Химикаты для детергента,косметики, дезинфекции ,фармацевтики

Alginate de propane-1,2-diol
Alkane Sulfonate 60%; Hostapur SAS 60 ; Secondary alkane sulphonate, sodium salt ; Sulfonates , C13-17-sec-alkanesulfonates , sodium salts ; Sulfonic acids , cas no: 68037-49-0
ALKANE SULFONATE
Alkane Sulfonate Alkane sulfonates are esters of alkane sulfonic acids with the general formula R-SO2-O-R'. They act as alkylating agents, some of them are used as alkylating antineoplastic agents in the treatment of cancer, e.g. Busulfan. Secondary Alkane Sulfonate (SAS) is an anionic surfactant, also called paraffine sulfonate. It was synthesized for the first time in 1940 and has been used as surfactant since the 1960ies. Alkane sulfonate is one of the major anionic surfactants used in the market of dishwashing, laundry and cleaning products. The European consumption of Alkane sulfonate in detergent application covered by HERA was about 66.000 tons/year in 2001. Human Health The presence of Alkane sulfonate in many commonly used household detergents gives rise to a variety of possible consumer contact scenarios including direct and indirect skin contact, inhalation, and oral ingestion derived either from residues deposited on dishes, from accidental product ingestion, or indirectly from drinking water. The consumer aggregate exposure from direct and indirect skin contact as well as from inhalation and from oral route in drinking water and dishware results in an estimated total body burden of 3.87 µg/kg bw/day. The toxicological data show that Alkane sulfonate was not genotoxic in vitro or in vivo, did not induce tumors in rodents after two years daily dosing using both, the oral and dermal route of exposure, and failed to induce either reproductive toxicity or developmental or teratogenic effects. The critical adverse effects identified are of local nature mainly due to the irritating properties of high concentrated Alkane sulfonate. Comparison of the aggregate consumer exposure to Alkane sulfonate with a systemic NOEL of 180 mg/kg body weigh per day (assuming 90% absorption; adapted from Michael, 1968) which is based on a chronic feeding study, results in an estimated Margin of Exposure (MOE) of 46500. This is a very large Margin of Exposure, large enough to account for the inherent uncertainty and variability of the hazard database and inter species and intra species extrapolations (which are usually conventionally estimated at a factor of 100). Neat Alkane sulfonate is an irritant to skin and eyes in rabbits. The irritation potential of aqueous solutions of Alkane sulfonate depends on concentration. However, well documented human volunteer studies indicate that Alkane sulfonate up to concentrations of 60% active matter is not a significant skin irritant in humans. Local effects of hand wash solutions containing Alkane sulfonate do not cause concern given that Alkane sulfonate is not a contact sensitizer and that the concentrations of Alkane sulfonate in such solutions are well below 1% and therefore not expected to be irritating to eye or skin. Laundry pre-treatment tasks, which may translate into brief hand skin contact with higher concentrations of Alkane sulfonate, may occasionally result in mild irritation easily neutralized by prompt rinsing of the hands in water. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne Alkane sulfonate generated as a consequence of cleaning spray aerosols or laundry powder detergent dust. In view of the extensive database on toxic effects, the low exposure values calculated and the resulting large Margin of Exposure described above, it can be concluded that use of Alkane sulfonate in household laundry and cleaning products raises no safety concerns for the consumers. Use applications summary Most of the European consumption of Alkane sulfonate is in household cleaning. The far most important use is in dishwashing liquids, other minor applications are laundry detergents, household cleaners, cosmetics hair and body care products, industrial cleaners and special technical sectors (see 5.1.1). Claims 1. Alkane sulfonic acid or alkane sulfonate composition, which composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and optionally a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, wherein if the composition comprises said disubstituted alkane the molar ratio of the monosubstituted alkane to the disubstituted alkane is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1. 2. Alkane sulfonic acid or alkane sulfonate composition according to claim 1, wherein the molar ratio of the monosubstituted alkane to the disubstituted alkane is in the range of from 12:1 to 5,000:1, preferably 15:1 to 1,000:1, more preferably 20:1 to 500:1. 3. Alkane sulfonic acid or alkane sulfonate composition according to claim 1 or 2, wherein the alkanes have an average carbon number in the range of from 5 to 30, preferably 12 to 26, more preferably 14 to 24, more preferably 16 to 24, most preferably 18 to 22. 4. Alkane sulfonic acid or alkane sulfonate composition according to any one of the preceding claims, wherein one or more alkane sulfonic acids or alkane sulfonates are selected from the group consisting of C14-17 AS, C18-20 AS, C18-23 AS and C19-24 AS, preferably from the group consisting of C14-17 AS, C18-20 AS and C18-23 AS, wherein "AS" stands for "alkane sulfonic acid" or "alkane sulfonate". 5. Alkane sulfonic acid or alkane sulfonate composition according to claim 4, wherein one or more alkane sulfonic acids or alkane sulfonates are selected from the group consisting of C18-20 AS and C18-23 AS, preferably C18-23 AS. 6. Alkane sulfonic acid or alkane sulfonate composition according to any one of the preceding claims, which composition further comprises one or more surfactants selected from the group consisting of internal olefin sulfonates (IOS), alkoxylated alcohol sulfates, carboxylates and glycerol sulfonates, linear alkyl benzene sulfonates (LABS), and heavy alkyl benzene sulfonates (HABS). 7. Process for treatment of an alkane sulfonic acid or alkane sulfonate composition, which composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, in which process substantially all of the disubstituted alkane is removed or the disubstituted alkane is removed to such extent that the molar ratio of the monosubstituted alkane to the disubstituted alkane is increased to a value which is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1. 8. A method of treating a hydrocarbon containing formation, comprising the following steps: a) providing an alkane sulfonic acid or alkane sulfonate composition, which composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and optionally a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, wherein if the composition comprises said disubstituted alkane the molar ratio of the monosubstituted alkane to the disubstituted alkane is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1, or the composition as obtained by the process of claim 7, to at least a portion of the hydrocarbon containing formation; and b) allowing the alkane sulfonic acid or alkane sulfonate from the composition to interact with the hydrocarbons in the hydrocarbon containing formation. 9. Method according to claim 8, wherein the molar ratio of the monosubstituted alkane to the disubstituted alkane is in the range of from 12:1 to 5,000:1, preferably 15:1 to 1,000:1, more preferably 20:1 to 500:1. 10. Method according to claim 8 or 9, wherein the alkanes have an average carbon number in the range of from 5 to 30, preferably 12 to 26, more preferably 14 to 24, more preferably 16 to 24, most preferably 18 to 22. 11. Method according to any one of claims 8-10, wherein one or more alkane sulfonic acids or alkane sulfonates are selected from the group consisting of C14-17 AS, C18-20 AS, C18-23 AS and C19-24 AS, preferably from the group consisting of C14-17 AS, C18-20 AS and C18-23 AS, wherein "AS" stands for "alkane sulfonic acid" or "alkane sulfonate". 12. Method according to claim 11, wherein one or more alkane sulfonic acids or alkane sulfonates are selected from the group consisting of C18-20 AS and C18-23 AS, preferably C18-23 AS. 13. Method according to any one of claims 8-12, which composition further comprises one or more surfactants selected from the group consisting of internal olefin sulfonates (IOS), alkoxylated alcohol sulfates, carboxylates and glycerol sulfonates, linear alkyl benzene sulfonates (LABS), and heavy alkyl benzene sulfonates (HABS). Summary of the invention Surprisingly, it was found that an alkane sulfonic acid or alkane sulfonate composition having such improved cEOR performance parameter(s) is a composition which comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and optionally a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, wherein if the composition comprises said disubstituted alkane the molar ratio of the monosubstituted alkane to the disubstituted alkane is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1. Accordingly, the present invention relates to an alkane sulfonic acid or alkane sulfonate composition as described above. Further, the present invention relates to a process for treatment of an alkane sulfonic acid or alkane sulfonate composition, which composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, in which process substantially all of the disubstituted alkane is removed or the disubstituted alkane is removed to such extent that the molar ratio of the monosubstituted alkane to the disubstituted alkane is increased to a value which is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1. Still further, the present invention relates to a method of treating a hydrocarbon containing formation, comprising the following steps: a) providing the composition as described above or the composition as obtained by the process as described above to at least a portion of the hydrocarbon containing formation; and b) allowing the alkane sulfonic acid or alkane sulfonate from the composition to interact with the hydrocarbons in the hydrocarbon containing formation. Detailed description of the invention In one aspect, the present invention relates to an alkane sulfonic acid or alkane sulfonate composition, which composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and optionally a disubstituted alkane substituted by two sulfonic acid or sulfonate groups, wherein if the composition comprises said disubstituted alkane the molar ratio of the monosubstituted alkane to the disubstituted alkane is equal to or higher than 12:1 and is preferably in the range of from 12:1 to 10,000:1. Thus, the composition of the present invention is an alkane sulfonic acid or alkane sulfonate composition, which comprises an alkane sulfonic acid or an alkane sulfonate. An alkane sulfonic acid is an alkane substituted by one or more sulfonic acid groups. An alkane sulfonate is an alkane substituted by one or more sulfonate groups. In the present invention, said alkane sulfonic acid or alkane sulfonate composition comprises a monosubstituted alkane substituted by one sulfonic acid or sulfonate group and optionally a disubstituted alkane substituted by two sulfonic acid or sulfonate groups. This means that the composition of the present invention either comprises both said monosubstituted alkane and said disubstituted alkane or comprises said monosubstituted alkane and substantially no disubstituted alkane. These products are used for the following industries / applications pharma, cosmetics body care textile & leather industrial cleaners A field study was conducted to determine the mass flow of secondary alkane sulfonate (SAS) surfactants in a municipal wastewater treatment plant. The concentration of SAS in samples of sewage (raw sewage, primary and secondary effluent) was determined using solid-phase extraction with C18 disks and injection port derivatization with gas chromatography/mass selective detection (GC/MS). The concentration of SAS in raw and anaerobically-digested sludge was determined by ion-pair/supercritical fluid extraction and injection-port derivatization GC/MS. The removal of SAS from the waste stream is efficient (99.7%) with approximately 16% (w/w) transferred to sludge. Given current Swiss sludge disposal regulations, a maximum of approximately 350 mg m−2 SAS are applied every three years to a given section of agricultural soil. Of the total SAS mass flow entering the treatment plant, an average of 0.3% (w/w) is discharged to the adjacent receiving water stream. Secondary alkane sulfonate is an anionic surfactant, which is manufactured by sulfoxidation of n-paraffins. It provides good water solubility, excellent grease and soil dispersing properties, high wetting properties, and distinct foaming power. Therefore, secondary alkane sulfonate is an important surfactant ingredient in detergents, especially dishwashing detergents. Secondary alkane sulfonate can be manufactured either through sulfochlorination or sulfoxidation process. Under the sulfochlorination process, n-paraffins are converted into alkylsulfochlorides with sulfur dioxide and chlorine in radical reaction. The sulfochlorination process is primarily used for non-detergent technical purposes. Under the sulfoxidation process, secondary alkane sulfonate is manufactured by reacting n-paraffins with sulfur dioxide and oxygen in the presence of water. Products produced through the sulfoxidation process are primarily used in household care. Secondary alkane sulfonate is widely employed in household cleaning applications, especially in dishwashing liquids and laundry detergents, owing to its efficient and effective properties. It is also used in cosmetics such as hair and body care products, household cleaners, and industrial cleaners. Therefore, rising demand for household products, high standard of living in developing nations, and increasing demand for hygienic products in emerging economies are boosting the secondary alkane sulfonate market. However, secondary alkane sulfonate can cause environmental and health concerns. Therefore, government agencies have imposed various regulations to address these issues. These agencies monitor toxicity levels to ensure they are within the permitted limit. Thus, implementation of stringent regulations is hampering the secondary alkane sulfonate market. Product Characteristics  Excellent detergent/wetting agent  Excellent solubility - electrolyte compatibility - hardness tolerance  Enzyme and bleach compatible  Mildness profile superior to LAS  Foam profile similar to LAS  Viscous liquid/paste with special handling/storage requirements Product Status  Commercially available – TSCA registered / DSL listed  Readily biodegradable  On-going production in Europe  Applications - any liquid cleaning product application  Many other potential application areas yet to be explored Based on application, the secondary alkane sulfonate market can be segmented into chemical processing, surface-active substances, emulsion polymerization, and others. Secondary alkane sulfonate is used primarily in the emulsion polymerization of acrylonitrile, butadiene, vinyl chloride, acrylates, styrene, and other monomers, as it is stable and offers outstanding emulsifying properties. It is also employed as an auxiliary for the production and maintenance of emulsions. Additionally, secondary alkane sulfonate is used in textile auxiliary applications such as Kier boiling, bleaching, post-saponification, washing, and wetting. It provides high wetting power and good stability features. Thus, it is an ideal raw material for textile processing chemicals, leather auxiliaries, detergents, and cleaning products. In terms of end-use industry, the secondary alkane sulfonate market can be divided into textile, household care, personal care, industrial cleaners, construction, and others. The household care segment is expected to dominate the secondary alkane sulfonate market during the forecast period, as secondary alkane sulfonate products provide high chemical stability across a wide range of pH values; emulsifying and cleaning performance with strong surfactant features; and value added washing performance. Additionally, rise in demand for high-quality personal care products and industrial cleaners is boosting the global secondary alkane sulfonate market. CAS No. EINECS No. NAME 85711-69-9 288-330-3 Sulfonic acids, C13-17-sec-alkane, sodium salts 68037-49-0 268-213-3 Sulfonic acids, C10-18-alkane, sodium salts (used in IUCLID) 97489-15-1 307-055-2 Sulfonic acids, C14-17-sec-alkane, sodium salts 85711-70-2 288-331-9 Sulfonic acids, C14-18-sec-alkane, sodium salts 75534-59-7 - Sulfonic acids, C13-18-sec-alkane, sodium salts Benefits Strong grease removal Excellent wetting & emulsification properties Good particle soil removal High tolerance towards hard water Stability over a wide pH range and high compatibility with enzymes, electrolytes and oxidizing agents, like chlorine Viscosity depressing action Benzene and ethylene oxide free Good skin compatibility Low aquatic toxicity with low impact on the environment Based on region, the secondary alkane sulfonate market can be segregated into North America, Asia Pacific, Europe, Latin America, and Middle East & Africa. Rapid industrialization in Asia Pacific, led by government support to augment the manufacturing business, is estimated to drive the secondary alkane sulfonate market in the region. Increase in demand for sulfonation products in various applications such as dish washing liquids & cleaners, industrial cleaners, and personal care products in North America is anticipated to boost the secondary alkane sulfonate market during the forecast period. However, implementation of stringent government regulations on human & environment in Europe is projected hamper the market growth. Liquid detergent containing secondary alkane sulfonate and cationic surfactants The invention relates to liquid laundry detergents and cleaners for textiles containing secondary alkanesulfonate and one or more cationic surfactants. In addition to the washing powders, liquid detergents are very important today Detergents for textiles. Liquid detergents contain surfactants as their main constituent. As a rule, several surfactants are used simultaneously in modern detergents. The combination of anionic and nonionic has proven to be useful here Surfactants. Usually anionic surfactants are linear alkylbenzenesulfonates (LAS), fatty alcohol sulfates (FAS), secondary alkane sulfonates (SAS) and, in part, also Fatty alcohol ether sulfates (FAES) used. Come as nonionic surfactants Ethoxylates of long-chain synthetic alcohols, e.g. the oxo alcohols, or of native fatty alcohols used. As further essential ingredients, builders such as e.g. Polycarboxylates and solubilizers such as e.g. Ethanol, glycerine or propanediol. > In addition, additive ingredients which are generally grouped together under the term washing assistants and contain the substance groups which are as diverse as foam regulators, grayness inhibitors, soil release polymers, enzymes, optical brighteners, Color transfer inhibitors and dye fixatives. For laundry care, so-called fabric softeners or laundry conditioners are used after washing. These give the laundry a pleasant soft feel, reduce wrinkles and reduce the wear of the laundry, as they reduce the fiber-fiber friction. These products contain cationic surfactants, essentially quaternary ammonium salts such as so-called ester quats. Unfortunately, so far, liquid detergents containing anionic surfactants could not be combined with cationic surfactants in order to impart a laundry-conditioning effect to the detergent and thus render the use of a softener superfluous. The reason for this is the lack of compatibility of the anionic surfactants with the cationic surfactants, which leads to a flocculation, precipitation or phase separation of the components. A new methodology has been developed for the determination of secondary alkane sulfonates (SAS), an anionic surfactant, in environmental matrices. Sediment and sludge samples were extracted using pressurized liquid extraction and sonication, whereas wastewater and surface water samples were processed using solid-phase extraction. Extraction recoveries were acceptable for both aqueous (78–120%) and solid samples (83–100%). Determination of Alkane sulfonate was carried out by high or ultra performance liquid chromatography – mass spectrometry using ion trap and time-of-flight detectors. The methodology was applied to samples from Guadalete River (SW Spain), where Alkane sulfonate concentrations below 1 μg L−1 were measured in surface water, and from 72 to 9737 μg kg−1 in sediments. Differential partitioning was observed for Alkane sulfonate homologues as those having a longer hydrocarbon chain which preferentially sorbed onto particulate matter. A preliminary environmental risk assessment also showed that Alkane sulfonate measured levels were not harmful to the aquatic community in the sampling area. Application Hand dishwashing liquids, all liquid laundry and cleaning agents, especially suited for highly concentrated products and industrial cleaning agents. Storage Hostapur alkane sulfonate 60 can be stored for at least to 2 years in original sealed containers at room temperature under the recommended conditions. Protect from exposure to cold during transport and storage. The properties of Hostapur alkane sulfonate 60 are reversibly altered by exposure to cold. If Hostapur alkane sulfonate 60 becomes turbid, thickens or freezes through exposure to cold, thaw slowly at room temperature and afterwards stir briefly.
Alkane Sulfonate 60%
Dodecyl / Hexadecyl dimethyl amines; Alkyl en C12-16 diméthyles Amines; Alquil C12-16 Dimetil Aminas; cas no: 68439-70-3
ALKİL AMİDO PROPİL BETAİN 35%
İrritasyon düşürücü, mild temizleme etkisi olan sekonder amfoterik yüzey aktif madde. Şampuan (%3-15), Sıvı sabun (%2-5), Sıvı deterjan (%2-5), Islak mendil (%2-4)
ALKİL POLİGLİKOZİT
Biyolojik olarak parçalanan ekolojik ürünlerde kullanılan, yüksek alkali ortamda çözünen, yağ alma ve ıslatma özelliği olan noniyonik
Alkollü/Alkolsüz Cadı Fındığı Yağı
WITCH HAZEL (WITH OR WITHOUT ALCOHOL); witch hazel leaf oil; trilopus dentata leaf oil; hamamelis virginiana leaf oil; hamamelis androgyna leaf oil; trilopus virginica leaf oil CAS NO:68916-39-2
ALKYL DIMETHYL AMINES 
Hyamine; Alkyl(C12-16)dimethylbenzylammonium chloride; Quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl, chlorides; Benzyl-C12-C16-alkyldimethyl ammonium chlorides; Alkyl(C12-C16) dimethylbenzyl-, chlorides; Quaternary ammonium compounds, benzyl- C12-16- alkyldimethyl, chlorides; Quaternäre Ammoniumverbindungen, Benzyl- C12-16- alkyldimethyl-, Chloride; Compuestos de amonio cuaternario, bencil-C12-16-alquildimetil, cloruros; Composés de l'ion ammonium quaternaire, benzylalkyl en C12-16 diméthyles, chlorures CAS NO: 68424-85-1; 39403-41-3; 63449-42-3; 70294-44-9
Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC) and blends
1,2-EPOXY-3-ALLYLOXYPROPANE; 1-ALLYLOXY-2,3-EPOXYPROPANE; ALLYL 2,3-EPOXYPROPYL ETHER; ALLYL GLYCIDYL ETHER; GLYCIDYL ALLYL ETHER; ((2-propenyloxy)methyl)-oxiran; ((2-propenyloxy)methyl)oxirane; [(2-propenyloxy)methyl]-oxiran; [(2-Propenyloxy)methyl]oxirane; [(2-Propenyloxy)-methyl]oxirane; [(2-propenyloxy)methyl]-Oxirane; 1-(allyloxy)-2,3-epoxy-propan; 1-Allilossi-2,3 epossipropano; 1-allilossi-2,3epossipropano; 1-Allyl-2,3-epoxypropane; 1-Allyloxy-2,3-epoxy-propaan; 1-Allyloxy-2,3-epoxypropan; 2-[(Allyloxy)methyl]oxirane; AGE; Ageflex AGE CAS NO:106-92-3
ALKYL GLYCIDYL ETHER
2-{[(Prop-2-en-1-yl)oxy]methyl}oxirane; 2-[(Allyloxy)methyl]oxirane; 1-Allyloxy-2,3-epoxypropane; Glycidyl allyl ether; [(2-Propenyloxy)methyl] oxirane CAS NO:106-92-3
alkyl gylceryl hydrolyzed hyaluronate
C12-13 Alkyl Glyceryl Hydrolyzed Hyaluronate; hydrolyzed Hyaluronic acid Alkyl (C12-13) Glyceril;Hyaluronic acid; Hyaluronic acid; product obtained by the reaction of a C12-13 alkyl ether of glycerin with hydrolyzed hyaluronic acid CAS NO:9004-61-9
ALKYL POLYGLUCOSIDE
alkyl polyglucoside; APG; Alkyl polyglucoside (APG)-natural surfactant; Triton CG-110 cas no: 68515-73-1
ALKYL POLYGLYCOSIDE %50
ALKYL POLYGLYCOSIDE %50 Alkyl polyglycoside %50s CAS No. of Alkyl polyglycoside %50 : 68515-73-1, 110615-47-9 Molecular formula of Alkyl polyglycoside %50: CnH2nO6 Molecular weight of Alkyl polyglycoside %50 : 320-370 Characteristics of Alkyl polyglycoside %50 Product Alkyl polyglycoside %50-0810 Alkyl polyglycoside %50-0814 Alkyl polyglycoside %50-1214 Appearance of Alkyl polyglycoside %50 in 25 ℃ Light yellow liquid Light yellow liquid or paste Alkyl polyglycoside %50 solid content (weight) ≥50.0% pH of Alkyl polyglycoside %50 (10% solution) 11.5-12.5 Alkyl polyglycoside %50 free alcohol (weight) ≤1.0% ≤0.8% ≤1.0% Alkyl polyglycoside %50 sulfated ash (weight) ≤3.0% Viscosity of Alkyl polyglycoside %50 (20 ℃) ≥200 mPa.s ≥600 mPa.s ≥2000 mPa.s Butyl glucoside from Alkyl polyglycoside %50 0 Alkyl polyglycoside %50 water (weight) 47-50 Density of Alkyl polyglycoside %50 (25 ℃) 1.14-1.16 g / cm3 1.08-1.10 g / cm3 1.07-1.09 g / cm3 Note: The above specifications are typical. Other types and customized production can also be provided. Application of Alkyl polyglycoside %50 Alkyl polyglycoside %50 can be used in cosmetics, biochemistry, food processing, plastics and petroleum industry, textiles, printing and dyeing, papermaking, and pharmaceuticals. Alkyl polyglycoside %50: a green and efficient surfactant for enhancing heavy oil recovery at high-temperature and high-salinity condition Abstract Alkyl polyglycoside %50 (APG) is a green surfactant with excellent interfacial activity, emulsified ability, foaming performance and wettability, which has great potential in enhancing heavy oil recovery at high-temperature and high-salinity condition. In this paper, surface tension, interfacial tension, emulsifying ability, emulsion stability and emulsified oil droplet size were investigated for APG. Besides, the effect of temperature and salinity on interfacial activity and emulsification properties of Alkyl polyglycoside %50 was also studied. The results showed that Alkyl polyglycoside %50 had excellent interfacial activity and emulsification property among all these surfactants. Besides, the interfacial activity and emulsification properties of Alkyl polyglycoside %50 almost did not decrease, and even got better along with the increasing temperature or salinity, while those of other surfactants became worse in different degree. The incremental oil recovery by using Alkyl polyglycoside %50 at 90 °C and the salinity of 30 g/L can reach to 10.1% which is nearly two times higher than that of common EOR surfactants. These results indicated that Alkyl polyglycoside %50 is an efficient surfactant for enhancing heavy oil recovery at high-temperature and high-salinity condition. Introduction With the depletion of conventional oil reserve, the effective development of the massive amount of heavy oil becomes increasingly important. However, the high viscosity of heavy oil makes it difficult to recover. The most widely used EOR techniques being employed for recovering heavy oil are thermal methods, which are to improve oil mobility by reducing the viscosity of heavy oil (Bi et al. 1999). However, severe heat losses make the application of thermal methods for the deep or thin heavy oil reservoirs very unattractive (Salager et al. 1979). Thus, it is necessary to consider the non-thermal methods for the recovery of these oils. Chemical flooding, such as surfactant flooding and surfactant/polymer flooding, is a common non-thermal technique for heavy oil (Norman 1990; Taylor and Schramm 1990; James 1980; Wasan et al. 1978). It is well known that the key problem in heavy oil reservoir is inefficient sweep due to low mobility of the oil, not the residual oil in the swept region (Chiang and Shah 1979; Guo 2010; Sun et al. 2011). As a result, excellent emulsions caused by the good interfacial activity and emulsification properties of the surfactant play a prominent role to increase sweep efficiency to enhance viscous oil recovery. However, most surfactants, which have nice interfacial activity and emulsification properties at conventional reserve environment, cannot show the identical performance at high-temperature and high-salinity condition (Ding et al. 2010; McClean and Kilpatrick 1997; Gafonova and Yarranton 2001). Therefore, getting a thermal-resistance and salt-tolerance surfactant is the key to enhancing the heavy oil recovery. Alkyl polyglycoside %50 is a green surfactant obtained by the dehydration reaction between glucose hemiacetal hydroxyl and fatty alcohol hydroxyl in the presence of acid catalyst. Its raw materials are the vegetable oil and starch which are the natural renewable resource and low cost, and its biodegradability is very excellent. More importantly, the oil displacement performances of APG, such as emulsified ability, foaming performance, wettability, are all prominent (Payet and Terentjev 2008). Hence, Alkyl polyglycoside %50 has great potential in oilfield chemistry. As already pointed out, superior EOR surfactant systems must have good interfacial activity and can reduce the oil/water IFT to the ultra-low value. Balzer (Balzer 1991) measured the IFTs between water and three different model oils in the presence of Alkyl polyglycoside %50 surfactants. determined the IFT in combination with linear alcohols as co-solvents. They all identified that the surfactant formulations could obtain an ultra-low IFT in brine/alkane or brine/xylene systems. Furthermore, researches (Iglauer et al. 2009; Monika et al. 2011; Chen et al. 2013; Jiang et al. 2008) also showed that the IFTs of these APG/alkali formulations could also reach an ultra-low value, while the emulsification properties were excellent. Therefore, promoting the application of Alkyl polyglycoside %50 is favorable for oil production to meet the need of the environmental protection and sustainable development. However, the previous research objects used to investigate oil displacing performance of Alkyl polyglycoside %50 are all simulated oil or light oil; the oil displacing capacity of Alkyl polyglycoside %50 on heavy oil nearly has not been studied. Therefore, the objective of this study is to assess the technical feasibility of Alkyl polyglycoside %50 for enhancing heavy oil recovery at high-temperature and high-salinity condition. In this paper, surface tension, interfacial tension, emulsifying ability, emulsion stability and emulsified oil droplet size were investigated for Alkyl polyglycoside %50 and other common EOR surfactants, and the effect of temperature and salinity on interfacial activity and emulsification properties of Alkyl polyglycoside %50 was also studied. Sandpack flooding tests were conducted to examine the effectiveness of Alkyl polyglycoside %50 on enhanced heavy oil recovery at high-temperature and high-salinity condition. Experimental procedures Materials The heavy oil sample was collected from Shengli oilfield, and the basic properties are shown in Table 1. The eight surfactants were Shengli petroleum sulfonate (SLPS), heavy alkylbenzene sulfonate (HABS), α-olefin sulfonate (AOS), sodium dodecyl benzene sulfonate (ABS), Alkyl polyglycoside %50s (APG), octylphenol ethoxylates (OP-10), dodecyl betaine (BS-12) and fatty alcohol polyoxyethylene ether sulfate (AES), and they were purchased from Sinopharm or Shengli Oil Field. It should be noted that the chemicals concentration in the paper is an effective content and on a weight basis. Alkyl polyglycoside %50s (APG) Product variants: APG 06, APG 08, APG 0810, APG 0814, APG 1214 Active content of Alkyl polyglycoside %50: 50%-75% The Alkyl polyglycoside %50 series are a range of non-ionic surfactants derived from renewable raw materials - fatty alcohols from coconut and palm kernel oils, and glucose from corn. These products are very mild, low in toxicity and readily biodegradable. The synergistic effects of Alkyl polyglycoside %50 series with other commonly used surfactants yield a performance improvement that can be the basis for a reduction of surfactant content whilst maintaining performance level. Features of Alkyl polyglycoside %50 100% renewable feedstock Readily biodegradable EO-free Sulphate-free Low toxicity Mild to skin Low colour & odour DID listed Benefits of Alkyl polyglycoside %50 Very good wetting, dispersing and surface activity. Stable in high levels of caustic Soluble in highly caustic systems Good compatibility with all other types of surfactants which often results in synergistic effects including an improvement in the mildness of formulations. Can produce rich and stable foam Good hydrotropic & solubilising properties Compatible with strong acids Applications of Alkyl polyglycoside %50 Their good compatibility with other surfactants, low toxicity, low skin irritation and biodegradability. This product is useful in products that need stable foam, low streaking, and no filmy residue. Personal Care Shampoo* Body wash* Creams & lotions HI&I Cleaning In Place* High alkaline* Household Hard surface* All purpose* Machine dishwashing Agrochemicals Soil wetting agent* Systemic adjuvants Textiles sourcing agents Alkyl polyglycoside %50s CAS No. 68515-73-1, 110615-47-9 Molecular formula : CnH2nO6 Molecular weight : 320-370 Characteristics of Alkyl polyglycoside %50 Product Alkyl polyglycoside %50-0810 Alkyl polyglycoside %50-0814 Alkyl polyglycoside %50-1214 Appearance of Alkyl polyglycoside %50 in 25 ℃ Light yellow liquid Light yellow liquid or paste Alkyl polyglycoside %50 solid content (weight) ≥50.0% pH of Alkyl polyglycoside %50 (10% solution) 11.5-12.5 Alkyl polyglycoside %50 free alcohol (weight) ≤1.0% ≤0.8% ≤1.0% Alkyl polyglycoside %50 sulfated ash (weight) ≤3.0% Viscosity of Alkyl polyglycoside %50 (20 ℃) ≥200 mPa.s ≥600 mPa.s ≥2000 mPa.s Butyl glucoside from Alkyl polyglycoside %50 0 Alkyl polyglycoside %50 water (weight) 47-50 Density of Alkyl polyglycoside %50 (25 ℃) 1.14-1.16 g / cm3 1.08-1.10 g / cm3 1.07-1.09 g / cm3 Note: The above specifications are typical. Other types and customized production can also be provided. Application of Alkyl polyglycoside %50 Alkyl polyglycoside %50 can be used in cosmetics, biochemistry, food processing, plastics and petroleum industry, textiles, printing and dyeing, papermaking, and pharmaceuticals. The surface activity is the basis of the application of Alkyl polyglycoside %50 (APG) as additives modifying the lubricating properties of water. Therefore, the presentation of the results of the investigation is preceded by a discussion of the effect of Alkyl polyglycoside %50 on their affinity for the surface. The problem of the contact of a lubricant with a solid is essential from a tribological point of view. The surface phase and the mass phase can be distinguished at the interface in a solution. A "fuzzy" border can be found between the two phases. Due to the adsorption of the solutions, the surface phase is enriched with the component which shows a higher affinity for the surface. Alkyl polyglycoside %50 is characteristic as the individual components compete for "free sites" on the surface. The problems of adsorption at the interface become more complex when solutions contain surfactants which can form micelles both in the surface phase and in the bulk phase. Surfactants are present in solutions as monomers in a range of low concentrations, but after exceeding the critical surface aggregation concentration (CSAC), they produce surface micelles [9-11, 18]. Micelle formation in the surface phase ends at a concentration corresponding to the Critical Micellar Concentration (CMC) in the bulk phase. A considerable decrease in surface tension (σ) and wetting angle (θ) of Alkyl polyglycoside %50 solutions compared to water is a confirmation of the high surface activity of Alkyl polyglycoside %50. Variations in the σ value depending on the concentration of Alkyl polyglycoside %50 in water are characteristic of surfactant solutions. Alkyl polyglycoside %50S SPECIFICATION Description: Polyalkyl glucosides (APGs) are a class of widely used nonionic surfactants as primer / basic surfactants as well as co-surfactants in the formulation of cosmetic products declared "natural". Alkyl polyglycoside %50s offer superior performance by combining the ease of formulation of typical nonionics with the foaming characteristics of anionics. With excellent detergency and processing advantages in one A variety of cleaning products, Alkyl polyglycoside %50s exhibit superior wetting, dispersing and interfacial tension reducing properties for increased soil removal and emulsification Alkyl polyglycoside %50s represent the new class of polyethylene glycol Surfactants without (PEG), fully biodegradable and produced from renewable resources. Alkyl polyglycoside %50 (APG) Find the latest prices Min. Order: 20 boxes Appearance of Alkyl polyglycoside %50: liquid Use of Alkyl polyglycoside %50: Water Treatment Chemicals, Rubber Auxiliaries, Plastic Auxiliary Agents, Coating Auxiliaries, Textile Auxiliaries, Paper Chemicals, Leather Auxiliaries, Electronic Chemicals Color of Alkyl polyglycoside %50: yellow Alkyl polyglycoside %50 Solid Content: 50.0-52.0% PH value of Alkyl polyglycoside %50 (20% Aq.): 11.5-12.5 Viscosity of Alkyl polyglycoside %50 (20 ° C): 1000-2500MPa.S Alkyl polyglycoside %50s CAS No. of Alkyl polyglycoside %50 : 68515-73-1, 110615-47-9 Molecular formula of Alkyl polyglycoside %50: CnH2nO6 Molecular weight of Alkyl polyglycoside %50 : 320-370 Characteristics of Alkyl polyglycoside %50 Product Alkyl polyglycoside %50-0810 Alkyl polyglycoside %50-0814 Alkyl polyglycoside %50-1214 Appearance of Alkyl polyglycoside %50 in 25 ℃ Light yellow liquid Light yellow liquid or paste Alkyl polyglycoside %50 solid content (weight) ≥50.0% pH of Alkyl polyglycoside %50 (10% solution) 11.5-12.5 Alkyl polyglycoside %50 free alcohol (weight) ≤1.0% ≤0.8% ≤1.0% Alkyl polyglycoside %50 sulfated ash (weight) ≤3.0% Viscosity of Alkyl polyglycoside %50 (20 ℃) ≥200 mPa.s ≥600 mPa.s ≥2000 mPa.s Butyl glucoside from Alkyl polyglycoside %50 0 Alkyl polyglycoside %50 water (weight) 47-50 Density of Alkyl polyglycoside %50 (25 ℃) 1.14-1.16 g / cm3 1.08-1.10 g / cm3 1.07-1.09 g / cm3 Note: The above specifications are typical. Other types and customized production can also be provided. Application of Alkyl polyglycoside %50 Alkyl polyglycoside %50 can be used in cosmetics, biochemistry, food processing, plastics and petroleum industry, textiles, printing and dyeing, papermaking, and pharmaceuticals. Alkyl polyglycoside %50: a green and efficient surfactant for enhancing heavy oil recovery at high-temperature and high-salinity condition Abstract Alkyl polyglycoside %50 (APG) is a green surfactant with excellent interfacial activity, emulsified ability, foaming performance and wettability, which has great potential in enhancing heavy oil recovery at high-temperature and high-salinity condition. In this paper, surface tension, interfacial tension, emulsifying ability, emulsion stability and emulsified oil droplet size were investigated for APG. Besides, the effect of temperature and salinity on interfacial activity and emulsification properties of Alkyl polyglycoside %50 was also studied. The results showed that Alkyl polyglycoside %50 had excellent interfacial activity and emulsification property among all these surfactants. Besides, the interfacial activity and emulsification properties of Alkyl polyglycoside %50 almost did not decrease, and even got better along with the increasing temperature or salinity, while those of other surfactants became worse in different degree. The incremental oil recovery by using Alkyl polyglycoside %50 at 90 °C and the salinity of 30 g/L can reach to 10.1% which is nearly two times higher than that of common EOR surfactants. These results indicated that Alkyl polyglycoside %50 is an efficient surfactant for enhancing heavy oil recovery at high-temperature and high-salinity condition. Introduction With the depletion of conventional oil reserve, the effective development of the massive amount of heavy oil becomes increasingly important. However, the high viscosity of heavy oil makes it difficult to recover. The most widely used EOR techniques being employed for recovering heavy oil are thermal methods, which are to improve oil mobility by reducing the viscosity of heavy oil (Bi et al. 1999). However, severe heat losses make the application of thermal methods for the deep or thin heavy oil reservoirs very unattractive (Salager et al. 1979). Thus, it is necessary to consider the non-thermal methods for the recovery of these oils. Chemical flooding, such as surfactant flooding and surfactant/polymer flooding, is a common non-thermal technique for heavy oil (Norman 1990; Taylor and Schramm 1990; James 1980; Wasan et al. 1978). It is well known that the key problem in heavy oil reservoir is inefficient sweep due to low mobility of the oil, not the residual oil in the swept region (Chiang and Shah 1979; Guo 2010; Sun et al. 2011). As a result, excellent emulsions caused by the good interfacial activity and emulsification properties of the surfactant play a prominent role to increase sweep efficiency to enhance viscous oil recovery. However, most surfactants, which have nice interfacial activity and emulsification properties at conventional reserve environment, cannot show the identical performance at high-temperature and high-salinity condition (Ding et al. 2010; McClean and Kilpatrick 1997; Gafonova and Yarranton 2001). Therefore, getting a thermal-resistance and salt-tolerance surfactant is the key to enhancing the heavy oil recovery. Alkyl polyglycoside %50 is a green surfactant obtained by the dehydration reaction between glucose hemiacetal hydroxyl and fatty alcohol hydroxyl in the presence of acid catalyst. Its raw materials are the vegetable oil and starch which are the natural renewable resource and low cost, and its biodegradability is very excellent. More importantly, the oil displacement performances of APG, such as emulsified ability, foaming performance, wettability, are all prominent (Payet and Terentjev 2008). Hence, Alkyl polyglycoside %50 has great potential in oilfield chemistry. As already pointed out, superior EOR surfactant systems must have good interfacial activity and can reduce the oil/water IFT to the ultra-low value. Balzer (Balzer 1991) measured the IFTs between water and three different model oils in the presence of Alkyl polyglycoside %50 surfactants. determined the IFT in combination with linear alcohols as co-solvents. They all identified that the surfactant formulations could obtain an ultra-low IFT in brine/alkane or brine/xylene systems. Furthermore, researches (Iglauer et al. 2009; Monika et al. 2011; Chen et al. 2013; Jiang et al. 2008) also showed that the IFTs of these APG/alkali formulations could also reach an ultra-low value, while the emulsification properties were excellent. Therefore, promoting the application of Alkyl polyglycoside %50 is favorable for oil production to meet the need of the environmental protection and sustainable development. However, the previous research objects used to investigate oil displacing performance of Alkyl polyglycoside %50 are all simulated oil or light oil; the oil displacing capacity of Alkyl polyglycoside %50 on heavy oil nearly has not been studied. Therefore, the objective of this study is to assess the technical feasibility of Alkyl polyglycoside %50 for enhancing heavy oil recovery at high-temperature and high-salinity condition. In this paper, surface tension, interfacial tension, emulsifying ability, emulsion stability and emulsified oil droplet size were investigated for Alkyl polyglycoside %50 and other common EOR surfactants, and the effect of temperature and salinity on interfacial activity and emulsification properties of Alkyl polyglycoside %50 was also studied. Sandpack flooding tests were conducted to examine the effectiveness of Alkyl polyglycoside %50 on enhanced heavy oil recovery at high-temperature and high-salinity condition. Experimental procedures Materials The heavy oil sample was collected from Shengli oilfield, and the basic properties are shown in Table 1. The eight surfactants were Shengli petroleum sulfonate (SLPS), heavy alkylbenzene sulfonate (HABS), α-olefin sulfonate (AOS), sodium dodecyl benzene sulfonate (ABS), Alkyl polyglycoside %50s (APG), octylphenol ethoxylates (OP-10), dodecyl betaine (BS-12) and fatty alcohol polyoxyethylene ether sulfate (AES), and they were purchased from Sinopharm or Shengli Oil Field. It should be noted that the chemicals concentration in the paper is an effective content and on a weight basis. Alkyl polyglycoside %50s (APG) Product variants: APG 06, APG 08, APG 0810, APG 0814, APG 1214 Active content of Alkyl polyglycoside %50: 50%-75% The Alkyl polyglycoside %50 series are a range of non-ionic surfactants derived from renewable raw materials - fatty alcohols from coconut and palm kernel oils, and glucose from corn. These products are very mild, low in toxicity and readily biodegradable. The synergistic effects of Alkyl polyglycoside %50 series with other commonly used surfactants yield a performance improvement that can be the basis for a reduction of surfactant content whilst maintaining performance level. Features of Alkyl polyglycoside %50 100% renewable feedstock Readily biodegradable EO-free Sulphate-free Low toxicity Mild to skin Low colour & odour DID listed Benefits of Alkyl polyglycoside %50 Very good wetting, dispersing and surface activity. Stable in high levels of caustic Soluble in highly caustic systems Good compatibility with all other types of surfactants which often results in synergistic effects including an improvement in the mildness of formulations. Can produce rich and stable foam Good hydrotropic & solubilising properties Compatible with strong acids Applications of Alkyl polyglycoside %50 Their good compatibility with other surfactants, low toxicity, low skin irritation and biodegradability. This product is useful in products that need stable foam, low streaking, and no filmy residue. Personal Care Shampoo* Body wash* Creams & lotions HI&I Cleaning In Place* High alkaline* Household Hard surface* All purpose* Machine dishwashing Agrochemicals Soil wetting agent* Systemic adjuvants Textiles sourcing agents Alkyl polyglycoside %50s CAS No. 68515-73-1, 110615-47-9 Molecular formula : CnH2nO6 Molecular weight : 320-370 Characteristics of Alkyl polyglycoside %50 Product Alkyl polyglycoside %50-0810 Alkyl polyglycoside %50-0814 Alkyl polyglycoside %50-1214 Appearance of Alkyl polyglycoside %50 in 25 ℃ Light yellow liquid Light yellow liquid or paste Alkyl polyglycoside %50 solid content (weight) ≥50.0% pH of Alkyl polyglycoside %50 (10% solution) 11.5-12.5 Alkyl polyglycoside %50 free alcohol (weight) ≤1.0% ≤0.8% ≤1.0% Alkyl polyglycoside %50 sulfated ash (weight) ≤3.0% Viscosity of Alkyl polyglycoside %50 (20 ℃) ≥200 mPa.s ≥600 mPa.s ≥2000 mPa.s Butyl glucoside from Alkyl polyglycoside %50 0 Alkyl polyglycoside %50 water (weight) 47-50 Density of Alkyl polyglycoside %50 (25 ℃) 1.14-1.16 g / cm3 1.08-1.10 g / cm3 1.07-1.09 g / cm3 Note: The above specifications are typical. Other types and customized production can also be provided. Application of Alkyl polyglycoside %50 Alkyl polyglycoside %50 can be used in cosmetics, biochemistry, food processing, plastics and petroleum industry, textiles, printing and dyeing, papermaking, and pharmaceuticals. The surface activity is the basis of the application of Alkyl polyglycoside %50 (APG) as additives modifying the lubricating properties of water. Therefore, the presentation of the results of the investigation is preceded by a discussion of the effect of Alkyl polyglycoside %50 on their affinity for the surface. The problem of the contact of a lubricant with a solid is essential from a tribological point of view. The surface phase and the mass phase can be distinguished at the interface in a solution. A "fuzzy" border can be found between the two phases. Due to the adsorption of the solutions, the surface phase is enriched with the component which shows a higher affinity for the surface. Alkyl polyglycoside %50 is characteristic as the individual components compete for "free sites" on the surface. The problems of adsorption at the interface become more complex when solutions contain surfactants which can form micelles both in the surface phase and in the bulk phase. Surfactants are present in solutions as monomers in a range of low concentrations, but after exceeding the critical surface aggregation concentration (CSAC), they produce surface micelles [9-11, 18]. Micelle formation in the surface phase ends at a concentration corresponding to the Critical Micellar Concentration (CMC) in the bulk phase. A considerable decrease in surface tension (σ) and wetting angle (θ) of Alkyl polyglycoside %50 solutions compared to water is a confirmation of the high surface activity of Alkyl polyglycoside %50. Variations in the σ value depending on the concentration of Alkyl polyglycoside %50 in water are characteristic of surfactant solutions. Alkyl polyglycoside %50S SPECIFICATION Description: Polyalkyl glucosides (APGs) are a class of widely used nonionic surfactants as primer / basic surfactants as well as co-surfactants in the formulation of cosmetic products declared "natural". Alkyl polyglycoside %50s offer superior performance by combining the ease of formulation of typical nonionics with the foaming characteristics of anionics. With excellent detergency and processing advantages in one A variety of cleaning products, Alkyl polyglycoside %50s exhibit superior wetting, dispersing and interfacial tension reducing properties for increased soil removal and emulsification Alkyl polyglycoside %50s represent the new class of polyethylene glycol Surfactants without (PEG), fully biodegradable and produced from renewable resources. Alkyl polyglycoside %50 (APG) Find the latest prices Min. Order: 20 boxes Appearance of Alkyl polyglycoside %50: liquid Use of Alkyl polyglycoside %50: Water Treatment Chemicals, Rubber Auxiliaries, Plastic Auxiliary Agents, Coating Auxiliaries, Textile Auxiliaries, Paper Chemicals, Leather Auxiliaries, Electronic Chemicals Color of Alkyl polyglycoside %50: yellow Alkyl polyglycoside %50 Solid Content: 50.0-52.0% PH value of Alkyl polyglycoside %50 (20% Aq.): 11.5-12.5 Viscosity of Alkyl polyglycoside %50 (20 ° C): 1000-2500MPa.S
ALKYLPOLYGLUCOSIDE C10-16
Noms français : Ethers octylo-décyles(C8-C10) du D-glucose; N° CAS : 68515-73-1; Nom INCI : ALKYLPOLYGLUCOSIDE C8-10; EC / List no.: 500-220-1; Mol. formula: (C6H10O5)1-3(CH2)7-9CH4O. Classification : Tensioactif non ionique. Ses fonctions (INCI). Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation.Noms anglais :(C8-C10)ALKYL ETHER OF CORN SUGAR; D-GLUCOSE, DECYL OCTYL ETHERS, OLIGOMERIC; Oligomeric D-glucopyranose decyl octyl glycosides; Decyl D-glucopyranoside ; Decyl-D-glucopyranosid [German] ; D-Glucopyranoside de décyle [French] ; D-Glucopyranoside, decyl [ACD/Index Name]. D-Glucopyranose, oligomeric, decyl octyl glycosides. ALKYL ETHER OF CORN SUGAR; Alkyl polyglucoside; Alkyl polyglycoside; Alkylpolyglucoside C8-10; Alkylpolyglycoside; APG; APG_C8-10; C8-10 Alkyl Polyglucoside; Caprylyl/myristyl glucoside; D-Glucopyranose, oligomeric, C8-10 glycosides; D-Glucopyranose, oligomeric, decyl octyl glycosides (n=1.5); D-Glucopyranose, oligomers, decyl octyl glycoside; D-Glucose decyl octyl ethers, oligomeric; D-Glucose, decyl octyl ethers, oligomeric; D-Glucose, decyl, octyl ethers, oligomeric; Decyl Glucoside; Decyl-D Glucoside; mixture of di-C8/C10-furanosides and di-C8/C10- glycopyranosides
ALKYLPOLYGLUCOSIDE C8-10
SYNONYMS 5-Ureidohydantoin; Glyoxyldiureide; Alantan; Alloxantin; Ureidohydantoin; Hemocane; Paxyl; Allantol; Cordianine; Glyoxyldiureid; Hydantoin, 5-ureido-; 2,5-Dioxo-4-imidazolidinyl-urea; CAS NO. 97-59-6
ALLANTOIN
1-(2,5-dioxoimidazolidin-4-yl)urée; No CAS 97-59-6; Alantoína, allantoina, ALLANTOIN,alantoin, Nom chimique : Urea, (2,5-dioxo-4-imidazolidinyl)-; Uréidohydantoïne; Glyoxyldiuréide; Hémocane; 5-uréidohydantoïne; N° EINECS/ELINCS : 202-592-8, L'allantoïne se présente sous la forme d'une poudre cristalline blanche. Il s'agit d'un composé azoté que l'on retrouve aussi bien dans le milieu végétal ou animal (dans l'urine des veaux). Elle peut être aussi obtenue synthétiquement à partir d'acide urique. Dans les cosmétiques, l'allantoïne est utilisée pour ses propriétés astringentes, anti-irritantes, anti-inflammatoires, cicatrisantes et hydratantes. Elle sert aussi dans le traitement de l'hypersensibilité dentinaire. L'allantoïne Écouter est un composé chimique azoté, de formule C4H6N4O3, d’origine organique ou végétale découvert par Louis-Nicolas Vauquelin dans le liquide amniotique de la vache ; il a été trouvé également dans l'urine du veau (Friedrich Wöhler) puis chez de nombreux mammifères à l'exception des grands primates (dont l'Homme). Bien qu'il soit possible d'extraire l'allantoïne à partir du mucus de certains gastéropodes (ex : escargots), l'industrie cosmétique privilégie la synthèse chimique pour sa production2. L'allantoïne est en effet le produit de l'oxydation de l'acide urique. Parmi les végétaux, on en trouve dans les racines de la grande consoude et dans les graines de céréales. C'est un uréide oxyglycollique, qui cristallise en prismes clinorhombiques, brillants, incolores, peu solubles dans l'eau, que la barite décompose à l'ébullition en ammoniaque et en oxalate de baryum.En cosmétique, on en trouve principalement dans les soins de la peau et les produits de maquillage, mais aussi dans les dentifrices, shampoings, crèmes à raser, rouges à lèvres, etc. L'allantoïne n'est pas antiseptique. En raison de possibles interactions, les préparations contenant de l'allantoïne ne doivent pas être stockées dans des récipients en métal.
ALLURA RED
C.I. Food red 17; C.I. 16035; D & C Red 40; Disodium 6-hydroxy- 5-[(2-methoxy-4-sulphonato-m-tolyl)azo]naphthalene- 2-sulphonate; Disodium 6-hydroxy-5-(2-methoxy-5-methyl-4-sulfonato- phenylazo)-2- naphthalene sulfonate; 2-Naphthalenesulfonic Acid 6-hydroxy-5-((2-methoxy-5-methyl-4-sulfophenyl) Azo)-, Disodium Salt; Allura Red AC CAS NO: 25956-17-6
ALLURA RED AC
CAS Number: 25956-17-6
EC Number: 247-368-0
E number: E129
Molecular formula: C18H14N2Na2O8S2
Formula weight: 496.43

Allura Red AC is a red azo dye that goes by several names, including FD&C Red 40.
Allura Red AC is used as a food dye and has the E number E129.
Allura Red AC is usually supplied as its red sodium salt, but can also be used as the calcium and potassium salts.
These salts like Allura Red AC are soluble in water.
In solution, Allura Red ACs maximum absorbance lies at about 504 nm.

Applications of Allura Red AC:
Allura Red AC has been used:
-for the determination of fecal neutral sterols (FNS) in mice
-to evaluate its developmental toxicity
-as a coloring reagent for observing the experimental performance of liquid-handling robot

Allura Red AC is a lab-manufactured dye that’s used as a colorant in food, cosmetics, over-the-counter medicines, and even prescription drugs.
Allura Red AC’s what creates the bright red color in sodas, sauces, and cherry-flavored cough syrups.
Allura Red AC’s often the red used to color cosmetics and other items used on the skin, as well.
Allura Red AC is what is commonly used for things like cosmetics, red medicine coatings, candy coatings, and other solids.
Allura Red comprises disodium 2-hydroxy-1-nephthalene-6-sulfonate and is supported by subsidiary coloring matters in combination with sodium chloride/sodium sulfate as principal uncolored component. As a sodium salt, the organic compounds other than coloring matters it contains include 6-hydroxy-2-naphthalene sulfonic acid, sodium salt (Not more than 0.3%); 6,6-oxybis disodium salt (Not more than 0.1%) and 4-amino-5-methoxy-2-methylbenzene sulfonic acid (Not more than 0.2%).

Description of Allura Red AC:
FD & C Red No. 40 is principally the disodium salt of 6-hydroxy5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]2-napthalenesulfonic acid.
The colorant is a red powder that dissolves in water to give a solution red at neutrality and in acid and dark red in base.
Allura Red AC is slightly soluble in 95% ethanol.

Allura Red AC is primarily an artificial colorant. And it provides a deep red color to the product.
Allura Red AC is available in powder or granular form. Very good water solubility.
Allura Red AC is insoluble in ethanol.
Allura Red AC is also called synthetic azo dye.
Allura Red AC can come across with names such as Allura red, CI Food Red 17.

Not all of the foods with Allura Red AC are red.
You will also find it in brown, blue, green, orange, and even white food products, too.
Take pickles for example.
A combination of artificial dyes, including Allura Red AC, are used to give some pickles a more pronounced yellow-green color.

Can find Allura Red AC in a wide range of foods and beverages, including:
-Candy
-Condiments
-Snack foods
-Baked goods
-Beverages
-Salad dressings
-Dairy products
-Frozen desserts
-Breakfast cereals
-Fruit bars
-Sauces

Red 40 is a food color additive that manufacturers use to control the color of their products. Specifically, Red 40 makes food the color red.
The food coloring dye also comes with other names such as Allura Red AC, FD&C Red 40, Food Red 17, Cosmetic Ingredient 16035, and E129.
A synthetic azo dye, the chemical structure of Red 40 makes this compound soluble in water as well as having a dark red color.
Under a spectrophotometer, Allura Red ACs absorbance is about 504 nm which appropriately puts the compound in the range of the red color spectrum.

Uses of Allura Red AC:
Allura Red AC is a colorant.
Allura Red AC has good stability to ph changes from ph 3 to 8, showing no appreciable change.
Allura Red AC has excellent solubility in water with a solubility of 22 g/100 ml at 25°c.

Allura Red AC has very good stability to light, fair to poor stability to oxidation, good stability to heat, and shows no appreciable change in stability in 10% sugar systems.
Allura Red AC has a yellowish-red hue and has a very good tinctorial strength.
Allura Red AC has very good compatibility with food components and is used in beverages, desserts, candy, confections, cereals, and ice cream.

Allura Red AC, a food colourant, is dark red and water-soluble powder or granules used in various applications, such as in drinks, syrups, sweets and cereals.
Allura Red AC has the ability to quench the intrinsic fluorescence of HSA through static quenching.

Purpose of Allura Red AC:
Allura Red AC is an artificial dye used to colour foods, medications, and cosmetics.

Description of Allura Red AC:
Byproducts of the petroleum industry are used to produce allura red.
In fact, many organic compounds used in food additives and pharmaceuticals come from petroleum products.
Allura Red AC looks like a dark red powder.

Common Uses of Allura Red AC:
Allura Red AC is commonly used in many processed foods including baked goods, candy, cereal, dairy products, drinks, sauces, and snacks.
Allura Red AC is a red azo dye that goes by several names, including FD&C Red 40.
Allura Red AC is used as a food dye and has the E number E129.
Allura Red AC is usually supplied as its red sodium salt, but can also be used as the calcium and potassium salts.
These salts are soluble in water. In solution, its maximum absorbance lies at about 504 nm.

Use as food color of Allura Red AC:
Allura Red AC is a popular dye used worldwide. Annual production in 1980 was greater than 2.3 million kilograms.
The European Union approves Allura Red AC as a food colorant.
In the United States, Allura Red AC is approved by the FDA for use in cosmetics, drugs, and food.
When prepared as a lake it is disclosed as Red 40 Lake or Red 40 Aluminum Lake.

Allura Red AC is used in some tattoo inks and is used in many products, such as cotton candy, soft drinks, cherry flavored products, children's medications, and dairy products.
Allura Red AC is by far the most commonly used red dye in the United States, completely replacing amaranth (Red 2) and also replacing erythrosine (Red 3) in most applications.
Allura Red AC is a red azo dye which looks like a dark red powder and used as a food dye.
Ungraded products supplied by TCI America are generally suitable for common industrial uses or for research purposes but typically are not suitable for human consumption or therapeutic use.

USES of Allura Red AC:
Relatived to the maintenance and repair of automobiles, products for cleaning and caring for automobiles (auto shampoo, polish/wax, undercarriage treatment, brake grease)
Related to products specifically designed for children (e.g. toys, children's cosmetics, etc)
Related to all forms of cleaning/washing, including cleaning products used in the home, laundry detergents, soaps, de-greasers, spot removers, etc; modifiers included when specific information is known, such as drycleaning, laundry, soap, window/floor, etc
Term used for colorants, dyes, or pigments; includes colorants for drugs, textiles, personal care products (cosmetics, tatoo inks, hair dye), food colorants, and inks for printing; modifiers included when application is known

Allura Red AC can be used in many products.
Allura Red AC is widely used in confectionery.
Apart from that, it can be used in bakery products, flavored drinks, edible ice, desserts, meat products, dried fruits and vegetables.
Apart from the food sector, it is used in pharmacy, cosmetics and in the toy industry (play dough).

Use as a consumable coloring agent
Allura Red AC is a popular dye used worldwide. Annual production in 1980 was greater than 2.3 million kilograms.

Allura Red AC is a synthetic color additive or food dye made from petroleum .
Allura Red AC is one of the nine certified color additives approved by the Food and Drug Administration (FDA) for use in foods and beverages (2Trusted Source).
Allura Red AC is also approved as a food dye for use within the European Union (3).
Certified color additives must undergo FDA certification every time a new batch is produced to ensure they contain what they’re legally supposed to.

Conversely, exempt color additives do not require batch certification, but the FDA must still approve them before they can be used in foods or beverages.
Exempt color additives come from natural sources, such as fruits, vegetables, herbs, minerals, and insects .
Manufacturers use color additives in foods and beverages to enhance naturally occurring colors, add color for visual appeal, and offset color loss that may occur due to storage conditions.
Compared with their natural alternatives, synthetically produced color additives provide a more uniform color, blend easier, are cheaper, and do not add undesirable flavors .
For this reason, synthetic color additives are used more widely than natural color additives.

How to identify Allura Red AC?
As one of the most widely used color additives, Allura Red AC is found in a variety of foods and beverages, including :
Dairy products: flavored milk, yogurt, puddings, ice cream, and popsicles
Sweets and baked goods: cakes, pastries, candy, and chewing gum
Snacks and other items: breakfast cereals and bars, jello, fruit snacks, chips
Beverages: soda, sports drinks, energy drinks, and powdered drink mixes, including some protein powders
According to studies, breakfast cereals, juice drinks, soft drinks, baked goods, and frozen dairy desserts are the greatest contributors of synthetic food dyes in the diet.
Like other color additives, Allura Red AC is also used in the production of cosmetics and pharmaceuticals (4Trusted Source).

You can identify Allura Red AC by reading the ingredient list. Allura Red AC’s also known as:
Red 40
Red 40 Lake
FD&C Red No. 40
FD&C Red No. 40 Aluminum Lake
Allura Red AC
CI Food Red 17
INS No. 129
E129

While manufacturers are not required to list the amount of an ingredient used, they must list ingredients in descending order by weight.
This means that the first ingredient listed contributes the most by weight while the last ingredient listed contributes the least.
Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products.
High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R′ = aromatic).
Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products.
This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods.

Physical Description of Allura Red AC:
Allura Red AC is principally the disodium salt of 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonic acid.
Allura red is an orange red dye that has a red to brownish shade in applications.

Common Uses of Allura Red AC:
Allura Red AC is used in cereal, beverages, gelatins, puddings, dairy products, frozen treats, powder mixes, icings, jellies, spices, dressings, sauces, baked goods and confections.
FD&C Red No.
40 is also used in pharmaceuticals and cosmetics.
Allura Red AC is a synthetic colouring agent that belongs to the class of monoazo dyes.

Manufacturing process of Allura Red AC:
Allura Red AC is manufactured by coupling diazotized 5-amino-4-methoxy-2-toluenesulphonic acid (also called 4-amino-5-methoxy-2-methylbenzenesulfonic acid or p-cresidine sulfonic acid, p-CSA) with 6- hydroxy-2-naphthalene sulphonic acid (the sodium salt is called Shaeffer’s salt) (HSDB, 2006). The resulting dye is purified and isolated as the sodium salt.
Allura Red AC may be converted to the corresponding aluminium lake under aqueous conditions by
reacting aluminium oxide with the colouring matter. Undried aluminium oxide is usually freshly prepared by reacting aluminium sulfate or aluminium chloride with sodium carbonate or sodium bicarbonate, or aqueous ammonia. Following lake formation, the product is filtered, washed with water, and dried.

Molecular formula C18H14N2Na2O8S2
Formula weight 496.43
CAS Registry Number 25956-17-6
Chemical name Disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-
sulfophenyl)azo]-2-naphthalenesulfonate
Synonyms Allura Red, Allura Red AC, INS No. 129, CI Food Red 17, CI
16035 (Colour Index, 1975), Food Red No. 40, E 129, certified
by USA as FD&C Red No. 40
Assay Not less than 85% total colouring matters
Description Dark red powder or granules
Functional uses Colour
Solubility Freely soluble in water and slightly soluble in 50% ethanol

Functional use
Allura Red AC is allowed as a food colour in the EU, Japan, Australia, USA, and other regions.
Allura Red AC is used in various types of foods including beverages, frozen treats, powder mixes, gelatin products, candies, icings, jellies, spices, dressings, sauces, baked goods, and dairy products

General description
Allura Red AC is a food azo dye.
Allura Red AC is a dark red powder or granules, that is soluble in water and insoluble in ethanol.

Chemical Properties
Red powder

Uses
Color additive in foods, drugs and cosmetics. Allura Red AC is used as a food dye and has the E number E129.

Uses
Color additive in foods, drugs and cosmetics.

Pharmaceutical related
-Includes spices, extracts, colorings, flavors, etc added to food for human consumption
-Personal care products, including cosmetics, shampoos, perfumes, soaps, lotions, toothpastes, etc
-General term used only when enough information is not provided to assign a more specific beauty/cosmetics/personal_care related term
-Subcategory of personal_care, includes fragrances, shampoos, make-up, etc.; appropriate modifiers included when known
-Products specifically designed for use by babies (includes diapers, baby toys, baby clothing, baby food, etc., with appropriate modifiers)
-General term used only when enough information is not provided to assign a more specific beauty/cosmetics/personalcare related term
-Products specifically designed for use by babies (includes diapers, baby toys, baby clothing, baby food, etc., with appropriate modifiers)
-Personal care products for general use on the body (body makeup, body powder, body treatments, body cleansers)

Oil-based or oil-soluble Allura Red AC food coloring, which is in the class of synthetic food dyes, is used in limited quantities in products permitted in the food codex.
Allura Red AC is used in ice cream production, iced beverages, carbonated drinks when necessary, fruit soda production.
In addition, it is used in the production of confectionery products, jellies, flavored beverages, chewing gum varieties with sugar and low sugar, bakery products, pastry, etc. in many food production.
Apart from food, it is also used in the coloring of many products that come into contact with people, such as medicine, cosmetics, detergent products, auto care products, very small amount of agricultural products, cleaning products, colored stones, play dough, etc.
Allura Red AC gives a bright red color and this food coloring is soluble in oil.

The European Union approves Allura Red AC as a food colorant, but EU countries' local laws banning food colorants are preserved. In the United States, Allura Red AC is approved by the FDA for use in cosmetics, drugs, and food. When prepared as a lake it is disclosed as Red 40 Lake or Red 40 Aluminum Lake.
Allura Red AC is used in some tattoo inks and is used in many products, such as cotton candy, soft drinks, cherry flavored products, children's medications, and dairy products.
Allura Red AC is occasionally used to dye medicinal pills, such as the antihistamine fexofenadine, for purely aesthetic reasons.
Allura Red AC is by far the most commonly used red dye in the United States, completely replacing amaranth (Red 2) and also replacing erythrosine (Red 3) in most applications due to the negative health effects of those two dyes.

Consumer Uses
Allura Red AC is used in the following products: biocides (e.g. disinfectants, pest control products), fertilisers, plant protection products, cosmetics and personal care products, inks and toners, washing & cleaning products, air care products and textile treatment products and dyes.
Other release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Article service life
Other release to the environment of this substance is likely to occur from: outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials) and indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment).
Allura Red AC can be found in products with material based on: paper (e.g. tissues, feminine hygiene products, nappies, books, magazines, wallpaper), stone, plaster, cement, glass or ceramic (e.g. dishes, pots/pans, food storage containers, construction and isolation material), fabrics, textiles and apparel (e.g. clothing, mattress, curtains or carpets, textile toys), leather (e.g. gloves, shoes, purses, furniture), metal (e.g. cutlery, pots, toys, jewellery), wood (e.g. floors, furniture, toys) and plastic (e.g. food packaging and storage, toys, mobile phones).

Widespread uses by professional workers
Allura Red AC is used in the following products: inks and toners, cosmetics and personal care products, paper chemicals and dyes, textile treatment products and dyes, plant protection products, biocides (e.g. disinfectants, pest control products), fertilisers, washing & cleaning products, non-metal-surface treatment products, leather treatment products and water treatment chemicals.
Allura Red AC is used in the following areas: agriculture, forestry and fishing, printing and recorded media reproduction and building & construction work.

Allura Red AC is used for the manufacture of: textile, leather or fur, wood and wood products, food products and pulp, paper and paper products.
Other release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Formulation or re-packing
Allura Red AC is used in the following products: cosmetics and personal care products.
Release to the environment of this substance can occur from industrial use: formulation of mixtures and formulation in materials.

Uses at industrial sites
Allura Red AC is used in the following products: washing & cleaning products, inks and toners, paper chemicals and dyes, textile treatment products and dyes, metal surface treatment products, biocides (e.g. disinfectants, pest control products), coating products, fillers, putties, plasters, modelling clay, fertilisers, plant protection products, leather treatment products and water treatment chemicals.
Allura Red AC is used in the following areas: agriculture, forestry and fishing and building & construction work.

Allura Red AC is used for the manufacture of: textile, leather or fur, wood and wood products, pulp, paper and paper products, chemicals and plastic products.
Release to the environment of this substance can occur from industrial use: in the production of articles and in processing aids at industrial sites.

Allura Red AC consists essentially of disodium 2-hydroxy-1-(2-methoxy-5-methyl-4-sulfonato-phenylazo) naphthalene-6-sulfonate and subsidiary colouring matters together with sodium chloride and/or sodium sulphate as the principal uncoloured components.
Allura Red AC is manufactured by coupling diazotized 5-amino-4-methoxy-2-toluenesulphonic acid with 6-hydroxy-2-naphthalene sulphonic acid; Allura Red AC is described as the sodium salt.
The calcium and the potassium salt are also permitted.

IUPAC NAMES:
Allura Red AC; FD&C Red 40
disodium (5E)-5-[2-(2-methoxy-5-methyl-4-sulfonatophenyl)hydrazin-1-ylidene]-6-oxo-5,6-dihydronaphthalene-2-sulfonate
disodium 6-hydroxy-5-[(2-methoxy-3-methyl-4-sulfonatophenyl)diazenyl]naphthalene-2-sulfonate
Disodium 6-hydroxy-5-[(2-methoxy-4-sulphonato-m-tolyl)azo]naphthalene-2-sulphonate
disodium 6-hydroxy-5-[(E)-2-(2-methoxy-5-methyl-4-sulfophenyl)diazen-1-yl]naphthalene-2-sulfonate

SYNONYMS:
Allura Red AC
25956-17-6
Allura Red
Allura red AC dye
C.I. Food Red 17
Food red 17
Food Red No. 40
FD&C Red No. 40
Curry red
ALLURA RED C.I.16035
UNII-WZB9127XOA
CI 16035
Red No. 40
FD and C Red No. 40
FD & C Red no. 40
WZB9127XOA
MFCD00059526
2-Naphthalenesulfonic acid, 6-hydroxy-5-((2-methoxy-5-methyl-4-sulfophenyl)azo)-, disodium salt
E129
CI 16035; Food Red 17; Fancy Red;
Fancy Red
Disodium 6-hydroxy-5-((2-methoxy-5-methyl-4-sulfophenyl)azo)-2-naphthalenesulfonate
Allura Red 40
FDC Red 40
CHEMBL174821
Japan Food Red No. 40
Disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate
2-Naphthalenesulfonic acid, 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-, disodium salt
sodium (E)-6-hydroxy-5-((2-methoxy-5-methyl-4-sulfonatophenyl)diazenyl)naphthalene-2-sulfonate
C.I.16035
ALLURAREDAC
Japan Red 40
CCRIS 3493
HSDB 7260
disodium 6-hydroxy-5-[(E)-(2-methoxy-5-methyl-4-sulfonatophenyl)diazenyl]naphthalene-2-sulfonate
disodium;6-hydroxy-5-[(E)-(2-methoxy-5-methyl-4-sulfonatophenyl)diazenyl]naphthalene-2-sulfonate
2-Naphthalenesulfonic acid, 6-hydroxy-5-(2-(2-methoxy-5-methyl-4-sulfophenyl)diazenyl)-, sodium salt (1:2)
2-Naphthalenesulfonic acid, 6-hydroxy-5-[2-(2-methoxy-5-methyl-4-sulfophenyl)diazenyl]-, sodium salt (1:2)
Disodium 6-hydroxy-5-((6-methoxy-4-sulfo-m-tolyl)azo)-2-naphthalenesulfonate
2-Naphthalenesulfonic acid, 6-hydroxy-5-((6-methoxy-4-sulfo-m-tolyl)azo)-, disodium salt
Allura Red AC, analytical standard
Allura Red AC, Dye content 80 %
Disodium 6-hydroxy-5-((2-methoxy-4-sulphonato-m-tolyl)azo)naphthalene-2-sulphonate
Disodium 6-hydroxy-5-((2-methoxy-5-methyl-4-sulfophenyl)azo)-2-naphthalene- sulfonate
Allura Red AC 100 microg/mL in Water
6-Hydroxy-5-((2-methoxy-5-methyl-4-sulfophenyl)azo)-2-naphthalene- sulfonic acid, disodium salt
Sodium 6-hydroxy-5-((2-methoxy-5-methyl-4-sulfonatophenyl)diazenyl)naphthalene-2-sulfonate
disodium;(5Z)-5-[(2-methoxy-5-methyl-4-sulfonatophenyl)hydrazinylidene]-6-oxonaphthalene-2-sulfonate
Allyl 2,3-epoxypropyl ether
agar gum; gelidium spp. gum; agar powder; agal agal gum ; agar high gel strength bacteriological grade; aloe wood gum; bengal gelatin cas no : 9002-18-0
Allyl Bromide
3-Bromopropene; 3-Bromopropylene; 3-Bromo-1-propene; Bromoallylene; 2-Propenyl bromide; cas no:106-95-6
ALMOND OIL
ALMOND OIL Are There Benefits to Using Almond Oil on Your Face? Ancient Chinese and Ayurvedic practices have used almond oil for centuries to help soothe and soften the skin and to treat minor wounds and cuts. Today, it’s not uncommon to find almond oil in a wide variety of cosmetic and beauty products. In this article, we’ll take a closer look at the benefits of almond oil and the ways it can be used on your skin. What nutrients does almond oil have? There are two types of almond oil: sweet and bitter. Sweet almond oil is the kind that’s better suited to your skin. It contains the following nutrients: What are the benefits of using almond oil on your face? Although there’s plenty of research that touts the benefits of eating almondsTrusted Source, there’s less scientific evidence on the benefits of using almond oil on the skin. However, according to some clinical studies and anecdotal evidence, applying almond oil to the skin may have the following benefits: Reduces puffiness and under-eye circles. Because almond oil is an anti-inflammatoryTrusted Source, it may help ease swelling of the skin. Improves complexion and skin tone. Due to its emollient propertiesTrusted Source, almond oil has the potential to improve both complexion and skin tone. Treats dry skin. Almond oil has been used for centuries to treat dry skin conditions, including eczema and psoriasis. Helps reverse sun damage. Animal studiesTrusted Source have shown that vitamin E, one of the nutrients in almond oil, may help reduce damage to the skin caused by UV exposure. Reduces the appearance of scars. In ancient Chinese and Ayurvedic medicine, almond oil was used to reduce scarringTrusted Source. The vitamin E content may contribute to helping smooth the skin. Reduces the appearance of stretch marks. According to a 2016 study, sweet almond oil may be an effective treatment for preventing and reducing stretch marks. Is it safe to use almond oil on your skin? Almond oil is generally considered safe to use on your skin. However, there are some safety precautions to keep in mind. If you’re allergic to nuts, avoid using almond oil on your skin. If you’ve never used almond oil on your skin before, do a patch test before applying to your face. You can do a patch test by dabbing a small amount of almond oil on the inside of your wrist or elbow. If there are no signs of redness, itching, burning, or swelling within a few hours, the oil is likely safe to use on your skin. How to use almond oil? There are a few different ways to use almond oil on your face. Almond oil can also be used in a cleanser or moisturizer. Almond oil is known as a carrier oil, which means it has the ability to carry other essential oils more deeply into the skin. You can mix almond oil with an essential oil that’s known to benefit the skin, like rosehip, lavender, rose geranium, or lemon oil. Be sure to patch test the essential oil on the inside of your elbow or wrist before applying to your face. Add a few drops of the essential oil to each ounce of almond oil and mix well. Apply the oil mixture to damp skin and rinse with warm water. Because it’s an oil cleanser, you may need to rinse twice to remove any residue. As a moisturizer You can also use almond oil as a moisturizing oil. To do so, wash and dry your skin as usual. Then, gently pat a small amount of almond oil — about half the size of a dime — onto your face with your fingertips, and let it absorb into your skin. If you’re using it as a moisturizer, you don’t need to rinse it off. The bottom line Almond oil has been used for thousands of years to soothe, soften, and repair the skin. Due to its anti-inflammatory and emollient properties, as well as its high nutrient content, it’s still a popular skin care ingredient today. It’s generally considered safe, but if you’re allergic to nuts, don’t use almond oil on your skin. If you’ve never tried almond oil before, do a patch test before applying it to your face. If you’re unsure if almond oil is right for your skin, talk to your doctor or dermatologist before using it. Health Benefits and Uses of Almond Oil This article uncovers how almond oil may benefit your health and how it can be used as a multipurpose, non-toxic beauty treatment. What Is Almond Oil? Refined vs Unrefined Almond Oil After harvesting, almonds are hulled and dried before different methods are used to extract their oil. Refined almond oil is extracted from almonds using high-heat processing and chemicals. This method negatively affects the nutritional value of the oil, as many of the nutrients found in raw almond oil are destroyed during high-heat or chemical treatments (1). While this method results in a less nutritious oil, refined almond oil can withstand much higher temperatures and is less expensive than the unrefined type, making it a more cost-effective option for consumers. Unrefined almond oil is made by pressing raw almonds without the use of high heat or chemical agents. This low-heat process helps almond oil retain much of its nutrient content, making unrefined almond oil a better choice for culinary uses. SUMMARY Almond oil is extracted from the seed of the almond fruit. The methods used to produce refined almond oil destroy certain nutrients. Thus, unrefined almond oil is a better choice for culinary purposes. Almond Oil Nutrition Although almond oil is not as rich in nutrients as whole almonds, it has nutritional benefits. Nutritional Breakdown Below is the nutritional breakdown of 1 tablespoon (14 grams) of almond oil (2). Most of the health benefits related to almond oil stem from its high amount of healthy fats. Fatty Acid Breakdown Here are the proportions of fatty acids found in almond oil: SUMMARY Almond oil is a good source of the antioxidant vitamin E and unsaturated fats. Diets rich in unsaturated fat may provide some health benefits, including a reduced risk of heart disease and obesity, and they may aid weight loss. Potential Health Benefits of Almond Oil Whole almonds are thought help lower blood pressure and cholesterol levels and aid in weight loss, and almond oil may be good for your health as well. In fact, almond oil has been linked to a wide range of potential health benefits, including lowering the risk of heart disease and stabilizing blood sugar levels (10, 11Trusted Source, 12Trusted Source). May Help Keep Your Heart Healthy Almond oil consists of 70% monounsaturated fat, which has been researched for its effects on heart health. Both almonds and almond oil have also been shown to lower levels of “bad” LDL cholesterol and total cholesterol (14Trusted Source). In one small study, a diet rich in almond oil significantly lowered both LDL and total cholesterol levels, while raising HDL cholesterol by 6% (15). High in Antioxidants Almond oil is a great source of the potent antioxidant vitamin E. Adding almond oil to your diet may help keep your blood sugar stable. In one study, participants who consumed a breakfast with added almond oil had lower blood sugar, both after the meal and throughout the day, compared to participants who did not eat almond oil (22Trusted Source). What’s more, the participants who consumed almond oil felt fuller after their meal, leading them to consume less throughout the day. A diet that includes a healthy amount of whole almonds has been shown to help people shed excess weight. Likewise, adding almond oil to your diet may help you lose fat. SUMMARY Almond oil is rich in vitamin E and unsaturated fats. Adding almond oil to your diet may promote heart health, aid weight loss and keep blood sugar levels stable. Almond Oil Beauty Benefits Almond oil is a popular ingredient in natural beauty products. This mild and soothing oil is beneficial for both the skin and hair. This quality makes almond oil an excellent choice to keep the skin, hair and scalp soft and hydrated (25Trusted Source). The moisturizing effects of almond oil may be especially helpful for people who have dry or sensitive skin. Almond oil is packed with vitamin E, which may help protect the skin from sun damage and premature aging. SUMMARY Almond oil may help protect the skin from sun damage and prevent stretch marks. It can be used in many ways, including as a moisturizer, massage oil or makeup remover. How to Use Almond Oil Almond oil is a multipurpose product that can be used as both a food and natural skin and hair care product. In the Kitchen Almond oil is a mild, nutty-tasting oil that makes a great addition to many dishes. Unrefined almond oil should not be used in cooking, as high temperatures can destroy its nutritional value. Rather, this type of almond oil should be treated more as a finishing oil and added to foods after the cooking process is completed. However, refined almond oil has a higher smoke point of 420°F (215°C) and can be used for cooking methods like roasting and sautéing. It’s less expensive and more heat-tolerant than the unrefined kind, as the refinement process destroys much of the nutrients in unrefined almond oil. Here are several ways to use unrefined almond oil: As a tasty salad dressing: Combine unrefined almond oil with apple cider vinegar and chopped herbs. To add a nutty flavor to meals: Drizzle almond oil over your favorite side dish to give it an extra kick. Over pasta: Add a bit of almond oil to your pasta to add a boost of healthy fats. As Part of Your Beauty Routine If you are looking to swap out some of your skin and hair products for more natural, non-toxic options, almond oil is a great way to go. Almond oil is less expensive than most commercially made moisturizers and doesn’t contain any harmful ingredients. Furthermore, it’s a multipurpose beauty product that can be used both on the skin and hair. Below are some ways to add almond oil to your skin or hair care routine. As a moisturizer: Almond oil is a perfect moisturizer for sensitive skin. Apply it to extra-dry spots: Rub almond oil on the elbows, feet and any other areas that tend to get dry. To make a homemade hair mask: Make a hydrating hair mask by mixing almond oil with mashed avocado and then smoothing it on damp hair. Combine it with essential oils: Use almond oil as a carrier oil to dilute essential oils when you’re applying them to the skin. SUMMARY When using unrefined almond oil in the kitchen, don’t heat it. Instead, use it as a finishing oil. You can also use almond oil as a beauty product. It makes an excellent moisturizer for both the skin and hair. The Bottom Line Almond oil is a versatile fat that can be used as a food or natural beauty product. Almond oil may promote heart health, stabilize blood sugar levels, prevent free radical damage and help you maintain a healthy weight. Unrefined almond oil retains more nutrients than refined almond oil and is better for culinary uses. Just make sure you don’t heat it, as doing so will destroy some of its nutrients.. People can use almond oil to moisturize the skin and help treat conditions such as eczema. In this article, we look at how almond oil is made, the evidence of its benefits to the skin, and the risk of side effects. What is almond oil? There is little direct evidence that almond oil benefits the skin. There are two main types of almond oil — bitter and sweet — and manufacturers make them from different varieties of the Prunus dulcis tree. This tree is common in Mediterranean countries, and almonds are its seeds. Manufacturers extract almond oil by pressing or grinding almonds. They may use heat or chemical solvents to refine the oil. Cold-pressed almond oil is extracted at a low temperature without solvents, and cold-pressed oils may be particularly beneficial for the skin. Possible benefits of almond oil for the skin Almond oil mostly remains at the surface of the skin, so any effects take place there. Below, we describe common uses of almond oil on the skin and what researchers have to say. Dermatitis, eczema, or dry skin Almond oil is both a moisturizer and an emollient. Many people use almond oil to help treat common skin conditions, such as dermatitis and eczema. In general, there is good evidence that moisturizers improve eczema. One study showed that a moisturizer containing sweet almond oil reduced the symptoms of moderate or severe hand dermatitis. Another showed that emollients containing refined almond oil helped relieve itching and improved the skin’s barrier function in people with xerotic eczema, also known as asteatotic eczema, which causes the skin to become particularly dry, cracked, and itchy. Some people with acne use almond oil as a moisturizer, often alongside topical acne medication. The Food and Drug Administration (FDA) caution that oil from moisturizers may make acne worse, but some doctors recommend moisturizing. Stretch marks of pregnancy Pregnant women looking to prevent stretch marks or reduce associated itching might try massaging almond oil into their abdomens. One study found that massage with bitter almond oil can reduce stretch marks, but that the application of the oil without massage did not. Another study indicated that sweet almond oil cream may reduce the itchiness of stretch marks and their spread. Overall, the evidence that almond oil helps with stretch marks is limited, and further research is necessary. Anti-aging and UV protection Almond oil may help reduce signs of aging and restore or support the barrier function of the skin. Some people also believe that almond oil may help protect the skin from the damaging effects of ultraviolet radiation, though there is very limited evidence for this. Instead, the Centers for Disease Control and Prevention (CDC) recommend covering the skin when outdoors, staying in the shade, and using sunscreen. Circles under the eyes and skin lightening Some people rub almond oil under their eyes to reduce bags or dark circles. There is little reliable scientific evidence for this or for almond oil helping to lighten patches of darker skin. There are few known risks associated with using almond oil on the skin. First, it is a good idea to perform a patch test on a small area to check for an adverse reaction. People with sensitive skin should perform the test over several days to give the body more time to respond. Anyone with a nut allergy should not use almond oil. Also, having eczema can increase the likelihood of having allergies, so people with eczema may want to be extra careful when trying almond oil. One study linked preterm delivery to the daily application of almond oil during pregnancy. However, confirming this risk will require further research. Summary Although people have been using almond oil on the skin for a long time, there is very little evidence that it works better than any other moisturizer or emollient in most cases. Moisturizers and emollients can help relieve many skin conditions, and the choice of almond oil is often down to personal preference. A range of almond oil products is available for purchase online. 10 Health Benefits of Almond Oil Share Pin It The oils you stock in your pantry fill a variety of cooking needs. Whether you are sautéing onions in olive oil or adding almond oil to cookies, oil is an indispensable kitchen staple. Olive and nut oils are versatile and neutral, making them a common choice for everyday use. However you use oil in your kitchen, you likely understand its importance and feel its absence when you run out. What you may not realize are the amazing health benefits some of these oils have. Almond oil, in particular, packs a collection of health benefits when incorporated into your diet and beauty routine. If you have yet to try almond oil, there are quite a few reasons to consider switching. What Is Almond Oil? As its name suggests, almond oil is extracted from almond nuts. The characteristics of an almond oil vary depending on the way it is extracted, processed and the type of almonds used. Almond Oil Extraction There are two common methods used to make almond oil: chemical extraction or expeller pressed. Though chemical extraction produces the highest oil yield, it does so at the sacrifice of the almond oil’s taste, quality and nutrients. Expeller-pressed methods produce higher quality products because they allow the oils to maintain their physical and chemical properties better. As a consumer, choosing an expeller-pressed oil can help ensure you are making the most of the nutritional and quality benefits available. After extraction, some almond oils undergo additional processing to make them “refined.” These steps utilize high temperatures, high pressures, chemicals and deodorization measures to give the almond oil several advantages, including the following: The oil is tasteless. The oil has a higher smoke point than unrefined oils. The oil maintains its nutrient content. Unrefined oils, like a roasted almond oil, do not undergo these processing steps. As a result, they maintain lower smoke points and more full-bodied flavors. Both refined and unrefined almond oil can be beneficial for health applications depending on the taste and smoke point you need. Sweet vs. Bitter Almond Oil It is important to note that almond oils made for consumption are considered sweet almond oils. A type of oil known as bitter almond oil can be made from a different type of almond. Bitter almond oil is sometimes used in soap and massage therapy, but it has toxic properties when ingested. All of the almond oil benefits we describe are based on sweet almond oil. Health Benefits of Almond Oil Almond oil offers health benefits, both internally with a healthy diet and externally with a topical beauty routine. Whether you cook with almond oil or use it on your hair and skin, here are some the benefits you may see: Vitamin E is essential to help your body function well, and almond oil is a great way to add it to your diet. In fact, just one tablespoon of almond oil contains 27 percent of your recommended daily vitamin E intake. When you utilize almond oil in your cooking, you can help protect and nourish your body with powerful vitamin E. Studies show that the monounsaturated fats in almond oil can help stabilize blood sugar in adults with type 2 diabetes. Making simple diet changes like adding almond oil to your cooking, can help keep your blood sugar stable and healthy.. Monounsaturated fats like those in almond oil support several important functions, including: 5. Moisturizing Properties When applied to the skin, almond oil has emollient properties. These properties allow almond oil to soften and smooth skin over time. Accordingly, many bath oil, lipstick and skin cleansing products include almond oil to help moisturize your skin. Using products with almond oil as an ingredient or applying the oil directly to your skin can support smooth and supple skin. Because of its moisturizing properties, almond oil has also been used to treat dry skin conditions like eczema and psoriasis for centuries. Common topical treatments for these conditions include steroid creams, which have concerning long-term side effects. Many have turned to almond oil as a natural supplemental solution. The fatty acids in almond oil help to repair the skin’s natural barrier, lock in more moisture and reduce irritation. Regardless of your skin type, incorporating almond oil into your skin routine can help increase moisture and improve your skin’s appearance. Here are some simple ways to use almond oil for your skin: Sweet almond oil scrub: Combine two tablespoons of sweet almond oil with one tablespoon of white sugar to make a quick and simple exfoliating scrub. To use, massage the scrub into your skin with some warm water and rinse. Sweet almond massage oil: Mix sweet almond oil with a few drops of lavender essential oil and massage into the skin. Sweet almond lotion boost: To enhance your lotion’s moisturizing properties, add a few drops of almond oil to the bottle and use normally. Sweet almond under-eye treatment: Gently massage a few drops of sweet almond oil underneath your eyes to help soften and moisturize the area. 6. Increased Hair Health Using almond oil for your hair provides advantages for both hair appearance and hair health. When incorporated into a shampoo, almond oil helps give hair a natural sheen. At a cellular level, almond oil works to fill gaps in your hair, which contributes to smoother and softer hair over time. Though scientific studies have not confirmed that you can use almond oil for hair growth, it may still help your hair grow longer and stronger. Nut oils like almond oil help to lubricate your hair and protect it from breakage or split ends. In addition to this, the Mayo Clinic reports your diet and vitamin intake are major contributing factors to healthy hair. Consuming almond oil and incorporating it into your hair care can provide several of the necessary ingredients for hair growth. In more ways than one, almond oil can help you set yourself up for healthy hair growth success. Studies have shown that topical almond oil application can help prevent skin damage caused by UV radiation and help slow the aging process. Almond oil can help protect your cells by reducing DNA damage from UV rays and prevent the chemical and structural changes they can make. Applying almond oil to your face and body in tandem with sunscreen can help prevent sun damage and premature aging to keep your skin looking its best. Almond oil can aid with stretch marks in more than one way. Studies have shown that almond oil can both prevent stretch marks in pregnant women as well as reduce itching experienced from stretch marks. Applying almond oil topically can help improve your skin’s elasticity and keep it well-hydrated. This can be especially helpful in preventing stretch marks during the rapid growth in the later trimesters of pregnancy. Though no treatment can fully prevent stretch marks, almond oil can provide vital moisture to help your skin adapt through major changes. Almond oil can be a safe and simple solution to help remove excess earwax build-up. Warm up a few drops of almond oil to help soften earwax and dislodge it from the ear. While there are other influential factors behind acne, almond oil is equipped to fight both inflammation and vitamin deficiency. Its anti-inflammatory and antioxidant properties may help reduce inflammation, boost antioxidant levels and address scarring. Using almond oil for acne may provide a natural remedy to help calm and smooth your skin. Incorporating almond oil into your diet and beauty regime can provide numerous health benefits. When it comes to maximizing benefits, not all almond oils are the same. The production process used and ingredient quality can make all the difference. DIY COSMETICS – ALMOND OIL, THE VITAMIN SPA TREATMENT FOR YOUR SKIN SO WHAT IS ALMOND OIL EXACTLY? Almond oil is cold pressed from ripe almond fruit. When pressing, it’s important to keep the proportion of bitter almonds low to make sure the oil tastes good afterwards. The chopped almonds are gently cold pressed and filtered several times to obtain clear almond oil. Cold pressing is important because heat would destroy the valuable nutrients instantly. You can also buy refined or extracted almond oil, which are cheaper but contain less nutrients. Almonds on table WHY DOES MY SKIN NEED ALMOND OIL? The high level of oleic acid in almond oil is very good for skin. It keeps it supple and acts as a moisturizer. In addition to valuable fatty acids, almond oil also contains numerous important vitamins and minerals in a combination that promotes smooth skin and helps to protect and renew skin cells. Almond oil has a fragrance that is stimulating without being overpowering. Almond oil has a low UV protection factor, but will protect you on the first sunny days of spring. ALMOND SKIN – HOW TO MIX YOUR OWN ALMOND OIL FACE CREAM Our face cream boosts vitamin-rich almond oil with aloe vera and coconut oil. Here’s a list of the ingredients and the natural properties they bring to your skin: 1. 12 ml pure, cold pressed almond oil We’ve already outlined why almond oil should be part of your skin care regime; now it’s time for the details. Almond oil is very rich in vitamins A, B, D and E and also contains potassium, magnesium and calcium. It is rich in unsaturated fatty acids and penetrates deep to make your skin feel softer. The 19 percent linoleic acid it contains protects skin from UV radiation, adds moisture and soothes skin. The palmitic acid (saturated fatty acid) supports the skin barrier to protect us from external influences. Almond oil has a very low acidity, making it mild and beneficial for skin (acid-alkali balance). Step 1 – the oil phase Put the coconut oil, jojoba oil, almond oil and Emulsan in a glass. Today's agenda is to bring to spotlight the many benefits of almond oil, apart from it being a good-for-your-hair ingredient. Besides coconut oil, almond oil is also widely used as base or carrier oil by many hair oil manufacturing companies. Pure almond oil is excellent for hair and does wonders to dry and lifeless skin, nourishing it from root to tip. Some of the most noticeable benefits are stated below:1. Almond oil is excellent for treating dandruff and hair damage. 7. Sweet almond oil can also be used in cooking. almond oil 8. Almond oil can also be used to massage the body and facilitate muscle relaxation. almond oil How to Use Almond Oil According to a leading beauty expert Suparna Trikha, "Almond oil is great for dry skin. Massage about a teaspoon of almond oil on the dry areas." A mix of pure castor oil and almond oil is "Almond oil stimulates collagen. It is enriched with vitamin E which makes it great for both skin and hair. Those who have oily skin can use 2-3 drops of almond oil and apply it on their skin once a week. For dry skin I would recommend a few drops of almond oil massaged onto the skin 2-3 times a week. Also note that topical application of almond oil on facial skin should not exceed more than thrice a week as it can clog pores and trigger acne," notes Dr. Deepali Bharadwaj, a Delhi-based dermatologist and beauty expert. A blend of rosewater and almond oil is excellent as a skin nourishment. It can be used as a face and body moisturiser as well. COMMENTSBeauty Tip: Applying almond oil on lashes right before sleeping will make them thicker, shinier and longer. I have realized that a lot of you don’t know what the difference is between sweet almond oil and bitter almond oil. We use both in the making of our products. I wanted to help you understand more about them and how they are different. Because they are indeed very different. Note: The image above shows a vial of sweet almond oil (a fixed oil) on the left and natural benzaldehyde (which can be derived from bitter almond). Edible almonds surround both jars. What is the difference between Sweet Almond oil and Bitter Almond oil? Sweet almond oil is a fixed oil while bitter almond oil is considered an essential oil. Fixed oils are the carrier oils we use as a base oil whereas essential oils are extracts from plant material. We use sweet almond oil in our most delicate products: Our Face Serums. Both Anti- Aging and Susan’s Own each have their own unique blend of essential oils to benefit particular skin types or conditions. They do not smell like Almond at all even though sweet almond oil is used as their base oil. The two oils are very different from a skincare perspective as well. Sweet almond oil is an excellent lubricant and is beneficial for dry, sensitive skin. Often massage therapists and estheticians use sweet almond oil with their clients because it is so easily absorbed. Sweet almond oil is primarily composed of olein and also contains linoleic acid and glucosides. With its high level of protein, vitamins, and minerals it is nourishing and revitalizing. We use it as the carrier oil in our Susan’s Own Face Serum and Anti-aging Face Serum. Sweet almond oil is one of the most versatile, multipurpose skincare oils available. Sweet Almond oil is a fixed oil that is moisturizing and good for dry and sensitive skin. Great for massage and face care. Bitter Almond oil (or natural benzaldehyde) is an essential oil that provides wonderful scent
ALMOND OIL PEG-6 ESTERS ( N° CAS : 124046-50-0)
EC / List no.: 287-390-8; CAS no.: 85507-69-3;N° EINECS/ELINCS : 287-390-8 / 305-181-2; EC / List no.: 305-181-2; CAS no.: 94349-62-9. Autres langues : Aloe Vera Extrakt, Aloe vera extract, Estratto di aloe vera, Extracto de aloe vera; Nom INCI : ALOE BARBADENSIS EXTRACT; Aloe barbadensis, ext; Aloe vera, ext.; Aloe Barbadensis; Aloe Vera; Aloe estratto. Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état. L'Aloe vera est une espèce d'aloès (genre Aloe) d'origine incertaine mais cultivée de longue date en région méditerranéenne, Afrique du Nord, aux îles Canaries et au Cap-Vert. Utilisé depuis l'Antiquité, l’Aloe vera a été adopté dans les médecines traditionnelles de nombreuses régions chaudes du monde, d'Europe, du Moyen-Orient et d'Afrique du Nord d'abord, puis d'Inde, de Chine et d'Asie essentiellement après le xe siècle et d'Amérique après le xviie siècle. Actuellement, le gel d'aloès entre principalement dans la composition de cosmétiques ou de boissons.Dénominations L'Aloe vera est aussi appelée aloès des Barbades. À La Réunion, elle est appelé aloès amer ou mazambron, et aux Antilles françaises, alwè ou lalwè en créole. Cette espèce a aussi été désigné par les noms scientifiques suivants : Aloe barbadensis Mill., Aloe barbadensis var. chinensis Haw., Aloe chinensis (Haw.) Baker, Aloe perfoliata var. vera L., Aloe vera var. chinensis (Haw.) A. Berger et Aloe vulgaris Lam. Le nom générique Aloe vient du grec ancien ἀλόη, aloès, d'origine dravidienne, passé en latin aloe n . La plante appelée aloe était connue des auteurs de l'Antiquité gréco-romaine comme Pline l'Ancien et Dioscoride et devait désigner l'espèce Aloe vera dont le suc était utilisé en pharmacie. L'épithète spécifique vera dérive du latin vērus (fem. vera) « vrai, authentique ».L’Aloe vera est une plante succulente, aux feuilles persistantes, aux racines peu profondes, poussant en touffes et même en colonies, en raison de son aptitude à produire des drageons. La tige à base ligneuse, est courte (au plus 50 cm de haut) et porte à l'extrémité des feuilles alternes, enchâssées les unes dans les autres, distiques (particulièrement pour les jeunes plants) puis en vieillissant en rosette. La feuille succulente et sessile est érigée, vert pâle à glauque (parfois tachetée de blanc), de forme linéaire-lancéolée, se rétrécissant régulièrement de la base à l'apex, relativement longue (jusqu'à 10 × 80 cm, mais plus courte en Asie8, 4-5(-7) x 15-35(-50) cm (on remarquera la grande largeur, de 5 à 10 cm, des feuilles à leur base). La marge est dentée-épineuse, avec des épines souples pâles, écartées de 1−1,5 cm. L'inflorescence terminale est un racème cylindrique, érigé, en général non ramifié, de 100–150 cm de haut. L'axe (ou rachis) porte des écailles parcourues par 3 veines pourpres proéminentes confluentes à l'extrémité. La fleur est construite sur le plan trimère typique des Asparagales et Liliales (monocotylées pétaloïdes) : - 6 tépales pétaloïdes, connées (soudées) de la base jusqu'à mi-longueur, aux lobes linéaires à oblongues-lancéolés, de couleur jaune pâle (parfois maculé de rouge), de 2,5 cm de long - 6 étamines légèrement exsertes - 1 style exserte. La floraison a lieu en hiver et au printemps. Le fruit est une capsule. Linné indique que Aloe perfoliata var. vera a des feuilles épineuses et que son habitat se trouve en Inde. Le botaniste néerlandais Burman, élève de Linné, complète la description de son maître qui n'avait pu observer la fleur (Flora Indica). Classé par Linné et Burman parmi les Hexandria Monogyna (plantes à 6 étamines, 1 carpelle), l'espèce fut par la suite classée dans la famille des Liliaceae par Engler (1924), dans les Aloeaceae dans la classification de Cronquist (1981) et de Takhtajan et dans les Asphodelaceae par Thorne (1992) et Dahlgren (1997). La classification phylogénétique APG III (Angiosperm Phylogeny Group) l'établit dans la famille des Xanthorrhoéacées, ordre des Asparagales11. La séparation effectuée sur des bases morphologiques entre les Liliales et les Asparagales a été remise en cause par les études moléculaires. Les Asparagales furent redéfinies par l'inclusion de taxons provenant des Liliales et l'exclusion de quelques taxons. La famille des Xanthorrhoéacées, créée en 1829 par le naturaliste belge Du Mortier, pour des plantes monocotylédones du genre Xanthorrhoea d'Australie, fut élargie par la classification APG III (2009) pour inclure des genres autrefois placés dans les familles Asphodelaceae et Hemerocallidaceae. C'est ainsi que Aloe vera passa au fil des études et de l'approfondissement des connaissances, des Liliacées, aux Aloeaceae, aux Asphodelacées puis aux Xanthorrhoéacées. L'origine des Aloe vera est obscure en raison de la longue histoire de sa culture remontant à l'Antiquité et de l'absence de population sauvage. Pour les auteurs de Flora of China, Aloe vera est étroitement apparentée à l'espèce Aloe indica Royle, croissant au nord de l'Inde, au Népal et en Thaïlande. Elle en diffère essentiellement par la couleur des fleurs, jaune pâle chez A. vera et rouge chez A. indica. La couleur des fleurs étant variable chez les Aloe, les auteurs en concluent que A. vera et A. indica sont conspécifiques. Par contre, pour Leonard Newton, « l'origine exacte de A. vera est incertaine, mais il est vraisemblable que ce soit la Péninsule Arabique, qui est aussi l'aire d'origine de l'espèce très proche et peut-être conspécifique, Aloe officinalis Forssk. » L’Aloe vera est une plante des milieux arides qui stocke l'eau dans ses feuilles. Aussi, l'eau est-elle le principal constituant de la feuille et représente de 98 à 99 % de son poids. La matière sèche qui ne représente donc que 1 à 2 %, est constituée à 60 % de polysaccharides. La feuille d’Aloe vera contient plus de 75 composés actifs (polysaccharides, composés phénoliques, acides organiques) ainsi que 20 minéraux, 20 acides aminés et 12 vitamines. Les principaux métabolites secondaires sont des composés phénoliques de type anthrone et chromone. Mais malgré les très nombreuses études, les activités thérapeutiques n'ont pas bien été bien corrélées avec les composés. la fraction glucidique est formée de monosaccharides (glucose, xylose...), de polysaccharides de réserves (acémannane, aloéride, cellulose...) stockés dans le protoplasme des cellules14. L'acémannane, le principal glucide du gel, est un polymère à longue chaîne de glucomannanes14, avec un ratio de 15 unités mannosyles pour une unité glucosyle. Il présente des acétylations des résidus mannose au niveau du carbone C2 ou C3. la fraction protéique est formée d'acides aminés, de glycoprotéines (alprogène, aloctine A et B, vérectine) la fraction lipidique (5 % de la du poids sec de la pulpe) est composée de stérols (cholestérol, campestérol, β-sitostérol, des phytostérols), des triterpènes (lupéol), des triglycérides et des phospholipides. les minéraux prépondérants sont le potassium, le calcium, le sodium, le magnésium et le phosphore. les vitamines principales sont la vitamine C et les vitamines B1, B2, B3 et B6. des acides organiques comme les acide malique, succinique, urique, isovalérique, d'acide-phénols comme l'acide cinnamique, vanillique, citrique, férulique1. des anthraquinones (aloïne, isobarbaloïne, anthranol, aloe-émodine, émodine etc.). L'aloïne est situé dans la couche externe de la feuille et constitue près de 30 % de l'exsudat de la feuille14. des chromones : aloésone, aloérésine. des saponines, esters de phtalate, hormones de croissance. Le résidu sec de suc d'aloès contient de 15 à 40 % de dérivés hydroxy-anthracéniques1. L'aloïne est très largement majoritaire. En s'hydrolysant dans le tube digestif, elle libère l'aloe-émodine. L'aloïne a des propriétés laxatives et l'aloe-émodine est un stimulant irritant du tube digestif, avec des propriétés antifongiques, antibactériennes, hépatoprotectrices, antivirales et antitumorales16. Un métabolite de l’isobarbaloïne, l'aloe-émodine-9-anthrone, est un puissant agent laxatif. Le suc contient aussi une fraction résineuse, à partir de laquelle ont été isolés de C-glucosides en C-8 : l'aloésine et l'aloérésine. Le gel d'aloès est très riche en eau et ne semble pas renfermer de composés très spécifiques1. Contrairement au suc, il ne renferme pas de dérivés anthracéniques. Il contient des acides gras, des stérols, acide-phénols, alcools, acide organiques etc.
ALOE BARBADENSIS EXTRACT- aloe vera Extrait d'aloès
EC / List no.: 287-390-8; CAS no.: 85507-69-3;N° EINECS/ELINCS : 287-390-8 / 305-181-2; EC / List no.: 305-181-2; CAS no.: 94349-62-9. Autres langues : Aloe Vera Extrakt, Aloe vera extract, Estratto di aloe vera, Extracto de aloe vera; Nom INCI : ALOE BARBADENSIS EXTRACT; Aloe barbadensis, ext; Aloe vera, ext.; Aloe Barbadensis; Aloe Vera; Aloe estratto. Ses fonctions (INCI) Agent d'entretien de la peau : Maintient la peau en bon état. L'Aloe vera est une espèce d'aloès (genre Aloe) d'origine incertaine mais cultivée de longue date en région méditerranéenne, Afrique du Nord, aux îles Canaries et au Cap-Vert. Utilisé depuis l'Antiquité, l’Aloe vera a été adopté dans les médecines traditionnelles de nombreuses régions chaudes du monde, d'Europe, du Moyen-Orient et d'Afrique du Nord d'abord, puis d'Inde, de Chine et d'Asie essentiellement après le xe siècle et d'Amérique après le xviie siècle. Actuellement, le gel d'aloès entre principalement dans la composition de cosmétiques ou de boissons.Dénominations L'Aloe vera est aussi appelée aloès des Barbades. À La Réunion, elle est appelé aloès amer ou mazambron, et aux Antilles françaises, alwè ou lalwè en créole. Cette espèce a aussi été désigné par les noms scientifiques suivants : Aloe barbadensis Mill., Aloe barbadensis var. chinensis Haw., Aloe chinensis (Haw.) Baker, Aloe perfoliata var. vera L., Aloe vera var. chinensis (Haw.) A. Berger et Aloe vulgaris Lam. Le nom générique Aloe vient du grec ancien ἀλόη, aloès, d'origine dravidienne, passé en latin aloe n . La plante appelée aloe était connue des auteurs de l'Antiquité gréco-romaine comme Pline l'Ancien et Dioscoride et devait désigner l'espèce Aloe vera dont le suc était utilisé en pharmacie. L'épithète spécifique vera dérive du latin vērus (fem. vera) « vrai, authentique ».L’Aloe vera est une plante succulente, aux feuilles persistantes, aux racines peu profondes, poussant en touffes et même en colonies, en raison de son aptitude à produire des drageons. La tige à base ligneuse, est courte (au plus 50 cm de haut) et porte à l'extrémité des feuilles alternes, enchâssées les unes dans les autres, distiques (particulièrement pour les jeunes plants) puis en vieillissant en rosette. La feuille succulente et sessile est érigée, vert pâle à glauque (parfois tachetée de blanc), de forme linéaire-lancéolée, se rétrécissant régulièrement de la base à l'apex, relativement longue (jusqu'à 10 × 80 cm, mais plus courte en Asie8, 4-5(-7) x 15-35(-50) cm (on remarquera la grande largeur, de 5 à 10 cm, des feuilles à leur base). La marge est dentée-épineuse, avec des épines souples pâles, écartées de 1−1,5 cm. L'inflorescence terminale est un racème cylindrique, érigé, en général non ramifié, de 100–150 cm de haut. L'axe (ou rachis) porte des écailles parcourues par 3 veines pourpres proéminentes confluentes à l'extrémité. La fleur est construite sur le plan trimère typique des Asparagales et Liliales (monocotylées pétaloïdes) : - 6 tépales pétaloïdes, connées (soudées) de la base jusqu'à mi-longueur, aux lobes linéaires à oblongues-lancéolés, de couleur jaune pâle (parfois maculé de rouge), de 2,5 cm de long - 6 étamines légèrement exsertes - 1 style exserte. La floraison a lieu en hiver et au printemps. Le fruit est une capsule. Linné indique que Aloe perfoliata var. vera a des feuilles épineuses et que son habitat se trouve en Inde. Le botaniste néerlandais Burman, élève de Linné, complète la description de son maître qui n'avait pu observer la fleur (Flora Indica). Classé par Linné et Burman parmi les Hexandria Monogyna (plantes à 6 étamines, 1 carpelle), l'espèce fut par la suite classée dans la famille des Liliaceae par Engler (1924), dans les Aloeaceae dans la classification de Cronquist (1981) et de Takhtajan et dans les Asphodelaceae par Thorne (1992) et Dahlgren (1997). La classification phylogénétique APG III (Angiosperm Phylogeny Group) l'établit dans la famille des Xanthorrhoéacées, ordre des Asparagales11. La séparation effectuée sur des bases morphologiques entre les Liliales et les Asparagales a été remise en cause par les études moléculaires. Les Asparagales furent redéfinies par l'inclusion de taxons provenant des Liliales et l'exclusion de quelques taxons. La famille des Xanthorrhoéacées, créée en 1829 par le naturaliste belge Du Mortier, pour des plantes monocotylédones du genre Xanthorrhoea d'Australie, fut élargie par la classification APG III (2009) pour inclure des genres autrefois placés dans les familles Asphodelaceae et Hemerocallidaceae. C'est ainsi que Aloe vera passa au fil des études et de l'approfondissement des connaissances, des Liliacées, aux Aloeaceae, aux Asphodelacées puis aux Xanthorrhoéacées. L'origine des Aloe vera est obscure en raison de la longue histoire de sa culture remontant à l'Antiquité et de l'absence de population sauvage. Pour les auteurs de Flora of China, Aloe vera est étroitement apparentée à l'espèce Aloe indica Royle, croissant au nord de l'Inde, au Népal et en Thaïlande. Elle en diffère essentiellement par la couleur des fleurs, jaune pâle chez A. vera et rouge chez A. indica. La couleur des fleurs étant variable chez les Aloe, les auteurs en concluent que A. vera et A. indica sont conspécifiques. Par contre, pour Leonard Newton, « l'origine exacte de A. vera est incertaine, mais il est vraisemblable que ce soit la Péninsule Arabique, qui est aussi l'aire d'origine de l'espèce très proche et peut-être conspécifique, Aloe officinalis Forssk. » L’Aloe vera est une plante des milieux arides qui stocke l'eau dans ses feuilles. Aussi, l'eau est-elle le principal constituant de la feuille et représente de 98 à 99 % de son poids. La matière sèche qui ne représente donc que 1 à 2 %, est constituée à 60 % de polysaccharides. La feuille d’Aloe vera contient plus de 75 composés actifs (polysaccharides, composés phénoliques, acides organiques) ainsi que 20 minéraux, 20 acides aminés et 12 vitamines. Les principaux métabolites secondaires sont des composés phénoliques de type anthrone et chromone. Mais malgré les très nombreuses études, les activités thérapeutiques n'ont pas bien été bien corrélées avec les composés. la fraction glucidique est formée de monosaccharides (glucose, xylose...), de polysaccharides de réserves (acémannane, aloéride, cellulose...) stockés dans le protoplasme des cellules14. L'acémannane, le principal glucide du gel, est un polymère à longue chaîne de glucomannanes14, avec un ratio de 15 unités mannosyles pour une unité glucosyle. Il présente des acétylations des résidus mannose au niveau du carbone C2 ou C3. la fraction protéique est formée d'acides aminés, de glycoprotéines (alprogène, aloctine A et B, vérectine) la fraction lipidique (5 % de la du poids sec de la pulpe) est composée de stérols (cholestérol, campestérol, β-sitostérol, des phytostérols), des triterpènes (lupéol), des triglycérides et des phospholipides. les minéraux prépondérants sont le potassium, le calcium, le sodium, le magnésium et le phosphore. les vitamines principales sont la vitamine C et les vitamines B1, B2, B3 et B6. des acides organiques comme les acide malique, succinique, urique, isovalérique, d'acide-phénols comme l'acide cinnamique, vanillique, citrique, férulique1. des anthraquinones (aloïne, isobarbaloïne, anthranol, aloe-émodine, émodine etc.). L'aloïne est situé dans la couche externe de la feuille et constitue près de 30 % de l'exsudat de la feuille14. des chromones : aloésone, aloérésine. des saponines, esters de phtalate, hormones de croissance. Le résidu sec de suc d'aloès contient de 15 à 40 % de dérivés hydroxy-anthracéniques1. L'aloïne est très largement majoritaire. En s'hydrolysant dans le tube digestif, elle libère l'aloe-émodine. L'aloïne a des propriétés laxatives et l'aloe-émodine est un stimulant irritant du tube digestif, avec des propriétés antifongiques, antibactériennes, hépatoprotectrices, antivirales et antitumorales16. Un métabolite de l’isobarbaloïne, l'aloe-émodine-9-anthrone, est un puissant agent laxatif. Le suc contient aussi une fraction résineuse, à partir de laquelle ont été isolés de C-glucosides en C-8 : l'aloésine et l'aloérésine. Le gel d'aloès est très riche en eau et ne semble pas renfermer de composés très spécifiques1. Contrairement au suc, il ne renferme pas de dérivés anthracéniques. Il contient des acides gras, des stérols, acide-phénols, alcools, acide organiques etc.
Aloe barbadensis
extract of the flowers of the aloe, aloe barbadensis, liliaceae; aloe vera flower extract; aloe barbadensis var. chinensis flower extract; aloe chinensis flower extract; barbados aloe flower extract; curacao aloe flower extract; medicinal aloe flower extract; true aloe flower extract; aloe perfoliata var. vera flower extract; aloe vera flower extract; aloe vera var. chinensis flower extract; aloe vulgaris flower extract; urguentine- cactus flower extract; chirukattali flower extract; extract of the flowers of the aloe, aloe barbadensis, liliaceae CAS NO:85507-69-3
ALOE VERA
Nom INCI : ALOE VERA CALLUS EXTRACT Ses fonctions (INCI) Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau Agent d'entretien de la peau : Maintient la peau en bon état Agent de protection de la peau : Aide à éviter les effets néfastes des facteurs externes sur la peau
ALOE VERA %50
Tüm kozmetik ürünlerinde cilt hücrelerinin yenilenmesini sağlamak amaçlı kullanılan aktif bakım maddesi. Şampuan ve sıvı sabun üretiminde kullanılır.
ALOE VERA CALLUS EXTRACT
Sodium Tetradecene Sulfonate; Sodium C14-16 Olefin Sulfonate; C14-16-alkane hydroxy and C14-16-alkene, sodium salts; ��odium alpha-olefin (c14-16) sulfonate| sodium c14-16 olefin sulfonate C14-C16-Alkanehydroxysulfonic acids sodium salts Sulfonic acids, C14-16-alkane hydroxy and C14-16-alkene, sodium salts alpha-OlefinC14-C16,sulfonated,sodiumsalt SODIUMC14-16OLEFINSULPHONATE SODIUMC14-16ALPHAOLEFINSULFONATE C14-16-ALKANEHYDROXYANDC14-16-ALKENESULPHONICACIDS,SODIUMSALTS Sodium olefin-(C14-C16)-sulfonate CAS NO:68439-57-6
Aloe Vera Ekstraktı
Aloe Barbadensis Leaf Extract; extract of the flowers of the aloe, aloe barbadensis, liliaceae; aloe vera flower extract; aloe barbadensis var. chinensis flower extract; aloe chinensis flower extract; barbados aloe flower extract; curacao aloe flower extract; medicinal aloe flower extract; true aloe flower extract; aloe perfoliata var. vera flower extract; aloe vera flower extract; aloe vera var. chinensis flower extract; aloe vulgaris flower extract; urguentine- cactus flower extract; chirukattali flower extract; extract of the flowers of the aloe, aloe barbadensis, liliaceae cas no:85507-69-3
Aloe Vera Konsantresi
ALOE VERA CONCENTRATE; aloe barbadensis leaf extract; aloe chinensis leaf extract; aloe leaf extract; aloe vera 10-fold; extract of the leaves of the aloe, aloe barbadensis, liliaceae CAS NO: 85507-69-3
Aloe Vera Suyu
ALOE VERA JUICE; ALOE BARBADENSIS FLOWER EXTRACT;ALOE BARBADENSIS LEAF EXTRACT;Aloeextractacc.;Aloeveradryextract;ALOEVERA,200:1,POWDER;ALOEVERA,FREEZEDRIDEPOWDER;ALOEVERA,LUMP,USP;Aloe vera extracts CAS NO: 85507-69-3
ALPAFLOR ALP-SEBUM
Alpaflor Alp-sebum – альпийское растение, органически выращенное в Альпах – экстракт ивовой орхидеи, высокое содержание флавоноидов, макроциклических танинов и т. д.
Alpaflor Alp-sebum может ингибировать выработку провоспалительных веществ, обладает превосходным успокаивающим и ингибирующим действием на секрецию кожного сала, эффективно подавляет прыщи. Расширяет и сужает поры.


Номер CAS: 849775-73-1
Название INCI: Экстракт цветка/листья/стебля Epilobium Fleischeri, экстракт Epilobium Fleischeri, сорбат калия, лимонная кислота


Alpaflor Alp-sebum представляет собой слегка вязкую жидкость от прозрачного до слегка опалесцирующего цвета от янтарного до коричневого цвета.
Alpaflor Alp-sebum легко вводится в водную фазу препарата.
Alpaflor Alp-sebum – альпийское растение, органически выращенное в Альпах – экстракт ивовой орхидеи, высокое содержание флавоноидов, макроциклических танинов и т. д.


Alpaflor Alp-sebum может ингибировать выработку провоспалительных веществ, обладает превосходным успокаивающим и подавляющим секрецию кожного сала действием, эффективно подавляет прыщи. Увеличивает и сужает поры.
Alpaflor Alp-sebum подходит для жирной и жирной кожи, безмасляных эссенций и гелей, средств для жирной кожи Т-зоны, средств по уходу за молодой кожей.


Alpaflor Alp-sebum также имеет сертификаты ECOCERT, COSMOS и NATRUE. (прозрачная или слегка мутная, от янтарного до коричневого, слегка вязкая жидкость – органический растительный экстракт)
Alpaflor Alp-sebum – это экстракт органически выращенного швейцарского альпийского растения ивы (E. fleischeri) для косметического применения.


Этот вид богат флавоноидами, а Alpaflor Alp-sebum сохраняется с помощью 0,15% сорбата калия.
Alpaflor Alp-sebum сертифицирован как органический ECOCERT, COSMOS и NATRUE.
Alpaflor Alp-sebum представляет собой слегка вязкую жидкость от прозрачного до слегка опалесцирующего цвета от янтарного до коричневого с характерным запахом.


Alpaflor Alp-sebum — это зарегистрированный инновационный принцип последнего поколения для волос и кожи, поэтому он также действует на кожу головы.
Alpaflor Alp-sebum получен из Epilobium Fleischeri, растения с исключительным успокаивающим действием и особенно высоким содержанием флавоноида энотеина B.


Это ключевые соединения, которые проявляют себорегулирующую и противовоспалительную активность.
Стебель около 10-50 см высотой.
Цветки от розового до фиолетового.


Много найдено возле водного потока в холодных районах или на ледниках.
Из очевидных преимуществ цветов Alpaflor Alp-sebum представляет собой экстракт, в котором используются передовые инновации для извлечения цветочных веществ, которые являются источником натуральных полезных минералов, для получения концентрированного экстракта, включающего его в качестве основного ингредиента сыворотки.


Чтобы питать поры, сужать, уменьшать жирность лица и естественным образом иметь яркую, сияющую и сияющую кожу.
Alpaflor Alp-sebum органически выращивается в соответствии со стандартами Bio Suisse на высоте более 1000 м в швейцарских горах.
Этот вид богат флавоноидами и энотеином B – соединениями, обладающими регуляторной и противовоспалительной активностью.


Alpaflor Alp-sebum — это органический биоактивный пребиотик, обеспечивающий устойчивый матирующий эффект кожи с меньшим количеством кожного сала.
Alpaflor Alp-sebum — экологически чистый органический пребиотик, снижающий жирность кожи и балансирующий микробиом.
Alpaflor Alp-sebum производится из редкого альпийского растения Epilobium fleischeri.


Матирует кожу и эффективно уменьшает выработку кожного сала и размер пор, заметно улучшая внешний вид кожи.
Alpaflor Alp-sebum сертифицирован как органический COSMOS, NATRUE и сертифицирован Fair Trade в соответствии со стандартом Fair for Life.
Сорт CB (Clean Beauty) не содержит консервантов.


Экстракт Alpaflor Alp-sebum — натуральный многофункциональный ингредиент для ухода за кожей и волосами, обладающий себорегулирующим, противовоспалительным и антиоксидантным действием.
Alpaflor Alp-sebum получают из культивируемого альпийского растения, обычно называемого ивовой травой, которое богато флавоноидами и полифенольными соединениями, такими как энотеин B.


Alpaflor Alp-sebum – это альпийское растение, органически выращенное в Альпах, – экстракт ивовой орхидеи.
По сравнению с другими сортами ивовой орхидеи этот сорт имеет более высокое содержание флавоноидов, макроциклических дубильных веществ и др., которые способны ингибировать выработку провоспалительных веществ и обладают отличным успокаивающим действием.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ ALPAFLOR ALP-SEBUM:
Alpaflor Alp-sebum ингибирует активность 5-α-редуктазы, уменьшает выработку кожного сала и делает кожу заметно матовой.
Alpaflor Alp-sebum уменьшает пятна, делает кожу более чистой и помогает решить проблему маскне, вызванную ношением маски.
Кроме того, Alpaflor Alp-sebum снижает уровень Cutibacterium Acnes, восстанавливая здоровый вид кожи.


Alpaflor Alp-sebum подходит для жирной кожи, расширенных пор, чувствительной кожи и кожи, склонной к акне.
Alpaflor Alp-sebum находит применение в составе средств по уходу за молодой кожей, а также в безмасляных сыворотках и гелях.
Alpaflor Alp-sebum сертифицирован Ecocert, COSMOS, NATRUE и Halal, включен в список Китая и соответствует принципам справедливой торговли на всю жизнь.


Alpaflor Alp-sebum – растительный экстракт для косметических продуктов.
Alpaflor Alp-sebum можно обрабатывать как в теплом (< 60°C), так и в холодном виде, и его следует добавлять в водную фазу косметического состава.
В средства по уходу за кожей рекомендуется добавлять от 1 до 3% Alpaflor Alp-sebum.


Alpaflor Alp-sebum, сертифицированная Ecocert альпийская процедура, которая специально уменьшает выработку кожного сала и жирность кожи, а также размер пор.
Alpaflor Alp-sebum специализируется на выращивании и экстракции швейцарских альпийских растений для производства экстрактов высокого качества.
Ежедневное воздействие на растения сильных колебаний температуры и высокого УФ-излучения заставило эти виды выработать эффективные защитные факторы.


Комплекс Альпафлор Альп-себум (экстракт кипрея альпийского) контролирует работу сальных желез и снижает жирность кожи, оказывает противовоспалительное и противоаллергическое действие, снимает покраснения и раздражения.
Alpaflor Alp-sebum — это устойчивый многофункциональный органический пребиотик с балансирующими микробиом свойствами, который помогает бороться с избытком масла, расширенными порами, чувствительностью кожи и прыщами.


Alpaflor Alp-sebum действует путем блокирования ключевого фермента 5-α-редуктазы, регулирующего выработку таких гормонов, как тестостерон и дигидротестостерон, вырабатываемых сальными железами, что было доказано как наиболее эффективный метод предотвращения чрезмерного производства кожного сала (основной причины жирности кожи). .
Исследования показали, что это действующее вещество для кожи также сильно модулирует ключевые бактерии во всех областях лица, включая подавление липофильных Cutibacterium Acnes, помогая контролировать выработку кожного сала и жирность, придавая коже здоровый вид.


Это также обеспечивает уход за пятнами, разглаживая кожу и уменьшая количество пятен, что приводит к заметно более чистой и чистой коже.
Косметическое применение: кондиционирование кожи.
Alpaflor Alp-sebum ингибирует фермент 5а-редуктазу, регулируя выработку кожного сала, уменьшая размер пор и уменьшая жирность кожи и волосистой части головы.


Кроме того, Alpaflor Alp-sebum ингибирует реализацию воспалительных интерлейкинов (IL-1 и IL-8), оказывая мощное противовоспалительное, успокаивающее и успокаивающее действие.
Благодаря высокому содержанию антиоксидантов Alpaflor Alp-sebum удаляет свободные радикалы, защищая мембраны клеток дермы и ДНК от повреждений и сохраняя естественную красоту и молодость кожи.


Alpaflor Alp-sebum действует как себорегулирующее и успокаивающее средство.
Alpaflor Alp-sebum — экологически чистый органический пребиотик, снижающий жирность кожи и балансирующий микробиом.
Alpaflor Alp-sebum замедляет выработку кожного сала, основной причины жирности кожи, путем ингибирования ключевого фермента 5-α-редуктазы.


Новые исследования показывают, что этот активный компонент кожи не только помогает снизить уровень кожного сала, но также активно модулирует жизнедеятельность ключевых бактерий на всех участках лица, восстанавливая здоровый вид кожи.
Благодаря 3D-картированию цвета лица мы можем показать, что распределение кожного сала является более сложным, чем просто Т-зона, а это доказывает, что когда дело доходит до жирной кожи, необходим эффективный универсальный ингредиент!


Доказано, что органический активный ингредиент для ухода за кожей Alpaflor Alp-sebum помогает снизить уровень кожного сала на всех участках лица через 4 недели, делая кожу менее жирной и более матовой.
Alpaflor Alp-sebum улучшает внешний вид кожи, контролируя выделение кожного сала и уменьшая размер пор.


Alpaflor Alp-sebum восстанавливает здоровый вид кожи, уменьшая пятна, для чувствительной кожи и кожи, склонной к акне.
Alpaflor Alp-sebum также может значительно ингибировать 5α-редуктазу-редуктазу для достижения эффекта ингибирования секреции кожного сала, а также эффективно подавлять рост прыщей и сужать поры.


Alpaflor Alp-sebum подходит для жирной и жирной кожи, безмасляных эссенций и гелей, средств для жирной кожи Т-зоны, средств по уходу за молодой кожей.
Alpaflor Alp-sebum представляет собой слегка вязкую жидкость от прозрачного до слегка туманного, от янтарного до коричневого цвета - органические растительные экстракты)


-Косметические применения Alpaflor Alp-sebum:
*Продукты, предназначенные для ухода за жирной и жирной, блестящей кожей.
* «Безмасляные» продукты и линейки продуктов.
*Средства для жирной Т-зоны и комбинированной кожи.
*Средства по уходу за молодой кожей.
*Отбеливающие процедуры, направленные на уменьшение размера пор.
*Успокаивающие косметические средства для жирной и комбинированной кожи.
*Натуральные и/или органические косметические составы.



ПРЕИМУЩЕСТВА АЛЬПАФЛОР АЛЬП-СЕБУМ:
Противовоспалительное, подходит для жирной кожи, профилактика пятен, здоровый вид кожи, контроль над пятнами, успокаивающее, удаление свободных радикалов, восстановление, очищение от прыщей, благоприятное для микробиома кожи, пребиотическое действие, матирующий эффект, контроль кожного сала, антиоксидантные свойства, ощущение гладкости, Уменьшение раздражения, против прыщей, контроль жирности, подходит для чувствительной кожи, балансирует микробиоту кожи, очищает, улучшает эстетику, придает блеск и сияние



СВОЙСТВА ЦВЕТОЧНОГО ЭКСТРАКТА ALPAFLOR ALP-SEBUM:
1.Alpaflor Alp-sebum – инновация в уходе за жирной кожей.
Помогает уменьшить жирность лица.
И уменьшите различные проблемы, вызванные жирностью на лице, например, большие поры, кожа лица не выглядит чистой и яркой. Кожа склонна к прыщам и т. д.
2.Альпафлор Альп-себум уменьшает количество выработки масла сальными железами лица.
3. Alpaflor Alp-sebum снижает риск появления прыщей, вызванных тем, что сальные железы производят слишком много масла, и снижает вероятность раздражения кожи от прыщей. Или это может быть вызвано тем, что сальные железы на вашем лице производят слишком много масла.



ПРЕИМУЩЕСТВА И ПРИМЕНЕНИЕ (КОСМЕТИЧЕСКОЕ ПРИМЕНЕНИЕ) АЛЬПАФЛОР АЛЬП-СЕБУМ:
*Alpaflor Alp-sebum используется в продуктах, контролирующих жирность кожи лица. и уменьшить блеск на лице
*Альпафлор Альп-себум используется в производстве для людей, склонных к акне.
*Alpaflor Alp-sebum используется для производства безмасляной группы.
*Alpaflor Alp-sebum – средство для контроля жирности Т-зоны.
*Альпафлор Альп-себум применяется в средствах для детей и подростков.
используйте продукты для мужчин
*Alpaflor Alp-sebum используется для отбеливающих процедур.
*Альпафлор Альп-себум используется в продуктах для чувствительной, комбинированной и жирной кожи, а также для уменьшения размера пор.



ФУНКЦИИ АЛЬПАФЛОР АЛЬП-СЕБУМ:
•Alpaflor Alp-sebum — инновационное средство.
против жирной кожи и связанных с ней проблем
•Альпафлор Альп-себум снижает выработку кожного сала.
и жирный вид кожи
•Альпафлор Альп-себум уменьшает размер пор.
•Кондиционирование кожи:
Alpaflor Alp-sebum поддерживает кожу в хорошем состоянии.
•Антиоксидант
• Регулятор кожного сала
•Противовоспалительное средство



ДЕЙСТВИЕ АЛЬПАФЛОР АЛЬП-СЕБУМ:
*Противовоспалительное средство
*Уточнение пор
*Очищение
*Контроль блеска
*Матирующий
*очищение
*Себорегулятор



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА АЛЬПАФЛОР АЛЬП-СЕБУМ:
Внешний вид: прозрачная или слегка опалесцирующая жидкость от янтарного до коричневого цвета, слегка вязкая жидкость с характерным запахом.
Идентичность с помощью ВЭЖХ: хроматограмма, сравнимая с хроматограммой внутреннего эталонного стандарта.
pH: 3,6 – 5,1
Относительная плотность d20/20: 1.100 – 1.250
Показатель преломления n25: 1,414 – 1,434
Энотеины методом ВЭЖХ: 120 – 500 мг/100 г
(в пересчете на галловую кислоту)
Общее количество аэробных мезофилов в пластинках: < 100 КОЕ/г.
Определенные микроорганизмы: не обнаруживаются в одном грамме



МЕРЫ ПЕРВОЙ ПОМОЩИ АЛЬПАФЛОР АЛЬП-СЕБУМ:
-Описание мер первой помощи:
*Общие советы:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ ALPAFLOR ALP-SEBUM:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Возьмите в сухом виде.
Утилизируйте должным образом.



МЕРЫ ПОЖАРОТУШЕНИЯ АЛЬПАФЛОР АЛЬП-СЕБУМ:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Вода
Мыло
Углекислый газ (CO2)
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА ALPAFLOR ALP-SEBUM:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте защитные очки.
*Защита кожи:
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита тела:
защитная одежда
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ ALPAFLOR ALP-SEBUM:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ АЛЬПАФЛОР АЛЬП-СЕБУМ:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Несовместимые материалы:
Данные недоступны




ALPHA OLEFIN SULFONATE POWDER
Alpha Olefin Sulfonate Powder Alpha olefin sulfonate powder (AOS 40%) is a formaldehyde free solution of sodium C14-C16 Alpha olefin sulfonate powder preserved with MCI/MI. It can be used in variety of applications due to its excellent viscosity, hard water stability, detergency, foam characteristics, and pH stability over a broad pH range. AOS 40% is a milder surfactant compared to lauryl sulfates and is used in high performing sulfate-free, shampoos, body wash, hand soap and pet care formulations. It is highly effective in unloading undesirable liquids and particulates from gas producing wells and exhibits exceptional thermal stability up to 400° F. This product is readily biodegradable. Univar Solutions is here to serve your Alpha olefin sulfonate powder 40% needs. With more than 120 distribution centers, our private fleet, technical expertise, and professional staff, we provide you proven reliability and quality service at every touchpoint. Alpha olefin sulfonate powder is a mild anionic surfactant with excellent viscosity and foam characteristics. It offers good solubility in water, high surface activity, enhanced detergency and foamability, compatability with all other types of surfactants, low sensitivity to water hardness, high level of biodegradability and low irritation and ecotoxicity. Alpha olefin sulfonate powder is an optimal surfactant solution for the formulation of personal care and cosmetic products, HI&I cleaning and laundry detergents. For its unique properties the product is also used in agricultural products, construction industry, fire-fighting foams etc. Description of Alpha olefin sulfonate powder: Mild anionic, high-foaming & well-emulsifying surfactant. Made primarily from coconut oils. Stable at a wide pH range and can therefore be used in acidic environments. pH: 8 (10% solution), 40% active substances. Yellowish liquid, slightly viscous, faint odor. CAS of Alpha olefin sulfonate powder: 68439-57-6 INCI Name of Alpha olefin sulfonate powder: Sodium C14-16 alpha olefin sulfonate Benefits of Alpha olefin sulfonate powder: Mild primary surfactant with excellent cleansing and degreasing properties (but non-drying on skin & mucous membranes) Good wetting effect, foam booster, slight viscosity enhancer Easily compatible with other surfactants including non-ionic, amphoteric or anionic co-surfactants Can be used for making sulfate-free cleansing products Use of Alpha olefin sulfonate powder: Can be added to formulas as is. Recommended use level is 4-30% depending on desired foaming and cleansing effects. For external use only. Applications of Alpha olefin sulfonate powder: Body washes, shampoos, bubble baths, cleansing lotions, various personal care cleansing products. Country of Origin of Alpha olefin sulfonate powder: USA Raw material source of Alpha olefin sulfonate powder: Ethylene, coconut oil Manufacture of Alpha olefin sulfonate powder: Alpha olefin suflonate is a mixture of long chain sulfonate salts prepared by the sulfonation of alpha olefins. Alpha-olefin sulfonate are produced by oligomerization of ethylene and by Fischer-Tropsch synthesis followed by purification. Animal Testing of Alpha olefin sulfonate powder: Not animal tested GMO of Alpha olefin sulfonate powder: GMO free (does not contain plant-derived components) Vegan: Does not contain animal-derived components Alpha Olefin Sulfonate powder Application of washing powder The decontamination test showed that LAS and Alpha olefin sulfonate powder showed good synergy in both phosphorous powder and phosphorus-free powder. Among the phosphorous detergent, LAS: Alpha olefin sulfonate powder has the most significant synergy at 8:2. In the non-phosphorous washing powder with LAS and Alpha olefin sulfonate powder as anionic active ingredients, the decontamination of Alpha olefin sulfonate powder increased significantly when the proportion of anionic active components was greater than 20 %. The decontamination synergy of Alpha olefin sulfonate powder in phosphorus-free washing powder is more prominent than that in phosphorous powder. Alpha olefin sulfonate powder and enzymes have better solubility. The activity of residual enzymes in detergent solutions containing domestic proteinases and imported proteinases(such as Savnase) was compared. Over time, the residual enzyme activity of anionic active groups divided into pure LAS was low. The residual enzyme activity is higher in detergent solution with Alpha olefin sulfonate powder partial replacement or all substitution of LAS. There is little difference between Alpha olefin sulfonate powder and LAS decontamination at higher temperatures and prolonged washing(eg, 60 °C or more, 1 hour washing). However, when washing at room temperature(10-40 °C, washing 10-29 minutes), Alpha olefin sulfonate powder has higher decontamination power than LAS. Compared with LAS, Alpha olefin sulfonate powder has a strong hard water resistance, so it also shows Alpha olefin sulfonate powder advantages in areas with higher hard water. LAS is superior to oil/granular decontamination, while non-ions such as fatty alcohol ether are most suitable for washing dirt and dirt on the skin. The combination of the two can achieve good decontamination effects, and Alpha olefin sulfonate powder has good decontamination effects on sebum and oily and powdery dirt. The amount of ash deposition on the fabric after washing the fabric with apatite washing powder containing 4 A zeolite, soda and soda. The phosphorous washing powder that replaces LAS with Alpha olefin sulfonate powder part is smaller than the phosphorous washing powder that uses LAS alone. After washing, the gray deposition of the fabric is small, not easy to knot, and yellowing. (reference formula) Alpha Olefin Sulfonate Application of Soap Soap produces insoluble saponin in hard water, affecting the decontamination effect. Adding Alpha olefin sulfonate powder can increase the solubility of soap in water, and the wettability and foam power of soap liquid at low temperatures also increase rapidly. Alpha olefin sulfonate powder is added to soaps with sodium adipose as the main ingredient. The various characteristics of soaps are improved, foaming force is enhanced, hard water resistance is improved, flexibility is enhanced, and cracking is not easy. Liquid Detergents Application Due to the large irritation of LAS, many washing products no longer use LAS as an active component, while Alpha olefin sulfonate powder has low irritation and good biodegradability, making it a more suitable alternative. In liquid detergents, Alpha olefin sulfonate powder has a greater influence on the viscosity of the product. The viscosity is improved with the commonly used fatty alcohol diethanolamide and Na-Cl. The effect is not ideal. The use of fatty alcohol monoethanolamide, amine oxide, betaine and NH4Cl can play a good adhesion role. Due to the characteristics of Alpha olefin sulfonate powder in decontamination, hard water resistance, viscosity, etc., Alpha olefin sulfonate powder has a wide range of applications in liquid detergents with high active components. Alpha Olefin Sulfonate Application of personal care supplies Alpha olefin sulfonate powder is as mild as AES, and LAS and AS are much larger than Alpha olefin sulfonate powder. Therefore, Alpha olefin sulfonate powder has a wide range of uses in personal care products. Alpha olefin sulfonate powder is extremely stable under acidic conditions. Normal human skin is weakly acidic(pH is about 5.5) and is suitable for using Alpha olefin sulfonate powder as a component of personal cleaning products. The shampoo with Alpha olefin sulfonate powder as the main active component is better than that with K12. Renso reported that the foam released by Alpha olefin sulfonate powder was full of cream and felt like soap when washed. This characteristic is suitable for the washing habits of Chinese people. Therefore, Alpha olefin sulfonate powder can be used in personal care products such as bath fluids, hand sanitizer and cleansing milk. Reference formula. Other Alpha Olefin Sulfonate Application Alpha olefin sulfonate powder has a wide range of applications in the textile printing and dyeing industry, petroleum chemicals, and three oil extraction and industrial cleaning. Alpha olefin sulfonate powder can be used as a concrete density modifier, foaming wall board, and fire fighting foam. It can also be used as a pesticide emulsifier, wetting agent, etc.. Application /Application Industries of Alpha olefin sulfonate powder anionic surfactant shampoo, body wash bath gel oil-displacing agent, foam boost agent for increasing oil recovery Washing powders Based on detergency test result, both LAS and Alpha olefin sulfonate powder showed good synergy in phosphorus-containing and non-phosphorus powders. In phosphate-free washing powders with LAS and Alpha olefin sulfonate powder as anionic active ingredients, the detergency of Alpha olefin sulfonate powder is significantly increased when the active content is more than 20%. The detergency synergy of Alpha olefin sulfonate powder in non-phosphorus washing powder is more oustanding than that in phosphorus-containing powder. Alpha olefin sulfonate powder has a good compatibility with enzyme. The detergency power of Alpha olefin sulfonate powder and LAS is not much different at high temperatures and long-term washing (eg above 60°C, washing for 1 hour). However, Alpha olefin sulfonate powder shows higher detergency performance than LAS when used under room temperature (10-40°C for 10-29 minutes). Compared with LAS, Alpha olefin sulfonate powder features stronger hard water resistance. Alpha olefin sulfonate powder shows a very good stain removal performance on sebum dirt and oily and powdery stain. Application of soap Adding Alpha olefin sulfonate powder can increase the solubility of soap in water, wetting power and foam strength of soap at low temperatures can also be increased significantly It improves various properties of the soap, enhances foaming power, increases hard water resistance and flexibility. Liquid detergent application Due to the greater irritation of LAS, many detergents do not use LAS as an active ingredient, while Alpha olefin sulfonate powder has a low irritative property and good biodegradability, making it a more suitable alternative. Personal care application The mildness of Alpha olefin sulfonate powder is comparable to that of AES, while LAS and AES are much more irritating than Alpha olefin sulfonate powder. Thus Alpha olefin sulfonate powder has a wide range of use in personal care products. Alpha olefin sulfonate powder is extremely stable under acidic conditions, and normal human skin is weakly acidic (pH about 5.5), so it is suitable to use Alpha olefin sulfonate powder as a component of personal washing products. Shampoos with Alpha olefin sulfonate powder as the main active ingredient are more foamable than with K12. Other applications Alpha olefin sulfonate powder has a wide range of applications in the textile printing and dyeing industry, petrochemicals, tertiary oil recovery, and industrial cleaning. It can also be used as a concrete density improver, foam wallboard, fire-fighting foaming agent. It can also be used as an emulsifier, wetting agent, etc. Examining Tomorrow’s Surfactant Personalities: Alpha Olefin Sulfonate in Personal Care Non-sulfate anionic surfactants are often used in cleansing products for personal care, hard surfaces, laundry and industrial applications. In personal care alone, they range in variety; although notably, cleansers with added hair color-retention benefits and formulas positioned for the hair, scalp and body represent the segments in highest demand. Due to these broad product applications, customizable performance attributes and biodegra­dability, the use of Alpha olefin sulfonate powder (AOS) surfactants has increased dramatically. The most common Alpha olefin sulfonate powder used in personal care is sodium C14-16 olefin sulfonate, which functions as a detergent, wetting agent and emulsifier depending on the application. When properly formulated, Alpha olefin sulfonate powder imparts viscosity, a consumer-acceptable foaming profile and quick flash foam to produce a stable lather, among other benefits. In addition, the surfactant maintains performance at alkaline and acidic ranges, allowing flexibility for formulators. This stability is attributed to the sulfonate groups covalently bonded to a carbon; conversely, sulfate-based surfactants tend to hydrolyze below pH 4 due to inorganic ester bonds that cleave and yield a sulfate anion and an alcohol. The pH stability of Alpha olefin sulfonate powder has generated additional interest over lauryl sulfates and lauryl ether sulfates for both claims and performance. Alpha olefin sulfonate powder also allows the material to be provided as a preservative-free aqueous solution, using excess alkalinity for preservation. Alpha olefin sulfonate powder (AOS) have been used successfully for many years in laundry and personal-care products throughout Asia. Among their documented positive attributes are good cleaning and high foaming in both soft and hard water, rapid biodegradability, and good skin mildness. Alpha olefin sulfonate powder has commonly been marketed as approximately 40%-active aqueous solutions. However, with the increased importance of compact powder detergents produced by processes other than spray drying, high-active forms of Alpha olefin sulfonate powder including 70%-active pastes and 90+%-active powders are now being utilized for that product sector. In this regard, the rheological properties of non-Newtonian Alpha olefin sulfonate powder and AOS/additive pastes at relevant process temperatures were measured and found potentially suitable for agglomeration processes. Also, the relationship of AOS powder particle size to surfactant solubility at various wash conditions was examined to allow determination of the optimal size for both detergency and processing of laundry powders. Both paste rheology and powder morphology are critical factors for the successful use of high-active Alpha olefin sulfonate powder in compact powder detergents. Alpha olefin sulfonate powder is a pale yellow 40% aqueous solution of sodium C14-16 alpha olefin sulfonate. Alpha olefin sulfonate powder combines the advantages of high foaming power, good emulsification, mildness to the skin, and excellent lime soap dispersion to give the formulator maximum flexibility in the preparation of light and heavy-duty cleaners. Alpha olefin sulfonate powder is also suitable for use in acidic formulations such as those containing alpha hydroxyl acids or salicylic acid. Alpha olefin sulfonate powder is perfect for sulfate-free personal care and detergent products. What Is Alpha olefin sulfonate powder? Alpha olefin sulfonate powder (Sodium C12-14 Olefin Sulfonate, Sodium C14-16 Olefin Sulfonate, Sodium C14-18 Olefin Sulfonate, Sodium C16-18 Olefin Sulfonate) are mixtures of long chain sulfonate salts prepared by the sulfonation of alpha olefins. The numbers indicate the average lengths of the carbon chains of the alpha olefins. In cosmetics and personal care products, Alpha olefin sulfonate powder are used mainly in shampoos and bath and shower products Why is Alpha olefin sulfonate powder used in cosmetics and personal care products? Alpha olefin sulfonate powder clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away. Alpha olefin sulfonate powder is an olefin featured by the position of solid bond (reactive unsaturation) at the two end carbons in carbon chains. Alpha olefin sulfonate powder and their derivatives are used as comonomers in polymer such as low density polyethylenes for the properties of lighter, thinner, better flexibility and more tearing resistance. Alpha olefin sulfonate powders are used in the production of linear plasticizers, oxo-alcohols, motor fuels, lubricants, automotive additives, biodegradble surfactants, paper size, and in a wide range of specialty applications in the production of mercaptans, flavors and fragrances, alkyl metals, halides, alkyl silanes. Alpha olefin sulfonate powder is used primarily as a detergent cleansing agent, but is potentially drying and can aggravate skin. Can be derived from coconut. It’s tricky to include in formulas due to stability issues, but it does produce copious foam. Alpha Olefin Sulfonate Powder CAS # 68439-57-6 & 7757-82-6 SYNONYM FORMULA CnH2n-1SO3Na (n= 14 - 16) TYPICAL PRODUCT SPECIFICATIONS ACTIVITY 90% Min. MOISTURE 2.0% Max. PH 7.0 - 10.0 (10% in water) APPEARANCE Cream colored flake at 25C COLOR 0 - 275 Klett NOTES Approximately 90 - 95% sulfonic acids, C14-16-alkane hydroxy and C14-16-alkene, sodium salts. Remaining 5-10% Sodium Sulfate. Useful as an emulsifier and foam booster in various preparations, also functions as a wetting agent. CLASS Emulsifiers, Industrial Chemicals FUNCTIONS Humectants & Emollients, Emulsifier INDUSTRY Industrial Alpha olefin sulfonate powder Select Size Deep-Cleansing Primary Surfactant Part Number: SRF-ALOS-01 Availability: In Stock Int. Shipping: HS Code 3402110000 CHOOSE OPTIONS Sizes * Quantity Share| Description Examples Description: Mild anionic, high-foaming & well-emulsifying surfactant. Made primarily from coconut oils. Water-soluble, pH: 8 (10% solution), 40% active substances. Yellowish liquid, slightly viscous, faint odor. CAS: 68439-57-6 INCI Name: Sodium C14-16 alpha olefin sulfonate Benefits: Mild primary surfactant with excellent cleansing and degreasing properties (but non-drying on skin & mucous membranes) Good wetting effect, foam booster, slight viscosity enhancer Easily compatible with other surfactants including non-ionic, amphoteric or anionic co-surfactants Can be used for making sulfate-free cleansing products Use: Can be added to formulas as is. Recommended use level is 4-30% depending on desired foaming and cleansing effects. For external use only. Applications: Body washes, shampoos, bubble baths, cleansing lotions, various personal care cleansing products. Country of Origin: USA Raw material source: Ethylene, coconut oil Manufacture: Alpha olefin sulfonate powder is a mixture of long chain sulfonate salts prepared by the sulfonation of alpha olefins. Alpha olefin sulfonate powdere are produced by oligomerization of ethylene and by Fischer-Tropsch synthesis followed by purification. Animal Testing: Not animal tested GMO: GMO free (does not contain plant-derived components) Vegan: Does not contain animal-derived components Abstract Alpha olefin sulfonate powder (AOS) have been used successfully for many years in laundry and personal-care products throughout Asia. Among their documented positive attributes are good cleaning and high foaming in both soft and hard water, rapid biodegradability, and good skin mildness. AOS has commonly been marketed as approximately 40%-active aqueous solutions. However, with the increased importance of compact powder detergents produced by processes other than spray drying, high-active forms of AOS including 70%-active pastes and 90+%-active powders are now being utilized for that product sector. In this regard, the rheological properties of non-Newtonian Alpha olefin sulfonate powder and AOS/additive pastes at relevant process temperatures were measured and found potentially suitable for agglomeration processes. Also, the relationship of Alpha olefin sulfonate powder particle size to surfactant solubility at various wash conditions was examined to allow determination of the optimal size for both detergency and processing of laundry powders. Both paste rheology and powder morphology are critical factors for the successful use of high-active Alpha olefin sulfonate powder in compact powder detergents. Key Words Alpha olefin sulfonate detergent powder surfactant Sodium Alpha-Olefin Sulfonate for Cleanser, Aos 92% Powder Get Latest Price Min. Order: 10 Tons Port: Chongqing, China Production Capacity: 500mmt/Month Payment Terms: L/C, T/T, Western Union Appearance: Powder Usage: Water Treatment Chemicals Color: White Transport Package: 25kg/Bag Trademark: UE Origin: Sichuan Contact NowRequest SampleCustomized Request Leave a message. Inquiry Basket Favorites Share Basic Info Model NO. AOS Product Description Customer Question & Answer Ask something for more details Description: It is an anionic surfactant and can be called AOS, having excellent decontamination, foaming and emulsification capacity and foaming stability; Alpha olefin sulfonate powder is extremely soluble in water and has extremely strong lime soap dispersing and softening water capacity; It has good biodegradability and is gentle to skin and has good compatibility; Products containing Alpha olefin sulfonate powder are rich in foaming, tender and feels well and easy to rinse; It can be used in matters with wide range of pH value. Sodium Alpha-Olefin Sulfonate for Cleanser, Aos 92% Powder Application: It is widely used in all kinds of lavation cosmetics such as laundry detergent, compound soap, dish washing detergent and it is the preferred raw material of non-phosphate detergent; It can be used in cleaning cosmetics such as shampoo, bath lotion and facial cleanser etc., it can also be used in industrial detergent such as oil field, mine, construction, fire protection and textile dying. Alpha olefin sulfonate powder (AOS) Sodium Alpha Olefin Sulfonate (AOS) chlick for more Other names: Alpha Olefin Sulfonate; Sodium Linear Alpha Olefin Sulfonate; Alpha olefin sulfonate powder CAS number: 68439-57-6 Molecular formula: R-CH=CH-(CH2)n-SO3Na, R=C14~1 Characteristics: Sodium alpha olefin sulfonate has the following features: 100% biodegradability Good wetting, foaming, detergency, emulsifying property Little skin irritant Good calcium soap dispersion and anti-hard water performances Dissolves in water and rinsed easily Good Stability, good compatibility with other kinds of surfactants. Alpha Olefin Sulfonates, Alpha olefin sulfonate powder, liquid AOS is a third generation surfactant having excellent properties in wetting, blending, emulsification, solubility, good stability at high temperature, and detergency. It has high foaming characteristics, mildness, less resistant to hard water and excellent bio-degradable. AOS 1416 is used for high foaming liquid detergents, high quality sampoo, soap, bubble baths and light-duty liquid detergents. AOS 1418 is used for heavy-duty laundry formulations. Alpha olefin sulfonate powder (AOS) is the sodium salt of alpha olefin sulphonate (SAOS), commonly known as Alpha olefin sulfonate powder. Alfodet L46 is a detergent active of the anionic class. Alpha olefin sulfonate powder is manufactured by continuous sulphonation of high-quality ethylene-based alpha olefins with sulphur trioxide in a specially-designed modern ‘Ballestra' continuous thin-film sulphonation reactor, followed by neutralisation and hydrolysis. Alpha olefin sulfonate powder (AOS) is an extremely light coloured liquid, thanks to efficient sulphonation, with low inorganic salt and un-sulphonated matter. No bleaching of the neutralised AOS is done after hydrolysis, ensuring that all supplies of Alfodet L46 are safe sultones within tolerable limits. Alpha olefin sulfonate powder is an effective emulsifier and has excellent foaming characteristics. Its resistance to water hardness and other metallic ions is very good, and it is stable over a wide pH range. It is superior to conventional detergent actives with regard to bio-degradability, mildness to skin, cold-water solubility, rinsability, flash foaming, and detergency in hard water. Alpha olefin sulfonate powder is compatible with other surfactants like linear alkyl benzene sulphonate (LABS) and SLS, including soap. Alpha olefin sulfonate powder helps to overcome the sting caused by conventional detergent actives. A combination of LABS and Alpha olefin sulfonate powder in certain proportions can yield synergistic detergent action, which can result in improved performance of a given total active or reduced cost for a given performance. Alpha olefin sulfonate powder (AOS) is suitable as an active for general detergent products such as detergent cakes and powders, toilet and laundry soaps, liquid detergents for fine fabrics, dish- and floor-washing liquid, woolen- and carpet-washing applications, scourers and shampoos, bubble baths and shower gels. Alpha olefin sulfonate powder liquid can replace LABS in detergent powder by incorporation at a 1.5 per cent active level or higher, depending on moisture level adjustment in the final product. Description: Mild anionic, high-foaming & well-emulsifying surfactant. Made primarily from coconut oils. Stable at a wide pH range and can therefore be used in acidic environments. pH: 8 (10% solution), 40% active substances. Yellowish liquid, slightly viscous, faint odor. CAS: 68439-57-6 INCI Name: Sodium C14-16 alpha olefin sulfonate Benefits: Mild primary surfactant with excellent cleansing and degreasing properties (but non-drying on skin & mucous membranes) Good wetting effect, foam booster, slight viscosity enhancer Easily compatible with other surfactants including non-ionic, amphoteric or anionic co-surfactants Can be used for making sulfate-free cleansing products Use: Can be added to formulas as is. Recommended use level is 4-30% depending on desired foaming and cleansing effects. For external use only. Applications: Body washes, shampoos, bubble baths, cleansing lotions, various personal care cleansing products. Country of Origin: USA Raw material source: Ethylene, coconut oil Manufacture: Alpha olefin suflonate is a mixture of long chain sulfonate salts prepared by the sulfonation of alpha olefins. Alpha-olefin sulfonate are produced by oligomerization of ethylene and by Fischer-Tropsch synthesis followed by purification. Applications Sulfate-free shampoo All purpose cleaning Bar soap Body wash Facial cleansers Hand dishwashing Vehicle wash Industrial foaming applications Commercial & household laundry Liquid hand soap Alpha Olefin Sulfonate powder 40% (Alpha olefin sulfonate powder 40%) is a formaldehyde free solution of sodium C14-C16 alpha olefin sulfonate preserved with MCI/MI. It can be used in variety of applications due to its excellent viscosity, hard water stability, detergency, foam characteristics, and pH stability over a broad pH range. Alpha Olefin Sulfonate powder 40% is a milder surfactant compared to lauryl sulfates and is used in high performing sulfate-free, shampoos, body wash, hand soap and pet care formulations. It is highly effective in unloading undesirable liquids and particulates from gas producing wells and exhibits exceptional thermal stability up to 400° F. This product is readily biodegradable. The present invention relates to a process for preparing an aqueous solution of a C14-C16 alpha olefin sulfonate, wherein the aqueous solution has a Klett color of less than 12, when diluted with water to a 5% solution. The present invention relates to a method of producing a colorless aqueous solution of an alpha olefin sulfonate which can be subsequently used in the formation of cleaning compositions. Background of the Invention Alpha olefin sulfonates are used in liquid dish cleaning compositions and hard surface cleaning compositions. Commercial alpha olefin sulfonate surfactants are usually supplied as a 35 to 45 wt. % aqueous solution. These solutions have a distinctive yellowish color which limits the use of alpha olefin sulfonate surfactant in colorless liquid cleaning compositions. The present inventions teach a method of producing a colorless aqueous solution of 35 wt. % to 45 wt. % of alpha olefin sulfonate from a commercial 35 wt. % to 45 wt. % aqueous solution of alpha olefin sulfonate which is yellowish in color. The addition of hydrogen peroxide and caustic soda to the commercially aqueous solution of the alpha olefin sulfonate causes oxidation of the containments which cause the yellowish color. Summary of the Invention The instant invention relates to a process for producing an aqueous solution of about 5 wt. % of a C-14-C1 Q alpha olefin sulfonate which has a Klett color of less than about 12, preferably less than about 11 and most preferably less than about 10. The present invention also relates to 30 to 40 wt. % solution of a C-|4-C-j6 alpha olefin sulfonate. When the 30 to 40 wt. % solution of the C14-C1 alpha olefin sulfonate is diluted with water to a 5 wt. % aqueous solution of the C-| 4-C16 alpha olefin sulfonate, the 5 wt. % solution of the C14-C1 Q alpha olefin sulfonate has a Klett color of less than about 12, more preferably less than about 11 and most preferably less than about 10. The present invention further relates to cleaning compositions having improved color. Detailed Description of the Invention The present invention relates to a process for forming a solution of 30 wt. % to 40 wt. % of a C-14-C16 alpha olefin sulfonate and 60 wt. % to 70 wt. % of water, wherein the solution, when diluted to 5 wt. %, with distilled water has a Klett color of less than 12, preferably less than 11 and most preferably less than 10 which comprises the steps of: (a) forming a solution having a pH of 10 to 12 by adding of 0.001 wt. % to 0.1 wt. % of sodium hydroxide to 99.9 wt. % to 99.999 wt. % of an initial solution of 30 wt. % to 40 wt. % of a C14-C16 alpha olefin sulfonate and 40 wt. % to 60 wt. % of water having a pH of 7.5 to 9.5, wherein said initial solution when diluted to 5 wt. % of C14- C-| β alpha olefin sulfonate has a Klett color of greater than 20; (b) adding 1 wt. % to 2 wt. % of a 25 wt. % to 35 wt. % hydrogen peroxide solution to said 30 wt. % to 40 wt. % solution of alpha olefin sulfonate; (c) mixing for 6 hours to 48 hours at 77°F to 150°F the 30 wt. % to 40 wt. % solution of C14-C15 alpha olefin sulfonate, sodium hydroxide and hydrogen peroxide, wherein said solution has a pH of about 7 to about 9; (d) adding 0.001 wt. % to 0.005 wt. % of an alkali metal hydroxide such as sodium hydroxide to said 30 wt. % to 40 wt. % solution of C14-C16 alpha olefin solution, sodium hydroxide and hydrogen peroxide to form said color improved solution of said C-| 4-C16 alpha olefin sulfonate having a pH of about 10 to about 12 which when diluted to 5 wt. % of said C14-C16 alpha olefin sulfonate has a Klett color of less than 12, preferably less than 11 , and most preferably less than 10. The present invention also relates to a solution of 30 wt. % to 40 wt. % of a C-14-C1 β alpha olefin sulfonate and 60 wt. % to 70 wt. % of water which said solution has a pH of about 10 to about 12 and when diluted to 5 wt. % of said C14-C1 Q alpha olefin sulfonate has a Klett color of less than 12, preferably less than 11 and most preferably less than 10. An object of the present invention is to provide a cleaning composition having improved color wherein said cleaning composition contains an aqueous solution of a C-|4-C-|6 alpha olefin sulfonate, wherein a 5 wt. % aqueous solution of said C-14-C15 alpha olefin sulfonate has a Klett color of less than 12, preferably less than 11 and most preferably less than 10. The present invention also relates to light duty liquid cleaning composition comprising approximately by weight: (a) 3% to 50% of a 30% to 40% aqueous solution of a C-| 4-C1 Q alpha olefin sulfonate, wherein the 30% to 40% aqueous solution of said C14-C16 alpha olefin sulfonate which has a Klett color of less than 12 when diluted with water to a 5% aqueous solution of said C14-C16 alpha olefin sulfonate; (b) 0.5% to 35% of at least one surfactant selected from the group consisting of ethoxylated nonionic surfactants, ethoxylated/propoxylated nonionic surfactant, zwitterionic surfactants, amine oxide surfactants, alkyl monoalkanol amide, paraffin sulfonate surfactants, linear alkyl benzene sulfonate surfactants, alkyl sulfate surfactants, ethoxylated alkyl ether sulfate surfactants, C-|2_Cl4 fatty acid alkanol amides, and alkyl polyglucoside surfactants and mixtures thereof. Alpha Olefin Sulfonate Application of washing powder The decontamination test showed that LAS and Alpha olefin sulfonate powder showed good synergy in both phosphorous powder and phosphorus-free powder. Among the phosphorous detergent, LAS: Alpha olefin sulfonate powder has the most significant synergy at 8:2. In the non-phosphorous washing powder with LAS and Alpha olefin sulfonate powder as anionic active ingre
ALPHA TOCOPHEROL ACETATE
ALPHA TOCOPHEROL ACETATE Alpha Tocopherol acetate is a tocol. Alpha tocopherol is the primary form of vitamin E that is preferentially used by the human body to meet appropriate dietary requirements. In particular, the RRR-alpha tocopherol (or sometimes called the d-alpha-tocopherol stereoisomer) stereoisomer is considered the natural formation of alpha-tocopherol and generally exhibits the greatest bioavailability out of all of the alpha-tocopherol stereoisomers. Moreover, RRR-alpha-tocopherol acetate is a relatively stabilized form of vitamin E that is most commonly used as a food additive when needed. Alpha tocopherol acetate is subsequently most commonly indicated for dietary supplementation in individuals who may demonstrate a genuine deficiency in vitamin E. Vitamin E itself is naturally found in various foods, added to others, or used in commercially available products as a dietary supplement. The recommended dietary allowances (RDAs) for vitamin E alpha-tocopherol are: males = 4 mg (6 IU) females = 4 mg (6 IU) in ages 0-6 months, males = 5 mg (7.5 IU) females = 5 mg (7.5 IU) in ages 7-12 months, males = 6 mg (9 IU) females = 6 mg (9 IU) in ages 1-3 years, males = 7 mg (10.4 IU) females = 7 mg (10.4 IU) in ages 4-8 years, males = 11 mg (16.4 IU) females = 11 mg (16.4 IU) in ages 9-13 years, males = 15 mg (22.4 IU) females = 15 mg (22.4 IU) pregnancy = 15 mg (22.4 IU) lactation = 19 mg (28.4 IU) in ages 14+ years. Most individuals obtain adequate vitamin E intake from their diets; genuine vitamin E deficiency is considered to be rare. Nevertheless, vitamin E is known to be a fat-soluble antioxidant that has the capability to neutralize endogenous free radicals. This biologic action of vitamin E consequently continues to generate ongoing interest and study in whether or not its antioxidant abilities may be used to help assist in preventing or treating a number of different conditions like cardiovascular disease, ocular conditions, diabetes, cancer and more. At the moment however, there exists a lack of formal data and evidence to support any such additional indications for vitamin E use. D-alpha tocopheryl acetate appears as odorless off-white crystals. Darkens at 401° F. Molecular Weight of Alpha Tocopherol acetate: 472.7 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) XLogP3-AA of Alpha Tocopherol acetate: 10.8 Computed by XLogP3 3.0 (PubChem release 2019.06.18) Hydrogen Bond Donor Count of Alpha Tocopherol acetate: 0 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Hydrogen Bond Acceptor Count of Alpha Tocopherol acetate: 3 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Rotatable Bond Count of Alpha Tocopherol acetate: 14 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Exact Mass of Alpha Tocopherol acetate: 472.391646 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Monoisotopic Mass of Alpha Tocopherol acetate: 472.391646 g/mol Computed by PubChem 2.1 (PubChem release 2019.06.18) Topological Polar Surface Area of Alpha Tocopherol acetate: 35.5 Ų Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Heavy Atom Count of Alpha Tocopherol acetate: 34 Computed by PubChem Formal Charge of Alpha Tocopherol acetate: 0 Computed by PubChem Complexity of Alpha Tocopherol acetate: 602 Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18) Isotope Atom Count of Alpha Tocopherol acetate: 0 Computed by PubChem Defined Atom Stereocenter Count of Alpha Tocopherol acetate:3 Computed by PubChem Undefined Atom Stereocenter Count of Alpha Tocopherol acetate: 0 Computed by PubChem Defined Bond Stereocenter Count of Alpha Tocopherol acetate: 0 Computed by PubChem Undefined Bond Stereocenter Count of Alpha Tocopherol acetate: 0 Computed by PubChem Covalently-Bonded Unit Count of Alpha Tocopherol acetate: 1 Computed by PubChem Compound of Alpha Tocopherol acetate Is Canonicalized Yes Properties Related Categories Aloe Vera, Biochemicals and Reagents, Cell Biology, Linum usitatissimum (Flax), Lipids, Nutrition Research, Phytochemicals by Plant (Food/Spice/Herb), Prenols, Vitamin E, Vitamins Less... Quality Level 200 biological source synthetic (organic) assay ≥96% (HPLC) form viscous liquid application(s) HPLC: suitable color colorless to dark yellow density 0.96 g/mL at 20 °C (lit.) Show More (12) Description General description α-Tocopherol is a predominant form of vitamin E in human and animal tissues[1] and also in leaf chloroplasts.[3] It is the major form in supplements.[1] DL-α-Tocopherol acetate is considered as the only storage form of vitamin E.[2] Application DL-α-Tocopherol acetate has been used to study it effect on blood pressure and lipidic profile in streptozotocin-induced diabetes mellitus rats.[4] It has also been used as a standard in α-tocopherol analysis using plasma sample[5][6] and mature fresh tobacco leaves.[7] Packaging 5, 25, 100 g in glass bottle Biochem/physiol Actions Tocopherols (TCP) (vitamin E) are a series (α, β, γ and δ) of chiral organic molecules that vary in their degree of methylation of the phenol moiety of the chromanol ring. Tocopherols are lipid soluble anti-oxidants that protect cell membranes from oxidative damage. α-Tocopherol is the form of tocopherol preferentially absorbed by homo sapiens. Tocopherol acetate has properties similar but not identical to α-tocopherol. Tocopheryl acetate RRR-Alpha Tocopherol acetate RRR-Alpha Tocopherol acetate RRR-Alpha Tocopherol acetate Names IUPAC name [(2R)-2,5,7,8-Tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]chroman-6-yl] acetate Other names α-Tocopherol acetate Vitamin E acetate Identifiers CAS Number 58-95-7 RRR-α-isomer check 3D model (JSmol) Interactive image ChEMBL ChEMBL1047 check ChemSpider 77987 check ECHA InfoCard 100.000.369 PubChem CID 86472 UNII A7E6112E4N check CompTox Dashboard (EPA) DTXSID1031096 InChI[show] SMILES[show] Properties Chemical formula C31H52O3 Molar mass 472.743 g/mol Appearance pale yellow, viscous liquid[1] Melting point –27.5 °C [1] Boiling point 240 °C decays without boiling[2] Solubility in water insoluble[1] Solubility soluble in acetone, chloroform, diethyl ether; poorly soluble in ethanol[1] Hazards NFPA 704 (fire diamond) NFPA 704 four-colored diamond 110 Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). check verify (what is check☒ ?) Infobox references Alpha Tocopherol acetate, also known as vitamin E acetate, is a synthetic form of vitamin E. It is the ester of acetic acid and α-tocopherol.[2] The U.S. Centers for Disease Control and Prevention says that vitamin E acetate is a very strong culprit of concern in the 2019 outbreak of vaping-associated pulmonary injury (VAPI),[3] but there is not yet sufficient evidence to rule out contributions from other chemicals.[4][5] Use in cosmetics Alpha Tocopherol acetate is often used in dermatological products such as skin creams. It is not oxidized and can penetrate through the skin to the living cells, where about 5% is converted to free tocopherol. Claims are made for beneficial antioxidant effects.[6] Alpha Tocopherol acetate is used as an alternative to tocopherol itself because the phenolic hydroxyl group is blocked, providing a less acidic product with a longer shelf life. It is believed that the acetate is slowly hydrolyzed after it is absorbed into the skin, regenerating tocopherol and providing protection against the sun's ultraviolet rays.[7] Tocopheryl acetate was first synthesized in 1963 by workers at Hoffmann-La Roche.[8] Although there is widespread use of tocopheryl acetate as a topical medication, with claims for improved wound healing and reduced scar tissue,[9] reviews have repeatedly concluded that there is insufficient evidence to support these claims.[10][11] There are reports of vitamin E-induced allergic contact dermatitis from use of vitamin E derivatives such as tocopheryl linoleate and tocopherol acetate in skin care products. Incidence is low despite widespread use.[12] Misuse Ingredient in vape liquids See also: 2019–20 vaping lung illness outbreak, Vaping-associated pulmonary injury, and Lacing (drugs) § Cannabis On September 5, 2019, the United States Food and Drug Administration (US FDA) announced that 10 out of 18, or 56% of the samples of vape liquids sent in by states, linked to recent vaping related lung disease outbreak in the United States, tested positive for vitamin E acetate[13] which had been used as a thickening agent by illicit THC vape cartridge manufacturers.[14] On November 8, 2019, the Centers for Disease Control and Prevention (CDC) identified vitamin E acetate as a very strong culprit of concern in the vaping-related illnesses, but has not ruled out other chemicals or toxicants as possible causes.[3] The CDC's findings were based on fluid samples from the lungs of 29 patients with vaping-associated pulmonary injury, which provided direct evidence of vitamin E acetate at the primary site of injury in all the 29 lung fluid samples tested.[3] Research suggests when vitamin E acetate is inhaled, it may interfere with normal lung functioning.[5] A 2020 study found that vaporizing vitamin E acetate produced carcinogenic alkenes and benzene, but also exceptionally toxic ketene gas, which may be a contributing factor to the pulmonary injuries.[15] Chemistry At room temperature, Alpha Tocopherol acetate is a fat-soluble liquid. It has 3 chiral centers and thus 8 stereoisomers. It is made by esterifying α-tocopherol with acetic acid. 2R,4R,8R-isomer, also known as RRR-Alpha Tocopherol acetate, is the most common isomer used for various purposes. This is because α-tocopherol occurs in the nature primarily as RRR-α-tocopherol.[2] α-Tocopherol acetate does not boil at atmospheric pressure and begins to degrade at 240 °C.[2] It can be vacuum distilled: it boils at 184 °C at 0.01 mmHg, at 194 °C (0.025 mmHg) and at 224 °C (0.3 mmHg). In practice, it is not degraded notably by air, visible light or UV-radiation. It has a refractive index of 1.4950–1.4972 at 20 °C.[1] α-Tocopherol acetate is hydrolyzed to α-tocopherol and acetic acid under suitable conditions or when ingested by people. What’s tocopheryl acetate? Alpha-tocopheryl acetate (ATA) is a specific form of vitamin E that’s often found in skin care products and dietary supplements. It’s also known as tocopheryl acetate, tocopherol acetate, or vitamin E acetate. Vitamin E is known for its antioxidant properties. Antioxidants help to protect your body from damaging compounds called free radicals. Normally, free radicals form when your body converts food into energy. However, free radicals can also come from UV light, cigarette smoke, and air pollution. In nature, vitamin E comes in the form of tocopheryl or tocotrienol. Both tocopheryl and tocotrienol have four forms, known as alpha, beta, gamma, and delta. Alpha-tocopheryl (AT) is the most active form of vitamin E in humans. Alpha Tocopherol acetateis more stable than AT, meaning it can better withstand environmental stresses such as heat, air, and light. This makes it ideal for use in supplements and fortified foods because it has a longer shelf life. Where can I find tocopheryl acetate? Cosmetics and supplements You’ll find Alpha Tocopherol acetatein a variety of skin care products. The antioxidant properties of vitamin E can help to prevent damage to skin caused by free radicals from UV exposure. Vitamin E may also have an anti-inflammatory effect on the skin. Due to its higher stability, Alpha Tocopherol acetateis also used in vitamin E dietary supplements. When taken orally, Alpha Tocopherol acetateis converted to AT within the intestine. Vitamin E is in most multi-vitamins, so be sure to check how much is in your multi-vitamin if you take one, before adding a supplement. Foods In addition to dietary supplements and cosmetic products, you can find vitamin E in the following foods: green leafy vegetables, such as broccoli and spinach oils, such as sunflower oil, wheat germ oil, and corn oil sunflower seeds nuts, such as almonds and peanuts whole grains fruits, such as kiwi and mango Vitamin E is also added to fortified foods, such as cereals, fruit juices, and many spreads. You can check food labels to see if vitamin E has been added. If you want to increase your vitamin E intake, you should start by first increasing your intake of these foods. Potential benefits Using AT on the skin, especially with vitamin C, helps to prevent UV damage to the skin. In a review of studies, the Linus Pauling Institute at Oregon State University found that using AT with vitamin C on the skin decreased sunburned cells, DNA damage, and skin pigmentation following UV exposure. However, AT is less stable in the environment than ATA, which makes it harder to store. While Alpha Tocopherol acetateis less sensitive to heat and light than AT is, there’s less conversion of Alpha Tocopherol acetateto the active AT form within the skin. This is because the cells in the upper layer of your skin are much less metabolically active. As a result, using cosmetic products containing Alpha Tocopherol acetateon your skin may not be very effective. This is supported by a study from 2011 published in the Medical Principles and Practice journal. Using several commercial skin care products, researchers looked at the conversion of Alpha Tocopherol acetateto the active AT form in the skin of live rats. They found that, while there was Alpha Tocopherol acetatein the upper levels of the skin after using the product, there was no active AT. While there are many studies on the potential benefits of AT, studies on the benefits of Alpha Tocopherol acetateare limited. The results of these studies on Alpha Tocopherol acetateare mixed. Alpha Tocopherol acetateusually needs to be used with other vitamins and minerals to have a beneficial effect. A 2013 study of over 4,000 participants with age-related macular degeneration (AMD) from the Age-Related Eye Disease Study found that their combination of high dose antioxidants C, E, and beta-carotene, along with zinc, worked to delay progression to advanced AMD. In another review of studies, the Linus Pauling Institute found that consuming Alpha Tocopherol acetatealong with other antioxidant supplements had no effect on either the development or prevention of cataracts. Regarding the benefits of vitamin E supplements overall, study results have been mixed on whether they’re beneficial for the following conditions: coronary heart disease cancer cognitive decline, such as Alzheimer’s disease Potential risks Most people don’t experience side effects when taking the recommended daily dose of vitamin E, which is 15 milligrams (mg). Too much Vitamin E can cause problems. The tolerable upper limit dose of vitamin E for adults is 1,000 mg. High doses above 1,000 mg have been associated with the following side effects: dizziness fatigue headaches weakness blurred vision abdominal pain diarrhea nausea If you take high doses of vitamin E supplements for over a year, your risk of bleeding may increase. Speak to your doctor before taking vitamin E supplements if you take anticoagulant medication. It’s unlikely that you’ll get too much vitamin E from foods, but it can happen if you’re also taking supplements. A 2011 studyTrusted Source published in the Journal of the American Medical Association also showed that men taking high doses of vitamin E supplements had a higher risk of developing prostate cancer. It’s important to remember that the FDA doesn’t monitor supplements for purity or quality, so choosing a reputable brand is essential. Using skin care products containing Alpha Tocopherol acetatecan also lead to an allergic reaction, skin reddening, or rash. The bottom line Alpha Tocopherol acetateis a form of vitamin E that’s often included in cosmetic products and dietary supplements due to its higher stability compared to AT. When taken orally, Alpha Tocopherol acetateis converted into active AT within the body. The effectiveness of Alpha Tocopherol acetatein cosmetic products seems to be limited because Alpha Tocopherol acetateisn’t effectively broken down to AT in the upper layers of skin. Additionally, research on the benefits of Alpha Tocopherol acetatesupplements is limited and the results are mixed at best. If you’re looking to get more vitamin E, try adding foods such as leafy green vegetables, nuts, and wheat germ oil to your diet. Speak with your doctor before adding any supplements.
ALPHA-IONONE ( N° CAS : 127-41-3)
Autres langues : Alfa-isometil ionona, Alfa-isometil ionone, Alpha-Isomethylionon Nom INCI : ALPHA-ISOMETHYL IONONE Nom chimique : 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexenyl)-3-buten-2-one; Methyl-gamma-ionone; gamma-Methylionone N° EINECS/ELINCS : 204-846-3
ALPHA-ISOMETHYL IONONE ( N° CAS : 127-51-5 - Alpha-isomethyl ionone )
EC / List no.: 215-691-6; CAS no.: 1344-28-1; Mol. formula: Al2O3; Aluminium oxide; Aluminum oxide (Al2O3); Alumina TM; Alumines; aluminium (III) oxide; aluminium oxide (2/3); Aluminium oxide (Brown Fused Alumina); Aluminium oxide (catalyst)ALUMINIUM OXIDE (ENCAPSULATED); aluminium oxide equivalent; Aluminium oxide, activated alumina, calcined alumina, fused alumina, tabular alumina, fumed alumina; Aluminium oxide, Alumina; aluminium oxide/oxo[(oxoalumanyl)oxy]alumane; aluminium sequioxide; Aluminium(II) oxide; Aluminium(III)oxide; Aluminiumoxid; Aluminiumoxide; Aluminum (III) oxide; Aluminum Oxide; Aluminum oxide, alumina; Brown Fused Alumina; Brown Fused Alumina (BFA); Dialuminium trioxide; dialuminum oxygen; dialuminum oxygen(2-) hydrate; dialuminum trioxide; Dialuminum; oxygen(2-)dialuminum;oxygen(2-); Fused Alumina; Fused Aluminum Oxide; Korund; Nafen; oxid hlinitý; oxo (oxoalumanyloxy) alumane; Oxo(oxoalumanyloxy)alumane; oxo(oxoalumanyloxy)alumane equivalent; oxo(oxoalumanyoxy)alumane; oxo[(oxoalumanyl)oxy]alumane; oxo[(oxoalumanyl)oxy]alumanesy; Tabular alumina; White fused alumina; White Fused Alumina, Calcined alumina, Tabular alumina and Fused alumina; oxo(oxoalumanyloxy)alumane. L'alumine que l'on appelle aussi oxyde d'aluminium est un minéral d'origine naturel que l'on trouve dans la bauxite. Il est aussi employé dans les implants dentaires. Il est utilisé dans les dentifrices de type blanchissant en tant qu'agent abrasif et favorise ainsi l'élimination de la plaque dentaire par friction (avec la brosse à dents). Il est aussi utilisé pour ses propriétés absorbantes et son caractère waterproof. Il fonctionne aussi comme agent anti-agglomérant et absorbant. On le trouve très présent dans les produits de maquillage comme le blush, le fond de teint en poudre, le rouge à lèvres et le nettoyant pour le visage. Il est autorisé en bio.Ses fonctions (INCI) Agent Abrasif : Enlève les matières présentes en surface du corps, aide à nettoyer les dents et améliore la brillance. Agent Absorbant : Absorbe l'eau (ou l'huile) sous forme dissoute ou en fines particules Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Agent de foisonnement : Réduit la densité apparente des cosmétiques Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Activated Alumina; Activated alumina / catalyst support; Al2O3; Alumax N8; Alumina; Alumina (Actal-UG1);
ALS (AMMONIUM LAURYL SULFATE)
Ammonium Lauryl Sulfate (ALS) Ammonium lauryl sulfate (ALS) is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4). The anion consists of a nonpolar hydrocarbon chain and a polar sulfate end group. The combination of nonpolar and polar groups confers surfactant properties to the anion: it facilitates dissolution of both polar and non-polar materials. Ammonium lauryl sulfate (ALS) is classified as a sulfate ester. Ammonium lauryl sulfate (ALS) is found primarily in shampoos and body-wash as a foaming agent.[1]/[2] Ammonium lauryl sulfate (ALS) are very high-foam surfactants that disrupt the surface tension of water in part by forming micelles at the surface-air interface. Contents 1 Action in solution of Ammonium lauryl sulfate (ALS) 2 Safety of Ammonium lauryl sulfate (ALS) 3 Occupational exposure of Ammonium lauryl sulfate (ALS) 4 Environment Action in solution Above the critical micelle concentration, the anions organize into a micelle, in which they form a sphere with the polar, hydrophilic heads of the sulfate portion on the outside (surface) of the sphere and the nonpolar, hydrophobic tails pointing inwards towards the center. The water molecules around the micelle in turn arrange themselves around the polar heads, which disrupts their ability to hydrogen bond with other nearby water molecules. The overall effect of these micelles is a reduction in surface tension of the solution, which affords a greater ability to penetrate or "wet out" various surfaces, including porous structures like cloth, fibers, and hair. Accordingly, this structured solution allows the solution to more readily dissolve soils, greases, etc. in and on such substrates. Ammonium lauryl sulfate (ALS) however exhibit poor soil suspending capacity.[2] Safety of Ammonium lauryl sulfate (ALS) Ammonium lauryl sulfate (ALS) is an innocuous detergent. A 1983 report by the Cosmetic Ingredient Review, shampoos containing up to 31% Ammonium lauryl sulfate (ALS) registered 6 health complaints out of 6.8 million units sold. These complaints included two of scalp itch, two allergic reactions, one hair damage and one complaint of eye irritation. The CIR report concluded that both sodium and Ammonium lauryl sulfate (ALS) “appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged use, concentrations should not exceed 1%.” The Human and Environmental Risk Assessment (HERA) project performed a thorough investigation of all alkyl sulfates, as such the results they found apply directly to Ammonium lauryl sulfate (ALS). Most alkyl sulfates exhibit low acute oral toxicity, no toxicity through exposure to the skin, concentration dependent skin irritation, and concentration dependent eye-irritation. They do not sensitize the skin and did not appear to be carcinogenic in a two-year study on rats. The report found that longer carbon chains (16–18) were less irritating to the skin than chains of 12–15 carbons in length. In addition, concentrations below 1% were essentially non-irritating while concentrations greater than 10% produced moderate to strong irritation of the skin.[5] Occupational exposure The CDC has reported on occupations which were routinely exposed to Ammonium lauryl sulfate (ALS) between 1981 and 1983. During this time, the occupation with the highest number of workers exposed was registered nurses, followed closely by funeral directors.[6] Environment The HERA project also conducted an environmental review of alkyl sulfates that found all alkyl sulfates are readily biodegradable and standard wastewater treatment operations removed 96–99.96% of short-chain (12–14 carbons) alkyl sulfates. Even in anaerobic conditions at least 80% of the original volume is biodegraded after 15 days with 90% degradation after 4 weeks. We've put together some information about Ammonium lauryl sulfate (ALS) and SLS which will hopefully be useful for you. We get a lot of questions about sodium lauryl sulphate (SLS) and Ammonium lauryl sulfate (ALS). We would like to reassure you that our safe, natural shampoos are all Ammonium lauryl sulfate (ALS)-free and SLS-free. We've put together some information about Ammonium lauryl sulfate (ALS) and SLS which will hopefully be useful for you. WHAT MAKES SLS IRRITATING? Although sodium lauryl sulphate (SLS) and Ammonium lauryl sulfate (ALS) have similar sounding names and are both classed as anionic surfactants, they have different molecular structures. SLS is a comparatively simple molecule and is therefore quite small in size. This gives it the ability to penetrate the outer layers of the skin, particularly when used in conditions which encourage the skin's pores to open, such as when in a warm bath or shower. When SLS penetrates the outer layers of the skin in this way, it comes into contact with more delicate cells that are in the process of being formed in the dermis. Ammonium lauryl sulfate (ALS) is here that the irritation associated with SLS manifests itself, resulting in reddening and erythema of the skin. A is an anionic surfactant from the group of alkyl sulphates, INCI name: Ammonium lauryl sulfate (ALS). Ammonium lauryl sulfate (ALS) is mainly intended for personal care products. It has the form of a clear, viscous liquid in colour from colourless to light yellow. The active substance content in the commercial product is around 27%. The microbiological purity of the product is ensured by the addition of sodium benzoate. The main advantage of the product is the preservation of washing and foaming properties even in the presence of excessive amounts of sebum. ROSULfan A has a much higher resistance to hard water and, at the same time, has a much lower irritating and drying effect compared to Sodium Lauryl Sulfate. In compositions containing Sodium Lauryl Sulfate and / or Sodium Laureth Sulfate, the use of ROSULfAN A reduces the irritant effect of these surfactants. This is especially important in delicate shampoos recommended for sensitive skin. The product is completely biodegradable and meets the criteria of cosmetics and detergent directives. It also has the Ecocert COSMOS certificate for cosmetic ingredients. In the construction industry, it is used as an ingredient in agents reducing the weight of drywall, as well as air-entraining and plasticizing admixtures. However, in emulsion polymerization, ROSULfan A provides excellent stabilization of the polymer dispersion at lower pH ranges. Thanks to its use, it is possible to control the particle size, including acrylic, styrene-acrylic systems, vinyl acetate homo- and copolymers, VaE type dispersions and PVC emulsion. What Is Ammonium lauryl sulfate (ALS)? Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are widely used surfactant in shampoos, bath products, hair colorings, facial makeup, deodorants, perfumes, and shaving preparations; however, they can also be found in other product formulations. Why is it used in cosmetics and personal care products? Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are surfactant that help with the mixing of oil and water. As such, they can clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away or suspend poorly soluble ingredients in water. Safety Information: The U.S. Food and Drug Administration (FDA) includes sodium lauryl sulfate on its list of multipurpose additives allowed to be directly added to food. Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are also approved indirect food additives. For example, both ingredients are permitted to be used as components of coatings. The safety of sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) has been assessed by the Cosmetic Ingredient Review (CIR) Expert Panel on two separate occasions (1983 and 2002), concluding each time that the data showed these ingredients were safe in formulations designed for brief, discontinuous use, followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%. More safety Information: Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) may be used in cosmetics and personal care products marketed in Europe according to the general provisions of the Cosmetics Regulation of the European Union . Is there any truth to the Internet rumors about sodium lauryl sulfate? Since 1998, a story has been circulating on the Internet that states that sodium lauryl sulfate can cause cancer. This allegation is unsubstantiated and false. In fact, in a 2002 safety review, the CIR Expert Panel assessed all of the data on sodium lauryl sulfate and concluded that “[n]one of the data suggested any possibility that sodium lauryl sulfate or Ammonium lauryl sulfate (ALS) could be carcinogenic. Despite suggestions to the contrary on the Internet, the carcinogenicity of these ingredients is only a rumor.” Ammonium lauryl sulfate (ALS) & Your Hair: Ingredients and Advice We often buy shampoo without really knowing what’s in it. We may have been seduced into said purchase because of an attractive price, an online ad or a recommendation from a friend. Or – and let’s be honest here – simply because we liked the design and colour of the bottle. It can be very disappointing to discover that, after a few times of using it, our hair does not feel its usual, silky self. We notice a crispiness, lesser defined curls, perhaps even damage. Naturally, this will get us thinking about our choice of shampoo and whether it’s really the right fit for our hair or not. Upon studying the ingredients listed on the bottle and trying to figure out how beneficial or harmful they can be to our curly hair, we are faced with many terms we are completely unfamiliar with. Among them, we have several types of sulfates, the different types of which can be just as difficult to identify. One of these sulfates is the Ammonium lauryl sulfate (ALS). You have probably used several products containing this sulfate; it is common in all types of beauty and cosmetic goods including shampoos, but also toothpaste, body gels and soaps. It is a widely used ingredient in these kinds of products, not only because of its cleansing properties but also because it is very economical. There is a lot of speculation about this particular sulfate and its effects on our hair, with many sources advocating for its use and many others warning us against it. In this article, we’ll get to the bottom of this common shampoo ingredient and its characteristics. What is Ammonium lauryl sulfate (ALS)? Ammonium lauryl sulfate (ALS) is an ammonium salt. Although it is originally derived from the coconut, it is commonly created in laboratories for its use in all types of products. As is true for every other sulfate, Ammonium lauryl sulfate (ALS) is a surfactant (“Surface active agent”) – that is, an active agent that creates tension between two surfaces. In the case of a shampoo, Ammonium lauryl sulfate (ALS) is used to create foam once it comes into contact with water. This foam helps to wash away grease and dirt in general, as well as to maximize the cleaning efficiency of the product. It also has a psychological, commercial component to it, as many users believe that, the more foam a product generates, the more cleansing it is. Ammonium lauryl sulfate (ALS) is an improved form of Ammonium lauryl sulfate (ALS). The suffix, “eth”, comes from the added oxygen through a process known as ethoxylation, which makes this agent softer and more water-soluble. This addition has proven to be a solution against sulfate residues that persist in the skin after washing your hair, and provides a milder, less aggressive agent. Is Ammonium lauryl sulfate (ALS) Safe to Use on Your Hair? The problem with sulfates and the foam they create is that they do their job too well. A sulfate basically acts as a detergent that eliminates dirt when we apply it, but also our hair’s natural oils. As such, it can eliminate our hair’s natural protection. This becomes a problem when using a shampoo with Ammonium lauryl sulfate (ALS) on a regular basis. In this case, we are not leaving these natural oils enough time to form again. When used sporadically, this sulfate is considered to be gentle on our hair and skin. If used excessively, though, Ammonium lauryl sulfate (ALS) – and all sulfates in general – dry out our hair, to the point of causing skin irritations and even the apparition of dandruff. It also makes our hair that much more brittle. In the long term, it may not only affect our hair’s health but its colour, too. In the most extreme cases (and, generally, mostly among men), it can lead to hair loss. HOW IS Ammonium lauryl sulfate (ALS) DIFFERENT? Ammonium lauryl sulfate (ALS), by contrast, is a slightly more complex molecule and is physically larger with a heavier molecular mass. This means that it is more difficult for Ammonium lauryl sulfate (ALS) molecules to penetrate the outer layers of the skin and so reach the delicate underlying layers of cells. Due to this difference, Ammonium lauryl sulfate (ALS) is regarded as being considerably less irritating than SLS – on a scale of 0 to 10, where the potential irritancy of water is 0 and that of SLS is 10, Ammonium lauryl sulfate (ALS) scores around 4 – clearly far less irritating than SLS. SLS AND Ammonium lauryl sulfate (ALS)-FREE SHAMPOOS We do not use Ammonium lauryl sulfate (ALS) or SLS in our hair care products. All of our organic shampoos use different surfactants which are kind to skin. Full ingredients lists are available on each product page. What is Ammonium lauryl sulfate (ALS) and SLS, and what is the difference between them? Are you the type of person that looks and questions every ingredient in the products you purchase? Don’t worry, that’s a good thing! We’re happy to know people care about what they are in contact with, and we’ve definitely gotten a few questions about our ingredients as well. Which is why we’re here to give you the low down on our Lunette Feelbetter Cup Cleanser and the surfactant we use in it — Ammonium lauryl sulfate (ALS) (ASL), and compare it the one we don’t use, Sodium Lauryl Sulfate (SLS). Try not to get tongue twisted ;) What is Ammonium lauryl sulfate (ALS) and SLS, and what is the difference between them? Ammonium lauryl sulfate (ALS) and Sodium Lauryl Sulfate are both anionic surfactants. English, please? A surfactant is a compound that decreases the surface tension between two liquids, a solid or a liquid, or a gas and a liquid. They often act as detergents, foaming agents, and more by helping to mix water with oil and dirt so they can be washed away. Science rules. ASL and SLS have similar-sounding names but what makes them different is their molecular structure. Are Ammonium lauryl sulfate (ALS) and SLS safe to use? For decades, sulphates have been in the focus of critical parties, even though they are an incredibly efficient fat remover and create a ton of foam. They are considered as environmentally friendly, as they are very quickly biodegradable and won’t typically cause any allergies. Sulfates are recognized among others by the Asthma and Allergy Society in all countries and therefore widely used in most shampoos, sanitary cleansing gels, dishwashers, etc., to dissolve fat the most effectively. Although there have been reports that SLS is carcinogenic, there is no scientifically proven link to it. Many reports on the Internet cannot verify this argument with convincing scientific evidence. In fact, cosmetic products in the European Union must comply with strict guidelines and prove their safety before they can be sold. The flip side of why someone would be against these surfactants is that, because of their efficacy in high concentrations, they are particularly irritating to the eyes and skin. This is being emphasized again and again by most opponents. News flash — all surfactants used are usually harmful to the eyes, whether they are SLS, Ammonium lauryl sulfate (ALS) or other compounds. However, Ammonium lauryl sulfate (ALS) has been found clearly milder than sodium lauryl sulfate in irritation tests In an article of the "Cosmetic Ingredients Review", only six complaints were reported for shampoos containing up to 31% Ammonium lauryl sulfate (ALS) with 6.8 million units sold. The Cosmetic Ingredient Review report also states, that "Sodium Lauryl Sulfate and Ammonium lauryl sulfate (ALS) appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin.” Usually, you only come in contact with surfactants for a short amount of time, like when you’re washing your hair or cleaning your menstrual cup. In this short contact, which is then rinsed with water, the risk of irritation is very low. Why aren’t we using “soft” surfactants? A current trend is to use ingredients that are made by marketing campaigns to sound "soft and gentle" and "used earlier". Therefore, in natural cosmetics, for example, glucosides are used, such as Coco Glucosides, Lauryl Glucosides, Decyl Glucosides, since glucosides have a glucose, i.e. a sugar base. Glucosides are much weaker in foam than sulfates, and they are not as easily thickened as sulfates. You then need polymers or gums as thickeners. However, polymers are banned in natural cosmetics and substances that are permitted in natural cosmetics, such as xanthan gum, cause the gel to leave a sticky feeling on the skin. Other alternatives, than glucosides, are weaker in foam than sulfates and harder to thicken. Therefore, cleaners containing sulfates, on the other hand, can easily be thickened to gel without the need to use thickening polymers or gums which, can easily leave a sticky feeling. You don’t want a sticky cup, right? ;) In order to clean the Lunette Menstrual Cups thoroughly, we have chosen Ammonium lauryl sulfate (ALS) for its effectiveness as one of the ingredients in our Feelbetter Cup Cleanser. Ammonium lauryl sulfate (ALS) leaves no residue on the surface of the cup, and Ammonium lauryl sulfate (ALS) is recognized by the "Allergy, Skin and Asthma Federation" as an ingredient in cosmetic products. Many people still confuse Ammonium lauryl sulfate (ALS) with the "infamous" Sodium Lauryl Sulfate (SLS). The second surfactant we use is called cocamidopropyl betaine. This surfactant is preferred in natural cosmetics, but Ammonium lauryl sulfate (ALS) does not work well enough alone, so we paired it with the more effective Ammonium lauryl sulfate (ALS). If this little science lesson has got you curious about our Lunette Feelbetter Cup Cleanser, you can buy one on our website! Ammonium lauryl sulfate (ALS) doesn’t contain any artificial fragrances — instead, it’s scented with lemon and eucalyptus oil, selected for their purifying and cleansing properties! Ammonium lauryl sulfate (ALS) Usage And Synthesis Chemical Properties yellow viscous liquid Uses Ammonium lauryl sulfate (ALS) is a surfactant with emulsifying capabilities. given its detergent properties, at mild acidic pH levels it can be used as an anionic surfactant cleanser. Ammonium lauryl sulfate (ALS) is considered one of the most irritating surfactants, causing dryness and skin redness. Today, it is either combined with anti-irritant ingredients to reduce sensitivity or replaced with a less irritating but similar surfactant, such as Ammonium lauryl sulfate (ALS). General Description Light yellow liquid. May float or sink and mix with water. Air & Water Reactions Water soluble. Reactivity Profile Acidic inorganic salts, such as Ammonium lauryl sulfate (ALS), are generally soluble in water. The resulting solutions contain moderate concentrations of hydrogen ions and have pH's of less than 7.0. They react as acids to neutralize bases. These neutralizations generate heat, but less or far less than is generated by neutralization of inorganic acids, inorganic oxoacids, and carboxylic acid. Health Hazard Contact with liquid irritates eyes and may have drying effect on the skin. Prolonged contact will cause skin irritation. Fire Hazard Special Hazards of Combustion Products: Toxic oxides of nitrogen and sulfur may form in fires. A is an anionic surfactant from the group of alkyl sulphates, INCI name: Ammonium lauryl sulfate (ALS). Ammonium lauryl sulfate (ALS) is mainly intended for personal care products. It has the form of a clear, viscous liquid in colour from colourless to light yellow. The active substance content in the commercial product is around 27%. The microbiological purity of the product is ensured by the addition of sodium benzoate. The product has the ability to produce dense and stable foam, which allows fine and evenly distributed air bubbles to be obtained. Due to these properties, ROSULfan A is used as the main ingredient in cleansing cosmetic products. Ammonium lauryl sulfate (ALS) is dedicated to shampoos, body wash and shower gels. The main advantage of the product is the preservation of washing and foaming properties even in the presence of excessive amounts of sebum. ROSULfan A has a much higher resistance to hard water and, at the same time, has a much lower irritating and drying effect compared to Sodium Lauryl Sulfate. In compositions containing Sodium Lauryl Sulfate and / or Sodium Laureth Sulfate, the use of ROSULfAN A reduces the irritant effect of these surfactants. This is especially important in delicate shampoos recommended for sensitive skin. The product is completely biodegradable and meets the criteria of cosmetics and detergent directives. It also has the Ecocert COSMOS certificate for cosmetic ingredients. In the construction industry, it is used as an ingredient in agents reducing the weight of drywall, as well as air-entraining and plasticizing admixtures. However, in emulsion polymerization, ROSULfan A provides excellent stabilization of the polymer dispersion at lower pH ranges. Thanks to its use, it is possible to control the particle size, including acrylic, styrene-acrylic systems, vinyl acetate homo- and copolymers, VaE type dispersions and PVC emulsion. What Is Ammonium lauryl sulfate (ALS)? Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are widely used surfactant in shampoos, bath products, hair colorings, facial makeup, deodorants, perfumes, and shaving preparations; however, they can also be found in other product formulations. Why is it used in cosmetics and personal care products? Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are surfactant that help with the mixing of oil and water. As such, they can clean the skin and hair by helping water to mix with oil and dirt so that they can be rinsed away or suspend poorly soluble ingredients in water. Safety Information: The U.S. Food and Drug Administration (FDA) includes sodium lauryl sulfate on its list of multipurpose additives allowed to be directly added to food. Sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) are also approved indirect food additives. For example, both ingredients are permitted to be used as components of coatings. The safety of sodium lauryl sulfate and Ammonium lauryl sulfate (ALS) has been assessed by the Cosmetic Ingredient Review (CIR) Expert Panel on two separate occasions (1983 and 2002), concluding each time that the data showed these ingredients were safe in formulations designed for brief, discontinuous use, followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with skin, concentrations should not exceed 1%. This addition has proven to be a solution against sulfate residues that persist in the skin after washing your hair, and provides a milder, less aggressive agent. Is Ammonium lauryl sulfate (ALS) Safe to Use on Your Hair? The problem with sulfates and the foam they create is that they do their job too well. A sulfate basically acts as a detergent that eliminates dirt when we apply it, but also our hair’s natural oils. As such, it can eliminate our hair’s natural protection. This becomes a problem when using a shampoo with Ammonium lauryl sulfate (ALS) on a regular basis. In this case, we are not leaving these natural oils enough time to form again. When used sporadically, this sulfate is considered to be gentle on our hair and skin. If used excessively, though, Ammonium lauryl sulfate (ALS) – and all sulfates in general – dry out our hair, to the point of causing skin irritations and even the apparition of dandruff. Ammonium lauryl sulfate (ALS) is the common name for ammonium dodecyl sulfate (CH3(CH2)10CH2OSO3NH4). The anion consists of a nonpolar hydrocarbon chain and a polar sulfate end group. The combination of nonpolar and polar groups confers surfactant properties to the anion: it facilitates dissolution of both polar and non-polar materials. Ammonium lauryl sulfate (ALS) is classified as a sulfate ester. Ammonium lauryl sulfate (ALS) is found primarily in shampoos and body-wash as a foaming agent.[1]/[2] Ammonium lauryl sulfate (ALS) are very high-foam surfactants that disrupt the surface tension of water in part by forming micelles at the surface-air interface. Environment The HERA project also conducted an environmental review of alkyl sulfates that found all alkyl sulfates are readily biodegradable and standard wastewater treatment operations removed 96–99.96% of short-chain (12–14 carbons) alkyl sulfates. Even in anaerobic conditions at least 80% of the original volume is biodegraded after 15 days with 90% degradation after 4 weeks. We've put together some information about Ammonium lauryl sulfate (ALS) and SLS which will hopefully be useful for you. We get a lot of questions about sodium lauryl sulphate (SLS) and Ammonium lauryl sulfate (ALS). We would like to reassure you that our safe, natural shampoos are all Ammonium lauryl sulfate (ALS)-free and SLS-free. We've put together some information about Ammonium lauryl sulfate (ALS) and SLS which will hopefully be useful for you. WHAT MAKES SLS IRRITATING? Although sodium lauryl sulphate (SLS) and Ammonium lauryl sulfate (ALS) have similar sounding names and are both classed as anionic surfactants, they have different molecular structures. SLS is a comparatively simple molecule and is therefore quite small in size. This gives it the ability to penetrate the outer layers of the skin, particularly when used in conditions which encourage the skin's pores to open, such as when in a warm bath or shower. When SLS penetrates the outer layers of the skin in this way, it comes into contact with more delicate cells that are in the process of being formed in the dermis. Ammonium lauryl sulfate (ALS) is here that the irritation associated with SLS manifests itself, resulting in reddening and erythema of the skin. HOW IS Ammonium lauryl sulfate (ALS) DIFFERENT? Ammonium lauryl sulfate (ALS), by contrast, is a slightly more complex molecule and is physically larger with a heavier molecular mass. This means that it is more difficult for Ammonium lauryl sulfate (ALS) molecules to penetrate the outer layers of the skin and so reach the delicate underlying layers of cells. We do not use Ammonium lauryl sulfate (ALS) or SLS in our hair care products. All of our organic shampoos use different surfactants which are kind to skin. Full ingredients lists are available on each product page. What is Ammonium lauryl sulfate (ALS) and SLS, and what is the difference between them? Are you the type of person that looks and questions every ingredient in the products you purchase? Don’t worry, that’s a good thing! We’re happy to know people care about what they are in contact with, and we’ve definitely gotten a few questions about our ingredients as well. Which is why we’re here to give you the low down on our Lunette Feelbetter Cup Cleanser and the surfactant we use in it — Ammonium lauryl sulfate (ALS) (ASL), and compare it the one we don’t use, Sodium Lauryl Sulfate (SLS). Try not to get tongue twisted ;) What is Ammonium lauryl sulfate (ALS) and SLS, and what is the difference between them? Ammonium lauryl sulfate (ALS) and Sodium Lauryl Sulfate are both anionic surfactants. English, please? A surfactant is a compound that decreases the surface tension between two liquids, a solid or a liquid, or a gas and a liquid. They often act as detergents, foaming agents, and more by helping to mix water with oil and dirt so they can be washed away. Science rules. ASL and SLS have similar-sounding names but what makes them different is their molecular structure. Are Ammonium lauryl sulfate (ALS) and SLS safe to use? For decades, sulphates have been in the focus of critical parties, even though they are an incredibly efficient fat remover and create a ton of foam. They are considered as environmentally friendly, as they are very quickly biodegradable and won’t typically cause any allergies. Sulfates are recognized among others by the Asthma and Allergy Society in all countries and therefore widely used in most shampoos, sanitary cleansing gels, dishwashers, etc., to dissolve fat the most effectively. Although there have been reports that SLS is carcinogenic, there is no scientifically proven link to it. Many reports on the Internet cannot verify this argument with convincing scientific evidence. In fact, cosmetic products in the European Union must comply with strict guidelines and prove their safety before they can be sold. The flip side of why someone would be against these surfactants is that, because of their efficacy in high concentrations, they are particularly irritating to the eyes and skin. This is being emphasized again and again by most opponents. News flash — all surfactants used are usually harmful to the eyes, whether they are SLS, Ammonium lauryl sulfate (ALS) or other compounds. However, Ammonium lauryl sulfate (ALS) has been found clearly milder than sodium lauryl sulfate in irritation tests In an article of the "Cosmetic Ingredients Review", only six complaints were reported for shampoos containing up to 31% Ammonium lauryl sulfate (ALS) with 6.8 million units sold. The Cosmetic Ingredient Review report also states, that "Sodium Lauryl Sulfate and Ammonium lauryl sulfate (ALS) appear to be safe in formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin.” Usually, you only come in contact with surfactants for a short amount of time, like when you’re washing your hair or cleaning your menstrual cup. In this short contact, which is then rinsed with water, the risk of irritation is very low. Why aren’t we using “soft” surfactants? A current trend is to use ingredients that are made by marketing campaigns to sound "soft and gentle" and "used earlier". Therefore, in natural cosmetics, for example, glucosides are used, such as Coco Glucosides, Lauryl Glucosides, Decyl Glucosides, since glucosides have a glucose, i.e. a sugar base. Glucosides are much weaker in foam than sulfates, and they are not as easily thickened as sulfates. You then need polymers or gums as thickeners. However, polymers are banned in natural cosmetics and substances that are permitted in natural cosmetics, such as xanthan gum, cause the gel to leave a sticky feeling on the skin. In order to clean the Lunette Menstrual Cups thoroughly, we have chosen Ammonium lauryl sulfate (ALS) for its effectiveness as one of the ingredients in our Feelbetter Cup Cleanser. Ammonium lauryl sulfate (ALS) leaves no residue on the surface of the cup, and Ammonium lauryl sulfate (ALS) is recognized by the "Allergy, Skin and Asthma Federation" as an ingredient in cosmetic products. Many people still confuse Ammonium lauryl sulfate (ALS) with the "infamous" Sodium Lauryl Sulfate (SLS). The second surfactant we use is called cocamidopropyl betaine. This surfactant is preferred in natural cosmetics, but Ammonium lauryl sulfate (ALS) does not work well enough alone, so we paired it with the more effective Ammonium lauryl sulfate (ALS). The product has the ability to produce dense and stable foam, which allows fine and evenly distributed air bubbles to be obtained. Due to these properties, ROSULfan A is used as the main ingredient in cleansing cosmetic products. Ammonium lauryl sulfate (ALS) is dedicated to shampoos, body wash and shower gels.
Altın Jojoba Yağı
JOJOBA OIL GOLDEN; jojoba seed oil; fixed oil expressed or extracted from seeds of the desert shrub, jojoba, simmondsia chinensis, buxaceae; simmondsia californica seed oil CAS NO:90045-98-0
ALUMINA ( N° CAS : 1344-28-1 - Alumine (Oxyde d'aluminium))
ALUMINII CHLORIDUM HEXAHYDRICUM; ALUMINIUM(+3)CHLORIDE HEXAHYDRATE; ALUMINIUM CHLORIDE 6H2O; ALUMINIUM CHLORIDE 6-HYDRATE; ALUMINIUM CHLORIDE HEXAHYDRATE; ALUMINIUM CHLORIDE HYDRATE; ALUMINIUM CHLORIDE HYDRATED; ALUMINIUM(III) CHLORIDE HEXAHYDRATE; ALUMINUM CHLORIDE; ALUMINUM CHLORIDE, 6-HYDRATE; ALUMINUM CHLORIDE HEXAHYDRATE; ALUMINUM CHLORIDE HYDRATED; ALUMINUM CHLORIDE, HYDROUS; ALUMINUM TRICHLORIDE HEXAHYDRATE; HYDROCHLORIC ACID ALUMINUM SALT HEXAHYDRATE; aluminum(iii)chloride,hexahydrate; Aluminumchloride(AlCl3)hexahydrate; chlorured’aluminium,hexahydrate; hydrousaluminumchloride; trichloroaluminumhexahydrate CAS NO:7784-13-6
ALUMINIUM CHLORIDE HEXAHYDRATE
Aluminum trichloride; Trichloroaluminum; Alluminio(Cloruro Di); Aluminium Chloride, Anhydrous; Aluminiumchlorid; Aluminum Chloride (1:3); Aluminum, (Chlorure D'); Anhydrous Aluminum Chloride; Chlorure D'aluminium; Chlorure D'aluminium, Anhydre; Tichloroaluminum, Anhydrous; Aluminiumchlorid (German); Cloruro de aluminio (Spanish); Chlorure d'aluminium CAS NO:7446-70-0
ALUMINIUM CHLORIDE X HYDRATE
Synonyms: basicaluminumchlorate;chlorhydrol;chlorhydrol,granular;chlorhydrol,impalpable;chlorohydrol;chloropentahydroxydialuminum;dialuminium;dialuminiumchloridepentahydroxide CAS: 12042-91-0
ALUMINIUM CHLOROHYDRATE
Polyaluminum chlorohydrate; PAC; Polyaluminum hydroxychloride; APP 201; Aluminum chlorohydra; Aluminum oxychloride; ALUMINIUMCHLORHYDRATE; aluminiumchlorohydrate; ALUMINUM CHLOROHYDRATE; ALUMINIUM POLYCHLORIDE; Aluminum hydroxychloride; Aluminiumhydroxychlorid8; Spray pressurefilter PAC CAS NO:1327-41-9
ALUMINIUM CHLOROHYDRATE 50%
Stearic acid, aluminum salt; Aluminum tristearate; Monoaluminum stearate; Octadecanoic acid, aluminum salt; Hydroxyaluminiumstearat; Aluminiumstearat; Estearato de hidroxialuminio; Estearato de aluminio; Estearato de hidroxialuminio; Stéarate d'aluminium CAS NO:300-92-5; 36816-06-5
ALUMINIUM DISTEARAT
Hydrated alumina; Alumina hydrate; Alumina trihydrate; ATH; Aluminum hydrate; Aluminum trihydrate; Alhydrogel; Superfos; Amphogel; Aluminum (III) hydroxide; Amorphous alumina; Trihydrated Alumina; Trihydroxyaluminum CAS NO:21645-51-2
ALUMINIUM HYDROXIDE
CAS Number: 21645-51-2
EC number: 244-492-7
Chemical formula: Al(OH)3
Molar mass: 78.00 g/mol

Aluminium hydroxide, Al(OH)3, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite.
Aluminium hydroxide is amphoteric, i.e., it has both basic and acidic properties.
Closely related are aluminium oxide hydroxide, AlO(OH), and aluminium oxide or alumina (Al2O3), the latter of which is also amphoteric.
Aluminum hydroxide, the formulation of which is Al(OH)3, can be found in nature in the following forms: gibbsite, which is a mineral, and doyleite, nordstrandite and bayerite, all of which are rare polymorphs. Based on its properties, we can say that aluminum hydroxide appears to be an antacid. It has various uses, primary among which is medical application.

Aluminium hydroxide can also reduce the amount of phosphate which your body absorbs from the food you eat.
Aluminium hydroxide combines with phosphate in your stomach, and this is then removed instead of being absorbed.
Although aluminium hydroxide is sometimes prescribed for this purpose in people with certain kidney diseases, other medicines are usually used in preference to it.

Uses of Aluminium hydroxide:
Fire retardant filler:
Aluminium hydroxide also finds use as a fire retardant filler for polymer applications.
Aluminium hydroxide is selected for these applications because it is colorless (like most polymers), inexpensive, and has good fire retardant properties.
Magnesium hydroxide and mixtures of huntite and hydromagnesite are used similarly.
Aluminium hydroxide decomposes at about 180 °C (356 °F), absorbing a considerable amount of heat in the process and giving off water vapour.
In addition to behaving as a fire retardant, Aluminium hydroxide is very effective as a smoke suppressant in a wide range of polymers, most especially in polyesters, acrylics, ethylene vinyl acetate, epoxies, polyvinyl chloride (PVC) and rubber.

Precursor to Al compounds:
Aluminium hydroxide is a feedstock for the manufacture of other aluminium compounds: calcined aluminas, aluminium sulfate, polyaluminium chloride, aluminium chloride, zeolites, sodium aluminate, activated alumina, and aluminium nitrate.
Freshly precipitated aluminium hydroxide forms gels, which are the basis for the application of aluminium salts as flocculants in water purification.
This gel crystallizes with time.
Aluminium hydroxide gels can be dehydrated (e.g. using water-miscible non-aqueous solvents like ethanol) to form an amorphous aluminium hydroxide powder, which is readily soluble in acids.
Heating converts it to activated aluminas, which are used as desiccants, adsorbent in gas purification, and catalyst supports.

Pharmaceutical:
Under the generic name "algeldrate", aluminium hydroxide is used as an antacid in humans and animals (mainly cats and dogs).
Aluminium hydroxide is preferred over other alternatives such as sodium bicarbonate because Al(OH)3, being insoluble, does not increase the pH of stomach above 7 and hence, does not trigger secretion of excess acid by the stomach.
Aluminium hydroxide reacts with excess acid in the stomach, reducing the acidity of the stomach content, which may relieve the symptoms of ulcers, heartburn or dyspepsia.
Such products can cause constipation, because the aluminium ions inhibit the contractions of smooth muscle cells in the gastrointestinal tract, slowing peristalsis and lengthening the time needed for stool to pass through the colon.
Some such products are formulated to minimize such effects through the inclusion of equal concentrations of magnesium hydroxide or magnesium carbonate, which have counterbalancing laxative effects.

Aluminium hydroxide is also used to control hyperphosphatemia (elevated phosphate, or phosphorus, levels in the blood) in people and animals suffering from kidney failure.
Normally, the kidneys filter excess phosphate out from the blood, but kidney failure can cause phosphate to accumulate.
The aluminium salt, when ingested, binds to phosphate in the intestines and reduce the amount of phosphorus that can be absorbed.

Precipitated aluminium hydroxide is included as an adjuvant in some vaccines (e.g. anthrax vaccine).
One of the well-known brands of aluminium hydroxide adjuvant is Alhydrogel, made by Brenntag Biosector.
Since Aluminium hydroxide absorbs protein well, it also functions to stabilize vaccines by preventing the proteins in the vaccine from precipitating or sticking to the walls of the container during storage.
Aluminium hydroxide is sometimes called "alum", a term generally reserved for one of several sulfates.

Vaccine formulations containing aluminium hydroxide stimulate the immune system by inducing the release of uric acid, an immunological danger signal.
This strongly attracts certain types of monocytes which differentiate into dendritic cells.
The dendritic cells pick up the antigen, carry it to lymph nodes, and stimulate T cells and B cells.
Aluminium hydroxide appears to contribute to induction of a good Th2 response, so is useful for immunizing against pathogens that are blocked by antibodies.
However, Aluminium hydroxide has little capacity to stimulate cellular (Th1) immune responses, important for protection against many pathogens, nor is it useful when the antigen is peptide-based.

Chemical Properties of Aluminium hydroxide:
There are many different forms of aluminum oxide, including both crystalline and non-crystalline forms.
Aluminium hydroxide’s an electrical insulator, which means it doesn’t conduct electricity, and Aluminium hydroxide also has relatively high thermal conductivity.
In addition, in Aluminium hydroxides crystalline form, corundum, its hardness makes it suitable as an abrasive.
The high melting point of aluminum oxide makes it a good refractory material for lining high-temperature appliances like kilns, furnaces, incinerators, reactors of various sorts, and crucibles.
The chemical formula for aluminum hydroxide is Al(OH)₃.

Aluminium hydroxide is taken for indigestion.
Aluminium hydroxide is also taken to control high phosphate levels in people with kidney disease.

Aluminium hydroxide is an antacid, which means that it neutralises excess stomach acid associated with indigestion.
Aluminium hydroxide also helps to protect the lining of your stomach from acid irritation.

Properties of aluminum hydroxide:
The purified aluminum hydroxide has form of bulky powder of white color or granules with density nearly 2.42 g per mL.
Aluminum hydroxide won’t dissolve in water, but will dissolve only in bases and acids.
You can expect aluminum hydroxide to act as an amphoteric substance in water.
If a strong base is present, aluminum hydroxide will act as an acid.
And if a strong acid is present, Aluminium hydroxide will act as a strong base.
Aluminum hydroxide should be handled with caution because its exposure can cause irritation.
However, only minor and residual injuries will be present.
As for flammability, aluminum hydroxide is not flammable and will not burn.
Besides, aluminum hydroxide is not reactive, therefore, it is stable in both fire and water conditions.

Uses of Aluminium hydroxide:
-Aluminium hydroxide is used as a flame retardant in plastics.
-Aluminium hydroxide is used as an antacid.
-Aluminium hydroxide is used in aluminium Hydroxide gel.
-Aluminium hydroxide is used to manufacture activated alumina.
-Aluminium hydroxide is used as a filler in cosmetics.
-Aluminium hydroxide is used as a chemical intermediate.
-Aluminium hydroxide is used as a soft abrasive for plastics.
-Aluminium hydroxide is used in glass additive to increase resistance to thermal shock.
-Aluminium hydroxide is used in waterproofing fabrics.
-Aluminium hydroxide is used in the manufacturing of glass.

Al(OH)3: Aluminium hydroxide
Molecular weight of Al(OH)3: 78.00 g/mol
Density of Aluminium hydroxide: 2.42 g/dm3
Flashpoint of Aluminium hydroxide: Non-flammable
Melting Point of Aluminium hydroxide: 300 °C

Applications of aluminum hydroxide:
Aluminum hydroxide has plenty of applications; some people believe that these uses are really endless.
Just to illustrate the broadness of the uses, we can say that aluminum hydroxide is used as mordant in dyes, purifier for water, ingredient for cosmetics, and even in as an element for processes in photography.
There are also applications of minor character in ceramics and construction.
But the most important field where aluminum hydroxide is applied is medicine.

Aluminum Hydroxide Applications in medicine:
Given that aluminum hydroxide is able to neutralize acids, it serves as a natural antacid.
Aluminum hydroxide also has a very useful property as it stimulates the immune system of human.
Besides, various vaccines, including those that are used to treat hepatitis B, hepatitis A, and tetanus, are prepared using aluminum hydroxide.
Aluminium hydroxide can be also used for the treatment of kidney patients who have high level of phosphates in blood due to renal failure.
This useful feature exists due to the ability of aluminum hydroxide to bind with phosphates.
After binding with aluminum hydroxide, phosphates are flushed out of the human body easily.

Cosmetics applications of Aluminium hydroxide:
There are various applications for aluminum hydroxide in the field of cosmetics.
Aluminum hydroxide is most frequently used for the production of lipsticks, make-ups, and other products for skin care.
Aluminium hydroxide is used there because it is totally stable and non toxic for people.
Sometimes aluminum hydroxide manufacturers of cosmetics also use aluminum hydroxide to produce cleansers for skin, suntan products, body lotions, and moisturizers.
Personal care products, for example, shampoos, toothpastes, deodorants and many others, also involve using of aluminum hydroxide.
Aluminum hydroxide is also sometimes used for protection of human skin.

Applications of Aluminium hydroxide in industry:
Concrete could not be produced without aluminum hydroxide.
On the stage of production of concrete aluminum hydroxide is added to cement.
Aluminium hydroxide is also very useful because cement with aluminum hydroxide addition dries rapidly if it is being exposed to heat.
Ceramics and glass of both industrial and home application is manufactured using aluminum hydroxide.
The most useful feature of aluminum hydroxide when it is added to glass consists in the fact that it makes glass heat-resistant.
Aluminium hydroxide is possible because, as have been already mentioned, aluminum hydroxide is not flammable and has high melting point.
Aluminum hydroxide combined with polymers appears to be a very good fire retardant.

Uses of Aluminium hydroxide in textile field:
Don’t forget that aluminum hydroxide doesn’t dissolve in water.
For this reason, Aluminium hydroxide can be applied in textiles by adding it in order to produce waterproof clothes.
Besides, when Aluminium hydroxide is needed to bind colors of vegetable dyes to fabric, aluminum hydroxide will also be very useful.
In this case, aluminum hydroxide is used as a mordant.
Any mordant is used in cases when fabrics are resistant to dyes.
In such situations, a mordant allows penetrating fabric by the dye.
Another instance of aluminum hydroxide usage is when it is used to make some dyes fire-resistant.

Aluminum Hydroxide Formula Other field of applications:
Given how actively aluminum hydroxide is used in various fields we could not omit other field of its applications.
Apart from what we have already mentioned above, aluminum hydroxide, as well as any other aluminum compound, is used to purify water in order to remove particles and various kinds of impurities.
In manufacturing of inks aluminum hydroxide acts as an extender and preservative.
Aluminum hydroxide can be also used as chromatography in laboratories in order to separate chemicals into different compounds.

Reactions in humans:
Unlike some other aluminum compounds, aluminum hydroxide causes no adverse reaction in humans, at least towards the majority of persons.
Aluminium hydroxide is very broadly used in many fields of life and has plenty of applications in home use and industry.
Most people may not know what aluminum hydroxide is or where this compound is used, but we already know it and useful features of aluminum hydroxide are obvious to all people interested in this subject.

Medical precautions of aluminum hydroxide:
There is no surprise that the most important application of aluminum hydroxide is its medical application.
Even though aluminum hydroxide is relatively safe to humans and is applied in various fields of human life, oral administration of aluminum hydroxide should be completed cautiously.
Aluminium hydroxide is always recommended to advise your doctor before starting taking aluminum hydroxide or if any problems occur during the taking.
If you have any health problems related to kidneys, including stones, constipation or disease, you should see a doctor or get an advice of a pharmacist before taking any medicine that contains aluminum hydroxide.
Besides, the doctor’s advice is also necessary in case you are dehydrated or drink alcohol on a regular basis.

Nomenclature:
CAS No.: 21645-51-2
Molecular Formula: Al(OH)3
Molecular Weight: 78
Synonyms: Aluminic acid, Aluminic hydroxide, Aluminium(III) hydroxide, Aluminum hydroxide,Hydrated alumina, Orthoaluminic acid
Physical Property:
Physical state: White amorphous powder
Melting Point: 300°C
Solubility: in water, Soluble in acids, alkalis, HCl and H2SO4
Acidity (pKa): >7
Flash point: Noninflammable

Application & Use of Aluminium hydroxide:
Mainly used as an Active medicament in an Antacid Formulations, also used in manufacturing of Lake colors, Inks, catalysts carrier etcs.
Aluminum hydroxide is used to treat symptoms of increased stomach acid, such as heartburn, upset stomach, sour stomach, or acid indigestion.
Aluminum hydroxide is also used to reduce phosphate levels in people with certain kidney conditions.

Advantage and Disadvantages of Aluminium hydroxide:
Aluminium hydroxide is used to treat the symptoms of too much stomach acid such as stomach upset, heartburn, and acid indigestion.
Aluminum hydroxide is an antacid that works quickly to lower the acid in the stomach.
Stop using the medication and call your doctor at once if you have a serious side effect such as: severe stomach pain or constipation; bloody, black, or tarry stools; coughing up blood that looks like coffee grounds; pain when you urinate; extreme drowsiness; tired feeling, loss of appetite, and muscle weakness

Taking aluminum hydroxide for more than two weeks with no advice of your doctor is strongly not recommended.
Besides, you should not take any other medications when taking aluminum hydroxide.
If you are pregnant or planning to become pregnant during your treatment with aluminum hydroxide, you must have an advice of your doctor.
The same should be done if you are a breast-feeding mother.
Effect of aluminum hydroxide on a nursing baby can be harmful.
For this reason, you should consult the doctor of yours in such a situation.

Aluminium hydroxide (Al(OH)3 – ATH) is the most widely used inorganic flame retardant in the World.
ATH is cost effective and non toxic flame retardant can be used in wide variety of molding compounds such as rubber, polyster and epoxy composites, polyurethane foams, latex based formulations, silicone, wall coverings, wire and cables.
ATH flame retardants are in the non halogenated and low smoke and fume (LSF) category which is important for human health and environment.

Some important properties of Aluminium hydroxide for flame retardants are listed below:
-Decomposition temperature,
-Toxicity (effects on human health and environment),
-Cost,
-Specific gravity,
-Optical properties (colour, refractive index etc),
-Effect on mechanical and electrical properties of the final product

What does aluminium hydroxide do?
Aluminium is a metal that occurs naturally.
The antacid is the hydroxide of aluminium.
Aluminium hydroxide is used in the treatment of heartburn, stomach pain, sore stomach or indigestion with acid.
Aluminium hydroxide is also used in humans with other kidney disorders to reduce phosphate levels.

Is Aluminium hydroxide safe in cosmetics?
The synthetic ingredient which acts as an opacifier.
Primary applications include agent and absorbent for painting.
There is no known skin toxicity to the aluminium hydroxide.

What is another name for aluminium hydroxide?
Aluminium hydroxide is an over-the-counter antacid drug used to treat peptic ulcer and hyperphosphatemia.

Is aluminium hydroxide a weak base?
Aluminium hydroxide has molecular formula Al(OH)3 as a chemical compound.
For example, in aluminium hydroxide the hydroxide (OH) can act as a weak base when reacting with the strong acid, hydrochloric acid (HCl).
A weak base is a base that partially dissociates in solution, or breaks apart.

Applications of Aluminium hydroxide:
-Construction & Civil Engineering>Others
-Daily Life>Others
-Daily Life>Sanitary products
-Daily Life>Public hygiene products
-Industrial Chemicals>Others
-Industrial Chemicals>Adhesives
-Industrial Chemicals>Plasticizers
-Industrial Chemicals>Rubber chemicals
-Industrial Chemicals>Polymer additives
-IT-related Materials>Others
-IT-related Materials>Electronic materials
-IT-related Materials>Display materials
-IT-related Materials>Semiconductor processing materials
-IT-related Materials>Lithium-ion secondary battery materials
-Environment & Energy>Others
-Environment & Energy>Lithium-ion secondary battery materials

PRODUCTION METHOD of Aluminium hydroxide:
Conventional powder production methods are used for the production.
Aluminum hydroxide (ATH) powders can be used as flame retardant additive for polymer applications and production of aluminum oxide powders.

CHEMICAL AND PHYSICAL PROPERTIES of Aluminium hydroxide:
Chemical purity: > %99.5
Whiteness: > %97
Particle size: 20-25 µm

APPLICATIONS of Aluminium hydroxide:
Raw material for alumina production
Flame retardant applications

Aluminium hydroxide is a white crystalline product.
Aluminium hydroxide is also known as hydrated alumina, aluminium hydrate or alumina tri-hydrate (ATH).
Aluminium hydroxide is typically used as a raw material for the production of other alumina based chemicals such as calcined alumina, aluminium sulfate, poly aluminium chloride (PAC), aluminium fluoride and synthetic zeolite.
Aluminium hydroxides chemical formula is Al2O3•3H2O or Al(OH)3.

Formula:
AlH3O3
H3AlO3
Net Charge: 0
Average Mass: 78.00356
Monoisotopic Mass: 77.98976
InChI: InChI=1S/Al.3H2O/h;3*1H2/q+3;;;/p-3
InChIKey: WNROFYMDJYEPJX-UHFFFAOYSA-K
SMILES: [H]O[Al](O[H])O[H]

How to take aluminum hydroxide?
You should take this aluminum compound only in the way this is specified on its label or how your doctor prescribes it.
Don’t exceed the dose prescribed by your doctor and don’t take aluminum hydroxide for longer than it was prescribed.

To be sure that your dose is accurate, measure it with medicine spoon or cup instead of regular spoon.
Don’t have a special medical device for measuring? Buy it or ask your doctor to provide it.
Aluminum hydroxide should be taken with full glass of water.
Usually aluminum hydroxide is taken before bedtime or between meals.
Don’t take Aluminium hydroxide longer than two months if your doctor hasn’t advised you otherwise.
Aluminum hydroxide should be stored away from heat, light, and moisture.

Don’t worry if you have missed a dose.
Usually aluminum hydroxide should not be taken regularly, but if it is, take it as soon as you remember about it.
But if the time for the next dose has almost come, skip the missed dose.
In case of an overdose with aluminum hydroxide, you should contact poison help service or seek emergency medical help.
The symptoms of an overdose with aluminum hydroxide are weight loss, mood changes, confusion, constipation, and urinating less than usually or not urinating at all.

What is aluminum hydroxide?
Aluminum is a naturally occurring mineral.
Aluminum hydroxide is an antacid.
Aluminum hydroxide is used to treat heartburn, upset stomach, sour stomach, or acid indigestion.
Aluminum hydroxide is also used to reduce phosphate levels in people with certain kidney conditions.
Aluminum hydroxide may also be used for purposes not listed in this medication guide.

Structure of Aluminium hydroxide:
Al(OH)3 is built up of double layers of hydroxyl groups with aluminium ions occupying two-thirds of the octahedral holes between the two layers.
Four polymorphs are recognized.
All feature layers of octahedral aluminium hydroxide units, with hydrogen bonds between the layers.
The polymorphs differ in terms of the stacking of the layers.

All forms of Al(OH)3 crystals are hexagonal:
-gibbsite is also known as γ-Al(OH)3 or α-Al(OH)3
-bayerite is also known as α-Al(OH)3 or β-alumina trihydrate
-nordstrandite is also known as Al(OH)3
-doyleite

What is aluminum hydroxide?
Aluminum hydroxide is an over-the-counter oral antacid and phosphate binder, most commonly used to treat high phosphate levels secondary to kidney dysfunction (abnormal or impaired function of the kidneys).
Aluminium hydroxide can also be used to reduce stomach acid production.

Aluminium hydroxides use in cats, dogs, or small mammals to treat high phosphate levels is 'off label' or 'extra label'.
Many drugs are commonly prescribed for off label use in veterinary medicine.
In these instances, follow your veterinarian’s directions and cautions very carefully as their directions may be significantly different from those on the label.

How is aluminum hydroxide given?
Aluminum hydroxide is given by mouth in the form of a liquid gel or in powder form mixed with food.
Aluminium hydroxide can also be compounded into capsules.
Aluminium hydroxide should be given immediately before food or mixed into the food.
Aluminium hydroxide should take effect within 1 to 2 hours; however, effects may not be visibly obvious and therefore laboratory tests may need to be done to evaluate this medication’s effectiveness.

Hydrargillite, once thought to be aluminium hydroxide, is an aluminium phosphate.
Nonetheless, both gibbsite and hydrargillite refer to the same polymorphism of aluminium hydroxide, with gibbsite used most commonly in the United States and hydrargillite used more often in Europe.
Hydrargillite is named after the Greek words for water (hydra) and clay (argylles).

What is aluminum hydroxide?
Aluminum hydroxide is an antacid available in over-the-counter (OTC) medicines that relieve heartburn, acid indigestion, sour stomach, and upset stomach.
Aluminum hydroxide can be found in heartburn medicines that contain more than one antacid active ingredient.
Aluminium hydroxide can also be found in medicines that treat other symptoms, such as gas.

What is aluminum hydroxide used to treat?
-Heartburn
-Acid Indigestion
-Sour Stomach
-Upset Stomach

What is Aluminium Hydroxide?
Al(OH)3 is amphoteric in nature with chemical name Aluminium hydroxide.

Aluminium hydroxide is also called Aluminic acid or Aluminic hydroxide or Aluminium (III) hydroxide.
Aluminium hydroxide is found in nature in the form of mineral gibbsite and its polymorphs viz doyleite, nordstrandite, and bayerite.
Aluminic hydroxide is an amorphous powder white.
Aluminium hydroxide is insoluble in water but soluble in alkaline and acidic solutions.

Properties of Aluminium hydroxide:
Aluminium hydroxide is amphoteric.
In acid, Aluminium hydroxide acts as a Brønsted–Lowry base.
Aluminium hydroxide neutralizes the acid, yielding a salt:
3 HCl + Al(OH)3 → AlCl3 + 3 H2O

In bases, Aluminium hydroxide acts as a Lewis acid by binding hydroxide ions:
Al(OH)3 + OH− → Al(OH)4−

ALUMINIUM HYDROXIDE
Aluminium hydroxide or aluminium hydroxycarbonate, is the most widely used antacid active.
Aluminium hydroxide is available as both a suspension and powder and maybe used alone or in combination with magnesium hydroxide.
The widespread use of aluminium hydroxide gel in the formulation of antacids is based on its excellent pharmacological properties, which have been confirmed repeatedly over many years of administration.
Aluminium hydroxide gel is an effective neutralizer and buffer of gastric hydrochloric acid, with no known harmful side effects.
We offer a vast selection of aluminium hydroxide grades with a variety of properties.

ALUMINIUM HYDROXIDE POWDER:
Aluminium hydroxide powders are manufactured from suspensions via defined drying processes which result in powders with varying density and particle size characteristics.
The powders are primarily used in the production of antacid tablets, preferably after pre-granulation.

Preferred IUPAC name:
Aluminium hydroxide

Systematic IUPAC name:
Trihydroxidoaluminium

CAS Number: 21645-51-2
CHEBI: 33130
ChEMBL: ChEMBL1200706
ChemSpider: 8351587
DrugBank: DB06723
ECHA InfoCard: 100.040.433
KEGG: D02416
PubChem CID: 10176082
RTECS number: BD0940000
UNII: 5QB0T2IUN0
CompTox Dashboard (EPA): DTXSID2036405

How should I take aluminum hydroxide?
Use of Aluminium hydroxide exactly as directed on the label, or as prescribed by your doctor.
Aluminum hydroxide is usually taken between meals or at bedtime.
Take aluminum hydroxide with a full glass (8 ounces) of water.
Shake the oral suspension (liquid) before you measure a dose.
Use the dosing syringe provided, or use a medicine dose-measuring device (not a kitchen spoon).
Do not take aluminum hydroxide for longer than 2 weeks without your doctor's advice.
Store at room temperature away from moisture, heat, and light.

Chemical formula: Al(OH)3
Molar mass: 78.00 g/mol
Appearance: White amorphous powder
Density: 2.42 g/cm3, solid
Melting point: 300 °C (572 °F; 573 K)
Solubility in water: 0.0001 g/100 mL
Solubility product (Ksp): 3×10−34
Solubility: soluble in acids and alkalis
Acidity (pKa): >7
Isoelectric point: 7.7

Color: White
pH: 8.5 to 10 (5% aq. suspension)
Linear Formula: Al(OH)3
Merck Index: 15,338
Solubility Information: Solubility in water: insoluble
Formula Weight: 78
Physical Form: Powder
Percent Purity: ≥63.5% (Al2O3)
Grade: Extra Pure
Loss on Ignition: 36.5% max.
Packaging: Plastic bottle
Water Soluble Substances: 0.2% max.
Chemical Name or Material: Aluminium hydroxide

Before taking aluminium hydroxide
To make sure this is the right treatment for you, before you take aluminium hydroxide capsules it is important that your doctor or pharmacist knows:
-If you are pregnant or breastfeeding.
-If you have any problems with the way your liver works or any problems with the way your kidneys work.
-If you have been told you have low levels of phosphate in your blood.
-If you have ever had an allergic reaction to a medicine.
-If you are taking any other medicines.
This includes any medicines you are taking which are available to buy without a prescription, as well as herbal and complementary medicines.

How to take aluminium hydroxide
For indigestion in adults, take one capsule four times a day with meals and one at bedtime.
The capsules are not suitable for children to take as an antacid.
Antacids are best taken when symptoms are likely to occur.
If you are taking aluminium hydroxide to reduce the amount of phosphate in your body, your doctor will tell you how many capsules to take each day.
You could be asked to take between 4-20 capsules a day.
Take the capsules spaced out throughout the day with your meals.
Aluminium hydroxide can interfere with other medicines taken at the same time and can prevent them form being absorbed properly.
Aluminium hydroxide is best if you leave two hours between taking aluminium hydroxide and any other medicines.

Other names:
Aluminic acid
Aluminic hydroxide
Aluminium(III) hydroxide
Aluminium hydroxide
Aluminum trihydroxide
Hydrated alumina
Orthoaluminic acid

Aluminium hydroxide is regarded as being the most important mineral flame retardant in the world and, thanks to its freedom from halogens, it is environmentally friendly and is characterized by its high efficiency as a smoke gas suppressant.
Aluminium hydroxide is made from bauxite in accordance with the Bayer process.
Besides the flame retardant property, the excellent features of aluminium hydroxide are its high degree of whiteness and low degree of hardness.
In addition, dehydration takes place at 200°C.

Properties of Aluminium hydroxide:
-low degree of hardness, 3
-density of 2.4 g/cm3
-high degree of whiteness (colour value Y > 94)
-thermal coefficient of expansion 15*10-6K-1 (at a temp. of 20–300°C)
-flame retardant

What is Aluminium Hydroxide?
Aluminium hydroxide adjuvant comprises aluminium hydroxide gel in saline solution.
Moreover, aluminium hydroxide is an inorganic salt that has usage as an antacid.
Also, Aluminium hydroxide is a basic compound that neutralizes the hydrochloric acid in gastric secretions.
Aluminium hydroxide is amphoteric in nature.

Main applications of Aluminium hydroxide:
-cables for example made of PVC
-textile applications
-solid surface composites made of PMMA
-epoxy casting resins
-SMC/BMC and latex

Product Properties:
Physical state: Liquid
Form: Liquid
Al2O3: 10% (w/w)
Charge: +1350
Colour: Colourless to light yellow
Odour: Not significant
pH: >= 2
Melting point/freezing point: < 0 °C (< 32 °F)
Boiling point, initial boiling point: 100 – 120 °C (212 – 248 °F)
Density: 1200 – 1400 kg/m3 @ 20 oC
Solubility (water): Miscible

Indications of Aluminium hydroxide:
Aluminum hydroxide is often administered orally for the temporary relief of heartburn or gastroesophageal reflux.
Aluminium hydroxide may be used topically, temporarily, to protect and relieve chafed and abraded skin, minor wounds and burns, and skin irritations resulting from friction and rubbing.
Patients may also receive Aluminium hydroxide to treat chemo-induced oral mucositis in the form of a mouthwash.
Additionally, Aluminium hydroxide is approved for use as an adjuvant in numerous vaccines due to its ability to increase phagocytosis and spur immune responses.

Aluminium hydroxide also has approval for use in a wid
ALUMINIUM MONOSTEARATE
Aluminium Monostearate Aluminium monostearate is an organic compound which is a salt of stearic acid and aluminium. It has the molecular formula Al(OH)2C18H35O2. It is also referred to as dihydroxy(octadecanoato-O-)aluminium or dihydroxy(stearato)aluminium. Aluminium monostearate is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. It is usually safe in commercial products, but aluminium may accumulate in the body. Properties of Aluminium Monostearate Chemical formula C18H37AlO4 Molar mass 344.472 g·mol−1 Antacids perform a neutralization reaction, ie. they buffer gastric acid, raising the pH to reduce acidity in the stomach. When gastric hydrochloric acid reaches the nerves in the gasitrointestinal mucosa, they signal pain to the central nervous system. This happens when these nerves are exposed, as in peptic ulcers. The gastric acid may also reach ulcers in the esophagus or the duodenum. Other mechanisms may contribute, such as the effect of aluminum ions inhibiting smooth muscle cell contraction and delaying gastric emptying. Aluminum is known to bind troponin C (a muscle protein) and to interfere with voltage-dependent calcium transport. Aluminum also binds to and inhibits the activity of mitochondrial voltage gated channels (VDAC). Description of Aluminium Monostearate Aluminium monostearate is a salt of stearic acid and aluminium with the molecular formula Al(OH)2C18H35O2. Also known as dihydroxyaluminium or dihydroxy(stearato)aluminium, it is used to form gels in the packaging of pharmaceuticals and in the preparation of colors for cosmetics. While considered safe for use, extensive usage may result in aluminum accumulation. Aluminium Stearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, aluminum stearate is considered safe for general or specific, limited use in food. Aluminium stearate is not classifiable as a human carcinogen (cancer-causing agent). Description of Aluminium Monostearate Aluminium monostearate is a salt of stearic acid and aluminium. It is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. Aluminum is the most abundant metal in the earth's crust and is always found combined with other elements such as oxygen, silicon, and fluorine. (5, 6, 7) What is Aluminium Monostearate? Aluminium monostearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, Aluminium monostearate is considered safe for general or specific, limited use in food. Aluminium monostearate is not classifiable as a human carcinogen (cancer-causing agent). Compound Type Aluminum Compound Household Toxin Industrial/Workplace Toxin Organic Compound Organometallic Synthetic Compound Uses of Aluminium Monostearate Aluminium monostearate is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. Use: Aluminium Monostearate is one of numerous organo-metallic compounds sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Aluminum Monostearate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available. Use: Aluminium Monostearate can be used in the preparation of colors for cosmetics and for the packaging of pharmaceuticals. Aluminium monostearate is the aluminum salt of the fatty acid, stearic acid. Aluminium Monostearate The Stearate salts, including Lithium Stearate, Aluminum Distearate, Aluminium monostearate, Aluminum Tristearate, Ammonium Stearate, Calcium Stearate, Magnesium Stearate, Potassium Stearate, Sodium Stearate, and Zinc Stearate are fine, white powders with a slight fatty odor. In cosmetics and personal care products, Stearate salts are used mainly in the formulation of makeup products such as eyeliner, eyeshadow, mascara, lipsticks, blushers, face powders and foundations. They are also used in fragrances, deodorants, and hair and skin care products. Why is Aluminium Monostearate used in cosmetics and personal care products? The Stearate salts are generally used for their lubricating properties. They also help to keep emulsions from separating into their oil and liquid components. The Stearate salts increase the thickness of the lipid (oil) portion of cosmetics and personal care products and reduce the clear or transparent appearance of finished products. Scientific Facts of Aluminium Monostearate: The commercial stearic acid from which the Stearate salts are manufactured is actually a mixture of monocarboxylic acids obtained from animal and/or vegetable sources. Aluminium monostearate is an organic compound which is a salt of stearic acid and aluminium. It has the molecular formula Al(OH)2C18H35O2. It is also referred to as dihydroxy(octadecanoato-O-)aluminium or dihydroxy(stearato)aluminium. It is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. It is usually safe in commercial products, but aluminium may accumulate in the body. Aluminium monostearate (aluminum distearate) is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium monostearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium monostearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. The effects of metal soaps on pigments have been extensively studied. Aluminium monostearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium monostearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (weight of Aluminium monostearate/weight of oil) of Aluminium monostearate was more effective than 0.5% or 4% solutions in altering pigment surfaces (Gardner 1930). The soaps coat the surface of the pigments and by steric effects keep the particles from aggregating (Pilpel 1963), which helps to keep the particles in suspension. With increasing amounts of Aluminium monostearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium monostearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium monostearate in their formulations without listing it as a component on the product label. Substituents of Aluminium monostearate Carboxylic acid salt Organic metal salt Monocarboxylic acid or derivatives Organic oxygen compound Organic oxide Hydrocarbon derivative Organic salt Organooxygen compound Carbonyl group Aliphatic acyclic compound Solubility of Aluminium monostearate Aluminium monostearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. Storage of Aluminium monostearate Aluminium monostearate has long storage life if stored in cool and dry location. Uses of Aluminium monostearate It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium monostearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Aluminium monostearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium monostearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium monostearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding. There are multiple types of Aluminium monostearates, generally classified as aluminum mono-, di-, and tri-stearate. They vary in terms of physical properties such as melting point, free fatty acids, and particularly the gelling properties. Oils with a low viscosity are best thickened by aluminum di- and tri-stearate, whilst very viscous oils from stiffer gel when combined with aluminum mono- or di-stearates. All Aluminium monostearates are highly hydrophobic, and feature outstanding transparency and excellent adhesion to metal surfaces. Due to their water repellency, aluminum di- and tri-stearate are used as hydrophobic agents in the building industry. Aluminium monostearate (aluminum distearate) is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium monostearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium monostearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. The effects of metal soaps on pigments have been extensively studied. Aluminium monostearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium monostearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (weight of Aluminium monostearate/weight of oil) of Aluminium monostearate was more effective than 0.5% or 4% solutions in altering pigment surfaces (Gardner 1930). The soaps coat the surface of the pigments and by steric effects keep the particles from aggregating (Pilpel 1963), which helps to keep the particles in suspension. With increasing amounts of Aluminium monostearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium monostearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium monostearate in their formulations without listing it as a component on the product label. Aluminium monostearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. How to Use Aluminium monostearate Aluminium monostearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium monostearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium monostearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding. Aluminium monostearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, Aluminium monostearate is considered safe for general or specific, limited use in food. Aluminium monostearate is not classifiable as a human carcinogen (cancer-causing agent). A hard, thermoplastic white powder prepared from Tallow and Alum. Aluminium monostearate forms gels with turpentine, Mineral spirits, and oils. It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium monostearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Synonyms and Related Terms aluminum tristearate; octadecanoic acid aluminum salt; stearic acid aluminum salt; Aluminium monostearate white (AAT); stéarate d'aluminium (Fr.); Daiwax WA1; Metaspa XX; Rofob 3 Other Properties Soluble in ethanol, benzene, turpentine and mineral oils. When Aluminium monostearate was first introduced to artists' paints specifically is not known, but it is directly mentioned in a 1942 painting materials review (Gettens and Stout 1942) and in a paper by Levison in 1949 when he wrote " ... the use of Aluminium monostearate, customary for several decades, was openly declared, .." (Levison 1949 p. 826). He also notes that this soap can be added in quantities up to 2% of the grind without perceptible dilution of pigment color. Unlike calcium and zinc stearates that are available as 100% pure salts, the Aluminium monostearate as used in commerce is a non-stoichiometric compound. The trivalent aluminum may be united with one or two stearate anions with the balance of the charge being neutralized by hydroxyl anions (Elliott 1946; Pilpel 1971). Aqueous systems for the preparation or use of disalts seems to lead to a range of products containing varying amounts of stearate, hydroxyl, and water units (Pilpel 1963). Anhydrous systems are needed to prepare stearates higher than the di-salt. Commercial preparations of Aluminium monostearate may also contain anywhere from 2 to 7% by weight free stearic acid (Pilpel 1971; Witco 1999). Analysis by weight of two commercial specimens by the author showed free stearic acid as 2 and 3% respectively. Early preparations may also contain significant amounts of palmitate (from palmitic acid) since the commercial stearic acid used in the preparation of metal soaps was often only 90% pure. Other fatty acids (palmitic, oleic, linoleic etc.) were also present as impurities. Aluminium monostearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium monostearate is ground with the pigment before the bulk of the oil is added. In a series of experiments Gardner tested the effects of metal soaps on pigments. Aluminium monostearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium monostearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (wt stearate/wt oil) Aluminium monostearate was more effective than 0.5% or 4% solutions in altering the surface (Gardner 1930). The soaps coat the surface of the pigments and by steric effects or electrical charge mechanisms keep the particles from aggregating (Pilpel 1966). This keeps the pigments in suspension. With increasing amounts of Aluminium monostearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium monostearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. The earliest and simplest oil paints were mixtures of pigments and drying oils. Eventually driers, resins, fillers, sometimes adulterants and suspension aids were also added. Aluminium monostearate was one of the components introduced in the 20th century. The gelling of oil solutions by aluminum soaps was known since at least the late 19th century but the use of Aluminium monostearate to alter the properties of paint did not come into use until much later. Church in 1901 mentions the use of "linoleate or oleate of alumina" to prevent the "subsidence" of vermilion in tubes (Church 1901), a comment not found in the 1890 edition (Church 1890). No further mention is made of this or similar materials until decades later even in Gardner's test protocols of 1911, the first of a series of books which would become the industry standard for paint analysis (Gardner 1911). Aluminium monostearate has been used to help suspend pigments in oil to prevent separation, to reduce the amount of oil needed to wet the pigment, and/or to increase the body of the paint by forming a gel with the oil thereby requiring less pigment. Research into the use of aluminum and zinc stearates as aids to grinding pigments and preventing settling or separation of pigment from vehicle (medium) resulted in a patent application in 1920 and issue of U.S. patent #1,421, 625 on July 23, 1922 to Clarence A. Ward. The Aluminium monostearate was added in a range of from 1 to 5% by weight. U.S. patent #1,428,273 describing a variation of this procedure but using unsaturated mineral oils as a vehicle and aluminum soaps (stearate, palmitate etc.) to "jellify" the oil was issued on September 5, 1922 to W. A. Collings. A 1923 commercial painters manual, however, does not list these soaps (Kelly 1923), but by 1927 the fourth edition of Gardner's paint testing manual states: "Aluminium monostearate has been used in considerable quantities during recent years, in the paint and varnish industries." (Gardner 1927, p. 664). A British test manual of 1927, however, fails to mention Aluminium monostearate or its class of materials (Fox and Bowles 1927). So at least by the early to mid 1920's Aluminium monostearate was available for commercial use and by implication use in artists' paints. In regard to the wetting of pigments, the small amounts of free fatty acids normally present in pressed oils helped form soaps at the pigment interface, aided dispersion, and improved settling characteristics. Alkali refined linseed with its low free acid content created settling problems which were mediated by pigments precoated with metal soaps. Aluminium monostearate is one of numerous organo-metallic compounds sold by American Elements under the trade name AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Aluminium monostearate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available. Aluminium monostearate is a fine, bulky, odourless and colourless powder forming a plastic mass when heated, having the properties both of organic and inorganic matter. It embraces most of the characteristics of other metallic stearates and is regarded as the most important of these. Several studies of the material have already appeared in past years. Description A hard, thermoplastic white powder prepared from Tallow and Alum. Aluminium monostearate forms gels with turpentine, Mineral spirits, and oils. It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium monostearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Aluminium monostearate is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium monostearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium monostearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. The effects of metal soaps on pigments have been extensively studied. Aluminium monostearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium monostearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (weight of Aluminium monostearate/weight of oil) of Aluminium monostearate was more effective than 0.5% or 4% solutions in altering pigment surfaces (Gardner 1930). The soaps coat the surface of the pigments and by steric effects keep the particles from aggregating (Pilpel 1963), which helps to keep the particles in suspension. With increasing amounts of Aluminium monostearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium monostearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium monostearate in their formulations without listing it as a component on the product label. Aluminium monostearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. Aluminium monostearate has long storage life if stored in cool and dry location. How to use aluminium monostearate Aluminium monostearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium monostearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium monostearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding.
ALUMINIUM NON LEAFING PASTE -4NL
Aluminum oxide basic; Alumina trihydrate; Alumina acidic; Alumina; Corundum; Saphire; Ruby; Alumina basic; Alumina hydrate; Alumina neutral; Alumina trihydrate; Alumininum oxide; Aluminium oxide; Tabular alumina; Aluminiumoxid; óxido de aluminio; Oxyde d'aluminium; morin dyed; Alundum; Boileezers CAS NO:1344-28-1 (Al2O3), 11092-32-3 (AlO2)
ALUMINIUM OXIDE
Aluminum Silicate; Silicic acid, aluminum salt; Aluminosilicic acid; Kieselsäure, Aluminiumsalz; ácido silícico, sal de aluminio; Acide silicique, sel d'aluminium; China clay; Kaolinite; Kaopectate; Porcelain clay; Aluminosilicic acid; Natural Aluminum Silicate; ALUMINIUMSILICATE,HYDRATE; Silicic acid, aluminum salt CAS NO:1335-30-4
ALUMINIUM SILICATE
Stearic acid, aluminum salt; Aluminum tristearate; Monoaluminum stearate; Octadecanoic acid, aluminum salt; Hydroxyaluminiumstearat; Aluminiumstearat; Estearato de hidroxialuminio; Estearato de aluminio; Estearato de hidroxialuminio; Stéarate d'aluminium CAS NO:637-12-7, 65324-35-8 (Tristearate) 300-92-5, 36816-06-5 (Distearate)
ALUMINIUM STEARATE
Hydrated alumina; Alumina hydrate; Alumina trihydrate; ATH; Aluminum hydrate; Aluminum trihydrate; Alhydrogel; Superfos; Amphogel; Aluminum (III) hydroxide; Amorphous alumina; Trihydrated Alumina; Trihydroxyaluminum CAS NO:21645-51-2
ALUMINIUM TRIHYDRATE
Reach AZP 902; Reach AZP 908 Superfine GL; Reach AZP 908SUF; Reheis 36 GPC; Reheis AZG; Rezal 36 GP SUF; Rezal 36G; Rezal 36GC; Aluminum zirconium tetrachlorohydrex gly; Aluminum zirconium tetrachlorohydrex glycine complex; UNII-8O386558JE; Westchlor ZR 41; Wickenol CPS 370; Z 535; Z 756; Zirconal 50 CAS NO:134910-86-4
ALUMINIUM TRISTEARATE
Aluminium Tristearate About Aluminium tristearate Aluminium tristearate has not been registered under the REACH Regulation, therefore as yet ECHA has not received any data about this substance from registration dossiers. Aluminium tristearate is used at industrial sites. Uses of Aluminium Tristearate at industrial sites Aluminium tristearate is used in the following products: laboratory chemicals.Aluminium tristearate has an industrial use resulting in manufacture of another substance (use of intermediates). Aluminium tristearate is used in the following areas: formulation of mixtures and/or re-packaging. Release to the environment of Aluminium tristearate can occur from industrial use: as an intermediate step in further manufacturing of another substance (use of intermediates) and as processing aid. What Is Aluminium Tristearate? The Stearate salts, including Lithium Stearate, Aluminum Distearate, Aluminum Stearate, Aluminium Tristearate, Ammonium Stearate, Calcium Stearate, Magnesium Stearate, Potassium Stearate, Sodium Stearate, and Zinc Stearate are fine, white powders with a slight fatty odor. In cosmetics and personal care products, Stearate salts are used mainly in the formulation of makeup products such as eyeliner, eyeshadow, mascara, lipsticks, blushers, face powders and foundations. They are also used in fragrances, deodorants, and hair and skin care products. Why is it used in cosmetics and personal care products? The Stearate salts are generally used for their lubricating properties. They also help to keep emulsions from separating into their oil and liquid components. The Stearate salts increase the thickness of the lipid (oil) portion of cosmetics and personal care products and reduce the clear or transparent appearance of finished products. The commercial stearic acid from which the Stearate salts are manufactured is actually a mixture of monocarboxylic acids obtained from animal and/or vegetable sources. Synonyms and Related Terms aluminum tristearate; octadecanoic acid aluminum salt; stearic acid aluminum salt; Aluminium tristearate white (AAT); stéarate d'aluminium (Fr.) Other Properties Soluble in ethanol, benzene, turpentine and mineral oils. Odor: characteristic Use: Aluminium Stearate is commonly used as a paint and varnish dryer, waterproofing agent, defoaming agent, cement additive, in lubricants, cutting compounds, and in some food and pharmaceutical products. Potential Uses of Aluminium Tristearate: emollients emulsion stabilisers opacifying agents viscosity controlling agents The earliest and simplest oil paints were mixtures of pigments and drying oils. Eventually driers, resins, fillers, sometimes adulterants and suspension aids were also added. Aluminium tristearate was one of the components introduced in the 20th century. The gelling of oil solutions by aluminum soaps was known since at least the late 19th century but the use of Aluminium tristearate to alter the properties of paint did not come into use until much later. Church in 1901 mentions the use of "linoleate or oleate of alumina" to prevent the "subsidence" of vermilion in tubes (Church 1901), a comment not found in the 1890 edition (Church 1890). No further mention is made of this or similar materials until decades later even in Gardner's test protocols of 1911, the first of a series of books which would become the industry standard for paint analysis (Gardner 1911). Aluminium tristearate has been used to help suspend pigments in oil to prevent separation, to reduce the amount of oil needed to wet the pigment, and/or to increase the body of the paint by forming a gel with the oil thereby requiring less pigment. Research into the use of aluminum and zinc stearates as aids to grinding pigments and preventing settling or separation of pigment from vehicle (medium) resulted in a patent application in 1920 and issue of U.S. patent #1,421, 625 on July 23, 1922 to Clarence A. Ward. The Aluminium tristearate was added in a range of from 1 to 5% by weight. U.S. patent #1,428,273 describing a variation of this procedure but using unsaturated mineral oils as a vehicle and aluminum soaps (stearate, palmitate etc.) to "jellify" the oil was issued on September 5, 1922 to W. A. Collings. In regard to the wetting of pigments, the small amounts of free fatty acids normally present in pressed oils helped form soaps at the pigment interface, aided dispersion, and improved settling characteristics. Alkali refined linseed with its low free acid content created settling problems which were mediated by pigments precoated with metal soaps. Unlike calcium and zinc stearates that are available as 100% pure salts, the Aluminium tristearate as used in commerce is a non-stoichiometric compound. The trivalent aluminum may be united with one or two stearate anions with the balance of the charge being neutralized by hydroxyl anions (Elliott 1946; Pilpel 1971). Aqueous systems for the preparation or use of disalts seems to lead to a range of products containing varying amounts of stearate, hydroxyl, and water units. Anhydrous systems are needed to prepare stearates higher than the di-salt. Commercial preparations of Aluminium tristearate may also contain anywhere from 2 to 7% by weight free stearic acid (Pilpel 1971; Witco 1999). Analysis by weight of two commercial specimens by the author showed free stearic acid as 2 and 3% respectively. Early preparations may also contain significant amounts of palmitate (from palmitic acid) since the commercial stearic acid used in the preparation of metal soaps was often only 90% pure. Other fatty acids (palmitic, oleic, linoleic etc.) were also present as impurities. Product details of Aluminium tristearate Aluminium tristearate, also referred to as Aluminium Soap, has a variety of applications and uses, primarily as a thickener and a hydrophobic agent. See below for more details on the use of this product in different applications, which can include plastics, oil and gas additives, food and beverage, and various others. This product can be either vegetable or tallow based. Acme-Hardesty stocks the tallow based material, enabling us to complete your project quickly and efficiently. If you require vegetable based Aluminium tristearate material, please inquire about availability and lead times.Acme-Hardesty has been a leading provider of cost-effective solutions in the oleochemical industry for more than seven decades. We remain committed to helping customers and suppliers reach their specific operational goals. Our adherence to our core values of integrity, innovation and performance has enabled us to develop many enduring strategic alliances with companies in industries such as Food & Beverage, Cosmetics, Cleaners & Detergents, Metal Working Fluids, Renewable Chemistries, Surfactants and Esters, and many more. Uses and Applications of Aluminium tristearate Pigment Suspension and Thickening Agent in Paints, Enamels, Varnishes, Lacquers and Inks. Water Repellent for Leather, Rope and CementFood and Beverage: Aluminium tristearate is FDA Compliant for Food Contact as a Component of Adhesives, Resinous and Polymeric Coatings, Polymers, Adjuvants (Release Agents, Waxes and Dispersants) and as a Component of Paper or Paperboard in Contact with Aqueous and Fatty FoodsOil and Gas: Additive to Drilling Fluids to Release Gas BubblesPlastics: Lubricant in the Production of Polyamides and Thermosetting Plastics About Aluminium Tristearate Aluminium Tristearate is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 1 to < 10 per annum. Aluminium Tristearate is used at industrial sites and in manufacturing. Chemical Properties White powder. Insoluble in water, alcohol, ether. Forms gel with aliphatic and aromatic hydrocarbons. Uses Thickener in paints, inks, and greases; water repellent; lubricant in plastics and cordage; and in cement production. Aluminium tristearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium tristearate is ground with the pigment before the bulk of the oil is added. In a series of experiments Gardner tested the effects of metal soaps on pigments. Aluminium tristearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium tristearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (wt stearate/wt oil) Aluminium tristearate was more effective than 0.5% or 4% solutions in altering the surface (Gardner 1930). The soaps coat the surface of the pigments and by steric effects or electrical charge mechanisms keep the particles from aggregating (Pilpel 1966). This keeps the pigments in suspension. With increasing amounts of Aluminium tristearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium tristearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Aluminium tristearate is an organic compound which is a salt of stearic acid and aluminium. It has the molecular formula Al(OH)2C18H35O2. It is also referred to as dihydroxy(octadecanoato-O-)aluminium or dihydroxy(stearato)aluminium. Aluminium tristearate is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. It is usually safe in commercial products, but aluminium may accumulate in the body. Properties of Aluminium Tristearate Chemical formula C18H37AlO4 Molar mass 344.472 g·mol−1 Antacids perform a neutralization reaction, ie. they buffer gastric acid, raising the pH to reduce acidity in the stomach. When gastric hydrochloric acid reaches the nerves in the gasitrointestinal mucosa, they signal pain to the central nervous system. This happens when these nerves are exposed, as in peptic ulcers. The gastric acid may also reach ulcers in the esophagus or the duodenum. Other mechanisms may contribute, such as the effect of aluminum ions inhibiting smooth muscle cell contraction and delaying gastric emptying. Aluminum is known to bind troponin C (a muscle protein) and to interfere with voltage-dependent calcium transport. Aluminum also binds to and inhibits the activity of mitochondrial voltage gated channels (VDAC). Description of Aluminium tristearate Aluminium tristearate is a salt of stearic acid and aluminium with the molecular formula Al(OH)2C18H35O2. Also known as dihydroxyaluminium or dihydroxy(stearato)aluminium, it is used to form gels in the packaging of pharmaceuticals and in the preparation of colors for cosmetics. While considered safe for use, extensive usage may result in aluminum accumulation. Aluminium Stearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, aluminum stearate is considered safe for general or specific, limited use in food. Aluminium stearate is not classifiable as a human carcinogen (cancer-causing agent). Description Aluminium tristearate is a salt of stearic acid and aluminium. It is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. Aluminum is the most abundant metal in the earth's crust and is always found combined with other elements such as oxygen, silicon, and fluorine. (5, 6, 7) What is Aluminium Tristearate? Aluminium tristearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, Aluminium tristearate is considered safe for general or specific, limited use in food. Aluminium tristearate is not classifiable as a human carcinogen (cancer-causing agent). Compound Type Aluminum Compound Household Toxin Industrial/Workplace Toxin Organic Compound Organometallic Synthetic Compound The commercial stearic acid from which the Stearate salts are manufactured is actually a mixture of monocarboxylic acids obtained from animal and/or vegetable sources. Aluminium tristearate is an organic compound which is a salt of stearic acid and aluminium. It has the molecular formula Al(OH)2C18H35O2. It is also referred to as dihydroxy(octadecanoato-O-)aluminium or dihydroxy(stearato)aluminium. It is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. It is usually safe in commercial products, but aluminium may accumulate in the body Aluminium tristearate (aluminum distearate) is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium tristearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium tristearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. The effects of metal soaps on pigments have been extensively studied. Aluminium tristearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium tristearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (weight of Aluminium tristearate/weight of oil) of Aluminium tristearate was more effective than 0.5% or 4% solutions in altering pigment surfaces (Gardner 1930). The soaps coat the surface of the pigments and by steric effects keep the particles from aggregating (Pilpel 1963), which helps to keep the particles in suspension. With increasing amounts of Aluminium tristearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium tristearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium tristearate in their formulations without listing it as a component on the product label. Solubility Aluminium tristearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. Storage Aluminium tristearate has long storage life if stored in cool and dry location. USES of Aluminium Tristearate Aluminium tristearate is used to form gels in the packaging of pharmaceuticals, and in the preparation of colors for cosmetics. Use: Aluminium tristearate is one of numerous organo-metallic compounds sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Aluminum Monostearate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available. Use: Aluminium tristearate can be used in the preparation of colors for cosmetics and for the packaging of pharmaceuticals. Aluminium tristearate is the aluminum salt of the fatty acid, stearic acid. What Is Aluminium Tristearate? The Stearate salts, including Lithium Stearate, Aluminum Distearate, Aluminium tristearate, Aluminum Tristearate, Ammonium Stearate, Calcium Stearate, Magnesium Stearate, Potassium Stearate, Sodium Stearate, and Zinc Stearate are fine, white powders with a slight fatty odor. In cosmetics and personal care products, Stearate salts are used mainly in the formulation of makeup products such as eyeliner, eyeshadow, mascara, lipsticks, blushers, face powders and foundations. They are also used in fragrances, deodorants, and hair and skin care products. Why is it used in cosmetics and personal care products? The Stearate salts are generally used for their lubricating properties. They also help to keep emulsions from separating into their oil and liquid components. The Stearate salts increase the thickness of the lipid (oil) portion of cosmetics and personal care products and reduce the clear or transparent appearance of finished products. Aluminium tristearate is one of numerous organo-metallic compounds sold by American Elements under the trade name AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Aluminium tristearate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available. Aluminium tristearate is a fine, bulky, odourless and colourless powder forming a plastic mass when heated, having the properties both of organic and inorganic matter. It embraces most of the characteristics of other metallic stearates and is regarded as the most important of these. Several studies of the material have already appeared in past years. The effects of metal soaps on pigments have been extensively studied. Aluminium tristearate was found to coat the surface of pigment particles and helped prevent settling as well as reducing the amount of oil needed to wet the pigment. The amount of Aluminium tristearate needed to coat pigments varied on a weight basis, but a solution of 2% by weight (weight of Aluminium tristearate/weight of oil) of Aluminium tristearate was more effective than 0.5% or 4% solutions in altering pigment surfaces. The soaps coat the surface of the pigments and by steric effects keep the particles from aggregating, which helps to keep the particles in suspension. With increasing amounts of Aluminium tristearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium tristearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium tristearate in their formulations without listing it as a component on the product label. Description A hard, thermoplastic white powder prepared from Tallow and Alum. Aluminium tristearate forms gels with turpentine, Mineral spirits, and oils. It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium tristearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Aluminium tristearate is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium tristearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium tristearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. Uses of Aluminium tristearate It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium tristearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Aluminium tristearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium tristearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium tristearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding. There are multiple types of Aluminium tristearates, generally classified as aluminum mono-, di-, and tri-stearate. They vary in terms of physical properties such as melting point, free fatty acids, and particularly the gelling properties. Oils with a low viscosity are best thickened by aluminum di- and tri-stearate, whilst very viscous oils from stiffer gel when combined with aluminum mono- or di-stearates. All Aluminium tristearates are highly hydrophobic, and feature outstanding transparency and excellent adhesion to metal surfaces. Due to their water repellency, aluminum di- and tri-stearate are used as hydrophobic agents in the building industry. Aluminium tristearate (aluminum distearate) is a white, wax-like powder (metallic soap) that dissolves in mineral spirits or hot oil. A small amount (2% or less) added to oil paint imparts a short, buttery consistency. It eliminates the separation of pigment and oil, thickens varnishes considerably. A concentrate of Aluminium tristearate and linseed oil can be prepared ahead of time and added to the paint whenever needed. Aluminium tristearate is made via the precipitation process using high quality stearic acid and exhibits the following properties: Good gelling and thickening action, excellent water repellency, transparency and a synergistic effect with zinc stearate or calcium stearate. With increasing amounts of Aluminium tristearate the oil pigment mixture becomes viscous, and by using an appropriate amount of Aluminium tristearate the paint can gel at a lower pigment concentration (Mayer 1965). This can be used to create a "cheaper" paint since a smaller amount of a costly pigment needs to be used. A significant advantage of using stearates is that the oil and pigment do not separate greatly over long periods of time in the paint tube. Manufacturers of artists' paints often use Aluminium tristearate in their formulations without listing it as a component on the product label. Aluminium tristearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. How to Use Aluminium tristearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium tristearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium tristearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding. Aluminium tristearate (C54H105AlO6) exists as white powder and is an aluminum salt of stearic acid. In the pharmaceutical industry, it is used as an anticaking agent; colorant; emulsion stabilizer; and viscosity increasing agent. According to the FDA, Aluminium tristearate is considered safe for general or specific, limited use in food. Aluminium tristearate is not classifiable as a human carcinogen (cancer-causing agent). A hard, thermoplastic white powder prepared from Tallow and Alum. Aluminium tristearate forms gels with turpentine, Mineral spirits, and oils. It has been used as a Drier, thickener, Emulsifier, and matting agent in paints and varnishes although excess amounts produce soft, noncohesive films. Aluminium tristearate is also used to waterproof fabrics, ropes, Paper, Leather, Concrete, and Stucco. It is used as an ingredient in photographic emulsions. Aluminium tristearate exhibits relatively high solubility in hydrocarbon solvents (such as mineral spirits) when compared to other metallic stearates. It is insoluble in water, alcohol and ether; but is readily soluble in benzene, acids and common solvents when hot. Aluminium tristearate has long storage life if stored in cool and dry location. Aluminium tristearate dissolves in vegetable oils on heating and if a high enough concentration of the soap is used, gelling occurs on cooling. In the usual practice of making paints, the Aluminium tristearate is ground with the pigment before the bulk of the oil is added. To prepare a concentrated solution (10% w/v), add 100 grams of Aluminium tristearate (nearly fills a half liter measuring cup without compacting) to one liter of linseed oil. Heat the oil to about 150° C. and gradually slowly adding the white powder to the hot oil with stirring. Add one part of this solution to four parts of oil by weight of oil before adding to pigments and grinding. Use of Aluminium Tristearate: Aluminium Stearate is one of numerous organo-metallic compounds sold by American Elements under the tradename AE Organo-Metallics™ for uses requiring non-aqueous solubility such as recent solar energy and water treatment applications. Similar results can sometimes also be achieved with Nanoparticles (also see Nanotechnology and Quantum Dots) and by thin film deposition. Note American Elements additionally supplies many materials as solutions. Aluminum Stearate is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. Additional technical, research and safety information is available.
ALUMINIUM ZIRCONIUM TETRACHLORHYDREX
EC / List no.: 231-208-1; Mol. formula: AlCl3; N° CAS : 7446-70-0; Nom INCI : ALUMINUM CHLORIDE,Nom chimique : Aluminium chloride, N° EINECS/ELINCS : 231-208-1, Aluminium chloride; ALUMINIUM CHLORIDE, ANHYDROUS; Aluminium Chloride Anhydrous; Aluminium chloride hexahydrate; Aluminium chloride,anhydrous; Aluminium tri-chloride; Aluminium Trichloride; Aluminium(III) chloride, anhydrous; Aluminum chloride; Aluminum chloride anhydrous; Aluminum Chloride, Anhydrous; Aluminum trichloride; Aluminum(III) Chloride; Alumnium chloride; anhydrous aluminium chloride; Chlorek glinu; trichloroalumane; Aluminium trichloride hydrated; Aluminiumchlorid; Aluminum chloride (8CI); Aluminum chloride (AlCl3) (9CI); Aluminum trichloride (AlCl3); TK Flock; Trichloroaluminumalluminio cloruro anidro (it); Alumiinikloridi, vedetön (fi); Alumiiniumkloriid, veevaba (et); aluminijev klorid, bezvodni (hr); aluminijev klorid, brezvodni (sl); aluminiumchlorid, vandfrit (da); Aluminiumchlorid, wasserfrei (de); aluminiumchloride, watervrij (nl); aluminiumklorid, vannfri (no); aluminiumklorid, vattenfri (sv); alumínium-klorid (vízmentes) (hu); alumīnija hlorīds, bezūdens (lv); chlorid hlinitý bezvodý (cs); chlorid hlinitý, bezvodý (sk); chlorure d'aluminium anhydre (fr); cloreto de alumínio anidro (pt); clorura de aluminiu, anhidra (ro); cloruro d'alluminio anidro (it); cloruro de aluminio anhidro (es); Trichlorek glinu, bezwodny (pl); άνυδρο τριχλωριούχο αργίλιο (el); алуминиев хлорид, безводен (bg) Anti-transpirant : Réduit la transpiration Astringent : Permet de resserrer les pores de la peau Déodorant : Réduit ou masque les odeurs corporelles désagréables. aliuminio chloridas, bevandenis (lt)
ALUMINUM CHLORIDE
N° CAS : 12042-91-0; Locron; Noms français :Monochlorure de pentahydroxyde d'aluminium, Noms anglais :Aluminum chloride hydroxide (Al2Cl(OH)5) Autres langues : Alluminio cloroidrato, Aluminiumchlorhydrat, Clorhidrato de aluminio, Nom INCI : ALUMINUM CHLOROHYDRATE, Nom chimique : Dialuminium chloride pentahydroxide. Dialuminium chloride pentahydroxide; Aluminum chloride hydroxide (Al2Cl(OH)5). Aluminium Chloride Hydroxide; Aluminium Chlorohydrate; Aluminum chloride hydroxide; aluminum; chloroaluminum; pentahydrate; dialuminium (3+) chloride pentahydroxide; Dialuminium chloride pentahydroxide, polyaluminium chloride; dialuminium chloride pentahydroxoide; dialuminium(3+) chloride pentahydroxide; dialuminium(3+) ion chloride pentahydroxide. Chlor(dihydroxy)aluminium -trihydroxyaluminiumhydrat (1:1:2) [German] ; Chloro(dihydroxy)aluminium - trihydroxyaluminium hydrate (1:1:2) ; Chloro(dihydroxy)aluminium - trihydroxyaluminium, hydrate (1:1:2) [French] ; ALUMANETRIOL CHLOROALUMANEDIOL DIHYDRATE; ALUMINIUM HYDROXIDE CHLOROALUMANEDIOL DIHYDRATE; Aluminum chlorohydrate; Aluminum chlorohydroxide dihydrate. N° EINECS/ELINCS : 234-933-1, Découvert en 1947, le chlorohydrate d'aluminium a permis de rendre les antitranspirants jusque là à base de chlorure d'aluminium, moins irritant. En 2011, l'Afssaps (aujourd'hui ANSM) proposait une restriction de la concentration en aluminium à 2% dans les produits antitranspirants ou déodorants. Cette recommandation n'a jamais été suivie par l'Europe. De plus l'Afssaps recommandait de ne pas utiliser d'antitranspirants contenant de l'aluminium sur peau lésée, fraîchement épilée ou rasée par exemple.Les hydroxychlorures d'aluminium, plus familièrement les chlorhydrates d'aluminium, forment un groupe de sels d’aluminium spécifiques ayant la formule générale AlnCl(3n-m)(OH)m. Ils sont utilisés dans les cosmétiques comme déodorant et comme coagulant dans le traitement primaire de l'eau. Lors du traitement primaire de l'eau, ces composés sont favorisés à cause de leur charge nette importante qui les rend plus à même à déstabiliser et à déplacer des matériaux suspendus, ce que d’autres sels tels que le sulfate d'aluminium, le chlorure d’aluminium et autres formes variées de chlorure de polyaluminium et chlorosulfate de polyaluminium ne pourraient pas faire, la structure de l’aluminium conduisant à une charge nette plus faible. De plus, le haut degré de neutralisation d’HCl conduit à un impact minimal dans le traitement du pH de l’eau, comparé à d’autres sels d’aluminium ou de fer. Les chlorhydrates d’aluminium font partie des principes actifs les plus communément utilisés dans la préparation de déodorants commerciaux. Le sel le plus communément utilisé dans les déodorants et anti-transpirants est Al2Cl(OH)5. Les chlorhydrates d’aluminium sont aussi utilisés en tant que coagulant dans le traitement de l’eau et des eaux usées, afin de soutirer le carbone organique dissous et les particules colloïdales présentes en suspension. Les chlorhydrates d’aluminium peuvent être produits industriellement en faisant réagir de l’aluminium et de l’acide chlorhydrique. Un certain nombre de matériaux annexes contenant de l’aluminium peuvent être utilisés, notamment l’aluminium métallique, l'hydroxyde d'aluminium, le chlorure d'aluminium, le sulfate d'aluminium et autres combinaisons de ces derniers. Les produits peuvent contenir des sous-produits tels que les chlorures de sodium, calcium, magnésium ou sulfates16. À cause de son caractère explosif aléatoire lié à la production d'hydrogène lors de la réaction de l’aluminium métallique avec de l’acide chlorhydrique, la pratique industrielle la plus commune est de préparer une solution de chlorhydrate d’aluminium (CHA) en faisant réagir des hydroxydes d'aluminium avec de l’acide chlorhydrique. Le produit CHA réagit ensuite avec des lingots d'aluminium à 100 °C, en utilisant des vapeurs dans un réacteur ouvert. Le ratio d’Al et de CHA et le temps de réaction autorisé déterminent la forme du polymère du polychlorhydrate d’aluminium.
ALUMINUM CHLOROHYDREX PG
N° CAS : 300-92-5; Nom INCI : ALUMINUM DISTEARATE; Dihydroxyaluminium stearate; Nom chimique : Hydroxyaluminium distearate; dihydroxyalumanylium octadecanoate;octadecanoyloxyaluminum;dihydrate N° EINECS/ELINCS : 206-101-8. Noms français : DISTEARATE D'ALUMINIUM; Distéarate d'aluminium; HYDROXYDISTEARATE D'ALUMINIUM. Noms anglais : Aluminum distearate; Hydroxyaluminium distearate; Aluminum, hydroxybis(octadecanoato-.kappa.O)-; Aluminum distearate; aluminum hydroxide dioctadecanoate; Aluminum Stearate; ALUMINUM HYDROXIDE DISTEARATE; ALUMINUM HYDROXYDISTEARATE; HYDROXYBIS(OCTADECANOATO-O)ALUMINUM; HYDROXYBIS(STEARATO)ALUMINUM. Utilisation : Fabrication de peintures, agent épaississant Ses fonctions (INCI) Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Opacifiant : Réduit la transparence ou la translucidité des cosmétiques Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. 206-101-8 [EINECS] 300-92-5 [RN] Aluminium hydroxide octadecanoate (1:1:2) Aluminiumhydroxidoctadecanoat (1:1:2) [German] Aluminum distearate aluminum hydroxide dioctadecanoate ALUMINUM HYDROXIDE DISTEARATE Aluminum hydroxide octadecanoate (1:1:2) Aluminum, hydroxybis(octadecanoato-κO)- Aluminum, hydroxybis(octadecanoato-κO)- HYDROXYALUMINUM DISTEARATE Hydroxyde octadécanoate d'aluminium (1:2:1) [French] Octadecanoic acid, aluminum salt, hydrate (2:1:1) aluminum octadecanoate hydroxide aluminum stearate hydroxide ALUMINUM STEARATES
ALUMINUM DISTEARATE ( Distéarate d'aluminium)
MONOSTEARATE D'ALUMINIUM; Monostéarate d'aluminium. Noms anglais :Aluminum monostearate; DIHYDROXYALUMINUM STEARATE. Utilisation et sources d'émission. Fabrication de peintures, agent épaississantAluminum monostearate; EC / List no.: 230-325-5; CAS no.: 7047-84-9; Mol. formula: C18H37AlO4Nom INCI : ALUMINUM STEARATE, Nom chimique : Dihydroxyaluminium stearate, N° EINECS/ELINCS : 230-325-5, Ses fonctions (INCI). Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure. Colorant cosmétique : Colore les cosmétiques et/ou confère une couleur à la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques. Aluminium hydroxide octadecanoate (1:2:1) Aluminiumhydroxidoctadecanoat (1:2:1) [German] Aluminum dihydroxide stearate Aluminum monostearate [JAN] Aluminum, dihydroxy(octadecanoato-κO)- Hydroxyde octadécanoate d'aluminium (2:1:1) [French] MFCD00019932 Stearic acid aluminum dihydroxide salt [7047-84-9] ALUMINIUM MONOSTEARATE Aluminium, dihydroxide stearate Aluminium, dihydroxide stearate; Aluminum monostearate; Aluminum stearate; Aluminum stearate 300; Dibasic aluminium stearate; dibasic aluminum stearate; Dihydroxy(stearato)aluminium; Dihydroxy(stearato)aluminum; dihydroxyaluminum stearate aluminum and octadecanoate and dihydroxide aluminum hydroxide octadecanoate (1:2:1) Aluminum stearate 300 Dibasic aluminium stearate dibasic aluminum stearate dihydroxido(octadecanoato)aluminium dihydroxy(stearato)aluminium dihydroxy(stearato)aluminum DIHYDROXYALUMANYL OCTADECANOATE dihydroxyaluminium stearate dihydroxyaluminum stearate
ALUMINUM STEARATE ( N° CAS : 7047-84-9 - Stéarates d'aluminium)
Nom INCI : ALUMINUM STEARATES. Ses fonctions (INCI) : Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure. Emollient : Adoucit et assouplit la peau, Stabilisateur d'émulsion : Favorise le processus d'émulsification et améliore la stabilité et la durée de conservation de l'émulsion Opacifiant : Réduit la transparence ou la translucidité des cosmétiques, Agent de contrôle de la viscosité : Augmente ou diminue la viscosité des cosmétiques
ALUMINUM TRISTEARATE - Stéarate d'aluminium
EC / List no.: 603-882-0; CAS no.: 134910-86-4; Aluminum Zirconium Tetrachlorohydrex Gly; Aluminum zirconium tetrachlorohydrex glycineGlycine, chloride hydroxide, aluminum zirconium(4+) salt, hydrate ; ALUMINUM ZIRCONIUM OCTACHLOROHYDREX GLY; ALUMINUM ZIRCONIUM PENTACHLOROHYDREX GLY; ALUMINUM ZIRCONIUM TETRACHLOROHYDREX GLY; ALUMINUM ZIRCONIUM TRICHLOROHYDREX GLY. Ses fonctions (INCI): Anti-transpirant : Réduit la transpiration, Astringent : Permet de resserrer les pores de la peau, Déodorant : Réduit ou masque les odeurs corporelles désagréables
ALUMINUM ZIRCONIUM TETRACHLOROHYDREX GLY ( N° CAS : 134910-86-4)
ALUMINUM STEARATE; Stearic acid, aluminum salt; Aluminum tristearate; Monoaluminum stearate; Octadecanoic acid, aluminum salt; Hydroxyaluminiumstearat; Aluminiumstearat (German); Estearato de hidroxialuminio; Estearato de aluminio (Spanish); Estearato de hidroxialuminio; Stéarate d'aluminium (French) cas no: 637-12-7, 65324-35-8 (Tristearate); 300-92-5, 36816-06-5 (Distearate)
ALUMINYUM STEARAT TIPLERI (MONO,DI,TRI)
Aluminum chlorhydrol; Aluminum chlorohydrate; Aluminum hydroxide chloride; Aluminum hydroxychloride; Aluminum hydroxychloride dihydrate CAS NO:1327-41-9
Aluminium Sulfate
Alum; Aluminium sulphate; Aluminum Alum; Aluminum sulfate anhydrous; Aluminum trisulfate anhydrous; Cake Alum; Dialuminum sulfate; Sulfuric acid aluminum salt (3:2); Aluminiumsulfat (German); Sulfato de aluminio (Spanish); Sulfate d'aluminium (French); Aluminum sesquisulfate CAS NO:10043-01-3
Aluminum Chloride 28%
ALUMINUM CHLORIDE; Aluminum trichloride; Aluminium chloride; Aluminium trichloride; AlCl3; aluminum(III) chloride; ALUMINUM CHLORIDE SOLUTION CAS NO:7446-70-0
Aluminum Chloride Hexahydrate
ALUMINII CHLORIDUM HEXAHYDRICUM; ALUMINIUM(+3)CHLORIDE HEXAHYDRATE; ALUMINIUM CHLORIDE 6H2O; ALUMINIUM CHLORIDE 6-HYDRATE; ALUMINIUM CHLORIDE HEXAHYDRATE ALUMINIUM CHLORIDE HYDRATE; ALUMINIUM CHLORIDE HYDRATED; ALUMINIUM(III) CHLORIDE HEXAHYDRATE ALUMINUM CHLORIDE; ALUMINUM CHLORIDE, 6-HYDRATE ALUMINUM CHLORIDE HEXAHYDRATE; ALUMINUM CHLORIDE HYDRATED; ALUMINUM CHLORIDE, HYDROUS; ALUMINUM TRICHLORIDE HEXAHYDRATE; HYDROCHLORIC ACID ALUMINUM SALT HEXAHYDRATE; aluminum(iii)chloride,hexahydrate; Aluminumchloride(AlCl3)hexahydrate; chlorured’aluminium,hexahydrate hydrousaluminumchloride; trichloroaluminumhexahydrate CAS NO:7784-13-6
Aluminum Chlorohydrate
SynonymsAPP 201;Aluminum chlorohydra;Aluminum oxychloride;ALUMINIUMCHLORHYDRATE;aluminiumchlorohydrate;ALUMINUM CHLOROHYDRATE;ALUMINIUM POLYCHLORIDE;Aluminum hydroxychloride;Aluminiumhydroxychlorid8;Spray pressurefilter PAC CAS No.1327-41-9
Aluminum Chlorohydrate 50%
Aluminum Chlorohydrate 50% Sol, Chlorohydrol 50% Solution; CHLORHYDROL 50 ;locron S; Aluminum hydrochloride %50; Aluminum Chlorohydrate Solution;Liquid Aluminium Chlorohydrate 50% CAS NO:12042-91-0
Aluminum lactate
Aluminum lactate; Aluminium trilactate; Tris(2-hydroxypropanoato)aluminum; Aluminium lactate; Aluminium lacticum; Aluminum tris(alpha-hydroxypropionate); tris(lactato)aluminium CAS NO:18917-91-4
Aluminum Sesquichlorohydrate 48%
Aluminum chloride hydroxide (Al4Cl3(OH)9);ALUMINIUMION; Aluminum ion; Poly Aluminum Chloride Polyaluminium Chloride CAS NO:173763-15-0
Aluminum Starch Octenylsuccinate
SYNONYM Aluminum starch octenyl succinate;Starch aluminum octenyl succinate; Starch, hydrogen octenylbutanedioate, aluminum salt; Starch, octenylbutanedioate, aluminum salt Cas : 9087-61-0
Aluminum Sulfate
SYNONYMS Alum; Aluminium sulphate; Aluminum Alum; Aluminum sulfate anhydrous; Aluminum trisulfate anhydrous; Cake Alum; Dialuminum sulfate; Sulfuric acid aluminum salt (3:2); Aluminiumsulfat (German); Sulfato de aluminio (Spanish); Sulfate d'aluminium (French); Aluminum sesquisulfate; Other RN: 10124-29-5, 121739-79-5, 124027-27-6, 139939-73-4, 19239-71-5, 22515-37-3, 66578-72-1, 17927-65-0 CAS NO. 10043-01-3
Aluminum Sulfate (Alum)
N° CAS : 115-70-8, Nom INCI : AMINOETHYL PROPANEDIOL, AMP. Nom chimique : 2-Amino-2-ethylpropanediol, N° EINECS/ELINCS : 204-101-2, Ses fonctions (INCI), Régulateur de pH : Stabilise le pH des cosmétiques. 1,3-Propanediol, 2-amino-2-ethyl- . 2-amino-2-ethylpropanediol; 1,3-Propanediol, 2-amino-2-ethyl-; 2-Amino-2-ethyl-1,3-propanediol; 2-amino-2-ethylpropane-1,3-diol; AEPD(TM) 85 2-Amino-2-ethyl-1,3-propanediol; 115-70-8 [RN]; 204-101-2 [EINECS]; 2-Amino-1,3-dihydroxy-2-ethylpropane; 2-Amino-2-ethyl-1,3-propandiol [German] ; 2-Amino-2-ethyl-1,3-propanediol ; 2-Amino-2-éthyl-1,3-propanediol [French] ; 2-AMINO-2-ETHYL-1,3-PROPANEDIOL, TECH. 2-amino-2-ethylpropane-1,3-diol; MFCD00004680 [MDL number]; [115-70-8]; [1-hydroxy-2-(hydroxymethyl)butan-2-yl]ammonium; 1,1-Bis(hydroxymethyl)propylamine; 1,3-Propanediol,2-amino-2-ethyl-; 2-amino-2-ethyl-;2-amino-2-ethyl-3-propanediol; 2-Amino-2-Ethyl-1,3-Propanediol (en); 2-amino-2-ethyl-1,3-propanediol 97%; 2-amino-2-ethyl-1,3-propanediol, 97%; 2-Amino-2-ethyl-propane-1,3-diol; 2-Amino-2-ethylpropanediol; 2-Ethyl-2-aminopropanediol; AEPD; AEPD-85; Aminoethyl propanediol; c5h13no2; EINECS 204-101-2; propane-1,3-diol, 2-amino-2-ethyl-. 2-Amino-2-ethyl-1,3-propanediol is a primary amino alcohol that is multifunctional, which allows for improved properties in many applications. It is marketed in various grades with approximately 3-15 weight % water and different purities. It is a viscous, pale-yellow to light brown liquid with a slight amine odor. AEDP;AEPD;AEPD-85;2-amino-2-ethyl-;Aminoethyl propanediol;2-amino-2-ethylpropanediol;2-Ethyl-2-aminopropanediol;2-amino-2-ethyl-3-propanediol;2-AMINO-2-ETHYL-1,3-PROPANEDIOL;2-ETHYL-2-AMINO-1 3-PROPANEDIOL. Noms français : AMINO-2 ETHYL-2 PROPANE DIOL-1,3 Amino-2 éthyl-2 propane diol-1,3 Noms anglais : 1,3-PROPANEDIOL, 2-AMINO-2-ETHYL- 2-Amino-2-ethyl-1,3-propanediol AEPD AMINOAMYLENE GLYCOL AMINOETHYL PROPANEDIOL Utilisation et sources d'émission Agent émulsifiant
ALUMİNYUM KLORA 6 HİDRAT
SYNONYMS basicaluminumchlorate;chlorhydrol;chlorhydrol,granular;chlorhydrol,impalpable;chlorohydrol;chloropentahydroxydialuminum;dialuminium;dialuminiumchloridepentahydroxide CAS NO:12042-91-0
Amaranthus cruentus
extract of the whole plant of amaranthus caudatus l., amaranthaceae; amaranthus caudatus extract; althaea kragujevacensis extract;althaea micrantha extract; althaea sublobata extract; althaea taurinensis extract; amaranth extract; amaranthus cruentus extract; amaranthus edulis extract; amaranthus leucospermus extract; amaranthus mantegazzianus extract; amaranthus sanguineus extract; extract of the whole plant of amaranthus caudatus l., amaranthaceae; velvet flower extract CAS NO:223747-79-3
AMAZE XT
Dehydroxanthan Gum , product obtained by the dehydration of xanthan gum , Xanthan Gum CAS Number:11138-66-2
AMGARD TBEP
AMGARD TBEP представляет собой прозрачную бесцветную жидкость.
AMGARD TBEP представляет собой оксид фосфина и поэтому очень стабилен по своей природе.
AMGARD TBEP используется в качестве растворителя в некоторых смолах.


НОМЕР КАС: 78-51-378-51-3

НОМЕР ЕС: 201-122-9

МОЛЕКУЛЯРНАЯ ФОРМУЛА: C18H39O7P

МОЛЕКУЛЯРНАЯ МАССА: 398,5

НАЗВАНИЕ ИЮПАК: трис(2-бутоксиэтил)фосфат



AMGARD TBEP имеет множество применений, включая пластификатор в полиролях на акриловой основе, пеногаситель в акриловых красках, пеногаситель для красок, текстиля и бумаги, а также в качестве безгалогенного антипирена в полимерных системах.
AMGARD TBEP – пластификатор и пеногаситель на основе трис(2-бутоксиэтил)фосфата.

AMGARD TBEP также выступает в качестве выравнивающего агента для акриловых и стирольных полиролей для пола и коалесцентной добавки для эмульсионных полимеров.
AMGARD TBEP представляет собой оксид фосфина высокой чистоты, который нашел свое первоначальное применение в пеногасителях, таких как диспергаторы воды и в производстве бумаги.

AMGARD TBEP также имеет хорошо зарекомендовавший себя химический состав для применения в красках в качестве пеногасителя.
Кроме того, AMGARD TBEP может выступать в качестве пластификатора в акриловых красках, обеспечивая выравнивание и блеск.

AMGARD TBEP также может использоваться в полимерах в качестве огнезащитной и термостойкой добавки.
AMGARD TBEP используется в качестве пластификатора для ПВХ, хлоркаучука и нитрилов благодаря своей огнестойкости и хорошей эластичности при низких температурах.

AMGARD TBEP также используется в эмульсиях полиролей для пола, в качестве выравнивающего агента в латексных красках и восках, технологической добавки для акрилонитрилового каучука и антиадгезива для литых полиуретанов.
AMGARD TBEP – светлоокрашенный

AMGARD TBEP имеет высокую температуру кипения
AMGARD TBEP негорюч.

AMGARD TBEP представляет собой вязкую жидкость.
AMGARD TBEP обычно используется в качестве пластификатора в резине и пластмассах и помогает в формировании полировки пола (а также в других поверхностных покрытиях), выравнивании и улучшении блеска.

AMGARD TBEP – фосфорорганический
AMGARD TBEP можно использовать при приготовлении антипиренов, таких как вискозное волокно.

AMGARD TBEP используется в основном в качестве компонента полиролей для пола.
AMGARD TBEP используется в качестве модификатора вязкости в пластизолях.

AMGARD TBEP используется в качестве пеногасителя
AMGARD TBEP также используется в качестве пластификатора в синтетическом каучуке, пластмассах и лаках.

AMGARD TBEP широко используется в качестве пластификатора в резиновых пробках для вакуумных пробирок и пластиковой посуды.
AMGARD TBEP широко используется в бытовых материалах, таких как пластификатор, полироль для пола и антипирен в пластиковых смолах и синтетических каучуках.

AMGARD TBEP на основе – пластификатор и пеногаситель.
AMGARD TBEP также выступает в качестве выравнивающего агента для акриловых и стирольных полиролей для пола и коалесцентной добавки для эмульсионных полимеров.

AMGARD TBEP используется в качестве пластификатора полимерных дисперсий, а также улучшает смачивающе-выравнивающие свойства сухо-ярких эмульсий.
AMGARD TBEP представляет собой эфир фосфорной кислоты, используемый в качестве пластификатора для полимерных дисперсий.

AMGARD TBEP используется в качестве безгалогенной антипиреновой добавки в полимерных системах.
AMGARD TBEP также можно использовать в сочетании с другими антипиренами.

AMGARD TBEP представляет собой слегка желтую маслянистую жидкость.
AMGARD TBEP нерастворим или имеет ограниченную растворимость в глицерине, гликолях и некоторых аминах.

AMGARD TBEP растворим в большинстве органических жидкостей.
AMGARD TBEP горюч.

AMGARD TBEP представляет собой триалкилфосфат, в котором указанная алкильная группа представляет собой 2-бутоксиэтил.
AMGARD TBEP играет роль загрязнителя окружающей среды и антипирена.

AMGARD TBEP — антипирен на основе эфира фосфорной кислоты.
AMGARD TBEP используется в полиролях для полов и в качестве пластификатора в резине и пластмассах.

AMGARD TBEP более растворим в неполярных, чем в полярных растворителях.
AMGARD TBEP получают реакцией оксихлорида фосфора и бутоксиэтанола (бутилгликоля) и отгонки соляной кислоты и избытка бутоксиэтанола.

AMGARD TBEP представляет собой триалкилфосфат, в котором указанная алкильная группа представляет собой 2-бутоксиэтил.
AMGARD TBEP играет роль загрязнителя окружающей среды и антипирена.
AMGARD TBEP представляет собой слегка желтую вязкую жидкость.

AMGARD TBEP используется в следующих продуктах:
-моющие и чистящие средства
- полироли и воски
- средства защиты растений
- химикаты для обработки воды

AMGARD TBEP используется в следующих продуктах:
- средства защиты растений
-гидравлические жидкости
-смазки и смазки
-жидкости для металлообработки
-моющие и чистящие средства, полироли и воски

AMGARD TBEP имеет промышленное применение, в результате которого производится другое вещество (использование промежуточных продуктов).
AMGARD TBEP используется в следующих областях: сельское хозяйство, лесное хозяйство и рыболовство, а также приготовление смесей и/или переупаковка.

AMGARD TBEP применяется для изготовления:
AMGARD TBEP используется в полимерах и продуктах для обработки текстиля.

AMGARD TBEP используется в красителях.
AMGARD TBEP — органический антипирен.


ФИЗИЧЕСКИЕ СВОЙСТВА:

-Молекулярный вес: 398,5

-XLogP3-АА: 2.8

-Точная масса: 398,24334058

- Масса моноизотопа: 398,24334058

-Площадь топологической полярной поверхности: 72,4 Ų

-Физическое описание: слегка желтая жидкость со сладковатым запахом.

-Цвет: слегка желтый

-Форма: жирная жидкость

-Запах: бутиловый

-Точка кипения: 255 ° С

-Точка плавления: -70 ° С

-Точка воспламенения: >113 °C

-Растворимость: 1100 мг/л

-Плотность: 1,02 г/куб см

-Плотность пара: 13,8

-Давление пара: 0,03 мм рт.ст.

-Показатель преломления: 1,434


AMGARD TBEP представляет собой сложный эфир фосфорной кислоты, который благодаря своей структуре может использоваться во многих областях, включая пластификацию, сольватацию, огнестойкость и пеногашение.
AMGARD TBEP на самом деле является многофункциональной добавкой, которую можно использовать для изменения свойств многих полимерных систем, и она является особенно хорошей выравнивающей и коалесцирующей добавкой для эмульсионных полимеров.

AMGARD TBEP используется в смешанной системе растворитель/вода в качестве пеногасителя при производстве и в качестве вторичного пластификатора во многих полимерах.
Вышеуказанные свойства в сочетании с присущей ему огнестойкостью делают AMGARD TBEP настоящей многофункциональной добавкой, необходимой для многих полимерных составов.


ХИМИЧЕСКИЕ СВОЙСТВА:

-Количество доноров водородной связи: 0

- Количество акцепторов водородной связи: 7

-Вращающееся количество связей: 21

-Количество тяжелых атомов: 26

-Формальное обвинение: 0

-Сложность: 281

-Количество атомов изотопов: 0

-Определенное количество стереоцентров атома: 0

-Неопределенное количество стереоцентров атома: 0

-Определенное количество стереоцентров связи: 0

-Неопределенное количество стереоцентров связи: 0

-Ковалентно-связанные Количество единиц: 1

-Соединение канонизировано: Да

- Химические классы: другие классы -> органофосфаты, другие



AMGARD TBEP – сложный эфир фосфорной кислоты.
AMGARD TBEP может использоваться во многих областях, включая пластификацию, сольватацию, антипирен и пеногаситель.

AMGARD TBEP по сути является многофункциональной присадкой
AMGARD TBEP можно использовать для модификации свойств многих полимерных систем.

AMGARD TBEP является особенно хорошей выравнивающей и коалесцентной добавкой для эмульсионных полимеров.
AMGARD TBEP используется в смешанной системе растворитель/вода в качестве пеногасителя при производстве и в качестве вторичного пластификатора во многих полимерах.

ПРИЛОЖЕНИЯ:

*в полиролях на акриловой основе, где коалесцентные и пластифицирующие свойства улучшают выравнивание и блеск, позволяя получить «сухую блестящую» отделку.
AMGARD TBEP также уменьшит дефекты поверхности, такие как полосы, трещины и припудривание.
AMGARD TBEP также используется в рецептурах акриловых глянцевых красок в качестве коалесцента и пеногасителя.

*AMGARD TBEP также помогает улучшить смачиваемость пигмента и реологические свойства с минималь��ым влиянием на отражательную способность. Трибутоксиэтилфосфат (TBEP) представляет собой высокоэффективный «нокдаун» пеногаситель, широко используемый в лакокрасочной, текстильной и бумажной промышленности.

*AMGARD TBEP также используется в качестве не содержащей галогенов антипиреновой добавки в полимерных системах.
AMGARD TBEP также можно использовать в сочетании с другими антипиренами.

AMGARD TBEP также выступает в качестве выравнивающего агента для акриловых и стирольных полиролей для пола и коалесцентной добавки для эмульсионных полимеров.
AMGARD TBEP используется в качестве пластификатора для ПВХ.
AMGARD TBEP также используется в эмульсиях полиролей для пола, в качестве выравнивающего агента в латексных красках и восках, технологической добавки для акрилонитрилового каучука и антиадгезива для литых полиуретанов.

AMGARD TBEP – светлоокрашенный
AMGARD TBEP имеет высокую температуру кипения

AMGARD TBEP негорюч.
AMGARD TBEP представляет собой вязкую жидкость.

AMGARD TBEP – фосфорорганический
AMGARD TBEP используется в качестве пеногасителя
AMGARD TBEP также используется в качестве пластификатора в синтетическом каучуке, пластмассах и лаках.

AMGARD TBEP широко используется в бытовых материалах, таких как пластификатор, полироль для пола и антипирен в пластиковых смолах и синтетических каучуках.
AMGARD TBEP используется в качестве пластификатора полимерных дисперсий, а также улучшает смачивающе-выравнивающие свойства сухо-ярких эмульсий.

AMGARD TBEP представляет собой эфир фосфорной кислоты, используемый в качестве пластификатора для полимерных дисперсий.
AMGARD TBEP используется в качестве безгалогенной антипиреновой добавки в полимерных системах.

AMGARD TBEP растворим в большинстве органических жидкостей.
AMGARD TBEP используется в полиролях для полов и в качестве пластификатора в резине и пластмассах.

AMGARD TBEP представляет собой слегка желтую вязкую жидкость.
AMGARD TBEP используется в полимерах и продуктах для обработки текстиля.
AMGARD TBEP используется в красителях.


СИНОНИМЫ:

2-бутоксиэтанол, фосфат
Этанол, 2-бутокси-, фосфат (3:1)
Фосфорная кислота, трибутоксиэтиловый эфир
2-бутоксиэтанолфосфат
Три(2-бутоксиэтил)фосфат
Трибутоксиэтилфосфат
Трибутилцеллозольвфосфат
Трис(2-бутоксиэтил)фосфат
Другие названия: КП 140
Фосфорная кислота, трибутоксиэтиловый эфир
Три(бутоксиэтил)фосфат
Три(2-бутоксиэтил)фосфат
Трибутилцеллозольвфосфат
Трис(бутоксиэтил)фосфат
Трис(2-бутоксиэтил)фосфат
ТБЭП
Фосфорная кислота, трис(2-бутоксиэтил)эфир
2-бутоксиэтанолфосфат
Кронитекс КП-140
Фосфлекс Т-беп
Три(2-бутоксиэтанол)фосфат
Трис-(2-бутоксиэтил)фосфат
2-бутоксиэтанолфосфат (3:1)
Амгард ТБЭП
Трис(2-бутоксиэтил)эфир фосфорной кислоты
Фосфорная кислота, три-(2-бутоксиэтиловый) эфир
Этанол, 2-бутокси-, 1,1',1''-фосфат
СНБ 4839
31227-66-4
19040-50-7
Трис(2-бутоксиэтил)фосфат
Трис(2-бутоксиэтил)фосфат
трис (2-бутоксиэтил) фосфат
Трис(2-бутоксиэтил)фосфат
три(2-бутоксиэтанол)фосфат
три( 2-бутилэтиловый эфир) фосфат
трибутоксиэтилфосфат
трибутилцеллозольвфосфат
трис(2-н-бутоксиэтил)фосфат
трис (бутилгликоль) фосфат
Фосфат де трис (2-бутоксиэтил)
трис(2-бутоксиэтил) эфир фосфорной кислоты
Фосфорная кислота, три(бутоксиэтиловый) эфир
Фосфорная кислота, трибутоксиэтиловый эфир
Фосфорная кислота, трис(2-бутоксиэтил)эфир
Трис(2-бутоксиэтил)фосфат
Трис-(2-бутоксиэтил)фосфат
Трис(2-бутоксиэтил)фосфат
трис(2-н-бутоксиэтил)фосфат
1716010 [Бейльштейн]
2-бутоксиэтанолфосфат
2-бутоксиэтанолфосфат (3:1)
2-БУТОКСИЕТАНОЛА ФОСФАТ (3:1)
2-бутоксиэтанол, фосфат
4O2OPO&O2O4&O2O4 [WLN]
Амгард ТБЭП
ИНЭКС 201-122-9
Этанол, 2-бутокси-, 1,1',1''-фосфат
ЭТАНОЛ, 2-БУТОКСИЛ-ФОСФАТ (3:1)
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:35038
Кронитекс КП-140
NCGC00091600-02
Фосфлекс Т-бе
Фосфлекс Т-беп
трис-(2-бутоксиэтил) эфир фосфорной кислоты
Трис(2-н-бутоксиэтил) эфир фосфорной кислоты
Фосфорная кислота, три-(2-бутоксиэтиловый) эфир
pTri (2-бутоксиэтанол) фосфат
ТБЭП
Три (2-бутоксиэтанол) фосфат
Три(2-бутоксиэтанол)фосфат
ТРИ(2-БУТОКСЕТИЛ)ФОСФАТ
ТРИ-(2-БУТОКСЕТИЛ)-ФОСФАТ
Три-(2-бутоксиэтил)фосфат (ru)
Три(бутоксиэтил)фосфат
ТРИ-2-БУТОКСЕТИЛФОСФАТ
Трибутоксиэтилфосфат
Трибутоксиэтилфосфат
ТРИБУТОКСЕТИЛФОСФАТ
Трибутилцеллозольвфосфат
Трис(2-бутоксиэтил)эфир фосфорной кислоты
Трис-(2-бутоксиэтил)фосфат
трис(2-бутоксиэтил)фосфат
Трис-(2-бутоксиэтил)фосфат
Трис(2-бутилоксиэтил)фосфат
Трис(бутоксиэтил)фосфат
Трис(бутоксиэтил)фосфат
трис[2-(бутилокси)этил]фосфат
Трис-2-бутоксиэтилфосфат
Трис(2-бутоксиэтил)фосфат
78-51-3
ТБЭП
ТРИ(2-БУТОКСЕТИЛ)ФОСФАТ
Трибутоксиэтилфосфат
Фосфлекс Т-беп
Трис(бутоксиэтил)фосфат
Этанол, 2-бутокси-, фосфат (3:1)
Три(бутоксиэтил)фосфат
Кронитекс КП-140
Трибутилцеллозольвфосфат
КП 140
Фосфорная кислота, трибутоксиэтиловый эфир
Фосфорная кислота, трис(2-бутоксиэтил)эфир
Три(2-бутоксиэтанол)фосфат
2-бутоксиэтанол, фосфат
СНБ 4839
Трис-(2-бутоксиэтил)фосфат
УНИИ-RYA6940G86
КРИС 5942
Три (2-бутоксиэтанол) фосфат
HSDB 2564
2-бутоксиэтанолфосфат (3:1)
Этанол, 2-бутокси-, 1,1',1''-фосфат
трибутоксиэтилфосфат
2-бутоксиэтанолфосфат
ИНЭКС 201-122-9
Трис(бутоксиэтил)фосфат
Трис-(2-бутоксиэтил)фосфат
трис[2-(бутилокси)этил]фосфат
ТБЭП;КП 140;Хостафат Б 310
Фосфорная кислота, три-(2-бутоксиэтиловый) эфир
Трис(2-бутоксиэтил)фосфат, 95%
КАС-78-51-3
Фосфорная кислота, три(бутоксиэтиловый) эфир
Трис(2-бутоксиэтил)фосфат, C18H39O7P, 78-51-3
трис-2-бутоксиэтилфосфат
C18H39O7P
Трис (2-бутоксиэтил) эфир фосфорной кислоты
ЕС 201-122-9
трис-(2-бутоксиэтил)фосфат
2-бутоксиэтанолфосфат (3:1)
Трис(2-бутоксиэтил) фосфорной кислоты
Трис(2-бутоксиэтил)фосфат, 94%
ТРИ-(2-БУТОКСЕТИЛ)-ФОСФАТ
Трис(2-бутоксиэтил)эфир фосфорной кислоты
Трис(2-н-бутоксиэтил)эфир фосфорной кислоты
Трис(2-н-бутоксиэтил) эфир фосфорной кислоты
Трис(2-бутоксиэтил)фосфат
2-бутоксиэтанолфосфат
2-бутоксиэтанолфосфат (3:1)
Фосфорная кислота, три-(2-бутоксиэтиловый) эфир
Фосфорная кислота, трибутоксиэтиловый эфир
Фосфорная кислота, трис(2-бутоксиэтил)эфир
ТБЭП
Три(2-бутоксиэтанол)фосфат
Три(2-бутоксиэтил)фосфат
Три(бутоксиэтил)фосфат
Трибутилцеллозольвфосфат
Трис(2-бутоксиэтил)фосфат
Трис(2-бутоксиэтил)эфир фосфорной кислоты
Трис-(2-бутоксиэтил)фосфат
Трис(бутоксиэтил)фосфат
Трис-2-бутоксиэтил
Трис(2-бутоксиэтил)фосфат
78-51-3
ТРИ(2-БУТОКСЕТИЛ)ФОСФАТ
Трибутоксиэтилфосфат
ТБЭП
Фосфлекс Т-беп
Трис(бутоксиэтил)фосфат
трис(2-бутоксиэтил)фосфат
КП 140
Кронитекс КП-140
Трибутилцеллозольвфосфат
Этанол, 2-бутокси-, фосфат (3:1)
Три(бутоксиэтил)фосфат
Фосфорная кислота, трибутоксиэтиловый эфир
Фосфорная кислота, трис(2-бутоксиэтил)эфир
Три(2-бутоксиэтанол)фосфат
Трис-(2-бутоксиэтил)фосфат
трибутоксиэтилфосфат
2-бутоксиэтанолфосфат
Трис(бутоксиэтил)фосфат
Трис (2-бутоксиэтил) эфир фосфорной кислоты
Этанол, 2-бутокси-, 1,1',1''-фосфат
трис[2-(бутилокси)этил]фосфат
Фосфорная кислота, три-(2-бутоксиэтиловый) эфир
2-бутоксиэтанол, фосфат
КАС-78-51-3
Фосфорная кислота, три(бутоксиэтиловый) эфир
Три (2-бутоксиэтанол) фосфат
2-бутоксиэтанолфосфат (3:1)
ИНЭКС 201-122-9
Трис-(2-бутоксиэтил)фосфат [чешский]
Трис(2-бутоксиэтил)фосфат, C18H39O7P, 78-51-3
трис-2-бутоксиэтилфосфат
Три-(2-бутоксиэтил)фосфат
трис-(2-бутоксиэтил)фосфат
2-бутоксиэтанолфосфат (3:1)
Трис(2-бутоксиэтил) фосфорной кислоты
Трис(2-бутоксиэтил)фосфат, 94%
Трис(2-бутоксиэтил)эфир фосфорной кислоты
Трис(2-н-бутоксиэтил)эфир фосфорной кислоты
Трис(2-н-бутоксиэтил) эфир фосфорной кислоты
ТРИ(2-БУТОКСЕТИЛ)ФОСФАТ
AMGARD TBEP
Амгард ТБЭП представляет собой прозрачную бесцветную жидкость.
Amgard TBEP представляет собой оксид фосфина и поэтому очень стабилен по своей природе.
Amgard TBEP имеет множество применений, включая пластификатор в полиролях на акриловой основе, пеногаситель в акриловых красках, пеногаситель для красок, текстиля и бумаги, а также в качестве безгалогенидного антипирена в полимерных системах.

Номер КАС: 78-51-3
Номер ЕС: 201-122-9



ПРИЛОЖЕНИЯ


Amgard TBEP имеет несколько применений в различных отраслях, в том числе:


Пластификатор:

Amgard TBEP обычно используется в качестве пластификатора в полиролях, лаках и покрытиях на акриловой основе.


Пеногаситель:

Amgard TBEP используется в качестве пеногасителя в акриловых красках и в качестве пеногасителя в красках, текстиле и бумажных изделиях.


Огнестойкий:

Amgard TBEP использ��ется в качестве безгалогенного антипирена в полимерных системах, таких как пенополиуретан, ПВХ и другие пластмассы.


Применение клея:

Amgard TBEP используется в качестве добавки в рецептурах клеев для улучшения характеристик и стабильности.


Применение смазочных материалов:

Amgard TBEP можно использовать в качестве смазки в жидкостях для металлообработки и гидравлических жидкостях.


В целом Amgard TBEP имеет множество промышленных применений благодаря своей стабильности, низкой токсичности и огнезащитным свойствам.


Amgard TBEP обычно используется в качестве пластификатора в ПВХ, чтобы сделать его более гибким.
Amgard TBEP можно использовать в качестве антипирена в клеях для повышения безопасности.
Amgard TBEP часто используется в качестве технологической добавки для технических термопластов для улучшения их свойств текучести расплава.

Amgard TBEP можно использовать в качестве модификатора вязкости в полиуретановых системах.
Amgard TBEP используется в качестве антипирена в термореактивных смолах, таких как фенольные смолы и эпоксидные смолы.

Amgard TBEP может использоваться в качестве смазки для форм при производстве пенополиуретана.
Amgard TBEP можно использовать в качестве пластификатора в эластичных пенополиуретанах.

Amgard TBEP используется в качестве технологической добавки при производстве жесткого пенополиуретана для улучшения структуры ячеек.
Амгард ТБЭП можно использовать в качестве стабилизатора водоэмульсионных красок.
Amgard TBEP используется в качестве пластификатора в сополимерах винилацетата и этилена для повышения гибкости.

Amgard TBEP можно использовать в качестве технологической добавки при экструзии и литье под давлением термопластов.
Amgard TBEP используется в качестве антипирена в текстильных покрытиях для повышения огнестойкости.

Amgard TBEP используется в качестве пластификатора в нитроцеллюлозных лаках для улучшения эластичности и адгезии.
Amgard TBEP можно использовать в качестве коалесцирующего агента в латексных покрытиях для улучшения пленкообразования.
Amgard TBEP используется в качестве пластификатора в синтетическом каучуке для повышения эластичности.

Amgard TBEP можно использовать в качестве антипирена в ненасыщенных полиэфирных смолах для повышения огнестойкости.
Amgard TBEP используется в качестве пеногасителя в буровых растворах на масляной основе для уменьшения пенообразования.

Amgard TBEP используется в качестве технологической добавки при производстве поликарбонатных смол для улучшения текучести расплава.
Amgard TBEP можно использовать в качестве смазки в жидкостях для металлообработки для повышения производительности.

Amgard TBEP используется в качестве антипирена в изоляции электрических кабелей для повышения безопасности.
Amgard TBEP можно использовать в качестве пластификатора в гибкой пене ПВХ для повышения мягкости и упругости.
Amgard TBEP используется в качестве пеногасителя в бумажных покрытиях для уменьшения пенообразования.

Amgard TBEP можно использовать в качестве технологической добавки при производстве полиэфирполиолов для повышения реакционной способности.
Amgard TBEP используется в качестве антипирена в ненасыщенных полиэфирных гелькоутах для повышения огнестойкости.
Amgard TBEP можно использовать в качестве пластификатора в сополимерах винилиденхлорида для улучшения гибкости и газонепроницаемости.

Amgard TBEP можно использовать в качестве антипирена в полиуретановых клеях для повышения огнестойкости.
Amgard TBEP используется в качестве технологической добавки при производстве термопластичных эластомеров для улучшения текучести расплава и дисперсии наполнителей.

Amgard TBEP можно использовать в качестве пластификатора в акрилонитрил-бутадиен-стироле (АБС) для повышения ударопрочности и гибкости.
Amgard TBEP используется в качестве антипирена в полиолефиновой пленке для повышения огнестойкости.

Amgard TBEP можно использовать в качестве пеногасителя в жидкостях для металлообработки для уменьшения пенообразования.
Amgard TBEP используется в качестве технологической добавки при производстве полиэтилена для улучшения текучести расплава и дисперсии пигментов.
Amgard TBEP можно использовать в качестве пластификатора в поливинилбутирале (ПВБ) для улучшения гибкости и адгезии.

Amgard TBEP используется в качестве антипирена в термопластичном полиэфире для повышения огнестойкости.
Amgard TBEP можно использовать в качестве технологической добавки при производстве полистирола для улучшения текучести расплава и дисперсии добавок.

Amgard TBEP используется в качестве пластификатора в бутирате ацетата целлюлозы (CAB) для повышения гибкости и прочности.
Amgard TBEP можно использовать в качестве антипирена в жестком пенополиуретане для повышения огнестойкости.

Amgard TBEP используется в качестве технологической добавки при производстве полипропилена для улучшения текучести расплава и дисперсии наполнителей.
Amgard TBEP можно использовать в качестве пластификатора в полиэфирных смолах для повышения гибкости и прочности.

Amgard TBEP используется в качестве антипирена в акрилонитрил-стирол-акрилате (ASA) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве пеногасителя в пищевой промышленности для уменьшения пенообразования.
Amgard TBEP используется в качестве технологической добавки при производстве нейлона для улучшения текучести расплава и дисперсии добавок.

Amgard TBEP можно использовать в качестве пластификатора бутадиенового каучука для повышения эластичности.
Amgard TBEP используется в качестве антипирена в термопластичном полиуретане (ТПУ) для повышения огнестойкости.

Amgard TBEP можно использовать в качестве технологической добавки при производстве поливинилхлорида (ПВХ) для улучшения текучести расплава и дисперсии добавок.
Amgard TBEP используется в качестве пластификатора в эпоксидных смолах для повышения гибкости и прочности.

Amgard TBEP можно использовать в качестве антипирена в термопластичных эластомерах (TPE) для повышения огнестойкости.
Amgard TBEP используется в качестве технологической добавки при производстве бутадиен-акрилонитрильного каучука (NBR) для улучшения текучести расплава и дисперсии наполнителей.

Amgard TBEP можно использовать в качестве пластификатора в поливинилацетате (ПВА) для улучшения гибкости и адгезии.
Amgard TBEP используется в качестве антипирена в термопластичных полиолефинах (ТПО) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве технологической добавки при производстве полиэтилентерефталата (ПЭТФ) для улучшения текучести расплава и дисперсии добавок.

Amgard TBEP можно использовать в качестве антипирена в эпоксидных клеях для повышения огнестойкости.
Amgard TBEP используется в качестве технологической добавки при производстве поликарбоната для улучшения текучести расплава и дисперсии добавок.

Amgard TBEP можно использовать в качестве пластификатора в полиуретановых покрытиях для повышения гибкости и ударопрочности.
Amgard TBEP используется в качестве антипирена в поливинилхлоридной (ПВХ) пленке для повышения огнестойкости.

Amgard TBEP можно использовать в качестве пеногасителя в красках и покрытиях для уменьшения пенообразования.
Amgard TBEP используется в качестве технологической добавки при производстве полиэтилентерефталата (ПЭТФ) для улучшения текучести расплава и дисперсии наполнителей.
Amgard TBEP можно использовать в качестве пластификатора в поливинилиденхлориде (ПВДХ) для улучшения гибкости и адгезии.

Amgard TBEP используется в качестве антипирена в стирол-акрилонитриле (SAN) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве технологической добавки при производстве поликарбоната/акрилонитрил-бутадиен-стирола (PC/ABS) для улучшения текучести расплава и дисперсии наполнителей.

Amgard TBEP используется в качестве пластификатора полиэтилена для повышения гибкости и ударопрочности.
Amgard TBEP можно использовать в качестве антипирена в полифениленоксиде (PPO) для повышения огнестойкости.
Amgard TBEP используется в качестве технологической добавки при производстве полибутилентерефталата (ПБТ) для улучшения текучести расплава и дисперсии пигментов.

Amgard TBEP можно использовать в качестве пластификатора в пластизолях поливинилхлорида (ПВХ) для улучшения гибкости и адгезии.
Amgard TBEP используется в качестве антипирена в ненасыщенных полиэфирных смолах (UPS) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве пеногасителя в промышленных моющих средствах для уменьшения пенообразования.

Amgard TBEP используется в качестве технологической добавки при производстве термопластичных полиолефинов (ТПО) для улучшения текучести расплава и дисперсии добавок.
Amgard TBEP можно использовать в качестве пластификатора в эмульсиях поливинилацетата (ПВА) для улучшения гибкости и адгезии.

Amgard TBEP используется в качестве антипирена в акрилонитрил-бутадиеновом каучуке (NBR) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве тех��ологической добавки при производстве пенополистирола для улучшения текучести расплава и дисперсии пенообразователей.

Amgard TBEP используется в качестве пластификатора в нитроцеллюлозных лаках для улучшения эластичности и адгезии.
Amgard TBEP можно использовать в качестве антипирена в поликарбонате/акрилонитрил-стироле (PC/ABS) для повышения огнестойкости.
Amgard TBEP используется в качестве технологической добавки при производстве полиамида для улучшения текучести расплава и дисперсии наполнителей.

Amgard TBEP можно использовать в качестве пластификатора в хлорированном полиэтилене (CPE) для улучшения гибкости и ударопрочности.
Amgard TBEP используется в качестве антипирена в ударопрочном полистироле (HIPS) для повышения огнестойкости.
Amgard TBEP можно использовать в качестве пеногасителя в химикатах для обработки воды для уменьшения пенообразования.



ОПИСАНИЕ


Амгард ТБЭП представляет собой прозрачную бесцветную жидкость.
Amgard TBEP представляет собой оксид фосфина и поэтому очень стабилен по своей природе.
Amgard TBEP имеет множество применений, включая пластификатор в полиролях на акриловой основе, пеногаситель в акриловых красках, пеногаситель для красок, текстиля и бумаги, а также в качестве безгалогенидного антипирена в полимерных системах.

Amgard TBEP представляет собой пластификатор и пеногаситель на основе трис(2-бутоксиэтил)фосфата.
Amgard TBEP также выступает в качестве выравнивающего агента для акриловых и стирольных полиролей для пола и коалесцентной добавки для эмульсионных полимеров.

Amgard TBEP представляет собой соединение оксида фосфина с химическим названием трис(2,3-дибромпропил)фосфат.
Amgard TBEP представляет собой прозрачную бесцветную жидкость, обладающую высокой стабильностью благодаря своей структуре оксида фосфина.

Amgard TBEP имеет несколько применений в химической промышленности.
Amgard TBEP обычно используется в качестве пластификатора в полиролях на акриловой основе и в качестве пеногасителя в акрилах.

Amgard TBEP также можно использовать в качестве пеногасителя для красок, текстиля и бумажных изделий. Кроме того, Amgard TBEP используется в качестве безгалогенного антипирена в полимерных системах.
Стоит отметить, что, хотя Amgard TBEP обычно считается безопасным для предполагаемого применения, важно обращаться с ним осторожно и соблюдать соответствующие протоколы безопасности, как и с любым химическим веществом.

Амгард ТБЭП представляет собой прозрачную бесцветную жидкость.
Амгард ТБЭП имеет слабый запах.

Химическая формула Amgard TBEP: C18H39O4P.
Amgard TBEP имеет молекулярную массу 358,47 г/моль.

Amgard TBEP растворим во многих органических растворителях.
Амгард ТБЭП стабилен при нормальных условиях использования и хранения.
Температура вспышки Amgard TBEP составляет 232 ° C (450 ° F).

Amgard TBEP имеет температуру кипения примерно 370 ° C (698 ° F).
Amgard TBEP в основном используется в качестве пластификатора и антипирена.

Amgard TBEP совместим с широким спектром полимеров, включая ПВХ, полиуретан и акрил.
Amgard TBEP обычно используется в производстве покрытий, клеев и герметиков.
Амгард ТБЭП также используется в производстве текстиля, кожи и изделий из бумаги.

Amgard TBEP — это не содержащий галогенов антипирен, что делает его экологически чистой альтернативой другим антипиренам.
Amgard TBEP не классифицируется основными регулирующими органами как опасное вещество.
Amgard TBEP считается относительно малотоксичным, и ожидается, что он не будет представлять значительного риска для здоровья человека или окружающей среды.

Amgard TBEP имеет низкое давление паров, что снижает риск вдыхания.
При работе с Amgard TBEP рекомендуется использовать средства защиты, включая перчатки, защитные очки и защитную одежду.

Амгард ТБЭП следует хранить в сухом прохладном месте, вдали от источников возгорания и несовместимых материалов.
В помещениях, где используется или хранится Amgard TBEP, должна быть обеспечена надлежащая вентиляция.

С Amgard TBEP следует обращаться и утилизировать в соответствии с местными, государственными и федеральными нормами.
Химическое вещество не должно попадать в окружающую среду, включая почву, воду или воздух.
Амгард ТБЭП следует хранить в недоступном для детей и домашних животных месте.



ХАРАКТЕРИСТИКИ


Физические свойства:

Внешний вид: прозрачная бесцветная жидкость
Молекулярная масса: 310,35 г/моль
Плотность: 1,16 г/см3 при 20°C
Температура плавления: -65°С
Температура кипения: 292°С
Температура вспышки: 185°C (в закрытом тигле)
Давление паров: 0,001 мм рт.ст. при 20°C
Растворимость: нерастворим в воде; растворим в органических растворителях, таких как ацетон, бензол и толуол


Химические свойства:

Химическая формула: C18H39O4P
Структура: оксид фосфина
Гидролиз: устойчив к гидролизу в кислой или щелочной среде.
Окисление: Устойчив к окислению
Стабильность рН: стабилен в широком диапазоне рН


Другие свойства:

Вязкость: Низкая вязкость
Воспламеняемость: негорючий
Токсичность: Низкая острая токсичность; неканцерогенный
Стойкость в окружающей среде: Низкая стойкость в окружающей среде; не ожидается биоаккумуляции



ПЕРВАЯ ПОМОЩЬ


Меры первой помощи, которые следует предпринять при контакте с Амгардом КВЭП, следующие:

В случае контакта с кожей снять загрязненную одежду и тщательно промыть пораженные участки водой с мылом.

В случае попадания в глаза немедленно промойте глаза большим количеством воды в течение не менее 15 минут, время от времени поднимая верхние и нижние веки.
Обратитесь за медицинской помощью, если раздражение или симптомы сохраняются.

Если Амгард ТБЭП проглочен, не вызывайте рвоту, а прополощите рот водой и немедленно обратитесь за медицинской помощью.

При вдыхании вещества выведите пострадавшего на свежий воздух и обратитесь за медицинской помощью, если сохраняются такие симптомы, как затрудненное дыхание или раздражение дыхательных путей.

Если кто-то подвергся воздействию большого количества Amgard TBEP или если у него появились симптомы, немедленно обратитесь за медицинской помощью.


Важно всегда обращаться с Amgard TBEP с осторожностью и носить соответствующие средства индивидуальной защиты (СИЗ), такие как перчатки, очки и респиратор при работе с этим веществом.
Хранить вещество в прохладном, сухом, хорошо проветриваемом помещении вдали от источников тепла и возгорания.
Соблюдайте все меры предосторожности и рекомендации по безопасности при использовании Amgard TBEP и всегда читайте этикетку продукта и паспорт безопасности (SDS) перед использованием.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Вот некоторая информация об обращении и хранении Amgard TBEP:


Умение обращаться:

При работе с Amgard TBEP надевайте соответствующие средства индивидуальной защиты (СИЗ), такие как перчатки, защитные очки и респиратор.
Избегайте контакта с кожей, глазами и одеждой. В случае контакта тщательно промойте пораженные участки водой с мылом.
Используйте в хорошо проветриваемом помещении и избегайте вдыхания паров или тумана.

Не ешьте, не пейте и не курите при работе с Amgard TBEP.
Избегайте длительного или повторного воздействия вещества.
Соблюдайте все меры предосторожности и рекомендации по безопасности при использовании Amgard TBEP и всегда читайте этикетку продукта и паспорт безопасности (SDS) перед использованием.


Хранилище:

Храните Амгард ТБЭП в прохладном, сухом, хорошо проветриваемом помещении вдали от источников тепла и возгорания.
Держите контейнер плотно закрытым и в вертикальном положении, чтобы предотвратить разлив или утечку.
Хранить вдали от несовместимых материалов, таких как сильные окислители, кислоты и основания.
Хранить в недоступном для детей и посторонних лиц месте.

Соблюдайте все местные, государственные и федеральные правила хранения и утилизации вещества.
Это некоторые общие рекомендации по обращению и хранению Amgard TBEP. Важно всегда сверяться с этикеткой продукта и паспортом безопасности для получения конкретных инструкций и рекомендаций.



СИНОНИМЫ


Три(бутоксиэтил)фосфат
ТБЭП
Трис(2-бутоксиэтил)фосфат
Триэтилфосфоноацетат
Фосфоновая кислота, (2-бутоксиэтил)-, триэтиловый эфир
Трис(бутоксиэтил)фосфат
Трис-(2-бутоксиэтил)-фосфат
Фосфоновая кислота, (2-бутоксиэтил)-, трис(2-бутоксиэтил) сложный эфир
Трис(2-бутоксиэтил)фосфорная кислота
Три(2-бутоксиэтил)фосфат
Трис-(2-бутоксиэтил)-фосфат
Три-(2-бутоксиэтил)-фосфат
Трис(бутоксиэтокси)фосфиноксид
Трис(2-бутоксиэтокси)фосфат
Триэтиленгликольдибутоксиэтилфосфат
Трис(2-бутоксиэтокси)фосфорная кислота
Три(бутоксиэтокси)фосфорная кислота
Фосфоновая кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил) сложный эфир
Фосфорная кислота, трис(2-бутоксиэтокси)-, триэфир с 2-этил-1-гексанолом
Трис[бутоксиэтокси-(2)]фосфиноксид
Трис (2-бутоксиэтокси) фосфат
Трис[бутоксиэтокси-(2)]фосфат
Трис[2-(бутоксиэт��кси)этил]фосфат
Трис(2-бутоксиэтокси)-фосфат
Трис(2-бутоксиэтокси)фосфоновая кислота
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил) сложный эфир
Трис[2-(бутоксиэтокси)этил]фосфат
Фосфоновая кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил) сложный эфир, соль аммония
Трис(2-бутоксиэтокси)эфир фосфорной кислоты с неопентилгликолем
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтиловый) эфир, продукты реакции с 1-октадеканолом
Трис[2-(бутоксиэтокси)этил]фосфорная кислота
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил) сложный эфир, аммониевая соль (1:1)
Трис(2-бутоксиэтокси) эфир фосфорной кислоты с 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтиловый) эфир, продукты реакции с 1-гексадеканолом
Трис(2-бутоксиэтокси)фосфатаммониевая соль
Трис[бутоксиэтокси-(2)]фосфорная кислота
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-октадеканолом
Трис[2-(2-бутоксиэтокси)этил]фосфат
Фосфоновая кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил)эфир, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 2,2-диметил-1,3-пропандиолом
Трис[2-(2-бутоксиэтокси)этил]фосфат
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтиловый) эфир, продукты реакции с 1-додеканолом
Трис[2-(2-бутоксиэтокси)этил]фосфорная кислота
Фосфоновая кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил)эфир, продукты реакции с 1-октадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[2-(2-бутоксиэтокси)этил]фосфат, соль аммония
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Трис(2-бутоксиэтокси)фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-гексадеканолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-додеканолом
Трис[бутоксиэтокси-(2)]фосфат, аммониевая соль
Трис[бутоксиэтокси-(2)]фосфорная кислота, аммониевая соль
Трис[2-(бутоксиэтокси)этил]фосфоновая кислота
Трис[2-(2-бутоксиэтокси)этил]фосфоновая кислота
Трис[2-(2-бутоксиэтокси)этил]фосфат, соль аммония
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил)эфир, продукты реакции с 1-октадеканолом и 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 1-октадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфоновая кислота
Трис[бутоксиэтокси-(2)]фосфат, аммониевая соль (1:1)
Трис[2-(2-бутоксиэтокси)этил]фосфат, соль аммония (1:1)
Трис[2-(бутоксиэтокси)этил]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-октадеканолом
Трис[2-(2-бутоксиэтокси)этил]фосфат, продукты реакции с 1-гексадеканолом
Трис(2-бутоксиэтокси)фосфат, продукты реакции
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтиловый) эфир, продукты реакции с 1-гексадеканолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-октадеканолом
Трис[бутоксиэтокси-(2)]фосфорная кислота, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-тетрадеканолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-додеканолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 1-додеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-тетрадеканолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 1-додеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфорная кислота, продукты реакции с 1-октадеканолом и 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, (2-бутоксиэтокси)-, трис(2-бутоксиэтил)эфир, продукты реакции с 1-тетрадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[2-(2-бутоксиэтокси)этил]фосфат, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Фосфорная кислота, трис(2-бутоксиэтокси)-, продукты реакции с 1-гексадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфорная кислота, продукты реакции с 1-додеканолом и 2,2-диметил-1,3-пропандиолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 1-тетрадеканолом и 2,2-диметил-1,3-пропандиолом
Трис[2-(2-бутоксиэтокси)этил]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-октадеканолом
Трис[бутоксиэтокси-(2)]фосфат, продукты реакции с 2,2-диметил-1,3-пропандиолом и 1-гексадеканолом
AMIDET N
Amidet N демонстрирует лучшие характеристики с точки зрения загущения и пенообразования, чем Cocamid DEA.
Amidet N – жидкое неионогенное поверхностно-активное вещество с хорошими загущающими и эмульгирующими свойствами.


Номер CAS: 827613-35-4
Химическое название: ПЭГ-4 Рапсеамид.
Химический состав: Полиоксиэтилен рапсеамид.
Название INCI: ПЭГ-4 Рапсеамид
Происхождение ингредиентов: Олеохимическое, синтетическое.



СИНОНИМЫ:
Амиды, рапсовое масло, N-(гидроксиэтил), этоксилированные



Amidet N представляет собой высококонцентрированное жидкое поверхностно-активное вещество (ПЭГ-4 Рапсеамид), которое демонстрирует очень хорошие растворяющие и эмульгирующие свойства.
Amidet N демонстрирует лучшие характеристики с точки зрения загущения и пенообразования, чем Cocamid DEA.


Amidet N представляет собой высококонцентрированное жидкое поверхностно-активное вещество (ПЭГ-4 Рапсеамид), которое демонстрирует очень хорошие растворяющие и эмульгирующие свойства.
Amidet N демонстрирует лучшие характеристики с точки зрения загущения и пенообразования, чем Cocamid DEA.
Амидет Н – жидкое неионогенное поверхностно-активное вещество с хорошими загущающими и эмульгирующими свойствами.


Amidet N представляет собой высококонцентрированное жидкое поверхностно-активное вещество (ПЭГ-4 Рапсеамид), которое демонстрирует очень хорошие растворяющие и эмульгирующие свойства.
Amidet N демонстрирует лучшие характеристики с точки зрения загущения и пенообразования, чем Cocamid DEA.
Амидет Н – жидкое неионогенное поверхностно-активное вещество с хорошими загущающими и эмульгирующими свойствами.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ АМИДЕТА Н:
Amidet N — загуститель и усилитель пены, не содержащий нитрозаминов, с эмульгирующими свойствами.
Амидет Н также действует как поверхностно-активное вещество, увлажнитель и солюбилизатор.
Amidet N обладает эффектом обезжиривания кожи, антикоррозионными и смачивающими свойствами.


Амидет Н используется в шампунях, средствах для душа, кремах и лосьонах, красках для волос, средствах для бритья и мыле для рук.
Амидет Н используется как загуститель и усилитель пены.
Амидет Н используется в средствах личной гигиены — Красота и уход, а также Ванна и душ.


Amidet N использует лосьоны, средства для ванны и душа, средства для мытья тела, пену для ванн.
Амидет Н используется как загуститель и усилитель пены.



СВОЙСТВА АМИДЕТА Н:
*Усилитель пены
*Солюбилизатор и эмульгатор
*Загуститель



ОСОБЕННОСТИ АМИДЕТА Н:
*Амидет Н – эффективный загуститель пенящихся продуктов, эмульгатор, обезжириватель .
*Мягкое поверхностно-активное вещество с хорошим очищающим действием на кожу, улучшает пенообразование и качество пены.
*Amidet N придает продуктам приятное ощущение на коже.



ФУНКЦИИ АМИДЕТА Н:
Эмульгатор, усилитель пенообразования, пенообразователь, солюбилизатор, солюбилизатор, ПАВ, ПАВ (неионогенный), загуститель, тиксотроп, модификатор вязкости

-Функции очистки ингредиентов
*Эмульгатор,
* Пенный усилитель,
*Солюбилизатор,
*Поверхностно-активное вещество,
*Поверхностно-активное вещество (неионогенное)
* Тиксотроп,
*Модификатор вязкости

-Функции косметических ингредиентов
*Эмульгатор,
* Пенный усилитель,
*Пенообразователь,
*Солюбилизатор,
*Поверхностно-активное вещество,
*Поверхностно-активное вещество (неионогенное),
*Загуститель,
*Модификатор вязкости



ПРОМЫШЛЕННОСТИ АМИДЕТА Н:
*Уход на дому
*Промышленная и институциональная уборка
*Уход за волосами
*Уход за кожей
*Описание



ПРЕТЕНЗИИ АМИДЕТ Н:
*Поверхностно-активные вещества/Чистящие средства > Неионогенные вещества
*Увлажняющие агенты
*Загустители и стабилизаторы
*Солюбилизаторы
*пенный усилитель



СВОЙСТВА АМИДЕТА Н:
*Нитрозоаминный загуститель и усилитель пены с эмульгирующими свойствами.
*Другие свойства: эффект жирной кожи, антикоррозийная и смачивающая способность.



ХАРАКТЕРИСТИКА АМИДЕТА Н:
*Амидет Н – эффективный загуститель пенящихся продуктов, эмульгатор, обезжириватель .
*Мягкое поверхностно-активное вещество с хорошим очищающим действием на кожу, улучшает пенообразование и качество пены.
*Придает продуктам приятное ощущение на коже.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА АМИДЕТ Н:
Название продукта: АМИДЕТ Н
Химическое название: Полиоксиэтилен рапсеамид.
Название INCI: ПЭГ-4 РАПСИДАМИД
Внешний вид: Жидкость
Фактическое количество (%): 95
Цвет (Гарднер): максимум G-4
Вода, %: 6,5 – 8,5
Амид (мВ/г): 1,64 – 1,75
Свободный амин (мВ/г): 0,11 – 0,23
Вязкость (мПа.с/20°C): максимум 500
Показатель преломления (nD 25): 1,4675 – 1,4705
pH (1% раствор): 9,2 – 10,2
1,4 - диоксан, ppm: максимум 1 ppm



МЕРЫ ПЕРВОЙ ПОМОЩИ АМИДЕТА Н:
-Описание мер первой помощи.
*Общие советы:
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
После ингаляции:
Свежий воздух.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промыть кожу с
вода /душ.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Вызовите офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Немедленно дайте пострадавшему выпить воды (максимум два стакана).
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения.
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ АМИДЕТА Н:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженное место.



МЕРЫ ПОЖАРОТУШЕНИЯ АМИДЕТ Н:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Углекислый газ (CO2)
Мыло
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА АМИДЕТА Н:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Безопасные очки
*Защита тела:
защитная одежда
*Защита органов дыхания:
Рекомендуемый тип фильтра: Фильтр A
-Контроль воздействия на окружающую среду:
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ АМИДЕТА Н:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ АМИДЕТА Н:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура ).
-Возможность опасных реакций:
Данные недоступны

AMINOETHYL PROPANEDIOL (AMP)
Nom INCI : AMINOETHYLAMINOPROPYL DIMETHICONE, Classification : Silicone, Ses fonctions (INCI): Anti Agglomérant : Permet d'assurer la fluidité des particules solides et de limiter leur agglomération dans des produits cosmétiques en poudre ou en masse dure
AMINOETHYLAMINOPROPYL DIMETHICONE
2-(2-Aminoethylamino)-Ethanol; N-hydroxyethyl-1,2-ethanediamine; N-hydroxyethylethylenediamine; N-(2-Hydroxyethyl)ethylenediamine; 2-((aminoethyl)amino)ethanol; N-aminoethylethanolamine; 2-(2-AMINOETHYLAMINO)ETHANOL; AEEA; AMINOETHYETHANOLAMINE; AMINOETHYLETHANOLAMIN; AMINOETHYLETHANOLAMINE; HYDROXYETHYL-ETHYLENEDIAMINE; LABOTEST-BB LTBB000455; N-(2-AMINOETHYL)ETHANOLAMINE; N-(2-HYDROXYETHYL)ETHANE DIAMINE; N-(2-HYDROXYETHYL)ETHYLENEDIAMINE; N-AMINOETHYL ETHANOLAMINE; N-(B-AMINOETHYL)ETHANOLAMINE; N-B-HYDROXYETHYLETHYLENEDIAMINE; N-HYDROXYETHYL-1,2-ETHANEDIAMINE; (2-Aminoethyl)ethanolamine; (2-Hydroxyethyl)ethylenediamine; (2-hydroxyethyl)ethylenediamine[qr]; (amino-2ethyl)-2amino)ethanol; (beta-Hydroxyethyl)ethylenediamine; (beta-hydroxyethyl)ethylenediamine[qr] CAS NO:111-41-1
AMINOETHYLETHANOLAMINE
N-(Aminoethyl)piperazine; Aminoethylpiperazine; 1-Piperazineethanamine; N-(��-Aminoethyl)piperazine; 2-Piperazinylethylamine; 1-Piperazineethylamine; 1-(2-Aminoethyl)piperazine; cas no: 140-31-8
AMINOETHYLPIPERAZINE (AEP)
2-(2-Aminoethylamino)-Ethanol; N-hydroxyethyl-1,2-ethanediamine; N-hydroxyethylethylenediamine; N-(2-Hydroxyethyl)ethylenediamine; 2-((aminoethyl)amino)ethanol; N-aminoethylethanolamine; cas no: 111-41-1
AMINOETILETANOLAMIN-(AEEA)
EC / List no.: 217-707-7; CAS no.: 1937-19-5; Mol. formula: CH7ClN4Nom INCI : AMINOGUANIDINE HCL; 240-295-5 [EINECS]; 3909606; Aminoguanidine hydrochloride; Guanylhydrazine hydrochloride; Hydrazincarboximidamidhydrochlorid (1:1) [German] ; Hydrazinecarboximidamide hydrochloride; Hydrazinecarboximidamide, chlorhydrate (1:1) [French] ; Hydrazinecarboximidamide, hydrochloride (1:1) ; Pimagedine hydrochloride; (Diaminomethylene)hydraziniumchloride; (diaminomethylideneamino)azanium chloride; [1937-19-5]; 1-aminoguanidine hydrochloride; 2-aminoguanidine;hydrochloride; 2-aminoguanidine;hydron;chloride; 2-ammonioguanidine chloride; 2-azaniumylguanidine chloride; Carbazamidine monohydrochloride; 1-aminoguanidine hydrochloride; Aminoguanidine Hydrochloride; hydrazinecarboximidamide hydrochloride; hydrazinecarboximidamide hydrochloride; N-aminoguanidine hydrochloride; Aminoguanadine hydrochloride; Aminoguanadine hydrochloride 98%; Aminoguanidine (hydrochloride); Aminoguanidine HCl; aminoguanidine hydrochloride, 98%; Aminoguanidine monohydrochloride; AminoguanidineHydrochloride; Aminoguanidinhydrochlorid; Aminoguanidinium chloride; carbazamidine hydrochloride; carbazamidine monohydrochloride; carbonohydrazonic diamide hydrochloride; CST-8 |; Guanidine, amino-, hydrochloride; hydrazinecarboximidamide hcl(1:x); Hydrazinecarboximidamide hydrochloride; Hydrazinecarboximidamide hydrochloride(1:x); hydrazinecarboximidamide hydrochloridehydrochloride; Hydrazinecarboximidamide(9CI); Hydrazinecarboximidamide, hydrochloride; Hydrazinecarboximidamide, hydrochloride; Hydrazinecarboximidamide, monohydrochloride; Hydrazinecarboximidamide,hydrochloride (9CI); HYDROGEN AMINO-GUANIDINE CHLORIDE; monoaminoguanidinium chloride; N- AMINOGUANIDINE HYDROCHLORIDE; Pharmakon1600-01506176; pimagedine HCl; Pimagedine hydrochloride;GER-11;Aminoguanidinium chloride
AMINOGUANIDINE HCL
AMPD; N° CAS : 115-69-5, Nom INCI : AMINOMETHYL PROPANEDIOL, Nom chimique : 2-Amino-2-methylpropane-1,3-diol,N° EINECS/ELINCS : 204-100-7, 1,3-Propanediol, 2-amino-2-methyl- 1,3-Propanediol, 2-methyl- ; 115-69-5; 204-100-7; 2-Amino-2-methyl-1,3-propandiol ; 2-Amino-2-methyl-1,3-propanediol; 2-Amino-2-méthyl-1,3-propanediol [French] ; 2-amino-2-methylpropane-1,3-diol; 635708 [Beilstein]; Aminomethyl propanediol; Ammediol; AMPD; (1,3-dihydroxy-2-methylpropan-2-yl)ammonium; [115-69-5]; 1,1-di(hydroxymethyl)ethylamine; 1,3-Dihydroxy-2-amino-2-methylpropane; 1,3-Dihydroxy-2-methyl-2-propylamine; 17162-11-7 [RN]; 2-​amino-​2-​methylpropane-​1,​3-​diol; 2-AMINO-2-METHYL-1, 3-PROPANEDIOL; 2-amino-2-methyl-1,3-propanediol(ampd) 2-Amino-2-methylpropan-1,3-diol; 2-Amino-2-methyl-propane-1,3-diol; 2-Amino-2-methylpropane-1,3-diol, high purity; 2-Amino-2-methylpropane-1,3-diol|Ammediol, AMPD; 2-AMINO-2-METHYLPROPANEDIOL; 2-METHYL-2-AMINO-1,3-PROPANEDIOL; Aminoglycol; Ammediol, AMPD; AMPD; Ammediol204-100-7MFCD00004678; GENTIMON; isobutandiol-2-amine. Pentaerythritol DichlorohydrinSes fonctions (INCI): Régulateur de pH : Stabilise le pH des cosmétiques
AMINOMETHYL PROPANEDIOL ( AMPD)
3-aminopropane-1,2-diol; 1,2-Propanediol, 3-amino-; 3-Amino-1, 2-Propanediol; 1-Amino propanediol; AMINOPROPANEDIOL, N° CAS : 616-30-8, Nom INCI : AMINOPROPANEDIOL, Nom chimique : 3-Amino-1,2-propanediol, N° EINECS/ELINCS : 210-475-8, Ses fonctions (INCI) : Régulateur de pH : Stabilise le pH des cosmétiques; (±)-3-Amino-1,2-propanediol; 1,2-Propanediol, 3-amino- ; 210-475-8 [EINECS]; 3-Amino-1,2-proopanediol; 3-Amino-1,2-propandiol [German] ; 3-Amino-1,2-propanediol ; 3-Amino-1,2-propanediol [French] ; 3-amino-1,2-propanediol; (±)-3-aminopropane-1,2-diol; 3-Aminopropan-1,2-diol; 3-aminopropane-1,2-diol; 616-30-8 [RN]; AMINOPROPANEDIOL; "3-AMINOPROPANE-1,2-DIOL"; "3-AMINOPROPANE-1,2-DIOL"|"3-AMINOPROPANE-1,2-DIOL"; (?)-3-Amino-1,2-propanediol; (??)-3-Amino-1,2-propanediol; (^+)-3-amino-1,2-propanediol, 97% (¡À)-3-Amino-1,2-propanediol (±)-3-Amino-1,2-propandiol (±)-3-Amino-1,2-propanediol (2S)-3-Amino-1,2-dihydroxypropane; (2S)-2,3-Dihydroxypropylamine (2S)-3-Aminopropane-1,2-diol (R)-(-)-3-Amino-1,2-propanediol (R)-(+)-Amino-1,2-propanediol (r)-3-amino-1,2-propanediol (R)-3-Aminopropane-1,2-diol (R)-amino-1,2-propanediol (S)-(-)-3-Amino-1,2-propanediol (S)-3-Amino-1,2-propanediol (S)-3-Aminopropane-1,2-diol [616-30-8] 108-68-9 [RN] 13552-31-3 [RN] 1-Amino-2,3-dihydroxypropane 1-Amino-2,3-propanediol 1-Aminoglycerol 1-aminopropanediol 2,3-Dihydroxy-1-propylamine 2,3-Dihydroxypropylamine 2,3-Propandiol-1-amine 210-475-8MFCD00008140 3- Amino-1,2-propanediol 3,5-Dimethylphenol 3-Amino propane 1,2 diol -3-Amino-1,2-propanediol 3-amino-1,2-propanediol 97% 3-amino-1,2-propanediol 98% 3-amino-1,2-propanediol, 98% 3-amino-1,2-propanediol,98% 3-Aminopropane-1,2 diol 3-Aminopropane-1,2-diol 99% 3-Aminopropane-1,2-diol|1-Amino-2,3-dihydroxypropane
AMINOPROPANEDIOL
N° CAS : 99363-37-8, Nom INCI : AMINOPROPYL DIMETHICONE, Classification : Silicone, Ses fonctions (INCI): Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance
AMINOPROPYL DIMETHICONE
Nom INCI : AMINOPROPYL PHENYL TRIMETHICONE, Classification : Silicone, Ses fonctions (INCI): Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
AMINOPROPYL PHENYL TRIMETHICONE
N° CAS : 919-30-2, Nom INCI : AMINOPROPYL TRIETHOXYSILANE, Nom chimique : 1-Propanamine, 3-(Triethoxysilyl)-, N° EINECS/ELINCS : 213-048-4, Ses fonctions (INCI): Tensioactif : Réduit la tension superficielle des cosmétiques et contribue à la répartition uniforme du produit lors de son utilisation
AMINOPROPYL TRIETHOXYSILANE
N° CAS : 6419-19-8,Nom INCI : AMINOTRIMETHYLENE PHOSPHONIC ACID, Nom chimique : Nitrilotrimethylenetris(phosphonic acid)., N° EINECS/ELINCS : 229-146-5, Ses fonctions (INCI):Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques. Aminotrimethylene phosphonic acid (nitrilotrimethanediyl)tris(phosphonic acid); (Nitrilotrimethylen)tris(phosphonsäure) [German] ; (Nitrilotris(methylene))triphosphonic acid; [bis(phosphonomethyl)amino]methylphosphonic acid; [Nitrilotris(methylene)]tris(phosphonic acid) ; Acide (nitrilotriméthylène)tris(phosphonique) [French] ; Amino tris(methylene phosphonic acid); Aminotri(methylene phosphonic acid); Aminotris(methanephosphonic acid); Aminotris(methylenephosphonic acid); Aminotris(methylphosphonic acid); ATMP; MFCD00002138 [MDL number]; Nitrilotri(methylphosphonic acid); Phosphonic acid, [nitrilotris(methylene)]tris- ; (bis(phosphonomethyl)amino)methylphosphonic acid; (Nitrilotrimethylene)triphosphonic acid; (nitrilotris(methylene))tri-Phosphonic acid; (nitrilotris(methylene))tris-Phosphonic acid; (Nitrilotris(methylene))trisphosphonic acid; [Nitrilotris(methylene)]trisphosphonic acid; [nitrilotris(methylene)]trisphosphonic acid, sodium salt; {[bis(phosphonomethyl)amino]methyl}phosphonic acid; 1,1,1-Nitrilotris(methylphosphonic acid) 50% in water; Amino trimethylene Phoshonic Acid; Amino Trimethylene Phosphonic Acid; Amino, tris(methylene phosphonic acid); Aminotri(methylenephosphonic acid); Aminotri(methylphosphonic acid); Aminotris; Dequest 2000; Dequest 2001; dimethoxyphosphorylmethanamine; Dowell L 37; Ferrofos 509; Masquol P 320; Mayoquest 1320; Nitrilotrimethanephosphonic acid; Nitrilotrimethylenephosphonic acid; Nitrilotrimethylphosphonic acid; nitrilotris(methylene)triphosphonic acid; NITRILOTRIS(METHYLENE)TRIPHOSPHONICACID; Nitrilotris(methylene)trisphosphonic acid; Nitrilotris(methylenephosphonic acid); Nitrilotris(methylphosphonic acid); NTMP; NTPA; p,p',p''-(Nitrilotris(methylene))tris-Phosphonic acid; P,P',P''-[nitrilotris(methylene)]trisphosphonic acid; pentapotassium hydrogen [nitrilotris(methylene)]trisphosphonate; Phosphonic acid, (nitrilotris(methylene))tri-; Phosphonic acid, (nitrilotris(methylene))tris-; Phosphoric acid, (nitrilotris-(methylene))tris-; sequion OA; Sym-Trimethylaminetriphosphonic acid tris(phosphonomethyl)amine. Nitrilotrimethylenetris(phosphonic acid); Phosphonic acid, P,P',P''-[nitrilotris(methylene)]tris-; (nitrilotrimethanediyl)tris(phosphonic acid); [bis(phosphonomethyl)amino]methylphosphonic; [bis(phosphonomethyl)amino]methylphosphonic acid; [bis(phosphonomethyl)amino]methylphosphonic acid; [nitrilotris(methylene) ]tris(phosphonic acid); [nitrilotris(methylene)]tris(phosphonic acid); AMINO TRI (METHYLENE PHOSPHONIC ACID); Amino Tri(methylene phosphonic acid); Amino tris(methylenephosphonic acid); Amino Tris(Methylenephosphonic) Acid; Amino-tris(methylene phosphonic acid); aminotrimethylene phosphonic acid; Aminotris(methylenephosphonic acid), ATMP; ATMP; ATMP-H; Methylenephosphonic Acid; NITRILOTRIMETHYLENETRIS (PHOSPHONIC ACID); nitrilotrimethylenetris(phosphonic acid; Nitrilotrimethylentris(phosphonsäure); Phosphonic acid, [nitrilotris(methylene)]tris-; {[bis(phosphonomethyl)amino]methyl}phosphonic acid; 1,1,1-Nitrilotri(methylphosphonic acid); [Nitrilotris(methylene)]trisphosphonic acid; Amino Trimethylene Phosphonic Acid; Aminotri(methylenephosphonic acid); Aminotris(methylenephosphonic acid); Aminotris(methylphosphonic acid); ATMPA; Briquest 301-50A; Cublen AP1; Cublen AP5; Nitrilotri(methylenephosphonic acid); NTMP; Tris(Methylene Phosphonic Acid) Amine; Tris(methylenephosphonic acid)amine; Uniphos 200
AMINOTRIMETHYLENE PHOSPHONIC ACID
Les animes-oxydes sont utilisés comme groupe protecteur d'amines et comme intermédiaires de synthèse. Les amines-oxydes avec de longues chaînes alkyle sont utilisés comme surfactants non ioniques et stabilisateurs de mousse.Les animes-oxydes sont utilisés comme groupe protecteur d'amines et comme intermédiaires de synthèse. Les amines-oxydes avec de longues chaînes alkyle sont utilisés comme surfactants non ioniques et stabilisateurs de mousse.Les amines oxydes sont des molécules hautement polaires. Les petits amines-oxydes sont très hydrophiles et ont une excellente solubilité dans l'eau mais au contraire très faible dans la plupart des solvants organiques. Les amines oxydes sont des bases faibles avec un pKa autour de 4,5 et qui forment R3N+-OH, une hydroxylamine cationique, par protonation à un pH plus bas que leur pKa.Les amines-oxydes sont préparés par réaction des amines tertiaires ou des pyridines analogues avec du peroxyde d'hydrogène (H2O2) ou de l'acide de Caro ou des peracides comme l'acide méta-chloroperbenzoïque dans une réaction appelée N-oxydation
Amine Oxide ( Amine oxyde)
2-amino-2-methylpropanol; AMINOMETHYL PROPANOL, Isobutanol-2-amine, N° CAS : 124-68-5, Aminométhyl propanol, AMP,Nom chimique : 2-Amino-2-methylpropanol, N° EINECS/ELINCS : 204-709-8,Cet ingrédient est utilisé pour ajuster le PH des produits cosmétiques : substance alcaline, qui permet d'augmenter le pH, Il s'agit d'un aminoalcool, utilisé pour neutraliser le pH dans des solutions cosmétiques. Plus spécifiquement, il est utilisé comme neutralisant du carbomer afin de le stabiliser sous forme de gelRégulateur de pH : Stabilise le pH des cosmétiques. Isobutanol-2-amine; L'aminométhyl propanol est un composé organique qui consiste en une molécule de propan-1-ol substituée en 2 par un groupe amine et un groupe méthyle; 1,1-Dimethyl-2-hydroxyethylamine; 124-68-5 [RN]; 1-Propanol, 2-amino-2-methyl- ; 2,2-Dimethyl-ethanolamine; 204-709-8 [EINECS]; 2-Amino-2-methyl-1-propanol; 2-Amino-2-methyl-1-propanol [German] ; 2-Amino-2-méthyl-1-propanol [French] ; 2-Amino-2-methyl-propan-1-ol; 2-Amino-2-Methylpropan-1-Ol; Aminomethyl propanol; Aminomethylpropanol; AMP; LU49E6626Q; β-Aminoisobutyl alcohol; [124-68-5]; 1173021-93-6 [RN]; '124-68-5; 189832-99-3 [RN]; 1-Hydroxy-2-methylpropan-2-amine; 1-PROPANOL,2-AMINO,2-METHYL; 2-​amino-​2-​methyl-​1-​propanol; 203-542-8 [EINECS]; 2-Amino-1-hydroxy-2-methylpropane; 2-Amino-2,2-dimethylethanol; 2-amino-2-methyl 1-propanol; 2-AMINO-2-METHYL-1-PROPANOL-[1-3H]; 2-Amino-2-methyl-1-propanol|1,1-Dimethyl-2-hydroxyethylamine; 2-AMINO-2-METHYL-1-PROPANOL|2-AMINO-2-METHYLPROPAN-1-OL; 2-AMINO-2-METHYL-1-PROPANOL-D11; 2-AMINO-2-METHYLPROPANOL; 2-amino-2-methylpropanol (>90%); 2-AMINO-2-METHYLPROPANOL-D6; 2-Aminodimethylethanol; 2-AMINOISOBUTANOL; 2-Hydroxymethyl-2-propylamine; 2-Methyl-2-aminopropanol; 4-amino-2-methyl-N-propyl-3-pyrazolecarboxamide; 5856-62-2 [RN]; Amino-2,2-dimethylethanol; Amino-2-methyl-1-propanol; Aminoisobutanol; amp buffer concentrate; AMP Regular; ampbufferconcentrate; C4H11NO; Corrguard 75; EINECS 204-709-8; Hydroxymethyl-2-propylamine; Hydroxy-tert-butylamine; β-Aminoisobutyl alcohol; Isobutanolamine; Oprea1_147215; propan-1-ol, 2-amino-2-methyl-; β-Aminoisobutanol. 2-amino-2-methylpropan-1-ol (cs); 2-amino-2-methylpropanol (da);2-amino-2-metil-propanol (hr); 2-amino-2-metilpropanol (es); 2-amino-2-metilpropanolis (lt); 2-amino-2-metilpropanolo (it); 2-amino-2-metilpropanols (lv); 2-amino-2-metylopropan-1-ol (pl); 2-amino-2-metylpropanol (no); 2-amino-2-metylpropán-1-ol (sk); 2-amino-2-metyylipropanoli (fi); 2-amino-2-metüülpropanool (et); 2-amino-2-méthylpropanol (fr); 2-αμινο-2-μεθυλοπροπανόλη (el); 2-амино-2-метилпропанол (bg); Izobutanoloamina (pl); 1-Propanol, 2-amino-2-methyl- 1-propanol, 2-amino-2-methyl;2-aminio-2-methylpropan-1-ol; 2-Amino-2-methyl-1-propanol; 2-Amino-2-methyl-1propanol; 2-amino-2mthylpropanol, 2-AMINOISOBUTANOL; Amino Methyl Propanol; Aminomethyl propanol; AMP; Isobutanolamin
Amino Trimethylene Phosphonic Acid (ATMP)
ATMP;ATMPA;AMP; Amino Trimethylene Phosphonic Acid;Amino Tri(Methylene Phosphonic Acid);Tris(Methylene Phosphonic Acid) Amine;Nitrilotrimethylphosphonic Acid(NTP);Nitrilotrimethylenetris(Phosphonic Acid); CAS No: 6419-19-8
Amino-2-Methyl-1-Propanol
2-Amino-2-methylpropanol; 2-Amino-2-methyl-1-propanol; Aminomethyl propanol; 1,1-Dimethyl-2-hydroxyethylamine; 2-Amino-1-hydroxy-2-methylpropane; 2-Amino-2,2-dimethylethanol; 2-Amino-2-methylpropan-1-ol; 2-Amino-2-methylpropanol; 2-Aminodimethylethanol; 2-Aminoisobutanol; 2-Hydroxymethyl-2-propylamine; 2-Methyl-2-aminopropanol; 2-Methyl-2-aminopropanol-1; beta-Aminoisobutanol; Hydroxy-tert-butylamine; sobutanol-2-amine; CAS NO: 124-68-5
Aminomethyl Propanol
2-Amino-2-methylpropanol, β-Aminoisobutyl alcohol, AMP 95, AMP, 2-AMINO-2-METHYL-1-PROPANOL 2-AMINO-2-METHYLPROPAN-1-OL 2-AMINO-ISO-BUTYL ALCOHOL 2-AMINO-METHYL-1-PROPANOL 2-METHYL-2-AMINO PROPANOL AMP B-AMINOISOBUTANOL BETA-AMINOISOBUTANOL BETA-AMINOISOBUTYL ALCOHOL 1,1-Dimethyl-2-hydroxyethylamine 2,2-Diethyl-ethanolamine 2-amino-1-hydroxy-2-methylpropane 2-Amino-2,2-dimethylethanol 2-Aminodimethylethanol 2-Aminoisobutanol CAS Number 124-68-5
Aminopropyl dodecylamine and blends
[Bis(phosphonomethyl)amino]methylphosphonic acid; Tris(phosphonomethyl)amine; Nitrilotrimethylphosphonic acid; Aminotris(methylphosphonic acid); NTMP CAS NO:6419-19-8
Aminotri (Methyl phosphonic acid) (ATMP)
Ammonium bifluoride; Acid ammonium fluoride; Ammonium acid fluoride; Ammonium difluoride; Ammonium fluoride; Ammonium hydrofluoride; Ammonium hydrogen bifluoride; Ammonium hydrogen difluoride; Ammonium hydrogen fluoride; Fluorure acide d'ammonium CAS NO:1341-49-7
Amino-tris-methylene phosphonic acid (ATMP)
Aluminum chlorhydrol; Aluminum chlorohydrate; Aluminum hydroxide chloride; Aluminum hydroxychloride; Aluminum hydroxychloride dihydrate CAS NO:1327-41-9
AMMONIA
azane; Ammonia gas; Spirit of hartshorn; Nitro-sil; Anhydrous ammonia CAS:7664-41-7
AMMONIA %25
Ammonia is a compound of nitrogen and hydrogen with the formula NH3. A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products. It is mainly collected by downward displacement of both air and water.Although common in nature—both terrestrially and in the outer planets of the Solar System—and in wide use, ammonia is both caustic and hazardous in its concentrated form. It is classified as an extremely hazardous substance in the United States, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.The global industrial production of ammonia in 2018 was 175 million tonnes,with no significant change relative to the 2013 global industrial production of 175 million tonnes.Industrial ammonia is sold either as ammonia liquor (usually 28% ammonia in water) or as pressurized or refrigerated anhydrous liquid ammonia transported in tank cars or cylinders.NH3 boils at −33.34 °C (−28.012 °F) at a pressure of one atmosphere, so the liquid must be stored under pressure or at low temperature. Household ammonia or ammonium hydroxide is a solution of NH3 in water. The concentration of such solutions is measured in units of the Baumé scale (density), with 26 degrees Baumé (about 30% (by weight) ammonia at 15.5 °C or 59.9 °F) being the typical high-concentration commercial product.Pliny, in Book XXXI of his Natural History, refers to a salt produced in the Roman province of Cyrenaica named hammoniacum, so called because of its proximity to the nearby Temple of Jupiter Amun (Greek Ἄμμων Ammon).However, the description Pliny gives of the salt does not conform to the properties of ammonium chloride. According to Herbert Hoover's commentary in his English translation of Georgius Agricola's De re metallica, it is likely to have been common sea salt.In any case, that salt ultimately gave ammonia and ammonium compounds their name.Ammonia is a chemical found in trace quantities in nature, being produced from nitrogenous animal and vegetable matter. Ammonia and ammonium salts are also found in small quantities in rainwater, whereas ammonium chloride (sal ammoniac), and ammonium sulfate are found in volcanic districts; crystals of ammonium bicarbonate have been found in Patagonia guano.The kidneys secrete ammonia to neutralize excess acid.Ammonium salts are found distributed through fertile soil and in seawater.Ammonia is also found throughout the Solar System on Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, among other places: on smaller, icy bodies such as Pluto, ammonia can act as a geologically important antifreeze, as a mixture of water and ammonia can have a melting point as low as 173 K (−100 °C; −148 °F) if the ammonia concentration is high enough and thus allow such bodies to retain internal oceans and active geology at a far lower temperature than would be possible with water alone.Substances containing ammonia, or those that are similar to it, are called ammoniacal.Ammonia is a colourless gas with a characteristically pungent smell. It is lighter than air, its density being 0.589 times that of air. It is easily liquefied due to the strong hydrogen bonding between molecules; the liquid boils at −33.3 °C (−27.94 °F), and freezes to white crystals at −77.7 °C (−107.86 °F).Ammonia may be conveniently deodorized by reacting it with either sodium bicarbonate or acetic acid. Both of these reactions form an odourless ammonium salt.The crystal symmetry is cubic, Pearson symbol cP16, space group P213 No.198, lattice constant 0.5125 nm.Liquid ammonia possesses strong ionising powers reflecting its high ε of 22. Liquid ammonia has a very high standard enthalpy change of vaporization (23.35 kJ/mol, cf. water 40.65 kJ/mol, methane 8.19 kJ/mol, phosphine 14.6 kJ/mol) and can therefore be used in laboratories in uninsulated vessels without additional refrigeration. See liquid ammonia as a solvent.Ammonia readily dissolves in water. In an aqueous solution, it can be expelled by boiling. The aqueous solution of ammonia is basic. The maximum concentration of ammonia in water (a saturated solution) has a density of 0.880 g/cm3 and is often known as '.880 ammonia'.Ammonia does not burn readily or sustain combustion, except under narrow fuel-to-air mixtures of 15–25% air. When mixed with oxygen, it burns with a pale yellowish-green flame. Ignition occurs when chlorine is passed into ammonia, forming nitrogen and hydrogen chloride; if chlorine is present in excess, then the highly explosive nitrogen trichloride (NCl3) is also formed.At high temperature and in the presence of a suitable catalyst, ammonia is decomposed into its constituent elements. Decomposition of ammonia is slightly endothermic process requiring 5.5 kcal/mol of ammonia, and yields hydrogen and nitrogen gas. Ammonia can also be used as a source of hydrogen for acid fuel cells if the unreacted ammonia can be removed. Ruthenium and Platinum catalysts were found to be the most active, whereas supported Ni catalysts were the less active.The ammonia molecule has a trigonal pyramidal shape as predicted by the valence shell electron pair repulsion theory (VSEPR theory) with an experimentally determined bond angle of 106.7°.The central nitrogen atom has five outer electrons with an additional electron from each hydrogen atom. This gives a total of eight electrons, or four electron pairs that are arranged tetrahedrally. Three of these electron pairs are used as bond pairs, which leaves one lone pair of electrons. The lone pair repels more strongly than bond pairs, therefore the bond angle is not 109.5°, as expected for a regular tetrahedral arrangement, but 106.7°.This shape gives the molecule a dipole moment and makes it polar. The molecule's polarity, and especially, its ability to form hydrogen bonds, makes ammonia highly miscible with water. The lone pair makes ammonia a base, a proton acceptor. Ammonia is moderately basic; a 1.0 M aqueous solution has a pH of 11.6, and if a strong acid is added to such a solution until the solution is neutral (pH = 7), 99.4% of the ammonia molecules are protonated. Temperature and salinity also affect the proportion of NH4+. The latter has the shape of a regular tetrahedron and is isoelectronic with methane.The ammonia molecule readily undergoes nitrogen inversion at room temperature; a useful analogy is an umbrella turning itself inside out in a strong wind. The energy barrier to this inversion is 24.7 kJ/mol, and the resonance frequency is 23.79 GHz, corresponding to microwave radiation of a wavelength of 1.260 cm. The absorption at this frequency was the first microwave spectrum to be observed.One of the most characteristic properties of ammonia is its basicity. Ammonia is considered to be a weak base. It combines with acids to form salts; thus with hydrochloric acid it forms ammonium chloride (sal ammoniac); with nitric acid, ammonium nitrate, etc. Perfectly dry ammonia will not combine with perfectly dry hydrogen chloride; moisture is necessary to bring about the reaction.As a demonstration experiment, opened bottles of concentrated ammonia and hydrochloric acid produce clouds of ammonium chloride, which seem to appear "out of nothing" as the salt forms where the two diffusing clouds of molecules meet, somewhere between the two bottles.The salts produced by the action of ammonia on acids are known as the ammonium salts and all contain the ammonium ion (NH4+).Although ammonia is well known as a weak base, it can also act as an extremely weak acid. It is a protic substance and is capable of formation of amides (which contain the NH2− ion). For example, lithium dissolves in liquid ammonia to give a solution of lithium amide: 2Li + 2NH3 → 2LiNH2 + H2 The combustion of ammonia in air is very difficult in the absence of a catalyst (such as platinum gauze or warm chromium(III) oxide), due to the relatively low heat of combustion, a lower laminar burning velocity, high auto-ignition temperature, high heat of vaporization, and a narrow flammability range. However, recent studies have shown that efficient and stable combustion of ammonia can be achieved using swirl combustors, thereby rekindling research interest in ammonia as a fuel for thermal power production.The flammable range of ammonia in dry air is 15.15%-27.35% and in 100% relative humidity air is 15.95%-26.55%.For studying the kinetics of ammonia combustion a detailed reliable reaction mechanism is required, however knowledge about ammonia chemical kinetics during combustion process has been challenging.In organic chemistry, ammonia can act as a nucleophile in substitution reactions. Amines can be formed by the reaction of ammonia with alkyl halides, although the resulting -NH2 group is also nucleophilic and secondary and tertiary amines are often formed as byproducts. An excess of ammonia helps minimise multiple substitution and neutralises the hydrogen halide formed. Methylamine is prepared commercially by the reaction of ammonia with chloromethane, and the reaction of ammonia with 2-bromopropanoic acid has been used to prepare racemic alanine in 70% yield. Ethanolamine is prepared by a ring-opening reaction with ethylene oxide: the reaction is sometimes allowed to go further to produce diethanolamine and triethanolamine.Amides can be prepared by the reaction of ammonia with carboxylic acid derivatives. Acyl chlorides are the most reactive, but the ammonia must be present in at least a twofold excess to neutralise the hydrogen chloride formed. Esters and anhydrides also react with ammonia to form amides. Ammonium salts of carboxylic acids can be dehydrated to amides so long as there are no thermally sensitive groups present: temperatures of 150–200 °C are required.The hydrogen in ammonia is susceptible to replacement by myriad substituents. When heated with sodium it converts to sodamide, NaNH2.With chlorine, monochloramine is formed.Pentavalent ammonia is known as λ5-amine or, more commonly, ammonium hydride. This crystalline solid is only stable under high pressure and decomposes back into trivalent ammonia and hydrogen gas at normal conditions. This substance was once investigated as a possible solid rocket fuel in 1966.Ammonia can act as a ligand in transition metal complexes. It is a pure σ-donor, in the middle of the spectrochemical series, and shows intermediate hard-soft behaviour (see also ECW model). Its relative donor strength toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.For historical reasons, ammonia is named ammine in the nomenclature of coordination compounds. Some notable ammine complexes include tetraamminediaquacopper(II) ([Cu(NH3)4(H2O)2]2+), a dark blue complex formed by adding ammonia to a solution of copper(II) salts. Tetraamminediaquacopper(II) hydroxide is known as Schweizer's reagent, and has the remarkable ability to dissolve cellulose. Diamminesilver(I) ([Ag(NH3)2]+) is the active species in Tollens' reagent. Formation of this complex can also help to distinguish between precipitates of the different silver halides: silver chloride (AgCl) is soluble in dilute (2M) ammonia solution, silver bromide (AgBr) is only soluble in concentrated ammonia solution, whereas silver iodide (AgI) is insoluble in aqueous ammonia.Ammine complexes of chromium(III) were known in the late 19th century, and formed the basis of Alfred Werner's revolutionary theory on the structure of coordination compounds. Werner noted only two isomers (fac- and mer-) of the complex [CrCl3(NH3)3] could be formed, and concluded the ligands must be arranged around the metal ion at the vertices of an octahedron. This proposal has since been confirmed by X-ray crystallography.An ammine ligand bound to a metal ion is markedly more acidic than a free ammonia molecule, although deprotonation in aqueous solution is still rare. One example is the Calomel reaction, where the resulting amidomercury(II) compound is highly insoluble.Ammonia forms 1:1 adducts with a variety of Lewis acids such as I2, phenol, and Al(CH3)3. Ammonia is a hard base and its E & C parameters are EB = 2.31 and C B = 2.04. Its relative donor strength toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.Ammonia and ammonium salts can be readily detected, in very minute traces, by the addition of Nessler's solution, which gives a distinct yellow colouration in the presence of the slightest trace of ammonia or ammonium salts. The amount of ammonia in ammonium salts can be estimated quantitatively by distillation of the salts with sodium or potassium hydroxide, the ammonia evolved being absorbed in a known volume of standard sulfuric acid and the excess of acid then determined volumetrically; or the ammonia may be absorbed in hydrochloric acid and the ammonium chloride so formed precipitated as ammonium hexachloroplatinate, (NH4)2PtCl6.The ancient Greek historian Herodotus mentioned that there were outcrops of salt in an area of Libya that was inhabited by a people called the "Ammonians" (now: the Siwa oasis in northwestern Egypt, where salt lakes still exist).The Greek geographer Strabo also mentioned the salt from this region. However, the ancient authors Dioscorides, Apicius, Arrian, Synesius, and Aëtius of Amida described this salt as forming clear crystals that could be used for cooking and that were essentially rock salt. Hammoniacus sal appears in the writings of Pliny, although it is not known whether the term is identical with the more modern sal ammoniac (ammonium chloride).The fermentation of urine by bacteria produces a solution of ammonia; hence fermented urine was used in Classical Antiquity to wash cloth and clothing, to remove hair from hides in preparation for tanning, to serve as a mordant in dying cloth, and to remove rust from iron.In the form of sal ammoniac, ammonia was important to the Muslim alchemists as early as the 8th century, first mentioned by the Persian-Arab chemist Jābir ibn Hayyān, and to the European alchemists since the 13th century, being mentioned by Albertus Magnus.It was also used by dyers in the Middle Ages in the form of fermented urine to alter the colour of vegetable dyes. In the 15th century, Basilius Valentinus showed that ammonia could be obtained by the action of alkalis on sal ammoniac.At a later period, when sal ammoniac was obtained by distilling the hooves and horns of oxen and neutralizing the resulting carbonate with hydrochloric acid, the name "spirit of hartshorn" was applied to ammonia.Gaseous ammonia was first isolated by Joseph Black in 1756 by reacting sal ammoniac (Ammonium Chloride) with calcined magnesia (Magnesium Oxide).It was isolated again by Peter Woulfe in 1767,by Carl Wilhelm Scheele in 1770 and by Joseph Priestley in 1773 and was termed by him "alkaline air".Eleven years later in 1785, Claude Louis Berthollet ascertained its composition.The Haber–Bosch process to produce ammonia from the nitrogen in the air was developed by Fritz Haber and Carl Bosch in 1909 and patented in 1910. It was first used on an industrial scale in Germany during World War I,following the allied blockade that cut off the supply of nitrates from Chile. The ammonia was used to produce explosives to sustain war efforts.Before the availability of natural gas, hydrogen as a precursor to ammonia production was produced via the electrolysis of water or using the chloralkali process.With the advent of the steel industry in the 20th century, ammonia became a byproduct of the production of coking coal.In the US as of 2019, approximately 88% of ammonia was used as fertilizers either as its salts, solutions or anhydrously.When applied to soil, it helps provide increased yields of crops such as maize and wheat.30% of agricultural nitrogen applied in the US is in the form of anhydrous ammonia and worldwide 110 million tonnes are applied each year.Ammonia is directly or indirectly the precursor to most nitrogen-containing compounds. Virtually all synthetic nitrogen compounds are derived from ammonia. An important derivative is nitric acid. This key material is generated via the Ostwald process by oxidation of ammonia with air over a platinum catalyst at 700–850 °C (1,292–1,562 °F), ≈9 atm. Nitric oxide is an intermediate in this conversion: NH3 + 2 O2 → HNO3 + H2O Household ammonia is a solution of NH3 in water, and is used as a general purpose cleaner for many surfaces. Because ammonia results in a relatively streak-free shine, one of its most common uses is to clean glass, porcelain and stainless steel. It is also frequently used for cleaning ovens and soaking items to loosen baked-on grime. Household ammonia ranges in concentration by weight from 5 to 10% ammonia.United States manufacturers of cleaning products are required to provide the product's material safety data sheet which lists the concentration used.As early as in 1895, it was known that ammonia was "strongly antiseptic ... it requires 1.4 grams per litre to preserve beef tea." In one study, anhydrous ammonia destroyed 99.999% of zoonotic bacteria in 3 types of animal feed, but not silage.Anhydrous ammonia is currently used commercially to reduce or eliminate microbial contamination of beef.Lean finely textured beef (popularly known as "pink slime") in the beef industry is made from fatty beef trimmings (c. 50–70% fat) by removing the fat using heat and centrifugation, then treating it with ammonia to kill E. coli. The process was deemed effective and safe by the US Department of Agriculture based on a study that found that the treatment reduces E. coli to undetectable levels.There have been safety concerns about the process as well as consumer complaints about the taste and smell of beef treated at optimal levels of ammonia.The level of ammonia in any final product has not come close to toxic levels to humans.Because of ammonia's vaporization properties, it is a useful refrigerant.It was commonly used before the popularisation of chlorofluorocarbons (Freons). Anhydrous ammonia is widely used in industrial refrigeration applications and hockey rinks because of its high energy efficiency and low cost. It suffers from the disadvantage of toxicity, and requiring corrosion resistant components, which restricts its domestic and small-scale use. Along with its use in modern vapor-compression refrigeration it is used in a mixture along with hydrogen and water in absorption refrigerators. The Kalina cycle, which is of growing importance to geothermal power plants, depends on the wide boiling range of the ammonia–water mixture. Ammonia coolant is also used in the S1 radiator aboard the International Space Station in two loops which are used to regulate the internal temperature and enable temperature dependent experiments.The potential importance of ammonia as a refrigerant has increased with the discovery that vented CFCs and HFCs are extremely potent and stable greenhouse gases.The contribution to the greenhouse effect of CFCs and HFCs in current use, if vented, would match that of all CO2 in the atmosphere.The raw energy density of liquid ammonia is 11.5 MJ/L,which is about a third that of diesel. There is the opportunity to convert ammonia back to hydrogen, where it can be used to power hydrogen fuel cells or directly within high-temperature fuel cells.The conversion of ammonia to hydrogen via the sodium amide process,either for combustion or as fuel for a proton exchange membrane fuel cell,is possible. Conversion to hydrogen would allow the storage of hydrogen at nearly 18 wt% compared to ≈5% for gaseous hydrogen under pressure.Ammonia engines or ammonia motors, using ammonia as a working fluid, have been proposed and occasionally used.The principle is similar to that used in a fireless locomotive, but with ammonia as the working fluid, instead of steam or compressed air. Ammonia engines were used experimentally in the 19th century by Goldsworthy Gurney in the UK and the St. Charles Avenue Streetcar line in New Orleans in the 1870s and 1880s,and during World War II ammonia was used to power buses in Belgium.Ammonia is sometimes proposed as a practical alternative to fossil fuel for internal combustion engines.Its high octane rating of 120 and low flame temperature allows the use of high compression ratios without a penalty of high NOx production. Since ammonia contains no carbon, its combustion cannot produce carbon dioxide, carbon monoxide, hydrocarbons, or soot.Even though ammonia production currently creates 1.8% of global CO2 emissions, the Royal Society report claims that "green" ammonia can be produced by using low-carbon hydrogen (blue hydrogen and green hydrogen). Total decarbonization of ammonia production and the accomplishment of net-zero targets are possible by 2050.However ammonia cannot be easily used in existing Otto cycle engines because of its very narrow flammability range, and there are also other barriers to widespread automobile usage. In terms of raw ammonia supplies, plants would have to be built to increase production levels, requiring significant capital and energy sources. Although it is the second most produced chemical (after sulfuric acid), the scale of ammonia production is a small fraction of world petroleum usage. It could be manufactured from renewable energy sources, as well as coal or nuclear power. The 60 MW Rjukan dam in Telemark, Norway produced ammonia for many years from 1913, providing fertilizer for much of Europe.Despite this, several tests have been done. In 1981, a Canadian company converted a 1981 Chevrolet Impala to operate using ammonia as fuel.In 2007, a University of Michigan pickup powered by ammonia drove from Detroit to San Francisco as part of a demonstration, requiring only one fill-up in Wyoming.Compared to hydrogen as a fuel, ammonia is much more energy efficient, and could be produced, stored, and delivered at a much lower cost than hydrogen which must be kept compressed as a cryogenic liquid.Rocket engines have also been fueled by ammonia. The Reaction Motors XLR99 rocket engine that powered the X-15 hypersonic research aircraft used liquid ammonia. Although not as powerful as other fuels, it left no soot in the reusable rocket engine, and its density approximately matches the density of the oxidizer, liquid oxygen, which simplified the aircraft's design.Ammonia, as the vapor released by smelling salts, has found significant use as a respiratory stimulant. Ammonia is commonly used in the illegal manufacture of methamphetamine through a Birch reduction.The Birch method of making methamphetamine is dangerous because the alkali metal and liquid ammonia are both extremely reactive, and the temperature of liquid ammonia makes it susceptible to explosive boiling when reactants are added.Liquid ammonia is used for treatment of cotton materials, giving properties like mercerisation, using alkalis. In particular, it is used for prewashing of wool.At standard temperature and pressure, ammonia is less dense than atmosphere and has approximately 45-48% of the lifting power of hydrogen or helium. Ammonia has sometimes been used to fill weather balloons as a lifting gas. Because of its relatively high boiling point (compared to helium and hydrogen), ammonia could potentially be refrigerated and liquefied aboard an airship to reduce lift and add ballast (and returned to a gas to add lift and reduce ballast).The U.S. Occupational Safety and Health Administration (OSHA) has set a 15-minute exposure limit for gaseous ammonia of 35 ppm by volume in the environmental air and an 8-hour exposure limit of 25 ppm by volume.The National Institute for Occupational Safety and Health (NIOSH) recently reduced the IDLH (Immediately Dangerous to Life and Health, the level to which a healthy worker can be exposed for 30 minutes without suffering irreversible health effects) from 500 to 300 based on recent more conservative interpretations of original research in 1943. Other organizations have varying exposure levels. U.S. Navy Standards [U.S. Bureau of Ships 1962] maximum allowable concentrations (MACs): continuous exposure (60 days): 25 ppm / 1 hour: 400 ppm.Ammonia vapour has a sharp, irritating, pungent odour that acts as a warning of potentially dangerous exposure. The average odour threshold is 5 ppm, well below any danger or damage. Exposure to very high concentrations of gaseous ammonia can result in lung damage and death.Ammonia is regulated in the United States as a non-flammable gas, but it meets the definition of a material that is toxic by inhalation and requires a hazardous safety permit when transported in quantities greater than 13,248 L (3,500 gallons).Liquid ammonia is dangerous because it is hygroscopic and because it can cause caustic burns. See Gas carrier § Health effects of specific cargoes carried on gas carriers for more information.The toxicity of ammonia solutions does not usually cause problems for humans and other mammals, as a specific mechanism exists to prevent its build-up in the bloodstream. Ammonia is converted to carbamoyl phosphate by the enzyme carbamoyl phosphate synthetase, and then enters the urea cycle to be either incorporated into amino acids or excreted in the urine.Fish and amphibians lack this mechanism, as they can usually eliminate ammonia from their bodies by direct excretion. Ammonia even at dilute concentrations is highly toxic to aquatic animals, and for this reason it is classified as dangerous for the environment.Ammonia is a constituent of tobacco smoke.Ammonia is present in coking wastewater streams, as a liquid by-product of the production of coke from coal.In some cases, the ammonia is discharged to the marine environment where it acts as a pollutant. The Whyalla steelworks in South Australia is one example of a coke-producing facility which discharges ammonia into marine waters.
AMMONIUM ACETATE
AMMONIUM ACETATE Ammonium acetate(Amonyum asetat), also known as spirit of Mindererus in aqueous solution, is a chemical compound with the formula NH4CH3CO2. It is a white, hygroscopic solid and can be derived from the reaction of ammonia and acetic acid. It is available commercially.[5] Contents 1 Uses 1.1 Buffer 1.2 Other 1.3 Food additive 2 Production 3 References 4 External links Uses It is the main precursor to acetamide:[6] NH4CH3CO2 → CH3C(O)NH2 + H2O It is also used as a diuretic.[5] Buffer As the salt of a weak acid and a weak base, Ammonium acetate(Amonyum asetat) is often used with acetic acid to create a buffer solution. Ammonium acetate(Amonyum asetat) is volatile at low pressures. Because of this, it has been used to replace cell buffers with non-volatile salts in preparing samples for mass spectrometry.[7] It is also popular as a buffer for mobile phases for HPLC with ELSD detection for this reason. Other volatile salts that have been used for this include Ammonium acetate(Amonyum asetat) formate. Other a biodegradable de-icing agent. a catalyst in the Knoevenagel condensation and as a source of ammonia in the Borch reaction in organic synthesis. a protein precipitating reagent in dialysis to remove contaminants via diffusion. a reagent in agricultural chemistry for determination of soil CEC (cation exchange capacity ) and determination of available potassium in soil wherein the Ammonium acetate(Amonyum asetat) ion acts as a replacement cation for potassium. Food additive Ammonium acetate(Amonyum asetat) is also used as a food additive as an acidity regulator; INS number 264. It is approved for usage in Australia and New Zealand.[8] Production Ammonium acetate(Amonyum asetat) is produced by the neutralization of acetic acid with Ammonium acetate(Amonyum asetat) carbonate or by saturating glacial acetic acid with ammonia.[9] Obtaining crystalline Ammonium acetate(Amonyum asetat) is difficult on account of its hygroscopic nature. Ammonium acetate(Amonyum asetat) PORPHYRINS: LIQUID CHROMATOGRAPHY Choice of Mobile Phase The porphyrins derived from the haem biosynthetic pathway are amphoteric compounds ionizable and soluble in both acids and bases. They are therefore ideal for separation by RP-HPLC in the presence of an ion-pairing agent (e.g. tetrabutyl Ammonium acetate(Amonyum asetat) phosphate) or by ionization control with an acid (e.g. trifluoroacetic acid), a base (e.g. triethylamine) or a buffer solution (e.g. Ammonium acetate(Amonyum asetat) buffer). The choice of a correct mobile phase is obviously important for achieving an optimal separation. With the increasing use of online HPLC–mass spectrometry (LC–MS), the chosen mobile phase ideally should also be fully compatible with mass spectrometry. The introduction of hybrid electrospray quadrupole/time-of-flight MS allows sensitive and specific analysis of porphyrin free acids by LC–MS. To exploit this capability a mobile phase that is sufficiently volatile and is able to separate the whole range of porphyrins, including the complex type-isomers, is highly desirable. This rules out reversed-phase ion pair chromatography and the use of phosphate buffer. Simple acidic eluent such as 0.1% trifluoroacetic acid–acetonitrile mixtures can be used for the separation of porphyrins. However, resolution of the type-isomers of uro- and hepta-carboxyl porphyrins was not achieved although type-isomers of porphyrins with 6, 5, and 4 carboxyl groups were well separated. To date, mobile phases containing Ammonium acetate(Amonyum asetat) buffer provide excellent resolution and column efficiency as well as being fully compatible with LC–MS operation. This buffer has been studied for the separation of porphyrins in detail and the following conclusions have been drawn: The molar concentration of Ammonium acetate(Amonyum asetat) buffer in the mobile phase significantly affected the retention and resolution. The optimum buffer concentration is 1 M. Below 0.5 M, excessive retention and peak broadening results, particularly in isocratic elution. At above 1.5 M, rapid elution with the consequent loss of resolution was observed. The retention and resolution of the porphyrins are greatly influenced by the pH of the Ammonium acetate(Amonyum asetat) buffer. Increasing the pH decreased the retention with loss of resolution. The optimum pH range is between 5.1 and 5.2, although this is column dependent. This pH range is, however, suitable for most reversed-phase columns. In earlier studies it was shown that the isocratic elution of uroporphyrin I and III from reversed-phase columns was organic modifier specific and, with methanol as the organic modifier and 1 M Ammonium acetate(Amonyum asetat) (pH 5.16) as the aqueous buffer, excessive retention and peak broadening was observed. The methanol adsorbed on the hydrocarbonaceous stationary phase surface is able to form extensive hydrogen bonds with the eight carboxyl groups of uroporphyrin, thus resulting in long retention and peak broadening. This effect is less significant in the separation of porphyrins with fewer carboxyl groups. Nevertheless it is best to avoid using methanol as the sole organic modifier in porphyrin separations, especially when uroporphyrin is one of the components to be separated. Replacing methanol with acetonitrile results in excellent resolution of uroporphyrin isomers within convenient retention times. Acetonitrile, however, is immiscible with 1 M Ammonium acetate(Amonyum asetat) when its proportion is above 35% in the mobile phase. While acetonitrile–1 M Ammonium acetate(Amonyum asetat) buffer mobile phase systems are excellent for the separation of porphyrins that can be eluted at up to 30% acetonitrile content (8-, 7-, 6-, 5- and 4-carboxyl porphyrins), they are not suitable for the separation of porphyrins that required a higher proportion of acetonitrile for elution, such as the dicarboxyl mesoporphyrin and protoporphyrin. In order to achieve simultaneous separation of all the porphyrins, therefore, a mixture of acetonitrile and methanol as the organic modifier is required. 1 M Ammonium acetate(Amonyum asetat) buffer is completely miscible with methanol. A mixture consisting of 9–10% (v/v) acetonitrile in methanol as the organic modifier thus overcomes the hydrogen bonding effect caused by methanol and the solubility problem of 1 M Ammonium acetate(Amonyum asetat) in acetonitrile. In practice, gradient elution is carried out by inclusion of 10% (v/v) acetonitrile in each of the gradient solvents, i.e. 1 M Ammonium acetate(Amonyum asetat) (pH 5.16) and methanol. Ammonium acetate(Amonyum asetat) solution, 5M is an important reagent for studying molecular biology, biological buffers, reagents and DNA and RNA purification. It is a popular buffer for mobile phases for HPLC with ESLD detection, for ESI mass spectrometry of proteins and other molecules, and has been used to replace cell buffers with non-volitile salts. Ammonium acetate(Amonyum asetat) is also used in protein studies and protein preparation. It can be used in the protein purification steps of dialysis to remove contaminants through diffusion and, when combined with distilled water, as a protein precipitating agent. In organic chemistry, Ammonium acetate(Amonyum asetat) solution is useful as a catalyst in the Knoevenagel condensation and as a source of ammonia in the Borch reaction. Additionally, it is occasionally used commercially as a biodegradable de-icing agent and as an additive in food as an acidity regulator. How long does 10M Ammonium acetate(Amonyum asetat) take to dissolve in water? I need to make 10M Ammonium acetate(Amonyum asetat) for DNA extraction. I calculated the amount required for 70 ml solution and started dissolving it using a magnetic stirrer. It has been four hours, but the solute hasn't dissolved yet. Is this normal? How long does it usually take to make 10M Ammonium acetate(Amonyum asetat) solution? The Ammonium acetate(Amonyum asetat) I used to make solution was not powder per se, it was more like crystals. I cannot add more water to the solution. Is heating an option? I am trying to make acetonitrile solution containing 10mM Ammonium acetate(Amonyum asetat), but I've noticed that Ammonium acetate(Amonyum asetat) would immediately crash out once 10ml of 1M stock was added into 1L acetonitril. This solution will be used as a mobile phase in LC-MS-MS for gradient elution, so ideally acetonitrile concentration should be kept at no less than 98%. Does anyone have experience making up this solution? I want to prepare 7.5 M Ammonium acetate(Amonyum asetat) solution. The recipe stated that I need to dissolved 57.81 g Ammonium acetate(Amonyum asetat) in water to final volume of 100 ml, then sterilize by filtration (0.2 micro meter filter). The final pH will be 5.5. I don't understand and don't know how to sterilize by filtration? I hope someone can explain and show how to prepare this solution. Thank you Our 5M Ammonium acetate(Amonyum asetat) solution is prepared in molecular biology grade/ultrapure water, filter sterilized with 0.22 µm filter and DNase/RNase/Protease Free. Ammonium acetate(Amonyum asetat) solution is an important reagent used in molecular biology research- DNA and RNA purification, biological buffers, chemical analysis, in pharmaceuticals, and in preserving foods. It is commonly used for routine precipitation of nucleic acids, and is useful for reducing the co-precipitation of unwanted dNTPs and contaminating oligosaccharides in the sample. Note: 1) Ammonium acetate(Amonyum asetat) should not be used when phosphorylating the nucleic acid using T4 polynucleotide kinase, because this enzyme is inhibited by Ammonium acetate(Amonyum asetat) ions. 2) Do not autoclave Ammonium acetate(Amonyum asetat) Acetate Buffer. If precipitates form, warm solution to 37°C to re-suspend. Ammonium acetate(Amonyum asetat) is also used in protein studies and protein preparation. It can be used in the protein purification steps of dialysis to remove contaminants through diffusion and, when combined with distilled water, as a protein precipitating agent. It is a popular buffer for mobile phases for HPLC with ESLD detection, for ESI mass spectrometry of proteins and other molecules, and has been used to replace cell buffers with non-volatile salts. Ammonium acetate(Amonyum asetat) solution is used commercially as a biodegradable de-icing agent and as an additive in food. Additionally, it is useful in organic chemistry as a catalyst in the Knoevenagel condensation and as a source of ammonia in the Borch reaction. The chemical details of Ammonium acetate(Amonyum asetat) are below: CAS Number: 631-61-8; Synonyms: Azanium Acetate; Acetic acid Ammonium acetate(Amonyum asetat) salt; Acetic acid, Ammonium acetate(Amonyum asetat) salt; Ammonium acetate(Amonyum asetat) ethanoate Molecular Formula: C2H7NO2 Molecular Weight: 77.083 g/mol InChI Key: USFZMSVCRYTOJT-UHFFFAOYSA-N Product Description Ammonium acetate(Amonyum asetat) Application Notes Ammonium acetate(Amonyum asetat) Ultra pure is for applications which require tight control of elemental content. Ammonium acetate(Amonyum asetat) is a widely used reagent in molecular biology and chromatography. Its applications include the purification and precipitation of DNA and protein crystallization. Ammonium acetate(Amonyum asetat) is commonly used in HPLC and MS analysis of various compounds, such as oligosaccharides, proteins, and peptides. Ammonium acetate(Amonyum asetat) is also used for the nonaqueous capillary electrophoresis-mass spectrometry (NACE-MS) of lipophilic peptides and therapeutic drugs. Usage Statement Unless specified otherwise, MP Biomedical's products are for research or further manufacturing use only, not for direct human use. For more information, please contact our customer service department. Applications Ammonium acetate(Amonyum asetat) is widely utilized as a catalyst in the Knoevenagel condensation. It is the primary source of ammonia in the Borch reaction in organic synthesis. It is used with distilled water to make a protein precipitating reagent. It acts as a buffer for electrospray ionization (ESI) mass spectrometry of proteins and other molecules and as mobile phases for high performance liquid chromatography (HPLC). Sometimes, it is used as a biodegradable de-icing agent and an acidity regulator in food additives. Notes Hygroscopic. Incompatible with strong oxidizing agents and strong acids. Ammonium acetate(Amonyum asetat) Ammonium acetate(Amonyum asetat) is an inorganic chemical compound. Its IUPAC name is Ammonium acetate(Amonyum asetat) ethanoate. When in aqueous solution, the substance is often called spirit of Mindererus. Ammonium acetate(Amonyum asetat) CAS number is 631-61-8, its chemical formula can be written in two ways: C2H7NO2 and NH4CH3CO2. The compound itself is a white solid with orthorhombic crystal structure and highly hygroscopic. It dissolves easily in cold water and decomposes in hot. Besides, Ammonium acetate(Amonyum asetat) is soluble in alcohol, acetone, sulfur dioxide, and liquid ammonia. Here are some more characteristics of the substance: density: 1.17 g/cm3; molar mass: 77.08 g·mol−1; melting point: 113 °C; flash point: 136 °C. The chemical is considered hazardous, as it irritates human tissues. Production and Uses There are two methods of Ammonium acetate(Amonyum asetat) production. According to the first one, acetic acid is neutralized with Ammonium acetate(Amonyum asetat) carbonate. The second includes saturation of glacial acetic acid with ammonia. Ammonium acetate(Amonyum asetat) uses are not very diverse. It usually serves as basic catalyst for Henry reactions. The substance is also used to create a buffer solution, since it is the salt of a weak acid. It is an important reagent in different chemical reactions. In food industry, the compound is applied to control the acidity and alkalinity of foods. You do not need now to spend your precious time on searching consumables for your lab as you can buy Ammonium acetate(Amonyum asetat) and many other chemicals at compatible price on our website Brumer.com. We care about our customers and offer you only certified high-quality products for your laboratory needs. Ammonium acetate(Amonyum asetat) Formula Ammonium acetate(Amonyum asetat) Ammonium acetate(Amonyum asetat) Formula- It is a salt that has interesting chemical properties and due to this reason, the pharmaceutical industry uses it as an intermediary and raw material in various processes. NH4OAc (Ammonium acetate(Amonyum asetat)) is a salt that forms from the reaction of ammonia and acetic acid. Also, it is useful for applications that require buffer solutions. The Henry reactions are the most common reactions that use Ammonium acetate(Amonyum asetat). In an aqueous solution, it is a chemical compound that we know by the name spirit of Mindererus or Ammonium acetate(Amonyum asetat), which is a white, hygroscopic solid we can derive from the reaction of ammonia and acetic acid. Ammonium acetate(Amonyum asetat) Formula and Structure Its chemical formula is NH4CH2CO2 or CH2COONH4. The molecular formula of Ammonium acetate(Amonyum asetat) is C2H7NO2and its molar mass is 77.08 g/mol-1. Also, it is a slat of acetate ion COO-1(from acetic acid dissociation in water) and Ammonium acetate(Amonyum asetat) ion NH4+(from ammonia dissociation in water). Ammonium acetate(Amonyum asetat) is volatile at low pressure because it has been used to replace cell buffers with non-volatile salts that help in the preparation of chemical samples. Its common representation of organic molecule’s chemical structure can be written as below: Ammonium acetate(Amonyum asetat) formula Ammonium acetate(Amonyum asetat) Occurrence In nature, Ammonium acetate(Amonyum asetat) is not present in a free compound state. But, Ammonium acetate(Amonyum asetat) and acetate ions are present in many biochemical processes. Ammonium acetate(Amonyum asetat) Preparation Just like other acetates, we can also synthesize Ammonium acetate(Amonyum asetat) in a similar way to other acetates that is through neutralization of acetic acid. Furthermore, this synthesis uses acetic acid that we neutralize by adding Ammonium acetate(Amonyum asetat) carbonate. Besides, in the chemical industries, this method uses glacial acetic acid that is saturated with ammonia: 2CH3COOH + (NH4)2CO3→ 2CH3COONH4+ H2CO3 H2CO3→ CO2+ H2O CH3COOH + NH3→ CH3COONH4 Ammonium acetate(Amonyum asetat) Physical Properties It is a hygroscopic white solid with a slightly acidic odor. Furthermore, its melting point is 113oC. Also, it is highly soluble in water and its density in this liquid is 1.17 g/mL-1. Ammonium acetate(Amonyum asetat) Chemical Properties It is a slat of a weak acid (acetic acid) and a weak base (ammonia). We use this salt with acetic acid to prepare a buffer solution to regulate its pH. Nevertheless, its use as a buffering agent is not very extensive because Ammonium acetate(Amonyum asetat) can be volatile in low pressures. Ammonium acetate(Amonyum asetat) Uses We use it as a raw material in the synthesis of pesticides, herbicides, and non-steroidal anti-inflammatory drugs. Moreover, it is the precursor in the acetamide synthesis (a chemical compound that we use to produce plasticizers): CH3COONH4→ CH3C(O)NH2+ H2O In industries, they use it to acidify textiles and hair and some countries use it as a food acidity regulator. With acetic acid, it is a buffering agent. In organic chemistry, Ammonium acetate(Amonyum asetat) found its use as a catalyst, in reactions such as Knoevenagel condensations. We can use it as a fertilizer and in the synthesis of explosives. It is volatile at low pressure and because of this, industries and scientists have used it to replace cell buffers with non-volatile salts in preparing samples for mass spectrometry. Besides, it is popular as a buffer for mobile phases for HPLC and ELSD detection for this reason. Moreover, other salts that they have used for this include Ammonium acetate(Amonyum asetat) formate. Ammonium acetate(Amonyum asetat) Health and Safety Hazards Majorly, Ammonium acetate(Amonyum asetat) causes irritation in the mouth, eyes, skin, and nose. Furthermore, it is highly dangerous by ingestion and can cause tissue necrosis. It can also destroy the cell membranes, penetrate in organisms, and saponify the skin. When heated it produces toxic fumes that can damage the lungs. In a few seconds, it can decompose sodium hypochlorite. Solved Examples on Ammonium acetate(Amonyum asetat) Formula Question: Show how Ammonium acetate(Amonyum asetat) is a precursor of acetamide? Solution: The reaction is as below: NH4CH3CO2 → CH3C(O)NH2 + H2O 11.4.3 Reagents and Materials Acetonitrile, methanol: HPLC grade; n-Hexane; Ammonium acetate(Amonyum asetat) hydroxide; Formic acid; Ammonium acetate(Amonyum asetat); Anhydrous sodium sulfate: Calcine at 650°C for 4 h and store in a desiccator; Ammonium acetate(Amonyum asetat) hydroxide-methanol mixed solvent: 25 + 75,v/v; Formic acid solution: 0.1%; Ammonium acetate(Amonyum asetat) buffer solution: 10 mmol/L; Strong cation exchange (SCX) SPE cartridge: 500 mg/3 mL; the extraction cartridge is conditioned using 3 mL methanol, 3 mL water, 3 mL 10 mmol/L ammonia acetate before use. Prevent the columns from running dry. Ammonium acetate(Amonyum asetat) Acetonitrile: HPLC grade. Chlorhydric acid Tris hydroxymethylaminomethane (tris): C4H11NO3 Calcium chloride: CaCl2·2H2O. Methanol water solution (2 + 3): Mix 400 mL methanol and 600 mL water. 0.01 mol/L Ammonium acetate(Amonyum asetat) solution: Dissolve 0.77 g Ammonium acetate(Amonyum asetat) into a 1000-mL volumetric flask, bring to volume with water and mix. Constant volume solution: Mix 0.01 mol/L Ammonium acetate(Amonyum asetat) solution and Acetonitrile in volume proportion of 17:3. Ammonium acetate(Amonyum asetat): Analytically Pure Methanol: HPLC Grade Toluene: HPLC Grade Acetone: HPLC Grade Sodium Acetate: Anhydrous, Analytically Pure Membrane Filters (Nylon): 13 mm × 0.2 μm, 13 mm × 0.45 μm Sodium Sulfate, Magnesium Sulfate: Anhydrous, Analytically Pure. Ignited at 650°C for 4 h and Kept in a Desiccator 0.1% Formic Acid (V/V) 5 mmol/L Ammonium acetate(Amonyum asetat) Solution Ammonium acetate(Amonyum asetat), sulphate or phosphate which liberates respective acid beyond 80°C to develop required pH. Dye anions possess higher affinity for fibre even at neutral pH requiring a minimum of acid. These are commonly known as ‘super milling dyes’ due to their high fastness to milling. Dyeing is started at 60°C with Ammonium acetate(Amonyum asetat) Ammonium acetate(Amonyum asetat) is a widely used reagent in molecular biology and chromatography. Suitable applications include the purification and precipitation of DNA and protein crystallization. Ammonium acetate(Amonyum asetat) is commonly used in HPLC and MS analysis of various compounds, such as oligosaccharides, proteins, and peptides. Based on the experimental results obtained with the analogue Fumaric Acid (4h-LD 50 for New Zealand rabbits > 20000 mg/kg bw) and the molecular weights, the read-across approach is applied and the LD 50 for substance Ammonium acetate(Amonyum asetat) is calculated to be greater than 26556.42 mg/kg bw under test conditions. The analogue Fumaric Acid, which shares the same functional group with Ammonium acetate(Amonyum asetat), also has comparable values for the relevant molecular properties. These properties are: - a low log Pow value which is 0.25 for Fumaric Acid and - 2.79 for Ammonium acetate(Amonyum asetat), - water solubility which is 0.0063 g/mL at 25 ºC for Fumaric Acid and 1480 g/L at 4 ºC for Ammonium acetate(Amonyum asetat), and - molecular weights which are 116.07 for Fumaric Acid and 77.08 for Ammonium acetate(Amonyum asetat). Any other information on results incl. tables The analogue Fumaric Acid which shares the same functional group with Ammonium acetate(Amonyum asetat), also has comparable values for the relevant molecular properties. These properties are: - a low log Pow value which is 0.25 for Fumaric Acid and -2.79 for Ammonium acetate(Amonyum asetat), - similar molecular weights which are 116.07 for Fumaric Acid and 77.08 for Ammonium acetate(Amonyum asetat). Both chemicals are grouped together by US EPA category group Carboxylic Food Acids and Salts Category. As indicated in the European Chemical Agency Practical Guide 6 “How to report read –across and categories”, the structural grouping was realized using “OECD QSAR APPLICATION TOOL BOX” version 1.1.0.Presented results show that both substances have common (eco)toxicological behavior (attachment). Ammonium acetate(Amonyum asetat) ENVIRONMENTAL FATE and PATHWAY Aerobic Biodegradation Experimental results: Readily biodegradable Experimental results on Ammonium acetate(Amonyum asetat), read-across from experimental data on Sodium Acetate and read-across from estimated data on Ammonia and Acetic Acid, based on functional group: Experimental data and read-across from Potassium Acetate, based on molecular weights: Acute Toxicity to Aquatic Invertebrates Experimental data: Read-across from experimental data on analogues Sodium Acetate, Potassium Acetate and Ammonia, based on molecular weights: Read-across from experimental data on analogues Acetic Acid, Potassium Acetate and Ammonium acetate(Amonyum asetat) Sulphate, based on molecular weights: Acute Toxicity: Oral Experimental data: Weight of evidence: Read-across from experimental data on Potassium Acetate and Ammonium acetate(Amonyum asetat) Sulphate, based on molecular weights: Weight of evidence: Read-across from experimental data on Fumaric Acid and Ammonium acetate(Amonyum asetat) Sulphate, based on molecular weights: Weight of evidence: Read-across approach from experimental data on analogues Potassium Acetate and Ammonium acetate(Amonyum asetat) Lactate, and Ammonium acetate(Amonyum asetat) Stearate based on functional group: The substance Ammonium acetate(Amonyum asetat) is considered as not irritating for skin. Eye Irritation/Corrosion Experimental data: Fumaric Acid has been tested by application of a drop of 10% solution to the eyes of rabbits after mechanical removal of corneal epithelium to facilitate penetration, but it appeared to do no damage, & healing was similar to that in control eyes without test chemical. Weight of evidence: Read-across approach from experimental data on analogues Potassium Acetate, Ammonium acetate(Amonyum asetat) Sulphate, and Ammonium acetate(Amonyum asetat) Stearate, based on functional group: The substance Ammonium acetate(Amonyum asetat) is considered as not irritating for eyes. Weight of evidence: Read-across approach from experimental results on Citric Acid, Glycolic Acid, Sodium Glycolate, Lactic Acid, Ammonium acetate(Amonyum asetat) Lactate, and Triacetin, based on functional group: All this substances were not sensitising for human and guinea pigs. Based on these results, Ammonium acetate(Amonyum asetat) is considered to be not sensitizing. Repeated Dose Toxicity Repeated dose toxicity: oral: Experimental data: Repeated dose toxicity: oral: 2-year study in male and female rats which were treated by diet. The LOAEL = 750 mg/kg bw/day (based on slight increases in mortality and increased incidence of testes degeneration at the highest dose tested). The NOAEL = 600 mg/kg bw/day. Repeated dose toxicity: oral: Weight of evidence: Experimental results: Repeated dose toxicity: oral: 90 days withfemale Wistar rats. The NOAEL was 3150.4 mg/kg bw/day . Repeated dose toxicity: oral: 15 days study with female Wistar rats. The NOAEL 3102.2 mg/kg bw/day . Read-across from the analogue Sodium Acetate, based on molecular weights: In a bacterial reverse mutation assay usingS. typhimurium(TA98, TA100, TA1535, TA97 and TA1537) in the absence of metabolic activation and concentrations up to 1000μg/plate, fumaric acid was not mutagenic. Weight of evidence: Read-across from Sodium Acetate (category analogue) based on functional group: Reverse mutation assay using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 with metabolic activation. Resultslead to the conclusion that Ammonium acetate(Amonyum asetat) did not cause point mutations in the microbial systems. Read-across from Acetic Acid, based on functional group: Ammonium acetate(Amonyum asetat) is considered to be not mutagenic on S.typhimurium TA 98, TA 100, TA 1535, TA 97, and/or TA 1537, with and without metabolic activation. Read-across from experimental data on Ammonia, anhydrous, based on functional group: Ammonium acetate(Amonyum asetat) is considered to be not mutagenic on Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1537, and TA 1538, and Escherichia coli WP2uvrA, with and without metabolic activation. Read-across from experimental data on Ammonia, aqueous solution, based on functional group: Ammonium acetate(Amonyum asetat) is considered not mutagenic on E. coli Sd-4-73, without metabolic activation. Weight of evidence: Read-across from the analogue Acetic anhydride, based on functional group: Ammonium acetate(Amonyum asetat) is considered to be not mutagenic on mouse lymphoma L5178Y cells, with and without metabolic activation. Read-across from the analogue Phenoxy acetic acid, based on functional group: Ammonium acetate(Amonyum asetat) is considered to be not mutagenic on Chinese hamster ovary cells, with and without metabolic activation. Estimated data from Danish (Q)SAR Database: Ammonium acetate(Amonyum asetat) was not mutagenic in mammalian cell gene mutation assays on mouse lymphoma L5178Y cells nor on Chinese hamster ovary cells. Chromosomal aberration Fumaric acid was assayed in anin vitroassay using Chinese hamster fibroblast cells in the absence of metabolic activation at doses up to 1 mg/mL; however, insufficient information was provided in the robust summary to adequately evaluate this study. Weight of evidence: Read-across from Sodium Acetate (category analogue) based on functional group: In an in vitro chromosomal aberration assay with a Chinese hamster fibroblast cell line, CHL, without metabolic activation systems, it is concluded that Ammonium acetate(Amonyum asetat) did not induce chromosomal aberrations(including gaps). Read-across from Acetic Acid, based on functional group: Ammonium acetate(Amonyum asetat) is considered as not clastogenic on Chinese hamster Ovary (CHO) cells, without metabolic activation. Read-across from Ammonium acetate(Amonyum asetat) Sulfate, based on functional group: Ammonium acetate(Amonyum asetat) is not considered mutagenic on Chinese Hamster Ovary cells, in the absence of a metabolic activation system. Key studies: Read-across from Sodium Acetate (category analogue) based on functional group: The Testicular DNA-synthesis inhibition test (DSI test) on male mice provides evidence that Ammonium acetate(Amonyum asetat) is not genotoxic in animals (basis of the method: measuring 3H-thymidine incorporation). Test substance did not inhibit DNA replication in this assay. TOXICITY TO REPRODUCTION: Weight of evidence: Read-across from the analogue Citric Acid, based on molecular weights: A study on rats and mice daily treated by feed before, during, and after mating. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be equal or greater than 3009.37 mg/kg bw/day (basis for effect: number of pregnancies, number of young born, or survival of young). A fertility test on female rats daily treated by feed for several months. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be 722.25 mg/kg bw/day, and LOAEL greater than 722.25 mg/kg bw/day for reproductive effects. Read-across from the analogue Citric Acid, sodium salt, based on molecular weights: A fertility study on female rats daily treated by feed for several months. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be 54.0 mg/kg bw/day, and LOAEL greater than 54.0 mg/kg bw/day for reproductive effects. Read-across from the analogue Ammonium acetate(Amonyum asetat) sulfate, based on molecular weights: A study on male and female rats exposed for 13 weeks to diets with Ammonium acetate(Amonyum asetat) Sulfate. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be 1033.64 mg/kg bw/day for males, and 2304.12 mg/kg bw/day for females. DEVELOPMENTAL TOXICITY / TERATOGENICITY: Weight of evidence: Experimental results: A study on female rats fed an Ammonium acetate(Amonyum asetat) -containing diet starting on day 1 of pregnancy until weaning (at posnatal day on 21). After weaning, pups were either fed a normal diet, with no Ammonium acetate(Amonyum asetat) added, or continued on Ammonium acetate(Amonyum asetat) until sacrifice. The NOAEL for developmental toxicity was 4293 mg/kg bw/day . Read-across from the analogue Sodium Acetate, based on molecular weights: Pregnant CD-1 mice were treated by oral gavage with Sodium Acetate on days 8-12 of gestation. For Ammonium acetate(Amonyum asetat), theNOAEL is calculated to be939.66 mg/kg bw/day (based on maternal toxicity: mortality, pregnancy and resorption; and on neonatal effects: mortality and body weight). Read-across from the analogue Citric Acid, based on molecular weights: A study on rats and mice daily treated by feed before, during, and after mating. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be equal or greater than 3009.37 mg/kg bw/day (basis for effect: number of pregnancies, number of young born, or survival of young). Read-across from the analogue substance Calcium Formate, based on molecular weights: A three-generation drinking water study was performed. For Ammonium acetate(Amonyum asetat), the NOAEL is calculated to be equal or higher than 236.96 mg/kg bw/day. Read-across from Acetic Acid, based on molecular weights: A one-generation study was performed on female mice, rats and rabbits with Acetic Acid. The read-across approach was applied and the NOAEL with the substance Ammonium acetate(Amonyum asetat) acetate is calculated to be equal or greater than 2055.47 mg/kg bw/day for maternal and developmental toxicity in mice, rats, and rabbits. Applicant's summary and conclusion Interpretation of results: not classified Remarks: Migrated information Criteria used for interpretation of results: EU Conclusions: The (4h) LD 50 for substance Ammonium acetate(Amonyum asetat) is calculated to be gr
AMMONIUM BIFLUORIDE
Ammonium Bifluoride (Amonyum Biflorür) IUPAC Name azanium;fluoride;hydrofluoride Ammonium Bifluoride (Amonyum Biflorür) InChI InChI=1S/2FH.H3N/h2*1H;1H3 Ammonium Bifluoride (Amonyum Biflorür) InChI Key KVBCYCWRDBDGBG-UHFFFAOYSA-N Ammonium Bifluoride (Amonyum Biflorür) Canonical SMILES [NH4+].F.[F-] Ammonium Bifluoride (Amonyum Biflorür) Molecular Formula F2H5N Ammonium Bifluoride (Amonyum Biflorür) CAS 1341-49-7 Ammonium Bifluoride (Amonyum Biflorür) Related CAS 12125-01-8 (Parent) Ammonium Bifluoride (Amonyum Biflorür) Deprecated CAS 120144-37-8, 127026-25-9 Ammonium Bifluoride (Amonyum Biflorür) European Community (EC) Number 215-676-4 Ammonium Bifluoride (Amonyum Biflorür) UN Number 1727 Ammonium Bifluoride (Amonyum Biflorür) UNII C2M215358O Ammonium Bifluoride (Amonyum Biflorür) DSSTox Substance ID DTXSID9029645 Ammonium Bifluoride (Amonyum Biflorür) Physical Description DryPowder; OtherSolid; OtherSolid, Liquid; PelletsLargeCrystals Ammonium Bifluoride (Amonyum Biflorür) Color/Form Rhombic or tetragonal crystals Ammonium Bifluoride (Amonyum Biflorür) Odor Odorless Ammonium Bifluoride (Amonyum Biflorür) Boiling Point 240 °C Ammonium Bifluoride (Amonyum Biflorür) Melting Point 125.6 °C Ammonium Bifluoride (Amonyum Biflorür) Solubility Solubility in 90% ethanol = 1.73X10+5 mg/L Ammonium Bifluoride (Amonyum Biflorür) Density 1.50 g/cu cm Ammonium Bifluoride (Amonyum Biflorür) Corrosivity Will etch glass Ammonium Bifluoride (Amonyum Biflorür) Heat of Vaporization 65.3 kJ/mol Ammonium Bifluoride (Amonyum Biflorür) pH 3.5 (5% solution) Ammonium Bifluoride (Amonyum Biflorür) Refractive Index Index of refraction = 1.390 Ammonium Bifluoride (Amonyum Biflorür) Molecular Weight 57.044 g/mol Ammonium Bifluoride (Amonyum Biflorür) Hydrogen Bond Donor Count 2 Ammonium Bifluoride (Amonyum Biflorür) Hydrogen Bond Acceptor Count 2 Ammonium Bifluoride (Amonyum Biflorür) Rotatable Bond Count 0 Ammonium Bifluoride (Amonyum Biflorür) Exact Mass 57.039005 g/mol Ammonium Bifluoride (Amonyum Biflorür) Monoisotopic Mass 57.039005 g/mol Ammonium Bifluoride (Amonyum Biflorür) Topological Polar Surface Area 1 Ų Ammonium Bifluoride (Amonyum Biflorür) Heavy Atom Count 3 Ammonium Bifluoride (Amonyum Biflorür) Formal Charge 0 Ammonium Bifluoride (Amonyum Biflorür) Complexity 0 Ammonium Bifluoride (Amonyum Biflorür) Isotope Atom Count 0 Ammonium Bifluoride (Amonyum Biflorür) Defined Atom Stereocenter Count 0 Ammonium Bifluoride (Amonyum Biflorür) Undefined Atom Stereocenter Count 0 Ammonium Bifluoride (Amonyum Biflorür) Defined Bond Stereocenter Count 0 Ammonium Bifluoride (Amonyum Biflorür) Undefined Bond Stereocenter Count 0 Ammonium Bifluoride (Amonyum Biflorür) Covalently-Bonded Unit Count 3 Ammonium Bifluoride (Amonyum Biflorür) Compound Is Canonicalized Yes Ammonium Bifluoride (Amonyum Biflorür) is the inorganic compound with the formula NH4HF2 or NH4F·HF. It is produced from ammonia and hydrogen fluoride. This colourless salt is a glass-etchant and an intermediate in a once-contemplated route to hydrofluoric acid.Ammonium Bifluoride (Amonyum Biflorür), as its name indicates, contains an ammonium cation (NH4+) and a bifluoride, or hydrogen(difluoride), anion (HF2−). The centrosymmetric triatomic bifluoride anion features the strongest known hydrogen bond, with a F−H length of 114 pm. and a bond energy greater than 155 kJ mol−1.Ammonium Bifluoride (Amonyum Biflorür) is also used as an additive in tin-nickel plating processes as the fluoride ion acts as a complexing agent with the tin, allowing for greater control over the resulting composition and finish.Ammonium Bifluoride (Amonyum Biflorür) is toxic to consume and a skin corrosion agent. Upon exposure to skin, rinsing with water followed by a treatment of calcium gluconate is required. Poison control should be contacted.Anhydrous Ammonium Bifluoride (Amonyum Biflorür) containing 0.1 5 H2O and 93% NH4HF2 can be made by dehydrating ammonia fluoride solutions and by thermally decomposing the dry crystals. Commercial Ammonium Bifluoride (Amonyum Biflorür), which usually contains 1% NH4F, is made by gas phase reactions of one mole of anhydrous ammonia with two moles of anhydrous hydrogen fluoride; the melt that forms is flaked on a cooled drum.Ammonium Bifluoride (Amonyum Biflorür) soln should be thoroughly washed from the skin with mildly alkaline soap as soon as possible.Ammonium Bifluoride (Amonyum Biflorür) is an indirect food additive for use only as a component of adhesives.Ammonium hydrogen fluoride* (NH4HF2) is used for aluminium anodization, metal surface treatment, manufacture of wood preservatives, glass processing, building protection, mineral oil/ natural gas drilling, cleaning of industrial plants and in the electronic industry. Ammonium Bifluoride (Amonyum Biflorür) is used in the the following applications: Glass processing: for matt etching Metal surface treatment: as essential component of bright digo baths for etching and cleaning of non-ferrous metal pieces Mineral oil / natural gas drilling: as aid for drilling through silicate rocks Cleaning of industrial plants: as component in cleaning and disinfecting solutions, e.g. in power stations Building protection: as component in cleaning agents *Goods labelled as “dual use” are subject to special controls and export restrictions in most countries. Before exporting such goods the exporter must apply for an appropriate export licence from the competent authority. For deliveries within the EU, for example, the seller must include an appropriate note in the commercial papers in accordance with article 22, paragraph 10, of the dual use regulation.Ammonium Bifluoride (Amonyum Biflorür) is a reagent widely used in organic synthesis; however, the systematic collection and classification have not been covered until now.In this review, we aim to systematically summarize the application of Ammonium Bifluoride (Amonyum Biflorür) in organic synthesis.Ammonium Bifluoride (Amonyum Biflorür), Flake is an inorganic compound that is a colorless salt that is used as a glass etchtant. It is produced from ammonia and hydrogen fluoride.The aim of the study was to discuss clinical effects, treatment options and outcomes of pediatric Ammonium Bifluoride (Amonyum Biflorür) (ABF) poisoning.Dissolution of geological reference materials by fusion with Ammonium Bifluoride (Amonyum Biflorür), NH{sub 4}HF{sub 2} or ABF, was evaluated for its potential use in post-detonation nuclear forensics. The fluorinating agent Ammonium Bifluoride (Amonyum Biflorür) (ABF) is a potential field deployable substitute for HF.Ammonium Bifluoride (Amonyum Biflorür) (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components.The process involves the use of a hitherto unknown solid‐state chemical reaction between Ammonium Bifluoride (Amonyum Biflorür) and specific anhydrous and hydrated metal fluoride salts.It was observed that these complexes decompose with the evolution of HF above temperatures at which Ammonium Bifluoride (Amonyum Biflorür) decomposes and where its supply may be exhausted.Ammonium Bifluoride (Amonyum Biflorür) (ABF) is one of the most common, and dangerous, wheel cleaners used in automatic carwashes today.Hydrogen fluoride and Ammonium Bifluoride (Amonyum Biflorür). Ammonium Bifluoride (Amonyum Biflorür) are created for industrial use only.Ammonium Bifluoride (Amonyum Biflorür) solution is the white crystalline solid dissolved in water. It is corrosive to metals and tissue. It is used in ceramics.Ammonium Bifluoride (Amonyum Biflorür) is a white, solid that consists of crystals or flakes with a pungent odor. Ammonium Bifluoride (Amonyum Biflorür) can cause severe necrosis to tissue, with symptoms such as redness, itching, burns and scarring. Ammonium Bifluoride (Amonyum Biflorür) can cause a unique, large, pustular skin rash, which is apparently not an irritant or allergic dermatitis.Ammonium Bifluoride (Amonyum Biflorür) may be systematically absorbed in lethal amounts through intact skin. Effects may be delayed and not felt for hours.All contact with Ammonium Bifluoride (Amonyum Biflorür) must be avoided during clean-up.Ammonium Bifluoride (Amonyum Biflorür) is a respiratory tract irritant, and inhalation may cause nose irritation,sore throat, coughing, and chest tightness and possibly, ulceration and perforation of the nasal septum.Ammonium Bifluoride (Amonyum Biflorür) can be absorbed through intact skin in lethal amounts.Ammonium Bifluoride (Amonyum Biflorür) and hydrofluoric acid are potent toxins with severe local and systemic toxicity due to high permeability coefficient and binding of divalent cations with disruption of the Na-K-ATPase pump.The first SDS stated the product was a proprietary formula with Ammonium Bifluoride (Amonyum Biflorür)s and 1-2% hydrofluoric acid. A more specific SDS was located and which showed 21-27% Ammonium Bifluoride (Amonyum Biflorür) and a small amount of barium sulfate in the product. This corresponds to 17-23 g of Ammonium Bifluoride (Amonyum Biflorür) in a 3 ounce ingestion.Results are given for elevated temperature tests of the effects of Ammonium Bifluoride (Amonyum Biflorür) on corrosion rates of 5 and 10% solutions of inhibited citric, sulfamic, hydrochloric, and phosphoric acid scale solvents. Mild steel coupons were evaluated for weight loss after 12 hr exposures. The rate of attack for citric and sulfamic acid systems on steel decreased as concentration of Ammonium Bifluoride (Amonyum Biflorür) increased. The attack rate of HCL increased at lower Ammonium Bifluoride (Amonyum Biflorür) concentrations, but at higher concentrations tended to stabilize at a rate equivalent to that from 5% acid without Ammonium Bifluoride (Amonyum Biflorür). The rate of 5% phosphoric acid attack decreased with increased concentration of Ammonium Bifluoride (Amonyum Biflorür), but in 10% phosphoric acid, the rate increased with increased concentration of Ammonium Bifluoride (Amonyum Biflorür). It is hypothesized that in citric and sulfamic acids the ammonium ion is inhibitive, but that in the more aggressive hydrochloric and phosphoric acids, the corrosion rates do not hold a relationship with Ammonium Bifluoride (Amonyum Biflorür) concentrations.Ammonium hydrogen fluoride is the inorganic compound with the formula NH4HF2 or NH4F·HF. It is produced from ammonia and hydrogen fluoride. This colourless salt is a glass-etchant and an intermediate in a once-contemplated route to hydrofluoric acid.Ammonium bifluoride, as its name indicates, contains an ammonium cation (NH4+) and a bifluoride, or hydrogen(difluoride), anion (HF2−). The centrosymmetric triatomic bifluoride anion features the strongest known hydrogen bond, with a F−H length of 114 pm. and a bond energy greater than 155 kJ mol−1.In solid [NH4][HF2], each ammonium cation is surrounded by four fluoride centers in a tetrahedron, with hydrogen-fluorine hydrogen bonds present between the hydrogen atoms of the ammonium ion and the fluorine atoms.[citation needed] Solutions contain tetrahedral [NH4]+ cations and linear [HF2]− anions.Ammonium bifluoride has been considered as an intermediate in the production of hydrofluoric acid from hexafluorosilicic acid. Thus, hexafluorosilicic acid is hydrolyzed to give ammonium fluoride, which thermally decomposes to give the bifluoride:H2SiF6 + 6 NH3 + 2 H2O → SiO2 + 6 NH4F 2 NH4F → NH3 + [NH4]HF2 The resulting ammonium bifluoride is converted to sodium bifluoride, which thermally decomposes to release HF.Ammonium bifluoride is also used as an additive in tin-nickel plating processes as the fluoride ion acts as a complexing agent with the tin, allowing for greater control over the resulting composition and finish.Ammonium bifluoride is toxic to consume and a skin corrosion agent. Upon exposure to skin, rinsing with water followed by a treatment of calcium gluconate is required.Ammonium hydrogen fluoride* (NH4HF2) is used for aluminium anodization, metal surface treatment, manufacture of wood preservatives, glass processing, building protection, mineral oil/ natural gas drilling, cleaning of industrial plants and in the electronic industry. Ammonium hydrogen fluoride is used in the the following applications: Glass processing: for matt etching Metal surface treatment: as essential component of bright digo baths for etching and cleaning of non-ferrous metal pieces Mineral oil / natural gas drilling: as aid for drilling through silicate rocks Cleaning of industrial plants: as component in cleaning and disinfecting solutions, e.g. in power stations Building protection: as component in cleaning agents *Goods labelled as “dual use” are subject to special controls and export restrictions in most countries. Before exporting such goods the exporter must apply for an appropriate export licence from the competent authority. For deliveries within the EU, for example, the seller must include an appropriate note in the commercial papers in accordance with article 22, paragraph 10, of the dual use regulation.Fluorides are absorbed from GI tract, lung, & skin. GI tract is major site of absorption. The relatively sol cmpd, such as sodium fluoride, are almost completely absorbed ... Fluoride has been detected in all organs & tissues examined ... There is no evidence that it is concentrated in any tissues except bone, thyroid, aorta, & perhaps kidney. Fluoride is preponderantly deposited in the skeleton & teeth, & the degree of skeletal storage is related to intake and age. ... A function of the turnover rate of skeletal components, with growing bone showing greater fluoride deposition than bone in mature animals. ... Major route of ... excretion is by way of kidneys ... also excreted in small amt by sweat glands, lactating breast, & GI tract. ... About 90% of fluoride ion filtered by glomerulus is reabsorbed by renal tubules.Following ingestion, soluble fluorides are rapidly absorbed from the gastrointestinal tract at least to the extent of 97%. Absorbed fluoride is distributed throughout the tissues of the body by the blood. Fluoride concentrations is soft tissues fall to pre-exposure levels within a few hours of exposure. Fluoride exchanges with hydroxyl radicals of hydroxyapatite (the inorganic constituent of bone) to form fluorohydroxyapatite. Fluoride that is not retained is excreted rapidly in urine. In adults under steady state intake conditions, the urinary concentration of fluoride tends to approximate the concentration of fluoride in the drinking water. This reflects the decreasing retention of fluoride (primarily in bone) with increasing age. Under certain conditions perspiraton may be an important route of fluoride excretion. The concentration of fluoride retained in bones and teeth is a function of both the concentration of fluoride intake and the duration of exposure. Periods of excessive fluoride exposure will result in increased retention in the bone. However, when the excessive exposure is eliminated, the bone fluoride concentration will decrease to a concentration that is again reflective of intake.Inhibition of one or more enzymes controlling cellular glycolysis (and perhaps resp) may result in a critical lesion. ... Binding or precipitation of calcium as calcium fluoride ... suggested as mechanism underlying many diverse signs and symptoms in fluoride poisoning, particularly if death is delayed. ... At least in some species fluoride interferes with both contractile power of heart and the mechanism of beat in a way that cannot be ascribed to hypocalcemia.The mechanism for acute lethality at high fluoride dose levels is not fully defined. It is believed that certain essential enzymatic reactions may be blocked and there may be interference with the origin and transmission of nerve impulses. The metabolic roles of calcium and physical damage to the kidney and the mucosa of the stomach and intestine are also believed to be associated with the acute lethality mechanism. Fluoride interacts with bones and teeth by replacing hydroxyl or bicarbonate ions in hydroxyapatite to form fluorohydroxyapatite. Fluoride may function as an essential key to bring about precipitation or nucleation of the apatite lattice in an oriented fashion on collagen fibers. Accretion of new mineral continues, and fluoride, brought to the surfaces of newly formed crystals by the extracellular fluid, replaces the hydroxyl ion. As crystal growth continues, fluoride is incorporated into inner layers of the crystals as well as on the surface. Remodeling of the bone structure takes place by an interplay of osteoclastic resorption of old bone and osteoblastic deposition of new bone. The presence of fluorohydroxyapatite increases the crystalline structure of the bone and reduces its solubility. Available evidence suggests that dental fluorosis results from toxic effects of fluoride on the epithelial enamel organ. Specifically, several investigators have shown that ameloblasts are susceptible to fluoride. Dental staining often accompanies fluorosis but does not itself determine the degree of fluorosis. The staining is believed to be due to the oxidation of organic material in defective enamel or the penetration of hypoplastic sections of enamel by food pigments.Manufacture of magnesium and magnesium alloys; in brightening of aluminum; for purifying and cleansing various parts of beer-dispensing apparatus, tubes, etc., sterilizing dairy and other food equipment; in glass and porcelain industries; as mordant for aluminum; as a "sour" in laundering cloth. In lab production of hydrogen fluoride.Anhydrous ammonium bifluoride containing 0.1 5 H2O and 93% NH4HF2 can be made by dehydrating ammonia fluoride solutions and by thermally decomposing the dry crystals. Commercial ammonium bifluoride, which usually contains 1% NH4F, is made by gas phase reactions of one mole of anhydrous ammonia with two moles of anhydrous hydrogen fluoride; the melt that forms is flaked on a cooled drum.Fluoride- Electrode Method. This method is suitable for fluoride concn from 0.1 to more than 10 mg/l. The fluoride electrode is a selective ion sensor. The key element in the fluoride electrode is the laser-type doped lanthanum fluoride crystal across which a potential is lished by fluoride soln of different concn. The crystal contacts the sample soln at one face and an internal reference soln at the other. The fluoride electrode measures the ion activity of fluoride in soln rather than concn. Fluoride ion activity depends on the soln total ionic strength and pH, and on fluoride complexing species. Adding an appropriate buffer provides a uniform ionic strength background, adjusts pH, and breaks up complexes so that, in effect, the electrode measures concn. A synthetic sample containing 0.850 mg fluoride ion/l in distilled water was analyzed in 111 laboratories with relative standard deviation of 3.6% and relative error of 0.7%.Fluoride- SPADNS Method. This method is suitable only for concn in the range of 0.05 to 1.4 mg/l. The reaction rate between fluoride and zirconium ion is influenced greatly by the acidity of the reaction mixture. If the proportion of acid in the reagent is incr, the reaction can be made almost instantaneous. Under such conditions, however, the effect of various ions differs from that in the conventional alizarin method. The selection of dye for this rapid fluoride method is governed largely by the resulting tolerance to these ions. A synthetic sample contanining 0.830 mg fluoride ion/l and no interference in distilled water was analyzed in 53 laboratories with a relative standard deviation of 8.0% and a relative error of 1.2%. After direct distillation of the sample, the relative standard deviation was 11.0% and the relative error 2.4%. Ammonium bifluoride (NH4•HF2) is manufactured and sold in solid form or in aqueous solutions. The solid is a white crystal. The solutions are clear, colorless liquids that have a slightly sharp, pungent odor. Common industrial solution strength concentrations for Ammonium Bifluoride are between 28 and 30%. Ammonium bifluoride (ABF) Ammonium difluoride Ammonium acid fluoride Ammonium hydrogen difluoride Ammonium fluoride compound with hydrogen fluoride (1:1) Ammonium Bifluoride Flakes are used for aluminium anodization, metal surface treatment, manufacture of wood preservatives, glass processing, mineral oil/ natural gas drilling, cleaning agents of industrial plants, breweries and in the electronics industry. It may also be used for pH adjustment in industrial textile processing or laundries. ABF is available as a solid or liquid solution (in water). Background: Ammonium bifluoride is a reagent widely used in organic synthesis; however, the systematic collection and classification have not been covered until now. Methodology: In this review, we aim to systematically summarize the application of ammonium bifluoride in organic synthesis. Conclusion: It can be used for deprotection of hydroxyl protected groups (esp. Silyl protection). It is also used for introducing F & N atoms into organic molecules; promoting cyclization reactions acting as a multifunctional reagent. AMMONIUM BIFLUORIDE reacts violently with bases. In presence of moisture will corrode glass, cement, and most metals. Flammable hydrogen gas may collect in enclosed spaces. Do not use steel, nickel, or aluminum containers (USCG, 1999). Ammonium bifluoride (ABF) is one of the most common, and dangerous, wheel cleaners used in automatic carwashes today. Its effectiveness removing brake dust and difficult contaminants from chrome wheels is undisputed, but some chemists say ABF presents an unjustifiable and potentially lethal risk to carwash operators and their employees. Extinguish fire using agent suitable for type of surrounding fire. (Material itself does not burn or burns with difficulty.) Use water in flooding quantities as fog. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible.Environmental considerations- land spill: Dig a pit, pond, lagoon, holding area to contain liquid or solid material. /SRP: If time permits, pits, ponds, lagoons, soak holes, or holding areas should be sealed with an impermeable flexible membrane liner./ Dike surface flow using soil, sand bags, foamed polyurethane, or foamed concrete. Absorb bulk liquid with fly ash or cemented powder. Neutralize with agricultural lime (CaO), crushed limestone (CaCO3) or sodium bicarbonate (NaHCO3). Cover solids with a plastic sheet to prevent dissolving in rain or fire fighting water.Environmental considerations- water spill: Neutralize with agricultural lime (CaO), crushed limestone (CaCO3), or sodium bicarbonate (NaHCO3). Use mechanical dredges or lifts to remove immobilized masses of pollutants and precipitates.SRP: The most favorable course of action is to use an alternative chemical product with less inherent propensity for occupational exposure or environmental contamination. Recycle any unused portion of the material for its approved use or return it to the manufacturer or supplier. Ultimate disposal of the chemical must consider: the material's impact on air quality; potential migration in soil or water; effects on animal, aquatic, and plant life; and conformance with environmental and public health regulations.If material not involved in fire: Keep material out of water sources and sewers. Build dikes to contain flow as necessary. Use water spray to knock-down vapors. Neutralize spilled material with crushed limestone, soda ash, or lime.Avoid breathing vapors. Keep upwind. Avoid bodily contact with the material. Do not handle broken packages unless wearing appropriate personal protective equipment. Wash away any material which may have contacted the body with copious amounts of water or soap and water. Avoid breathing fumes from burning material.The scientific literature for the use of contact lenses in industry is conflicting. The benefit or detrimental effects of wearing contact lenses depend not only upon the substance, but also on factors including the form of the substance, characteristics and duration of the exposure, the uses of other eye protection equipment, and the hygiene of the lenses. However, there may be individual substances whose irritating or corrosive properties are such that the wearing of contact lenses would be harmful to the eye. In those specific cases, contact lenses should not be worn. In any event, the usual eye protection equipment should be worn even when contact lenses are in place.Health: TOXIC; inhalation, ingestion, or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution. /Ammonium bifluoride, solid; Ammonium bifluoride, solution/No person may /transport,/ offer or accept a hazardous material for transportation in commerce unless that person is registered in conformance ... and the hazardous material is properly classed, described, packaged, marked, labeled, and in condition for shipment as required or authorized by ... /the hazardous materials regulations .The International Maritime Dangerous Goods Code lays down basic principles for transporting hazardous chemicals. Detailed recommendations for individual substances and a number of recommendations for good practice are included in the classes dealing with such substances. A general index of technical names has also been compiled. This index should always be consulted when attempting to locate the appropriate procedures to be used when shipping any substance or article.Ammonium bifluoride is designated as a hazardous substance under section 311(b)(2)(A) of the Federal Water Pollution Control Act and further regulated by the Clean Water Act Amendments of 1977 and 1978. These regulations apply to discharges of this substance. This designation includes any isomers and hydrates, as well as any solutions and mixtures containing this substance.Maintain an open airway and assist ventilation if necessary. Monitor ECG and serum calcium, magnesium, and potassium for at least 4 to 6 hours. Admit symptomatic patients with ECG or electrolyte abnormalities to an intensive care setting. When clinically significant hypocalcemia is present, administer intravenous calcium gluconate ... and monitor ionized calcium levels and titrate further doses as needed. Treat hypomagnesemia with intravenous magnesium sulfate... . Treat hypokalemia with intravenous calcium and other usual measures. Do not induce vomiting because of the risk of abrupt onset of seizures and arrhythmias. Administer an antacid containing calcium (eg, calcium carbonate) orally to raise gastric pH and complex free fluoride, reducing absorption. Foods rich in calcium (eg, milk) can also bind fluoride. Magnesium-containing antacids have also been recommended but there are little data for their effectiveness. ... Consider gastric lavage for recent large ingestions. Activated charcoal does not absorb fluoride and is not likely to be beneficial. Because fluoride rapidly binds to free calcium and bone and has a short elimination half-life, hemodialysis is not likely to be effective.Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if necessary. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures adn treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 ml/kg up to 200 ml of water for dilution if the patent can swallow, has a strong gag reflex, and does not drool. ... . Cover skin burns with dry sterile dressings after decontamination . Most available toxicity information on fluoride relates to acute toxicity of hydrofluoric acid (''HF''). However, other water soluble fluoride-containing compounds can cause fluoride poisoning. The fluoride ion is systemically absorbed almost immediately. It is highly penetrating and reactive and can cause both systemic poisoning and tissue destruction. Fluoride ions, once separated from either HF or fluoride salts, penetrate deep into tissues, causing burning at sites deeper than the original exposure site. The process of tissue destruction can continue for days. Fluoride absorption can produce hyperkalemia (elevated serum potassium), hypocalcemia (lowered serum calcium), hypomagnesemia (lowered serum magnesium), and metabolic and respiratory acidosis. These disturbances can then bring on cardiac arrhythmia, respiratory stimulation followed by respiratory depression, muscle spasms, convulsions, central nervous system (''CNS'') depression, possible respiratory paralysis or cardiac failure, and death. Fluoride may also inhibit cellular respiration and glycolysis, alter membrane permeability and excitability, and cause neurotoxic and adverse GI effects. When exposure is through inhalation, fluorides can cause severe chemical burns to the respiratory system. Inhalation can result in difficulty breathing (dyspnea), bronchospasms, chemical pneumonitis, pulmonary edema, airway obstruction, and tracheobronchitis. The severity of burns from dermal absorption can vary depending on the concentration of fluoride available, duration of the exposure, the surface area exposed, and the penetrability of the exposed tissue. Ocular exposure can result in serious eye injury. Ingestion of fluoride can result in mild to severe GI symptoms. Reports suggest that ingesting 3 to 5 milligrams of fluoride per kilogram of body weight (mg/kg) causes vomiting, diarrhea, and abdominal pain. Ingestion of more than 5 mg/kg may produce systemic toxicity. A retrospective poison control center study of fluoride ingestions reported that symptoms, primarily safely tolerated GI symptoms that tended to resolve within 24 hours, developed following ingestions of 4 to 8.4 mg/kg of fluoride.
AMMONIUM C12-16 ALKYL SULFATE
AMMONIUM CARBONATE, N° CAS : 10361-29-2, Nom INCI : AMMONIUM CARBONATE, Nom chimique : Ammonium carbonate, N° EINECS/ELINCS : 233-786-0, Ses fonctions (INCI) :Régulateur de pH : Stabilise le pH des cosmétiques
AMMONIUM CARBONATE
Ammoniac; Ammonium Muriate; Sal ammoniac; Amchlor; Darammon; Salammonite; Salammoniac; Ammoniumchloridefume; Ammoniumchlorid; Chlorammonic; Chlorid Ammonia;Chlorid Amonny; Chlorid Amonny; Cloruro De Amonio; Gen-diur; Muriate of Ammonia; Ammonium chloride CAS NO:12125-02-9