Системa очистки воды , Химикаты для металла и буровой системы

BENZOATE DE BENZYLE

Le benzoate de benzyle est un composé organique utilisé comme médicament et insectifuge. En tant que médicament, il est utilisé pour traiter la gale et les poux. Pour la gale, la perméthrine ou le malathion sont généralement préférés. Il est appliqué sur la peau sous forme de lotion. En règle générale, deux à trois applications sont nécessaires. Il est également présent dans le baume du Pérou, le baume de Tolu et dans un certain nombre de fleurs. Le benzoate de benzyle a été étudié médicalement pour la première fois en 1918. Il figure sur la liste des médicaments essentiels de l'Organisation mondiale de la santé.

No CAS: 120-51-4
No CE: 204-402-9
Noms IUPAC:
Benzil-benzoát
ester phénylméthylique d'acide benzoïque
Acide benzoïque, ester benzylique
ACIDE BENZOIQUE, ESTER PHÉNYL-MÉTHYLE
Acide benzoïque, ester phénylméthylique
Benxoate de benzyle
BENZOATE DE BENZYLE
Benzoate de benzyle; Benzoate de phénylméthyle
benzyl-2-méthyl-hydroxybutyrate déshydrogénase
benzylbenzoate
benzoate de phénylméthyle

SYNONYMES
Ascabiol; Novoscabin; Benylate; Scabitox; Scobenol; Ascabin; Ester benzylique d'acide benzoïque; Phénylformate de benzyle; Benzylets; Colebenz; Peruscabin; Scabagen; Scabanca; Scabiozon; Vanzoate; Scabide; Ester phénylméthylique d'acide benzoïque; Benzoate de phénylméthyle; Antiscabiosum; Acide benzoique; ester benzylique; Benzyl benzène carboxylate; Benzylis benzoas; Ester benzoïque d'alcool benzylique; Benzylbenzoate; Peruscabina; Spasmodin; Venzonate; Benzylum benzoicum; 120-51-4; Ascabiol; Acide benzoïque, ester phénylméthylique; Ester benzylique d'acide benzoïque; Benylate; Novoscabine; Acide benzoïque, ester benzylique; Ascabine; Scabitox; Scobénol; Phénylformate de benzyle; Phénylméthyl benzoate; Benzylets; Coleinbenz Scabagen; Scabanca; Scabiozon; Vanzoate; Scabide; benzylbenzoate; Benzyl benzenecarboxylate; Benzyl alcool benzoic ester; Venzonate; Benzylester kyseliny benzoove; BENZOIC ACID PHENYLMETHYLESTER; FEMA No 2138; NSC 8081; UNIIum-N863IS 41237; N863NB338G; NSC-8081; NCGC00094981-03; Peruscabina; Spasmodine; Benzoate de benzyle, 99 +%; Benzylis benzoas; DSSTox_CID_9153; Benzylum benzoicum; DSSTox_RID_78686; DSSTox_GSZo-boxo standard; Benzyl benzoate (naturel); BZM; CAS-120-51-4; SMR000471875; HSDB 208; EINECS 204-402-9; Benzylester kyseliny benzoove [tchèque]; EPA Pesticide Chemical Code 009501; benzylbenzoat; BRN 2049280; Benzyl benzoate [USP: JAN ]; Acarobenzyle; Benzevan; Bengale; Ester phénylméthylique de l'acide benzoïque; AI3-00523; 1dzm; Benylate (TN); acide benzoïque benzyle; Spectrum_001240; Ester d'acide benzoïque-benzylique; Spectrum2_000532; Spectrum3_001757; Spectrum4_00028C1; Spectrum3_001757; Spectrum4_00028C11; Spectrum3_001757; Spectrum4_000281C-AC RVO1R; benzoate de benzyle,> = 99%; EC 204-402-9; SCHEMBL3038; BENZOATE DE BENZYLE BP98; BSPBio_003494; KBioGR_001186; KBioSS_001720; 4-09-00-00307 (référence du manuel de Beilstein); MLS001066412; MLS0013K136003; MLS001066412; MLS0013K1603_ SPECTRUM1503002; SPBio_000543; Benzoate de benzyle (JP17 / USP); ZINC1021; DTXSID8029153; ACIDE BENZOIQUE, ESTER DE BENZYLE; HMS500K06; KBio1_000204; KBio2_001720; KBio2_004288; KBio2_006856;
. > = 99%, FCC, FG; Tox21_111372_1; DB00676; MCULE-4369643785; NSC-758204; IDI1_000204; Benzoate de benzyle, pour la synthèse, 99,0%; NCGC00094981-01; NCGC00094981-02
258889-01; AC-17033; AK308304; SBI-0051748.P002; DB-041563; B0064; FT-0622708; ST50406335; Benzoate de benzyle, naturel,> = 99%, FCC, FG; Benzoate de benzyle, ReagentPlus (R), > = 99,0%; Benzoate de benzyle, première qualité SAJ,> = 98,0%; Benzoate de benzyle, testé selon Ph.Eur.; A14577; A19449; Benzoate de benzyle, qualité spéciale SAJ,> = 99,0%; C12537; D01138; AB00052298_07; Benzoate de benzyle, qualité réactif Vetec (TM), 98%; Benzoate de benzyle; Q413755; SR-01000763773; Ester benzylique d'acide benzoïque 5000 microg / mL dans l'hexane; Q-200696; SR-01000763773-2; BRD-K52072429-001- 06-1; ester benzylique d'acide benzoïque; Ester phénylméthylique d'acide benzoïque

Le benzoate de benzyle (BnBzO) est un agent de médiation et un insectifuge. C'est l'une des préparations les plus anciennes utilisées pour traiter la gale, une infection cutanée causée par l'acarien Sarcoptes scabiei car elle est mortelle pour l'acarien. Il est capable de tuer l'acarien en 5 minutes. Il peut également être utilisé pour le traitement de l'infestation par les poux de la tête et du corps. Son mécanisme d'action consiste à exercer des effets toxiques sur le système nerveux des insectes, provoquant en outre sa mort. Il est également toxique pour les ovules d'acariens par un mécanisme inconnu. Il peut également être utilisé comme répulsif pour les aoûtats, les tiques et les moustiques, ainsi que comme support de colorant, solvant des dérivés de cellulose, plastifiant et fixateur.

Les usages
Médical
Le benzoate de benzyle est un traitement topique efficace et peu coûteux pour la gale humaine. Il a des effets vasodilatateurs et spasmolytiques et est présent dans de nombreux médicaments contre l'asthme et la coqueluche. Il est également utilisé comme excipient dans certains médicaments de remplacement de la testostérone (comme Nebido) pour traiter l'hypogonadisme.
Le benzoate de benzyle est utilisé comme acaricide topique, scabicide et pédiculicide dans les hôpitaux vétérinaires.

Non médical
Le benzoate de benzyle est utilisé comme répulsif pour les aoûtats, les tiques et les moustiques. Il est également utilisé comme support de colorant, solvant pour les dérivés de cellulose, plastifiant et fixateur dans l'industrie du parfum.

Chimie
C'est un composé organique de formule C6H5CH2O2CC6H5. C'est l'ester de l'alcool benzylique et de l'acide benzoïque. Il forme un liquide visqueux ou des flocons solides et dégage une faible odeur de balsamique sucré. Il se produit dans un certain nombre de fleurs (par exemple la tubéreuse) et est un composant du baume du Pérou et du baume de Tolu.

Production
Le benzoate de benzyle est produit industriellement par réaction du benzoate de sodium avec de l'alcool benzylique en présence d'une base, ou par transestérification du benzoate de méthyle et de l'alcool benzylique. C'est un sous-produit de la synthèse de l'acide benzoïque par oxydation du toluène. Il peut également être synthétisé par la réaction de Tishchenko, en utilisant du benzaldéhyde avec du benzilate de sodium (généré à partir de sodium et d'alcool benzylique) comme catalyseur:
La réaction de Tishchenko: le benzaldéhyde réagit au benzoate de benzyle, le catalyseur est le benzilate de sodium.

Il se produit naturellement dans les huiles essentielles telles que l'ylang-ylang, le bois de rose, la cannelle et le benjoin.

Lorsque ces huiles essentielles ne sont pas utilisées dans un produit, le benzoate de benzyle peut être ajouté sous sa forme synthétique en raison de son parfum incroyable et de ses excellentes propriétés de solvant. En effet, il dissout les autres matières parfumées, leur permettant de se fondre plus facilement.

Qu'est-ce que le benzoate de benzyle?
Le benzoate de benzyle est une molécule naturelle que l'on trouve dans certaines plantes et se compose d'alcool benzylique et d'acide benzoïque. Dans les produits cosmétiques, il joue un certain nombre de rôles en fonction du produit et il peut agir comme un parfum, un solvant, un plastifiant, un conservateur et un fixateur.

Comment ça marche?
En tant que parfum, le benzoate de benzyle peut ajouter une odeur balsamique à un produit. Il peut également fonctionner avec d'autres parfums comme solvant pour les aider à se dissoudre dans le mélange. Le benzoate de benzyle agit également comme fixateur dans les produits parfumés où il ralentit la fuite d'autres parfums et augmente la durée de vie du parfum.

Lorsqu'il est ajouté à des produits plus solides comme les savons, le benzoate de benzyle peut agir comme plastifiant. Un plastifiant rend un produit moins cassant, de sorte qu'un savon qui le contient peut être plié et écrasé davantage avant qu'il ne craque ou ne s'effrite.

Le benzoate de benzyle est utilisé pour traiter les infestations de poux et de gale. On pense que ce médicament est absorbé par les poux et les acariens et les détruit en agissant sur leur système nerveux.

Le benzoate de benzyle est l'une des préparations les plus anciennes utilisées pour traiter la gale. La gale est une infection cutanée causée par l'acarien Sarcoptes scabiei. Elle se caractérise par de fortes démangeaisons (en particulier la nuit), des taches rouges et peut conduire à une infection secondaire. Le benzoate de benzyle est mortel pour cet acarien et est donc utile dans le traitement de la gale. Il est également utilisé pour traiter les infestations de poux de la tête et du corps.

Mécanisme d'action
Le benzoate de benzyle exerce des effets toxiques sur le système nerveux du parasite, entraînant sa mort. Il est également toxique pour les ovules d'acariens, bien que son mécanisme d'action exact soit inconnu. In vitro, le benzoate de benzyle tue l'acarien Sarcoptes en 5 minutes.

Absorption
Aucune donnée n'est disponible sur l'absorption percutanée du benzoate de benzyle. Certaines études plus anciennes ont suggéré une certaine absorption percutanée, cependant, la quantité n'a pas été quantifiée.

Métabolisme
Rapidement hydrolysé en acide benzoïque et en alcool benzylique, qui est ensuite oxydé en acide benzoïque. L'acide benzoïque est conjugué à la glycine pour former de l'acide hippurique.

Le benzoate de benzyle est un composé benzylique qui peut être synthétisé en faisant réagir du chlorure de benzyle avec du benzoate de sodium en présence d'iodure de tétrabutylaramonium. Il serait le constituant clé des huiles essentielles isolées des feuilles et de l'écorce de tige de Cinnamomum zeylanicum.
Le benzoate de benzyle, un ester d'alcool benzylique et d'acide benzoïque, est largement utilisé comme fixateur de parfum, ingrédient de parfum et conservateur pour maintenir la puissance et la stabilité d'une variété de formulations cosmétiques. Il est également utilisé comme musc synthétique, acaricide pour traiter la gale et les poux de tête.
L'alcool benzylique est un alcool organique présent dans de nombreux fruits et thés. L'alcool benzylique a un groupe hydroxyle, tandis que le composé apparenté, l'acide benzoïque, a un groupe carboxyle. Le benzoate de sodium, le benzoate de calcium et le benzoate de potassium sont des sels d'acide benzoïque. Le benzoate de benzyle est un ester d'alcool benzylique et d'acide benzoïque.

L'alcool benzylique, l'acide benzoïque et ses sels et le benzoate de benzyle sont utilisés dans une grande variété de cosmétiques et de produits de soins personnels, y compris les produits pour bébés, les produits de bain, les savons et détergents, le maquillage des yeux, les fards à joues, les produits nettoyants, les produits de maquillage, ainsi que produits de soin des cheveux, des ongles et de la peau.

Pourquoi est-il utilisé dans les cosmétiques et les produits de soins personnels?
Les fonctions suivantes ont été rapportées pour ces ingrédients.
Inhibiteur de corrosion - Benzoate de sodium
Ingrédient de parfum - alcool benzylique, acide benzoïque, benzoate de sodium, benzoate de benzyle
Ajusteur de pH - Acide benzoïque
Conservateur - alcool benzylique, acide benzoïque, benzoate de sodium, benzoate de calcium, benzoate de potassium
Solvant - Alcool benzylique, Benzoate de benzyle Agent de diminution de la viscosité - Alcool benzylique

Le benzoate de benzyle est un liquide huileux clair, incolore avec une légère odeur balsamique rappelant l'amande et un goût piquant et piquant. Il produit une sensation vive et brûlante sur la langue. À des températures inférieures à 178 ℃, il existe sous forme de cristaux clairs et incolores.
Applications pharmaceutiques

Le benzoate de benzyle est utilisé comme agent solubilisant et solvant non aqueux dans les injections intramusculaires à des concentrations de 0,01 à 46,0% v / v, et comme solvant et plastifiant pour la cellulose et la nitrocellulose. Il est également utilisé dans la préparation de poudres séchées par atomisation à l'aide de nanocapsules.

Cependant, l'utilisation pharmaceutique la plus répandue du benzoate de benzyle est comme agent thérapeutique topique dans le traitement de la gale. Le benzoate de benzyle est également utilisé en thérapeutique comme parasiticide en médecine vétérinaire.

D'autres applications du benzoate de benzyle comprennent son utilisation comme pédiculicide et comme solvant et fixateur pour les arômes et les parfums dans les cosmétiques et les produits alimentaires.
Allergènes de contact Le benzoate de benzyle est l'ester de l'alcool benzylique et de l'acide benzoïque. Il est contenu dans Myroxylon pereirae et Tolu balsam. Il est utilisé dans les préparations acaricides contre Sarcoptes scabiei ou comme pédiculicide. Le contact direct peut provoquer une irritation cutanée, mais rarement une dermatite de contact allergique.


Utilisation clinique
Le benzoate de benzyle est un ester naturel obtenu à partir du baume du Pérou et d'autres résines. Il est également préparé synthétiquement à partir d'alcool benzylique et de chlorure de benzoyle. L'ester est un liquide clair incolore avec une légère odeur aromatique. Il est insoluble dans l'eau mais soluble dans les solvants organiques.
Le benzoate de benzyle est un scabicide efficace lorsqu'il est appliqué localement. Le soulagement immédiat des démangeaisons résulte probablement d'un effet anesthésique local; cependant, un durcissement complet est fréquemment obtenu avec une seule application d'une émulsion à 25% de benzoate de benzyle dans l'acide oléique, stabilisée avec de la triéthanolamine. Cette préparation présente l'avantage supplémentaire d'être essentiellement inodore, non tachante et non irritante pour la peau. Il est appliqué localement sous forme de lotion sur tout le corps humidifié, à l'exception du visage.

Le benzoate de benzyle est un ester de benzoate obtenu par condensation formelle d'acide benzoïque avec de l'alcool benzylique. Il a été isolé des espèces végétales du genre Polyalthia. Il a un rôle de scabicide, d'acaricide et de métabolite végétal. C'est un ester benzylique et un ester benzoate. Il dérive de l'acide benzoïque.

Principalement utilisé comme pesticide non agricole avec certaines applications vétérinaires ainsi que comme additif alimentaire et en parfumerie.

Le benzoate de benzyle est un ester aromatique utilisé comme agent aromatisant alimentaire. Il a été identifié comme l'un des principaux composants aromatiques volatils des fleurs de canneberge, de mangue et de Jasminum sambac égyptien.

Il a une odeur unique. Il a un parfum d'amande ou de balsamique. Il se présente sous une forme solide ou liquide incolore.

Le point d'ébullition est de 323,5 ° C.
Le point de fusion est de 21 ° C.
Sa solubilité dans l'eau est presque négligeable. Il a une solubilité d'environ 25 mg / L à 25 ° C.
Il est insoluble dans la glycérine. Soluble dans l'alcool éthylique, l'alcool méthylique, le chloroforme et l'éther éthylique.
La densité du benzoate de benzyle est de 25 ° C: 1,112 g / cm³.
C'est un composé chimique stable dans des conditions de stockage standard.

Domaines d'utilisation du benzoate de benzyle:
• Il est utilisé dans la création des formules les plus anciennes utilisées pour le traitement d'une maladie de la peau appelée gale. Ceci est une infection cutanée. Il est utilisé pour éliminer ces infections cutanées.
• C'est un ingrédient utilisé dans la fabrication de médicaments destinés à inhiber les tiques et les moustiques.
• C'est une substance chimique utilisée comme solvant dans de nombreuses substances chimiques.
• Il est utilisé comme solvant pour les substances cellulosiques.
• Il est utilisé comme essence dans la production de parfums.
• Il est utilisé dans la production de médicaments vétérinaires, dans les produits chimiques produits pour le traitement des maladies de la peau des animaux.
• Il est utilisé comme édulcorant dans le secteur alimentaire.
• Il est utilisé dans la fabrication de pesticides pour le traitement des poussières dans certains textiles, tapis, matelas et tissus d'ameublement et meubles de canapés.

Usage
C'est l'un des médicaments anti-gale les plus anciens à usage humain et vétérinaire. Il est également utilisé en association avec d'autres agents contre les poux de tête et dans les crèmes de protection cutanée.

Il est également utilisé comme solvant, comme ingrédient de parfum dans les produits du tabac et pour augmenter la plasticité des polymères et de la cellulose.

COMMENT EST PRODUIT LE BENZOATE DE BENZYLE

Le benzoate de benzyle est une molécule naturellement présente dans certaines plantes (espèces végétales du genre Polyalthia) et se compose d'alcool benzylique et d'acide benzoïque. Le benzoate de benzyle a été étudié médicalement pour la première fois en 1918.
C'est un ester benzoate obtenu par condensation formelle d'acide benzoïque avec de l'alcool benzylique. Il peut également être produit par la réaction de Tishchenko, en utilisant du benzaldéhyde avec du benzylate de sodium (produit à partir de sodium et d'alcool benzylique) comme catalyseur.

PROPRIÉTÉS PHYSIQUES ET CHIMIQUES DU BENZOATE DE BENZYLE

• Le benzoate de benzyle est insoluble dans l'eau et le glycérol. Soluble dans l'éthanol, l'éther éthylique, l'acétone, le benzène, le méthanol, le chloroforme.
• Le benzoate de benzyle est stable dans les conditions de stockage recommandées.
• Le benzoate de benzyle, lorsqu'il est chauffé pour se décomposer, produit des fumées amères et irritantes.
• Il se présente sous la forme d'un liquide visqueux ou de flocons solides et a une faible odeur balsamique.


Le benzoate de benzyle a un poids moléculaire élevé, ce qui en fait un fixateur largement utilisé dans l'industrie des parfums fins. Il est utilisé dans les formulations pharmaceutiques topiques pour le traitement des poux et de la gale. De plus, le benzoate de benzyle de Kalama est apprécié pour sa compatibilité avec la cire de bougie, incorporant un parfum aux bougies fines tout en favorisant une combustion propre.

Le traitement de la gale est avec la perméthrine topique, le benzoate de benzyle, le malathion, à son ir ou ivermectine orale. Le patient doit appliquer une crème de perméthrine à 5% sur tout le corps, y compris le cuir chevelu, tous les plis, l'aine, le nombril, les organes génitaux externes et la peau sous les ongles, en le lavant après 12 heures. Chez les adultes atteints de gale classique, le traitement du visage est controversé, mais chez les bébés, la peau du visage doit également être traitée. Une deuxième application 7 jours après le traitement initial doit être prescrite et tous les membres affectés d'un ménage doivent être traités en même temps pour éviter les réinfestations cycliques. L'ivermectine orale est de plus en plus utilisée comme traitement de première intention. Les flambées graves nécessitent une deuxième dose d'ivermectine à 2 semaines d'intervalle (200 µg / kg de poids corporel). Un traitement de l'infection bactérienne secondaire et des antihistaminiques peuvent être nécessaires. Laver les vêtements et le linge à 60 ° C tuera tous les jeunes acariens femelles fécondés (une alternative est de les conserver dans un sac en plastique pendant 48 à 72 heures, car les acariens séparés de l'hôte humain meurent dans ce délai). Il est important d'expliquer que le prurit dure généralement plusieurs semaines après la guérison, ce qui peut être partiellement atténué par des antihistaminiques non sédatifs ou sédatifs.

Le benzoate de benzyle est utilisé comme insecticide pour tuer les acariens de la gale, les acariens et les tiques. Il est également utilisé comme plastifiant, fixateur dans les parfums, additif alimentaire et solvant. La dermatite est la principale réaction indésirable à son utilisation comme solution topique. À des concentrations élevées, il s'est avéré posséder des propriétés œstrogéniques et stimuler la croissance des cellules mammaires humaines.

IDENTIFICATION:
Le benzoate de benzyle est un liquide huileux incolore. Il peut également se présenter sous forme de dépliants. Il a un goût d'amande et une odeur agréable. Il est presque insoluble dans l'eau. Le benzoate de benzyle est présent dans de nombreuses plantes et huiles essentielles.
UTILISER:
Le benzoate de benzyle est un produit chimique commercial important. Il est utilisé dans la fabrication de plastiques, comme solvant, dans la fabrication d'autres produits chimiques, comme arôme alimentaire et dans les parfums. Il est également utilisé comme médicament pour la peau chez les humains et les chiens dans le traitement des acariens. Le benzoate de benzyle est utilisé pour lutter contre les acariens dans les tapis et les meubles.
EXPOSITION:
Les travailleurs qui utilisent du benzoate de benzyle peuvent respirer des vapeurs ou avoir un contact direct avec la peau. La population générale peut être exposée aux vapeurs, au contact cutané et à la consommation d'aliments contenant du benzoate de benzyle. Si du benzoate de benzyle est rejeté dans l'environnement, il se décomposera dans l'air. Il peut être décomposé par la lumière du soleil. Il ne se déplacera pas dans l'air du sol humide et de l'eau. Il ne devrait pas se déplacer dans le sol. Il sera décomposé par les micro-organismes et devrait s'accumuler dans les poissons.

Utilisations de l'industrie
• Colorants
• Agents odorants
• Solvants (pour le nettoyage et le dégraissage)
• Solvants (qui font partie de la formulation ou du mélange du produit)
• Agents tensioactifs

Informations générales sur la fabrication
Secteurs de traitement de l'industrie
• Entretien de l'air
• Toute autre fabrication de produits chimiques organiques de base
• Fabrication de tous les autres produits chimiques et préparations
• Fabrication diverses
• Fabrication de matière plastique et résine
• Fabrication de savons, de produits de nettoyage et de préparations pour toilettes
• Fabrication de textiles, de vêtements et de cuir
• Fragrance

À propos de cette substance
Information utile
Cette substance est utilisée par les consommateurs, par les professionnels (usages répandus), en formulation ou en reconditionnement, sur les sites industriels et en fabrication.

Utilisations des consommateurs
Cette substance est utilisée dans les produits suivants: produits de lavage et de nettoyage, vernis et cires, produits de soin de l'air, cosmétiques et produits de soins personnels, parfums et fragrances et biocides (par ex. Désinfectants, produits antiparasitaires).
Un autre rejet dans l'environnement de cette substance est susceptible de se produire à la suite de: l'utilisation à l'intérieur comme auxiliaire technologique et l'utilisation à l'extérieur comme auxiliaire technologique.

Utilisations généralisées par les travailleurs professionnels
Cette substance est utilisée dans les produits suivants: produits de polissage, produits de lavage et de nettoyage, parfums et parfums et cosmétiques et produits de soins personnels.
Cette substance est utilisée dans les domaines suivants: services de santé et recherche et développement scientifiques.
Un autre rejet dans l'environnement de cette substance est susceptible de se produire en raison de: l'utilisation à l'intérieur (par exemple, les liquides / détergents de lavage en machine, les produits d'entretien automobile, les peintures et revêtements ou adhésifs, les parfums et les assainisseurs d'air) et l'utilisation à l'extérieur comme auxiliaire technologique.

Formulation ou réemballage
Cette substance est utilisée dans les produits suivants: produits de soin de l'air, biocides (par exemple désinfectants, produits antiparasitaires), produits de traitement du cuir, parfums et parfums, produits pharmaceutiques, photo-chimiques, cirages et cires, polymères, produits de traitement et colorants textiles, lavage & produits de nettoyage et cosmétiques et produits de soins personnels.
Le rejet dans l'environnement de cette substance peut se produire à la suite d'une utilisation industrielle: formulation de mélanges.
Utilisations sur les sites industriels
Cette substance est utilisée dans les produits suivants: produits de lavage et de nettoyage, polymères, produits chimiques de laboratoire, produits de soin de l'air, produits de revêtement, parfums et parfums, cirages et cires, produits de traitement et colorants textiles et produits cosmétiques et de soins personnels.
Cette substance a une utilisation industrielle entraînant la fabrication d'une autre substance (utilisation d'intermédiaires).
Cette substance est utilisée pour la fabrication de produits chimiques, de produits en plastique et de textile, de cuir ou de fourrure.

benzoate de benzyle comme une odeur incolore et agréable, goût liquide huileux très piquant. L'acide benzoïque et l'ester d'alcool benzylique. Insoluble dans l'eau, l'acétone et le benzène soluble dans l'alcool, le chloroforme, les mélanges d'éther, les huiles.

Dans la nature, il se produit dans les gyömbérfélékhez appartenant à Kaempferia rotunda et Zingiber cassumunar le nom de la plante.

Le benzoate de benzyle est un composant naturel des huiles essentielles (par exemple le jasmin, l'ylang-ylang, le bois de rose, la cannelle ou le benzoate). Le benzoate de benzyle peut également être produit par synthèse, mais les effets ne diffèrent pas. Il se présente sous la forme d'un liquide incolore ou d'un solide blanc avec une odeur balsamique plus sucrée. C'est l'un des allergènes et peut provoquer une dermatite de contact, en particulier avec une utilisation fréquente, car il pénètre dans les couches les plus profondes de la peau, il n'est donc pas recommandé pour les peaux plus sensibles.

Le benzoate de benzyle est une substance stable, résistante aux changements de température et d'environnement, il est utilisé comme stabilisant des compositions parfumées et de l'ensemble du produit. Il masque l'arôme naturel des ingrédients non parfumés, tout en servant également de parfum grâce à son doux parfum balsamique. Il agit également comme conservateur et surtout comme solvant (il dissout d'autres substances dans le produit). On le retrouve dans les médicaments pour traiter la gale (tue les acariens de la gale), les préparations anti-poux et les insecticides. Il a des effets antimicrobiens.

Occurrence
Contenue dans le baume du Pérou et dans le béton et l'absolu de fleurs de tubéreuse, de jacinthe, de Narcissus jonquilla L. et de Dianthus caryophillus L .; également dans l'huile d'ylang-ylang et dans le baume de Tolu. Signalé trouvé dans la canneberge américaine, l'écorce de cannelle, la feuille de cassia, l'huile de maïs et la prune de porc (Spondias mombins L.).
Les usages
Le benzoate de benzyle, en tant que solution topique, peut être utilisé comme insecticide antiparasitaire pour tuer les acariens responsables de l'affection cutanée de la gale, par exemple en tant que médicament combiné de benzoate de benzyle / disulfirame.

Il a d'autres utilisations:
• un fixateur dans les parfums pour améliorer la stabilité et les autres caractéristiques des principaux ingrédients
• un additif alimentaire aux arômes artificiels
• un plastifiant dans la cellulose et autres polymères
• un solvant pour diverses réactions chimiques
• un traitement pour les démangeaisons douces chez les chevaux
• un traitement contre les acariens des pattes squameuses chez les poulets.

Le benzoate de benzyle est un antimicrobien. Il peut également agir comme solvant, aidant à dissoudre d'autres substances dans le produit et comme ingrédient parfumant. C'est l'ester de l'alcool benzylique et de l'acide benzoïque.

En tant que solvant de l'acétate de cellulose, de la nitrocellulose et du musc artificiel; substitut du camphre dans les composés celluloïdes et plastiques pyroxyline; fixateur de parfum; dans les saveurs de confiserie et de chewing-gum.
Préparation
Par estérification à sec du benzoate de sodium et du chlorure de benzoyle en présence de triéthylamine ou par réaction du benzylate de sodium sur le benzaldéhyde.

Méthodes de production
Le BENZOATE DE BENZYLE est produit par la réaction de Cannizzaro à partir du benzaldéhyde, en estérifiant l'alcool benzylique avec de l'acide benzoïque ou en traitant le benzoate de sodium avec du chlorure de benzyle. Il est purifié par distillation et cristallisation. Le benzoate de benzyle est utilisé comme fixateur et solvant pour le musc dans les parfums et les arômes, comme plastifiant, acaricide et dans certains médicaments externes. Le composé s'est avéré efficace dans le traitement de la gale et de la pédiculose capitis (poux de tête, Pediculus humanus var. Capitis).
Les indications
Benzoate de benzyle: 20% à 25%. Cet agent est relativement non toxique et est largement utilisé dans les pays en développement pour traiter la gale et la pédiculose de la tête et du pubis. Seule la préparation vétérinaire est disponible aux États-Unis. Le benzoate de benzyle est dérivé synthétiquement de l'estérification de l'acide benzoïque avec de l'alcool benzylique. Son mécanisme d'action est inconnu. Il est toxique pour Sarcoptes scabei et peut être toxique pour Pediculosis capitis et Phthirus pubis. Aucune résistance n'a été démontrée à ce jour.
Le benzoate de benzyle peut être utilisé dans une émulsion à 5% pour repousser de nombreux arthropodes et peut être utilisé comme lotion pour traiter la gale sarcoptique et la pédiculose canine.
marque
La nécessité pharmaceutique du dimercaprol [injection]. Besylate (Sterling Winthrop).
Valeurs de seuil de goût
Caractéristiques gustatives à 30 ppm: balsamique, fruité avec des nuances poudrées et baies.

Applications pharmaceutiques
Le benzoate de benzyle est utilisé comme agent solubilisant et solvant non aqueux dans les injections intramusculaires à des concentrations de 0,01 à 46,0% v / v, et comme solvant et plastifiant pour la cellulose et la nitrocellulose. Il est également utilisé dans la préparation de poudres séchées par atomisation à l'aide de nanocapsules.
Cependant, l'utilisation pharmaceutique la plus répandue du benzoate de benzyle est comme agent thérapeutique topique dans le traitement de la gale. Le benzoate de benzyle est également utilisé en thérapeutique comme parasiticide en médecine vétérinaire.
D'autres applications du benzoate de benzyle comprennent son utilisation comme pédiculicide et comme solvant et fixateur pour les arômes et les parfums dans les cosmétiques et les produits alimentaires.

Le benzoate de benzyle est l'ester de l'alcool benzylique et de l'acide benzoïque. Il est contenu dans Myroxylon pereirae et Tolu balsam. Il est utilisé dans les préparations acaricides contre Sarcoptes scabiei ou comme pédiculicide.

Utilisation clinique
Le benzoate de benzyle est un ester naturel obtenu à partir du baume du Pérou et d'autres résines. Il est également préparé synthétiquement à partir d'alcool benzylique et de chlorure de benzoyle. L'ester est un liquide clair incolore avec une légère odeur aromatique. Il est insoluble dans l'eau mais soluble dans les solvants organiques.
Le benzoate de benzyle est un scabicide efficace lorsqu'il est appliqué localement. Le soulagement immédiat des démangeaisons résulte probablement d'un effet anesthésique local; cependant, un durcissement complet est fréquemment obtenu avec une seule application d'une émulsion à 25% de benzoate de benzyle dans l'acide oléique, stabilisée avec de la triéthanolamine. Cette préparation présente l'avantage supplémentaire d'être essentiellement inodore, non tachante et non irritante pour la peau. Il est appliqué localement sous forme de lotion sur tout le corps humidifié, à l'exception du visage.

Le benzoate de benzyle CAS 120-51-4 est un liquide transparent visqueux incolore ou jaune pâle. Dans des conditions de température de 17 degrés centigrades ou moins, il sera solidifié en solide

Benzoate de butyle ( Butyl benzoate)
DENATONIUM BENZOATE, N° CAS : 3734-33-6, Lidocaine benzyl benzoate, Benzyl diéthyl (2,6-xylyl carbométhyl) benzoate d'ammonium, Nom chimique : Denatonium benzoate, N° EINECS/ELINCS : 223-095-2, Denatonium benzoate, Le benzoate de dénatonium est un sel de synthèse comprenant un anion (le benzoate) associé à un cation (un ammonium quaternaire). Le cation a une structure similaire à l'anesthésique local, la lidocaïne, dont il ne diffère que par l'addition d'un groupe benzyle sur l'amine tertiaire. Le dénatonium peut être associé avec d'autres anions sous forme de sel tels que l'ion saccharinate pour former le saccharinate de dénatonium ou l'ion chlorure pour former le chlorure de dénatonium. Dénaturant : Rend les cosmétiques désagréables. Principalement ajouté aux cosmétiques contenant de l'alcool éthylique. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Le benzoate de dénatonium est principalement utilisé pour son goût amer comme dénaturant, agent répulsif, agent d'aversion ou amérisant. Dans l'Union européenne, le benzoate de dénatonium est utilisé comme dénaturant dans les alcools, principalement pour l'exonération du droit d'accise. Il est aussi utilisé pour décourager la consommation des alcools toxiques tels que le méthanol et l'éthylène glycol. En France les industriels ajoutent un minimum de 20 ppm de benzoate de dénatonium dans les produits contenant de l'éthylène glycol, cela concerne les antigels, les fluides caloporteurs et produits lave-glace.Le benzoate de dénatonium est recommandé dans la lutte pour la protection des enfants et la diminution des accidents ménagers dus à l'absorption de produits ménagers (détergents, produits de lessive, adoucissants), cosmétiques, parfums et produits de bain (shampoing). L'amertume intense du benzoate de dénatonium oblige l'enfant à recracher le produit aussitôt après l’avoir mis en bouche. Le benzoate de dénatonium est utilisé comme additif dans les produits de lutte contre les rongeurs (campagnol, ragondin, rat, souris) et cervidés. Le benzoate de dénatonium est également utilisé dans un vernis à ongles amer pour lutter contre la manie de se ronger les ongles (onychophagie).Noms français : AMMONIUM, BENZYLDIETHYL((2,6-XYLYLCARBAMOYL)METHYL)-, BENZOA BENZENEMETHANAMINIUM, N-(2-((2,6-DIMETHYLPHENYL)AMINO)-2-OXOETHYL)-N,N-DIETHYL-, BENZOATE Benzoate de denatonium BENZOATE DE N-(((DIMETHYL-2,6 PHENYL)AMINO)-2 OXO-2 ETHYL)-N,N-DIETHYLBENZENEMETHANAMINIUM BENZYLDIETHYL((2,6-XYLYLCARBAMOYL)METHYL) AMMONIUM BENZOATE Noms anglais : Denatonium benzoate Le benzoate de denatorium est une des substances les plus amères connues. Utilisation: Le benzoate de denatonium est utilisé à titre de dénaturant dans l'éthanol. Il est également ajouté à certaines substances toxiques, tels des produits d'entretien et de jardinage, à titre d'agent d'aversion. Son goût amer exerce un effet dissuasif à une ingestion accidentelle. 223-095-2 [EINECS] 3734-33-6 [RN] 8179408 Benzenemethanaminium, N-[2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-N,N-diethyl- benzoate (1:1) [ACD/Index Name] Benzenemethanaminium, N-[2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-N,N-diethyl-, benzoate Benzenemethanaminium, N-[2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-N,N-diethyl-, benzoate (1:1) Benzoate de denatonium [French] benzoate de dénatonium [French] Benzoate de N-benzyl-2-[(2,6-diméthylphényl)amino]-N,N-diéthyl-2-oxoéthanaminium [French] Benzoato de denatonio [Spanish] Benzyldiethyl(2,6-xylyl??carbamoyl??methyl)??ammonium benzoate Benzyldiethyl[(2,6-xylylcarbamoyl)methyl]ammonium benzoate BO6650000 denatonii benzoas [Latin] denatonium benzoate [NF] Denatonium benzoate anhydrous MFCD00031578 [MDL number] N,N-Diethyl-N-[(2,6-dimethylphenyl??carbamoyl)??methyl]??benzyl??ammonium benzoate N-Benzyl-2-[(2,6-dimethylphenyl)amino]-N,N-diethyl-2-oxoethanaminium benzoate N-Benzyl-2-[(2,6-dimethylphenyl)amino]-N,N-diethyl-2-oxoethanaminiumbenzoat [German] денатония бензоат [Russian] بنزوات ديناتونيوم [Arabic] 苯甲地那铵 [Chinese] ((2,6-Xylylcarbamoyl)methyl)diethyl benzyl ammonium benzoate [2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-diethyl-(phenylmethyl)ammonium benzoate [2-[(2,6-dimethylphenyl)amino]-2-oxo-ethyl]-diethyl-(phenylmethyl)ammonium benzoate [2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-diethyl-(phenylmethyl)azanium benzoate [2-[(2,6-dimethylphenyl)amino]-2-oxo-ethyl]-diethyl-(phenylmethyl)azanium benzoate 2-[benzyl(diethyl)azaniumyl]-N-(2,6-dimethylphenyl)ethanimidate Ammonium, benzyldiethyl((2,6-xylylcarbamoyl)methyl)-, benzoate Ammonium, benzyldiethyl[(2,6-xylylcarbamoyl)methyl]-, benzoate Anispray Benzenemethanaminium, N-(2-((2,6-dimethylphenyl)amino)-2-oxoethyl)-N,N-diethyl-, benzoate Benzoic acid [ACD/Index Name] [USP] [Wiki] Benzyl-[(2,6-dimethylphenylcarbamoyl)methyl]diethylammonium benzoate Benzyl-[(2,6-dimethylphenylcarbamoyl)-methyl]diethylammonium benzoate benzyl-[2-(2,6-dimethylanilino)-2-oxo-ethyl]-diethyl-ammonium benzoate benzyl-[2-(2,6-dimethylanilino)-2-oxo-ethyl]-diethyl-ammonium;benzoate benzyl-[2-(2,6-dimethylanilino)-2-oxoethyl]-diethylazanium benzyl-[2-(2,6-dimethylanilino)-2-oxoethyl]-diethylazanium and benzoate benzyl-[2-(2,6-dimethylanilino)-2-oxoethyl]-diethylazanium;benzoate benzyl-[2-[(2,6-dimethylphenyl)amino]-2-keto-ethyl]-diethyl-ammonium benzoate BENZYLDIETHYL [(2,6-XYLYLCARBAMOYL)-AMMONIUM BENZOATE Benzyldiethyl {(2,6-xylylcarbamoyl) methyl} Ammonium Benzoate BENZYLDIETHYL((2,6-XYLYLCARBAMOYL)METHYL)AMMONIUM BENZOATE Benzyldiethyl(2,6-xylyl- carbamoyl- methyl)- ammonium benzoate Benzyldiethyl(2,6-xylylcarbamoylmethyl)ammoniumbenzoate Bitrex [Wiki] Denatonium (benzoate salt) Denatonium Benzoate 25% in EG denatonium benzoate, ??? Denatonium benzoate, granules Denatonium benzoate, USP grade Gori Lidocaine benzyl benzoate LIGNOCAINE BENZYL BENZOATE N-(2-((2,6-Dimethylphenyl)amino)-2-oxoethyl)-N,N-diethylbenzeneme- thanaminium benzoate N,N-Diethyl-N-[(2,6-dimethylphenyl- carbamoyl)- methyl]- benzyl- ammonium benzoate N,N-Diethyl-N-[(2,6-dimethylphenylcarbamoyl)methyl]benzylammoniumbenzoate N-[2-[(2,6-dimethylphenyl)amino]-2-oxoethyl]-N,N-diethyl-benzenemethanaminium, monobenzoate N-Benzyl-2-((2,6-dimethylphenyl)amino)-N,N-diethyl-2-oxoethanaminium benzoate
Benzoate de denatonium ( Denatonium benzoate )
N° CAS : 93-58-3, Nom INCI : METHYL BENZOATE, Nom chimique : Methyl benzoate, N° EINECS/ELINCS : 202-259-7. Ses fonctions (INCI) : Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.Agent d'entretien de la peau : Maintient la peau en bon état Solvant : Dissout d'autres substances. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
benzoate de methyle ( methyl benzoate)
n-hexyl benzoate; n-Hexylbenzoate;HEXYL BENZOATE, N° CAS : 6789-88-4, Nom INCI : HEXYL BENZOATE, Nom chimique : Hexyl benzoate, N° EINECS/ELINCS : 229-856-5. Ses fonctions (INCI) : Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques. 229-856-5 [EINECS]; Benzoate d'hexyle ; Benzoic acid, hexyl ester [ACD/Index Name]; Hexyl benzoate [ACD/IUPAC Name]; Hexyl-benzoat [German] [ACD/IUPAC Name]; MFCD00051714 [MDL number]; [6789-88-4]; 1-Hexyl benzoate; 1-Hexylbenzoate; 2-ethylhexyl-4-hydroxybenzoate Agrumat Benzoic acid hexyl ester Benzoic acid n-hexyl ester EINECS 229-856-5 FEMA 3691 hexyl benzoate, ??? HEXYL BENZOATE|HEXYL BENZOATE HEXYLBENZOATE Hexylester kyseliny benzoove [Czech] Hexylester kyseliny benzoove Hexylester kyseliny benzoove [Czech] n-Hexyl benzenecarboxylate N-Hexyl benzoate n-hexyl benzoate n-Hexylbenzoate
Benzoate d'hexyle ( Hexyl benzoate)
Benzenemethanoic acid; Carboxybenzene; Acide benzoique; Acido benzoico; Benzenecarboxylic acid; Benzeneformic acid; Benzoate; Benzoesaeure; Carboxybenzene; Dracylic acid; Flowers of benjamin; Flowers of benzoin; Phenylcarboxylic acid; Phenylformic acid; Salvo liquid; Salvo powder; Benzoesäure (German); ácido benzoico (Spanish); Acide benzoïque (French); Kyselina benzoova (Czech); Dracylic acid CAS NO:65-85-0
BENZOIC ACID
SYNONYMS Benzenemethanoic acid; Carboxybenzene;CAS NO. 65-85-0
Benzoin
1,2-Benzisothiazol-3(2H)-one; BIT; Proxel;2-Benzisothiazolin-3-one; Benzisothiazol-3(2H)-one; Benzisothiazolin-3-one CAS:2634-33-5
Benzoisothiazol (BIT)
1,2-Benzisothiazol-3(2H)-one; BIT; Proxel;2-Benzisothiazolin-3-one; Benzisothiazol-3(2H)-one; Benzisothiazolin-3-one CAS:2634-33-5
BENZONITRILE
CAS number: 100-47-0
EC number: 202-855-7
Molecular formula: C7H5N

Benzonitrile is used as an intermediate for rubber chemicals and as a solvent for nitrile rubber, specialty lacquers, many resins, polymers and for many anhydrous metallic salts (HSDB 1988; Hawley 1981). Benzonitrile is principally used as an intermediate for benzoguanamine (HSDB 1988).
Benzonitrile is also used as an additive in nickel-plating baths, separating naphthalene and alkylnaphthalenes from non-aromatics by azetropic distillation; as jet-fuel additive; in cotton bleaching baths; as a drying additive for acrylic fibers; and in the removal of titanium tetrachloride and vanadium oxychloride from silicon tetrachloride (HSDB 1988; Smiley 1981).
Benzonitrile is also used in perfumes at a maximum level of 0.2% in the final product (Opdyke 1979).

Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN.
Benzonitrile, aromatic organic compound, is a colorless liquid with a sweet bitter almond odour.
Benzonitrile is mainly used as a precursor to the resin benzoguanamine.

Applications:
Benzonitrile is a widely utilized as a solvent and an intermediate in industries making drugs, perfumes, dyes, rubber, textiles, resins and specialty lacquers.
Benzonitrile finds application as a versatile precursor for many derivatives.
Benzonitrile coordinates with transition metal to form complexes which act as synthetic intermediates.
The most important commercial use for benzonitrile is the synthesis of benzoguanamine, which is a derivative of melamine and is used in protective coatings and molding resins.

Production
Benzonitrile is prepared by ammoxidation of toluene, that is its reaction with ammonia and oxygen (or air) at 400 to 450 °C (752 to 842 °F).[1]
C6H5CH3 + 3/2 O2 + NH3 → C6H5(CN) + 3 H2O
In the laboratory Benzonitrile can be prepared by the dehydration of benzamide or by the Rosenmund–von Braun reaction using cuprous cyanide or NaCN/DMSO and bromobenzene.

Applications
Laboratory uses
Benzonitrile is a useful solvent and a versatile precursor to many derivatives.
Benzonitrile reacts with amines to afford N-substituted benzamides after hydrolysis.
Benzonitrile is a precursor to Diphenylketimine Ph
2C=NH (b.p. 151 °C, 8 mm Hg) via reaction with phenylmagnesium bromide followed by methanolysis.

Benzonitrile forms coordination complexes with transition metals that are both soluble in organic solvents and conveniently labile.
One example is PdCl2(PhCN)2.
The benzonitrile ligands are readily displaced by stronger ligands, making benzonitrile complexes useful synthetic intermediates.

Benzonitrile is a clear colorless liquid with an almond-like odor.
Flash point 161°F.
Denser (at 8.4 lb / gal) than water and slightly soluble in water.
Used as a specialty solvent and to make other chemicals.

Chemical Properties
Bezonitrile is a colorless, oily liquid. Benzonitrile has an almond odor.
When heated to decomposition, benzonitrile emits toxic hydrogen cyanide and oxides of nitrogen

Occurrence
Benzonitrile is reported to be found in natural cocoa aroma), in milk products, roasted filberts and peanuts and cooked trassi .
Benzonitrile also has been detected in the thermal decomposition products of flexible polyurethane foam.

Production Methods
Benzonitrile can be prepared by one of the following methods:
-on a small scale by the dehydration in an inert solvent with phosphorus oxychloride or benzenesulfonyl chloride and an organic amine;
-from benzoic acid by heating with lead thiocyanate;
-by heating sodium benzenesulfonate with sodium cyanide or by adding benzenediazonium chloride solution to a hot aq sodium cyanide solution containing cupric sulfate and distilling by ammoxidation of toluene.

Production Methods
Benzonitrile can be produced in high yield by the vapor-phase catalytic ammoxidation of toluene.

Chemical Reactivity
Reactivity with Water No reaction; Reactivity with Common Materials: Will attack some plastics; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Purification Methods
Dry benzonitrile with CaSO4, CaCl2, MgSO4 or K2CO3, and distil Benzonitrile from P2O5 in an all-glass apparatus, under reduced pressure (b 69o/10mm), collecting the middle fraction.
Distillation from CaH2 causes some decomposition of benzonitrile.
Isonitriles can be removed by preliminary treatment with conc HCl until the odour of isonitrile (carbylamine) has gone, followed by preliminary drying with K2CO3.
(This treatment also removes amines.) Steam distil (to remove small quantities of carbylamine).

The distillate is extracted into ether, washed with dilute Na2CO3, dried overnight with CaCl2, and the ether is removed by evaporation.
The residue is distilled at 40mm (b 96o).
Conductivity grade benzonitrile (specific conductance 2 x 10-8 mho) is obtained by treatment with anhydrous AlCl3, followed by rapid distillation at 40-50o under vacuum.
After washing with alkali and drying with CaCl2, the distillate is redistilled in a vacuum several times at 35o before fractionally crystallising several times by partial freezing.
Benzonitrile is dried over finely divided activated alumina from which Benzonitrile is withdrawn when required [Van Dyke & Harrison J Am Chem Soc 73 402 1951].

Incompatibilities
May form explosive mixture with air.
Strong acids which can release hydrogen cyanide.
Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions.
Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides.

Nitriles may polymerize in the presence of metals and some metal compounds.
They are incompatible Benzonitrile 403 with acids; mixing nitriles with strong oxidizing acids can lead to extremely violent reactions.
Nitriles are generally incompatible with other oxidizing agents such as peroxides and epoxides.
The combination of bases and nitriles can produce hydrogen cyanide.
Nitriles are hydrolyzed in both aqueous acid and base to give carboxylic acids (or salts of carboxylic acids).

These reactions generate heat.
Peroxides convert nitriles to amides.
Nitriles can react vigorously with reducing agents.
Acetonitrile and propionitrile are soluble in water, but nitriles higher than propionitrile have low aqueous solubility.
They are also insoluble in aqueous acids

Benzonitrile appears as a clear colorless liquid with an almond-like odor.
Flash point 161°F.
Denser (at 8.4 lb / gal) than water and slightly soluble in water.
Used as a specialty solvent and to make other chemicals.

Benzonitrile is a nitrile that is hydrogen cyanide in which the hydrogen has been replaced by a phenyl group.
Benzonitrile is a member of benzenes and a nitrile.

Use and Manufacturing
Synthesis of benzoquanamine; additive in nickel-plating baths; for separating naphthalene and alkylphthalenes from non-aromatics by azetropic distillation; as jet-fuel additive; in cotton bleaching baths; as a drying additive for acrylic fibers; in the removal of titanium tetrachloride and vanadium oxytrichloride from silicon tetrachloride.
Intermediate for rubber chemicals; solvent for nitrile rubber, specialty lacquers, and many resins and polymers, and for many anhydrous metallic salts.
In perfumes at a maximum level of 0.2% in the final product

Benzonitrile is a stable compound to pyrolysis, and its decomposition starts above 550°C with a very low decomposition rate.
A study performed in a flow reactor on N2 saturated with benzonitrile in the temperature range 550–600°C showed that the main pyrolysis products of this compound are HCN, benzene, monocyanodiphenyls, dicyanodiphenyls, and dicyanobenzenes as well as char.
The position of the hydrogen atom where the cleavage takes place is not preferential because pyrolysis generates a mixture of monocyanodiphenyls, dicyanodiphenyls, and dicyanobenzenes (e.g., 2-cyano, 3-cyano, and 4-cyanobiphenyl).
The presence of dicyanobenzene in the pyrolyzate indicates that free CN• radicals are likely to be formed in the reaction.
Kinetic parameters for the reactions of benzonitrile decomposition are reported in the literature, with the formation of different compounds having different reaction orders.
The pyrolyzate at 575°C obtained for 30 min contact time contains about 5.9 mole % HCN, 4.9 mole % dicyanobenzenes, 3.0 mole % benzene, 1.2% monocyanobiphenyls, and the other compounds at lower levels.

Benzonitrile is used as a solvent and intermediate in industries making drugs, perfumes, dyes, rubber, textiles, resins, and specialty lacquers;
Benzonitrile a colorless toxic oily compound C6H5CN of almond-oil odor made by fusing a mixture of sodium cyanide and sodium benzenesulfonate and in other ways and used chiefly as a solvent for synthetic resins.
Solvent and intermediate for the synthesis of agrochemicals, pharmaceuticals, chemical intermediates and high performance pigments.
We can offer the Benzonitrile in iso-container as well as steel drums.

Notes
Hygroscopic.
Incompatible with strong bases, strong oxidizing agents, reducing agents, acids, chlorates, nitrates and plastics.
Benzonitrile is commonly used as a precursor to synthesize a wide range of aromatic compounds and also forms stable coordination complexes with transition metals.

Benzonitrile is a useful solvent and precursor.
As a synthetic intermediate in coordination complexes, Benzonitrile is both soluble in organic solvents and readily displaced by stronger ligands.
Benzonitrile will also form N-substituted bebzamides upon hydrolysis reactions with amines.
Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN.

Properties
Chemical
Benzonitrile forms coordination complexes with transition metals that are both soluble in organic solvents and conveniently labile.

Physical
Benzonitrile is a colorless liquid with a sweet almond odor.

Availability
Benzonitrile is sold by chem suppliers.

Preparation
Benzonitrile can be prepared by heating a mixture of benzamide and ammonium sulfamate.
The reaction produces ammonia and ammonium bisulfate as side products.

Can be prepared by the dehydration of benzamide at high temperatures in the presence of catalyst.
Another accessible route is reaction between cuprous cyanide or NaCN with bromobenzene in DMSO, known as Rosenmund–von Braun reaction.
Benzonitrile can be prepared by ammoxidation of toluene, that is its reaction with ammonia and oxygen (or air) at temperatures between 400-450 °C:

Electroreduction of benzonitrile
Benzylamine is used as a photographic fixing agent, as a corrosion inhibitor and also as a raw material for the preparation of powerful explosives which are easy to handle.
The conventional method adopted for the preparation of benzylamine is the catalytic hydrogenation of benzonitrile in absolute ethanol under high pressure.
In the present communication, a novel electrolytic reduction technique for the conversion of benzonitrile to benzylamine, using a palladium black deposited on graphite cathode, is described.
Galvanostatic polarization studies, using both a stationary and a rotating cylindrical palladium black deposited cathode, revealed that there is considerable depolarization only in a very low current density regions.
The identity of benzylamine has been confirmed by NMR, mass spectral and infrared data.
Carbon, hydrogen and nitrogen analysis also support the identity of benzylamine.
This simple electrochemical reduction technique opens up a new route for the reduction of cyanide groups to the primary amine groups.

Methods of Manufacturing
Prepared by heating Na benzenesulfonate with NaCN or by adding benzenediazonium chloride solution to a hot aqueous NaCN solution containing CuSO4 and distilling.
From benzoic acid by heating with lead thiocyanate.
The reaction of benzoic acid (or substituted benzoic acid) with urea at 220-240 °C in the presence of a metallic catalyst.
Benzonitrile can be produced in high yield by the vapor-phase catalytic ammoxidation of toluene.

IDENTIFICATION AND USE:
Benzonitrile is a colorless liquid. Benzonitrile is used as intermediate for rubber chemicals; solvent for nitrile rubber, specialty lacquers, and many resins and polymers, and for many anhydrous metallic salts.

Benzonitrile may be used in the synthesis of organic building blocks such as 2-cyclopentylacetophenone, 4-carbomethoxy-5-methoxy-2-phenyl-1,3-oxazole and 1-phenyl-3,4-dihydro-6,7-methylenedioxyisoquinoline.
Benzonitrile may also be used as a solvent in the synthesis of bis(trifluoromethyl)diazomethane.

Benzonitrile (CAS NO. 100-47-0) should be dried with CaSO4, CaCl2, MgSO4 or K2CO3, and distd from P2O5 in an all-glass apparatus, under reduced pressure (b 69 °C/10mm), collecting the middle fraction. Distn from CaH2 causes some decomposition of solvent.
Isonitriles can be removed by preliminary treatment with conc HCl until the smell of isonitrile has gone, followed by preliminary drying with K2CO3. (This treatment also removes amines).

Applications
Benzonitrile is a useful solvent and a versatile precursor to many derivatives.
Benzonitrile reacts with amines to afford N-substituted benzamides after hydrolysis, Benzonitrile is a precursor to Ph2C=NH (b.p. 151 °C, 8 mm Hg) via reaction with phenylmagnesium bromide followed by hydrolysis.

Benzonitrile can form coordination complexes with late transition metals that are both soluble in organic solvents and conveniently labile, e.g. PdCl2(PhCN)2.
The benzonitrile ligands are readily displaced by stronger ligands, making benzonitrile complexes useful synthetic intermediates.

Molecular formula: C7H5N
Molar mass: 103.121
CAS Registry Number: 100-47-0
Appearance: Benzonitrile, 99%; Benzonitrile, 99%; colourless liquid
Melting point: -13 °C
Boiling point: 191 °C
Solubility: Water, 2000 mg/L (25 deg C)

Benzonitrile Chemical Compound is the chemical compound with the formula C6H5CN, abbreviated PhCN.
This aromatic organic compound is a colorless liquid with a sweet almond odour.
Benzonitrile is mainly used as a precursor to the resin benzoguanamine.
Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN.
This aromatic organic compound is a colorless liquid with a sweet almond odour.
Benzonitrile is mainly used as a precursor to the resin benzoguanamine.

Production
Benzonitrile is prepared by ammoxidation of toluene, that is its reaction with ammonia and oxygen (or air) at 400 to 450 °C (752 to 842 °F).
In the laboratory Benzonitrile can be prepared by the dehydration of benzamide or by the Rosenmund–von Braun reaction using cuprous cyanide or NaCN/DMSO and bromobenzene.
Benzonitrile is the chemical compound with the formula C6H5CN, abbreviated PhCN.
This aromatic organic compound is mainly used as a precursor to the resin benzoguanamine

History
Benzonitrile was reported by Hermann Fehling in 1844.
He found the compound as a product from the thermal dehydration of ammonium benzoate.
He deduced its structure from the already known analogue reaction of ammonium formate yielding formonitrile.
He also coined the name benzonitrile which gave the name to all the group of nitriles.
In 2018, benzonitrile was reported to be detected in the interstellar medium.

About this substance
Helpful information
This substance is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, for intermediate use only.
This substance is used at industrial sites and in manufacturing.

Consumer Uses
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
ECHA has no public registered data on the routes by which this substance is most likely to be released to the environment.

Article service life
ECHA has no public registered data on the routes by which this substance is most likely to be released to the environment.
ECHA has no public registered data indicating whether or into which articles the substance might have been processed.

Widespread uses by professional workers
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
ECHA has no public registered data on the types of manufacture using this substance.
ECHA has no public registered data on the routes by which this substance is most likely to be released to the environment.

Formulation or re-packing
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
ECHA has no public registered data on the routes by which this substance is most likely to be released to the environment.

Uses at industrial sites
This substance has an industrial use resulting in manufacture of another substance (use of intermediates).
This substance is used for the manufacture of: chemicals.
Release to the environment of this substance can occur from industrial use: as an intermediate step in further manufacturing of another substance (use of intermediates).
Manufacture
Release to the environment of this substance can occur from industrial use: manufacturing of the substance.

Benzonitrile
benzonitrile
Benzonitrile
PHENYL CYANIDE
PHENYLMETHANITRILE
Benzontrile
Benzoitrile
BENZONITRILE, 99.9%, HPLC GRADE
BENZONITRILE, REAGENTPLUS, 99%
BENZONITRILE OEKANAL, 250 ML
BENZONITRILE, ANHYDROUS, 99+%
Benzonitrile, extra pure, 99%
Benzonitrile, for spectroscopy, 99+%
AKOS BBS-00004403
AKOS B004231
AKOS 91614
CYANOBENZENE
BENZONITRILE
BN
2BNC
3BN
Benzene, cyano-
benzenecarbonitrile
Benzenenitrile
Benzoic acid nitrile
benzoicacidnitrile
BRR
C.I.SulphurBlue7(53440)
cyano-benzen
FB
Fenylkyanid
ImmedialIndoneRF
KayakuSul-phurBlueBK
MifsuiSulphurBlueBC
ThionolBlue2BN
Benzonitrile ReagentPlus(R), 99%
Sulphur Blue BRN
Benzonitrile, 99+%
Benzonitrile, 99%, J&KSeal
Benzonitrile, 99%, SuperDry, water≤30 ppm, J&KSeal
benzonitride
Benzonitrile( 99%, HyDry, Water≤50 ppm (by K.F.))
Benzonitrile( 99%, HyDry, with molecular sieves, Water≤50 ppm (by K.F.))
Benzonitril
BRN
phenylcyanide,benzonitrile,cyanobenzene
BENZONITRILE,REAGENT
phenylnitrile
Benzonitrile, 99%, extra pure
Benzonitrile, for spectroscopy
Benzenenitrile (benzonitrile)
Benzonitrile,99+%,for spectroscopy
Benzonitrile,Phenyl cyanide
Benzonitrile 10g [100-47-0]
Benzonitrile, 99%, pure
Benzonitrile, extra pure, 99% 1LT
BENZONITRILE FOR SYNTHESIS
Benzonitrile, SuperDry, J&KSeal
Benzonitrile, J&KSeal
Benzonitrile, 99%, SpcDry, with Molecular sieves, Water≤50 ppM (by K.F.), SpcSeal
Benzonitrile 2
BENZOPHENONE
2,4-Dihydroxybenzophenone; 2,4-DIHYDROXYBENZOPHENONE; (2,4-DIHYDROXY-PHENYL)-PHENYL-METHANONE; 4-BENZORESORCINOL; 4-BENZOYLRESORCINOL; BENZOPHENONE-1; BENZORESORCINOL; DHB; DIHYDROXYBENZOPHENONE(2,4-); SYNSORB; (2,4-dihydroxyphenyl)phenyl-methanon; (2,4-Dihydroxyphenyl)-phenylmethanon (2,4-dihydroxybenzophenon); 2,4-DHBP; 2,4-Dihydroxtbenzophenone; 2,4-Dihydroxybenzofenon; 2,4-dihydroxy-benzophenon; 2,4-dihydroxydiphenylketone; Advastab 48; advastab48; Benzophenone, 2,4-dihydroxy-; Dastib 263 CAS NO:131-56-6
BENZOPHENONE 1
2-Benzoyl-5-methoxyphenol; 2'-HYDROXY-4'-METHOXY BENZOPHENONE; 2-HYDROXY-4-METHOXYBENZOPHENONE; 3-BENZOPHENONE; 4-methoxy-2-hydroxybenzophenone; BENZOPHENONE-3; EUSOLEX(R) 4360; HMB; NEO HELIOPAN BB; OXYBENZONE; PROSORB UV 200; UV-ABSORBER BAYER 325; (2-hydroxy-4-methoxyphenyl)phenyl-methanon; (2-Hydroxy-4-methoxyphenyl)phenylmethanone; (2-hydroxy-4-methoxyphenyl)phenyl-Methanone; 2-hydroxy-4-methoxy-benzophenon; 4-Methoxy-2-hydroxybenzophenone butyric acid; Advastab 45; advastab45; Anuvex CAS NO:131-57-7
BENZOPHENONE 3
benzophenone; Diphenyl ketone; Benzoylbenzene; phenyl ketone; Oxoditane; alpha-Oxoditane; Oxodiphenylmethane; Diphenylmethanone; alpha-Oxodiphenylmethane; cas no: 119-61-9
benzophenone 3 - 4
2-Benzoyl-5-methoxy-1-phenol-4-sulfonic acid; 2-HYDROXY-4-METHOXY-5-SULFOBENZOPHENONE; 2-HYDROXY-4-METHOXY-5-SULFONYLBENZOPHENONE; 2-HYDROXY-4-METHOXYBENZOPHENONE-5-SULFONIC ACID; 2-HYDROXY-4-METHOXYBENZOPHENONE-5-SULFONIC ACID HYDRATE; 2-HYDROXY-4-METHOXYBENZOPHENONE-5-SULPHONIC ACID; 5-BENZOYL-4-HYDROXY-2-METHOXYBENZENESULFONIC ACID; BENZOPHENONE-4; BP-4; HMBS; spectra-sorb uv 284; SULISOBENZONE; TIMTEC-BB SBB002961; UV ABSORBER HMBS; Uvistat 1121; 2-benzoyl-5-methoxy-1-phenol-4-sulfonicaci; 2-Hydroxy-4-Methoxy-5-Benzophenonesulfonicacid; 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonicaci; Benzenesulfonicacid,5-benzoyl-4-hydroxy-2-methoxy-; Benzophenone-4,sulisobenzone CAS NO:4065-45-6
BENZOPHENONE 4
Benzophenone 4 Sulisobenzone (benzophenone 4) is an ingredient in some sunscreens which protects the skin from damage by UVB and UVA ultraviolet light. Its sodium salt, sulisobenzone sodium, is also referred to as benzophenone-5. Properties of Benzophenone-4 Chemical formula C14H12O6S Molar mass 308.31 g/mol Appearance Light-tan powder Melting point 145 °C (293 °F; 418 K) Solubility in water 1 g per 4 mL BENZOPHENONE 4 is classified as : Uv absorber Uv filter CAS Number of Benzophenone-4 4065-45-6 EINECS/ELINCS No: 223-772-2 Restriction (applies to EU only): VII/22 COSING REF No: 32143 INN Name: sulisobenzone Chem/IUPAC Name: 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid What Is Benzophenone-4? Benzophenone-1, -3, -4, -5, -9 and-11 are compounds made from 2-hydroxybenzophenone. These compounds are powders. In cosmetics and personal care products, Benzophenone-1 and Benzophenone-3 are used mostly in the formulation of nail polishes and enamels. These Benzophenone ingredients are also used in bath products, makeup products, hair products, sunscreens and skin care products. Why is Benzophenone-4 used in cosmetics and personal care products? Benzophenone-1, Benzophenone-3, Benzophenone 4, Benzophenone-5, Benzophenone-9 and Benzophenone-11 protect cosmetics and personal care products from deterioration by absorbing, reflecting, or scattering UV rays. When used as sunscreen ingredients, Benzophenone-3 and Benzophenone 4 protect the skin from UV rays. Scientific Facts of Benzophenone-4: Benzophenone ingredients absorb and dissipate UV radiation, which serves to protect cosmetics and personal care products. As part of sunscreen products, which are OTC drugs in the United States, Benzophenone-3 (Oxybenzone) and Benzophenone 4 (Sulisobenzone) protect the skin from the harmful effects of the sun. Exposing unprotected skin to UV light (primarily in the UV-B range) can result in sunburn and can promote premature aging of the skin and skin cancer. Odor of Benzophenone-4: characteristic Use of Benzophenone-4: Benzophenone 4 is a water soluble UVB absorber and is also commonly used to protect formulations from degradation due to UV exposure. In combination with UVA absorbers, it offers broad spectrum protection against UV radiation for skin and hair. Benzophenone 4 is approved by the FDA in concentrations of up to 10% and in Canada, is approved by Health Canada at the same concentrations. It works to filter out both UVA and UVB rays, protecting the skin from sun UV damage. The UV-filter substance, Benzophenone 4 (BP-4) is widely used an ingredient in sunscreens and other personal care products,. It falls under the drug category of benzophenones. The benzophenones are a group of aromatic ketones that have both pharmaceutical and industrial applications. Benzophenones may be found organically in fruits such as grapes. Benzophenones are used as photoinitiators, fragrance enhancers, ultraviolet curing agents, and, occasionally, as flavor ingredients; they are also used in the manufacture of insecticides, agricultural chemicals, and pharmaceuticals and as an additive for plastics, coatings, and adhesives. As a group, benzophenones may be used to delay photodegradation or extend shelf life in toiletries and plastic surface coatings. Analyte: Benzophenone 4; matrix: chemical purity; procedure: dissolution in water; addition of dehydrated isopropyl alcohol; potentiometric titration with tetrabutylammonium hydroxide to two endpoints Benzophenone 4's production and use as an ultraviolet absorber in cosmetics, sunscreens and shampoos and in leather and textile fabrics(1,2) may result in its release to the environment through various waste streams. If released to air, an estimated vapor pressure of 1.3X10-11 mm Hg at 25 °C indicates Benzophenone 4 will exist solely in the particulate phase in the atmosphere. Particulate-phase Benzophenone 4 will be removed from the atmosphere by wet and dry deposition. Benzophenone 4 absorbs at wavelengths >290 nm and therefore may be susceptible to direct photolysis by sunlight. If released to soil, Benzophenone 4 is expected to have high mobility based upon an estimated Koc of 67. The estimated pKa values of the sulfonic acid are -2.4 and 7.6, indicating that this compound will exist in the anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts. Volatilization from moist soil is not expected because the compound exists as an anion and anions do not volatilize. Benzophenone 4 is not expected to volatilize from dry soil surfaces based upon its vapor pressure. No relevant data were available to assess the importance of biodegradation in soil or water. If released into water, Benzophenone 4 is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. Volatilization from water surfaces is not expected based upon the estimated pKa values. An estimated BCF of 3.2 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Sensitized photolysis may have some importance in natural waters exposed to sunlight. Occupational exposure to Benzophenone 4 may occur through dermal contact with this compound at workplaces where Benzophenone 4 is produced or used. The general population may be exposed to Benzophenone 4 via dermal contact with this compound in consumer products, such as sunscreens and cosmetics, containing Benzophenone 4. Based on a classification scheme, an estimated Koc value of 67, determined from a structure estimation method, indicates that Benzophenone 4 (BP-4) is expected to have high mobility in soil. The estimated pKa values of Benzophenone 4 (BP 4) are -2.4 and 7.6, indicating that this compound will exist almost entirely in anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4). Volatilization from moist soil is not expected because the compound exists as an anion and anions do not volatilize. Benzophenone 4 (BP-4) is not expected to volatilize from dry soil surfaces based upon an estimated vapor pressure of 1.3X10-11 mm Hg at 25 °C, determined from a fragment constant method. No relevant data were available to assess the importance of biodegradation in the environment. The rate constant for the vapor-phase reaction of Benzophenone 4 (BP-4) with photochemically-produced hydroxyl radicals has been estimated as 7.5X10-11 cu cm/molecule-sec at 25 °C using a structure estimation method. This corresponds to an atmospheric half-life of about 5.2 hours at an atmospheric concentration of 5X10+5 hydroxyl radicals per cu cm. Benzophenone 4 (BP-4) is not expected to undergo hydrolysis in the environment due to the lack of hydrolyzable functional groups. Benzophenone 4 (BP-4) absorbs at wavelengths >290 nm and therefore may be susceptible to direct photolysis by sunlight. Phenols are susceptible to sensitized photolysis in natural waters exposed to sunlight through reaction with hydroxy and peroxy radicals(4); therefore sensitized photolysis may have some importance in the environment. An estimated BCF of 3 was calculated for Benzophenone 4 (BP-4), using an estimated log Kow of 0.37 and a regression-derived equation. According to a classification scheme, this BCF suggests the potential for bioconcentration in aquatic organisms is low. Using a structure estimation method based on molecular connectivity indices, the Koc of Benzophenone 4 (BP-4) can be estimated to be 67. According to a classification scheme, this estimated Koc value suggests that Benzophenone 4 (BP-4) is expected to have high mobility in soil. The estimated pKa values of Benzophenone 4 (BP-4) are -2.4 and 7.6, indicating that this compound will exist in the anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4). The estimated pKa values of -2.4 and 7.6 indicate Benzophenone 4 (BP-4) will exist almost entirely in the anion form at pH values of 5 to 9 and, therefore, volatilization from water and moist soil surfaces is not expected to be an important fate process. Benzophenone 4 (BP-4) is not expected to volatilize from dry soil surfaces based upon an estimated vapor pressure of 1.3X10-11 mm Hg, determined from a fragment constant method. In surface seawater samples collected from Folly Beach, South Carolina in the summer of 2010, Benzophenone 4 (BP-4) was not detected in any samples from four sites (detection limit 1 ng/L) while other UV filter compounds (avobenzone, octocrylene, octinoxate, and padimate-O) were detected at concentrations ranging from 10 to 2013 ng/L. According to the 2006 TSCA Inventory Update Reporting data, the number of persons reasonably likely to be exposed in the industrial manufacturing, processing, and use of Benzophenone 4 (BP-4) is 1 to 99; the data may be greatly underestimated. NIOSH (NOES Survey 1981-1983) has statistically estimated that 91,292 workers (38,820 of these were female) were potentially exposed to Benzophenone 4 (BP-4) in the US. Occupational exposure to Benzophenone 4 (BP-4) may occur through dermal contact with this compound at workplaces where Benzophenone 4 (BP-4) is produced or used. The general population may be exposed to Benzophenone 4 (BP-4) via dermal contact with this compound in consumer products, such as sunscreens and cosmetics, containing Benzophenone 4 (BP-4). In this study, /investigators/ evaluate the effects of benzophenone-4 (BP-4) in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to Benzophenone 4 (BP-4) concentrations between 30 and 3000 ug/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17beta3, cyp19b cyp19a, hhex and pax8 were induced at 3000 ug/L Benzophenone 4 (BP-4), which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males Benzophenone 4 (BP-4) displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that Benzophenone 4 (BP-4) interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that Benzophenone 4 (BP-4) interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber. Pharmacology of Benzophenone-4 (BP 4) Benzophenone 4 sunscreens, applied topically, protect the skin from these harmful effects of ultraviolet light by chemically absorbing light energy (photons). Correct use of sunscreens serves to reduce the risk of sunburn. Sunscreen agents prevent the occurrence of squamous-cell carcinoma of the skin when used mainly during unintentional sun exposure. No conclusion can be drawn about the cancer-preventive activity of topical use of sunscreens against both basal-cell carcinoma and cutaneous melanoma. Use of sunscreens can extend the duration of intentional sun exposure, such as bathing in the sun. Benzophenone's main metabolic pathway in the rabbit is by reduction to benzhydrol. A small amount (1%) is converted to p-hydroxybenzophenone 4 following oral administration to rats. A surface coating of benzophenones decreases the amount of UV radiation absorbed by the skin by limiting the total amount of energy that reaches the skin. Benzophenone 4 sunscreens, applied topically, protect the skin from these harmful effects of ultraviolet light by chemically absorbing light energy (photons). As this occurs, the benzophenone molecule becomes activated to higher energy levels. As the excited molecule returns to its ground state, the energy is released in the form of thermal energy. The hydroxyl group in the ortho position to the carbonyl group is believed to be a structural requirement for the benzophenones' absorption of UV light. This structural arrangement also contributes to the electronic stability of the molecule. Benzophenone 4 absorb energy throughout the UV range, although the maximum UV absorbance is between 284 and 287 nm for the 2-hydroxybenzophenones. Benzophenone 4 sunscreens, applied topically, protect the skin from these harmful effects of ultraviolet light by chemically absorbing light energy (photons). As this occurs, the Benzophenone 4 molecule becomes excited to higher energy levels. As the excited molecule returns to its ground state, the energy is released in the form of thermal energy. The hydroxyl group in the ortho position to the carbonyl group is believed to be a structural requirement for the Benzophenone 4's absorption of UV light. This structural arrangement also contributes to the electronic stability of the molecule. Thus, a surface coating of Benzophenones decreases the amount of UV radiation absorbed by the skin by limiting the total amount of energy that reaches the skin. Benzophenone 4 absorb energy throughout the UV range, though maximum absorbance is between 284 and 287 nm for the 2-hydroxybenzophenones. Benzophenone-4 is prepared via sulfonation of Benzophenone-3. The product is purified by precipitation from aqueous HCl, isolated by centrifugation, washed with acidic water, and dried. The maximum recommended levels of lead and arsenic impurities in Benzophenone-4 are /13 ppm and 1 ppm respectively/. The FDA Panel on Review of Topical Analgesics has proposed that Benzophenones-3, -4, and -8 are safe and effective as active ingredients in sunscreens for over-the-counter (OTC) use at the following concentrations: Benzophenone-3, 2%-6%; Benzophenone-4, 5%-10%; and Benzophenone-8, 3%. The Panel proposed these concentration limits on a combined safety and efficacy basis (a concentration limit may reflect maximum efficacy and not necessarily an indication of toxicity at a higher concentration). Acute oral toxicity (LD50): 3530 mg/kg [Rat]. This drug can cause skin and eye irritation. Drug-induced phototoxicity is a non-immunological inflammatory skin reaction, caused by concurrent topical or systemic exposure to a specific molecule and ultraviolet radiation. Most of the phototoxic compounds absorb energy particularly from UVA light leading to activated derivatives, which can induce cellular damage. Benzophenone 4s are ultraviolet light filters that have been documented to cause a variety of adverse skin reactions, including contact and photocontact dermatitis, contact and photocontact urticaria, and anaphylaxis. Recently, they have become especially well known for their ability to induce allergy and photoallergy. Topical sunscreens and other cosmetics are the sources of these allergens in the majority of patients, however reports of reactions secondary to use of industrial products also exist. Benzophenone 4s as a group have been named the American Contact Dermatitis Society's Allergen of the Year for 2014 to raise awareness of both allergy and photoallergy to these ubiquitous agents. The liver is the main target organ of benzophenone 4 toxicity in rats and mice, based on elevations n liver weights, hepatocellular hypertrophy, clinical chemistry changes, and induction of liver microsomal cytochrome P450 2B isomer. The kidney was also identified as a target organ of benzophenone 4 toxicity in rats only, which was based on exposure concentration-related increases in kidney weights and microscopic changes. To determine the frequency of irritant reactions to 19 organic sunscreen filters in current use. Ninety-four healthy volunteers were photopatch tested using the European consensus methodology to three different concentrations (2%, 5%, and 10%) of 19 organic sunscreen filters at the Photobiology Unit in Dundee, UK. Of the 94 subjects recruited, 80 were analyzed after withdrawals and exclusions. Of the 19 organic sunscreen filters studied, only 2 compounds led to irritant reactions in > or =5% subjects. Five per cent and 10% benzophenone-4 led to irritant reactions in four and six subjects, respectively. Five per cent methylene bis-benzotriazolyl tetramethylbutylphenol led to irritant reactions in six subjects, but unlike benzophenone-4, this was not in a dose-dependent fashion. When performing photopatch testing according to the European consensus methodology with these 19 organic sunscreen filters, a 10% concentration is suitable for all filters, except benzophenone-4, which should be tested at a concentration of 2%. Investigators/ tested the potential irritancy of Benzophenone-4 on six adult white humans. Patches containing 1% or 10% Benzophenone-4 in alcohol were applied to the subjects for 24 hours, after which time the patches were removed, the sites scored, and fresh patches applied. This procedure was repeated every other day, three days per week for seven weeks, until a total of 21 patches had been made. The mean cumulative irritation scores for 1% and 10% solutions were 8.6 and 53.1, respectively (maximum score = 84). The latter value is indicative of a primary irritant. Benzophenones-4 (BP4) and -11 were tested for potential skin irritation in separate single insult patch tests. Each ingredient was applied at concentrations of 16, 8, and 4% in DMP /dimethyl phthalate/ and in petrolatum to the skin of each of 14 subjects. At a concentration of 16% in either base, Benzophenones-4 and -11 were irritating to four and two subjects, respectively. Neither ingredient was irritating at concentrations of 4% or 8% in either vehicle. Acute Exposure/ A number of studies have determined the potential irritancy of Benzophenones to the eyes of rabbits. The test material (0.1 mL or 0.1 g) was instilled into one eye of each rabbit; the other eye served as an untreated control. Eyes were examined and scored for irritation daily for a period of three to ten days. Some test procedures included washing of the treated eyes with water four seconds after instillation of the test material. Results of eye irritation tests revealed that most Benzophenones at concentrations of 5%-100% were nonirritating when instilled into the eyes of rabbits. Benzophenones-1, -2, and -4 were slightly to moderately irritating at 100% concentration; however, ... Benzophenone-4 was irritating at concentrations of 8 and 16% in DMP /dimethyl phthalate/ or petrolatum, it was nonirritating when tested as a 5% solution in water. Subchronic or Prechronic Exposure/ ...A 16-day cumulative test in rabbits /was used/ to study the irritation potential of Benzophenone-4. An alcohol solution containing either 10% or 1% Benzophenone-4 was applied uncovered to the depilated backs of six New Zealand albino rabbits. Twenty-four hours later the sites were scored for irritation, and the solution was reapplied. This procedure was repeated every other day for five weeks, until a total of 16 applications of Benzophenone-4 had been made. The average cumulative irritation score was then calculated (maximum score = 64); applications of Benzophenone-4 (10%) and Benzophenone-4(1%) produced scores of 3.6 and 0.3, respectively. In this work, /the authors/ evaluate whether in vitro systems are good predictors for in vivo estrogenic activity in fish. /Investigators/ focus on UV filters being used in sunscreens and in UV stabilization of materials. First, /investigators/ determined the estrogenic activity of 23 UV filters and one UV filter metabolite employing a recombinant yeast carrying the estrogen receptor of rainbow trout (rtERalpha) and made comparisons with yeast carrying the human hERalpha for receptor specificity. Benzophenone-1 (BP1), benzophenone-2 (BP2), 4,4-dihydroxybenzophenone, 4-hydroxybenzophenone (bp-4), 2,4,4-trihydroxy-benzophenone, and phenylsalicylate showed full dose-response curves with maximal responses of 81-115%, whereas 3-benzylidene camphor (3BC), octylsalicylate, benzylsalicylate, benzophenone-3, and benzophenone 4 displayed lower maximal responses of 15-74%. Whereas the activity of 17beta-estradiol was lower in the rtERalpha than the hERalpha assay, the activities of UV filters were similar or relatively higher in rtERalpha, indicating different relative binding activities of both ER. Subsequently, /investigators/ analyzed whether the in vitro estrogenicity of eight UV filters is also displayed in vivo in fathead minnows by the induction potential of vitellogenin after 14 days of aqueous exposure. Of the three active compounds in vivo, 3BC induced vitellogenin at lower concentrations (435 ug/L) than BP1 (4919 ug/L) and BP2 (8783 ug/L). The study shows, for the first time, estrogenic activities of UV filters in fish both in vitro and in vivo. Thus /investigators/ propose that receptor-based assays should be used for in vitro screening prior to in vivo testing, leading to environmental risk assessments based on combined, complementary, and appropriate species-related assays for hormonal activity. Here /the authors/ report on acute and chronic effects of UV-filters 3-(4-methylbenzylidene-camphor) (4MBC), 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC), benzophenone-3 (BP3) and benzophenone-4 (BP4) on Daphnia magna. The acute toxicity increased with log Pow of the compound. The LC50 values (48 hr) of 4MBC, EHMC, BP3 and BP4 were 0.56, 0.29, 1.9 and 50 mg/L, respectively. A tentative preliminary environmental risk assessment (ERA) based on a limited set of data indicates that individual UV-filters should undergo further ecotoxicological analysis, as an environmental risk cannot be ruled out. Consequently new data on the environmental occurrence and the effects of UV-filters are needed for a more accurate ERA. When regarded as a mixture occurring in surface waters they may pose a risk for sensitive aquatic organisms. Benzophenone 4 (BP-4) is the organic compound with the formula (C6H5)2CO, generally abbreviated Ph2CO. It is a white solid that is soluble in organic solvents. Benzophenone 4 (BP-4) is a widely used building block in organic chemistry, being the parent diarylketone. Uses of Benzophenone-4 Benzophenone 4 (BP-4) can be used as a photo initiator in UV-curing applications such as inks, imaging, and clear coatings in the printing industry. Benzophenone 4 (BP-4) prevents ultraviolet (UV) light from damaging scents and colors in products such as perfumes and soaps. Benzophenone 4 (BP-4) can also be added to plastic packaging as a UV blocker to prevent photo-degradation of the packaging polymers or its contents. Its use allows manufacturers to package the product in clear glass or plastic (such as a PETE water bottle). Without it, opaque or dark packaging would be required. In biological applications, Benzophenone 4 (BP-4)s have been used extensively as photophysical probes to identify and map peptide–protein interactions. Benzophenone 4 (BP-4) is used as an additive in flavorings or perfumes for "sweet-woody-geranium-like notes." Synthesis of Benzophenone-4 Benzophenone 4 (BP-4) is produced by the copper-catalyzed oxidation of diphenylmethane with air. A laboratory route involves the reaction of benzene with carbon tetrachloride followed by hydrolysis of the resulting diphenyldichloromethane. It can also be prepared by Friedel–Crafts acylation of benzene with benzoyl chloride in the presence of a Lewis acid (e.g. aluminium chloride) catalyst: since benzoyl chloride can itself be produced by the reaction of benzene with phosgene the first synthesis proceeded directly from those materials. Another route of synthesis is through a palladium(II)/oxometalate catalyst. This converts an alcohol to a ketone with two groups on each side. Another, less well-known reaction to produce Benzophenone 4 (BP-4) is the pyrolysis of anhydrous calcium benzoate. Organic chemistry of Benzophenone-4 Benzophenone 4 (BP-4) is a common photosensitizer in photochemistry. It crosses from the S1 state into the triplet state with nearly 100% yield. The resulting diradical will abstract a hydrogen atom from a suitable hydrogen donor to form a ketyl radical. Benzophenone 4 (BP-4) radical anion Main article: Air-free technique File:Making Benzophenone 4 (BP-4) radical anion.webm Addition of a solution of Benzophenone 4 (BP-4) in THF to a vial containing THF, sodium metal, and a stir bar, yielding the deep blue Benzophenone 4 (BP-4) anion radical. Playback speed 4x original recording. Alkali metals reduce Benzophenone 4 (BP-4) to the deeply blue colored radical anion, diphenylketyl: M + Ph2CO → M+Ph2CO•− Generally sodium is used as the alkali metal. Although inferior in terms of safety and effectiveness relative to molecular sieves, this ketyl is used in the purification of organic solvents, particularly ethers, because it reacts with water and oxygen to give non-volatile products. The ketyl is soluble in the organic solvent being dried, so it accelerates the reaction of the sodium with water and oxygen. In comparison, sodium is insoluble, and its heterogeneous reaction is much slower. When excess alkali metal is present a second reduction may occur, resulting in a color transformation from deep blue to purple: M + M+Ph2CO•− → (M+)2(Ph2CO)2− A solvent pot containing dibutyl ether solution of sodium Benzophenone 4 (BP-4) ketyl, which gives it its purple color. Commercially significant derivatives and analogues There are over 300 natural Benzophenone 4 (BP-4)s, with great structural diversity and biological activities. They are being investigated as potential sources of new drugs. Substituted Benzophenone 4 (BP-4)s such as oxybenzone and dioxybenzone are used in many sunscreens. The use of Benzophenone 4 (BP-4)-derivatives which structurally resemble a strong photosensitizer has been criticized (see sunscreen controversy). Michler's ketone has dimethylamino substituents at each para position. The high-strength polymer PEEK is prepared from derivatives of Benzophenone 4 (BP-4). Safety It is considered as "essentially nontoxic." Benzophenone 4 (BP-4) is however banned as a food additive by the US Food and Drug Administration, despite the FDA's continuing stance that this chemical does not pose a risk to public health under the conditions of its intended use. Benzophenone 4 (BP-4) derivatives are known to be pharmacologically active. From a molecular chemistry point of view interaction of Benzophenone 4 (BP-4) with B-DNA has been demonstrated experimentally. The interaction with DNA and the successive photo-induced energy transfer is at the base of the Benzophenone 4 (BP-4) activity as a DNA photosensitizers and may explain part of its therapeutic potentialities. In 2014, Benzophenone 4 (BP-4)s were named Contact Allergen of the Year by the American Contact Dermatitis Society. Benzophenone 4 (BP-4) is an endocrine disruptor capable of binding to the pregnane X receptor. Environmental Fate/Exposure Summary Benzophenone 4 (benzophenone-4)'s production and use in organic synthesis, as an odor fixative, as a flavoring, soap fragrance; in the manufacture of pharmaceuticals, and as a polymerization inhibitor for styrene may result in its release to the environment through various waste streams. Its use as an inert ingredient in nonfood use pesticides may result in its direct release to the environment. Benzophenone 4 (benzophenone-4) occurs naturally in Merrill flowers. If released to air, a vapor pressure of 1.93X10-3 mm Hg at 25 °C indicates Benzophenone 4 (benzophenone-4) will exist solely as a vapor in the atmosphere. Vapor-phase Benzophenone 4 (benzophenone-4) will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3 days. Benzophenone 4 (benzophenone-4) absorbs UV light at wavelengths >290 nm and, therefore, may be susceptible to direct photolysis by sunlight. If released to soil, Benzophenone 4 (benzophenone-4) is expected to have moderate to low mobility based upon Koc values of 430 and 517. Volatilization from moist soil surfaces is expected to be an important fate process based upon an estimated Henry's Law constant of 1.9X10-6 atm-cu m/mole. Benzophenone 4 (benzophenone-4) is not expected to volatilize from dry soil surfaces based upon its vapor pressure. Utilizing the Japanese MITI test, 0% of the Theoretical BOD was reached in 2 weeks indicating that biodegradation is not an important environmental fate process in soil or water. If released into water, Benzophenone 4 (benzophenone-4) is not expected to adsorb to suspended solids and sediment based upon the Koc values. Volatilization from water surfaces is expected to be an important fate process based upon this compound's estimated Henry's Law constant. Estimated volatilization half-lives for a model river and model lake are 15 and 110 days, respectively. Measured BCF values of 3.4-9.2 suggest bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions (pH 5 to 9). Occupational exposure to Benzophenone 4 (benzophenone-4) may occur through inhalation and dermal contact with this compound at workplaces where Benzophenone 4 (benzophenone-4) is produced or used. Monitoring data indicate that the general population may be exposed to Benzophenone 4 (benzophenone-4) via ingestion of food and dermal and inhalation contact with consumer products or flowers containing Benzophenone 4 (benzophenone-4). About Benzophenone 4 Benzophenone 4 is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 100 to < 1 000 per annum. Benzophenone 4 is used by consumers, in articles, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing. Consumer Uses of Benzophenone-4 Benzophenone 4 is used in the following products: cosmetics and personal care products, washing & cleaning products, leather treatment products and air care products. Other release to the environment of Benzophenone 4 is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use as processing aid. Article service life of Benzophenone-4 Other release to the environment of Benzophenone 4 is likely to occur from: outdoor use in long-life materials with high release rate (e.g. tyres, treated wooden products, treated textile and fabric, brake pads in trucks or cars, sanding of buildings (bridges, facades) or vehicles (ships)), outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials), indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and indoor use in long-life materials with high release rate (e.g. release from fabrics, textiles during washing, removal of indoor paints). Benzophenone 4 can be found in products with material based on: plastic (e.g. food packaging and storage, toys, mobile phones) and paper used for articles with intense direct dermal (skin) contact during normal use such as personal hygiene articles (e.g. nappies, feminine hygiene products, adult incontinence products, tissues, towels, toilet paper). Widespread uses by professional workers of Benzophenone-4 Benzophenone 4 is used in the following products: cosmetics and personal care products, washing & cleaning products, air care products, pharmaceuticals and polishes and waxes. Benzophenone 4 is used in the following areas: health services, agriculture, forestry and fishing and formulation of mixtures and/or re-packaging. Other release to the environment of Benzophenone 4 is likely to occur from: indoor use (e.g. mac
BENZOPHENONE-12
BENZOPHENONE-2, N° CAS : 131-55-5. Nom INCI : BENZOPHENONE-2. Nom chimique : 2,2',4,4'-Tetrahydroxybenzophenone. N° EINECS/ELINCS : 205-028-9. Classification : Filtre UV Chimique. Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV. 2,2',4,4'-tetrahydroxybenzophenone; 4-(2,4-dihydroxybenzoyl)benzene-1,3-diol; bis(2,4-dihydroxyphenyl)methanone. 131-55-5 [RN]; 2,2',4,4'-Tetrahydroxybenzophenone; 2,2′,4,4′-tetrahydroxybenzophenone; 205-028-9 [EINECS]; benzophenone-2; Bis(2,4-dihydroxyphenyl)methanon [German] ; Bis(2,4-dihydroxyphenyl)methanone ;Bis(2,4-dihydroxyphényl)méthanone [French] ; Methanone, bis(2,4-dihydroxyphenyl)- [ACD/Index Name]; 2, 2', 4, 4'-Tetrahydroxy Benzophenone (Benzophenone-2); 2,2',4,4'-Tetrahydroxybenzophenone;2,2',4,4'-hydroxybenophenone 2,2',4,4'-Tetrahydroxy diphenyl ketone; 2,2',4,4'-TETRAHYDROXYBENZOPHE; 2,2,4,4-tetrahydroxybenzophenone; 2,2',4,4'-tetrahydroxy-benzophenone; 2,2',4,4'-Tetrahydroxybenzophenone (en) 2,2,4,4-tetrahydroxybenzophenone, 98+%; 2,2,4,4-tetrehydroxybenzophenone; 2,2',4,4'-Tetrehydroxybenzophenone; 2,2`,4,4`-tetrehydroxybenzophenone; 2,2’,4,4’-tetrahydroxybenzophenone; 2,2’,4,4’-tetrahydroxybenzophenone 97%; 2,2'4, 4'-Tetrahydroxybenzophenone; 2,2'4,4'-Tetrahydroxybenzophenone; 2,4,2',4'-Tetrahydroxybenzophenone; benzophenone, 2,2',4,4'-tetrahydroxy- Bis-(2,4-dihydroxy-phenyl)-methanone; di(2,4-dihydroxyphenyl)methanone; di2,4-dihydroxyphenyl ketone; EINECS 205-028-9; Ethyl bicyclo[4.1.0]heptane-7-carboxylate ; Methanone, bis (2,4-dihydroxyphenyl)-; Oprea1_250768; Uvinol D-50; Uvinul D-50
BENZOPHENONE-2
BENZOPHENONE-4, N° CAS : 4065-45-6. Nom inci: Benzophenone-4. Nom français: Sulisobenzone; N° CAS : 4065-45-6. N° CE: 223-772-2. Autres appellations :Benzophenone-4, Nom chimique : 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid, N° EINECS/ELINCS : 223-772-2. Classification : Filtre UV Chimique, Règlementé. Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV. Filtre UV : Permet de filtrer certains rayons UV afin de protéger la peau ou les cheveux des effets nocifs de ces rayons.Principaux synonymes. Noms français :2-HYDROXY-4-METHOXY-BENZOPHENONE-5-SULFONIC ACID; Sulfonate de benzoyl-5 hydroxy-4 méthoxy-2 benzène, Noms anglais :5-Benzoyl 4-hydroxy 2-methoxybenzenesulfonic acid; BENZENESULFONIC ACID, 5-BENZOYL-4-HYDROXY-2-METHOXY-; BENZOPHENONE-4 1-Phenol-4-sulfonic acid, 2-benzoyl-5-methoxy- (6CI); 2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid; 5-Benzoyl-4-hydroxy-2-methoxybenzene sulfonic acid; 5-Benzoyl-4-hydroxy-2-methoxybenzolsulfonsaeure; Benzenesulfonic acid, 5-benzoyl-4-hydroxy-2-methoxy-; Benzenesulfonic acid, 5-benzoyl-4-hydroxy-2-methoxy-, monosodium salt; Benzophenone-4; MS 40; Seesorb 101S; Spectra-Sorb UV 284; Sulisobenzona; Sulisobenzone; Sulisobenzonum; Syntase 230; Uval; Uvinuc ms 40; Uvinul; Uvinul MS 40; Uvinul MS-40 substanz; ; 2-HYDROXY-4-METHOXY- BENZOPHENONE--5-SULFONIC-ACID; 2-hydroxy-4-methoxy-benzophenone-5-sulfonic acid; 2-hydroxy-4-methoxy-bezophenone-5-sulfonic acid; 2-Hydroxy-4-methoxybenzophenone-5-sulfonic Acid Hydrate (contains 5-10% Isopropyl Alcohol); 4-Hydroxy-2-methoxy-5-(oxo-phenylmethyl)benzenesulfonic acid; 5-(benzoyl)-4-hydroxy-2-methoxybenzenesulfonic acid; 5-benzoyl-4-hydroxy-2-methoxybenzene-1-sulfonic acid; 5-Benzoyl-4-Hydroxy-2-Methoxybenzenesulfonic Acid; BP4; Ben-4; Eclipsogen BP4; Escalol 577 ; 223-772-2 [EINECS]; 2-Hydroxy-4-Methoxy-5-sulfonylbenzophenone(BP-4); 4065-45-6 [RN]; 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid ; 5-Benzoyl-4-hydroxy-2-methoxybenzolsulfonsäure [German]; Acide 5-benzoyl-4-hydroxy-2-méthoxybenzènesulfonique ; Benzenesulfonic acid, 5-benzoyl-4-hydroxy-2-methoxy- [ACD/Index Name] Benzophenone-4 HMBS sulisobenzona [Spanish] Sulisobenzona sulisobenzone [USAN] sulisobenzone [French] sulisobenzonum [Latin] Sulisobenzonum сулизобензон [Russian] سوليسوبانزون [Arabic] 舒利苯酮 [Chinese] [4065-45-6] 1-Phenol-4-sulfonic acid, 2-benzoyl-5-methoxy- 1-Phenol-4-sulfonic acid, 2-benzoyl-5-methoxy- (6CI) 2-Benzoyl-5-methoxy-1-phenol-4-sulfonic Acid 2-Benzoyl-5-methoxy-1-phenol-4-sulphonic acid 2-Hydroxy-4-methoxy-5-sulfobenzophenone 2-Hydroxy-4-Methoxy-5-Sulfobenzophenone (en) 2-Hydroxy-4-Methoxybenzophenone-5-Sulfonic Acid 2-hydroxy-4-methoxybenzophenone-5-sulfonicacid 2-Hydroxy-4-methoxybenzophenone-5-sulphonic acid 3-Benzoyl-4-hydroxy-6-methoxybenzenesulfonic Acid 4-hydroxy-2-methoxy-5-(oxo-phenylmethyl)benzenesulfonic acid 4-hydroxy-2-methoxy-5-(phenylcarbonyl)benzenesulfonic acid 4-hydroxy-2-methoxy-5-phenylcarbonyl-benzenesulfonic acid 5-(benzoyl)-4-hydroxy-2-methoxybenzenesulfonic acid 5-(benzoyl)-4-hydroxy-2-methoxy-benzenesulfonic acid 582-33-2 [RN] 5-Benzoyl-4-hydroxy-2-methoxybenzene sulfonic acid 5-BENZOYL-4-HYDROXY-2-METHOXYBENZENE-1-SULFONIC ACID 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid ammoniate 5-Benzoyl-4-hydroxy-2-methoxybenzolsulfonsaeure Benzophenone 4 D05964 EINECS 223-772-2 Seesorb 101S Spectra-Sorb U.V. 284 Spectra-Sorb UV 284 Sulfisobenzone SULISOBENZENE Sungard [Wiki] Sungard (TN) Syntase 230 UNII:1W6L629B4K UNII-1W6L629B4K UV Absorber HMBS Uval Uvinuc ms 40 Uvinul Uvinul MS 40
BENZOPHENONE-5
BENZOPHENONE-6, N° CAS : 131-54-4, Nom INCI : BENZOPHENONE-6, Nom chimique : 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone, N° EINECS/ELINCS : 205-027-3; Agent masquant : Réduit ou inhibe l'odeur ou le goût de base du produit. Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV. Noms français : Dihydroxy-2,2' diméthoxy-4,4' benzophénone Noms anglais : METHANONE, BIS(2-HYDROXY-4-METHOXYPHENYL)-; 2,2'-dihydroxy-4,4'-dimethoxybenzophenone. : 2-(2-hydroxy-4-methoxybenzoyl)-5-methoxyphenol Benzophenone-6; bis(2-hydroxy-4-methoxyphenyl)methanone; 2,2'-dihydroxy-4,4'-dimethoxybenzophenone; 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone (8CI) 205-027-3 [EINECS]; Benzophenone-6; Bis(2-hydroxy-4-methoxyphenyl)methanon [German] ; Bis(2-hydroxy-4-methoxyphenyl)methanone ; Bis(2-hydroxy-4-méthoxyphényl)méthanone [French] Methanone, bis(2-hydroxy-4-methoxyphenyl)- [ACD/Index Name] [131-54-4] 2 2-dihydroxy-4 4-dimethoxybenzophenone 2-(2-hydroxy-4-methoxybenzoyl)-5-methoxyphenol 2,2′ 2,2′-Dihydroxy-4,4′-dimethoxybenzophenone 2,2'-Dihydroxy-4, 4'-dimethoxybenzophenone 2,2'-DIHYDROXY-4,4'-DIMETHOXYBENZOPHE 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone 2,2-Dihydroxy-4,4-Dimethoxybenzophenone 2,2'-Dihydroxy-4,4'-Dimethoxybenzophenone (en) 2,2-dihydroxy-4,4-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 98% 26413-58-1 [RN] 4, 4'-Dimethoxy-2,2'-dihydroxybenzophenone 4,4'-Dimethoxy-2,2'-dihydroxybenzophenone benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy- benzophenone, 2,2prime-dihydroxy-4,4prime-dimethoxy- Bis(2-hydroxy-4-methoxyphenyl) methanone bis(2-hydroxy-4-methoxy-phenyl)methanone Bis-(2-hydroxy-4-methoxy-phenyl)-methanone C15H14O5 Cyasorb UV 12 di2-hydroxy-4-methoxyphenyl ketone -Dihydroxy-4,4′ -dimethoxybenzophenone EINECS 205-027-3 Methanone, bis (2-hydroxy-4-methoxyphenyl)- Oprea1_596131 ST5308262 Uvinul D 49 UVINUL-D-49
BENZOPHENONE-6
BENZOPHENONE-9, N° CAS : 76656-36-5, Nom INCI : BENZOPHENONE-9, Nom chimique : Disodium 3,3'-carbonylbis[4-hydroxy-6-methoxybenzenesulphonate], N° EINECS/ELINCS : 278-520-4;Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV. Noms français : BENZENESULFONIC ACID, 3,3'-CARBONYLBIS(4-HYDROXY-6-METHOXY-, DISODIUM SALT; EC / List no.: 278-520-4; CAS no.: 76656-36-5; Mol. formula: C15H12Na2O11S2; Disodium 3,3'-carbonylbis[4-hydroxy-6-methoxybenzenesulphonate]. : disodium 4-hydroxy-5-(2-hydroxy-4-methoxy-5-sulfobenzoyl)-2-methoxybenzene-1-sulfonate. 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disulfonic acid disodium salt; 278-520-4 [EINECS];3,3'-Carbonylbis(4-hydroxy-6-méthoxybenzènesulfonate) de disodium [French] ; 76656-36-5 [RN]; 9829705; Benzenesulfonic acid, 3,3'-carbonylbis[4-hydroxy-6-methoxy-, sodium salt (1:2) [ACD/Index Name]; Benzophenone-9; Dinatrium-3,3'-carbonylbis(4-hydroxy-6-methoxybenzolsulfonat) [German] ; Disodium 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone Disodium 2,2'-dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disulfonate; Disodium 3,3'-carbonylbis(4-hydroxy-6-methoxybenzenesulfonate) ; disodium 3,3'-carbonylbis[4-hydroxy-6-methoxybenzenesulphonate] 2,2'-DIHYDROXY-4,4'-DIMETHOXY BENZOPHENONE-5,5'-DISODIUM SULFONATE 2,2'-Dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone, disodium salt 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disodium sulpho nate 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disulfonic acid sodium salt 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone-5,5'-disulphonic acid sodium salt 3,3?-Carbonyl-bis[4-hydroxy-6-methoxy-benzenesulfonicacidisodiumsalt 4-hydroxy-5-[(2-hydroxy-4-methoxy-5-sulfophenyl)-oxomethyl]-2-methoxybenzenesulfonic acid; sodium 63270-28-0 [RN] 64719-73-9 [RN] Benzenesulfonic acid, 3,3'-carbonylbis(4-hydroxy-6-methoxy-, disodium salt Disodium 3,3'-carbonylbis(4-hydroxy-6-methoxybenzenesulphonate) DISODIUM 4-HYDROXY-5-(2-HYDROXY-4-METHOXY-5-SULFONATOBENZOYL)-2-METHOXYBENZENE-1-SULFONATE disodium 4-hydroxy-5-(2-hydroxy-4-methoxy-5-sulfonatobenzoyl)-2-methoxybenzenesulfonate disodium 4-hydroxy-5-(2-hydroxy-4-methoxy-5-sulfonato-benzoyl)-2-methoxy-benzenesulfonate disodium 4-hydroxy-5-(2-hydroxy-4-methoxy-5-sulfonato-phenyl)carbonyl-2-methoxy-benzenesulfonate disodium 4-hydroxy-5-[(2-hydroxy-4-methoxy-5-sulfonatophenyl)-oxomethyl]-2-methoxybenzenesulfonate disodium2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone Disodium2,2-dihydroxy-4,4-dimethoxy-5,5-disulfobenzophenone EINECS 278-520-4 QA-7677 Uvinuc ds 49
BENZOPHENONE-9
Benzothiazoline and methylthiazoline blends; Benzothiazoline and methylthiazoline mix; BIT&MIT; Benzothiazoline; Methylthiazoline; CAS NO: Mixture
Benzothiazoline / Methylthiazoline blends (BIT:MIT)
Vangard BT; Benzothiazole; Benzosulfonazole; (methylthio)benzothiazole; benzo[d][1,3]thiazole; 1-Thia-3-azaindene; benzthiazole; BENZO[D]THIAZOLE CAS NO:95-16-9
Benzothiazoline blends
Azimidobenzene, Cobratec 99; 1H-1,2,3-Benzotriazole; 2,3-Diazaindole; 1,2-Aminozophenylene; 1,2,3-Benztriazole; 1,2,3-Benzotriazole; 1,2,3-Triaza-1H-indene; 1,2,3-Triazaindene; Benzene Azimide; Benzene azimide; Benzisotriazole; cas no: 95-14-7
BENZOTRIAZOLE DERIVATIVE
BENZOTRIAZOLYL DODECYL P-CRESOL, N° CAS : 125304-04-3, Nom INCI : BENZOTRIAZOLYL DODECYL P-CRESOL, Nom chimique : Phenol, 2-(2H-Benzotriazol-2-yl)-6-Dodecyl-4-Methyl-, Branched and Linear. Absorbant UV : Protège le produit cosmétique contre les effets de la lumière UV
BENZOTRIAZOLYL DODECYL P-CRESOL
SYNONYMS Phenol, 2-(2H-Benzotriazol-2-yl)-6-Dodecyl-4-Methyl-, Branched and Linear;2-(2H-benzo[d][1,2,3]triazol-2-yl)-6-dodecyl-4-methylphenol;2-(2H- benzothiazol-2-yl)-6-(dodecyl)-4-methylphenol;2-( benzotriazol-2-yl)-6-dodecyl-4-methylphenol;2-(2H- benzotriazol-2-yl)-6-dodecyl-4-methylphenol CAS NO:125304-04-3
Benzotriazole
Azimidobenzene, Cobratec 99; 1H-1,2,3-Benzotriazole; 2,3-Diazaindole; 1,2-Aminozophenylene; 1,2,3-Benztriazole; 1,2,3-Benzotriazole; 1,2,3-Triaza-1H-indene; 1,2,3-Triazaindene; Benzene Azimide; Benzene azimide; Benzisotriazole CAS NO:95-14-7
BENZOYL CHLORIDE
Benzoyl chloride = Benzenecarbonyl chloride

CAS number: 98-88-4
EC number: 202-710-8
Mol. formula: C7H5ClO

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO.
Benzoyl chloride is a colourless, fuming liquid with an irritating odour.
Benzoyl chloride is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

Benzoyl chloride is used for organic synthesis, dye and pharmaceutical raw material, manufacturing initiator benzoyl peroxide, t-butyl peroxybenzoate, pesticides and herbicides.
Benzoyl chloride is an important benzoyl and benzyl reagent.
Benzoyl chloride is used in the production of benzoyl peroxide, and secondly for the production of benzophenone, benzyl benzoate, benzyl cellulose.

Applications of Benzoyl chloride:
Benzoyl chloride is used for dye intermediates, initiator, UV absorbers, rubber additives, medicine etc.
Benzoyl chloride is intermediate of herbicide metamitron, and insecticide propargite, benzene hydrazine or intermediate food.
Benzoyl chloride is used for organic synthesis, dye and pharmaceutical raw material, manufacturing initiator benzoyl peroxide, t-butyl peroxybenzoate, pesticides and herbicides.

Benzoyl chloride is a new insecticide, which is inducible isoxazole parathion (Isoxathion, Karphos) intermediate.
Benzoyl chloride is an important benzoyl and benzyl reagent.
Most of benzoyl chloride is used in the production of benzoyl peroxide, and secondly for the production of benzophenone, benzyl benzoate, benzyl cellulose.
Benzoyl peroxide catalyzes polymerization initiator for the monomer plastic, polyester, epoxy, acrylic resin production, self-curing agent, which is a glass fiber material, fluorine rubber, silicone crosslinking agents, oil refined, bleached flour, fiber decolorizing Wait.

Domestic original benzoyl chloride manufacturing enterprises are more than 20.
Some of the manufacturers also produce acid chloride, and the production capacity is 10,000t.
However, according to the 2003 survey, the profit is too low, because of the use of small polluting production line, while the use of polluting route is controlled by the government restrictions, and a further raw material price increases.
Therefore most of the manufacturers stop the production.
Further reaction with the acid chloride can also produce acid anhydride, and benzoic acid anhydride is the main purpose for acylation agents, which can also be used as a bleaching agent and flux of a component, as well as it can also be used for the preparation of benzoyl peroxide over.
Reagents for the analysis, but also for spices, organic synthesis.

Preparations of Benzoyl chloride:
Benzoyl chloride is produced from benzotrichloride using either water or benzoic acid:

C6H5CCl3 + H2O → C6H5COCl + 2 HCl
C6H5CCl3 + C6H5CO2H → 2 C6H5COCl + HCl
As with other acyl chlorides, Benzoyl chloride can be generated from the parent acid and standard chlorinating agents such as phosphorus pentachloride, thionyl chloride, and oxalyl chloride.
Benzoyl chloride was first prepared by treatment of benzaldehyde with chlorine.
An early method for production of benzoyl chloride involved chlorination of benzyl alcohol.

Reactions of Benzoyl chloride:
Benzoyl chloride reacts with water to produce hydrochloric acid and benzoic acid:
C6H5COCl + H2O → C6H5CO2H + HCl
Benzoyl chloride is a typical acyl chloride.
Benzoyl chloride reacts with alcohols to give the corresponding esters.
Similarly, Benzoyl chloride reacts with amines to give the amide.

Benzoyl chloride undergoes the Friedel-Crafts acylation with aromatic compounds to give the corresponding benzophenones and related derivatives.
With carbanions, Benzoyl chloride serves again as a source of "PhCO+".

Benzoyl peroxide, a common reagent in polymer chemistry, is produced industrially by treating benzoyl chloride with hydrogen peroxide and sodium hydroxide:
2 C6H5COCl + H2O2 + 2 NaOH → (C6H5CO)2O2 + 2 NaCl + 2 H2O

Physical and Chemical Properties of Benzoyl chloride:
Benzoyl chlorides pure product is a colorless and transparent flammable liquid, which is smoking exposed to air in the air.
In Industry, Benzoyl chloride is slightly pale yellow, with a strong pungent odor.
Benzoyl chlorides steam has a strong stimulating effect for eye mucous membranes, skin and respiratory tract, by stimulating the mucous membranes and eyes tear.
Benzoyl chloride Melting point is-1.0 ℃, boiling point is 197.2 ℃, and the relative density is 1.212 (20 ℃), while a flash point is 72 ℃, and refractive index (n20) is 1.554.

Benzoyl chloride is soluble in the ether, chloroform, benzene and carbon disulfide.
Benzoyl chloride can gradually decomposed in water or ethanol, ammonia, which generates benzoic acid, generating benzamide, ethyl benzoate and hydrogen chloride.
In the laboratory, Benzoyl chloride can be obtained by distillation of benzoic acid and phosphorus pentachloride under anhydrous conditions.
Industrial production process can be obtained by the use of thionyl chloride benzaldehyde.
Benzoyl chloride is an important intermediate for preparing dyes, perfumes, organic peroxides, resins and drugs.
Benzoyl chloride is also used in photography and artificial tannin production, which was formerly used as an irritant gas in chemical warfare.

Benzoyl chloride may be used in the synthesis of the following organic building blocks:
N,N-diethylbenzamide via condensation with diethylamine
N-2-bromophenylbenzamide by reacting with 2-bromoaniline via N-benzoylation
propargyl benzoate via O-benzoylation of propargyl alcohol

Chemical Properties of Benzoyl chloride:
Transparent, colorless liquid; pungent odor; vapor causes tears. Soluble in ether and carbon disulfide; decomposes in water. Combustible.
Benzoyl chloride is a colorless to slight brown liquid with a strong, penetrating odor.

Applications of Benzoyl chloride:
Used for dye intermediates, initiator, UV absorbers, rubber additives, medicine etc.
Benzoyl chloride is intermediate of herbicide metamitron, and insecticide propargite, benzene hydrazine or intermediate food.
Benzoyl chloride is used for organic synthesis, dye and pharmaceutical raw material, manufacturing initiator benzoyl peroxide, t-butyl peroxybenzoate, pesticides and herbicides.
Benzoyl chloride is an important benzoyl and benzyl reagent.
Most of benzoyl chloride is used in the production of benzoyl peroxide, and secondly for the production of benzophenone, benzyl benzoate, benzyl cellulose.
Benzoyl peroxide catalyzes polymerization initiator for the monomer plastic, polyester, epoxy, acrylic resin production, self-curing agent, which is a glass fiber material, fluorine rubber, silicone crosslinking agents, oil refined, bleached flour, fiber decolorizing.
Further reaction with the acid chloride can also produce acid anhydride, and benzoic acid anhydride is the main purpose for acylation agents, which can also be used as a bleaching agent and flux of a component, as well as it can also be used for the preparation of benzoyl peroxide over.

Chemical Properties: Transparent, colorless liquid; pungent odor; vapor causes tears.
Soluble in ether and carbon disulfide; decomposes in water. Combustible.
Chemical Properties: Benzoyl chloride is a colorless to slight brown liquid with a strong, penetrating odor.
Uses: Benzoyl Chloride is used in the manufacturing of dye intermediates.
Uses: For acylation, i.e., introduction of the benzoyl group into alcohols, phenols, and amines (Schotten-Baumann reaction); in the manufacture of benzoyl peroxide and of dye intermediates.

In organic analysis for making benzoyl derivatives for identification purposes.
Definition: A liquid acyl chloride used as a benzoylating agent.
Production Methods: Benzoyl chloride can be prepared from benzoic acid by reaction with PCl5 or SOCl2, from benzaldehyde by treatment with POCl3 or SO2 Cl2, from benzotrichloride by partial hydrolysis in the presence of H2SO4 or FeCl3, from benzal chloride by treatment with oxygen in a radical source, and from several other miscellaneous reactions.
Benzoyl chloride can be reduced to benzaldehyde, oxidized to benzoyl peroxide, chlorinated to chlorobenzoyl chloride and sulfonated to m-sulfobenzoic acid. It will undergo various reactions with organic reagents. For example, it will add across an unsaturated (alkene or alkyne) bond in the presence of a catalyst to give the phenylchloroketone:

Synthesis Reference(s)
General Description: A colorless fuming liquid with a pungent odor. Flash point 162°F.
Lachrymator, irritating to skin and eyes. Corrosive to metals and tissue.
Density 10.2 lb / gal. Used in medicine and in the manufacture of other chemicals.

INGESTION: causes acute discomfort.
SKIN: causes irritation and burning.
Chemical Reactivity: Reactivity with Water Slow reaction with water to produce hydrochloric acid fumes.
The reaction is more rapid with steam; Reactivity with Common Materials: Slow corrosion of metals but no immediate danger; Stability During Transport: Not pertinent; Neutralizing Agents for Acids and Caustics: Soda ash and water, lime; Polymerization: Does not occur; Inhibitor of Polymerization: Not pertinent.
Safety Profile: Confirmed carcinogen with experimental tumorigenic data by skin contact.

Uses of Benzoyl chloride:
Benzoyl Chloride is used in the manufacturing of dye intermediates.
For acylation, i.e., introduction of the benzoyl group into alcohols, phenols, and amines (Schotten-Baumann reaction); in the manufacture of benzoyl peroxide and of dye intermediates.
In organic analysis for making benzoyl derivatives for identification purposes.
The major industrial use of benzoyl chloride is in the production of benzoyl peroxide.
Secondary uses include the formulation of herbicides and the production of drugs, plasticizers, and perfumes.
Chemical intermediate for benzoyl peroxide, a polymerization initiator; chloramben, an herbicide; dyes; Benzophenone, a perfume fixative; other benzoyl derivatives; fastness improver for dyed fibers or fabrics; cellulosic yarn treatment agent; chemical intermediate for benzoate plasticizers (former use), pharmaceuticals (former use)

Production Methods of Benzoyl chloride:
Benzoyl chloride can be prepared from benzoic acid by reaction with PCl5 or SOCl2, from benzaldehyde by treatment with POCl3 or SO2 Cl2, from benzotrichloride by partial hydrolysis in the presence of H2SO4 or FeCl3, from benzal chloride by treatment with oxygen in a radical source, and from several other miscellaneous reactions.
Benzoyl chloride can be reduced to benzaldehyde, oxidized to benzoyl peroxide, chlorinated to chlorobenzoyl chloride and sulfonated to m-sulfobenzoic acid.
Benzoyl chloride will undergo various reactions with organic reagents.
For example, Benzoyl chloride will add across an unsaturated (alkene or alkyne) bond in the presence of a catalyst to give the phenylchloroketone

General Descriptions of Benzoyl chloride:
A colorless fuming liquid with a pungent odor.
Flash point 162°F. Lachrymator, irritating to skin and eyes.
Corrosive to metals and tissue. Density 10.2 lb / gal.
Used in medicine and in the manufacture of other chemicals.

Chemical Reactivity of Benzoyl chloride:
Reactivity with Water Slow reaction with water to produce hydrochloric acid fumes.
The reaction is more rapid with steam; Reactivity with Common Materials: Slow corrosion of metals but no immediate danger; Stability During Transport: Not pertinent; Neutralizing Agents for Acids and Caustics: Soda ash and water, lime; Polymerization: Does not occur; Inhibitor of Polymerization: Not pertinent.

Purification Methods of Benzoyl chloride:
A solution of benzoyl chloride (300mL) in *C6H6 (200mL) is washed with two 100mL portions of cold 5% NaHCO3 solution, separated, dried with CaCl2 and distilled .
Repeated fractional distillation at 4mm Hg through a glass helices-packed column (avoiding porous porcelain or silicon-carbide boiling chips, and hydrocarbon or silicon greases on the ground joints) gave benzoyl chloride that did not darken on addition of AlCl3.
Further purification is achieved by adding 3 mole% each of AlCl3 and toluene, standing overnight, and distilling off the benzoyl chloride at 1-2mm.
Refluxing for 2hours with an equal weight of thionyl chloride before distillation has also been used.

Benzoyl chloride appears as a colorless fuming liquid with a pungent odor.
Flash point 162°F. Lachrymator, irritating to skin and eyes.
Corrosive to metals and tissue.
Density 10.2 lb / gal.
Used in medicine and in the manufacture of other chemicals.

Industry Uses of Benzoyl chloride:
-Coatings
-Finishing agents
-Intermediates
-Oxidizing/reducing agents
-Paint additives and coating additives not described by other categories
-Plasticizers
-Processing aids, not otherwise listed

Consumer Uses of Benzoyl chloride:
-Fabric, textile, and leather products not covered elsewhere
-Furniture and furnishings not covered elsewhere
-Paints and coatings
-Personal care products
-Plastic and rubber products not covered elsewhere

Methods of Manufacturing of Benzoyl chloride:
-Benzoyl chloride is produced commercially from benzotrichloride, which is available by the chlorination of toluene.
-The chlorination reaction proceeds stepwise via benzyl chloride and benzal chloride.
-The benzotrichloride is then partially hydrolyzed with a limited amount of water.
-This series of reactions consumes a large quantity of chlorine.
-An alternative process uses benzoic acid.
-Phosphorous chlorides or iron chlorides are used as catalysts at the solvolytic stage of both processes.
-Benzoyl chloride can also be made by the reaction of benzoic acid with phosgene, thionyl chloride, or phosphorous pentachloride; chlorination of benzaldehyde, benzyl alcohol, or benzyl benzoate; and direct reaction of benzene with phosgene or the combination of carbon monoxide and chlorine.
-The benzoyl chloride prepared by the conventional processes may contain trace amounts of chlorobenzoyl chloride, but the product obtained by the reaction of molten phthalic anhydride with hydrogen chloride at 200 °C is free of such impurities.

General Manufacturing Information
Industry Processing Sectors
-All other basic organic chemical manufacturing
-All other chemical product and preparation manufacturing
-Furniture and related product manufacturing
-Miscellaneous manufacturing
-Paint and coating manufacturing
-Pharmaceutical and medicine manufacturing
-Plastic material and resin manufacturing
-Plastics product manufacturing
-Textiles, apparel, and leather manufacturing

APPLICATIONS & FEATURES of Benzoyl chloride:
Production of Benzoyl Peroxide (catalyst for the polymer industry)
Precursor of Benzophenone and several other UV-stabilizers
Precursor of Agrochemicals and Pharmaceutical applications
Dyes and pigments

Uses of Benzoyl chloride:
Benzyl chloride is used as a chemical intermediate in the manufacture of certain dyes and pharmaceutical, perfume and flavor products.
Benzoyl chloride is also used as a photographic developer.
Benzyl chloride can be used in the manufacture of synthetic tannins and as a gum inhibitor in petrol.
Benzyl chloride has been used as an irritant gas in chemical warfare.

Sources and Potential Exposure
Sources of benzyl chloride emissions into the air include emissions or venting with other gases in industrial settings.
Emissions of benzyl chloride from floor tile plasticized by butyl benzyl phthalate have been reported.
Benzyl chloride has also been detected in emissions from the burning of polyvinyl chloride, neoprene and rigid urethane foam compounds.
Individuals may be exposed to benzyl chloride through breathing contaminated air or from exposure to water or soil that has been contaminated with benzyl chloride.

Physical Properties of Benzoyl chloride:
Benzyl chloride is a colorless liquid with a very pungent odor.
Benzyl chloride has an odor threshold of 0.044 parts per million (ppm).
Benzyl chloride is insoluble in water.
The chemical formula for benzyl chloride is C7H7Cl, and it has a molecular weight of 126.59 g/mol.
The vapor pressure for benzyl chloride is 1.20 mm Hg at 25 °C, and it has a log octanol/water partition coefficient (log Kow) of 2.70.

About Benzoyl chloride
Helpful information
Benzoyl chloride is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 tonnes per annum.
Benzoyl chloride is used by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
ECHA has no public registered data on the routes by which Benzoyl chloride is most likely to be released to the environment.

Article service life
ECHA has no public registered data on the routes by which Benzoyl chloride is most likely to be released to the environment.
ECHA has no public registered data indicating whether or into which articles the substance might have been processed.

Widespread uses by professional workers
Benzoyl chloride is used in the following products: laboratory chemicals and pH regulators and water treatment products.
Benzoyl chloride is used in the following areas: scientific research and development and health services.
Other release to the environment of Benzoyl chloride is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners).

Formulation or re-packing
ECHA has no public registered data indicating whether or in which chemical products the substance might be used.
Release to the environment of Benzoyl chloride can occur from industrial use: formulation of mixtures.

Uses at industrial sites
Benzoyl chloride is used in the following products: laboratory chemicals and pH regulators and water treatment products.
Benzoyl chloride has an industrial use resulting in manufacture of another substance (use of intermediates).
Benzoyl chloride is used in the following areas: scientific research and development and health services.
Benzoyl chloride is used for the manufacture of: chemicals.
Release to the environment of Benzoyl chloride can occur from industrial use: as an intermediate step in further manufacturing of another substance (use of intermediates), in processing aids at industrial sites, as processing aid and of substances in closed systems with minimal release.
Other release to the environment of Benzoyl chloride is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners).

Manufacture
ECHA has no public registered data on the routes by which Benzoyl chloride is most likely to be released to the environment.

Benzoyl chloride is a member of benzoic acids.

Physical Description
Benzoyl chloride appears as a colorless fuming liquid with a pungent odor.
Flash point 162°F. Lachrymator, irritating to skin and eyes.
Corrosive to metals and tissue.
Density 10.2 lb / gal. Used in medicine and in the manufacture of other chemicals.

Pharmacology and Biochemistry
Absorption, Distribution and Excretion

Product Applications
-Manufacturing of plastics
-Polymer auxiliaries
-Manufacturing of herbicides
-Agriculture
-Pesticides
-Dyestuffs, pigments and optical brighteners
-Manufacturing of textiles dyestuffs
-Manufacturing of photochemicals
-Manufacturing of textile dyestuffs
-Manufacturing of dyestuffs
-Photography
-Manufacturing of pharmaceutical agents
-Flavour and fragances
-Textile industry
-Pharmaceutical industry / Biotechnology
-Plastic- and Rubberpolymers
-Chemical synthesis
-Chemical Industry
-Construction
-Antioxidans
-Manufacturing of pigments
-Pigments
-Animal health and feedstuff
-Manufacturing of insecticides / acaricides
-Manufacturing of fragances
-Manufacturing of fungicides
-Manufacturing of growth regulators
-Textile auxiliaries
-Manufacturing of peroxides
-Manufacturing of safeners
-Hardener and crosslinking agents for polymeres
-Surface-active substances
-Manufacturing of veterinarian agents
-organic solvent
-Textile dyestuffs

Formula: C7H5ClO / C6H5COCl
Molecular mass: 140.57
Boiling point: 197.2°C
Melting point: -1°C
Relative density (water = 1): 1.21
Solubility in water: reaction
Vapour pressure, Pa at 20°C: 50
Relative vapour density (air = 1): 4.88
Flash point: 72°C c.c.
Auto-ignition temperature: 197.2°C
Explosive limits, vol% in air: 2.5-27


Benzoyl chloride is a transparent or colorless liquid with a penetrating odor.
Benzoyl chloride is miscible in ether, carbon disulfide, benzene, and oils, and decomposes in water and alcohol.
Benzoyl chloride is flammable and will react with water or steam to produce heat and toxic and corrosive fumes.

Benzoyl chloride can have a violent or explosive reaction with dimethyl sulfoxide, aluminum chloride, and naphthalene.
Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C6H5COCl.
Benzoyl chloride is a colourless, fuming liquid with an irritating odour.

Benzyl alcohol is available to anyone from e.g. ebay where it is offered frequently.
Benzoyl chloride is also available from pharmacies since it is used a lot in lotions and cosmetic products.
Benzoyl chloride is neither watched nor subject to any government control.
Benzoyl chloride could be prepared by reacting thionyl chloride or phosphorus pentachloride with benzoic acid.

50 grams of dry benzoic acid are treated in a 500 ml flask, with 90 grams of finely pulverized phosphorus pentachloride.
The mixture is mixed well, upon which, after a short time, the reaction takes place with an energetic evolution of hydrochloric acid, and the reaction mass becomes liquid.
During the reaction, a lot of heat is released.
After standing a short time, the completely liquid mixture is twice fractionated by collecting fraction which boils at ~ 200° C, yielding 90 % of benzoyl chloride.

Preparation of organic compounds
19 grams of oxalyl chloride and 20 grams of the dry sodium benzoate, with 20-30 ml of dry benzene as a solvent were mixed and gently heated.
19 grams of benzoyl chloride were obtained by fraction distillation with boiling point 198° C yielding 97 %.

IUPAC names
Benzoic acid chloride , Phenylcarbonyl chloride , Phenylcarboxyl chloride
BENZOYL CHLORIDE
Benzoyl Chloride
Benzoyl chloride
benzoyl chloride
Benzoyl Chloride
Benzoyl chloride
benzoyl chloride
Benzoyl chloride
Benzoylchlorid


SYNONYMS:
alpha-Chlorobenzaldehyde
BENZOYL CHLORIDE, REAGENTPLUS, >=99%
BENZOYL CHLORIDE REAGENTPLUSTM >=99%
BENZOYL CHLORIDE, REAGENTPLUS, 99%
BENZOYL CHLORIDE, 99%, A.C.S. REAGENT
BENZOYL CHLORIDE REAGENTPLUS(TM) 99%
BENZOYL CHLORIDE, ACS
BenzoylChlorideGr
Benzoyl chloride, 99+%
Benzoyl chloride, for analysis ACS, 98+%
Benzoyl chloride, pure, 99%
BENZOYL CHLORIDE REAGENT (ACS)
Benzoylchlorid
BzCl
Basic Red 1
BENZOXALONE
4-Chlorocarbonylpolystyrene
alpha-chloro-benzaldehyd
Benzaldehyde, alpha-chloro-
-Chlorobenzaldehyde
chloruredebenzoyle
LABOTEST-BB LTBB000456
Benzenecarbonyl chloride
BENZOIC ACID CHLORIDE
BENZOYL CHLORIDE
Benzoyl chloride, 99%, pure
Benzoyl chloride, 98+%, for analysis ACS
Benzoyl chloride, for analysis ACS
Benzoyl chloride, 98+%, ACS reagent
Benzoyl chloride, for analysis ACS, 98+% 500GR
Benzoyl chloride, pure, 99% 1LT
Benzoyl chloride, synthesis grade
Benzoyl chloride, 99%, pure, AcroSeal
BENZOYL CHLORIDE FOR SYNTHESIS
Phenylcarbonyl chloride
Benzoyl chloride ReagentPlus(R), >=99%
Benzoyl chloride, ACS,>=99.5%(T)
Benzoyl chloride, ACS reagent
Benzoyl chloride (solina new impurity)
Benzoyl Chloride >
Benzoyl chloride fandachem
Benzoyl chloride ISO 9001:2015 REACH
ALPHA-CHLOROBENZALDEHYDE
BENZALDEHYDE, ALPHA-CHLORO-
BENZENECARBONYL CHLORIDE
BENZOIC ACID CHLORIDE
BENZOYL CHLORIDE
DIBENZOYL CHLORIDE {BENZOYL CHLORIDE}
BENZOYL CHLORIDE
98-88-4
Benzenecarbonyl chloride
Benzoic acid, chloride
Benzoylchloride
alpha-Chlorobenzaldehyde
benzoic acid chloride
benzoylchlorid
Benzaldehyde, alpha-chloro-
EINECS 202-710-8
UN1736
BRN 0471389
Benzaldehyde, .alpha.-chloro-
benzoyl chlorid
benzoyl choride
bezoyl chloride
benzoic chloride
BzCl
benzoyl chloride-
PhCOCl
Bz-Cl
Benzoyl chloride [UN1736] [Corrosive]
.alpha.-Chlorobenzaldehyde
247-558-3 [EINECS]
471389
98-88-4 [RN]
a-Chlorobenzaldehyde
Benzaldehyde, α-chloro-
benzoic acid chloride
Benzoic acid, chloride
Benzoyl chloride [ACD/Index Name] [ACD/IUPAC Name] [Wiki]
Benzoyl chloride [UN1736] [Corrosive]
Benzoylchlorid [German] [ACD/IUPAC Name]
Chlorure de benzoyle [French] [ACD/IUPAC Name]
DM6600000
VTY8706W36
100-09-4 [RN]
2719-27-9 [RN]
4-09-00-00721 (Beilstein Handbook Reference) [Beilstein]
43019-90-5 [RN]
52947-05-4 [RN]
59748-37-7 [RN]
ANISIC ACID
Benzaldehyde, α-chloro-
Benzenecarbonyl chloride
BENZOYL CHLORIDE-(RING-13C6)
Benzoyl Chloride, ACS reagent
BENZOYL CHLORIDE|BENZOYL CHLORIDE
benzoylchloride
Benzoyl-d5 Chloride
Cyclohexanecarbonyl chloride [ACD/Index Name] [ACD/IUPAC Name]
EINECS 202-710-8
Hexahydrobenzoyl chloride
InChI=1/C7H5ClO/c8-7(9)6-4-2-1-3-5-6/h1-5
MFCD01865658 [MDL number]
O-CHLOROFORMYLBENZENE
PS-10801
UNII:VTY8706W36
UNII-VTY8706W36
α-Chlorobenzaldehyde
α-Chlorobenzaldehyde
苯甲酰氯 [Chinese]
benzoilklorür (tr)
benzoil klorür (tr)
benzoil klorid (tr)
benzoilklorid (tr)
benzoilklorit (tr)
benzoil klorit (tr)
bensoüülkloriid (et)
bentsyylikloridi (fi)
benzoil klorid (sl)
benzoil-klorid (hr)
benzoil-klorid (hu)
benzoilchloridas (lt)
benzoile cloruro (it)
benzoilhlorīds (lv)
benzoylchlorid (cs)
benzoylchlorid (da)
Benzoylchlorid (de)
benzoylchlorid (sk)
benzoylchloride (nl)
benzoylklorid (no)
benzoylklorid (sv)
chlorek benzoilu (pl)
chlorek kwasu benzoesowego (pl)
chlorure de benzoyle (fr)
cloreto de benzoílo (pt)
cloruro de benzoílo (es)
cloruro di benzoile (it)
clorură de benzoil (ro)
klorur tal-benżojl (mt)
βενζοϋλοχλωρίδιο (el)
бензоил хлорид (bg)

IUPAC names
Benzoic acid chloride
BENZOYL CHLORIDE
Benzoyl Chloride
Benzoyl chloride
benzoyl chloride
Benzoylchlorid

Trade names
BENZOESAEURECHLORID
BENZOLCARBONYLCHLORID
BENZOYL CHLORIDE
Benzoyl chloride
BENZOYLCHLORID
PHENYLCARBONYLCHLORID
BENZOYL ISOPROPANOL
Benzenemethanol; Phenylcarbinol; Phenylmethyl alcohol; Phenylmethanol; alpha-Hydroxytoluene; Benzoyl alcohol; Hydroxytoluene; Benzenecarbinol; alpha-toluenol; (hydroxymethyl)benzene; A-HYDROXYTOLUENE; ALCOHOL BENZYLICUS; ALPHA-HYDROXYTOLUENE; alpha-toluenol; BENZENECARBINOL; BENZENEMETHANOL; BENZYL ALCOHOL; FEMA 2137; PHENYLCARBINOL; PHENYLMETHANOL; PHENYLMETHYL ALCOHOL; RARECHEM AL BD 0531; (Hydroxymethyl)benzene; alcoolbenzylique; Bentalol; benzalalcohol; Benzalcohol; Benzenemethan-lo; benzenmethanol; Benzoyl alcohol CAS NO:100-51-6
BENZOYL PEROXIDE
BENZOYL PEROXIDE How to Treat Acne with Benzoyl Peroxide Benefits Types of products Side effects and precautions Vs. salicylic acid Other OTC treatments Seeking medical help Summary What is benzoyl peroxide? Benzoyl peroxide is a well-known ingredient for fighting acne. Available in over-the-counter (OTC) gels, cleansers, and spot treatments, this ingredient comes in different concentrations for mild to moderate breakouts. While benzoyl peroxide can effectively get rid of bacteria and dead skin cells that clog your pores, it has limitations. Let’s cover the pros and cons and when to talk to a dermatologist (skin care specialist) if OTC products aren’t doing the job. Is benzoyl peroxide good for acne? Benzoyl peroxide works to treat and prevent acne by killing bacteria underneath the skin, as well as helping the pores shed dead skin cells and excess sebum (oil). Benzoyl peroxide for pimples Benzoyl peroxide works particularly well for inflammatory acne, which is characterized by red bumps that contain pus — pustules, papules, cysts, and nodules — instead of whiteheads and blackheads. Benzoyl peroxide for cystic acne Cystic acne is considered the most serious form of acne, which also makes it the most difficult to treat. It’s characterized by hard bumps below the surface of your skin. While these pimples may have pus deep inside them, it’s difficult to identify any prominent “heads.” P. acnes bacteria is one contributor to cystic acne, which benzoyl peroxide may help treat in combination with prescription medications. If you have this type of acne, consult a dermatologist for your best treatment options. Benzoyl peroxide for blackheads and whiteheads Blackheads and whiteheads are still considered acne. However, they are classified as noninflammatory because they don’t cause the red bumps that are associated with other types of acne pimples. You may be dealing with both of these types of acne and might be wondering if you can use benzoyl peroxide for noninflammatory spots too. While benzoyl peroxide can help treat oil and dead skill cells that clog your pores, this may not be the best treatment option available for blackheads and whiteheads. While benzoyl peroxide does help treat certain types of acne, topical retinoids are considered the first line of treatment. This includes adapalene and tretinoin. Some adapalene products, such as Differin Gel, are available OTC. Tretinoin products require a prescription. Benzoyl peroxide for acne scars Acne scars are sometimes a result of an acne outbreak. This is especially the case with inflammatory acne, even if you successfully resist the urge to pick at the lesions. Acne scars can worsen with sun exposure, so it’s important to wear sunscreen every day. In theory, benzoyl peroxide could also help shed dead skin cells and make the scars less prominent. However, research doesn’t support this use. How to use benzoyl peroxide Benzoyl peroxide comes in the form of many acne treatment products. It’s important to select the right one for your skin care concern as well as preference. For example, you may prefer to use a wash formulated specifically for your body rather than your face. Or you might decide to choose a gel. Another key is to choose the appropriate concentration. The concentration that you choose to use may depend on your skin. Some people can tolerate products with a high percentage of benzoyl peroxide (up to 10 percent) on their skin. Others may prefer a lower percentage. What concentration to use also depends on where you apply the benzoyl peroxide. The face is rather sensitive, so many choose to use a lower concentration (around 4 percent) in that area, while the chest and back are more resilient and can tolerate a higher concentration. Benzoyl peroxide may be found in the following acne treatment products: acne creams and lotions: typically applied once or twice a day on the entire area of skin as both a treatment and preventive measure face washes and foams: used once or twice a day to help prevent acne and treat existing lesions acne body washes and soaps: ideal if you have frequent breakouts on the chest, back, and other areas of the body gels: tend to come in the form of spot treatments with higher concentrations and are typically applied only to the affected area READER SURVEY Please take a quick 1-minute survey Your answers will help us improve our experience. You're the best! Side effects of using benzoyl peroxide on the skin While considered safe for most people, benzoyl peroxide can cause side effects. This is especially the case when you first start using the product. It may be helpful to use it once a day, and then build up the frequency in application over time if your skin can tolerate it. You can also minimize side effects by starting with a lower concentration. Talk to a dermatologist about the following side effects and precautions of using benzoyl peroxide for acne. Skin side effects Benzoyl peroxide works by peeling away the skin to get rid of dead skin cells, excessive oil, and bacteria that may be trapped underneath. Such effects can lead to dryness, as well as redness and excessive peeling. You might notice itching and general irritation at the site of application too. Don’t use benzoyl peroxide if you have a sunburn. Stained clothing and hair Benzoyl peroxide is known for staining clothing and hair. Make sure you wash your hands thoroughly after each use. You might also consider skipping an application right before a workout so you don’t transfer the product to your hair and clothing via sweat. Allergic reactions While allergic reactions from benzoyl peroxide are considered rare, they are still possible. Stop using the product immediately if the treated areas have redness and irritation. You should go to an emergency room right away if you have severe swelling and breathing difficulties, as these may be signs of an allergic reaction. Benzoyl peroxide and skin conditions A dermatologist may not recommend benzoyl peroxide if you have sensitive skin, as this skin type is more prone to side effects such as rashes and irritation. Benzoyl peroxide also might not be the best choice if you have eczema or seborrheic dermatitis. Benzoyl peroxide vs. salicylic acid for acne While benzoyl peroxide is a staple for treating inflammatory acne, it’s worth considering salicylic acid if you also have noninflammatory acne (blackheads and whiteheads). Both help clean pores, but salicylic acid’s primary role is to get rid of dead skin cells. Such exfoliating effects may help treat noninflammatory lesions. It also won’t stain your hair or clothing like benzoyl peroxide can. But it can still lead to dry, red, and peeling skin, especially when you first start using a product containing salicylic acid. As a rule of thumb, if you have inflammatory acne along with oily, less sensitive skin, benzoyl peroxide may be the better choice. Other OTC acne treatments Benzoyl peroxide isn’t your only treatment option for acne and acne scars. Other OTC products can help treat bacteria, excessive oil, and dead skin cells too. Consider the following treatments: salicylic acid sulfur tea tree oil adapalene When to see a doctor No acne product will clear up your blemishes and scars overnight. Such is the case with benzoyl peroxide. It can take up to six weeks for new products to take full effect. If you don’t see any improvements after six weeks, consider seeing a dermatologist. They might recommend a prescription-strength formula, especially if your acne is severe. They may also recommend an entirely different treatment option. Be prepared to answer questions about your acne and its severity so your dermatologist can determine the best treatment option possible. They will also conduct a skin exam to see the type of acne you have. The takeaway Benzoyl peroxide is one of the many options available for treating acne. Its enduring popularity goes beyond its availability and affordability — benzoyl peroxide can help treat inflammatory acne lesions and related scarring. It’s most helpful when used together with other treatments, such as topical retinoids. Still, everyone’s skin is different, and benzoyl peroxide may not work for all. Give any new acne product several weeks to take full effect before moving on to the next one. See a dermatologist if OTC products aren’t working or if you develop a negative reaction to benzoyl peroxide. Benzoyl peroxide Jump to navigationJump to search Benzoyl peroxide Benzoyl-peroxide.svg Benzoyl-peroxide-3D-balls.png Skeletal formula (top) Ball-and-stick model (bottom) Clinical data Trade names Benzac, Clearasil, PanOxyl, others Other names benzoperoxide, dibenzoyl peroxide (DBPO) E number E928 (glazing agents, ...) Edit this at Wikidata CompTox Dashboard (EPA) DTXSID6024591 Edit this at Wikidata ECHA InfoCard 100.002.116 Edit this at Wikidata Chemical and physical data Formula C14H10O4 Molar mass 242.230 g·mol−1 3D model (JSmol) Interactive image Density 1.334 g/cm3 Melting point 103 to 105 °C (217 to 221 °F) decomposes Solubility in water poor mg/mL (20 °C) SMILES[show] InChI[show] Data page Benzoyl peroxide (data page) Benzoyl peroxide is a chemical compound (specifically, an organic peroxide) with structural formula (C 6H 5−C(=O)O−) 2, often abbreviated as (BzO)2. In terms of its structure, the molecule can be described as two benzoyl (65H 5−C(=O)−, Bz) groups connected by a peroxide (−O−O−). It is a white granular solid with a faint odour of benzaldehyde, poorly soluble in water but soluble in acetone, ethanol, and many other organic solvents. Benzoyl peroxide is an oxidizer, which is principally used as in the production of polymers. [2] As a bleach, it has been used as a medication and a water disinfectant.[3][4] In specialized contexts, the name may be abbreviated as BPO. As a medication, benzoyl peroxide is mostly used to treat acne, either alone or in combination with other treatments.[5] Some versions are sold mixed with antibiotics such as clindamycin.[6][7] It is on the WHO List of Essential Medicines,[8] and, in the US, it is available as an over-the-counter and generic medication.[9][6] It is also used in dentistry for teeth whitening. Benzoyl peroxide is also used for bleaching flour, hair, and textiles[10][4] It is also used in the plastics industry.[3] Contents 1 History 2 Medical uses 2.1 Acne treatment 2.1.1 Mechanism of action 2.1.2 Side effects 2.1.3 Dosage 2.2 Other medical uses 3 Non-medical uses 3.1 Bleaching 3.2 Polymerization 4 Safety 4.1 Explosion hazard 4.2 Toxicity 4.3 Skin irritation 4.4 Cloth staining 5 Reactivity 6 References 7 External links History Benzoyl peroxide was first prepared and described by Liebig in 1858.[11] It was the first organic peroxide prepared intentionally. In 1901, J. H. Kastle and his graduate student A. S. Loevenhart observed that the compound made the tincture of guaiacum tincture turn blue, a sign of oxygen being released.[12] Around 1905, Loevenhart reported on the successful use of BPO to treat various skin conditions, including burns, chronic varicose leg tumors, and tinea sycosis. He also reported animal experiments that showed the relatively low toxicity of the compound.[13][10][14] Treatment with benzoyl peroxide was proposed for wounds by Lyon and Reynolds in 1929, and for sycosis vulgaris and acne varioliformis by Peck and Chagrin in 1934.[14] However, preparations were often of questionable quality.[10] It was officially approved for the treatment of acne in the US in 1960.[10] Medical uses Acne treatment Tube of a water-based 5% benzoyl peroxide preparation for the treatment of acne Benzoyl peroxide is effective for treating acne lesions. It does not induce antibiotic resistance.[15][16] It may be combined with salicylic acid, sulfur, erythromycin or clindamycin (antibiotics), or adapalene (a synthetic retinoid). Two common combination drugs include benzoyl peroxide/clindamycin and adapalene/benzoyl peroxide, an unusual formulation considering most retinoids are deactivated by peroxides[citation needed]. Combination products such as benzoyl peroxide/clindamycin and benzoyl peroxide/salicylic acid appear to be slightly more effective than benzoyl peroxide alone for the treatment of acne lesions.[16] Benzoyl peroxide for acne treatment is typically applied to the affected areas in gel, cream, or liquid, in concentrations of 2.5% increasing through 5.0%, and up to 10%.[15] No strong evidence supports the idea that higher concentrations of benzoyl peroxide are more effective than lower concentrations.[15] Mechanism of action Classically, benzoyl peroxide is thought to have a three-fold activity in treating acne. It is sebostatic, comedolytic, and inhibits growth of Cutibacterium acnes, the main bacterium associated with acne.[17][15] In general, acne vulgaris is a hormone-mediated inflammation of sebaceous glands and hair follicles. Hormone changes cause an increase in keratin and sebum production, leading to blocked drainage. C. acnes has many lytic enzymes that break down the proteins and lipids in the sebum, leading to an inflammatory response. The free-radical reaction of benzoyl peroxide can break down the keratin, therefore unblocking the drainage of sebum (comedolytic). It can cause nonspecific peroxidation of C. acnes, making it bactericidal,[10] and it was thought to decrease sebum production, but disagreement exists within the literature on this.[18][17] Some evidence suggests that benzoyl peroxide has an anti-inflammatory effect as well. In micromolar concentrations it prevents neutrophils from releasing reactive oxygen species, part of the inflammatory response in acne.[18] Side effects Skin irritation due to benzoyl peroxide Application of benzoyl peroxide to the skin may result in redness, burning, and irritation. This side effect is dose-dependent.[5][9] Because of these possible side effects, it is recommended to start with a low concentration and build up as appropriate, as the skin gradually develops tolerance to the medication. Skin sensitivity typically resolves after a few weeks of continuous use.[18][19] Irritation can also be reduced by avoiding harsh facial cleansers and wearing sunscreen prior to sun exposure.[19] One in 500 people experience hypersensitivity to BPO and are liable to suffer burning, itching, crusting, and possibly swelling.[20][21] About one-third of people experience phototoxicity under exposure to ultraviolet (UVB) light.[22] Dosage In the U.S., the typical concentration for benzoyl peroxide is 2.5% to 10% for both prescription and over-the-counter drug preparations that are used in treatment for acne. Other medical uses Benzoyl peroxide is used in dentistry as a tooth whitening product. Non-medical uses Benzoyl peroxide is one of the most important organic peroxides in terms of applications and the scale of its production. It is often used as a convenient oxidant in organic chemistry.[citation needed] Bleaching Like most peroxides, is a powerful bleaching agent. It has been used for the bleaching of flour, fats, oils, waxes, and cheeses, as well as a stain remover.[23] Polymerization Benzoyl peroxide is also used as a radical initiator to induce chain-growth polymerization reactions,[2] such as for polyester and poly(methyl methacrylate) (PMMA) resins and dental cements and restoratives.[24] It is the most important among the various organic peroxides used for this purpose, a relatively safe alternative to the much more hazardous methyl ethyl ketone peroxide.[25][26] It is also used in rubber curing and as a finishing agent for some acetate yarns.[24] Safety Explosion hazard Concentrated benzoyl peroxide is potentially explosive[27] like other organic peroxides, and can cause fires without external ignition. The hazard is acute for the pure material, so the compound is generally used as a solution or a paste. For example, cosmetics contain only a small percentage of benzoyl peroxide and pose no explosion risk. Toxicity Benzoyl peroxide breaks down in contact with skin, producing benzoic acid and oxygen, neither of which is very toxic.[28] The carcinogenic potential of benzoyl peroxide has been investigated. A 1981 study published in the journal Science found that although benzoyl peroxide is not a carcinogen, it does promote cell growth when applied to an initiated tumor. The study concluded, "caution should be recommended in the use of this and other free radical-generating compounds".[29] A 1999 IARC review of carcinogenicity studies found no convincing evidence linking BPO acne medication to skin cancers in humans. However, some animal studied found that the compound could act as a carcinogen and enhance the effect of known carcinogens.[24] Skin irritation In a 1977 study using a human maximization test, 76% of subjects acquired a contact sensitization to benzoyl peroxide. Formulations of 5% and 10% were used.[30] The U.S. National Institute for Occupational Safety and Health has developed criteria for a recommended standard for occupational exposure to benzoyl peroxide.[31] Cloth staining A bleached fabric stain caused by contact with benzoyl peroxide. Contact with fabrics or hair, such as from still-moist acne medication, can cause permanent color dampening almost immediately. Even secondary contact can cause bleaching; for example, contact with a towel that has been used to wash off benzoyl peroxide-containing hygiene products.[32] Reactivity The original 1858 synthesis by Liebig reacted benzoyl chloride with barium peroxide,[11] a reaction that probably follows this equation: The symbol • indicates that the products are radicals; i.e., they contain at least one unpaired electron. Such species are highly reactive. The homolysis is usually induced by heating. The half-life of benzoyl peroxide is one hour at 92 °C. At 131 °C, the half-life is one minute.[33] Benzoyl peroxide On this page About benzoyl peroxide Key facts Who can and cannot use benzoyl peroxide How and when to use it Side effects How to cope with side effects Pregnancy and breastfeeding Cautions with other medicines Common questions 1. About benzoyl peroxide Benzoyl peroxide is used to treat acne. It works as an antiseptic to reduce the number of germs (bacteria) on the surface of your skin. It comes as a gel or face wash containing 5% benzoyl peroxide. This is available to buy from pharmacies under the brand name Acnecide. Benzoyl peroxide is sometimes mixed with potassium hydroxyquinoline sulfate. This is an "antimicrobial" ingredient that kills micro-organisms on your skin. It's sold in pharmacies as Quinoderm cream. Some benzoyl peroxide products are available on prescription only. This is because they contain other active ingredients such as antibiotics or retinoids (exfoliants). Many popular skincare brands also make products that contain benzoyl peroxide, but at a lower strength. These are available to buy in pharmacies, supermarkets and shops. Brands include Clean & Clear, Neutrogena and Clearasil. 2. Key facts Benzoyl peroxide 5% takes around 4 weeks to start working. You'll usually use it 1 or 2 times a day. The most common side effect is skin irritation. It is better to use it less often at first, then build up as your skin gets used to it. Pharmacy brands include Acnecide 5% gel and Acnecide Wash 5%. Benzoyl peroxide is also an ingredient in Duac Once Daily (with clindamycin, an antibiotic) and Epiduo gel (with adapalene, a retinoid). 3. Who can and cannot use benzoyl peroxide Most adults and children over 12 years old can use benzoyl peroxide. Benzoyl peroxide is not suitable for some people. To make sure benzoyl peroxide is safe for you, tell your doctor before using this medicine if you: are allergic to benzoyl peroxide or other medicines. have damaged or broken skin where you need to use the treatment. have very bad acne with nodules (large, hard lumps that build up beneath the surface of the skin and can be painful) or cysts (large, pus-filled lumps that look similar to boils). These need to be treated by a doctor to avoid scarring. 4. How and when to use it Benzoyl peroxide is for use on your skin only. Always wash your hands before and after using this medicine. If your skin becomes dry or starts peeling, try using benzoyl peroxide less often. Put it on once a day or once every 2 days, until your skin gets used to it. Benzoyl peroxide can bleach or discolour your hair, as well as clothes, towels and bedding. Keep it away from hair and coloured fabrics. How to use benzoyl peroxide 5% gel Wash the affected area with a mild skin cleanser and water. Gently pat your skin dry. Put a thin layer of gel on all the affected areas. If your whole face has acne, use a strip of gel (2.5cm long) each time. You'll usually use the gel once or twice a day. If you have sensitive skin, use the gel once a day, before going to bed. Try to avoid strong sunlight while using benzoyl peroxide gel. Use an oil-free sunscreen, or a moisturiser or foundation with added SPF30. In stronger sunlight, use SPF30 or above. Ask a pharmacist to help you pick a sunscreen that's right for your skin type. How to use benzoyl peroxide 5% wash Wet the area you want to treat. Place a small amount of the product onto your hands. Smooth it onto the affected area. Keep the wash on your skin for no more than 1 to 2 minutes. Rinse your face thoroughly with water. Gently pat your skin dry. You'll usually use the wash 1 or 2 times a day. How long will I use it for? It depends on how quickly your condition improves. Benzoyl peroxide will usually start to work within 4 weeks, but once your acne is under control you may want to keep using it to stop your acne coming back. What if I forget to use it? It does not matter if you forget to use benzoyl peroxide. When you remember, start using it again once or twice a day in the same way as before. What if I use too much? If you use too much benzoyl peroxide, your skin may become irritated. Wash off as much as you can and wait for the irritation to go away. When your skin has calmed down again, you can start using benzoyl peroxide again. Be careful to follow the instructions on the package. Important Keep benzoyl peroxide away from your eyes. If you get the gel or wash in your eyes, rinse thoroughly with lukewarm water for a few minutes or until it stops stinging. 5. Side effects Like all medicines, benzoyl peroxide can cause side effects, although not everyone gets them. Common side effects These common side effects happen in more than 1 in 10 people. Talk to a doctor or pharmacist if these side effects bother you or do not go away: dry skin red or peeling skin burning or stinging (skin irritation) Serious side effects These serious side effects are rare and happen in less than 1 in 1,000 people. Stop using benzoyl peroxide if: the skin that you're treating becomes swollen you get blisters on your skin If your symptoms do not get better within a couple of days or if they get worse at any time, contact a doctor straight away. Serious allergic reaction In rare cases, it's possible to have a serious allergic reaction (anaphylaxis) to benzoyl peroxide. These are not all the side effects of benzoyl peroxide. For a full list, see the leaflet inside your medicine packet. Information: You can report any suspected side effects to the UK Safety Scheme 6. How to cope with side effects What to do about: dry skin – apply a moisturiser and lip balm regularly (the best type of moisturiser is an oil-free face moisturiser for sensitive skin). Try to take shorter showers, using warm water rather than hot. red or peeling skin – try using the gel or wash less often, or stop using it for a few days until the irritation goes away, then start again. Do not use other products on your skin in the meantime. Speak to a doctor if your symptoms do not get better or are severe. burning or stinging (skin irritation) – try using the gel or wash less often (once a day instead of twice, or every other day). It might help to stop using the gel for a few days until the irritation goes away, then start again. If the irritation does not go away after this time, stop using it and speak to a doctor. 7. Pregnancy and breastfeeding It's usually safe to use benzoyl peroxide during pregnancy and while breastfeeding. Benzoyl peroxide and breastfeeding Although it's generally OK to use benzoyl peroxide when you're breastfeeding, do not use it on your chest area and wash your hands before touching your baby. This is so your baby does not come into contact with it. Important Tell a pharmacist or doctor if you're trying to get pregnant, already pregnant or breastfeeding 8. Cautions with other medicines Some products and medicines can irritate your skin if you use them while you're treating your skin with benzoyl peroxide gel or wash. Do not use benzoyl peroxide with any other medicines that may have drying or irritating effects on your skin. These include alcohol-based skincare products. Always check the ingredients on the label and choose products for sensitive skin. Do not use other benzoyl peroxide products or other acne medicines (such as isotretinoin), unless your doctor or pharmacist says it's OK. It may cause your skin to become very sore. Mixing benzoyl peroxide with herbal remedies and supplements There's very little information about taking herbal remedies and supplements while using benzoyl peroxide.
Benzyl Alcohol
Benzenemethanoic acid; Carboxybenzene; Acide benzoique; Acido benzoico; Benzenecarboxylic acid; Benzeneformic acid; Benzoate; Benzoesaeure; Carboxybenzene; Dracylic acid; Flowers of benjamin; Flowers of benzoin; Phenylcarboxylic acid; Phenylformic acid; Salvo liquid; Salvo powder; Benzoesäure; ácido benzoico; Acide benzoïque; Kyselina benzoova; Dracylic acid CAS NO:65-85-0
BENZYL BENZOATE
Benzoic acid phenylmethyl ester; Benylate; Ascabin; Scabagen; Vanzoate; Benzyl Phenylformate; Benzyl Benzene Carboxylate; Benzyl Alcohol Benzoic Ester; Ascabiol; Benzoic Acid Benzyl Ester; Benzoato De Bencilo CAS NO:120-51-4
BENZYL BENZOATE

Benzyl benzoate is an organic compound that is used as a medication and insect repellent. As a medication, it is used to treat scabies and lice. For scabies either permethrin or malathion is typically preferred. It is applied to the skin as a lotion. Typically two to three applications are needed. It is also present in Balsam of Peru, Tolu balsam, and in a number of flowers. Benzyl benzoate was first studied medically in 1918. It is on the World Health Organization's List of Essential Medicines.

CAS NO: 120-51-4
EC NO: 204-402-9
IUPAC Names: 
Benzil-benzoát
benzoic acid phenylmethyl ester
Benzoic acid, benzylester
BENZOIC ACID, PHENYL METHYL ESTER
Benzoic acid, phenylmethyl ester
Benzyl benxoate
BENZYL BENZOATE
Benzyl benzoate; Phenylmethyl benzoate
benzyl-2-methyl-hydroxybutyrate dehydrogenase
benzylbenzoate
phenylmethyl benzoate


SYNONYMS
Ascabiol; Novoscabin; Benylate; Scabitox; Scobenol; Ascabin; Benzoic acid benzyl ester; Benzyl phenylformate; Benzylets; Colebenz; Peruscabin; Scabagen; Scabanca; Scabiozon; Vanzoate; Scabide; Benzoic acid phenylmethyl ester; Phenylmethyl benzoate; Antiscabiosum; Benzoic acid; benzyl ester; Benzyl benzenecarboxylate; Benzylis benzoas; Benzyl alcohol benzoic ester; Benzylbenzoate; Peruscabina; Spasmodin; Venzonate; Benzylum benzoicum;120-51-4;Ascabiol;Benzoic acid, phenylmethyl ester;Benzoic acid benzyl ester;Benylate;Novoscabin;Benzoic acid, benzyl ester;Ascabin;Scabitox;Scobenol;Benzyl phenylformate;Phenylmethyl benzoate;Benzylets;Colebenz;Peruscabin;Scabagen;Scabanca;Scabiozon;Vanzoate;Scabide;benzylbenzoate;Benzyl benzenecarboxylate;Benzyl alcohol benzoic ester;Venzonate;Benzylester kyseliny benzoove;BENZOIC ACID PHENYLMETHYLESTER;FEMA No. 2138;NSC 8081;UNII-N863NB338G;MFCD00003075;CHEMBL1239;Antiscabiosum;CHEBI:41237;N863NB338G;NSC-8081;NCGC00094981-03;Peruscabina;Spasmodin;Benzyl benzoate, 99+%;Benzylis benzoas;DSSTox_CID_9153;Benzylum benzoicum;DSSTox_RID_78686;DSSTox_GSID_29153;Benzoesaeurebenzylester;Caswell No. 082;Benzylbenzenecarboxylate;Venzoate;Benzyl benzoate, analytical standard;Benzyl benzoate (natural);BZM;CAS-120-51-4;SMR000471875;HSDB 208;EINECS 204-402-9;Benzylester kyseliny benzoove [Czech];EPA Pesticide Chemical Code 009501;benzylbenzoat;BRN 2049280;Benzyl benzoate [USP:JAN];Acarobenzyl;Benzevan;Bengal;Benzoic acid phenylmethyl ester;AI3-00523;1dzm;Benylate (TN);benzoic acid benzyl;Spectrum_001240;Benzoic acid-benzyl ester;Spectrum2_000532;Spectrum3_001757;Spectrum4_000773;Spectrum5_001128;ACMC-1C8AP;WLN: RVO1R;Benzyl benzoate, >=99%;EC 204-402-9;SCHEMBL3038;BENZYL BENZOATE BP98;BSPBio_003494;KBioGR_001186;KBioSS_001720;4-09-00-00307 (Beilstein Handbook Reference);MLS001066412;MLS001336003;MLS001336004;DivK1c_000204;SPECTRUM1503002;SPBio_000543;Benzyl benzoate (JP17/USP);ZINC1021;DTXSID8029153;BENZOIC ACID,BENZYL ESTER;HMS500K06;KBio1_000204;KBio2_001720;KBio2_004288;KBio2_006856
;KBio3_002714;NSC8081;NINDS_000204;HMS1921P16;HMS2092F20;HMS2269D24;Pharmakon1600-01503002;HY-B0935;Tox21_111372;Tox21_201337;Tox21_303418;ANW-17509;BDBM50134035;CCG-39578;NSC758204;s4599;SBB058609;STL183088;AKOS003495939;Benzyl benzoate, >=99%, FCC, FG;Tox21_111372_1;DB00676;MCULE-4369643785;NSC-758204;IDI1_000204;Benzyl benzoate, for synthesis, 99.0%;NCGC00094981-01;NCGC00094981-02
258889-01;AC-17033;AK308304;SBI-0051748.P002;DB-041563;B0064;FT-0622708;ST50406335;Benzyl benzoate, natural, >=99%, FCC, FG;Benzyl benzoate, ReagentPlus(R), >=99.0%;Benzyl benzoate, SAJ first grade, >=98.0%;Benzyl benzoate, tested according to Ph.Eur.;A14577;A19449;Benzyl benzoate, SAJ special grade, >=99.0%;C12537;D01138;AB00052298_07;Benzyl benzoate, Vetec(TM) reagent grade, 98%;Benzyl benzoate;Q413755;SR-01000763773;Benzoic acid-benzyl ester 5000 microg/mL in Hexane;Q-200696;SR-01000763773-2;BRD-K52072429-001-06-1;Benzoic acid benzyl ester; Benzoic acid phenylmethyl ester


Benzyl benzoate (BnBzO) is mediation and insect repellent. It is one of the older preparation used to treat scabies which is a skin infection caused by the mite Sarcoptes scabiei since it is lethal to the mite. It is capable of killing the mite in 5 minutes. It can also be used for the treatment of lice infestation of the head and the body. Its mechanism of action is through exerting a toxic effects on the nervous system of the insects, further causing its death. It is also toxic to mite ova through an unknown mechanism. It can also be used as a repellent for chiggers, ticks, and mosquitoes as well as a dye carrier, solvent of cellulose derivatives, plasticizer, and a fixative.

Uses
Medical
Benzyl benzoate is an effective and inexpensive topical treatment for human scabies. It has vasodilating and spasmolytic effects and is present in many asthma and whooping cough drugs. It is also used as an excipient in some testosterone-replacement medications (like Nebido) for treating hypogonadism.
Benzyl benzoate is used as a topical acaricide, scabicide, and pediculicide in veterinary hospitals.

Non-medical
Benzyl benzoate is used as a repellent for chiggers, ticks, and mosquitoes. It is also used as a dye carrier, solvent for cellulose derivatives, plasticizer, and fixative in the perfume industry.

Chemistry
It is an organic compound with the formula C6H5CH2O2CC6H5. It is the ester of benzyl alcohol and benzoic acid. It forms either a viscous liquid or solid flakes and has a weak, sweet-balsamic odor. It occurs in a number of blossoms (e. g. tuberose) and is a component of Balsam of Peru and Tolu balsam.

Production
Benzyl benzoate is produced industrially by the reaction of sodium benzoate with benzyl alcohol in the presence of a base, or by transesterification of methyl benzoate and benzyl alcohol. It is a byproduct of benzoic acid synthesis by toluene oxidation. It can also be synthesized by the Tishchenko reaction, using benzaldehyde with sodium benzilate (generated from sodium and benzyl alcohol) as a catalyst:
The Tishchenko reaction: benzaldehyde reacts to benzyl benzoate, the catalyst is sodium benzilate.

It occurs naturally in essential oils such as ylang-ylang, rosewood, cinnamon and benzoin. 

When these essential oils are not used in a product, Benzyl Benzoate can be added in its synthetic form because of its amazing scent and excellent solvent properties. Indeed, it dissolves other perfume materials, allowing them to blend more easily.

What is Benzyl Benzoate?
Benzyl benzoate is a naturally occurring molecule found in some plants and is made up of benzyl alcohol and benzoic acid. In cosmetic products, it plays a number of roles depending on the product and it can act as a fragrance, a solvent, a plasticizer, a preservative, and a fixative.

How does it work?
As a fragrance, benzyl benzoate can add a balsamic smell to a product. It can also work with other fragrances as a solvent to help them dissolve into the mixture. Benzyl benzoate also acts as a fixative in perfumed products where it slows down the escape of other fragrances and increases the life span of the fragrance.

When added to more solid products like soaps, benzyl benzoate can act as a plasticizer. A plasticizer makes a product less brittle so a soap containing it can be bent and squished more before it snaps or crumbles.

Benzyl benzoate is used to treat lice and scabies infestations. This medicine is believed to be absorbed by the lice and mites and to destroy them by acting on their nervous system.

Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body.

Mechanism of action
Benzyl benzoate exerts toxic effects on the nervous system of the parasite, resulting in its death. It is also toxic to mite ova, though its exact mechanism of action is unknown. In vitro, benzyl benzoate has been found to kill the Sarcoptes mite within 5 minutes.

Absorption
No data are available on the percutaneous absorption of benzyl benzoate. Some older studies have suggested some percutaneous absorption, however, the amount was not quantified.

Metabolism
Rapidly hydrolyzed to benzoic acid and benzyl alcohol, which is further oxidized to benzoic acid. The benzoic acid is conjugated with glycine to form hippuric acid.

Benzyl benzoate is a benzyl compound that can be synthesized by reacting benzyl chloride with sodium benzoate in the presence of tetrabutylaramonium iodide. It is reported to be the key constituent in the essential oils isolated from leaves and stem bark of Cinnamomum zeylanicum.
Benzyl benzoate, an ester of benzyl alcohol and benzoic acid, is widely used as a fragrance fixer, fragrance ingredient and preservative to maintain the potency and stability of a variety of cosmetic formulations. It is also employed as a synthetic musk, acaricide to treat scabies and headlice.
Benzyl Alcohol is an organic alcohol found in many fruits and teas. Benzyl Alcohol has a hydroxyl group, while the related compound, Benzoic Acid has a carboxyl group. Sodium Benzoate, Calcium Benzoate and Potassium Benzoate are salts of Benzoic Acid. Benzyl Benzoate is an ester of Benzyl Alcohol and Benzoic Acid.

Benzyl Alcohol, Benzoic Acid and its salts, and Benzyl Benzoate are used in a wide variety of cosmetics and personal care products, including baby products, bath products, soaps and detergents, eye makeup, blushers, cleansing products, makeup products, as well as hair, nail and skincare products.

Why is it used in cosmetics and personal care products?
The following functions have been reported for these ingredients.
Corrosion inhibitor - Sodium Benzoate
Fragrance ingredient - Benzyl Alcohol, Benzoic Acid, Sodium Benzoate, Benzyl Benzoate
pH adjuster - Benzoic Acid
Preservative - Benzyl Alcohol, Benzoic Acid, Sodium Benzoate, Calcium Benzoate, Potassium Benzoate
Solvent - Benzyl Alcohol, Benzyl Benzoate Viscosity decreasing agent - Benzyl Alcohol

Benzyl benzoate is a clear, colorless, oily liquid with a light, balsamic odor reminiscent of almond and a sharp, pungent taste. It produces a sharp, burning sensation on the tongue. At temperatures below 178℃, it exists as clear, colorless crystals.

Pharmaceutical Applications 

Benzyl benzoate is used as a solubilizing agent and nonaqueous solvent in intramuscular injections at concentrations of 0.01–46.0% v/v, and as a solvent and plasticizer for cellulose and nitrocellulose. It is also used in the preparation of spray-dried powders using nanocapsules.

However, the most widespread pharmaceutical use of benzyl benzoate is as a topical therapeutic agent in the treatment of scabies. Benzyl benzoate is also used therapeutically as a parasiticide in veterinary medicine.

Other applications of benzyl benzoate include its use as a pediculicide, and as a solvent and fixative for flavors and perfumes in cosmetics and food products.
Contact allergens Benzyl benzoate is the ester of benzyl alcohol and benzoic acid. It is contained in Myroxylon pereirae and Tolu balsam. It is used in acaricide preparations against Sarcoptes scabiei or as a pediculicide. Direct contact may cause skin irritation, but rarely allergic contact dermatitis.

Clinical Use 
Benzyl benzoate is a naturally occurring ester obtained from Peru balsam and other resins. It is also prepared synthetically from benzyl alcohol and benzoyl chloride. The ester is a clear colorless liquid with a faint aromatic odor. It is insoluble in water but soluble in organic solvents.
Benzyl benzoate is an effective scabicide when applied topically. Immediate relief from itching probably results from a local anesthetic effect; however, a complete cure is frequently achieved with a single application of a 25%emulsion of benzyl benzoate in oleic acid, stabilized with triethanolamine. This preparation has the additional advantage of being essentially odorless, nonstaining, and non-irritating to the skin. It is applied topically as a lotion over the entire dampened body, except the face.

Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide, and a plant metabolite. It is a benzyl ester and a benzoate ester. It derives from benzoic acid.

Mainly used as a non-agricultural pesticide with some veterinary applications as well as being used as a food additive and in perfumery.

Benzyl benzoate is an aromatic ester that is used as a food flavoring agent. It has been identified as one of the main volatile aroma components of cranberry, mango, and Egyptian Jasminum sambac flowers.

It has a unique smell. It has an almond-like or balsamic scent. It is in a colorless solid or liquid form.

Boiling Point is 323.5 ° C.
Melting Point is 21 ° C.
Its solubility in water is almost negligible. It has a solubility of approximately 25 mg / L at 25 ° C.
It is insoluble in glycerin. Soluble in Ethyl Alcohol, Methyl Alcohol, Chloroform and Ethyl Ether.
Benzyl Benzoate density is 25 ° C 1.112 g / cm³.
It is a stable chemical compound in standard storage conditions.

Benzyl Benzoate Usage Areas:
• It is used in the creation of the oldest formulas used for the treatment of a skin disease called scabies. This is a skin infection. It is used to eliminate such skin infections.
• It is an ingredient used in the manufacture of drugs produced to inhibit ticks and mosquitoes.
• It is a chemical substance used as a solvent in many chemical substances.
• It is used as a solvent for cellulose substances.
• It is used as an essence in perfume production.
• It is used in the production of veterinary drugs, in chemicals produced for the treatment of skin diseases of animals.
• It is used as a sweetener in the Food Sector.
• It is used in the manufacture of pesticides for the treatment of dust settings in some textiles, carpets, mattresses and sofa upholstery and furniture.

Usage 
It is one of the oldest anti-scabies drugs for both human and veterinary use. It is also used in combination with other agents against head lice and in skin protection creams.

It is also used as a solvent, as a fragrance ingredient in tobacco products, and to increase the plasticity of polymers and cellulose.

HOW BENZYL BENZOATE IS PRODUCED

Benzyl Benzoate is a naturally occurring molecule found in some plants (plant species of the genus Polyalthia) and consists of benzyl alcohol and benzoic acid. Benzyl benzoate was first studied medically in 1918.
It is a Benzoate ester obtained by formal condensation of Benzoic acid with Benzyl Alcohol. It can also be produced by the Tishchenko reaction, using benzaldehyde with sodium benzylate (produced from sodium and benzyl alcohol) as a catalyst.

BENZYL BENZOATE PHYSICAL AND CHEMICAL PROPERTIES

• Benzyl Benzoate is insoluble in water and glycerol. Soluble in ethanol, ethyl ether, acetone, benzene, methanol, chloroform.
• Benzyl Benzoate is stable under recommended storage conditions.
• Benzyl Benzoate, when heated to decompose, produces bitter and irritating fumes.
• It is in the form of a viscous liquid or solid flakes and has a weak balsamic odor.


Benzyl Benzoate has a high molecular weight, making it an extensively used fixative in the fine fragrance and perfume industry. It is used in topical pharmaceutical formulations for the treatment of lice and scabies. Additionally, Kalama Benzyl Benzoate is valued for its compatibility with candlewax, incorporating fragrance to fine candles while also promoting clean burning.

Treatment of scabies is with topical permethrin, benzyl benzoate, malathion,to its ir or oral ivermectin. The patient should apply 5% permethrin cream to the whole body, including the scalp, all folds, groin, navel, external genitalia, and skin under the nails, washing it off after 12 hours. In adults with classical scabies, treatment of the face is controversial, but in babies, the skin of the face should also be treated. A second application 7 days after the original treatment must be prescribed and all the affected members of a household require treatment at the same time to prevent cyclical reinfestations. Oral ivermectin is being increasingly used as a first-line treatment. Severe outbreaks require a second dose of ivermectin at a 2-week interval (200 µg/kg body weight). Treatment of secondary bacterial infection and antihistamines may be required. Washing clothes and linen at 60° C will kill all the young fecundated female mites (an alternative is to keep these in a plastic bag for 48-72 hours, as mites separated from the human host die within this time). It is important to explain that pruritus commonly lasts for several weeks after cure, which may be partially alleviated by non-sedating or sedating antihistamines.

Benzyl benzoate is used as an insecticide to kill scabies mites, dust mites, and ticks. It is also used as a plasticizer, a fixative in fragrances, a food additive, and a solvent. Dermatitis is the primary adverse reaction to its use as a topical solution. At high concentrations, it has been found to possess estrogenic properties and to stimulate the growth of human breast cells.

IDENTIFICATION: 
Benzyl benzoate is a colorless oily liquid. It can also be in the form of leaflets. It has an almond taste and a pleasant odor. It is nearly insoluble in water. Benzyl benzoate occurs in many plants and essential oils. 
USE: 
Benzyl benzoate is an important commercial chemical. It is used in making plastics, as a solvent, in making other chemicals, as a food flavoring, and in perfumes. It is also used as a skin medication for humans and dogs in treating mites. Benzyl benzoate is used to control dust mites in carpets and furniture. 

Industry Uses 
•Dyes
•Odor agents
•Solvents (for cleaning and degreasing)
•Solvents (which become part of product formulation or mixture)
•Surface active agents

General Manufacturing Information
Industry Processing Sectors
•Air Care
•All other basic organic chemical manufacturing
•All other chemical product and preparation manufacturing
•Miscellaneous manufacturing
•Plastic material and resin manufacturing
•Soap, cleaning compound, and toilet preparation manufacturing
•Textiles, apparel, and leather manufacturing
•Fragrance

About this substance
Helpful information
This substance is used by consumers, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
This substance is used in the following products: washing & cleaning products, polishes and waxes, air care products, cosmetics and personal care products, perfumes and fragrances and biocides (e.g. disinfectants, pest control products).
Another release to the environment of this substance is likely to occur from: indoor use as a processing aid and outdoor use as a processing aid.

Widespread uses by professional workers
This substance is used in the following products: polishes, washing & cleaning products, perfumes and fragrances and cosmetics and personal care products.
This substance is used in the following areas: health services and scientific research and development.
Another release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use as a processing aid.

Formulation or re-packing
This substance is used in the following products: air care products, biocides (e.g. disinfectants, pest control products), leather treatment products, perfumes and fragrances, pharmaceuticals, photo-chemicals, polishes and waxes, polymers, textile treatment products and dyes, washing & cleaning products and cosmetics and personal care products.
Release to the environment of this substance can occur from industrial use: formulation of mixtures.
Uses at industrial sites
This substance is used in the following products: washing & cleaning products, polymers, laboratory chemicals, air care products, coating products, perfumes and fragrances, polishes and waxes, textile treatment products and dyes and cosmetics and personal care products.
This substance has an industrial use resulting in the manufacture of another substance (use of intermediates).
This substance is used for the manufacture of chemicals, plastic products and textile, leather, or fur.

benzyl benzoate as a colorless, pleasant smell, taste very pungent oily liquid. The benzoic acid and benzyl alcohol ester. Insoluble in water, acetone and benzene soluble in alcohol, chloroform, ether blends, oils.

In nature, it occurs in gyömbérfélékhez belonging Kaempferia rotunda and Zingiber cassumunar the plant name.

Benzyl benzoate is a natural component of essential oils (for example jasmine, ylang-ylang, rosewood, cinnamon or benzoate). Benzyl benzoate can also be produced synthetically, but the effects do not differ. It occurs in the form of a colorless liquid or a white solid with a sweeter balsamic odor.

Benzyl benzoate is a stable substance, resistant to changes in temperature and environment, it is used as a stabilizer of fragrant compositions and the whole product. It masks the natural aroma of unscented ingredients, while also serving as a perfume thanks to its sweet balsamic scent. It also acts as a preservative and especially as a solvent (it dissolves other substances in the product). We find it in medicines to treat scabies (kills scabies mites), anti-lice preparations and insecticides. It has antimicrobial effects.

Occurrence
Contained in Peru balsam and in the concrete and absolute of tuberose flowers, hyacinth, Narcissus jonquilla L., and Dianthus caryophillus L.; also in the oil of ylang-ylang and in Tolu balsam. Reported found in American cranberry, cinnamon bark, cassia leaf, corn oil and hog plum (Spondias mombins L.).
Uses
Benzyl benzoate, as a topical solution, may be used as an antiparasitic insecticide to kill the mites responsible for the skin condition scabies, for example as a combination drug of benzyl benzoate/disulfiram.

It has other uses :
• a fixative in fragrances to improve the stability and other characteristics of the main ingredients
• a food additive in artificial flavours
• a plasticizer in cellulose and other polymers
• a solvent for various chemical reactions
• a treatment for sweet itch in horses
• a treatment for scaly leg mites in chickens.

Benzyl benzoate is an anti-microbial. It can also act as a solvent, helping dissolve other substances in the product, and as a perfuming ingredient. It is the ester of benzyl alcohol and benzoic acid.

As a solvent of cellulose acetate, nitrocellulose and artificial musk; substitute for camphor in celluloid and plastic pyroxylin Compounds; perfume fixative; in confectionery and chewing gum flavors.
Preparation
By the dry esterification of sodium benzoate and benzoyl chloride in the presence of triethylamine or by reaction of sodium benzylate on benzaldehyde.

Production Methods
BENZYL BENZOATE is produced by the Cannizzaro reaction from benzaldehyde, by esterifying benzyl alcohol with benzoic acid, or by treating sodium benzoate with benzyl chloride. It is purified by distillation and crystallization. Benzyl benzoate is used as a fixative and solvent for musk in perfumes and flavours, as a plasticizer, miticide, and in some external medications. The compound has been found effective in the treatment of scabies and pediculosis capitis (head lice, Pediculus humanus var. capitis).
Indications
Benzyl benzoate: 20% to 25%. This agent is relatively nontoxic and is widely used in developing countries to treat scabies and pediculosis capitis and pubis. Only veterinary preparation is available in the United States. Benzyl benzoate is synthetically derived from the esterification of benzoic acid with benzyl alcohol. Its mechanism of action is unknown. It is toxic to Sarcoptes scabei and may be toxic to Pediculosis capitis and Phthirus pubis. No resistance has been demonstrated to date.
Benzyl benzoate can be used in a 5% emulsion to repel many arthropods and can be used as a lotion to treat sarcoptic mange and canine pediculosis.

Taste threshold values
Taste characteristics at 30 ppm: balsamic, fruity with powdery and berry nuances.

Pharmaceutical Applications
Benzyl benzoate is used as a solubilizing agent and nonaqueous solvent in intramuscular injections at concentrations of 0.01–46.0% v/v, and as a solvent and plasticizer for cellulose and nitrocellulose. It is also used in the preparation of spray-dried powders using nanocapsules.
However, the most widespread pharmaceutical use of benzyl benzoate is as a topical therapeutic agent in the treatment of scabies. Benzyl benzoate is also used therapeutically as a parasiticide in veterinary medicine.
Other applications of benzyl benzoate include its use as a pediculicide, and as a solvent and fixative for flavours and perfumes in cosmetics and food products.

Benzyl benzoate is the ester of benzyl alcohol and benzoic acid. It is contained in Myroxylon pereirae and Tolu balsam. It is used in acaricide preparations against Sarcoptes scabiei or as a pediculicide.

Clinical Use
Benzyl benzoate is a naturally occurring ester obtained from Peru balsam and other resins. It is also prepared synthetically from benzyl alcohol and benzoyl chloride. The ester is a clear colourless liquid with a faint aromatic odour. It is insoluble in water but soluble in organic solvents.
Benzyl benzoate is an effective scabicide when applied topically. Immediate relief from itching probably results from a local anaesthetic effect; however, a complete cure is frequently achieved with a single application of a 25% emulsion of benzyl benzoate in oleic acid, stabilized with triethanolamine. It is applied topically as a lotion over the entire dampened body, except the face.

Benzyl benzoate CAS 120-51-4 is a colourless or pale yellow viscous transparent liquid. In temperature conditions of 17 degrees centigrade or lower, it will be solidified into white solid. Benzyl benzoate of high purity has a slight fragrance. Benzyl benzoate is insoluble in water but soluble in organic solvents. Benzyl benzoate is a high-temperature solvent, is the only solvent of Musk. Benzyl benzoate has applications to the pharmacy and perfume industry just because of its characters of low volatilization and relative stability. 
Benzyl Benzoate is a solvent. This means solutes such as Hormone Powders dissolve easily in it, and that is the main purpose of its use in Steroids. The Benzyl Benzoate is used to dissolve and suspend the Hormone Powder. If the correct amount of this solvent is not used the Hormone powder will 'undissolved from the solution causing the Steroids to 'Crash' (get cloudy/less effective).

Some Hormone Powder dissolves more easily than others and therefore less Benzyl Benzoate is required. The fact that varying amounts of solvent is required for the Hormone Powders is why having this page as a resource is so vital.

Benzyl Benzoate (BB) is the primary solvent, which keeps the product from is A co-solvent in steroid that serves several functions: helps dissolve the hormone, helps keep it in solution in depot (injection site), and thins the gear so it is easy to draw and inject.

Properties: In standard conditions, benzyl benzoate is a colourless or pale yellow viscous transparent liquid. In temperature conditions of 17 degrees centigrade or lower, it will be solidified into white solid. Benzyl benzoate of high purity would send out a slight fragrance.

Freezing point: ≥17°C
Boiling point: 323°C

Solubility: Benzyl benzoate is insoluble in water but soluble in organic solvents. Benzyl benzoate itself, a high-temperature solvent, is the only solvent of Musk. Benzyl benzoate has applications in the pharmacy and perfume industry just because of its characters of low volatilization and relative stability.

Applications: 
Benzyl benzoate is mainly used in the area of textile auxiliary, fragrance and flavour, pharmacy, plasticizer and so on. Benzyl benzoate can be used as to lead agent, levelling agent and repair agent of textile auxiliaries. Mechanism: With the development of the textile industry, the materials are of a higher grade. The higher-grade cloth is, the more compact fabric is. So in dyeing, there are more difficulties in colouring and uniformity Due to the good plasticity performance, benzyl benzoate makes the fiber swell and undraw so that the fibre will be dyed easily. At the same time, benzyl benzoate is a good solvent to dissolve and disperse dye evenly. Since its quite good dye migration performance, benzyl benzoate could be developed as levelling agents and lead agents. There are many other materials, which have similar properties to benzyl benzoate, such as methylnaphthalene, dimethylnaphthalene, methyl salicylate, and benzene ester.

 

BENZYL BENZOATE

Benzyl benzoate is an organic compound that is used as a medication and insect repellent. As a medication, it is used to treat scabies and lice. For scabies either permethrin or malathion is typically preferred. It is applied to the skin as a lotion. Typically two to three applications are needed. It is also present in Balsam of Peru, Tolu balsam, and in a number of flowers. Benzyl benzoate was first studied medically in 1918. It is on the World Health Organization's List of Essential Medicines.

CAS NO: 120-51-4
EC NO: 204-402-9
IUPAC Names: 
Benzil-benzoát
benzoic acid phenylmethyl ester
Benzoic acid, benzylester
BENZOIC ACID, PHENYL METHYL ESTER
Benzoic acid, phenylmethyl ester
Benzyl benxoate
BENZYL BENZOATE
Benzyl benzoate; Phenylmethyl benzoate
benzyl-2-methyl-hydroxybutyrate dehydrogenase
benzylbenzoate
phenylmethyl benzoate


SYNONYMS
Ascabiol; Novoscabin; Benylate; Scabitox; Scobenol; Ascabin; Benzoic acid benzyl ester; Benzyl phenylformate; Benzylets; Colebenz; Peruscabin; Scabagen; Scabanca; Scabiozon; Vanzoate; Scabide; Benzoic acid phenylmethyl ester; Phenylmethyl benzoate; Antiscabiosum; Benzoic acid; benzyl ester; Benzyl benzenecarboxylate; Benzylis benzoas; Benzyl alcohol benzoic ester; Benzylbenzoate; Peruscabina; Spasmodin; Venzonate; Benzylum benzoicum;120-51-4;Ascabiol;Benzoic acid, phenylmethyl ester;Benzoic acid benzyl ester;Benylate;Novoscabin;Benzoic acid, benzyl ester;Ascabin;Scabitox;Scobenol;Benzyl phenylformate;Phenylmethyl benzoate;Benzylets;Colebenz;Peruscabin;Scabagen;Scabanca;Scabiozon;Vanzoate;Scabide;benzylbenzoate;Benzyl benzenecarboxylate;Benzyl alcohol benzoic ester;Venzonate;Benzylester kyseliny benzoove;BENZOIC ACID PHENYLMETHYLESTER;FEMA No. 2138;NSC 8081;UNII-N863NB338G;MFCD00003075;CHEMBL1239;Antiscabiosum;CHEBI:41237;N863NB338G;NSC-8081;NCGC00094981-03;Peruscabina;Spasmodin;Benzyl benzoate, 99+%;Benzylis benzoas;DSSTox_CID_9153;Benzylum benzoicum;DSSTox_RID_78686;DSSTox_GSID_29153;Benzoesaeurebenzylester;Caswell No. 082;Benzylbenzenecarboxylate;Venzoate;Benzyl benzoate, analytical standard;Benzyl benzoate (natural);BZM;CAS-120-51-4;SMR000471875;HSDB 208;EINECS 204-402-9;Benzylester kyseliny benzoove [Czech];EPA Pesticide Chemical Code 009501;benzylbenzoat;BRN 2049280;Benzyl benzoate [USP:JAN];Acarobenzyl;Benzevan;Bengal;Benzoic acid phenylmethyl ester;AI3-00523;1dzm;Benylate (TN);benzoic acid benzyl;Spectrum_001240;Benzoic acid-benzyl ester;Spectrum2_000532;Spectrum3_001757;Spectrum4_000773;Spectrum5_001128;ACMC-1C8AP;WLN: RVO1R;Benzyl benzoate, >=99%;EC 204-402-9;SCHEMBL3038;BENZYL BENZOATE BP98;BSPBio_003494;KBioGR_001186;KBioSS_001720;4-09-00-00307 (Beilstein Handbook Reference);MLS001066412;MLS001336003;MLS001336004;DivK1c_000204;SPECTRUM1503002;SPBio_000543;Benzyl benzoate (JP17/USP);ZINC1021;DTXSID8029153;BENZOIC ACID,BENZYL ESTER;HMS500K06;KBio1_000204;KBio2_001720;KBio2_004288;KBio2_006856
;KBio3_002714;NSC8081;NINDS_000204;HMS1921P16;HMS2092F20;HMS2269D24;Pharmakon1600-01503002;HY-B0935;Tox21_111372;Tox21_201337;Tox21_303418;ANW-17509;BDBM50134035;CCG-39578;NSC758204;s4599;SBB058609;STL183088;AKOS003495939;Benzyl benzoate, >=99%, FCC, FG;Tox21_111372_1;DB00676;MCULE-4369643785;NSC-758204;IDI1_000204;Benzyl benzoate, for synthesis, 99.0%;NCGC00094981-01;NCGC00094981-02
258889-01;AC-17033;AK308304;SBI-0051748.P002;DB-041563;B0064;FT-0622708;ST50406335;Benzyl benzoate, natural, >=99%, FCC, FG;Benzyl benzoate, ReagentPlus(R), >=99.0%;Benzyl benzoate, SAJ first grade, >=98.0%;Benzyl benzoate, tested according to Ph.Eur.;A14577;A19449;Benzyl benzoate, SAJ special grade, >=99.0%;C12537;D01138;AB00052298_07;Benzyl benzoate, Vetec(TM) reagent grade, 98%;Benzyl benzoate;Q413755;SR-01000763773;Benzoic acid-benzyl ester 5000 microg/mL in Hexane;Q-200696;SR-01000763773-2;BRD-K52072429-001-06-1;Benzoic acid benzyl ester; Benzoic acid phenylmethyl ester


Benzyl benzoate (BnBzO) is mediation and insect repellent. It is one of the older preparation used to treat scabies which is a skin infection caused by the mite Sarcoptes scabiei since it is lethal to the mite. It is capable of killing the mite in 5 minutes. It can also be used for the treatment of lice infestation of the head and the body. Its mechanism of action is through exerting a toxic effects on the nervous system of the insects, further causing its death. It is also toxic to mite ova through an unknown mechanism. It can also be used as a repellent for chiggers, ticks, and mosquitoes as well as a dye carrier, solvent of cellulose derivatives, plasticizer, and a fixative.

Uses
Medical
Benzyl benzoate is an effective and inexpensive topical treatment for human scabies. It has vasodilating and spasmolytic effects and is present in many asthma and whooping cough drugs. It is also used as an excipient in some testosterone-replacement medications (like Nebido) for treating hypogonadism.
Benzyl benzoate is used as a topical acaricide, scabicide, and pediculicide in veterinary hospitals.

Non-medical
Benzyl benzoate is used as a repellent for chiggers, ticks, and mosquitoes. It is also used as a dye carrier, solvent for cellulose derivatives, plasticizer, and fixative in the perfume industry.

Chemistry
It is an organic compound with the formula C6H5CH2O2CC6H5. It is the ester of benzyl alcohol and benzoic acid. It forms either a viscous liquid or solid flakes and has a weak, sweet-balsamic odor. It occurs in a number of blossoms (e. g. tuberose) and is a component of Balsam of Peru and Tolu balsam.

Production
Benzyl benzoate is produced industrially by the reaction of sodium benzoate with benzyl alcohol in the presence of a base, or by transesterification of methyl benzoate and benzyl alcohol. It is a byproduct of benzoic acid synthesis by toluene oxidation. It can also be synthesized by the Tishchenko reaction, using benzaldehyde with sodium benzilate (generated from sodium and benzyl alcohol) as a catalyst:
The Tishchenko reaction: benzaldehyde reacts to benzyl benzoate, the catalyst is sodium benzilate.

It occurs naturally in essential oils such as ylang-ylang, rosewood, cinnamon and benzoin. 

When these essential oils are not used in a product, Benzyl Benzoate can be added in its synthetic form because of its amazing scent and excellent solvent properties. Indeed, it dissolves other perfume materials, allowing them to blend more easily.

What is Benzyl Benzoate?
Benzyl benzoate is a naturally occurring molecule found in some plants and is made up of benzyl alcohol and benzoic acid. In cosmetic products, it plays a number of roles depending on the product and it can act as a fragrance, a solvent, a plasticizer, a preservative, and a fixative.

How does it work?
As a fragrance, benzyl benzoate can add a balsamic smell to a product. It can also work with other fragrances as a solvent to help them dissolve into the mixture. Benzyl benzoate also acts as a fixative in perfumed products where it slows down the escape of other fragrances and increases the life span of the fragrance.

When added to more solid products like soaps, benzyl benzoate can act as a plasticizer. A plasticizer makes a product less brittle so a soap containing it can be bent and squished more before it snaps or crumbles.

Benzyl benzoate is used to treat lice and scabies infestations. This medicine is believed to be absorbed by the lice and mites and to destroy them by acting on their nervous system.

Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body.

Mechanism of action
Benzyl benzoate exerts toxic effects on the nervous system of the parasite, resulting in its death. It is also toxic to mite ova, though its exact mechanism of action is unknown. In vitro, benzyl benzoate has been found to kill the Sarcoptes mite within 5 minutes.

Absorption
No data are available on the percutaneous absorption of benzyl benzoate. Some older studies have suggested some percutaneous absorption, however, the amount was not quantified.

Metabolism
Rapidly hydrolyzed to benzoic acid and benzyl alcohol, which is further oxidized to benzoic acid. The benzoic acid is conjugated with glycine to form hippuric acid.

Benzyl benzoate is a benzyl compound that can be synthesized by reacting benzyl chloride with sodium benzoate in the presence of tetrabutylaramonium iodide. It is reported to be the key constituent in the essential oils isolated from leaves and stem bark of Cinnamomum zeylanicum.
Benzyl benzoate, an ester of benzyl alcohol and benzoic acid, is widely used as a fragrance fixer, fragrance ingredient and preservative to maintain the potency and stability of a variety of cosmetic formulations. It is also employed as a synthetic musk, acaricide to treat scabies and headlice.
Benzyl Alcohol is an organic alcohol found in many fruits and teas. Benzyl Alcohol has a hydroxyl group, while the related compound, Benzoic Acid has a carboxyl group. Sodium Benzoate, Calcium Benzoate and Potassium Benzoate are salts of Benzoic Acid. Benzyl Benzoate is an ester of Benzyl Alcohol and Benzoic Acid.

Benzyl Alcohol, Benzoic Acid and its salts, and Benzyl Benzoate are used in a wide variety of cosmetics and personal care products, including baby products, bath products, soaps and detergents, eye makeup, blushers, cleansing products, makeup products, as well as hair, nail and skincare products.

Why is it used in cosmetics and personal care products?
The following functions have been reported for these ingredients.
Corrosion inhibitor - Sodium Benzoate
Fragrance ingredient - Benzyl Alcohol, Benzoic Acid, Sodium Benzoate, Benzyl Benzoate
pH adjuster - Benzoic Acid
Preservative - Benzyl Alcohol, Benzoic Acid, Sodium Benzoate, Calcium Benzoate, Potassium Benzoate
Solvent - Benzyl Alcohol, Benzyl Benzoate Viscosity decreasing agent - Benzyl Alcohol

Benzyl benzoate is a clear, colorless, oily liquid with a light, balsamic odor reminiscent of almond and a sharp, pungent taste. It produces a sharp, burning sensation on the tongue. At temperatures below 178℃, it exists as clear, colorless crystals.

Pharmaceutical Applications 

Benzyl benzoate is used as a solubilizing agent and nonaqueous solvent in intramuscular injections at concentrations of 0.01–46.0% v/v, and as a solvent and plasticizer for cellulose and nitrocellulose. It is also used in the preparation of spray-dried powders using nanocapsules.

However, the most widespread pharmaceutical use of benzyl benzoate is as a topical therapeutic agent in the treatment of scabies. Benzyl benzoate is also used therapeutically as a parasiticide in veterinary medicine.

Other applications of benzyl benzoate include its use as a pediculicide, and as a solvent and fixative for flavors and perfumes in cosmetics and food products.
Contact allergens Benzyl benzoate is the ester of benzyl alcohol and benzoic acid. It is contained in Myroxylon pereirae and Tolu balsam. It is used in acaricide preparations against Sarcoptes scabiei or as a pediculicide. Direct contact may cause skin irritation, but rarely allergic contact dermatitis.

Clinical Use 
Benzyl benzoate is a naturally occurring ester obtained from Peru balsam and other resins. It is also prepared synthetically from benzyl alcohol and benzoyl chloride. The ester is a clear colorless liquid with a faint aromatic odor. It is insoluble in water but soluble in organic solvents.
Benzyl benzoate is an effective scabicide when applied topically. Immediate relief from itching probably results from a local anesthetic effect; however, a complete cure is frequently achieved with a single application of a 25%emulsion of benzyl benzoate in oleic acid, stabilized with triethanolamine. This preparation has the additional advantage of being essentially odorless, nonstaining, and non-irritating to the skin. It is applied topically as a lotion over the entire dampened body, except the face.

Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide, and a plant metabolite. It is a benzyl ester and a benzoate ester. It derives from benzoic acid.

Mainly used as a non-agricultural pesticide with some veterinary applications as well as being used as a food additive and in perfumery.

Benzyl benzoate is an aromatic ester that is used as a food flavoring agent. It has been identified as one of the main volatile aroma components of cranberry, mango, and Egyptian Jasminum sambac flowers.

It has a unique smell. It has an almond-like or balsamic scent. It is in a colorless solid or liquid form.

Boiling Point is 323.5 ° C.
Melting Point is 21 ° C.
Its solubility in water is almost negligible. It has a solubility of approximately 25 mg / L at 25 ° C.
It is insoluble in glycerin. Soluble in Ethyl Alcohol, Methyl Alcohol, Chloroform and Ethyl Ether.
Benzyl Benzoate density is 25 ° C 1.112 g / cm³.
It is a stable chemical compound in standard storage conditions.

Benzyl Benzoate Usage Areas:
• It is used in the creation of the oldest formulas used for the treatment of a skin disease called scabies. This is a skin infection. It is used to eliminate such skin infections.
• It is an ingredient used in the manufacture of drugs produced to inhibit ticks and mosquitoes.
• It is a chemical substance used as a solvent in many chemical substances.
• It is used as a solvent for cellulose substances.
• It is used as an essence in perfume production.
• It is used in the production of veterinary drugs, in chemicals produced for the treatment of skin diseases of animals.
• It is used as a sweetener in the Food Sector.
• It is used in the manufacture of pesticides for the treatment of dust settings in some textiles, carpets, mattresses and sofa upholstery and furniture.

Usage 
It is one of the oldest anti-scabies drugs for both human and veterinary use. It is also used in combination with other agents against head lice and in skin protection creams.

It is also used as a solvent, as a fragrance ingredient in tobacco products, and to increase the plasticity of polymers and cellulose.

HOW BENZYL BENZOATE IS PRODUCED

Benzyl Benzoate is a naturally occurring molecule found in some plants (plant species of the genus Polyalthia) and consists of benzyl alcohol and benzoic acid. Benzyl benzoate was first studied medically in 1918.
It is a Benzoate ester obtained by formal condensation of Benzoic acid with Benzyl Alcohol. It can also be produced by the Tishchenko reaction, using benzaldehyde with sodium benzylate (produced from sodium and benzyl alcohol) as a catalyst.

BENZYL BENZOATE PHYSICAL AND CHEMICAL PROPERTIES

• Benzyl Benzoate is insoluble in water and glycerol. Soluble in ethanol, ethyl ether, acetone, benzene, methanol, chloroform.
• Benzyl Benzoate is stable under recommended storage conditions.
• Benzyl Benzoate, when heated to decompose, produces bitter and irritating fumes.
• It is in the form of a viscous liquid or solid flakes and has a weak balsamic odor.


Benzyl Benzoate has a high molecular weight, making it an extensively used fixative in the fine fragrance and perfume industry. It is used in topical pharmaceutical formulations for the treatment of lice and scabies. Additionally, Kalama Benzyl Benzoate is valued for its compatibility with candlewax, incorporating fragrance to fine candles while also promoting clean burning.

Treatment of scabies is with topical permethrin, benzyl benzoate, malathion,to its ir or oral ivermectin. The patient should apply 5% permethrin cream to the whole body, including the scalp, all folds, groin, navel, external genitalia, and skin under the nails, washing it off after 12 hours. In adults with classical scabies, treatment of the face is controversial, but in babies, the skin of the face should also be treated. A second application 7 days after the original treatment must be prescribed and all the affected members of a household require treatment at the same time to prevent cyclical reinfestations. Oral ivermectin is being increasingly used as a first-line treatment. Severe outbreaks require a second dose of ivermectin at a 2-week interval (200 µg/kg body weight). Treatment of secondary bacterial infection and antihistamines may be required. Washing clothes and linen at 60° C will kill all the young fecundated female mites (an alternative is to keep these in a plastic bag for 48-72 hours, as mites separated from the human host die within this time). It is important to explain that pruritus commonly lasts for several weeks after cure, which may be partially alleviated by non-sedating or sedating antihistamines.

Benzyl benzoate is used as an insecticide to kill scabies mites, dust mites, and ticks. It is also used as a plasticizer, a fixative in fragrances, a food additive, and a solvent. Dermatitis is the primary adverse reaction to its use as a topical solution. At high concentrations, it has been found to possess estrogenic properties and to stimulate the growth of human breast cells.

IDENTIFICATION: 
Benzyl benzoate is a colorless oily liquid. It can also be in the form of leaflets. It has an almond taste and a pleasant odor. It is nearly insoluble in water. Benzyl benzoate occurs in many plants and essential oils. 
USE: 
Benzyl benzoate is an important commercial chemical. It is used in making plastics, as a solvent, in making other chemicals, as a food flavoring, and in perfumes. It is also used as a skin medication for humans and dogs in treating mites. Benzyl benzoate is used to control dust mites in carpets and furniture. 

Industry Uses 
•Dyes
•Odor agents
•Solvents (for cleaning and degreasing)
•Solvents (which become part of product formulation or mixture)
•Surface active agents

General Manufacturing Information
Industry Processing Sectors
•Air Care
•All other basic organic chemical manufacturing
•All other chemical product and preparation manufacturing
•Miscellaneous manufacturing
•Plastic material and resin manufacturing
•Soap, cleaning compound, and toilet preparation manufacturing
•Textiles, apparel, and leather manufacturing
•Fragrance

About this substance
Helpful information
This substance is used by consumers, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses
This substance is used in the following products: washing & cleaning products, polishes and waxes, air care products, cosmetics and personal care products, perfumes and fragrances and biocides (e.g. disinfectants, pest control products).
Another release to the environment of this substance is likely to occur from: indoor use as a processing aid and outdoor use as a processing aid.

Widespread uses by professional workers
This substance is used in the following products: polishes, washing & cleaning products, perfumes and fragrances and cosmetics and personal care products.
This substance is used in the following areas: health services and scientific research and development.
Another release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use as a processing aid.

Formulation or re-packing
This substance is used in the following products: air care products, biocides (e.g. disinfectants, pest control products), leather treatment products, perfumes and fragrances, pharmaceuticals, photo-chemicals, polishes and waxes, polymers, textile treatment products and dyes, washing & cleaning products and cosmetics and personal care products.
Release to the environment of this substance can occur from industrial use: formulation of mixtures.
Uses at industrial sites
This substance is used in the following products: washing & cleaning products, polymers, laboratory chemicals, air care products, coating products, perfumes and fragrances, polishes and waxes, textile treatment products and dyes and cosmetics and personal care products.
This substance has an industrial use resulting in the manufacture of another substance (use of intermediates).
This substance is used for the manufacture of chemicals, plastic products and textile, leather, or fur.

benzyl benzoate as a colorless, pleasant smell, taste very pungent oily liquid. The benzoic acid and benzyl alcohol ester. Insoluble in water, acetone and benzene soluble in alcohol, chloroform, ether blends, oils.

In nature, it occurs in gyömbérfélékhez belonging Kaempferia rotunda and Zingiber cassumunar the plant name.

Benzyl benzoate is a natural component of essential oils (for example jasmine, ylang-ylang, rosewood, cinnamon or benzoate). Benzyl benzoate can also be produced synthetically, but the effects do not differ. It occurs in the form of a colorless liquid or a white solid with a sweeter balsamic odor.

Benzyl benzoate is a stable substance, resistant to changes in temperature and environment, it is used as a stabilizer of fragrant compositions and the whole product. It masks the natural aroma of unscented ingredients, while also serving as a perfume thanks to its sweet balsamic scent. It also acts as a preservative and especially as a solvent (it dissolves other substances in the product). We find it in medicines to treat scabies (kills scabies mites), anti-lice preparations and insecticides. It has antimicrobial effects.

Occurrence
Contained in Peru balsam and in the concrete and absolute of tuberose flowers, hyacinth, Narcissus jonquilla L., and Dianthus caryophillus L.; also in the oil of ylang-ylang and in Tolu balsam. Reported found in American cranberry, cinnamon bark, cassia leaf, corn oil and hog plum (Spondias mombins L.).
Uses
Benzyl benzoate, as a topical solution, may be used as an antiparasitic insecticide to kill the mites responsible for the skin condition scabies, for example as a combination drug of benzyl benzoate/disulfiram.

It has other uses :
• a fixative in fragrances to improve the stability and other characteristics of the main ingredients
• a food additive in artificial flavours
• a plasticizer in cellulose and other polymers
• a solvent for various chemical reactions
• a treatment for sweet itch in horses
• a treatment for scaly leg mites in chickens.

Benzyl benzoate is an anti-microbial. It can also act as a solvent, helping dissolve other substances in the product, and as a perfuming ingredient. It is the ester of benzyl alcohol and benzoic acid.

As a solvent of cellulose acetate, nitrocellulose and artificial musk; substitute for camphor in celluloid and plastic pyroxylin Compounds; perfume fixative; in confectionery and chewing gum flavors.
Preparation
By the dry esterification of sodium benzoate and benzoyl chloride in the presence of triethylamine or by reaction of sodium benzylate on benzaldehyde.

Production Methods
BENZYL BENZOATE is produced by the Cannizzaro reaction from benzaldehyde, by esterifying benzyl alcohol with benzoic acid, or by treating sodium benzoate with benzyl chloride. It is purified by distillation and crystallization. Benzyl benzoate is used as a fixative and solvent for musk in perfumes and flavours, as a plasticizer, miticide, and in some external medications. The compound has been found effective in the treatment of scabies and pediculosis capitis (head lice, Pediculus humanus var. capitis).
Indications
Benzyl benzoate: 20% to 25%. This agent is relatively nontoxic and is widely used in developing countries to treat scabies and pediculosis capitis and pubis. Only veterinary preparation is available in the United States. Benzyl benzoate is synthetically derived from the esterification of benzoic acid with benzyl alcohol. Its mechanism of action is unknown. It is toxic to Sarcoptes scabei and may be toxic to Pediculosis capitis and Phthirus pubis. No resistance has been demonstrated to date.
Benzyl benzoate can be used in a 5% emulsion to repel many arthropods and can be used as a lotion to treat sarcoptic mange and canine pediculosis.

Taste threshold values
Taste characteristics at 30 ppm: balsamic, fruity with powdery and berry nuances.

Pharmaceutical Applications
Benzyl benzoate is used as a solubilizing agent and nonaqueous solvent in intramuscular injections at concentrations of 0.01–46.0% v/v, and as a solvent and plasticizer for cellulose and nitrocellulose. It is also used in the preparation of spray-dried powders using nanocapsules.
However, the most widespread pharmaceutical use of benzyl benzoate is as a topical therapeutic agent in the treatment of scabies. Benzyl benzoate is also used therapeutically as a parasiticide in veterinary medicine.
Other applications of benzyl benzoate include its use as a pediculicide, and as a solvent and fixative for flavours and perfumes in cosmetics and food products.

Benzyl benzoate is the ester of benzyl alcohol and benzoic acid. It is contained in Myroxylon pereirae and Tolu balsam. It is used in acaricide preparations against Sarcoptes scabiei or as a pediculicide.

Clinical Use
Benzyl benzoate is a naturally occurring ester obtained from Peru balsam and other resins. It is also prepared synthetically from benzyl alcohol and benzoyl chloride. The ester is a clear colourless liquid with a faint aromatic odour. It is insoluble in water but soluble in organic solvents.
Benzyl benzoate is an effective scabicide when applied topically. Immediate relief from itching probably results from a local anaesthetic effect; however, a complete cure is frequently achieved with a single application of a 25% emulsion of benzyl benzoate in oleic acid, stabilized with triethanolamine. It is applied topically as a lotion over the entire dampened body, except the face.

Benzyl benzoate CAS 120-51-4 is a colourless or pale yellow viscous transparent liquid. In temperature conditions of 17 degrees centigrade or lower, it will be solidified into white solid. Benzyl benzoate of high purity has a slight fragrance. Benzyl benzoate is insoluble in water but soluble in organic solvents. Benzyl benzoate is a high-temperature solvent, is the only solvent of Musk. Benzyl benzoate has applications to the pharmacy and perfume industry just because of its characters of low volatilization and relative stability. 
Benzyl Benzoate is a solvent. This means solutes such as Hormone Powders dissolve easily in it, and that is the main purpose of its use in Steroids. The Benzyl Benzoate is used to dissolve and suspend the Hormone Powder. If the correct amount of this solvent is not used the Hormone powder will 'undissolved from the solution causing the Steroids to 'Crash' (get cloudy/less effective).

Some Hormone Powder dissolves more easily than others and therefore less Benzyl Benzoate is required. The fact that varying amounts of solvent is required for the Hormone Powders is why having this page as a resource is so vital.

Benzyl Benzoate (BB) is the primary solvent, which keeps the product from is A co-solvent in steroid that serves several functions: helps dissolve the hormone, helps keep it in solution in depot (injection site), and thins the gear so it is easy to draw and inject.

Properties: In standard conditions, benzyl benzoate is a colourless or pale yellow viscous transparent liquid. In temperature conditions of 17 degrees centigrade or lower, it will be solidified into white solid. Benzyl benzoate of high purity would send out a slight fragrance.

Freezing point: ≥17°C
Boiling point: 323°C

Solubility: Benzyl benzoate is insoluble in water but soluble in organic solvents. Benzyl benzoate itself, a high-temperature solvent, is the only solvent of Musk. Benzyl benzoate has applications in the pharmacy and perfume industry just because of its characters of low volatilization and relative stability.

Applications: 
Benzyl benzoate is mainly used in the area of textile auxiliary, fragrance and flavour, pharmacy, plasticizer and so on. Benzyl benzoate can be used as to lead agent, levelling agent and repair agent of textile auxiliaries. Mechanism: With the development of the textile industry, the materials are of a higher grade. The higher-grade cloth is, the more compact fabric is. So in dyeing, there are more difficulties in colouring and uniformity Due to the good plasticity performance, benzyl benzoate makes the fiber swell and undraw so that the fibre will be dyed easily. At the same time, benzyl benzoate is a good solvent to dissolve and disperse dye evenly. Since its quite good dye migration performance, benzyl benzoate could be developed as levelling agents and lead agents. There are many other materials, which have similar properties to benzyl benzoate, such as methylnaphthalene, dimethylnaphthalene, methyl salicylate, and benzene ester.

 

BENZYL BENZOATE ( Benzoate de benzyle)
omega-Chlorotoluene; Chlorophenylmethane; (chloromethyl)-Benzene; ��-Chlorotoluene; Chlorophenylmethane; Tolyl chloride; a-Chlorotoluene; Benzile(cloruro di); Benzylchlorid; Benzyle(chlorure de); Chlorure de benzyle; Phenylmethyl chloride CAS NO:100-44-7
BENZYL CHLORIDE
chlorophenylmethane; α-Chlorotoluene; Benzyl chloride; A-CHLOROTOLUENE; AKOS BBS-00003953; ALPHA-CHLOROTOLUENE BENZYL CHLORIDE; (chloromethyl)-benzen; (Chloromethyl)benzene (chloromethyl)-Benzene; 1-Chloromethylbenzene; 1-Chlorome-thylbenzene ai3-15518; alpha-chloro-toluen; alpha-Chlortoluol; alpha-tolylchloride Benzene, (chloromethyl)-; benzene,(chloromethyl)-; benzene,chloromethyl- Benzile; Benzile(cloruro di); benzile(clorurodi; Benzylchlorid CAS NO: 100-44-7
Benzyl chloride ( Chlorure de benzyle)
PHENYLACETONITRILE; Benzeneacetonitrile; Benzyl cyanide; (Cyanomethyl)benzene; Cyanomethylbenzene; Benzyl nitrile; -Cyanotoluene; (Cyanomethyl)benzene; Phenyl acetyl nitrile; Phenacetonitrile; Benzenediacetonitrile; alpha-Tolunitrile; Benzeneacetonitrile; 2-Phenylacetonitrile; BnCN CAS NO: 140-29-4
BENZYL CYANIDE
2-((Benzyloxy)methyl)oxirane; Oxirane, [(phenylmethoxy)methyl]-; (Benzyloxymethyl)oxirane; 2-(Benzyloxymethyl)oxirane; Propane, 1-(benzyloxy)-2,3-epoxy-; 1-(Benzyloxy)-2,3-epoxypropane; ((Phenylmethoxy)methyl)oxirane; (-)-Benzyl (R)-glycidyl ether; (R)-(-)-Glycidyl benzyl ether; CAS NO:2930-05-4
BENZYL GLYCIDYL ETHER – (BGE)
BENZYL GLYCOL, N° CAS : 622-08-2. Nom INCI : BENZYL GLYCOL. Nom chimique : Ethanol, 2-(phenylmethoxy)-. N° EINECS/ELINCS : 210-719-3. Classification : Glycol Ses fonctions (INCI). Solvant : Dissout d'autres substances
BENZYL GLYCOL
BENZYL HYALURONATE, N° CAS : 111744-92-4, Nom INCI : BENZYL HYALURONATE. Nom chimique : Hyaluronic acid, phenylmethyl ester. Ses fonctions (INCI). Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Agent d'entretien de la peau : Maintient la peau en bon état
BENZYL HYALURONATE
BENZYL NICOTINATE, N° CAS : 94-44-0, Nom INCI : BENZYL NICOTINATE, Nom chimique : 3-Pyridinecarboxylic acid, phenylmethyl ester, N° EINECS/ELINCS : 202-332-3 Antistatique : Réduit l'électricité statique en neutralisant la charge électrique sur une surface. Agent d'entretien de la peau : Maintient la peau en bon état
BENZYL NICOTINATE
BENZYL OCTANOATE, N° CAS : 10276-85-4, Nom INCI : BENZYL OCTANOATE, Nom chimique : Benzyl Octanoate, N° EINECS/ELINCS : 233-620-7. Agent parfumant : Utilisé pour le parfum et les matières premières aromatiques
Benzyl Octanoate
BENZYL PCA, N° CAS : 60555-57-9, Nom INCI : BENZYL PCA, Nom chimique : Proline, 5-Oxo-, Phenylmethyl Ester, N° EINECS/ELINCS : 262-291-2. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau
BENZYL PCA
SynonymsDABC;2-[(1-oxoallyl)oxy]ethyl]ammonium chloride;(Acryloyloxyethyl)benzyldimethylammonium chloride;Benzyldimethyl[2-[(1-oxoallyl)oxy]ethyl]ammoniumchlorid;benzyldimethyl[2-[(1-oxoallyl)oxy]ethyl]ammonium chloride;Benzyldimethyl[2-[(1-oxoallyl)oxy]ethyl]ammonium chloride,80% in water;Benzenemethanaminium, N,N-dimethyl-N-2-(1-oxo-2-propenyl)oxyethyl-, chloride Cas no: 46830-22-2
Benzyldimethyl 2-1-Oxoallyl Oxy Ethyl Ammonium Chloride
Benzyltrimethylammonium chloride; Trimethylbenzylammonium chloride; Ammonium, benzyltrimethyl-, chloride; N,N,N-Trimethylbenzenemethanaminium chloride; BTM; TMBAC; cloruro de benciltributilamonio; Chlorure de benzyltributylammonium; CAS NO: 56-93-9
Benzyltrimethylammonium Chloride
sodium c14-16 olefin sulfonate C14-C16-Alkanehydroxysulfonic acids sodium salts Sulfonic acids, C14-16-alkane hydroxy and C14-16-alkene, sodium salts alpha-OlefinC14-C16,sulfonated,sodiumsalt SODIUMC14-16OLEFINSULPHONATE SODIUMC14-16ALPHAOLEFINSULFONATE C14-16-ALKANEHYDROXYANDC14-16-ALKENESULPHONICACIDS,SODIUMSALTS Sodium olefin-(C14-C16)-sulfonate CAS NO:68439-57-6
BEROL 175
BEROL 175 Cloud point 58-64 (1% in water) °C BEROL 175 Color ≤ 100 Hazen BEROL 175 pH 5-7 (1% in water) BEROL 175 Water content 9-11 % BEROL 175 Active content 90 % BEROL 175 Appearance Clear to turbid liquid at 20°C BEROL 175 Clear point 10 °C BEROL 175 Density 1000 kg/m³ at 20°C BEROL 175 Flash point ≥100°C BEROL 175 Foam Height according to Ross-Miles, 50°C, 0.05% immediately: 100mm; after 5 min: 65mm BEROL 175 HLB 12.5 BEROL 175 Pour point 6 °C BEROL 175 Surface Tension according to Du Noüy, 25°C, 0.1% DIN 53914 29 mN/m BEROL 175 Viscosity 130 mPa s at 20°C BEROL 175 Wetting power according to Draves, 25°C, 0.1% 15 sec BEROL 175 Solubility: 2-propanol Soluble BEROL 175 Solubility: Ethanol Soluble BEROL 175 Solubility: Low aromatic solvent Dispersible BEROL 175 Solubility: Propylene glycol Soluble BEROL 175 Solubility: Water Soluble BEROL 175 Solubility: White spirit Soluble BEROL 175 Solubility: Xylene Dispersible / insoluble BEROL 175 Water soluble BEROL 175 White spirit soluble BEROL 175 Xylene dispersible/insoluble BEROL 175 Ethanol soluble BEROL 175 Low aromatic solvent dispersible BEROL 175 Propylene glycol soluble BEROL 175 2-propanol soluble Berol 175-> C12-C16 alcohol ethoxylate.Berol 175 is a non-ionic surfactant based on a natural based primary alcohol. It has a hydrophilic (water soluble) character.Berol 175 by Nouryon is a non-ionic surfactant based on a primary alcohol (derived from natural sources). It acts as a dispersing agent, emulsifier and wetting agent. Exhibits hydrophilic (water soluble) character. Berol 175 is suitable for paints and coatings.Berol 175 should always be homogenised before use unless the entire quantity is used. Berol 175 can be used as wetting agent and emulsifier in cleaning products.Berol 175 is suitable in cleaning products such as liquid detergents and all purpose cleaners. Berol 175 should always be homogenised before use unless the entire quantity is used.A colorless liquid with a mild odor. Mp: 5°C; bp < 150°C; density: 0.9 g cm-3. Completely miscible with water. A major threat to the environment in case of a spill. Immediate steps should be taken to limit spread. Can easily penetrate the soil and contaminate ground water and nearby streams. Very toxic to aquatic organisms. Irritating to the eyes and respiratory tract. Prolonged exposure to the skin can cause reddening and scaling. Used in the making of surfactants.Alcohols, C12-16, ethoxylated is stable up to 50° C. Oxidizes on exposure to the air to form peroxides and peracids. Combustible but not flammable (flash point > 179°C). Auto-ignition temperature: 230°C. May react with strong oxidizing agents, strong acids, and strong bases. Incompatible with copper and copper alloys and aluminum. A mixture of polyether alcohols of formula R-O-(CH2CH2-O-)n-H where R is a C-12 through C-16 alkyl group and n equals 1 through 6. Synthesized by treating a mixture of C-12 to C-16 alcohols with ethylene oxide.Inhalation of material may be harmful. Contact may cause burns to skin and eyes. Inhalation of Asbestos dust may have a damaging effect on the lungs. Fire may produce irritating, corrosive and/or toxic gases. Some liquids produce vapors that may cause dizziness or suffocation. Runoff from fire control may cause pollution.Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.Ethoxylated alcohols, e.g. Berol 175, have a solubilization effect which helps to avoid the viscoelastic region where the formulation does not flow and has no practical use.Environmental monitoring indicates that the distribution of BEROL 175 (Alcohol ethoxylates) (AE) homologues in wastewater treatment plant (WWTP) effluents differs from the distribution in commercial AE products, with a relative higher proportion of fatty alcohol (AOH, which is AE with zero ethoxylation). To determine the contribution of AE-derived AOH to the total concentration of AE and AOH in WWTP effluents, we conducted a laboratory continuous activated-sludge study (CAS). This consisted of a test unit fed with AE-amended synthetic sewage and a control unit fed with only synthetic sewage to avoid AE contamination from the feed. The removal efficiencies of some 114 AE homologues were determined by the application of a specific and sensitive analytical method. The extent of the removal of AE ranged from 99.70% for C18 compounds to > 99.98% for C12-16. Relatively high-AOH concentrations were observed in the effluents from blank and test units. By building the concentration difference from the test minus the control unit, the AE in the CAS effluent originating from AE in the influent was determined. Thus, it could be shown that AOH represented only 19% of the total AE (EO0-18) in the CAS, while monitoring in 29 WWTP effluents (European, Canadian, and US) revealed in total a mean AOH fraction of 55% (5-82%) of the total AE (EO0-18). This shows that only a small fraction of AOH in WWTP effluents originates from AE entering the WWTP.Wilfaret BEROL 175 (Alcohol ethoxylates) are non-ionic surfactants. They generally take the form of a thick liquid. They are mainly used in cleaning agents, detergents, home care and emulsifier production. Chemicals such as BEROL 175 (Alcohol ethoxylates), SLES and SLS can also be manufactured from methyl esters. Depending on the grade / type of fatty alcohols.BEROL 175 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. BEROL 175 (Alcohol ethoxylates) surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.Ethoxylated alcohols can vary widely in their properties and applications because the materials used to make these products can vary in their structures and amounts. For instance, fatty alcohols, which are commonly sourced from natural materials, can provide different structures depending on the plant from which they were extracted. Common natural sources of fatty alcohols include the palm oil tree (including both palm oil and palm kernel oil), oils from the coconut tree, and the oil from rapeseed. Each of these natural sources differs in its distribution of carbon chains, making an BEROL 175 (Alcohol ethoxylates) from coconut oil alcohol different from an ethoxylated alcohol made from the alcohol of a palm kernel oil.Oxiteno offers a wide array of ethoxylated alcohols that have been sourced from natural materials (BEROL 175 (Alcohol ethoxylates)), each of which provide a unique set of application properties. Additionally, fatty alcohols can also be synthesized from petroleum products, providing unique structures in the hydrophobic moiety that are not commonly observed in nature. Branched alcohols and alcohols of specific carbon distributions can be attained using synthetic starting materials, all of which strongly affect the BEROL 175 (Alcohol ethoxylates)’s final properties. If you’re seeking surfactant companies, please visit the Oxiteno website to see our large portfolio of ethoxylated alcohols from synthetic sources.Alternatively, the length of the polyoxyethylene component (i.e. the hydrophilic portion) of the BEROL 175 (Alcohol ethoxylates) provides this class of compounds with a wide assortment of water solubilities and detergency properties. Increasing the amount of ethylene oxide on the ethoxylated alcohol typically increases its water solubility, as well as increases the hydrophilic/lipophilic balance (HLB) of the compound. Ranging in arbitrary units of 1-20, the HLB of a nonionic surfactant can be calculated and used to determine the propensity of a compound to work effectively in a given solution of oil and water. Lower HLB values (< 10) are commonly used for oil-rich solutions while surfactants with higher HLB values (> 10) are typically most efficient in oil-in-water emulsions. Each of Oxiteno’s line of ethoxylated alcohol products can vary widely in their HLB values, offering numerous options for the formulation chemist and scientist.BEROL 175 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices.Oxiteno’s line of BEROL 175 (Alcohol ethoxylates) serve many markets, including, Paints & Coatings, Agrochemical, Home & Personal Care, Oil & Gas and Industrial & Institutional Cleaning. Due to the aforementioned variety in properties that are governed by a compound’s structure, Oxiteno’s line of BEROL 175 (Alcohol ethoxylates) can provide the formulator with many different properties, including excellent detergent properties, high and low-foaming products, as well as, ethoxylates that are rapid surface-wetting agents.BEROL 175 (Alcohol ethoxylates) (AE) are a major class of non-ionic surfactants which are widely used in laundry detergents and to a lesser extent in household cleaners, institutional and industrial cleaners, cosmetics, agriculture, and in textile, paper, oil and other process industries. BEROL 175 (Alcohol ethoxylates) are not expected to undergo hydrolysis under normal environmental conditions (pH range 4 to 9). Photolysis in the atmosphere, in water, or when adsorbed to solid surfaces such as soil and sediment surfaces is also not expected to occur, due to the chemical structure of the AE homologues. Hydrolysis has also been discounted for the alcohols (EO=0 homologues) in the SIAR for long chain alcohols.In the usual application, alcohols and phenols are converted into R(OC2H4)nOH where n ranges from 1 to 10. Such compounds are called BEROL 175 (Alcohol ethoxylates). BEROL 175 (Alcohol ethoxylates) are often converted to related species called ethoxysulfates. BEROL 175 (Alcohol ethoxylates) and ethoxysulfates are surfactants, used widely in cosmetic and other commercial products. The process is of great industrial significance with more than 2,000,000 metric tons of various ethoxylates produced worldwide in 1994.Industrial ethoxylation is primarily performed upon fatty alcohols in order to generate fatty BEROL 175 (Alcohol ethoxylates) (FAE's), which are a common form of nonionic surfactant (e.g. octaethylene glycol monododecyl ether). Such alcohols may be obtained by the hydrogenation of fatty acids from seed oils, or by hydroformylation in the Shell higher olefin process. The reaction proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst. The process is highly exothermic (ΔH -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway.BEROL 175 (Alcohol ethoxylates) are not observed to be mutagenic, carcinogenic, or skin sensitizers, nor cause reproductive or developmental effects. One byproduct of ethoxylation is 1,4-dioxane, a possible human carcinogen. Undiluted AEs can cause dermal or eye irritation. In aqueous solution, the level of irritation is dependent on the concentration. AEs are considered to have low to moderate toxicity for acute oral exposure, low acute dermal toxicity, and have mild irritation potential for skin and eyes at concentrations found in consumer products.BEROL 175 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. Alcohol ethoxylate surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.BEROL 175 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices.
BEROL 199
BEROL 199 Berol 199 Castor Oil 32 EO 61791-12-6 Berol 199 is a non-ionic surfactant of the castor oil ethylene oxide adduct type. Ethoxylated castor oils are excellent emulsifiers for a wide variety of materials including oils, fats, waxes, polyesters and acrylics. They are used as softeners, rewetting agents, pigment dispsersants and dye assistants (e.g. levelling agents) in the paint, textile and leather industry. Ethoxylated castor oils can also be used as lubricant additives and emulsifiers in lubricants for plastics, metals and textiles. Appearance, 20'C: clear to opaque liquid Clear point: 20'C Density, 20'C: 1050 kg/m³ Flash point: >100'C Pour point: 17'C Viscosity, 20'C: 700 mPa.s BEROL 199 Cloud point 58-64 (1% in water) °C BEROL 199 Color ≤ 100 Hazen BEROL 199 pH 5-7 (1% in water) BEROL 199 Water content 9-11 % BEROL 199 Active content 90 % BEROL 199 Appearance Clear to turbid liquid at 20°C BEROL 199 Clear point 10 °C BEROL 199 Density 1000 kg/m³ at 20°C BEROL 199 Flash point ≥100°C BEROL 199 Foam Height according to Ross-Miles, 50°C, 0.05% immediately: 100mm; after 5 min: 65mm BEROL 199 HLB 12.5 BEROL 199 Pour point 6 °C BEROL 199 Surface Tension according to Du Noüy, 25°C, 0.1% DIN 53914 29 mN/m BEROL 199 Viscosity 130 mPa s at 20°C BEROL 199 Wetting power according to Draves, 25°C, 0.1% 15 sec BEROL 199 Solubility: 2-propanol Soluble BEROL 199 Solubility: Ethanol Soluble BEROL 199 Solubility: Low aromatic solvent Dispersible BEROL 199 Solubility: Propylene glycol Soluble BEROL 199 Solubility: Water Soluble BEROL 199 Solubility: White spirit Soluble BEROL 199 Solubility: Xylene Dispersible / insoluble BEROL 199 Water soluble BEROL 199 White spirit soluble BEROL 199 Xylene dispersible/insoluble BEROL 199 Ethanol soluble BEROL 199 Low aromatic solvent dispersible BEROL 199 Propylene glycol soluble BEROL 199 2-propanol soluble BEROL 199-> C12-C16 alcohol ethoxylate.BEROL 199 is a non-ionic surfactant based on a natural based primary alcohol. It has a hydrophilic (water soluble) character.BEROL 199 by Nouryon is a non-ionic surfactant based on a primary alcohol (derived from natural sources). It acts as a dispersing agent, emulsifier and wetting agent. Exhibits hydrophilic (water soluble) character. BEROL 199 is suitable for paints and coatings.BEROL 199 should always be homogenised before use unless the entire quantity is used. BEROL 199 can be used as wetting agent and emulsifier in cleaning products.BEROL 199 is suitable in cleaning products such as liquid detergents and all purpose cleaners. BEROL 199 should always be homogenised before use unless the entire quantity is used.A colorless liquid with a mild odor. Mp: 5°C; bp < 150°C; density: 0.9 g cm-3. Completely miscible with water. A major threat to the environment in case of a spill. Immediate steps should be taken to limit spread. Can easily penetrate the soil and contaminate ground water and nearby streams. Very toxic to aquatic organisms. Irritating to the eyes and respiratory tract. Prolonged exposure to the skin can cause reddening and scaling. Used in the making of surfactants.Alcohols, C12-16, ethoxylated is stable up to 50° C. Oxidizes on exposure to the air to form peroxides and peracids. Combustible but not flammable (flash point > 179°C). Auto-ignition temperature: 230°C. May react with strong oxidizing agents, strong acids, and strong bases. Incompatible with copper and copper alloys and aluminum. A mixture of polyether alcohols of formula R-O-(CH2CH2-O-)n-H where R is a C-12 through C-16 alkyl group and n equals 1 through 6. Synthesized by treating a mixture of C-12 to C-16 alcohols with ethylene oxide.Inhalation of material may be harmful. Contact may cause burns to skin and eyes. Inhalation of Asbestos dust may have a damaging effect on the lungs. Fire may produce irritating, corrosive and/or toxic gases. Some liquids produce vapors that may cause dizziness or suffocation. Runoff from fire control may cause pollution.Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.Ethoxylated alcohols, e.g. BEROL 199, have a solubilization effect which helps to avoid the viscoelastic region where the formulation does not flow and has no practical use.Environmental monitoring indicates that the distribution of BEROL 199 (Alcohol ethoxylates) (AE) homologues in wastewater treatment plant (WWTP) effluents differs from the distribution in commercial AE products, with a relative higher proportion of fatty alcohol (AOH, which is AE with zero ethoxylation). To determine the contribution of AE-derived AOH to the total concentration of AE and AOH in WWTP effluents, we conducted a laboratory continuous activated-sludge study (CAS). This consisted of a test unit fed with AE-amended synthetic sewage and a control unit fed with only synthetic sewage to avoid AE contamination from the feed. The removal efficiencies of some 114 AE homologues were determined by the application of a specific and sensitive analytical method. The extent of the removal of AE ranged from 99.70% for C18 compounds to > 99.98% for C12-16. Relatively high-AOH concentrations were observed in the effluents from blank and test units. By building the concentration difference from the test minus the control unit, the AE in the CAS effluent originating from AE in the influent was determined. Thus, it could be shown that AOH represented only 19% of the total AE (EO0-18) in the CAS, while monitoring in 29 WWTP effluents (European, Canadian, and US) revealed in total a mean AOH fraction of 55% (5-82%) of the total AE (EO0-18). This shows that only a small fraction of AOH in WWTP effluents originates from AE entering the WWTP.Wilfaret BEROL 199 (Alcohol ethoxylates) are non-ionic surfactants. They generally take the form of a thick liquid. They are mainly used in cleaning agents, detergents, home care and emulsifier production. Chemicals such as BEROL 199 (Alcohol ethoxylates), SLES and SLS can also be manufactured from methyl esters. Depending on the grade / type of fatty alcohols.BEROL 199 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. BEROL 199 (Alcohol ethoxylates) surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.Ethoxylated alcohols can vary widely in their properties and applications because the materials used to make these products can vary in their structures and amounts. For instance, fatty alcohols, which are commonly sourced from natural materials, can provide different structures depending on the plant from which they were extracted. Common natural sources of fatty alcohols include the palm oil tree (including both palm oil and palm kernel oil), oils from the coconut tree, and the oil from rapeseed. Each of these natural sources differs in its distribution of carbon chains, making an BEROL 199 (Alcohol ethoxylates) from coconut oil alcohol different from an ethoxylated alcohol made from the alcohol of a palm kernel oil.Oxiteno offers a wide array of ethoxylated alcohols that have been sourced from natural materials (BEROL 199 (Alcohol ethoxylates)), each of which provide a unique set of application properties. Additionally, fatty alcohols can also be synthesized from petroleum products, providing unique structures in the hydrophobic moiety that are not commonly observed in nature. Branched alcohols and alcohols of specific carbon distributions can be attained using synthetic starting materials, all of which strongly affect the BEROL 199 (Alcohol ethoxylates)’s final properties. If you’re seeking surfactant companies, please visit the Oxiteno website to see our large portfolio of ethoxylated alcohols from synthetic sources.Alternatively, the length of the polyoxyethylene component (i.e. the hydrophilic portion) of the BEROL 199 (Alcohol ethoxylates) provides this class of compounds with a wide assortment of water solubilities and detergency properties. Increasing the amount of ethylene oxide on the ethoxylated alcohol typically increases its water solubility, as well as increases the hydrophilic/lipophilic balance (HLB) of the compound. Ranging in arbitrary units of 1-20, the HLB of a nonionic surfactant can be calculated and used to determine the propensity of a compound to work effectively in a given solution of oil and water. Lower HLB values (< 10) are commonly used for oil-rich solutions while surfactants with higher HLB values (> 10) are typically most efficient in oil-in-water emulsions. Each of Oxiteno’s line of ethoxylated alcohol products can vary widely in their HLB values, offering numerous options for the formulation chemist and scientist.BEROL 199 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices.Oxiteno’s line of BEROL 199 (Alcohol ethoxylates) serve many markets, including, Paints & Coatings, Agrochemical, Home & Personal Care, Oil & Gas and Industrial & Institutional Cleaning. Due to the aforementioned variety in properties that are governed by a compound’s structure, Oxiteno’s line of BEROL 199 (Alcohol ethoxylates) can provide the formulator with many different properties, including excellent detergent properties, high and low-foaming products, as well as, ethoxylates that are rapid surface-wetting agents.BEROL 199 (Alcohol ethoxylates) (AE) are a major class of non-ionic surfactants which are widely used in laundry detergents and to a lesser extent in household cleaners, institutional and industrial cleaners, cosmetics, agriculture, and in textile, paper, oil and other process industries. BEROL 199 (Alcohol ethoxylates) are not expected to undergo hydrolysis under normal environmental conditions (pH range 4 to 9). Photolysis in the atmosphere, in water, or when adsorbed to solid surfaces such as soil and sediment surfaces is also not expected to occur, due to the chemical structure of the AE homologues. Hydrolysis has also been discounted for the alcohols (EO=0 homologues) in the SIAR for long chain alcohols.In the usual application, alcohols and phenols are converted into R(OC2H4)nOH where n ranges from 1 to 10. Such compounds are called BEROL 199 (Alcohol ethoxylates). BEROL 199 (Alcohol ethoxylates) are often converted to related species called ethoxysulfates. BEROL 199 (Alcohol ethoxylates) and ethoxysulfates are surfactants, used widely in cosmetic and other commercial products.[1] The process is of great industrial significance with more than 2,000,000 metric tons of various ethoxylates produced worldwide in 1994.Industrial ethoxylation is primarily performed upon fatty alcohols in order to generate fatty BEROL 199 (Alcohol ethoxylates) (FAE's), which are a common form of nonionic surfactant (e.g. octaethylene glycol monododecyl ether). Such alcohols may be obtained by the hydrogenation of fatty acids from seed oils,[5] or by hydroformylation in the Shell higher olefin process.[6] The reaction proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst.[7] The process is highly exothermic (ΔH -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway.BEROL 199 (Alcohol ethoxylates) are not observed to be mutagenic, carcinogenic, or skin sensitizers, nor cause reproductive or developmental effects.[18] One byproduct of ethoxylation is 1,4-dioxane, a possible human carcinogen.[19] Undiluted AEs can cause dermal or eye irritation. In aqueous solution, the level of irritation is dependent on the concentration. AEs are considered to have low to moderate toxicity for acute oral exposure, low acute dermal toxicity, and have mild irritation potential for skin and eyes at concentrations found in consumer products.BEROL 199 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. Alcohol ethoxylate surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.BEROL 199 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices. BEROL 199-> C12-C16 alcohol ethoxylate.BEROL 199 is a non-ionic surfactant based on a natural based primary alcohol. It has a hydrophilic (water soluble) character.BEROL 199 by Nouryon is a non-ionic surfactant based on a primary alcohol (derived from natural sources). It acts as a dispersing agent, emulsifier and wetting agent. Exhibits hydrophilic (water soluble) character. BEROL 199 is suitable for paints and coatings.BEROL 199 should always be homogenised before use unless the entire quantity is used. BEROL 199 can be used as wetting agent and emulsifier in cleaning products.BEROL 199 is suitable in cleaning products such as liquid detergents and all purpose cleaners. BEROL 199 should always be homogenised before use unless the entire quantity is used.A colorless liquid with a mild odor. Mp: 5°C; bp < 150°C; density: 0.9 g cm-3. Completely miscible with water. A major threat to the environment in case of a spill. Immediate steps should be taken to limit spread. Can easily penetrate the soil and contaminate ground water and nearby streams. Very toxic to aquatic organisms. Irritating to the eyes and respiratory tract. Prolonged exposure to the skin can cause reddening and scaling. Used in the making of surfactants.Alcohols, C12-16, ethoxylated is stable up to 50° C. Oxidizes on exposure to the air to form peroxides and peracids. Combustible but not flammable (flash point > 179°C). Auto-ignition temperature: 230°C. May react with strong oxidizing agents, strong acids, and strong bases. Incompatible with copper and copper alloys and aluminum. A mixture of polyether alcohols of formula R-O-(CH2CH2-O-)n-H where R is a C-12 through C-16 alkyl group and n equals 1 through 6. Synthesized by treating a mixture of C-12 to C-16 alcohols with ethylene oxide.Inhalation of material may be harmful. Contact may cause burns to skin and eyes. Inhalation of Asbestos dust may have a damaging effect on the lungs. Fire may produce irritating, corrosive and/or toxic gases. Some liquids produce vapors that may cause dizziness or suffocation. Runoff from fire control may cause pollution.Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.Ethoxylated alcohols, e.g. BEROL 199, have a solubilization effect which helps to avoid the viscoelastic region where the formulation does not flow and has no practical use.Environmental monitoring indicates that the distribution of BEROL 199 (Alcohol ethoxylates) (AE) homologues in wastewater treatment plant (WWTP) effluents differs from the distribution in commercial AE products, with a relative higher proportion of fatty alcohol (AOH, which is AE with zero ethoxylation). To determine the contribution of AE-derived AOH to the total concentration of AE and AOH in WWTP effluents, we conducted a laboratory continuous activated-sludge study (CAS). This consisted of a test unit fed with AE-amended synthetic sewage and a control unit fed with only synthetic sewage to avoid AE contamination from the feed. The removal efficiencies of some 114 AE homologues were determined by the application of a specific and sensitive analytical method. The extent of the removal of AE ranged from 99.70% for C18 compounds to > 99.98% for C12-16. Relatively high-AOH concentrations were observed in the effluents from blank and test units. By building the concentration difference from the test minus the control unit, the AE in the CAS effluent originating from AE in the influent was determined. Thus, it could be shown that AOH represented only 19% of the total AE (EO0-18) in the CAS, while monitoring in 29 WWTP effluents (European, Canadian, and US) revealed in total a mean AOH fraction of 55% (5-82%) of the total AE (EO0-18). This shows that only a small fraction of AOH in WWTP effluents originates from AE entering the WWTP.Wilfaret BEROL 199 (Alcohol ethoxylates) are non-ionic surfactants. They generally take the form of a thick liquid. They are mainly used in cleaning agents, detergents, home care and emulsifier production. Chemicals such as BEROL 199 (Alcohol ethoxylates), SLES and SLS can also be manufactured from methyl esters. Depending on the grade / type of fatty alcohols.BEROL 199 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. BEROL 199 (Alcohol ethoxylates) surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.Ethoxylated alcohols can vary widely in their properties and applications because the materials used to make these products can vary in their structures and amounts. For instance, fatty alcohols, which are commonly sourced from natural materials, can provide different structures depending on the plant from which they were extracted. Common natural sources of fatty alcohols include the palm oil tree (including both palm oil and palm kernel oil), oils from the coconut tree, and the oil from rapeseed. Each of these natural sources differs in its distribution of carbon chains, making an BEROL 199 (Alcohol ethoxylates) from coconut oil alcohol different from an ethoxylated alcohol made from the alcohol of a palm kernel oil.Oxiteno offers a wide array of ethoxylated alcohols that have been sourced from natural materials (BEROL 199 (Alcohol ethoxylates)), each of which provide a unique set of application properties. Additionally, fatty alcohols can also be synthesized from petroleum products, providing unique structures in the hydrophobic moiety that are not commonly observed in nature. Branched alcohols and alcohols of specific carbon distributions can be attained using synthetic starting materials, all of which strongly affect the BEROL 199 (Alcohol ethoxylates)’s final properties. If you’re seeking surfactant companies, please visit the Oxiteno website to see our large portfolio of ethoxylated alcohols from synthetic sources.Alternatively, the length of the polyoxyethylene component (i.e. the hydrophilic portion) of the BEROL 199 (Alcohol ethoxylates) provides this class of compounds with a wide assortment of water solubilities and detergency properties. Increasing the amount of ethylene oxide on the ethoxylated alcohol typically increases its water solubility, as well as increases the hydrophilic/lipophilic balance (HLB) of the compound. Ranging in arbitrary units of 1-20, the HLB of a nonionic surfactant can be calculated and used to determine the propensity of a compound to work effectively in a given solution of oil and water. Lower HLB values (< 10) are commonly used for oil-rich solutions while surfactants with higher HLB values (> 10) are typically most efficient in oil-in-water emulsions. Each of Oxiteno’s line of ethoxylated alcohol products can vary widely in their HLB values, offering numerous options for the formulation chemist and scientist.BEROL 199 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices.Oxiteno’s line of BEROL 199 (Alcohol ethoxylates) serve many markets, including, Paints & Coatings, Agrochemical, Home & Personal Care, Oil & Gas and Industrial & Institutional Cleaning. Due to the aforementioned variety in properties that are governed by a compound’s structure, Oxiteno’s line of BEROL 199 (Alcohol ethoxylates) can provide the formulator with many different properties, including excellent detergent properties, high and low-foaming products, as well as, ethoxylates that are rapid surface-wetting agents.BEROL 199 (Alcohol ethoxylates) (AE) are a major class of non-ionic surfactants which are widely used in laundry detergents and to a lesser extent in household cleaners, institutional and industrial cleaners, cosmetics, agriculture, and in textile, paper, oil and other process industries. BEROL 199 (Alcohol ethoxylates) are not expected to undergo hydrolysis under normal environmental conditions (pH range 4 to 9). Photolysis in the atmosphere, in water, or when adsorbed to solid surfaces such as soil and sediment surfaces is also not expected to occur, due to the chemical structure of the AE homologues. Hydrolysis has also been discounted for the alcohols (EO=0 homologues) in the SIAR for long chain alcohols.In the usual application, alcohols and phenols are converted into R(OC2H4)nOH where n ranges from 1 to 10. Such compounds are called BEROL 199 (Alcohol ethoxylates). BEROL 199 (Alcohol ethoxylates) are often converted to related species called ethoxysulfates. BEROL 199 (Alcohol ethoxylates) and ethoxysulfates are surfactants, used widely in cosmetic and other commercial products.[1] The process is of great industrial significance with more than 2,000,000 metric tons of various ethoxylates produced worldwide in 1994.Industrial ethoxylation is primarily performed upon fatty alcohols in order to generate fatty BEROL 199 (Alcohol ethoxylates) (FAE's), which are a common form of nonionic surfactant (e.g. octaethylene glycol monododecyl ether). Such alcohols may be obtained by the hydrogenation of fatty acids from seed oils,[5] or by hydroformylation in the Shell higher olefin process.[6] The reaction proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst.[7] The process is highly exothermic (ΔH -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway.BEROL 199 (Alcohol ethoxylates) are not observed to be mutagenic, carcinogenic, or skin sensitizers, nor cause reproductive or developmental effects.[18] One byproduct of ethoxylation is 1,4-dioxane, a possible human carcinogen.[19] Undiluted AEs can cause dermal or eye irritation. In aqueous solution, the level of irritation is dependent on the concentration. AEs are considered to have low to moderate toxicity for acute oral exposure, low acute dermal toxicity, and have mild irritation potential for skin and eyes at concentrations found in consumer products.BEROL 199 (Alcohol ethoxylates) are a class of compounds that are commonly used throughout many industrial practices and commercial markets. These compounds are synthesized via the reaction of a fatty alcohol and ethylene oxide, resulting in a molecule that consists of two main components, (1) the oleophilic, carbon-rich, fatty alcohol and (2) the hydrophilic, polyoxyethylene chain.Due the basic structure of these compounds that pair a hydrophobic portion (water-hating) with a hydrophilic component (water-loving), ethoxylated alcohols are a versatile class of compounds, commonly referred to as surfactants. Alcohol ethoxylate surfactants enhance the mixing and solubilization of oil and water by having these contrasting sections within the same compound. With this unique structure, a single molecule can inhabit the interface of two immiscible phases (i.e. oil and water), effectively bringing them closer together and lowering the interfacial energy associated between them. By lowering this energy, many novel solution applications can be accessed by increasing the homogeneity of these two previously immiscible phases.BEROL 199 (Alcohol ethoxylates) are used in a wide variety of industrial and commercial settings. Because these compounds are surfactants, they can be used whenever oily substances come into contact with water or a surface. Ethoxylated alcohols can be used as detergents, wetting agents, emulsifiers, degreasers and emollients in many lines of commercially available products and industrial practices.
BEROLAN LP W1
SYNONYMS Beryllium dichloride; 13466-27-8 (beryllium chloride tetrahydrate);SynonymsBeCl2;NA 1566;berillium chloride;BERYLLIUM CHLORIDE;Beryllium dichloride;berylliumchloride(becl2);Beryllium chloride, beta;BERYLLIUM CHLORIDE, SUBL.;Beryllium chloride (BeCl2);BERYLLIUM CHLORIDE ANHYDROUS cas no: 7787-47-5
Beryllium Chloride
Beryllium dichloride; (beryllium chloride tetrahydrate); NA 1566 CAS NO:7787-47-5
Beryllium Oxide
Berylla; Glucina; Beryllia; Thermalox; bromellete; BroMellite; BERYLLIUM OXIDE; naturalbromellite; Beryllium monoxide CAS NO:1304-56-9
Beta Carotene (Vitamin A)
C.I. 37500; C.I. Azoic coupling component 1; C.I. Developer 5; betanaphthol; 2-naftol; 2-naftolo; 2-naphtol; antioxygene bn; azogen developer a; azogendevelopera; azoiccouplingcomponent1; beta-monoxynaphthalene; 2-hydroxynaphthalene; beta naphthol; beta-naphthol; b-naphtol; naphthalen-2-ol CAS NO:135-19-3
Beta Naphthol
BETAINE SALICYLATE, Nom INCI : BETAINE SALICYLATE, Classification : Ammonium quaternaire, Tensioactif amphotère. Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Kératolytique : Décolle et élimine les cellules mortes de la couche cornée de l'apiderme
BETAIN 45
Betain 45 CHARACTERISTICS of Betain 45: 1. Betain 45 is perfectly compatible with anionic, cationic and nonionic surfactants, it can still be used as cloudy point inhibitor. 2. Betain 45 can produce rich and fine foams. Formulated with adequate proportion of anionic surfactant, it has significant thickening effect. 3. Betain 45 has excellent to tolerance to skin, effectively reduce the irritation caused by fatty alcohol sulfate or fatty alcohol ether sulfate in the products. 4. Betain 45 has antibiotic function, being a good additive in personal sanitary products. 5. Betain 45 has excellent antistatic function, being an ideal conditioning agent. Cocamidopropyl betaine (CAPB) is obtained from coconut oil and dimethylaminopropylamine. Betain 45 is a viscous pale yellow solution and is used as a surfactant in personal care products. COCAMIDOPROPYL Betain 45 is classified as : Antistatic Cleansing Foam boosting Hair conditioning Surfactant Viscosity controlling Cocamidopropyl Betaine. Betain 45 is an amphoteric surfactant. Betain 45 offers benefits such as synergistic effects with dermatological improvement, when in combination with anionic surfactants. DEHYTON® PK 45 is used in liquid soaps, personal care wipes, shampoos, shower/bath formulas, facial cleansing and baby care products. The shelf life of the ingredient is one year. Uses of Betain 45 Betain 45 is an amphoteric surfactant broadly used as raw material of personal care and household products. This material carries high foaming, surface active characteristics, and is a good viscosity builder. Betain 45 shows low irritation to skin and eye. Betain 45 is compatible with other surfactants. Betain 45 (CAPB) is a mixture of closely related organic compounds derived from coconut oil and dimethylaminopropylamine. Betain 45 is available as a viscous pale yellow solution and it is used as a surfactant in personal care products. The name reflects that the major part of the molecule, the lauric acid group, is derived from coconut oil. Betain 45 to a significant degree has replaced cocamide DEA. Production of Betain 45 Despite the name Betain 45, the molecule is not synthesized from betaine. Instead it is produced in a two step manner, beginning with the reaction of dimethylaminopropylamine (DMAPA) with fatty acids from coconut or palm kernel oil (lauric acid, or its methyl ester, is the main constituent). The primary amine in DMAPA is more reactive than the tertiary amine, leading to its selective addition to form an amide. In the second step chloroacetic acid reacts with the remaining tertiary amine to form a quaternary ammonium center (a quaternization reaction). Chemistry of Betain 45 Betain 45 is a fatty acid amide containing a long hydrocarbon chain at one end and a polar group at the other. This allows Betain 45 to act as a surfactant and as a detergent. Betain 45 is a zwitterion, consisting of both a quaternary ammonium cation and a carboxylate. Specifications and properties of Betain 45 Betain 45 is used as a foam booster in shampoos. Betain 45 is a medium-strength surfactant also used in bath products like hand soaps. Betain 45 is also used in cosmetics as an emulsifying agent and thickener, and to reduce irritation purely ionic surfactants would cause. It also serves as an antistatic agent in hair conditioners, which most often does not irritate skin or mucous membranes. However, some studies indicate it is an allergen. Betain 45 is obtained as an aqueous solution in concentrations of about 30%. Typical impurities of leading manufacturers today: Sodium monochloroacetate < 5 ppm Amidoamine (AA) < 0.3% Dimethylaminopropylamine (DMAPA) < 15 ppm Glycerol < 3% The impurities AA and DMAPA are most critical, as they have been shown to be responsible for skin sensitization reactions. These by-products can be avoided by a moderate excess chloroacetate and the exact adjustment of pH value during betainization reaction accompanied by regular analytical control. Niche Uses Betain 45 is also used as a co-surfactant with Sodium dodecyl sulfate for promoting the formation of gas hydrates. Betain 45, as an additive, helps to scale-up the gas hydrates' formation process. Safety Betain 45 has been claimed to cause allergic reactions in some users, but a controlled pilot study has found that these cases may represent irritant reactions rather than true allergic reactions. Furthermore, results of human studies have shown that Betain 45 has a low sensitizing potential if impurities with amidoamine (AA) and dimethylaminopropylamine (DMAPA) are low and tightly controlled. Other studies have concluded that most apparent allergic reactions to Betain 45 are more likely due to amidoamine. Betain 45 was voted 2004 Allergen of the Year by the American Contact Dermatitis Society. Betain 45 is a chemical compound found in many personal care and household cleaning products. Betain 45 is a surfactant, which means that it interacts with water, making the molecules slippery so they don’t stick together. When water molecules don’t stick together, they are more likely to bond with dirt and oil so when you rinse away the cleaning product, the dirt rinses away, too. In some products, Betain 45 is the ingredient that makes lather. Betain 45 is a synthetic fatty acid made from coconuts, so products that are considered “natural” can contain this chemical. Still, some products with this ingredient may cause unpleasant side effects. Side effects of Betain 45 Betain 45 allergic reaction Some people have an allergic reaction when they use products containing Betain 45. In 2004, the American Contact Dermatitis Society declared Betain 45 the “Allergen of the Year.” Since then, a 2012 scientific review of studies found that it’s not the Betain 45 itself that causes an allergic reaction, but two impurities that are produced in the manufacturing process. The two irritants are aminoamide (AA) and 3-dimethylaminopropylamine (DMAPA). In multiple studies, when people were exposed to Betain 45 that did not contain these two impurities, they did not have an allergic reaction. Higher grades of Betain 45 that have been purified don’t contain AA and DMAPA and don’t cause allergic sensitivities. Skin discomfort If your skin is sensitive to products that contain Betain 45, you may notice tightness, redness, or itchiness after you use the product. This kind of reaction is known as contact dermatitis. If the dermatitis is severe, you may have blisters or sores where the product came into contact with your skin. Most of the time, an allergic skin reaction like this will heal on its own, or when you stop using the irritating product or use an over-the-counter hydrocortisone cream. If the rash doesn’t get better in a few days, or if it is located near your eyes or mouth, see a doctor. Eye irritation Betain 45 is in several products intended for use in your eyes, like contact solutions, or it’s in products that may run into your eyes as you shower. If you are sensitive to the impurities in Betain 45, your eyes or eyelids could experience: pain redness itchiness swelling If rinsing the product away does not take care of the irritation, you may want to see a doctor. Products with Betain 45 Betain 45 can be found in facial, body, and hair products like: shampoos conditioners makeup removers liquid soaps body wash shaving cream contact lens solutions gynecological or anal wipes some toothpastes Betain 45 is also a common ingredient in household spray cleaners and cleaning or disinfecting wipes. How to tell if a product has Betain 45 Betain 45 will be listed on the ingredient label. The Environmental Working Group lists alternative names for Betain 45, including: 1-propanaminium hydroxide inner salt In cleaning products, you may see Betain 45 listed as: CADG cocamidopropyl dimethyl glycine disodium cocoamphodipropionate The National Institute of Health maintains a Household Product Database where you can check to see if a product you use may contain Betain 45. How to avoid Betain 45 Some international consumer organizations like Allergy Certified and EWG Verified offer assurances that products with their seals have been tested by toxicologists and have been found to have safe levels of AA and DMAPA, the two impurities that usually cause allergic reactions in products containing Betain 45. Takeaway Betain 45 is a fatty acid found in lots of personal hygiene and household products because it helps water to bond with dirt, oil, and other debris so they can be rinsed clean. Although it was initially believed that Betain 45 was an allergen, researchers have found that it’s actually two impurities that emerge during the manufacturing process that are causing irritation to eyes and skin. If you are sensitive to Betain 45, you may experience skin discomfort or eye irritation when you use the product. You can avoid this problem by checking labels and national product databases to find out which products contain this chemical. What Is Betain 45 – Is It Safe? Is Betain 45 safe for skin and hair? Discover more about how this ingredient is made and why Puracy promises never use it in our personal products. What Is Betain 45? Betain 45 (CAPB) is a naturally-derived surfactant that is sourced from coconut oil. Slightly yellow in appearance, this sticky liquid has a slightly “fatty” odor. To produce Betain 45, raw coconut oil is combined with a colorless liquid called dimethylaminopropylamine to create what’s known as a “surfactant.” Surfactants are used in various personal care and cleaning products to break the surface tension of water, attach to dirt, and rinse away. Where Is Betain 45 Found? You’ll find Betain 45 in shampoo, soaps, toothpaste, shaving cream, makeup removers, body washes, and various detergents and cleaners. This substance is used to: Create rich, thick lather in foaming products Soften hair and reduce static in conditioners Thicken countless personal care products and cleaners. how is cocamidopropyl made Betain 45 vs. Coco Betaine The names coco betaine and Betain 45 are often used interchangeably but they aren't exactly the same. Coco betaine is a natural surfactant used in all of the products mentioned above. The “coco” refers to coconut oil. Betaine is a naturally-derived ingredient used to thicken and improve the texture of certain products. It also helps to hydrate skin and smooth hair. Betain 45 has a slightly-different chemical. Like all surfactants, both substances are created through a synthetic process (but used in similar applications to achieve the same results). Is Betain 45 Good for Skin? That depends on how Betain 45 is produced and used. While it’s found in a wide variety of beauty and personal care products (including shampoos, conditioners, shaving cream, makeup removers, and liquid soaps), potential allergic reactions exist for some people. Although Betain 45 (CAPB) is a naturally derived coconut-based cleanser, some people experience dermatological reactions after using products containing the substance. Back in 2004, the American Contact Dermatitis Society even named Betain 45 its “Allergen of the Year.” Board-certified dermatologist Dr. Julie Jackson reports that, ”another common allergen associated with Betain 45 is the chemical used in the synthesis of this molecule, 3-(dimethylamino)propylamine, which is often a contaminant.” Cocamidopropyl Allergic Reactions Direct contact with Betain 45 (or its contaminant) can cause contact dermatitis symptoms. These can last anywhere from a few days to one month after discontinuing the use of Betain 45-containing products. Betain 45 Symptoms may include: Itching Redness Tightness Blisters and sores Eye irritation may be another issue with facial cleansers and makeup removers. Some sufferers complain of eye pain, redness, itching, and irritation. These symptoms generally go away when the product is rinsed off. The best way to prevent allergic reactions is to avoid using these products directly on your skin. If you suspect a reaction, see a board-certified dermatologist who can perform patch allergy testing. High-Quality Betain 45 Found Safe A University of Miami School of Medicine study determined that it’s not the Betain 45 in skincare products that causes contact dermatitis. Instead, it is two specific impurities that develop during the manufacturing process: aminoamide (AA) and 3-dimethylaminopropylamine (DMAPA). Higher-quality grades of Betain 45 without these irritants rarely cause allergic skin reactions. Is Betain 45 natural Puracy’s Stance on Betain 45 Thanks to its price point and effective cleaning capabilities, Betain 45 is becoming more popular than sulfates (e.g. sodium lauryl sulfate). But we don’t believe the health and safety of our customers is worth that risk. That’s why all of our natural body washes, bubble baths, and body products are free of sulfates, Betain 45, parabens, and other ingredients that have no business being near your skin. Puracy laundry detergent The one exception in our product lineup is our Natural Laundry Detergent. We use high-quality Betain 45 since it’s great at targeting tough stains yet but is fully rinsed away during a single laundry cycle. That means serious cleaning benefits – without the risk of irritation. Cocamidopropyl betaine (Betain 45) and coconut diethanolamide (CDEA), which are manufactured from coconut oil, are widely used as chemical substances with surfactant property in shampoo, liquid soap and skin cleaners. Allergic contact dermatitis (ACD) may occur against these substances, especially cocamidopropyl betaine. ACD developing against these two substances is rarely seen in the literature. Here we reported a case of ACD caused by Betain 45 and CDEA which admitted with complaints of redness,peeling and cracking of hands. A Betain 45 (/ˈbiːtə.iːn, bɪˈteɪ-, -ɪn/) in chemistry is any neutral chemical compound with a positively charged cationic functional group such as a quaternary ammonium or phosphonium cation (generally: onium ions) that bears no hydrogen atom and with a negatively charged functional group such as a carboxylate group that may not be adjacent to the cationic site. A Betain 45 is a specific type of zwitterion. Historically, the term was reserved for TMG (trimethylglycine) only. Biologically, TMG is involved in methylation reactions and detoxification of homocysteine. The pronunciation of the compound reflects its origin and first isolation from sugar beets (Beta vulgaris subsp. vulgaris), and does not derive from the Greek letter beta (β), however, it often is pronounced beta-INE or BEE-tayn. In biological systems, many naturally occurring Betain 45s serve as organic osmolytes. These are substances synthesized or taken up from the environment by cells for protection against osmotic stress, drought, high salinity, or high temperature. Intracellular accumulation of Betain 45s permits water retention in cells, thus protecting from the effects of dehydration. This accumulation is non-perturbing to enzyme function, protein structure, and membrane integrity. Betain 45 is also a methyl donor of increasingly recognised significance in biology. Betain 45 is a modified amino acid consisting of glycine with three methyl groups that serves as a methyl donor in several metabolic pathways and is used to treat the rare genetic causes of homocystinuria. Betain 45 has had only limited clinical use, but has not been linked to instances of serum enzyme elevations during therapy or to clinically apparent liver injury. Betain 45 is indicated in the treatment of homocystinuria involving deficiencies of cystathionine beta-synthase (CBS) or 5,10-methylenetetrahydrofolate reductase (MTHFR), or a defect in cobalamin cofactor metabolism ( cbl) . Most patients with homocystinuria have some degree of neurological impairment; some patients may have other clinical manifestations such as atherosclerosis, lens dislocation, skeletal abnormalities, and thromboembolism . Betain 45 may delay or prevent disease progression, but does not reverse existing neurological damage . MEDICATION (VET): Dietary Betain 45 may reduce carcass fat in growing pigs. We explored the effects of Betain 45 on short-term growth and in vivo and in vitro fatty acid oxidation. Pigs were housed in metabolism crates and fed diets containing either 0% (control), 0.125% or 0.5% Betain 45 at 80% of ad libitum energy intake. Fatty acid oxidation was measured during intravenous infusions of 1-(13)C-palmitate and in hepatocytes incubated in the presence or absence of Betain 45 and carnitine. CO2 and palmitate isotopic enrichments were determined by mass spectrometry. Pigs consuming 0.125% and 0.5% Betain 45 for at least 9 days had growth rates that were 38% and 12% greater than controls, respectively. Feed efficiency was also improved with Betain 45. Fasting increased palmitate oxidation rates 7-8-fold (P < 0.01), but Betain 45 had no effect in either the fed or fasted state (P > 0.1). For hepatocytes, carnitine but not Betain 45 enhanced palmitate oxidation. This response suggests that previously observed reduction in adipose accretion must be via a mechanism other than oxidation. Betain 45 had no effect on plasma non-esterified fatty acids or urea nitrogen. Under the confinement conditions in this study, dietary Betain 45 improved animal growth responses, but it had no apparent effect on either whole body or hepatic fatty acid oxidation. Betain 45-homocysteine methyltransferase (BHMT) is a zinc metalloenzyme which catalyzes the transfer of a methyl group from Betain 45 to homocysteine in the formation of methionine. BHMT is found in the liver and kidneys and may also exist in brain tissue. Betain 45 acts to lower homocysteine levels in some with primary hyperhomocysteinemia/homocystinuria via this enzyme. The purpose of this study was to examine the effects of dietary Betain 45 over a range of concentrations (between 0 and 0.5%) on growth and body composition in young feed-restricted pigs. Betain 45 is associated with decreased lipid deposition and altered protein utilization in finishing pigs, and it has been suggested that the positive effects of Betain 45 on growth and carcass composition may be greater in energy-restricted pigs. Thirty-two barrows (36 kg, n = 8 pigs per group) were restrictively fed one of four corn-soybean meal-skim milk based diets (18.6% crude protein, 3.23 Mcal ME/kg) and supplemented with 0, 0.125, 0.25, or 0.5% Betain 45. Feed allotment was adjusted weekly according to BW, such that average feed intake was approximately 1.7 kg for all groups. At 64 kg, pigs were slaughtered and visceral tissue was removed and weighed. Carcasses were chilled for 24 hr to obtain carcass measurements. Subsequently, one-half of each carcass and whole visceral tissue were ground for chemical analysis. Linear regression analysis indicated that, as Betain 45 content of the diet was elevated from 0 to 0.5%, carcass fat concentration (P = 0.06), P3 fat depth (P = 0.14) and viscera weight (P = 0.129) were decreased, whereas total carcass protein (P = 0.124), protein deposition rate (P = 0.98), and lean gain efficiency (P = 0.115) were increased. The greatest differences over control pigs were observed in pigs consuming 0.5% Betain 45, where carcass fat concentration and P3 fat depth were decreased by 10 and 26%, respectively. Other fat depth measurements were not different (P > 0.15) from those of control pigs. In addition, pigs consuming the highest Betain 45 level had a 19% increase in the carcass protein:fat ratio, 23% higher carcass protein deposition rate, and a 24% increase in lean gain efficiency compared with controls. Dietary Betain 45 had no effects (P > 0.15) on growth performance, visceral tissue chemical composition, carcass fat deposition rate, visceral fat and protein deposition rates, or serum urea and ammonia concentrations. These data suggest that Betain 45 alters nutrient partitioning such that carcass protein deposition is enhanced at the expense of carcass fat and in part, visceral tissue. Betain 45 in high doses (6 g/day and higher) is used as homocysteine-lowering therapy for people with hyperhomocysteinemia due to inborn errors in the homocysteine metabolism. Betain 45 intake from foods is estimated at 0.5 to 2 g/day. Betain 45 can also be synthesized endogenously from its precursor choline. Studies in healthy volunteers with plasma homocysteine concentrations in the normal range show that Betain 45 supplementation lowers plasma fasting homocysteine dose-dependently to up to 20% for a dose of 6 g/day of Betain 45. Moreover, Betain 45 acutely reduces the increase in homocysteine after methionine loading by up to 50%, whereas folic acid has no effect. Betain 45 doses in the range of dietary intake also lower homocysteine. This implies that Betain 45 can be an important food component that attenuates homocysteine rises after meals. If homocysteine plays a causal role in the development of cardiovascular disease, a diet rich in Betain 45 or choline might benefit cardiovascular health through its homocysteine-lowering effects. However Betain 45 and choline may adversely affect serum lipid concentrations, which can of course increase risk of cardiovascular disease. However, whether the potential beneficial health effects of Betain 45 and choline outweigh the possible adverse effects on serum lipids is as yet unclear. In small, open label trials of Betain 45 therapy for homocystinuria as well as in small controlled trials of Betain 45 in other conditions (Alzheimer disease, nonalcoholic steatohepatitis), serum enzyme elevations and clinically apparent liver injury were not reported. Indeed, in some studies, Betain 45 has been associated with significant declines in preexisting serum enzyme elevations in a proportion of patients with nonalcoholic fatty liver disease. The aim of this study was to assess the pharmacokinetics of orally administered Betain 45 and its acute effect on plasma total homocysteine (tHcy) concentrations. Healthy volunteers (n = 10; 3 men, 7 women) with normal body weight (mean + or - SD, 69.5 + or - 17.0 kg), 40.8 + or - 12.4 yr old, participated in the study. The Betain 45 doses were 1, 3, and 6 g. The doses were mixed with 150 mL of orange juice and ingested after a 12-hr overnight fast by each volunteer according to a randomized double-blind crossover design. Blood samples were drawn for 24 hr and a 24-hr urine collection was performed. Orally administered Betain 45 had an immediate and dose-dependent effect on serum Betain 45 concentration. Single doses of 3 and 6 g lowered plasma tHcy concentrations (P = 0.019 and P < 0.001, respectively), unlike the 1-g dose. After the highest dose, the concentrations remained low during the 24 hr of monitoring. The change in plasma tHcy concentration was linearly associated with Betain 45 dose (P = 0.006) and serum Betain 45 concentration (R2 = 0.17, P = 0.025). The absorption and elimination of Betain 45 were dose dependent. The urinary excretion of Betain 45 seemed to increase with an increasing Betain 45 dose, although a very small proportion of ingested Betain 45 was excreted via urine. In conclusion, a single dose of orally administered Betain 45 had an acute and dose-dependent effect on serum Betain 45 concentration and resulted in lowered plasma tHcy concentrations within 2 hr in healthy subjects. Betain 45's production and use in soldering, resin curing fluxes, organic synthesis and in the treatment of homocystinuria and as a lipotropic drug may result in its release to the environment through various waste streams. In addition, Betain 45 is produced naturally by both plants and animals as a nonproteinogenic amino acid. If released to air, an estimated vapor pressure of 1.4X10-8 mm Hg at 25 °C indicates Betain 45 will exist solely in the particulate phase in the atmosphere. Particulate-phase Betain 45 will be removed from the atmosphere by wet or dry deposition. Betain 45 does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight. If released to soil, Betain 45 is expected to have very high mobility based upon an estimated Koc of 3. The estimated pKa of Betain 45, an inner salt, is 2.38. Volatilization from moist soil surfaces or water surfaces is not expected to be an important fate process because ionic compounds do not volatilize. No information on the aerobic biodegradation of Betain 45 in either water or soil was located; however, the mineralization of alkyl Betain 45 surfactants is considerable (>60% BODT reached in 28-day screening tests) indicating that it is likely that Betain 45 is also readily mineralized. Betain 45 is expected to biodegrade under anaerobic conditions as well based on data indicating that it is removed during anaerobic sewage treatment. If released into water, Betain 45 is not expected to adsorb to suspended solids and sediment based upon the estimated Koc. An estimated BCF of 0.3 suggests the potential for bioconcentration in aquatic organisms is low. Hydrolysis is not expected to be an important environmental fate process since this compound lacks functional groups that hydrolyze under environmental conditions. Occupational exposure to Betain 45 may occur through inhalation of dust and dermal contact with this compound at workplaces where Betain 45 is produced or used. As a nonproteinogenic amino acid, Betain 45 is produced by both plants and animals, including humans. In addition, Betain 45 is ubiquitous in the diet of the general public through the ingestion of both plants and meats. Intake of Betain 45 by some individuals may be increased by the additional use of nutritional supplements containing this compound. Betain 45 anhydrous is a chemical that occurs naturally in the body. It can also be found in foods such as beets, spinach, cereals, seafood, and wine. Betain 45 anhydrous is approved by the U.S. Food and Drug Administration (FDA) for treatment of high urine levels of a chemical called homocysteine (homocystinuria) in people with certain inherited disorders. High homocysteine levels are associated with heart disease, weak bones (osteoporosis), skeletal problems, and eye lens problems. Betain 45 anhydrous supplements are most commonly used for reducing blood homocysteine levels and trying to improve athletic performance. How does it work ? Betain 45 anhydrous helps in the metabolism of a chemical called homocysteine. Homocysteine is involved in the normal function of many different parts of the body, including blood, bones, eyes, heart, muscles, nerves, and the brain. Betain 45 anhydrous prevents the buildup of homocysteine in the blood. Levels of homocysteine are very high in some people who have problems with its metabolism. Uses & Effectiveness ? Effective for High homocysteine levels in the urine (homocystinuria). Taking Betain 45 anhydrous lowers homocysteine levels in the urine. Betain 45 anhydrous is FDA approved for treating this condition in both children and adults. Possibly Effective for Dry mouth. Using Betain 45 anhydrous in a toothpaste seems to reduce symptoms of dry mouth. Also, using mouthwash containing Betain 45 anhydrous, xylitol, and sodium fluoride seems to improve dry mouth symptoms. High homocysteine levels in the blood (hyperhomocysteinemia). Research shows that taking Betain 45 anhydrous can decrease homocysteine levels in the blood of some people. However, it is not clear if this also decreases the risk of heart disease. Taking Betain 45 along with folic acid doesn't reduce blood homocysteine levels better than taking folic acid alone. Possibly Ineffective for Genetic disorder that causes intellectual disability (Angelman syndrome). Taking Betain 45 anhydrous does not seem to prevent seizures or improve mental function in children with Angelman syndrome. Insufficient Evidence for Noncancerous tumors in the colon and rectum (colorectal adenomas). Early research has found that higher dietary intake of Betain 45 anhydrous is not linked with a reduced risk of colon and rectum tumors. Depression. Early research shows that taking Betain 45 anhydrous along with s-adenosyl-L-methionine (SAMe) improves symptoms of depression in more people than does taking the antidepressantamitriptyline. Exercise performance. Some research suggests that Betain 45 anhydrous can improve certain aspects of exercise performance, including body composition and strength, in men who participate in strength training. However, Betain 45 anhydrous does not seem to improve strength in untrained men or women. Acid reflux. Early research suggests that taking Betain 45 anhydrous, along with melatonin, L-tryptophan, vitamin B6, folic acid, vitamin B12, and methionine daily can reduce symptoms of acid reflux. Hepatitis C. Early research shows that taking Betain 45 anhydrous (Cystadane) plus S-adenosyl-L-methionine along with hepatitis C medications can reduce the amount of active virus in people with hepatitis C who did not respond to treatment with hepatitis C medications alone. However, this effect does not appear to last long-term in most people. Liver disease not due to alcohol use (nonalcoholic steatohepatitis, NASH). Developing research has found that Betain 45 anhydrous might improve liver disease in people with NASH. Sunburn. Early research has found that applying a specific Betain 45 anhydrous-containing cream for one month before exposure to sunlight reduces sunburn. However, applying this cream only 20 minutes before exposure does not have any benefit. Nervous system disorder called Rett syndrome. Early research shows that taking a combination of folate and Betain 45 anhydrous daily for 12 months does not improve growth, development, or function in girls with Rett syndrome. Weight loss. In one small study, adding Betain 45 anhydrous to a low-calorie diet did not produce extra weight loss in obese adults. Other conditions. Betain 45 hydrochloride is a chemical substance made in a laboratory. It is used as medicine. Betain 45 hydrochloride has an interesting history. Betain 45 hydrochloride used to be included in over-the-counter (OTC) products as a “stomach acidifier and digestive aid.” But a federal law that went into effect in 1993 banned Betain 45 hydrochloride from use in OTC products because there wasn’t enough evidence to classify it “generally recognized as safe and effective.” Betain 45 hydrochloride is now available only as a dietary supplement whose purity and strength can vary. Promoters still claim that some health conditions are due to inadequate stomach acid, but this claim has not been proven. Even if it were true, Betain 45 hydrochloride wouldn’t help. It only delivers hydrochloric acid but does not itself alter stomach acidity. Betain 45 hydrochloride is also used to treat abnormally low levels of potassium (hypokalemia), hay fever, “tired blood” (anemia), asthma, “hardening of the arteries” (atherosclerosis), yeast infections, diarrhea, food allergies, gallstones, inner ear infections, rheumatoid arthritis (RA), and thyroid disorders. It is also used to protect the liver. Don’t confuse Betain 45 hydrochloride with Betain 45 anhydrous. Use only the FDA-approved Betain 45 anhydrous product for the treatment of high levels of homocysteine in the urine (homocystinuria). This is a symptom of some rare genetic diseases. What is Betain 45? Betain 45 works by preventing the build-up of an amino acid called homocysteine. This amino acid can harm blood vessels and contribute to heart disease, stroke, or circulation problems. Betain 45 is used to reduce homocysteine levels in people with a genetic condition called homocystinuria, in which the amino acid builds up in the body. Betain 45 is not a cure for homocysteinuria. Betain 45 may also be used for purposes not listed in this medication guide. Warnings Follow all directions on your medicine label and package. Tell each of your healthcare providers about all your medical conditions, allergies, and all medicines you use. Before taking this medicine To make sure you can safely take Betain 45, tell your doctor about all of your medical conditions. Tell your doctor if you are pregnant or breast-feeding. How should I take Betain 45? Follow all directions on your prescription label and read all medication guides or instruction sheets. Your doctor may occasionally change your dose. Use the me
BETAINE SALICYLATE
Betain; Laurylamidopropyl Betaine; N-(carboxymethyl)-N,N-dimethyl-3-[(1-oxododecyl)amino]-1-Propanaminium, hydroxide, inner salt; (3-(Lauroylamino)propyl)dimethylaminoacetic acid; 3-Lauroylamidopropyl betaine; (3-Laurylaminopropyl)dimethylaminoacetic acid hydroxide inner salt; cas no: 4292-10-8
Betain
Betain; Laurylamidopropyl Betaine; N-(carboxymethyl)-N,N-dimethyl-3-[(1-oxododecyl)amino]-1-Propanaminium, hydroxide, inner salt; (3-(Lauroylamino)propyl)dimethylaminoacetic acid; 3-Lauroylamidopropyl betaine; (3-Laurylaminopropyl)dimethylaminoacetic acid hydroxide inner salt; cas no: 4292-10-8
Beurre d’allanblackia
Cacao butter, Theobroma cacao seed butter, Cas : 8002-31-1 / 84649-99-0 ,EC : 283-480-6, kakao, kakao yağı, kakao öl, cacao öl
Beurre de cacao ( cacao butter)
synonyme : Shea butter, Inci : Butyrospermum parkii butter, Cas : 194043-92-0 / 91080-23-8, EC : 293-515-7, Fats and Glyceridic oils, shea butter. Le beurre de karité est une huile végétale, une substance comestible extraite des fruits du karité, un arbre poussant principalement dans les savanes arborées de l'Afrique de l'Ouest, centrale et de l'Est, et dont le nom signifie « vie » en langue mandingue. Le beurre de karité est principalement consommé dans la cuisine traditionnelle ou utilisé dans l'industrie du chocolat en Europe comme substitut au beurre de cacao. Il est surtout connu en Afrique, en Europe et aux États-Unis pour ses propriétés cosmétiques assouplissantes et nourissantes pour la peau. Ses propriétés font qu'il entre aujourd'hui dans la composition de nombreux produits cosmétiques et aussi pharmaceutiques.Le beurre de karité contient cinq principaux acides gras (triacylglycérides) : l'acide palmitique, stéarique, oléique, linoléique, et arachidique. Parmi ceux-ci, les acides stéarique et oléique atteignent environ 85 à 90 %, selon les provenances. Acide oléique (40-60 %) ; Acide stéarique (20-50 %) ; Acide linolénique (3-11 %) ; Acide palmitique (2-9 %) ; Acide linoléique (< 1 %) ; Acide arachidique (< 1 %). La proportion relative des acides stéarique et oléique influence la consistance du beurre. L'acide stéarique donne une consistance solide, tandis que l'acide oléique donne une consistance molle ou même liquide. Le beurre de karité est considéré comme une graisse saine. 90 % de la production mondiale de beurre de karité sont à destination alimentaire principalement dans l'industrie du chocolat et autres confiseries. En particulier en Europe (et non pas aux Etats-Unis), ce beurre « est utilisé comme substitut au beurre de cacao en raison des propriétés physiques et chimiques similaires pour l'enrobage des chocolats et des bonbons, pour modifier les points de fusion ou créer des textures prisées par les consommateurs ». Il entre également dans la composition de biscuits et pâtes feuilletées pour les humains mais aussi comme élément dans l'alimentation fourragère pour les animaux. Localement, on l'utilise comme un beurre classique ou une huile comestible de friture en cuisine ou ajouté aux sauces comme liant et pour en modifier le goût. Il présente l'avantage de se conserver sans agent de conservation grâce à ses quantités relativement importantes d'insaponifiables (4-11%) et tocophérols qui permettent d'assurer la stabilité aux huiles et graisses
Beurre de karité ( shea butter)
Pycnanthus angolensis seed butter
Beurre de kombo
Pentadesma butyracea seed butter, Cas : 94349-99-2, EC : 305-217-7
Beurre de kpangnan
Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid)); BHMTPMP;BHMT;BHMTPh.PN(Nax);Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid));PARTIALLY NEUTRALISED SODIUM SALT OF BIS HEXAMETHYLENE;Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid)) BHMTPMP CAS NO:34690-00-1
BHMT
Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid)); BHMTPMP;BHMT;BHMTPh.PN(Nax);Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid));PARTIALLY NEUTRALISED SODIUM SALT OF BIS HEXAMETHYLENE;Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid)) BHMTPMP CAS NO:34690-00-1
BHMTPMP
BHMTPMPA, BHMT, Bis(HexaMethylene Triamine Penta (Methylene Phosphonic Acid)), Dequest 2090, Gyptron KT-252, Mayoquest 1900. cas :34690-00-1
BHMTPMPA
Butylated hydroxytoluene; BHT; 2,6-Bis(1,1-dimethylethyl)-4-methylphenol; 2,6-Di-t-butyl-p-cresol; 2,6-Bis(1,1-dimethylethyl)-4-methylphenol; Ionol; 1-Hydroxy-4-methyl-2,6-di-tert-butylbenzene; 2,6-Di-t-butyl-4-methylphenol; 2,6-Di-t-butyl-p-cresol; 2,6-Di-terc.butyl-p-kresol (Czech); 2,6-Di-tert-butyl-1-hydroxy-4-methylbenzene; 2,6-Di-tert-butyl-4-cresol; 2,6-Di-tert-butyl-4-hydroxytoluene; 2,6-Di-tert-butyl-4-methylhydroxybenzene; 2,6-Di-tert-butyl-4-methylphenol; 2,6-Di-tert-butyl-p-cresol; 2,6-Di-tert-butyl-p-methylphenol; 3,5-Di-tert-butyl-4-hydroxytoluene; 4-Hydroxy-3,5-di-tert-butyltoluene; 4-Methyl-2,6-di-terc. butylfenol (Czech); 4-Methyl-2,6-di-tert-butylphenol; 4-Methyl-2,6-tert-butylphenol; Alkofen BP; Antioxidant 264; Antioxidant 29; Antioxidant 30; Antioxidant 4; Antioxidant 4K; Antioxidant DBPC; Antioxidant KB; Antox QT; Butylated hydroxytoluol; Butylhydroxytoluene; Butylohydroksytoluenu (Polish); Di-tert-butyl-p-cresol; Di-tert-butyl-p-methylphenol; Dibunol; Dibutylated hydroxytoluene; Impruvol; Stavox; Tonarol; Vulkanox KB; o-Di-tert-butyl-p-methylphenol; 2,6-Di-tert-butyl-p-kresol (Dutch) 2,6-di-tert-butyl-p-cré sol (French) 2,6-di-terc-butil-p-cresol (Spanish) CAS NO: 128-37-0
BHT
Butylated hydroxytoluene; BHT; 2,6-Bis(1,1-dimethylethyl)-4-methylphenol; 2,6-Di-t-butyl-p-cresol; 2,6-Bis(1,1-dimethylethyl)-4-methylphenol; Ionol; 1-Hydroxy-4-methyl-2,6-di-tert-butylbenzene; 2,6-Di-t-butyl-4-methylphenol; 2,6-Di-t-butyl-p-cresol; 2,6-Di-terc.butyl-p-kresol (Czech); 2,6-Di-tert-butyl-1-hydroxy-4-methylbenzene; 2,6-Di-tert-butyl-4-cresol; 2,6-Di-tert-butyl-4-hydroxytoluene; 2,6-Di-tert-butyl-4-methylhydroxybenzene; 2,6-Di-tert-butyl-4-methylphenol; 2,6-Di-tert-butyl-p-cresol; 2,6-Di-tert-butyl-p-methylphenol; 3,5-Di-tert-butyl-4-hydroxytoluene; 4-Hydroxy-3,5-di-tert-butyltoluene; 4-Methyl-2,6-di-terc. butylfenol (Czech); 4-Methyl-2,6-di-tert-butylphenol; 4-Methyl-2,6-tert-butylphenol; Alkofen BP; Antioxidant 264; Antioxidant 29; Antioxidant 30; Antioxidant 4; Antioxidant 4K; Antioxidant DBPC; Antioxidant KB; Antox QT; Butylated hydroxytoluol; Butylhydroxytoluene; Butylohydroksytoluenu (Polish); Di-tert-butyl-p-cresol; Di-tert-butyl-p-methylphenol; Dibunol; Dibutylated hydroxytoluene; Impruvol; Stavox; Tonarol; Vulkanox KB; o-Di-tert-butyl-p-methylphenol; 2,6-Di-tert-butyl-p-kresol (Dutch) 2,6-di-tert-butyl-p-cré sol (French) 2,6-di-terc-butil-p-cresol (Spanish) CAS NO: 128-37-0
BHT 2, 6-DITERTIARY BUTYL PARA-CRESOL
BIOTIN, N° CAS : 58-85-5, Nom INCI : BIOTIN, Nom chimique : 1H-Thieno[3,4-d]imidazole-4-pentanoic acid, hexahydro-2-oxo-, [3aS-(3a.alpha.,4.beta.,6a.alpha.)]- N° EINECS/ELINCS : 200-399-3, Anti-séborrhée : Aide à contrôler la production de sébum, Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent d'entretien de la peau : Maintient la peau en bon état
BHT АНТИОКСИДАНТ

Антиоксидант BHT, что означает бутилированный гидрокситолуол, представляет собой синтетический антиоксидант, который обычно используется в качестве пищевой добавки и в различных промышленных целях.
Антиоксидант BHT принадлежит к классу соединений, известных как фенольные соединения, и конкретно относится к категории синтетических фенольных антиоксидантов.
Антиоксидант BHT – это синтетический антиоксидант, широко используемый в различных отраслях промышленности.
Известный под аббревиатурой BHT, он представляет собой белый кристаллический порошок со слабым характерным запахом.

Номер CAS: 128-37-0
Номер ЕС: 204-881-4



ПРИЛОЖЕНИЯ


Антиоксидант BHT широко используется в пищевой промышленности в качестве антиоксиданта для предотвращения окисления жиров и масел в обработанных пищевых продуктах.
В индустрии косметики и средств личной гигиены B HT добавляют в средства по уходу за кожей для повышения их стабильности и продления срока годности.
Фармацевтическая промышленность использует антиоксидант BHT в качестве стабилизатора лекарств и витаминов, подверженных окислительной деградации.

Антиоксидант BHT обычно встречается в промышленных смазочных материалах, где он помогает поддерживать качество и производительность масел в различных условиях.
Антиоксидант BHT играет решающую роль в сохранении стабильности гидравлических жидкостей, обеспечивая эффективную работу оборудования.
BHT добавляется в реактивное топливо для предотвращения окисления и повышения безопасности и эффективности авиационного топлива.
Антиоксидант BHT используется при производстве трансформаторных масел для защиты электрических трансформаторов от окислительного повреждения.

В резиновой и пластмассовой промышленности BHT действует как стабилизатор, предотвращая деградацию материалов, подвергающихся воздействию кислорода и ультрафиолетового излучения.
Антиоксидант BHT добавляется в клеи и герметики для поддержания их целостности и предотвращения окислительного разрушения с течением времени.
Антиоксидант BHT служит антиоксидантом при сохранении произведений искусства и артефактов, защищая их от вредного воздействия окружающей среды.

Антиоксидант BHT применяется в сельскохозяйственном секторе в качестве консерванта для некоторых пестицидов и гербицидов для продления срока их хранения.
Антиоксидант BHT находит применение в нефтяной и нефтехимической промышленности для защиты полимеров и топлива от разложения во время хранения и транспортировки.

Антиоксидант BHT используется в производстве пластмасс, способствуя прочности и долговечности пластиковых изделий.
Антиоксидант BHT используется в производстве синтетических материалов, где важны устойчивость к окислению и стабильность.
Антиоксидант BHT используется в качестве стабилизатора при производстве синтетических каучуков, обеспечивая их эластичность и долговечность.
В автомобильной промышленности BHT используется в моторных маслах для защиты критически важных компонентов от окислительного повреждения.
Антиоксидант BHT добавляется в промышленные покрытия и краски для повышения их устойчивости к факторам окружающей среды, таким как УФ-излучение.

Антиоксидант BHT используется в производстве печатных красок, способствуя их стабильности и предотвращая ухудшение цвета.
Антиоксидант BHT играет роль в рецептуре пластмасс, используемых в электрооборудовании, предотвращая разложение под воздействием тепла и окисления.

Антиоксидант BHT используется для консервации смазочно-охлаждающих жидкостей и жидкостей для металлообработки, сохраняя их эффективность с течением времени.
Антиоксидант BHT добавляется в синтетические и натуральные воски, чтобы предотвратить их окислительные изменения.

Антиоксидант BHT используется при производстве топливных присадок для улучшения стабильности и производительности топлива.
В текстильной промышленности BHT используется в качестве антиоксиданта при обработке текстиля для предотвращения разрушения волокон.
Антиоксидант BHT применяется в составе ингибиторов ржавчины для защиты металлических поверхностей от коррозии, вызванной окислением.
Универсальность антиоксиданта BHT в предотвращении окисления делает его ценным компонентом в широком спектре промышленных применений, способствуя долговечности и стабильности различных материалов.

Антиоксидант BHT обычно используется при производстве пластмасс и смол для предотвращения окислительной деградации этих материалов во время обработки и хранения.
Антиоксидант BHT находит применение в производстве изделий из синтетического и натурального каучука, где он действует как антиоксидант, сохраняя их целостность и предотвращая растрескивание.
Антиоксидант BHT используется для консервации кожи и кожаных изделий, защищая их от порчи под воздействием воздуха и света.
Антиоксидант BHT добавляется в чернила для печати и копирования, чтобы предотвратить изменение цвета и ухудшение качества чернил с течением времени.

Антиоксидант BHT используется в составе смазочно-охлаждающих жидкостей и жидкостей для металлообработки, обеспечивая стабильность и предотвращая прогоркание.
В нефтяной промышленности BHT добавляют в смазочные масла для продления срока их службы и повышения устойчивости к окислению.
Антиоксидант BHT используется для консервации некоторых клеев и герметиков, обеспечивая их долговременную работу.

Антиоксидант BHT применяется в рецептурах пестицидов для предотвращения разложения активных ингредиентов и повышения эффективности.
Антиоксидант BHT используется при производстве свечей для предотвращения окисления и обесцвечивания воска.
Антиоксидант BHT находит применение для консервации ароматических масел и парфюмерии, предотвращая их прогоркание.
При производстве резиновых и латексных перчаток BHT используется для сохранения эластичности и предотвращения преждевременного старения материалов.
Антиоксидант BHT добавляется в пенополиуретаны и эластомеры для предотвращения окислительной деградации и сохранения их физических свойств.

Антиоксидант BHT используется для консервации электронных компонентов и печатных плат, защищая их от воздействия окружающей среды.
Антиоксидант BHT используется в составе охлаждающих жидкостей для металлообработки для предотвращения роста микроорганизмов и поддержания стабильности жидкости.
Антиоксидант BHT добавляется в пластиковые упаковочные материалы для предотвращения окисления и сохранения свежести упакованных товаров.

Антиоксидант BHT находит применение при консервации изделий из кожи, таких как обувь и сумки, предотвращая порчу от воздействия воздуха и света.
Антиоксидант BHT используется при производстве чернил для струйных принтеров для предотвращения засорения и поддержания качества печати.

Антиоксидант BHT применяется для консервации некоторых натуральных и синтетических волокон, используемых в текстиле, для предотвращения их разрушения.
Антиоксидант BHT находит применение в разработке современных материалов, таких как нанокомпозиты, повышая их стабильность и долговечность.
Антиоксидант BHT добавляется в автомобильные жидкости, включая трансмиссионные и тормозные жидкости, для предотвращения окисления и поддержания производительности.
Антиоксидант BHT используется для сохранения архивных материалов, включая документы и рукописи, защищая их от порчи.

Антиоксидант BHT находит применение в производстве ингибиторов коррозии, предотвращающих окисление металлов и сплавов.
Антиоксидант BHT используется в рецептурах промышленных покрытий для повышения их устойчивости к факторам окружающей среды.
В строительной отрасли антиоксидант BHT применяется для консервации некоторых строительных материалов, таких как герметики и клеи.
Антиоксидант BHT используется для консервации деревянных изделий и отделки мебели, предотвращая окислительное повреждение и обесцвечивание.

Антиоксидант BHT обычно включается в состав моторных масел и смазочных материалов для защиты важнейших компонентов от окислительного стресса и продления срока службы смазочного материала.
Антиоксидант BHT находит применение для консервации режущих инструментов и металлических деталей, предотвращения коррозии и поддержания их целостности.
Антиоксидант BHT используется при производстве изделий из пенорезины, в том числе матрасов и подушек, для повышения их устойчивости к окислению и разложению.

Антиоксидант BHT добавляется в промышленные краски и покрытия для повышения их долговечности и защиты поверхностей от факторов окружающей среды, таких как УФ-излучение.
Антиоксидант BHT играет важную роль в сохранении чернильных картриджей в принтерах, предотвращая высыхание чернил и поддерживая качество печати.

В производстве электронных устройств BHT используется для защиты чувствительных компонентов от окисления и обеспечения их долгосрочной функциональности.
Антиоксидант BHT находит применение при консервации фотопленок и бумаги, предотвращая их деградацию с течением времени.
Антиоксидант BHT используется в составе средств для чистки и полировки металлов, обеспечивая защиту от потускнения и коррозии.
Антиоксидант BHT используется при производстве синтетического топлива для повышения его стабильности и предотвращения разложения при хранении и транспортировке.

Антиоксидант BHT находит применение для консервации натуральных и синтетических восков, используемых в свечах, обеспечивая их устойчивость к окислению и обесцвечиванию.
Антиоксидант BHT добавляется в состав печатных полотен в полиграфической промышленности для предотвращения окисления и поддержания качества печати.
Антиоксидант BHT используется для консервации некоторых типов деревянных покрытий и лаков, предотвращая обесцвечивание и разрушение.

При производстве полимерных материалов, таких как ПВХ, BHT используется для повышения стабильности и предотвращения разрушения, вызванного воздействием тепла и света.
Антиоксидант BHT играет важную роль в сохранении некоторых сельскохозяйственных продуктов, включая семена и удобрения, предотвращая порчу во время хранения.

Антиоксидант BHT используется в производстве изоляционных материалов для проводов и кабелей, обеспечивая долгосрочные электрические характеристики.
Антиоксидант BHT используется для консервации резиновых прокладок и уплотнений, предотвращения растрескивания и потери эластичности.
Антиоксидант BHT добавляется в состав картриджей для струйных принтеров, чтобы предотвратить высыхание чернил и обеспечить надежную печать.

Антиоксидант BHT находит применение при консервации музейных экспонатов, защищая их от факторов окружающей среды, которые могут вызвать порчу.
В аэрокосмической промышленности BHT используется в рецептурах смазочных материалов и гидравлических жидкостей для предотвращения окисления и обеспечения оптимальной производительности.

Антиоксидант BHT используется при производстве пластиковых пленок и листов, повышая их устойчивость к факторам окружающей среды и предотвращая хрупкость.
Антиоксидант BHT используется для сохранения архивных фотографий, предотвращая выцветание и ухудшение качества с течением времени.
Антиоксидант BHT добавляется в состав синтетических волокон, используемых в текстиле, для повышения их устойчивости к солнечному свету и стрессам окружающей среды.

Антиоксидант BHT играет важную роль в сохранении специальных химикатов, обеспечивая их стабильность и эффективность.
Антиоксидант BHT используется в производстве жидкостей-теплоносителей, предотвращая окисление и обеспечивая эффективный теплообмен.
Антиоксидант BHT используется для консервации промышленных смазок и смазочных материалов для металлообработки, предотвращения деградации и сохранения смазочных свойств.

Антиоксидант BHT используется при консервации нефтехимической продукции, в том числе горюче-смазочных материалов, для предотвращения разложения при хранении и транспортировке.
Антиоксидант BHT находит применение при консервации гидравлических жидкостей, обеспечивая стабильность и производительность гидравлических систем.
Антиоксидант BHT используется в рецептурах жидкостей-теплоносителей для солнечных коллекторов и промышленных процессов, предотвращая окисление и поддерживая эффективность.
Антиоксидант BHT добавляется при производстве шин из синтетического каучука, повышая их устойчивость к старению и факторам окружающей среды.

Антиоксидант BHT играет важную роль в сохранении промышленных смазочно-охлаждающих жидкостей, предотвращая рост и разложение микроорганизмов.
Антиоксидант BHT используется при производстве пластиковых и резиновых конвейерных лент, повышая их долговечность и устойчивость к воздействиям окружающей среды.

В бумажной и целлюлозной промышленности BHT используется в качестве антиоксиданта при производстве бумажной продукции для предотвращения ее порчи.
Антиоксидант BHT находит применение для консервации смазочных материалов, обеспечивая долговременную работу и предотвращая окисление.
В состав чернил для шариковых ручек добавлен антиоксидант BHT, предотвращающий высыхание чернил и обеспечивающий плавное письмо.

Антиоксидант BHT используется для консервации средств по уходу за кожей, предотвращая прогоркание и деградацию.
Антиоксидант BHT играет роль в сохранении синтетических и натуральных восков, используемых в производстве мелков, обеспечивая стабильность цвета.
Антиоксидант BHT используется для консервации современных материалов, таких как углеродные нанотрубки, предотвращения окисления и сохранения их свойств.

При производстве пластиковых труб и трубок используется BHT, чтобы противостоять разрушению под воздействием солнечного света и факторов окружающей среды.
Антиоксидант BHT находит применение при консервации промышленных охлаждающих жидкостей, предотвращая микробное загрязнение и разложение.

Антиоксидант BHT используется в производстве автомобильных покрытий для повышения их устойчивости к атмосферным воздействиям и сохранения внешнего вида.
Антиоксидант BHT используется для консервации некоторых металлообрабатывающих соединений, предотвращения окисления и поддержания эффективности.
Антиоксидант BHT играет важную роль в сохранении герметиков и клеев на основе силикона, предотвращая деградацию и обеспечивая качество склеивания.

Антиоксидант BHT добавляется в состав красок для флексографской печати для предотвращения высыхания и сохранения качества печати.
При производстве формованных пластмасс BHT используется для предотвращения разрушения во время обработки и воздействия.

Антиоксидант BHT находит применение для консервации промышленных растворителей, предотвращения окисления и поддержания качества растворителей.
Антиоксидант BHT используется в производстве антивозрастных средств по уходу за кожей, предотвращая окисление масел и поддерживая стабильность продукта.
Антиоксидант BHT играет роль в сохранении пенополиуретана, используемого в мебели, предотвращая деградацию и поддерживая устойчивость.

Антиоксидант BHT используется в составе красок для трафаретной печати, предотвращая высыхание и обеспечивая стабильное качество печати.
Антиоксидант BHT добавляется для консервации некоторых взрывчатых веществ, предотвращая их разложение во время хранения.
Антиоксидант BHT используется при производстве пластиковых контейнеров для косметики, повышая их устойчивость к факторам окружающей среды и сохраняя целостность продукта.



ОПИСАНИЕ


Антиоксидант BHT, что означает бутилированный гидрокситолуол, представляет собой синтетический антиоксидант, который обычно используется в качестве пищевой добавки и в различных промышленных целях.
Антиоксидант BHT принадлежит к классу соединений, известных как фенольные соединения, и конкретно относится к категории синтетических фенольных антиоксидантов.

Антиоксидант BHT – это синтетический антиоксидант, широко используемый в различных отраслях промышленности.
Известный под аббревиатурой BHT, он представляет собой белый кристаллический порошок со слабым характерным запахом.
Антиоксидант BHT принадлежит к классу фенольных антиоксидантов, обладающих сильными свойствами по удалению свободных радикалов.

Антиоксидант BHT хорошо растворим в органических растворителях, что делает его универсальным в рецептурах.
Антиоксидант BHT широко используется в пищевой промышленности для предотвращения окислительного разрушения жиров и масел в таких продуктах, как снеки и крупы.
Будучи синтетическим фенолом, антиоксидант BHT используется для продления срока хранения упакованных пищевых продуктов за счет ингибирования окисления липидов.

Его антиоксидантные свойства делают его популярной добавкой в косметике, сохраняющей стабильность различных составов.
Антиоксидант BHT часто включается в средства по уходу за кожей и средства личной гигиены, чтобы предотвратить разложение масел и жиров.

В фармацевтической промышленности БГТ используется в качестве стабилизатора лекарств и витаминов, чувствительных к окислению.
Химическая структура BHT включает бутильную группу, присоединенную к фенольному кольцу, что способствует его антиоксидантной активности.

Антиоксидант BHT известен своей эффективностью в предотвращении образования свободных радикалов, которые могут привести к окислительному стрессу.
Антиоксидант BHT играет роль в защите резины и пластика от разрушения, вызванного воздействием кислорода и УФ-излучения.
Антиоксидант BHT используется в производстве синтетических материалов, где окислительная стабильность имеет решающее значение, таких как клеи и герметики.
Благодаря своей способности удалять свободные радикалы, BHT считается ценным инструментом для сохранения определенных произведений искусства и артефактов.

Антиоксидантная функция BHT помогает поддерживать качество и стабильность смазочных материалов, используемых в машинах и двигателях.
Антиоксидант BHT имеет широкий спектр применения, включая его использование в гидравлических жидкостях, реактивном топливе и трансформаторных маслах.
Антиоксидант BHT известен своей низкой летучестью, что способствует его эффективности при использовании при высоких температурах.

В области нефтехимии BHT используется для защиты полимеров и топлива от разложения во время хранения и транспортировки.
Стабильность антиоксиданта BHT в различных условиях делает его надежным выбором для применений, где решающее значение имеет устойчивость к нагреву и окислению.

Несмотря на его широкое использование, проводились дискуссии и исследования относительно потенциальных проблем со здоровьем, связанных с высокими дозами BHT.
Антиоксидант BHT имеет долгую историю использования: его антиоксидантные свойства впервые были обнаружены в середине 20-го века.

Антиоксидант BHT внесен в утвержденные регулирующими органами списки для использования в пищевых продуктах и обычно считается безопасным (GRAS) при использовании в определенных пределах.
Его универсальность распространяется и на сельскохозяйственный сектор, где он используется в качестве консерванта для некоторых пестицидов и гербицидов.
Роль антиоксиданта BHT в качестве стабилизатора при производстве пластмасс способствует прочности и долговечности пластиковых изделий.
Хотя антиоксидант BHT является ценным инструментом предотвращения окислительной деградации, его использование регулируется нормативными требованиями и особыми соображениями безопасности.



ХАРАКТЕРИСТИКИ


Физические свойства:

Химическая формула: C15H24O.
Молекулярный вес: 220,36 г/моль
Физическое состояние: Твердое
Цвет: от белого до слегка желтого
Запах: Легкий характерный запах
Температура плавления: примерно 70–73 °C (158–163 °F).
Точка кипения: разлагается перед кипячением.
Растворимость в воде: Нерастворимый
Растворимость в других растворителях: Растворим в органических растворителях, таких как ацетон, этанол и этилацетат.
Плотность: примерно 1,048 г/см³ при 25 °C (77 °F).


Химические свойства:

Химическая структура: BHT представляет собой производное фенола с бутильной группой, присоединенной к двум соседним атомам углерода фенольного кольца.
Функциональная группа: Фенольный антиоксидант.
Стабильность: BHT стабилен при нормальных условиях, но может разлагаться при повышенных температурах.
Реакционная способность: проявляет антиоксидантную активность, отдавая атомы водорода свободным радикалам.
Кислотность/Основность: BHT имеет нейтральный pH.


Тепловые свойства:

Диапазон плавления: примерно 70–73 °C (158–163 °F).
Точка кипения: разлагается перед кипячением.
Температура вспышки: Неприменимо (BHT не считается легковоспламеняющимся)



ПЕРВАЯ ПОМОЩЬ


Вдыхание:

Перейдите на свежий воздух:
При вдыхании немедленно вынесите пострадавшего на свежий воздух, чтобы избежать дальнейшего воздействия.

Обеспечить искусственное дыхание:
Если человек не дышит и не обучен этому, сделайте ему искусственное дыхание.

Обратитесь за медицинской помощью:
Немедленно обратитесь за медицинской помощью, особенно если раздражение дыхательных путей или дистресс сохраняются.


Контакт с кожей:

Снимите загрязненную одежду:
Быстро и аккуратно снимите загрязненную одежду, обувь и аксессуары.

Тщательно промойте кожу:
Промойте пораженный участок кожи большим количеством воды с мылом в течение не менее 15 минут.

Обратитесь за медицинской помощью:
При возникновении раздражения, покраснения или других побочных реакций обратитесь за медицинской помощью.


Зрительный контакт:

Промойте глаза водой:
Немедленно промойте глаза нежно проточной водой в течение не менее 15 минут, держа веки открытыми, чтобы обеспечить тщательное промывание.

Снимите контактные линзы:
Если применимо, снимите контактные линзы после первоначального промывания и продолжайте промывание.

Обратитесь за медицинской помощью:
Немедленно обратитесь за медицинской помощью, если раздражение, покраснение или другие симптомы, связанные с глазами, сохраняются.


Проглатывание:

Не вызывает рвоту:
Не вызывайте рвоту, если это не предписано медицинским персоналом.

Полоскание рта:
Тщательно прополоскать рот водой.

Обратитесь за медицинской помощью:
Немедленно обратитесь за медицинской помощью.
Предоставить медицинскому персоналу информацию о проглоченном веществе.


Общие меры первой помощи:

Примечания для врача:
Предоставьте лечащему врачу информацию о химическом веществе и обстоятельствах воздействия.

Лечение симптомов:
Лечите симптомы в зависимости от состояния человека и при необходимости обеспечивайте поддерживающую терапию.

Транспорт до медицинского учреждения:
Если воздействие является значительным или если симптомы тяжелые, немедленно доставьте пострадавшего в медицинское учреждение.

Мониторинг:
Следите за пострадавшим на предмет каких-либо отсроченных или вторичных последствий для здоровья.



ОБРАЩЕНИЕ И ХРАНЕНИЕ


Умение обращаться:

Средства индивидуальной защиты (СИЗ):
При работе с BHT надевайте соответствующие средства индивидуальной защиты, включая перчатки и защитные очки, чтобы предотвратить контакт с кожей и глазами.

Вентиляция:
Используйте соответствующую вентиляцию, например, местную вытяжку, чтобы свести к минимуму риск ингаляционного воздействия.
Обеспечьте хорошую общую вентиляцию рабочей зоны.

Избегать контакта:
Избегайте контакта с кожей и вдыхания паров или пыли.
Сведите к минимуму воздействие, используя технические средства контроля и надлежащие методы работы.

Предотвратить проглатывание:
Не ешьте, не пейте и не курите во время работы с BHT.
Тщательно мойте руки после работы, чтобы предотвратить случайное проглатывание.

Совместимость хранилища:
Храните BHT вдали от несовместимых материалов, включая сильные окислители, кислоты и основания.
Проверьте совместимость емкостей для хранения и оборудования.

Статическое электричество:
Примите меры предосторожности, чтобы предотвратить накопление статического электричества.
Заземляйте оборудование и контейнеры во время операций по транспортировке, чтобы минимизировать риск статического разряда.

Процедуры обработки:
Следуйте установленным процедурам обращения и методам работы.
Соблюдайте правила техники безопасности, предоставленные производителем или регулирующими органами.

Аварийного реагирования:
Ознакомьтесь с процедурами реагирования на чрезвычайные ситуации в случае разливов, утечек или других инцидентов.
Иметь в наличии соответствующие меры по предотвращению разливов и аварийное оборудование.

Обучение:
Убедитесь, что персонал, работающий с BHT, прошел соответствующую подготовку по безопасному обращению с ним, включая использование средств индивидуальной защиты и процедуры реагирования на чрезвычайные ситуации.

Монитор экспозиции:
Внедрить программы мониторинга для оценки потенциальных уровней воздействия на рабочем месте.
При необходимости скорректируйте меры контроля для поддержания безопасных условий.


Хранилище:

Хранить в прохладном, хорошо вентилируемом помещении:
Храните BHT в прохладном, хорошо проветриваемом помещении, вдали от прямых солнечных лучей и источников тепла.
Поддерживайте температуру хранения в указанных пределах.

Держите контейнеры закрытыми:
Держите контейнеры плотно закрытыми, когда они не используются, чтобы предотвратить загрязнение и свести к минимуму воздействие воздуха.

Отделение от несовместимого:
Храните BHT вдали от несовместимых материалов.
Четко обозначьте места хранения, чтобы определить природу хранящихся веществ.

Избегайте загрязнения:
Предотвратите загрязнение, храня BHT отдельно от других химикатов и следя за тем, чтобы контейнеры для хранения были чистыми и не содержали остатков.

Контроль влажности:
Контролируйте уровень влажности в местах хранения, чтобы предотвратить образование комков или комков в порошке BHT.

Контейнеры для хранения:
Используйте соответствующие контейнеры для хранения, изготовленные из материалов, совместимых с BHT.
Регулярно проверяйте состояние контейнеров, чтобы убедиться в их целостности.

Оболочка инертным газом (опция):
В тех случаях, когда BHT особенно чувствителен к окислению, рассмотрите возможность использования подушки инертного газа в контейнерах для хранения, чтобы свести к минимуму воздействие воздуха.

Безопасное хранение:
Надежно храните контейнеры, чтобы предотвратить случайный разлив или опрокидывание.
Используйте подходящие стеллажи или полки для хранения.

Оборудование аварийного реагирования:
В складских помещениях должно быть под рукой соответствующее оборудование для реагирования на чрезвычайные ситуации, такое как материалы для локализации разливов и оборудование для пожаротушения.

Регулярные проверки:
Проводить регулярные проверки складских помещений для своевременного выявления и устранения любых потенциальных проблем.



СИНОНИМЫ


Бутилгидрокситолуол
Бутилгидрокситолуол
BHT антиоксидант
2,6-Ди-трет-бутил-4-метилфенол
Трет-Бутил-4-гидрокситолуол
DBPC (ди-трет-бутил-п-крезол)
Е321 (используется как добавка в пищевой промышленности)
2,6-ди-трет-Бутил-п-крезол
Антрацин 8
Ионол КП
Аэрозоль ОТ
Агидол
Фенол Стоп
Антрацин 8
Андерол 305
2,6-Ди-трет-бутил-4-крезол
Ионол
Алканокс 240
2,6-Ди-трет-бутил-1-гидрокси-4-метилбензол
Ванлюбе 81
Топанол А
Андерол 306
Ионокс 330
Андерол 308
Ionol CP (Антиоксидант, используемый в пищевой промышленности)
Сустане
Тенокс БХТ
2,6-Ди-т-бутил-4-метилфенол
Антрацин 8 (Е 321)
Фенолит
Антиоксидант 264
Этанокс 330
Топанол А (ВНТ)
Бутилированный гидрокситолуол
Ионол к
Дибунол
DBPC (ди-трет-бутил-п-крезол)
Кунстопал
Сантоуайт порошок
Андерол 305 (ВНТ)
Ионол 330
Ванлюбе РИ-А
Бутилгидрокситолуол
Вулканокс ДХТ
Наугард БХТ
Чинокс БХТ
Полигард БХТ
Антиоксидант 10
Сантоуайт
2,6-Ди-т-бутил-п-крезол
BHT БУТИЛГИДРОКСИТОЛУОЛ
ОПИСАНИЕ:
BHT Бутилгидрокситолуол, также известный как дибутилгидрокситолуол, представляет собой липофильное органическое соединение, химическое производное фенола, которое полезно благодаря своим антиоксидантным свойствам.
BHT Бутилгидрокситолуол широко используется для предотвращения свободнорадикального окисления в жидкостях (например, топливе, маслах) и других материалах, а правила, контролируемые USFDA, которые считают BHT «общепризнанным безопасным», допускают добавление небольших количеств. к продуктам питания.


Номер CAS, 128-37-0
Номер ЕС, 204-881-4
Название ИЮПАК: 2,6-ди-трет-бутил-4-метилфенол.


СИНОНИМЫ BHT БУТИЛГИДРОКСИТОЛУОЛ:
2,6-Ди-трет-бутил-п-крезол, 2,6-ДИ-трет-бутил-4-метилфенол, 3,5-Ди-трет-бутил-4-гидрокситолуол, DBPC, BHT, E321, AO- 29, Avox BHT, Additin RC 7110, Дибутилированный гидрокситолуол, 4-Метил-2,6-ди-трет-бутилфенол, 3,5-(Диметилэтил)-4-гидрокситолуол, 2,6 Ди-т-бутил-4-метилфенол, 2, 6 Ди-трет-бутил-4-метилфенол,2,6 Ди-трет-бутил-п-крезол,2,6-бис(1,1-диметилэтил)-4-метилфенол,2,6-ди-трет-бутил-4-метилфенол,2,6 -ди-трет-бутил-4-метилфенол, 2,6-ди-трет-бутил-п-крезол, 4-метил-2,6-ди-трет-бутилфенол, 4-метил-2,6-дитрет-бутилфенол, BHT, бутилированный гидрокситолуол, бутилгидрокситолуол, ди трет-бутилметилфенол,ди-трет-бутилметилфенол,дибунол,гидрокситолуол, бутилированный,ионол,ионол (BHT),2,6-ди-трет-бутил-4-метилфенол,128-37-0,бутилгидрокситолуол,2,6 -Ди-трет-бутил-п-крезол, 2,6-Ди-т-бутил-4-метилфенол, Ионол, DBPC, Ставокс, BHT, Импрувол, Ионол CP, Далпак, Динакс, Дибунол, Ионол, Керабит, Топанол, Вианол, антиоксидант KB, антиоксидант 4K, сумилизатор BHT, топанол O, топанол OC, Vanlube PC, антиоксидант 29, антиоксидант 30, антиоксидант DBPC, Sustane BHT, тенамен 3, Vanlube PCX, Nonox TBC, Tenox BHT, фенол, 2,6- бис(1,1-диметилэтил)-4-метил-,Чеманокс 11,Агидол,Каталин САО-3,Ионол 1,Адвастаб 401,3,5-Ди-трет-бутил-4-гидрокситолуол,БУКС,Парабар 441,Антранцин 8, Vulkanox KB, каталиновый антиоксидант 1,2,6-ди-трет-бутил-4-крезол, 2,6-дитрет-бутил-4-метилфенол, ионол (антиоксидант), Paranox 441,2,6-бис (1 ,1-диметилэтил)-4-метилфенол, антиоксидант MPJ, антиоксидант 4, алкофен BP, АО 4К, САО 1, САО 3, ди-трет-бутил-п-крезол, ди-трет-бутил-п-метилфенол, сванокс BHT ,Antox QT, Тенамен 3, Агидол 1, Антиоксидант 264, Bht (пищевой), о-ди-трет-бутил-п-метилфенол, Антиоксидант T 501, Ионал, Nocrac 200, AO 29, NCI-C03598,2,6 -Ди-трет-бутил-1-гидрокси-4-метилбензол,2,6-Ди-трет-бутил-п-метилфенол,2,6-Ди-трет-бутил-п-крезол,Дбфк (техническая),4 -Гидрокси-3,5-ди-трет-бутилтолуол, FEMA № 2184,4-Метил-2,6-трет-бутилфенол, Бутилгидрокситолуол, Ди-трет-бутилкрезол, AOX 4K, Дибутилгидрокситолуол, 2,6-дитрет-бутил -4-метилфенол, ионол CP-антиоксидант, P 21,2,6-ДИ-Т-БУТИЛ-П-КРЕЗОЛ, 4-Метил-2,6-ди-трет-бутилфенол, AOX 4, Бутилгидрокситолуол, CCRIS 103,Popol,HSDB 1147,BHT 264,Bht(пищевой),NSC 6347,NSC-6347,4-Метил-2,6-дитерк. Бутилфенол, EINECS 204-881-4, Ионол BHT, Ralox BHT, 2,6-ди-трет-бутил-4-гидрокситолуол, 2,6-ди-трет-бутил-4-метилфенол, 1-гидрокси-4 -метил-2,6-ди-трет-бутилбензол,MFCD00011644,2,6-дитрет-бутил-п-крезол,Dbpc(техническая степень),DTXSID2020216,E321,CHEBI:34247,2,6-Ди-трет-бутил -4-метилгидроксибензол,AI3-19683,п-крезол, 2,6-ди-трет-бутил-,INS-321,1P9D0Z171K,2,6-бис(трет-бутил)-4-метилфенол,2,6-ди -трет-бутилкрезол,CHEMBL146,ди-трет-бутил-4-метилфенол,DTXCID20216,2,6-ди-трет-бутил-4-метилфенол-d24,INS NO.321,E-321,FEMA 2184,NSC6347,2 ,6-ди-трет-бутил-4-метилфенол, NCGC00091761-03, Тонарол, 1219805-92-1, токсолан P,2,6-ДИ(ТЕРТ-БУТИЛ-D9)-4-МЕТИЛФЕНОЛ-3,5, O-D3, Caswell № 291A, Annulex BHT, БУТИЛГИДРОКСИТОЛУОЛ (EP MONOGRAPH), БУТИЛГИДРОКСИТОЛУОЛ [EP MONOGRAPH], CAS-128-37-0, Бутилгидрокситолуол, Бутилгидрокситолуол [Польский], Ди-трет-бутил-п-крезол (VAN) ), ди-трет-бутил-метилфенол, Ди-трет-бутил-метилфенол, 2,6-ди-терк.бутил-п-крезол [Чехия], Химический код пестицида EPA 022105,2,6 Ди-трет-бутил-п-крезол, UNII-1P9D0Z171K ,4-Метил-2,6-дитерк. бутилфенол [Чехия],2,6 Ди-т-бутил-4-метилфенол,Lowinox BHT,Nipanox BHT,BHT Swanox,BHT, пищевой,4-Метил-2,6-ди-т-бутилфенол,2, пищевой,2 ,6 Ди-трет-бутил-4-метилфенол, 3IM, Дибутил-пара-крезол, NAUGARD BHT, PERMANAX BHT, TOPANOL BHT, YOSHINOX BHT, ANTAGE BHT, TOPANOL OL, VANOX PC, IONOL K, Spectrum_001790, BHT FCC/NF, SpecPlus_000768, CATALIN CAO 3, Метилди-трет-бутилфенол, Spectrum3_001849, Spectrum5_001612, BHT [INCI], Hydagen DEO (соль/смесь), BHT [FCC], LUBRIZOL 817, ULTRANOX 226, EC 204-881-4,2,6-ди- Бутил-пара-крезол, 2,6-ди-трет-бутил-п-крезол, SCHEMBL3950, 2,6-дитрет-бутил-п-крезол, п-крезол, 6-ди-трет-бутил-, ди-трет-бутилпараметилфенол ,BSPBio_003238,KBioSS_002281,2,6-ди-трет.бутил-п-крезол,IONOL 330,MLS000069425,BIDD:ER0031,DivK1c_006864,P 21 (ФЕНОЛ),SPECTRUM1600716,2,6-бис-трет-бутил-п- крезол, 2,6-ди-трет-бутилпаракрезол, 2,6-ди-трет-бутилметилфенол, 2,6-ди-трет. бутил-п-крезол, 2,6-ди-трет-бутил-п-крезол, Т 501 (ФЕНОЛ), 2,6-ди-трет-бутил-пара-крезол, 2,6-ди-трет-Бутил -метилфенол,2,6-дитретбутил-4-метилфенол,2,6-ди-т-бутил-4-метилфенол,2,6-ди-трет-бутил-4-метилфенол,KBio1_001808,Bio2_0022801,3-ди-трет-бутил- 2-гидрокси-5-метилбензол / 1,3-ди-трет-бутил-2-гидрокси-5-метилбензол / 2,6-бис(1,1-диметилэтил)-4-метилфенол / 2,6-ди-трет -бутил-1-гидрокси-4-метилбензол / 2,6-дитрет-бутил-4-крезол / 2,6-ди-трет-бутил-4-метилфенол / 2,6-ди-трет-бутил-п-метилфенол / 2,6-дитрет-бутил-1-гидрокси-4-метилбензол / 2,6-ди-трет-бутил-4-крезол / 2,6-ди-трет-бутил-4-метилфенол / 2,6-ди -трет-бутил-пара-крезол / 2,6-ди-трет-бутил-пара-метилфенол / 3,5-дитрет-бутил-4-гидрокситолуол / 3,5-ди-трет-бутил-4-гидрокситолуол / 4 -гидрокси-3,5-ди-трет-бутилтолуол / 4-гидрокси-3,5-ди-трет-бутилтолуол / 4-метил-2,6-ди-трет-бутилфено�� / 4-метил-2,6-ди-третичный -бутилфенол / 4-метил-2,6-трет-бутилфенол / 4-метил-2,6-трет-бутилфенол / адвастаб 401 / агидол / агидол 1 / алкофен БП / антиоксидант 264 / антиоксидант 29 / антиоксидант 30 / антиоксидант 4 / антиоксидант 4К / антиоксидант BHT / антиоксидант DBPC / антиоксидант KB / антранцин 8 / АО 29 / АО 4К / АО Х4 / BHT / BHT бутилированный гидрокситолуол / BHT пищевой / BUKS / бутилированный гидрокситолуол / бутилгидрокситолуол / CAO 1 / CAO 3 / каталин CAO -1 ДБФХ / каталин САО-3 / чеманокс 11 / далпак / ДБМП / ДБФХ / ДБФХ техническая степень / динакс / дибунол / дибутилированный гидрокситолуол / ди-трет-бутил-пара-крезол / ди-трет-бутил-п-крезол / ECA5703 / ECA6050 / ECA8165 / ECA8268 / Экологически опасное вещество твердое, н.у.к. / EXA5453 / EXA703 / FEMA NO 2184 / формула № 82300 / HK-1 / импрувол / ионол / ионол 1 / ионол BHT / ионол CP / ионол, антиоксидант / ионол / керабит / метил ди-трет-бутилфенол / метил ди-трет-бутилфенол / nocrac 200 / нонокс TBC / антиоксидант NYRIM / P 21 / парабар 441 / паранокс 441 / фенол, 2,6-бис(1,1-диметилэтил)-4- метил-/стабилизатор KB/ставокс/сумилизатор BHT/сустан (=2,6-ди-трет-бутил-п-крезол)/сустан BHT/swanox BHT/тенамен 3/тенокс BHT/топанол/топанол BHT/топанол O/топанол OC / токсолан P / ванлюб PC / ванлюб PCX / вианол
Фенол, 2,6-бис(1,1-диметилэтил)-4-метил-; п-крезол, 2,6-ди-трет-бутил-; Адвастаб 401; антиоксидант ДБПК; Антиоксидант КБ; Антиоксидант 29; Антиоксидант 30; Антиоксидант 4К; АО 29; АО 4К; бутилгидрокситолуол; БХТ; БУКС; Каталин антиоксидант 1; Каталин САО-3; Чеманокс 11; САО 1; САО 3; Далпак; Динакс; Ди-трет-бутил-п-крезол; Ди-трет-бутил-п-метилфенол; Ди-трет-бутилкрезол; Дибунол; Дибутилированный гидрокситолуол; ДБПК; Импрувол; Ионол; Ионол (антиоксидант); Ионол ЦП; Ионол 1; Ионол; Нонокс подлежит уточнению; П 21; Парабар 441; Ставокс; Сумилизатор BHT; Сустан БХТ; Тенамене 3; Тенокс БХТ; Топанол; Топанол О; Топанол ОС; Ванлюбе ПК; Ванлюбе PCX; Вианол; 2,6-бис(1,1-диметилэтил)-4-метилфенол; 2,6-ди-трет-бутил-п-крезол; 2,6-ди-трет-бутил-п-метилфенол; 2,6-ди-трет-бутил-4-метилфенол; 3,5-ди-трет-бутил-4-гидрокситолуол; 4-гидрокси-3,5-ди-трет-бутилтолуол; 4-метил-2,6-ди-трет-бутилфенол; 2,6-ди-трет-бутил-4-метилфенол; 2,6-ди-трет-бутил-1-гидрокси-4-метилбензол; 2,6-ди-бутилпаракрезол; 2,6-ди-трет-бутилметилфенол; о-ди-трет-бутил-п-метилфенол; Bht (пищевой); Бутилированный гидрокситолуол; ДБПК (технический уровень); ДБМП; НЦИ-C03598; Паранокс 441; 1-гидрокси-4-метил-2,6-ди-трет-бутилбензол; 2,6-ди-терцбутил-п-крезол; 2,6-ди-трет-бутил-4-крезол; 4-Метил-2,6-дитерк. бутилфенол; 4-метил-2,6-трет-бутилфенол; Ди-трет-Бутилпараметилфенол; Ди-трет-Бутил-4-метилфенол; 2,6-ди-т-бутил-п-крезол; Фенол, 2,6-ди-трет-бутил-4-метил-; 4-метил-2,6-ди-трет-бутилфенол; Аннулекс БХТ; Антранцин 8; Ловинокс БХТ; Нипанокс БХТ; Ралокс БХТ; Сустане; Вулканокс КБ; BHT (бутилированный гидрокситолуол); 2,6-ди-трет-бутил-4-метилфенол; 2,6-ди-трет-бутилпара-метилфенол; 2,6-ди-трет-бутил-п-крезол (ВНТ); Бутилированный гидрокситолуол (ВНТ); Дибутилгидрокситолуол; Дибутилкрезол; 2,6-бис(трет-бутил)-4-метилфенол; 2,6-ди(трет-бутил)гидрокситолуол; Ионол БХТ; БХТ Сванокс; Агидол; 2,6-ди-трет-бутул-4-метилфенол; 4-метил-2,6-ди-трет-бутилфенол; Ди-трет-бутил-п-крезол; бутилированный ОН-толуено; Дибутил-п-крезол; Эрготамин, дигидро-, монометансульфонат (соль); Hydagen DEO (соль/смесь)




BHT Бутилгидрокситолуол, также известный как бутилгидрокситолуол, представляет собой липофильное органическое соединение, химическое производное фенола, которое полезно благодаря своим антиоксидантным свойствам.
Правила Европы и США разрешают использовать небольшие проценты в качестве пищевой добавки.
BHT Бутилгидрокситолуол в основном используется в качестве пищевой добавки, которая использует его антиоксидантные свойства.
BHT Бутилгидрокситолуол используется во многих пищевых продуктах, таких как пищевые красители и ароматизаторы.




BHT Бутилгидрокситолуол является представителем класса фенолов, который представляет собой 4-метилфенол, замещенный трет-бутильными группами в положениях 2 и 6.
BHT Бутилгидрокситолуол играет роль антиоксиданта, пищевой добавки, ингибитора ферроптоза и геропротектора.

BHT Бутилгидрокситолуол функционально связан с фенолом.
Бутилированный гидрокситолуол — это природный продукт, обнаруженный в Microcystis aeruginosa, Thymus longicaulis и других организмах, данные о которых доступны.


Несмотря на это, а также на более раннее заключение Национального института рака о том, что BHT не является канцерогенным на животных моделях, в обществе выражалась обеспокоенность по поводу его широкого использования.
BHT также постулируется как противовирусный препарат, но по состоянию на декабрь 2022 года использование BHT в качестве препарата не поддерживается научной литературой, и он не был одобрен каким-либо органом по регулированию лекарственных средств для использования в качестве противовирусного препарата.


ПРИРОДНОЕ ПРОИСХОЖДЕНИЕ BHT-БУТИЛГИДРОКСИТОЛУОЛА:
Фитопланктон, в том числе зеленые водоросли Botryococcus braunii, а также три различных цианобактерии (Cylindrospermopsis raciborski, Microcystis aeruginosa и Oscillatoria sp.) способны продуцировать BHT в качестве природного продукта.
Фруктовый личи также производит BHT в околоплоднике.
Некоторые грибы (например, Aspergillus conicus), живущие в оливках, производят BHT.


ПРОИЗВОДСТВО БГТ-БУТИЛГИДРОКСИТОЛУОЛА:
Индустриальное производство:
Химический синтез БГТ в промышленности включал реакцию п-крезола (4-метилфенола) с изобутиленом (2-метилпропеном), катализируемую серной кислотой:
CH3(C6H4)OH + 2 CH2=C(CH3)2 → ((CH3)3C)2CH3C6H2OH

Альтернативно, BHT получают из 2,6-ди-трет-бутилфенола путем гидроксиметилирования или аминометилирования с последующим гидрогенолизом.

РЕАКЦИИ BHT-БУТИЛГИДРОКСИТОЛУОЛА:
Этот раздел в значительной степени или полностью опирается на один источник. Соответствующее обсуждение можно найти на странице обсуждения.
Пожалуйста, помогите улучшить эту статью, цитируя дополнительные источники.
Найти источники: «Бутилированный гидрокситолуол» – новости • газеты • книги • ученые • JSTOR (март 2020 г.)


Этот вид ведет себя как синтетический аналог витамина Е, в первую очередь действуя как агент, подавляющий автоокисление - процесс, при котором ненасыщенные (обычно) органические соединения подвергаются воздействию кислорода воздуха.
BHT останавливает эту автокалитическую реакцию, превращая пероксирадикалы в гидропероксиды.
Он выполняет эту функцию, отдавая атом водорода:
RO2• + ArOH → ROOH + ArO•
RO2• + ArO• → нерадикальные продукты
где R представляет собой алкил или арил, и где ArOH представляет собой BHT или родственные фенольные антиоксиданты.

Каждый BHT потребляет два пероксидных радикала.


ПРИМЕНЕНИЕ BHT БУТИЛГИДРОКСИТОЛУОЛА:
BHT внесен в Банк данных по опасным веществам NIH в нескольких категориях в каталогах и базах данных, таких как пищевая добавка, ингредиент бытовой химии, промышленная добавка, продукт личной гигиены/косметический ингредиент, пестицидный ингредиент, пластиковый/резиновый ингредиент и медицинская/ветеринария/исследовательская деятельность. .

Пищевая добавка:
BHT в основном используется в качестве антиоксидантной пищевой добавки.
В Соединенных Штатах он классифицируется как общепризнанный как безопасный (GRAS) на основании исследования Национального института рака, проведенного в 1979 году на крысах и мышах.

Он одобрен для использования в США Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов: например, 21 CFR § 137.350(a)(4) разрешает содержание BHT до 0,0033% по массе в «обогащенном рисе»[16], а 9 CFR § 381.147 ](f)(1) допускает до 0,01% в птице «по содержанию жира».[17] Это разрешено в Европейском Союзе под номером E321.

BHT используется в качестве консерванта в некоторых продуктах питания.
При таком использовании BHT сохраняет свежесть или предотвращает порчу; его можно использовать для уменьшения скорости изменения текстуры, цвета или вкуса пищи.

Некоторые пищевые компании добровольно исключили BHT из своей продукции или объявили, что собираются отказаться от него.

Антиоксидант:
BHT также используется в качестве антиоксиданта в таких продуктах, как жидкости для металлообработки, косметика, фармацевтические препараты, резина, трансформаторные масла и жидкости для бальзамирования.
В нефтяной промышленности, где BHT известен как топливная присадка АО-29, он используется в гидравлических жидкостях, турбинных и трансмиссионных маслах, а также в реактивном топливе.

BHT также используется для предотвращения образования пероксидов в органических эфирах, других растворителях и лабораторных химикатах.
Его добавляют к некоторым мономерам в качестве ингибитора полимеризации, чтобы облегчить их безопасное хранение.

Некоторые добавки содержат BHT в качестве основного ингредиента, в то время как другие содержат это химическое вещество просто как компонент своего состава, иногда вместе с бутилированным гидроксианизолом (BHA).

Косметика:
Европейский Союз ограничивает использование BHT в средствах для полоскания рта до концентрации 0,001%, в зубной пасте до 0,01% и в других косметических средствах до 0,8%.


ЭКСТРАКЦИЯ И ПРЕЗЕНТАЦИЯ BHT-БУТИЛГИДРОКСИТОЛУОЛА:
BHT ��ожно получить методом алкилирования по Фриделю-Крафтсу путем взаимодействия п-крезола (4-метилфенола) с изобутиленом (2-метилпропеном) с использованием серной кислоты в качестве катализатора:
Бутилгидрокситолуол является одним из химических веществ, которые производятся в больших количествах («High Production Volume Chemical», HPVC) и для которых Организация экономического сотрудничества и развития (ОЭСР) собирает данные о возможных опасностях («Набор данных скрининговой информации», СВДС). ) был сделан.

ИСПОЛЬЗОВАНИЕ BHT-БУТИЛГИДРОКСИТОЛУОЛА:
BHT используется во многих потребительских товарах, например, в красках, воске, косметике, лекарствах или упаковочных материалах, а также в качестве одобренной пищевой добавки под названием E 321.
Он служит прежде всего антиоксидантом, предотвращающим или замедляющим изменения в продуктах, вызванные кислородом воздуха.

Его добавление в качестве стабилизатора к диэтиловому эфиру или тетрагидрофурану предотвращает образование опасных перекисей эфира.
Он также служит для стабилизации биодизеля.
В 1980-х годах была установлена эффективность БГТ против вирусов простого герпеса у хомяков.
Однако аллергические реакции испытуемых на BHT помешали дальнейшему использованию в этой области.


АНАЛИТИКА BHT БУТИЛГИДРОКСИТОЛУОЛА:
Липофильная гель-хроматография на сефадексе LH 20 может использоваться для выделения вещества из масел и жирных тестируемых материалов.
Качественное и количественное определение можно провести методом газовой хроматографии.
Сочетание ВЭЖХ с масс-спектрометрией также можно использовать для качественного и количественного определения BHT после соответствующей подготовки проб.



ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА BHT-БУТИЛГИДРОКСИТОЛУОЛА:
Химическая формула C15H24O
Молярная масса, 220,356 g/mol
Внешний вид: порошок от белого до желтого цвета.
Запах, Слабый, фенольный
Плотность, 1,048 г/см3
Температура плавления, 70 ° C (158 ° F; 343 К)
Температура кипения, 265 ° C (509 ° F; 538 К)
Растворимость в воде, 1,1 мг/л (20 °С)
log П, 5,32
Давление пара, 0,01 мм рт. ст. (20 °С)
Номер CAS, 128-37-0, +
Молярная масса, 220,35 г моль −1
агрегатное состояние, фиксированное
плотность, 1,05 г см-3
температура плавления 69–70 °С.
температура кипения, 265°С
Давление пара, 0,02 гПа (20 °C) [3] 2,4 гПа (100 °C)
растворимость, практически не растворим в воде (0,1–1,14 мг л-1 при 20 °C) [3] легко растворим в этаноле (250 г-1) [4] растворим в жирах
Показатель преломления 1,4859 (75°C)
Молекулярная масса
220,35 г/моль
XLogP3-AA
5.3
Количество доноров водородной связи
1
Количество акцепторов водородной связи
1
Вращающееся количество облигаций
2
Точная масса
220,182715385 г/моль
Моноизотопная масса
220,182715385 г/моль
Топологическая полярная поверхность
20,2Ų
Количество тяжелых атомов
16
Официальное обвинение
0
Сложность
207
Количество атомов изотопа
0
Определенное количество стереоцентров атома
0
Неопределенное количество стереоцентров атома
0
Определенное количество стереоцентров связи
0
Неопределенное количество стереоцентров связи
0
Количество единиц ковалентной связи
1
Соединение канонизировано
Да
Температура кипения, 265 °C (1013 гПа)
Плотность, 1,03 г/см3 (20 °С)
Температура вспышки, 127 °С
Температура воспламенения, 345 °С
Температура плавления, 69,8 °С.
Давление пара, 0,39 Па (298 К)
Насыпная плотность, 450 кг/м3
Растворимость, <0,001 г/л
Анализ (GC), ≥ 99,0 %
Анализ (ВЭЖХ), 99,0–101,5 %
Идентификация (Идентификация 1 (JPE)), проходит тест
Идентичность (ИК-спектр), проходит проверку
Идентификация (Идентификация 2 (JPE)), проходит тест
Идентичность (ВЭЖХ), проходит тест
Внешний вид: кристаллический порошок от белого до желтоватого цвета.
Внешний вид раствора (100 г/л, метанол (Ph Eur)). Прозрачный, цвет не более интенсивный, чем у раствора сравнения Y₅ или BY₅.
Внешний вид раствора (100 г/л, Этанол (95 %) (JPE)), прозрачный и бесцветный.
Температура затвердевания 69,2–70,0 °C.
Температура плавления 69,5–72,0 °С.
Максимум поглощения λmax. (Этанол абс.), 277 - 279 нм
Удельная поглощающая способность А 1%/1см (λмакс.; 0,02 г/л; абс. этанола), 81 - 88
Удельная поглощающая способность A 1%/1см (λ278 нм; 0,05 г/л; этанол (95 %)), 82–88
Тяжелые металлы (как Pb), ≤ 20 ppm
Сульфат (SO₄), ≤ 150 ppm
As (Мышьяк), ≤ 3 ppm
Ртуть (Ртуть), ≤ 1 ppm
Pb (свинец), ≤ 2 ppm
п-крезол, ≤ 0,1 %
Метанол (HS-GC), ≤ 3000 ppm
Толуол (HS-GC), ≤ 890 частей на миллион
Родственные вещества (ТСХ), ≤ 0,5 %
Родственные вещества (ВЭЖХ) (п-крезол или м-крезол), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (3-трет-бутил-4-гидроксианизол), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (3,5-ди-трет-бутил-4-гидроксибензойная кислота), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (2-трет-бутил-4-метилфенол или 2-трет-бутил-5-метилфенол), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (3,5-ди-трет-бутил-4-гидроксибензальдегид), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (4,6-ди-трет-бутил-м-крезол), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (2,6-ди-трет-бутилфенол), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (любые неуказанные примеси), ≤ 0,1 %
Родственные вещества (ВЭЖХ) (сумма всех примесей), ≤ 0,7 %
Другие остаточные растворители (ICH Q3C), исключенные производственным процессом
Сульфатная зола (600 °C), ≤ 0,002 %
Вода (по Карлу Фишеру), ≤ 0,2 %



ИНФОРМАЦИЯ ПО БЕЗОПАСНОСТИ О BHT БУТИЛГИДРОКСИТОЛУОЛЕ:
Меры первой помощи:
Описание мер первой помощи:
Общий совет:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности лечащему врачу.
Выйдите из опасной зоны:

При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
Если нет дыхания проведите искусственную вентиляцию легких.
Проконсультируйтесь с врачом.
При попадании на кожу:
Немедленно снять загрязненную одежду и обувь.
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.

При попадании в глаза:
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
Продолжайте промывать глаза во время транспортировки в больницу.

При проглатывании:
Не вызывает рвоту.
Никогда не давайте ничего перорально человеку, находящемуся без сознания.
Прополоскать рот водой.
Проконсультируйтесь с врачом.

Противопожарные меры:
Средства пожаротушения:
Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
Особые опасности, исходящие от вещества или смеси
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород

Совет пожарным:
При необходимости наденьте автономный дыхательный аппарат для тушения пожара.
Меры при случайном высвобождении:
Меры личной безопасности, защитное снаряжение и действия в чрезвычайных ситуациях
Используйте средства индивидуальной защиты.

Избегайте вдыхания паров, тумана или газа.
Эвакуируйте персонал в безопасные места.

Экологические меры предосторожности:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.

Методы и материалы для локализации и очистки:
Промочить инертным абсорбирующим материалом и утилизировать как опасные отходы.
Хранить в подходящих закрытых контейнерах для утилизации.

Обращение и хранение:
Меры предосторожности для безопасного обращения:
Избегайте вдыхания паров или тумана.

Условия безопасного хранения, включая любые несовместимости:
Хранить контейнер плотно закрытым в сухом и хорошо проветриваемом месте.
Открытые контейнеры необходимо тщательно закрыть и хранить в вертикальном положении во избежание утечки.
Класс хранения (TRGS 510): 8А: Горючие, коррозионно-активные опасные материалы.

Контроль воздействия / личная защита:
Параметры управления:
Компоненты с параметрами контроля рабочего места
Не содержит веществ с предельно допустимыми значениями профессионального воздействия.
Средства контроля воздействия:
Соответствующие технические средства контроля:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.

Средства индивидуальной защиты:
Защита глаз/лица:
Плотно прилегающие защитные очки.
Лицевой щиток (минимум 8 дюймов).
Используйте средства защиты глаз, протестированные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или EN 166 (ЕС).

Защита кожи:
Работайте в перчатках.
Перчатки необходимо проверять перед использованием.
Используйте подходящие перчатки
технику снятия (не касаясь внешней поверхности перчатки), чтобы избежать попадания продукта на кожу.
Утилизируйте загрязненные перчатки после использования в соответствии с действующим законодательством и надлежащей лабораторной практикой.
Вымойте и высушите руки.

Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Протестированный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Всплеск контакта
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Протестированный материал: Дерматрил (KCL 740 / Aldrich Z677272, размер M)
Его не следует истолковывать как разрешение на какой-либо конкретный сценарий использования.

Защита тела:
Полный костюм защиты от химикатов. Тип защитного средства необходимо выбирать в зависимости от концентрации и количества опасного вещества на конкретном рабочем месте.
Защита органов дыхания:
Если оценка риска показывает, что воздухоочистительные респираторы уместны, используйте полнолицевой респиратор с многоцелевыми комбинированными (США) или респираторными картриджами типа ABEK (EN 14387) в качестве резерва для инженерных средств контроля.

Если респиратор является единственным средством защиты, используйте респиратор, закрывающий все лицо.
Используйте респираторы и их компоненты, протестированные и одобренные в соответствии с соответствующими государственными стандартами, такими как NIOSH (США) или CEN (ЕС).
Контроль воздействия на окружающую среду
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.

Стабильность и химическая активность:
Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
Несовместимые материалы:
Сильные окислители:
Опасные продукты разложения:
Опасные продукты разложения образуются в условиях пожара.
Оксиды углерода, Оксиды азота (NOx), Газообразный хлористый водород.

Утилизация отходов:
Методы переработки отходов:
Продукт:
Предложите решения для излишков и неперерабатываемых отходов лицензированной компании по утилизации.
Обратитесь в лицензированную профессиональную службу по утилизации отходов, чтобы избавиться от этого материала.
Загрязненная упаковка:
Утилизируйте как неиспользованный продукт.


BIOTERGE AS 40
Bioterge AS 40 представляет собой водный раствор альфа-олефинсульфоната, который производится путем непрерывного сульфирования альфа-олефинов с помощью падающей пленки Степана, что сводит к минимуму образование дисульфонатов, тем самым обеспечивая стабильно высокое качество продукта.


Номер CAS: 68439-57-6
Номер ЕС: 270-407-8
Имя INCI: Сульфонат олефина натрия C14-16
Молекулярная формула: C14H27NaO3S/C14H29NaO4S.



Алкены, C14-16 α-, сульфированные, натриевые соли, Sulfochem AOS-K, C14-C16-Alkaneгидроксисульфоновые кислоты, натриевые соли, альфа-олефинсульфонат, AOS, натрий альфа-олефинсульфонат, натрий C 14-16 олефинсульфонат, 68439-57- 6, 270-407-8, BIO TERGE AS-40, BIO-TERGE AS-90 BEADS, CALSOFT AOS-40, JEENATE AOS-40, NANSA LSS480, NIKKOL OS-14, NORFOX ALPHA XL, RODACAL A-246 L, RODACAL LSS-40, НАТРИЯ C14-16 АЛЬФА-ОЛЕФИНОВЫЙ СУЛЬФОНАТ НАТРИЯ C14-16 АЛЬФА-ОЛЕФИНОВЫЙ СУЛЬФОНАТ НАТРИЯ C14-16 ОЛЕФИНОВЫЙ СУЛЬФОНАТ [INCI], НАТРИЯ C14-16 ОЛЕФИНСУЛЬФОНАТ НАТРИЯ ОЛЕФИН(C14-16) СУЛЬФОНАТ НАТРИЯ ТЕТРАДЕЦЕНСУЛЬФОНАТ, ТЕТРАДЕЦЕНСУЛЬФОНАТ НАТРИЯ, Α-алкенилсульфонат (AOS), натриевые соли C14-C16-алкангидроксисульфоновых кислот, альфа-олефин, Bio-Terge AS-40K, α-олефинсульфонат, НАТРИЯ A-олефинсульфонат, альфа-олефинсульфонат (AOS) , НАТРИЯMC14-16ОЛЕФИНСУЛЬФОНАТ, Натрий-Альфа-олефинсульфонат, натрий c14-16-олефинсульфонат, Натрий (2E)-2-тетрадецен-1-сульфонат, 2-тетрадецен-1-сульфокислота, натриевая соль, (2E)- (1:1) , EINECS 270-407-8, Алкены, C14-16 альфа-, сульфированные, натриевые соли, Сульфоновые кислоты, C14-16-алкангидрокси и C14-16-алкен, натриевые соли, Натрий (C14-16) олефинсульфонат, Натрий C14-16-алкангидрокси и C14-16-олефинсульфонаты, смешанные алкилсульфаты, Alfanox 46 (КАО), алкены, C14-16 .альфа.-, сульфированные, натриевые соли, альфа-алкенилсульфонат натрия +, гидроксиалкансульфонат натрия, альфа-олефинсульфонат-Natriumsalz, натриевая соль альфа-олефинсульфоновой кислоты, AOS, Hostapur OS, сульфонат альфа-олефина (C14-16) натрия, сульфонат олефина натрия (C14-16), ПОРОШКИ НЕФТЕХИМИЧЕСКОГО ЛИНЕЙНОГО АЛЬФА-ОЛЕФИНОВОГО СОЛЬФОНАТА, порошок альфа-олефинсульфоната , Натрий c14-16-альфа-олефинсульфонат, натриевые соли C14-C16-алкангидроксисульфоновых кислот, сульфоновые кислоты C14-16-алкангидрокси и C14-16-алкен, натриевые соли, альфа-олефинсульфонат натрия, α-олефинсульфонаты (AOS), Альфа-олефинсульфонат, альфа-олефинсульфонат 40% (АОС 40%), альфа-олефинсульфонат натрия (C14-16), олефинсульфонат натрия C14-16, сульфоновые кислоты, альфа-олефин (альфа-олефинсульфонат натрия C14-16), вспенивание. агент, соли натрия, порошок АОС, АОС/35%/92%/40%/38%,
соли натрия (68439-57-6), C14-16-алкангидрокси и C14-16-алкен, соли натрия, альфа-олефин (c14-16) сульфонат натрия, альфа-олефинсульфонат натрия C14-16, сульфоновые кислоты, C14- 16-алкангидрокси и C14-16-алкен, натриевые соли, AOS, Bioterge AS-40, Unichem AOS, Uniterge AS-40, олефинсульфонат натрия C14-16, альфа-олефинC14-C16, сульфированная натриевая соль, Α-алкенилсульфонат (AOS), натриевые соли C14-C16-алкангидроксисульфоновых кислот, альфа-олефин, Bio-Terge AS-40K, α- олефинсульфонат, НАТРИЯ A-олефинсульфонат, альфа-олефинсульфонат (AOS), НАТРИЯ 14-16ОЛЕФИНСУЛЬФОНАТ, альфа-олефинсульфонат натрия, сульфонат олефина c14-16 натрия, натрий (2E)-2-тетрадецен-1-сульфонат, 2-тетрадецен-1-сульфоновая кислота, натриевая соль, (2E)- (1:1), EINECS 270-407-8, C14 -16-алкангидроксисульфоновые кислоты и производные C14-16-алкенов, натриевые соли, альфа-олефин (C14-C16) сульфонат натрия, тетрадеценсульфонат натрия, сульфоновые кислоты, C14-16-алкангидрокси и C14-16-алкен, натриевые соли , Сульфоновые кислоты, C14-16-алкангидрокси и C14-16-алкен, натриевые соли, Сульфоновые кислоты, C14-16-алкангидрокси и C14-16-алкен, натриевые соли, Натрий C14-16 альфа-олефинсульфонат, альфа-олефинсульфонат Пудра,



Bioterge AS 40 — идеальное поверхностно-активное вещество для различных моющих средств и средств личной гигиены, включая мыло для рук, шампуни и средства для ванн.
Bioterge AS 40 предлагает разработчику рецептуры превосходные характеристики вязкости и пены, а также улучшенную мягкость по сравнению с лаурилсульфатами.
Bioterge AS 40 более стабилен, чем сульфаты спиртов, в широком диапазоне pH.


Bioterge AS 40 действует как идеальное поверхностно-активное вещество.
Bioterge AS 40 обеспечивает превосходные характеристики вязкости и пенообразования.
Bioterge AS 40 обладает мягкостью и биоразлагаемостью.


Bioterge AS 40 — анионное поверхностно-активное вещество, обеспечивающее превосходную вязкость, характеристики пены и мягкость.
Bioterge AS 40 также известен как усилитель пенообразования.
Bioterge AS 40 представляет собой 40%-ный водный раствор альфа-олефинсульфоната натрия C14-16 бледно-желтого цвета.


Bioterge AS 40 представляет собой анионное поверхностно-активное вещество, полученное путем нейтрализации каустической содой прямого сульфированного альфа-олефина с длиной цепи C14, C16.
Bioterge AS 40 обладает превосходными смачивающими, моющими, пенообразующими и стабильными свойствами, а также эмульгирующей способностью.
Bioterge AS 40 также обладает хорошими очищающими свойствами и эффективно удаляет грязь, жир и другие загрязнения с кожи и волос.


Bioterge AS 40 представляет собой анионное поверхностно-активное вещество, полученное путем нейтрализации каустической содой прямого сульфированного альфа-олефина с длиной цепи C14, C16.
Bioterge AS 40 может проявлять выдающуюся очищающую способность, пенообразующую способность, а также более стабилен, чем сульфат спирта, в переменном диапазоне pH.
Bioterge AS 40 идеально подходит для использования в шампунях и мыле для рук.


Bioterge AS 40 обладает превосходными смачивающими, моющими, пенообразующими и стабильными свойствами, а также эмульгирующей способностью.
Bioterge AS 40 также обладает превосходной диспергируемостью кальциевого мыла и устойчивостью к жесткой воде.
Bioterge AS 40 представляет собой анионное поверхностно-активное вещество, полученное методом газофазного сульфирования альфа-олефина и непрерывной нейтрализации.


Bioterge AS 40 сочетает в себе преимущества высокой пенообразующей способности, хорошей эмульгируемости, мягкости для кожи и превосходной дисперсии известкового мыла, что дает разработчику рецептуры максимальную гибкость при приготовлении легких и тяжелых чистящих средств.
Если Bioterge AS 40 замерзнет, это может изменить функциональность продукта.


Bioterge AS 40 производится в основном из кокосового масла. .
Bioterge AS 40 способен превратить любое обычное жидкое мыло в роскошную пену для ванны или гель для душа!
Bioterge AS 40 представляет собой прозрачную жидкость: от бледно-желтого до светло-янтарного цвета.


Bioterge AS 40 представляет собой смесь солей сульфонатов с длинной цепью, полученную сульфированием альфа-олефинов C14-16.
Bioterge AS 40 состоит в основном из алкенсульфонатов натрия и гидроксиалкансульфонатов натрия.
Bioterge AS 40, т��кже известный как сульфонат олефина натрия или AOS, представляет собой синтетическое поверхностно-активное вещество, обычно используемое в продуктах личной гигиены, таких как шампуни, средства для мытья тела и очищающие средства для лица.


Bioterge AS 40 получают в результате сульфирования углеводородных цепей, полученных из олефинов, которые обычно получают из нефти.
Bioterge AS 40 обладает отличными пенообразующими и пенообразующими свойствами, что делает его идеальным выбором для продуктов личной гигиены, требующих обильной и роскошной пены.


Bioterge AS 40 – мягкое анионное поверхностно-активное вещество с превосходными характеристиками вязкости и пенообразования.
Bioterge AS 40 обладает хорошей растворимостью в воде, высокой поверхностной активностью, повышенной моющей и пенообразующей способностью, совместимостью со всеми другими типами поверхностно-активных веществ, низкой чувствительностью к жесткости воды, высоким уровнем биоразлагаемости, низким раздражением и экотоксичностью.


Bioterge AS 40 представляет собой водный раствор альфа-олефинсульфоната, который производится путем непрерывного сульфирования альфа-олефинов с помощью падающей пленки Степана, что сводит к минимуму образование дисульфонатов, тем самым обеспечивая стабильно высокое качество продукта.
Bioterge AS 40 — высокоэффективное специальное анионное поверхностно-активное вещество, используемое в различных продуктах.


Bioterge AS 40 – очень эффективное, экономичное и универсальное биоразлагаемое поверхностно-активное вещество.
Bioterge AS 40 обладает превосходными смачивающими, пенообразующими свойствами в щелочных, кислотных или нейтральных средах, а также в присутствии солей металлов, обычно встречающихся в жесткой воде.


Bioterge AS 40 увеличивает объем пены и улучшает рассеивание грязи.
Bioterge AS 40 представляет собой водный раствор сульфоната олефинов натрия, который получают путем непрерывного сульфирования альфа-олефинов методом падающей пленки Степана.


Bioterge AS 40 представляет собой анионное поверхностно-активное вещество - β-олефинсульфонат натрия (АОС).
Bioterge AS 40 обладает превосходными свойствами мгновенной пены и имеет улучшенную мягкость по сравнению с лаурилсульфатами.
Кроме того, Bioterge AS 40 гидролитически стабилен в более широком диапазоне pH, чем лаурилсульфаты и лаурилэфирсульфаты.


Bioterge AS 40 не содержит сульфатов и биоразлагаем.
Bioterge AS 40 — анионное поверхностно-активное вещество, обеспечивающее превосходную вязкость, пенообразование и мягкость.
Bioterge AS 40 может замерзнуть и расслоиться при транспортировке.


Bioterge AS 40 прозрачный и может не отражаться на изображении.
Bioterge AS 40 — анионное поверхностно-активное вещество, обеспечивающее превосходную вязкость, пенообразование и мягкость.
Bioterge AS 40 создан на основе кокоса, поскольку он получен из олеиновой кислоты.


Bioterge AS 40 может замерзнуть и расслоиться при транспортировке.
Bioterge AS 40 представляет собой бесцветную/желтую прозрачную жидкость.
Bioterge AS 40 имеет легкий запах ПАВ.


Активное вещество Bioterge AS 40 составляет около 35%.
Bioterge AS 40 обладает хорошей растворяющей способностью и совместимостью, обильной и мелкой пеной, легко биоразлагаемой, низкой токсичностью.
Bioterge AS 40 представляет собой смесь солей сульфонатов с длинной цепью, полученную сульфированием альфа-олефинов C14-16.


Bioterge AS 40 состоит в основном из алкенсульфонатов натрия и гидроксиалкансульфонатов натрия.
Bioterge AS 40, также известный как сульфонат олефина натрия или AOS, представляет собой синтетическое поверхностно-активное вещество, обычно используемое в продуктах личной гигиены, таких как шампуни, средства для мытья тела и очищающие средства для лица.


Bioterge AS 40 получают в результате сульфирования углеводородных цепей, полученных из олефинов, которые обычно получают из нефти.
Bioterge AS 40 обладает отличными пенообразующими и пенообразующими свойствами, что делает его идеальным выбором для продуктов личной гигиены, требующих обильной и роскошной пены.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ BIOTERGE AS 40:
Bioterge AS 40 используется в мыле для рук, шампунях и средствах для ванн.
Bioterge AS 40 — идеальное поверхностно-активное вещество для различных средств личной гигиены, включая шампуни, мыло, средства для мытья тела и очищающие средства для лица.
Bioterge AS 40 представляет собой анионное поверхностно-активное вещество, которое обеспечивает замечательную вязкость, пенообразующие характеристики и мягкость.


Это делает Bioterge AS 40 отличным кандидатом для широкого спектра применения в сфере уборки и личной гигиены, а также для применения в сельскохозяйственных составах и строительных продуктах, таких как бетонные основания, пены для пожаротушения и борьба с пылью.
Bioterge AS 40 также подходит для использования в кислых составах, например, содержащих альфа-гидроксильные кислоты или салициловую кислоту.


Bioterge AS 40 идеально подходит для безсульфатных средств личной гигиены и моющих средств.
Bioterge AS 40 – мягкое анионное поверхностно-активное вещество с высоким пенообразованием и хорошими эмульгирующими свойствами.
Bioterge AS 40 — идеальное поверхностно-активное вещество для различных моющих средств и средств личной гигиены, включая мыло для рук, шампуни и средства для ванн.


Особенно при применении нефосфорных моющих средств Bioterge AS 40 обладает не только хорошей моющей способностью, но и хорошей совместимостью с ферментными средствами.
Bioterge AS 40 широко используется в стиральных порошках, не содержащих фосфор, жидких моющих средствах и средствах для домашней стирки, шампунях для волос, средствах для чистки лица и т. д.
Bioterge AS 40 также используется в текстильной, полиграфической и красильной промышленности, в нефтехимической продукции, в промышленных чистящих средствах для твердых поверхностей и т. д.


В Bioterge AS 40 используется анионное поверхностно-активное вещество, шампунь, гель для мытья тела, а также масловытесняющий агент и пенообразователь для повышения нефтеотдачи.
Применение жидкого моющего средства Bioterge AS 40: Из-за большего раздражения LAS многие моющие средства не используют LAS в качестве активного ингредиента, в то время как Bioterge AS 40 обладает низким раздражающим свойством и хорошей биоразлагаемостью, что делает его более подходящей альтернативой.


Bioterge AS 40 обладает превосходными эмульгирующими, смачивающими, уплотняющими, пенообразующими, обеззараживающими и диспергирующими свойствами кальциевого мыла.
Bioterge AS 40 обладает хорошей растворяющей способностью и хорошей совместимостью с ферментными агентами.
Bioterge AS 40 рекомендуется для шампуней, гелей для душа и мыла для рук.


Bioterge AS 40 предлагает разработчикам рецептур превосходные характеристики вязкости и пенообразования, а также мягкость.
Foam Booster обеспечивает превосходную стабильность по сравнению с сульфатами спиртов в широком диапазоне pH.
Используется Bioterge AS 40. Экономичный и высокоэффективный, не содержит сульфатов.
биоразлагаемые шампуни, мыло для рук и гели для душа, средства для мытья автомобилей, жидкие моющие средства для легких условий эксплуатации, стиральные порошки для тяжелых условий эксплуатации и шампуни.


Bioterge AS 40 можно использовать в различных средствах личной гигиены и в быту.
Попробуйте Bioterge AS 40 в составе очищающих средств для лица, гелей для душа, пенистых батончиков, пенистых солей для ванн, порошков для пенных ванн, бомбочек для ванн, любимого кускового мыла, даже средств для стирки и мытья посуды и многого другого.


Bioterge AS 40 рекомендуется для бытовых чистящих средств, таких как жидкие моющие и чистящие средства, чистящих средств для учреждений и промышленных предприятий, средств личной гигиены, сельскохозяйственных составов, строительных продуктов, таких как улучшитель плотности бетона, пенопластовые стеновые панели и противопожарный пенообразователь, в тканях. полиграфическая и красильная промышленность, нефтехимия, третичная добыча нефти и промышленная очистка.


Bioterge AS 40 — отличное поверхностно-активное вещество, которое помогает удалить грязь, загрязняющие вещества и отложения с волос и кожи головы.
Bioterge AS 40, в основном присутствующий в средствах по уходу за волосами, также может использоваться в средствах по уходу за кожей и косметике.
Bioterge AS 40 – довольно эффективное очищающее средство с хорошими пенообразующими свойствами.


В сыром виде Bioterge AS 40 имеет вид мелкого белого порошка.
Bioterge AS 40 представляет собой анионное поверхностно-активное вещество, которое можно назвать AOS, обладающее превосходной способностью к обеззараживанию, пенообразованию и эмульгированию, а также стабильностью пенообразования.
Bioterge AS 40 чрезвычайно растворим в воде и обладает чрезвычайно высокой способностью диспергировать и смягчать известковое мыло;


Bioterge AS 40 обладает хорошей биоразлагаемостью, приятен для кожи и обладает хорошей совместимостью.
Продукты, содержащие Bioterge AS 40, обладают обильным пенообразованием, нежны, удобны на ощупь и легко смываются.
Bioterge AS 40 можно использовать в средах с широким диапазоном значений pH.


Bioterge AS 40 даже используется в домашних и коммерческих продуктах, таких как средства для чистки твердых поверхностей и шампуни для ковров.
Bioterge AS 40 обеспечивает превосходное быстрое вспенивание и стабилен в широком диапазоне pH, что делает его полезным для различных применений и продуктов.
Bioterge AS 40 обеспечивает превосходные начальные характеристики пенообразования и более стабилен, чем сульфаты жирных спиртов, в широком диапазоне pH.


Bioterge AS 40 обладает хорошей биоразлагаемостью и может использоваться в шампунях, мыле для рук и различных средствах для ванн. (Мягкий пенообразователь – светло-желтая прозрачная жидкость)
Bioterge AS 40 — анионное поверхностно-активное вещество, обеспечивающее превосходную вязкость, характеристики пены и мягкость.


Bioterge AS 40 широко используется во всех видах косметики для туалетов, таких как стиральные порошки, составное мыло, моющие средства для мытья посуды, и является предпочтительным сырьем для нефосфатных моющих средств;
Bioterge AS 40 можно использовать в очищающих косметических средствах, таких как шампуни, лосьоны для ванн, очищающие средства для лица и т. д.


Bioterge AS 40 также можно использовать в промышленных моющих средствах, таких как нефтяные месторождения, шахты, строительство, противопожарная защита и окраска текстиля.
Bioterge AS 40 обычно используется в качестве поверхностно-активного вещества в различных продуктах личной гигиены, таких как шампуни, средства для мытья тела и очищающие средства для лица.
Bioterge AS 40 помогает эмульгировать и удалять грязь, жир и другие загрязнения с кожи и волос.


Благодаря своей мягкости и хорошему пенообразованию Bioterge AS 40 часто предпочтительнее более агрессивных чистящих средств.
Bioterge AS 40 также используется в качестве смачивающего агента и эмульгатора в промышленных целях, таких как производство чистящих средств и обработка текстиля.
Bioterge AS 40 биоразлагаем и считается безопасным для использования в косметических продуктах и средствах личной гигиены.


Bioterge AS 40 может широко использоваться в бесфосфатных стиральных порошках, жидких моющих средствах и других бытовых чистящих средствах, а также в текстильной полиграфической и красильной промышленности, нефтехимии, промышленной очистке твердых поверхностей.
Bioterge AS 40 — это анионное поверхностно-активное вещество, широкий выбор косметических моющих средств, жидкости для мытья рук, стирального порошка, комплексного мыла, шампуня и моющего средства, бесфосфатных моющих средств и другого основного сырья по выбору.


Bioterge AS 40 — идеальное поверхностно-активное вещество для различных видов чистки и ухода за собой, сельскохозяйственных составов и строительных продуктов, используемых для бетонных оснований, противопожарных пен и пылеподавления.
Bioterge AS 40 Surfactant — это жидкое поверхностно-активное вещество на основе кокоса, полученное из олеиновой кислоты, которое является идеальным поверхностно-активным веществом для различных средств очищения и ухода за собой!


Bioterge AS 40 — мягкое анионное поверхностно-активное вещество, которое обеспечивает превосходную вязкость, характеристики мгновенного пенообразования и отличные очищающие свойства, а также улучшенную мягкость по сравнению с лаурилсульфатами.
Bioterge AS 40 — это фантастическое поверхностно-активное вещество, которое можно смешивать с другими поверхностно-активными веществами и использовать в различных продуктах для дома, включая кусковое мыло, жидкое мыло для рук, средства для мытья тела, пену для ванн, шампуни и многое другое!


Bioterge AS 40 обычно используется в очищающих средствах для ванн, душа и ухода за волосами.
Bioterge AS 40 создан на основе кокоса, поскольку он получен из олеиновой кислоты.
Bioterge AS 40 используется в мыле холодного процесса, основах для мытья тела, очищающих средствах для лица, жидком мыле для рук, машинном мытье посуды, масляных диспергаторах (OD), шампунях, безсульфатных концентратах суспензий (SC), суспензиях (SE), вододиспергируемых гранулах ( WG), смачивающиеся порошки (WP)


Bioterge AS 40 также использовался в моющих средствах для твердых поверхностей и средствах личной гигиены, а также разрабатывается в качестве добавок к маслам, вспомогательных средствах для обработки крахмала, акрилатных эмульсиях, мерсеризованном хлопке, стирке шерсти, смачивании текстиля и бумаги в полевых условиях.
Bioterge AS 40 — поверхностно-активное вещество третьего поколения, обладающее превосходными свойствами смачивания, смешивания, эмульгирования, растворимости, хорошей стабильности при высоких температурах и моющих свойств.


Bioterge AS 40 обладает высокими пенообразующими характеристиками, мягкостью, менее устойчив к жесткой воде и отлично поддается биологическому разложению.
Bioterge AS 40 является эффективным эмульгатором и обладает отличными пенообразующими характеристиками.
Его устойчивость к жесткости воды и другим ионам металлов очень хорошая, а Bioterge AS 40 стабилен в широком диапазоне pH.


Bioterge AS 40 превосходит традиционные активные моющие средства по биоразлагаемости, мягкости для кожи, растворимости в холодной воде, смываемости, быстрому пенообразованию и моющим свойствам в жесткой воде.
Bioterge AS 40 совместим с другими поверхностно-активными веществами, такими как линейный алкилбензолсульфонат (LABS) и SLS, включая мыло.


Bioterge AS 40 помогает преодолеть раздражение, вызванное обычными моющими средствами.
Комбинация LABS и Bioterge AS 40 в определенных пропорциях может обеспечить синергическое моющее действие, что может привести к улучшению эффективности заданного общего количества активных веществ или снижению затрат при заданной эффективности.


Bioterge AS 40 — отличное поверхностно-активное вещество, которое помогает удалить грязь, загрязняющие вещества и отложения с волос и кожи головы.
Bioterge AS 40, в основном присутствующий в средствах по уходу за волосами, также может использоваться в средствах по уходу за кожей и косметике.
Bioterge AS 40 – довольно эффективное очищающее средство с хорошими пенообразующими свойствами.


Bioterge AS 40 широко используется в бесфосфатных стиральных порошках, жидких моющих средствах и других бытовых чистящих средствах, а также в текстильной полиграфической и красильной промышленности, нефтехимии, промышленной очистке твердых поверхностей.
Bioterge AS 40 — оптимальное решение поверхностно-активных веществ для производства средств личной гигиены и косметических средств, чистящих средств HI&I и стиральных порошков.


Благодаря своим уникальным свойствам Bioterge AS 40 также используется в сельскохозяйственной продукции, строительной промышленности, огнетушащих пенах и т. д.
Области применения Bioterge AS 40 HI&I: очистка, эмульсионная полимеризация, пожаротушение, средства личной гигиены, стиральные порошки, промышленные вспомогательные средства, строительная химия, нефтяные месторождения, сельское хозяйство.


Bioterge AS 40 можно использовать в рецептурах средств личной гигиены, где требуется эффективное повышение вязкости.
Bioterge AS 40 идеально подходит для различных составов средств личной гигиены, таких как мыло для рук, шампуни, очищающие средства для лица и средства для мытья тела.


В сыром виде Bioterge AS 40 имеет вид мелкого белого порошка.
Bioterge AS 40 обычно используется в очищающих средствах для ванн, душа и ухода за волосами.
Bioterge AS 40 также обладает хорошими очищающими свойствами и эффективно удаляет грязь, жир и другие загрязнения с кожи и волос.


Bioterge AS 40 обычно используется в качестве поверхностно-активного вещества в различных продуктах личной гигиены, таких как шампуни, средства для мытья тела и очищающие средства для лица.
Bioterge AS 40 помогает эмульгировать и удалять грязь, жир и другие загрязнения с кожи и волос.
Благодаря своей мягкости и хорошему пенообразованию Bioterge AS 40 часто предпочтительнее более агрессивных чистящих средств.


Bioterge AS 40 также используется в качестве смачивающего агента и эмульгатора в промышленных целях, таких как производство чистящих средств и обработка текстиля.
Bioterge AS 40 биоразлагаем и считается безопасным для использования в косметических продуктах и средствах личной гигиены.
Bioterge AS 40 используется в декоративной косметике.


Bioterge AS 40 представляет собой смесь примерно 40% сополимера акрилатов/политриметилсилоксиметакрилата в изододекане.
После испарения изододекана высокомолекулярный силикон-акрилатный сополимер образует пленку на коже.
Bioterge AS 40 – это пленкообразователь, предназначенный для длительного применения в декоративной косметике и средствах по уходу за кожей. Обладает хорошей совместимостью с органическими солнцезащитными кремами, пигментами и косметическими ингредиентами.


Bioterge AS 40 обеспечивает устойчивость к кожному салу, устойчивость к смыванию, а также комфорт при ношении.
Используется Bioterge AS 40. Длительная износостойкость, увел��ченное время нанесения. Высокая гибкость пленки позволяет декоративной косметике сохранять ощущение комфорта и бесконечной износостойкости. Быстрое время высыхания. Высоколетучий носитель обеспечивает быстрое высыхание.


Bioterge AS 40 — это силикон-акрилатный пленкообразователь премиум-класса для декоративной косметики, смесь примерно 40% акрилатов/сополимера политриметилсилоксиметакрилата в изододекане.
После испарения Bioterge AS 40 высокомолекулярный силикон-акрилатный сополимер образует на коже пленку.


Сырой веганский Bioterge AS 40 на масляной основе, который следует добавлять в ваши формулы в количестве 0,5–10 % от общего количества, чтобы обеспечить водостойкий и непереносящийся пленкообразующий эффект.
Bioterge AS 40 можно использовать во всех видах косметических средств: для волос, кожи, макияжа, кремах, лосьонах, кремах для бритья и т. д.


-Применение Bioterge AS 40 для личной гигиены:
Мягкость Bioterge AS 40 сравнима с мягкостью AES, тогда как LAS и AES вызывают гораздо большее раздражение, чем AOS.
Таким образом, Bioterge AS 40 имеет широкий спектр применения в средствах личной гигиены.
Bioterge AS 40 чрезвычайно стабилен в кислых условиях, а нормальная кожа человека имеет слабокислую реакцию (рН около 5,5), поэтому его можно использовать в качестве компонента средств личной гигиены.
Шампуни с Bioterge AS 40 в качестве основного активного ингредиента более пенообразующие, чем с K12.


-Другие применения Bioterge AS 40:
Bioterge AS 40 имеет широкий спектр применения в текстильной полиграфической и красильной промышленности, нефтехимии, третичной добыче нефти и промышленной очистке.
Bioterge AS 40 также можно использовать в качестве улучшителя плотности бетона, пенопласта, противопожарного пенообразователя.
Bioterge AS 40 также можно использовать в качестве эмульгатора, смачивателя и т. д.


-Применение мыла:
Добавление Bioterge AS 40 позволяет повысить растворимость мыла в воде, также можно значительно увеличить смачивающую способность и прочность пены мыла при низких температурах.
Bioterge AS 40 улучшает различные свойства мыла, повышает пенообразующую способность, повышает устойчивость к жесткой воде и гибкость.


-Применение стиральных порошков Bioterge AS 40:
По результатам испытаний на моющие свойства LAS и Bioterge AS 40 показали хорошую синергию в фосфорсодержащих и нефосфорсодержащих порошках.
В бесфосфатных стиральных порошках с LAS и Bioterge AS 40 в качестве анионных активных ингредиентов моющая способность АОС значительно повышается при содержании активного вещества более 20%.

Синергия моющих свойств Bioterge AS 40 со стиральным порошком, не содержащим фосфора, более выражена, чем с фосфорсодержащим порошком.
АОС имеет хорошую совместимость с ферментом.
Моющая способность Bioterge AS 40 и LAS не сильно отличается при высоких температурах и длительной стирке (например, выше 60°C, стирка в течение 1 часа).

Однако Bioterge AS 40 демонстрирует более высокие моющие свойства, чем LAS, при использовании при комнатной температуре (10–40°C в течение 10–29 минут).
По сравнению с LAS, Bioterge AS 40 обладает более высокой устойчивостью к жесткой воде.
Bioterge AS 40 демонстрирует очень хорошую эффективность удаления пятен с кожного сала, а также маслянистых и порошкообразных пятен.



ПРЕИМУЩЕСТВА БИОТЕРГЕ АС 40:
*Высокая гибкость пленки
* Превосходная стойкость к кожному салу
*Высокая водоотталкивающая способность.
* Длительный цвет и эффективность.
* Гладкое ощущение с меньшей липкостью
* Удобная одежда
*Входит в Каталог косметических ингредиентов Китая.
*Не содержит ингредиентов животного происхождения (подходит для веганов)



ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА БИОТЕРЖ АС 40:
1. Обеспечивает эффективные очищающие свойства.
2. Совместим с жесткой водой.
3. Помогает создать обильную пену.
4. Действует как поверхностно-активное вещество и эмульгатор.
5. Имеет хорошую совместимость с кожей и мягкость.
6. Может быть легко использован в различных косметических продуктах.
7. Может помочь удалить излишки масла и кожного сала с кожи.



ФУНКЦИИ БИОТЕРГ АС 40:
*Поверхностно-активное вещество (анионное),
*Пенообразователь,
* Пенный усилитель,
*Очищающее средство,
*Поверхностно-активное вещество



ОСОБЕННОСТИ БИОТЕРГЕ АС 40:
Bioterge AS 40 – анионное поверхностно-активное вещество с отличными пенообразующими свойствами.
Bioterge AS 40 отличается хорошим пеноудалением и хорошими ополаскивающими свойствами, входит в состав кухонных моющих средств и шампуней.
В последние годы Bioterge AS 40 иногда используется в сочетании с аминокислотными ПАВ в качестве сырья для прозрачных шампуней.

Ингредиенты перечислены в Стандартах ингредиентов квазилекарственных препаратов 2021 года, и нет никаких проблем с безопасностью, поскольку «продукт полностью смывается с кожи».
Bioterge AS 40 — это сырье, которое легко разлагается и оказывает незначительное воздействие на окружающую среду.
REACH зарегистрирован.
Bioterge AS 40 соответствует стандартам на квазилекарственное сырье.



ЧТО ДЕЛАЕТ BIOTERGE AS 40 В ФОРМАТЕ?
*Очищение
*Пенообразование
*Поверхностно-активное вещество



ФУНКЦИИ БИОТЕРГ АС 40:
*Поверхностно-активное вещество
*Очищающее средство



ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА БИОТЕРЖ АС 40:
1. Bioterge AS 40 обладает эффективными очищающими свойствами.
2. Bioterge AS 40 совместим с жесткой водой.
3. Bioterge AS 40 способствует образованию обильной пены.
4. Bioterge AS 40 действует как поверхностно-активное вещество и эмульгатор.
5. Bioterge AS 40 обладает хорошей совместимостью с кожей и мягкостью.
6. Bioterge AS 40 можно легко добавлять в различные косметические продукты.
7. Bioterge AS 40 помогает удалить излишки масла и кожного сала с кожи.



ФУНКЦИИ БИОТЕРГ АС 40:
* Цветной антиперенос,
*гидроизоляционные средства,
*Киноформеры,
*Силиконы



ЭКСТРАКЦИЯ БИОТЕРГА АС 40:
Bioterge AS 40 сульфируется SO3 в ходе непрерывного процесса.
Промежуточную сульфоновую кислоту нейтрализуют каустической содой.
Затем добавляют ксилолсульфонат натрия и буферную систему.
Позже раствор сушат для получения высокоактивных бусин Bioterge AS 40.



ОСОБЕННОСТИ БИОТЕРГЕ АС 40:
*Разновидность силиконовой полиакриловой кислоты Bioterge AS 40 представляет собой смесь силиконовой полиакриловой кислоты (40%) и изододекана.
*Bioterge AS 40 имеет уникальную структуру, полученную путем сополимеризации силиконового дендримера с акриловой смолой.
*Хрустящая пленка полиакриловой кислоты сочетается с водоотталкивающими и непереносящими свойствами силикона.
*Силиконовый скелет дендримера обладает превосходной стойкостью к истиранию, стойкостью к кожному салу и газопроницаемостью.
*Bioterge AS 40 также поддерживает длительное действие активных ингредиентов за счет улучшения совместимости с различными маслами.
*Придает водостойкость и стойкость к кожному салу жидким тональным средствам, средствам по уходу за солнцем и т. д., а также повышает их долговечность.
Например, добавляя его в такие продукты для макияжа, как тональный крем, губная помада и лак для ногтей, Bioterge AS 40 позволяет создавать продукты очень стойкого действия, которые не меняют цвет, не жертвуя при этом ощущением продукта.



ЗАЯВЛЕНИЯ О ПРЕИМУЩЕСТВАХ BIOTERGE AS 40:
Гладкость на ощупь, устойчивость к истиранию, водоотталкивающие свойства, ощущение легкости, здоровый вид кожи, блеск и сияние, устойчивость к смыванию, низкая вязкость, быстрое впитывание, длительный срок службы, усиление блеска, отличная гибкость, эластичность, увлажнение, защита кожи, совместимость, превосходный Производительность, Интенсивность цвета, Повышение SPF, Долговечность, Прочность, Легкость удаления, Хорошая стойкость цвета, Сенсорное улучшение, Формирование пленки, Комфорт, Улучшенная текстура, Нелипкий, Устойчив к кожному салу, Антивозрастной, Неокклюзивный, Устойчив к переносу, Блеск Улучшение, простота в использовании



БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ БИОТЕРГА АС 40:
Поверхностно-активные вещества — это соединения, которые снижают поверхностное натяжение жидкости, межфазное натяжение между двумя жидкостями или между жидкостью и твердым телом.
Поверхностно-активные вещества могут действовать как моющие средства, смачиватели, эмульгаторы, пенообразователи и диспергаторы.



ПРЕИМУЩЕСТВА БИОТЕРГЕ АС 40:
*Отличные эксплуатационные характеристики и свойства пены.
* Улучшенная мягкость по сравнению с лаурилсульфатами.
*Отличная вязкость и характеристики пены.
*Более стабильный, чем сульфаты спиртов, в широком диапазоне pH.
*Полностью совместим с другими анионными, амфотерными и неионогенными поверхностно-активными веществами.
*Рекомендуемая норма использования: 4–30 % от всего состава.




ФУНКЦИИ БИОТЕРГ АС 40:
*Поверхностно-активное вещество,
*Поверхностно-активное вещество (анионное),
*Пенообразователь,
*Чистящий агент



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА БИОТЕРГ АС 40:
Активы, %: 39
Температура кипения, ºC: 100
Температура помутнения, °С: 7
КМЦ, мг/л: 301,0
Плотность при 25°С, г/мл: 1,06.
Смачивание Дравса при 25°C, секунд: 15
Температура вспышки, °С: >94
Форма при 25°C: Жидкость
Температура замерзания, °С: -7
Температура застывания, °С: -4
Удельный вес при 25°C: 1,06.
Поверхностное натяжение, мН/м: 31,6
Вязкость при 25°С, сП: 125
Вязкость, сП: 79 (при 60°С)
RVOC, Агентство по охране окружающей среды США %: 0
Цвет: Прозрачный
pH: 5–6,5 (в виде водного раствора)
Температура вспышки: Не применимо

КАС: 68439-57-6
Химическая форма: Жидкость
Плотность: 1,054 г/см3 при 20 ℃.
давление пара: 0 Па при 25 ℃
форма: Порошок
LogP: -1,3 при 20 ℃ и pH 5,43.
Поверхностное натяжение: 36,1 мН/м при 1 г/л и 20 ℃.
Константа диссоциации: 0,15-0,38 при 25 ℃ .
Оценка еды по версии EWG: 1–2.
FDA UNII: O9W3D3YF5U
Система регистрации веществ EPA: гидроксил C14-16-алкана и C14-16-олефинсульфонаты натрия (68439-57-6)
Синонимы: Альфа-олефинсульфонат натрия C14-16.
Молекулярный вес: 298,42-344,49
Внешний вид: жидкость желтого или янтарного цвета.
Название продукта: Сульфонат олефина натрия C14-16
КАС: 68439-57-6

Номер CAS: 68439-57-6
Химическое название/ИЮПАК: Сульфоновые кислоты, C14-16-алкангидрокси и C14-16-алкен, натриевые соли.
EINECS/ELINCS №: 270-407-8
рН: 8,0-10,0
Растворимость: растворим в воде
Точка плавления: Н/Д
Точка кипения: нет данных
Точка воспламенения: нет данных
Молекулярная формула: C14H27NaO3S.
Молекулярный вес: 298,417
Плотность: Н/Д
КАС: 68439-57-6
МФ:CnH2n-1SO3Na (n= 14 - 16)
МВт: 298,42
ЭИНЭКС: 270-407-8
ЕС №: 931-534-0
Код ТН ВЭД: 340211
Функция: Анионное поверхностно-активное вещество
Внешний вид: белый порошок

Плотность: 1,054 г/см3 при 20 ℃.
давление пара: 0 Па при 25 ℃
форма: Порошок
LogP: -1,3 при 20 ℃
рН: 5,43
Поверхностное натяжение: 36,1 мН/м при 1 г/л и 20 ℃.
Константа диссоциации: 0,15-0,38 при 25 ℃ .
Оценка еды по версии EWG: 1–2.
FDA UNII: O9W3D3YF5U
Система регистрации веществ EPA: гидроксил C14-16-алкана и C14-16-олефинсульфонаты натрия (68439-57-6)
Точка плавления: Н/Д
Точка кипения: нет данных
Точка воспламенения: нет данных
Молекулярная формула: C14H27NaO3S.
Молекулярный вес: 298,417
Плотность: Н/Д



МЕРЫ ПЕРВОЙ ПОМОЩИ БИОТЕРГЕ АС 40:
-Описание мер первой помощи:
*Общие советы:
Проконсультируйтесь с врачом.
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании:
При вдыхании выведите пострадавшего на свежий воздух.
Проконсультируйтесь с врачом.
*При попадании на кожу:
Смыть большим количеством воды с мылом.
Проконсультируйтесь с врачом.
*При зрительном контакте
Тщательно промойте большим количеством воды в течение не менее 15 минут и обратитесь к врачу.
*При проглатывании:
Не вызывает рвоту.
Прополоскать рот водой.
Проконсультируйтесь с врачом.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ BIOTERGE AS 40:
-Экологические меры предосторожности:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.
-Методы и материалы для локализации и очистки:
Соберите и утилизируйте, не создавая пыли.
Подметать и лопатой.
Хранить в подходящих закрытых контейнерах для утилизации.



МЕРЫ ПОЖАРОТУШЕНИЯ БИОТЕРГЕ АС 40:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Используйте водяной спрей, спиртостойкую пену, сухие химикаты или углекислый газ.
-Дальнейшая информация:
Данные недоступны



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА BIOTERGE AS 40:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Защитная маска и защитные очки.
*Защита кожи:
Работайте в перчатках.
Вымойте и высушите руки.
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита тела:
Полный костюм, защищающий от химикатов.
-Контроль воздействия на окружающую среду:
Предотвратите дальнейшую утечку или разлив, если это безопасно.
Не допускайте попадания продукта в канализацию.
Необходимо избегать попадания в окружающую среду.



ОБРАЩЕНИЕ И ХРАНЕНИЕ БИОТЕРЖА AS 40:
-Меры безопасного обращения:
*Гигиенические меры:
Обращайтесь в соответствии с правилами промышленной гигиены и техники безопасности.
Мойте руки перед перерывами и в конце рабочего дня.
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Хранить в прохладном месте.



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ БИОТЕРГ АС 40:
-Реактивность:
Данные недоступны
-Химическая стабильность:
Стабилен при рекомендуемых условиях хранения.
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Данные недоступны



BIOTIN
BIS(METHACRYLOYLOXYETHYL) PHOSPHATE, N° CAS : 32435-46-4, Nom INCI : BIS(METHACRYLOYLOXYETHYL) PHOSPHATE. Nom chimique : 2-Propenoic acid, 2-methyl-, 1,1'-[phosphinicobis(oxy-2,1-ethanediyl)] ester. Agent d'entretien des ongles : Améliore les caractéristiques esthétiques des ongles
BIS(METHACRYLOYLOXYETHYL) PHOSPHATE
BIS-AMINOPROPYL DIGLYCOL DIMALEATE, N° CAS : 1629579-82-3, Nom INCI : BIS-AMINOPROPYL DIGLYCOL DIMALEATE. Conditionneur capillaire : Laisse les cheveux faciles à coiffer, souples, doux et brillants et / ou confèrent volume, légèreté et brillance. Agent bouclant ou lissant (coiffant) : Modifie la structure chimique des cheveux, pour les coiffer dans le style requis Agent d'entretien de la peau : Maintient la peau en bon état
BIS-AMINOPROPYL DIGLYCOL DIMALEATE
BIS-ETHOXYDIGLYCOL SUCCINATE, N° CAS : 828918-62-3, Nom INCI : BIS-ETHOXYDIGLYCOL SUCCINATE. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau. Agent d'entretien de la peau : Maintient la peau en bon état. Solvant : Dissout d'autres substances
BIS-ETHOXYDIGLYCOL SUCCINATE
SYNONYMS 2,2'-[6-(4-Methoxyphenyl)-1,3,5-triazine-2,4-diyl]bis[5-[(2-ethylhexyl)oxy]-phenol];Bis-ethylhexyloxyphenol Methoxyphenyl Triazine;2,2'-[6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diyl]bis{5-[(2-ethylhexyl)oxy]phenol};2,2'-(6-(4-Methoxyphenyl)-1,3,5-triazine-2,4-diyl)bis(5-((2-ethylhexyl)oxy)phenol) CAS NO:187393-00-6
BIS-ETHYLHEXYLOXYPHENOL METHOXYPHENYL TRIAZINE
BIS-GLYCERYL ASCORBATE, Nom INCI : BIS-GLYCERYL ASCORBATE. Antioxydant : Inhibe les réactions favorisées par l'oxygène, évitant ainsi l'oxydation et la rancidité. Humectant : Maintient la teneur en eau d'un cosmétique dans son emballage et sur la peau
BIS-GLYCERYL ASCORBATE
AMMONIUM BICARBONATE, N° CAS : 1066-33-7 , Bicarbonate d'ammonium, Nom INCI : AMMONIUM BICARBONATE, Nom chimique : Ammonium hydrogencarbonate, N° EINECS/ELINCS : 213-911-5, Additif alimentaire : E503, Ses fonctions (INCI): Régulateur de pH : Stabilise le pH des cosmétiques
Bicarbonate d'ammonium
SynonymsBHMTPMPA;BHMTPHPN(Nax);BHMTPh.PN(Nax);BIS(HEXAMETHYLENE)TRIAMINE-PENTAKIS(ME.-;PARTIALLY NEUTRALISED SODIUM SALT OF BIS HEXAMETHYLENE;bis(hexamethylenetriaminepenta(methylenephosphonic acid));bis(hexamethylene)triamine-pentakis(me.-phosphonicac.)sol.;Bishexamethylenetriamine,pentamethylenepentaphosphonicacid;BIS(HEXAMETHYLENE)TRIAMINE-PENTAKIS(METHYLPHOSPHONIC ACID);N,N-Bis[6-[bis(phosphonomethyl)amino]hexyl]phosphonomethanamine Cas no: 34690-001
Bis Hexamethylenetriaminepenta(Methylenephosphonic Acid)
EC 411-760-1; Bis(N,N',N''-trimethyl-1,4,7-triazacyclononane)-trioxo-dimanganese (IV) di(hexafluorophosphate)monohydrate CAS NO:116633-52-4
Bis(N,N',N''-trimethyl-1,4,7-triazacyclononane)- trioxo-dimanganese(IV)Bis(N,N',N''-trimethyl-1,4,7-triazacyclononane)-trioxo-dimanganese(IV)di(hexafluorophosphate)
BISMUTH CITRATE, N° CAS : 813-93-4, Nom INCI : BISMUTH CITRATE, Nom chimique : Bismuth citrate, N° EINECS/ELINCS : 212-390-1, Classification : Colorant capillaire Régulateur de pH : Stabilise le pH des cosmétiques, Agent de chélation : Réagit et forme des complexes avec des ions métalliques qui pourraient affecter la stabilité et / ou l'apparence des produits cosmétiques, Agent colorant pour cheveux : Colore les cheveux
Bismuth citrate
Bisphenol S; 4,4'-Sulfonyldiphenol; 4,4'-Bisphenol S; 4,4'-Dihydroxydiphenyl sulfone; p,p'-Dihydroxydiphenyl sulfone; 1,1'-Sulfonylbis(4- hydroxybenzene); Bis(4-hydroxyphenyl) sulfone; Sulfonyl bisphenol; Diphone; 4,4'-Sulfonildifenol; 4,4'-Sulfonyldiphénol; CAS NO: 80-09-1
Bisphenol S
Quintesal 180;Vegetable oils, borage seed;Oils, borago officinalis seed;Borage (borago officinalis) oil;Fats and glyceridic oils, borage seed CAS NO:225234-12-8
BORAGE OIL (HODAN OIL)
Borates, Tetrasodium Salts, Decahydrate;Sodium Tetraborate Decahydrate, Sodium Pyroborate Decahydrate; Sodium Tetraborate Decahydrate; Disodium Tetraborate Decahydrate; Sodium Borate Decahydrate; Fused Borax; Dinatriumtetraborat; Tetraborato de disodio; Tétraborate de disodium CAS NO:1303-96-4
Borax
borax; Borax; Borates, Tetrasodium Salts, Decahydrate; Sodium Tetraborate Decahydrate, Sodium Pyroborate Decahydrate; Sodium Tetraborate Decahydrate; Disodium Tetraborate Decahydrate; Sodium Borate Decahydrate; Fused Borax; Dinatriumtetraborat; Tetraborato de disodio ; Tétraborate de disodium cas no: 1330-43-4
BORAX DECAHYDRATE
SYNONYMS Borax; Borates, Tetrasodium Salts, Decahydrate Sodium Tetraborate Decahydrate, Sodium Pyroborate Decahydrate; Sodium Tetraborate Decahydrate; Disodium Tetraborate Decahydrate; Sodium Borate Decahydrate; Fused Borax; CAS:1303-96-4
BORAX PENTAHYDRATE
Synonyms: decasodium,tetraborate,pentahydrate;SODIUM TETRABORATE PENTAHYDRATE;NEOBOR(R);GRANUBOR(R);FERTIBOR(R);BORAX PENTAHYDRATE;BORAX 5H2O TECHNICAL GRADE;BORAX PENTAHYDRATE-99.9% MIN CAS: 12179-04-3
BORIC ACID
SYNONYMS Boracic Acid, Hydrogen Borate, Orthoboric Acid; Boracic acid; Hydrogen orthoborate; Trihydroxyborane CAS NO. 10043-35-3
BORON NITRIDE
Boron Nitride = BN

CAS Number: 10043-11-5
EC Number: 233-136-6
Chemical formula: BN
Molar mass: 24.82 g/mol

Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN.
Boron Nitride exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice.
The hexagonal form corresponding to graphite is the most stable and soft among BN polymorphs, and is therefore used as a lubricant and an additive to cosmetic products.
The cubic (zincblende aka sphalerite structure) variety analogous to diamond is called c-BN; Boron Nitride is softer than diamond, but Boron Nitrides thermal and chemical stability is superior.
The rare wurtzite BN modification is similar to lonsdaleite but slightly softer than the cubic form.

Boron nitride (BN is a synthetic material, which although discovered in the early 19th century was not developed as a commercial material until the latter half of the 20th century.
Boron and nitrogen are neighbours of carbon in the periodic table - in combination boron and nitrogen have the same number of outer shell electrons - the atomic radii of boron and nitrogen are similar to that of carbon.
Boron Nitride is not surprising therefore that boron nitride and carbon exhibit similarity in their crystal structure.
In the same way that carbon exists as graphite and diamond, boron nitride can be synthesised in hexagonal and cubic forms.

The synthesis of hexagonal boron nitride powder is achieved by nitridation or ammonalysis of boric oxide at elevated temperature.
Cubic boron nitride is formed by high pressure, high temperature treatment of hexagonal BN.

Hexagonal boron nitride (h-BN) is the equivalent in structure of graphite.
Like graphite Boron Nitrides plate like microstructure and layered lattice structure give Boron Nitride good lubricating properties.
h-BN is resistant to sintering and is usually formed by hot pressing.

Cubic boron nitride (C-BN) has the same structure as diamond and Boron Nitrides properties mirror those of diamond.
Indeed C-BN is the second hardest material next to diamond.
C-BN was first synthesised in 1957, but Boron Nitride is only in the last 15 years that commercial production of C-BN has developed.

Boron nitride is a non-toxic thermal and chemical refractory compound with high electrical resistance, and is most commonly available in colorless crystal or white powder form.
Boron Nitride is an advanced ceramic material and is often referred to as “white graphene” or “inorganic graphite”.
In this article, Let’s discuss the production, general properties, and uses of boron nitride.

Boron nitride (BN) is a binary chemical compound, consisting of equal numbers of boron and nitrogen atoms.
Boron Nitrides empirical formula is therefore BN.
Boron nitride is isoelectronic with carbon and, like carbon, boron nitrides exists as various polymorphic forms, one of which is analogous to diamond and one analogous to graphite.
The diamond-like polymorph is one of the hardest materials known and the graphite-like polymorph is a useful lubricant.

Boron Nitride (BN) is a popular inorganic compound capable of showing different forms and properties.
Similar to many other inorganic compounds, BN has found an important place in the world of chemistry.
However, the potential of BN was discovered later in history compared to other inorganic compounds such as oxides of boron and iron, chlorides, or ammonia.

This delay could be attributed to the fact that BN is not found in nature and actually obtained in the laboratory environment.
BN was first produced at the beginning of the 18th century.
However, Boron Nitrides commercial use did not start until the 1940s.
Since then, Boron Nitride is widely produced and utilized in different industries.

Boron nitride attracts attention due to Boron Nitrides electronic comparability to the world-famous element carbon.
Much like carbon, BN shares the same number of electrons between neighbouring atoms.
Furthermore, BN takes on similar structural properties to carbon.
A surprising equivalence between different phases of BN and phases of carbon based materials is observed.

BN products can exist in several different phases including amorphous (a-BN), hexagonal (h-BN), turbostratic (t-BN), rhombohedral (r-BN), monoclinic (m-BN), orthorhombic (o-BN), wurtzite (w-BN), and cubic (c-BN) phases.
Amongst the different polymorphic forms of BN hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) attract the most attention due to their stability, similarity to different phases of carbon based materials, and desirable properties.
Hexagonal boron nitride is often associated with graphite-like carbon based materials while c-BN is often associated with the diamond-like carbon structure.
The first samples of c-BN were produced from hexagonal boron nitride using high pressure and high temperature process in the presence of catalyst in 1957.

After this discovery, much more sophisticated production methods have been developed for the production of c-BN.
But, commercial availability of c-BN was not obtained up until 1969.
Since then, desirable properties of cubic boron nitride have been utilized in several different industries.

Boron nitride (BN) is a binary chemical compound, consisting of equal numbers of boron and nitrogen atoms.
The empirical formula is therefore BN.
Boron nitride is isoelectronic to the elemental forms of carbon and isomorphism occurs between the two species.
That is boron nitride possess three polymorphic forms; one analogous to diamond, one analogous to graphite and ones analogous to the fullerenes.
The diamond-like allotrope of boron nitride is one of the hardest materials known but is softer than materials such as diamond, ultrahard fullerite, and aggregated diamond nanorods.

A hexagonal boron nitride nanosheet (BNNS) is an atomic-thick 2D material that exhibits many interesting properties such as high chemical stability and excellent mechanical and thermal properties.
In Chapter One, the authors introduce two methods for the exfoliation of BNNS from hexagonal boron nitride (hBN).
Then, methodologies for the surface functionalization and nanocomposite construction are demonstrated by two BNNS based nanocomposites.
The catalytic performance of the BNNS based nanocomposites is also evaluated and discussed in detail.

Chapter two evaluates the formation of rolled hexagonal boron nitride nano-sheets (h-BN nanoscrolls) on their unique morphology, magnetic properties and applications.
Due to the high chemical and thermal stabilities, as well as atomically smooth surfaces with free of dangling bonds, hBN has been used as barriers, passivation and support layers in 2D electronic devices, to maximize the electrical and optical characterization of 2D materials.
However, there still remains a challenge in obtaining large-area and high-quality hBN film for real 2D electronic devices.
Chapter Three focuses on chemical vapor deposition (CVD), a promising method to overcome these limitations.

Chapter Four discusses how a boron doped armchair graphene ribbon has been shown by cyclic voltammetry to be a potential catalyst to replace platinum, however the reaction catalyzed was not identified.
The authors use density functional calculations to show the reaction catalyzed is likely dissociation of HO2.
Chapter Five reveals a novel and industrially feasible route to incorporate boron nitride nanoparticles (BNNPs) in radiation-shielding aerospace structural materials.

Chapter Six deals with the preparation and characterization of boron nitride nanotube (BNNT)-reinforced biopolyester matrices.
The morphology, hydrophilicity, biodegradability, cytotoxicity, thermal, mechanical, tribological and antibacterial properties of the resulting nanocomposites are discussed in detail.
Chapter Seven presents theoretical estimations regarding the compressive buckling response of single walled boron nitride nanotubes (SWBNNTs), which have a similar crystal structure as single walled carbon nanotubes (SWCNTs).

Moreover, SWBNNTs have excellent mechanical, insulating and dielectric properties.
Finally, Chapter Eight shows how the different exchange mechanisms can be distinguished and measured by studying solid films where part of the 3He is replaced by immobile Ne atoms.
The authors also show how the formation energy of vacancies and vacancy tunneling frequency can be obtained from NMR studies at high temperature.

Boron Nitride is an advanced synthetic ceramic material available in solid and powder form.
Boron Nitrides unique properties – from high heat capacity and outstanding thermal conductivity to easy machinability, lubricity, low dielectric constant and superior dielectric strength – make boron nitride a truly outstanding material.

In Boron Nitrides solid form, boron nitride is often referred to as “white graphite” because Boron Nitride has a microstructure similar to that of graphite.
However, unlike graphite, boron nitride is an excellent electrical insulator that has a higher oxidation temperature.
Boron Nitride offers high thermal conductivity and good thermal shock resistance and can be easily machined to close tolerances in virtually any shape.
After machining, Boron Nitride is ready for use without additional heat treating or firing operations.

Boron Nitride is a graphite-like, crystalline material that has light-diffusing and texture improving properties.
Boron Nitride is quite the multi-tasker as Boron Nitride can blur imperfections, add an exceptional creamy feel to products and act as a mattifying agent.

In powder makeup products (think blushers, highlighters), Boron Nitride enhances the skin feel and improves the color pay-off.
In lipsticks, Boron Nitride gives a creamy feel and a better color on the lips.

First Aid Measures of Boron Nitride:

General Measures: Remove patient from area of exposure.
Inhalation: Remove to fresh air, keep warm and quiet, give oxygen if breathing is difficult.
Seek medical attention.

Because of excellent thermal and chemical stability, boron nitride ceramics are used in high-temperature equipment and metal casting.
Boron nitride has potential use in nanotechnology.

The empirical formula of boron nitride (BN) is deceptive.
BN is not at all like other diatomic molecules such as carbon monoxide (CO) and hydrogen chloride (HCl).
Rather, Boron Nitride has much in common with carbon, whose representation as the monatomic C is also misleading.

BN, like carbon, has multiple structural forms.
BN’s most stable structure, hBN (shown), is isoelectronic with graphite and has the same hexagonal structure with similar softness and lubricant properties.
hBN can also be produced in graphene-like sheets that can be formed into nanotubes.

In contrast, cubic BN (cBN) is isoelectronic with diamond.
Boron Nitride is not quite as hard, but Boron Nitride is more thermally and chemically stable.
Boron Nitride is also much easier to make.
Unlike diamond, Boron Nitride is insoluble in metals at high temperatures, making Boron Nitride a useful abrasive and oxidation-resistant metal coating.
There is also an amorphous form (aBN), equivalent to amorphous carbon (see below).

BN is primarily a synthetic material, although a naturally occurring deposit has been reported.
Attempts to make pure BN date to the early 20th century, but commercially acceptable forms have been produced only in the past 70 years.
In a 1958 patent to the Carborundum Company (Lewiston, NY), Kenneth M. Taylor prepared molded shapes of BN by heating boric acid (H3BO3) with a metal salt of an oxyacid such as phosphate in the presence of ammonia to form a BN “mix”, which was then compressed into shape.

Today, similar methods are in use that begin with boric trioxide (B2O3) or H3BO3 and use ammonia or urea as the nitrogen source.
All synthetic methods produce a somewhat impure aBN, which is purified and converted to hBN by heating at temperatures higher than used in the synthesis.
Similarly, to the preparation of synthetic diamond, hBN is converted to cBN under high pressure and temperature.

Boron nitride (BN) is a chemical compound that is isoelectronic and isostructural to carbon with equal composition of boron and nitrogen atoms.

Cubical boron nitride (cBN) is the second hardest material known behind diamond.
Boron Nitrides abrasive properties are tremendously relevant for tools in cutting and grinding processes.
In a high pressure/high temperature (HP/HT) process, the rather soft boron nitride (BN) is transformed into the cubic crystal system, where Boron Nitride resembles the structure of diamond (Klocke and König, 2008; Heisel et al., 2014).

After transformation, Boron Nitrides hardness reaches approximately 70 GPa or 3000 HV and a thermal stability up to 2000 °C (Heisel et al., 2014; Uhlmann et al., 2013).
Furthermore, cBN is chemically inert and will not oxidize unless the temperatures exceed 1200 °C.
Currently, the most used cutting materials based on boron nitride can be classified by high cBN-containing and low cBN-containing grades.
High cBN-containing grades consist of 80 to 90% cBN in a metallic W–Co binder phase or ceramic titanium or aluminum based binder phase.

Low cBN-containing grades consist of 45 to 65% cBN and a titanium carbide or titanium nitride based ceramic binder phase (Klocke and König, 2008; Heisel et al., 2014).
Tools containing cBN are preferred for the machining of various materials such as hardened steel, with a hardness of 55 HRC to 68 HRC, sintered metals and cobalt-based superalloys (Klocke and König, 2008).
Compared to diamond, cBN has a significantly lower chemical affinity towards iron or cobalt.
Therefore, Boron Nitride shows higher wear resistance when machining materials consisting of these elements (Marinescu et al., 2006).

boron nitride, (chemical formula BN), synthetically produced crystalline compound of boron and nitrogen, an industrial ceramic material of limited but important application, principally in electrical insulators and cutting tools.
Boron Nitride is made in two crystallographic forms, hexagonal boron nitride (H-BN) and cubic boron nitride (C-BN).

H-BN is prepared by several methods, including the heating of boric oxide (B2O3) with ammonia (NH3).
Boron Nitride is a platy powder consisting, at the molecular level, of sheets of hexagonal rings that slide easily past one another.
This structure, similar to that of the carbon mineral graphite (see the Figure), makes H-BN a soft, lubricious material; unlike graphite, though, H-BN is noted for Boron Nitrides low electric conductivity and high thermal conductivity.
H-BN is frequently molded and then hot-pressed into shapes such as electrical insulators and melting crucibles.
Boron Nitride also can be applied with a liquid binder as a temperature-resistant coating for metallurgical, ceramic, or polymer processing machinery.

C-BN is most often made in the form of small crystals by subjecting H-BN to extremely high pressure (six to nine gigapascals) and temperature (1,500° to 2,000° C, or 2,730° to 3,630° F).
Boron Nitride is second only to diamond in hardness (approaching the maximum of 10 on the Mohs hardness scale) and, like synthetic diamond, is often bonded onto metallic or metallic-ceramic cutting tools for the machining of hard steels.
Owing to Boron Nitrides high oxidation temperature (above 1,900° C, or 3,450° F), Boron Nitride has a much higher working temperature than diamond (which oxidizes above 800° C, or 1,475° F).

Ingestion: Rinse mouth with water.
Do not induce vomiting.
Seek medical attention.
Never induce vomiting or give anything by mouth to an unconscious person.

Skin: Remove contaminated clothing, brush material off skin, wash affected area with soap and water.
Seek medical attention if irritation develops or persists.
Eyes: Flush eyes with lukewarm water, including under upper and lower eyelids, for at least 15 minutes.
Seek medical attention if irritation develops or persists.

Most Important Symptoms/Effects, Acute and Delayed:
May cause irritation.
See section 11 for more information.
Indication of Immediate Medical Attention and Special Treatment:
No other relevant information available.

Firefighting Measures of Boron Nitride:
Extinguishing Media: Use suitable extinguishing agent for surrounding materials and type of fire.
Unsuitable Extinguishing Media: No information available.
Specific Hazards Arising from the Material: May release toxic fumes if involved in a fire.
Special Protective Equipment and Precautions for Firefighters: Wear full face, self-contained breathing apparatus and full protective clothing.

Accidental Relase Measures of Boron Nitride:
Personal Precautions, Protective Equipment, and Emergency Procedures: Wear appropriate respiratory and protective equipment specified.
Isolate spill area and provide ventilation.
Avoid breathing dust or fume.

Avoid contact with skin and eyes.
Methods and Materials for Containment and Cleaning Up: Avoid creating dust.
Scoop or vacuum up spill using a vacuum system equipped with a high efficiency particulate air (HEPA) filtration system and place in a properly labeled closed container for further handling and disposal.
Environmental Precautions: Do not allow to enter drains or to be released to the environment.

Handling And Storages of Boron Nitride:
Precautions for Safe Handling: Avoid creating dust.
Provide adequate ventilation if dusts are created.
Avoid breathing dust or fumes.

Avoid contact with skin and eyes.
Wash thoroughly before eating or smoking.
Conditions for Safe Storage: Store in a cool, dry area.
Store material tightly sealed in properly labeled containers.
Do not store together with oxidizers.

Exposure Controls And Personal Protection of Boron Nitride:
Engineering Controls: Ensure adequate ventilation to maintain exposures below occupational limits.
Whenever possible the use of local exhaust ventilation or other engineering controls is the preferred method of controlling exposure to airborne dust and fume to meet established occupational exposure limits.
Use good housekeeping and sanitation practices.

Do not use tobacco or food in work area.
Wash thoroughly before eating or smoking.
Do not blow dust off clothing or skin with compressed air.

Individual Protection Measures, Such as Personal Protective Equipment:
Respiratory Protection: Use suitable respirator when high concentrations are present.
Eye Protection: Safety glasses
Skin Protection: Impermeable gloves, protective work clothing as necessary.

Material Advantages of Boron Nitride:

To make solid shapes, hBN powders and binders are hot-pressed in billets up to 490mm x 490mm x 410mm at pressures up to 2000 psi and temperatures up to 2000°C.
This process forms a material that is dense and easily machined and ready to use.
Boron Nitride is available in virtually any custom shape that can be machined and has unique characteristics and physical properties which make Boron Nitride valuable for solving tough problems in a wide range of industrial applications.
Excellent thermal shock resistance
High electrical resistivity – excluding aerosols, paints, and ZSBN
Low density

High thermal conductivity
Anisotropic (thermal conductance is different in different planes relative to pressing direction)
Corrosion resistant

Good chemical inertness
High temperature material
Non-wetting

High dielectric breakdown strength, >40 KV/mm
Low dielectric constant, k=4
Excellent machinability

Significance of Boron Nitride in Composites and Its Applications
Boron nitride (BN) exists in several polymorphic forms such as a-BN, h-BN, t-BN, r-BN, m-BN, o-BN, w-BN, and c-BN phases.
Among them, c-BN and h-BN are the most common ceramic powders used in composites to ensure enhanced material properties.
Cubic boron nitride (c-BN) has exceptional properties such as hardness, strength than relating with other ceramics so that are most commonly used as abrasives and in cutting tool applications.

c-BN possesses the second highest thermal conductivity after diamond and relatively low dielectric constant.
Hence pioneer preliminary research in AMCs proven substitute composites than virgin AA 6061 traditionally used for fins in heat sinks.
Moreover, poly-crystalline c-BN (PCBN) tools are most suitable for various machining tasks due to their unmatch-able mechanical properties.
h-BN also finds Boron Nitrides own unique applications where polymer composites for high temperature applications and sp 3 bonding in extreme temperature and compression conditions.

Structure and Chemistry of 2D Materials of Boron Nitride:
BNNSs can also be exfoliated in liquid phase, known as solution processing.
In 2008, Han et al. sonicated h-BN crystals in an organic solution and yielded one- to few-layer single-crystalline BN.
Subsequently, large-scale solution exfoliation of BNNSs was demonstrated using DMF as the solvent.

Liquid exfoliation can also be carried out in water without using any surfactants or organic molecules.
Choosing an appropriate solvent is crucial for exfoliating BNNSs with desired properties.
Production yield, lateral size, and number of layers can be significantly varied depending on the type of solvent used.

In addition, modifying BNNSs with functional groups can affect the interaction between the solvent and bulk BN, enhancing product quality.
Today, solution exfoliation methods are frequently carried out using mixed solvents and electric fields or microwaves to improve controllability.
Liquid exfoliation is an efficient process to prepare large amounts of BNNSs.
However, controlling the number of h-BN layers is very difficult, and sonication usually reduces the size of BNNS flakes.

Discovery of graphene and beyond
Boron nitride (BN), consisting of boron–nitrogen covalent bonds, was commonly used as a refractory material.
Isoelectronic to sp2 carbon lattice, BN was generally compared with carbon allotropes.

The cubic form of BN (c-BN) has a diamond-like crystalline arrangement and the bulk crystal of h-BN is analogous to graphite crystal.
The 2-D sheets of h-BN are the most stable and soft among Boron Nitrides polymorphs, and bonding in h-BN is similar to that in aromatic compounds, but Boron Nitrides considerably less covalency and higher ionic character make Boron Nitride one of the best proton conductors but also an electrical insulator.
Boron Nitrides thermal conductivity is the highest among all electrical insulators (Fig. 1.7).

Atomically thin h-BN sheets, also called “white graphene” can be synthesized by chemical vapor deposition (CVD) of molecular precursors, such as ammonia–borate.
Exfoliation of bulk h-BN under suitable conditions was also demonstrated for large-scale applications in coatings and cosmetics including, but not limited to, lipsticks and lip balms.
h-BN is used as a substrate to grow large-area graphene films because of Boron Nitrides low lattice mismatch with graphene (1.7%).

Nanolayers of h-BN display excellent thermal stability, chemical inertness, and high optical transparency, when compared with those of graphene.
In contrast to electronically conductive graphene, h-BN layers are insulators (band gap ~6 eV) because of the absence of the π-electrons and they show fire-retardant abilities.
The layers of h-BN have unusually high proton conduction rates and when combined with high electrical resistance, these could be useful for fuel cell applications.
Hence, inorganic analogues of graphene, such as h-BN, have paved the way to discover atomic layers of other elements with tunable properties and these include transition metal dichalogenides (TMDs) which are described next.

Porous Materials and Nanomaterials of Boron Nitride:
Boron nitride (BN) ceramics are resistant to chemical attack and molten metals, have high thermal stability in air, and have anisotropic thermal conductivity that are suitable for widespread use in the fabrication of high-temperature crucibles.
BN can exist as multiple phases, and the hexagonal BN (hBN) phase is stable at room temperature.
hBN is the low-density phase that has been widely used as a heat resistant and electrically insulating material.

The hBN phase has a direct bandgap of 5.97 eV and efficiently emits deep UV light.10,42,43 hBN is isostructural to graphite, displaying expected anisotropic mechanical properties, such as facile cleavage and low hardness.
hBN has greater chemical and thermal stabilities than GaN and AlN, which also hold potential as wide-bandgap materials.
BN has two other forms: one isostructural to the cubic zinc blende structure and the other hexagonal and wurtzite-like.
The two forms, referred to as cBN and wBN, are stable at high pressures and temperatures, but can exist at room temperature in a metastable state.

A turbostratic phase, tBN, has also been characterized.
This structure is semicrystalline and lacks ordering in the third dimension, as Boron Nitride is analogous to turbostratic carbon black.
BN offers the lowest density (2.26 g cm−1) among nonoxide ceramics, and introducing porosity into such materials can benefit high-temperature composites and catalyst supports.
Furthermore, BN ceramics hold potential for applications in corrosive environments that are not suited for oxide ceramics.

Porous BN materials, which can be ordered47, or disordered, are most commonly synthesized using hard templates, such as carbon or silica, and advancing porous BN materials requires further development of synthetic techniques.
Fibers, coatings, and foams cannot be prepared from BN powders, as they are with Si3N4 and SiC.
In the past decade, several synthetic avenues have been explored.

Porous BN has been prepared from polymeric precursors as well-crystallized, regularly grained powder.
A mesoporous BN ceramic comprised of hBN crystallites with sizes between 24 and 45 Å has been synthesized using chemical vapor deposition and mesoporous silica as a hard template.
Another mesoporous hBN with low ordering of the porous texture has been synthesized using carbon templating.

A double nanocasting process via a carbonaceous template as a medium starting from zeolite Y (Faujasite) produced an amorphous BN with bimodal micro- and mesoporosity and a surface area of 570 m2 g−1.
The amorphous nature is attributed to the nanometric confinement within the zeolite pores.
This synthetic process involves coupling chemical vapor deposition and polymeric-derived ceramic routes.

In yet another study, mesoporous BN was obtained using a polymerization method in the presence of surfactants.
A method for acquiring mesoporous tBN with interesting cathodoluminescent behavior has been developed.

Many synthetic techniques of BN employ borane-based molecular precursors that are toxic and expensive.
In an effort to avoid these starting materials, amorphous BN was synthesized by placing B2O3 in a graphite crucible, covering with activated carbon, and heating at 1580 °C under a stream of nitrogen.
An intermediate BxCyNz undergoes further heat treatment in air at 600 °C to produce pure BN with a Brunauer–Emmett–Teller (BET) surface area of 167.8 m2 g−1 and an average pore radius of 3.216 nm.

Mesoporous BN can be synthesized by polymerization of a molecular BN precursor, tri(methylamino)borazine (MAB), in a solution of cationic surfactant, cetyl-trimethylammonium bromide (CTAB).
MAB is introduced into a solution of CTAB and then heated at 120 °C to induce polycondensation reactions resulting in a gel.
The solvent is eliminated in vacuo and ceramization is carried out with ammonia at 1000 °C, followed by further thermal treatment.
The resulting BN material has a surface area of 800 m2 g−1 and pores that are 6.0 nm in diameter, with a mesoporosity that is retained up to 1600 °C.
Within the last 10 years, BN with pore diameters ranging from 2.552 to 25 nm51 have been reported.

Abrasives and Abrasive Tools of Boron Nitride:
Boron nitride (B4N) is a crystalline material synthesized from boric anhydride and pure low-ash carbon material in electric furnaces at 1,800°C− 2,500°C (3,300°F–4,500°F).
Boron Nitrides hardness is about 3,800 HV and Boron Nitride has a good cutting ability in the form of loose grains.
However, a low oxidation temperature, of 430°C (800°F), prevents the use of boron nitride for grinding wheels.
Boron Nitride is used exclusively in the form of pastes for sintered carbide lapping, or as grit for sandblasting.

Amorphous form (a-BN) of Boron Nitride:
The amorphous form of boron nitride (a-BN) is non-crystalline, lacking any long-distance regularity in the arrangement of Boron Nitrides atoms.
Boron Nitride is analogous to amorphous carbon.

All other forms of boron nitride are crystalline.

Hexagonal form (h-BN) of Boron Nitride:
The most stable crystalline form is the hexagonal one, also called h-BN, α-BN, g-BN, and graphitic boron nitride.
Hexagonal boron nitride (point group = D6h; space group = P63/mmc) has a layered structure similar to graphite.
Within each layer, boron and nitrogen atoms are bound by strong covalent bonds, whereas the layers are held together by weak van der Waals forces.
The interlayer "registry" of these sheets differs, however, from the pattern seen for graphite, because the atoms are eclipsed, with boron atoms lying over and above nitrogen atoms.

This registry reflects the local polarity of the B–N bonds, as well as interlayer N-donor/B-acceptor characteristics.
Likewise, many metastable forms consisting of differently stacked polytypes exist.
Therefore, h-BN and graphite are very close neighbors, and the material can accommodate carbon as a substituent element to form BNCs.
BC6N hybrids have been synthesized, where carbon substitutes for some B and N atoms.

Cubic form (c-BN) of Boron Nitride:
Cubic boron nitride has a crystal structure analogous to that of diamond.
Consistent with diamond being less stable than graphite, the cubic form is less stable than the hexagonal form, but the conversion rate between the two is negligible at room temperature, as Boron Nitride is for diamond.
The cubic form has the sphalerite crystal structure, the same as that of diamond (with ordered B and N atoms), and is also called β-BN or c-BN.

Wurtzite form (w-BN) of Boron Nitride:
The wurtzite form of boron nitride (w-BN; point group = C6v; space group = P63mc) has the same structure as lonsdaleite, a rare hexagonal polymorph of carbon.
As in the cubic form, the boron and nitrogen atoms are grouped into tetrahedra.

In the wurtzite form, the boron and nitrogen atoms are grouped into 6-membered rings.
In the cubic form all rings are in the chair configuration, whereas in w-BN the rings between 'layers' are in boat configuration.
Earlier optimistic reports predicted that the wurtzite form was very s
Boron nitride
arlacel 985 brij 72 brij S2 hetoxol STA-2 lipocol S-2 nikkol BS-2 2- octadecoxyethanol (peg-2) peg-2 stearyl ether poly(oxy-1,2-ethanediyl), .alpha.-octadecyl-.omega.-hydroxy- (2 mol EO average molar ratio) polyethylene glycol (2) stearyl ether polyoxyethylene (2) stearyl alcohol ether polyoxyethylene (2) stearyl ether tego alkanol S 2 P cas:9005-00-9
BRB SILANIL 118
BRB Silanil 118 представляет собой метилтриметоксисилан от BRB International BV.
BRB Silanil 118 можно применять в чистом виде, в разбавленном виде или как часть готового продукта, например. поверхностное покрытие натуральных камней или других строительных материалов с образованием силикагелеподобного связующего (диоксида кремния) для повышения прочности основания.
BRB Silanil 118 легко гидролизуется водой и влагой.

КАС: 1185-55-3
МФ: C4H12O3Si
МВт: 136,22
ЭИНЭКС: 214-685-0

Синонимы
метилтриметоксисилан;Метилтритоксисиликан;Силан, метилтриметокси-;силане-163;триметоксиметилсилан;Юнион карбид а-163;Юнионкарбидеа-163;Z 6070;Метилтриметоксисилан
;Триметокси(метил)силан;1185-55-3;Триметоксиметилсилан;Силан, триметоксиметил-;Юнион-карбид A-163;СИЛАН, METHYLTRIMETHOXY-;Z 6070;метилтриметоксисилан;0HI0D71MCI;DTXSID3027370;MFCD00008342;NSC-93883;Силан A - 163;Dynasylan MTMS;метилтриметоксисилан;EINECS 214-685-0;CM9100;NSC 93883;25498-02-6;UNII-0HI0D71MCI;метилтриметоксисилан;метилтриметоксисилан;GLASCA B;триметоксиметилсилан;EC 214-685- 0,CH3Si(OCH3)3;SILQUEST A 1630;Триметоксиметилсилан, 95%;Триметоксиметилсилан, 98%;Метилтриметоксисилан (MTM);SCHEMBL35033;(TRIMETHOXYSILYL)МЕТАН;DTXCID407370;CHEMBL3182654;BFXIKLCIZHOAAZ-UHFFFAOY SA-;NSC93883;WLN: 1O-SI -1&O1&O1;МЕТИЛТРИМЕТОКСИСИЛАН [INCI];Tox21_200453;MFCD00081866;AKOS008901240;NCGC00248627-01;NCGC00258007-01;LS-13028;CAS-1185-55-3;M0660;NS0004480 8;E75871;EN300-218612;ТРИМЕТОКСИД МЕТИЛКРЕМНИЯ (MESI(OME )3);Триметоксиметилсилан, чистый, >=98,0% (GC);Триметоксиметилсилан, степень осаждения, >=98%;A804054;DOW CORNING 7-5300 ПЛЕНОЧНОЕ ПОКРЫТИЕ;J-003846;J-525101
;DOW CORNING (R) 7-5310 ПЛЕНОЧНОЕ ОСНОВАНИЕ;Q21099559;InChI=1/C4H12O3Si/c1-5-8(4,6-2)7-3/h1-4H3
;2-(1-МЕТИЛГИДРАЗИНО)-4,5-ДИГИДРО-1H-ИМИДАЗОЛГИДРОБРОМИД;25498-03-7

Силанольные группы обладают высокой реакционной способностью и готовы образовывать силоксановые связи (Si-O-Si) в результа��е последующей реакции конденсации.
Триметокси(метил)силан представляет собой кремнийорганическое соединение.
BRB Silanil 118 можно использовать в качестве сшивателя при получении полисилоксановых полимеров.
BRB Silanil 118 также можно использовать в качестве поглотителя кислоты, используемого при образовании замещенных азуленов из алленилсиланов и тетрафторбората тропилия.
BRB Silanil 118 также можно использовать в качестве предшественника для синтеза гибких аэрогелей кремнезема.
BRB Silanil 118 представляет собой кремнийорганическое соединение, широко используемое в качестве прекурсора для получения материалов на основе диоксида кремния, которое находит применение в различных областях.
В частности, в молекулярной сборке, связывании наностроительных блоков и селективном синтезе олигосилоксановых соединений.
BRB Silanil 118 также можно использовать в качестве сшивателя при синтезе полисилоксановых полимеров.
BRB Silanil 118 представляет собой кремнийорганическое соединение формулы CH3Si(OCH3)3.
BRB Silanil 118 представляет собой бесцветную сыпучую жидкость.
BRB Silanil 118 представляет собой сшивающий агент при получении полисилоксановых полимеров.

BRB Силанил 118 Химические свойства
Точка плавления: <-70°C
Точка кипения: 102-104 °С (лит.)
Плотность: 0,955 г/мл при 25 °C (лит.)
Давление пара: 2990 гПа (20 °C)
Показатель преломления: n20/D 1,371(лит.)
Фп: 52 °F
Температура хранения: Хранить при температуре ниже +30°C.
Форма: жидкость
Цвет: бесцветный
Удельный вес: 0,955
Растворимость в воде: разлагается
Гидролитическая чувствительность 7: медленно реагирует с влагой/водой.
Чувствительный: чувствительный к влаге
РН: 1736151
Стабильность: Стабилен, но чувствителен к влаге. Легковоспламеняющиеся.
Несовместим с водой, сильными кислотами, сильными окислителями.
InChIKey: BFXIKLCIZHOAAZ-UHFFFAOYSA-N
LogP: -2,4-0,7 при 20 ℃
Ссылка на базу данных CAS: 1185-55-3 (ссылка на базу данных CAS)
Справочный материал NIST по химии: силан, триметоксиметил-(1185-55-3).
Система регистрации веществ EPA: BRB Silanil 118 (1185-55-3)

Использование
BRB Silanil 118 в сочетании с нитратом железа резко изменил структуру пор.
В качестве сшивающего агента для силиконовой резины RTV и средства для обработки поверхности стекловолокна, а также для взаимодействия с агентами за пределами ламинированных изделий из армированного пластика с целью улучшения механической прочности, термостойкости и влагостойкости.
BRB Silanil 118 используется в качестве поглотителя кислоты, например, при образовании замещенных азуленов из алленилсиланов и тетрафторбората тропилия.
BRB Silanil 118 — это реагент, используемый при синтезе электронных материалов и металлоорганических соединений.
Используется при покрытии поверхностей из углеродного волокна, а также при синтезе нанокомпозитов.

BRB Silanil 118 хорошо смешивается со стандартными органическими растворителями, такими как спирты, углеводороды и ацетон.
BRB Silanil 118 практически нерастворим в нейтральной воде и медленно реагирует с образованием силанолов и продуктов высшей конденсации.
Добавление гидролитического катализатора (неорганических/органических кислот, аммиака или аминов) существенно ускоряет гидролиз BRB Silanil 118.
В качестве модификатора наполнителя BRB Silanil 118 используется в основном для придания водоотталкивающих свойств широкому спектру поверхностей и материалов (например, минеральных наполнителей, пигментов, стекла, картона).
BRB Silanil 118 можно использовать в чистом виде или в растворе для обработки наполнителей с использованием подходящего смесительного оборудования.
BRB Silanil 118 может потребоваться для предварительной обработки субстрата водой и/или катализатором.
BRB Silanil 118 также используется в производстве силиконовых смол и силиконового каучука конденсационного отверждения, используемого в качестве важного компонента в золь-гель системах.
BRB Silanil 118, один из наиболее распространенных алкокси-сшивающих агентов, обладает высокой реакционной способностью, которой предшествует нуклеофильное замещение, обычно в присутствии кислотных или основных катализаторов.

Подготовка
BRB Silanil 118 обычно получают из метилтрихлорсилана и метанола:
CH3SiCl3 + 3 CH3OH → CH3Si(OCH3)3 + 3 HCl
BRB SILANIL 258

ОПИСАНИЕ:
BRB Silanil 258 производства BRB International BV представляет собой усилитель адгезии на основе эпоксисилана, 3-глицидоксипропилтриметоксисилана.
Обладает как органической, так и неорганической реакционной способностью, что позволяет ему реагировать или связывать органические полимеры и неорганические поверхности.
Предназначен для улучшения сцепления полимерного покрытия со стеклом.
BRB Silanil 258 рекомендуется в дозировке 0,5-2,0 частей на миллион для улучшения адгезии без грунтовки.


ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА BRB SILANIL 258:
Тип продукта: Усилители адгезии / связующие агенты > Органофункциональные силаны
Химический состав: 3-глицидоксипропилтриметоксисилан.
Номер КАС: 2530-83-8
Физическая форма: жидкость
Внешний вид: ясно
Статус продукта: КОММЕРЧЕСКИЙ
Приложения/ Рекомендуется для:
Покрытия
Рынки покрытий > Прочие отрасли > Покрытия для стекла


КАК РАБОТАЕТ BRB SILANIL 258?:
Силаны представляют собой двухступенчатые химические вещества, большинство из которых являются мономерами.
При хранении в среде инертного газа (N2) силаны будут нереакционноспособным мономером в форме FG-Si-OR, где -R или Akyl является нереакционноспособной группой.
Однако силаны могут быть гидролизованы влагой, в которой -Si-OR будет заменен на -Si-OH, называемый «силанольной» группой, и будет готов к реакции или связыванию с подложками или наполнителями.
Превращение -Si-OR в -Si-OH называется «гидролизом», который является 1 -й стадией реакции силана.

2-я стадия реакции – «Конденсация».
После гидролиза силан содержит «силанольную» группу или Si-OH, которая очень реакционноспособна и готова к связыванию.
к подложкам или наполнителям.
Эта стадия склеивания называется «конденсацией», которая зависит от усилителя адгезии к подложке или связующего/диспергирующего агента к наполнителям.


ПРЕИМУЩЕСТВА BRB SILANIL 258 В КРАСКАХ И ПОКРЫТИЯХ:
Повышение адгезии к подложке

Увеличьте плотность сшивания смолы, что повлияло на:
Увеличить жесткость
Повышение устойчивости к царапанью*
Улучшить устойчивость к растворителям, кислотам, щелочам
Улучшить водостойкость
Повышение стойкости к истиранию или истиранию

Изменить свойства смолы:
От термопластов до термореактивных материалов

Дисперсные пигменты/наполнители:
Улучшить постоянство вязкости и иметь более низкую вязкость
Преимущество в снижении содержания пигментов в рецептуре

Связывание пигментов/наполнителей:
Выступает в качестве связующего агента для пигментов/наполнителей для улучшения очищающей способности.
BREOX TB 150
BREOX TB 150 Chemical Description: Polyalklylene glycol high viscosity Excellent lubricity in every application: Breox TB 150 TB Outstanding performance, minimal friction, excellent thermal and oxidative stability – there are many reasons why the Breox TB 150 product range is ideally suited as a lubricant. Breox TB 150 belongs to the family of synthetic lubricants which are based on polyalkylene glycol (PAG). These are generally used when operating conditions go above and beyond the performance of other synthetic and mineral-based oils. These polyalkylene glycol-based oils ensure that processes run smoothly at all types of industrial plants. An important factor, among others, is the viscosity the lubricants have. With Breox TB 150 TB 120/150/195, BTC offers a range of water-soluble PAGs featuring various viscosity levels. “The Breox TB 150 TB series comprises the water-soluble products made from Breox TB 150 75W. Formulators thus save one step in the process and the products are easier to use,” says Gabriele Möller, Head of Business Management Europe at BTC for the Fuel & Lubricant Solutions division. Sustainable and biostable Using base oils from the Breox TB 150 series allows formulators to produce their own specific end products. Proven applications include the use as a thickening agent in fire-resistant hydraulic fluids: The Breox TB 150 types TB 120/150/195 all display excellent thickening properties, they are very effective when it comes to corrosion protection and they reduce the risk of fire. However, above all, the oil is particularly compatible for use with hoses and seals, which in turn reduces the risk of wear. “Lubricants with Breox TB 150 are very stable and thus do not have to be replaced as often as conventional ones,” says Möller. “This provides the oils with a very high degree of sustainability, especially since they are also biostable.” Use as a polymer in hardening agents Another possible application: Breox TB 150 TB 120/150/195 is also suited for use as a polymer in hardening agents, hence for surface treatment, for example in metal processing. This is where Breox TB 150 lubricants can make the best of their water solubility. By increasing or decreasing the concentration, the ideal formulation for any type of application can be created. “Breox TB 150 provides the end product with excellent lubricity in all of these cases, in every concentration and different viscosities,” Möller summarises. Additional information The following products are included in the Breox TB 150 TB series: Breox TB 150 TB 120 60% water-soluble solution of Breox 75 W 55000 viscosity of 2,600 mm²/s at 40°C Breox TB 150 TB 150 60% water-soluble solution of Breox 75 W 18000 viscosity of 2,850 mm²/s at 40°C Breox TB 150 TB 195 60% water-soluble solution of Breox 75 W 18000 viscosity of 850 mm²/s at 40°C The BREOX B-Series includes a range of mono-initiated propylene oxide homopolymers manufactured to have a viscosity range from 15 to 335 cSt at 40ºC. These products are widely used in the manufacture and formulation of various water insoluble lubricants such as Gear and calender lubricants Compressor lubricants Formulations for metal working Textile lubricants Product information from BASF. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Breox TB 150 high-viscosity PAGs are linear random polymers of EO and PO while the Pluracol® high-viscosity PAGs are branched random polymers of EO and PO. Base stocks with kinematic viscosities at 40°C from 270 to 65,000 cSt are available. The high viscosity and low volatility of these products make them suitable for high-temperature lubrication. Applications include the formulation of water-based fire resistant hydraulic fluids and quenchants. Aqueous solutions of Breox TB 150 and Pluracol® high viscosity PAGs are available for ease of handling under the Breox TB 150 series. Polyalkylene Glycols (PAGs) Polyalkylene glycol base stocks are used in many lubricant applications including gear oils, fire resistant hydraulic fluids, compressor oils, quenchants, metalworking fluids, aluminum processing fluids, chain and textile lubricants. Their high thermal and oxidative stability, excellent lubricity, high film strength / load capacity, anti-wear properties, micropitting resistance, and shear stability make them an ideal choice as base stock for formulating high-performance industrial lubricants. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Chemical Description: Polyalklylene glycol high viscosity Excellent lubricity in every application: Breox TB 150 TB Outstanding performance, minimal friction, excellent thermal and oxidative stability – there are many reasons why the Breox TB 150 product range is ideally suited as a lubricant. Breox TB 150 belongs to the family of synthetic lubricants which are based on polyalkylene glycol (PAG). These are generally used when operating conditions go above and beyond the performance of other synthetic and mineral-based oils. These polyalkylene glycol-based oils ensure that processes run smoothly at all types of industrial plants. An important factor, among others, is the viscosity the lubricants have. With Breox TB 150 TB 120/150/195, BTC offers a range of water-soluble PAGs featuring various viscosity levels. “The Breox TB 150 TB series comprises the water-soluble products made from Breox TB 150 75W. Formulators thus save one step in the process and the products are easier to use,” says Gabriele Möller, Head of Business Management Europe at BTC for the Fuel & Lubricant Solutions division. Sustainable and biostable Using base oils from the Breox TB 150 series allows formulators to produce their own specific end products. Proven applications include the use as a thickening agent in fire-resistant hydraulic fluids: The Breox TB 150 types TB 120/150/195 all display excellent thickening properties, they are very effective when it comes to corrosion protection and they reduce the risk of fire. However, above all, the oil is particularly compatible for use with hoses and seals, which in turn reduces the risk of wear. “Lubricants with Breox TB 150 are very stable and thus do not have to be replaced as often as conventional ones,” says Möller. “This provides the oils with a very high degree of sustainability, especially since they are also biostable.” Use as a polymer in hardening agents Another possible application: Breox TB 150 TB 120/150/195 is also suited for use as a polymer in hardening agents, hence for surface treatment, for example in metal processing. This is where Breox TB 150 lubricants can make the best of their water solubility. By increasing or decreasing the concentration, the ideal formulation for any type of application can be created. “Breox TB 150 provides the end product with excellent lubricity in all of these cases, in every concentration and different viscosities,” Möller summarises. Additional information The following products are included in the Breox TB 150 TB series: Breox TB 150 TB 120 60% water-soluble solution of Breox 75 W 55000 viscosity of 2,600 mm²/s at 40°C Breox TB 150 TB 150 60% water-soluble solution of Breox 75 W 18000 viscosity of 2,850 mm²/s at 40°C Breox TB 150 TB 195 60% water-soluble solution of Breox 75 W 18000 viscosity of 850 mm²/s at 40°C The BREOX B-Series includes a range of mono-initiated propylene oxide homopolymers manufactured to have a viscosity range from 15 to 335 cSt at 40ºC. These products are widely used in the manufacture and formulation of various water insoluble lubricants such as Gear and calender lubricants Compressor lubricants Formulations for metal working Textile lubricants Product information from BASF. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Breox TB 150 high-viscosity PAGs are linear random polymers of EO and PO while the Pluracol® high-viscosity PAGs are branched random polymers of EO and PO. Base stocks with kinematic viscosities at 40°C from 270 to 65,000 cSt are available. The high viscosity and low volatility of these products make them suitable for high-temperature lubrication. Applications include the formulation of water-based fire resistant hydraulic fluids and quenchants. Aqueous solutions of Breox TB 150 and Pluracol® high viscosity PAGs are available for ease of handling under the Breox TB 150 series. Polyalkylene Glycols (PAGs) Polyalkylene glycol base stocks are used in many lubricant applications including gear oils, fire resistant hydraulic fluids, compressor oils, quenchants, metalworking fluids, aluminum processing fluids, chain and textile lubricants. Their high thermal and oxidative stability, excellent lubricity, high film strength / load capacity, anti-wear properties, micropitting resistance, and shear stability make them an ideal choice as base stock for formulating high-performance industrial lubricants. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Chemical Description: Polyalklylene glycol high viscosity Excellent lubricity in every application: Breox TB 150 TB Outstanding performance, minimal friction, excellent thermal and oxidative stability – there are many reasons why the Breox TB 150 product range is ideally suited as a lubricant. Breox TB 150 belongs to the family of synthetic lubricants which are based on polyalkylene glycol (PAG). These are generally used when operating conditions go above and beyond the performance of other synthetic and mineral-based oils. These polyalkylene glycol-based oils ensure that processes run smoothly at all types of industrial plants. An important factor, among others, is the viscosity the lubricants have. With Breox TB 150 TB 120/150/195, BTC offers a range of water-soluble PAGs featuring various viscosity levels. “The Breox TB 150 TB series comprises the water-soluble products made from Breox TB 150 75W. Formulators thus save one step in the process and the products are easier to use,” says Gabriele Möller, Head of Business Management Europe at BTC for the Fuel & Lubricant Solutions division. Sustainable and biostable Using base oils from the Breox TB 150 series allows formulators to produce their own specific end products. Proven applications include the use as a thickening agent in fire-resistant hydraulic fluids: The Breox TB 150 types TB 120/150/195 all display excellent thickening properties, they are very effective when it comes to corrosion protection and they reduce the risk of fire. However, above all, the oil is particularly compatible for use with hoses and seals, which in turn reduces the risk of wear. “Lubricants with Breox TB 150 are very stable and thus do not have to be replaced as often as conventional ones,” says Möller. “This provides the oils with a very high degree of sustainability, especially since they are also biostable.” Use as a polymer in hardening agents Another possible application: Breox TB 150 TB 120/150/195 is also suited for use as a polymer in hardening agents, hence for surface treatment, for example in metal processing. This is where Breox TB 150 lubricants can make the best of their water solubility. By increasing or decreasing the concentration, the ideal formulation for any type of application can be created. “Breox TB 150 provides the end product with excellent lubricity in all of these cases, in every concentration and different viscosities,” Möller summarises. Additional information The following products are included in the Breox TB 150 TB series: Breox TB 150 TB 120 60% water-soluble solution of Breox 75 W 55000 viscosity of 2,600 mm²/s at 40°C Breox TB 150 TB 150 60% water-soluble solution of Breox 75 W 18000 viscosity of 2,850 mm²/s at 40°C Breox TB 150 TB 195 60% water-soluble solution of Breox 75 W 18000 viscosity of 850 mm²/s at 40°C The BREOX B-Series includes a range of mono-initiated propylene oxide homopolymers manufactured to have a viscosity range from 15 to 335 cSt at 40ºC. These products are widely used in the manufacture and formulation of various water insoluble lubricants such as Gear and calender lubricants Compressor lubricants Formulations for metal working Textile lubricants Product information from BASF. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Breox TB 150 high-viscosity PAGs are linear random polymers of EO and PO while the Pluracol® high-viscosity PAGs are branched random polymers of EO and PO. Base stocks with kinematic viscosities at 40°C from 270 to 65,000 cSt are available. The high viscosity and low volatility of these products make them suitable for high-temperature lubrication. Applications include the formulation of water-based fire resistant hydraulic fluids and quenchants. Aqueous solutions of Breox TB 150 and Pluracol® high viscosity PAGs are available for ease of handling under the Breox TB 150 series. Polyalkylene Glycols (PAGs) Polyalkylene glycol base stocks are used in many lubricant applications including gear oils, fire resistant hydraulic fluids, compressor oils, quenchants, metalworking fluids, aluminum processing fluids, chain and textile lubricants. Their high thermal and oxidative stability, excellent lubricity, high film strength / load capacity, anti-wear properties, micropitting resistance, and shear stability make them an ideal choice as base stock for formulating high-performance industrial lubricants. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Chemical Description: Polyalklylene glycol high viscosity Excellent lubricity in every application: Breox TB 150 TB Outstanding performance, minimal friction, excellent thermal and oxidative stability – there are many reasons why the Breox TB 150 product range is ideally suited as a lubricant. Breox TB 150 belongs to the family of synthetic lubricants which are based on polyalkylene glycol (PAG). These are generally used when operating conditions go above and beyond the performance of other synthetic and mineral-based oils. These polyalkylene glycol-based oils ensure that processes run smoothly at all types of industrial plants. An important factor, among others, is the viscosity the lubricants have. With Breox TB 150 TB 120/150/195, BTC offers a range of water-soluble PAGs featuring various viscosity levels. “The Breox TB 150 TB series comprises the water-soluble products made from Breox TB 150 75W. Formulators thus save one step in the process and the products are easier to use,” says Gabriele Möller, Head of Business Management Europe at BTC for the Fuel & Lubricant Solutions division. Sustainable and biostable Using base oils from the Breox TB 150 series allows formulators to produce their own specific end products. Proven applications include the use as a thickening agent in fire-resistant hydraulic fluids: The Breox TB 150 types TB 120/150/195 all display excellent thickening properties, they are very effective when it comes to corrosion protection and they reduce the risk of fire. However, above all, the oil is particularly compatible for use with hoses and seals, which in turn reduces the risk of wear. “Lubricants with Breox TB 150 are very stable and thus do not have to be replaced as often as conventional ones,” says Möller. “This provides the oils with a very high degree of sustainability, especially since they are also biostable.” Use as a polymer in hardening agents Another possible application: Breox TB 150 TB 120/150/195 is also suited for use as a polymer in hardening agents, hence for surface treatment, for example in metal processing. This is where Breox TB 150 lubricants can make the best of their water solubility. By increasing or decreasing the concentration, the ideal formulation for any type of application can be created. “Breox TB 150 provides the end product with excellent lubricity in all of these cases, in every concentration and different viscosities,” Möller summarises. Additional information The following products are included in the Breox TB 150 TB series: Breox TB 150 TB 120 60% water-soluble solution of Breox 75 W 55000 viscosity of 2,600 mm²/s at 40°C Breox TB 150 TB 150 60% water-soluble solution of Breox 75 W 18000 viscosity of 2,850 mm²/s at 40°C Breox TB 150 TB 195 60% water-soluble solution of Breox 75 W 18000 viscosity of 850 mm²/s at 40°C The BREOX B-Series includes a range of mono-initiated propylene oxide homopolymers manufactured to have a viscosity range from 15 to 335 cSt at 40ºC. These products are widely used in the manufacture and formulation of various water insoluble lubricants such as Gear and calender lubricants Compressor lubricants Formulations for metal working Textile lubricants Product information from BASF. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide. Breox TB 150 high-viscosity PAGs are linear random polymers of EO and PO while the Pluracol® high-viscosity PAGs are branched random polymers of EO and PO. Base stocks with kinematic viscosities at 40°C from 270 to 65,000 cSt are available. The high viscosity and low volatility of these products make them suitable for high-temperature lubrication. Applications include the formulation of water-based fire resistant hydraulic fluids and quenchants. Aqueous solutions of Breox TB 150 and Pluracol® high viscosity PAGs are available for ease of handling under the Breox TB 150 series. Polyalkylene Glycols (PAGs) Polyalkylene glycol base stocks are used in many lubricant applications including gear oils, fire resistant hydraulic fluids, compressor oils, quenchants, metalworking fluids, aluminum processing fluids, chain and textile lubricants. Their high thermal and oxidative stability, excellent lubricity, high film strength / load capacity, anti-wear properties, micropitting resistance, and shear stability make them an ideal choice as base stock for formulating high-performance industrial lubricants. The BASF range of polyalkylene glycols are marketed under the Breox TB 150, Plurasafe® and Pluracol® brands. The range includes both linear and branched polymers of alkylene oxide.
BRIJ S 2
2- octadecoxyethanol (peg-25) peg-25 stearyl ether poly(oxy-1,2-ethanediyl), .alpha.-octadecyl-.omega.-hydroxy- (25 mol EO average molar ratio) polyethylene glycol (25) stearyl ether polyoxyethylene (25) stearyl alcohol ether polyoxyethylene (25) stearyl ether CAS # 9005-00-9
BRIJ S 20
Brilliant Blue FCF; Acid Blue 9; FD&C Blue No. 1; Erioglaucine disodium salt CAS NO : 3844-45-9
Brilliant Blue FCF
BROMOCHLOROPHENE, N° CAS : 15435-29-7, Nom INCI : BROMOCHLOROPHENE, Nom chimique : 2,2'-Methylenebis(6-bromo-4-chlorophenol), N° EINECS/ELINCS : 239-446-8 Classification : Règlementé, Conservateur, La concentration maximale autorisée dans les préparations cosmétiques prêtes à l'emploi est de 0,1 %. Ses fonctions (INCI) : Antimicrobien : Aide à ralentir la croissance de micro-organismes sur la peau et s'oppose au développement des microbes. Déodorant : Réduit ou masque les odeurs corporelles désagréables .Conservateur : Inhibe le développement des micro-organismes dans les produits cosmétiques.
BROMOCHLOROPHENE
2-BROMO-2-NITRO-1,3-PROPANEDIOL; 2-Bronopol; Bronosol; Bronopol; Onyxide 500; Beta-Bromo-Beta-nitrotrimethyleneglycol; 2-Bromo-2-nitropropan-1,3-diol; Bronidiol; Bronocot; bronopol; Bronopolu; Bronotak; Lexgard bronopol CAS NO:52-51-7
BRONIDOX L
Бронидокс L — почти бесцветный, прозрачный жидкий консервант, используемый в препаратах поверхностно-активных веществ и широком спектре косметических смываемых средств.
Бронидокс L представляет собой противомикробное химическое соединение.


Номер CAS: 30007-47-7
Номер ЕС: 250-001-7
Номер леев: MFCD00101855
INCI: пропиленгликоль (и) 5-бром-5-нитро-1,3-диоксан.
Молекулярная формула: C4H6BrNO4.


Бронидокс L действует как консервант.
Бронидокс L представляет собой химическое соединение 5-бром-5-нитро-1,3-диоксан.
Бронидокс L представляет собой противомикробное химическое соединение.


Бронидокс L вызывает ингибирование активности ферментов бактерий.
Бронидокс L вызывает коррозию металлов.
Бронидокс L пригоден для использования в препаратах поверхностно-активных веществ и широком спектре косметических смываемых средств.


Бронидокс L стабилен при температуре до 40°C и диапазоне pH 5-8.
Бронидокс Л проявляет широкий спектр активности в отношении бактерий и грибков.
Благодаря хорошей совместимости с другим косметическим сырьем Бронидокс Л можно комбинировать и с другими косметическими консервантами.


Бронидокс L рекомендуется использовать в составе средств для ванн и душа, средств для мытья волос и рук.
Бронидокс L — почти бесцветный, прозрачный жидкий консервант, используемый в препаратах поверхностно-активных веществ и широком спектре косметических смываемых средств.
Бронидокс Л стабилен до 40°С и не подвержен изменениям в препаратах с диапазоном pH от 5 до 8.


Бронидокс L представляет собой сухое вещество высокой чистоты, имеющее ≥99,5% по стандартному анализу контроля качества газовой хроматографии (оригинальный производитель).
Бронидокс Л — единственный продукт.
Бронидокс L медленно растворяется в водных буферах.


Бронидокс L можно вводить на любой стадии приготовления жидкого буфера/композиции.
Учитывая более медленную растворимость, мы рекомендуем добавлять Бронидокс Л в самом начале, т.е. сразу в воду, а затем
продолжите работу с другими компонентами буфера/препарата.


Дайте возможность перемешиваться в течение не менее 2 часов, что достаточно для полного растворения (~20 °C) БНД при максимально рекомендуемом уровне.
концентрация 0,12% (стабилизированные жидкие белковые концентраты, стабильные готовые к использованию составы тест-компонентов).
Бронидокс Л — почти бесцветная прозрачная жидкость.


Бронидокс Л подходит для консервации препаратов ПАВ, которые смываются после нанесения и не содержат вторичных аминов.
Бронидокс L принадлежит к классу органических соединений, известных как 1,3-диоксаны.
Это органические соединения, содержащие 1,3-диоксан, алифатическое шестичленное кольцо с двумя атомами кислорода в положениях кольца 1 и 3.


Бронидокс L представляет собой броморганический радикал, который является нитробромпроизводным диоксана.
Бронидокс L вызывает коррозию металлов.
Температура плавления Бронидокс Л составляет 60°С.


Бронидокс L представляет собой циклический эфир группы молекул, известных как -оксаны.
Это название путают с очень похожим обозначением, используемым для многих силиконов: полидимтилсилоксан.
Храните контейнер Бронидокс L плотно закрытым в сухом и хорошо проветриваемом месте.


Бронидокс L представляет собой броморганический препарат.
Бронидокс L является производным нитробромдиоксана.
Бронидокс L вызывает коррозию металлов.


Бронидокс Л — белое твердое вещество со слабым запахом.
Бронидокс L представляет собой броморганический радикал, который является нитробромпроизводным диоксана.
Бронидокс L вызывает коррозию металлов.


Бронидокс L зарегистрирован в соответствии с Регламентом REACH и производится и/или импортируется в Европейскую экономическую зону в объеме от ≥ 10 до < 100 тонн в год.
Бронидокс Л — химическое соединение, проявляющее антимикробную активность в отношении грамотрицательных и грамположительных бактерий, дрожжей и грибов.


Бронидокс L способен способствовать окислению тиолов незаменимых белков, вызывая ингибирование активности ферментов, что приводит к ингибированию роста микроорганизмов.
Бронидокс L, также известный как 5-бром-5-нитро-1,3-диоксан, проявляет антимикробные свойства в отношении широкого спектра микроорганизмов, включая грамотрицательные и грамположительные бактерии, дрожжи и грибы.


Бронидокс L обычно используется в качестве стабилизатора и консерванта в биологических молекулах и растворах, таких как антитела и антисыворотки. Бронидокс L находит применение в смываемой косметике, где служит консервантом.
Бронидокс L представляет собой белое твердое вещество.


Бронидокс L, также известный как 5-бром-5-нитро-1,3-диоксан, проявляет антимикробные свойства в отношении широкого спектра микроорганизмов, включая грамотрицательные и грамположительные бактерии, дрожжи и грибы.
Бронидокс L обычно используется в качестве стабилизатора и консерванта в биологических молекулах и растворах, таких как антитела и антисыворотки. Бронидокс L находит применение в смываемой косметике, где служит консервантом.


Бронидокс Л — порошок белого цвета.
Потенциал N-нитрозирования Бронидокс L аналогичен его метаболиту, 2-бром-2-нитропропан-1,3-диолу.
Бронидокс L представляет собой замещенный циклический эфир.


Бронидокс L – популярный химикат для очистки воды.
Бронидокс Л – противомикробное средство.
Бронидокс L действует путем ингибирования активности ферментов бактерий.


Бронидокс L — антибактериальное средство, которое также очень эффективно против дрожжевых грибков и др��жжей.
Бронидокс L достаточно стабилен в течение нескольких недель при обычной транспортировке и во время пребывания на таможне.
Бронидокс L растворим в ДМСО.


Бронидокс L представляет собой 10% 5-бром-5-нитро-1,3-диоксана в пропиленгликоле.
Хотя обычно считается нейтральным диолом, пропиленгликоль (1,2-пропандиол)
Однако Бронидокс L может мешать некоторым применениям IVD.


Бронидокс L представляет собой сухое вещество высокой чистоты, имеющее ≥99,5% по стандартному анализу контроля качества газовой хроматографии (оригинальный производитель).
Бронидокс Л — единственный продукт.
Бронидокс L медленно растворяется в водных буферах.


Бронидокс L можно вводить на любой стадии приготовления жидкого буфера/композиции.
Учитывая более медленную растворимость, мы рекомендуем добавлять Бронидокс Л в самом начале, т.е. сразу в воду, а затем
продолжите работу с другими компонентами буфера/препарата.


Дайте возможность перемешиваться в течение не менее 2 часов, что достаточно для полного растворения (~20 °C) БНД при максимально рекомендуемом уровне.
концентрация 0,12% (стабилизированные жидкие белковые концентраты, стабильные готовые к использованию составы тест-компонентов).


Бронидокс Л – химическое соединение, проявляющее противомикробную активность в отношении грамотрицательных и грамположительных бактерий, дрожжей и грибов.
Бронидокс L способен способствовать окислению тиолов незаменимых белков, вызывая ингибирование активности ферментов, что приводит к ингибированию роста микроорганизмов.



ИСПОЛЬЗОВАНИЕ И ПРИМЕНЕНИЕ БРОНИДОКСА L:
Применение продукта Bronidox L: ванна и душ, мытье волос, мытье рук.
Bronidox L используется в широком спектре продуктов в различных сегментах рынка средств личной гигиены, таких как антиперспиранты/дезодоранты, средства для ухода за телом, средства для ухода за полостью рта, средства для защиты от солнца и т. д.


Эти высокоэффективные продукты позволяют разрабатывать рецептуры, отвечающие потребностям потребителей.
Бронидокс Л обладает широким спектром активности в отношении бактерий и грибков.
Благодаря хорошей совместимости с другим косметическим сырьем Бронидокс Л можно комбинировать и с другими косметическими консервантами.


Фунгицид Бронидокс L эффективен против дрожжей и других грибков.
Бронидокс Л применяется в иммунологии для консервирования антител и антисывороток в концентрации 0,1 – 0,5%.
Бронидокс L используется в качестве консерванта, чтобы избежать использования азида натрия.


Бронидокс Л используется в качестве стабилизатора.
Бронидокс Л используется в косметике с середины 1970-х годов в качестве консерванта для шампуней, пены для ванн и т. д.
Бронидокс L используется в качестве стабилизатора и поверхностно-активного вещества.


Бронидокс Л применяется в иммунологии для консервирования антител и антисывороток в концентрации 0,1 – 0,5%.
Бронидокс L используется в качестве консерванта, чтобы избежать использования азида натрия.
Бактерицидное применение Бронидокс L: Очень эффективен против дрожжей и грибков.


Бронидокс Л используется в косметике с середины 1970-х годов в качестве консерванта для шампуней, пены для ванн и т. д.
Максимальная концентрация Бронидокс Л составляет 0,1 %.
Бронидокс L одобрен в качестве антимикробного биоцида/консерванта в IVD, фармацевтической и косметической промышленности.


Бронидокс L представляет собой 10% 5-бром-5-нитро-1,3-диоксана в пропиленгликоле.
Хотя обычно считается нейтральным диолом, пропиленгликоль (1,2-пропандиол)
Однако Бронидокс L может мешать некоторым применениям IVD.


Бронидокс L — абсолютно надежный антимикробный биоцид, идеально подходящий для консервирования жидких составов IVD, включающих реагенты, содержащие высокие концентрации белка, сахара и детергентов, которые являются особенно богатыми субстратами, склонными к микробному разрушению.
Бронидокс L использовался в качестве стабилизатора и консерванта биологических молекул и растворов, включая антитела и антисыворотки.


Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолиноном, который также считается эффективным консервантом.
Бронидокс L используется в качестве вспомогательных веществ для кожи, химикатов для очистки воды, вспомогательных веществ для нефти, вспомогательных веществ для текстиля, вспомогательных веществ для покрытия, вспомогательных веществ для пластмасс и других, вспомогательных веществ для резины, химикатов для электроники, химикатов для бумаги, поверхностно-активных веществ.


Бронидокс L используется в косметике с середины 1970-х годов в качестве консерванта для шампуней и ванн, кондиционеров, жидкого мыла, экстрактов трав, прозрачного и мутного мыла.
Бронидокс L используется в качестве консерванта, поверхностно-активного вещества, бактерицида и консерванта в иммунодепрессантах и косметике.


Бронидокс L используется в качестве вспомогательных средств для кожи, химикатов для обработки воды, нефтяных добавок, вспомогательных средств для текстильных средств, вспомогательных средств для покрытий, вспомогательных веществ для пластмасс и других, вспомогательных веществ для резины, химикатов для электроники, химикатов для бумаги, стимуляторов поверхности.
Бронидокс L используется в качестве стабилизатора, поверхностно-активного вещества, бактерицида и консерванта в иммунологии и косметике.


Бронидокс L используется в косметике с середины 1970-х годов в качестве консерванта для шампуней и пен для ванн.
Бронидокс L используется в качестве стабилизатора и консерванта биологических молекул и растворов, таких как антитела и антисыворотки.
Бронидокс L используется в различных смываемых косметических средствах.


Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном.
Бронидокс Л – мощное бактерицидное средство и консервант, который можно использовать в косметике.
Бронидокс Л — жидкий консервант.


Нанесенный смесью 1,2-пропиленгликоля и Бронидокс L подходит для использования с поверхностно-активными веществами, которые смываются после использования.
Бронидокс Л выдерживает температуру до 40°С и не изменяется при использовании для приготовления ПАВ в диапазоне рН от 5 до 8.
Бронидокс Л – эффективный противомикробный препарат и консервант.


Особенно это касается дрожжей и плесени.
Бронидокс L немного лучше растворяется в воде, чем в спирте.
Но Бронидокс L присутствует в формуле для волос в таком низком процентном соотношении, что нет никаких опасений по поводу его накопления на волосах, независимо от режима ухода за волосами. (без шампуня, с низким содержанием шампуня и т. д.)


Согласно ЕС, существуют правила для косметики, согласно которым максимально допустимая концентрация активного вещества составляет 0,1% (только в полосканиях для предотвращения родов нитрозоамина), чаще всего используется с шампунем, кремом для душа, стиральным порошком и кондиционером для белья и т. д.
Бронидокс L используется потребителями, профессиональными работниками (широко распространенное применение), а также в рецептурах или переупаковке.


Бронидокс L используется в косметике с середины 1970-х годов в качестве консерванта для шампуней и пен для ванн.
Бронидокс L используется в качестве стабилизатора, поверхностно-активного вещества, бактерицида и консерванта в иммунологии и косметике.
Бронидокс L используется в следующих продуктах: духи и парфюмерия, а также косметика и средства личной гигиены.


Другие выбросы Бронидокс L в окружающую среду могут произойти в результате: использования внутри помещений в качестве технологической добавки.
Бронидокс L используется в следующих продуктах: лабораторные химикаты.
Бронидокс Л применяется в следующих сферах: здравоохранение.


Другие выбросы Бронидокс L в окружающую среду могут произойти в результате: использования внутри помещений в качестве реактивного вещества.
Бронидокс L используется в следующих продуктах: лабораторные химикаты, парфюмерия и парфюмерия, а также косметика и средства личной гигиены.
Выброс Бронидокс L в окружающую среду может происходить при промышленном использовании: при приготовлении смесей.


Бронидокс L используется в качестве стабилизатора и консерванта биологических молекул и растворов, таких как антитела и антисыворотки.
Бронидокс L используется в различных смываемых косметических средствах.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном.


Бронидокс L использовался в качестве стабилизатора и консерванта биологических молекул и растворов, включая антитела и антисыворотки.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолиноном, который также считается эффективным консервантом.
Бронидокс L используется в качестве стабилизатора и консерванта биологиче��ких молекул и растворов, таких как антитела и антисыворотки.


Бронидокс L используется в различных смываемых косметических средствах.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном для повышения его эффективности.


Бронидокс L — бромсодержащий консервант, обычно используемый в косметических продуктах.
Бронидокс L, антимикробное соединение, эффективно против грамположительных и грамотрицательных бактерий и грибов, включая дрожжи.
Бронидокс L ингибирует активность ферментов и последующее ингибирование роста микробов за счет окисления тиола незаменимого белка.


Бронидокс Л – антибактериальное средство.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном для повышения его эффективности.
В косметике и средствах личной гигиены Бронидокс L используется в качестве консерванта.


Ингредиенты, которые предотвращают или замедляют рост бактерий и, таким образом, защищают косметическую продукцию от порчи.
Бронидокс L используется в средствах для ванн, волос и личной гигиены.
Бронидокс L действует как консервант.


Ингредиенты, которые предотвращают или замедляют рост бактерий и, таким образом, защищают косметическую продукцию от порчи.
Бронидокс L предотвращает или замедляет рост бактерий и, таким образом, защищает косметические средства и средства личной гигиены от порчи.
Бронидокс Л применяют в гелях для душа, кондиционерах, шампунях, скрабах для тела, масках для волос.


Бронидокс L — абсолютно надежный антимикробный биоцид, идеально подходящий для консервирования жидких составов IVD, включающих реагенты, содержащие высокие концентрации белка, сахара и детергентов, которые являются особенно богатыми субстратами, склонными к микробному разрушению.
В рекомендуемых эффективных концентрациях Бронидокс L неограниченно совместим со всеми процессами, буферами и стадиями реакций в ИФА, блоттинге и связанных с ними тестах.


Бронидокс L не мешает покрытию/адсорбции, захвату аналитов (из различных образцов, включая сыворотку/плазму, мочу, слюну, разбавленные фекалии и т. д.), обнаружению и выделению субстрата (TMB, ECL).
Бронидокс Л проявляет противомикробную активность в отношении грамотрицательных и грамположительных бактерий, дрожжей и грибов.


Бронидокс L используется в качестве стабилизатора и консерванта биологических молекул и растворов, таких как антитела и антисыворотки.
Бронидокс L используется в различных смываемых косметических средствах.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолоном.


Бронидокс L использовался в качестве стабилизатора и консерванта биологических молекул и растворов, включая антитела и антисыворотки.
Бронидокс L можно использовать отдельно или в сочетании с метилизотиазолиноном, который также считается эффективным консервантом.
Бронидокс L — одобренный антимикробный биоцид/консервант в
IVD, фармацевтическая и косметическая промышленность.



ФУНКЦИЯ БРОНИДОКСА L:
*Антибактериальный агент, который также очень эффективен против дрожжей и грибков.
*Консервант.



ХИМИЧЕСКАЯ ФУНКЦИЯ БРОНИДОКСА L:
*Консервант



СОЕДИНЕНИЕ ТИП БРОНИДОКСА L:
*Бромидное соединение
*Неорганическое соединение
*Лакриматор
*Органическое соединение
*Броморганический
* Пестицид
*Синтетическое соединение



АЛЬТЕРНАТИВНЫЕ РОДИТЕЛИ БРОНИДОКСА Л:
*C-нитросоединения
*1,3-диполярные органические соединения пропаргильного типа.
*Оксациклические соединения
*Органические соединения оксоазания.
*Ацетали
*Органопниктогенные соединения.
*Азоторганические соединения
*Броморганические соединения
*Органические оксиды
*Производные углеводородов
*Алкилбромиды



ЗАМЕСТИТЕЛИ БРОНИДОКСА L:
*Метадиоксан
*C-нитросоединение
*Органическое нитросоединение.
*Ацеталь
*Органический оксоазаний
*1,3-диполярное органическое соединение аллильного типа.
*1,3-диполярное органическое соединение пропаргильного типа.
*Органическое 1,3-диполярное соединение.
*Оксацикл
*Кислородорганическое соединение
*Азоторганическое соединение
*Броморганический
*Органическое соединение азота
*Галогенорганическое соединение
*Алкилбромид
*Алкилгалогенид
*Органопниктогенное соединение.
*Органическое кислородное соединение
*Производное углеводородов
*Органический оксид
*Алифатическое гетеромоноциклическое соединение.



РАСТВОРИМОСТЬ И СМЕШИВАЕМОСТЬ БРОНИДОКСА L:
Этиловый эфир: очень растворим
Этиловый спирт: очень растворим
Парафиновое масло: практически нерастворимо.
Вода: умеренно растворима (0,5% а.в.)



НАУЧНЫЕ ФАКТЫ О БРОНИДОКСЕ Л:
*Бронидокс L представляет собой циклический алифатический эфир.
*Органическое соединение, содержащее атом кислорода, связанный с двумя углеводородными группами.
*Эфирное соединение часто обозначается RO-R'.
*Бронидокс L также используется в качестве консерванта.
*Ингредиенты, которые предотвращают или замедляют рост бактерий и, таким образом, защищают косметическую продукцию от порчи.
*в системах водоснабжения, красках, смазочных маслах и при обработке кожи.



ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА БРОНИДОКСА Л:
Химическая формула: C4H6BrNO4.
Молярная масса: 211,999 g•mol−1
Внешний вид: Белый кристаллический порошок.
Температура плавления: 60 ° C (140 ° F; 333 К), 58,5–62 ° C.
Растворимость в воде: нерастворим.
Физическое состояние: твердое
Цвет: Нет данных
Запах: Нет данных
Точка плавления/точка замерзания:
Температура плавления: 59 °C при 1,013,25 гПа.
Начальная точка кипения и диапазон кипения: 185,2 °C при 200 гПа.
Горючесть (твердое тело, газ): Продукт не горюч.
Верхний/нижний пределы воспламеняемости или взрывоопасности: данные отсутствуют.
Температура вспышки: данные отсутствуют.
Температура самовоспламенения: Нет данных.

Температура разложения: Данные отсутствуют.
pH: данные отсутствуют
Вязкость
Вязкость, кинематическая: Нет данных.
Вязкость, динамическая: данные отсутствуют.
Растворимость в воде: 4,77 г/л при 20 °C.
Коэффициент распределения: н-октанол/вода:
log Pow: 1,6 при 23 °C
Биоаккумуляции не ожидается.
Давление пара: 0,34 гПа при 50 °C.
Плотность: 1,96 г/см3 при 20°С
Относительная плотность: 1,96 при 20 °C
Относительная плотность пара: данные отсутствуют.
Характеристики частиц: данные отсутствуют.
Взрывоопасные свойства: данные отсутствуют.
Окислительные свойства: нет

Другая информация по безопасности:
Поверхностное натяжение: 71 мН/м при 1 г/л при 20 °C.
Точка плавления: от 58°C до 61°C.
Белый цвет
Информация о растворимости: растворим в воде в концентрации 12,5 мг/мл.
Формула Вес: 212
Процент чистоты: 98%
Физическая форма: Порошок
Химическое название или материал: 5-бром-5-нитро-1,3-диоксан.
Химическая формула: C4H6BrNO4.
Средняя молекулярная масса: 211,999 г/моль.
Моноизотопная масса: 210,948 г/моль.
Регистрационный номер CAS: 30007-47-7
Название ИЮПАК: 5-бром-5-нитро-1,3-диоксан.

Традиционное название: 5-бром-5-нитро-1,3-диоксан.
УЛЫБКИ: [O-][N+](=O)C1(Br)COCOC1
Идентификатор InChI: InChI=1S/C4H6BrNO4/c5-4(6(7)8)1-9-3-10-2-4/h1-3H2
Ключ InChI: InChIKey=XVBRCOKDZVQYAY-UHFFFAOYSA-N
Формула: C₄H₆BrNO₄.
ММ: 212,00 г/моль
Температура плавления: 58…61 °C
Температура хранения: Холодильник
Номер леев: MFCD00101855
Номер CAS: 30007-47-7
ЕИНЭКС: 250-001-7
Молекулярный вес: 212,00 г/моль
XLogP3-AA: 0,3
Количество доноров водородной связи: 0
Количество акцепторов водородной связи: 4

Количество вращающихся облигаций: 0
Точная масса: 210,94802 г/моль.
Моноизотопная масса: 210,94802 г/моль.
Топологическая площадь полярной поверхности: 64,3 Å ²
Количество тяжелых атомов: 10
Официальное обвинение: 0
Сложность: 139
Количество атомов изотопа: 0
Определенное количество стереоцентров атома: 0
Неопределенное количество стереоцентров атома: 0
Определенное количество стереоцентров связи: 0
Неопределенное количество стереоцентров связи: 0
Количество единиц ковалентной связи: 1
Соединение канонизировано: Да

Температура плавления: 58-60 °С.
Точка кипения: 280,8±40,0 °C (прогнозируется)
Плотность: 1,070
давление пара: 1,6 Па при 20 ℃
показатель преломления: 1,6200 (оценка)
температура хранения: 2-8°C
растворимость: ДМФ: 30 мг/мл; ДМСО: 30 мг/мл;
ДМСО:PBS (рН 7,2) (1:4): 0,2 мг/мл;
Этанол: 25 мг/мл
форма: аккуратная
цвет: от белого до почти белого
Растворимость в воде: растворим в воде при 12,5 мг/мл.
ИнХИ: ИнХИ=1S/C4H6BrNO4/c5-4(6(7)8)1-9-3-10-2-4/h1-3H2
InChIKey: XVBRCOKDZVQYAY-UHFFFAOYSA-N

УЛЫБКИ: O1CC(Br)([N+]([O-])=O)COC1
LogP: 1,6 при 23 ℃
Ссылка на базу данных CAS: 30007-47-7 (ссылка на базу данных CAS)
FDA UNII: U184I9QBNM
Справочник по химии NIST: 1,3-диоксан, 5-бром-5-нитро-(30007-47-7).
Система регистрации веществ EPA: 1,3-диоксан, 5-бром-5-нитро- (30007-47-7)
Название: 5-Бром-5-нитро-1,3-диоксан
ЕИНЭКС: 250-001-7
Номер CAS: 30007-47-7
Плотность: 1,83 г/см3
ПСА: 64,28000
ЛогП: 0,88180
Растворимость: растворим в воде при концентрации 12,5 мг/мл.
Точка плавления: 60 °С.

Формула: C4H6BrNO4
Точка кипения: 280,8 °C при 760 мм рт.ст.
Молекулярный вес: 212
Температура вспышки: 123,6 °С.
Транспортная информация: нет данных
Внешний вид: Белый кристаллический порошок.
Безопасность: 36
Коды риска: 22-38
Анализ: от 95,00 до 100,00.
Внесен в Кодекс пищевых химикатов: Нет
Температура кипения: 280,76 °С. @ 760,00 мм рт.ст. (расчетное значение)
Давление пара: 0,004000 мм рт. ст. при 25,00 °C. (стандартное восточное время)
Температура вспышки: 254,00 °F. TCC (123,60 ° C) (оценка)
logP (н/в): 0,749 (оценка)
Растворим в: воде, 9423 мг/л при 25 °C (расчетное значение).



МЕРЫ ПЕРВОЙ ПОМОЩИ БРОНИДОКСА Л:
-Описание мер первой помощи:
*Общие советы:
Лицам, оказывающим первую помощь, необходимо защитить себя.
Покажите этот паспорт безопасности материала лечащему врачу.
*При вдыхании
После ингаляции:
Свежий воздух.
Вызовите врача.
*При попадании на кожу:
Немедленно снимите всю загрязненную одежду.
Промойте кожу водой/душем.
Немедленно позвоните врачу.
*В случае зрительного контакта:
После зрительного контакта:
Промойте большим количеством воды.
Немедленно вызвать офтальмолога.
Снимите контактные линзы.
*При проглатывании:
После глотания:
Заставить пострадавшего выпить воды.
Немедленно позвоните врачу.
Не пытайтесь нейтрализовать.
-Указание на необходимость немедленной медицинской помощи и специального лечения:
Данные недоступны



МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ БРОНИДОКСА L:
-Экологические меры предосторожности:
Не допускайте попадания продукта в канализацию.
-Методы и материалы для локализации и очистки:
Закройте дренажи.
Соберите, свяжите и откачайте пролитую жидкость.
Соблюдайте возможные ограничения по материалам.
Возьмите в сухом виде.
Утилизируйте должным образом.
Очистите пораженное место.



МЕРЫ ПОЖАРОТУШЕНИЯ БРОНИДОКСА Л:
-Средства пожаротушения:
*Подходящие средства пожаротушения:
Вода
Мыло
Углекислый газ (CO2)
Сухой порошок
*Неподходящие средства пожаротушения:
Для этого вещества/смеси не установлены ограничения по огнетушащим веществам.
-Дальнейшая информация:
Подавить (сбить) газы/пары/туманы струей воды.
Не допускайте попадания воды для пожаротушения в поверхностные воды или систему грунтовых вод.



КОНТРОЛЬ ВОЗДЕЙСТВИЯ/ПЕРСОНАЛЬНАЯ ЗАЩИТА БРОНИДОКСА L:
-Параметры управления:
--Ингредиенты с параметрами контроля на рабочем месте:
-Средства контроля воздействия:
--Средства индивидуальной защиты:
*Защита глаз/лица:
Используйте средства защиты глаз.
Плотно прилегающие защитные очки
*Защита кожи:
Полный контакт:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
Всплеск контакта:
Материал: Нитриловый каучук.
Минимальная толщина слоя: 0,11 мм.
Время прорыва: 480 мин.
*Защита тела:
защитная одежда
*Защита органов дыхания
Рекомендуемый тип фильтра: Тип фильтра P2.
-Контроль воздействия на окружающую среду
Не допускайте попадания продукта в канализацию.



ОБРАЩЕНИЕ И ХРАНЕНИЕ БРОНИДОКСА L:
-Условия безопасного хранения, включая любые несовместимости:
*Условия хранения:
Плотно закрыто.
Сухой.
*Класс хранения:
Класс хранения (TRGS 510): 8B:
Негорючий



СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ БРОНИДОКСА L:
-Химическая стабильность:
Продукт химически стабилен при стандартных условиях окружающей среды (комнатная температура).
-Возможность опасных реакций:
Данные недоступны
-Условия, чтобы избежать:
Нет доступной информации



СИНОНИМЫ:
Пропиленгликоль
5-Бром-5-Нитро-1,3-Диоксан
Пропиленгликоль
5-Бром-5-Нитро-1,3-Диоксан
5-Бром-5-Нитро-1,3-Диоксан
5-Бром-5-нитро-м-Диоксан
5-бром-5-нитро-м-диоксан
1,3-Диоксан, 5-Бром-5-Нитро-
БРОНИДОКС L5
БРОНИДОКС Л
БНД
БРОНИДОКС
БРОНИДОКС Л
5-БРОМ-5-НИТРО-1,3-ДИОКСАН
3-диоксан,5-бром-5-нитро-1
5-Бром-5-нитро-1,3-диоксан
5-бром-5-нитро-3-диоксан
5-бром-5-нитро-м-диоксан
Бромонитродиоксан
Бронидокс Л
Бронидокс, 1,3-диоксан
5-бром-5-нитро-
м-диоксан
5-бром-5-нитро- (8CI)
5-Бром-5-нитро-1,3-диоксан
Бронидокс
Бронидокс Л
Микроцид I
5-Бром-5-нитро-1,3-диоксан
м-Диоксан, 5-бром-5-нитро-
5-Бром-5-нитро-1,3-диоксан
5-Бром-5-нитро-м-диоксан
Бронидокс
Бронидокс Л
5-Бром-5-нитро-1,3-диоксан
30007-47-7
Бронидокс
1,3-Диоксан, 5-бром-5-нитро-
5-Бром-5-нитро-м-диоксан
м-ДИОКСАН, 5-БРОМ-5-НИТРО-
5-Бром-5-нитро-1,3-диоксан
MFCD00101855
U184I9QBNM
DTXSID1044560
ЭИНЭКС 250-001-7
UNII-U184I9QBNM
БРН 4668673
Бронидокс Л
МИКРОКИД I
СХЕМБЛ97282
CHEMBL3185787
DTXCID9024560
СХЕМБЛ17347337
XVBRCOKDZVQYAY-UHFFFAOYSA-N
Tox21_301588
АКОС015834980
АКОС040744440
CS-W015032
HY-W014316
NCGC00255969-01
АС-15941
PD053603
SY014363
5-Бром-5-нитро-1,3-диоксан, >=99%
CAS-30007-47-7
Б3156
Б3769
FT-0620143
5-БРОМ-5-НИТРО-1,3-ДИОКСАН [INCI]
Д88989
ЭН300-7381687
5-Бром-5-нитро-1,3-диоксан, аналитический стандарт
Q-200534
Q4973879
БНД
БРОНИДОКС
БРОНИДОКС Л
МикроцидИтм
5-бром-5-нитро-м-диоксан
5-бром-5-нитро-3-диоксан
5-Бром-5-нитро-1,3-диоксан
5-Бром-5-нитро-м-диоксан
5-БРОМ-5-НИТРО-1,3-ДИОКСАН
3-диоксан,5-бром-5-нитро-1
5-бром-5-нитро-1,3-диоксолан
5-BroMo-5-нитро-1,3-диоксан
5-Бром-5-нитро-м-диоксан
5-бром-5-нитро-1,3-диоксан
м-ДИОКСАН,5-БРОМ-5-НИТРО
1,3-Диоксан,5-бром-5-нитро
Бронидокс Л
Юнидокс Л

BRONOPOL
2-Bronopol; Bronosol; Bronopol; Onyxide 500; Beta-Bromo-Beta-nitrotrimethyleneglycol; 2-Bromo-2-nitropropan-1,3-diol; Bronidiol; Bronocot; bronopol; Bronopolu; Bronotak; Lexgard bronopol CAS:52-51-7
BRONOPOL SERIES  (PROTECTOL BN)
CI Food Brown 3; Chocolate brown HT; CI (1975) No. 20285; INS No. 155 CAS NO: 4553-89-3
Brown HT
BRYONOLIC ACID, N° CAS : 24480-45-3, Nom INCI : BRYONOLIC ACID, Nom chimique : D:C-Friedoolean-8-en-29-oic acid, 3-hydroxy-, (3beta,20beta)-, Emollient : Adoucit et assouplit la peau
BRYONOLIC ACID
BUTA-1,3-DIENE, N° CAS : 106-99-0, Nom INCI : BUTA-1,3-DIENE
BUTA-1,3-DIENE
Butyl acetate; 1-Acetoxybutane; 1-Butyl acetate; Acetate de butyle (French); Acetic Acid Butyl Ester; Butile (Acetati Di) (Italian); Butyl Ethanoate; Butylacetat (German); Butylacetate; Butylacetaten (Dutch); Butyle (Acetate De) (French); Butylester Kyseliny Octove (Czech); Octan n-Butylu (Polish); Butyl Ethanoate; cas no:123-86-4
BUTIL ASETAT
buteth-2 acetate; acetic acid 2-(2-butoxyethoxy)ethyl ester ;( butoxyethoxy)ethyl acetate; butylcarbitol acetate; butyldiglycol acetate ; diethylene glycol monobutyl ether acetate cas no:124-17-4
BUTIL DI GLIKOL ASETAT
Butyl Di Glycol (BDG); Diethylene Glycol Monobutyl Ether; butoxydiglycol; diethylene glycol monobutyl ether; ethanol, 2-(2-butoxyethoxy)-; diethylene glycol butyl ether; 2-(2-butoxyethoxy)ethanol; butyl carbitol; butyldiglycol cas no:112-34-5