфункциональный первичный амин с молекулярной массой около 5000.


Jeffamine T-5000 представляет собой прозрачный, почти бесцветный, вязкий, жидкий продукт.
Jeffamine T-5000 представляет собой первичный трехфункциональный алифатический полиэфирамин с молекулярной массой 5000 МВт.
Jeffamine T-5000 поставляется в виде прозрачной, почти бесцветной вязкой жидкости. AHEW: 952, Эквивалентный вес с изоцианатами : 1904.


Jeffamine T-5000 – отличный продукт.
Тем не менее, Джеффамин Т-5000 – это мнение Триизо , что Эндамин
T5000 в целом представляет собой более выгодную цену.


Это прямая замена Jeffamine T-5000, а также первичный трифункциональный алифатический амин мощностью 5000 МВт.
Jeffamine T-5000 представляет собой трехфункциональный первичный полиэфирамин с молекулярной массой около 5000, используемый в качестве сшивающего агента для полимочевины , со-реагента в эпоксидных системах, где важны усиление адгезии и гибкость.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ JEFFAMINE T-5000:
Jeffamine T-5000 – используемый отвердитель для эпоксидных смол.
Jeffamine T-5000 используется в качестве со-реагента в эпоксидных системах, где важны усиление адгезии и гибкость.
Jeffamine T-5000 используется в качестве сшивающего агента для полимочевины .


В качестве поверхностно-активного вещества используется Jeffamine T-5000.
Jeffamine T-5000 используется в качестве ингибитора коррозии.
Jeffamine T-5000 используется в качестве сореагента в системах эпоксидных смол, где важно повысить адгезию и гибкость.


Jeffamine T-5000 — сшивающий агент для полимочевины и сореагентов в эпоксидных системах.
Jeffamine T-5000 обладает такими преимуществами, как повышенная прочность на отслаивание, слабый цвет и повышенная прочность.
Jeffamine T-5000 — удлинитель реакционной цепи для полиуретана с типичными свойствами реакции первичного амина.


Jeffamine T-5000 широко используется в производстве полиуретановых RIM и является основным сырьем для распыляемого эластомера на о��нове полимочевины .
Благодаря своей уникальной химической структуре Jeffamine T-5000 играет важную роль в эпоксидной промышленности.
Вместе с полиамидом Джеффамин Т-5000 используется в эпоксидных клеях, отличающихся высокой прочностью.


Jeffamine T-5000 оказывает поверхностное антикоррозионное действие в эпоксидно-полиуретановой системе.
Jeffamine T-5000 используется для распыления сшивающего агента на основе полимочевины , модифицированного полиэфираминного отверждающего агента; Отвердитель для стеклопластиковых труб высокого давления (аминная труба); Отвердитель эпоксидной смолы для композитных материалов удочек, клюшек для гольфа и теннисных ракеток; ПАВ, ингибиторы коррозии и т.д.


Jeffamine T-5000 — активный удлинитель цепи полиуретана с типичными реакционными свойствами первичного амина.
Jeffamine T-5000 широко используется в производстве полиуретановых RIM в качестве основного сырья для спрей- эластомера на основе полимочевины .
Благодаря своей характерной структуре Jeffamine T-5000 обладает хорошим эффектом упрочнения при производстве эпоксидных смол.


Вместе с полиамидами Jeffamine T-5000 также можно использовать в высокоинтенсивных эпоксидных клеях.
Jeffamine T-5000 подвергается типичным аминным реакциям, которые часто приводят к повышению гибкости, прочности, низкой вязкости и бесцветности.
Jeffamine T-5000 имеет широкий диапазон молекулярной массы, аминной функциональности, типа и распределения повторяющихся звеньев, что может обеспечить гибкость при разработке новых соединений или смесей.


Jeffamine T-5000 используется в качестве вспомогательного реагента в эпоксидных системах, где важны усиление адгезии и гибкость.
Jeffamine T-5000 — сшивающий агент для полимочевины и сореагент в эпоксидных системах.
Jeffamine T-5000 обладает такими преимуществами, как повышенная прочность на отслаивание, уменьшение цвета и повышенная прочность.


Jeffamine T-5000 подходит для использования в покрытиях из полимочевины , клеях, герметиках и эластомерах, а также в эпоксидных системах.
Jeffamine T-5000 используется Сшивающий агент для полимочевины.
Jeffamine T-5000 используется в качестве со-реагента в эпоксидных системах , где важны улучшение адгезии и гибкость.


Jeffamine T-5000 используется в качестве поверхностно-активных веществ и ингибиторов коррозии.
Jeffamine T-5000 используется в качестве со-реагента в эпоксидных системах, где важны усиление адгезии и гибкость.
Jeffamine T-5000 используется в качестве сшивателя для полимочевины , сореагента в эпоксидных системах, где важны усиление адгезии и гибкость.



ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ JEFFAMINE T-5000:
*Исходная низкая вязкость композиций.
* Jeffamine T-5000 обеспечивает смачивание различных поверхностей, заполнение труднодоступных участков и самовыравнивание.
*Высокие физико-механические свойства полимера.
* Покрытия на основе Джеффамина устойчивы к отслаиванию и выдерживают большие нагрузки.
*Умеренная реакционная способность позволяет разливать большие объемы.
* Jeffamine T-5000 позволяет получить оптически прозрачный полимер.



ХАРАКТЕРИСТИКИ JEFFAMINE Т-5000:
*Низкий цвет и давление пара
*Увеличение прочности на отслаивание эпоксидных клеев.
*Укрепление силы сцепления эпоксидной смолы.
*Увеличение прочности
*Улучшает гибкость и силу



ОСОБЕННОСТИ JEFFAMINE T-5000:
*Низкая вязкость и давление пара.



ПРЕИМУЩЕСТВА JEFFAMINE T-5000:
• Низкий цвет
• Повышенная прочность на отслаивание эпоксидных клеев.
• Повышенная прочность
• Jeffamine T-5000 – один из основных материалов, используемых в синтезе полимочевины и RIM (метод реакционного литья под давлением).
• Jeffamine T-5000 используется в качестве вспомогательного реагента в эпоксидных системах.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА JEFFAMINE Т-5000:
Внешний вид: Бесцветная или бледно-желтая жидкость.
Цвет, Pt -Co: 50 Макс.
Первичный амин от общего количества аминов: 97% Мин.
Всего ацетилируемых веществ : 0,56-0,63 ммоль/г.
Общий амин: 0,50-0,54 ммоль/г.
Вода: 0,25% Макс.
Номер цвета Pt -Co: ≤50
Содержание первичного амина%: ≥97
Ацетильное число ммоль /г: 0,58-0,63.
Аминное число ммоль /г: 0,50-0,54.
Влажность%: ≤0,10
Номер CB : CB1197426
Молекулярная формула : C9H25NO6
Молекулярный вес : 243,2979
Номер лея : MFCD00804529
Файл MOL:64852-22-8.mol

Плотность: 1 г/мл при 25° С ( лит.)
преломления : n20/D 1,453
Температура вспышки: >230 °F
Система регистрации веществ Агентства по охране окружающей среды: Поли[ окси(метил-1,2-этандиил)]. альфа.,.альфа.',.альфа .'
' -1,2,3 -пропантриилтрис[.омега.-(2-аминометилэтокси)- (64852-22-8)
Молекулярный вес: около 5000
Внешний вид: Бесцветная или бледно-желтая жидкость.
Степень функциональности: ~ 3
Общий мэкв амина /г: 0,50-0,57.
Первичный амин %: ≥97
Цвет, Pt - Co( APAH): ≤50
Вода, мас. %: ≤0,25
Вязкость сСт , 25 ℃ : 819
Плотность г/мл ( фунт /галлон) , 25 ℃ : 0,997 (8,31)
Содержание сухих веществ по массе, %: 18-21.
Температура вспышки PMCC , ℃ ( ℉ ): 213(415,4)
РН: 11,2
КАС: 64852-22-8



МЕРЫ ПЕРВОЙ ПОМОЩИ JEFFAMINE T-5000:
-Описание мер первой помощи:
*При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
*В случае зрительного контакта:
В качестве меры предосторожности промойте глаза водой.
*При проглатывании:
Никогда не давайте ничего перорально человеку, находящемуся без сознания. Прополоскать рот водой.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ JEFFAMINE T-5000:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Хранить в подходящих закрытых контейнерах для утилизации.



МЕРЫ ПОЖАРОТУШЕНИЯ JEFFAMINE T-5000:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
-Дальнейшая информация:
Данные недоступны



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА JEFFAMINE T-5000:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
*Защита кожи:
Работайте в перчатках.
Вымойте и высушите руки.
*Защита тела:
Непроницаемая одежда
*Защита органов дыхания:
Защита органов дыхания не требуется.
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ JEFFAMINE T-5000:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Хранить в прохладном месте.
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Открытые контейнеры необходимо тщательно закрыть и хранить в вертикальном положении во избежание утечки.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ JEFFAMINE T-5000:
-Реактивность:
Данные недоступны
-Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Данные недоступны



JELATİN
edible gelatin; spongiofort ; collagens, gelatins; edible gelatin; gelatin foam; gelatine cas no:9000-70-8
Jojoba Ekstraktı
Simmondsia Chinensis Seed Extract; extract of the seeds of the jojoba, simmondsia chinensis, buxaceae; jojoba extract; actiphyte of jojoba meal extract; simmondsia californica seed extract cas no:90045-98-0